
June 2007
Jon Atle Gulla, IDI
Terje Brasethvik, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Ontology Learning - Suggesting
Associations from Text

Gøran Sveia Kvarv

Problem Description

With the introduction of semantic technologies in industry and government agencies, large-scale
ontologies need to be constructed and maintained. Typically this work is done partly manually, but
in most cases it would be too expensive to depend on manual labor for this process. What is
needed is a tool set that helps us build ontologies efficiently and update them as the domain
changes. Currently, the information system group at IDI at NTNU is experimenting with different
tools to extract keywords and phrases from text.

What is lacking in the current tool set is a way of discovering relations between words and phrases
from text. The goal of this project is to implement and evaluate an algorithm for such an
association analysis that can suggest possible ontological relations. The algorithm should be
evaluated against an existing ontology.

The association algorithm should build upon, or make use of, several of the existing tools. At a
later stage, the tools should be integrated within an overall framework, for this particular project,
we will experiment with using GATE - General Architecture for Text Engineering.

Assignment given: 19. January 2007
Supervisor: Jon Atle Gulla, IDI

Abstract

In many applications, large-scale ontologies have to be constructed and maintained.
A manual construction of an ontology is a time consuming and resource demanding
process, often involving some domain experts. It would therefore be beneficial to
support this process with tools that automates the construction of an ontology.

This master thesis has examined the use of association rules for suggesting associa-
tions between words in text. In ontology learning, concepts are often extracted from
domain specific text. Applying the association rules algorithm on the same text,
the associations found can be used to discover candidate relations between concepts
in an ontology. This algorithm has been implemented and integrated in GATE, a
framework for natural language processing. Alongside the association rules algo-
rithm, several information extraction and natural language processing techniques
have been implemented, in which this algorithm is built upon. This has resulted in
a framework for ontology learning.

A qualitative evaluation of the associations found by the system has shown that
the associations found by the association rules algorithm has promising results for
detecting relations between concepts in an ontology. It has also been found that this
algorithm is dependent on an accurate extraction of keywords. Further, a subjective
evaluation of GATE has shown that it is suited as a framework for ontology learning.

i

Preface

This report documents the work done in my master thesis at the Information Sys-
tems Group of the Department of Computer and Information Science, Faculty of
Information Technology, Mathematics and Electrical Engineering at the Norwegian
University of Science and Technology.

I would especially like to thank my supervisor Terje Brasethvik for useful feedback
and comments during my work. I would also like to thank his companion, Anders
Kofod-Petersen for his passionate discussions and comments. Further, I would like
to express my gratitude to Professor Jon Atle Gulla for his guidance. Finally, I would
like to thank my fellow master degree candidates Knut Vidar Siem, Martin Riegel,
Claes Lyth Walsø and Hans Magnus Wold for their participation in the evaluation,
and Anders Ganes for being a great motivator.

Trondheim, June 2007

Gøran Sveia Kvarv

iii

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Objectives . 2

1.3 Assumptions . 2

1.4 Approach . 3

1.5 Report Structure . 4

2 Theory and Background 5

2.1 Ontologies . 5

2.1.1 Relation Mechanisms in Ontologies 6

2.2 Ontology Learning . 6

2.3 Information Extraction and Text Mining 7

2.3.1 Natural Language Processing 8

2.3.2 Keyword Extraction . 9

2.3.3 Cosine Similarity . 9

2.4 Framework for Natural Language Processing 10

2.4.1 GATE . 10

3 Mining Associations from Text 13

3.1 Association Rules . 13

3.2 Applying the Association Rules Algorithm on Text 18

3.2.1 Structuring text . 18

3.2.2 Term Extraction and Filtering 19

v

Contents

3.2.3 Textual Entities as Transactions 20

3.3 Related examples . 20

4 Implementation 21

4.1 Architecture . 21

4.2 Natural Language Processing Module 22

4.2.1 Lemmatizer . 23

4.2.2 NounPhrase . 25

4.3 Index Module . 27

4.4 Association Rules Module . 28

4.4.1 Generator . 29

4.4.2 Rule . 31

4.5 Ontology Module . 33

4.5.1 Concept . 33

5 Evaluation Method 35

5.1 Concepts . 36

5.1.1 Evaluation Strategy . 36

5.2 Associations . 37

5.2.1 Evaluation Strategy . 37

5.3 GATE . 39

6 Evaluation Results 41

6.1 Concepts Evaluation Results . 41

6.2 Associations Evaluation Results . 44

6.2.1 Overlap between cosine similarity 44

6.2.2 Results for each group . 45

6.3 GATE . 61

6.4 Evaluation Summary . 62

7 Conclusion 65

vi

Contents

8 Further Work 67

8.1 Concept Extraction . 67

8.2 Building Concept Hierarchies . 68

A Acronyms and Abbreviations 69

B Building Concept Hierarchies 71

C Digital Appendix 73

References 77

vii

List of Figures

3.1 The process of finding association rules between terms in a document
collection. 19

4.1 Architecture . 22

4.2 NLP system . 23

4.3 Sequence diagram, lemmatizer module 24

4.4 Screenshots of the initialization parameters of the lemmatizer 25

4.5 NounPhrase pseudo code . 25

4.6 Screenshots of the initialization parameters of the noun phrase extractor 26

4.7 Screenshot of the resulting annotations from running the noun phrase
component in GATE . 27

4.8 Sequence diagram, association rules module 28

4.9 FrequentItemSetGenerator . 29

4.10 FrequentItemSetGenerator . 30

4.11 Pseudo code for generating rules . 31

4.12 Screenshot of the initialization parameters of the association rules
component. 32

4.13 Screenshot of the resulting association rules from running the associ-
ation rules component in GATE. 33

4.14 Pseudo code for finding environments 34

5.1 A venn diagram of the groups resulting from the overlap between the
related concepts found by the system and the cosine similarity method. 39

6.1 Concept evaluation, manually constructed ontology 42

6.2 Concept evaluation, semi-automatically constructed ontology 43

ix

List of Figures

6.3 Cosine similarity overlap . 45

6.4 Chart of the evaluated related concepts found by the system for each
of the chosen concepts. 50

6.5 Chart of the evaluated related concepts found by cosine similarity for
each of the chosen concepts. 56

6.6 Chart of the evaluated related concepts found by both the system and
cosine similarity for each of the chosen concepts. 59

B.1 Concept Hierarchy pseudo code . 71

x

List of Tables

3.1 The transaction database . 14

3.2 Candidate item set, C1 . 14

3.3 Frequent item set, L1 . 15

3.4 Candidate item set, C2 . 15

3.5 Frequent item set, L2 . 16

3.6 Candidate item set, C3 . 16

3.7 Frequent item set, L3 . 16

3.8 Candidate item set, C4 . 17

3.9 Frequent item set, L4 . 17

3.10 The association rules produced by the apriori algorithm 18

5.1 Overview of the evaluation . 36

5.2 Possible evaluation scores of related concepts 39

6.1 Related concepts found only by the system for the concept ”cost”. . . 46

6.2 Related concepts found only by the system for the concept ”control”. 47

6.3 Related concepts found only by the system for the concept ”scope”. . 48

6.4 Related concepts found only by the system for the concept ”risk”. . . 48

6.5 Related concepts found only by the system for the concept ”project
plan”. 49

6.6 Related concepts found only by cosine similarity for the concept ”cost”. 51

6.7 Related concepts found only by cosine similarity for the concept ”con-
trol”. 52

6.8 Related concepts found only by cosine similarity for the concept ”scope”. 53

xi

List of Tables

6.9 Related concepts found only by cosine similarity for the concept ”risk”. 54

6.10 Related concepts found only by cosine similarity for the concept ”project
plan”. 55

6.11 Related concepts found by both the system and cosine similarity for
the concept cost. 57

6.12 Related concepts found by both the system and cosine similarity for
the concept control. 57

6.13 Related concepts found by both the system and cosine similarity for
the concept scope. 58

6.14 Related concepts found by both the system and cosine similarity for
the concept risk. 58

6.15 Related concepts found by both the system and cosine similarity for
the concept project plan. 59

6.16 Group summary . 60

xii

Chapter 1

Introduction

At the Department of Computer and Information Science (IDI) at the Norwegian
University of Science and Technology (NTNU) there has been substantial work in the
field of semantic technologies. One of the researched areas is ontology learning. The
goal of ontology learning is to automatically extract relevant concepts and relations
from a document collection or other kinds of data sets. This master thesis is a part
of the ongoing research in the field of ontology learning.

1.1 Problem

The following is a quote of the problem description:

“With the introduction of semantic technologies in industry and govern-
ment agencies, large-scale ontologies need to be constructed and main-
tained. Typically this work is done partly manually, but in most cases it
would be too expensive to depend on manual labor for this process. What
is needed is a tool set that helps us build ontologies efficiently and update
them as the domain changes. Currently, the information system group
at IDI at NTNU is experimenting with different tools to extract keywords
and phrases from text.

What is lacking in the current tool set is a way of discovering relations
between words and phrases from text. The goal of this project is to imple-
ment and evaluate an algorithm for such an association analysis that can
suggest possible ontological relations. The algorithm should be evaluated
against an existing ontology.

The association algorithm should build upon, or make use of, several of
the existing tools. At a later stage, the tools should be integrated within

1

1.2. Objectives

an overall framework, for this particular project, we will experiment with
using GATE - General Architecture for Text Engineering.”

The traditional ontology engineering approach is a time consuming process. It would
therefore be beneficial to be able to automatically extract concepts and relations.
At IDI, work has been made for automatic extraction of concepts.

Ontologies are explicit conceptualizations of a domain. The importance of ontologies
has been recognized in fields and industries as diverse as semi-conductor manufac-
turing, aircraft design, enterprise process management, heterogeneous database inte-
gration, knowledge engineering and planning, to name a few. The role of ontologies
is to capture domain knowledge and provide a commonly agreed upon understand-
ing of a domain. The common vocabulary of an ontology, defining the meaning of
terms and their relations, is usually organized in a taxonomy and contains modeling
primitives such as concepts, relations, and axioms [Staab and Maedche, 2000].

This master thesis will take the work done a step further, and examine the discovery
of relations between concepts extracted from text.

1.2 Objectives

With the problem description as a basis, three main objectives have been extracted:

1. Implement an association rules algorithm for suggesting associations from text.

2. Evaluate the results against existing ontology.

As the associations found by the association rules algorithm can be used to
discover relations between concepts in an ontology, it would be valuable to
evaluate these associations against relations found in an ontology.

3. Evaluate the usability of GATE as an overall framework for ontology learning.

1.3 Assumptions

Based on the problem description and the objectives, the following assumptions are
taken:

• The association rules algorithm should be integrated in GATE. As a conse-
quence the association rules algorithm should be written in Java.

2

Chapter 1. Introduction

• Necessary tools that the association rules algorithm build upon, such as key-
word extraction, will be provided.

• Ontologies based on the book “A Guide To The Project Management Body Of
Knowledge” [PMI, 2004] and the first six chapters of “Organizational Project
Management Maturity Model” [PMI, 2003], developed by Grimnes [2006] will
be used for evaluation of the associations found.

1.4 Approach

A manual construction of an ontology is a time consuming and resource demanding
process, often involving some domain experts. It would therefore be beneficial to
support this process with tools that automates the construction of an ontology. In
ontology learning, concepts are automatically extracted from domain specific text.
Applying the association rules algorithm on the same text, the associations found can
be used to discover candidate relations between concepts in an ontology. Previous
research within the fields of information extraction and natural language processing
constitutes a starting point. The association rules algorithm will build upon methods
from these fields. The following approach will be carried out:

• Extract candidate keyphrases from the text

The text will be processed with natural language processing components to
find noun phrases.

• Weight and filter candidate keyphrases.

The candidate keyphrases will be weighted and filtered according to some
weighting scheme.

• Index the keyphrases

The keyphrases will be indexed. That is, each keyphrases will have a mapping
to each of the documents where the keyphrase occur. This index will be used
by the association rules algorithm.

• Extract associations between the resulting keyphrases.

The association rules algorithm will be used to discover associations between
the keyphrases found in the text. By using domain specific text, these asso-
ciations could be used to discover relations between concepts in an ontology
within the same domain.

As the associations found by the association rules algorithm can be used to discover
relations between concepts in an ontology, a qualitative evaluation of the associations
found will be carried out.

3

1.5. Report Structure

1.5 Report Structure

The structure of this report is as follows:

• Chapter 2: Theory and Background

This chapter introduces important theory and background for ontology learn-
ing. Relevant techniques of information extraction and natural language pro-
cessing are presented.

• Chapter 3: Mining Associations from Text

This chapter will further elaborate on the approach for finding associations
from text.

• Chapter 4: Implementation

This chapter presents the implementation of associations rules algorithm and
other necessary components that the association rules algorithm is built upon.

• Chapter 5: Evaluation Method

This chapter describes the chosen evaluation method for the evaluation of the
associations found. It will in detail describe how the evaluation will be carried
out.

• Chapter 6: Evaluation Results

This chapter presents and discusses the evaluation results.

• Chapter 7: Conclusion

This chapter presents concluding remarks for the work done.

• Chapter 8: Further Work

This chapter discusses possible directions for further work. A technique for
improving concept extraction is presented, alongside a method for building
concept hierarchies.

Appendices:

• Appendix A: Acronyms and Abbreviations

• Appendix B: Building Concept Hierarchies

This appendix contains pseudo code of how to use association rules to build
concept hierarchies.

• Appendix C: Digital Appendix

4

Chapter 2

Theory and Background

At IDI at NTNU, substantial work has been made in the field of semantic technolo-
gies. One of the researched areas are ontology engineering, as described in Gulla
[2006]. A manual construction of an ontology is a time consuming and resource
demanding process, often involving some domain experts. It would therefore be
beneficial to support this process with tools that as far as possible automates the
construction of an ontology. This chapter introduces background and theory that is
important in the field of ontology learning.

2.1 Ontologies

An ontology can be seen as a body of formally represented knowledge, a specifi-
cation of a conceptualization. This means the objects, concepts and other entities
that exist in an area of interest and the relationship among them [Gruber, 1995].
In a philosophical view this means the representation of what exist in the world.
Brasethvik [2004] outlines two common causes for developing an ontology in infor-
mation systems:

• To establish a shared understanding of a domain and thereby facilitate sharing
of information therein.

• To enable the construction of intelligent or “semantic” applications.

The last item can be seen in context of Semantic Web, where there is a need of a rep-
resentation of domain knowledge that allows machines to perform useful reasoning
tasks on documents.

5

2.2. Ontology Learning

2.1.1 Relation Mechanisms in Ontologies

An ontology is often considered as an object model represented by a set of concepts
that are taxonomically related by the transitive ISA relation and non-taxonomically
related by a user named relation, for example hasPart [Maedche and Staab, 2000].

Web Ontology Language (OWL) is a language for creating ontologies and is one
of the many recommendations provided by World Wide Web Consortium (W3C)
related to Semantic Web. OWL is built to facilitate Extensible Markup Language
(XML)’s ability to define customized tags and Resource Description Framework
(RDF)’s flexible ability to represent data as objects and relationship between them.
OWL has four important features that can be used to define relations [W3C, 2000]:

Class

A class defines a group of objects or concepts that belong together. Classes
can be specialized by using subClassOf, as described below.

subClassOf

Stating that a Class is a subclass of another gives the ability to create hierar-
chies of classes that are either specializations or generalizations.

Property

Properties can be used to define relationships between objects or concepts.
For a class Person, an example of a property is hasChild.

subPropertyOf

Hierarchies of properties can be made by stating that a property is a subprop-
erty of one or more other properties. For a class Person that has a property
hasRelative, an example of a subproperty can be hasSibling.

In addition properties can have stated characteristics and restrictions. Classes repre-
sent concepts that are taxonomically related while properties define non-taxonomically
relationships between concepts.

2.2 Ontology Learning

A manual construction of an ontology is a time consuming and resource demanding
process, often involving some domain experts. The reason for this is as Gulla [2006]
points out, that the traditional ontology engineering approach involves:

• Form a team of ontology and domain experts.

6

Chapter 2. Theory and Background

• The ontology and domain experts model the domain with concepts and rela-
tionships.

• The ontology is tested against domain knowledge by the domain experts.

• The ontology experts verify the internal quality and application quality.

At IDI, there has been research in the field of ontology learning, supporting the
traditional ontology engineering approach with tools that automatically extract can-
didate concepts from domain text for automatic ontology construction. Automatic
keyphrase extraction was done by Borch [2005], where candidate keyphrase were
extracted with a linguistic filter. The candidate keyphrases were then weighted and
ranked, which yielded the final keyphrases. Grimnes [2006] constructed an ontol-
ogy semi-automatically for Statoil, in the domain of project management. This was
based on the work done by Borch [2005]. The extracted keyphrases were given to a
domain expert who marked the keyphrases as irrelevant, ok or good. The keyphrases
marked as irrelevant were removed and the resulting keyphrases were used to build
the ontology. A manually constructed ontology was also created as a “gold stan-
dard” reference ontology. This ontology was built based on the traditional ontology
engineering approach.

Finding non-taxonomic relations between concepts in an ontology is not a well-
researched area [Maedche and Staab, 2000]. Association rules is a data mining
technique that can be used to detect entities that co-occur. This has mostly been
applied to databases. In this work, it will be tried to use association rules to look
for words that co-occur in a document in a document collection. This could indicate
a relation between those co-occurring words. In an ontology learning context, the
association rules could provide suggestions of relations between concepts. What
kind of relation this will be, will have to be provided manually in a later stage of
the process. Association rules can therefore help the tradiontional ontology learning
approach. Association rules will be described in detail in Chapter 3.

Tools for ontology learning relies heavily on the extraction of domain concepts (ter-
minology) and categorization of these concept. Therefore both information extrac-
tion and text mining are important for an ontology learning system. The next section
will describe some important information extraction and text mining techniques.

2.3 Information Extraction and Text Mining

The goal of information extraction is to extract structured information from un-
structured text. Some subtasks of information extraction are among others, named
entity recognition, co-reference and terminology extraction. Text mining is closely
related to information extraction as it tries to find relevant patterns and trends.

7

2.3. Information Extraction and Text Mining

However, text mining often involves the process of deriving linguistic features from
the text and removal of words that are considered unimportant for mining. A typical
task of text mining is categorization of the text.

2.3.1 Natural Language Processing

Manning and Shutze [2002] states that ”The ultimate goal of research on Natu-
ral Language Processing is to parse and understand language.” Natural Language
Processing (NLP) is a subfield of linguistics that consists of automatic generation
and understanding of natural human language. NLP systems analyze the text to
find prahse structures and group words according to their syntactic and semantic
type. Information extraction and text mining are often dependent of NLP. For
example, text mining could be used to find relations between nouns in a text. This
implies that the text is preprocessed by a Part-of-Speech tagger (see below) which
groups the words in grammatical categories. The most important NLP components
that will be used in this project are:

Tokenizer

Tokenization is usually one of the first steps of text processing. It divides
the input text into units, called tokens. These tokens are either a word or
something else like a number or a punctuation mark [Manning and Shutze,
2002].

Lemmatizer

A lemmatizer tries to find a word’s lemma, its base form. For example the
lemma of the word “processes” is “process”. This is important in information
extraction and text mining because “process” and “processes” would be con-
sidered two different words without lemmatization. Lemmatization is often
achieved by looking up a given word in a dictionary or a lemma list. This is in
contrast with the related process of stemming, where a word’s stem is found
by stripping off affixes, usually based on rules. Lemmatization is usually pre-
ferred in favor of stemming, because it is often difficult to derive the original
word from a stem. An example of this is “manager” and “management”, which
both are reduced to the stem “manag”.

Part-of-Speech Tagger

Tagging is a process that consists of labeling each word in a sentence with its
appropriate part of speech, for example nouns, verbs, adjectives and preposi-
tions. This is based on a predefined tagging scheme. One of the most common
schemes for tagging is to train the tagger using an already tagged document
collection, or corpus. This resolves word ambiguity that may appear using
a simple approach like looking up a word in a dictionary to find its part-of-
speech, since a word can belong to several morphological classes.

8

Chapter 2. Theory and Background

The most common approaches for training a tagger is rule-based and statistical
models.

Phrase detection

Because languages have constraints on word order, grouping of words are or-
ganized in units called phrases. A noun phrase is a syntactic unit of a sentence
where information about the noun, the head, is gathered. Noun phrases nor-
mally consist of zero or more adjectives, the noun and perhaps some preposi-
tions. In a verb phrase on the other hand the verb is the head. The elements
in a verb phrase are words that depend syntactically on the verb, except the
noun [Manning and Shutze, 2002]. Phrase detection is often achieved by rules
that define patterns of part-of-speech tags. Another approach is to use statis-
tical measures where a phrase is defined as a sequence of words that co-occur
frequently.

2.3.2 Keyword Extraction

Keywords in a document are words that describe the content of a document in
a good way. Thereby, keywords can make important suggestions to concepts in
an ontology when looking at a domain specific document collection. Keywords
are often extracted by using a weighting scheme. One basic approach for term
weighting is to use the term frequency (tf) in a document. This method just counts
the number of times the term appears in a document. Usually the term frequency
is normalized to prevent a higher term frequency in longer documents. The higher
the term frequency, the more likely is it that the word captures important aspect
of the content of a document. A more sophisticated scheme is to use the term
frequency-inverse document frequency (tf-idf). If a term occurs frequently in a
document, but infrequently in the document collection (corpus), a high weight will
be assigned to that term in the document. The weight is therefore a statistical
measure used to evaluate the importance of a term in a document in a corpus. This
method consequently filters out terms that are common for the document collection
[Manning and Shutze, 2002].

2.3.3 Cosine Similarity

In the same way as association rules, cosine similarity is a method that can be used to
look for relations between entities. Cosine similarity is a measurement of similarity
between any pair of words, that can be used for contextual categorization of words.
From an ontology point of view this measure can provide relations between concepts,
that means two concepts that are strongly connected. The words are represented
as vectors in a multi-dimensional space. This is normally represented by a word-by-
word matrix, where each entry in the matrix contains the number of times word i

9

2.4. Framework for Natural Language Processing

co-occur with word j. Similarity between two vectors are found by evaluating the
angle between the two vectors. The less the angle, the higher the similarity. The
cosine similarity measure can be calculated as follows [Manning and Shutze, 2002]:

cos(~x, ~y) =

n∑
i=1

xiyi√
n∑

i=1
x2

i

√
n∑

i=1
y2
i

2.4 Framework for Natural Language Processing

For different document collections, different situations and different purposes, dif-
ferent analyses will be relevant. It is thus desirable to place the association rules
analysis in an environment or a framework that can nest all the required processing
components (analyses) in various sequences, where each component uses the result
from previous executed components.

Earlier work at IDI at NTNU has provided a set of components, often implemented in
independent and stand-alone applications, written in several different programming
languages. There has also been an attempt to create a workbench for such analyses
with a protocol for communication between components and a shared file format to
gather results [Brasethvik, 2004].

2.4.1 GATE

Genreal Architecture for Text Engineering (GATE) is a framework for text analysis
developed in Java, available as open-source software [Gaizauskas et al., 1996]. The
project description states that the association rules analysis should be developed as
a component (plug-in) in GATE.

GATE is not only a framework for text engineering, it is also an architecture and a
development environment. As an architecture, it defines the organisation of a text
engineering system and assignment of responsibilities to different components. As
a framework, it provides a set of built-in processing components that can be used,
extended and customized according to specific needs. As a development environment
it provides simple building blocks that developers can use to build new modules
(plug-ins). This is facilitated through GATE’s component based model and the
GATE Application Programming Interface (API) [Cunningham et al., 2002].

The provided NLP resources in GATE is tied together in a package called ANNIE,
Nearly-New Information Extraction System. These resources can be used as one unit

10

Chapter 2. Theory and Background

or used as individual components along with others. Through GATE’s graphical user
interface the user can choose which components to execute and in what order they
will be executed. ANNIE consists of the following processing components for english
text:

• Tokenizer

• Sentence splitter

• Part-of-Speech tagger

• Gazetteer

• Semantic tagger

• Orthomatcher

• Coreferencer

By running these components, a document or a corpus can be annotated and stored.
By loading an already annotated corpus the user can use the annotations for further
processing whenever he or she wants. In addition GATE comes with a large set of
plug-ins that can be loaded at any time. These include among others:

• Ontology Editor

• Machine Learning component

• WordNet component

• Information Retrieval component

• Stemmer with support for several languages

• Noun Phrase Chunker

• TreeTagger, another Part-of-Speech tagger with support for several languages

11

Chapter 3

Mining Associations from Text

This chapter describes a method for discovering associations between terms in a
document collection, by means of association rules. First the association rules algo-
rithm will be introduced and then it will be described how to apply this algorithm
on text in a document collection.

3.1 Association Rules

Association rules is a technique in data mining that are used to discover elements
that co-occur frequently within a dataset. Association rules were first introduced
in Agrawal et al. [1993], as a technique for market basket analysis, that is predict
the purchase behavior of customers. This was primarily done for a large database
of items purchased on per-transaction basis. An example of such an association rule
is the statement that 90% of the transactions that purchased bread and butter also
purchased milk.

A formal statement of the problem of mining association rules is stated in Agrawal
and Srikant [1994]:

Let I be a set of literals, called items.

Let D be a set of transactions where each transaction T is a set of items such
that T ⊆ I.

A transaction T contains X, a set of some items in I, if X ⊆ T.

An association rule is an implication of the form X ⇒ Y, where X ⊂ I, Y ⊂ I
and X ∩ Y = ∅.

13

3.1. Association Rules

A rule X ⇒ Y holds in the transaction set D with confidence c if c% of the transac-
tions in D that contain X also contain Y.

The ruleX ⇒ Y has support s in the transaction set D if s% of the transactions
in D contain X ∪ Y.

The idea is to generate all association rules that have support and confidence greater
than a user specified minimum support and minimum confidence. The most im-
portant algorithm for the generation of association rules is the Apriori algorithm,
introduced in Agrawal et al. [1993]. The algorithm finds all sets of items that have
support greater than the minimum support. These sets are called frequent item
sets. The association rules are then generated from these sets. The algorithm is
illustrated in the following section.

Example

Table 3.1 shows a transaction database with the items A, B, C, D and E. A 1
indicates that the transaction with the given transaction id (TID) contains the item.
A 0 indicates that item is not contained in the transaction.

TID A B C D E
T1 1 1 1 0 0
T2 1 1 1 1 1
T3 1 0 1 1 0
T4 1 0 1 1 1
T4 1 1 1 1 0

Table 3.1: The transaction database

Given that the minimum support is 40%. In the first pass of the algortihm, it
generates a candidate item set where the support for each set is found by counting
the number of transactions that contains the given item set. The candidate item
set, C1 is shown in Table 3.2.

Itemset X support(X)
A 100%
B 60%
C 100%
D 80%
E 40%

Table 3.2: Candidate item set, C1

14

Chapter 3. Mining Associations from Text

Since the minimum support is 40%, none of the item sets in C1 are pruned. So the
frequent item set, L1 shown in Table 3.3, is the same as C1.

Itemset X support(X)
A 100%
B 60%
C 100%
D 80%
E 40%

Table 3.3: Frequent item set, L1

In pass k the frequent item set, Lk−1, is joined by itself to produce the candidate
item set Ck , where the first k-2 in Lk−1 must match. In pass 2, k - 2 = 0, so every
item set in L1 are joined with the others. This produces C2 as shown in Table 3.4.

Itemset X support(X)
A,B 60%
A,C 100%
A,D 80%
A,E 40%
B,C 60%
B,D 40%
B,E 20%
C,D 80%
C,E 40%
D,E 40%

Table 3.4: Candidate item set, C2

Since the item set {B,E} has a support of 20% it is pruned, which results in the
frequent item set, L2 shown in Table 3.5.

15

3.1. Association Rules

Itemset X support(X)
A,B 60%
A,C 100%
A,D 80%
A,E 40%
B,C 60%
B,D 40%
C,D 80%
C,E 40%
D,E 40%

Table 3.5: Frequent item set, L2

In pass 3, the first item in the item sets must match, and these are joined. C3 is
shown in Table 3.6.

Itemset X support(X)
A,B,C 60%
A,B,D 40%
A,B,E 20%
A,C,D 80%
A,C,E 40%
A,D,E 40%
B,C,D 40%
C,D,E 40%

Table 3.6: Candidate item set, C3

The item set {A,B,E} is pruned. Table 3.7 shows the resulting L3.

Itemset X support(X)
A,B,C 60%
A,B,D 40%
A,C,D 80%
A,C,E 40%
A,D,E 40%
B,C,D 40%
C,D,E 40%

Table 3.7: Frequent item set, L3

16

Chapter 3. Mining Associations from Text

In pass 4 the two first item in the item sets must match and these are joined. C4 is
shown in Table 3.8.

Itemset X support(X)
A,B,C,D 40%
A,C,D,E 40%

Table 3.8: Candidate item set, C4

Both item sets satisfies the minimum support of 40%. This results in L4, shown in
Table 3.9.

Itemset X support(X)
A,B,C,D 40%
A,C,D,E 40%

Table 3.9: Frequent item set, L4

The algorithm terminates in pass 5 because the first three items in the two item sets
doesn’t match.

The algorithm now generates all rules. For every itemset l in frequent itemset, Lk ,
it finds subsets of size k-1. For every subset X, it produces a rule X ⇒ Y, where
Y = l - X. The rule is kept if the confidence,

support(X ∪ Y)

support(X)
(3.1)

is greater than or equal to the minimum confidence. For a minimum confidence of
80%, the rules in Table 3.10 are generated:

17

3.2. Applying the Association Rules Algorithm on Text

A,B,D -> C D,E -> A
B,C,D -> A B,D -> C
A,C,E -> D C,E -> D
A,D,E -> C D,E -> C
C,D,E -> A B -> A
A,B -> C A -> C
B,C -> A C -> A
B,D -> A D -> A
A,D -> C E -> A
C,D -> A B -> C
A,E -> C D -> C)
C,E -> A E -> C
A,E -> D E -> D

Table 3.10: The association rules produced by the apriori algorithm

3.2 Applying the Association Rules Algorithm on

Text

To apply the association rules algorithm on text, the text has to be adapted and
structured in a way that resembles a transaction with items in a database. Data
mining in a database is totally different from text mining because a database deals
with structured data, whereas text deals with unstructured data with special char-
acteristics. Another difference is the large amount of items (terms) that is found in
text in contrast to a retail database. The process of finding association rules from
text is illustrated in Figure 3.1.

3.2.1 Structuring text

Delgado et al. [2002b] states that

“The structure should reflect the way in which the user conceptualize the
domain that is described by the data.”

To find relations between terms in a document collection, the text needs to be
structured in some way. This is normally considered the first step in text mining
[Delgado et al., 2002b]. Structuring text benefits from the existing techniques of
NLP, as described in Section 2.3.1. An important aspect of text structuring is to
process the text with a Part-of-Speech tagger. This groups the words in syntactic

18

Chapter 3. Mining Associations from Text

Figure 3.1: The process of finding association rules between terms in a document collection.

categories which in turn achieves structure. The Part-of-Speech tagger has another
important meaning in text mining, namely the extraction of terms to mine. In most
cases it is not desirable to extract relations using all the words in the text. Rather, it
is desirable to mine for example nouns, noun phrases or keywords. In Haddad et al.
[2000] it was experimented with using all the terms in the document collection. The
relations discovered consisted of much noise and were not of much interest. Instead
the choice fell on nouns because nouns best capture the semantics of a document.

3.2.2 Term Extraction and Filtering

To extract relations between all words in a document collection would be too time
consuming and resource demanding, and results in too much noise as described
in Section 3.2.1. Another approach is to use keywords. Because nouns capture
the semantics of a document in a great way, these are generally used as candidate
keywords. However, these terms are then weighted and filtered using some weighting
scheme, as described in Section 2.3.2.

Term filtering is often used in conjunction with lemmatization as described in Section
2.3.1. Lemmatization prevents that words like “process” and“processes” are counted
as two unique terms, by using their lemma instead. This is of most importance when
applying weighting schemes like tf and tf-idf to extract keywords.

19

3.3. Related examples

3.2.3 Textual Entities as Transactions

The most common area of application for association rules is to mine a large database
with items contained in transactions. However textual documents do not have any
transactions. The question is then how to apply textual entities as transactions. A
number of possibilities exist, for example:

• Sentences

• Paragraphs

• Documents

For a large corpus, paragraphs and especially sentences will cause a large amount of
transactions. Both Haddad et al. [2000] and Delgado et al. [2002a] argue that the
use of documents as transactions give the best results.

3.3 Related examples

Delgado et al. [2002a] presented a system for query refinement that incorporated
text mining. When a user tries to express a query, the terms provided are often not
very specific because of the lack of domain background knowledge or the fact that
other relevant terms for the query have not yet come to the users’ mind. They used
text mining, by the use of association rules to add relevant terms to the query, by
analyzing documents retrieved by the initial query.

Words in the retrieved documents were weighted by the tf-idf and an initial set
of terms were extracted. Stop words, that is words that doesn’t have any useful
meaning, were removed and the remaining terms were stemmed. By representing a
transaction as the keywords in each document, they then executed the association
rules algorithm and added relevant words to the query.

Nørv̊ag et al. [2006] presented a system for mining association rules from text where
terms were extracted by including only nouns. Stop words were then removed and
the resulting terms were stemmed. The terms were weighted with tf-idf and the k
top-ranked terms were kept. Association rules were then mined on the basis of the
resulting terms.

20

Chapter 4

Implementation

This chapter describes the implementation of the framework for ontology learning.
As stated in the problem description, the information system group at IDI is ex-
perimenting with different tools to extract keywords and phrases. The association
algorithm should build upon, or make use of several of the existing tools. However,
as it turned out, the provided tools were implemented independently as stand-alone
applications written in several different languages, without facilitation of reuse, some
of them were not even available. As the association algorithm was to be integrated in
GATE, written in Java, the tools provided were of no use. It was therefore necessary
to reimplement these tools in a way that made them applicable for integration in a
framework such as GATE. The source code for the implementation can be found in
Appendix C.

4.1 Architecture

Figure 4.1 shows the architecture of the implemented framework. Each module is
described in the next sections.

21

4.2. Natural Language Processing Module

Figure 4.1: An overview of the implemented framework

4.2 Natural Language Processing Module

The natural language processing module is used in conjunction with GATE’s built-in
NLP components. It consists of a noun phrase extractor and a lemmatizer. Together
with the GATE NLP components, they form a NLP system as visualized in Figure
4.2.

22

Chapter 4. Implementation

Figure 4.2: The NLP system comprising of GATE’s NLP components and the imple-
mented NLP module

Each document in a corpus is analyzed and the components of the NLP system
adds its output as annotations to the document.

4.2.1 Lemmatizer

The lemmatizer module is responsible for finding the lemma of each word in a
document. This is done by looking up the word in a lemma list, which contains a
list of words and their associated lemma, made by Someya [1998]. The lemma list
is found in Appendix C. If the current word looked up is not found in the lemma
list, the lemma is set to the word as is.

The following java classes are contained in the lemmatizer module:

• EnglishDictionary

• EnglishLemmatizer

• Word

• WordNotFoundException

Figure 4.3 shows a sequence diagram of how the EnglishLemmatizer finds a word’s
lemma.

23

4.2. Natural Language Processing Module

Figure 4.3: Sequence diagram for getting a words lemma

The lemma list is read by the EnglishLemmatizer and each word in the list is added to
the EnglishDictionary. The EnglishLemmatizer looks up a certain word, and a Word
object is returned. If the word is not found, a WordNotFoundException is thrown. The
EnglishLemmatizer then calls the getLemma-method of the Word object and the lemma is
returned

The lemmatizer is implemented as a component in GATE. Figure 4.4 show a screen-
shot of the initialization parameters of the lemmatizer. A shown in the figure,
the lemmatizer uses the “Token” (word) annotation resulting from running GATE’s
built-in tokenizer. The “outputFeatureName”, here “lemma” is added as an feature
to the “Token” annotation, containing the lemma of the word.

24

Chapter 4. Implementation

Figure 4.4: Screenshots of the initialization parameters of the lemmatizer

4.2.2 NounPhrase

The noun phrase module is responsible for finding terms consisting of successive
nouns, for example “project team management”. This is important when extracting
keyphrases used as concept in an ontology. The noun phrase module is dependent on
GATE’s part-of-speech tagger. After the part-of-speech tagger has annotated each
word in each document with its correct part-of-speech, the noun phrase module
fetches each word labeled as a noun and searches for successive nouns. The scheme
used is Noun (Noun)*.

The pseudo code for the algorithm can be seen in Figure 4.5.

NounPhrase pseudo code

1 for each word in document
2 i f insideNounPhrase i s t rue
3 i f word l abe l ed as ”Noun”
4 add word to nounPhrase
5 else
6 insideNounPhrase i s f a l s e
7 end i f
8 else i f word l abe l ed as ”Noun”
9 insideNounPhrase i s t rue

10 add word to nounPhrase
11 end i f
12 end for

Figure 4.5: Pseudo code for the algorithm for finding noun phrases.

The following java classes are contained in the noun phrase module:

• NounPhraseExtractor

The noun phrases found is added as an annotation to each document in the corpus

25

4.2. Natural Language Processing Module

analyzed. The noun phrase extractor is implemented as a component in GATE.
Figure 4.6 shows a screenshot of the initialization of the noun phrase extractor. The
most notable parameters are “annotationName” and “outputFeatureLemmaName”.
The “annotationName” is the name of the annotation added to the document. This
can be seen in the right corner of Figure 4.7, which shows the resulting annota-
tions after running this component. It should be noted that the annotation viewer
is a built-in feature in GATE, connected to a document. The “outputFeatureLem-
maName” is the the name of the feature of the annotation, and contains the noun
phrase’s lemma. This can be seen right above the annotations in Figure 4.7. This
is actually a convenience duplication of the feature that the lemmatizer produces.

Figure 4.6: Screenshots of the initialization parameters of the noun phrase extractor

26

Chapter 4. Implementation

Figure 4.7: Screenshot of the resulting annotations from running the noun phrase compo-
nent in GATE

4.3 Index Module

The index module is responsible for indexing keywords found in the documents.
This is done by extracting statistics from each documents. In addition, stop words
are removed. These stop words are contained in a user specified file. Keywords are
extracted by using the term frequency weighting scheme described in Section 2.3.2
on the noun phrases found by the noun phrase module. The term frequency-inverse
document frequency (tf-idf) is not used because it is found by dividing the number
of all documents by the number of documents containing the term, and then taking
the logarithm of that quotient. The tf-idf would then have led to filtering of common
important noun phrases in the corpus, since the ontology learning system is to be
used on domain specific text, where the probability of a noun phrase occurring in
many documents is high. The stop word list used in this work can be found in
Appendix C.

27

4.4. Association Rules Module

The following java classes are contained in the index module:

• StopWords

• Document

• DocumentStatistics

• Index

4.4 Association Rules Module

The association rules module uses the keywords found in the index for mining as-
sociation rules. It has two submodules. The generator module generates the rules,
whereas the rule searcher module is responsible for searching after specific rules.
Figure 4.8 show a sequence diagram of how the association rules module uses the
index module for extracting rules.

Figure 4.8: Sequence diagram of how the association rules module uses the index module
for extracting rules.

28

Chapter 4. Implementation

4.4.1 Generator

The generator module implements the the association rules algorithm described in
Section 3.1. The algorithm implemented uses the foundation of the algorithm found
in Agrawal et al. [1993]. However, it is inspired by the java implementation described
in Margahny and Mitwaly [2005].

The following java classes are contained in the generator module:

• FrequentItemSetGenerator

• AssociationRulesGenerator

Figure 4.9 and Figure 4.10 shows the core methods from the FrequentItemSetGen-
erator class.

FrequentItemSetGenerator code snippet

1 private void f indFrequentItemSets () {
2 f indF i r s tFrequent I t emSet s () ;
3 while (doneFindingItemSets == f a l s e) {
4 generateFrequentItemSets () ;
5 }
6 }
7
8 private void f indF i r s tFrequent I t emSet s () {
9 database = index . getDocumentIndex () ;

10 TreeMap<String , ArrayList<Integer>> f r equent I temSets = new TreeMap<String ,
ArrayList<Integer >>() ;

11
12 I t e r a t o r i t e r a t o r = database . entrySet () . i t e r a t o r () ;
13 while (i t e r a t o r . hasNext ()){
14 Entry<String , ArrayList<Integer>> entry = (Entry<String , ArrayList<

Integer >>) i t e r a t o r . next () ;
15 String key = entry . getKey () ;
16 ArrayList<Integer> value = entry . getValue () ;
17 i f (value . s i z e () >= minimumSupport) f r equent I t emSets . put (key , value) ;
18 }
19 l i s tOfFrequent I t emSet s .add(f r equent I temSets) ;
20 pass++;
21 }

Figure 4.9: Code snippet from FrequentItemSetGenerator class.

29

4.4. Association Rules Module

FrequentItemSetGenerator code snippet

1 private void generateFrequentItemSets () {
2 int nofMatchingItems = pass − 2 ;
3 TreeMap<String , ArrayList<Integer>> prev iousFrequentItemSets = (TreeMap<

String , ArrayList<Integer >>)
l i s tOfFrequent I t emSet s . get (pass−2) ;

4
5 TreeMap<String , ArrayList<Integer>> currentFrequentItemSets = new TreeMap<

String , ArrayList<Integer >>() ;
6 ArrayList<String> keys = getKeys (prev iousFrequentItemSets) ;
7
8 i f (nofMatchingItems == 0) {
9 for (int i = 0 ; i < keys . s i z e () ; i++) {

10 String currentKey = keys . get (i) ;
11 for (int j= i +1; j < keys . s i z e () ; j++){
12 String nextKey = keys . get (j) ;
13 String newKey = jo in I t emSet s (currentKey , nextKey) ;
14 ArrayList<Integer> suppor tL i s t = getSupportL i s t (

previousFrequentItemSets , currentKey , nextKey) ;
15 i f (suppor tL i s t . s i z e () >= minimumSupport) currentFrequentItemSets

. put (newKey , suppor tL i s t) ;
16 }
17 }
18 }
19 else {
20 for (int i = 0 ; i < keys . s i z e () ; i++) {
21 String currentKey = keys . get (i) ;
22 String [] cur rentKeySp l i t = itemSetToArray (currentKey) ;
23 String itemToMatch = ”” ;
24
25 for (int x = 0 ; x < nofMatchingItems ; x++) {
26 itemToMatch += currentKeySp l i t [x] ;
27 }
28
29 for (int j= i +1; j < keys . s i z e () ; j++){
30 String nextKey = keys . get (j) ;
31 String [] nextKeySpl i t = itemSetToArray (nextKey) ;
32 String matchingItem = ”” ;
33 String itemToAdd = nextKeySpl i t [nofMatchingItems] ;
34
35 for (int y = 0 ; y < nofMatchingItems ; y++) {
36 matchingItem += nextKeySpl i t [y] ;
37 }
38
39 i f (itemToMatch . equa l s (matchingItem)) {
40 String newKey = jo in I t emSet s (currentKey , itemToAdd) ;
41 ArrayList<Integer> suppor tL i s t = getSupportL i s t (

previousFrequentItemSets , currentKey , nextKey) ;
42 i f (suppor tL i s t . s i z e () >= minimumSupport)

currentFrequentItemSets . put (newKey , suppor tL i s t) ;
43 }
44 }
45 }
46 }
47 i f (currentFrequentItemSets . s i z e () != 0) l i s tOfFrequent I t emSet s .add(

currentFrequentItemSets) ;
48 else doneFindingItemSets = true ;
49 pass++;
50 }

Figure 4.10: Code snippet from FrequentItemSetGenerator class.

The algorithm runs as follows:

The database TreeMap is loaded with the index (described in Section 4.3). This
database contains each keyphrase and an ArrayList with each document that con-
tains the word. The size of the ArrayList is therefore the support of each keyphrase.

The first frequent item set is found by iterating over the database and adding every
keyphrase and its associated ArrayList that has support over or equal to a given

30

Chapter 4. Implementation

threshold (minimum support) to a list of frequent item sets. This list of frequent
item sets are added to a list that holds the list of frequent item sets generated in
each pass.

For every pass the algorithm joins the previous list of frequent item sets by itself
such that the pass-2 first items in the set matches. The ArrayList of the two joined
item sets are compared, adding each common document from the two, to form a
new ArrayList that now holds the support of the resulting itemset. If the support is
greater than or equal to the minimum support the item set is added to the current
list of frequent item sets.

The algorithm proceeds until there are no matching pass-2 item sets.

The advantage of this algorithm compared to the one found in Agrawal et al. [1993],
is that the database is loaded in to memory and the algorithm thereby won’t have
have to read the support of an item set from disc. This increases speed significantly.
Another great advantage is that there is no need for generating candidate item sets
as stated in both Agrawal et al. [1993] and Margahny and Mitwaly [2005]. This is a
consequence of the former advantage, since the support of the newly joined item set
is found at once it is generated, and the item set therefore can be removed instantly
if the support is below the minimum support.

After generating the frequent item sets the AssociationRulesGenerator class gen-
erates the association rules from the frequent item sets. The pseudo code for this
algorithm is illustrated in Figure 4.11.

FrequentItemSetGenerator code snippet

1 for (i = 0 ; i < number o f pas se s ; i++)
2 get l i s t o f f r equent item s e t s from pass i
3
4 for each item set in l i s t o f f r equent item s e t s
5 for each item in item set
6 l e f t hand o f r u l e = item set − item
7 right hand o f r u l e = item
8 i f support o f item set div ided by support o f l e f t hand > minmum

con f idence
9 keep ru l e

10 end i f
11 end for
12 end for
13 end for

Figure 4.11: Pseudo code for generating association rules from frequent item sets.

4.4.2 Rule

The rule module is responsible for looking up certain rules generated by the generator
module, either by searching on the left hand term, the right hand term or both. It
also keeps track of information such as confidence and support for each rule.

31

4.4. Association Rules Module

The following java classes are contained in the rule searcher module:

• Rule

• RuleSearcher

The association rules module is implemented as a component in GATE. Figure 4.12
shows the initialization of this component. As described earlier in this section, the
association rules component uses the index module in the background. The index
module can any annotations in a document. This is set with the “annotaionName”
parameter. Here it is chosen to index and extract rules based on the “NounPhrase”
annotation. Other important parameters for association rules component are “mini-
mumSupport”, “minimumConfidence”, “nofFrequentTerms” and “stopWordFileList”.
Minimum support and minimum confidence were described in Section 3.1. “nofFre-
quentTerms” is the number of terms (here noun phrases) from each document in the
document collection that is used to extract association rules. The “stopWordList-
File” parameter is the path to file containing the stop words, that is words that will
be excluded from the computation of rules.

Figure 4.12: Screenshot of the initialization parameters of the association rules component.

Figure 4.13 shows a screenshot of the association rules resulting from running the
association rules component. This visual resource was implemented specifically for
the association rules component.

32

Chapter 4. Implementation

Figure 4.13: Screenshot of the resulting association rules from running the association
rules component in GATE.

4.5 Ontology Module

For now, the ontology module only consist of one submodule, concept. The idea is
that the ontology module should be expanded in the future with other modules that
use the associated concepts found by the system, incorporated with the ontology
editor found in GATE.

4.5.1 Concept

The concept module is responsible for finding all the associated concepts for each of
the concepts extracted by the system. [Haddad et al., 2000] defines the environment
of a concept to be the set of concepts related to it. More formally, let S be the set
of concepts used in the association rules, X⇒Y a rule. Then the environment of X

33

4.5. Ontology Module

is:

Env(X) = {Y ∈ S | X⇒Y }

By applying this for every rule found by the system and adding the right hand side
of the rule to the environment of the left hand side, all the associated concepts for
each concept will be found. Figure 4.14 shows the pseudo code of the process.

Pseudo code for finding environments

1 for (i = 0 ; i < number o f pas se s ; i++)
2 get l i s t o f f r equent item s e t s from pass i
3
4 for each item set in l i s t o f f r equent item s e t s
5 for each item in item set
6 l e f t hand o f r u l e = item set − item
7 right hand o f r u l e = item
8 i f support o f item set div ided by support o f l e f t hand > minmum

con f idence
9 keep ru l e

10 end i f
11 end for
12 end for
13 end for

Figure 4.14: Pseudo code for finding environments from the rules.

The following java classes are contained in the concept module:

• Concept

• EnvironmentGenerator

34

Chapter 5

Evaluation Method

This chapter describes a formal objective method of evaluation. The goal of this
evaluation is to evaluate the associations found by the association rules algorithm.
As the concepts extracted by the system is used as input to the associations rules
algorithm, these concepts therefore directly influences the associations found. The
following will be evaluated:

• The concepts extracted by the system

• The associations found by the system

To perform this evaluation there have to exist some comparison foundation. The
following data foundation is provided:

• Text from the book “A Guide To The Project Management Body Of Knowl-
edge” (PMBOK) [PMI, 2004] and the first six chapters of “Organizational
Project Management Maturity Model” [PMI, 2003], split into 76 documents.

• A manually constructed ontology built upon PMBOK.

• A semi-automatically constructed ontology built upon PMBOK.

• Results from cosine similarity calculations between the concepts in the manu-
ally constructed ontology.

The system will be tested with PMBOK as input. Table 5.1 shows which of the
provided data the concepts and the associations will be compared with.

35

5.1. Concepts

Concepts Associations
Manually constructed ontology X
Semi-automatically constructed ontology X
Cosine similarity results X

Table 5.1: Overview of the evaluation

5.1 Concepts

For a best possible evaluation of the concepts found by the system, they ought
to be compared to some “gold standard” for the given domain or approved by a
domain expert. However, none of these were available. The only available material
for evaluation is the work done by Grimnes [2006] which was based on upon the
same domain and the same input text. This will be described in further detail in
the next section. The evaluation of the concepts found by the system is important
because these concepts are the input of the association rules algorithm, and the
associations found will be a direct consequence of the concepts. Knowledge about the
overlap between the concepts found by the system and the concepts in the manually
constructed ontology is therefore important for the evaluation of the associations
found. This will be described in further detail in Section 6.2. As concept extraction
was not an important part of this project, the solution is rather simplified with a
lot of improvement potentiality. The main focus was the association rules.

5.1.1 Evaluation Strategy

The concepts found by the system will be compared with the concepts found in both
the manually constructed ontology and the semi-automatic constructed ontology
found in Grimnes [2006], as described in Section 2.2. The concepts in the ontologies
are extracted from the same set of documents, described in the beginning of the
chapter, used as input for the system the system. The manually constructed ontol-
ogy contains 142 concepts approved by a domain expert. The semi-automatically
constructed ontology is used for comparing the method for extracting concept used
in the system and the method used in Grimnes [2006]. The ontology contains 106
concepts. Since the system uses the lemma of the concepts, the concepts found in
the two ontologies will be lemmatized before the comparison is performed. The two
ontologies can be found in Appendix C

The overlap will be tested in the following way:

1. Check for perfect match between the concepts.

36

Chapter 5. Evaluation Method

Each concept found by the system will be evaluated for equality between the
concepts found in the ontologies.

2. If not a perfect match, check for abstraction match.

The concept “project management team” has two abstraction levels, “manage-
ment team”on the first level and“team”on the second level. If a given concept
contained in the ontologies is not found among the concepts found by the sys-
tem, the given concept will be evaluated whether its abstraction is found by
the system. For example, if the ontology contains the concept “project team”
and this concept is not among the concepts found by the system, the concept
will be evaluated whether “team” is found by the system. This yields a partial
match of the concept.

5.2 Associations

The evaluation of the associations found by the system is the most important part
of the evaluation. Extraction of associations between concepts has been the main
objective for this project. The association rules algorithm outputs a set of rules that
indicates an association between two or more concepts. The associations found ought
to be evaluated by a domain expert for a best possible evaluation. As described in
the beginning of this chapter, a domain expert was not available. Another approach
for finding related concepts is the cosine similarity model described in Section 2.3.3.
Solskinnsbakk [2006] performed a cosine similarity test between the concepts in the
manually constructed ontology found in Grimnes [2006]. The results from these tests
will be used for evaluation of the associations found by the system. However, there
is no knowledge whether the relations found by cosine similarity test are good. Also,
since similarity were calculated between the concepts in the manually constructed
ontology, the overlap between them and the concepts found by the system could
bias the results. The association found by the system and the results from the
cosine similarity test will therefore be evaluated by 4 master students, in the lack
of a domain expert. Since project management is a rather general domain and
the master students have some experience with project management from different
projects, this should be good enough to see trends in the approach. This will be
described in further detail in the next section. The cosine similarity results can be
found in Appendix C.

5.2.1 Evaluation Strategy

As described in Section 6.2, the cosine similarity results from Solskinnsbakk [2006]
will be used for evaluation of the relations. The associated concepts found by the
system will be compared the top 50 related concepts from the cosine similarity

37

5.2. Associations

results. Five of the concepts found by the system will be evaluated. The randomly
chosen concepts are “control”, “scope”, “cost”, “risk” and “project plan”.

The overlap will be tested in the same way as for the concept evaluation:

1. Check for perfect match between the related concepts.

For each of chosen concepts, all the associated concepts will be evaluated for
equality of the related concepts found by the cosine similarity method.

2. If not a perfect match, check for abstraction match.

If the given concept is not among the related concepts found by the system,
the given concept will be evaluated whether its abstraction is found, in the
same manner as the concept evaluation.

Three important questions arise:

1. Are the associations found by the system, but not found by the cosine similarity
good or bad?

2. Are the associations found by the cosine similarity, but not found by the system
good or bad?

3. Are the associations found by both methods good?

Based on these questions the results from the overlap evaluation will be split into
three groups:

• Group 1: Related concepts found only by the system, not by cosine similarity.

• Group 2: Related concepts found only by cosine similarity, not by the asso-
ciation rules.

• Group 3: Related concepts found by both.

Figure 5.1 illustrates these three groups, resulting from the overlap between the
related concepts found by the system and the cosine similarity method.

38

Chapter 5. Evaluation Method

Figure 5.1: A venn diagram of the groups resulting from the overlap between the related
concepts found by the system and the cosine similarity method.

As the described earlier the associations found by the system and the related con-
cepts found by the cosine similarity test will be evaluated by 4 master students at
IDI. For each of the 5 chosen concepts, the associated concepts found will be eval-
uated for relatedness by the students. The possible scores are illustrated in Table
5.2.

2 Very related
1 Related
0 Not related

Table 5.2: Possible evaluation scores of related concepts

By comparing the results according to each group described above, the evaluation
can give an indication of the better method of association rules and cosine similarity.
It would at least indicate how well suited the association rules are as a method for
finding associations between concepts.

The results from the evaluation by the 4 master students can be found in Appendix
C.

5.3 GATE

One of the objectives of this project was to evaluate how well suited GATE is as
a framework for ontology learning. A common framework for ontology learning is
important because:

• Ontology learning utilizes several different processing components.

39

5.3. GATE

• Different situations requires different processing components.

• An analysis usually consists of several processing components nested together.

The evaluation of GATE as a suited framework will consist of a subjective opinion
from the experience of using GATE during this work. The following aspects will be
emphasized:

• How well is GATE suited for nesting processing components?

• How easy is it to create new, customized processing components?

• How can the results from created processing components be presented?

40

Chapter 6

Evaluation Results

This chapter presents and discusses the results from the described method of eval-
uation for the concepts and the associations found by the system.

6.1 Concepts Evaluation Results

This section presents the overlap between the concepts found by the system and the
manually constructed ontology, and the overlap of semi-automatically constructed
ontology.

The results from running the tests described in Section 5.1.1, evaluating against the
manually constructed ontology are shown in Figure 6.1.

41

6.1. Concepts Evaluation Results

142

196

50

61

111

0

50

100

150

200

250

Manually constructed ontology

Concepts in the ontology
Concepts found by the system
Perfectly matching concepts
Matching abstractions of concepts
Total matching concepts

Figure 6.1: Chart of the concepts found by the system, the concepts in the manual
constructed ontology and the overlap between them.

As the figure shows, a set of 196 concepts were extracted by the system by using
term frequency filtering and running the association rules algorithm. This means
that every concept extracted have an association to one or more concepts in the
set. 35.2% of the concepts found matched perfectly with the manually constructed
ontology. Evaluating against the abstraction of the concepts in the ontology resulted
in a match of 43.0%. This means a total match of 78.2%.

A rather large portion of the concepts in the ontology were matched by abstraction.
The reason for this is that the ontology contains a large set of specialized concepts,
whereas the system extracts more generalized concepts. This is an expected result
by using a term’s document frequency for concept extraction. A more generalized
concept has a higher probability for occurring often in a document than a specialized
one.

The results from running the overlap tests described in Section 5.1.1, evaluating
against the semi-automatically constructed ontology are shown in Figure 6.2.

42

Chapter 6. Evaluation Results

106

196

38 39

77

0

50

100

150

200

250

Semi-autmatically constructed ontology

Concepts in the ontology
Concepts found by the system
Perfectly matching concepts
Matching abstractions of concepts
Total matching concepts

Figure 6.2: Chart of the concepts found by the system, the concepts in the semi-
automatically constructed ontology and the overlap between them.

As the figure shows, the concept extraction system used in Grimnes [2006] extracted
a set of concepts where 106 of these were approved by a domain expert. 35.8% of
these were matched perfectly by the system. Evaluating against the abstraction of
the concepts in the ontology resulted in a match of 36.8%. This gives a total match
of 72.6%.

Since the concepts were extracted from the same set of documents, it would have
been expected that the overlap was higher. Especially since the system extracted
90 more concepts. This could be explained by the fact that the concepts in semi-
automatically ontology were extracted by using the tf-idf weighting scheme described
in Section 2.3.2, whereas the system uses the term frequency (tf) weighting scheme.
Tf-idf extracts more specialized concepts as it gives a low weight to concepts occur-
ring in many documents. The more specialized a concept is, the less the probability
that it occurs in many documents. Tf, on the other hand, gives a high weight if
a concept occurs often in a document, independently of its distribution throughout
the document collection. Using the tf weighting scheme therefore tends to extract
more general concepts, as the probability for a general concept occurring often in

43

6.2. Associations Evaluation Results

a document is higher the more general it is. This should make evidence that using
only tf for concept extraction is not a satisfactorily method, as it tends to filter out
the more specialized concepts.

6.2 Associations Evaluation Results

This section presents the results from the evaluation of the associations found by
the system. The evaluation has taken as basis the association rules algorithm with
a minimum support of 5%, minimum confidence 75% and the 45 most frequent
noun phrases from each document. As described in Section 6.2, the results from the
overlap between the associated concepts found by the system and the ones found by
cosine similarity will be split into three groups:

• Group 1: Related concepts found only by the system, not by cosine similarity.

• Group 2: Related concepts found only by cosine similarity, not by the asso-
ciation rules.

• Group 3: Related concepts found by both.

6.2.1 Overlap between cosine similarity

Figure6.3 shows the overlap between the related concepts found by the system and
the related concepts found by cosine similarity for each of the chosen concepts.

44

Chapter 6. Evaluation Results

37

44

36

29

56

50 50 50 50 50

14

10

15 14 13

9

20

14

10

21
23

30 29

24

34

0

10

20

30

40

50

60

Cost Control Scope Risk Project plan

Related concepts found by the system
Related concepts found by cosine similarity
Perfectly matching related concepts
Matching abstraction of related concept
Total matching related concepts

Figure 6.3: Chart of the associations found by the system compared to the cosine similarity
results for each of the chosen concepts .

For four of the five chosen concepts, the set of related concepts found by the system
was a bit smaller than the set chosen from the cosine similarity results. In addition
31 of the concepts found in the manually constructed ontology, used in the cosine
similarity calculations, was not extracted by the system. This constitutes uncer-
tainty factors with the the test. Still there was 20.0%-30.0% perfectly matching
related concepts. Taking abstraction matches into account gives a total of 46.0%-
68.0% overlap between the related concepts found by the system and the related
concepts found by cosine similarity. This seems promising taken into account the
uncertainty factors. The next section will however present the subjective evaluation
of the 4 master students for both the related concepts found by the system and the
related concepts found by cosine similarity. The results from the overlap tests will
be split into groups as described in Section 6.2.

6.2.2 Results for each group

As described in Section 6.2 the results from the overlap tests will be split into
three groups. Group 1 consisting of the related concepts found only by the system,

45

6.2. Associations Evaluation Results

group 2 consisting of the related concepts found only by cosine similarity and group
3 consisting of related concepts found by both the system and cosine similarity.
By looking at each group in terms of the master student’s evaluations, this could
result in very interesting findings. Only unique related concepts are included for
each chosen concept in the groups, meaning that only perfectly matching related
concepts are taken into consideration for group 3. For Group 1 this means that
abstraction matches are not included. For group 2 it means that if a related concept
was matched by abstraction by the system, it is not included.

Group 1 - Related concepts found only by the system

Tables 6.1-6.5 shows the related concepts found only by the system and the mean
score of the evaluation of the four master students for every related concept. Figure
6.4 shows how many of the concepts found were evaluated to “not related”, “related”
and “very related” for each of the chosen concepts.

Found only by the system for concept ”cost”
Related concept Mean score
project management team 1
management team 1
organization 1
product 2
information 1
tool 1
project team 1
application area 1
risk analysis 1
result 1
risk 1
resource 1
consequence 1
estimate 1
phase 0
probability 1
action 1
analysis 1
seller 2

Table 6.1: Related concepts found only by the system for the concept ”cost”.

46

Chapter 6. Evaluation Results

Found only by the system for concept ”control”
Related concept Mean score
capability 0
domain 0
improvement 1
organization 1
process improvement 1
program 1
opm 0
practice 0
tool 0
portfolio management 1
management process group 1
result 1
concept 0
group 1
information 1
management process 1
process group 0
standard 1
portfolio 0
resource 1
activity 0
application 1
product 1
action 1
knowledge 0
operation 1
organizational project 1
outcome 1
strategy 1
project performance 1
initiate 0
management team 1

Table 6.2: Related concepts found only by the system for the concept ”control”.

47

6.2. Associations Evaluation Results

Found only by the system for concept ”scope”
Related concept Mean score
concept 1
operation 1
organization 1
tool 1
product 1
document 1
technique 1
result 1
information 1
project performance 1
resource 1
domain 1
opm 0
group 0
wbs 1
project scope 2
practice 1
risk 1
application area 1
management process 1

Table 6.3: Related concepts found only by the system for the concept ”scope”.

Found only by the system for concept ”risk”
Related concept Mean score
organization 1
result 1
impact 1
tool 1
information 0
project team 1
management team 0
project risk 2
resource 1
plan 1

Table 6.4: Related concepts found only by the system for the concept ”risk”.

48

Chapter 6. Evaluation Results

Found only by the system for concept ”project plan”
Related concept Mean score
action 0
change 1
change control 1
change request 0
corrective action 1
performance measurement 1
performance report 0
change control system 0
control system 1
tool 1
information 1
organization 1
project management team 1
management team 1
product 1
project performance 2
result 1
variance 1
plan execution 2
activity 1
cost 1
document 1
project team 1
phase 2
analysis 1
application area 1
contract 1
control 1
risk 1
technique 1
project scope 2
relationship 0
work result 1
risk analysis 1
budget 2
group 1
seller 1
resource 1
contingency plan 1
product description 1
response 0

Table 6.5: Related concepts found only by the system for the concept ”project plan”.

49

6.2. Associations Evaluation Results

19

32

20

10

41

122

1

11

2 2
6

22

16
21

17

7

30

91

2 0 1 1
5

9

0

20

40

60

80

100

120

140

cost control scope risk project plan total

Related concepts found
Not related
Related
Very related

Figure 6.4: Chart of the evaluated related concepts found by the system for each of the
chosen concepts.

As Figure 6.4 shows, there is a large portion of the related concepts found that were
evaluated to “related” by the 4 master students. 74.6% of the total related concepts
found were evaluated to “related”, whereas 18.0% were evaluated to “not related”
and only 7.4% were evaluated to “very related”. This will be discussed later.

Group 2 - Related concepts found only by cosine similarity

Tables 6.6-6.10 shows the related concepts found only by the cosine similarity and
the mean score of the evaluation of the 4 master students for every related concept.
Figure 6.5 shows how many of the concepts found were evaluated to “not related”,
“related” and “very related” for each of the chosen concepts.

50

Chapter 6. Evaluation Results

Found only by cosine similarity for concept ”cost”
Related concept Mean score
cost management 2
cost baseline 2
actual cost 2
schedule 1
project schedule 1
earn value 1
staff 1
project staff 1
milestone 0
plan value 1
stakeholder 2
project deliverable 1
ev 0
earn value management 1
management 1
scope definition 0
scope management 1
customer 1
sponsor 1
project management information system 1
constraint 1
project manager 1
project plan development 1
procurement management 0
project plan execution 0
quality management 1
work breakdown structure 1

Table 6.6: Related concepts found only by cosine similarity for the concept ”cost”.

51

6.2. Associations Evaluation Results

Found only by cosine similarity for concept ”control”
Related concept Mean score
integrate change control 2
change control 2
schedule control 2
cost control 2
quality control 2
plan value 1
quality 1
scope change control 2
initiation 1
project manager 2
tool and technique 0
schedule 2
performance 0
project management information system 1
project plan execution 1
change control system 2
project plan development 1
project schedule 1
milestone 0
customer 0

Table 6.7: Related concepts found only by cosine similarity for the concept ”control”.

52

Chapter 6. Evaluation Results

Found only by cosine similarity for concept ”scope”
Related concept Mean score
scope statement 2
scope definition 2
project deliverable 1
project justification 1
project objective 2
plan value 1
milestone 1
performance 1
project plan development 1
customer 1
project plan execution 1
project management information system 1
sponsor 1
initiation 1
scope verification 2
staff 1
project charter 0
quality 1
communication 0
project report 1
work breakdown structure 1

Table 6.8: Related concepts found only by cosine similarity for the concept ”scope”.

53

6.2. Associations Evaluation Results

Found only by cosine similarity for concept ”risk”
Related concept Mean score
risk identification 2
risk category 2
risk monitor 2
risk control 2
external stakeholder 1
stakeholder risk tolerance 2
sponsor 0
milestone 0
plan value 1
project report 1
project life cycle 1
stakeholder 1
management 1
customer 1
control 1
scope management 1
quality 1
cost management 1
performance 1
project plan execution 1
project manager 1
communication 1
project plan development 1
procurement management 0
project management information system 1
staff 1

Table 6.9: Related concepts found only by cosine similarity for the concept ”risk”.

54

Chapter 6. Evaluation Results

Found only by cosine similarity for concept ”project plan”
Related concept Mean score
project plan development 2
plan value 2
milestone 2
project objective 2
project deliverable 1
project report 1
project charter 1
scope statement 1
project role 1
staff 1
communication 1
constraint 1
customer 1
assumption 0
procurement 0
initiation 1

Table 6.10: Related concepts found only by cosine similarity for the concept ”project plan”.

55

6.2. Associations Evaluation Results

27

20 21
26

16

110

5 4 2 3 2

1618

7

15
18

10

68

4
9

4 5 4

26

0

20

40

60

80

100

120

cost control scope risk project plan total

Related concepts found
Not related
Related
Very related

Figure 6.5: Chart of the evaluated related concepts found by cosine similarity for each of
the chosen concepts.

Figure 6.5 shows that a larger portion of the related concepts found only by cosine
similarity were evaluated to “very related” than the ones only found by the system.
23.6% of total concepts found is in the “very related” category. However, 61.8% were
evaluated to “related”, in contrast to 74.6% by the system. It therefore seems that
the related concepts found only by the system tends to be more generally related.
This fact could be explained by the nature of the association rules algorithm. For
an association rule to be generated, the concepts taking part in the rule have to
occur together in several documents. Statistically the more general the concept is,
the more often it appears in a document. The association rules algorithm therefore
finds more generally related concepts. This could also be explained by the lack of
overlap between the concept extracted and the concepts in the manually constructed
ontology, where only 35.2% of the concepts were matched perfectly. However, there
was an abstraction match of 43.0%. This shows that already at the starting point
the system had extracted a large set of general concepts in which the association
rules found are a direct consequence of. This could also be the reason behind the
larger set of related concpets found by cosine similarity evaluated to “very related”
than the ones found by the system. They seem to be more precise and therefore
are easier to evaluated. In addition there are some fewer related concepts found by

56

Chapter 6. Evaluation Results

cosine similarty evaluated to “not related”. The reason is most likely the fact that
the concepts extracted by the system contains some noise. This supports the theory
that the concept extraction in the system is not satisfactorily.

Group 3 - Related concepts found by both

Tables 6.11-6.15 shows the related concepts found by both the system and cosine
similarity, and the mean score of the evaluation of the 4 master students for every
related concept. Figure 6.6 shows how many of the concepts found were evaluated
to “not related”, “related” and “very related” for each of the chosen concepts.

Found by both for concept ”cost”
Related concept Mean score
activity 1
assumption 0
control 1
cost estimate 2
performance 1
process 1
project 2
project management 1
project objective 1
project plan 1
quality 1
scope 1
scope statement 1

Table 6.11: Related concepts found by both the system and cosine similarity for the
concept cost.

Found by both for concept ”control”
Related concept Mean score
change 1
cost 1
management 2
plan process 1
process 1
project 1
project management 2
project plan 2
scope 1

Table 6.12: Related concepts found by both the system and cosine similarity for the
concept control.

57

6.2. Associations Evaluation Results

Found by both for concept ”scope”
Related concept Mean score
activity 1
assumption 1
change 1
constraint 1
control 1
cost 1
management 1
process 1
project 2
project management 1
project manager 1
project plan 2
schedule 1
stakeholder 0

Table 6.13: Related concepts found by both the system and cosine similarity for the
concept scope.

Found by both for concept ”risk”
Related concept Mean score
activity 1
assumption 1
cost 1
process 1
project 2
project management 1
project objective 1
project plan 1
risk analysis 2
risk management 2
risk response 2
schedule 1
scope 1

Table 6.14: Related concepts found by both the system and cosine similarity for the
concept risk.

58

Chapter 6. Evaluation Results

Found by both for concept ”project plan”
Related concept Mean score
management 2
performance 1
plan process 2
process 1
project 2
project management 2
project manager 1
project phase 2
project plan execution 2
schedule 2
scope 1
stakeholder 1

Table 6.15: Related concepts found by both the system and cosine similarity for the
concept project plan.

13

9

14 13 12

61

1 0 1 0 0
2

10

6

11
9

5

41

2 3 2
4

7

18

0

10

20

30

40

50

60

70

cost control scope risk project plan total

Related concepts found
Not related
Related
Very related

Figure 6.6: Chart of the evaluated related concepts found by both the system and cosine
similarity for each of the chosen concepts.

59

6.2. Associations Evaluation Results

Figure 6.6 shows that only 3.3% of the related concepts found by both cosine sim-
ilarity and the system were considered “not related”. This a very promising result.
67.2% were evaluated to “related” and 29.5% were considered “very related”. This
shows that the related concepts found by both methods tends to be good.

Group summary

Table 6.16 summarizes the results for each group and shows the percentage of the
associated concepts found that were evaluated to “not related”, “related” and “very
related”.

Not re-
lated

Related Very re-
lated

Group 1 - Related concepts found only by the
system

18,0 % 74,6 % 7,4 %

Group 2 - Related concepts found only by cosine
similarity

14,5 % 61,8 % 23,6 %

Group 3 - Related concepts found by both 3,3 % 67,2 % 29,5 %

Table 6.16: Group summary

Most of the numbers in Table 6.16 have already been discussed. However, the rela-
tively large difference in “very related” concepts between the related concepts found
by cosine similarity and the system has more aspects that needs to be discussed.
As already stated, these concepts found by cosine similarity seems to more special-
ized. Looking at Tables 6.6-6.10 shows that not only are they more specialized,
but these related concepts seems to include the “parent” concept itself. Take the
concept “control” for example. 6 of the 20 related concepts found only by cosine
similarity for this concept turns out to be a specialization of “control”. Obviously,
these 6 will and have been evaluated to very related to the concept “control”. The
reason for this can be explained by the nature of cosine similarity. It compares the
vectors, the contextual categorization of the word. The vector contains information
about the context in which the word appears throughout the document collection.
Words are similar in the extent that they co-occur with the same words. In another
way, two words are found similar if they both co-occur with a third word [Manning
and Shutze, 2002]. The association rules algorithm on the other hand, searches for
co-occurrence of words in a document in a document collection. It uses statistical
measures of how many documents these words co-occur in. The more general the
words are, the higher is the probability that words co-occur in many documents. As
a consequence it finds associations that seems to be more general. This could explain
the difference in the number of concepts evaluated to “very related”. Therefore, it
seems to be a trend that top-ranked related concepts found by the cosine similarity
method includes the concept itself in some way. It can be discussed whether this

60

Chapter 6. Evaluation Results

is good or bad. Some might say that these related concepts are uninteresting and
brings little new knowledge to the domain, whereas the association rules algorithm
seems to find more general and perhaps a larger set of interesting associations by
the cost of some noise. However, a stand will not be taken in this question.

The main findings from this evaluation are as follows:

• The method for concept extraction used in the system is not satisfactory and
has great improvement potential. Concept extraction was, however, not an ob-
jective of this work. These improvements will be elaborated further in Chapter
8.

• The cosine similarity method seems to find more specialized related concepts.

• The related concepts found by the cosine similarity method tends to include
variants of the parent concept.

• The association rules algorithm tends to find more general related concepts.

• The related concepts found by both methods tends to be of good quality.

6.3 GATE

This section gives a subjective opinion of how well suited GATE is as a framework
for ontology learning.

GATE as a framework has several advantages:

• Graphical user interface.

Annotations resulting from processing documents can be directly viewed. Per-
forming tasks is easy.

• Processing components can be nested.

By creating a processing pipeline, different processing components can be
added and run together. The order of the processing components can eas-
ily be switched.

• Processed documents can be stored.

Processed documents can be stored and loaded at any time, with annotations.
It is therefore only necessary to process a document once. This is a great
feature when a processing component is dependent on annotations resulting
from running another component.

61

6.4. Evaluation Summary

• Large set of built-in processing components.

• Easy to create new processing components.

Using the GATE API makes it easy to create new customized processing com-
ponents.

• Ontology Editor.

GATE has an ontology editor where ontologies can be viewed and edited.

The ease of making new components is one of GATE’s strengths. Both processing
components and visual components can be added by ease with GATE’s API. In this
work all the components implemented was first created as stand-alone applications
outside GATE by using its API. These were included into GATE by adding a small
portion of code, which was described very well in the user guide. New visual com-
ponents can as easily be added and connected to a processing component. Such a
visual component is shown i Figure 4.13 in Section 4.4.

However, there is one set back with using GATE. When processing a stored docu-
ment collection, the load time for each document is a somewhat high. The mean
load time for the document collection used as input for the system was 0.88 seconds.
The document collection included 76 documents. The total run time for the asso-
ciation rules algorithm, including document loading was 6 minutes and 57 seconds.
When analyzing large document collections with thousands of documents, the load
time can be a problem. This is in many situations compensated for by the ability
to store and load annotated documents.

The bottom line is that GATE is an excellent and highly scalable framework for nat-
ural language processing, which is well suited for ontology learning. The combination
of the ontology editor and ease of making new customized processing components
should make it possible to manually add extracted concepts and associations directly
to an ontology within the graphical user interface. It should be stressed that GATE
has been used with a small document collection. How well it is suited for extremely
large document collections remains unanswered and ought to be evaluated further.

6.4 Evaluation Summary

As pointed out in this chapter, the evaluation preformed has its limitations and
uncertainty factors:

• The evaluation of related concepts found are the subjective opinion of four
persons. The evaluation should have been performed by a domain experts.

62

Chapter 6. Evaluation Results

• Several of the concepts used in the cosine similarity test was never extracted
by the system.

• The system was tested with a small document collection.

These factors evidently do not make the evaluation adequate to draw any conclu-
sions. Still, the results shows, taking the uncertainty factors into account, that the
use of association rules to find associations in text has potential. The approach
should be evaluated further by using a better concept extractor and tested with a
larger document collection, and the resulting associations should be evaluated by a
domain expert. This could lead to more clear conclusions.

The experience of using GATE as a framework for ontology learning has shown that
it is highly scalable and customizable. It has several built-in components that makes
it useful for ontology learning. However, the framework ought to be tested with a
large document collection.

63

Chapter 7

Conclusion

This master thesis has examined the use of association rules for suggesting associa-
tions from text. This has been part of the ongoing research in the field of ontology
learning. The objectives of this work were:

1. Implement an association rules algorithm for suggesting associations from text.

The association rules algorithm and several other components in which the
association rules algorithm is built upon, such as a lemmatizer, a noun phrase
extractor, a index and a concept extractor, has been implemented and inte-
grated in GATE, as a framework for ontology learning.

2. Evaluate the results against existing ontology.

The evaluation has indicated that the associations found by the system are
of good quality. The main findings were that the compared method of cosine
similarity seems to find more specialized related concepts. However, they tend
to include variants of the parent concept itself. The association rules algorithm
on the other hand, tends to find more general related concepts. It is, however,
believed that improving the concept extraction will yield even better results.
Even so, the associations found by the system should be evaluated by a domain
expert.

3. Evaluate the usability of GATE as an overall framework for ontology learning.

The GATE framework has been found to be suited for ontology learning. It
has several aspects that makes it justifiable to use it as a framework for on-
tology learning. Still, the framework should be tested with a larger document
collection.

With a proper improvement of the concept extraction, and a proper evaluation by
a domain expert of the associations found by the system, association rules could be

65

a step toward the goal of finding relations between concepts in an ontology learning
environment.

66

Chapter 8

Further Work

Although the evaluation indicates that the association rules algorithm has poten-
tial, there are possibilities for improvements in the application of this algorithm in
ontology learning. These improvements does not lie in the algorithm itself, but in
the extraction of concepts given as input to the algorithm and how the association
rules generated can be used further.

8.1 Concept Extraction

As concept extraction was not emphasized in the work, this have some improvement
potential. Term frequency was used to weight the noun phrases in each document.
For each of the documents the k top-ranked phrases were extracted. This could lead
to some noise. The tf-idf weighting score would filter out most of this noise. However,
this weighting scheme would also potentially filter out prominent important noun
phrases for a domain specific document collection.

There is a noticeable difference between language used in specialist communication
and the language used to to communicate with a more general audience. Gillam and
Ahmad [2005] explored a method that exploits this difference, which contrasts term
frequencies in a domain specific document collection with term frequencies from a
general language document collection. This resulted in a weirdness frequency defined
as:

weirdness =
NGLfSL

(1+fGL)NSL
, where

fSL = the frequency of a term in the domain specific document collection.
fGL = the frequency of the term in a general language document collection.
NSL = the token counts of the domain specific document collection.
NGL = the token counts of the general language document collection.

67

8.2. Building Concept Hierarchies

This could be applied to the candidate phrases found by the system, which would
probably lead to a set of more domain specific concepts. As the association rules
algorithm is dependent of co-occurrence of phrases in a document, this method would
lower the co-occurrence frequency and result in fewer rules found. However, this can
be compensated for by lowering the minimum support threshold of the algorithm.

8.2 Building Concept Hierarchies

A natural next step of the work done is to further process the associations found. In
the context of ontology learning, the association rules can be used to build concept
hierarchies. Sanderson and Croft [1999] defined a method for deciding if a term
subsumes (is parent of) another. For two terms, x and y, x subsumes y if the
following two conditions hold:

P(x |y) = 1 and P(y |x) < 1, where P is the probability.

This could be applied to the concepts found. In terms of association rules these
conditions can be written as:

confidence(y ⇒ x) = 1 and confidence(x ⇒ y) < 1.

This in turn, can be written as:

support(y ∪ x)
support(y) = 1 and

support(x ∪ y)
support(x) < 1.

However, this would only include the rules with a confidence of 1. It would therefore
be beneficial to reduce the original conditions to P(x |y) > P(y |x). This leads to:

support(y ∪ x)
support(y) >

support(x ∪ y)
support(x) .

By performing this condition on every association rule found, it should be possible
to extract the parent concept of a concept. Since a concept most likely is involved
in several rules, this method would probably lead to a set of candidate parents for
each concept. However, this would probably in most cases be correct.

The implementation of the concept hierarchy has been started on. This is described
further in Appendix B.

68

Appendix A

Acronyms and Abbreviations

API Application Programming Interface

GATE Genreal Architecture for Text Engineering

IDI Department of Computer and Information Science

NLP Natural Language Processing

NTNU Norwegian University of Science and Technology

OWL Web Ontology Language

RDF Resource Description Framework

W3C World Wide Web Consortium

XML Extensible Markup Language

69

Appendix B

Building Concept Hierarchies

As described in Section 8.2, a natural next step of the work done is to build a concept
hierachy based on the association rules found. This work has been started on. A
class ParentFinder is found in the ontology module. It takes as a basis the theory
presented in Section 8.2. The pseudo code in Figure B.1 shows how this can be
implemented.

NounPhrase pseudo code

1 for each Concept
2 search for Rule conta in ing Concept as l e f t hand s i d e
3 for each Rule found
4 currentRule = Rule
5 rightHand = right hand o f currentRule
6 c1 = con f idence o f currentRule
7 search for Rule with Concept as right hand and rightHand
8 as l e f t hand
9 r e f l e c t i o nRu l e = Rule found

10 c2 = con f idence o f r e f l e c t i o nRu l e
11
12 i f (c1 > c2)
13 add right as candidate parent o f Concept
14 else
15 add Concept as cand iate parent o f rightHand
16 end i f
17 end for each
18 end for each

Figure B.1: Pseudo code of the algorithm for finding candidate parents of a concept.

Note that this work has just been started on and is partly unfinished.

71

Appendix C

Digital Appendix

Attached to this report is a zip-file containing the following:

• Source code of the implementation.

• The lemmalist used by the lemmatizer module.

• The stop word list used by the index module.

• The two ontologies used for the evaluation.

• The cosine similarity results.

• The results from the evaluation performed by the 4 master students.

73

References

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association
Rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994. URL
http://citeseer.ist.psu.edu/agrawal94fast.html.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association Rules
between Sets of Items in Large Databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, 1993. URL http:

//citeseer.ist.psu.edu/agrawal93mining.html.

Hans Olaf Borch. Automatic Keyphrase Extraction, 2005. Project, TDT4730 IDI,
NTNU.

Terje Brasethvik. Conceptual modelling for domain specifi document description and
retrieval. PhD thesis, IDI/NTNU, 2004.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, 2002.

M. Delgado, M.J. Mart́ın-Bautista, D. Sánchez, and M.A. Vila. Association Rule
Extraction for Text Mining. In Flexible Query Answering Systems: 5th Inter-
national Conference, FQAS 2002. Copenhagen, Denmark, 2002a. URL http:

//www.springerlink.com/content/ltj1fv73x7ad30tr/.

M. Delgado, M.J. Mart́ın-Bautista, D. Sánchez, and M.A. Vila. Mining Text Data:
Special Features and Patterns. In Pattern Detection and Discovery: ESF Ex-
ploratory Workshop, London, UK, 2002b. URL http://www.springerlink.com/

content/ncdk0yk9qj9r43w7/.

R. Gaizauskas, P. Rodgers, H. Cunningham, and K. Humphreys. GATE User Guide,
1996. URL http://gate.ac.uk/sale/tao/index.html#x1-40001.2.

Lee Gillam and Khurshid Ahmad. Pattern Mining Across Domain-Specific Text
Collections. In Machine Learning and Data Mining in Pattern Recognition, 4th
International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005. URL
http://www.springerlink.com/content/1vf25nt3a4q4h060/.

75

http://citeseer.ist.psu.edu/agrawal94fast.html
http://citeseer.ist.psu.edu/agrawal93mining.html
http://citeseer.ist.psu.edu/agrawal93mining.html
http://www.springerlink.com/content/ltj1fv73x7ad30tr/
http://www.springerlink.com/content/ltj1fv73x7ad30tr/
http://www.springerlink.com/content/ncdk0yk9qj9r43w7/
http://www.springerlink.com/content/ncdk0yk9qj9r43w7/
http://gate.ac.uk/sale/tao/index.html#x1-40001.2
http://www.springerlink.com/content/1vf25nt3a4q4h060/

References

Geir Øyvin Grimnes. Ontologikonstruksjon for Statoil. Master’s thesis, IDI, NTNU,
2006.

Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for Knowl-
edge Sharing. International Journal of Human-Computer Studies, 43(4), 1995.

Jon Atle Gulla. Semantic Technologies at NTNU: Research Challenges and Product
Roadmaps. In Semantiske dager, 2006.

H. Haddad, J. Chevallet, and M. Bruandet. Relations between Terms Discovered by
Association Rules. In Proc. of PKDD’2000, Workshop on Machine Learning and
Textual Information Access, Lyon France, 2000. URL http:\www-clips.imag.

fr/mrim/User/jean-pierre.chevallet/PUBLICATIONS/HADDAD00a.ps.

A. Maedche and S. Staab. Semi-automatic Engineering of Ontologies from Text,
2000. URL http://citeseer.ist.psu.edu/maedche00semiautomatic.html.

Christopher D. Manning and Hinrich Shutze. Foundations of Statistical Natural
Language Processing. Massachusetts Institute of Technology, 2002.

M. H Margahny and A. A. Mitwaly. Fast Algorithm for Mining Association Rules.
In AIML 05 Conference, CICC, Cairo, Egypt, 2005. URL http://www.icgst.

com/AIML05/papers/P1120535119.pdf.

Kjetil Nørv̊ag, Trond Øivind Eriksen, and Kjell-Inge Skogstad. Mining Association
Rules in Temporal Document Collections. In Proceedings of the 16th International
Symposium on Methodologies for Intelligent Systems (ISMIS’2006), Bari, Italy,
2006. URL http://www.idi.ntnu.no/~noervaag/papers/ISMIS2006.pdf.

Project Management Institute PMI. A Guide To The Project Management Body Of
Knowledge. Project Management Institute, 2004.

Project Management Institute PMI. Organizational Project Management Maturity
Model. Project Management Institute, 2003.

Mark Sanderson and Bruce Croft. Deriving concept hierarchies from text. In SIGIR
’99: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, 1999.
ACM Press. URL http://portal.acm.org/citation.cfm?id=312679&dl=#.

Geir Solskinnsbakk. Extending Ontologies with Search-Relevant Weights, 2006.
Project, TDT4730 IDI, NTNU.

Yasumasa Someya. English lemma list, 1998. URL http://www.lexically.net/

downloads/version4/downloadingBNC.htm.

Steffen Staab and Alexander Maedche. Ontology Engineering Beyond the Mod-
eling of Concepts and Relations, 2000. URL http://citeseer.ist.psu.edu/

staab00ontology.html.

76

http:\www-clips.imag.fr/mrim/User/jean-pierre.chevallet/PUBLICATIONS/HADDAD00a.ps
http:\www-clips.imag.fr/mrim/User/jean-pierre.chevallet/PUBLICATIONS/HADDAD00a.ps
http://citeseer.ist.psu.edu/maedche00semiautomatic.html
http://www.icgst.com/AIML05/papers/P1120535119.pdf
http://www.icgst.com/AIML05/papers/P1120535119.pdf
http://www.idi.ntnu.no/~noervaag/papers/ISMIS2006.pdf
http://portal.acm.org/citation.cfm?id=312679&dl=#
http://www.lexically.net/downloads/version4/downloading BNC.htm
http://www.lexically.net/downloads/version4/downloading BNC.htm
http://citeseer.ist.psu.edu/staab00ontology.html
http://citeseer.ist.psu.edu/staab00ontology.html

References

World Wide Web Consortium W3C. OWL Web Ontology Language Overview, 2000.
URL http://www.w3.org/TR/2004/REC-owl-features-20040210.

77

http://www.w3.org/TR/2004/REC-owl-features-20040210

