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Summary

It is known from the media that Statoil is trying a new generation of platforms on the Oseberg

field. According to them, this will cut costs dramatically. The reason is that dry well compo-

nents are used. These are much cheaper than wet ones. They call the solution "subsea on a

stick". Gathering all wellheads on one platform means that all wells have to be drilled from the

same position. This increases the average well path length dramatically. A large part of the sub-

sea field development costs are drilling related costs. How does this solution affect drilling costs?

This report is a starting point of a tool that can compare different subsea field layouts based

on the overall field costs, including the drilling costs. The purpose is to identify the layout that

yields the shortest average well path length. This is done by studying four different layouts with

12 fixed completion intervals. One layout consists of only satellite wells, while the others have

one, two and three common drill centers for all the wells. The optimal position of the drill cen-

ter(s) is identified for each field layout. The methods are based on achieving the shortest possi-

ble well path, and the drill center locations are calculated with the same criteria. The wells are

constructed using trigonometric relations. Finally, the average well path lengths are calculated

and all layouts are compared to each other.

The comparison of the different layouts show that the average well path length is highly sensitive

to the number of drill centers. The case of satellite wells yields the shortest average well path

length. As the number of drill centers decrease, the average well path length increase. A field

layout with one common drill center, for example "subsea on a stick", is the solution that yields

highest drilling costs because of longest average well path length. Further work, where subsea

hardware and installation costs are taken into account, remains to be done to find the optimal

field layout.
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Chapter 1

Introduction

1.1 Background

Subsea field development costs consist largely of subsea well construction costs, subsea facil-

ities hardware, and subsea installation and commissioning. In addition, there are the costs of

tying the subsea field back to a production facility such as an existing platform, FPSO or "subsea

to beach".

Industry practice for geologists, petrophysicists, reservoir engineers, and production engineers

is jointly to determine the subsurface completion intervals for each well. Thereafter, these in-

tervals are the starting point for the well construction engineers to model and propose wellbore

trajectories and the required well program. In this work, the drilling engineers fit the placement

of the wellheads into templates and/or satellites/cluster layouts in accordance with the subsea

field development plan.

In Norway, it has become a standard solution to bring typically four wells into one template; a

template with a roof offering trawl protection. This inevitably increases the average wellbore

lengths, and well construction costs increase accordingly. There is a need to be able to compare

different possible subsea layouts of wellhead positions (satellites/cluster or template) and the

associated drilling, hardware, and installation costs to identify the best solution minimizing:

1. Drilling costs and drilling related technical risks (shorter and "simpler" wells).

1
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2. The overall field development cost.

A more distributed solution may give shorter wells, but also more complex piping and more

subsea structures in addition to the cost related to the re-placement of the drilling rig.

Literature Survey

A comprehensive literature search revealed that there is no relevant literature regarding this

topic.

1.2 Objectives

The aim of this project work is to initiate the way towards an automatic tool that finds the op-

timal subsea field layout, with respect to cost of subsea facilities, flowlines and drilling/com-

pletion. As mentioned in chapter 1.1, there are many factors that have to be considered. This

Project Report initiates the work of an automatic tool by studying the wellbore trajectories. Thus,

the purpose of this Project Report is to compare the average well path lengths of 12 wells in dif-

ferent field layouts. The results will later be significant in the decision of choosing the optimal

field development. The wells are constructed in a manner that minimizes the well paths, since

longer wells increases the costs.

To find the average well path lengths, the objectives are:

1. Find the drill center(s) of each field architecture that will yield the shortest distance be-

tween the drill center and the completion(s).

2. Construct the mathematically shortest well path from the drill center to the completion.

3. Calculate the average well path lengths of the wells connected to the different field archi-

tectures.

All calculations are implemented in MATLAB. The tool requires data from the user, such as com-

pletion interval coordinates, build-up rate (BUR) and turn rate (TR).
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1.3 Limitations

The limitations of the approach are mainly related to horizontal completion intervals. The

mathematics applied in the calculations are derived from the fact that the completion intervals

provided are horizontal. If the completion intervals are changed from horizontal, the program

will require adjustment and new calculations, because of changing trigonometric relations.

Another important limitation is related to combinatorics and the number of completion inter-

vals. The program is set up to handle 12 completion intervals and perform calculations based

on four cases: all satellite wells, one drill center, two drill centers and three drill centers. If the

number of completion intervals is changed or if the case of n (n = {n 2 R,n > 3}) drill centers is

of interest, the program will fail. In other words, non-generalized formulas is a critical limitation.

In addition, the formulas for calculation of drill center placements require that the completion

intervals are located at the same depth. The placement depends on the X Y coordinates of the

completion intervals. If the completion intervals are located at different depths, this will have

impact on the drill center location in order to minimize the average well path lengths.

1.4 Approach

The approach is to first find the position of the drill centers. In the case of satellite wells this is

done by constructing the well path. In the other cases, the placements are based on the arith-

metic mean calculation of the completion coordinates. Further, the wells are constructed "bot-

toms up" by use of trigonometric relations. Finally, the well path lengths and their average are

calculated. This is done to compare the different field layouts with respect to well path length.

The first chapter includes an introduction with problem definition and approach. The second

chapter describes the methods used to obtain the objectives. The results and discussion are

presented in chapter 3 and 4, respectively.



Chapter 2

Methods

2.1 Placement of Drill Centers

This section explains the methods used to find the optimal placement of the drill center(s) in

each field layout. A drill center is the location where the drilling operations commence. The

placement of the drill center(s) is critical to construct the shortest possible well paths.

Four different field layouts, described in chapter 1.3, are studied. The calculations differ from

the case of satellite wells to the cases of common drill centers. In the case of satellite wells, the

drill centers are found from the wellbore trajectory calculations. In the other cases, the drill

centers are found by minimizing the average distance from the drill center to the start of the

completion intervals in the X Y -plane. The user enters the completion coordinates into the

tool.

Satellite Wells

In the case of satellite wells, each completion interval has its own associated drill center. Each

well path is constructed to have one build section and is oriented along the same azimuth angle

as the completion interval. The placement of the drill center is consequently determined by the

mathematically shortest well path. Figure 2.1 shows an example of 12 completion intervals (c)

and the associated drill centers (DC) in the X Y -plane.

4
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Figure 2.1: Completion intervals and associated drill centers.

One Drill Center

In the case of one drill center, every completion interval is reached from a common drill center.

The location of the drill center is determined by the arithmetic mean of the completion start co-

ordinates in the X Y -plane, Xcs and Ycs . Equations 2.1 and 2.2 show how the drill center location

is calculated for n completion intervals. Figure 2.2 shows an example of one drill center and 12

completions in the X Y -plane.

XDC = 1
n

nX

i=1
Xcs (2.1)

YDC = 1
n

nX

i=1
Ycs (2.2)
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Figure 2.2: Completion intervals and one drill center.

Two Drill Centers

In the case of two drill centers, six and six completion intervals are reached from a common

drill center. To find the optimal combination of six and six completion intervals, every possible

combination is identified. The drill center positions for each combination are then found. The

distances from the drill centers to the associated completion interval starts are then calculated

in the X Y -plane. The optimal combination is the one with the shortest average distance.

The binomial coefficient identifies the amount of unique combinations when k completions are

chosen out of n completions:

binomial coefficient =
√

n
k

!

= n!
k !(n °k)!

(2.3)

Since there are six completion intervals per drill center, and there are twelve completions to

choose from, the number of unique combinations are:

√
12
6

!

= 12!
6!(12°6)!

= 924

To obtain these combinations, a matrix R is created with MATLAB’s built-in function, nchoosek.
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The command R=nchoosek(n,k) generates a matrix that contains every combination of n objects

taken k at a time. A vector M is created, containing the numbers from 1 to 12. These numbers

represent every completion interval. M consists of the n objects nchoosek(n,k) can choose from,

and k is the six completions that are taken at a time. R is generated and results in a 924£6 ma-

trix. Each row contains six numbers from 1 to 12, and every row contains a unique combination.

R represents the possible combinations of completions for the first drill center. The next step is

to find the remaining completions for the second drill center. This is done by focusing on one

row in R at a time. The combinations of the remaining completions are represented in a new

matrix called R°rest. R°rest is created with the methodology explained in figure 2.3.

Does this 
number exist 
in the current 

row of R_rest?

Start

Generates a 
random number 

V between 1 
and 12

End

Does this 
number exist 
in the current 

row of R?

YES

NO

YES

Insert V in 
current row of 

R_rest

NO

Figure 2.3: Flow chart explaining how the combinations in R°rest are generated.
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A random number is assigned to the parameter V by use of the built-in MATLAB function randi.

With the command V=randi(12), the number assigned will be between 1 and 12. Starting with

the first row in R, if V is not equal to any of the numbers in this row, then it is inserted into the

first row in R°rest. If V is equal to any of the numbers in this row, a new random number is

generated. The first number in the first row of R°rest is now inserted. A new number is then as-

signed to V. The same procedure repeats itself, but V is also compared to the number in R°rest.

When the first row of R°rest is filled out, the same procedure is performed for the remaining

rows in R.

When R and R°rest are generated, both matrices have the same size, 924£6. Each row in R repre-

sent a unique grouping for the first drill center and each row in R°rest the unique corresponding

grouping for the second drill center. The structures of matrix R and R°rest are illustrated below.

R =

2

66666664

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8
...

...
...

...
...

...

3

77777775

R°rest =

2

66666664

12 9 11 10 8 7

8 9 12 1 10 11

2 11 12 10 1 9
...

...
...

...
...

...

3

77777775

The next step is to calculate two optimum drill center locations for each combination. This is

done by use of equations 2.1 and 2.2. When the drill centers to every combination are found,

the distance from each completion interval start to the associated drill center is calculated using

equation 2.4.

d =
q

(Xcs °XDC )2 + (Ycs °YDC )2 (2.4)

The average distance is computed for each combination. Finally, the optimal combination is

the one with the shortest average distance. Figure 2.4 shows an example of two drill centers and

12 completions in the X Y -plane.
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Figure 2.4: Completion intervals and two drill centers.

Three Drill Centers

In the case of three drill centers, four and four completion intervals are reached from the same

drill center. The procedure used for the case of two drill centers is followed, but there are now

three matrices instead of two.

Equation 2.3 is used to find the number of unique combinations. There are now four comple-

tion intervals per drill center, and twelve completions to choose from. The number of unique

combinations in the first drill center is:

√
12
4

!

= 12!
4!(12°4)!

= 495

R is created in the same way as for the case of two drill centers, except the value of k is now 4.

This results in a 495£4 matrix. R represents the possible combinations of completions for the

first drill center.

The combinations of the remaining completions are represented in a new matrix called R°mar.

This matrix is created with the same methodology used for R°rest in the case of two drill centers.
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The difference is that there are now eight remaining combinations, thus the dimension of R°mar

is 495£8. The structures of R and R°mar are illustrated below.

R =

2

66664

1 2 3 4

2 3 4 5
...

...
...

...

3

77775
R°mar =

2

66664

11 6 5 10 8 12 9 7

12 11 1 7 9 8 6 10
...

...
...

...
...

...
...

...

3

77775

For the second drill center, there are eight remaining completions to choose from in each row of

R°mar. Since there are four completions per drill center, the number of unique combinations

for the second drill center are: √
8
4

!

= 8!
4!(8°4)!

= 70

Thus, for each combination in R, there are 70 different combinations for the second drill center.

To list all of them, a new matrix called Mar°M is generated. The first four columns in Mar°M

are generated by nchoosek, where k is equal to 4. Starting with the first row in R°mar, n is a

vector that contains the numbers in the first row of R°mar. For the following four columns in

Mar°M, n contains the numbers in the second row of R°mar. This is done for all 495 rows of

R°mar, thus the number of columns in Mar°M becomes 495£4 = 1980. Since 70 combinations

are created for each row in R°mar, the dimension of Mar°M is 70£ 1980. The generation of

Mar°M is illustrated below.

R°mar =

2

66664

11 6 5 10 8 12 9 7

12 11 1 7 9 8 6 10
...

...
...

...
...

...
...

...

3

77775
Mar°M =

2

66666664

6 10 9 7 11 1 9 8 . . .

6 5 12 8 11 7 9 10 . . .

11 12 6 5 10 7 9 12 . . .
...

...
...

...
...

...
...

...
. . .

3

77777775

The next step is to identify the remaining completions for the third drill center. Since there are

four completions per drill center, and only four completions left to choose from, there is only

one combination left. A third matrix called M°gr3 is created. M°gr3 has the same size as Mar°M
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since each combination in Mar°M has one combination of the remaining completions. Figure

2.5 explains the methodology used to create M°gr3.

Does this 
number exist 
in the current 

row and 
columns of 

Mar_M?

Start

Generates a 
random number 

V between 1 
and 12

Does this 
number exist 
in the current 

row of R?

YES

NO

YES

Inserts V in 
current row 

and column of 
M_gr3

Does this 
number exist 
in the current 

row and 
columns of 

M_gr3?

NO

End

NO

YES

Figure 2.5: Flow chart explaining how the combinations in M°gr3 are generated.

As for the case of two drill centers, the parameter V is assigned a random number. Starting

with the first row in R, V is compared to the numbers in this row. V is assigned a new value if

it is equal to any of these numbers, if not, V remains the same. Then V is compared to the first

four columns in the first row of Mar°M. V is assigned a new value if it is equal to any of these
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numbers, if not, V is inserted into the first row and first column of M°gr3. A new number is

then assigned to V. The same procedure repeats itself, but V is also compared to the number in

M°gr3. When the first four columns in the first row of M°gr3 are filled out, the same procedure

is performed for the first row in R, and the first four columns in the second row of Mar°M. The

procedure is followed for the remaining rows in Mar°M, before V is compared to the numbers

in the second row of R, and the next four columns in Mar°M. The structure of matrix R, Mar°M

and M°gr3 are illustrated below.

1 2 3 4

2 3 4 5

...
...

...
...

2

66664

3

77775
R =

6 10 9 7 11 1 9 8 . . .

6 5 12 8 11 7 9 10 . . .

11 12 6 5 10 7 9 12 . . .

...
...

...
...

...
...

...
...

. . .

2

66666664

3

77777775

Mar°M =

12 8 11 5 6 12 10 7 . . .

7 10 9 11 6 1 12 8 . . .

8 7 9 10 11 6 8 1 . . .

...
...

...
...

...
...

...
...

. . .

2

66666664

3

77777775

M°gr3 =

All possible combinations are now found. There are 495 ways to group the completions for the

first drill center. Each of these have 70 ways to group the remaining completions for the second

drill center. Each of these have again only one way to arrange the remaining completions for the

third drill center. Thus, the total amount of unique combinations are:

495£70£1 = 34650

The optimal drill center locations to each combination are found by use of equation 2.1 and

2.2. The distance from each completion start to the associated drill center is calculated using

equation 2.4. The average distance is computed for each combination. Finally, the optimal
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combination is the one with the lowest average distance. Figure 2.6 shows an example of three

drill centers and 12 completions in the X Y -plane.
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Figure 2.6: Completion intervals and three drill centers.
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2.2 Wellbore Trajectory Calculations

This section explains the methods used to calculate the mathematically shortest well paths. Be-

cause of changes in the azimuth angle along the wellbore, the calculations differ from the case

of satellite wells to the cases of common drill centers.

The well paths are calculated in a two-dimensional R Z -plane. The dimensions that are used are

the measured horizontal displacement, R, and the true vertical depth of the well, Z .

The calculations are primarily for horizontal completion intervals. Some equations are adjusted

for non-horizontal completion intervals. This is to make the transition easier if non-horizontal

completion intervals will be of interest at a later occasion. Consequently, some of the equation

requirements are unused.

Common for each case is that the build-up rate (BUR), coordinates of completion start and coor-

dinates of completion end are input parameters. This is data that the user of the model decides

before the tool is ran. The BUR is a measure of how many degrees inclination the well builds per

30 meter drilled.

Satellite Wells

The case of satellite wells is special. As mentioned in chapter 2.1, each completion interval has

its own associated drill center and the placement of these drill centers are determined by the

mathematically shortest well path.

The wells are constructed from bottom to top, as the only known parameters are the target co-

ordinates and the build-up rate. The shortest possible well path is constructed by building in-

clination toward the surface instantly. This approach causes the satellite well paths to have one

build section. The build section connects the completion start to the kickoff point (KOP). The

KOP is the location in a vertical wellbore where the directional drilling operation commence.
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To make calculations in the build section, the well path is projected onto the R Z -plane, and the

build section is expressed as an arc. The radius of the circle is a function of the BUR. The radius

is called the radius of curvature (ROC). As the BUR increases, the ROC decreases. The ROC is

illustrated in figure 2.7. Trigonometric relations are identified to calculate displacements in R

and Z directions caused by the build section.

(a) BUA is less than 90° (b) BUA is more than or equal to 90°

Figure 2.7: Satellite well path with one build section expressed as an arc.

The build-up angle (BUA) is the total inclination required to hit the target with the correct angle.

It is a function of the inclination of the completion interval. The inclination of the completion

interval is calculated in degrees, and is defined as the angle from the vertical (0°) to the com-

pletion interval in a counterclockwise direction. When the height (d Zc ) and length (Lc ) of the

completion intervals are calculated by equations 2.5 and 2.6, the build-up angle is calculated

from trigonometric identities in equation 2.7. The height is simply the difference in depth of the

completion start and end. The length is computed using the Pythagorean theorem.

d Zc = Zce °Zcs (2.5)

Lc =
q

(Xce °Xcs)2 + (Yce °Ycs)2 + (Zce °Zcs)2 (2.6)

BUA =

8
<

:
cos d Zc

Lc
, if d Zc ∏ 0

90°° sin d Zc
Lc

, if d Zc < 0
(2.7)
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Completion interval, completion start and completion end are denoted c, cs and ce, respec-

tively. The ROC and the displacements in R (dR) and Z (dZ) caused by the build section, are also

found by trigonometric relations in figure 2.7. The equations are listed as 2.8, 2.9 and 2.10 below.

The last unknown regarding the build section, the arc length, is computed using equation 2.11.

ROC =
≥360°£arc length

2º£BUA

¥
(2.8)

dR =

8
<

:
ROC°ROCcos(BUA), if BUA ∏ 90°

ROC+ROCsin(BUA°90°), if BUA < 90°
(2.9)

d Z =

8
<

:
ROCcos(BUA°90°), if BUA ∏ 90°

ROCsin(BUA), if BUA < 90°
(2.10)

arc length =
≥BUA

BUR

¥
(2.11)

The next step is to find the coordinates of the KOP. To find the displacements between the com-

pletion start and the KOP in R and Z direction, the azimuth angle (azic ) of each completion in-

terval has to be computed. The azimuth angle is the angular direction in degrees with reference

to the North. The satellite wells are constructed with constant azimuth angles. The azimuth of

the completion intervals is calculated using the four-quadrant inverse tangent formula, equa-

tion 2.12.

azic = atan2(Xce °Xcs ,Yce °Ycs) (2.12)

The proof of equation 2.12 is found in Appendix A.1. The location of the KOP is then calculated

using trigonometric identities in equations 2.13, 2.14 and 2.15.

KOPX = Xcs °dR sin(azi ) (2.13)

KOPY = Ycs °dR cos(azi ) (2.14)

KOPZ = Zcs °d Z (2.15)

The well path length (WPL) of each satellite well is calculated by adding the length of the com-
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pletion interval, the arc length and the depth of the KOP, using equation 2.16.

WPL = Lc +arc length+KOPZ (2.16)

The average well path length (WPLavg) is calculated to compare the results from the different

subsea layouts, using equation 2.17, where n is the number of wells.

WPLavg =
nX

i=1

WPLi

n
(2.17)

Figure 2.8 illustrates the well paths in a subsea satellite field layout.
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Figure 2.8: Satellite well paths.
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One Drill Center

The case of one drill center is more complex because the azimuth angle changes along the well

path. To calculate the length of the well projected onto the X Y -plane, new equations and new

trigonometric identities are introduced.

As with the satellite wells, these wells are constructed from bottom to top because of limited

known parameters. The difference in this approach is that the wells need to curve around

a cylinder in the three-dimensional X Y Z -plane. When the wells are projected onto the X Y -

plane, the wells turn around a circle, illustrated in figure 2.9.

Figure 2.9: The projection of a well onto the X Y -plane.

The circle has a radius that is a function of the turn rate (TR). The TR is an input parameter

determind by the user. It is a measure of how many degrees the well turns in the X Y -plane per

30 meter drilled. The radius of the associated circle is called the radius of turn (ROT), and is

calculated by equation 2.18.

ROT = 360°
2º£TR

(2.18)

Although the TR is an input parameter, it will be adjusted if the distance between the drill center

and the completion start in the X Y -plane is too short for the well to follow the arc. This is done

by use of the critiera in equation 2.19. Whenever this criteria is fulfilled, the turn rate is increased
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by 1°/30m, and the criteria is checked again until the criteria not is fulfilled.

q
(XDC °Xcs)2 + (YDC °Ycs)2 < 2£ROT (2.19)

To find the arc length in the X Y -plane, the point on the circle where the well will start to turn

must be located. In order to find this point, the coordinate system is transformed. Each com-

pletion interval is given its own transformed coordinate system.

The process of transforming the coordinate system requires two steps. In the first step all coor-

dinates are shifted into a coordinate system (a,b) that has its origin in the drill center, by use of

equations 2.20 and 2.21.

a = X °XDC (2.20)

b = Y °YDC (2.21)

The axes are still oriented in the same directions as the axes in the X Y -plane. All completion

intervals share this system.

The second step is to rotate the (a,b) coordinate system to transform the coordinates into the

final coordinate system (xi , yi ). This is where every completion interval gets its own distinctive

system. The characteristics of these coordinate systems are that they have the origin in the drill

center, the yi -axis is parallel to the completion interval and yi increases from the completion

end to the completion start. This orientation is chosen to simplify the upcoming calculations.

The rotation angle (rotate) varies depending on the azimuth of the completion interval. To make

the yi -axis parallel to the completion interval and its positive direction to go from the comple-

tion end to the completion start, the rotation angle is computed by use of equation 2.22.

rotate = 180°°azic (2.22)

Equation 2.22 can be verified by sketching the situations. The azimuth of the completion inter-
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vals are calculated by equation 2.12. The next step is to find the formulas that can transform the

shifted coordinates into the rotated coordinate system. A sketch of the situation is illustrated in

figure 2.10.

Figure 2.10: Transformation of coordinate system.

The green lines in figure 2.10 are help lines that make it easier to identify the trigonometric rela-

tions. Two triangles form, and both have one angle equal to the rotation angle. In addition, one

has the a coordinate as hypotenuse and the other has the b coordinate as hypotenuse. Equation

2.23 and 2.24 is set up by the trigonometric relations identified.

xi = a£cos(rotate)+b£ sin(rotate) (2.23)

yi =°a£ sin(rotate)+b£cos(rotate) (2.24)

The next step is to find the center of the turn circle, (xcci , ycci ). The circle is intentionally ori-

ented in a manner that makes the completion interval a tangent to the circle. Their intersection

point, is the point of the completion start (xi 1, yi 1). Thus, the circle center has the same yi value

as the completion start, see figure 2.11.
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Figure 2.11: Sketch of one completion interval’s transformed coordinate system.

The xi coordinate of the circle center depends on the TR and how the completion start is ori-

ented relative to the drill center. Because the xi coordinate of the point of turn always is closer

to the drill center than the completion start xi coordinate, the coordinates of the circle center is

calculated using equation 2.25 and 2.26.

xcci =

8
<

:
xi 1 +ROT, for xi 1 < 0

xi 1 °ROT, for xi 1 > 0
(2.25)

ycci = yi 1 (2.26)

To find the point of turn (xi 2, yi 2), support lines are added in figure 2.11, illustrated in figure 2.12.

Figure 2.12: All necessary support lines.

It turns out that several solutions are required to find the point of turn. The correct solution
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depends on which quadrant the circle center is placed in and whether the well turns clockwise or

counterclockwise. The well turns clockwise when xcci < xi 1 and counterclockwise when xcci >

xi 1. Some equations are still common. The parameters H , B , µ and Ø, illustrated in figure 2.12,

are calculated using equation 2.27, 2.28, 2.29 and 2.30 for every completion interval.

H =
q

(xcci )2 + (ycci )2 (2.27)

B =
p

H 2 °ROT2 (2.28)

µ = arcsin
≥ROT

H

¥
(2.29)

Ø= µ+Æ (2.30)

The parameters that change for each completion interval are Æ, xi 2 and yi 2. Depending on

which criteria that is fulfilled, there are eight unique solution sets. The solutions are listed in

equation 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37 and 2.38.

if xcci > 0, ycci > 0,and xcci > xi 1, then

8
>>>><

>>>>:

Æ = arctan xcci
ycci

xi 2 = B sin(Ø)

yi 2 = B cos(Ø)

(2.31)

if xcci > 0, ycci > 0,and xcci < xi 1, then

8
>>>><

>>>>:

Æ = arctan ycci
xcci

xi 2 = B cos(Ø)

yi 2 = B sin(Ø)

(2.32)

if xcci > 0, ycci < 0,and xcci > xi 1, then

8
>>>><

>>>>:

Æ =°arctan ycci
xcci

xi 2 = B cos(Ø)

yi 2 =°B sin(Ø)

(2.33)

if xcci > 0, ycci < 0,and xcci < xi 1, then

8
>>>><

>>>>:

Æ =°arctan xcci
ycci

xi 2 = B sin(Ø)

yi 2 =°B cos(Ø)

(2.34)
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if xcci < 0, ycci < 0,and xcci > xi 1, then

8
>>>><

>>>>:

Æ = arctan xcci
ycci

xi 2 =°B sin(Ø)

yi 2 =°B cos(Ø)

(2.35)

if xcci < 0, ycci < 0,and xcci < xi 1, then

8
>>>><

>>>>:

Æ = arctan ycci
xcci

xi 2 =°B cos(Ø)

yi 2 =°B sin(Ø)

(2.36)

if xcci < 0, ycci > 0,and xcci > xi 1, then

8
>>>><

>>>>:

Æ =°arctan ycci
xcci

xi 2 =°B cos(Ø)

yi 2 = B sin(Ø)

(2.37)

if xcci < 0, ycci > 0,and xcci < xi 1, then

8
>>>><

>>>>:

Æ =°arctan xcci
ycci

xi 2 =°B sin(Ø)

yi 2 = B cos(Ø)

(2.38)

When the turn points are identified they must be transformed back to the normal coordinate

system. This is also a two step process. First, the coordinate system (xi , yi ) is rotated back to

(a,b) by use of equations 2.39 and 2.40.

a = xi cos(rotate)° yi sin(rotate) (2.39)

b = xi sin(rotate)+ yi cos(rotate) (2.40)

These equations can be derived by following the same procedure as when equations 2.23 and

2.24 were derived. The last step is to shift the coordinate system (a,b) back to the normal coor-

dinate system (X ,Y ), by use of equations 2.41 and 2.42:

X = a +XDC (2.41)

Y = b +YDC (2.42)

The objective of calculating the turn point is to find the length of the well in the R-plane. To find

the length of the turn section, the azimuth of the tangent (azit ) from the drill center to the turn
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point (X2,Y2) must be calculated. It is calculated by use of equation 2.43.

azit = atan2(X2 °XDC ,Y2 °YDC ) (2.43)

The length of the arc, ar cazi , is found by calculating the angle between the two vectors, vect

and vecc , see equation 2.46. The length from the DC to the turn point in the X Y -plane is vec-

torized as vect , see equation 2.44. The completion interval is projected onto the X Y -plane and

vectorized as vecc , see equation 2.45. The built in MATLAB functions cross and dot are used to

calculate the cross and dot product of the two vectors, respectively.

vect = [(X2 °XDC ), (Y 2°YDC ),0] (2.44)

vecc = [(Xce °Xcs), (Yce °Ycs),0] (2.45)

ar cazi =
atan2(cross(vect , vecc ),dot(vect , vecc ))

TR
(2.46)

Equation 2.46 does not apply to all scenarios. When the well turns more than 180° in the X Y -

plane, equation 2.47 has to be used. The criteria, N > 0, for this equation is explained in Ap-

pendix A.2.

ar cazi =
360°°atan2(cross(vect , vecc ),dot(vect , vecc ))

TR
if N > 0 (2.47)

The length of the well from the drill center to the start of the completion in the R-plane (dRtot )

is then calculated using equation 2.48.

dRtot =
q

(X2 °XDC )2 + (Y2 °YDC )2 +ar cazi (2.48)

When the length of the well in the R°plane is known, the well path around the cylinder is un-

wrapped. By doing this, the well can be projected onto the R Z -plane. The next step is to con-

struct the well path from the completion start to the drill center. To make the wells as short as

possible, they are constructed with two build sections that are separated by a tangent section.

The calculations for these build sections follow the same concepts as for the satellite wells’ build

section.
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One more known parameter is needed to construct the well from bottom to top. The Z coordi-

nate of the KOP is chosen to be an input parameter. This makes it possible to calculate the total

depth available for the two build sections and the tangent section.

The total displacement in R (dR) and Z (d Z ) direction in the two build sections are calculated

by use of equation 2.9 and 2.10. The components, dRt an and d Zt an , of the tangent section are

calculated using the equations 2.49 and 2.50. The length of the tangent section (Lt an) in the

R Z -plane is then calculated by use of equation 2.51.

dRt an = dRtot °dR (2.49)

d Zt an = Zcs °d Z °KOPZ (2.50)

Lt an =
q

dR2
t an +d Z 2

t an (2.51)

The total arc length of the two build sections is calculated using equation 2.11. Consequently,

the well path length (WPL) of each well is calculated by summing the lengths of the completion

interval, tangent section, build sections/arc and distance from wellhead to KOP. Equation 2.52

is used.

WPL = Lc +Lt an +ar c +KOPZ (2.52)

Finally, the average well path length is calculated by equation 2.17.

Two Drill Centers

To find the average well path length in the case of two drill centers, the same method as for one

drill center is used. The only difference is that two different (a,b) coordinate systems are used,

because both drill centers generate its associated coordinate system. One has its origin in the

first drill center while the other has its origin in the second drill center. In addition, only half as

many completions belong to each of the two coordinate systems.
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Three Drill Centers

To find the average well path length in the case of three drill centers, the same method as for

one drill center is used. There are now three different (a,b) coordinate systems. The first has its

origin in the first drill center, the second has its origin in the second drill center while the third

has its origin in the third drill center. In addition, only one third of the completions belong to

each of the three coordinate systems.
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Results

3.1 Combinations and Placement of Drill Centers

The completion intervals and the associated drill center(s) are presented in the following tables.

The results of the satellite well-, one drill center-, two drill centers-, and three drill centers field

layouts are given in tables 3.1, 3.2, 3.3 and 3.4, respectively.

Table 3.1: Results in the case of satellite wells.

Completion start coordinates Drill center coordinates
X Y X Y

11357 4500 10871 4803
10214 5214 9779 4841
7857 6286 7337 6528
8429 4500 8796 4060
9643 3571 10001 4018
7714 3786 7627 4352
7571 893 8029 1237
5357 3143 5625 3649
4500 4500 4148 4048
3357 1143 3660 1629
1071 1714 845 1187
786 786 982 248

27
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Table 3.2: Results in the case of one drill center.

Completion start coordinates Drill center coordinates
X Y X Y

11357 4500

6488.0 3336.3

10214 5214
7857 6286
8429 4500
9643 3571
7714 3786
7571 893
5357 3143
4500 4500
3357 1143
1071 1714
786 786

Table 3.3: Results in the case of two drill centers.

Completion start coordinates Drill center coordinates
X Y X Y

1st drill center

11357 4500

9202.3 4642.8

10214 5214
7857 6286
8429 4500
9643 3571
7714 3786

2nd drill center

3357 1143

3773.7 2029.8

1071 1714
5357 3143
7571 893
786 786

4500 4500
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Table 3.4: Results in the case of three drill centers.

Completion start coordinates Drill center coordinates
X Y X Y

1st drill center

7857 6286

7124.7 3527.0
7714 3786
7571 893
5357 3143

2nd drill center

9643 3571

9910.8 4446.3
11357 4500
8429 4500

10214 5214

3rd drill center

1071 1714

2428.5 2035.8
786 786

4500 4500
3357 1143

3.2 Wellbore Trajectory Calculations

This section presents the average well path lengths calculated from the methods in chapter 2.2.

As mentioned, some parameters are set by the user; the build-up rate (BUR), turn rate (TR) and

kickoff point (KOPZ ). Table 3.5 displays the input parameters that are used.

Table 3.5: Input parameters used in the calculations

Input parameter Value Unit
BUR 3/30 °/m
TR 3/30 °/m

KOPZ 500 m

Due to the requirement from equation 2.18, some of the turn rates were adjusted. Table 3.6

shows the resulting turn rates:

Table 3.6: Resulting turn rates

One drill center Two drill centers Three drill centers
TR (°/m) TR (°/m) TR (°/m)

3/30 5/30 6/30
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The adjusted turn rates are used in the calculations. Table 3.7 shows the resulting average well

path lengths (WPL):

Table 3.7: Average well path lengths

Satellite wells One drill center Two drill centers Three drill centers
WPL (m) WPL (m) WPL (m) WPL (m)

3721.1 5930.2 4662.9 4303.7

The results are shown graphically in figure 3.1. The figure shows the construction of the different

well types.
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Figure 3.1: Wellbore trajectories for the different scenarios.
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Discussion

4.1 Discussion

The results from chapter 3.2 show that the average well path length decreases with increasing

number of drill centers, as expected. As the well becomes longer, the more time it will take to

drill it. This is primarily because of increased trip time since the length of the drill string in-

creases. Considering that the drilling rigs are payed on a daily rate, the total well construction

costs increase. Thus, the results indicate that a subsea field layout with only satellite wells is the

cheapest solution.

Figure 3.1 illustrates that the deviated drilling length increases when the number of drill centers

decreases. Deviated wells increase the technical risks related to an unstable wellbore. In addi-

tion, during tripping, long wells are left open longer. To carry out a controlled killing procedure,

the drill string must be on bottom. A kick taken below the drill string can cause serious well con-

trol problems. These examples indicate that shorter and less deviated wells minimize technical

risk in addition to costs.

The methods presented in chapter 2 are mathematically reliable, but because of the limitations

they are only applicable for unrealistic field data. Although the completion intervals are unreal,

the resulting comparison of the average well path lengths indicate a realistic difference. To make

the input data more realistic, the methods can be adjusted for non-horizontal completions. The

31
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calculations can also consider different kickoff points (KOP), build-up rates (BUR) and turn rates

(TR) for the different completion intervals. These proposals are minor adjustments that require

a lot of work without making the differences in well path lengths significantly larger. Adjust-

ments that are considered valuable are calculations that can compare more than 12 completion

intervals, completion intervals located at different depths and subsea field layouts with more

than three common drill centers. The scale of the field data will then be closer to the reality.

As mentioned in chapter 1.1, additional costs such as hardware and installation costs are part

of the total subsea field development costs. An additional study of these costs will be neces-

sary to identify the optimal subsea layout. Costs related to flowlines, control umbilicals, trawl

protection, and service and injection lines are examples of subsea facilities hardware costs. In-

stallation costs vary depending on for example vessel re-positioning and the methods used for

installing flowlines.

4.2 Conclusion

The average well path length decreases as the number of drill centers increases. Consequently,

the case of satellite wells is the optimal solution to minimize the well path lengths.

The average well path lengths are of interest to optimize subsea field development. Instead of

minimizing the cost of individual contracts (drilling contractor, subsea EPC and subsea instal-

lation), the goal is to minimize the sum of these. As the results indicate, the case of satellite

wells minimizes the drilling cost. However, saving on drilling cost has penalties, e.g. template

structures are cheaper per well than individual wells and then there are the tie-back costs from

satellite wells to manifold. Consequently, the results provided in this project can not identify the

optimal field layout, but they are crucial in order to minimize the drilling cost.
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4.3 Recommendations for Further Work

Drilling costs

The most important work that remains to be done in the drilling aspect of this model, is to tie

the well path lengths and drilling costs together. This can be done by using equation 4.1, or by

using a more precise equation. In addition, the costs of rig re-positioning during the drilling

operations can be taken into account.

drilling cost = well length
daily construction rate

£daily rig cost rate (4.1)

The limitation of 12 completion intervals should be extended. More completion intervals will

cause the differences in average well path lengths to be greater. As these differences increase,

the cost savings based on drilling will increase as well.

The program should be updated and improved to handle calculations for more than three drill

centers. This causes the average well path lengths and cost savings for several field layouts to be

evaluated.

Subsea Hardware and Installation Costs

To find the optimal subsea layout, factors like those mentioned in chapter 4.1 have to be ac-

counted for. When comparing a subsea satellite layout and a layout with one or more common

drill centers, the subsea hardware and installation costs have to be evaluated. These costs must

be combined with the drilling costs, to optimize the overall field development costs.
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The factors that have the highest impact on the subsea hardware costs are listed in table 4.1. The

expected effects on costs per well are also listed.

Table 4.1: Effects of subsea hardware costs

Subsea hardware Satellite Common drill centers
Christmas tree Same Same
Template None "Higher"
Manifold Higher Lower
Trawl protection Higher Lower
Tie-back Higher Lower
Boosting Higher Lower

Christmas tree (XT) costs are the same for all field layouts since each well needs its own XT and

their design is independent of the foundation around the wells. There is no need for templates

on satellite wells as the XTs are supported by the conductor and the surface casing. Thus, the

template related costs (excluding manifold and trawl protection) are "higher" per well for the

cases of common drill centers since templates are required. If there are more than four or six

satellite wells tied back to the manifold, the manifold costs will be higher for the case of satel-

lites. This is mainly due to the size of the manifold. In the case of satellite wells, the manifold is

placed on a suction anchor or piled base. In the case of common drill centers, the manifold is

integrated in the template. If the field requires trawl protection, each satellite well and manifold

must be equipped with its own trawl protection. As mentioned in chapter 4.2, the protection

structure makes integrated template structures cheaper per well. Tie-back costs increase as the

length of the flowlines, control umbilicals and service and injection lines increase. If the flow-

lines become too long, then pressure support is needed to transport the wellstream and extra

boosting equipment is needed.

The installation costs vary depending on the vessels and methods used. To include these in the

model, the user must be able to specify the installation vessels and methods as input. Assum-

ing that lighter vessels can be used when there is no template to install, the costs will decrease

for the case of satellites since lighter vessels are cheaper. On the other hand, time will be lost

in moving the installation vessels between each installation. In addition, tie-back distances in-
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crease. If these distances become large enough, then reel-based installation will be cheaper

than installing for example flowlines piece by piece with a crane. These are just examples of

considerations that have to be made, more factors will be included in the future model.

Intervention Costs

If the field is developed subsea, subsea intervention will be required. This will increase the costs

of the subsea developments. Additionally, well intervention will be required in all scenarios.

Well intervention in a subsea field is challenging and expensive because intervention vessels or

mobile offshore drilling units are needed. Subsea intervention may not be profitable because of

these cost. As a result, the recovery factor can be reduced compared to a fixed platform where

intervention is cheaper.
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Derivations

A.1 Azimuth with the Four-Quadrant Inverse Tangent

To be able to see any pattern in the calculation of the azimuth, all arrangements of the comple-

tion interval can be drawn in a coordinate system. A sketch of the first quadrant arrangements

are shown in figure A.1.

Figure A.1: Completion arrangements in the first quadrant

Using trigonometric relations the azimuth can be found. d X and dY are defined as the comple-

36
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tion start coordinate subtracted from the completion end coordinate. This yields the following

solutions:

azi1 =
3º
2

(A.1)

azi2 =
º

2
(A.2)

azi3 =
3º
2

°arctan
d X
dY

(A.3)

azi4 =
º

2
°arctan

dY
d X

(A.4)

azi5 = arctan
d X
dY

(A.5)

azi6 =º+arctan
d X
dY

(A.6)

If one defines the azimuth in the range °º< azi <º, the same expressions become:

azi1 =°º
2

(A.7)

azi2 =
º

2
(A.8)

azi3 = arctan
d X
dY

(A.9)

azi4 = arctan
d X
dY

+º (A.10)

azi5 = arctan
d X
dY

(A.11)

azi6 = arctan
d X
dY

°º (A.12)

The equations for azi1, A.1 and A.7, are only valid when d X is negative and dY is equal to zero.

The equations for azi2, A.2 and A.8, are only valid when d X is positive and dY is equal to zero.

The equations for azi3, A.3 and A.9, are valid when d X is negative or equal to zero, and dY

is positive. The equations for azi4, A.4 and A.10, are only valid when d X is positive and dY

is negative. The equations for azi5, A.5 and A.11, are only valid when d X is positive or equal

to zero, and dY is positive. The equations for azi6, A.6 and A.12, are only valid when d X is

negative or equal to zero, and dY is negative. This set of equations have the same conditions as
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the four-quadrant inverse tangent, atan2(d X ,dY ):

atan2(d X ,dY ) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

arctan d X
dY , if dY > 0

arctan d X
dY +º, if dY < 0 and d X ∏ 0

arctan d X
dY °º, if dY < 0 and d X < 0

+º
2 , if dY = 0 and d X > 0

°º
2 , if dY = 0 and d X < 0

undefined if dY = 0 and d X = 0

(A.13)

The final expression becomes:

azi = atan2(d X ,dY ) (A.14)

A.2 Criteria for Equation 2.47

Some of the wells turn more than 180° in the X Y -plane. When calculating the angle between

two vectors using equation 2.46, it is always the smallest angle that is calculated. Thus, equation

2.47 must be used when the wells turn more than 180°. The criteria used for these cases checks

if the completion vector, vecc , has a direction towards an infinite line that is an extension of the

tangent vector vect . Figure A.2 shows the concept of the criteria.

arcazi

vec_t

vec_c

(XDC,YDC)

(X2,Y2)

(Xce,Yce)

(Xcs,Ycs)

(Xcross,Ycross)

X

Y

Y=at (X
-X2)+Y2

Y=ac (X-Xcs)+Yce

Figure A.2: Sketch of the vectors vecc and vect and the lines that passes through them.
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The extensions of vector vect and vecc are expressed in equation A.17 and A.18, respectively.

Their slopes are expressed in equation A.15 and A.16, respectively.

at =
Y 2°YDC

X 2°XDC
(A.15)

ac =
Yce °Ycs

Xce °xcs
(A.16)

Y = at (X °X 2)+Y 2 (A.17)

Y = ac (X °Xcs)+Ycs (A.18)

The crossing point is identified by finding the X when equation A.17 and A.18 are the same,

Xcr oss . The expression for this X , Xcr oss , is shown in equation A.19.

Xcr oss =
Ycs °Y 2+at £X 2°ac £Xcs

at °ac
(A.19)

The next step is to find out if this crossing X , Xcr oss , lies in front of the completion interval

vector, vecc , or behind it. This is solved by a ratio, N , see equation A.20 and A.21.

Xcr oss = Xcs +N £ (Xce °Xcs) (A.20)

N = Xcr oss °Xcs

Xce °Xcs
(A.21)

If the ratio, N , is positive, the completion interval has a direction towards the tangent, and equa-

tion 2.47 should be used.
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MATLAB

B.1 run tool
1 %completion coordinates (must be p o s i t i v e coordinates ) 1.4/1000

2 C=[11357 4500 2500 11929 4143 2500; 10214 5214 2500 10714 5643 2500; 7857 6286 2500 8857 5821 2500; . . .

3 8429 4500 2500 7714 5357 2500; 9643 3571 2500 9071 2857 2500; 7714 3786 2500 7857 2857 2500; . . .

4 7571 893 2500 7143 571 2500; 5357 3143 2500 4714 1929 2500; 4500 4500 2500 5000 5143 2500; . . .

5 3357 1143 2500 3000 571 2500; 1071 1714 2500 1500 2714 2500; 786 786 2500 500 1571 2500];

6
7 %input parameter

8 BUR=3/30; %deg/m

9 KOPz=500; %m

10 TR=BUR; %deg/m

11 N_dc=3;

12
13 %find average wellbore length ° only s a t e l i t e s

14 WPL_avg_sat= p l o t _ s a t e l l i t e (C,BUR) ;

15
16 %T displays the r e s u l t s in a table

17 i f N_dc == 1

18 %find average wellbore length ° one d r i l l center

19 WPL_avg_dc1=plot_one_dc (C,BUR, KOPz, TR) ;

20 T=table ( WPL_avg_sat , WPL_avg_dc1 ) ;

21 disp (T)

22 e l s e i f N_dc == 2

23 %find average wellbore length ° one and two d r i l l centers

24 WPL_avg_dc1=plot_one_dc (C,BUR, KOPz, TR) ;

25 WPL_avg_dc2=plot_two_dc (C,BUR, KOPz, TR) ;

26 T=table ( WPL_avg_sat , WPL_avg_dc1 , WPL_avg_dc2 ) ;

27 disp (T)

28 e l s e i f N_dc == 3

29 %find average wellbore length ° one , two and three d r i l l centers

30 WPL_avg_dc1=plot_one_dc (C,BUR, KOPz, TR) ;

31 WPL_avg_dc2=plot_two_dc (C,BUR, KOPz, TR) ;

32 WPL_avg_dc3=plot_three_dc (C,BUR, KOPz, TR) ;

33 T=table ( WPL_avg_sat , WPL_avg_dc1 , WPL_avg_dc2 , WPL_avg_dc3 ) ;

34 disp (T)

35 end

40
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B.2 get BUA
1 function [ L_c ,BUA]=get_BUA (C)

2 %c a l c u l a te s the length and i n c l i n a t i o n of each completion i n t e r v a l

3
4 %lengt and height of completion i n t e r v a l

5 L_c =( sqrt ( (C( : , 4 )°C( : , 1 ) ) .^2+(C( : , 5 )°C( : , 2 ) ) .^2+(C( : , 6 )°C( : , 3 ) ) . ^ 2 ) ) ’ ;

6 dZ_c=C( : , 6 ) ’°C( : , 3 ) ’ ;

7
8 %i n c l i n a t i o n of completion i n t e r v a l ( build°up angle )

9 BUA=acosd ( dZ_c . / L_c ) ;

10 for i =1: s i z e (C, 1 )

11 i f dZ_c ( i ) < 0

12 BUA( i )=90°asind ( dZ_c/L_c ( i ) ) ;

13 end

14 end

15 end

B.3 plot satellite
1 function WPL_avg= p l o t _ s a t e l l i t e (C,BUR)

2 %c a l c u l a te s the average well path length of a l l s a t e l l i t e wells

3
4 %completion i n t e r v a l length and build°up angle

5 [ L_c ,BUA]=get_BUA (C) ;

6
7 %arc length and radius of curvature

8 arc=BUA/BUR;

9 ROC=(360* arc ) . / ( 2 * pi *BUA) ;

10
11 %azimuth and completion s t a r t coordinates

12 dR=ROC+ROC. * sind (BUA°90) ;

13 dZ=ROC. * cosd (BUA°90) ;

14 azi_c=atan2d ( (C( : , 4 ) ’°C( : , 1 ) ’ ) , (C( : , 5 ) ’°C( : , 2 ) ’ ) ) ;

15 for i =1: s i z e (C, 1 )

16 i f BUA( i ) <90

17 dR( i ) =ROC( i )°ROC( i ) * cosd (BUA( i ) ) ;

18 dZ( i ) =ROC( i ) * sind (BUA( i ) ) ;

19 end

20 end

21
22 %coordinates of kick o f f point

23 KOP( : , 1 ) =C( : , 1 )°dR ’ . * sind ( azi_c ’ ) ;

24 KOP( : , 2 ) =C( : , 2 )°dR ’ . * cosd ( azi_c ’ ) ;

25 KOP( : , 3 ) =C( : , 3 )°dZ ’ ;

26
27 %average well path length of a l l s a t e l l i t e wells

28 WPL=L_c+arc+KOP( : , 3 ) ’ ;

29 WPL_avg=sum(WPL) / length (WPL) ;

30
31 %the following calculat ions are only for the intention of plo tt i ng the wells in 2D

32
33 %coordinates of the c i r c l e center

34 R_cc1=ROC;

35 Z_cc1=KOP( : , 3 ) ’ ;

36
37 %amount of columns needed in the R and Z matrices

38 K=C( : , 6 ) ’ ;
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39 for i =1: s i z e (C, 1 )

40 i f C( i , 3 )°C( i , 6 ) ==0

41 K( i ) =C( i , 3 ) +L_c ( i ) ;

42 end

43 end

44
45 %creating the R and Z matrices

46 R=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

47 Z=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

48
49 %R and Z coordinates of completion s t a r t (end of build ) and completion end

50 Rc1e=ROC°ROC. * cosd (BUA) ;

51 Zc1e=ROC. * sind (BUA) +KOP( : , 3 ) ’ ;

52 R_ce=dR+( sqrt ( (C( : , 4 )°C( : , 1 ) ) .^2+(C( : , 5 )°C( : , 2 ) ) . ^ 2 ) ) ’ ;

53 m1=(R_ce°Rc1e ) . / (C( : , 6 )°C( : , 3 ) ) ’ ;

54 b1=Rc1e°m1. * Zc1e ;

55
56 %f i l l i n g the Z matrix with numbers from 1 to depth of completion end

57 for i =1: s i z e (C, 1 )

58 for j =1:C( i , 6 )

59 A=1:C( i , 6 ) ;

60 Z( i , j ) =A( j ) ;

61 end

62 end

63
64 %f i l l i n g the R matrix with the corresponding coordinates

65 N=zeros ( 1 , s i z e (C, 1 ) ) ;

66 for j =1: s i z e (C, 1 )

67 for i =1:C( j , 6 )

68 %coordinates above KOP

69 i f Z( j , i ) <=KOP( j , 3 )

70 R( j , i ) =0;

71 %coordinates of the build section

72 e l s e i f Z( j , i ) >KOP( j , 3 ) && Z( j , i ) <=Zc1e ( j )

73 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc1 ( j ) ) ^2)+R_cc1 ( j ) ;

74 %coordinates of the completion i n t e r v a l

75 else

76 R( j , i ) =m1( j ) *Z( j , i ) +b1 ( j ) ;

77 end

78
79 %coordinates of a horizontal completion i n t e r v a l

80 i f C( j , 3 )°C( j , 6 ) ==0

81 B=dR( j ) : ( dR( j ) +L_c ( j ) ) ;

82 R( j ,C( j , 3 ) +length (B) ) =dR( j ) +L_c ( j ) ;

83 N( j ) =C( j , 3 ) +length (B) ;

84 for k =1: length (B)

85 R( j ,C( j , 3 ) +k°1)=B( k ) ;

86 Z( j ,C( j , 3 ) +k ) =Z( j ,C( j , 3 ) +k°1) ;

87 end

88 end

89 end

90 end

91
92 %pl ott i ng a l l wells as a two°dimensional f i g u r e

93 % for i =1: s i z e (C, 1 )

94 % f i g u r e ( )

95 % plot (R( i , 1 :N( i ) ) , f l ipud (Z( i , 1 :N( i ) ) ) ) ;

96 % set ( gca , ’ XAxisLocation ’ , ’ top ’ , ’ YAxisLocation ’ , ’ l e f t ’ , ’ ydir ’ , ’ reverse ’ )

97 % axis equal

98 % t i t l e ( ’ Well path in the RZ°plane ’ )

99 % xlabel ( ’R (m) ’ )

100 % ylabel ( ’Z (m) ’ )
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101 % xlim ([°50 (R( i ,N( i ) ) +50) ] )

102 % ylim ( [ 0 2600])

103 % end

104 end

B.4 get one DC
1 function [ dc]= get_one_dc (C)

2 %c a l u l a t e s the optimized coordinates of one common d r i l l center

3
4 %compute average X and Y coordinates

5 X_avg=sum(C( : , 1 ) ) / s i z e (C, 1 ) ;

6 Y_avg=sum(C( : , 2 ) ) / s i z e (C, 1 ) ;

7
8 %gather the coordinates in a common d r i l l center vector

9 dc=[ X_avg Y_avg 0 ] ;

10 end

B.5 get turn one DC
1 function [ X2 , Y2 , TR]= get_turn_one_dc (C,DC, TR)

2 %c a l c u l a te s the turn point in the XY°plane

3
4 %radius of turn

5 ROT=360/(2* pi *TR) ;

6
7 %check i f distance between WH and completion s t a r t i s l e s s than 2*ROT

8 k =1;

9 while k <= s i z e (C, 1 )

10 i f ( sqrt ( (DC( 1 )°C( k , 1 ) ) ^2+(DC( 2 )°C( k , 2 ) ) ^2) < 2*ROT)

11 %increase the turn rate

12 TR=TR+1/30;

13 ROT=360/(2* pi *TR) ;

14 else

15 k=k +1;

16 end

17 end

18
19 %azimuth of completion i n t e r v a l

20 azi_c=atan2d ( (C( : , 4 ) ’°C( : , 1 ) ’ ) , (C( : , 5 ) ’°C( : , 2 ) ’ ) ) ;

21
22 %completion s t a r t coordinates in a new coordinate system ( a , b) with origin in the d r i l l center

23 a1=C( : , 1 ) ’°DC( 1 ) ;

24 b1=C( : , 2 ) ’°DC( 2 ) ;

25
26 %rotation angle needed to place the coordinates in a rotated coordinate system

27 rotate=180°azi_c ;

28
29 %completion s t a r t coordinates in the rotated coordinate system ( xi , y i ) with origin in the d r i l l center

30 xi1=a1 . * cosd ( rotate ) +b1 . * sind ( rotate ) ;

31 yi1=°a1 . * sind ( rotate ) +b1 . * cosd ( rotate ) ;

32
33 %c i r c l e of turn center coordinates in ( xi , y i )

34 x_cci=xi1+ROT;

35 y_cci=yi1 ;

36 for i =1: s i z e (C, 1 )
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37 i f xi1 ( i ) >0

38 x_cci ( i ) =xi1 ( i )°ROT;

39 end

40 end

41
42 %distances from d r i l l center to the c i r c l e s of turn

43 H=sqrt ( ( x_cci ) .^2+( y_cci ) . ^ 2 ) ;

44 B=sqrt ( (H.^2°ROT^2) ) ;

45 theta =( asind (ROT. /H) ) ;

46
47 %coordinates of turn point in ( xi , y i )

48 beta=zeros ( 1 , s i z e (C, 1 ) ) ;

49 dxi=zeros ( 1 , s i z e (C, 1 ) ) ;

50 dyi=zeros ( 1 , s i z e (C, 1 ) ) ;

51 for i =1: s i z e (C, 1 )

52 i f x_cci ( i ) >0 && y_cci ( i ) >0

53 i f x_cci ( i ) >xi1 ( i )

54 beta ( i ) =theta ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

55 dxi ( i ) =B( i ) * sind ( beta ( i ) ) ;

56 dyi ( i ) =B( i ) * cosd ( beta ( i ) ) ;

57 e l s e i f x_cci ( i ) <xi1 ( i )

58 beta ( i ) =theta ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

59 dxi ( i ) =B( i ) * cosd ( beta ( i ) ) ;

60 dyi ( i ) =B( i ) * sind ( beta ( i ) ) ;

61 end

62 e l s e i f x_cci ( i ) >0 && y_cci ( i ) <0

63 i f x_cci ( i ) >xi1 ( i )

64 beta ( i ) =theta ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

65 dxi ( i ) =B( i ) * cosd ( beta ( i ) ) ;

66 dyi ( i )=°B( i ) * sind ( beta ( i ) ) ;

67 e l s e i f x_cci ( i ) <xi1 ( i )

68 beta ( i ) =theta ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

69 dxi ( i ) =B( i ) * sind ( beta ( i ) ) ;

70 dyi ( i )=°B( i ) * cosd ( beta ( i ) ) ;

71 end

72 e l s e i f x_cci ( i ) <0 && y_cci ( i ) <0

73 i f x_cci ( i ) >xi1 ( i )

74 beta ( i ) =theta ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

75 dxi ( i )=°B( i ) * sind ( beta ( i ) ) ;

76 dyi ( i )=°B( i ) * cosd ( beta ( i ) ) ;

77 e l s e i f x_cci ( i ) <xi1 ( i )

78 beta ( i ) =theta ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

79 dxi ( i )=°B( i ) * cosd ( beta ( i ) ) ;

80 dyi ( i )=°B( i ) * sind ( beta ( i ) ) ;

81 end

82 e l s e i f x_cci ( i ) <0 && y_cci ( i ) >0

83 i f x_cci ( i ) >xi1 ( i )

84 beta ( i ) =theta ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

85 dxi ( i )=°B( i ) * cosd ( beta ( i ) ) ;

86 dyi ( i ) =B( i ) * sind ( beta ( i ) ) ;

87 e l s e i f x_cci ( i ) <xi1 ( i )

88 beta ( i ) =theta ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

89 dxi ( i )=°B( i ) * sind ( beta ( i ) ) ;

90 dyi ( i ) =B( i ) * cosd ( beta ( i ) ) ;

91 end

92 end

93 end

94
95 %coordinates of turn point in ( a , b)

96 a2=dxi . * cosd ( rotate )°dyi . * sind ( rotate ) ;

97 b2=dxi . * sind ( rotate ) +dyi . * cosd ( rotate ) ;

98
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99 %coordinates of turn point in (X , Y)

100 X2=DC( 1 ) +a2 ;

101 Y2=DC( 2 ) +b2 ;

102 end

B.6 plot one DC
1 function WPL_avg=plot_one_dc (C,BUR, KOPz, TR)

2 %c a l c u l a te s the average well path length of a l l wells d r i l l e d from one d r i l l center

3
4 %compute optimized d r i l l c e n t e r

5 DC=get_one_dc (C) ;

6
7 %find turn point in the XY°plane

8 [ X2 , Y2 , TR]= get_turn_one_dc (C,DC, TR) ;

9
10 %coordinates of the 1 s t k i c k o f f point

11 KOP=[DC( 1 ) DC( 2 ) KOPz ] ;

12
13 %completion i n t e r v a l length and build°up angle

14 [ L_c ,BUA]=get_BUA (C) ;

15
16 %arc length in the XY°plane

17 vec_t =[X2’°DC( 1 ) Y2’°DC( 2 ) zeros ( s i z e (C, 1 ) , 1 ) ] ;

18 vec_c =[C( : , 4 )°C( : , 1 ) C( : , 5 )°C( : , 2 ) zeros ( s i z e (C, 1 ) , 1 ) ] ;

19 alpha_azi=zeros ( 1 , s i z e (C, 1 ) ) ;

20 a_t =( vec_t ( : , 2 ) . / vec_t ( : , 1 ) ) ’ ;

21 a_c =( vec_c ( : , 2 ) . / vec_c ( : , 1 ) ) ’ ;

22 x =(C( : , 2 ) ’°Y2+a_t . * X2°a_c . *C( : , 1 ) ’ ) . / ( a_t°a_c ) ;

23 N=(x°C( : , 1 ) ’ ) . / (C( : , 4 )°C( : , 1 ) ) ’ ;

24 for i =1: s i z e (C, 1 )

25 %calculate angle between two vectors

26 alpha_azi ( i ) =atan2d (norm( cross ( vec_t ( i , : ) , vec_c ( i , : ) ) ) , dot ( vec_t ( i , : ) , vec_c ( i , : ) ) ) ;

27 i f N( i ) >0

28 alpha_azi ( i )=360°alpha_azi ( i ) ;

29 end

30 end

31 arc_azi=alpha_azi . /TR ;

32
33 %RZ coordinates of s t a r t of completion i n t e r v a l

34 dRtot=sqrt ( ( X2°DC( 1 ) ) .^2+(Y2°DC( 2 ) ) . ^ 2 ) +arc_azi ;

35 dZtot=C( : , 3 ) ’°DC( 3 ) ;

36
37 %arc length in the RZ plane and radius of curvature

38 arc=BUA/BUR;

39 ROC=(360* arc ) . / ( 2 * pi *BUA) ;

40
41 %displacements in R and Z due to both build sections

42 dR=ROC+ROC. * sind (BUA°90) ;

43 dZ=ROC. * cosd (BUA°90) ;

44 for i =1: s i z e (C, 1 )

45 i f BUA( i ) < 90

46 dR( i ) =ROC( i )°ROC( i ) * cosd (BUA( i ) ) ;

47 dZ( i ) =ROC( i ) * sind (BUA( i ) ) ;

48 end

49 end

50
51 %length of tangent section

52 dRtan=dRtot°dR ;



APPENDIX B. MATLAB 46

53 dZtan=dZtot°dZ°KOP( 3 ) ;

54 Ltan=sqrt ( dRtan.^2+dZtan . ^ 2 ) ;

55
56 %f i r s t build°up angle

57 BUA1=atand ( dRtan . / dZtan ) ;

58
59 %average wellpath length

60 WPL=L_c+arc+Ltan+KOP( 3 ) ;

61 WPL_avg=sum(WPL) / length (WPL) ;

62
63 %the following calculat ions are only for the intention of plo tt i ng the wells in 2D

64
65 %coordinates of the 1 s t c i r c l e of build center

66 R_cc1=ROC;

67 Z_cc1=KOP( 3 ) ;

68
69 %amount of columns needed in the R and Z matrices

70 K=C( : , 6 ) ’ ;

71 for i =1: s i z e (C, 1 )

72 i f C( i , 3 )°C( i , 6 ) ==0

73 K( i ) =C( i , 3 ) +L_c ( i ) ;

74 end

75 end

76
77 %creating the R and Z matrices

78 R=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

79 Z=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

80
81 %R and Z coordinates of 1 s t and 2nd build sections and completion coordinates

82 Rc1e=ROC°ROC. * cosd (BUA1) ;

83 Zc1e=ROC. * sind (BUA1) +KOP( 3 ) ;

84 Rc2s=Ltan . * sind (BUA1) +Rc1e ;

85 Zc2s=Ltan . * cosd (BUA1) +Zc1e ;

86 m1=(Rc2s°Rc1e ) . / ( Zc2s°Zc1e ) ;

87 b1=Rc1e°m1. * Zc1e ;

88 R_cc2=dRtot ;

89 Z_cc2=C( : , 3 ) ’°ROC;

90 R_ce=dRtot +( sqrt ( (C( : , 4 )°C( : , 1 ) ) .^2+(C( : , 5 )°C( : , 2 ) ) . ^ 2 ) ) ’ ;

91 Rc2e=dRtot ;

92 Zc2e=C( : , 3 ) ’ ;

93 m2=(R_ce°Rc2e ) . / (C( : , 6 ) ’°Zc2e ) ;

94 b2=Rc2e°m2. * Zc2e ;

95
96 %f i l l i n g the Z matrix with numbers from 1 to depth of completion end

97 for i =1: s i z e (C, 1 )

98 for j =1:C( i , 6 )

99 A=1:C( i , 6 ) ;

100 Z( i , j ) =A( j ) ;

101 end

102 end

103
104 %f i l l i n g the R matrix with the corresponding coordinates

105 N=zeros ( 1 , s i z e (C, 1 ) ) ;

106 for j =1: s i z e (C, 1 )

107 for i =1:C( j , 6 )

108 %coordinates above the 1 s t k i c k o f f point

109 i f Z( j , i ) <=KOP( 3 )

110 R( j , i ) =0;

111 %coordinates of the 1 s t build section

112 e l s e i f Z( j , i ) >KOP( 3 ) && Z( j , i ) <=Zc1e ( j )

113 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc1 ) ^2)+R_cc1 ( j ) ;

114 %coordinates of the tangent section
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115 e l s e i f Z( j , i ) >Zc1e ( j ) && Z( j , i ) <=Zc2s ( j )

116 R( j , i ) =m1( j ) *Z( j , i ) +b1 ( j ) ;

117 %coordinates of the 2nd build section

118 e l s e i f Z( j , i ) >Zc2s ( j ) && Z( j , i ) <C( j , 3 )

119 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc2 ( j ) ) ^2)+R_cc2 ( j ) ;

120 %coordinates of the completion i n t e r v a l

121 else

122 R( j , i ) =m2( j ) *Z( j , i ) +b2 ( j ) ;

123 end

124
125 %coordinates of a horizontal completion i n t e r v a l

126 i f C( j , 3 )°C( j , 6 ) ==0

127 B=dRtot ( j ) : ( dRtot ( j ) +L_c ( j ) ) ;

128 R( j ,C( j , 3 ) +length (B) ) =dRtot ( j ) +L_c ( j ) ;

129 N( j ) =C( j , 3 ) +length (B) ;

130 for k =1: length (B)

131 R( j ,C( j , 3 ) +k°1)=B( k ) ;

132 Z( j ,C( j , 3 ) +k ) =Z( j ,C( j , 3 ) +k°1) ;

133 end

134 end

135 end

136 end

137
138 %pl ott i ng a l l wells as a two°dimensional f i g u r e

139 % for i =1: s i z e (C, 1 )

140 % f i g u r e ( )

141 % plot (R( i , 1 :N( i ) ) , f l ipud (Z( i , 1 :N( i ) ) ) ) ;

142 % set ( gca , ’ XAxisLocation ’ , ’ top ’ , ’ YAxisLocation ’ , ’ l e f t ’ , ’ ydir ’ , ’ reverse ’ )

143 % axis equal

144 % t i t l e ( ’ Well path in the RZ°plane ’ )

145 % xlabel ( ’R (m) ’ )

146 % ylabel ( ’Z (m) ’ )

147 % xlim ([°50 (R( i ,N( i ) ) +50) ] )

148 % ylim ( [ 0 2600])

149 % end

150 end

B.7 get two DC
1 function [DC1,DC2, X_opt , Y_opt , Z_opt ]= get_two_dc (C, N_dc)

2 %c a l u l a t e s the optimized coordinates of two d r i l l centers

3
4 %number of completion i n t e r v a l s

5 N= s i z e (C, 1 ) ;

6 M= ( 1 :N) ;

7
8 %a l l possible combinations of template 1

9 R=nchoosek (M,N/N_dc) ;

10
11 %the corresponding combinations of template 2

12 R_rest=zeros ( s i z e (R) ) ;

13 for i =1: s i z e (R, 1 )

14 Rtemp=R( i , : ) ;

15 R2=zeros ( 1 ,N/N_dc) ;

16 j =1;

17 while j <= s i z e (R, 2 )

18 V=randi (N) ;

19 i f sum(Rtemp==V) ==0 && sum(R2==V) ==0

20 R2( j ) =V ;
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21 j = j +1;

22 end

23 end

24 R_rest ( i , : ) =R2 ;

25 end

26
27 %coordinates corresponding to values in R and R_rest

28 X=zeros (N/N_dc , s i z e (R, 1 ) ) ;

29 Y=zeros (N/N_dc , s i z e (R, 1 ) ) ;

30
31 X_rest=zeros (N/N_dc , s i z e ( R_rest , 1 ) ) ;

32 Y_rest=zeros (N/N_dc , s i z e ( R_rest , 1 ) ) ;

33 for i =1: s i z e (R, 1 )

34 for j = 1 :N/N_dc

35 X( j , i ) = C(R( i , j ) , 1 ) ;

36 Y( j , i ) = C(R( i , j ) , 2 ) ;

37
38 X_rest ( j , i ) = C( R_rest ( i , j ) , 1 ) ;

39 Y_rest ( j , i ) = C( R_rest ( i , j ) , 2 ) ;

40 end

41 end

42
43 %d r i l l c e n t e r s

44 X_dc=zeros ( 1 , s i z e (X, 2 ) ) ;

45 Y_dc=zeros ( 1 , s i z e (Y , 2 ) ) ;

46
47 X_dc_rest=zeros ( 1 , s i z e (X, 2 ) ) ;

48 Y_dc_rest=zeros ( 1 , s i z e (Y , 2 ) ) ;

49 for i =1: s i z e (X, 2 )

50 X_dc ( i ) =sum(X ( : , i ) ) / s i z e (X, 1 ) ;

51 Y_dc ( i ) =sum(Y ( : , i ) ) / s i z e (Y , 1 ) ;

52
53 X_dc_rest ( i ) =sum( X_rest ( : , i ) ) / s i z e ( X_rest , 1 ) ;

54 Y_dc_rest ( i ) =sum( Y_rest ( : , i ) ) / s i z e ( Y_rest , 1 ) ;

55 end

56
57 %distances from d r i l l center to a l l points

58 d i s t =zeros ( s i z e (X) ) ;

59 d i s t _ r e s t =zeros ( s i z e (X) ) ;

60 for i =1: s i z e ( dist , 2 )

61 for j =1: s i z e ( dist , 1 )

62 d i s t ( j , i ) =sqrt ( ( X( j , i )°X_dc ( i ) ) ^2+(Y( j , i )°Y_dc ( i ) ) ^2) ;

63 d i s t _ r e s t ( j , i ) =sqrt ( ( X_rest ( j , i )°X_dc_rest ( i ) ) ^2+( Y_rest ( j , i )°Y_dc_rest ( i ) ) ^2) ;

64 end

65 end

66
67 %average distances for each group

68 dist_avg=zeros ( 1 , s i z e ( dist , 2 ) ) ;

69 dist_avg_rest =zeros ( 1 , s i z e ( dist , 2 ) ) ;

70 for i =1: s i z e ( dist , 2 )

71 dist_avg ( i ) =sum( d i s t ( : , i ) ) / s i z e ( dist , 1 ) ;

72 dist_avg_rest ( i ) =sum( d i s t _ r e s t ( : , i ) ) / s i z e ( d i s t _ r e s t , 1 ) ;

73 end

74
75 %the combination that y i e l d s the shortest well path lengths

76 d i s t _ t o t =( dist_avg+ dist_avg_rest ) . / 2 ;

77 [ g , col ]=min( d i s t _ t o t ) ;

78
79 X_opt =[C(R( col , : ) , 1 ) ’ C( R_rest ( col , : ) , 1 ) ’ ] ;

80 Y_opt =[C(R( col , : ) , 2 ) ’ C( R_rest ( col , : ) , 2 ) ’ ] ;

81 Z_opt =[C(R( col , : ) , 3 ) ’ C( R_rest ( col , : ) , 3 ) ’ ] ;

82
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83 X_opt ( 2 , : ) =[C(R( col , : ) , 4 ) ’ C( R_rest ( col , : ) , 4 ) ’ ] ;

84 Y_opt ( 2 , : ) =[C(R( col , : ) , 5 ) ’ C( R_rest ( col , : ) , 5 ) ’ ] ;

85 Z_opt ( 2 , : ) =[C(R( col , : ) , 6 ) ’ C( R_rest ( col , : ) , 6 ) ’ ] ;

86
87 DC1=[X_dc ( col ) Y_dc ( col ) 0 ] ;

88 DC2=[ X_dc_rest ( col ) Y_dc_rest ( col ) 0 ] ;

89 end

B.8 get turn two DC
1 function [ X2 , Y2 , TR] = get_turn_two_dc (C,DC1,DC2, X_opt , Y_opt , TR)

2 %c a l c u l a te s the turn point in the XY°plane

3
4 %radius of turn

5 ROT=360/(2* pi *TR) ;

6
7 %check i f distance between WH and completion s t a r t i s l e s s than 2*ROT

8 k =1;

9 while k <= ( s i z e (C, 1 ) /2)

10 i f ( sqrt ( (DC1( 1 )°X_opt ( 1 , k ) ) ^2+(DC1( 2 )°Y_opt ( 1 , k ) ) ^2) < 2*ROT) | | . . .

11 ( sqrt ( (DC2( 1 )°X_opt ( 1 , k+6) ) ^2+(DC2( 2 )°Y_opt ( 1 , k+6) ) ^2) < 2*ROT)

12 %increase the turn rate

13 TR=TR+1/30;

14 ROT=360/(2* pi *TR) ;

15 else

16 k=k +1;

17 end

18 end

19
20 %azimuth of completion i n t e r v a l

21 azi_c=atan2d ( ( X_opt ( 2 , : )°X_opt ( 1 , : ) ) , ( Y_opt ( 2 , : )°Y_opt ( 1 , : ) ) ) ;

22
23 %completion s t a r t coordinates in two new coordinate systems ( a , b) with originin the d r i l l centers

24 a1 ( 1 : 6 ) =X_opt ( 1 , 1 : 6 )°DC1( 1 ) ; a1 ( 7 : 1 2 ) =X_opt ( 1 , 7 : 1 2 )°DC2( 1 ) ;

25 b1 ( 1 : 6 ) =Y_opt ( 1 , 1 : 6 )°DC1( 2 ) ; b1 ( 7 : 1 2 ) =Y_opt ( 1 , 7 : 1 2 )°DC2( 2 ) ;

26
27 %rotation angle needed to place the coordinates in a rotated coordinate system

28 rotate=180°azi_c ;

29
30 %completion s t a r t coordinates in the rotated coordinate systems ( xi , y i ) with origin in the d r i l l centers

31 xi1=a1 . * cosd ( rotate ) +b1 . * sind ( rotate ) ;

32 yi1=°a1 . * sind ( rotate ) +b1 . * cosd ( rotate ) ;

33
34 %c i r c l e of turn center coordinates in ( xi , y i )

35 x_cci=xi1+ROT;

36 y_cci=yi1 ;

37 for i =1: s i z e (C, 1 )

38 i f xi1 ( i ) >0

39 x_cci ( i ) =xi1 ( i )°ROT;

40 end

41 end

42
43 %distances from d r i l l centers to the c i r c l e s of turn

44 H=sqrt ( ( x_cci ) .^2+( y_cci ) . ^ 2 ) ;

45 B=sqrt (H.^2°ROT^2) ;

46 tetha =( asind (ROT. /H) ) ;

47
48 %coordinates of turn point in ( xi , y i )

49 betha=zeros ( 1 , s i z e (C, 1 ) ) ;
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50 dxi=zeros ( 1 , s i z e (C, 1 ) ) ;

51 dyi=zeros ( 1 , s i z e (C, 1 ) ) ;

52 for i =1: s i z e (C, 1 )

53 i f x_cci ( i ) >0 && y_cci ( i ) >0

54 i f x_cci ( i ) >xi1 ( i )

55 betha ( i ) =tetha ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

56 dxi ( i ) =B( i ) * sind ( betha ( i ) ) ;

57 dyi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

58 e l s e i f x_cci ( i ) <xi1 ( i )

59 betha ( i ) =tetha ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

60 dxi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

61 dyi ( i ) =B( i ) * sind ( betha ( i ) ) ;

62 end

63 e l s e i f x_cci ( i ) >0 && y_cci ( i ) <0

64 i f x_cci ( i ) >xi1 ( i )

65 betha ( i ) =tetha ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

66 dxi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

67 dyi ( i )=°B( i ) * sind ( betha ( i ) ) ;

68 e l s e i f x_cci ( i ) <xi1 ( i )

69 betha ( i ) =tetha ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

70 dxi ( i ) =B( i ) * sind ( betha ( i ) ) ;

71 dyi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

72 end

73 e l s e i f x_cci ( i ) <0 && y_cci ( i ) <0

74 i f x_cci ( i ) >xi1 ( i )

75 betha ( i ) =tetha ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

76 dxi ( i )=°B( i ) * sind ( betha ( i ) ) ;

77 dyi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

78 e l s e i f x_cci ( i ) <xi1 ( i )

79 betha ( i ) =tetha ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

80 dxi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

81 dyi ( i )=°B( i ) * sind ( betha ( i ) ) ;

82 end

83 e l s e i f x_cci ( i ) <0 && y_cci ( i ) >0

84 i f x_cci ( i ) >xi1 ( i )

85 betha ( i ) =tetha ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

86 dxi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

87 dyi ( i ) =B( i ) * sind ( betha ( i ) ) ;

88 e l s e i f x_cci ( i ) <xi1 ( i )

89 betha ( i ) =tetha ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

90 dxi ( i )=°B( i ) * sind ( betha ( i ) ) ;

91 dyi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

92 end

93 end

94 end

95
96 %coordinates of turn point in ( a , b)

97 a2=dxi . * cosd ( rotate )°dyi . * sind ( rotate ) ;

98 b2=dxi . * sind ( rotate ) +dyi . * cosd ( rotate ) ;

99
100 %coordinates of turn point in (X , Y)

101 X2 ( 1 : 6 ) =DC1( 1 ) +a2 ( 1 : 6 ) ; X2 ( 7 : 1 2 ) =DC2( 1 ) +a2 ( 7 : 1 2 ) ;

102 Y2 ( 1 : 6 ) =DC1( 2 ) +b2 ( 1 : 6 ) ; Y2 ( 7 : 1 2 ) =DC2( 2 ) +b2 ( 7 : 1 2 ) ;

103 end

B.9 plot two DC
1 function WPL_avg=plot_two_dc (C,BUR, KOPz, TR)

2 %c a l c u l a te s the average well path length of a l l wells d r i l l e d from two d r i l l centers
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3
4 %input parameter

5 N_dc=2;

6
7 %compute optimized d r i l l c e n t e r s and corresponding groups

8 [DC1,DC2, X_opt , Y_opt , Z_opt ]= get_two_dc (C, N_dc) ;

9
10 %rearrange the completion i n t e r v a l s

11 C( : , 1 ) =X_opt ( 1 , : ) ; C( : , 2 ) =Y_opt ( 1 , : ) ; C( : , 3 ) =Z_opt ( 1 , : ) ;

12 C( : , 4 ) =X_opt ( 2 , : ) ; C( : , 5 ) =Y_opt ( 2 , : ) ; C( : , 6 ) =Z_opt ( 2 , : ) ;

13
14 %find turn point in the XY°plane

15 [ X2 , Y2 , TR]= get_turn_two_dc (C,DC1,DC2, X_opt , Y_opt , TR) ;

16
17 %coordinates of the 1 s t k i c k o f f points

18 KOP=[DC1( 1 ) DC1( 2 ) KOPz ; DC2( 1 ) DC2( 2 ) KOPz ] ;

19
20 %completion i n t e r v a l length and build°up angle

21 [ L_c ,BUA]=get_BUA (C) ;

22
23 %arc length in the XY°plane

24 vec_t ( 1 : 6 , : ) = [ ( X2 ( 1 : 6 )°DC1( 1 ) ) ’ ( Y2 ( 1 : 6 )°DC1( 2 ) ) ’ zeros ( s i z e (C, 1 ) /2 ,1) ] ;

25 vec_t ( 7 : 1 2 , : ) = [ ( X2 ( 7 : 1 2 )°DC2( 1 ) ) ’ ( Y2 ( 7 : 1 2 )°DC2( 2 ) ) ’ zeros ( s i z e (C, 1 ) /2 ,1) ] ;

26 vec_c =[C( : , 4 )°C( : , 1 ) C( : , 5 )°C( : , 2 ) zeros ( s i z e (C, 1 ) , 1 ) ] ;

27 alpha_azi=zeros ( 1 , s i z e (C, 1 ) ) ;

28 a_t =( vec_t ( : , 2 ) . / vec_t ( : , 1 ) ) ’ ;

29 a_c =( vec_c ( : , 2 ) . / vec_c ( : , 1 ) ) ’ ;

30 x =(C( : , 2 ) ’°Y2+a_t . * X2°a_c . *C( : , 1 ) ’ ) . / ( a_t°a_c ) ;

31 N=(x°C( : , 1 ) ’ ) . / (C( : , 4 )°C( : , 1 ) ) ’ ;

32 for i =1: s i z e (C, 1 )

33 %calculate angle between two vectors

34 alpha_azi ( i ) =atan2d (norm( cross ( vec_t ( i , : ) , vec_c ( i , : ) ) ) , dot ( vec_t ( i , : ) , vec_c ( i , : ) ) ) ;

35 i f N( i ) >0

36 alpha_azi ( i )=360°alpha_azi ( i ) ;

37 end

38 end

39 arc_azi=alpha_azi . /TR ;

40
41 %RZ coordinates of s t a r t of completion i n t e r v a l

42 dRtot ( 1 : 6 ) =sqrt ( ( X2 ( 1 : 6 )°DC1( 1 ) ) .^2+(Y2 ( 1 : 6 )°DC1( 2 ) ) . ^ 2 ) +arc_azi ( 1 : 6 ) ;

43 dRtot ( 7 : 1 2 ) =sqrt ( ( X2 ( 7 : 1 2 )°DC2( 1 ) ) .^2+(Y2 ( 7 : 1 2 )°DC2( 2 ) ) . ^ 2 ) +arc_azi ( 7 : 1 2 ) ;

44 dZtot ( 1 : 6 ) =C( 1 : 6 , 3 ) ’°DC1( 3 ) ;

45 dZtot ( 7 : 1 2 ) =C( 7 : 1 2 , 3 ) ’°DC2( 3 ) ;

46
47 %arc length in the RZ plane and radius of curvature

48 arc=BUA/BUR;

49 ROC=(360* arc ) . / ( 2 * pi *BUA) ;

50
51 %displacements in R and Z due to both build sections

52 dR=ROC+ROC. * sind (BUA°90) ;

53 dZ=ROC. * cosd (BUA°90) ;

54 for i =1: s i z e (C, 1 )

55 i f BUA( i ) < 90

56 dR( i ) =ROC( i )°ROC( i ) * cosd (BUA( i ) ) ;

57 dZ( i ) =ROC( i ) * sind (BUA( i ) ) ;

58 end

59 end

60
61 %length of tangent section

62 dRtan=dRtot°dR ;

63 dZtan=dZtot°dZ°KOP( 1 , 3 ) ;

64 Ltan=sqrt ( dRtan.^2+dZtan . ^ 2 ) ;
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65
66 %f i r s t build°up angle

67 BUA1=atand ( dRtan . / dZtan ) ;

68
69 %average wellpath length

70 WPL=L_c+arc+Ltan+KOP( 1 , 3 ) ;

71 WPL_avg=sum(WPL) / length (WPL) ;

72
73 %the following calculat ions are only for the intention of plo tt i ng the wells in 2D

74
75 %coordinates of the 1 s t c i r c l e of build center

76 R_cc1=ROC;

77 Z_cc1=KOP( 1 , 3 ) ;

78
79 %amount of columns needed in the R and Z matrices

80 K=C( : , 6 ) ’ ;

81 for i =1: s i z e (C, 1 )

82 i f C( i , 3 )°C( i , 6 ) ==0

83 K( i ) =C( i , 3 ) +L_c ( i ) ;

84 end

85 end

86
87 %creating the R and Z matrices

88 R=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

89 Z=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

90
91 %R and Z coordinates of 1 s t and 2nd build sections and completion coordinates

92 Rc1e=ROC°ROC. * cosd (BUA1) ;

93 Zc1e=ROC. * sind (BUA1) +KOP( 1 , 3 ) ;

94 Rc2s=Ltan . * sind (BUA1) +Rc1e ;

95 Zc2s=Ltan . * cosd (BUA1) +Zc1e ;

96 m1=(Rc2s°Rc1e ) . / ( Zc2s°Zc1e ) ;

97 b1=Rc1e°m1. * Zc1e ;

98 R_cc2=dRtot ;

99 Z_cc2=C( : , 3 ) ’°ROC;

100 R_ce=dRtot +( sqrt ( (C( : , 4 )°C( : , 1 ) ) .^2+(C( : , 5 )°C( : , 2 ) ) . ^ 2 ) ) ’ ;

101 Rc2e=dRtot ;

102 Zc2e=C( : , 3 ) ’ ;

103 m2=(R_ce°Rc2e ) . / (C( : , 6 ) ’°Zc2e ) ;

104 b2=Rc2e°m2. * Zc2e ;

105
106 %f i l l i n g the Z matrix with numbers from 1 to depth of completion end

107 for i =1: s i z e (C, 1 )

108 for j =1:C( i , 6 )

109 A=1:C( i , 6 ) ;

110 Z( i , j ) =A( j ) ;

111 end

112 end

113
114 %f i l l i n g the R matrix with the corresponding coordinates

115 N=zeros ( 1 , s i z e (C, 1 ) ) ;

116 for j =1: s i z e (C, 1 )

117 for i =1:C( j , 6 )

118 %coordinates above the 1 s t k i c k o f f point

119 i f Z( j , i ) <=KOP( 1 , 3 )

120 R( j , i ) =0;

121 %coordinates of the 1 s t build section

122 e l s e i f Z( j , i ) >KOP( 1 , 3 ) && Z( j , i ) <=Zc1e ( j )

123 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc1 ) ^2)+R_cc1 ( j ) ;

124 %coordinates of the tangent section

125 e l s e i f Z( j , i ) >Zc1e ( j ) && Z( j , i ) <=Zc2s ( j )

126 R( j , i ) =m1( j ) *Z( j , i ) +b1 ( j ) ;
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127 %coordinates of the 2nd build section

128 e l s e i f Z( j , i ) >Zc2s ( j ) && Z( j , i ) <C( j , 3 )

129 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc2 ( j ) ) ^2)+R_cc2 ( j ) ;

130 %coordinates of the completion i n t e r v a l

131 else

132 R( j , i ) =m2( j ) *Z( j , i ) +b2 ( j ) ;

133 end

134
135 %coordinates of a horizontal completion i n t e r v a l

136 i f C( j , 3 )°C( j , 6 ) ==0

137 B=dRtot ( j ) : ( dRtot ( j ) +L_c ( j ) ) ;

138 R( j ,C( j , 3 ) +length (B) ) =dRtot ( j ) +L_c ( j ) ;

139 N( j ) =C( j , 3 ) +length (B) ;

140 for k =1: length (B)

141 R( j ,C( j , 3 ) +k°1)=B( k ) ;

142 Z( j ,C( j , 3 ) +k ) =Z( j ,C( j , 3 ) +k°1) ;

143 end

144 end

145 end

146 end

147
148 %pl ott i ng a l l wells as a two°dimensional f i g u r e

149 % for i =1: s i z e (C, 1 )

150 % f i g u r e ( )

151 % plot (R( i , 1 :N( i ) ) , f l ipud (Z( i , 1 :N( i ) ) ) ) ;

152 % set ( gca , ’ XAxisLocation ’ , ’ top ’ , ’ YAxisLocation ’ , ’ l e f t ’ , ’ ydir ’ , ’ reverse ’ )

153 % axis equal

154 % t i t l e ( ’ Well path in the RZ°plane ’ )

155 % xlabel ( ’R (m) ’ )

156 % ylabel ( ’Z (m) ’ )

157 % xlim ([°50 (R( i ,N( i ) ) +50) ] )

158 % ylim ( [ 0 2600])

159 % end

160 end

B.10 get three DC
1 function [DC1,DC2,DC3, X_opt , Y_opt , Z_opt ]= get_three_dc (C, N_dc)

2 %c a l u l a t e s the optimized coordinates of three d r i l l centers

3
4 %number of completion i n t e r v a l s

5 N= s i z e (C, 1 ) ;

6 M= ( 1 :N) ;

7
8 %a l l possible combinations of template 1

9 R=nchoosek (M,N/N_dc) ;

10
11 %remaining combinations in R_mar

12 R_mar=zeros ( s i z e (R, 1 ) ,N°N/N_dc) ;

13 for i =1:N°N/N_dc

14 for j =1: s i z e (R, 1 )

15 Rtemp=R( j , : ) ;

16 R2=zeros ( 1 ,N°N/N_dc) ;

17 k =1;

18 while k <= N°N/N_dc

19 V=randi (N) ;

20 i f sum(Rtemp==V) ==0 && sum(R2==V) ==0

21 R2( k ) =V ;

22 k=k +1;
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23 end

24 end

25 R_mar( j , : ) =R2 ;

26 end

27 end

28
29 %a l l possible combinations of template 2

30 Mar_M=zeros (70 , s i z e (R, 1 ) * s i z e (R, 2 ) ) ;

31 for i =1: s i z e (R_mar , 1 )

32 Mar_M( : , 4 * i °3:4* i ) =nchoosek (R_mar( i , : ) ,N/N_dc) ;

33 end

34
35 %the remaining combinations of template 3

36 M_gr3=zeros (70 , s i z e (R, 1 ) * s i z e (R, 2 ) ) ;

37 for i =1: s i z e (R, 1 )

38 Rtemp1=R( i , : ) ;

39 for j =1: s i z e (M_gr3 , 1 )

40 R2=zeros ( 1 ,N/N_dc) ;

41 Rtemp2=Mar_M( j , 4 * i °3:4* i ) ;

42 k =1;

43 while k <= N/N_dc

44 V=randi (N) ;

45 i f sum(Rtemp2==V) ==0 && sum(R2==V) ==0 && sum(Rtemp1==V) ==0

46 R2( k ) =V ;

47 k=k +1;

48 end

49 end

50 M_gr3( j , 4 * i °3:4* i ) =R2 ;

51 end

52 end

53
54 %combines a l l 3 templates

55 M= s i z e (R, 1 ) * s i z e (R, 2 ) *N_dc ;

56 Pos=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

57 for i =1: s i z e (R, 1 )

58 Pos ( : , 1 2 * i °3:12* i ) =M_gr3 ( : , 4 * i °3:4* i ) ;

59 Pos ( : , 1 2 * i °7:12* i °4)=Mar_M( : , 4 * i °3:4* i ) ;

60 for j =1: s i z e (M_gr3 , 1 )

61 Pos ( j ,12* i °11:12* i °8)=R( i , : ) ;

62 end

63 end

64
65 %coordinates corresponding to values in Pos

66 X=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

67 Y=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

68 Z=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

69 for i =1: s i z e (M_gr3 , 1 )

70 for j =1:M

71 X( i , j ) =C( Pos ( i , j ) , 1 ) ;

72 Y( i , j ) =C( Pos ( i , j ) , 2 ) ;

73 Z( i , j ) =C( Pos ( i , j ) , 3 ) ;

74 end

75 end

76
77 %d r i l l center to every template

78 X_dc=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

79 Y_dc=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

80 for j =1: s i z e (M_gr3 , 1 )

81 for i =1:M/(N/N_dc)

82 X_dc ( j , 4 * i °3:4* i ) =sum(X( j , 4 * i °3:4* i ) ) / 4 ;

83 Y_dc ( j , 4 * i °3:4* i ) =sum(Y( j , 4 * i °3:4* i ) ) / 4 ;

84 end
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85 end

86
87 %distance from d r i l l center to every completion coordinate

88 dist_dc=zeros ( s i z e (M_gr3 , 1 ) ,M) ;

89 for j =1: s i z e (M_gr3 , 1 )

90 for i =1:M

91 dist_dc ( j , i ) =sqrt ( ( X( j , i )°X_dc ( j , i ) ) ^2+(Y( j , i )°Y_dc ( j , i ) ) ^2) ;

92 end

93 end

94
95 %average distance from completion i n t e r v a l to dc for every combination

96 dist_avg=zeros ( s i z e (M_gr3 , 1 ) , s i z e (R, 1 ) ) ;

97 for j =1: s i z e (M_gr3 , 1 )

98 for i =1: s i z e (R, 1 )

99 dist_avg ( j , i ) =sum( dist_dc ( j ,12* i °11:12* i ) ) /12;

100 end

101 end

102
103 %the combination that y i e l d s the shortest well path lengths

104 [ min_avg_col , J ]=min( dist_avg , [ ] , 1 ) ;

105 [ min_avg_dist , I ]=min( min_avg_col ) ;

106 row_min= J ( I ) ;

107
108 X_opt ( 1 , : ) =X(row_min , I *12°11: I *12) ;

109 Y_opt ( 1 , : ) =Y(row_min , I *12°11: I *12) ;

110 Z_opt ( 1 , : ) =Z(row_min , I *12°11: I *12) ;

111
112 X_opt ( 2 , : ) =C( Pos (row_min , I *12°11: I *12) , 4 ) ;

113 Y_opt ( 2 , : ) =C( Pos (row_min , I *12°11: I *12) , 5 ) ;

114 Z_opt ( 2 , : ) =C( Pos (row_min , I *12°11: I *12) , 6 ) ;

115
116 %corresponding dc coordinates

117 DC1=[sum( X_opt ( 1 , 1 : 4 ) ) /4 sum( Y_opt ( 1 , 1 : 4 ) ) /4 0 ] ;

118 DC2=[sum( X_opt ( 1 , 5 : 8 ) ) /4 sum( Y_opt ( 1 , 5 : 8 ) ) /4 0 ] ;

119 DC3=[sum( X_opt ( 1 , 9 : 1 2 ) ) /4 sum( Y_opt ( 1 , 9 : 1 2 ) ) /4 0 ] ;

120 end

B.11 get turn three DC
1 function [ X2 , Y2 , TR]= get_turn_three_dc (C,DC1,DC2,DC3, X_opt , Y_opt , TR)

2 %c a l c u l a te s the turn point in the XY°plane

3
4 %radius of turn

5 ROT=360/(2* pi *TR) ;

6
7 %check i f distance between WH and completion s t a r t i s l e s s than 2*ROT

8 k =1;

9 while k <= ( s i z e (C, 1 ) /3)

10 i f ( sqrt ( (DC1( 1 )°X_opt ( 1 , k ) ) ^2+(DC1( 2 )°Y_opt ( 1 , k ) ) ^2) < 2*ROT) | | . . .

11 ( sqrt ( (DC2( 1 )°X_opt ( 1 , k+4) ) ^2+(DC2( 2 )°Y_opt ( 1 , k+4) ) ^2) < 2*ROT) | | . . .

12 ( sqrt ( (DC3( 1 )°X_opt ( 1 , k+8) ) ^2+(DC3( 2 )°Y_opt ( 1 , k+8) ) ^2) < 2*ROT)

13 %increase the turn rate

14 TR=TR+1/30;

15 ROT=360/(2* pi *TR) ;

16 else

17 k=k +1;

18 end

19 end

20
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21 %azimuth of completion i n t e r v a l

22 azi_c=atan2d ( ( X_opt ( 2 , : )°X_opt ( 1 , : ) ) , ( Y_opt ( 2 , : )°Y_opt ( 1 , : ) ) ) ;

23
24 %completion s t a r t coordinates in three new coordinate systems ( a , b) with originin the d r i l l centers

25 a1 ( 1 : 4 ) =X_opt ( 1 , 1 : 4 )°DC1( 1 ) ; b1 ( 1 : 4 ) =Y_opt ( 1 , 1 : 4 )°DC1( 2 ) ;

26 a1 ( 5 : 8 ) =X_opt ( 1 , 5 : 8 )°DC2( 1 ) ; b1 ( 5 : 8 ) =Y_opt ( 1 , 5 : 8 )°DC2( 2 ) ;

27 a1 ( 9 : 1 2 ) =X_opt ( 1 , 9 : 1 2 )°DC3( 1 ) ; b1 ( 9 : 1 2 ) =Y_opt ( 1 , 9 : 1 2 )°DC3( 2 ) ;

28
29 %rotation angle needed to place the coordinates in a rotated coordinate system

30 rotate=180°azi_c ;

31
32 %completion s t a r t coordinates in the rotated coordinate systems ( xi , y i ) with origin in the d r i l l centers

33 xi1=a1 . * cosd ( rotate ) +b1 . * sind ( rotate ) ;

34 yi1=°a1 . * sind ( rotate ) +b1 . * cosd ( rotate ) ;

35
36 %c i r c l e of turn center coordinates in ( xi , y i )

37 x_cci=xi1+ROT;

38 y_cci=yi1 ;

39 for i =1: s i z e (C, 1 )

40 i f xi1 ( i ) >0

41 x_cci ( i ) =xi1 ( i )°ROT;

42 end

43 end

44
45 %distances from d r i l l centers to the c i r c l e s of turn

46 H=sqrt ( ( x_cci ) .^2+( y_cci ) . ^ 2 ) ;

47 B=sqrt (H.^2°ROT^2) ;

48 tetha =( asind (ROT. /H) ) ;

49
50 %coordinates of turn point in ( xi , y i )

51 betha=zeros ( 1 , s i z e (C, 1 ) ) ;

52 dxi=zeros ( 1 , s i z e (C, 1 ) ) ;

53 dyi=zeros ( 1 , s i z e (C, 1 ) ) ;

54 for i =1: s i z e (C, 1 )

55 i f x_cci ( i ) >0 && y_cci ( i ) >0

56 i f x_cci ( i ) >xi1 ( i )

57 betha ( i ) =tetha ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

58 dxi ( i ) =B( i ) * sind ( betha ( i ) ) ;

59 dyi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

60 e l s e i f x_cci ( i ) <xi1 ( i )

61 betha ( i ) =tetha ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

62 dxi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

63 dyi ( i ) =B( i ) * sind ( betha ( i ) ) ;

64 end

65 e l s e i f x_cci ( i ) >0 && y_cci ( i ) <0

66 i f x_cci ( i ) >xi1 ( i )

67 betha ( i ) =tetha ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

68 dxi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

69 dyi ( i )=°B( i ) * sind ( betha ( i ) ) ;

70 e l s e i f x_cci ( i ) <xi1 ( i )

71 betha ( i ) =tetha ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

72 dxi ( i ) =B( i ) * sind ( betha ( i ) ) ;

73 dyi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

74 end

75 e l s e i f x_cci ( i ) <0 && y_cci ( i ) <0

76 i f x_cci ( i ) >xi1 ( i )

77 betha ( i ) =tetha ( i ) +atand ( x_cci ( i ) / y_cci ( i ) ) ;

78 dxi ( i )=°B( i ) * sind ( betha ( i ) ) ;

79 dyi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

80 e l s e i f x_cci ( i ) <xi1 ( i )

81 betha ( i ) =tetha ( i ) +atand ( y_cci ( i ) / x_cci ( i ) ) ;

82 dxi ( i )=°B( i ) * cosd ( betha ( i ) ) ;
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83 dyi ( i )=°B( i ) * sind ( betha ( i ) ) ;

84 end

85 e l s e i f x_cci ( i ) <0 && y_cci ( i ) >0

86 i f x_cci ( i ) >xi1 ( i )

87 betha ( i ) =tetha ( i )°atand ( y_cci ( i ) / x_cci ( i ) ) ;

88 dxi ( i )=°B( i ) * cosd ( betha ( i ) ) ;

89 dyi ( i ) =B( i ) * sind ( betha ( i ) ) ;

90 e l s e i f x_cci ( i ) <xi1 ( i )

91 betha ( i ) =tetha ( i )°atand ( x_cci ( i ) / y_cci ( i ) ) ;

92 dxi ( i )=°B( i ) * sind ( betha ( i ) ) ;

93 dyi ( i ) =B( i ) * cosd ( betha ( i ) ) ;

94 end

95 end

96 end

97
98 %coordinates of turn point in ( a , b)

99 a2=dxi . * cosd ( rotate )°dyi . * sind ( rotate ) ;

100 b2=dxi . * sind ( rotate ) +dyi . * cosd ( rotate ) ;

101
102 %coordinates of turn point in (X , Y)

103 X2 ( 1 : 4 ) =DC1( 1 ) +a2 ( 1 : 4 ) ; Y2 ( 1 : 4 ) =DC1( 2 ) +b2 ( 1 : 4 ) ;

104 X2 ( 5 : 8 ) =DC2( 1 ) +a2 ( 5 : 8 ) ; Y2 ( 5 : 8 ) =DC2( 2 ) +b2 ( 5 : 8 ) ;

105 X2 ( 9 : 1 2 ) =DC3( 1 ) +a2 ( 9 : 1 2 ) ; Y2 ( 9 : 1 2 ) =DC3( 2 ) +b2 ( 9 : 1 2 ) ;

106 end

B.12 plot three DC
1 function WPL_avg=plot_three_dc (C,BUR, KOPz, TR)

2 %c a l c u l a te s the average well path length of a l l wells d r i l l e d from three d r i l l centers

3
4 %input parameter

5 N_dc=3;

6
7 %compute optimized d r i l l c e n t e r s and corresponding groups

8 [DC1,DC2,DC3, X_opt , Y_opt , Z_opt ]= get_three_dc (C, N_dc) ;

9
10 %rearrange the completion i n t e r v a l s

11 C( : , 1 ) =X_opt ( 1 , : ) ; C( : , 2 ) =Y_opt ( 1 , : ) ; C( : , 3 ) =Z_opt ( 1 , : ) ;

12 C( : , 4 ) =X_opt ( 2 , : ) ; C( : , 5 ) =Y_opt ( 2 , : ) ; C( : , 6 ) =Z_opt ( 2 , : ) ;

13
14 %find turn point in the XY°plane

15 [ X2 , Y2 , TR]= get_turn_three_dc (C,DC1,DC2,DC3, X_opt , Y_opt , TR) ;

16
17 %coordinates of the 1 s t k i c k o f f points

18 KOP=[DC1( 1 ) DC1( 2 ) KOPz ; DC2( 1 ) DC2( 2 ) KOPz ; DC3( 1 ) DC3( 2 ) KOPz ] ;

19
20 %completion i n t e r v a l length and build°up angle

21 [ L_c ,BUA]=get_BUA (C) ;

22
23 %arc length in the XY°plane

24 vec_t ( 1 : 4 , : ) = [ ( X2 ( 1 : 4 )°DC1( 1 ) ) ’ ( Y2 ( 1 : 4 )°DC1( 2 ) ) ’ zeros ( s i z e (C, 1 ) /3 ,1) ] ;

25 vec_t ( 5 : 8 , : ) = [ ( X2 ( 5 : 8 )°DC2( 1 ) ) ’ ( Y2 ( 5 : 8 )°DC2( 2 ) ) ’ zeros ( s i z e (C, 1 ) /3 ,1) ] ;

26 vec_t ( 9 : 1 2 , : ) = [ ( X2 ( 9 : 1 2 )°DC3( 1 ) ) ’ ( Y2 ( 9 : 1 2 )°DC3( 2 ) ) ’ zeros ( s i z e (C, 1 ) /3 ,1) ] ;

27 vec_c =[C( : , 4 )°C( : , 1 ) C( : , 5 )°C( : , 2 ) zeros ( s i z e (C, 1 ) , 1 ) ] ;

28 alpha_azi=zeros ( 1 , s i z e (C, 1 ) ) ;

29 a_t =( vec_t ( : , 2 ) . / vec_t ( : , 1 ) ) ’ ;

30 a_c =( vec_c ( : , 2 ) . / vec_c ( : , 1 ) ) ’ ;

31 x =(C( : , 2 ) ’°Y2+a_t . * X2°a_c . *C( : , 1 ) ’ ) . / ( a_t°a_c ) ;

32 N=(x°C( : , 1 ) ’ ) . / (C( : , 4 )°C( : , 1 ) ) ’ ;
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33 for i =1: s i z e (C, 1 )

34 %calculate angle between two vectors

35 alpha_azi ( i ) =atan2d (norm( cross ( vec_t ( i , : ) , vec_c ( i , : ) ) ) , dot ( vec_t ( i , : ) , vec_c ( i , : ) ) ) ;

36 i f N( i ) >0

37 alpha_azi ( i )=360°alpha_azi ( i ) ;

38 end

39 end

40 arc_azi=alpha_azi . /TR ;

41
42 %RZ coordinates of s t a r t of completion i n t e r v a l

43 dRtot ( 1 : 4 ) =sqrt ( ( X2 ( 1 : 4 )°DC1( 1 ) ) .^2+(Y2 ( 1 : 4 )°DC1( 2 ) ) . ^ 2 ) +arc_azi ( 1 : 4 ) ;

44 dRtot ( 5 : 8 ) =sqrt ( ( X2 ( 5 : 8 )°DC2( 1 ) ) .^2+(Y2 ( 5 : 8 )°DC2( 2 ) ) . ^ 2 ) +arc_azi ( 5 : 8 ) ;

45 dRtot ( 9 : 1 2 ) =sqrt ( ( X2 ( 9 : 1 2 )°DC3( 1 ) ) .^2+(Y2 ( 9 : 1 2 )°DC3( 2 ) ) . ^ 2 ) +arc_azi ( 9 : 1 2 ) ;

46 dZtot ( 1 : 4 ) =C( 1 : 4 , 3 ) ’°DC1( 3 ) ;

47 dZtot ( 5 : 8 ) =C( 5 : 8 , 3 ) ’°DC2( 3 ) ;

48 dZtot ( 8 : 1 2 ) =C( 8 : 1 2 , 3 ) ’°DC3( 3 ) ;

49
50 %arc length in the RZ plane and radius of curvature

51 arc=BUA/BUR;

52 ROC=(360* arc ) . / ( 2 * pi *BUA) ;

53
54 %displacements in R and Z due to both build sections

55 dR=ROC+ROC. * sind (BUA°90) ;

56 dZ=ROC. * cosd (BUA°90) ;

57 for i =1: s i z e (C, 1 )

58 i f BUA( i ) < 90

59 dR( i ) =ROC( i )°ROC( i ) * cosd (BUA( i ) ) ;

60 dZ( i ) =ROC( i ) * sind (BUA( i ) ) ;

61 end

62 end

63
64 %length of tangent section

65 dRtan=dRtot°dR ;

66 dZtan=dZtot°dZ°KOP( 1 , 3 ) ;

67 Ltan=sqrt ( dRtan.^2+dZtan . ^ 2 ) ;

68
69 %f i r s t build°up angle

70 BUA1=atand ( dRtan . / dZtan ) ;

71
72 %average wellpath length

73 WPL=L_c+arc+Ltan+KOP( 1 , 3 ) ;

74 WPL_avg=sum(WPL) / length (WPL) ;

75
76 %the following calculat ions are only for the intention of plo tt i ng the wells in 2D

77
78 %coordinates of the 1 s t c i r c l e of build center

79 R_cc1=ROC;

80 Z_cc1=KOP( 1 , 3 ) ;

81
82 %amount of columns needed in the R and Z matrices

83 K=C( : , 6 ) ’ ;

84 for i =1: s i z e (C, 1 )

85 i f C( i , 3 )°C( i , 6 ) ==0

86 K( i ) =C( i , 3 ) +L_c ( i ) ;

87 end

88 end

89
90 %creating the R and Z matrices

91 R=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

92 Z=zeros ( s i z e (C, 1 ) , c e i l (max(K) ) ) ;

93
94 %R and Z coordinates of 1 s t and 2nd build sections and completion coordinates
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95 Rc1e=ROC°ROC. * cosd (BUA1) ;

96 Zc1e=ROC. * sind (BUA1) +KOP( 1 , 3 ) ;

97 Rc2s=Ltan . * sind (BUA1) +Rc1e ;

98 Zc2s=Ltan . * cosd (BUA1) +Zc1e ;

99 m1=(Rc2s°Rc1e ) . / ( Zc2s°Zc1e ) ;

100 b1=Rc1e°m1. * Zc1e ;

101 R_cc2=dRtot ;

102 Z_cc2=C( : , 3 ) ’°ROC;

103 R_ce=dRtot +( sqrt ( (C( : , 4 )°C( : , 1 ) ) .^2+(C( : , 5 )°C( : , 2 ) ) . ^ 2 ) ) ’ ;

104 Rc2e=dRtot ;

105 Zc2e=C( : , 3 ) ’ ;

106 m2=(R_ce°Rc2e ) . / (C( : , 6 ) ’°Zc2e ) ;

107 b2=Rc2e°m2. * Zc2e ;

108
109 %f i l l i n g the Z matrix with numbers from 1 to depth of completion end

110 for i =1: s i z e (C, 1 )

111 for j =1:C( i , 6 )

112 A=1:C( i , 6 ) ;

113 Z( i , j ) =A( j ) ;

114 end

115 end

116
117 %f i l l i n g the R matrix with the corresponding coordinates

118 N=zeros ( 1 , s i z e (C, 1 ) ) ;

119 for j =1: s i z e (C, 1 )

120 for i =1:C( j , 6 )

121 %coordinates above the 1 s t k i c k o f f point

122 i f Z( j , i ) <=KOP( 1 , 3 )

123 R( j , i ) =0;

124 %coordinates of the 1 s t build section

125 e l s e i f Z( j , i ) >KOP( 1 , 3 ) && Z( j , i ) <=Zc1e ( j )

126 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc1 ) ^2)+R_cc1 ( j ) ;

127 %coordinates of the tangent section

128 e l s e i f Z( j , i ) >Zc1e ( j ) && Z( j , i ) <=Zc2s ( j )

129 R( j , i ) =m1( j ) *Z( j , i ) +b1 ( j ) ;

130 %coordinates of the 2nd build section

131 e l s e i f Z( j , i ) >Zc2s ( j ) && Z( j , i ) <C( j , 3 )

132 R( j , i )=°sqrt (ROC( j ) ^2°(Z( j , i )°Z_cc2 ( j ) ) ^2)+R_cc2 ( j ) ;

133 %coordinates of the completion i n t e r v a l

134 else

135 R( j , i ) =m2( j ) *Z( j , i ) +b2 ( j ) ;

136 end

137
138 %coordinates of a horizontal completion i n t e r v a l

139 i f C( j , 3 )°C( j , 6 ) ==0

140 B=dRtot ( j ) : ( dRtot ( j ) +L_c ( j ) ) ;

141 R( j ,C( j , 3 ) +length (B) ) =dRtot ( j ) +L_c ( j ) ;

142 N( j ) =C( j , 3 ) +length (B) ;

143 for k =1: length (B)

144 R( j ,C( j , 3 ) +k°1)=B( k ) ;

145 Z( j ,C( j , 3 ) +k ) =Z( j ,C( j , 3 ) +k°1) ;

146 end

147 end

148 end

149 end

150
151 %pl ott i ng a l l wells as a two°dimensional f i g u r e

152 % for i =1: s i z e (C, 1 )

153 % f i g u r e ( )

154 % plot (R( i , 1 :N( i ) ) , f l ipud (Z( i , 1 :N( i ) ) ) ) ;

155 % set ( gca , ’ XAxisLocation ’ , ’ top ’ , ’ YAxisLocation ’ , ’ l e f t ’ , ’ ydir ’ , ’ reverse ’ )

156 % axis equal
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157 % t i t l e ( ’ Well path in the RZ°plane ’ )

158 % xlabel ( ’R (m) ’ )

159 % ylabel ( ’Z (m) ’ )

160 % xlim ([°50 (R( i ,N( i ) ) +50) ] )

161 % ylim ( [ 0 2600])

162 % end

163 end
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