
June 2007
Jon Atle Gulla, IDI
Terje Brasethvik, IDI
Jon Espen Ingvaldsen, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Ontology-Driven Query Reformulation
in Semantic Search

Geir Solskinnsbakk

Problem Description

Semantic search requires that user queries are understood semantically and
can be related to the real contents of documents. Ontologies are semantic
specifications of important domain properties and are independent of any particular
application. For a search application, however, ontologies are more useful for interpreting
queries and documents if they are tailored to the particular needs of the search
process.

 In this project, we will enrich the ontologies with weights that expose how
central concepts and relationships are for a particular search context. Moreover,
we will use text mining techniques to provide a mapping from concepts to words that are
semantically linked to the concepts are frequently used in the documents available.

The candidate will extend the Lucene search core with a query reformulation
component that makes use of this enriched ontology to modify the query semantically
and map the concepts down to the appropriate words. The resulting search application is
to be evaluated against traditional search engines for the petroleum domain.

Assignment given: 20. January 2007
Supervisor: Jon Atle Gulla, IDI

Abstract

Semantic search is a research area in which the goal is to understand the users intended
meaning of the query. This requires disambiguation of the user query and interpret-
ing the semantics of the query. Semantic search would thus improve the users search
experience through more precise result sets. Moreover, ontologies are explicit concep-
tualizations of domains, defining concepts, their properties, and the relations among
them. This makes ontologies semantic representations of specific domains, suitable to
use as a basis for semantic search applications.

In this thesis we explore how such a semantic search system based on ontologies may be
constructed. The system is built as a query reformulation module that uses an underly-
ing search engine based on Lucene. We employ text mining techniques to semantically
enrich an ontology by building feature vectors for the concepts of the ontology. The
feature vectors are tailored to a specific document collection and domain, reflecting
the vocabulary in the document collection and the domain. We propose four query
reformulation strategies for evaluation. The interpretation and expansion of the user
query is based on the ontology and the feature vectors. Finally the reformulated query
is fired as a weighted query into the Lucene search engine.

The evaluation of the implemented prototype reveals that search is in general improved
by our reformulation approaches. It is however difficult to give any definite conclusion
to which query types benefit the most from our approach, and which reformulation
strategy improves the search result the most. All four of the reformulation strategies
seem to on average perform quite equally.

Preface

This report presents my Master thesis as part of the 5th year of the “Sivilingeniør i
Datateknikk” course. The work has been carried out at the Department of Computer
and Information Science, Faculty of Information Technology, Mathematics, and Elec-
tical Engineering at NTNU. The work has been supervised by Professor Dr. Jon Atle
Gulla, and co-supervised by researcher Dr. Terje Brasethvik, and PhD student Jon
Espen Ingvaldsen.

I would like to thank my main supervisor Professor Jon Atle Gulla for many fruitful
discussions and guidance in the research work. I would also like to thank Terje Brasetvik
for feedback on my work, especially in the early stages. Jon Espen Ingvaldsen has given
valuable comments on the report, both on structure and content, in addition to be one
of the test subjects for the evaluation of the implementation.

Finally I would like to thank the four Master students Christian Bøhn, Øyvind Arne
Evensen, Christian Laverton, and Morten Larsen Segelvik for taking the time in the
finishing stage of their own Master projects to evaluate the implemented prototype.

Trondheim, June 17, 2007,

Geir Solskinnsbakk

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Background . 3
1.2 Project Goals . 3
1.3 Approach . 3
1.4 Expected Results . 4
1.5 Outline of this Document . 4

II State-of-the-Art 7

2 Background 9
2.1 Text Mining . 9
2.2 Information Retrieval . 9
2.3 Semantic Web . 10
2.4 Ontology . 10

2.4.1 What Constitutes an Ontology? 11
2.5 WordNet . 11
2.6 Concept Feature Vector . 11
2.7 Semantics & Semantic Search . 12

3 Technological overview 13
3.1 Text Preprocessing . 13

3.1.1 Tokenization & Transliteration 13
3.1.2 Stop Word Removal . 13
3.1.3 Normalization . 14
3.1.4 POS-tagging . 15

3.2 Latent Semantic Indexing . 15
3.3 Indexing . 16

3.3.1 Inverted Files . 17
3.3.2 Suffix Arrays . 17

3.4 Information Retrieval . 17
3.4.1 Vector Space Model . 17
3.4.2 Retrieval Performance Evaluation 19

3.5 Web Ontology Language - OWL . 20
3.5.1 OWL Lite . 21
3.5.2 OWL DL . 21
3.5.3 OWL Full . 21

4 Related Work 23
4.1 Classification of Search Systems . 23

v

vi CONTENTS

4.2 Classification of Semantic Search . 24
4.3 Related Work . 26

III Realization 33

5 Approach 35
5.1 Architecture . 35
5.2 IIP Ontology . 35
5.3 Indexing Phase . 36

5.3.1 Preprosessing . 37
5.3.2 Indexing . 37
5.3.3 Feature vectors . 39

5.4 Retrieval Phase . 41
5.4.1 Query Reformulation . 41
5.4.2 Document Retrieval . 44

6 Implementation 45
6.1 Frameworks . 45
6.2 Implementation . 46

6.2.1 Indexing . 46
6.2.2 Feature Vector Construction . 47
6.2.3 Query Reformulation . 48
6.2.4 Document Retrieval . 51

6.3 Class diagrams . 52
6.3.1 Package index . 52
6.3.2 Package featurevector . 52
6.3.3 Package query . 53
6.3.4 Package web . 54

IV Evaluation 57

7 Evaluation 59
7.1 Evaluation Data . 59
7.2 Evaluation Strategy . 60
7.3 Evaluation Results . 61

7.3.1 User Tests . 61
7.3.2 Overlap . 64

7.4 Evaluation Summary . 67

8 Discussion 69
8.1 Test Results . 69
8.2 Improvements . 70

8.2.1 Feature Vectors & Negative Feature Vectors 70
8.2.2 Performance . 72
8.2.3 Ontology Reasoning . 72
8.2.4 Challenges . 72

9 Conclusion 75

Bibliography 77

CONTENTS vii

V Appendix 81

A Implementation 83

List of Figures

1.1 The suggested approach . 4

2.1 Ontology Spectrum [33] . 11

3.1 Precision and Recall [6] . 20

4.1 Classification of search systems . 24
4.2 The combination of queries used in the search process [38] 29
4.3 Terms and query in DVS [42] . 30

5.1 Overview of the approach . 36
5.2 OWL definition of a Christmas Tree in the IIP ontology. 36
5.3 Part of the IIP ontology focused on the Christmas Tree [24]. 37

6.1 Screenshot of the web user interface . 51
6.2 Package view of the implemented prototype 53
6.3 Class diagram of the index package . 53
6.4 Class diagram of the featurevector package 54
6.5 Class diagram of the query package . 54
6.6 Class diagram of the web package . 55

7.1 Average score for the top 3 and top 10 hits over all the queries for each
of the search strategies. 62

7.2 Average score for the top 3 and top 10 hits for each of the search strate-
gies for queries 1 and 2. 62

7.3 Average score for the top 3 and top 10 hits for each of the search strate-
gies for queries 3 and 4. 63

7.4 Average score for the top 3 and top 10 hits for each of the search strate-
gies for queries 5 and 6. 63

7.5 Average score for the top 3 and top 10 hits for each of the search strate-
gies for query 7. 64

7.6 Hits and overlap for queries 1 and 2 . 64
7.7 Hits and overlap for queries 3 and 4 . 65
7.8 Hits and overlap for queries 5 and 6 . 65
7.9 Hits and overlap for query 7 . 66

ix

List of Tables

7.1 Proposed queries used in the evaluation. 61
7.2 Total overlap for the documents retrieved. 66
7.3 Total overlap for the paragraphs retrieved. 67
7.4 Total number of hits for each strategy. 67

A.1 Stop words . 83

xi

Listings

6.1 Pseudo code for the simple reformulation strategy 49
6.2 Pseudo code for the best match reformulation strategy 49
6.3 Pseudo code for the ontology structure reformulation strategy 50
6.4 Pseudo code for the cosine similarity reformulation strategy 50

xiii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Background

As the amount of information grows, both in the Internet and in corporate document
repositories, users are faced with the overwhelming task of finding information suited
for their purpose. Search engines are needed to assist the user in this task. However,
most of the search engines employed today utilise term matching to match the user
query with the users information need. The user may not have a clear understanding
of the domain, making it hard to find the correct information. To make matters even
worse, users tend to use short queries, 3 or less terms, to describe the information need
[13]. It is thus hard for the user to specify a few good keywords to accurately describe
the information need.

Ontology driven Information Retrieval (IR) lets the user search in concept space rather
than in keyword space[39]. This project will enrich the concepts of the ontology with
contextual information in a relevant domain, trying to enhace the information retrieval
task by letting the user search conceptually.

1.2 Project Goals

The main goal of this project is to explore how a semantic search system can be imple-
mented, based on a domain specific ontology and a domain specific document collection.
The ontology used in this project is the IIP 1 core ontology containing 18,675 concepts.
The motivation for the project is to investigate the usefullness of such a system in a
domain specific search setting.

A prototype of the search system is to be implemented using the suggested approach
and the results of the prototype implementation will be evaluated.

1.3 Approach

As stated in the problem-description, this project will develop a semantic search proto-
type based on a semantically enriched ontology. The semantic enrichment is based on

1IIP, the Integrated Information Platform for reservoir and subsea production systems project. A
research project funded by the Norwegian Research Council, project nr 163457/S30.

3

4 CHAPTER 1. INTRODUCTION

the work done in the project“Extending Ontologies with Search-Relevant Weights” [47].
The main part of the project is to explore ways to use the semantic enriched ontology to
reformulate queries. Figure 1.1 shows an overview of the suggested approach. The first
step is to build feature vectors for each concept in the ontology. The feature vectors are
built using text mining techniques applied to a set of domain relevant documents. The
query reformulation component is split in two phases, first query interpretation, and
secondly query expansion. We have suggested four strategies to interpret the query.
Through the query interpretation we find the most related concepts for the query. The
query expansion uses the feature vectors as a basis to add semantically related words
to the query. The semantically enriched query is lastly fired as a weighted query into
the search index powered by Lucene.

Figure 1.1: The suggested approach

1.4 Expected Results

The result of this thesis will be a semantic search prototype which uses an ontology and
a collection of domain relevant documents to reformulate the user query. Through the
evaluation of the implemented prototype we compare the query reformulation strategy
with standard keyword search, shedding light on the possible improvement of search
made by our approach with respect to keyword search.

1.5 Outline of this Document

Chapter 2 of this report gives an overview of the background related to this project.
In Chapter 3 we present more detailed theory that is relevant for this project. We will
in Chapter 4 give an overview of the current state-of-the-art on the field of semantic
search. Chapter 5 gives a detailed description of the approach and techniques used. The

1.5. OUTLINE OF THIS DOCUMENT 5

prototype and its implementation is described in Chapter 6, followed by the evaluation
of the prototype and the obtained results in Chapter 7. Chapter 8 gives a discussion of
our findings, challenges, and possible improvements to the approach. Finally, Chapter
9 gives the conclusion for the report.

6 CHAPTER 1. INTRODUCTION

Part II

State-of-the-Art

7

Chapter 2

Background

We will in this chapter give a short presentation of the relevant backgroun for this
project.

2.1 Text Mining

Text mining has been defined as“the discovery by computer of new, previously unknown
information, by automatically extracting information from different written resources”
[26]. Text mining and information retrieval are related in the sence that informa-
tion retrieval is concerned with retrieving information from a document repository (i.e.
an index), while text mining is concerned with discovering new information in large
amounts of text. This relationship is the same as the one found with data mining and
data retrieval.

Text mining and data mining are highly related techniques, as many of the techniques
applied to text mining problems have originated in the data mining field. The main
difference between the two is that data mining tools are designed to operate on large
bodies of structured data, such as databases or XML files, while text mining tools
mainly handle unstructured or semi-structured data such as natural language docu-
ments, e-mails, or HTML files [14]. Examples of techniques applied to text mining are
clustering, information extraction, summarization, concept linkage, and topic tracking
[14].

2.2 Information Retrieval

In information retrieval the objective is to search for and retrieve documents fulfilling a
users information needs. Classical information retrieval is based on keyword matching,
requiring the user to state his information needs in the form of a keyword query. There
exists several different information retrieval models, such as the vector space model, the
boolean model, and the probabilistic model [6]. Documents are retrieved by matching
them against the query supplied by the user. The documents retrieved may be ranked by
the search engine, depending on the retrieval model used. As the amount of documents
both on the web and in corporations continue to increase, information retrieval is an
important area of research.

9

10 CHAPTER 2. BACKGROUND

2.3 Semantic Web

“The Semantic Web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in co-operation”

Tim Berners-Lee, James Hendler, Ora Lassila
The Semantic Web, Scientific American, May, 2001 [9]

The World Wide Web (WWW) of today is not designed in a way that lets the computer
understand its contents. Rather it is designed to let humans find and read the infor-
mation they seek. The semantics of the web are, so to say, out of reach for machines;
they can not understand and process the semantics of the information they handle. For
instance, a machine that parses a web site only recognizes the web page as a bag of
words and is not able to understand how the words are related to the semantic content
of the web page. The Semantic Web is proposed as the next generation WWW, and
aims at adding machine prosessable semantics to web resources, allowing machines to
“understand” the semantics of documents and resources found on the Semantic Web
[9].

To render the semantics in the Semantic Web accessible to machines, the semantics must
be expressed in a machine processable manner, and the machines must have access to
structured sets of information and inference rules to make automatic reasoning possible
[9].

Ontologies are a central part of the Semantic Web vision. Ontologies give a conceptual
description of a domain, modelling the domain with concepts, relations, and properties.
In addition the ontology specifies inference rules on the concepts, allowing complex
reasoning within the ontology. These ontologies can be utilized by the Semantic Web
to semantically annotate the semantic contents of web pages. In contrast to todays
situation, the semantically annotated web pages will let machines “understand” how
the information in a web page is related to other pieces of information.

2.4 Ontology

The term ontology has several meanings, depending on who you ask. It has for a long
time been used by philosophers to describe the theory of being and existance. In the
information systems context however, an ontology is considered an agreement on a
domain specification [48]. The ontology specification defines concepts, properties, and
the relations among them within a specific domain. A commonly used definition of an
ontology is: an ontology is a formal, explicit specification of a shared conceptualization.
[20]. In other words, this means that the ontology provides a shared understanding of a
domain, its concepts and how they are related to one another. The term formal refers
to the ontology as being machine processable, and facilitates sharing and construction
of intelligent agents that may understand the contents of the information they handle.

The use of ontologies has found its application in many areas, such as knowledge engi-
neering and representation, database design, information retrieval and extraction, and
knowledge management and organizing[21].

2.5. WORDNET 11

2.4.1 What Constitutes an Ontology?

In its simplest form a controlled vocabulary may be viewed as an ontology [33]. An
example of this may be a catalog. The catalog contains a list of terms, providing an
unambigous mapping from a term to its interpretation. Although this may be seen as
a simple ontology, [33] provides a definition of what properties an ontology must hold.
Figure 2.1 shows a spectrum of different types of ontology candidates, ranging from the
simplest on the left side to the more complex on the right side. [33] has drawn a border
in the spectrum between the informal is-a type and the formal is-a type, letting all
the candidates to the right be considered real ontologies.

Figure 2.1: Ontology Spectrum [33]

2.5 WordNet

WordNet is a large lexical database for the english language containing nouns, verbs,
adjectives, and adverbs[2]. Each wordgroup is grouped into cognitive synonym sets
(synsets), where each synset defines a distinct concept. The groups are interconnected
through semantic and lexical relations, leading to a network of related concepts and
words [2].

WordNet is by some people considered a simple ontology. Taking another look at Figure
2.1 one can see that WordNet would fit in the left side of the scale, namely as a glossary
or thesaurus, and would not be considered a real ontology using this definition.

2.6 Concept Feature Vector

[48] provides the following definition of a concept feature vector:

Let Ck be the feture vector of concept K, and let V be the collection of all index words
in the document collection.
Ck = (weight1,weight2,...,weightt)
V = (word1,word2,...,wordt)
Ck

i denotes the representativeness of index word Vi to concept K.

During the construction of the feature vectors, documents are assigned to each concept
in the ontology. Two different approaches to document assignment are described by
[48], and we will now repeat the simplest here. First all the documents in the document
collection are indexed. In the next step, each concept is used as a query into the index.

12 CHAPTER 2. BACKGROUND

The resulting documents above a minimum threshold are assigned to the concept feature
vector and subsequently used in the construction of the feature vector.

2.7 Semantics & Semantic Search

Traditional Information Retrieval is based on keyword search, presenting the user with
the challenge of specifying his information need in terms of keywords. This may some-
times be a hard task, since the user thinks of his information need in concept space
(e.g. the Iraq war), and has to present a query in word space [39]. Concepts tend
to be abstractions and need not be mentioned explicitely in a document covering the
concept, making it difficult to match the concept with the keywords.

The objective of semantic search is to let the user search in concept space in contrast
to keyword space as is the case of most full-text search engines. Semantic search may
take on a wide range of approaches, from specialized indexing (e.g. indexing based on
synonyms [39]), query reformulation approaches (e.g. [10, 13]), to semantic annotated
text like in the Semantic Web. Additional knowledge, such as ontologies, is often used
to find relations and conceptual representations of the content.

Chapter 3

Technological overview

This chapter will give an overview of the theory that is relevant for this project.

3.1 Text Preprocessing

Text preprocessing is usually the first step in a indexing procedure. This section will give
an introduction to tokenization, transliteration, stop word removal, and normalization
of terms. In addition we give a short introduction to part-of-speech tagging.

3.1.1 Tokenization & Transliteration

The first step of text preprocessing is usually tokenizaion, also called lexical analysis.
A digital text can be viewed as a character stream. This stream must be converted to
a representation that is appropriate for information retrieval purposes. The character
stream is through the application of tokenization converted to a stream of tokens.
Tokenization isolates word-like units from the character stream [19] by recognizing the
word boundaries. Recognizing the word boundaries is a simple task for a human reading
the text, but is somewhat more complicated for machines. Problems encountered during
machine processing of the character stream include, among others, removal of tags in
marked-up text, for instance HTML tags, handling of abbreviations, numbers, dates,
and hyphenations.

Transliteration is an important part of translating terms from one language to another.
The problem may not be as apparant in for example spanish/english as in japane-
se/english or arabic/english due to different alphabets and sound systems. Lets look at
transliteration between english and japanese as an example. Japanese uses a syllabic
alphabet called katakana to transliterate foreign loanwords and proper names. The
english word computer would be transliterated into the japanese phonetic konpiyuuta
[30, 43].

3.1.2 Stop Word Removal

Stop words are a group of words in the language which are used frequently and occur
to often in documents to be good discriminators. In addition, stop words often carry
little or no meaning, such as the words the and or. Since the words do not contribute
significantly to the information retrieval process, these words are often removed during

13

14 CHAPTER 3. TECHNOLOGICAL OVERVIEW

the preprocessing of the document collection. Stop words typically belong to the word
classes articles, prepositions, and conjunctions. A beneficial side effect of stop word
removal is that the index size may be reduced by up to 40% [6].

Although generally stop word removal improves the performance of the application, an
unfortunate side effect is that the recall (see Section 3.4.2) may be reduced. We will
illustrate this with the phrase to be or not to be. Depending on the stop word list used,
most of the words in the phrase are stop words, and may leave the phrase empty or just
containing the word be. It is thus obvious that searching for the phrase in this situation
might be futile, reducing recall. This unwanted reduction in recall has influenced some
of the search engines to do a full text indexing, not removing the stop words [6].

3.1.3 Normalization

A word may appear in several syntactical variations, such as plural, gerund form and
past tense with different suffixes. This introduces a problem when matching keywords
with its inflectional variations. Normalizing the terms by stemming or lemmatization is
a solution to this problem. Stemming reduces the term to its stem by suffix stripping,
while lemmatization reduces the term to its morphological root. An example of a word
and its syntactic variation is running and runs, which both are related to the base form
run. In addition to increasing recall [16], stemming/ lemmatization provides index
compression by mapping several syntactic variation of a term to its stem/lemma.

In addition to these normalization techniques will we briefly introduce entity normal-
ization, which deals with normalizing for example a persons name, easing the task of
retrieving documents referring to a specific person.

Stemming

A number of different algorithms that perform stemming exist, but the Porter algorithm
is one of the most popular [6]. The porter algorithm is a suffix removal algorithm and
uses a suffix list for removing and replacing suffixes. The list is specified as rules, and
an example of such a rule is s →�, which converts the plural form into singular form
by removing the plural s. The algorithm has five phases, and the rules are organized
into five groups corresponding to the five phases of the algorithm. For a more detailed
discussion of the Porter algorithm see [41].

Another example of a stemming algorithm is the ”S” stemming algorithm [25], which is
a lot less complex than the porter stemming algorithm. The version of the algorithm
described in [25] uses three rules to group singular and plural form of words. The ”S”
stemming algorithm is a light stemming algorithm. [25] reports that the ”S” stemming
algorithm reduced the number of terms from 8460 to 7489 unique stems in the Cranfield
collection, while the Porter algorithm redused the same number of terms to 6028 unique
stems.

The strength of a stemming algorithm is a measure for how much a word is altered in
the stemming process. According to [16] a strong stemmer will, on average, increase
recall, decrease precision, and decrease the size of the index.

3.2. LATENT SEMANTIC INDEXING 15

Lemmatization

Lemmatization is highly related to Stemming, as the objective of the two techniques is
the same. Stemming strips words of their suffix, while lemmetization reduces words to
their morphological root. Lemmatization typically uses a dictionary in the normaliza-
tion process, by identifying the inflection of the word through morphological analysis,
and mapping the word to the normalized form found in the dictionary. However,
lemmatization may also be applied using a rule-based approach [40].

Stemming tends to produce non-existing words, while lemmatization produces words
that actually exist. An example of this is computing, computed, and computes which by
stemming would be reduced to the stem comput, while lemmatization would correctly
identify the normalized form as compute. Lemmatization has the drawback that it can
not lemmatize unknown words. To solve this problem, [32] suggests to use lemmatiza-
tion for all the known words, and to stem words not found in the dictionary.

Entity normalization

Entity normalization provides normalization of named entities, such as people, loca-
tions, companies etc. By adding markup of people etc. one may inhance the informa-
tion retrieval task by recognizing that a query term actually refers to a person, and
use this fact during search. The entities may be recognized by handcrafted finite state
patterns, Hidden Markov Models, or a maximum entropy approach [7].

A presentation given by Aleksander Øhrn [29] shows how Fast 1 uses the feature. The
example given in the presentation is an excerpt of a text reffering to Leonid Kuchma
using only the term Kuchma. The term Kuchma is tagged as being the person Leonid
Kuchma, and this information may be used to enhance the search, recognizing that
the term Kuchma refers to the person Leonid Kuchma, even though Leonid is not
mentioned together with Kuchma in the text.

3.1.4 POS-tagging

Words can be found in several different syntactic variations, and their meaning may
be different depending on the context they appear in. One way of dealing with this is
to use a Part-Of-Speech tagger [45]. Part-of-speech tagging labels all of the words in
a sentence with their corresponding part-of-speech, such as adjective, noun, pronoun,
verb or other catergories. In contrast to ordinary part of speech, part-of-speech tags
have a much larger range. Verbs for instance, are not simply tagged as being a verb,
but are tagged according to the tense of the verb. There exists several influencial tag
sets, such as the Brown Corpus tag set and the Penn Treebank tag set.

Rule-based tagging and stochastic tagging are the two most common approaches for
part-of-speech tagging. For an overview of rule based and stochastic taggers, see [4].

3.2 Latent Semantic Indexing

When using a search engine, the users enter a query and may expect to retrieve doc-
uments based on the concepts of the query terms, thus retrieving documents based

1Fast Search & Transfer, http://www.fast.com

16 CHAPTER 3. TECHNOLOGICAL OVERVIEW

on concept and not on keyword matching. Conventional retrieval techniques, such as
the vector space model, using keyword based matching between documents and query
reveals two problems [12]. These problems are synonymy and polysemy.

Synonymy deals with the fact that there exists several words to describe the same object
or concept. People tend to use different words to refer to the same concept depending
on variables such as context, needs, knowledge, and linguistic habits [12]. The main
problem lies in matching the query terms against the document terms. A document
may have content that discusses the same concept as the intended query, but as long
as the document index does not contain the term given in the query, matching them
up is not possible with classical information retrieval.

The use of a thesaurus to expand the query by adding synonyms of the query words to
the query has been explored [6]. However, this introduces an unwanted effect by adding
polysemy to the query, thus adding non-relevant documents to the retrieved documents
and degrading precision.

Polysemy means that a word may have several meanings. An example of this would
be the word banke, which in one context may refer to a financial institution, and in
another context may refer to a river bank. Specifying a search word and matching it
with the document index, may retrieve documents dealing with completely different
concepts. Polysemy and synonymy causes respectively precision and recall to fall.

Latent Semantic Indexing (LSI) [12] is proposed as a solution to these two problems.
LSI is based on the assumption that there exists an underlying semantic structure in the
textual data. Instead of keyword matching, as in conventional information retrieval,
LSI is used to perform concept matching. Statistical methods are used to estimate
the semantic structure in the text, giving a conceptual representation of the relations
between the terms and documents.

LSI uses Singular Value Decomposition (SVD) to estimate the underlying semantic
structure in the text. First, the textual data is represented as a term by document
matrix t×d, where each row represents a term, and each column represents a document.
Each cell value in the matrix, fi, j, is a weighted frequency of the term in the document.
The weight may be calculated by for example the t f × id f score. Next, SVD is applied
to the t×d matrix, reducing the dimesionality of the matrix. The resulting matrix can
be seen as dealing with concepts instead of terms.

The retrieval performance of LSI is in [31] reported to range from equal up to 30%
better than the best prior methods.

3.3 Indexing

Given a document collection and an information need in the form of a query, a search
application will attempt at retrieving the most relevant documents according to the
information need. The simplest approach would the to search sequentially through
the documents in the collection, retrieving the documents corresponding to the query.
However, this does not provide efficiency in large collections [6]. Building an index to
provide a more efficient and effective interface to the document collection is a better
approach. There exist several approaches to construct such indexes, and among these
are inverted files, suffix trees, suffix arrays, and signature files. We will in the next
subsections give an introduction to inverted files and suffix arrays.

3.4. INFORMATION RETRIEVAL 17

3.3.1 Inverted Files

Inverted files speed up the search process by allowing for easy acces to terms and fre-
quencies [6]. The inverted file is built by constructing a list of all the terms found in the
document collection, called the vocabulary. The terms included in the vocabulary are
the terms that remain after preprocessing, i.e. if stopword removal has been employed,
these are not included in the vocabulary.

For each term in the vocuabulary, there exists a list of documents in which the term
appeares. The list may be extended to contain the position of the term within the
document, easing positional queries such as phrase queries. The positional information
of the term may be given in several forms, such as the character posistion of the first
character in the term, the term posistion by counting terms, or by block number.
Adding positional information based on blocks partitions the text into blocks of equal
size, e.g. 256 characters, and assigns each term within the block the block number as
posistion. Although block indexing reduces the size of the index, it adds complexity
to the handling of phrase queries, as phrases may exist across block boundaries. The
use of positioning information requires accounting for the removed stop words so that
positional queries are handled correctly.

3.3.2 Suffix Arrays

Certain types of queries, such as phrase queries, may be expensive to solve using inverted
files, and using other index structures than the inverted file may be preferable. Suffix
arrays, which are space efficient implementations of suffix trees, are more effective at
handling complex queires, such as phrase queries [6]. Using the suffix array for indexing
allows for indexing both on term level and character level, which may provide benefits
to other applications, such as genetic databases [6].

Although suffix arrays are good at handling complex queries, in most cases, where
complex queries are not of priority, suffix arrays are outperformed by the inverted file
[6]. For more information of suffix arrays and suffix trees, see [6].

3.4 Information Retrieval

Information retrieval (IR) is the field of searching for and retrieving information or
documents that are relevant to a user specified information need. The users information
need is specified as a query; a set of keywords that describes the information need. The
query is matched against the index to retrieve the documents relevant to the user. IR
comprises the representation, storage, organization of, and acces to information [6].

3.4.1 Vector Space Model

The vector space model handles partial matching of documents and queries in contrast
to the boolean model, which does not allow partial matching. The documents and
queries are represented as vectors in a n-dimensional vector space. Consequently, the
document and the query has a vector representation containing the weight for each
term. A document vector for document t, dt = {w0,t ,w1,t , ...,wi,t , ...,wn,t}, is constructed
by assigning a weight wi,t to each term i in the document t.

18 CHAPTER 3. TECHNOLOGICAL OVERVIEW

Weighting Scemes

A number of different weighting schemes can be used together with the vector space
model [3], and we will now give a short overview of these.

Term weighting is based on two important observations [3]:

• Terms occuring with a high frequency in a document are more relevant than terms
occuring less frequent.

• Terms occuring in few documents discriminate better between documents than
terms occuring in many documents.

Boolean weighting is one of the simplest approaches, and sets the term weight in the
document to 1 if the term is present, and 0 if the term is not present. A slightly more
sophisticated appraoch is to use word frequency. These schemes do however not take
into account how well terms discriminate between documents, as listed in the second
point above. We will now explain two weighting schemes that are a little more complex,
namely the t f × id f and weirdness score.

The t f × id f weighting scheme takes both term frequency and term distribution among
documents into account. The t f × id f score is based on two measures, the term fre-
quency (t f) and the inverse document frequency (id f).

The term frequency is a measure of the importance of a term within a document, and
is by [6] defined as:

t fi, j =
fi, j

max(fk, j)
,where (3.1)

t fi, j = The term frequency for term i in document j.
fi, j = The raw term frequency of term i in document j.
max(fk, j) = The frequency of the most frequent occuring term k in document j.

Using the id f factor assures that term distribution in the document collection is taken
into account. The id f factor is by [6] defined as:

id fi = log
N
ni

,where (3.2)

N = The total number of documents.
ni = The number of documents containing term i.

The combination of the term frequency, t fi, j, and the inverse document frequency, id fi,
assures that the term weight is balanced both with respect to term frequency within
the document and how well the terms discriminate between documents [6].

The weirdness score discerns between prominent and non-prominent terms by using
a reference collection. Terms with a high weirdness score are usually prominent in the
document collection that is analyzed [23]. It is however not certain that this is the case.
Terms that are not found in the reference collection will generate a weirdness score of
Infinity. The infinity score may be interpreted as the term being domain specific for
the analyzed document collection, and thus prominent, but it may also be the case
that the infinity score is caused by misspelling of the term or other disturbances. The
weirdness score for a term i is calculated according to Equation 3.3 [23].

3.4. INFORMATION RETRIEVAL 19

Wi =
Fi,dc
Ndc
Fi,rc
Nrc

, where (3.3)

Wi = The weirdness score for term i
Fi,dc = Number of occurrences of term i in the document collection
Ndc = Number of tokens in the document collection
Fi,rc = Number of occurrences of term i in the reference collection
Nrc = Number of tokens in the reference collection

[46] gives a more comprehensive overview of weighting schemes.

Similarity Measures

When searching for documents by the application of a query, the goal is to find the
documents that are most relevant for the query. As the documents in the vector space
model are represented by a term vector, the similarity calculation will use the vectors
for comparison.

A popular and simple measure for the similarity of two document vectors is the cosine
similarity [6]. The documents are seen as vectors in a n-dimensional vector space, and
the cosine similarity finds the angle between the vectors [6]. The cosine similarity is
defined in Equation 3.4[6].

sim(d j,q) =

→
d j •

→
q

|
→
d j | × | →q |

=
∑

t
i=1 wi, j ×wi,q√

∑
t
i=1 w2

i, j ×
√

∑
t
i=1 w2

i,q

,where (3.4)

→
d j = The vector representing document j
→
q = The vector representing the query
wi, j = The weight of term i in document j
wi,q = The weight of term i in the query
t = The total number of terms
sim(d j,q) = The cosine similarity between d j and q

By using the cosine similarity, the documents are each given a score between 0 and +1.
This score gives the degree of similarity between the two vectors, and thus supports
partial matching. In addition the cosine similarity between the query and the document
is used to rank the retrieved documents. When retieving documents a threshold may
be specified, leaving out documents below the threshold.

3.4.2 Retrieval Performance Evaluation

Two commonly used measures for retrieval performance are the recall and the precision
measures [6]. These measures require that one knowes in advance all the relevant
documents with respect to a certaian query. Many test collections exist in which such
knowledge exists, but in real life, this is not always the case, making the retrieval
evaluation harder. [6]. Figure 3.1 shows a document collection, the set of relevant
documents, | R |, the set of retrieved documents, | A |, and the intersection of the two
sets, | Ra | for a given query.

20 CHAPTER 3. TECHNOLOGICAL OVERVIEW

Figure 3.1: Precision and Recall [6]

Precision is defined as the quota of relevant documents with respect to the retrieved
set of documents. Retrieval systems with high precision retrieve few documents that
are not relevant. Equation 3.5 shows how this quota is calculated [6].

Precision =
| Ra |
| A |

(3.5)

Recall is defined as the quota of relevant documents with respect to the total number
of relevant documents. Retrieval systems with high recall retrieve a large portion of
the relevant documents. Equation 3.6 shows how the recall is calculated [6].

Recall =
| Ra |
| R |

(3.6)

In addition to the recall and precision measures other evaluation performance measures
exist, such as the harmonic mean and the E-measure which are further explained in
[6].

When comparing the performance of different retrieval algorithms, plotting the recall
versus the precision of the algorithms in the same plot is a nice way of visualizing the
difference in performance of the algorithms [6]. These plots are often reffered to as
recall versus precision plots. For more information see [6].

3.5 Web Ontology Language - OWL

The Web Ontology Language (OWL) has been developed by the Web Ontology Working
Group as a part of the W3C Semantic Activity. OWL is based on DAML+OIL and is
placed on top of RDFS in the Semantic Web Tower [8, 33]. OWL extends RDF/RDFS
by adding constructs to make the language more powerfull. Three different spieces of
OWL have been defined, OWL Lite, OWL DL, and OWL Full. The main difference in
the spieces is the expressiveness. OWL Lite is the least expressive, and OWL Full is the
most expressive. The reason for having these three variants is that different users have
different needs. Some users may favor the use of a language with limited expressiveness,

3.5. WEB ONTOLOGY LANGUAGE - OWL 21

while keeping reasoning simple, yet others might need maximal expressiveness without
any computational guarantees [5].

The layer which OWL is placed on, RDFS, is suitable for constructing classification
hierarchies with type properties, and facilitates meta-modelling.

3.5.1 OWL Lite

OWL Lite adds expressiveness on top of RDFS with the OWL language. RDFS for
instance, does not have the ability to claim equality between individuals, but OWL
Lite has this possibility by the sameAs feature[5]. However, OWL Lite is subject to
restrictions, using only some of the language features, and is more limited in the use of
the features than OWL DL and OWL Full[5].

3.5.2 OWL DL

OWL DL adds even more expressiveness to the ontology than OWL Lite. An example
of this is that OWL DL adds the possibility of stating that two classes are disjoint. This
is much stronger than stating that the two classes are not equal in OWL Lite [5]. OWL
DL uses the same vocabulatry as OWL Full, but is restricted in how the constructs are
used, thereby guaranteeing complete reasoning.

3.5.3 OWL Full

OWL Full uses the full vocabulary of the OWL language for maximised expression. A
strict segmentation of the vocabulary is applied in the case of OWL Lite and OWL DL,
where no term can at the same time be stated as beeing an instance and a class [5].
OWL Full on the other hand does not have this restriction. It is much more similar
to RDFS in this sence. An example of this is that in RDFS a class can have both a
type and subClassOf relationship to a second class [5]. Due to the liberal nature of the
language, theory shows that building a correct and complete reasoner for OWL Full is
impossible [5].

The compatability between the different layers of OWL has been stated by [51] to be
the following:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

Chapter 4

Related Work

This chapter will give an overview of the state-of-the-art for the field of semantic search.
We first start by giving our own classification of search systems, followed by a classi-
fication of semantic search systems given by [35]. Finally we report the relevant work
for this project.

4.1 Classification of Search Systems

This section will give a short overview of different search types, showing where semantic
search fits in. Figure 4.1 shows what kind of matching different search systems do. The
example query used to illustrate the search methods is car. Simple keyword mathcing
systems rely solely on syntactic matching, retrieving instances that exactly match the
query, i.e. the term car in the figure. Applying stemming and/or lemmatization to the
sytstem allows for more relaxed matching allowing the system to retrieve inflectional
variations of the query term. In the figure this is illustrated by the query car also
matching the term cars, as cars is reduced to its stem/lemma car. Search systems in
this category still rely on syntactic matching, and are called morpho-syntactic search
systems. Full text search engines fall into this category. The main problems with search
systems in these two first categories is that they require the user to know in advance
the vocabulary of the domain they are searching [13]. This is not a large problem
when searching for documents the user has already seen, or the user is familiar with
the domian. However, it may be quite challenging to find the result if the domain is
new to the user, or the user seeks new information [38]. Documents that actually are
relevant on a conceptual level, may use different terms to refer to the concept of the
users query, thus not enabling the search system to retrieve these documents.

The next class of search employs glossaries or thesaurus, e.g. WordNet, letting the
system retrieve instances based on for example synonym relations. This class of search is
somewhat semantic as it recognizes semantic relations among terms. In the figure this is
illustrated by the query car being matched with a document referring to an automobile,
which is a synonym of car. The actual mechanisms used to do this matching are mainly
based on two approaches; indexing based on synonyms (e.g. [39]) and expanding the
query with synonyms and related terms (e.g. [52, 36, 10]). Systems in this category
somewhat solves the problem of the two first categories, by retrieving documents that
contain similar words. However, this approach also introduces polysemy. Polysemy
means that a word may have different meaning depending on context. Take for instance
the word bank, which in one context may refer to a financial institution, while in another

23

24 CHAPTER 4. RELATED WORK

context it may refer to a river bank. The effect of polysemy may thus clutter the result
set by retrieving documents that are not relevant for the users intended meaning of the
query.

Adding more power to the search system, by letting the system retrieve class instances,
and searching conceptually, we now enter the semantic realm of search. Systems in this
category are able to identify concept instances, and documents that are semantically
referring to a specific concept. Many different techniques may be employed in this type
of search, e.g. knowledge bases, ontologies, semantically annotated text, conceptual
query expansion etc. Examples of such systems include [22, 44, 39, 42, 13, 50, 38].
The system that we are developing would also fall into this category. In the figure
we have illustrated this category of search by the matching of the query car with a
document reffering to a Honda, correctly identifying a Honda as an instance of the
concept car. Systems in this class partially solves the problem of polysemy that is
inherent in systems based on glossaries or thesaurus. Additional knowledge of the
domain is taken into account when retrieving documents, for example by annotating
text and using ontologies to find the correct interpretation of the query terms, and to
disambiguate the query.

The final class of search is the most powerful; it employs reasoning to identify docu-
ments, or ressources that are related to the conceptual meaning of the query. A good
example of a system in this category is the WineAgent 1.0 1, which uses an ontology
to infer the best suited wine for a specific meal. In the figure we have illustrated this
point with the query car matching a document speaking of how the car is run, cor-
rectly identifying that the engine is a vital part cars functioning ability. Systems in
this category are able to use e.g. ontologies to infer more complex relations between
the query and the documents searched, making search systems in this class complex.
The systems reffered to as examples in this section will be described shortly.

Figure 4.1: Classification of search systems

4.2 Classification of Semantic Search

According to Eetu Mäkelä [35], research on semantic search can be grouped into five
directions. These are augmenting traditional keyword search with semantic techniques,
basic concept location, complex constraint queries, problem solving and connecting path
discovery. We will give a short introduction to each of the research directions, followed
by a more thorough description of related work in the field of query expansion.

1http://onto.stanford.edu:8080/wino/index.jsp

4.2. CLASSIFICATION OF SEMANTIC SEARCH 25

Augmenting traditional keyword search with semantic techniques
This research direction aims at augmenting traditional keyword search with different
semantic techniques. Unlike the four other reasearch directions presented, this direction
operates mainly on data that is not semantically annotated. Techniques such as using
ontologies as a basis for a wide range of approaches to augmenting the keyword search
are used[35]. The next section will cover several examples of search systems in this
category.

Basic concept location
This research direction is based on concepts, instances, and relations one can find in
ontologies. Data in the semantic web is encoded using ontological classes and instances
of these classes, the real data being the instance data[35]. In addition domain knowledge
is based on the relations between classes in the ontology. Using this as a basis, one can
locate data using the ontology and constricting properties of instance data by keyword
filters as in the SHOE search system [27]. SHOE is a language specification based on
SGML and XML that allows the user to define vocabularies and relations along with
machine interpretable semantics of the vocabulary. These vacobularies are reffered to
as ontologies. The SHOE search system is based on annotated documents using the
SHOE ontologies. The user is first presented with a list of ontologies to choose from.
Having chosen an ontology, the classes in the ontology are presented in a hierachy,
displaying to the user the relations among the classes. Clicking one of the classes, e.g.
Article (a subclass of Publication), the user is presented with properties applicable to
the class. These may include Author, Title, etc. Next the user may enter keywords,
used to filter the results. Partial matching of strings is used to increase matching ability.
If the user is uncertain of what values are valid for a particular property, the user may
be presented with a list of valid values, e.g. names of authors for the Author property
present in the Knowledge Base (KB). When the user searches, a query based on the
class and properites is generated, and entered into a KB containing the class instances
(documents), relations, properties etc. The results of the search are presented the user
in tabular form, including the URL of documents[27]. Many other systems based on
this research direction exist, and [35] gives an overview of these systems.

Complex constraint queries
This research direction deals mainly with complex queries, in which the goal is to
locate a “group of objects of certain types connected by certain relationships” [35]. In
the setting of the semantic web this type of query is handled using graph patterns with
constrictions on the type of the object nodes and property edges. These graph patterns
are not as easy for the user to formulate as a standard keyword search, and therefore
much research is done on user interfaces which aid the user in formulating such queries
[35]. An example of a search system in this category is GRQL[37]. GRQL is a graphical
user interface which aids the user in navigating a RDF(S) model, spcifically through the
RDF(S) class definitions and properties. While browsing the GRQL system generates
RQL (RDF Query Language) queries, used to locate information in the RDF(S) model.
Thus releaving the user from learning and constructing complex RQL queries.

Problem solving
This research direction is based on formulating a problem and using ontological knowl-
edge to infer the solution. The scenario given in [9], in which a doctors appointment
is set up using agents to find a place, time, and doctor that satisfies the user falls into
this research direction. However, implementations of systems of this type are rare and
simple [35]. A query language intended for simple SQL-like queries in the semantic web
based on a DL reasoner is described in [15]. An example of a system in this segment is

26 CHAPTER 4. RELATED WORK

the Wine Agent 1.0 2 which uses an ontology as a basis to reason about which wines
are best suited to specific meals. The user specifies contraints, such as type of meal,
and the Wine Agent uses the ontological knowledge (types of wine, wine instances, and
wine properties) to infer the best suitable wine for the meal.

Connecting path discovery
In the above, the users seeks to find data objects, this research direction differs in that
the links between the objects are seen as the interesting part. According to [35], one of
the possible applicatoins of this research is in assessing security risk. For government
agencies, such interesting links would be of the type “does there exist any connection
between terror group x and potential recruits y?”.

4.3 Related Work

We will in this section give an overview of the related work for this project. Refer
to Section 4.1 for the classification of these systems. For more research projects on
semantic search, see [35, 49]

Three research efforts that use WordNet3 as a basis for query expansion are [52, 36, 10].

[52] is an early research effort, and uses the noun part of WordNet, version 1.3, to
expand the query. The research was done using the TREC collection and the already
compiled quries 101-150. For each query topic, an average of 2.7 (min 0, max 6)
WordNet synsets were added manually, as the purpose of the research was to see if
retrieval could be improved using WordNet. Terms from selected fields of the topic
statement for each query is used as a basis for the query. The query expansion step
uses the synsets that were manually added. Terms were added to the query based on
the synsets, the descendants in the is-a hierarchy, the parents, and related synsets.
Combinations of these approaches were used together with two different selections of
original query terms. The first consists of the full topic description, while the second
uses a less detailed topic description for the original query. The expanded query was
built up of subvectors containing the original query, and one subquery for each of
the expanded groups (synset, related synsets etc.). The calculation of the similarity
between the query, Q, and a document, D, was done according to Equation 4.1, where
each subquery type, ctype, was assigned a weight reflecting the importance of the added
terms. The original query was usually weighted higher to reflect the importance of the
user entered terms.

sim(D,Q) = ∑
ctypei

αiD ·Qi (4.1)

[52] also proposed a method for automatic selection of synsets based on the relatedness
to the original query. The experimental results showed that none of the approaches
performed significantly better than the original query alone, due to the high level of
detail in the original query. However, the author notes that in shorter, less detailed
queries, the query expansion approach has potential to improve retrieval due to the
small context in the short queries.

[36] describes a system that expands the query based on word sence disambiguation.
This process is followed by post processing of the result set, extracting only the relevant
parts of the documents, presenting the user with less text. The search system takes as
input a keyword query or a sentence describing the information need, e.g. a question

2http://onto.stanford.edu:8080/wino/index.jsp
3WordNet, http://wordnet.princeton.edu

4.3. RELATED WORK 27

in natural language. The first step is to POS tag the input query, recognizing noun
and verb phrases, and the head words. After the stop words are removed, the remain-
ing words, xi, are used for expansion of the query. The system employs word sense
disambiguation of each query term using Internet search, WordNet and the context of
the query by pairing words, mapping each word to its semantic form in WordNet. The
internet search is used to rank the different sences of a word by counting hits for each
of the sences provided by the word pairs. This is followed by a reordering of the rank
using WordNet glosses. The ranked sences are used as a basis for the query expansion,
and uses WordNet to add semantically similar words to the query based on the synsets
of the words. [36] also employs post processing of the result set. The documents re-
trieved are searched on a paragraph basis, with the restriction that the query words
appear within n consecutive pargraphs in the document. In addition to focusing the
search, this reduses the amount of text the user has to sift through. The system was
tested with 100 queries; 50 questions from real internet searches, and 50 questions from
TREC-6. The queries were expanded using two approaches, one based on the NEAR
operator, and one on the AND operator. For each of the two methods, one query
was based on the input words, xi, and one query was based on each input (query) word
being replaced by its similarity list, Wi, found from WordNet. The queries have the form:

x1 AND x2 AND ... AND xn

x1 NEAR x2 NEAR ... NEAR xn

The queries constructed by the similarity lists, Wi, were constructed in the same manner.
These four approaches retrieved whole documents. The last approach tested was the
one applying the post processing using paragraph search. This approach used the
similarity lists, Wis, and the AND operator. The results showed that the paragraph
based approach performed best, with a precision of 43% , and 90% of the questions
being answered correctly for the TREC based questions, the researchers find the results
encouraging, and higher than for the other approaches. Especially they note that
answering 90% of the questions correctly is significantly higher than current systems.
Although the system is based on WordNet to expand the query, disambiguation is
employed as a counterweight to the polysemy effect introduced.

[10] is a search system that uses WordNet to expand the query within the geographical
domain. The expanded query is based on the synonymy and meronymy relationships for
the query terms. The system uses POS tagging as a first step in the query expansion
process. Each term is tagged, and is expanded based on the POS tag. All proper
nouns are checked against WordNet synsets, and the synset is added if it is of type
{country,state,land}, with exeption to stopwords and the term itself. The meronyms
of the term are retrieved, and all the terms in the synset or gloss containing capital
are added to the query with exeption to the term capital. An example of such a query
and its expansion provided by [10] is shark attacks off Australia and California. The
terms shark and attack are not expanded, as they do not have the {country,state,
land} synset among their hypernyms. Next, Austalia is considered for expansion. The
term is expanded as it has the synset {Australia, Commonwealth of Australia}, adding
the phrase Commonwealth of Australia to the query. Looking at the meronyms for
Australia, we find that the meronym Canberra, Australian capital, capital of Australia -
(the capital of Australia; located in the southeastern Australia) contains the term capital,
subsequently adding the term Canberra to the query. Looking at the next query term,
California, the corresponding synset used for expansion is {California, Golden State,
CA, Calif.}, and the terms Golden State, CA, and Calif. are added to the query. For the
term California two meronyms were retrieved containing the term capital, and the terms

28 CHAPTER 4. RELATED WORK

{Los Angeles, City of Angles} (...motion picture capital of the world...) and Sacramento
(capital of California) are added to the query. The final query, after processing, is
“shark attacks” Australia California “Commonwealth of Australia” Canberra “Golden
State”CA Calif. “Los Angeles”“City of Angels” Sacramento. The query is subsequently
fired against a search engine based on Lucene. [10] reports a small increase in recall,
but a deteriation of the average precision. The authors remark that the results are
based on topics from the TREC-8 collection and that they believe the geographical
entities mentioned in the TREC-8 queries refer to political entities; “U.S.A.” refers to
the American government[10].

[39] describes two approaches to conceptual information retrieval using WordNet and
Latent Semantic Analysis (LSA). The first approach uses Word Sence Disambiguation
(WSD), based on several WSD measures (including WordNet) and the combination
of them to identify concepts. WSD is applied to both documents and queries, and
the documents are indexed both traditionally, i.e. in a term based index, and concept
(synset) based. The terms not found during the application of WSD were traditionally
indexed, while words that were disambiguated were indexed in the concept based index
by adding conceptually similar terms and related terms from WordNet synsets. This
approach was evaluated against two different test collections; the Cranfield collection
consisting of 1400 documents and 225 queries, and one test set containg 2714 image
captions, and 47 queries. The evaluation pointed out that the concept based index
approach applied to the Cranfield collection actually deteriorated the performance with
restpect to standard information retrieval. The researchers note that this may be due to
errors in the WSD process, or the fact that the queries are quite detailed, containing 8
or 9 terms, leading to unnecessary disambiguation of the query, as it already holds much
context. In the second test set however, the researchers found a significant improvement
when using the concept based indexing. They point out that the short documents in
this collection and the short queries benefitted from the conceptual indexing, by adding
related concepts, and thus improved the retrieval performance over standard indexing
techniques and keyword search.

The second approach used by [39] is based on a domain specific document collection
in combination with a variant of LSA to add conceptually related terms to the query.
LSA is used to derive conceptually similar terms, and since some of the terms are not
related to the concept, postprocessing using WordNet was employed removing words
not related. The evaluation was done with 3 different domain specific test collections
to derive conceptual representations of the terms. The top 5 concepts (terms) for a
query terms were added to the query. An example provided by [39] is the query term
reservation in the travel domain, which was expanded with the concepts agent, confir-
mation, hotel, customer, and rates. The expanded queries were submitted to google,
and were evaluated against the original query. The results showed from moderate to
dramatic increase in presicion for the top 50 results of the 10 queries used, due to the
added context in the query.

[38] describes a semantic search system based on ontologies. The domain of the system
is history, and both time interval concerns as well as conceptual representation of the
documents are adressed. The information model used to represent documents is based
on one conceptual part, and one temporal part in which an extention of the temporal
vector space model is used to allow for fuzzy matching of time intervals. In addition
the documents are conventionally indexed using a traditional bag of words approach.
The conceptual part of the documents are modelled as vectors, containing weighted
ontology instances instead of terms, allowing to use the standard vector space model.
The temporal aspect is modelled as a weighted set of time intervals. Thus having both

4.3. RELATED WORK 29

a conceptual representation of the document and a bag of words representation, the
retrieval system may use the conceptual information to retrive documents if such infor-
mation is present, or use the bag of words representation if the conceptual information
is not present. During query reformulation the ontology is used to disambiguate the
query by presenting the user with a set of ontology instances found in the ontology.
This approach is based on full text search on the ontology class labels. For instance,
a user entering the query Churchill will be presented with the instances of Churchill
present in the ontology, allowing the user to select the correct interpretation. Further,
the query process is based on multiple queries. The query is reformulated using sev-
eral ontology based heuristics, executed seperately into a full text search engine. The
results of the various queries are finally combined using Bayesian inference, see Figure
4.2. The formal evaluation of [38] has not yet been done, and is part of the further
work.

Figure 4.2: The combination of queries used in the search process [38]

Semantic Search[22] takes a different approach, by augmenting traditional IR search
results with semantic data through the TAP infrastucture, which is used to publish/-
consume data on the Semantic Web. The general idea is that the traditional keyword
search is augmented with semantic data by mapping the query terms to concept labels
in an RDF repository. The matching concepts are returned together with the stan-
dard keyword search results and added to the results page of the user interface. For
example when searching for a musician, the augmented information may be concert
schedules, albums, picture etc. The authors also present a refinement to the keyword
search, where the user may specify the intended meaning if multiple concepts match.
The refinement is not based on query expansion, but rather on mechanisms to decide if
the document matches the intention. An example of this would be if a user searches for
a person, documents containing the persons email address would likely be a document
that pertains to the users intended meaning.

[44] combines keyword search with a spread activation algorithm to locate concept
instances. The goal is to return instances that are related to a term, even if the
term is not mentioned in the instance itself. An example would be to return research
areas, students tutored, publications etc. that relate to a person, even if the terms
are not mentioned explicitly. Standard text search is applied to a document collection,
followed by application of the spread activation algorithm to the returned results. A
graph (ontology properties and conepts) is searched in which the links between concepts
are initially weighted using the initial text search score. [44] reports that the approach
proved successfull in two applications tested.

[42] describes an approach to query expansion using an automatically constructed sim-
ilarity thesaurus. The main idea behind the query expansion is to add terms to the
query based on the similarity to the concept of the query, and not that the expanded
query terms should be similar to the query terms. The query expansion model used is
based on a probabilistic approach. Figure 4.3 shows terms in Document Vector Space
(DVS). The terms are found in DVS, since the similarity thesaurus is based on DVS in

30 CHAPTER 4. RELATED WORK

which the role of terms and documents are interchanged. The figure shows the query
terms t1 and t2, along with the other terms in DVS. qc is a representation of the query
concept, which is calculated as the centroid of the query, q. The fine lines represent the
similarity between the terms, and the thick lines represent the similarity between qc

and the terms in DVS. We can see from the figure that the term which is closest to t1 is
t3, and that the closest term to t2 is t6. Using the most basic expansion approach, these
terms would be added to the query, however, recall that the idea was to expand the
query based on the concept of the query, qc. This would lead to the choice of expanding
the query by t4 and t5 since they are the closest terms to the query concept, qc.

Figure 4.3: Terms and query in DVS [42]

[42] tested the approach on three test collections of different size, and found that the
improvement of the approach relative to the original query seemed to increase as the size
of the collection increased. The researchers note that this mainly is due to the quality
of the similarity thesaurus, since larger collections contain more domain knowledge.
They also found that adding more terms to the query seemed to improve the results;
the performance of the approach applied to the smaller collections started to decrease
when the number of additional terms were above 200, while for the largest collection,
the results were still improved by adding more than 200 terms to the query. The
improvement of the approach is reported to be between 20-30 % [42].

[13] shows an approach for expanding queries on a conceptual level. The concepts are
calculated based on a single document in two different test cases; namely the single
best ranked document or the single top ranked relevant document using a simple two
word query into the TREC Assosiated Press collection. The two word queries were
manually generated by the researchers based on the TREC full text queries (24 queries
in total were used). The initial thought was to calculate concept lattices based on the
whole collection, but the researchers found that with the ammount of text it was not
feasible. They instead calculated a sublattice based on each of the two test cases. The
sublattice was used to find concepts (combinations of terms) that in the setting of the
test collection had a conceptual meaning. A single document in the collection would
typically yield a few hundred concepts. Experimental results showed that even using
non-relevant documents could result in good expansion. An example of this is query 58,
in which the top document, which was not relevant, and the top relevant document both
expanded the original query rail and strike with commuter. Navigation of the concept
lattice was used to expand the query by concepts; selecting a subconcept, navigating

4.3. RELATED WORK 31

down the lattice, would add terms to the query and specialize the query, while selecting
a superconcept would navigate up the lattice and remove terms making the query more
general. A small simulation program was used to query and navigate the lattice, and
the results showed an improvement in the retrieval performance.

An ongoing research project is [50]. The project is very much relevant to our project,
since the basic idea is similar. Ontologies are used as a basis for query enrichment.
The ontology is semantically enriched by building a feature vector for each of the con-
cepts in the ontology. Text mining techniques are used to build the feature vectors,
specifically [50] has used the k-nearest neighbor algorithm to extract terms from a
document collection. These terms give a description of concepts that reflect the ter-
minology of the concept in the document collection. The terms of the feature vector
are weighted to reflect the importance of the terms with respect to the concept. When
refining the query, each concept in the user query is replaced by the corresponding
feature vector, resulting in a more contextual description of the concept query term.
The expanded query is entered as a weighted query into a standard vector space model
retrieval engine, presinting the user with the results. The project is as mentioned still
in progress, and the approach has not been evaluated formally. Preliminary results
show that the quality of the search result is very reliant on good quality fature vectors.
[50] also points out further research work. Among the most important are refinement
of the term weight calculations by reasearching alternative approaches to assign terms
to the feature vectors, and researching approaches to use the ontology and its semantic
relations for post-processing of the result set.

Part III

Realization

33

Chapter 5

Approach

This chapter will present the suggested approach. The first section gives an overview of
the system, while the second section gives an introduction to the ontology used. This
is followed by a detailed description of the approach.

5.1 Architecture

We have chosen to split the approach into two separate phases, the indexing phase
and the retrieval phase. Figure 5.1 gives an overview of the approach, and shows
what actions are taken in the two phases. The indexing phase, as the name indicates,
deals with the indexing of documents, both when it comes to the search index and the
feature vectors. This phase is not intended to be run often; only when new documents
are added either to the search index or the index used to create feature vectors. The
retrieval phase deals with reformulating the user query and supplies the user with a
ranked list of documents. We will in the next sections give a more thorough description
of the separate steps within each of the phases.

5.2 IIP Ontology

The ontology used in this project is the IIP ontology, and the domain of the ontology
is the subsea petroleum industry. The IIP ontology is a part of the ongoining research
project Integrated Information Platform 1.

The construction of the IIP ontology is an effort towards achieving semantic interoper-
ability in the petroluem domain. Using a terminology standard for the petroleum in-
dustry, ISO 15926, the objective is to construct an ontology which provides the industry
with an unambiguous and consistent terminology in the subsea petroleum domain[24].

The ontology is built using the web ontology language (OWL), and mostly contains
hierarchic relations. The main reason for concentrating on hierarchical relations is
that the ontology hierarchy is not deemed sufficiently stable, thus relationships and
constraints will be added with time [24].

The Christmas tree component is a set of connected parts that sit on top of a wellhead
controlling the flow out of the well. Figure 5.2 shows the OWL definition of the concept

1http://research.idi.ntnu.no/IIP/

35

36 CHAPTER 5. APPROACH

Figure 5.1: Overview of the approach

Christmas tree in the IIP ontology, not including relations and constraints. We see
from the figure that the Christmas tree is a subclass of the Artefact class, and that the
ontology includes a defintion of a Christmas tree.

Figure 5.2: OWL definition of a Christmas Tree in the IIP ontology.

Now let us turn to Figure 5.3 which contains a subset of the class hierarchy focused
around the Christmas tree class. From the figure we see that the Christmas tree is a
subclass of Artefact, which again is a subclass of Inanimate physical object. We can
also note that Pipe is a subclass of Artefact, Piping network connection and Pipeline
component. Finally we see that there exists three subclasses of Christmas tree, namely
horizontal, vertical, and subsea.

The complete ontology contains about 50,000 concepts arranged in a hierarchy[24].
This project uses only a subset of the full ontology, containing 18,675 concepts.

5.3 Indexing Phase

The goal of the indexing phase is to produce a set of feature vectors for each of the
concepts in the ontology and a separate search index which includes all the documents
one wishes to search. We will now describe the document preprocessing, the indexing,
and the construction of the feature vectors.

5.3. INDEXING PHASE 37

Figure 5.3: Part of the IIP ontology focused on the Christmas Tree [24].

5.3.1 Preprosessing

The preprocessing step prepares the documents for the indexing step. The documents
are in this step converted from a character stream to a token stream. The first step in
doing this is removing all unwanted information from the text, i.e. HTML and other
script like tags. The character stream is next tokenized, or split into word-like units
called tokens.

Stopwords, words found in a large portion of the documents, are not good descrimina-
tors [6], therefore we remove them from the token stream. The stop word list used in
the implementation can be found in Table A.1 in AppendixA.

We have chosen to use a light stemming, only removing plural s, following the rule:
s → /0, for all terms not ending with ss. The light stemming is chosen so that the side
effect of a stronger stemmer (e.g. the Porter Stemmer), namely decreased precision [16]
is reduced, while still increasing recall somewhat.

5.3.2 Indexing

The indexing phase produces several indexes which are to be used by different parts of
the system. All the indexes are built as inverted indexes [6], to facilitate easy acces to
terms, frequencies, documents, and feature vectors.

The indexes we generate are:

• A main search index
The index contains the documents the user wishes to search. The documents are
indexed by paragraphs.

• A document search index
The index contains the same documents as the main search index, but the docu-
ments are indexed as whole documents.

38 CHAPTER 5. APPROACH

• An index used to construct the feature vectors
The index contains only relevant documents used as a basis for constructing the
feature vectors.

• A feature vector index
The index contains the feature vectors, supporting searching and retrieving the
vectors.

• An index used to construct the negative feature vectors
The index contains non-relevant documents with respect to the ontology domain
used to construct the negative feature vectors.

• A temporary negative feature vector index
The index is at temporary storage of the negative feature vectors.

• A negative feature vector index
The index contains the negative feature vectors, and supports search and retrieval.

This section will mainly be concerned with describing how we construct the main search
index, and the indexes used for the construction of the feature vectors and the negative
feature vectors. The three remaining indexes will be discussed in the following section.

The main search index is the index which the user queries with the reformulated
query. Traditionally one has used documents as the building blocks of indexes, but we
have chosen to build the search index on the paragraph. We believe that indexing on the
paragraph level will add presicion to the search by keeping the search context focused,
especially with large documents covering a wide range of topics. We have chosen to use
natural boundaries in the text, such as two or more consecutive line breaks, to denote a
paragraph boundary. This however introduces a challenge; what should be viewed as a
paragraph? Strictly using the consecutive line break approach can potentially leave us
with a lot of paragraphs containing a few words or a short sentence, due to headings in
the text, problems with parsing HTML etc. Therefore we have defined a paragraph as a
string of a minimum number of characters which is bounded by two or more consecutive
line breaks in both ends. We have proposed to set the minimum charater bound to
1200 characters. This has not been researched, and the size of the paragraphs will not
be evaluated as part of the implementation.

In addition we have chosen to let each paragraph be boosted by the paragraph above
and below, to make sure that we have sufficient context when searching. We have set
the boost factor for the paragraphs above and below the main paragraph to 0.25 (the
main paragraph has boost factor 1.0). As the first and last paragraph of a document do
not have paragraphs above and below, respectively, we have set the related paragraph
for these to the boost factor times 2, in our case 0.5.

This index lets the user retrieve each indexed paragraph for viewing.

The document search index is based on the same documents as the main search
index, and the documents are indexed conventionally, i.e. as whole documents. This
index is not used for search with our reformulation strategy, but is used for evaluation
purposes.

The index used to construct the feature vectors. This index is, as the name
implies, an index used for the construction of the feature vectors. The index is built on
documents deemed to be within the correct domain. Actually, the index consists of three
separate indexes, one for whole documents, one for paragraphs, and one for sentences.
The documents are indexed on these three different levels to reflect three views of the

5.3. INDEXING PHASE 39

documents. The first view considers the document a document in the conventional
sence, i.e. the whole document as a collectin of terms, and indexed as one unit in the
document index. The next view considers each of the paragraphs in the document as a
single document, logically linked to the parent document. Each paragraph is indexed
separately in the paragraph index. The third and last view considers each sentence in
the parent document as a single document, logically linked to the parent document.
Each sentence is indexed separately in the sentence index.

The reason for this splitting is that we found in [47], that splitting the documents
into three different semantic views improved the construction of the feature vectors by
altering the boost for terms found in the different parts of the index.

The index used to construct the negative feature vectors. The construction
and purpose of this index is very much the same as the index presented last. The main
difference is that this index is built of documents that are not relevant at all to the
domain. This creates a basis for the construction of the negative feature vectors, which
will be described shortly.

5.3.3 Feature vectors

This section will give a description of the approach taken to generate the feature vectors.
The approach to construct the feature vectors is largely same as the one described in
[47] and is based on a method described by [48], repeated here for convenience.

The indexes based on the relevant documents (document index, paragraph index, and
sentence index) are used as a basis for the construction of the feature vectors. Each
concept in the ontology is used as a query into the three indexes. Since many of the
concepts are named by multiple terms, the query is presented the index as a phrase
query. This ensures that only the documents containing the phrase are returned as
relevant for the concept. These documents (documents, paragraph-documents, and
sentence-documents) are assigned to the feature vector for the concept. As explained
in [47], the reason for having three indexes is that we concider the terms as being
relevant at three different levels. Terms found in a relevant document, are probably
relevant for the concept. At the next level, terms found in the same paragraph as the
concept, ergo closer to the concept phrase, should in theory be more relevant to the
concept. Following the same logic we view the terms found in the same sentence as the
concept phrase to be most relevant to the concept.

Having all the relevant documents (documents, paragraph-documents, and sentence-
documents) assigned to the feature vector, the vector is set up by adding all the terms to
the vector. The three levels of relevance are reflected in the feature vector by weighting
the terms found in the three levels differently. The frequency of each term is multiplied
by a constant for each of the three cases. We have chosen to set these constants to
0.1 for terms found in the same document, 1.0 for terms found in the same paragraph,
and 10.0 for terms found in the same sentence as the concept. These settings have not
been researched extensively, but [47] found that these settings performed better than
the more conservative 0.25, 0.50, and 1.0. The freqeuncy for each term is summed up
for the concept vector, across all documents containing it and assigned to the concept.

The term frequency in the concept vector is found using Equation 5.1.

v fi, j = α · ∑
d∈D

fi,d +β · ∑
p∈P

fi,p + γ ·∑
s∈S

fi,s, where (5.1)

40 CHAPTER 5. APPROACH

v fi, j = The term frequency for term i in concept vector j.
fi,k = The term frequency for term i in document vector k.
D = The possibly empty set of relevant documents assigned to j.
P = The possibly empty set of relevant paragraph-documents assigned to j.
S = The possibly empty set of relevant sentence-documents assigned to j.
α = The constant for terms found in D, we use 0.1.
β = The constant for terms found in P, we use 1.0.
γ = The constant for terms found in S, we use 10.0.

The vectors we now have are the basic vectors, but the final score for the terms in the
vectors are based on the t f · ic f score. Recall from Section 3.4.1 that the t f · id f score is
based on the term frequency and the inverse document frequency. The ic f factor is in
fact just the same, the inverse concept frequency which is calculated in the same way
as the id f factor, only assuming that the feature vectors now are our documents. The
final frequency for each term in the concept feature vector is found using Equation 5.2.

t f ic fi, j =
v fi, j

max(v fl, j)
· log

N
ni

, where (5.2)

t f ic fi, j = The tficf score for term i in concept vector j.
v fi, j = The term frequency for term i in concept vector j.
max(v fl, j) = The frequency of the most frequent occuring term l in concept vector j.
N = The number of concept vectors.
ni = The number of concept vectors containing term i.

The feature vector is normalized to the unit vector length, 1.0, so that searching the
vector will reflect the prominence of the term within the vector. At last the feature
vectors are indexed in a separate index called the feature vector index. This allows for
searching the feature vectors, both with respect to terms and concept name.

The negative feature vectors are based on the index containing the non-relevant docu-
ments. These vectors are created to balance the new query, i.e filter out documents in
the search process that are not relevant for the domain.

For each concept that has a feature vector in the feature vector index, we build a nega-
tive feature vector consisting of terms that are atypical of the ontology domain. Using
the concept name as a query into the index containing the non-relevant documents, in
the same way as for the feature vectors, might seem as the correct approach. However,
since the index contains non-relevant documents, this will probably result in few hits.
We have therefore chosen to use the top 5 terms for each of the feature vectors as a
reformulated semantic query into the non-relevant document index. From this stage on
the construction of the negative feature vectors is the same as for the feature vectors.

Having the negative feature vector complete with t f ic f score for each term, there almost
certainly is some overlap between the feature vector and its corresponding negative
feature vector. The approach taken to remove some of the overlap is to remove all terms
from the negative feature vector that also are found in the corresponding feature vector.
In addition we remove all terms found in more than x% of the feature vectors. The
constant x has not been researched, so we have chosen to set it to 5%. This hopefully
ensures that the negative feature vector mostly contains terms that are atypical for the
domain.

The top y terms in each negative feature vector are indexed without any weights, so
that one can retrieve the top y terms when the query is to be reformulated. This index

5.4. RETRIEVAL PHASE 41

is called the negative feature vector index. We have chosen to set y to 15, the same
number of terms as used in the expansion of the query with the feature vectors.

5.4 Retrieval Phase

The retrieval phase starts with the user entering a query. The system reformulates
the query using the feature vectors and the corresponding negative feature vectors
and presents the weighted reformulated query into the main search index, retrieves
the results and presents them to the user. In addition the user is presented with the
results of two standard keyword search approaches using the original query, based on
pargaraph search and document search, for comparison.

5.4.1 Query Reformulation

The query reformulation approach has been divided into four separate strategies. These
have been named simple reformulation, best match reformulation, ontology structure
based reformulation, and cosine similarity based reformulation. The query reformulation
process has two steps; query interpretation and query expansion. The first step is to
map the query terms to one or more concept(s), and the second step expands the query
based on the concept feature vectors of the chosen concepts. The basic difference in our
four strategies is in how the query terms are mapped on to one or more concept(s).Once
the query terms are mapped on to concepts, the query expansion process is similar for
each of the four strategies.

The concept(s) are used as a basis for the new query; the top x terms in the concept
feature vectors are used to form the new query, where the t f ic f score is used to weight
each term in the query. Recall from Section 5.3.3 that the feature vector is normalized
to unit length so that search reflects the prominence of a term within the vector. When
the query is reformulated, the top x terms constitute the feature vector, and the new
feature vector is normalized. This normalization is not based on length, but on total
weight. This is done since we find it more logical that the total weight should be
reflected for each query term. For instance, a query of two terms, expanded by two
different feature vectors should maintain the weight ratio between the original query
terms.

We have chosen to use the top x = 15 terms of the query vector for expansion, and give
each feature vector a total weight of 10.

In addition the negative feature vector for each of the concept vectors is added to the
query in an attempt to remove non-relevant documents from appearing in the result
set. The reformulated query has the form:

termw0
0,i . . . termwx

x,i NOT (negterm0,i . . . negtermx,i) , where

termn,i = Term n in feature vector i.
wn = The normalized weight for the nth term in vector i based on the t f ic f score.
negtermn,i = Term n in negative feature vector i, corresponding to feature vector i.

We have not researched how the negative vectors should be handled, so we propose
to use a simple NOT, which leads to documents containing any of the terms in the
negative feature vector to be filtered out of the result set. This approach is not so

42 CHAPTER 5. APPROACH

sophisticated, so more research is needed on how the negative terms can be handled in
a best possible way.

A situation that may arise is that one or more of the query terms are not found in the
feature vector index, making it impossible to map the term on to a concept. This is
handled by letting the term not found be viewed as a single term in the concept vector
for the term, and the term is weighted as much as the other feature vectors, namely
with a weight of 10.

The original query terms are boosted in the final query to reflect the actual terms the
user entered. The boost factor is one that should be researched further, but we have
chosen to set it to a modest 3.0, which is added to the query term in the final query.
However, we might have the situation in which the best chosen concept to expand does
not contain the query term used among the top 15 terms. This may especially be the
case in the best match strategy, in which one of the terms may be top 15, and the
other(s) may be below the limit. We handle this by adding the query term with a
weight of 3.0 to the query.

The reformulated query is used as a weighted keyword query into the search index,
returning the best matches for the query.

Simple Reformulation

The simple reformulation strategy is the naive approach, using each term in the user
entered query as a separate query into the feature vector index. Each term generates
a ranked list of concepts, ranked by the t f ic f score for the term within the concept
vector. The top concept vector for each term is chosen for the query expansion. I.e.
the concept vector with the best t f ic f score for each term is picked as a semantic
representation of that term.

Thus a user query of n terms will result in a query expanded by n concept vectors.

Best Match Reformulation

The best match reformulation tries to map the terms over to a single concept. The
basic assumption is that the query terms entered by the user are related, and that
this relation should be possible to find in the feature vectors. This is done by using the
query terms as a query into the feature vector index, requiring all terms to be present in
the feature vector. The concept vectors containing all terms are returned, and a ranked
list of concepts is generated by calculating a total score for each concept according to
Equation 5.3. This approach assumes that all terms are equally important, as they
have equal wheight in the score calculation.

Scorec = t0,c + t1,c + . . .+ tn−1,c, where (5.3)

Scorec = The score for concept c.
tn,c = The t f ic f score for query term n in the feature vector for concept c.

The concept chosen for expansion is the one with the highest score according to Equa-
tion 5.3.

5.4. RETRIEVAL PHASE 43

Ontology Structure Based Reformulation

The ontology structure based reformulation strategy is a strategy in which one attempts
to disamiguate the query. The simple reformulation strategy simply maps each query
term to the best matching concept vector. However, this may not be the most correct
mapping, it may be the case that the first terms best concept is strongly related to the
second best concept of the second term. This relation will not be recognized by the
simple reformulation strategy.

The goal of this strategy is to use the ontology as a basis for finding the best match
between a pair of query terms. We generate a graph, represented by the concepts in
the ontology as nodes and the child/parent relations as edges in the graph. For each
query term the top 15 ranked concepts according to t f ic f score is used in the graph
search. The graph search is executed as a breadth first search [11], finding the length
of the path between every pair of concepts. Since the ontology is large, and taking the
fact that relatedness in this setting is based on concepts being close to one another in
the ontology, we have chosen to search to a maximum depth of 5.

The score is calculated using Equation 5.4.

Scorecin,c jm = t f ic fi,n · t f ic f j,m ·
1

path(cin,c jm)
,where (5.4)

Scorecin,c jm = The score for the concept with rank n related to query term i
and the concept with rank m related to query term j.

t f ic fk,l = The t f ic f score for query term k in the ralated concept
ranked as l.

path(cin,c jm) = The path length between the concept with rank n related to
query term i, and the concept with rank m related to
query term j in the ontology.
Note that the path length between cin and c jm is set to 0.5
if cin ≡ c jm.

The pair of concept vectors with the best score is chosen for the query expansion.

Consine Similarity Based Reformulation

Just as with the ontology structure based strategy, the cosine similarity based strategy
is an attempt to disambiguate the query. However, the approach is slightly different.
The approach is based on the consine similarity measure between pairs of concept
feature vectors. We showed in [47] that using the cosine similarity between feature
vectors did reflect some semantic relations between the concepts. We have therefore
proposed to incorporate the cosine similarity to disambiguate the query.

As with the ontology structure based strategy, we first generate the top 15 concepts for
each term in the user query. The next phase is to calculate the score for each pair of
concepts. This is done according to Equation 5.5.

Scorecin,c jm = t f ic fi,n · t f ic f j,m · sim(cin,c jm), where (5.5)

44 CHAPTER 5. APPROACH

Scorecin,c jm = The score for the concept with rank n related to query term i
and the concept with rank m ralated to query term j.

t f ic fk,l = The t f ic f score for query term k in the ralated
concept ranked as l.

sim(cin,c jm) = The cosine similarity between the concept with rank n
related to query term i and the concept with
rank m related to query term j in the ontology.

The pair of concepts with the best score is chosen for the query expansion.

Because of computational complexity the ontology structure based strategy and cosine
similarity based strategy will only be implemented for 2 query terms.

5.4.2 Document Retrieval

The reformulated query (top terms in the feature vectors + top terms in the corre-
sponding negative feature vectors) is presented to the main search index as a weighted
query. The results are ranked and presented to the user. Recall that the index is
built on paragraphs, letting the user browse the paragraph that scored best and the
document as a whole.

Chapter 6

Implementation

This chapter will give a description of the implemented prototype. First we will describe
the APIs and additional software that has been used for the implementation, next we
will give a textual description of the prototype. The last section in this chapter gives a
structural description of the prototype, illustrated with class diagrams.

6.1 Frameworks

This section will give a short overview of the APIs other than Java (version 1.6.0), and
additional software used during the implementation of the prototype. For more infor-
mation about each of the elements please consult the web page for the API/software.

Lucene The open source project Lucene [1], is used as a basis for the implemented
prototype. Lucene is part of the Apache Software Foundation 1. The book Lucene in
action[17] gives a more thorough walkthrough of Lucene and its posibilities.

Lucene is designed to be an easy to use Application Programmers Interface (API),
which features both text indexing and text search. The API is written in Java, but is
also available in other languages [1].

All indexing and searching of the created indexes are done with the help of the Lucene
API version 2.1.0. The Lucene IndexWriter class has been used for indexing text,
both documents and feature vectors. A custom Analyzer has been used to tokenize
and preprocess the tokens (stemming, stopword removal, etc.). Lastly the Lucene In-
dexSearcher class has been used to search the indexes created.

OWLApi The implemented prototype uses the open source API OWLApi 2 to handle
ontology reading and representation.

GoogleAPI We have used the GoogleAPI 3 to access the Google4 search engine for
the purpose of gathering URLs for a document collection.

1Apache SoftWare Foundation http://www.apache.org
2http://sourceforge.net/projects/owlapi/
3http://code.google.com/apis.html
4http://www.google.com

45

46 CHAPTER 6. IMPLEMENTATION

PDFBox PDFBox 5 has been used to extract text from pdf documents. PDFBox has
been used as a commond line tool to extract the text from pdf documents downloaded,
and is not used as a part of the implementation.

JericoHTML the JericoHTML API 6 has been used as an aid to parse HTML.

Note that the prototype has been developed on a Windows XP system and has not
been tested on other platforms.

6.2 Implementation

This section will describe the details of the implemented prototype. We have chosen
to split this section in four subsections, indexing, feature vector construction, query
reformulation, and document retrieval.

6.2.1 Indexing

As mentioned in Chapter 5 we use several indexes in the prototype. This section
describes only the indexes built upon the document collections used, not the feature
vector index and negative feature vector index.

The indexes used to construct the feature vectors and negative feature vectors are
based on a set of relevant and non-relevant documents, respectively. We have built one
document index, one paragraph index, and one sentence index for both cases. In the
document index, the full document is indexed, in the paragraph index each document is
split into paragraphs and indexed, and in the sentence index each document is split into
sentences and indexed. The text is split using simple regular expressions, and we have
chosen to use the same boundaries as in [47]. The paragraph boundary is considered
to be two or more consecutive newline sequences, possibly interupted by whitespace. A
puctuation mark, “.”, “!”, or “?” followed by a white space is considered to be a sentence
boundary.

The main search index is based on paragraphs and includes both relevant and non-
relevant documents. We have in this case used a slightly different approach to defining
a paragraph. We still use the same boundary as above, but to get a reasonable amount
of context, we have set the minimum paragraph length to 1200 characters. This implies
that the text first is split according to the paragraph boundaries, and then starting at
the first paragraph, paragraphs smaller that 1200 characters are merged, leaving us
with fewer, but larger paragraphs. In the index, each paragraph (main paragraph)
is indexed along with its neighbor pargraph above and below (if they exist). The
neighboring pargraphs are given boosts as stated in Section 5.3.2. The main paragraph
is the paragraph that is returned to the user during search, the neighboring paragraphs
are used only to boost the search.

The document search index is based on the same documents as the main search index,
but here we use traditional indexing, i.e. the documents are indexed as units.

The preprocessing step of the index creation is done by a custum class, StemAnalyzer,
which is a implemented as a subclass of the Lucene Analyzer class. The tokenization

5http://www.pdfbox.org/
6http://jerichohtml.sourceforge.net/doc/index.html

6.2. IMPLEMENTATION 47

is done by the Lucene class StandardTokenizer. Next the tokens are converted to
lowercase, and accents are removed, followed by the applicatoin of a custom built Num-
berFilter, which removes tokens consisting of purely numbers. The stopwords among
the tokens are next removed. The stopwords we have used have been downloaded from
the “TDT4215” course homepage [28], and may be found in Table A.1 in Appendix A.
The last part of the preprocessing is the stemming of the tokens with the LightStem-
Filter class. We have chosen to only lightly stem the terms, this has been done using
the conversion s → /0, for tokens not ending with ss. Both the NumberFilter class and
the LightStemFilter class have been implemented as subclasses of the Lucene Fil-
ter class. The rest of the techniques explained here use already implemented Lucene
Filter classes.

Class Indexer is responsible for creating the indexes for the construction of the fea-
ture vectors and the negative feature vectors (document, paragraph, and sentence in-
dexes).The IndexSearchDocs class is responsible for creating the main search index
and the document search index. Both these classes use the StemAnalyzer class for
preprocessing, and the Lucene IndexWriter class to build the actual indexes and write
them to disk. The IndexWriter class uses a single Lucene Document instance to rep-
resent a document (document, sentence-document, and paragraph-document) in the
index. The content of the Document instances is represented by Lucene Field classes,
which may hold a variety of information. We have used one Field instance to hold
the filename, and one to hold the textual content which is indexed. However, when it
comes to the main search index, this is slightly different. We have here used up to 7
Field instances. These Fields hold the following information:

• The filename

• The main paragraph number

• The main paragraph content

• The number of the paragraph above (if one exists)

• The content of the paragraph above (if one exists)

• The number of the paragraph below (if one exists)

• The content of the paragraph below (if one exists)

In addition we set the boost factor for the paragraphs above and below using the
Field.setBoost(float) method.

6.2.2 Feature Vector Construction

Feature vectors. The class TFVector is the class responsible for setting up the feature
vectors and indexing them. The feature vectors are built by retrieving all the relevant
documents for each concept, using the concept name as a phrase query into the three
indexes by the Searcher class. The Searcher class uses the Lucene IndexSearcher
class to retrieve these documents from the Lucene index. We also use the Lucene
IndexReader class to access the terms and frequencies of the documents. The feature
vectors are built in sequence, and the vectors are indexed based on frequency alone.
This leaves the actual calculation of the tficf score to the query reformulation part of
the system. The vector is built as a HashMap which contains all the terms and their
altered frequencies based on document (1.0), paragraph (10.0) and sentence (100.0)
weight. Each vector is indexed as a single Lucene Document with one Field containing

48 CHAPTER 6. IMPLEMENTATION

the concept name, and one Field containing the terms. The terms and frequencies are
added to the content Field using the MapReader class, which converts the HashMap
into a stream. The class BasicAnalyzer tokenizes the stream, using only the Lucene
StandardTokenizer class, as the terms used for the construction of the feature vectors
are retrieved from an existing index, and have already been subject to preprocessing.
The Lucene IndexWriter class is used to write the feature vector index to disk.

Negative feature vectors. The class AntiVectorCreator is responsible for creating
the negative feature vectors. This is done in two runs. The first run creates what we
refer to as “raw” negative vectors, and the second run cleans the vectors and writes
the final vectors to disk. The first run builds the “raw” negative vectors in much the
same way as the ordinary feature vectors, with the exception that we do not use the
whole documents to build these vectors; only the paragraph-documents, and sentence
documents. Also, we use the indexes based on the non-relevant documents. One other
significant difference is that we use the top 5 terms for each concept feature vector as a
weighted query into the indexes. The Lucene IndexSearcher class is used to retrieve
the relevant documents for each vector, and the vectors are constructed in the same
way as the feature vectors, with the exception to the weights used. We have used a
term weight of 1.0 for terms found in the same paragraph, and a term weight of 10.0 for
terms found in the same sentence, still reflecting the same relation between paragraph
terms and sentence terms. These raw vectors are indexed in a temporary index using
the Lucene IndexWriter class, Document class, and Field class. The content is also
here converted to a stream by MapReader and tokenized by BasicAnalyzer. We add
two Fields to each Document; one containing the concept name, and one containing the
“raw” vector. The second run cleans the negative feature vectors. This is done by first
reading the negative feature vector using the Lucene IndexReader class, and retrieving
the corresponding feature vector. The terms found in the corresponding feature vector
are removed, so are the terms found in more than 5% of the feature vectors. The
cleaned negative feature vector is finally written to disk using the same formalism as
above. Recall from Chapter 5 that only the top 15 terms (if there are that many) for
each vector are indexed without frequencies. The frequencies are not indexed , as they
do not play any role in the query reformulation strategy.

6.2.3 Query Reformulation

The four query reformulation strategies have been implemented in four classes;

• Simple reformulation in SimpleWeightReformulator

• Best match reformulation in MultiTermReformulator

• Ontology structure reformulation in OntologyStructureWeightReformulator

• Cosine similarity reformulation in CosineReformulator

All these classes are subclasses of the abstract class QueryReformulator which con-
tains some basic shared code and defines the interface. All of the classes reform the
query based on the approach described in Chapter 5. Each term is used as a query
into the feature vector index by the Lucene IndexSearcher class, which retrieves the
related feature vectors. The terms and their frequencies are retrieved using the Lucene
IndexReader class. The tficf score is calculated for each of the terms, and the query
is reformulated according to strategy. In addition the negative feature vector (if one
exists) is retrieved for each of the concepts chosen for expansion in the final query.
Finally the query is collapsed; terms appearing more than once in the expanded query

6.2. IMPLEMENTATION 49

are collapsed in the final query vector, by adding the weight of each terms occurence.
The boost for the user entered query terms are finally added to the query.

We will now use pseudo code to show how the implementation handles the actual query
interpretation and expansion. Listing 6.1 shows pseudo code for the simple reformula-
tion strategy. Q represents the user query and qi represents term i in the user query. The
variable f v holds the best feature vector, and the variable n f v holds the corresponding
negative feature vector. The for loop loops over all the query terms, retrieving the best
feature vector based on the t f ic f score, and its corresponding negative feature vector
(if it exists). The 15 highest weighted terms in the feature vector are used to expand
the query. The top 15 negative terms are added with a negation, i.e. -term, to the
query.

Listing 6.1: Pseudo code for the simple reformulation strategy� �
f o r (each qi in Q){

r e t r i e v e a l l f e a tu r e ve c to r s conta in ing qi ;
f i nd the fv with h i ghe s t t f i c f s c o r e f o r qi ;
expand the query with the top 15 terms in the best fv ;
r e t r i e v e the negat ive fv corre spond ing to f v , n f v ;
expand the query with the negated top 15 terms in nfv ;

}� �
The reformulation of the user query by the best match reformulation strategy is shown
in Listing 6.2. Q represents the user query, and qi is used to refer to term i in the query.
f v is used to represent a feature vector, and t f ic fi is used to refer to the tficf score for
term i in the feature vector currently operated on. Finally nfv is used to refer to the
negative feature vector corresponding the the concept of the fv chosen for expansion.

Listing 6.2: Pseudo code for the best match reformulation strategy� �
r e t r i e v e a l l f v s conta in ing a l l terms in Q ;
f o r (each fv r e t r i e v e d){

s c o r e = 0 ;
f o r (each qi in Q){

s c o r e += t f ic fi in fv ;
}

}
choose the best fv based on s co r e ;
expand the query with the top 15 terms in fv ;
r e t r i e v e the negat ive fv corre spond ing to f v , n f v ;
expand the query with the negated top 15 terms in nfv ;� �
Listing 6.3 shows the pseudo code for the ontology structure based reformulation strat-
egy. As before, qi represents query term i in the user query Q. fv[i] is an array holding
the top 15 feature vectors for term i. The variable f vl is used to designate the feature
vector with rank l in the corresponding feature vector array. t f ic fn,k is used to refer
to the t f ic f score for query term n in feature vector k. The function pathLength(i, j)
finds the length of the path in the ontology between the concepts of feature vector i
and feature vector j,with a maximum depth of 5. We use n f vk to refer to the negative
feature vector corresponding to feature vector k.

50 CHAPTER 6. IMPLEMENTATION

Listing 6.3: Pseudo code for the ontology structure reformulation strategy� �
f o r (each qi in Q){

fv [i] = r e t r i e v e the top 15 f v s based on t f i c f s c o r e f o r qi ;
}
f o r (each f vi in fv [0]) {

f o r (each f v j in fv [1]) {
scorei, j = t f ic f0,i · t f ic f1, j · 1

pathLength(f vi, f v j)
;

}
}
choose the pa i r o f concepts (f vi, f v j) with the h i ghe s t s co r e ;
expand the query with the top 15 terms o f f vi ;
expand the query with the top 15 terms o f f v j ;
r e t r i e v e the negat ive fv corre spond ing to f vi , n f vi ;
r e t r i e v e the negat ive fv corre spond ing to f v j , n f v j ;
expand the query with the top 15 negated terms o f n f vi ;
expand the query with the top 15 negated terms o f n f v j ;� �
Next, Listing 6.4 shows the pseudo code for the cosine similarity reformulation strategy.
Q represents the user query, while qi represents term i in the user query. We use fv[i]
as a variable to hold the top 15 feature vectors for term i. The variable f vl holds the
feature vector with rank l in the corresponding feature vector array. t f ic fn,k is the t f ic f
score for query term n in feature vector k. Finally, the function cosineSimilarity(i, j)
computes the cosine similarity between feature vectors i and j. The variable n f vk is
used to refer to the negative feature vector corresponding to feature vector k.

Listing 6.4: Pseudo code for the cosine similarity reformulation strategy� �
f o r (each qi in Q){

fv [i] = r e t r i e v e the top 15 f v s based on t f i c f s c o r e f o r qi ;
}
f o r (each f vi in fv [0]) {

f o r (each f v j in fv [1]) {
scorei, j = t f ic f0,i · t f ic f1, j· c o s i n e S im i l a r i t y (f vi , f v j) ;

}
}
choose the pa i r o f concepts (f vi, f v j) with the h i ghe s t s co r e ;
expand the query with the top 15 terms o f f vi ;
expand the query with the top 15 terms o f f v j ;
r e t r i e v e the negat ive fv corre spond ing to f vi , n f vi ;
r e t r i e v e the negat ive fv corre spond ing to f v j , n f v j ;
expand the query with the top 15 negated terms o f n f vi ;
expand the query with the top 15 negated terms o f n f v j ;� �
Note that in Listings 6.3 and 6.4 the indexes in the arrays are set to 0 and 1. This is
due to the fact that these two reformulation strategies, ontology structure and cosine
similarity, have only been implemented for the case of two query terms.

After the query has been expanded by the chosen approach, the query is collapsed
according to the approach given in the top of this section.

6.2. IMPLEMENTATION 51

6.2.4 Document Retrieval

The class ParIndexSearcher is responsible for retrieving the result for the user query.
For each search request three searches are performed. The first search is based on our
reformulation strategies, and uses the relevant reformulator class to reform the query.
The reformed query is then fired as a weighted keyword query into the main search
index using Lucenes IndexSearcher class. The ranked hits are returned as Lucene
Hits objects. The second search uses the user entered query as a standard keyword
search into the main search index. The third search uses the user entered query as a
stadard keyword search into the document search index. Both of the last queries use
the IndexSearcher class for searching and the Hits class to represent a ranked list of
hits.

We have chosen to implement a very simple web server to present the search interface
and search results to the user. The web server is, as said, very simple, and han-
dles simple HTTP GET requests following a certain syntax for the requested object.
The server is implemented based on the Java classes ServerSocket and Socket. The
ServerSocket binds to a port and waits for incoming connections. When connections
arrive, a new thread (ConnectionHandler) is started to handle the request. The Con-
nectionHandler is used to present the user with the search interface, the search results
(parsing the Hits into HTML), or a chosen file/paragraph from a link. The results are
presented to the user in tabular form; the first column shows the results for the refor-
mulated query, the second column shows the results for the paragraph based keyword
search, and finally the third column shows the results of the document based keyword
search. For each result, the first 200 characters of the paragraph, or document in case
of the document search, is displayed, along with a link to the paragraph content and
the document content, and the score of the hit. Figure 6.1 shows a screenshot of the
implemented web user interface.

Figure 6.1: Screenshot of the web user interface

52 CHAPTER 6. IMPLEMENTATION

6.3 Class diagrams

We will now give a short description of the structure of the implemented prototype.
To illustrate this we have used one overall package diagram and class diagrams for the
most important packages.

Figure 6.2 shows the overall structure of the packages of the implemented prototype.
The packages index, featurevector, query, and web will be discussed in closer detail
in the next subsections.

The package googleSearch includes two classes; DocCollection which is responsible
for retrieving search results from the Google search engine through the GoogleAPI, and
Downloader which is reponsible for downloading the hits from URLs.

The package utils contains 5 classes. The class Config is a class containing static
variables that hold paths, and other constants used by the prototype. The class DocRe-
presentation contains static methods to read text files, and convert them to arrays
of sentences or paragraphs. The class MFileNameFilter implements the java interface
FileNameFilter and is used to filter files based on extension. OntologyReader is used
to read OWL ontologies. Finally the class StripHTML is used to strip HTML from the
downloaded documents and uses the JericoHTML API.

The package ontology contains a single class, OntologyRepresentation, which builds
a graph representation of the ontology used to search for the shortes path between two
concepts. The class is used by the OntologyStructureWeightReformulator class in
package query.

Package run contains five classes which are responsible for executing the different parts
of the application. RunBuildFVBasisIndexes is responsible for building the indexes
used as basis for the feature vector and negative feature vector construction. RunBuild-
SearchIndexes builds the main search index, based on paragraphs, and the document
search index. The class RunFVBuilder is responsible for the construction of the actual
feature vectors and negative feature vectors. The class RunGoogleInterface collects
document URLs from the Google search engine and subsequently downloads them,
while the class RunServer starts the server. All of these five classes simply consist of
one main method.

6.3.1 Package index

This package mainly contains code that is associated with indexing and analyzing (pre-
processing) of text. The class FileLister is reponsible for listing files in a specific
directory. ParIndexSearcher is the class that is mainly responsible for handling refor-
mulation, using the query reformulation classes in package query, and user search into
the indexes. The classes contained in the index package are shown in Figure 6.3. The
purpose of the remaining classes not discussed here have been discussed in Section 6.2.

6.3.2 Package featurevector

The featurevector package contains code that is used to construct and index the fea-
ture vectors and negative feature vectors. The class TFVector is a subclass of FVCre-
ator and is the class responsible for creating and indexing the feature vectors. Searcher

6.3. CLASS DIAGRAMS 53

Figure 6.2: Package view of the implemented prototype

is used by TFVector to retrieve the relevant documents, paragraph documents, and sen-
tence documents for each concept. The negative feature vectors are constructed and
indexed by the class AntiVectorCreator. Both TFVector and AntiVectorCreator
use the class MapReader to convert the internal HashMap representation of the vetors to
a stream, making them suitable for indexing by Lucene. Figure 6.4 shows the internals
of package featurevector.

6.3.3 Package query

The query package contains the main reformulation code. Each of the four strate-
gies have been implemented in a separate class, which is a subclass of the abstract
QueryReformulator class. The QueryReformulator class contains code that retrieves

Figure 6.3: Class diagram of the index package

54 CHAPTER 6. IMPLEMENTATION

Figure 6.4: Class diagram of the featurevector package

a single feature vector, which is represented by the FeatureVector class. The class Fea-
tureVectorResult is used to hold intermediate results used by the query reformulation
classes. The class FVSearcher is used to obtain ranked lists of feature vectors based on
the query terms entered by the user. The simple reformulation strategy is implemented
in SimpleWeightReformulator, the best match reformulation strategy is implemented
in MultiTermReformulator, while the ontology structure based reformulation strategy
is implemented in OntologyStructureWeightReformulator. Finally, the cosine sim-
ilarity based reformulation strategy is implemented in the class CosineReformulator.
Figure 6.5 shows the classes of the query package.

Figure 6.5: Class diagram of the query package

6.3.4 Package web

The package web contains the code that sets up a very simple web server and handles
the arriving requests. The main class is the Server class, which sets up a ServerSocket
that waits for incoming connections. For each new connection a new ConnectionHan-
dler thread is started, which handles the request from the user browser. The Con-
nectionHandler class uses the class index.ParIndexSearcher to retrieve the search
results. Finally the class Request parses the user request, retrieving search method,
query terms, files/paragraphs requested etc. Figure 6.6 shows the classes of the web
package.

6.3. CLASS DIAGRAMS 55

Figure 6.6: Class diagram of the web package

Part IV

Evaluation

57

Chapter 7

Evaluation

This chapter presents the evaluation of the prototype. The first section will give an
overview of the evaluation data used, the next section will describe the evaluation
strategy. This is followed by the evaluation results, and finally we give a summary of
the observations made.

7.1 Evaluation Data

The domain of the evaluation data is subsea petroleum equipment and installations.
The ontology we are using in the prototype evaluation is the IIP 1 core ontology contain-
ing 18,675 concepts. Many of the concepts were not recognized during the construction
of the feature vectors, leaving us with 2195 concept feature vectors. However, this was
expected, and as we pointed out in [47], resons for missing concepts when building
feature vectors may be caused by the concept name not being mentioned in the text
because it may be a phrase not reffered to in “daily” speak, or that the concept phrase
is broken up in the text. The 2195 concept feature vectors were used as a basis to build
the negative feature vectors, and the prototype built 2006 negative feature vectors.

The document collection we have used to build the feature vectors is the Schlumberger
Oilfield Glossary 2. The glossary is provided by S.L. Tomassen, and is in the form
of small text files containing definitions of terms in the domain. The files contain no
tags, so the files are used as they are. These files vary in size from a few bytes to
approximaltely 4 KB of text, totalling approximately 2,2 MB of text spread over 4132
files.

For the search index we downloaded some documents designated as both relevant and
non-relevant. These documents were found using the Google search engine, more specif-
ically using the Google Search API 3. The URLs of the top 250 results were stored to
file and subsequently downloaded. The relevant documents were retrieved using the
query christmas tree wellhead petroleum subsea and the non-relevant documents were
downloaded using the phrase query “christmas tree”. Due to sites not responding, .xls
files etc. the number of relevant documents used was 130, totalling approximately 4
MB of text after stripping HTML and extracting text from pdf files. The number of

1IIP, the Integrated Information Platform for reservoir and subsea production systems project. A
research project funded by the Norwegian Research Council, project nr 163457/S30.

2http://www.glossary.oilfield.slb.com/
3http://code.google.com/apis.html

59

60 CHAPTER 7. EVALUATION

non-relevant documents used is 99, totaling approximately 0.5 MB of text. We also
used the Schlumberger Oilfield Glossary in the search index.

The negative feature vectors were built using the feature vectors and 82 files from the
non-relevant document collection. The documents used to build the negative feature
vectors are not among the documents included in the search index.

7.2 Evaluation Strategy

The scope of this evaluation is concerned with two aspects of the implemented pro-
totype. The first is how relevant the hits returned to the user are, and the second is
how well the hits are ranked. The base-line used as a comparison for our prototype
is straight forward keyword search implemented with Lucene. We have chosen to use
two implementations of Lucene, one in which the documents are indexed in a standard
document index, and one in which the documents are indexed by paragraph with a
boost factor for the neighboring paragraphs. The paragraph based index is the same as
the one described in Section 5.3.2 used by our reformulated queries. Note that system
performance in terms of speed is not within the scope of this project, and so will not
be subject to evaluation.

Evaluating the implementation using standard precision and recall measures is not
viable for this project. This is mainly due to the fact that we do not have an overview
of which documents in the document collection searched should be deemed as relevant
for each of the queries. The approach chosen for the evaluation of the ranking of the hits
is to specify several queries, and have the users evaluate the top 10 hits for each query
and search strategy. We have defined four groups of queries, to distinguish between
different types of search. The four groups and their charactaristics are listed below.

• Single concept. The query terms together identify a single concept in the on-
tology.

• Two conepts. Each single term in the query identifies a singel concept in the
ontology.

• Implisit concept. The query terms are closely related to one of the existing
concepts in the ontology.

• Concept + keyword search. The query generates a concept and uses the
remaining terms, which are not associated with any concept, for keyword search.

For each of the first three query groups, we have defined two queries and for the last
group we have defined one query which you can find in Table 7.1. The queries will be
executed with all four of our reformulation strategies and the two lucene approaches,
with exception to the last reformulation strategy. The last query (query 7 in Table 7.1)
belongs to the fourth query group, and only one of the terms will have a feature vector
associated with it, resulting in all four of our reformulation strategies constructing the
same expanded query. Thus for the last query the test subjects are asked to evaluate
the simple reformulation approach together with the two Lucene keyword approaches.
The total number of test cases is 39, requiring the users to evaluate 390 documents
(although some of them may be duplicated from one search strategy to another).

The test subjects were presented with a short description of the search domain, and a
short description of the scale used to score the documents. The scale used is a simple
0-2 point scale. A score of 0 designates the document as being irrelevant, a score of 1

7.3. EVALUATION RESULTS 61

Table 7.1: Proposed queries used in the evaluation.
Query nr. Group Query

1. 1 christmas tree
2. 1 valve control
3. 2 tree valve
4. 2 tree pipe
5. 3 wellbore casing
6. 3 shelf seismic
7. 4 tree ekofisk

designates the document as being related to the search domain, and lastly a score of 2
designates the document as being relevant with respect to the query.

For each query we will evaluate the top 3 hits and the top 10 hits, as [18] found that
users tend to pay most attention to the top ranked results. The choice of evaluating
the top 3 and top 10 ranked hits is thus a way of reflecting this observation in the
evaluation.

Ideally we would have subsea petroleum domain experts evaluate the system, but we
do not have the resources available to do such an evaluation. We will therefore use
5 persons (one PhD candidate and 4 Master students) with little domain expertise to
evaluate the system. This is not an optimal evaluation approach as deciding if a hit
should have score 1 or 2 may be hard. We therefore argue that using 5 test subjects
will somewhat even out the uncertainty in this evaluation.

We have also chosen to evaluate the overlap between our four search strategies and the
Lucene paragraph based approach. All of these five approaches search the same index,
and lets us directly compare the overlap. The overlap is calculated for both paragraph
and document overlap. The overlap is used as a measure of how many of the same
documents/paragraphs are found by our approaches and the keyword based approach,
and will indicate how much of the result set is filtered out in our approaches. This will
by mainly due to the negative vectors, as all documents in the result set containing any
negative feature vector terms are restricted from appearing in our result sets.

7.3 Evaluation Results

We will in this section present the results from the evaluation of the implementation,
both the user tests and the overlap between our approach and the Lucene paragraph
based keyword search.

7.3.1 User Tests

Figure 7.1 shows the average score of each of the search strategies calculated over
all of the seven queries and all test subjects. We may from the figure note that the
performance of our four reformulation strategies perform quite equally over all the query
types. We also note that the keyword based search performs, on average, less well than
the reformulated queries. However, we see that the keyword search based on the whole
documents performs slightly better than the keyword search based on the paragraph
indexing. This may suggest that the size of the paragraphs is to small and that to little

62 CHAPTER 7. EVALUATION

context is available for search with the regular keyword based search. This result is
worth noting, as the results from the reformulated query are based on the same index
as the paragraph based keyword search.

Figure 7.1: Average score for the top 3 and top 10 hits over all the queries for each of
the search strategies.

Figures 7.2 through 7.5 show the results for each of the queries found in the four different
query groups. The results presented are an average value calculated over all the test
subjects.

The results of the two queries from the first query group (single concept) are shown in
Figure 7.2. From the figure we see that query 1 shows significantly better results than
the two keyword based approaches. The result indicates the value of using domain
specific terms and the filtering the negative feature vector provides for the search.
The results for query 2 shows that the reformulation approaches in general actually
perform slightly worse than the best keyword based approache. We also note that the
ontology structure based reformulation performs best, being slightly outperformed by
the keyword search based on the full documents.

Figure 7.2: Average score for the top 3 and top 10 hits for each of the search strategies
for queries 1 and 2.

Figure 7.3 presents the results from query group two (two concepts), specifically queries
3, and 4. We see that our four approaches perform quite equally for query 3, and that
they score on an average less points than the keyword based search. The difference
between the keyword based approaches and our reformulated query approaches is how-
ever not so large. Turning to the results for query 4 we see some small differences in
performance between our four approaches. For the top 3 ranked hits, the simple refor-
mulation strategy scores highest, closely followed by the best match, cosine, and lucene
document search approaches. We can also note from the figure that the top 3 ranked
hits for four of the six approaches score lower than the top 10 ranked hit average. This

7.3. EVALUATION RESULTS 63

may suggest that the ranking of the documents is not optimal. Although the top 3 score
for the Lucene document search is close to the top score of the simple reformulation
strategy, we see that compared to the top 10 score, and the Lucene paragraph based
search our reformulated search strategies perform significantly better.

Figure 7.3: Average score for the top 3 and top 10 hits for each of the search strategies
for queries 3 and 4.

The results for the queries in query group 3 (implisit concept) are shown in Figure 7.4.
From the figure we note that for both queries 5 and 6, our reformulation strategies
perform better than the purely keyword based approaches. However, the difference is
not significant. We also note that the average score is less than 0,9 even for the best
search strategy in query 6, indicating few relevant documents in the result set.

Figure 7.4: Average score for the top 3 and top 10 hits for each of the search strategies
for queries 5 and 6.

The results of the one query in query group four (concept + keyword search) is shown
as query 7 in Figure 7.5. Recall that the reformulated approaches all return a single
(the same) feature vector for expansion for all four reformulation approaches, and they
are all collapsed into one search strategy. In the case of query 7 we see that it is clearly
the case that the reformulated query performs better than the pure keyword based
approaches.

We see that out of the seven queries, one of our reformulation strategies produced the
best overall result in 5. In the last two (queries 2, and 3) the Lucene keyword based
document search was the best. However, if we compare only our approaches and the
Lucene paragraph based keyword search, we see that in only query 3 does the keyword
search perform better than our reformulated search strategies. This would probably be
the most correct observation as these searches are directly comparable, searching the
same index. These observations seem to point in the direction that the added context in

64 CHAPTER 7. EVALUATION

Figure 7.5: Average score for the top 3 and top 10 hits for each of the search strategies
for query 7.

the conceptual query expansion does have a positive impact on the information retrieval
performance. However, the statistical basis is to small to give any conclusive evidence.

7.3.2 Overlap

This section will present the results concerning the overlap between our four approaches
and the paragraph based keyword search. Figures 7.6 through 7.9 show the results, and
also include the total number of hits for each search strategy. We can already note by a
quick glance at the figures that the reformulated queries tend to produce a significantly
larger result set than the keyword based approach. This is not unexpected as adding
more terms to a query increases the number of documents which may match parts of
the query.

Figure 7.6 shows the results for queries 1 and 2 in query group one. We note that
for query 1 the overlap is quite low, and the ratio between overlapping paragraphs
and documents is for each method significantly higher than the ratio between total
paragraph and document hits. This tells us that our approaches may be able to find
more short documents, containing less context. For the second query we may especially
point out that the ontology structure based method has a very large overlap, both with
respect to document and paragraph. In addition we observe that the number of hits
for the ontology structure based reformulation generates significantly fewer hits than
any other reformulation strategy.

Figure 7.6: Hits and overlap for queries 1 and 2

In Figure 7.7 we find the results for the overlap for queries 3 and 4 in query group
two. For query 3 we see that the total number of hits is quite consistent over all four

7.3. EVALUATION RESULTS 65

of our search strategies, and that the overlap also is quite stable over the four search
strategies. In query 4 we see that the overlap is significantly higher for the best match
strategy with respect to the other reformulation strategies.

Figure 7.7: Hits and overlap for queries 3 and 4

Figure 7.8 shows the overlap results for queries 5 and 6 in query group three. We
see that all the four reformulation strategies have a large overlap for query 5, this
means that most of the documents and paragraphs found by our reformulated search
strategies are also found by the keyword based approach. This indicates that few results
have been filtered. The same is the case for the for query 6 where almost all results,
both documents and paragraphs found by our strategies are also found by the keyword
approach.

Figure 7.8: Hits and overlap for queries 5 and 6

The results for query 7 in query group four is given in Figure 7.9. Once again, recall that
queries in this group containing only two terms will return the same result, independant
of the reformulation strategy used. We have therefore collapsed the overlap for our
reformulation strategies into one result. We see from the figure that the overlap is not
so large, and that many of the documents found by the keyword approach have been
filtered out in our reformulated search approach.

Tables 7.2 and 7.3 show the overlap of our approaches and the Lucene paragraph
based search calculated over all 7 queries. Looking at a specific row, we read out the
percentage of overlap between the approach with the row label and the column lable.
For instance, looking at the row labeled Simple in Table 7.2 we see that 72,74% of
the documents found by the simple reformulation strategy were also found by the Best
match strategy (second column). Viewing the results from the Best match point of view
(second row), we see that 95,03% of the documents found by the best match strategy
were also found by the Simple reformulation strategy (first column).

66 CHAPTER 7. EVALUATION

Figure 7.9: Hits and overlap for query 7

Table 7.2: Total overlap for the documents retrieved.
Simple Best match Ontology Cosine Lucene par

Simple 100,00% 72,74% 70,33% 89,08% 17,25%
Best match 95,03% 100,00% 84,29% 98,21% 24,35%
Ontology 94,10% 86,32% 100,00% 97,36% 23,56%
Cosine 97,34% 82,14% 79,51% 100,00% 18,97%
Lucene par 76,30% 82,44% 77,89% 76,81% 100,00%

From Tables 7.2 and 7.3 we see that the overlap is quite large between our four re-
formulation strategies. The first row in the tables shows the percentage of documents
found by the Simple reformulation strategy that also were found by other strategies.
We note that the overlap, especially for the Simple versus Best match and Ontology
reformulation strategies is lower that for the other approaches. Looking at Table 7.4
which shows the total number of hits produced, we see that the Simple reformulation
strategy has generated the largest result set. This is not unexpected, since it will in
every query expand every term in the original query by one feaure vector. Best match
on the other hand, reduces the query to a single feature vector, and produces a smaller
result set due to the smaller query used. The Ontology structure and Cosine similarity
approaches both may in one extreme expand the query by only one feature vector, if
the best pair of feature vectors to expand by actually are the same feature vectors.
They may also expand the query by one feature vector for each term in the original
query, if the best pair chosen for expansion are not equal. The high degree of overlap
we have seen from Tables 7.2 and 7.3 indicates that the reformulation approaches seem
to generate relatively equal result sets, which may explain why our approaches perform
so equally when looking at Figure 7.1.

We may also note that Table 7.4 shows that our reformulation strategies tend to find
fewer paragraphs per document found. As the index contains many short documents
from the Schlumberger Oilfield glossary, this may indicate that the reformulation strate-
gies find more short documents, containing less context. This is also not unexpected,
since the queries of the reformulated searches firstly contain a lot more terms than the
pure keyword search, and secondly that the added context allows the search engine to
retrieve more short documents that contain less context.

7.4. EVALUATION SUMMARY 67

Table 7.3: Total overlap for the paragraphs retrieved.
Simple Best match Ontology Cosine Lucene par

Simple 100,00% 76,69% 75,25% 90,15% 23,53%
Best match 91,64% 100,00% 84,32% 95,07% 32,10%
Ontology 92,31% 86,56% 100,00% 95,84% 30,80%
Cosine 96,91% 85,53% 83,98% 100,00% 25,55%
Lucene par 56,48% 64,48% 60,26% 57,06% 100,00%

Table 7.4: Total number of hits for each strategy.
Simple Best match Ontology Cosine Lucene par

Total paragraph hits: 16616 13905 13545 15457 6923
Total document hits: 11385 8714 8509 10419 2574
Avgerage paragraphs 1.46 1.60 1.59 1.48 2.69
per document:

7.4 Evaluation Summary

This evaluation does not claim to be exhaustive by any means, but we have made some
observations regarding the performance of our reformulation strategies versus standard
keyword search. This section will give a short summary of our obervations.

• The evaluation has shown us that on average our approach is somewhat better
than the purely keyword based search, both with respect to full document search,
and paragraph search. We note that for the first query, all of our reformulation
strategies perform superior to the keyword based search. Many of the non-relevant
documents contain many instances of christmas tree in the traditional sence,
making these documents appear in the keyword based search. These documents
have been filtered out by our approach, both thanks to the added context used
in the expanded query, and the negative feature vectors filtering out documents
containing typical christmas holiday type terms.

• There is no clear answer to which reformulation approach performs best, both
overall and with respect to specific query types. For two of the query groups
(group one and group two) the results show that our approaches perform best in
one query (queries 1 and 4) and that the keyword based approach is better for
the other query (queries 2 and 3). For the two other query groups our approach
seem to perform better than the keyword based approach (queries 5, 6, and 7).

• It is interesting to note that the queries in which our approaches are “beat” by
standard keyword search, the difference in performance is not that significant. In
several of the queries (queries 1,4,and 7) in which our approaches perform better
than the keyword based approach, we find that the difference is a lot larger,
at least for the difference between our best approach and the keyword based
paragraph search. Note that these are directly comparable as they search the
same index structure.

• When comparing our approaches with the pure keyword search based on para-
graphs, we find that out of the seven queries, one of our approaches seem to
perform best in six of them. This is an interesting result, that points out that
the added context of the expanded queries are able to correctly recognize more
paragraphs than using the pure keyword based search.

68 CHAPTER 7. EVALUATION

• We have also shown that the overlap between our queries and the keyword based
paragraph search, varies quite a bit. We may interpret this result as queries
having a large degree of overlap are not as ambigous as the queries having a small
degree of overlap. Again the filtering of documents is responsible for removing
hits which are to some degree ambigous (i.e. christmas tree in the petroleum
domain versus the holiday sence).

• We have observed a large overlap internally between our four reformulation strate-
gies, indicating that they produce very similar result sets. This may substantiate
why our reformulation strategies have a quite equal performance overall.

• Lastly we note that the reformulated search strategies tend to produce fewer
paragraphs per document retrieved. Seen in context with the document collection
used, in which a large portion of the documents are short, this indicates that the
added context in the query is able to recognize a larger portion of short documents
as being relevant or semi-relevant than the pure keyword based approach.

Chapter 8

Discussion

This chapter will give a discussion of our findings from the evaluation, followed by a
section discussing improvements and further work.

8.1 Test Results

As pointed out in the Evaluation chapter, the evaluation has not been exhaustive. We
also pointed out that ideally we would have domain experts evaluate the implementa-
tion, but we do not have the time and resources to employ such an evaluation. Also the
statistical basis for the evaluation (five test subjects, and seven queries) is not deemed
sufficient to give any conclusive evidence. We have however made some observations
which will now be discussed.

In the evaluation we noted that the search context for the paragraph based search
possibly was to small. This may be the case for the plain keyword based search. We
argue that the reformulated queries contain a richer context, enabling these queries to
correctly identify more paragraphs. However, it is clear from the differences between
Lucene paragraph search and Lucene document search that the aspect of the paragraph
size is one that should be researched further. It was not possible for this project to
evaluate the reformulated queries based on both paragraph search and full document
search as it would be to demanding for the test subjects. The test subjects reported
using between two and three hours, and adding document search to the evaluation
would amount to almost a full days work.

The tests show that on average our reformulation strategies seem to perform quite
eqaully, and better than the purely keyword based approaches. Especially when com-
paring our reformulated searches to the keyword search based on paragraphs this trend
is obvious. As we argued above the added context in the reformulated queries is an
important part of this result. In addition we showed that the overlap internally among
our reformulation strategies was high. This may explain why the reformulated queries
performed surprisingly equally.

The reformulation strategies are all based heavily on the t f ic f score for the query terms.
It may be the case that we have not given optimal parameter settings for the various
strategies, leading to equal concept expansions. Thus it may be the case that the
t f ic f score is dominating in the concept mapping phase for all reformulation strategies,
leading to quite similar concept expansions. This is a matter that should be further
explored.

69

70 CHAPTER 8. DISCUSSION

When it comes to which reformulation strategy works best overall, and in specific
query types, we have no conclusive evidence. We may note that our approach seems to
perform better for queries handling queries in group three (implisit concept), and group
four (concept + keyword search). However, by viewing Figure 7.4 we see that the best
performing approach for query 6 in query group tree has a score of approximately 0.86
for the top 3 hits, indicating few relevant document in the result set.

The implemented prototype uses OR matching, returning documents even if they match
only a single term. This may be viewed as a week spot in the system as it generates
a very large result set. One could imagine using AND queries, forcing all of the terms
to be present in the document. This could possibly increase presicion of the search,
on the other hand requiring all the terms to be present in the documents returned
reduces recall, by filtering out documents that do not contain one or more of the terms.
For the number of terms used in expanded queries in the implemented prototype this
would probably filter out too many of the relevant documents, at least with the size of
the paragraphs used. Balancing this effect out by carefully researching the number of
terms to use with an AND query is a matter to research further. One other solution
to this problem could be to group terms in the feature vector based on significance, for
example requiring the top 3-5 terms to be present in a relevant document using the
AND operator, and viewing the rest of the terms used for expansion as support terms
using the OR operator.

8.2 Improvements

This section will give a discussion of different improvements to the implementation.

8.2.1 Feature Vectors & Negative Feature Vectors

We have chosen to use the top 15 terms in the feature vectors for the expanded query.
We have not done any evaluation on the optimal number of terms to expand. However,
the weight for terms further down the feature vector seem to have small numeric values,
so the impact of these terms may be so small that we can ignore them. On the other
hand, as stated we have not done any formal evaluation of this, and more research is
needed to find the optimal number of terms used in the expanded query. This number
may depend on the type of query, the size of the document collection used to build the
feature vectors, and the quality of the feature vectors.

We have not researched how to handle the negative feature vectors in a query setting.
The approach used in the prototype was to add the terms in the negative feature vectors
as a NOT query, simply filtering out the documents containing the terms in the negative
feature vectors. As stated in Chapter 6 we have removed all terms in the negative
feature vectors which also occur in the corresponding feature vector, and all terms that
occur in more than 5% of the feature vectors. This approach may leave some significant
domain terms in the negative feature vectors, actually working against the objective of
the negative feature vectors by filtering out documents that actually may be relevant.
We propose a new way of handling the negative feature vectors, an approach which is
slightly more sophisticated than the simple NOT expansion. By adding negative weight
to the feature vectors, one could imagine documents containing negative feature vector
terms would be penalized, reducing the final score in the similarity calculation between
document and query. This would remove the problem of strict filtering as in the NOT

8.2. IMPROVEMENTS 71

approach, and it would be possible for documents containing only very few negative
feature vector terms to retain a high score if the overall relevance is high. More research
is needed on the area of negative feature vector construction and handling to find a less
naive approach to constructing them and using them in the expanded query.

The construction of the negative feature vectors used only the paragraph- and sentence-
documents, in contrast to the approach given in Chapter 5. We argue that this has not
had a significant impact on the negative feature vectors, as the weighting differenses
are so large, leading to the contribution of the document vectors being quite small.
We have done small informal tests which conclude that only minor changes in ranking
are achievable when using document-, paragraph-, and sentence-documents versus only
using paragraph-, and sentence-documents. The important point is that we still retain
the largest part of semantic context through the paragraph-, and sentence-documents.
However, this assumption is based on informal tests, and is a matter that should be
futher explored.

We found a small bug in the implementation during the evaluation; if the ontology
structure method finds a single best concept to expand, the feature vector is added to
the final query only once. If the cosine similarity method finds a single best concept to
expand, the feature vector is added to the final query twice. This leads to a slight change
in the ranking of the documents with respect to the two approaches. Using a simple
feature vector, f v = (tx

1, t
y
2) where tk

i represents term i with weight k, we will explain the
difference. The boost, b, for the user entered query term, t1, is added only once to the
query. The final query, q, for the ontology structure based method will be q = (tx+b

1 , ty
2),

while the cosine similarity based final query would be q = (tx
1, t

y
2, t

x
1, t

y
2) => (t2x+b

1 , t2y
2),

making the boost factor less significant in the latter case.

We have used paragraphs strictly bounded by two or more consecutive line breaks,
both in the construction of the feature vectors and negative feature vectors, and in the
case of the paragraph based search index. Although we have in the paragraph based
index added som more context by taking into account the neighboring paragraphs, it
would be interesting to see if the search would improve by using semantic paragraphs
instead of grammatical paragraphs. A semantic paragraph would be a part of the text
that keeps within a speceific topic or context, possibly spanning multiple grammatical
paragraphs. Using text mining techniques to recognize topic boundaries in the text
could be applied so that the text would be semantically partitioned. [34] has proposed
such a partitioning based on, among other techniques, clustering. This could potentially
be a large improvement, especially with large texts covering a wide range of topics.

Term Filtering

The feature vectors and negative feature vectors we have built are based upon a docu-
ment collection which has been preprocessed in a standard way; tokenization, stopword
removal, light stemming, etc. Exploiting POS tagged text to only use the most in-
teresting word groups would be a possible way of improving the feature vectors and
negative feature vectors, and should be researched further.

We also propose to further improve the system by generating a stop word list of domain
specific terms that do not discriminate well among documents. The stop word list would
be used during construction of the feature vectors, and would enable us to achieve higher
quality feature vectors used in the process of expanding the query. On the other hand,
users may want to search for such terms, leading to a problem in how such searches are
handled. We propose to add user terms that exist in such a stop word list to the query

72 CHAPTER 8. DISCUSSION

as a keyword search, as we did for terms not found in the feature vector index (query
group 7 in the evaluation).

The system as it is implemented, builds the feature vectors based on the concept names.
However, many of the concept names contain typical stop words, like on off control
and on off valve. We have employed stop word removal during the indexing of the
documents used as a basis for the construction of the feature vectors. Stop words have
also been removed from the concepts used as a query into the index, removing parts of
the concepts name. This may be a drawback, as there almost certainly is a difference
between a valve, in a general sence, and a on off valve, that is a more specific type of
valve. We propose to not use stop word removal during the construction of the feature
vectors, but rather filter out the stop words after the feature vector has been created.
This may lead to better semantic representations of the concepts, reflecting the actual
difference between them.

One other question that arises is do we actually need whole documents, paragraph-
documents, and sentence-documents in the feature vector construction?. The weight
given to terms found in whole documents are diminishing with respect to the terms
found in paragraphs and sentences. This could possibly lead to adding whole document
vectors for a document in which only a small paragraph or section actually is relevant
for the concept of the feature vector, thus possibly deteriorating the quality of the
feature vector. Further research is needed to find if the whole documents are needed in
this construction process.

8.2.2 Performance

The performance of the implementation may be improved dramatically by altering the
feature vector index. In the implementated prototype the t f ic f score is calculated on
the fly during the query expansion process, something that is unnecessary as these
weights only need to be calculated once. Building a special index to allow the t f ic f
weights to be calculated during the indexing phase would mean that many calculations
would be avoided in the query reformulation stage, improving the responce time of the
system.

8.2.3 Ontology Reasoning

In the approach we have used an ontology as the basis for construction of feature
vectors used to expand the query. The ontology structure based method has also used
the hierarchical structure of the ontology to find the best concepts to expand by. Using
the ontology to allow more complex resoning during the query expansion process, taking
into account other relations than hierarchical, such as properties, would be a natural
extension of the approach. The additional reasoning may provide the query expansion
process with more relevant connections than the hierarchical structure does.

8.2.4 Challenges

How do we handle that the vocabulary in the domain altering over time? This is an
important question since the vocabularity of a given domain may alter by development
of new terms, and terms slightly altering meaning in a new business setting. We propose
to use document collections from different points in time to represent the vocabulary

8.2. IMPROVEMENTS 73

at a given point in time, and constructing feature vectors for each point in time. In
addition documents may be associated with some time period. Thus during search,
the search concepts may map to different vectors in time, more accurately describing
the vocabulary in a given time space. The different mappings could then be used to
search different parts of the index, releaving the user from remembering or learing the
vocabulary of the past.

The functioning of the system today assumes that all the terms in the query are equally
important. However, this may not be the case. We propose to let the user weight the
terms in the entered query to reflect the related importance among the terms. When
expanding the query, these weights would be incorporated into the final weighting of
the query, letting the user have some influence on what parts of the query he is most
interested in (e.g. a main term and supporting terms). In addition we propose that the
user may have an impact on which terms to expand conceptually, by letting the user
escape terms he wishes to use as simple keywords in the query.

Today we only include simple terms, and do not add any phrase terms to the feature
vectors. This is possibly a weakness of our system, as certain terms may only be
relevant when seen in connection with one or more other terms, e.g. a phrase. Adding
these terms could possibly add more power to the system. We therefore propose to
further research methods for adding such phrases by the means of co-occurence analysis,
assosiation rules, or other techniques.

The implementation relies on quite many parameters, which have not been formally
evaluated. Among these are:

• The weight of single terms not expanded by feature vectors (query group 7)

• The number of terms in the feature vector to use for expansion

• The weight calculation for the terms in the expanded query

• The boost for query terms in the original query

• The paragraph boost used in the main search index

• How do we handle the negative vectors in a best possible way, and what terms
should/should not be included in the negative vectors?

• The assigning of terms to feature vectors

• How to handle the calculation of weights of terms assigned to feature vectors

All of these parameters and others should be researched further to find if there exists any
optimal settings that would perform well over a large range of domains and ontologies,
or if these parameters must be tailored to each domain and ontology.

Chapter 9

Conclusion

We have in this project explored how a semantic search system based on ontologies may
be constructed. The ontology has been semantically enriched by exploiting text mining
techniques to construct feature vectors for the concepts in the ontology. A domain
relevant document collection has been used in the process of constructing the feature
vectors, letting the feature vectors reflect the vocabulary of the domain. We have used
the concept feature vectors as a basis, together with the ontology, for the development
of a query reformulation module that semantically reformulates the query entered by
the user. The expanded query has been used as a weighted keyword query, reflecting
the relative importance of each term, into a vector space search engine based on Lucene
and paragraph indexing.

We have suggested four different query reformulation strategies, which differ mainly in
how the query is interpreted. The four strategies have been evaluated against standard
keyword search based on both paragraph and document indexing of the document
collection. We found that on average our reformulation strategies seemed to perform
better than the keyword based search, especially when our strategies were compared to
the keyword search based on paragraph indexing. In six of the seven queries given to
the test subjects, one of our reformulation strategies gave the best result. It is worth
noting that the average score for all of our reformulation strategies were quite equal, and
that the overlap between our four methods was high, possibly explaining the likeness
in resuls. In fact, the reformulation strategies performed so similarly, that it is not
possible to point out one of the strategies as being better than the others in general.
We also found that there was no obvious pattern showing that one of the reformulation
strategies distinguished itself with respect to a certain type of query.

Although we did not find any conclusive evidence supporting that one strategy is better
than the others, we think that the general idea of expanding the query based on a
semantically enriched ontology is promising. This point of view is also supported by
our findings. However, a lot of work remains, as there are many variables in play, and
researching these will take much effort.

We would finally like to stress the fact that the evaluation has relied on few test subjects,
and that a larger evaluation, both including a larger set of queries, and test subjects
with domain knowledge, has to be done for more conclusive evidence of the approach.

75

Bibliography

[1] Webpage. Apache Lucene. http://lucene.apache.org/java/docs/index.html , Ac-
cessed 27.05.2007.

[2] Webpage. WordNet. http://wordnet.princeton.edu/, Accessed 27.05.2007.

[3] K. Aas and L. Eikvil. Text categorisation: A survey. Technical report, Norwegian
Computing Center, 1999.

[4] S. Abney. Part-of-speech tagging and partial parsing. Corpus-Based Methods in
Language and Speech., 1996.

[5] Antoniou, Franconi, and van Harmelen. Introduction to semantic web ontology
languages. In Reasoning Web, Proceedings of the Summer School, 2005.

[6] Beaza-Yates and Ribeiro-Neto. Modern Information Retrieval. ACM Press /
Addison-Wesley, 1999.

[7] P. Bellot, E. Crestan, M. El-Bèze, L. Gillard, and C. de Loupy. Coupling named
entity recognition, vector-space model and knowledge bases for TREC 11 question
answering track. In TREC, 2002.

[8] T. Berners-Lee. Semantic web on xml. Keynote presentation for XML 2000.
Slides available at: http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html
, Accessed 27.05.2007
Reporting avialable at: http://www.xml.com/pub/a/2000/12/xml2000/timbl.html
, Accessed 27.05.2007.

[9] T. Berners-Lee, O. Lassila, and J. Hendler. The semantic web. Scientific American,
2001.

[10] D. Buscaldi, P. Rosso, and E.S. Arnal. A wordnet-based query expansion method
for geographical information retrieval. Working notes for CLEF Workshop.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
algorithms. McGraw Hill/MIT Press, 2nd edition, 2001.

[12] S. Deerwester, S.T. Dumais, T.K Landauer, G.W. Furnas, and R.A Harshman. In-
dexing by latent semantic analysis. Journal of the Society for Information Science,
41(6):391–407, 1990.

[13] T.P. Weide F.A. Grootjen. Conceptual query expansion. Data & Knowledge
Engineering, (56):174–193, 2006.

[14] W. Fan, L. Wallace, S. Rich, and Z. Zhang. Tapping into the power of text mining.
Communications of the ACM, 49(9):76–82, 2006.

77

78 BIBLIOGRAPHY

[15] R. Fikes, P. Hayes, and I. Horrocks. Owl-ql: A language for deductive query
answering on the semantic web. Technical report, Knowledge Systems Laboratory,
Stanford University, Stanford, CA, 2003.

[16] W.B. Frakes and C.J. Fox. Strength and similarity of affix removal stemming
algorithms. SIGIR Forum, 37(1):26–30, 2003.

[17] O. Gospodnetic and E. Hatcher. Lucene in Action. Manning Publications, 2005.

[18] L.A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in
www search. In SIGIR ’04: Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
478–479, New York, NY, USA, 2004. ACM Press.

[19] Grefenstette and Tapanainen. What is a word? what is a sentence? problems of
tokenization. Proceedings of the 3rd International Conference on Computational
Lexiography, pages 79–87, 1994.

[20] T. R. Gruber. A translation approach to portable ontologies. Knowledge
Acquisition, 5(2):199–220, 1993.

[21] N. Guarino. Formal ontology and information systems. In the Proceedings of
Formal Ontology in Information Systems, 1998.

[22] R. Guha, R. McCool, and E. Miller. Semantic search. WWW ’03: Proceedings of
the 12th international conference on World Wide Web, pages 700–709, 2003.

[23] J.A. Gulla, T. Brasethvik, and H. Kaada. A flexible workbench for document
analysis and text mining. NLDB 2004, pages 336–347, 2004.

[24] J.A. Gulla, S.L. Tomassen, and D. Strasunskas. Semantic interoperability in the
norwegian petroleum industry. In Dimitris Karagiannis and Heinrich C. Mayer,
editors, 5th International Conference on Information Systems Technology and its
Applications (ISTA 2006), volume P-84 of Lecture Notes in Informatics (LNI),
pages 81–94. Köllen Druck Verlag GmbH, Bonn, Klagenfurt, Austria, 2006.

[25] D. Harman. Journal of the american society for information science, 42(1):7–15,
1991.

[26] M. Hearst. What Is Text Mining? http://www.ischool.berkeley.edu/~hearst/text-
mining.html , Accessed 27.05.2007.

[27] J. Heflin and J. Hendler. Searching the web with shoe. Artificial Intelligence for
Web Search. Papers from the AAAI Workshop. WS-00-01., pages 35–40, 2000.

[28] Webpage. The homepage of the course “TDT 4215 Knowl-
edge in document collections”. English stopword list.
http://www.idi.ntnu.no/emner/tdt4215/resources/englishST.txt, Accessed
27.05.2007.

[29] A. Øhrn. Context and semantics in search, presentation at
norwegian semantic days, 2007. Presentation available at:
http://www.abelia.no/getfile.php/Semantiske%20dager/P1.3%20Alexander%20%D8hrn%20-
Context%20and%20semantics.pdf, Accessd 7.06.2007.

[30] K. Knight and J. Graehl. Machine transliteration. Computational Linguistics,
24(4), 1998.

BIBLIOGRAPHY 79

[31] T.K. Landauer, P.W. Foltz, and D. Laham. An introduction to latent semantic
analysis. Discourse Processes, 25:259–284, 1998.

[32] S.O. Løkse. Konseptekstraksjon fra store dokumentsamlinger. Master’s thesis,
NTNU, 2005.

[33] D.L. McGuinness. Ontologies come of age. Spinning the Semantic Web, pages
171–194, 2003. D. Fensel, J. Hendler, H. Lieberm, W. Wahlster (Eds.).

[34] W. Min, L. Zhensheng, and G. Yuqing. Study on semantic paragraph partition
in automatic abstracting system. In Systems, Man, and Cybernetics, 2001 IEEE
International Conference on, volume 2, pages 892–897. 2001.

[35] E. Mäkelä. Survey of semantic search research.
http://www.sange.fi/~humis/sw/semantic search.pdf, Accessed 27.05.2007.

[36] D.I. Moldovan and R. Mihalcea. Using wordnet and lexical operators to improve
internet searches. IEEE Internet Computing, (4):34–43, 2000.

[37] D. Kotzinos N. Athanasis, V. Christophides. Generating on the fly queryes for the
semantic web: The ics-forth graphical rql interface (grql). In Proceedings of the
Third International Semantic Web Conference, pages 486–501. 2004.

[38] G. Nagypal. Improving information retrieval effectiveness by using domain knowl-
edge stored in ontologies. In OTM Workshops 2005, LNCS 3762, pages 780–789.
Springer-Verlag, 2005.

[39] R. Ozcan and Y.A. Aslangdogan. Concept based information access using ontolo-
gies and latent semantic analysis. Technical report cse-2004-8, University of Texas
at Arlington.

[40] J. Plisson, N. Lavrac, and D. Mladenic. A rule based approach to word lemmati-
zation. Proceedings of the 7th International Multi-Conference Information Society
IS 2004, 2004.

[41] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[42] Y. Qiu and H.P. Frei. Concept based query expansion. In SIGIR ’93: Proceedings
of the 16th annual ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 160–169. ACM Press, Pittsburgh, Pennsylvania,
USA, 1993.

[43] Y. Qu, G. Grefenstette, and D.A. Evans. Automatic transliteration for japanese-to-
english text retrieval. In SIGIR ’03: Proceedings of the 26th annual international
ACM SIGIR Conference on Research and Development in Informaion Retrieval,
pages 353–360, New York, NY, USA, 2003. ACM Press.

[44] C. Rocha, D. Schwabe, and M. P. de Aragão. A hybrid approach for searching
in the semantic web. Proceedings of the 13th international conference on World
Wide Web, 2004.

[45] P. Rosso, E. Ferretti, D. Jimenez, and V. Vidal. Text categorization and informa-
tion retrieval using wordnet senses. GWC, Proceedings, pages 299–304, 2003.

[46] G. Salton and C. Buckley. Term-weighting approaches in automatic retieval.
Information Processing & Management, 24(5):513–523, 1988.

80 BIBLIOGRAPHY

[47] G. Solskinnsbakk. Extending Ontologies with Search-Relevant Weights, 2006.
Technical report, Norwegian University of Science and Technology, Trondheim,
Norway.

[48] X. Su. Semantic Enrichment for Ontology Mapping. PhD thesis, Norwegian Uni-
versity of Science and Technology, 2004.

[49] S.L. Tomassen. Research on ontology-driven information retrieval. In Robert
Meersman, Zahir Tari, Pilar Herrero, and et al., editors, OTM Workshops 2006,
volume 4278 of LNCS, pages 1786–1795. Springer-Verlag, Montpellier, France,
2006.

[50] S.L. Tomassen, J.A. Gulla, and D. Strasunskas. Document space adapted ontol-
ogy: Application in query enrichment. In Christian Kop, Günther Fliedl, Hein-
rich C. Mayer, and Elisabeth Matais, editors, 11th International Conference on
Applications of Natural Language to Information Systems (NLDB 2006), volume
3999 of LNCS, pages 46–57. Springer-Verlag, Klagenfurt, Austria, 2006.

[51] F. van Harmelen and D.L. McGuinness (Editors). Webpage. owl web ontology
language - overview. http://www.w3.org/TR/owl-features/, Accessed 27.05.2007.

[52] E.M. Voorhees. Query expansion using lexical-semantic relations. In SIGIR ’94:
Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 61–69. ACM Press, 1994.

Part V

Appendix

81

Appendix A

Implementation

Table A.1: Stop words used in the implementation[28]

a a’s able about above
according accordingly across actually after
afterwards again against ain’t all
allow allows almost alone along
already also although always am
among amongst an and another
any anybody anyhow anyone anything
anyway anyways anywhere apart appear
appreciate appropriate are aren’t around
as aside ask asking associated
at available away awfully b
be became because become becomes
becoming been before beforehand behind
being believe below beside besides
best better between beyond both
brief but by c c’mon
c’s came can can’t cannot
cant cause causes certain certainly
changes clearly co com come
comes concerning consequently consider considering
contain containing contains corresponding could
couldn’t course currently d definitely
described despite did didn’t different
do does doesn’t doing don’t
done down downwards during e
each edu eg eight either
else elsewhere enough entirely especially
et etc even ever every
everybody everyone everything everywhere ex
exactly example except f far
few fifth first five followed
following follows for former formerly
Continued on next page

83

84 APPENDIX A. IMPLEMENTATION

Table A.1 – continued from previous page
forth four from further furthermore
g get gets getting given
gives go goes going gone
got gotten greetings h had
hadn’t happens hardly has hasn’t
have haven’t having he he’s
hello help hence her here
here’s hereafter hereby herein hereupon
hers herself hi him himself
his hither hopefully how howbeit
however i i’d i’ll i’m
i’ve ie if ignored immediate
in inasmuch inc indeed indicate
indicated indicates inner insofar instead
into inward is isn’t it
it’d it’ll it’s its itself
j just k keep keeps
kept know knows known l
last lately later latter latterly
least less lest let let’s
like liked likely little look
looking looks ltd m mainly
many may maybe me mean
meanwhile merely might more moreover
most mostly much must my
myself n name namely nd
near nearly necessary need needs
neither never nevertheless new next
nine no nobody non none
noone nor normally not nothing
novel now nowhere o obviously
of off often oh ok
okay old on once one
ones only onto or other
others otherwise ought our ours
ourselves out outside over overall
own p particular particularly per
perhaps placed please plus possible
presumably probably provides q que
quite qv r rather rd
re really reasonably regarding regardless
regards relatively respectively right s
said same saw say saying
says second secondly see seeing
seem seemed seeming seems seen
self selves sensible sent serious
seriously seven several shall she
should shouldn’t since six so
Continued on next page

85

Table A.1 – continued from previous page
some somebody somehow someone something
sometime sometimes somewhat somewhere soon
sorry specified specify specifying still
sub such sup sure t
t’s take taken tell tends
th than thank thanks thanx
that that’s thats the their
theirs them themselves then thence
there there’s thereafter thereby therefore
therein theres thereupon these they
they’d they’ll they’re they’ve think
third this thorough thoroughly those
though three through throughout thru
thus to together too took
toward towards tried tries truly
try trying twice two u
un under unfortunately unless unlikely
until unto up upon us
use used useful uses using
usually uucp v value various
very via viz vs w
want wants was wasn’t way
we we’d we’ll we’re we’ve
welcome well went were weren’t
what what’s whatever when whence
whenever where where’s whereafter whereas
whereby wherein whereupon wherever whether
which while whither who who’s
whoever whole whom whose why
will willing wish with within
without won’t wonder would would
wouldn’t x y yes yet
you you’d you’ll you’re you’ve
your yours yourself yourselves z
zero

