
June 2007
Babak Farshchian, IDI
Monica Divitini, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

User-centered and collaborative
service management in UbiCollab
Design and implementation

Kim-Steve Johansen

Problem Description

UbiCollab is a platform for supporting ubiquitous collaboration between people. UbiCollab is being
developed in cooperation between the Norwegian University of Science and Technology,
Department of Computer and Information Science, and Telenor Research & Innovation. The
UbiCollab project is open source, and interacts with a number of European projects and with
industrial partners internationally.

This task is related to service discovery and management, which is an important part of the
UbiCollab's service oriented architecture. The candidate will propose and implement a solution for
a user-centered and collaborative service management system for UbiCollab. The solution
proposal will be founded on a previous study on this subject where a requirement specification and
high level architecture were proposed.

Assignment given: 20. January 2007
Supervisor: Babak Farshchian, IDI

Abstract

This project has been carried out as a contribution to the UbiCollab project. The
project aims to provide a platform for the support of ubiquitous collaboration.
UbiCollab tries to support collaboration in the users’ natural environment, and
draws upon research in areas such as user mobility and ubiquitous computing
to achieve this. The platform provides functionality such as location-awareness,
integration with the physical environment and mobility support. UbiCollab is
based on service oriented architecture (SOA), and integration of computerized
services and service management are key aspects of the platform.

A previous pre-study has been performed by this author in the autumn of 2006
to compile a set of requirements and propose an architecture for a user-centered
and collaborative service management system. This work builds on that study,
and provides the design and implementation of a service management system
for UbiCollab. The system aims to provide users with the tools to effortlessly
discover, provide, and consume services. Users will also be able to take advantage
of new services as they become available in dynamically changing environments.

Work done on the service management system consists of the design and im-
plementation of several platform components and their application programming
interfaces (APIs). In addition a set of applications to test the flexibility and
functionality of the platform, as well as the completeness of the APIs, have been
designed and implemented.

What sets the service management system in UbiCollab apart from similar sys-
tems is the focus on end-users and collaboration. User-friendliness is achieved
by creating a pluggable service discovery system where the inherent complexity
of service discovery protocols are hidden from the user. In addition discovery of
services by pointing at the service of interest with an RFID device is supported.
The use of pointing provides a natural way of communicating. Collaboration is
supported by allowing users to share their services (publish) in defined groups,
and consume services shared by other users.

Keywords: service discovery, service management, ubiquitous computing, user-
centered, collaboration, UbiCollab

Preface
This thesis is submitted as the final work for the degree of Master of Science
(Sivilingeniør) at the Norwegian University of Science and Technology. The re-
port is based on work conducted from January through June 2007 on a project
assignment given by the Department of Computer and Information Science (IDI).
The work performed is a contribution to the UbiCollab platform. UbiCollab is
an open source project with the aim of developing a technological platform for
supporting mobile and ubiquitous collaboration.

In this report, work aimed at creating a user-centered and collaborative service
management system for UbiCollab is documented. It extends work carried out on
this subject in the autumn of 2006 by the author and Martin Børke. The report
presents the design, implementation and evaluation of the selected solution.

The initial task description for this work is included in Appendix A. The for-
mal task description has been updated during the semester, and the final task
description is as follows:

UbiCollab is a platform for supporting ubiquitous collaboration
between people. UbiCollab is being developed in cooperation between
the Norwegian University of Science and Technology, Department of
Computer and Information Science, and Telenor Research & Inno-
vation. The UbiCollab project is open source, and interacts with a
number of European projects and with industrial partners interna-
tionally.

This task is related to service discovery and management, which
is an important part of the UbiCollab’s service oriented architec-
ture. The candidate will propose and implement a solution for a
user-centered and collaborative service management system for Ubi-
Collab. The solution proposal will be founded on a previous study on
this subject where a requirement specification and high level architec-
ture were proposed.

I thank my project supervisor, Professor Babak Amin Farshchian and co-adviser
Professor Monica Divitini for providing input and ideas, as well as valuable feed-
back on the research and the writing of this report. My compliments also go
to the students with whom I was fortunate to share office and collaborate with
during my work.

Trondheim, June 17. 2007

———————————–
Kim-Steve Johansen

Contents

1 Introduction 1

1.1 Motivation, goals and contributions 3

1.1.1 General motivation . 3

1.1.2 Project goals . 4

1.1.3 Contributions . 4

1.2 Research problems . 6

1.3 Research method . 7

1.4 Report outline . 7

2 Problem elaboration 9

2.1 UbiCollab foundation . 10

2.2 The history of UbiCollab . 11

2.3 A service discovery scenario . 12

2.3.1 Scenario 1 . 12

2.3.2 Scenario 2 . 13

2.3.3 Scenario analysis . 13

2.4 Technical grounding for scenarios 14

2.5 Relations between UbiCollab and ASTRA 15

2.6 Evaluation of implementation . 15

3 Technology State-of-the-Art 17

3.1 Physical Service Discovery . 18

3.1.1 IrDA . 18

3.1.2 Optically readable codes 19

3.1.3 RFID . 22

i

CONTENTS

3.2 Comparison of technologies . 26

4 Solution proposal 29

4.1 Concepts . 30

4.1.1 UbiCollab platform concepts 30

4.1.2 UbiCollab deployment concepts 32

4.1.3 Solution specific concepts 33

4.2 Functionality and APIs . 36

4.2.1 Service Domain Manager 37

4.2.2 Service Discovery Subsystem 39

4.2.3 Service Registry . 51

4.2.4 Service Management Tool 53

4.2.5 X10 demonstrator . 54

4.2.6 Requirement matrix . 55

4.3 Relation to overall UbiCollab architecture 57

5 Implementation 59

5.1 Introduction . 59

5.1.1 Documentation of code . 60

5.1.2 OSGi . 60

5.1.3 Problems encountered . 60

5.1.4 Limitations . 61

5.2 Implemented components . 62

5.2.1 Service Domain Manager 62

5.2.2 Service Discovery Subsystem 63

5.2.3 Service Registry . 68

5.2.4 X10 Proxy service and demonstrator 69

5.2.5 Service Management Tool 71

5.3 Requirements not implemented 74

6 Evaluation 77

6.1 Evaluation overview . 78

ii

CONTENTS

6.1.1 Demonstration . 79

6.1.2 UbiBuddy . 83

6.1.3 Tag Manager . 85

6.2 Advancements to state-of-the-art 86

6.3 Improvement suggestions . 87

7 Conclusions and future research 89

7.1 Contributions . 89

7.2 Evaluation . 90

7.3 Future Research . 91

8 References 95

A Task description 99

A.1 Original task description . 99

A.2 Final task description . 99

B Functional Requirements 101

C Application programming interfaces 105

C.1 Service Domain Manager API . 105

C.2 Service Discovery Manager Plugin API 107

C.3 Service Discovery Manager Client API 109

C.4 Service Registry API . 110

C.5 X10 demonstrator API . 112

D Gestalt Principles 115

D.1 Similarity . 115

D.2 Proximity and Continuity . 116

D.3 Symmetry . 116

E Overview of the IDBlue RFID Device 117

E.1 Device Aspects . 117

E.2 LED States . 118

iii

CONTENTS

F Installing the Java Communications API 119

G Dependencies 121

G.1 Service Registry . 121

G.2 Service Discovery Plugin for RFID 122

iv

List of Figures

1.1 UbiCollab’s relation to other research projects 2

1.2 Research methodology . 8

3.1 Information encoded using 1D and 2D barcodes 20

3.2 “http://www.ubicollab.org” encoded as QR Code 21

3.3 The basic RFID concept . 22

3.4 A collection of different RFID tags. 24

4.1 The relation between services and service proxies 31

4.2 UbiCollab basic concept: The Human Grid 32

4.3 Mapping between service description and advertisement for WSDL 34

4.4 XML Schema for description of a single service 35

4.5 XML Schema for description of a list of services 36

4.6 High-level design for Service Domain Manager 38

4.7 Service domain manager . 38

4.8 API provided by Service Domain Manager 39

4.9 Deployment diagram for Service Discovery subsystem 40

4.10 The service discovery process in UbiCollab 41

4.11 The XML-Schema for the list of registered plugins 43

4.12 High-level class-disgram for Discovery Manager 44

4.13 XML-Schema for ClientRequestList 45

4.14 Discovery Manager API for Service Discovery Plugins 45

4.15 Discovery Manager API for service discovery clients 45

4.16 Specialization of Service Discovery Plugin 47

4.17 Sequence diagram showing the service discovery process 47

v

LIST OF FIGURES

4.18 Possible uses of IDBlue RFID reader 48

4.19 Organizing of data on RFID tag 49

4.20 High-level design for Service Discovery Plugin for Service Registry 51

4.21 High-level design for Service Registry 52

4.22 Service Registry API . 52

4.23 High-level design for Service Management Tool 53

4.24 API provided by X10Proxy . 55

4.25 Mapping between functional requirements and components 56

4.26 Relation to overall UbiCollab Architecture 57

4.27 Relation between platform and demonstrator components 58

5.1 Domain Manager class diagram 63

5.2 Discovery Manager class diagram 64

5.3 Package diagram for Service Registry Plugin 65

5.4 Plugin for Service Registry class diagram 66

5.5 Sequence diagram for RFIDPlugin connection and tag reading . . 67

5.6 The GUI provided by the RFIDPlugin 68

5.7 Class diagram for Service Registry 69

5.8 Class diagram for X10 Proxy service 70

5.9 Demonstrator GUI for the X10 Proxy service 71

5.10 Services consumed by UbiCollab Service Management Tool 72

5.11 Service management in UbiCollab Service Management Tool . . . 72

5.12 Editing a service in SMT . 73

5.13 Manual installation of service . 73

5.14 Service discovery in UbiCollab Service Management Tool 74

5.15 Displaying logged events in SMT 75

6.1 An overview of how this work is used by different applications . . 78

6.2 The discovery plugin for RFID has found the correct RFID pen . 80

6.3 The service advertisements have been discovered 81

6.4 The Domain Manager log after a service is installed 82

6.5 The X10 test application . 82

vi

LIST OF FIGURES

6.6 The X0Proxy has been published to the “Dogwalkers association” 83

6.7 UbiBuddy application main window and service window 84

6.8 Tag Manager application in use 86

D.1 Similarity in color, form and size 115

D.2 Proximity and Continuity . 116

D.3 Symmetry between elements . 116

vii

LIST OF FIGURES

viii

List of Tables

3.1 QR Code Data capacity . 21

3.2 Comparison of AIDC technologies 26

B.1 Functional Requirements: Service publishing 102

B.2 Functional Requirements: Service search 102

B.3 Functional Requirements: Service description 103

B.4 Functional Requirements: Service Management 103

B.5 Functional Requirements: Other 104

E.1 LED states for IDBlue RFID Pen 118

ix

LIST OF TABLES

x

Acronyms

AIDC Automatic Identification and Data Capturing

API Application Programming Interface

ASTRA Awareness Services and Systems - Towards theory and ReAlization

GUI Graphical User Interface

HTML HyperText Markup Language

IrDA Infrared Data Association

JVM Java Virtual Machine

JXTA JuXTApose (to set side-by-side)

LAN Local Area Network

MMS Multimedia Messaging Service

NTNU Norwegian University of Science and Technology

OSGi Open Service Gateway initiative

OWL Web Ontology Language

PAN Personal Area Network

RDF Resource Description Framework

RFID Radio Frequency IDentification

SLP Service Location Protocol

SOA Service Oriented Architecture

SRS Software Requirements Specification

UC UbiCollab or Ubiquitous Collaboration

UDDI Universal Description, Discovery and Integration

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAN Wide Area Network

WS Web-service

WS-* Web service specifications

WSDL Web Service Definition Language

XML Extensible Markup Language

Terminology

Architecture The conceptual design and fundamental operational structure of a
computer system. It is a blueprint and functional description of requirements
and design implementations for the various parts of a computing system.

End User The person who uses a product / system. The end-user may differ
from the customer, who might buy the product, but doesn’t necessarily use it.

Ontology A data model that represents a domain and is used to reason about
the objects in that domain and the relations between them. Ontologies are
used as a form of knowledge representation about the world or some part of it.

Resource A resource, or system resource, is a physical or non-physical
component of limited availability. Devices connected to a computer system or
communication network are physical resources. Internal system components
are physical resources. Examples of non-physical system resources include
files, network connections and services.

Service Contract A service contract is an agreement between the service
provider and the service client, regarding how the service is allowed to be
used.

Service Data Model The service data model is an abstract model of how
services are related. The data model describes relations between the
concepts, and each service may be mapped onto these concepts.

Service Oriented Architecture (SOA) A perspective of software architecture
that defines the use of services to support the requirements of users. In a
SOA environment, resources on a network are made available as independent
services that can be accessed without knowledge of their underlying platform
implementation. In SOA the interface definition hides the implementation of
the language-specific service. SOA-compliant systems can be independent of
development technologies and platforms.

Service Provider A service provider is an entity (person or organization) that
provides services to other entities. Usually this refers to a business that
provides web services to other businesses or individuals, but in UbiCollab a
service provider is more often an end-user sharing his or her services with
others.

Service Proxy Service proxies are OSGi bundles which run as services on the
UbiCollab platform and provide an abstraction for different physical or
logical devices used by applications which run on the platform.

Service Registry The service registry is the logical place where services are
published to be discoverable.

Transparency In interaction, design transparency is used as a metaphor
implying the level of understanding that an end user has in the use of a
system. In human-computer interaction, the level of ’transparency’ is a
measurement of user friendliness and how much the user needs to worry
about unnecessary or technical details (like installation, updating, etc).
Transparency is to a large extent facilitated through the use of interfaces.

UbiCollab Platform The UbiCollab platform is the container onto which
services are deployed, and it consists of core components such as the ontology
manager, context manager and service discovery. In addition this is the
container where service proxies are deployed

UbiHome A trusted centralised node in the UbiCollab Network (UbiNetwork).
This node is an integrated part of the UbiNetwork and usually is the node
which provides the centralised service discovery repository.

UbiNode A unit in the UbiCollab network that has installed the UbiCollab
platform, and provides or uses services. UbiCollab users have their service
proxies’ installed on UbiNodes.

Chapter 1

Introduction

“Any intelligent fool can make things bigger, more complex, and
more violent. It takes a touch of genius -and a lot of courage- to

move in the opposite direction.”
- E. F. Schumacker

People today live a very nomadic life where they daily roam between home, work,
shops and leisure activities. The places they go to and the activities they attend
are increasingly becoming more computerized. Both home and workplace en-
vironments are filled with computers and computerized services. It is common
today to have embedded computers in items like telephones and cars, as well as
household equipment like refrigerators and washing machines. All these comput-
erized objects provide different kinds of services, some require a local presence
while others are location independent. A common problem is however that while
each service performs well on its own, interoperability is not easily achieved. The
opportunities and challenges posed by such computerized surroundings are being
addressed in the field of ubiquitous computing.

During the last few decades huge strides have been made in communication net-
works and especially mobile communication. Communication networks today
reach into every corner of the world. The development and expansion of cellular
networks, as well as other types of mobile networks, covers substantial parts of
the technologically developed world. Where no other means of communication is
available, satellite communication provides telephone and Internet access. The
trend is that communication networks and methods are becoming faster, more
ubiquitous and easier to use. This allows people to stay connected to each other
and their desired online services regardless of location and time.

Since the 1990s devices like laptops with wireless LAN or WAN technology, Per-
sonal Digital Assistants (PDAs) with Bluetooth or IRDA interfaces, smart mobile
phones and different kinds of wearable computers have been introduced. Such
devices and technologies allow people to stay connected and access different ser-

1

CHAPTER 1. INTRODUCTION

vices virtually regardless of where they are. The convergence of these increas-
ingly pervasive computers and communication networks offer new opportunities
and challenges for systems designers, and this is where UbiCollab comes into the
picture.

UbiCollab is a research project which aspires to provide a platform where col-
laborative applications can be created without extensive coding [5]. The project
has its roots in Computer Supported Cooperative Work (CSCW) and has been
developed through iterative design and testing in various projects over the years.
Today the intended application domain for UbiCollab has widened, and the fo-
cus has shifted towards Computer Supported Collaboration (CSC) in general.
Some of the most important aspects of UbiCollab are to be domain independent,
provide basic generic functionality, and provide integration with the physical en-
vironment. The aspect which sets UbiCollab apart from other CSC platforms is
the focus on being general enough to be applied in all the different collaboration
domains, while still providing enough functionality to be of practical use.

The UbiCollab platform is also being used by other research projects, such as
Awareness Services and Systems - Towards theory and ReAlization (ASTRA)
[1]. This is an ongoing project where among others NTNU is an participant.
UbiCollab provides utility for projects like ASTRA and evolves with experiences
received from them. How UbiCollab is used by research projects over time is
visualized in Figure 1.1.

Figure 1.1: UbiCollab’s relation to other research projects

During the time period when this work has been performed, UbiCollab has also
moved on to become an Open Source project registered with Sourceforge1. The
source code has been made available under the Apache License v2.02. This move
toward Open Source is expected to provide some benefits for the project, such as
allowing former students to follow up on their work. In addition the usage of the
platform should increase and this ought to generate more feedback which can be
used to evolve the platform further.

The rest of this chapter is organized as follows:

In Section 1.1 the motivation for this work along with goals and contributions is
described. This will give an overview of what is being accomplished by this work

1http://sourceforge.net/projects/ubicollab (Visited 04.06.2007)
2http://www.apache.org/licenses (Visted 04.06.2007)

2

CHAPTER 1. INTRODUCTION

and how this fits into the larger UbiCollab project.

Then, in Section 1.2 some important issues which need further research have been
pointed out and research questions have been formulated.

Further, in Section 1.3 the research method which has been followed to achieve
the goal of the project is described.

Finally, Section 1.4 describes how the rest of the report will be organized.

1.1 Motivation, goals and contributions

The original and the final task descriptions for this project are given in Appendix
A. The final task description forms the basis for the project motivation, goals
and contributions.

1.1.1 General motivation

The purpose of this work is to assist in the ongoing improvement of the UbiCollab
platform by creating a solution for service discovery and management, suitable
for use in a distributed collaborative environment. Service discovery and man-
agement is an important and necessary part of any Service Oriented Architecture
(SOA), which is the architectural choice for UbiCollab. Dynamic discovery of
services and devices is also a central enabler for pervasive and ubiquitous com-
puting environments. Here, due to continuously changing context of the users,
the system needs to find and adapt to new resource situations in the users phys-
ical surroundings. This work aims to create a solution to this problem which is
user-centered and supports collaboration.

The rationale for creating a user-centered solution is to allow the end-users to
take a more active part in the service discovery process and let them perform
actions normally associated with service providers. In addition end-users will
be given the tools to perform physical discovery of real world objects in their
vicinity. When the user is more involved in this process, a better integration
with the users’ desires as well as the physical world is achieved. This approach is
intended to increase the usability of the service discovery solution, which will also
include a more traditional approach where services are registered in a searchable
registry.

During the autumn of 2006 a project was carried out to create an architecture pro-
posal for a user-centered and community oriented service discovery in a pervasive
awareness system [10]. Various approaches to service discovery were analyzed,
requirements were elicited and ideas for solutions was presented. The goal was to
create a service discovery architecture suitable for the ASTRA project [1], which
uses UbiCollab components in its architecture. The report from this project is

3

CHAPTER 1. INTRODUCTION

accessible on the UbiCollab Web-site1.

The work done in the autumn project has served as an important foundation for
this project. In the reminder of this report, the resulting work from the autumn
project will be referred to as the autumn report. In addition to the work
done in the autumn report there also exist a UbiCollab White Paper [5] which
is important for this project. Also, much work on the platform has been done in
earlier projects and has given important inputs and has served as an inspiration
for this work. Most notably is the proof-of-concept porting of the UbiCollab
platform from the old architecture onto a SOA architecture based on OSGi, as
performed by Mosveen and Brustad in the spring of 2006 [16].

1.1.2 Project goals

The vision of UbiCollab is to provide a platform which is able to support a
multitude of different collaboration domains. To be able to provide the necessary
flexibility and extendibility, a Service Oriented Architecture (SOA) was chosen.
Founding the system on SOA allows a very open system to be built where creative
solutions can be created and tested, but at the same time poses several challenges.
A prerequisite for such an approach is that service discovery, as an important part
of SOA, can handle the challenges posed by the project objectives.

The goal of this work is therefore to design and implement a solution for service
management which meets the requirements of the UbiCollab project. Much of
the challenge is posed by the the focus on making the solution user-centered and
flexible enough to support cooperation within a variety of application domains.
This focus on a user-centered and flexible approach also constitutes the novelty
of this work. The combination of these concepts has not received much attention
in earlier research, as discussed in the autumn report [10].

To be able to accommodate a good solution for service discovery in UbiCollab,
the problems associated with this task need to be elaborated and requirements
extracted. A substantial part of this work has already been done in the autumn
report, but there are still some aspects that need to elaborated further. Under-
standing the underlying requirements of UbiCollab is essential to tailor a service
discovery module for the project, and failing to do so will have a major impact
on the functionality of the platform. The problems associated with this task are
further elaborated in Chapter 2.

1.1.3 Contributions

In this project a service discovery and management solution for the UbiCollab
platform has been designed and implemented. This work presents the following
contributions:

1http://mediawiki.idi.ntnu.no/wiki/ubicollab/index.php/UCSP 0052 (Visited 17.06.2007)

4

CHAPTER 1. INTRODUCTION

• State-of-the-art analysis

• Service Domain Manager design and implementation

• Implementation of a service discovery solution consisting of the following
components:

• Service Discovery Manager

• Service Discovery Plugin for RFID

• Service Discovery Plugin for Service Registry

• Service Registry

• Service Registry Management Tool

• Service Management Tool

• X10 service proxy (X10Proxy) and demonstrator GUI

The state-of-the-art analysis looks into relevant technologies which can be used
to implement user-centered physical service discovery, and evaluates them for use
in UbiCollab. This analysis is important to ensure the best available technology
is selected and used in the solution.

Service Domain Manager is a Web service which is intended for deployment on
UbiCollab nodes to provide management functionality for services residing on the
node. This functionality includes start, stop, edit service attributes, uninstall and
install services (by providing a URL for the service to be installed). In addition
this service provides logging capabilities to ensure the person who owns services
can see what is happening in his or her service domain.

The Service Discovery Manager is the central part of the service discovery solu-
tion. This is the component which service discovery clients connect to, in order
to discover services. Also service discovery plugins, which are used to implement
specific service discovery protocols, connect to this manager to provide search
facilities in their domain.

The Service Discovery Plugin for RFID is a component which implements and
provides RFID support for the Service Discovery Manager.

The Service Discovery Plugin for Service Registry is a component which provides
the Service Discovery Manager with the ability to query the Service Registry.

Another contribution will be the Service Registry. This is a simple yet flexible
centralized registry (repository) where services and resources can be advertised.
It provides the functionality to add, edit and delete advertisements, as well as a
query interface.

The Service Registry Management Tool is a simple tool which provide the Graph-
ical User Interface (GUI) needed to manage a Service Registry. It supports query-
ing of the registry, along with the functionality to add, edit and delete service
advertisements.

The Service Management Tool is a tool which provides the functionality needed
for an end-user to manage his or her services on a UbiCollab node (UbiNode).

5

CHAPTER 1. INTRODUCTION

This tool provides a graphical user interface which implements most of the func-
tionality offered by Service Domain Manager and Service Discovery Manager. A
user can for instance discover an interesting service through the use of Discovery
Manager and then install this service by utilizing functionality offered by Service
Domain Manager. This service can then be published to make it available for
friends.

The X10 service proxy (X10Proxy) is a service which provides a Web service
interface for controlling X10 devices1. A demonstrator GUI that can be used to
demonstrate the functionality offered by the X10Proxy have also been created.

All these software components are designed and implemented based on the spec-
ification developed during the autumn project, and the findings in this work.

1.2 Research problems

Because this work is an engineering project, most of the focus will be on the
design and development of the service management system. As explained earlier,
much of the foundation for the design process will come from the autumn report,
but there are also some additional problems that need to be researched further.
An elaboration of the problems at hand has been carried out in Chapter 2. Based
on this, one area which needed further analysis was pointed out.

In the computing environment where UbiCollab will be deployed, users own de-
vices and services which they make available for other users in the collaboration
instances where they are members, as described in the UbiCollab whitepaper
[5]. Users will also perform “physical” service discovery on devices and artifacts
they encounter, and suitable technologies for this have been selected for further
analysis in Chapter 3. Physical service discovery refers to the ability of users to
directly spot and physically select a service (e.g. by pointing at it) for being dis-
covered by the system. This is enabled e.g. by visual tags or RFID tags. Based
on the analysis, an evaluation of the candidate technologies were performed to
determine which is best suited for the proposed solution.

The following research question has been formulated:

• Which technology is best suited for “physical” service discovery?

In addition to this question, the work performed in this project will also strengthen
the answers provided to the research questions in the autumn report. The re-
search questions from the autumn report were:

• What is implied by user-centered service discovery?

• What is implied by community oriented service discovery?

1X10 is a protocol which can send commands to compliant devices through the power grid

6

CHAPTER 1. INTRODUCTION

1.3 Research method

The research method for this project has been selected based on the need to
get a thorough understanding of how service discovery should be implemented in
UbiCollab, and to ensure the quality of the design and implementation. Based
on the available relevant background material, the first part of the project was
used to elaborate the problem domain and discover new areas that needed further
examination. Next, a state-of-the-art analysis was performed to answer the ques-
tion raised in the problem elaboration. The main finding of the state-of-the-art
analysis was that service discovery technology is rarely designed to be used by
average users.

From the findings in the problem elaboration and the technology state-of-the-art,
a solution proposal has been created. In the solution proposal the design for
the different components that will constitute the solution is outlined. Based on
this, the implementation of the different components started as parallel activities.
During the implementation the components were continuously evaluated until it
was decided they fulfilled the specification set forth in the solution proposal.

The next and last phase was to assemble the different components and start test-
ing and evaluation of the complete service management subsystem. The research
method used in this work is illustrated in Figure 1.2.

1.4 Report outline

The rest of this report is organized into the following chapters:

Chapter 2 gives an overview of important fields and concepts related to UbiCol-
lab. The chapter then moves on to present a high-level UbiCollab user scenario
that shows the utility of UbiCollab, before it further refines and analyzes it to
find out which of the users’ actions are related to service discovery functional-
ity. Finally some important aspects related to the evaluation of the solution are
pointed out.

In Chapter 3 an analysis of three technologies that are deemed candidates for
physical service discovery in UbiCollab is performed. Based on the analysis a
comparison of the technologies is performed and one of the technologies is selected
for the task.

Then, Chapter 4 proposes a solution as to how the service management solu-
tion should be implemented, and which platform components are needed. This
proposal includes the full service APIs for the platform components, and also de-
scribes how the functional requirements are being mapped to specific components.
Components for testing and demonstrating the functionality of the solution are
also described.

Next, Chapter 5 presents how the proposed solution has been implemented.
The implementation details for all components that have been developed are

7

CHAPTER 1. INTRODUCTION

Figure 1.2: Research methodology

presented, and certain key points about their inner functionality are described.

Further, Chapter 6 describes how the solution has been evaluated, and explains
what and how the solution have contributed to state-of-the-art. The evaluation is
based on platform demonstrations where the created test applications and services
are used, in addition to other work that uses the service management solution.

Finally, Chapter 7 concludes the report by presenting the results and contri-
butions. The work process is also shortly evaluated. Finally, some ideas and
thoughts for future research projects which will provide value to the UbiCollab
platform are presented.

8

Chapter 2

Problem elaboration

“It is not enough to do your best: you must know
what to do, and THEN do your best.”

- W. Edwards Deming

The purpose of this chapter is to ensure that all the necessary research and
analysis that will form the foundation for the solution proposal has been carried
out. Much foundation work has already been carried out in the autumn report,
but there are still some issues that must be covered before the proposal can be
created.

This chapter gives an overview of the problem domain and discusses issues that
need to be clarified in order to provide the desired service management solution.
Some issues will be solved while other are pointed out for further analysis.

In Section 2.1 important concepts which constitute the foundation for UbiCollab
are shortly described.

Then, in Section 2.2 a short summary of the history of UbiCollab is given.

Next, in Section 2.3 some scenarios have been created to demonstrate the utility
of UbiCollab.

Further, in Section 2.4 the scenarios created are analyzed and their technical
grounding are being described.

Moreover, in Section 2.5 the relation between ASTRA and UbiCollab is discussed,
and some updates to the functional requirements elicited in the autumn report
are described.

Finally, in Section 2.6 the problems involved in evaluating the solution are dis-
cussed.

9

CHAPTER 2. PROBLEM ELABORATION

2.1 UbiCollab foundation

In this section a brief description of some of the important fields and concepts
which constitute the foundation for UbiCollab is given. These fields are Ubiq-
uitous computing, Computer-supported collaboration and Mobile computing. A
short introduction to Service Oriented Architecture (SOA) is also given, while a
more in-depth description of these concepts are given in the autumn report [10].

Ubiquitous computing

Ubiquitous computing is a computing paradigm where technology and computa-
tional resources are integrated in everyday life and become a natural part of the
environment [23] [16]. Preferably the computational devices should be accessible
through “natural” interaction, unlike what is common today where humans to a
large extent must adapt to the specifics of their desktop or laptop computers.

Ubiquitous computing is sometimes claimed to be the opposite of Virtual Reality
(VR), because computers are integrated into the real world. In VR on the other
hand, humans enter a fictional computer world. Other terms which are used to
describe the same research field are calm technology and pervasive computing.
Related research fields include Human-Computer Interaction and Psychology.

Computer-supported collaboration

Computer-supported collaboration (CSC) focuses on technology that enhances
interaction in groups, organizations, communities and societies. CSC has its
roots in the field Computer-supported collaborative work (CSCW) [4] but has
expanded its focus to include all contexts in which technology is used to mediate
communication, coordination, cooperation and even competition1.

The applied side of the field has evolved from traditional groupware to online
communities like MySpace2 and FaceBook3. These are just two examples of the
many online communities that have emerged during the last couple of years.

Mobile computing

The field of mobile computing focuses on the impacts mobility has on computa-
tional devices. Important issues that are introduced by mobility are for instance
how communication can be established and maintained for mobile devices. Ex-
amples of other aspects addressed include power consumption, bandwidth and
capacity. These and many other aspects are being dealt with in the field of
mobile computing.

Users in the UbiCollab environment are highly mobile. They roam freely between
networks and bring with them some personalized resources, while other resources

1http://www.acm.org/cscw2004/ (Visited 14.05.2007)
2http://www.myspace.com (Visited 14.05.2007)
3http://www.facebook.com/ (Visited 14.05.2007)

10

CHAPTER 2. PROBLEM ELABORATION

remain stationary. This implies that the address where UbiCollab services can
be contacted will frequently change. This is an example of an issue that have
been addressed in the field of mobile computing. Results from the field of mobile
computing constitute an important foundation for UbiCollab.

SOA and Service Discovery in UbiCollab

SOA has been selected as the architectural approach for UbiCollab. This archi-
tecture utilizes loosely coupled services to provide the needed functionality [2]
[10]. Some of the desirable aspects of SOA is that it promotes reuse of services,
and is considered to allow developers to adapt quickly to changing conditions.
Basic SOA is not tied to a specific technology, but in UbiCollab, Web-service
technology has been chosen for the implementation. The platform (container)
selected to deploy these services onto is OSGi.

Service Discovery is one of the cornerstones in SOA and provides the functionality
needed to find services. In a traditional SOA environment a centralized registry
is used to facilitate interoperations among applications. The problem with using
this approach is that Service Discovery in UbiCollab aims to be user-centered,
rather than application centered and centrally administered. Ordinary users with
a high grade of mobility and living in a ubiquitous environment have other needs
than applications in a business environment.

In addition UbiCollab aims to allow advanced end-users to share their services,
which gives them the role of service providers. To be able to facilitate this role,
adequate tools and functionality must be provided. A thorough analysis of the
functionality needed for such a user-centered service discovery solution was per-
formed in the autumn report, and will not be detailed further here. One im-
portant aspect of service discovery in a ubiquitous environment which has been
given little attention earlier, is physical discovery of services. This aspect will be
elaborated further later in the chapter.

2.2 The history of UbiCollab

UbiCollab as a project has been around for several years. In the spring of 2004 a
prototype for a UbiCollab platform was developed by Schwarz as part of a master
thesis [18]. This platform was later extended by work performed in other master
thesises. The architecture for the platform at this time was a combination of
loosely coupled UPnP components and client-server approach.

During the autumn of 2005 and spring of 2006 a new architecture was proposed
for UbiCollab, and a proof-of-concept port of selected components was performed.
This porting was to a SOA, using OSGi as container and Web-service technology
for services. This work was done as part of a master thesis by Mosveen and
Brustad [16].

Since then, a whitepaper describing concepts and the new architecture has been

11

CHAPTER 2. PROBLEM ELABORATION

created by Farshchian and Divitini [5]. The project has also moved on to become
open source under the Apache licence, and is currently available as a Sourceforge
project1.

At the time when this project started, no finished UbiCollab components existed
but the underlying platform and architecture was established. In parallel with
this project, two other master projects have also been working on other parts of
the UbiCollab platform. These other projects are:

“Location awareness in UbiCollab”, by Segelvik et al [19].
“Social tagging of services to support end user development in ubiquitous collab-
orative environments”, by Laverton [15].

As we will see later, the work on service discovery has already been successfully
used and evaluated by these projects.

2.3 A service discovery scenario

In this section, two short scenarios where UbiCollab is used as a natural part
of everyday living have been created. The purpose of this is to demonstrate the
utility of using UbiCollab, and how it can be used as a bridge between physical
devices and computers in everyday situations. The scenario will also provide
some examples as to how ubiquitous computing can enhance our daily lives.

2.3.1 Scenario 1

Jane sits at home in her living room watching TV, waiting for her son Jake to
come home. Jake has been over at a friend’s place, watching videos. It is getting
late and Jane is starting to worry a bit as she so often does. Jake who is 16 years
old, used to be embarrassed when he came home and his mother was waiting for
him, thinking she was intruding on his privacy. To give Jake some more privacy,
he got a room with his own entrance. The condition Jake had to agree on for this
to happen, was that his mother could know when he came home at night. Jake
who dreams of becoming a software engineer when he grows up, have configured
UbiCollab so that his mother will get a message when he comes home.

After a while, Jane is looking at her watch and starts to get impatient. Then at
last, a soft tone is played and Jake’s picture appears on the coffee table in front
of her. This signals that Jake has turned on the light in his hallway, and Jane
can finally relax and focus on her movie again. Jane likes this new way of being
informed when her son has come home, and especially the flexibility provided by
the system. For instance, when she is working late she gets an SMS telling her
that Jake has come home.

1http://sourceforge.net/projects/ubicollab/ (Visited 14.06.2007)

12

CHAPTER 2. PROBLEM ELABORATION

2.3.2 Scenario 2

Jake has been to school and is standing at the bus stop, waiting for the bus to ar-
rive. When he looks around he notices a poster advertising a pop concert, hanging
on the wall of the bus shed. He sees that the poster has a marker indicating that
more information is available. Jake points his Service Popper1 towards it and
almost immediately three services pop up on his PDA. The first service is a link
to a web-page with information about the concert, the second is a service where
tickets can be ordered and the last service provides the possibility to download
sample songs that will be played at the concert.

The last service seems most interesting for Jake, which uses it to download a
couple of songs. He listens to the songs and finds out that he likes this music.
However, Jake does not want to go to the concert alone so he decides to share
the service with his friends to see if they also like the music. Jake then sends a
message to his friends using UbiBuddy2, asking them to check out the music.

2.3.3 Scenario analysis

These two scenarios demonstrate several important aspects of Ubiquitous com-
puting. In the first scenario the light switch in Jake’s hallway is used to ob-
tain information about his location. This information is then used to inform his
mother that he has come home. This is an example of how physical devices can
be integrated in everyday life, using UbiCollab technology. Jane’s location is also
used by the system to decide which method should be used to inform her. This
is an example of how the system can adapt and use contextual information to
produce a suitable response, and shows the flexibility of the system.

Scenario 2 shows how Jake can use a physical device discovery in order to interact
with new services without having any foreknowledge about them. He did this by
simply pointing his Service Popper towards the poster, indicating he wanted more
information. At the same time Jake used his Service Popper to bridge the gap
between the paper domain and the computer domain. Another solution which
is in common use today would be to have a printed URL on the poster which
Jake could enter into his PDA to produce a similar result. The key aspect that
comes into play here is the level of user-friendliness. For instance, typing a simple
URL like“http://www.google.com/”requires over 70 key presses with some phone
models [20].

The different technologies used in the scenarios already exist. The smart table
already exists3 and a switch being turned on or off can be sensed using X10 de-
vices. Gateways for sending SMS messages from computers have been around
almost as long as SMS. Mechanisms like the one Jake used to discover the ser-
vices are supported by most modern phones. Both a camera phone and the IrDA

1Physical service discovery device
2UbiCollab buddy list application with ability to show shared services
3http://www.microsoft.com/surface/ (Visited 05.06.2007)

13

CHAPTER 2. PROBLEM ELABORATION

interface which is ubiquitous on modern mobile phones can be used to imple-
ment similar functionality. The utility provided by UbiCollab is that it supports
the integration of all these seemingly incompatible technologies, and provides a
set of programming abstractions to application developers in order to hide the
heterogeneity of the technology.

2.4 Technical grounding for scenarios

In this section we will look at what is needed with regard to service management
to achieve a practical realization of the scenarios described in Section 2.3.

In Scenario 2 Jake discovers a set of services utilizing a physical discovery mech-
anism. The use of pointing is a natural way of communicating [20] [22]. Children
in all cultures use pointing inherently to demonstrate interest in objects. Attach-
ing tags to objects in our natural environment enables interaction by pointing.
This is a very different approach for the discovery of resources as opposed to what
networked service discovery protocols provide. As explained in the autumn report
especially multicast based discovery works well in some scenarios but it suffers
from several problems based on its reliance on network topology. For instance, it
can be difficult to be sure that we access the printer in our hotel room and not
the one in the next room. Moreover, places may contain physical artifacts such
as paintings in a museum, whose web presence (in a museum guide application)
are eligible for discovery but which may be hosted anywhere on the Internet.

For the above reasons, it is considered that while network discovery has its uses,
the physical discovery mechanisms of direct and indirect URI sensing are set to
prevail in many practical circumstances. This implies that some form of phys-
ical discovery should be supported by UbiCollab. However, there exists many
different technologies which can be used to accomplish this, and they all have in-
herently different characteristics. To decide which technology should be selected
for implementation in UbiCollab, a survey needs to be carried out. This survey
is performed in Chapter 3.

Scenario 1 makes use of an already configured UbiCollab system. The part that is
interesting here with regard to service management is how such a system can be
installed and configured by the end user (since we are aiming at empowering the
end user), before it is put to use. Work related to this has already been carried
out in the autumn report, but the aspect of installing services was not considered
part of the service discovery process. This resulted in that service installation was
only part of the analysis, and was not included in the requirement specification.
The relation between installing services and the service discovery process was
acknowledged, but how services should be installed was not covered in great
detail. Section 4.1.3 in the autumn report gives some suggestions as to how a
user-friendly service installation should be performed, but does not go so far as
to elicit requirements.

In order to ensure that an adequate solution is proposed, the functional require-

14

CHAPTER 2. PROBLEM ELABORATION

ments related to installation and management of services also need to be derived.
The implication of this is that the relation between UbiCollab and ASTRA, for
which the requirements in the autumn report were elicited, should be reviewed.
This will help to ensure that all the necessary functional requirements are at-
tended to. The analysis performed in this section should also be taken into ac-
count when the requirements are updated. The next section describes the relation
between UbiCollab and ASTRA, and how the requirements are updated.

2.5 Relations between UbiCollab and ASTRA

The relation between UbiCollab and ASTRA is important for this work, as the
autumn report was founded on the ASTRA scenarios. The reason for this was that
ASTRA worked on scenarios during the autumn, and these scenarios were used
as a source for the functional requirements. ASTRA architecture (as developed
in parallel to UbiCollab during this spring) is very similar to UbiCollab’s, but
there are some differences in vocabulary and concepts between them. ASTRA
seeks to support collaboration in communities, while UbiCollab seeks to support
collaboration in general. ASTRA can in a sense be seen as a specific application
of UbiCollab.

Another important aspect between the autumn report and this project, is that
the autumn report focused on creating a solution for service discovery while
this project aims to create a solution for service management. Here, service
management includes both service discovery and management of services. In
the autumn report, the functional requirements for management of services was
not assumed to be part of the proposed architecture. An analysis of management
was performed in Section 4.1.3 in the autumn report, but functional requirements
were not elicited.

The reason for adding management issues to the mere discovery of services is that
we see the need to enable users to easily manage the potentially large number
of services they will discover and use in the course of interacting with a perva-
sive environment. For this reason, the functional requirements from the autumn
project have been updated to comply with the current task assignment. This
update includes some rephrasing of requirement wording because of differences
in vocabulary and concepts between UbiCollab and ASTRA, and adding of re-
quirements for service management. The updated functional requirements have
been incorporated in the solution proposal and can be found in Appendix B.

2.6 Evaluation of implementation

A thorough evaluation is important in order to ensure that the implemented solu-
tion fulfills the specified requirements. The solution will be evaluated against the
revised list of requirements presented in Appendix B. In addition to performing

15

CHAPTER 2. PROBLEM ELABORATION

an evaluation against the requirement specification, the solution should also be
evaluated against how well it is able to fulfill the end-users needs and expecta-
tions. One can never guarantee that the requirement specification is complete
and that it has anticipated what the end-users really need. To cover this aspect
some scenarios have been created and played out, and how well the solution per-
form are evaluated. By evaluating this way not only the solution is evaluated,
but also the requirement specification.

A practical solution to how this evaluation can be accomplished must also be
outlined. This is a common problem when designing and implementing platforms
and platform components, such as the service discovery subsystem. There exists
established and reputable techniques for designing and evaluating applications
made for a specific purpose, whereas techniques for evaluating platforms and
platform components are not so common or well defined [3]. This is a consequence
of the difficulty introduced by anticipating the requirements from end-users and
applications that will use the platform.

Evaluation of platform components are difficult because most of these are not
visible to the end-user, and still the purpose of these components is to enhance
the end-user experience. This implies that applications and tools that use these
components must be created, and an evaluation can be performed based on how
well the platform supports these. The software components created for this pur-
pose will also be useful for platform demonstrations, and as such will provide
value beyond evaluation purposes.

Another element that should be evaluated is how well the newly created compo-
nents work with other platform components. Evaluation of this is a key issue to
ensure full compatibility among the platform components. This will also help to
assure that application developers get a uniform platform to work with. For this
reason it is important to collaborate with the other groups working on UbiCollab,
and create applications which span across all our work. Such applications will
also aid to demonstrate the utility of UbiCollab.

A complete evaluation of this work, including the issues pointed out above, is
provided in Chapter 6.

16

Chapter 3

Technology State-of-the-Art

“Research is what I’m doing when I don’t know what I’m doing.”
- Wernher von Braun

This chapter will describe technology which is of interest for implementing a phys-
ical service discovery solution for UbiCollab. Much work on service discovery in
general has already been done in the autumn report, such as creating a taxonomy,
describing related research and evaluation of common service discovery protocols.
In addition, the built-in service discovery in OSGi was analyzed and deemed un-
suitable for use in UbiCollab. This chapter should be seen as an extension to the
state-of-art work performed in the autumn report.

The aspects of service discovery where end-users physically discover services or
resources was mentioned in the autumn report, but no further research were
performed. Because of the focus on integration with the physical environment
and end-users in UbiCollab, this aspect needs to be investigated. The motivation
for doing this is to get a better understanding of the existing relevant technologies,
and discover which technology is better suited to solve the challenges at hand.

From the many candidate technologies which could potentially be used, three have
been further analyzed. These are IrDA, Optically Readable codes (barcodes)
and RFID. From these RFID has been selected because of its high degree of
user-friendliness and versatility. In addition this technology is slowly becoming
ubiquitous and is also considered very promising for service discovery application
in many different areas.

In Section 3.1 three different technologies which can be used to perform physical
service discovery are investigated and several key aspects are pointed out.

Then, in Section 3.2 a comparison and evaluation of the technologies investigated
in Section 3.1 is performed.

17

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

3.1 Physical Service Discovery

In this chapter three technologies which are considered candidates for the physical
service discovery solution in UbiCollab will be examined to find out which is
better suited for the task. These candidates are IrDA, Optically readable codes
and RFID. They have been selected from a group of technologies often referred to
as Automatic Identification and Data Capture (AIDC), or Auto-ID technologies
[7]. An Auto-ID technology is one that may be used to automate the identification
of objects.

The common denominator for AIDC technologies is that they can be used for
identification of objects by storing and reading a code, data or other information.
Such technologies are used in application areas like tracking goods, security pur-
poses, check-out points, identifying objects and many other areas. The selected
technologies have all been used for physical service discovery purposes in related
research, experiments or in the field.

AIDC technologies can be used to minimize user intervention in the identification
of objects, thus allowing the user to accomplish his task with a minimum of effort.
Some AIDC technologies in common use today include: optical readable codes
(e.g. barcodes), magnetic stripes, IrDA, smart cards, RF remote controls, RFID
systems, ultrasound systems and visual identification. Other wireless technologies
like Bluetooth have also been considered, but the ones selected were deemed most
promising. All three technologies selected for further examination have been used
in research for similar purposes earlier.

3.1.1 IrDA

The Infrared Data Association (IrDA)1 is the organization responsible for the
development and maintenance of the communications protocol standards often
referred to as the IrDA specification. IrDA was originally launched as a cable
replacement technology in 1993, but has evolved with time. The specifications
today define a layered model for short range exchange of data using infrared
wireless communication (infrared light) [13]. The IrDA model is comprised of
three mandatory layers (Physical, Link Access and Link Management) and a
wealth of optional protocols for various application domains on top.

For many years the use of IrDA was not very widespread. IrDA first started to
gain ground after IrDA-enabled PDAs introduced the possibility for end-users to
easily swap applications and information. This is still the most common appli-
cation area for IrDA. Today, virtually every PDA supports IrDA, as do many
mobile phones, laptops, printers, and other products. This widespread use has
lowered the cost for the components needed for implementation, to approximately
$2 according to www.irda.org as of 17. April 2007.

The range between two IrDA communication devices is normally limited to 1

1http://www.irda.org (Visited 17/04/2007)

18

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

meter and requires a direct line of sight. When using low power devices this range
is reduced to 0,2 meters. The specification also requires the communicating IrDA
transceivers to communicate in a directional matter, with a cone that extends
minimum 15 degrees off center. Currently, available speeds range from 2,4 kbit/s
to 16 Mbit/s, while an Ultra Fast Infrared (UFIR) protocol offering speeds up to
100 Mbit/s is under development.

Probably the most notable research where IrDA was used for discovery of re-
sources, was performed by HP Labs and was named Cooltown1. The purpose of
this experiment was to bridge the physical world with the World Wide Web by
giving real life objects a web presence [12]. This was done through the use of
infrared markers on or in close proximity to physical objects. Such markers could
contain URLs to web pages with more information about the physical object,
or related services. Two different types of markers were used, “beacons” which
actively emitted its information every 3 seconds and “tags” which had to be ac-
tivated. Both kinds of markers could be read by PDAs and other IRDA-enabled
devices.

Other related or similar experiments have also been performed. In one example
regular end-users employed IrDA-enabled mobile phones to interact with physical
objects [22]. Test cases included accessing web resources related to physical ob-
jects, as well as invoking phone calls from pointing at pictures. Most test subjects
reacted positive to this way of interacting with a ubiquitous environment.

In both experiments IrDA was not directly related to the research goal, it was
merely used as the enabling technology. Perhaps the single most important reason
for selecting IrDA was the rich availability of IrDA-enabled mobile devices. The
purpose was not to prove that IrDA was the best or most suitable technology for
use in the experiment, but still it was proved suitable for the job. Despite of this,
IrDA has still not moved out of the laboratory as a tool for general interaction
with physical objects.

3.1.2 Optically readable codes

Optically readable codes are not a specific technology but rather a collection of
related technologies often referred to as barcodes. The common denominator
for these technologies is the use of machine-readable visible symbols on surfaces.
Symbols are used to represent information and are created according to technol-
ogy specific encoding schemes called symbologies. Such codes come in a variety of
forms and shapes but all of them share the same basic principles of the original
barcode where thick and thin lines were used to represent numbers.

Barcode as a technology was first patented in 1952, but it was not before 1970
that UPC2 was selected as the standard and the wheels began to turn [21]. By
the early 1980s, barcodes and scanners had become pervasive in supermarkets.

1http://www.hpl.hp.com/archive/cooltown/ (Visited 20/04/2007)
2Universal Product Code, introduced by International Business Machines (IBM)

19

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

Soon after barcodes became the standard Auto-ID system in other areas like the
postal system and even on library books. Today barcodes are scanned about five
billion times a day, and greatly simplifies information collection, processing and
tracking.

Significant factors explaining the barcode success story are ease of use and au-
tomation. Barcodes greatly increses the speed of transactions and reduces likeli-
ness of typing errors. In order to use barcodes, a infrastructure with a scanner
(reader) and printer is needed. Prices for these ranges from about one hundred
to several thousand dollars at Amazon.com electronics1. In general, barcodes are
inexpensive and new labels can easily be printed on-the-fly.

Barcodes are commonly classified into three different types, which are linear (clas-
sical 1-dimensional barcodes), stacked (vertically stacked linear) and 2-dimensional
barcodes (also known as 2D codes or matrix codes). Linear and stacked codes
are easily read by LEDs or lasers in a sweep pattern, while stacked codes of-
fer a higher data density than linear. The introduction of 2D barcodes offered
a substantially higher capacity for encoding data, but also required reading by
camera capture devices. This characteristic makes 2D codes suitable for reading
by camera phones (which are becoming increasingly ubiquitous), and hence is
suitable for use in a ubiquitous computing environment. Figure 3.1 visualizes the
difference between 1D and 2D barcodes.

Figure 3.1: Information encoded using 1D and 2D barcodes

There exists several 2D barcodes like CyberCode2 and Semacode3 which are cre-
ated for use with camera phones. Perhaps the most interesting one is the Quick
Response Code (QR Code). The QR Code is a two dimensional barcode created
in 1994 by the Japanese corporation Denso-Wave. It was released as a Japanese
standard in 1999 and a corresponding ISO standard4 was approved in 2000.

Employment of QR Codes has become incredibly popular in Japan and can be
found everywhere, relieving the user of the tedious task of entering data into
their mobile phone. A host of content types are defined in addition to URLs,
like business card details, birthdays, email addresses etc. QR Code software is
integrated in most new Japanese mobile phones and is said to have “become the
door to the mobile Internet for the average mobile user”5. QR Codes have only
recently been put to use in Europe and a free QR-Code reader which works on
most newer European Java-enabled GSM phones can be downloaded from the

1http://www.amazon.com (Visited 29.04.2007)
2Visual tag system for augmented reality created by Sony.
3Code used to encode URLs for applications using cameraphones.
4International Standard ISO/IEC 18004
5http://harper.wirelessink.com/?cat=102 (Visited 28.04.2007)

20

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

Kaywa website1.

One important reason for the popularity of the QR Code is the high speed read-
ing/decoding (hence Quick Response Code). In addition it offers many interesting
features which gives it a high degree of flexibility. Some of the characteristics of
the QR Code are:

• Support for omni-directional (360 degrees) decoding. This mean
you do not need to worry about the orientation of the code.

• Space saving. The 2-dimensional QR Code allows the same amount of
data to be encoded in approximately one-tenth the space of a traditional
bar code. When a smaller printout size is needed, a low capacity version
named “Micro QR Code” is available.

• Advanced error correction capability. The Reed-Solomon2) algorithm
allows decoding when up to 30% of the code to be damaged.

• Flexible structure. A single QR Code can be divided into a maximum
of 16 smaller codes which can be structured, for instance, on a line to be
printed in narrow areas.

• Flexible data capacity. The QR Code defines many symbol sizes, from
Version 1 (21 x 21 modules) up to Version 40 (177 x 177 modules).

• Large data capacity, as shown in Table 3.1.

Character set Capacity
Numeric only 7,089 characters
Alphanumeric 4,296 characters
Binary (8 bits) 2,953 bytes
Japanese (Kanji/Kana) 1,817 characters

Table 3.1: QR Code Data capacity

An example showing what a QR code looks like is displayed in Figure 3.2.

Figure 3.2: “http://www.ubicollab.org” encoded as QR Code

Limitations of the QR Code include distance and direction constraints, and also
the requirement of a high quality camera. Another code which tries to allevi-
ate these limitations is the “Visual Tag” [9]. Visual Tags promise a high level of

1http://reader.kaywa.com/getit (Visited 28.04.07)
2A mathematical error correction method originally developed to handle communication

noise.

21

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

robustness with regard to illumination, distance, direction and quality of the cam-
era used. This is achieved by using colored rectangles placed in a geometrically
invariant arrangement, which puts very little constraint on the capturing. Un-
fortunately the algorithm needed for decoding Visual Tags is to computationally
demanding to effectively run within a normal mobile phone.

A similar technology is being developed by Microsoft1 for commercial purposes. In
the autumn of 2007 Microsoft is set to introduce the High Capacity Color Barcode
(HCCB) technology which uses a multicolour symbol to code roughly double the
amount of information per surface area, as current barcodes are capable of.

Another barcode project with a somewhat different technological solution is the
“CybStickers” project2. CybStickers is a collaborative effort between SINTEF,
Telenor R&I3 and Netcom4. This project uses the camera on MMS compatible
mobile phones to capture 2D barcodes placed on things/places, which are sent in
a MMS to a provided number. The recipient resolves the 2D barcode and returns
a corresponding message, linking things/places with information.

3.1.3 RFID

Radio-frequency identification (RFID) is a technology which relies on radio waves
for remotely retrieving or writing data to RFID tags [6]. An RFID tag is an
object that can be attached to or incorporated into almost any product, animal
or person and is able to store data and be interrogated by an RFID reader. An
RFID reader (often referred to as an interrogator) consists of a processing part
and an antenna. Both tags and readers come in all kinds of different forms and
shapes for different applications. The basic concept behind RFID is visualized in
Figure 3.3.

Figure 3.3: The basic RFID concept

The history of RFID dates back to early in the 20th century and is tightly coupled
to the development in radar technology, with one of the most important land-
marks being a paper by Harry Stockman, “Communication by Means of Reflected
Power” [14]. During the 1960s applications field trials started and development in

1http://research.microsoft.com/research/hccb/ (Visited 30.04.2007)
2http://www.sintef.no/content/page1 6785.aspx (Visited 14.06.2007)
3http://www.telenor.no/fou (Visited 14.06.2007)
4http://www.netcom.no (Visited 14.06.2007)

22

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

the field accelerated. However, it was not until the 1990s that standards emerged
and RFID became widely deployed. Today much of the issues related to RFID
revolves around global standardization, as the technology itself has become quite
mature and boasts many impressive characteristics such as:

• The reading distance for passive tags can vary from millimeters to around
10 meters. There exists active tags that can be read at least a hundred
meters away.

• Different technologies and frequencies can be selected for various application
areas.

• Tags does not have to be in the line of sight of the reader.

• Non-contact read and write capabilities.

• High data storage capacity.

• Functionality in hostile environments (tags can be encapsulated in protec-
tive coating).

• Many commercial readers support “bulk scanning”, which allows for 100+
tags to be read every second.

Many of these characteristics are desirable for businesses, and as such much of the
current thrust in RFID development are funded by large enterprises and aimed
towards use is in supply chain management. One example of such a thrust is
the cooperation between Intel and Microsoft aiming to create a layered RFID
infrastructure based on SOA and Web-Service standards (WS-*)1.

RFID Tags

Tags come in two fundamentally different versions known as active which is self-
powered (usually a battery) and passive which relies on rectification of the emitted
power from the reader’s radio communication. Passive tags are most used and are
commonly referred to as transponders. Active tags are less used, likely because
they are significantly larger and much more expensive than passive ones. The
smallest passive tag in common use today is produced by Hitachi2 and measures
0,4x0,4 mm, while much smaller tags exist as prototypes. Tags come in a variety
of forms and shapes as depicted in Figure 3.4.

As RFID technology matures, tags become increasingly cheaper and smaller.
Prices of passive tags range from about 10-20 cents for simple read-only tags
to 10-20 dollars for more advanced tags with a high data capacity. One of the
things that hinders RFID from becoming even more ubiquitous is the complexity,
prise, power consumption and size of the RFID readers. Another hindering for
RFID has been the lack of internationally approved standards and interoperabil-
ity. However, over the last few years this problem has decreased. A survey of
RFID Standards is presented on the RFID Handbook Web site3.

1http://www.microsoft.com/biztalk/technologies/rfid/default.mspx (Visited 31.05.2007)
2http://www.hitachi.co.jp/Prod/mu-chip/ (Visited 30.05.07)
3http://www.rfid-handbook.com/rfid/standardization.html (Visited 02.05.2007)

23

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

Figure 3.4: A collection of different RFID tags.

Applications of RFID

Even if the much focus is on businesses and inventory tracking, RFID technology
is becoming increasingly ubiquitous and is starting to appear in other areas, like
mobile phones and PDAs. Today, nearly everyone are using the technology on a
daily basis without thinking about it [14] [6] [8]. Some of the application areas
include :

• Identification badges and access control for equipment and personnel.

• Parking lot access and control. You must have the correct tag for a given
parking space.

• RFID tags are commonly used in car keys as a anti theft device, preventing
the car from starting without the correct RFID in near proximity.

• Implanted RFID tags are also used for animal/pet identification (typically
dogs and cats), and livestock inventory control.

• RFID and can also act as a security device, taking the place of the more
traditional electromagnetic security strip.

• Active RFID tags also have the potential to function as low-cost remote
sensors that broadcast telemetry back to a base station.

• In an effort to make passports more secure, several countries have imple-
mented RFID in passports.

• RFID is being used to tag humans in similar fashion as animals.

• The Food and Drug Administration in USA has approved the use of
RFID chips in humans.

• Some high profile night clubs use an implantable chip to identify VIP
customers. Customers use it to pay for drinks.

• In Mexico the attorney general and 160 members of his staff carry
RFID security pass under their skin1.

• In Oslo, Norway, the upcoming public transport payment is to be entirely
RFID-based2. The system is to be put into production somewhat delayed
in the spring of 2007.

1http://www.msnbc.msn.com/id/5439055/
2http://www.rfidjournal.com/article/articleview/1975/1/1/ (Visited 02.05.2007)

24

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

• In Norway, all public toll roads are equipped with an RFID based payment
system known as AutoPass1.

New application areas for RFID systems continuously appear. One example is the
magicmirror2 which is a “smart mirror” equipped with an RFID reader behind it.
The idea is to use item-level tagging in clothing shops and let the mirror display
rich, user-centric information when a tagged piece of apparel is brought within
range. The RFID tags on the garments can also be used for payment and as an
anti theft device to add to the utility.

RFID technology is also starting to make it’s entry into mobile phones. This has
been a reality in Japan for some time, but now also European manufacturers like
Nokia are starting to deliver mobile phones with integrated RFID reader/writer3

support.

Privacy

Privacy issues have also emerged along with RFID systems becoming more ubiq-
uitous. Illicit tracking of RFID tags can potentially be used to forge identity
papers (e.g. passports), infer information about people and even real time iden-
tity theft. To counter such efforts, RFID protocols based on both symmetric and
public key cryptography have been developed. Unfortunately, cryptographically-
enabled tags come at a high cost and with increased power requirements. Another
approach is a system utilizing blocker tags for “selective blocking”. This has been
proposed as a way of protecting consumers from unwanted scanning of RFID tags
attached to items they may be carrying or wearing [11].

RFID in research

RFID have also been used as a physical discovery technology in various research
work. One example is a computer supported ubiquitous learning environment for
language learning named Tag Added learNinG Objects (TANGO). The system
detects the objects around learner using RFID tags and provides the learner the
educational information about the objects [17].

The future of RFID

The pace of developments in RFID continues to accelerate and the future looks
very promising for this technology [14]. The achieve its full potential it also
requires advancements in other areas as well such as:

• Development of applications software, e.g. on the UbiCollab platform.

• Careful development of privacy policies and consideration of other legal
aspects.

1http://www.autopass.no/ (Visited 02.05.2007)
2http://www.rfidupdate.com/articles/index.php?id=1354 (Visited 02.05.2007)
3http://europe.nokia.com/A4307094 (Visited 02.05.2007)

25

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

• Development of supporting infrastructure to design, install, and maintain
RFID systems.

3.2 Comparison of technologies

In the previous section three different technologies which can be used to store
information about an object or for identifying a given object were presented.
The purpose of this section is to find which one is best suited as a physical
service discovery technology, in a ubiquitous computing environment. To assess
their suitability a set of criteria which is considered to give a good overview
of benefits and limitations for application in UbiCollab has been selected. The
relative merits of the different technologies for each of the criteria have been
summarized in Table 3.2.

Table 3.2: Comparison of AIDC technologies

Technologies
Characteristic IrDA Optical code RFID

Ubiquity High High Medium
Data R/W Yes No Yes
Data capacity High 1-D Low,

2-D Medium
Low - High
(price)

Reading distance Medium Low Low - High
(technology)

Reading speed Medium Low High
(technology)

Requires line of
sight

Yes Yes No

Robustness Medium 1-D Medium,
2-D Low

High

Problematic mate-
rials

None None Metal

“Bulk reading” No No Yes
(some readers)

Standardized sys-
tems

High High Medium

R & D Low Low High
Human visibility “Red eye” visible Visible Hidden
Human readability None Sometimes

(symbol+text)
None

Tag cost High Low Medium
Reader cost Medium 1-D Low /

2-D Medium
High

As we can see from the table the different technologies have strong and weak

26

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

sides. There is no single characteristic that stand out as much more important
than others, and as such a technology must be selected from an overall evaluation.
The most important aspect which must be considered is that UbiCollab requires
a technology which is user-centered and versatile, because of the need to adapt
to different application areas.

One characteristic that favours RFID is that it does not require line of sight.
IrDA and barcodes on the other side require that the reader is aligned with the
object to be read, and is also more sensitive with regard to reading distance. This
is important when it comes down to user-friendliness and how much effort the
end-user will need to accomplish various tasks. Optically readable codes have
to be scanned deliberately by a person and this process is difficult to automate.
RFID tags, on the other hand, can also be readily scanned automatically without
human involvement.

With regard to the cost associated with the introduction of one of these systems,
optical codes are the clear winner. Optical readers are relatively cheap and labels
cost almost nothing. If an optical symbol like QR-Code is selected, the cameras
integrated in most modern mobile phones would do the job and the software
required to create labels is free. IrDA devices are also included in almost any
mobile phone, but the price of a large scale deployment of IrDA beacons or
tags would be quite high. Deployment of RFID is expensive and that is often
considered the biggest problem associated with the technology.

Another aspect in favour of RFID is that RFID tags can be hidden from view
and can be placed in protective wrapping which extends both the lifetime and
robustness. Barcodes on the other hand are very visible, which sometimes can
be desirable but not always. Barcodes are usually created on paper and as such
they are sensitive and can easily be destroyed. IrDA beacons/tags must also be
visible to be able to connect to them, and will also boast a considerable physical
presence. In addition IrDA beacons/tags will require a power supply, which is
perhaps the biggest problem with this technology.

When it comes down to which is the most ubiquitous technology today barcodes
is the winner because of its use in retail businesses and for tracking goods[21].
Barcodes however is not a technology with much innovation and expansion. It
is commonly assumed that RFID with its superior characteristics will replace
barcodes as RFID technology continuously becomes cheaper [14] [8]. RFID is
already in use in more distinct application areas than barcodes, and continues to
create and find its way into new application areas.

Because of its versatility and high level of user-friendliness RFID is considered
to be the technology that first and foremost should be supported in UbiCollab.
RFID is also considered to be the most future-oriented of the different AIDC-
technologies, as it continues to replace older AIDC technology and in other cases
creates new applications. Characteristics like non-contact read and write capa-
bilities, high data storage capacity, and hostile environment functionality are also
desirable.

27

CHAPTER 3. TECHNOLOGY STATE-OF-THE-ART

A future implementation of QR-code support should also be considered, because
of the ubiquity of mobile phones equipped with cameras. Since most modern
phones are able to support this technology it would be relatively cheap to use
this technology in large scale. In some situations the QR-code could be a nice
supplement to RFID, with its high data capacity and relatively high degree of
user friendliness.

28

Chapter 4

Solution proposal

“The first deadly sin is to code before you think.”
- Peter J. Brown

This chapter will give a description of the proposed solution for service man-
agement in UbiCollab, and presents the design and overall functionality of the
chosen platform components. This proposal includes the full service API for
the platform components, and also describes how the functional requirements
are being mapped to specific components. Design of components for testing and
demonstrating the functionality of the solution are also described.

Since a Service Oriented Architecture (SOA) is being used the importance of
maintaining loose coupling between services (components) is stressed in the solu-
tion. This is particularly evident in the service discovery subsystem, which uses a
pluggable solution. In order to provide the full functionality of the service discov-
ery subsystem, several loosely coupled services (components) are joined together
to create a composite service. The loose coupling allows services to join and leave
at runtime to add or remove functionality.

An important aspect of UbiCollab is that advanced end-users should be able to
use the system without spending too much time on training. To achieve this a
high level of usability is required. In this context usability refers to the elegance
and clarity with witch the end-user interacts with the system. This implies that
components for testing and demonstrating the functionality must be designed
according to principles from the Human-Computer Interaction (HCI) domain, as
these are the components the end-user interacts directly with. Some important
principles from the HCI domain that will be used in the solution are presented
in Appendix D.

In Section 4.1 important concepts from UbiCollab and the solution proposal is
explained. Some important specifications are also stated here.

29

CHAPTER 4. SOLUTION PROPOSAL

Then, in Section 4.2 the functionality and APIs for the platform components
are described. Also the design of components for testing and demonstration is
presented. In addition, a mapping between the requirement specification and the
individual components is provided.

Finally, in Section 4.3 the relation of this solution to the overall UbiCollab archi-
tecture is described.

4.1 Concepts

In this section a brief description of important UbiCollab concepts will be pre-
sented. These concepts provide an introduction to important aspects of UbiCollab
and will be commonly referred to in the reminder of this report. Both UbiCollab
platform and deployment concepts will be described, as well as solution specific
concepts. A more complete description of the platform and deployment concepts
are given in the UbiCollab White paper [5].

4.1.1 UbiCollab platform concepts

In this section concepts needed to describe the basic mechanisms and functionality
in UbiCollab are presented.

Services

In UbiCollab a Service can be a device like an X101 lamp controller, a projector or
some other resource which is external to UbiCollab. Services constitute resources
that can readily be drawn upon to support collaboration in UbiCollab.

Service Proxies

In order to connect to services and use them in UbiCollab, Service Proxies are
used. Service proxies are used to hide the underlaying implementation and offers
a uniform interface for applications which use the UbiCollab platform. Web-
service (WS) technology has been selected for service proxies in order to provide
a platform independent solution. Service proxies can be compared with hardware
drivers, but instead of providing an operating system dependent interface, a plat-
form independent WS interface is provided. The relation between Services and
Service Proxies are visualized in Figure 4.1.

Since the container selected in UbiCollab is OSGi, service proxies will be deployed
as OSGi bundles. OSGi bundles are more closely described in the autumn report.
Where nothing else is specified, it is assumed that one bundle contains one service.

1Wireless and wired power line communication technology, used for lighting and small
appliance control

30

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.1: The relation between services and service proxies

Service Domain

In UbiCollab end-users will perform many of the tasks which commonly are as-
sumed to be handled by service providers. To aid the user in this task the concept
of service domain is introduced. Every user in UbiCollab has one service domain,
and this is the administrative domain where his services are located. The user
can install and manage services in his service domain.

Spaces and Collaboration Spaces

The concept space in UbiCollab is used to describe a physical space, and is
represented using geometric coordinates. Users can define UbiCollab spaces to
represent physical spaces which they frequently visit, such as home, office, etc.
When a space is shared with other users and thereby used as a resource for
collaboration, it is called a collaboration space.

Collaboration Instance

A collaboration instance (CI) can be seen as the virtual domain in which col-
laboration takes place. Resources like service proxies and collaboration spaces
are published to the CI. Information about its participants, collaboration spaces,
published service proxies and a generic repository is contained in the CI. This is
likely the most interesting concept in UbiCollab for application developers which
intend to use the platform.

Human Grid

This is considered to be the basic concept in UbiCollab and is used to describe
how people and their artifacts/resources connect together through the use of the
UbiCollab platform. Users reside in spaces (e.g home, office) which can contain
resources such as physical devices, artifacts and various services. These resources
constitute the mean for communicating and collaborating with other users in the
grid. Collaboration can happen either directly or through a collaboration instance
which then becomes the virtual context for collaboration.

An example of a human grid is displayed in Figure 4.2. As can be seen from the
figure, the human grid ties together many of the other concepts and puts them
into context.

31

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.2: UbiCollab basic concept: The Human Grid

4.1.2 UbiCollab deployment concepts

In this section some important deployment concepts in UbiCollab will be defined.
These concepts are important in order to describe where and how the different
components in the solution proposal will be deployed.

UbiNode

An UbiNode is a networked device belonging to a UbiCollab user, running a
subset of the main (core/basic) UbiCollab components. The SOA approach al-
lows a UbiNode to retain partial functionality even if not all the main services
are running on it. All service proxies in a user’s service domain runs within a
UbiNode. Currently, UbiCollab is limited to one UbiNode for each user identity.
A UbiNode will typically be a Pocket PC or a laptop computer.

UbiNetwork

In UbiCollab all users sharing the same user management infrastructure consti-
tute what is called a UbiNetwork. A UbiNetwork can normally be identified by a
service named “User Manager” which provides centralized user management and
trust, but can also exist without one. In the latter case the UbiNetwork will
rely on distributed trust, typically provided by a reputation service. For users
roaming between UbiNetworks, federation is supported.

UbiHome

A UbiHome node is used to host services common to users located within a
UbiNetwork. The shared services in a UbiNetwork, like “User Manager”, will
be running on one UbiHome. A UbiHome is typically operated by a dedicated
UbiNetwork user (which can be a person or an organization).

32

CHAPTER 4. SOLUTION PROPOSAL

4.1.3 Solution specific concepts

One of the problems when working with services and service discovery is that
there is a lack of generic domain independent concepts for describing services.
This problem comes from the different service technologies which use different
terms and concepts. Service related concepts used in the proposed solution will
be described in this section.

Service provider

This is the entity (person or organization) which is offering one or more services.
Examples of well known service providers on the Internet are Amazon, Telenor
and SAS. In UbiCollab every user can be a service provider. Every user has a
service domain where he can host and manage service proxies. When he publishes
these service proxies to a collaboration instance, he becomes a service provider.
A service provider can also be a commercial actor, charging for the use of his
services.

Service Requester and Client request

When an entity (computer agent, person or organization) is trying to find a
service, he will register a client request with the service discovery subsystem.
The client request is one of the central concepts in this solution. When an entity
registers a client request with the service discovery subsystem, this entity then
becomes a service requester.

Service description

Service description (SD) for UbiCollab service proxies is the Web Service De-
finition Language (WSDL) file associated with the service. SD is being used
somewhat differently by different service discovery protocols. Commonly, SD is
used to describe the functional properties of the services. For instance WSDL-files
mainly describe the binding information (e.g. methods and parameters) needed
to use the service.

As pointed out in the autumn report this is information of little value to the
end-user, which is more likely interested in non-functional properties (attributes)
such as location, owner, name and a textual description of the service. This
information is added to the service description when the service is published. A
conceptual mapping between service description and service advertisement for
WSDL documents is visualized in Figure 4.3.

33

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.3: Mapping between service description and advertisement for WSDL

Service advertisement

The service advertisement (SA) is one of the most central concepts for the service
discovery solution in UbiCollab. SA is the descriptive information concerning
a service that is made available for potential service requesters. When a user
registers a client request, this is matched against available service advertisements
in the service discovery process.

Normally the SA is published by the service provider, or is implicitly available
for self advertising services like UPnP and Bluetooth. The SA contents varies
between protocols, but it is usually the service description (or a link to where it
can be found) and some additional non-functional information.

In UbiCollab the focus is to create a user-centered solution and therefore at-
tributes of value to the user need to be included in the service advertisement.
When a user registers a client request, it is these attributes that will be used in
the service discovery process to match found services with the client request. The
following attributes have been selected for use:

Name The name of the service, e.g. “X10 Proxy”.

Location The location of the service, e.g. “004, IT-V, ITBygg”. See Chapter
7.3.

Description A short user-friendly description the service.

Owner The owner or responsible of the service. E.g. “UbiCollab project”.

Type The service type. Can be used by applications to determine how to handle
discovered services. Users or agents can also utilize this attribute in client
requests, to select which services they are interested in.

34

CHAPTER 4. SOLUTION PROPOSAL

In addition to the user-centered attributes, two attributes will be needed for
applications or agents to be able to use the service:

ServiceURI This is the URI that points to where the service can be contacted on
the Internet. For a Web-service this will be the address to the web-service,
for an information page (HTML) this will be the URL to that page. Also
the service address provided by protocols like Bluetooth can be expressed
using a URI representation.

DescriptionURI Service types like Web-services and UPnP provide a down-
loadable service description, in a XML-document. For service protocols
which offer this feature, this attribute should be used to point to it.

As UbiCollab seek to be platform independent, XML will be used to describe
services. Using XML also has the benefit that additional elements or attributes
can be added in future work, and still interoperate with the current platform
components, unless the new elements/attributes are mandatory. Since service
information will be used and interchanged among several platform components,
tools and applications, it is important that they conform to a strict XML Schema
Definition (XSD). The service advertisement for describing a single service should
conform to the XSD shown in Figure 4.4.

Figure 4.4: XML Schema for description of a single service

Note that this XSD is conceptual and does not contain a root-element, which
would be required by many XML parsers in order to marshal/unmarshal the
XML. When a single service is marshalled to XML, a root element “Service”
must be added. If it is a list of services, a root element named “Servicelist” must
be used. An XSD for a a list of services is displayed in Figure 4.5.

35

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.5: XML Schema for description of a list of services

Service type

The service type is an attribute used in the service description to describe what
kind of service it is. No complete service type hierarchy has yet been defined for
UbiCollab, and this will be subject of future work. For the purpose of this work
and demonstration purposes, the following types have been defined:

Ubi:Core A downloadable UbiCollab Core component. For instance the “Tag
Manager” is not a mandatory UbiCollab core component, but can provide
value for a UbiCollab user.

Ubi:Proxy A downloadable UbiCollab Service Proxy.

Ubi:Tag A tag read from an RFID tagged service. The service name attribute
will then hold the unique tag identifier.

UPnP A UPnP service.

WS A Web-service.

Info An information page, typically a regular Web-page.

The service type attribute can be used by applications to determine how to handle
discovered services. This attribute can also be specified in client requests by
service requesters, to select which services they are interested in.

4.2 Functionality and APIs

In this section the mapping between functionality and the components that will be
implemented is given. The relation between components is also described, when
applicable. For components that provide an application programming interface

36

CHAPTER 4. SOLUTION PROPOSAL

(API), this will also be documented. This section is further divided in subsections
where components implementing related functionality are described.

In the design of these components the architectural choices from the autumn
report will be followed to a large extent. Upon selecting the components to
develop especially the design tactic known as “Separate the user interface from
the rest of the application” has been followed. This is particularly important
since UbiCollab uses a SOA.

By separating the user interface from the remaining functionality, several advan-
tages are gained. The main advantage is the possibility of several user interfaces
toward the components. This is highly important, since the components should be
possible to run on several kinds of computing devices (E.g. mobile phones, PDAs,
laptops, PCs). In addition, other interaction mechanisms like voice commands
or physical interfaces can be used. By using this tactic the modifiability tactic of
“semantic coherence” will also be strengthened. The “semantic coherence” tactic
is also used to a large extent to ensure modifiability and portability.

4.2.1 Service Domain Manager

Service Domain Manager will provide the functionality needed by end-users and/or
agents to manage proxy services in the users service domain, located on one UbiN-
ode. This component will be implemented as a Web-service running on OSGi,
packaged in an OSGi bundle. Detailed functional requirements assigned to this
component are described in Section 4.2.6. The basic operations provided are:

• Install services

• Uninstall services

• Start/Stop services

• Edit service properties

• Retrieve the registered information about a service, or all services

• Retrieve the Service Domain Manager log

In order for the component to get access to other services (bundles) on the OSGi
framework, the BundleContext1 interface provided by the framework will be used.
This interface either supports directly, or provides the mean to get access to the
specific functionality that is needed.

A high level design showing which interfaces the component will need to sup-
port, is visualized in Figure 4.6. As can be seen from the figure, the component
maintains a list of proxy services installed on the UbiNode (OSGi container), and
provide management functionality for these through a Web-service interface.

1http://www2.osgi.org/javadoc/r4/ Visited (09.06.2007)

37

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.6: High-level design for Service Domain Manager

It is also required that tasks related to management must be logged, and this log
made available to the end-user. Therefore a log of all events of interest to the
user, ranging from information events to errors and warnings, must be created.
This log will be written to an XML file, to enable easy readout when requested by
a client. The XML log provided to a client should conform to the XML Schema
(XSD) displayed in Figure 4.7.

Figure 4.7: Service domain manager

Service Domain Manager will also need to store the list of services persistently,
and this persistence should be updated on all changes. Since this list will only
be used internally by the component, the format for this list does not need to be
defined strictly. However, it should be XML-based to enable portability between
different operating systems upon which the UbiCollab platform can run.

As part of the service description for proxy services installed in the service domain,
properties describing the space the service is located in must be included. This is
necessary to enable support for starting and stopping of services based on space.
The properties used to describe the services should be based on UbiCollab service
descriptions (Section 4.1.3), but with some additional properties:

38

CHAPTER 4. SOLUTION PROPOSAL

BundleID This is the handle needed to gain access to the bundle hosting the
proxy service (or other services).

Space This is the textual description of the space the service is located in. Ubi-
Collab default space description can be overridden to provide additional
detail, e.g. “Coffee table room 004”.

SpaceID This is the ID referring to a specific space, as provided by UbiCollab
Space Manager.

State This is the current state of the service. Can be one of: “Installed”, “Unin-
stalled”, “Starting”, “Stopping”, “Resolved”, “Running” and “Stopped”.

The solution for the UbiCollab Service Domain Manager should be created general
enough to manage all types of services installed on an OSGi platform. Still, it
contains additional functionality for service proxies and management of these is
the primary application area for this component.

4.2.1.1 Service Domain Manager API

The API that will be implemented in and provided by the Service Domain Man-
ager has been created and is displayed in Figure 4.8. Since the component is
created as a Web-service, the methods will be accessible through SOAP invo-
cations for clients. The component will itself be responsible for exposing the
corresponding WSDL document.

Figure 4.8: API provided by Service Domain Manager

A full description of the API with all parameters have been created. The descrip-
tion can be found in Appendix C.1.

4.2.2 Service Discovery Subsystem

The Service Discovery Subsystem in UbiCollab consists of two distinctly differ-
ent types of components. These components are named respectively “Service
Discovery Manager” (Discovery Manager) and “Service Discovery Plugin” (SDP,

39

CHAPTER 4. SOLUTION PROPOSAL

or simply plugin). Each SDP will be implementing exactly one service discovery
protocol and will provide support for this protocol to the Discovery Manager.
Discovery Manager is responsible for mediating client requests and discovered
services between clients of the service discovery subsystem and SDP’s.

Discovery Manager is the central component in the service discovery subsystem.
Support for different service discovery protocols can be added or removed at
runtime by adding or removing SDPs. This is one of the benefits of using SOA
and loosely coupled components. In order to provide support for the service
discovery process both Discovery Manager and at least one plugin is needed, and
as such Service Discovery Subsystem is a composite service.

Components in Service Discovery Subsystem are preferably implemented as OSGi
bundles and deployed on UbiNodes as visualized in the deployment diagram in
Figure 4.9. As the figure shows there can be 0..n SDP’s connecting to one Dis-
covery Manager. There can also be 0..n service discovery clients connected to the
Discovery Manager at any time. Discovery Manager will provide two API’s, one
for SDP’s and one for clients.

Figure 4.9: Deployment diagram for Service Discovery subsystem

A conceptual design which describes how the different components will support
the service discovery process in UbiCollab is shown in Figure 4.10. In this figure
only the two SDPs which are planned in this solution proposal is displayed. A
prerequisite before the process illustrated in the figure can start, is that both
clients and plugins must be registered with the Discovery Manager.

40

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.10: The service discovery process in UbiCollab

As the figure shows, the service discovery process in UbiCollab consists of the
following steps:

1. The client registers a request for a specific service with the Discovery Man-
ager. This request is placed in each plugin’s request queue.

2. Every plugin will check if any new requests have arrived in its queue, and
will get the request.

3. Every plugin will try to use its service discovery mechanism and search for
services matching the request.

4. Any service advertisements matching the request will be returned to the
Discovery Manager by the plugin’s. In the figure only the RFID plugin has
found a matching service advertisement.

5. The client will check if any services have been discovered and fetch these.

Which functional requirements are assigned to the different components in the
service discovery subsystem is described in Section 4.2.6. The reminder of this
section will look at the different components that are part of the subsystem. The
rest of this section will be divided into the following subsections:

The Service Discovery Manager subsection will be used to describe the func-
tionality and design for this component.

In the Service Discovery Manager API subsection the APIs provided by the
Discovery Manager will be described.

41

CHAPTER 4. SOLUTION PROPOSAL

Then, in the Service Discovery Plugins subsection the generic functionality
and aspects of plugins are described. Also the impact of some aspects of physical
discovery is described here.

Next, in the Service Discovery Plugin for RFID subsection the specific func-
tionality and issues that must be handled as part of the RFID plugin implemen-
tation will be described.

Finally, in the Service Discovery Plugin for Service Registry subsection
the functionality and important aspects for the Service Registry plugin will be
described.

4.2.2.1 Service Discovery Manager

The Discovery Manager is the “hub” in the service discovery subsystem, and
sits between clients (users, applications or agents) and SDPs (plugins). It will
provide the functionality needed for clients to register requests for services (client
requests), and to return matching services. To give the client as much freedom
in the selection process as possible, all the high-level properties defined in the
service advertisement (Section 4.1.3) can be specified in the client request. The
searchable properties are:

• Name - The service name

• Type - The service type

• Location - The location of the service

• Owner - The owner of the service

• Description - The service description

When service advertisements are returned, the format of these will validate to the
XML-Schema defined in Figure 4.5. The Discovery Manager also offers function-
ality that allows clients to get a list of the registered plugins. This will allow the
client to know which service discovery protocols are supported. In most cases the
client is unlikely to be interested in this information, but for advanced users and
debugging purposes this is valuable information. An XML-Schema that defines
the format for this list is displayed in Figure 4.11.

42

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.11: The XML-Schema for the list of registered plugins

Perhaps the most difficult issue when designing this component is to maintain
a loose coupling with clients and plugins. In order to maintain a loose coupling
the principle of timeout will be used. A completely stateless solution is difficult
if not impossible to achieve, but the use of timeout will allow the coupling to be
as loose as possible. Both SDPs and client will have to register themselves with
the Discovery Manager and will then get an ID which is used to identify them. If
too much time passes the Discovery Manager will remove them. Then, the SDP
or client will have to re-register themselves.

This will be solved by giving clients and SDPs a specified time-to-live which is re-
set every time they perform an operation with the Discovery Manager. A“house-
keeping” thread runs in the background and decreases the remaining time-to-live
at given intervals. When the the time-to-live has reached 0 for a component,
it along with its objects will be destroyed and the component will have to re-
register. A high-level class diagram showing most important classes in Discovery
Manager is displayed in Figure 4.12.

43

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.12: High-level class-disgram for Discovery Manager

When a client registers with Discovery Manager, it is added to the ClientList

and a ServiceList is created for the client. If a client registers a ClientRequest,
this will be added to every plugins RequestList. After a service discovery process
has been performed the client will fetch all services in its ServiceList, and this
will then be empty. The list is a FIFO1 buffer.

At the time a plugin registers itself with Discovery Manager, it is added to the
PluginList and a RequestList is created for the plugin. When a client has
registered a ClientRequest, this will be avaliable in the plugin’s RequestList

and can be fetched. This list is also a FIFO buffer. If a ClientRequest has been
fetched and the request has been resolved, the discovered service advertisements
will be registered in the requesting client’s ServiceList. When this is done, the
service discovery process is concluded, as described in Figure 4.10.

The format defined for a list of client requests, is defined in the XML-Schema
displayed in Figure 4.13.

1First In First Out

44

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.13: XML-Schema for ClientRequestList

4.2.2.2 Service Discovery Manager API

As was depicted in Figure 4.12, the Service Discovery Manager will provide two
different APIs. One API is needed for Service Discovery Plugins and one is needed
for clients. The APIs are displayed in Figure 4.14 and Figure 4.15 respectively.
For reasons of space constraint, some parameter names have been abbreviated in
the API figures. These names are written in full in the detailed description. The
methods provided in each API are described in more details below them.

Since the component is created as a Web-service, the methods will be accessible
through SOAP invocations. The component will itself be responsible for exposing
the corresponding WSDL document.

Figure 4.14: Discovery Manager API for Service Discovery Plugins

The methods provided in the plugin interface are described in more detail in
Appendix C.2

Figure 4.15: Discovery Manager API for service discovery clients

The methods in the client API are described in Appendix C.3

45

CHAPTER 4. SOLUTION PROPOSAL

4.2.2.3 Service Discovery Plugins

Services supported by UbiCollab span a range of different service types like Web-
services, UPnP and Bluetooth. In addition to these traditional service types,
UbiCollab expands the definition of what services are to also include other types
of resources. Examples of such resources are the physical discovery of RFID tags
which can be resolved to complete service advertisements. These service adver-
tisements can then advertise for instance service proxies which can be downloaded
and installed, or simply information pages.

This section will look at the generic properties and unique aspects of different
types of services, and describe a solution to how these can be supported. As
described in the autumn report, service discovery protocols can be grouped ac-
cording to their scoping. The two common categories to use are:

Multicast-based These protocols principally exposes their services through the
use of “self-advertisement”. Common examples include Bluetooth, UPnP
and WS-Discovery.

Centralized registries This type of services can be available across the Inter-
net, or can be limited (e.g. to a company LAN/WAN).

These two categories of protocols have two common characteristics which allow
them to be handled the same way when implemented as plugins. These charac-
teristics are:

• They are network based.

• The discovery process for the respective protocols can be initiated by a
computer application or agent. It can also be initiated by a user, but this
will then be mediated by some application.

Physical discovery on the other hand does not necessarily comply with these
characteristics. Perhaps the most important aspect with physical discovery is
that it is usually user initiated by some physical gesture. The consequence for
discovery is that the user specifies by pointing, rather than through descriptive
parameters, what he is looking for.

The implication of this is that two specializations of a generic Service Discovery
Plugin is needed. Figure 4.16 shows the Service Discovery Plugins inheritance
hierarchy. The two specializations of the abstract class Service Discovery Plu-

gin comes from the way client requests for services are initiated.

The NetworkedDiscovery class will retrieve client requests from Service Discov-
ery Manager, try to resolve these and return matching service advertisements.
Plugins of class PhysicalDiscovery will discard client requests, and instead re-
turn all service advertisements found as the result of physical discovery.

As the figure shows, the problem with addressing of the returned service advertise-
ment for PhysicalDiscovery plugins will be solved by setting requesterId = -1.

46

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.16: Specialization of Service Discovery Plugin

When Discovery Manager receives a service advertisement registration with re-

questerId = -1 this advertisement is added to the service list for registered
clients.

The principle where clients and plugins register with the Discovery Manager and
a simple service discovery process is performed, is visualized in Figure 4.17. In
this diagram the Service Discovery Plugin for Service Registry is used as example
for the plugin. This component is more closely described in Section 4.2.2.5.

Figure 4.17: Sequence diagram showing the service discovery process

As can be seen from the figure, the client’s identifier is issued when the client
registered with the Discovery Manager. It follows the client request through the
whole discovery process. That is, all the way until the discovered advertisements
are registered back to the Discovery Manager and placed in the queue (service

47

CHAPTER 4. SOLUTION PROPOSAL

list) belonging to the correct client. Note that the plugin’s identifier is also
registered along with the service advertisement. This allows the client to know
which discovery protocol (plugin) has returned the advertisement.

4.2.2.4 Service Discovery Plugin for RFID

The RFID device selected for use in the service discovery solution is named “ID-
Blue”and is produced by Cathexis Innovations1. This is a Bluetooth RFID reader
in the shape of a pen. An overview of the technical details of interest for this so-
lution have been compiled, and is available as Appendix E. Possible applications
for the reader is displayed in Figure 4.18. The figure shows the pen being pointed
toward an RFID tag in order to read it.

Figure 4.18: Possible uses of IDBlue RFID reader

Examples of devices that can connect to the pen using Bluetooth (Pocket PC,
Laptop computer, Desktop PC) are also displayed in the figure. Different usage
scenarios require different solutions. For instance the pen can be used in offline
mode (not connected to a master Bluetooth device) and read up to a thousand
tags, which can be transmitted to e.g. a desktop PC when connected.

The IDBlue device supports two fundamental operating modes, synchronous and
asynchronous. In synchronous mode commands are streamed directly from the
connecting device to the IDBlue reader without any user interaction. This mode
is fully software controlled and suitable for operations which take a lot of time,
typically writing tags or reading a large amount of data. In asynchronous mode
the user triggers simple actions by pressing the button on the IDBlue device.

Asynchronous operations are much faster and more user-interactive than synchro-
nous operations. Asynchronous operations however are limited in the amount of
data they can handle. Still, because of the user-centered focus for the solution,
the asynchronous mode is the preferred one. This mode allows the user to de-
liberately point at services in the vicinity and thereby explicitly show his/her
interest.

1http://www.cathexis.com/ (Visited 10.06.2007)

48

CHAPTER 4. SOLUTION PROPOSAL

The IDBlue reader supports three different different RFID standards, and in this
solution the RFID tags selected for use are ISO 15693-2 compliant tags. This
solution will use tags from the Texas Instrument1 “Tag-It” series. In Figure 4.19
the organization of data on these tags is visualized. As shown in the figure the tag
offers 2048 bits of storage space, which equals 256 bytes or characters provided an
8 bit character set is used. These must be read out in blocks of 4 bytes, and the
IDBlue device supports reliable reading of around 12-16 blocks in asynchronous
operation.

Figure 4.19: Organizing of data on RFID tag

For encoding of characters the 8-bit ASCII (American Standard Code for Infor-
mation Interchange) character encoding set2 has been selected. This encoding
scheme provides the characters necessary to encode almost any legal URI, which
is what will be encoded on the tags. The escape character selected to end an
encoded URI is the space character “ ”, as this character is illegal in Internet
style URIs.

To ensure reliable reading from the tags, a length of 12 blocks will be used. This
implies that a maximum of 48 characters will be available for encoding. If this
is too short for some uses, an intermediate should be utilized for redirecting. An
URI redirecting is simple to make and in addition there are many free solutions
for this availiable on the Internet. One possibility could be to use a service like
TinyURL.com3 to map a short URL e.g. “http://tinyurl.com/6” to the real URL
which can have an arbitrary length.

The URI encoded in the tag must point to an XML-file with service advertise-
ments. This allows the RFID plugin to be free from dependencies resulting from
the limited amount of data that can be read. In addition, the RFID solution

1http://www.ti.com/rfid/ (Visited 10.06.2006)
2http://www.unicode.org/charts/PDF/U0000.pdf (Visited 10.06.2007)
3http://tinyurl.com (Visited 05.06.2007)

49

CHAPTER 4. SOLUTION PROPOSAL

can then be used for service discovery without relying on components other than
Discovery Manager. The XML-format in this file must comply with the XML-
Schema in Figure 4.5. There also exists another option for tagging which does
not require the encoding of a URI. This possibility relies on the existence of a
Service Registry, and will map the unique tag identifier to one or more service
advertisements in the registry. The Service Discovery Plugin will support both
these options.

In addition to this, the plugin needs a way to connect to the IDBlue device. The
device uses the Bluetooth Serial Port Profile (SPP) over Bluetooth Generic Ac-
cess Profile (GAP) and as such can be connected to as a Bluetooth “emulated”
serial port. This however would force the user to install the device as a Blue-
tooth “emulated” serial port, and connect to it before every use in an OS-level
interface (E.g. Windows Bluetooth devices). The IDBlue.NET developer guide1

recommends against this.

In order to create a user-friendly solution, the plugin will use a direct Bluetooth
connection to connect to the device. This implies that Bluetooth discovery should
be implemented in order to find the correct device to connect to. This also allows
the use of different IDBlue devices. The Franson Bluetools libraries2 will be used
for this.

To ensure a user-friendly solution this plugin will need a GUI to support these
mechanisms. The GUI should be created according to the guidelines provided
in Appendix D (HCI principles for arranging GUIs). In addition, the IDBlue
support libraries are only available for the .NET platform3 (both full and compact
framework), therefore this will be the platform of choice for this component.

4.2.2.5 Service Discovery Plugin for Service Registry

This component will provide search capability in the centralized Service Registry
described in Section 4.2.3, for the Service Discovery Subsystem. The API for
plugins provided by the Discovery Manager, as well as the API provided by the
Service Registry component will be used. This component will be an intermediate
between the Service Registry and the Discovery Manager.

A high level design showing which interfaces the component will need to support,
is visualized in Figure 4.20. As can be seen from the figure, the component’s core
functionality is to be an intermediate and transforms messages between Service
Registry and Discovery Manager. The component will do this by fetching client
requests from Discovery Manager, try to resolve them with Service Registry and
then register potential found service advertisements with Discovery Manager.

The component will utilize a thread to time when client requests will be fetched
from Discovery Manager. This is done in order to ensure that the principle of

1Electronically available as part of the IDBlue package.
2http://franson.com/bluetools/ (Visited 10.06.2007)
3http://msdn2.microsoft.com/en-us/netframework/ (Visited 10.06.2007)

50

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.20: High-level design for Service Discovery Plugin for Service Registry

loose coupling is maintained. When started the thread will try to register the
component with Discovery Manager, and if successful will start to query for client
requests at given intervals. If disconnected or a Discovery Manager is not found
the thread will sleep for 30 seconds and then try to reconnect.

4.2.3 Service Registry

Service Registry will be the centralized service registry in UbiCollab, normally
deployed on an UbiHome node. This component will provide basic functionality
similar to UDDI, but will be a much simpler component. Detailed functional
requirements assigned to this component are described in Section 4.2.6. To en-
able configuration, testing and management of this component, a complimentary
UbiTool1 will also be created as an independent component. The UbiTool will
be named “Service Registry Management Tool”. The basic operations provided
by these components will allow users to:

• Register service advertisements

• Remove service advertisements

• Query the registry for service advertisements

• Edit service advertisement properties

• Retrieve the Service Registry log

A high level design showing the interfaces the Service Registry will need to sup-
port, is visualized in Figure 4.21. The component’s core functionality is to receive
and resolve queries for service advertisements, and to provide management func-
tionality for these through a Web-service interface.

As the figure shows, a database is used to store service advertisements. The
database used for this solution will be the MySQL Server2. The quality tactic
described in the autumn report named“Maintain semantic coherence”will be used
when implementing the DB interface component. This will allow this component
to be easily replaced by another component if the database choice changes (e.g.
a simple XML file or other database).

1Small UbiCollab application interacting with platform components
2http://www.mysql.org/ (Visited 10.06.2007)

51

CHAPTER 4. SOLUTION PROPOSAL

Figure 4.21: High-level design for Service Registry

To achieve a user-friendly solution, the “Service Registry Management Tool” will
be created according to the guidelines provided in Appendix D. The .NET plat-
form1 will be used to avoid using to much time on the development of this compo-
nent. Visual Studio and .NET is regarded superior to most Java IDE (Integrated
Development Environments) with regard to GUI design.

4.2.3.1 Service Registry API

The API that will be implemented in and provided by Service Registry has been
created and is displayed in Figure 4.24. Since the component is created as a
Web-service, the methods will be accessible through SOAP invocations for clients.
The component will itself be responsible for exposing the corresponding WSDL
document.

Figure 4.22: Service Registry API

Detailed descriptions of the methods in the interface are included in Appendix
C.4.

1http://msdn2.microsoft.com/en-us/netframework/ (Visited 10.06.2007)

52

CHAPTER 4. SOLUTION PROPOSAL

4.2.4 Service Management Tool

Service Management Tool (SMT) will both serve as a demonstrator GUI and
as a tool in UbiCollab (UbiTool). It provides end-users with a user-friendly
environment where they can find (discover) services, install these in their service
domain, and share (publish) these services to make them available in collaboration
instances where the users are members.

SMT will demonstrate the functionality provided by Service Discovery Subsystem
and Domain Manager (components described in sections 4.2.1, 4.2.2.1, 4.2.2.4 and
4.2.2.5). In addition SMT will consume two other UbiCollab platform services
named “Space Manager” and “Collaboration Manager”. These components are
created in parallel with this work as part of another master thesis [19].

Detailed functional requirements assigned to the component are described in Sec-
tion 4.2.6. The basic functionality provided by SMT can be summarized to:

• Manage service’s in a users service domain, located on one UbiNode. In
addition to support the functionality provided through the Service Domain
Manager’s API described in Section 4.2.1.1. Related functionality will be:

• Get space information from the“Space Manager”component and allow
this to be integrated with the service description for service proxies.

• Support publishing and unpublishing of services to and from Collabo-
ration Instances. The remote API needed for this will be provided by
“Collaboration Manager”

• Perform service queries and utilize the API provided by Service Discovery
Manager, as described in Section 4.2.2.2. This component must be able to
install discovered service proxies in the user’s service domain. In addition
it should be possible to view discovered information pages (Web-pages).

• The tool must be able to fetch and display the log from both Service Dis-
covery Manager and Service Domain Manager.

A high level design showing the services this component will consume, is displayed
in Figure 4.23.

Figure 4.23: High-level design for Service Management Tool

53

CHAPTER 4. SOLUTION PROPOSAL

In the figure, only the components which the Service Management Tool is directly
connected to is displayed. The functionality and possibilities provided in the
GUI will also rely on other components, e.g. Service Discovery Plugins. How
everything ties together is further described in Section 4.3 (Relation to overall
UbiCollab architecture).

Because the component relies on several other components and accesses these
through SOAP invocations, it should be created as a multi-threaded application in
order to avoid delays often associated with Web-services. The following threading
structure will be used:

• Main thread: The functionality related to service management will run in
the main thread.

• Discovery thread: The functionality related to service discovery processes
will run in a separate thread.

• Collaboration thread: The functionality related to Space Manager and Col-
laboration Manager will run in a separate thread.

The .NET platform1 will be used to develop this component. The main reason
for this is that this UbiTool will contain a rich graphical interface with much
functionality, and this is anticipated to be more easily achieved by using Visual
Studio and .NET instead of the Java based alternatives. In addition .NET sup-
ports the use of delegates for GUI updates in multi-threaded applications, instead
of callback functions/methods.

The implementation of this component will also rely heavily on the quality tactics
described in Section 7.3.1 (Usability), in the architecture part of the autumn
report. Also the quality tactics described regarding performance (Section 7.3.3)
will be used in the implementation, in addition to the multi-threading to ensure
a “smooth” user experience. The graphical design of the GUI will be based on
the principles described in Appendix D.

4.2.5 X10 demonstrator

As mentioned before, one of the important aspects of UbiCollab is the focus to
integrate with the physical environment. To demonstrate and evaluate the com-
plete solution, a credible and visible demonstrator service proxy is needed. For
this purpose a demonstrator based on the X10 protocol for controlling electrical
appliances through the power grid has been chosen. This service proxy will be
named “X10Proxy”.

This proxy can also be used in further demonstrations of the platform, and as such
is expected to continue to provide value for the platform. An accompanying Web-
service client that will provide a GUI for the X10Proxy will also be developed.

1http://msdn2.microsoft.com/en-us/netframework/ (Visited 10.06.2007)

54

CHAPTER 4. SOLUTION PROPOSAL

For this solution an X10 control device named “cm11a” which provides an RS232
serial port interface will be used. Serial connectivity from Java will be achieved
through the use of the Java Comm package. The limitations posed by this pack-
age, along with a short installation instruction is included in Appendix F.

For X10 connectivity the jpeterson library1, which is available for download as
part of the “CruiseControl framework”2 or directly from the creator’s website3,
will be used. This library provides an event-driven model for interacting with the
cm11a device. The API for the framework is included in the package.

To ensure a user-friendly solution for demonstration purposes, the GUI compo-
nent will be created according to the guidelines provided in Appendix D. For a
relatively easy and quick development of GUI components, the .NET platform4

will be used. By combining .NET and Java this way, a fine example of the
platform independence provided by UbiCollab is given at the same time.

4.2.5.1 X10 demonstrator API

The API that will be provided by the X10Proxy has been created and is displayed
in Figure 4.24. Since the component is created as a Web-service, the methods will
be accessible through SOAP invocations for clients. The component will itself be
responsible for exposing the corresponding WSDL document.

Figure 4.24: API provided by X10Proxy

A detailed description of the methods in the interface is given in Appendix C.5.

4.2.6 Requirement matrix

In this section a mapping between the functional requirements specified in Ap-
pendix B and the components defined in this chapter has been performed. The
purpose of this mapping is to ensure that all requirements are attended to. This
is especially important for requirements that span more than one component, in
order for the complete required functionality to be implemented.

The resulting mapping has been assembled in a matrix which is displayed in
Figure 4.25. The different components are listed in columns, while there is one

1Pure Java implementation of the X10 protocol, created by Jesse Peterson
2http://cruisecontrol.sourceforge.net/ (Visisted 10.06.2007)
3http://www.jpeterson.com/x10/x10.zip (Visisted 10.06.2007)
4http://msdn2.microsoft.com/en-us/netframework/ (Visited 10.06.2007)

55

CHAPTER 4. SOLUTION PROPOSAL

requirement identifier per row. These identifiers are used to reference the require-
ments specified in Appendix B.

Figure 4.25: Mapping between functional requirements and components

Note that there are some comments attached to certain requirements. When
the comment refers to components not included in this work, it will be further
explained in Section 4.3. Comments about “Generic requirement” covers all com-
ponents, while requirements commented not to be implemented will be described
further in Section 5.3.

56

CHAPTER 4. SOLUTION PROPOSAL

4.3 Relation to overall UbiCollab architecture

In this chapter a description will be given as to how this contribution fits into
the overall UbiCollab architecture. A figure which illustrates how the different
platform services (bundles) are deployed on UbiNodes and UbiHome, and how
they communicate is shown in Figure 4.26. All communication in the figure uses
Web-service calls (SOAP invocations) and are principally performed vertically
(including communication between services running on UbiHome and UbiNodes).
As described earlier this ensures a loose coupling between platform services, and
between platform services and clients (UbiTools and applications).

The figure also depicts that Service Registry runs on UbiHome and as such there
is normally only one instance of this service in each UbiNetwork. In principle
the Service Registry can run on any node, not necessarily UbiHome (however
it should run on a node with a high availability). Service Domain Manager and
Discovery Manager run on UbiNodes as shown in the figure. Domain Management
is necessary for basic services and should run on every UbiNode. Service Discovery
Manager is not necessary to have on each node, but in most cases it will greatly
enhance the usability.

Figure 4.26: Relation to overall UbiCollab Architecture

The components created as part of the other master thesises which run in parallel
with this, have also been included in the figure. Some of the components like

57

CHAPTER 4. SOLUTION PROPOSAL

“User Manager” and“Security Manager” are only conceptual and no implemented
components covering these areas have been created as yet.

A more detailed view of the different components that are part of this work,
and how they are communicating, is displayed in Figure 4.27. In this figure it
is also illustrated how the work performed on Tag management uses the service
discovery solution [15]. The work performed in other master thesises is shown in
grey. The figure also shows how Service Management Tool uses Space Manager
and Collaboration Manager as described in Section 5.2.5.

Figure 4.27: Relation between platform and demonstrator components

In the figure the GUI components have been placed outside of the respective
UbiHome and UbiNode depicted. This is only a conceptual placement, as their
location is unimportant for the functionality provided by the platform. Since the
platform uses Web-service technology these can reside anywhere as long as there
is a network connection. Note also how the UbiNode has been divided between
basic services and proxy services, which reside in the user’s service domain. It is
also illustrated how X10Proxy controls the “real” service which resides outside of
the UbiNode.

58

Chapter 5

Implementation

“In theory there is no difference between theory and
practice. In practice there is.”

- Yogi Berra

This chapter describes how the solution proposed in Chapter 4 (solution pro-
posal) has been implemented. A short introduction is given where some impo-
tent aspects of the implementation are described. Then, the different component
implemented will be described in detail, and the requirements not implemented
will be investigated.

Because the platform component implemented are to be published on Sourceforge
as part of the UbiCollab open source project, more time have been spent in
order to create well-documented and easy-to-read programming code for these
components. For the demonstration application and GUI tools, the main focus
has been to provide a user interface where the proposed functionality is provided
is a user-friendly way. However, also the programming code for these components
has been documented.

Section 5.1 explains some aspects of importance to the implementation.

In Section 5.2 the implementation of the components that were designed in the
solution proposal will be presented.

Then, in Section 5.3 the requirements that have not been implemented will be
pointed out and analyzed.

5.1 Introduction

This section explains some aspects of importance to the implementation. These
aspects include documentation of code, specifics of the OSGi framework, problems

59

CHAPTER 5. IMPLEMENTATION

encountered and limitations to the documentation.

5.1.1 Documentation of code

All code in the implemented components is commented using the native docu-
menting system for the programming language used. The platform components
written in Java are extensively documented using JavaDoc1. Demonstration and
GUI components was written in the C# programming language, and this code
are documented using “.NET XML documentation”2.

5.1.2 OSGi

All platform services except RFID Plugin for Discovery Manager were imple-
mented as OSGi bundles. The Knopflerfish OSGi framework3 has been selected
for UbiCollab use and was used for deployment. Knopflerfish is based on the
Java programming language, which means that the bundles were implemented
using Java. The services APIs are provided as Web service interfaces by using
the “axis-osgi”bundle included in Knopflerfish. When this bundle is installed and
started, it can be used to publish service interfaces for bundles as proper Web
service interfaces.

Platform services created for the OSGi framework includes a class named Acti-

vator with a minimum of two methods, named “start()” and “stop()”. This class
is used by the OSGi framework to start and stop the service provided by the
component (OSGi bundle). For all components except Domain Manager, this is
the only class that is tightly coupled with the OSGi framework. This solution
provides maximum portability, as only this class would need modification if the
solution was to be ported to another framework/container.

5.1.3 Problems encountered

Some problems were encountered during the implementation phase and will be
documented here. These are mainly related to the use of hardware devices and
connectivity with these.

Java Comm API and X10 connectivity

In order to connect to the X10 controller device (cm11a) selected for use in the
solution, serial connectivity using RS232 had to be used. To achieve this connec-
tivity the Java implementation for X10 that was selected (jpeterson X10 library4),

1http://java.sun.com/j2se/javadoc/ (Visited 14.06.2006)
2http://msdn2.microsoft.com/en-us/library/aa288481(VS.71).aspx (Visited 14.06.2007)
3http://www.knopflerfish.org (Visited 15.06.2007)
4http://www.jpeterson.com/x10/x10.zip (Visisted 10.06.2007)

60

CHAPTER 5. IMPLEMENTATION

required the Java Comm API. Unfortunately, the Java Comm API for windows
has been discontinued1 for some years and is currently only supported for Linux
and Solaris operating systems. The Windows version can still be downloaded from
some sources and installed. Possible download sites and installation procedure
are described in Appendix F.

IDBlue RFID pen

In order to connect to the IDBlue RFID Pen selected for use as a physical discov-
ery mechanism, several Bluetooth dongles had to be tried before one that worked
was found. The following USB dongles was tried in their respective order:

• DLINK DBT-120 - Did not work. This was the first choice as it was actually
recommended by the producer of the IDBlue pen, Cathexis Innovations,
on their homepage2. However it turned out the dongle need to be “H/W
Ver.:B4” or newer, while the one tried had “H/W Ver:B3”.

• Gigabyte GN-BT03D - Did not work. Sometimes found the IDBue MAC
adress but was never able to resolve its name or connect to it. After some
e-mails back and fourth to the GigaByte and Cathexis Technical support, it
turned out that the GigaByte dongle uses a Bluetooth stack not supported
by the IDBlue device.

• Jensen Scandinavia Blue:Link101 - Worked perfectly and discovered the
IDBlue at once.

5.1.4 Limitations

Because of the large implementation which consists of more than 60 class-files
distributed over 9 different components, complete class diagrams have not been
created for all of these. Class diagrams have been created for platform com-
ponents which provide an API, and the different classes in these diagrams are
described. A complete and detailed description of the APIs is included in Appen-
dix C. Implemented demonstrator and GUI components are documented through
screenshots. These are explained along with important aspects of the compo-
nents.

In the class diagrams some non-essential classes have been removed in order
to improve readability and avoid cluttering. Also some non-essential methods
like empty constructors and getters/setters have been omitted. In most classes
attributes and parameter have also been hidden to improve readability. Com-
ponents which provide an API display the implemented interface at the top of
the diagram. UML format has been used to describe the exported class names
(indications) for interfaces.

1http://java.sun.com/products/javacomm/ (Visited 15.06.2007)
2http://www.cathexis.com (Visited 15.06.2007)

61

CHAPTER 5. IMPLEMENTATION

5.2 Implemented components

In this section the implementation for the components designed in the solution
proposal (Chapter 4) will be presented. For platform components, UML depen-
dency class diagrams showing the essential classes will be displayed. Demon-
strators and tools (GUI components) are described using screenshots from the
finished GUI.

In most of the class diagrams the Log class has been included. This class is
common to all components and provides persistent logging in an XML-format as
described in Section 4.2. To provide easy access and ensure at most one instance
exist at any time, this class has been implemented using the singleton design
pattern.

Classes used to represent data structures which at some point can be serialized to
XML and returned as the result of some query have a method named toXML().
This method has a similar functionality as the inherited toString() method. It
will return a XML-representation of the object in question.

5.2.1 Service Domain Manager

Service Domain Manager is an UbiCollab platform component implemented in
Java, for the OSGi platform. It provides clients with the functionality needed
to manage services within the OSGi framework. Therefore this component in-
terfaces with both clients through its provided SOAP interface, and the OSGi
framework by means of the BundleContext interface provided by the framework.
The complete API for this component is described in Appendix C.1.

A class diagram showing the essential classes for Domain Manager is displayed
in Figure 5.1. The DomainManagerImpl class implements the DomainManager
interface, and it is this class which exposes its public methods in the SOAP
interface. Those management operations which involve access to or changes to
the service list calls methods in the class ServiceList. The ServiceList class
is also responsible for persistent storage and retrieving of the service list. The
service list maintains a list of objects, of class Service.

62

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Domain Manager class diagram

Note that both Service and ServiceList classes have toXML() methods. These
methods are used to return respectively an XML-representation for a service or
a service list.

5.2.2 Service Discovery Subsystem

In this section the components which are part of the Service Discovery Subsystem
will be explained.

63

CHAPTER 5. IMPLEMENTATION

5.2.2.1 Discovery Manager

Service Discovery Manager is an UbiCollab platform component implemented in
Java, for the OSGi platform. Discovery Manager functions as a “hub” between
service requesters (clients) and service discovery plugins (plugins). To provide this
functionality the Discovery Manager offers an API for clients and plugins. The
complete API for this component is described in Appendix C. A class diagram
showing the essential classes for Discovery Manager is displayed in Figure 5.1.

Figure 5.2: Discovery Manager class diagram

64

CHAPTER 5. IMPLEMENTATION

The DiscoveryManagerImpl class implements the DiscoveryManager interface,
and it is this class which exposes its public methods in the SOAP interface. The
HouseKeeperThread class runs as a thread and is responsible for maintaining a
updated PluginList and ClientList. This is done by keeping track of a time-
to-live variable for each plugin and client, represented by the classes Plugin and
Client.

The ClientList and PluginList classes are used to keep track of registered
clients and plugins (respectively Client class objects and Plugin class objects).
The Client class maintains a list of services found, where each service is of type
Service, while the Plugin class maintains a list of received client requests of
type ClientRequest.

5.2.2.2 Service Discovery Plugin for Service Registry

Service Discovery Plugin for Service Registry (SRPlugin) is an UbiCollab plat-
form component implemented in Java for the OSGi platform. It provides search
capability in the Service Registry for Service Discovery Manager. This compo-
nent therefore interfaces with both those components, and this have been done
by creating a Java proxy package for each of these. No class diagram will be
presented for the proxy packages since these contain “standardized”, generated
classes. The package diagram for the component is displayed in Figure 5.3.

Figure 5.3: Package diagram for Service Registry Plugin

A class diagram showing the essential classes for the SRPlugin component is dis-
played in Figure 5.4. The actions performed by the SRPlugin are being coordi-
nated by the class TimeKeeper, which runs as a thread. Both the ServiceParser
and the ClientRequestParser classes implements an SAX (event driven) XML
parser, to unmarshal respectively Service and ClientRequest objects from the
received XML. Most of the logic in the component is located in the PluginSer-

viceRegistryImpl class.

65

CHAPTER 5. IMPLEMENTATION

Figure 5.4: Plugin for Service Registry class diagram

5.2.2.3 Service Discovery Plugin for RFID

Service Discovery Plugin for RFID (RFIDPlugin) is an UbiCollab platform com-
ponent implemented in C# and running on the .NET platform. It provides
physical search capability by means of RFID for the Service Domain Manager.
The RFID device supported by this implementation is the Cathexis IDBlue RFID
Bluetooth Pen (IDBlue). The development of this plugin has followed the recom-
mended practice as stated in the “IDBlue.NET Developer Guide”, bundled with
the IDBlue device.

In the implementation the IDBlue.NET API “driver” is created as a singleton
object, in order to ensure only one such object exists. The driver runs in a thread
of its own and provides an event-driven model, where the plugins main form
binds to the events which can be raised by the driver. This provides for a clean
implementation and a relatively loose binding. Only the main form in the plugin
would need modifications if another device was selected for use.

An example of how a connection to the IDBlue device is opened, and then to
the Discovery Manager, is displayed in the sequence diagram in Figure 5.5. First
a Bluetooth discovery is initiated and the IDBlue responds. In order to open a
connection a shared secret (known as a passkey in Bluetooth jargon) must be
provided, as displayed in the figure. The default value for IDBlue devices (as set

66

CHAPTER 5. IMPLEMENTATION

by the manufacturer) is “0000”, and this value is also used in the implementation.

Figure 5.5: Sequence diagram for RFIDPlugin connection and tag reading

Next, the operating mode for the the IDBlue is default set to “Select Tag ID”. As
the diagram shows, when this is done a new thread is started to open a connection
with the Discovery Manager (DMThread). The plugin registers itself with the
Discovery Manager and gets an identifier. Then, the IDBlue has read a tag and
an event is raised in the RFIDPlugin. The data read from the IDBlue (binary
string) is interpreted and passed in a message to the DMThread, which again
registers the tag as a service advertisement with the Discovery Manager.

In addition to setting the read mode to “Select Tag ID”, some other settings are
set by the plugin during the initial connection. These are:

• RFID Protocol: ISO15693

• Device timeout: 5 minutes

• RFID timeout: 4 seconds

The GUI provided by the RFIDPlugin is displayed in Figure 5.6. At the time
the screenshot were taken, a Bluetooth discovery had been completed and the
IDBlue was selected but still not connected. Items in “Discovered devices” will
when moved to the list named “Previously used devices” be stored in a file and
“remembered”, so that they can be connected to without having to perform a
Bluetooth discovery every time. In order to connect to a device it must be
selected in the list and the “Connect” button must be pressed.

As specified in the solution proposal chapter, two operating modes are supported
in the “Select operating mode” control in the GUI. The RFIDPlugin also have

67

CHAPTER 5. IMPLEMENTATION

Figure 5.6: The GUI provided by the RFIDPlugin

a text area at the bottom of the GUI where events of interest for the user are
printed.

In order to provide Bluetooth connectivity, the RFIDPlugin relies on the Fran-
son Bluetools package. This package needs to be installed prior to using the
component. The necessary DLL files can also be bundled with the RFIDPlugin
component. This has been described in more details in Appendix G.

5.2.3 Service Registry

Service Registry (SR) is an UbiCollab platform component implemented in Java
for the OSGi platform. It provides a centralized registry where services can be
advertised and a Web-service interface (SOAP) for clients to query and manage
the contents in the registry. The complete API for this Web-service interface is
described in detail in Appendix C.

As can be seen from the class diagram presented in Figure 5.7, this is a quite
simple component with only a few classes. The ServiceRegistryImpl class
implements the DiscoveryManager interface, and it is this class which exposes
its public methods in the SOAP interface. The simplicity of the component
comes from the DBConnection class. In this implementation DBConnection uses
a MySQL database for data storage. Much of the functionality needed to resolve
queries is already provided through the SQL interface provided by the database.

68

CHAPTER 5. IMPLEMENTATION

Figure 5.7: Class diagram for Service Registry

To improve portability with regard to data source, all the specifics related to
the data source is contained in one class (DBConnection). If a switch to a more
lightweight data storage solution was considered, only the DBConnection class
would need replacement.

The connection parameters and database script needed to set up a database that
complies with what the Service Registry defaults to, is included in Appendix G.

5.2.4 X10 Proxy service and demonstrator

The X10 proxy service was created to demonstrate UbiCollab’s integration with
the physical environment. This service interfaces with a “cm11a X10 control

69

CHAPTER 5. IMPLEMENTATION

device” (cm11a) through the RS232 serial interface, and provide a Web-service
interface where X10 devices within range of the cm11a can be controlled. In order
to provide this functionality and connectivity two packages external to UbiCollab
have been used. These packages are:

• For X10 connectivity the jpeterson library1 was used. This is available for
download as part of the “CruiseControl framework”2 or directly from the
creator’s website3

• For serial connectivity the Java Comm API was used. This package is not
a standardized part of Java SDK and must be installed manually. Details
regarding this package and installation instructions is given in Appendix F.

The class diagram for this component is displayed in Figure 5.8. The two essen-
tial classes in this diagram are X10ProxyImpl which implements the X10Proxy

interface and exposes its methods in a Web-service interface, and the X10Impl
which implements the event driven system offered by the jpeterson package. The
serial connection with the cm11a device is also started in the X10Impl class by
the constructor. The COM port to use must be provided as a parameter for
the constructor, as there is no known way to detect which COM port the cm11a
device is connected to.

Figure 5.8: Class diagram for X10 Proxy service

Also note the connected variable in the X10ProxyImpl class. This is used to
maintain control of whether a serial connection is open or not. If an attempt is

1Pure Java implementation of the X10 protocol, created by Jesse Peterson
2http://cruisecontrol.sourceforge.net/ (Visisted 10.06.2007)
3http://www.jpeterson.com/x10/x10.zip (Visisted 10.06.2007)

70

CHAPTER 5. IMPLEMENTATION

made to open a serial connection which is already open, the Java Virtual Machine
will freeze. This will also happen if the service tries to exit while the connection
is still open. For these reasons it is important to maintain control with the
connection state.

In order to demonstrate the X10Proxy a simple demonstration GUI has also been
created. This GUI is displayed in Figure 5.9. As the figure shows some default
connection parameters are provided, but can be changed.

Figure 5.9: Demonstrator GUI for the X10 Proxy service

X10 devices use an addressing scheme that consist of a “house” and a “unit” code.
In order to more easily refer to appliances being controlled, the GUI provides
the possibility to connect the individual address (house and unit) with an easy
to remember name like “Vannkoker 004”. When such a reference is created it is
persistently stored in a file.

5.2.5 Service Management Tool

The Service Management Tool (SMT) have been designed and implemented with
a dual purpose. It will both serve as a demonstrator GUI and as a tool in
UbiCollab. It provides end-users with a user-friendly environment where they can
find (discover) services, install these in their service domain, and share (publish)
these services to make them available in collaboration instances where the users
are members.

In order to achieve this functionality SMT consumes four different Web-services,
as illustrated in Figure 5.10. This application is multi-threaded and runs func-

71

CHAPTER 5. IMPLEMENTATION

tionality related to Discovery Manager in one thread, while functionality related
to “Collaboration Manager” and “Collaboration Space” runs in its own thread.
Management of services is handled in the application main thread.

Figure 5.10: Services consumed by UbiCollab Service Management Tool

To illustrate the functionality offered to the user by this application, some screen
shots will be used. In Figure 5.11 the “Manage your services” tab in the SMT
application is displayed. When SMT has been started the first thing the user will
need to do is select an UbiNode to connect to, and enter a login name. The SMT
“Manage your services” tab in the figure shows the services in the user’s service
domain (located on the selected UbiNode, here “localhost”), after the “Connect”
button has been pressed.

Figure 5.11: Service management in UbiCollab Service Management Tool

In order to start or stop a service manually, it can be selected from the list of
installed services and the“Start”or“Stop”button pressed. If a service proxy needs

72

CHAPTER 5. IMPLEMENTATION

to be uninstalled this is done in a similar fashion, except that a confirm dialog
will be displayed. To publish a service it must be selected before the button
labeled “Publish Assistant” is pressed. This action will open the “UbiCollab
Publish Assistant” (displayed in the figure) where the selected service can be
published to, or unpublished from, collaboration instances (CI) in which the user
is a member.

To edit the properties of a service it must be selected and the “Edit” button
pressed. The “Installed services” area will then become inactive (greyed out) and
the selected service will become editable in the “Edit service parameters” area.
The GUI state at this point is displayed in Figure 5.12.

Figure 5.12: Editing a service in SMT

SMT offers two ways to install service proxies. If the location of the bundle is
known, a manual service install can be performed. This situation is displayed
in Figure 5.13. The other way to install a service is to search for it (discovery
process) and then select to install it. This process will be described in the next
step.

Figure 5.13: Manual installation of service

To discover services the tabular “Discover new services”must be selected in SMT.
This tabular is displayed in the cropped screenshot in Figure 5.14. The “Discover
new services” tabular can be used to register searches (client requests) for services

73

CHAPTER 5. IMPLEMENTATION

with the Service Discovery Manager, and discovered services will be displayed
here. In the screenshot three services has been discovered using the RFID IDBlue
pen. The service named “X10Proxy” has been double clicked and a dialogue
named “Service Information” is opened. It shows the details for this service
and offers the possibility to install it (because it is of type Ubi:Proxy). In the
screenshot the “Install” button has been pressed, the service was installed and a
message box prompting this to the user is displayed.

Figure 5.14: Service discovery in UbiCollab Service Management Tool

Finally, SMT provides users with the possibility to view the logs from Service
Domain Manager and Service Discovery Manager. This was deemed an important
feature which would enable users to feel in control of what are happening in their
service domain. The “Logged events” tabular is displayed in Figure 5.15. The
users are able to select the log level of interest (Debug, Info, Warning and Fatal),
the number of logged items to display and which log to view. In the screenshot
the debug log from Service Domain Manager is displayed.

5.3 Requirements not implemented

During the implementation phase, some of the functional requirements were not
implemented for various reasons. In this section these requirements will be
pointed out. The reason why they were not implemented, and suggestions as
to how this should be handled is given. The requirements that not have been
implemented are:

FR-S4 “A user must not be allowed to discover a service which is not visible to
him or her” (M,H).
Since there is no solution for a visibility or security layer in UbiCollab at
the time this project was carried out, this requirement was omitted. Ap-
plications like UbiBuddy1 correctly display services which should be visible

1UbiCollab demonstrator application

74

CHAPTER 5. IMPLEMENTATION

Figure 5.15: Displaying logged events in SMT

to a given user, but currently there are no security mechanisms to enforce
this behavior.

FR-S9 “The solution should log events related to service discovery operations”
(M,M).
All the basic/core components perform logging of these operations, and
these logs are accessible to the end-users. The exception is the Service
Registry Tool, which does not provide the functionality to view the Service
Registry Log. This functionality should be added to this tool.

FR-O4 “The solution must provide access to service information like state, vis-
ibility and user access” (M,H).
As explained earlier, a viability layer is not yet implemented in UbiCollab.
In addition, there is no possibility to control and log user-access to (proxy)
services with the current solution. A solution where every service itself is
responsible for access control and logging can not be seen as a flexible and
viable solution. Functionality allowing end-users to set and view access in-
formation was deemed important in the autumn report. It allows end-users
to feel in control of their service domain. A project aiming to create a viable
solution for this has been proposed in Section 7.3.

FR-O5 “The service must be automatically unpublished when the service is
uninstalled” (M,M)

75

CHAPTER 5. IMPLEMENTATION

This requirement was assigned to the Service Management Tool, and was
not implemented because of time constraints. The implication of this is that
users will have to unpublish services manually before they are uninstalled,
or there will be inconsistency in the collaboration instance database. To
resolve this, the Service Domain Manager (SDM) should check if the service
is published when the uninstall method is invoked. If published, the SDM
should not allow the service to be uninstalled, write a log message, and
return a message to the client. In addition the functionality of the Service
Domain Manager should be extended to handle situations where a service
(bundle) has been unpublished either by other tools or manually (outside
of the UbiCollab domain).

76

Chapter 6

Evaluation

“Optimism is an occupational hazard of programming,
feedback is the treatment.”

- Kent Beck

In this chapter the work done in this project is evaluated. Both the implemented
solution and the research value of the work are evaluated. An evaluation of the
implemented components against the requirement specification is not deemed
necessary, as divergences were explained in Section 5.3.

The chapter describes how the implemented platform components have been eval-
uated, and how the applications created for evaluation purposes are used for this.
As part of the evaluation, applications created by other groups working on dif-
ferent parts of the UbiCollab platform uses components from this work, and visa
versa.

Moreover, the research value of the project will also be evaluated and results
pointed out. This will also be related to the work done in the autumn project
and the autumn report. Finally some suggestions as to how the implemented
solution can be improved are given.

In Section 6.1 an overview of how the different platform components have been
evaluated are given, before the different parts of the evaluation are described in
more detail.

Then, in Section 6.2 an evaluation of whether or not this work has lead to any
advancements in related state-of-the-art. Here, it is suggested that three different
advancements have been made as a result of this work.

Finally, in Section 6.3 some suggestions for improvement of the evaluated solution
are presented.

77

CHAPTER 6. EVALUATION

6.1 Evaluation overview

As described in Section 2.6, the biggest problem associated with evaluating plat-
form components is that interaction with these happen through the use of inter-
mediate applications [3]. For this reason a set of demonstration and test applica-
tions was proposed and has been implemented.

Another element that should be evaluated is how well the newly created com-
ponents work with other platform components. Evaluation of this is a key issue
to ensure full compatibility among the platform components. In order to pro-
vide this form of evaluation the platform components created have been used
by applications created by other groups working on UbiCollab. Also, the Ser-
vice Management Tool utilizes components created by other groups working on
UbiCollab.

In addition to being used by the test and demonstration applications proposed
and implemented in this work, the APIs provided by the components implemented
have been used by two other applications created as part of other groups master
thesises. This is displayed in Figure 6.1.

Figure 6.1: An overview of how this work is used by different applications

The figure gives an overview of how the applications implemented in this project
uses work created by other groups, and how applications created by other groups
uses the APIs provided by this work’s platform components. Work done by other
groups is displayed in gray.

In the following sections, the three different evaluations which have been per-
formed are described in more detail:

In Section 6.1.1 a demonstration of the implemented solution is described. In the
test both platform components and demonstration applications created in this
project was used. This demonstration was held for the people which are part of
the UbiCollab and ASTRA teams at NTNU.

Then, in Section 6.1.2 the functionality of the UbiBuddy application is described.
This is a demonstration application for the UbiCollab platform which is able to

78

CHAPTER 6. EVALUATION

display awareness information in collaboration instances. This application uses
the Domain Manager and Service Management Tool from this work.

Next, in Section 6.1.3 a tag management system which provide the functionality
to describe services using short comments (tags) is described. This system uses
the service discovery subsystem provided in this solution to discover services.

6.1.1 Demonstration

The implemented solution was demonstrated for both the ASTRA team and the
UbiCollab team at a Workshop the 30th of Mai 2007 at IDI/NTNU. As part of this
demonstration a presentation was held to give an overview of the solution, before
the different components were demonstrated separately. Finally, a demonstration
scenario involving most parts of the solution was walked through. In the reminder
of this section the demonstrated scenario will be presented, before the steps taken
during the presentation is described and screenshots displayed.

6.1.1.1 Demonstration scenario

Peter has been using UbiCollab for about a month now, and he has recently made
a pact with his friend Tore which also uses UbiCollab. Peter met Tore through
the local springer-spaniel club, and they both love dogs. They have agreed to both
make a lamp in their living room available for each other, to signal when they are
interested in taking the dogs for a walk.

Peter has just returned home from the post office, having picked up the X10 home
automation system he ordered last week. He opens the package and notices a tag
on the control device. He then starts up his Service Management Tool and uses his
physical discovery device to read the tag on the X10 control device. Immediately
three services pop up in his Management Tool.

Peter sees that one of the services is an information service and starts it. On
the information page he finds information about how to connect the X10, along
with feedback and lessons learned from other users and developers. He starts the
installation, following the instructions on how to connect it. Once connected, he
installs the X10 proxy he discovered a minute ago. To make sure the installation
turned out OK, he selects the possibility to view the log in the Management Tool,
and it looks fine.

The third service discovered was a small test application to ensure the X10 device
and service proxy is functional. He installs this too, and tests that he is able to
turn the lamp on and off from the application. It works fine. Finally, Peter selects
the X10Proxy service and start the publishing assistant in his Service Management
Tool. He then select the “Dogwalker’s association” collaboration instance they
created earlier, and moves it from “Not published” to “Published”, and his lamp
then becomes available to Tore.

79

CHAPTER 6. EVALUATION

6.1.1.2 Scenario Walktrough

There were some prerequisites that had to be in place in order to play out this
scenario. The prerequisite steps needed are explained here:

• An RFID tag had to be encoded with a URI pointing to the XML-file with
the description of the three service advertisements.

• The XML-file containing the three service advertisements had to be made.

• A collaboration instance named “Dogwalker’s association” had to be made.

• The X10 demo application had to be installed on the demo computer, as
the auto-install feature for applications has not yet been implemented in
the Service Manage Tool.

In a visionary “real world UbiCollab scenario” the two first steps would already
be in place by the manufacturer. The name “Peter” from the scenario is used in
this walkthrough, when end-user actions are performed.

The scenario walkthrough starts off by Peter opening the Service Management
Tool, and then the RFID plugin. He initiates the Bluetooth discovery, and when
finished selects the correct IDBlue RFID pen to connect to. A screenshot of this
is displayed in Figure 6.2.

Figure 6.2: The discovery plugin for RFID has found the correct RFID pen

Then, the connect button in the RFID plugin is pressed, and the plugin registers
with the Discovery Manager. The Service Management Tool detects this and
“RFID” is added to the list of supported service discovery protocols. Next, the
IDBlue pen is used to read the RFID tag, and the URI discovered on the tag is
being resolved. The XML-file with three service advertisements is discovered, and
the three service advertisements are added to the service list for Peter’s Service
Management Tool.

80

CHAPTER 6. EVALUATION

The Service Management Tool fetches the advertisements from Discovery Man-
ager and displays them in the GUI. Peter double-clicks the information service
and a Web-page opens. Peter reads the information there and connects the X10
devices according to the instructions. Then he double-clicks the X10 Proxy and
the service advertisement is displayed, with an option to install the service. Pe-
ter presses the “Install” button and a message pops up telling him the proxy was
successfully installed. The state of the GUI at this point is displayed in Figure
6.3.

Figure 6.3: The service advertisements have been discovered

Peter has the possibility to see the details of the installation process by clicking
on the log botton. The GUI state for the “Logged events” tabular at this point
is displayed in Figure 6.4.

Next, Peter starts up and connects the X10 test application to the X10Proxy and
adds the X10 devices he has installed in his house. He selects the living room
lamp and turns it on and off a couple of times to ensure it works. The state of
the X10 demonstrator application at this time is displayed in Figure 6.5.

Now, Peter changes the tab in his Service Management Tool to “Manage your
services” and selects the X10Proxy service, which is now part of the services he
has installed on his UbiNode. Peter presses the “Publish Assistant” button and
a new dialog is opened with the possibility to publish the selected service to the
collaboration instances he is a member of. Here, the “Dogwalker’s association”
is selected and moved to the “Published to” section. The dialog at this stage is
shown in Figure 6.6.

The X10 controlled lamp have now been made available for Tore, as he is a
member of the “Dogwalker’s association” collaboration instance. From this point

81

CHAPTER 6. EVALUATION

Figure 6.4: The Domain Manager log after a service is installed

Figure 6.5: The X10 test application

on, Tore can signal his willingness to take a walk by turning the lamp in Peter’s
living room on and off, in this way generating an ambient signal to Peter.

6.1.1.3 Feedback

During this demonstration all the demonstrated components worked as can be
expected, without any problems. The feedback received after the demonstration

82

CHAPTER 6. EVALUATION

Figure 6.6: The X0Proxy has been published to the “Dogwalkers association”

suggested that the solution was perceived as being very user-friendly. Also how
well the different components worked together were pointed out.

6.1.2 UbiBuddy

UbiBuddy is a demonstration application designed to show some of the features
provided by UbiCollab. The goal of UbiBuddy is to provide a simple buddy
list application1 which is able to show presence information about people. More
information about this component is available in the UbiCollab Whitepaper [5].
The application has been developed in parallel with this work, as part of another
master thesis [19].

The application is integrated with the work done in this project in the following
ways:

• UbiBuddy integrates a button which opens the Service Management Tool,
to allow services to be published. This also gives the user access to the ser-
vice discovery subsystem through UbiBuddy, and enables them to discover
and install new services.

• One of the key aspects of UbiBuddy is the ability to view services pub-
lished by your buddies. These services must be published to collaboration

1Well known commercial buddy list applications include AOL Instant Messenger, MSN
Messenger etc.

83

CHAPTER 6. EVALUATION

instances you both are members of to be visible.

• In order to show real time status of services (active, inactive), UbiBuddy
connects to Domain Manager for this information.

Three screenshots showing the essential functionality are UbiBuddy is displayed
in Figure 6.7. To the left the main window in UbiBuddy is displayed, with three
collaboration instances (CI) starting with “Morten Collaboration”. As elements
under each CI the members of that CI are displayed.

Figure 6.7: UbiBuddy application main window and service window

To the right in the figure, a screenshot of the dialog that opens when a member
is double-clicked is displayed. This dialog shows the services published by the
double-clicked user. Two tabs are offered, one showing the active services and
one showing the inactive. When a service is selected, information about this
service is displayed. Both the state information and the other service information
is fetched from the Domain Manager.

The“ToolBox”tabular in the UbiBuddy main window (shown in the middle of the
figure) contains a set of buttons which can be used to open related UbiTools. One
of the tools available here is the Service Management Tool, in order to provide
the functionality needed to manage and publish services. This can be started by
pressing the “SD Tool button”.

The use of Domain Manager and Service Management Tool as part of the UbiBuddy
solution seems to work well. Unfortunately, due to time constraints no proper
formal demonstration showing the full functionality has been held. The reason
for this was that both the Service Management Tool and the publishing solu-
tion was finished at a late stage, and hence the final integration was done after
the Workshop described in Section 6.1.1. However, internal testing and informal
demonstrations suggest that the integrated solution works as can be expected.

84

CHAPTER 6. EVALUATION

6.1.3 Tag Manager

A system for tag management has also been developed in parallel with this work,
as part of another master thesis [15]. The purpose of the tag management system
is to enable end-users to tag services (in UbiCollab service proxies) with short
descriptive comments. This system can then be used to “navigate” the tags to
discover similar services or find other services tagged by a given person. As part
of this work an application named “Tag Manager” has been developed.

In order to discover services the “‘Tag Manager” application relies on the Service
Discovery Subsystem. It connects to Discovery Manager as a client, and uses the
RFID Plugin and IDBlue pen to discover services. The Tag Manager uses the
RFID Plugin in the “Select Tag ID mode”, as opposed to what was used in the
demonstration described in Section 6.1.1.

The implication of this is that only the unique identifier from the RFID tag is
registered with the Discovery Manager, and this is what the client application
(Tag Manager) gets. In order to resolve this identifier, the Tag Manager must
register a client request containing the identifier with the Discovery Manager. The
“Service Discovery Plugin for Service Registry”will then resolve this client request
against the Service Registry and return the matching service advertisements (can
be 0..n).

The advantage of using this operating mode with the RFID plugin, is that it
is fast and easy to introduce new service advertisements. There is no need to
program the tags themselves as they all have a unique ID. By using the “Service
Registry Tool” it is relatively easy to add or edit service advertisements matching
the tag ID.

A screenshot showing when the Tag Manager has discovered a service named
“Nabbzy” is displayed in Figure 6.8. As the picture beside the application illus-
trates, this is a proxy service used to control a Nabaztag rabbit.

85

CHAPTER 6. EVALUATION

Figure 6.8: Tag Manager application in use

The feedback received from the use of the service discovery subsystem as part
of the “Tag Manager” solution have been very positive. The master student
developing the solution found it easy to work with. This solution has also been
demonstrated for members of ASTRA and UbiCollab teams, and the Service
Discovery Subsystem performed as can be expected also there.

6.2 Advancements to state-of-the-art

In this section the value this work has added to state-of-the-art research will be
described. It is believed that this work has provided three different elements
which can be of value for related research fields. In the following, these three
elements will be described.

First, in Chapter 3 a survey of possible technologies that would be suitable for
physical discovery were performed. Three candidate technologies were selected
for further analysis and they were also compared. From these three, RFID was
deemed the most suitable technology, and support for this technology was imple-
mented in the solution. Experiences from implementation and evaluation suggest
this was a good choice and that it can be recommended for similar use.

This work has also presented a solution for service discovery which is able to
combine traditional service discovery protocols with physical discovery. In the
state-of-the-art (Chapter 5) in the autumn report a lot of related research was
surveyed, without encountering any solution to this. Therefore it is believed that
this work has presented a possible solution for how physical and “traditional”

86

CHAPTER 6. EVALUATION

discovery can be integrated. Evaluation suggests that also this solution works
very well.

In addition, the user-friendly service discovery and management solution imple-
mented in this project has strengthened the answers to the research questions
proposed in the autumn report. In the autumn report it was asked what is im-
plied by user-centered and community oriented service discovery. Based on this
an analysis was performed, requirements were elicited and a high-level architec-
ture was created. In this work that architecture has been refined in the proposed
solution, which was then implemented.

The evaluation of this implementation suggests the chosen solution is both user-
friendly and works well in a community oriented environment. The real power
which makes the solution user-friendly is not the individual components, but the
way they work together in order to provide advanced functionality and easy to
use user-interfaces.

6.3 Improvement suggestions

This section will provide some suggestions for improvement of the evaluated solu-
tion. These suggestions are based mainly on the evaluation described here in this
chapter, but also on informal testing and tests performed during the implemen-
tation. Suggestions expected to bring about enough work/research for a master
thesis are described in future research (Section 7.3).

The first suggestion is that a more user friendly method should be used to connect
to the IDBlue RFID pen. In the current solution the user need to select the pen
and click the “Connect button”. A possible solution could be to add a thread to
the RFID plugin that will perform a Bluetooth discovery search at given time
intervals. When a pen matching the stored address is found it is automatically
connected to. The plugin could also be remotely controlled by an intermediary
located on the OSGi framework, and only be visible as an icon in the Windows
tray icon.

A version of the plugin should also be compiled using the“.NET Compact Frame-
work” in order to provide support for Pocket PCs and smartphones. Some sim-
plification to the GUI would be needed first, as the compact framework do not
support all GUI components used on the Windows .NET version. Details re-
garding the Bluetooth library needed for compact framework are described in
Appendix G.

More service discovery plugins should be developed to add to the utility of the
service discovery solution. Particularly the WS-Discovery protocol1 looks inter-
esting as many believe this protocol will take the place of UPnP and become
the service discovery protocol of choice for hardware devices. The protocol is
included in the new Windows Vista operating system, and practical applications

1http://schemas.xmlsoap.org/ws/2005/04/discovery/ (Visited 16.06.2007)

87

CHAPTER 6. EVALUATION

of this protocol are starting to appear1.

Also a implementation of QR-code base plugin as described in state-of-art (Sec-
tion 3.1.2) should be considered. Because of the ubiquity of camera phones this
could open the door for large scale testing and demonstration of physical discovery
in UbiCollab at a small price.

One problem with the Discovery Manager is the lack of an internal mechanism
to detect when the same service have been discovered by more than one plugin.
The result of this is that a service requester may receive two equal service adver-
tisements, when services have been advertised several places. Such a mechanism
is assumed to be fairly easy to create and should be implemented.

Another issue with the discovery manager is the way service advertisements dis-
covered by physical discovery mechanisms are registered. Currently, all registered
clients will receive these. A method should be added where clients can register
their interest for physical discovery as some applications is likely to only use
only networked discovery. Another option is to add a boolean parameter to the
method used by clients for registration, specifying if the client is interested in
physical discovery.

In addition to these suggestions, another issue which has been mentioned earlier
in the report is the use of the location field in service advertisements. How this
field should be used and which format should be selected is an open issue. A
possible solution could be to define a format to link it with space management.
The value of this field for use in a user-centered service discovery solution have
been analyzed and considered to be high, and as such it should be better utilized.

1http://www.microsoft.com/biztalk/technologies/rfid/default.mspx (Visited 31.05.2007)

88

Chapter 7

Conclusions and future research

“The main purpose of science is simplicity and as we understand
more things, everything is becoming simpler.”

- Edward Teller

In this chapter the report will be concluded by presenting and evaluating the work
that has been done. The contributions this project has yielded will be presented,
and some suggestions for future research projects will be proposed.

In Section 7.1 the contributions this project has provided for UbiCollab and other
related projects will be described.

Next, in Section 7.2 a short evaluation of the results from the work as well as the
work process will be given.

Finally, in Section 7.3 some suggestions for future research projects within the
larger UbiCollab project is presented.

7.1 Contributions

This project and the work performed has itself been a contribution to the larger
UbiCollab project. The aim of the work has been to create a user-centered service
discovery and management solution, suitable for use in a distributed collabora-
tive environment. The work done has built on the autumn project which was
a contribution to the ASTRA project, and many of the ideas from that project
have been implemented in this work. As such, this report includes contributions
to both the ASTRA project and other similar projects as well. More specifically,
the individual contributions are as follows:

The first contribution is an extension of the state-of-the-art analysis performed
in the autumn report. In this extension, relevant technologies that can be used to

89

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

implement a user-centered physical service discovery were surveyed. The surveyed
technologies were evaluated for use in UbiCollab, and RFID was deemed the most
suitable technology for use as a physical discovery mechanism.

A proposal for a service management solution has also been created, implemented
and evaluated. This solution has been based on ideas from the autumn report as
well as requirements elicited from UbiCollab. The component created was named
Service Domain Manager, and evaluation suggests that this component is well
suited for further use in UbiCollab.

Also, a solution for a service discovery subsystem has been proposed and im-
plemented. This subsystem has to a large extent been based on the functional
requirements elicited, and the high-level architecture proposed in the autumn
report. The components created to form this subsystem includes Service Dis-
covery Manager, Service Discovery Plugin for RFID, Service Discovery
Plugin for Service Registry, Service Registry and Service Registry Tool.
Service Registry has been included as part of the service discovery subsystem, but
this registry and the accompanying tool can also be seen as a subsystem of their
own.

Moreover, a tool named Service Management Tool has been created to pro-
vide end-users the means for discovery of services, installation and management
of installed services. This tool also demonstrates the platform functionality pro-
vided by the Service Domain Manager and the Service Discovery subsystem. In
addition it demonstrates functionality provided by Space Manager and Collabo-
ration Manager, which have been developed as part of another UbiCollab master
thesis [19].

Finally, an X10 proxy service has been developed for test and demonstration
purposes, with an accompanying demonstrator application. Although simple,
this proxy service provides means to demonstrate how the UbiCollab platform
integrate with the physical environment.

7.2 Evaluation

In this chapter a short evaluation of the results from the work performed, as well
as the work process will be given. The goal of this work has been to design and
implement a solution for service management which meets the requirements of
the UbiCollab project. Much of the challenge in this project has been posed by
the focus on making the solution user-centered and flexible enough to support
cooperation within a variety of application domains.

After having performed a thorough evaluation of the implemented solution, the
conclusion is that this work has successfully achieved its goal. A user-centered
service discovery and management solution has been proposed and implemented.
An evaluation of the solution has been performed through the use of the solution
in other work and demonstrations, as described in Chapter 6. A more complete

90

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

evaluation with end-user tests and empirical data would have been desirable, but
was not feasible due to time constraints.

At the time the project assignment was agreed and a master contract was signed,
it was clear that the amount of work associated with this project would be quite
large. In order to finish the project in time a plan was created where the amount
of time spent on the various parts was determined. As in so many other projects
some time limits were exceeded and the plan needed continuous adjustment. Still,
the value of following the plan has been high as it not only have provided time
limits, but also served as a reminder for how much work is left.

The biggest regret is that not enough time was scheduled for integration with
other groups, and development of mutual demonstration applications. The UbiBuddy
application was created but if more time had been spent on this, the value of this
for demonstration and evaluation purposes would have been higher. Despite this,
some time has been spent on integration and all of the components created in this
work have been used by other projects, as described in Chapter 6. The exception
to this is the X10 demonstrator which only was used in the demonstration de-
scribed in Chapter 6. However, the ASTRA team has expressed interest in using
this demonstrator as part of one of their future demonstrations.

An important part of this project has been collaboration with other groups work-
ing on the platform, in addition to some collaboration with people working on
the ASTRA platform. This collaboration was given a lower priority in the early
phases of the project, but has been good in the late stages. The collaboration
could have been better from the start if there had been regular meetings, inform-
ing each other of progress and sharing information. This issue was addressed at
the Workshop held at the 30th of Mai 2007 at IDI/NTNU.

7.3 Future Research

In this chapter some ideas for future projects will be suggested. These ideas have
been categorized into project suggestions aimed at extending the service discovery
and management solution, and other projects. The suggested projects have come
up as the result of elements that have been missed in UbiCollab during this work,
and also some other interesting projects or concepts that have been discovered
during the work.

Suggested research projects related to service discovery and manage-
ment:

Service negotiation A valuable addition to the UbiCollab platform would be
to have a generic negotiation solution for the terms a given user must agree
to before he can get access to and use a service. This would allow both com-
mercial actors and others with similar needs, to offer services in UbiCollab.
Service negotiation will then be the process where the service requester and

91

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

the service provider agrees on the terms for using the service. A possible
solution could be that the service requester gradually requests additional
parameters for the service in question. Such parameters can be quality of
service, availability, use-period or cost. The service information is grad-
ually refined sufficiently for the requester to formulate a “configuring re-
quest”. Optionally, this phase may include the fulfillment of a precondition
to requesting the service (e.g. registration or membership). This is what is
often referred to as an “enabling condition”. This work can also be linked
with the use of a service broker as a mediator between the service provider
and service requester. A service broker is usually a person or organization
responsible for a registry where services are advertised. The most common
registry type used for this purpose on the Internet is the UDDI-registry. In
some cases the service broker can also act on behalf of the service provider
and take his place. He will then handle the service negotiation with service
requesters on behalf of the service provider. Many services, like Bluetooth
and UPnP does not use a broker as they utilize self advertising. Such ser-
vices can be represented by a service proxy in order to publish them in a
registry and hence make them available through a service broker.

Expanding the service domain across nodes The current domain manager
provides the functionality needed for management of services/bundles on
one UbiNode. To enhance the service domain a solution where end-users
can have several UbiNodes and manage their services across these should be
considered. Dynamic deployment of services and bootstrapping of new Ubi-
Collab devices should also be considered in the same context. One possible
method for bootstrapping is to create an installer package containing both
the OSGi framework and the required bundles. Another more advanced and
flexible option, is to use an installer script or create an installer service/bun-
dle. This service can then have responibilities like automatic updates etc.
The Service Domain Manager already provides the basic functionality for
such operations and can be extended to support this, but caution is needed
to avoid tight coupling or unnecessary dependencies.

Service access control Currently, no solution is implemented to detect access
to, and usage of services. Perhaps the most flexible and powerful solution
could be achieved by implementing a SOAP message handler. Currently
“JAX-RPC” (SOAP 1.1) is used in UbiCollab (because Axis v.1.x is being
used), but the newer “JAX-WS”1 (Java API for XML Web Services) is
recommended for this use since it supports most newer WS-* protocols.
Both support message handlers though, and porting from one to the other
should be possible. The following benefits can be achieved by the use of
SOAP message handlers:

• To do encryption and decryption on the client and service side for
exchanging messages securely

• To provide access-control to Web services

1https://jax-ws.dev.java.net/ (Visited 13.06.2007)

92

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

• To provide auditing, logging and metric collection

A solution to this should perhaps be investigated in relation with a possible
selection of a new SOAP engine, as described in the next project suggestion.

Suggested research projects not related to this work:

SOAP Provider Axis v.1.x (Axis v1) is currently used as the core engine to
provide Web services in UbiCollab, but this product has been discontinued
since April 20061. One of the major problems with the Axis v1 is that the
“rpc/encoded” format is used in SOAP encoding instead of the “documen-
t/literal” format. “rpc/encoded” has been deprecated by the WS-I Basic
Profile2, which is the baseline for inter-operable Web services. Axis v1 is
for instance not inter-operable with Axis v2 (a redesign of Axis v1, with
the support for SOAP1.2/REST/and other newer standards). In addition
Axis v.1.2 and older versions (like the port to OSGi which is used in Ubi-
Collab) have problems with the changes in the XML-handling that were
introduced with Java v1.5.x (JAX-RPC 1.1 specifications). Since no newer
OSGi port exists of Axis v1, a patched port must be used or the full Axis
libraries and its dependencies must be included in the bundles created. The
general impression is that continuing using Axis v1 will lead to a minefield
of compatibility issues. For these reasons an Engineering Project with
the mission to find a new SOAP provider should be initiated. If no better
SOAP implementation can be found for OSGi, perhaps moving to another
container should be considered?

Node discovery Some means of node discovery is sorely missed in UbiCollab.
The result of this is that a combination storing addresses in text-files and
users entering the address manually in text-fields in the user interface is
being used by the current projects. A possible candidate that has been
mentioned and that will provide the mean to communicate and collaborate
in a P2P manner is JXTA3. The use of WS-Discovery for this purpose
should also be considered, as this discovery protocol has many desirable
features. An implementation of WS-Discovery in combination with a UDDI
registry could prove to be an innovative and powerful solution. When a node
discovery solution has been found, some of the current platform components
are likely to need modifications to comply with the new solution. This part
should perhaps also be included in the same project, to ensure consistency.

Security - Identity management During the work some technologies that should
be considered for security and identity management have been encountered.

1http://ws.apache.org/axis/ (Visited 03.05.2007)
2http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile (Visited

03.05.2007)
3http://www.jxta.org/ (Visited 03.05.2007)

93

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

• One that looks promising is the “Windows CardSpace”, which is an
identity management system. It is built on top of the Web Services
Protocol Stack (WS-*). This implies that any technology or platform
which supports WS-* protocols, such as UbiCollab, can be integrated
with CardSpace. Windows CardSpace offers the possibility to choose
the identity being used for a particular transaction. CardSpace is part
of, and seem to rely on the .NET 3.0 framework. Currently there
are plugins for Internet Explorer, Netscape and Opera which support
it. Even if the platform selection differs from UbiCollab, many of the
ideas and concepts seem interesting.

• Another project which could be interesting is the“Higgins Trust Frame-
work”1. This is an open source project within the Eclipse Founda-
tion. The purpose of Higgins is to provide “an extensible, platform-
independent, identity protocol-independent, software framework to sup-
port existing and new applications that give users more convenience,
privacy and control over their identity information”.

1http://www.eclipse.org/higgins/ (Visited 05.06.2007)

94

Chapter 8

References

[1] ASTRA, Annex i, description of work (Contract for specific targeted re-
search or innovation project, September 2005).

[2] L.-F. Cabrera and C. Kurt, Web services architecture and its specifications:
Essentials for understanding ws-* (Microsoft Press, Redmond, WA, USA,
March 2005).

[3] W. K. Edwards, V. Bellotti, A. K. Dey, and M. W. Newman, ‘The challenges
of user-centered design and evaluation for infrastructure’, in CHI ’03: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems
(ACM Press, New York, NY, USA, 2003), pp. 297–304.

[4] C. A. Ellis, S. J. Gibbs, and G. Rein, ‘Groupware: some issues and experi-
ences’, Commun. ACM 34 (1991), no. 1, pp. 39–58.

[5] B. A. Farshchian and M. Divitini, Ubicollab - white paper (IDI/NTNU
Technical Report. Published on the UbiCollab web site, June 2007).
http://mediawiki.idi.ntnu.no/wiki/ubicollab/.

[6] K. Finkenzeller, Rfid handbook: Fundamentals and applications in contact-
less smart cards and identification (John Wiley & Sons, Inc., New York, NY,
USA, 2003).

[7] S. Haller and S. Hodges, Auto-id centre white paper: The need
for a universal smartsensor network (Published online, avail-
able from the Auto-ID Labs homepage, November 1st 2002).
http://www.autoidlabs.org/uploads/media/CAM-AUTOID-WH-007.pdf.

[8] S. Hodges and D. McFarlane, Radio frequency identification: technol-
ogy, applications and impact (Published by Auto-ID Lab, Cambridge Uni-
versity, UK. Downloadable from www.autoidlabs.org, September 2005).
http://www.autoidlabs.org/uploads/media/.

[9] T. Iso, S. Kurakake, and T. Sugimura, ‘Visual-tag reader: Image capture
by cell phone camera’, in Proceedings of the 2003 International Conference

95

CHAPTER 8. REFERENCES

on Image Processing (ICIP 2003), Barcelona, Catalonia, Spain, 2 (IEEE
Computer Society, Washington, DC, USA, September 2003), pp. 557–560.

[10] K. S. Johansen and M. A. Børke, User friendly and community oriented
service discovery in a pervasive awareness system (Depth study, Norwegian
University of Science and Technology, Trondheim, Norway, Autumn 2006).

[11] A. Juels, R. L. Rivest, and M. Szydlo, ‘The blocker tag: selective blocking of
rfid tags for consumer privacy’, in Proceedings of the 10th ACM conference
on Computer and communications security (CCS ’03) (ACM Press, New
York, NY, USA, 2003), pp. 103–111.

[12] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and
M. Spasojevic, ‘People, places, things: Web presence for the real world’,
Mobile Networks and Applications 7 (2002), no. 5, pp. 365–376.

[13] C. D. Knutson and J. M. Brown, Irda principles and protocols: The irda
library, 1 (MCL Press, May 2004).

[14] J. Landt, ‘The history of rfid’, Potentials, IEEE
24 (October-November 2005), no. 4, pp. 8–11.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1549751.

[15] C. Laverton, Social tagging of services to support end user development in
ubiquitous collaborative environments (Master’s thesis, Norwegian University
of Science and Technology, Trondheim, Norway, Spring 2007).

[16] C. H. Mosveen and A. Brustad, Ubicollab: A service architecture for sup-
porting ubiquitous collaboration (Master’s thesis, Norwegian University of
Science and Technology, Trondheim, Norway, Spring 2006).

[17] H. Ogata and Y. Yano, ‘Context-aware support for computer-supported
ubiquitous learning’, in Proceedings of the 2nd IEEE International Work-
shop on Wireless and Mobile Technologies in Education (WMTE’04) (IEEE
Computer society, 2004), pp. 27–34.

[18] C. Schwarz, Ubicollab - platform for supporting collaboration in a ubiquitous
computing environment (Master’s thesis, Norwegian University of Science
and Technology, Trondheim, Norway, Spring 2004).

[19] M. L. Segelvik and E. L. Segelvik, Location awareness in ubicollab (Master’s
thesis, NTNU, Spring 2007).

[20] S. Siltanen and J. Hyväkkä, ‘Implementing a natural user interface for cam-
era phones using visual tags’, in AUIC ’06: Proceedings of the 7th Aus-
tralasian User interface conference (Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia, 2006), 113–116.

[21] N. Varchaver, ‘Scanning the globe’, Fortune Magazine 149 (2004), no. 11,
pp. 144–148.

96

CHAPTER 8. REFERENCES

[22] P. Välkkynen, M. Niemelä, and T. Tuomisto, ‘Evaluating touching and point-
ing with a mobile terminal for physical browsing’, in Proceedings of the 4th
Nordic conference on Human-computer interaction (NordiCHI ’06) (ACM
Press, New York, NY, USA, 2006), pp. 28–37.

[23] M. Weiser, ‘The computer for the 21st century’, Scientific American (1991),
pp. 94–104.

97

CHAPTER 8. REFERENCES

98

Appendix A

Task description

This appendix presents the original task description, and the final one. The
original task description has been updated somewhat during the semester and
changed from Norwegian to English. The original task description was specified
in Norwegian because of an inadvertency.

A.1 Original task description

Brukersentrert og gruppebasert tjenestepublisering og oppdagelse i
UbiCollab

Tjenesteoppdagelse (eng: service discovery) i UbiCollab tar for seg hvordan tjen-
ester dynamisk kan oppdages i brukerens miljø. Mens tjenesteoppdagelse tradis-
jonellt har fokusert p̊a maskin-maskin interaksjon har UbiCollab en helt an-
nen tilnærming ved å la brukerne selv styre publisering, oppdagelse og deling
av tjenester. Tjenesteoppdagelse er en kjernekomponent i UbiCollab og i allst-
edsnærværende samhandlingsteknologi (eng: ubiquitous computing) generelt.

Denne oppgaven skal søke å finne en løsning for administraring av tjenester
for UbiCollab plattformen. Den enkelte bruker skal være i stand til å admin-
istrere tjenestene p̊a sine UbiCollab noder og utføre oppgaver som installasjon,
publisering, fjerning og overv̊aking av tjenester. Leveranser for oppgaven skal
best̊a av en rapport basert p̊a strukturen for UbiCollab ingeniørprosjekter, samt
implementasjon av løsningen. Dette prosjektet er en del av UbiCollab. See
http://research.idi.ntnu.no/ubicollab

A.2 Final task description

User-centered and collaborative service management in UbiCollab:
Design and implementation

UbiCollab is a platform for supporting ubiquitous collaboration between people.

99

APPENDIX A. TASK DESCRIPTION

UbiCollab is being developed in cooperation between the Norwegian University
of Science and Technology, Department of Computer and Information Science,
and Telenor Research & Innovation. The UbiCollab project is open source, and
interacts with a number of European projects and with industrial partners inter-
nationally.

This task is related to service discovery and management, which is an important
part of the UbiCollab’s service oriented architecture. The candidate will propose
and implement a solution for a user-centered and collaborative service manage-
ment system for UbiCollab. The solution proposal will be founded on a previous
study on this subject where a requirement specification and high level architecture
were proposed.

100

Appendix B

Functional Requirements

In this appendix the functional requirements derived during the autumn project
[10] is presented. Some of the wording have also been rephrased because of
differences in vocabulary and concepts between UbiCollab and ASTRA. The re-
quirements are listed in tables and grouped according to which functionality they
are closest related to. Each requirement is tagged by IDs named FR-Yx, where
Y is a letter separating the categories of requirements, and x is the number of
the requirement (and FR is an abbreviation for Functional Requirement). This
will improve the traceability of the requirements.

Individual priority-assignment for each requirement have also been performed.
Each requirement is weighted by High (H), Medium (M) or Low (L) importance,
to help prioritize if any requirements are in conflict or not reasonable1 to solve.
In addition, the anticipated degree of difficulty (abbreviated as DoD) is given
to better understand the extent of implementing each requirement. This will be
weighted the same way as importance, where high means “high difficulty” and
low means “low difficulty”.

In addition to this, common service management tasks were investigated in the
autumn report but not considered a part of the service discovery solution. Due to
this functional requirements for management were not elicited. Since this project
need these requirements, they have been elicited as part of this project. These
requirements have been listed in a table like the others, and can be found in Table
B.4

Moreover, a set of infrastructure related requirements were elicited in the autumn
report. These requirement were directed toward the overall architecture for AS-
TRA, and covered the assumptions that had to be made about other parts of the
system. In UbiCollab these are not needed because the necessary architectural
choices have already been made. Therefore the infrastructure related require-
ments have been removed, except for one. This requirement have been renamed
from “FR-I7” to “FR-O11” and can be found in Table B.5.

1Some requirements may take to much time to solve, related to how important they are. If
this is the case, it is assumed to be unreasonable to include them in the solution.

101

APPENDIX B. FUNCTIONAL REQUIREMENTS

A few additional requirements have also been elicited because of the specific
support for physical discovery and the generic support for other service discovery
protocols. These have been added to the functionality group in Table B.2.

Table B.1: Functional Requirements: Service publishing

ID Description DoD Priority
FR-P1 The module must provide a Web service interface for

service publishing
H H

FR-P2 A service must be published to be available for other
users

L H

FR-P3 The publishing process must be user initiated, and pos-
sible to cancel on user request

M H

FR-P5 The module must require that mandatory parts of the
service description are correctly filled in before the ser-
vice is published

M M

FR-P6 The technical details of the registration process should
be as transparent to the user as possible

M M

FR-P7 It must be possible to unpublish services M M

Table B.2: Functional Requirements: Service search

ID Description DoD Priority
FR-S1 The solution must provide a Web service interface for

service search
H H

FR-S2 The solution must aid the user in the service search H H
FR-S3 Services must be discoverable across logical and geo-

graphical borders
H H

FR-S4 A user must not be allowed to discover a service which
is not visible to him or her

M H

FR-S5 Service discovery must support both proxy services and
self contained services

L H

FR-S6 The returned service descriptions must contain informa-
tion about the service state

M M

FR-S7 The progress of the search must be communicated to the
user

H M

FR-S8 The results of a search should be ranked by relevance H L
FR-S9 The solution should log events related to service discov-

ery operations
M M

FR-S10 The solution should support physical service discovery H H
FR-S11 The solution should provide a generic interface for ser-

vice discovery protocols
H H

102

APPENDIX B. FUNCTIONAL REQUIREMENTS

Table B.3: Functional Requirements: Service description

ID Description DoD Priority
FR-D1 Services must be described by searchable attributes L H
FR-D2 Service descriptions must conform to one common spec-

ification
H H

FR-D4 User specific information must be typed into the service
description by the owner of the service

L M

FR-D7 Context information (like location) must be used in the
service description when relevant

M M

FR-D8 Context attributes in the service description must be dy-
namic, and should be updated when the context changes

H M

FR-D9 As much information as possible should be predefined in
service descriptions

M L

FR-D10 Service discovery matching must happen based on user-
friendly service description attributes

M L

FR-D11 Services residing in a service domain should be described
with UbiCollab space properties

L M

Table B.4: Functional Requirements: Service Management

ID Description DoD Priority
FR-M1 It must be possible to install services M H
FR-M2 It must be possible to start and stop services L H
FR-M3 It must be possible to edit service properties M M
FR-M4 Service properties must be stored persistently M M
FR-M5 It must be possible to retrieve the registered information

about one or more services
M M

FR-M6 It must be possible to retrieve the state information
about a service

M M

FR-M7 It must be possible to uninstall services L M

103

APPENDIX B. FUNCTIONAL REQUIREMENTS

Table B.5: Functional Requirements: Other

ID Description DoD Priority
FR-O1 It must be possible to use the service discovery and man-

agement solution on a limited device, such as a PDA
M H

FR-O2 The user must be given an overview of which services are
registered in the service domain, and who have access to
them

M H

FR-O3 The dynamic properties of the registered service must
be changeable at all times

H H

FR-O4 The solution must provide access to service information
like state, visibility and user access

M H

FR-O5 The service must be automatically unpublished when
the service is uninstalled

M M

FR-O6 There should be a log system for service discovery and
management events

L M

FR-O7 It must be possible to lock a service for one user at a
time

M M

FR-O8 All service contract negotiations and their results must
be logged

M L

FR-O9 The solution must provide a interface where services can
update their states

H L

FR-O10 The owner of a service must be able to break the contract
at any time, disabling a service possibly in use

M L

FR-O11 Commercial actors must be allowed to provide services M M
FR-O12 It must be possible to retrieve logged information M L

104

Appendix C

Application programming
interfaces

This appendix will provide a detailed description of the APIs for the components
in the service management solution.

C.1 Service Domain Manager API

getServiceList()

Return a list of the services which have been installed on this UbiNode through
the Service Domain Manager. The method returns an XML-formatted String

with all installed services. The xml-structure used to represent the returned
service list is the format for advertised services, with additional attributes as
described in Section 4.2.1.

getInfoAboutService(Long bundleID)

Gets all registered information about the specified service. The xml-structure
used to represent the returned service is the format for advertised services, with
additional attributes as described in Section 4.2.1. ”INVALID BUNDLE ID” will
be returned if an invalid bundle id is provided.

Parameters:

• bundleID - the bundle ID the bundle is registered with.

installService(String url, String friendlyName)

Installs a service (bindle). Takes the URL to a service bundle and the new service
name as parameters. The name of the service is optional, the default name defined

105

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

in the bundle will be used if none is provides. Will return a human readable text
describing the outcome of the installation.

Parameters:

• friendlyName - the friendly name of the service.

• url - The Url to the service bundle.

checkIfServiceExist(String uri)

Checks if a given service exist. Takes the service URI as parameter and uses this
to determine if the service exist. The service URI is unique for each service in
the domain. Returns true if the service exists, false otherwise.

Parameters:

• uri - the service uri

removeService(Long bundleID)

Removes the service proxy which is specified by the given bundleID. The method
will return true if the service exist and are successfully removed, false otherwise.

Parameters:

• bundleID - The URI for the service which is to be removed

updateServiceProperties(parameter list - see below)

Method to update the properties for the service identified by the bundle ID. Will
return true if the bundle id is found and update is OK, false otherwise.

Parameters:

• bundleID - the bundle ID for the service to update

• friendlyName - The service friendly name

• description - the textual description of the service

• space - The description for the space this service will be active in

• spaceId - The space id for the space this service will be active in

startService(Long bundleID)

Method to start the installed service identified by the provided bundle ID. Returns
true if the service is successfully started, false otherwise.

Parameters:

106

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

• bundleID - the bundle ID for the bundle providing the service

stopService(Long bundleID)

Method to stop the installed service identified by the provided bundle ID. Returns
true if the service is successfully stopped, false otherwise.

Parameters:

• bundleID - the bundle ID for the bundle providing the service

getLogItems(int logLevel, int numItems)

Read from the log and return selected log items in a XML-formatted string.
The XML-Schema the returned list of log-elements will conform to, have been
described in Figure 4.7

Parameters:

• logLevel - The log level to include in the report. The valid values are:

• 0=“DEBUG”

• 1=“INFO”

• 2=“WARNING”

• 3=“ERROR”

• 4=“FATAL”

• numItems - The number of log items to include in the returned list

setActiveSpace(int SpaceID, boolean stopOtherServices)

Activates all services belonging to the space identified by the provided id. Also
provides the option to stop the other services. The method will return true, if
all proxies adhering to the space ID is started, false otherwise.

Parameters:

• SpaceID - the ID for the Space to activate

• stopOtherServices - true to stop the other service proxies, false othervise

C.2 Service Discovery Manager Plugin API

registerSDPlugin(String protocolName)

107

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

This method will register a Service Discovery plugin with the Service Discovery
Manager. When a plugin is registered a unique ID is returned, which will be
used to identify the plugin in further communication. The registration will have
a lifespan of 30 seconds, and will be reset to 30 seconds every time getClien-

tRequest or registerService is invoked. When this time runs out the plugin
session will be garbage collected (by the housekeeper thread).

Parameters:

• protocolName - the name of the protocol, e.g. UPnP or RFID

getClientRequest(int pluginID)

This method will be used by plugins to fetch the ClientRequests registered by
client(s). The returned list of clientrequests will be formated according to the
XML Schema in Figure 4.13.

Parameters:

• pluginID - the plugins identifier (as issued by Discovery Manager)

registerService(parameter list - see below)

This method is provided for service discovery plugins to register services which
matches client requests, with the Service Discovery Manager. The service will
be added to the queue identified by the provided searchRequestID. This method
provides many options as parameters and all of these will not be applicable for
all plugins. The ones not used should simply contain an empty string.

Parameters:

• friendlyName - The user-friendly name of the service

• descriptionURI - URI for service description (e.g. the URL to a WSDL-
file)

• type - The service type (classification)

• owner - The person/company/responsible for the service

• description - Tags (words or short sentences) describing the service

• location - Location where the service can be found

• searchRequestorID - the ID for the search request queue to add this service
to

• protocolID - The id for the service discovery protocol plugin

• serviceURI - The URI to invoke the service

108

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

C.3 Service Discovery Manager Client API

registerClient()

This method allows any authenticated user (e.g. client application) to register as
a client with the Service Discovery Manager (SDM). When a client is registered
a service queue is created and assigned to him. Upon registration the client will
also be assigned a unique ID which will be used for identification when sending
messages/communicating with the Discovery Manager. The unique ID to be used
for identification when communicating with the Discovery Manager will be the
return parameter.

getServices(int clientID)

Return the found services from the list identified by the provided search request
ID. After the results are returned they will be removed from the queue. The
XML-Schema for the returned service list is displayed in Figure 4.5.

Parameters:

• clientID - the clients identifier (as issued by Discovery Manager)

getSDPlugins()

Method to return a list containing the plugins registered with the Discovery
Manager. Useful method for clients who want to know which service discovery
protocols they have support for. Returns a XML-formatted list with the plugins,
conforming to the XML-Schema shown in Figure 4.11.

registerClientRequest(parameter list - see below)

This method allows any authenticated user (client) to register a search request
with the Service Discovery Manager. The manager will then make this request
available to all registered plugins. All the parameters provided will be used for
matching against advertisements.

Parameters:

• owner - the Owner of the service to search for

• type - the service type to search for

• description - the description of the service

• location - the location of the service

• clientID - the unique client ID for the client issuing the request. When
referenced by plugins they will name this id as requesterID.

• name - the name of the service to search for

109

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

getLogItems(int logLevel, int numItems)

Read from the log and return selected log items in a XML-formatted string.
The XML-Schema the returned list of log-elements will conform to, have been
described in Figure 4.7

Parameters:

• logLevel - The log level to include in the report. Valid arguments are:

• 0=“DEBUG”

• 1=“INFO”

• 2=“WARNING”

• 3=“ERROR”

• 4=“FATAL”

• numItems - The number of log items to include in the returned list

C.4 Service Registry API

getServices()

This method returns an XML-formatted list containing all the services in the
registry. The returned XML-document will conform to the XML-Schema for
service lists displayed in Figure 4.5.

getServices(parameter list - see below)

Method to return a list of service adverticements matching the criteria specified
in the query. The different search criteria can be freely combined and also partial
hits will be returned. Criteria not used should contain an empty string or the
null property. The returned XML-document will conform to the XML-Schema
for service lists displayed in Figure 4.5.

Parameters:

• type - The type of service, or a partial type specification

• owner - The the owner of the service, or a part of the owners name

• description - The textual description of the service

• location - The location for the service, or a part of the location

• name - The name of the service, or a part of it

getServiceDetails(String serviceUri)

110

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

Gets all registered information about the service specified by the provided ser-

viceUri. The returned XML-document will conform to the XML-Schema for
services displayed in Figure 4.4.

Parameters:

• serviceUri - The service URI that uniquly identifies the service

getServiceDetails(int serviceId)

Gets all registered information about the service specified by the provided ser-

viceUri. The returned XML-document will conform to the XML-Schema for
services displayed in Figure 4.4.

Parameters:

• serviceId - The service Id that uniquly identifies the service

addService(parameter list - see below)

Adds a service advertisement to the registry. This method can be used to add
new services which can be found by other users. The method returns true if the
service advertisement is successfully updated, false otherwise.

Parameters:

• type - The type of service

• owner - The the owner of the service

• description - A textual description of the service

• location - The location for the service

• name - The name of the service

• descriptionURI - The URI pointing to the service description for the ser-
vice

• serviceURI - The URI where the service can be contacted, or found

updateService(parameter list - see below)

Updates the properties of a given service advertisement in the service registry.
The key used to select which service to update is the serviceID. The method
returns true if the service advertisement is successfully updated, false otherwise.

Parameters:

• serviceId - The service Id that uniquly identifies the service

• type - The type of service

111

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

• owner - The the owner of the service

• description - A textual description of the service

• location - The location for the service

• name - The name of the service

• descriptionURI - The URI pointing to the service description for the ser-
vice

• serviceURI - The URI where the service can be contacted, or found

deleteService(int serviceId)

Removes the service advertisement which matches the provided serviceId pa-
rameter.

Parameters:

• serviceId - The service Id that uniquly identifies the service

getLogItems(int logLevel, int numItems)

Read from the log and return selected log items in a XML-formatted string.
The XML-Schema the returned list of log-elements will conform to, have been
described in Figure 4.7

Parameters:

• logLevel - The log level to include in the report. The valid values are:

• 0=“DEBUG”

• 1=“INFO”

• 2=“WARNING”

• 3=“ERROR”

• 4=“FATAL”

• numItems - The number of log items to include in the returned list

C.5 X10 demonstrator API

stopSerialConnection()

Stops the ongoing serial connection and releases resources in use.

startSerialConnection(String comPort)

112

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

Start a serial connection to a CM11A serial X10 controller, on the provided COM
port.

Parameters:

• comPort - the serial communication port to use, must be adapted to the
platform running the proxy. E.g. “COM1”, “COM5” or “/dev/tty/s2”.

sendCommand(String house, int unit, boolean turnOn)

Method to send an X10 on/off command to a device identified by the given address
(house + unit). This method assumes that a serial connection to a cm11a X10
device already have been started. Nothing will happen if a serial connection have
not been opened.

Parameters:

• unit - The unit address, valid range are 1..16

• house - The house address, valid range are A..P

• turnOn - true to turn the power on, false to turn the power off

dimDevice(String house, int unit, int cmnd, int percentage)

Method to send dim or brighten commands to the X10 device identified by the
given address (house + unit). This method assumes that a serial connection to
a cm11a X10 device already have been started. Nothing will happen if a serial
connection have not been opened.

Parameters:

• cmnd - Valid values are 0 for dim or 1 for brighten

• unit - The unit address, valid range are 1..16

• house - The house address, valid range are A..P

• percentage - the level to change, valid range between 1 and 100 (percent-
age)

113

APPENDIX C. APPLICATION PROGRAMMING INTERFACES

114

Appendix D

Gestalt Principles

The Gestalt Principles refer to theories of visual perception. These theories are
widely used in the HMI (Human Machine Interface) field, and attempts to de-
scribe how people tend to organize visual elements into groups or unified wholes
when certain principles are applied. In this appendix some of the principles which
must be considered while planning the user interface will be described.

D.1 Similarity

The principle of similarity states that things which share visual characteristics
such as shape, size, color, texture, value or orientation will be seen as belonging
together. People will often perceive them as a group or pattern.

Figure D.1: Similarity in color, form and size

Looking at the leftmost figure displayed in Figure D.1, we see that the green
boxes give the impression of a horizontal line, and that they somehow seem to
be grouped together or have something in common although all the boxes are
equidistant from each other.

From the other two figures we can see that similarities in form and size also gives
a sense of belonging together. From the second figure displayed we can also see
that a shape which is different from the other can give a sense that it is not a
part of a group.

115

APPENDIX D. GESTALT PRINCIPLES

D.2 Proximity and Continuity

The principle of proximity states that things which are close together will be seen
as belonging together. The closer two or more visual elements are, the greater
the probability they will be seen as a group or pattern. In the leftmost figure
in Figure D.2 the elements which are close together seem to form a group, even
though all the boxes are equal in size and color.

Figure D.2: Proximity and Continuity

The principle of continuity predicts the preference for continuous figures. When
we look at the second figure shown in Figure D.2 we perceive the figure as two
crossed lines instead of 4 lines meeting at the center.

D.3 Symmetry

The principle of symmetry describes the instance where the whole of a figure is
perceived rather than the individual parts which make up the figure.

Figure D.3: Symmetry between elements

In the first of the figures displayed in D.3 you can either see two overlapping
diamonds, or three objects (a small diamond and two irregular objects above and
below it). If you are perceiving according to the principle of symmetry, you will
probably see two diamonds overlapping. In the second figure you will most likely
see a cross first, instead of a group of equal sized boxes.

116

Appendix E

Overview of the IDBlue RFID
Device

IDBlue is a 13.56 MHz RFID reader, in the shape of a pen with dimension 112mm
x 25mm x 16mm and a weight of 50 grams. It uses Bluetooth technology to
wireless link up with most Bluetooth compliant devices, such as PC’s, PocketPC’s
and SmartPhones. This appendix is intended to provide a quick introduction to
the features and capabilities of the IDBlue device.

E.1 Device Aspects

• RFID reader for near-field applications, typical 20-40mm reading distance.

• Support Bluetooth Bluetooth R© 1.1, Class 2. Maximum range approxi-
mately 15m.

• Requires Microsoft or Widcomm Bluetooth protocol stack.

• Manufacturer states Microsoft Windows 2000/XP or Microsoft Windows
Mobile w/Bluetooth Support as requirement, but states that the device
have been deployed successfully on other platforms as well.

• The device can operating both connected to a PC and as a standalone unit
(capable of storing up to 1000 tags).

• Supports the following RFID operations:

117

APPENDIX E. OVERVIEW OF THE IDBLUE RFID DEVICE

• Select tag ID

• Read data

• Write data

• .NET driver support for .NET Framework 1.1 and compatibility with 2.0
(including Compact Framework) is provided and supported by manufac-
turer.

In addition, documentation of interest for development purposes are provided by
the manufacturer1. This documentation includes:

• Developer’s Guide for .NET

• API Reference Guide for .NET

• Technical Specification

• Serial Protocol Definition

E.2 LED States

Table E.1 lists the various LED states that provide feedback to the user as to
the current operating state of the IDBlue device. The IDBlue’s LED is often the
only feedback provided by the pen, and as such it provides valuable information
for development.

Table E.1: LED states for IDBlue RFID Pen

LED Behavior Connection
Status

Battery Sta-
tus

RFID Opera-
tion

Green, Single-
flash

Unconnected Battery Ok None

Green, Double-
flash

Connected Battery Ok None

Red, Single-flash Unconnected Battery Low None
Red, Double-
flash

Connected Battery Low None

Amber, Solid N/A N/A In progress
Red, Solid N/A N/A Failed
Green, Solid N/A N/A Success
Red, Rapid flash Device needs Firmware Update.

1http://www.cathexis.com/support/downloads.aspx (Visited 20.05.2007)

118

Appendix F

Installing the Java
Communications API

In this appendix a short description of the operations needed to install the Java
Communications API Version 2.0 on a Microsoft Windows operating system will
be provided. The problem related to this package is that the developer, Sun
Microsystems1, does not support this product for Microsoft Windows since 2002.
The product has not been found available for download from their Internet site
either, so it must be downloaded from elsewhere. This seems to be a common
problem with this package. However, newer versions have been developed for the
Solaris and Linux operating systems and are available for download from Sun.

Two sites where the Microsoft Windows version of the product can be down-
loaded are:

• http://www.tip.no/tini/javacomm20-win32.zip (Visited 10.06.2007)

• http://www.oreilly.com.tw/bookcode/java_io/ (Visited 10.06.2007)

In the following it is assumed that the Java version in use is Sun JDK 1.6.0. If
another Java version is being used, this must be made taken into consideration.
The steps needed for installation are:

1. Download the javacomm20-win32.zip package

2. Unpack the files to C:\Programfiler\Java\jdk1.6.0

3. Copy win32com.dll from C:\Programfiler\Java\jdk1.6.0\commapi to
C:\Programfiler\Java\jdk1.6.0\bin

4. Copy javax.comm.properties from C:\Programfiler\Java\jdk1.6.0\commapi
to C:\Programfiler\Java\jdk1.6.0\jre\lib

1http://java.sun.com/products/javacomm/index.jsp (Visited 10.06.2007)

119

http://www.tip.no/tini/javacomm20-win32.zip
http://www.oreilly.com.tw/bookcode/java_io/

APPENDIX F. INSTALLING THE JAVA COMMUNICATIONS API

5. Copy comm.jar from C:\Programfiler\Java\jdk1.6.0\commapi to
C:\Programfiler\Java\jdk1.6.0\jre\lib\ext

6. That should be it. The Java comm API is now installed.

120

Appendix G

Dependencies

This appendix describes the dependencies for components in the service manage-
ment solution.

G.1 Service Registry

The Service Registry depends on a MySQL database being installed. Default
connection settings are set to:

Name: “ubicollab”
Username: “ubi”
Password: “ubi4ALL”
Table: “serviceregistry”

The following SQL script will remove any existing table with the name “ser-
viceregistry”, and generate a new table with the correct fields:

DROP TABLE IF EXISTS ‘ubicollab‘.‘serviceregistry‘;

CREATE TABLE ‘ubicollab‘.‘serviceregistry‘ (

‘ID‘ int(10) unsigned NOT NULL auto_increment,

‘ServiceURI‘ varchar(145) NOT NULL,

‘DescriptionURI‘ varchar(145) default NULL,

‘Name‘ varchar(45) default NULL,

‘Type‘ varchar(80) default NULL,

‘Location‘ varchar(80) default NULL,

‘Owner‘ varchar(45) default NULL,

‘Description‘ varchar(145) default NULL,

PRIMARY KEY (‘ID‘)) ENGINE=InnoDB DEFAULT CHARSET=latin1;

121

APPENDIX G. DEPENDENCIES

G.2 Service Discovery Plugin for RFID

This plugin requires that the following package is installed on the PC or PocketPC
which will be running the plugin:

Windows PC Franson Bluetools for PC

PocketPC Franson Bluetools for ARM, x86 PocketPC

The required assemblies (DLL files) from these packages can be extracted and in-
cluded in the folder where the Plugin runs, in order to provide a more lightweight
distribution. It should however be noted that the Franson Bluetools bundled with
the IDBlue RFID pen is not freely redistributable.

The complete list of assemblies required for different platforms and different .NET
versions are described in the “IDBlue.NET Developer Guide” that comes bundled
with the IDBlue pen (or can be downloaded from the Cathexis Innovations web-
site1).

1http://www.cathexis.com (Visited 13.06.2007)

122

