& NTNU

Innovation and Creativity

Dialogue Learning in CCBR

Hans Arne Vartdal

Master of Science in Informatics
Submission date: June 2007
Supervisor: Agnar Aamodt, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Abstract

In the field of palliative care there is a need to create adaptive questionnaires
to minimize the patient’s “cognitive load” when acquiring data of the pa-
tient’s subjective experience of pain. A conversational case based reasoning
(CCBR) system can be used as a basis for such questionnaires, and dialogue
learning as a method for reducing the number of questions asked, without
deterioration of the data quality. In this thesis, methods for question rank-
ing, dialogue inferring, and dialogue learning have been reviewed. A case
based reasoning framework is introduced and improved, and based on this,
a CCBR system with an extension for dialogue learning has been designed
and implemented. The result was tested with well known datasets, as well
as new data from a survey on patients’ experience of pain. Evaluation shows
that dialogue learning can be used to reduce the number of questions asked,
but also reveals some problems when it comes to automatically evaluation
of solutions found using query biased similarity measures.

ii

Preface

This master thesis is the completion of my master of informatics degree, and
it was carried out at the Department of Computer and Information Science
(IDI), at the Norwegian University of Science and Technology (NTNU).

I would like to thank my advisor, Agnar Aamodt, for guiding and motivating
me, and answering all of my questions.

I would also like to thank Tor Gunnar Hgst Houeland, Ida Kokkersvold, and
Tor Henrik Aasness Marthinsen for interesting meetings and motivational
support during the spring semester. The exchange of experiences has been
very useful. Also Odd Erik Gundersen should be tanked for his work on
the framework, and Frode Laugen for supplying and explaining relevant test
data.

Trondheim 15. June 2007

Hans Arne Vartdal

il

v

Contents

LW W N = =

O 3O ot

10
11
.12
2.3.1.3 _ Equally-biased Similarity Calculation Methodd 12

|2.3.2 Question ggglﬁgd 12
2321 Information gain metrid 12
ig,g,g,g Qccurrence frequency metrid 13
2.3.2.3 TImportance weight metria 13

|2.3..2 4 Similarity variancd 13

................ 14

Enhancing dialogue inferring 15

2.3.3.4 Mo ialogue inferring 15

2.4 Dialogue learning_j_ufﬂ_B_Bl 16
i . 16

2.4.1.1 Dialoguecase basd 16

F:é_.l: [.2__Dialogue case gg;gjjyd 17

2.4.1.3 Dialogue case reusd 18

4.1.4 Dialogue case retainl 19
............. 20

vi CONTENTS

4 Resultd 27

............................... 27
4.1.1 Conversational CBR.svstem oo 28
4.1.1.1 Solution refrieval 29
4.1.1.2 Question ranking 30

|4_J_2_]1i_a.]ggue systermdo 30
14.1.2.1 Representin jalogud 32
i ialogud 32

14.1.2.3 Retrieving_and_rmming_aﬂiahglﬁ 33

.............. 33

413 Usersimulatiol 34
l4.1.3.1 Creating a. problem description 34

ing questiond 35

i jond 35

4.1.4 Test environment! . . .+« oo oo 35

4.2 TImplementation 37

|4_2._4_Di_a.]ggue systermd 45
|_4,2,5 Putting the system together 48
|4__2.6_Anﬂa.m_ple_mﬂ 48

CONTENTS vii

%&d 64
................... 66

B3 Testrvesultd 67
5.3.1 Lungcanced 68
5.3.2 Soybean gggd 69

5321 Part 1. 69

5322 Partd 69

5.3.2.3 Part « i 70
........................... 70

I6_Discussion 73
6.1 Conclusiond 73
6.2 Theoretical and practical issued 74
74

74

75

75

75

76

7T

81

81

98

99

List of Figures

[2.1 CBR problem solving process)

iQ 3 Model-based support for dialogue inferencing in CCBRJ . . .

2.4 Framework to support dialogue learning in CCBR/

viil

List of Tables

X

LIST OF TABLES

Chapter 1

Introduction

This chapter includes the problem description, a description of the back-
ground, and the goals for this thesis. A description of the research methods
used is also included.

1.1 Problem description

A conversational case based reasoning (CCBR) system contains a basic case
based reasoning (CBR) subsystem and a dialogue management system. The
dialogue learning part shall be focused in this thesis project. Learning in
the dialogue part shall address the improvement of how question selection
is done, with minimizing the patient’s “cognitive load” as the primary test
criterion. The learning that takes place may involve learning new cases,
introducing new indexes to existing cases, or updating existing cases and
indexes.

A part of the architecture shall be exemplified in an implemented demo. In a
recent PhD research project methods for learning in CCBR, were developed
(Gu (2006)). They should be reviewed and analysed, and used as input to
the choice of methods in this thesis.

The implemented system will be based on an existing core CBR system
(throughout this thesis referred to as TCBR), implemented in C++. This
thesis project is linked to the EU project European Palliative Care Research
Collaborative (EPCRC) (EPCRC (2005)), in which IDI cooperates with the
cancer research unit in Trondheim, and the company Trollhetta AS.

2 CHAPTER 1: INTRODUCTION

1.2 Background and motivation

The overall aim of the EPCRC is to radically improve the quality of life in
a large number of patients with incurable cancer and short life expectancy
by alleviating the three frequent symptoms pain, depression and fatigue.
The program has four major objectives of which this thesis rests on the
second:

To tmprove classification and assessment of pain, depression and cachexia
by computer assisted approaches.

Computer-technology in assessment of pain has not fully utilized the poten-
tials of state of the art computer science. The use of computers in general, for
various types of clinical work, is spreading. The developments of electronic
patient record systems are currently showing rapid progress. By applying
computer adaptive testing (CAT) new measurement systems can be devel-
oped. CAT works similar to a trained clinician and the computer selects
items from an item bank based upon the respondents’ previous responses.
By combining CAT with artificial intelligence (AI), and in particular CBR,
one can develop a new direction of research through systematic capture and
reuse of experience, and thereby invent “intelligent” computerised assessment
tools for assessment of pain and other symptoms. Computer-technology also
has potentials for development of new assessment methods that can replace
complex measurement techniques which are difficult to perform in real life
(i.e. in clinical practice).

This thesis will attend the challenge in how data acquisition from a patient,
that is registering patient information, can be achieved with as little “cog-
nitive load” for the patient as possible without deterioration of the quality
of diagnoses found in the retrieval process. The current practise is to use
paper-based questioning methods for this data acquisition. These paper-
based forms may contain as many as 60 or more questions, where some
always will be more relevant to one patient than another. To answer this
large amount of questions is a tedious and strenuous operation for a patient.
The patients have different grades of operability, and in the worst scenarios
it might take hours to complete the questioning. In these cases the answers
looses reliability as the patient will be more focused on finishing than consid-
ering each question. One might say that the questioning becomes a source of
pain itself. A better and more effective way of describing a patient’s condi-
tion will give the doctor a better decision basis for evaluating the condition
as regards to diagnosis and treatment. To achieve this it is necessary to
individually tailor the questioning session for each patient, asking the most
relevant question at any step of the questioning, and deducting answers to
other questions when possible. It is not desirable to ask further questions
unless their answers discriminate between possible solutions.

1.3: GOAL 3

CCBR is an interactive, dialogue oriented, method in CBR. The goal of
systems using this method is to ask for as few attributes as possible but
still be able to retrieve the best matching cases. A case is initially defined
by the user by giving a few attributes to the system, which asks for more
attributes in a way that discriminates between the previously stored cases
in the best possible way. It seems obvious that such a CCBR system could
be used to achieve a reduction in the number of questions a patient would
have to answer to describe his condition in a sufficient manner.

1.3 Goal

The goal of this thesis is to extend the TCBR framework developed by
Trollhetta AS for the EPCRC program by modeling and implementing a
system for dialogue learning in CCBR based on TCBR.

To be more concrete this means:

e Review methods in CAT, IRT, CBR, and CCBR, especially for dialogue
learning in a CCBR system.

e Specify a model for building a CCBR system with dialogue learning
based on the TCBR framework.

e Implement a prototype of the system modeled.

e Test the prototype using appropriate data, e.g. from the EPCRC pro-
gram.

1.4 Research Approach

This thesis is based on analytical and experimental methods. The concept of
dialogue learning in CCBR systems will be analysed through a study in the
literature concerning the basics of CBR and CCBR and learning in these,
and more specific existing methods and implementations of dialogue learning.
The alternative method IRT used in CAT is also reviewed. Based on this
study, a CCBR system with dialogue learning for the TCBR framework
will be designed. The most important parts of this system will then be
implemented on top of the TCBR framework. Finally the system will be
tested.

CHAPTER 1: INTRODUCTION

Chapter 2

Related Research

This chapter first gives a review of CAT and IRT and then introduces the ba-
sics of CBR, and CCBR. Some of the known methods for similarity measure
and question ranking are reviewed, and a framework for dialogue learning in

CCBR is introduced.

2.1 Computer adaptive testing

The EPCRC project strive for combining CAT with Al to develop a new di-
rection of research through systematic capture and reuse of experience, and
thereby invent “intelligent” computerised assessment tools. CBR is men-
tioned as a particular interesting Al technology, but the EPCRC project
also wishes to examine current methods for applying item response theory
(IRT) to dynamic questioning, and develop improvements as replacement or
complement to IRT. Although the focus of this thesis will be in CBR, and
more specifically CCBR, describing IRT and its use in CAT is needed to give
a basis of comparison between these methods.

Researchers in the field of health outcomes and quality of lifd] have in re-
cent years shown considerable interest in techniques for computerized adap-
tive assessments (Revicki and Cella (1997); IMcHorney and Colleen (1997)).
However, few have yet established a functioning system for computerized
adaptive assessment of health outcomes (one is Ware et _all (2000)), and the
documentation of the theory and practice of computerized adaptive assess-
ment in the health outcomes field is still scarce. Therefore there is very

'Health outcomes research is the measurement of the value of a particular course of
therapy. Health outcomes research is based on the principle that every clinical intervention
produces a change in the health status of a patient and that change can be measured.

6 CHAPTER 2: RELATED RESEARCH

good reason to learn from educational testing, where work on CAT has been
carried out for many years.

Wainer (2000) lists three situations where continuous testing and CAT seem
to be a good idea:

e When it is in the best interest for all to get the right answer (i.e. no
incentive to cheat).

e When test results are needed all year round (i.e. no increased need for
test results in connection with application deadlines).

e When the test is best administered by computer.

It is encouraging for health outcomes researchers that all three situations
apply to their field. This is fairly evident for the first two types of situa-
tions. Examples of situations where the computer administration in itself
is an advantage are when we need immediate feedback on assessment re-
sults or we need to monitor the consistency of responses (Ware et _all (2000);
Bjorner and Jr) (1998)). Thus, the health outcomes field may be able to take
advantage of the strengths of CAT without being hampered by the problems
seen in educational testing, where there is both incentive to cheat for better
grades, and seasonal variations.

2.1.1 Item response theory

The IRT is part of the principles underlying test development within applied
psychology and psychological testing, called psychometrics. Psychometrics
is concerned with the theory and technique of educational and psychological
measurement. The field is primarily concerned with the study of differ-
ences between individuals and between groups of individuals, and includes
the measurement of knowledge, abilities, attitudes, and personality traits.
Classical test theory (CTT) has served well as the psychometric basis of test
development over several decades, but IRT has rapidly become mainstream
as the theoretical basis for measurement.

In IRT mathematical models are applied to analyse data from questionnaires
and tests. The models are mathematical functions that specify the probabil-
ity of a discrete outcome, such as a correct response to an item, in terms of
person and item parameters. Person parameters may represent the ability of
a student, or the strength of a person’s attitude. Items may be questions that
have incorrect and correct responses, or statements that allow respondents
to indicate a level of agreement.

2.2: CASE BASED REASONING 7

2.1.2 Computer adaptive testing with IRT

In CAT, examinees receive questions that are optimally selected to mea-
sure their potential. Different examinees do not necessarily receive common
questions. IRT principles are involved in both selecting the most appropri-
ate questions for an examinee, and equating scores across different subsets
of questions. Examples of tests that apply IRT to estimate abilities are
the Scholastic Aptitude Test (SAT), and the Graduate Record Examination
(GRE).

2.2 Case based reasoning

Case based reasoning is a type of analogical problem solving and lazy machine
learning method. A case is an instance of a previous problem that has been
solved by the method, and these are stored in a case base. A new problem is
represented as a new case, either complete or with missing features, and is
solved by applying the solution adapted from that of the most similar case
(or cases) stored in the case base. Cases stored in the case base are always
“positive” examples, and applying the case solution to the case problem is
assumed to be successful (Aha et al. (2001))). A case serves as a prototype
for solving queries whose problem specifications are similar to the one of the
case. Queries that are similar to a case’s problem are expected, with high
probability, to benefit from its solution.

The cases can be built in several ways but in general the content of a case
should include the following three parts (Kolodney (1993)):

e Problem description: the state of the world at the time of the case,
and, if appropriate, what problem needed to be solved at that time.

e Solution description: the stated or derived solution to the problem
specified in the problem description.

e Outcome: the resulting state of the world after the solution was carried
out.

The problem description is typically represented as a set of feature-value
pairs, {f,v}, or sometimes triplets also including the importance of the feature
as a weight, {f,v,w}. The solution description may be represented in many
ways, and as later explained, a special dialogue case might even have a
reference to another case as its solution.

As summarized by |Aamodt and Plaza (1994), the problem solving process
in CBR contains four steps: retrieve, reuse, revise, and retain (Figure 2]
from |Aamodt and Plaza (1994)).

8 CHAPTER 2: RELATED RESEARCH

Tested!
Repaired
Case

Confirmed Suggested
Solution Solution

AamodidPlaza 1994

Figure 2.1: CBR problem solving process.

A CBR system transforms a given problem description into the problem de-
scription part of a new case. This new case is used to retrieve the case/cases
which match this description best, based on similarity calculations between
the new case and the cases in the case base. The retrieved case is then reused
by applying the solution description and outcome description to the creation
of a solution description for the new case, giving the most probable solution
given the cases in the case base. This solution is evaluated in some envi-
ronment, which may be used to revise the solution. Finally we have a new,
complete case which can be retained in the case base for future use.

2.3 Conversational case based reasoning

It is not always easy for the user to define a complete problem description;
in fact there often is a knowledge gap between the user of the case base and
the author. The user may not have the expertise necessary for representing
the problem description, such as what terms to use. As an example a patient
asked to describe pain, which is very hard to describe, would need specific
questions as terms of how to describe it. Another reason for incomplete
problem description is that the cost of acquiring a complete description may

2.3: CONVERSATIONAL CASE BASED REASONING 9

be too high. This is the case for the patients; a too high cost may result in
the patient not being able to complete the description with reliable data, or
not completing it at all.

As a solution for these problems conversational case-cased reasoning (CCBR)
provides a mixed-initiative dialogue for guiding users to refine their problem
descriptions incrementally through a question-answering sequence. The user
may describe the problem step by step starting only with a small description
including few features. The choice of the next step is guided by the CCBR
system, and the cost required acquiring a sufficient description of the case
is minimized. Because the user need only answer posed questions, a priori
knowledge concerning their relevance is not needed. It is obvious that a
CCBR system could be used to achieve a reduction in the number of ques-
tions a patient would have to answer to describe his condition in a sufficient
manner. Since there is no point in answering more questions if they can not
discriminate further between the diagnoses in the case base, one can hope
that only relevant questions will be asked.

Aha et all (2001) specify a generic form for a case C in a CCBR system as
follows:

1. Problem Cp = Cd + Cqa: Encodes the problem solved by Cs.
(a) Description Cd : Free text that partially describes C’s problem.
(b) Specification Cqa: A set of <question,answer> pairs.

2. Solution Cs = {Cal, Ca2, ...}: A sequence of actions Cai for responding
to Cp.

The description given as a free text requires some text recognition processor
which transforms the text into a subset of the <question,answer> pairs in the
specification. For CCBR systems in general the problem description might
be given by other means, e.g. as <question,answer> pairs directly. These
<question,answer> pairs can be treated as <feature,value> pairs, where
during a dialogue process features can be transformed into user readable
questions, and the values contain the answers of these questions. |Aha. et al.
(2001) suggests that actions can be free text, hyperlinks, or other objects,
but the use of a solution represented as a series of actions becomes very
clear in an example from the health domain. A successful conversation be-
tween a patient and a medical doctor would often end with a diagnosis, or a
treatment.

Figure 2.2lshows the CCBR reasoning process as it is described by |Gu (2006),
starting by transforming the user’s initial problem description into an initial
new case. This case may only contain a few features, and is used to retrieve
a set of the most similar stored cases from the case base. The returned cases
are then used as the basis for question generation and ranking, based on the

10 CHAPTER 2: RELATED RESEARCH

]
Initial problem |
descriplion Newcase |g 3| MNewcase » Case retrieve
generation
Returned
cases -
Ulser displaying
ackons Displayed cases Case base
and questions Question generation
and ranking
Ranked
Base
case

questions
Figure 2.2: Conversational case based reasoning.

Answered
questions

Cases and questions

: [I Function module Case base
]

I
i_ D Tempory data —» Data flow

features of the cases. A group of discriminating questions are identified, and
ranked according to their capability to discriminate the stored cases. The
ranked questions and the solutions of the returned cases, sorted according
to their similarity values, are displayed to the user. The user then either
selects a satisfactory solution, or chooses a question to answer. The answered
question is added to the problem description of the initial new case and the
process starts again, continuing until a satisfactory solution is given or there
are no more discriminating questions to left to choose.

2.3.1 Similarity computation

A key research topic in both CBR and CCBR is to calculate the similarities
between a query, which is a new case, and stored cases to find which case
is most similar to the new problem. The similarity between a query and a
stored case is normally measured by accumulated similarities on the features
involved. |Gu et all (2005) speaks of two ways to influence these similarity
calculations:

1. Different methods to calculate the similarity on each feature; i.e. a
nominal feature can be considered equal to another nominal feature
if their values are syntactical equal (Aha (1991)), or there may be
more sophisticated methods involving knowledge-intensive methods
(Aamodt (1994, 2004)) where the value need only be considered equal
through exploring some general domain knowledge.

2. The feature scope; what features are counted, the set of features ap-

2.3: CONVERSATIONAL CASE BASED REASONING 11

pearing in the query, in the case, or in both of them?

This thesis will not address knowledge-intensive methods any further, but
Gu et all (2005) have shown that the choice of feature scope is important for
an effective CCBR, process.

The query in a CCBR process only consists of the problem description part
of a case. As a consequence the similarity calculation process only takes the
problem description part of the cases into consideration. |Gu et all (2005)
define a framework for calculating such similarities, and then define three
different methods in terms of this framework. They introduce IV, as the set
of features appearing in the query, and N, as the set of features appearing
in the stored case. Further they introduce distance as an inverse relation to
similarity, and define it as follows:

> rerswrdif?(qs,cy)
> fers Wy

distance(q,c) = (2.1)

where ¢, ¢, f, FS, and wy denote the query, the stored case, a particular
feature, a selected feature set, and the weight for the feature f respectively.
The function dif(qy,cs) is used to compute the difference between the query
and the stored case on a feature f, and is defined as follows:

laf — ¢l fisnumeric(normalized)
. _ 0 fisnominal and qr = cy
dif(ag.cs) = 1 fisnominal, and gy # cf

1 cor q has missing value on f

(2.2)

It is the content of F'S which influence the similarity calculations in either a
case-biased, query-biased, or equally-biased way.

2.3.1.1 Query-biased Similarity Calculation Methods

In such a method only the features appearing in the query are taken into
account; F'S = N,. The idea behind this is that the query is assumed
incomplete only representing the user’s currently identified features, but the
features without specific values do not necessarily have a “missing-value”, the
user has just not assign a value for them yet. The query-biased similarity
calculation method avoids influence from these features, and ranks the case
that most satisfy the currently partially specified query highest. This type
of methods has been found to be more effective for CCBR systems (Gu et al.
(2005)), and has been used in |Gu and Aamodt (20064).

12 CHAPTER 2: RELATED RESEARCH

2.3.1.2 Case-biased Similarity Calculation Methods

The features appearing in the stored case is the basis for this similarity
calculation method; F'S = N,.. The solution of the case is best satisfied by a
query matching the problem description of the case, whether the solution in
the stored case is suitable for the current problem is decided by the degree
that the query satisfy the problem description. This type of methods has
been used in|Aha et all (2001); Aha (1991).

2.3.1.3 Equally-biased Similarity Calculation Methods

Using both the features appearing in the stored case and the features ap-
pearing in the query, gives an equally-biased similarity calculation method;
FS = NyU N.. The idea here is that similarity between the stored case
and the query must take all features into consideration, to find the degree in
which the solution can be reused for the current problem. This type of meth-
ods has been used in Richter and Wess (1993); [Yang and Wu (2001).

2.3.2 Question ranking

Another major research topic in CCBR is how to alleviate the cognitive load
demanded from users in the question-answering process. The two major
ways to realize this task is dialogue inferring and question ranking. Dialogue
inferring is to remove the questions whose answers can be inferred from the
information the user has provided. Question ranking is to ensure that the
more discriminative questions are asked at earlier stages, resulting in the
shortest conversation. The main question ranking metrics proposed include
information gain, occurrence frequency, importance weight, and similarity
variance.

2.3.2.1 Information gain metric

Quinlan (1986) uses information gain, and it is commonly used in the fields
of information theory and machine learning. For example information gain
is used to choose the best feature for “splitting” decision trees. Based on
the entropy, information gain measures how well the feature separates the
cases according to their solutions. A very discriminative feature gives ex-
pected entropy close to 0 and an information gain close to 1 after using the
feature. Questions whose corresponding feature has higher information gain
are ranked higher in the question ranking. In CCBR information gains is
dynamically calculated in each question ranking session at runtime. Also
a group of the most informative features are selected. This distinguishes

2.3: CONVERSATIONAL CASE BASED REASONING 13

from the decision tree learning where information gains are calculated stati-
cally at the tree construction stage forcing users to follow a static dialogue,
which might cause the effect that a dialogue is terminated to early with no
result.

2.3.2.2 Occurrence frequency metric

In an occurrence frequency metric the identified discriminative questions are
ranked according to their frequencies of appearance in the problem descrip-
tion of the returned cases. The question gets a higher ranking priority if
the corresponding feature is assigned a value in a larger number of the re-
turned cases. This metric was used in the NaCoDAE system developed by
Aha et al. (2001), which is reviewed in this thesis (Section 2.3.3]). For this
metric to perform well it is assumed that the cases in the case base are highly
heterogeneous; a feature appearing in some cases may not appear often in
other cases.

2.3.2.3 Importance weight metric

When calculating the similarity between cases using the Euclidean distance
between them, as in the k-nearest neighbor algorithm, a problem appears if
only a few of the features of the cases are relevant. [Mitchell (1997) refers to
this difficulty, where the distance will be dominated by the large number of
irrelevant features and put the cases far from each other even though they
should be close, as the curse of dimensionality. Feature weighting methods
can alleviate this problem by assigning features with importance weights
according to their contributions.

The importance weight based question ranking metric ranks the discrim-
inative questions according to the weight value of the corresponding fea-
ture. The most relevant or important features provides more information
than other features to discriminate cases from each other. EACH (Salzberg
(1991)) and Relief (Kira and Rendell (1992)) are two such feature weighting
methods.

2.3.2.4 Similarity variance

Schmitt (2002) proposed a similarity-influenced information measure (Sim-
Var). Each case retrieval method is based on the similarity values between
stored cases and a new case, and the goal state of the retrieval is to identify
the correct case which has enough similarity variance from the rest of the

14 CHAPTER 2: RELATED RESEARCH

stored cases. A feature which can provide a higher similarity variance in the
candidate cases gives a higher priority for the corresponding question.

2.3.3 NaCoDAE

Navy Conversational Decision Aids Environment (NaCoDAE) (Aha and Breslow
(1997b)) was originally developed to test a strategy for simplifying case au-
thoring (Aha and Breslow (19974)), but its extensions for dialogue infer-
encing (Aha et al. (1998)) was later evaluated. NaCoDAE is described in
Aha et all (2001), and the system embodies a generic CCBR tool. The sys-
tem receives a textual problem description from the user and generates an
initial problem description in the system. This problem description is com-
pared with cases in a case library resulting in a subset of ranked solution
cases which serves as a basis for finding a set of ranked questions. Both
the ranked solution cases and the ranked questions are displayed, and the
user selects the most relevant question for answering, or a solution. Answers
to questions add to the case, and the process is repeated until a satisfying
solution is displayed and selected.

2.3.3.1 Case retrieval

After the textual problem description is translated into <question,answer>
pairs, and any other questions answered by the user are added , the cases
are ranked using a simple scoring function comparing the <question,answer>
pairs Q with each case C:

score(Q,C) = same(Qqa, an) - diff(Qqa, an)/|an| (2.3)

The function same(Qq, Cqq) finds the number of shared <question,answer>
pairs, and dif f(Qgq, Cqa) the number of conflicting. |Cyq| being the total
number of <question,answer> pairs in the case. The best k cases are dis-
played for the user, and used in the question ranking.

2.3.3.2 Question ranking

In NaCoDAE question ranking uses an occurrence frequency metric. Ques-
tions are ranked according to their frequency in specifications of the cases
whose solutions are displayed to the user. It was also experimented with
information gain metrics (in addition to frequency), but it was found that
frequency was sufficient for the needs.

2.3: CONVERSATIONAL CASE BASED REASONING 15

NaCoDAE CCBR System

Initial/Textual __Implied Answers

— Prohlem * _]
.| Description Problem Text | —
v Drascription ™™ |
- T Answer | Pre-Processor | | '
| toSelected —]
S Cuestion 3 S PARKA-DB |
0 1
= Selected az e Implication
§ Question a | Rule ;

1 e : PARKA-DB
Banked Solians, Similarity Generator Query

Selected i; I | Function | L)

e Solution : : Library Model
] L sk | | (Object & Question Models)

Case Library |

Figure 2.3: Model-based support for dialogue inferencing in CCBR.

2.3.3.3 Enhancing dialogue inferring

As a mean to avoid that users might be prompted with questions that could
be automatically answered (e.g. through inferring), [Aha et al. (1998) stated
that CCBR tools should automatically infer answers to questions from the
user’s inputs whenever possible during a conversation. In NaCoDAE two
types of inferences was used, text inferences and chaining rules. Text in-
ferences relate text in the user’s initial text to specific <question,answer>
pairs, while chaining rules define relations among these pairs. Though some
commercial CCBR tools attempt to solve this by requiring the case base
designers to manually enter implication rules, this solution presents signif-
icant knowledge engineering challenges. The rule sets often get large and
incomprehensive, and are difficult to maintain, resulting in CCBR case base
designers avoiding the use of rules. To avoid this in NaCoDAE a model-based
dialogue inferring approach was used.

2.3.3.4 Model-based dialogue inferring

Instead of constructing a rule set, the case base designer interactively enters
a case base model. This model is composed of an object model which re-
lates domain objects, and a question model which relates questions to these
objects. Figure 2.3 shows how NaCoDAE was integrated with PARKA-DB,
a high-performance knowledge representation system for processing such re-
lational queries (Hendler et all (1996)). These models are represented as
semantic networks, and will be more compact than the corresponding rule
set for many tasks, thus be more comprehensible and easier to maintain.
The implication rule generator inputs these models and outputs a set of

16 CHAPTER 2: RELATED RESEARCH

rules which are input to PARKA-DB together with the problem description.
PARKA-DB retrieves all answers implied by the previously answered ques-
tions, and the user’s text, and adds these inferred answers to the problem
description.

2.4 Dialogue learning in CCBR

The reason for learning dialogues in CCBR is the claim that successful di-
alogues can be captured and learned in order to improve the efficiency of
CCBR from the perspective of shortening the dialogue length. Such success-
ful dialogues that have occurred in a CCBR system can be seen as previ-
ous solutions to users’ case retrieval tasks, and retained as cases themselves
(Gu and Aamodt (2006a)).

2.4.1 A framework to support dialogue learning in CCBR

Gu and Aamodt (2006a) presents a framework for dialogue learning in CCBR,
and how this framework can be implemented. The evaluation of the imple-
mentation gave significant evidence to support their hypotheses that the
dialogue learning mechanism is effective and sustainable, and that the dia-
logue case base is maintainable.

To avoid confusion |Gu and Aamodt (20064) introduces application as a pre-
fix for the concepts in the main CCBR framework, such as an applica-
tion case and an application case base. As illustrated in Figure 2.4 (from
Gu and Aamodt (20064)) the CCBR framework is extended by the new con-
cepts: dialogue cases, dialogue case base, retrieve, reuse, and retain methods
for dialogue cases. The following sections will describe how |Gu and Aamodt
(2006a) defined and implemented these concepts.

2.4.1.1 Dialogue case base

A dialogue process is composed of the initial input from the user (a new
case), the later incrementally selected questions, and their answers. This
process is stored as the problem description of a dialogue case. The solution
description of such a case refers to the application case successfully retrieved
from the application case base as a result of the dialogue. A dialogue case
is always terminated when the user retrieves a satisfactory application case
and the dialogue process ends.

Gu and Aamodt (2006a) defines a dialogue case (dc) as

2.4: DIALOGUE LEARNING IN CCBR 17

T oot ——1 [[o Jeced
» ritia ;.-jr-:n. M~ Maw case > New rase » application
| description generatien) case RETRIEVE |
Answered Case and guestion |/ Retumed o
| questons displaying cases - . |
User e U S
| Actions & T—— ;’,i' :g o : — |
|Displayed cases ' |
) | ¥ T
| and questions Ranked | /| Application | |
o Questions < A Question generating case base
b T—]] and ranking
| b - e /'/ ‘ ™ 1 |
| Correct case A 7 . |
- -~ { |,,-"'f -
— — — — = — = == — — — — — — —
& - I 7 5 el ,
X E - Legend !
Dialng case RETAIN Simillar dialog case o Dialog case RETRIEVE |! FJ Case base :
R 1 1
— . | !
__:-__'_"-:\-— — e —’1 — E j Tempaory data i
= —— 1
Dislog Learning I — i Function modulg
Enhanced CCER Dialog case base i D h‘!
T——— 7 ! Data flow !
S |

Figure 2.4: Framework to support dialogue learning in CCBR.

de < {fowp},ds > (2.4)

The dialogue case in addition to the dialogue solution (ds), referring to the
retrieved application case following the dialogue process, consist of a set of
four-item vectors ({fvwp}) describing the problem description of the dialogue
case dc. This vector is similar to that introduced in Section 22} f denoting
the feature name, v the feature value, and w the importance weight for the
feature f. The difference is that a new variable p, an integer value that
expresses the appearance position of feature f in the dialogue process, is
added to the vector.

2.4.1.2 Dialogue case retrieve

To retrieve a case from the application case base, in CCBR a new case
describing an application problem is incrementally constructed. This new
case is also used to retrieve a dialogue case from the dialogue case base.
The similarity assessment used in dialogue case retrieval not only takes the
features used in application case retrieval into account, but also the feature
sequencing information. |Gu and Aamodt (2006a) describes the positions of
various features in a dialogue process as an expression of the change in a

18 CHAPTER 2: RELATED RESEARCH

users’ focus of attention, which influence the similarity between the new
case and a stored dialogue case.

Gu and Aamodt (2006a) used a 1-NN algorithm to retrieve the most similar
dialogue case, based on this definition of the distance equation between a
new dialogue case, dn, and a stored dialogue case, dc, as follows:

weposw(dn ¢, de)dif2(dny, de
distance(dn,dc) = \/ZfE{f} ! (dny, deg)dif*(dny, dey) (2.5)

2 felfy Wi

where {f} denote a selected feature set, and wy the importance weight for the
feature f. dif(dng,dcy) is a function used to compute the difference between
the new dialogue case, dn, and the stored dialogue case, dc, on a feature f

in (2.0)), and is defined as follows:

(|dny — dcy| fisnumeric (normalized)
max{dns,1 —dns} fianumeric(normalized)
anddcy is missing

dif(dny,dey) = 0 fisnominal anddny = dc§c2'6)
1 fisnominal, anddny # dcy
L or dcy is missing

This follows the query-biased similarity calculation method (Gu et _al. (2005)),
only taking the features appearing in the query (new case) into account dur-
ing similarity computation, thus {f} is assigned all the features appearing in
the new dialogue case. The function posw(dny,dcy) is used to compute the
weight concerning the appearance position of feature f in the new dialogue
case, dn, and the stored dialogue case, dc:

’p(dn7 f) — p(dC, f)’
(length(dn),length(dc))) 27)

where p(dn,f), p(de,f), length(dn), and length(dc) denote the position where
feature f appear in the new dialogue case, dn, and in the stored dialogue
case, dc, and the length of these cases (referring to the number of features
they have).

1 1
posw(dnf,dcf) = 3 + 5 * <1 -

2.4.1.3 Dialogue case reuse

Gu and Aamodt (2006a) mention two ways in which the retrieved most sim-
ilar dialogue case is considered to be able to improve the efficiency of the
CCBR retrieval process:

2.4: DIALOGUE LEARNING IN CCBR 19

e The solution application case of the most similar dialogue case will be
displayed to the user, along with the application cases found by the
CCBR retrieval process.

e Features appearing in the most similar dialogue case, not appearing in
the current new application case, will get improved ranking priority.

Thus both the case and question displaying module, and the question gener-
ating and ranking module in standard CCBR can be influenced (as shown in
Figure 24]). In the implementation in (Gu and Aamodt (2006a) both these
tasks are solved. First, if the application case acting as the solution in the
most similar dialogue case is not included in the k most similar application
cases retrieved by the CCBR process, it is used to replace the least similar
of these k application cases. Second, an equation for adjusting the weights
of the features found as question candidates that also appear in the most
similar dialogue case is defined as follows:

- 11 p(de, f) 1
wf=wf+ (5 3 (1 - lengfh(d0)>> <|t0talf6“tw"e Set|> .

where [total feature set/ is the number of features appearing in the applica-
tion case base. Increasing the weights of the candidate features also appear-
ing in the retrieved most similar dialogue case, will rank the discriminative
questions transferred from these features with higher priority.

2.4.1.4 Dialogue case retain

New dialogue cases are generated as the CCBR process completes more and
more successful dialogues. Retaining all these dialogue cases in the dialogue
case base would make the case base grow rapidly, thus a strategy for main-
taining the dialogue case base during run time is needed. It should improve
its capability without expanding too much. |Gu and Aamodt (2006a) uses a
dialogue learning strategy which only stores the most general dialogue cases
in the case base. They define the relation, more general than (>>), between
two dialogue cases as:

<A fowp}i,dsy >>< {fowp}a,dsy >:
ds; = dsg and { fvwp}; C {fowp}ls (2.9)

20 CHAPTER 2: RELATED RESEARCH

2.4.2 Justification for the framework

To test the framework |Gu and Aamodtl (2006a) designed an experiment
which evaluated the effectiveness of the dialogue learning mechanism from
the perpective of using fewer dialogue session to find the correct stored case.
They use a leave-one-out cross validation (LOOCV) method to simulate the
human-computer dialogue process. Similar methods have also been success-
fully used by others in the CCBR community (Aha et al) (1998); |Gu et al.
(2005)). The LOOCYV method proceeds with a series of simulated dialogues,
each dialogue starting with selecting an application case from the application
case base as the target case, leaving the remaining application cases to be
searched. A new case is built using some of the features from the selected
application case. The CCBR process then run until a correct solution is
found. When the CCBR system asks for a new feature, it is found in the
preselected application case.

The authors identify three hypothesis that they test (see (Gu and Aamodt
(2006a) for detailed descriptions):

H1: the dialogue learning mechanism is effective.
H2: the dialogue learning mechanism is sustainable.
H3: the dialogue case base is maintainable.

Using 32 datasets from the UCI repository (D.J. Newman and Merz (1998))
in the experiment, and verifing the significanse of the experiment results
through hypothesis testing, they find that all three hypotesis are accepted.
They point out that a long term real human-subject based experiment would
give more solid evidence to the hypotheses. There is also a question about
trade off using dialogue learning.

2.4.3 Trade off in dialogue learning

As|Gu and Aamodt (20064) points out, there exists a trade off between the
dialogue efficiency improvement and the resource cost. Even though the
experiment only ran two cycles for each dataset, the dialogue case base size
compared to the application case base size, which demands a considerable
memory space and CPU time to retrieve inside. This must be taken into
consideration before adopting this dialogue learning mechanism in a practical
CCBR application.

The trade off is closely connected to the choice of dialogue learning strategy;
retaining more dialogue cases than only the most general ones would give
even larger dialogue case bases than in the experiment where only the most
general dilogue cases were stored.

Chapter 3

Framework: TCBR

In this chapter the framework, on which the modelling and implementations
in this thesis is based on, is described. The representation and functionality
of the framework, and some useful changes and extensions to the framework
are presented.

3.1 Introduction

The modeling and implementations in this thesis will be based on the Troll-
hetta CBR (TCBR) framework developed by Trollhetta AS for the EPCRC
program. This framework is a basic CBR system with some simple but use-
ful properties. The system can be seen as two layers, where the first layer is
a semantic net representing a knowledge model, containing entities and re-
lations (see Figure BI]). The second layer includes the case base, containing
cases and features, which are all represented through the first layer. The rep-
resentation includes a lot of metadata, both about the representation itself,
and the concepts used in the second layer.

3.2 The Representation

Entities are represented as nodes in a graph such as in Figure Each
entity has a name, and must belong to a knowledge model. These entities
can have several relations. A relation is a connection between two entities,
and must have both a source entity and a target entity. The relation also has
a type, and strength. All entities and relations belong to a knowledge model.
This model has a name, and contains control functions for the entities and

21

22 CHAPTER 3: FRAMEWORK: TCBR

CaseBase compoesition of Case composition of Feature
Layer 2
extends extends
Layer 1 extends
v AV
K e, del compostion of Entity extends Value
composition of extends
Relation RelationType

Figure 3.1: Simple class diagram for the TCBR framework.

relations. One may ask; does this entity exist? Or; what are the relations of
this entity?

As the system includes metadata in the representation, the first entity is
called ENTITY, and all other entities have a relation to this entity of type
instance_ of. These relations are unidirectional, but the framework also cre-
ates a corresponding has_instance relation which let us traverse in the graph
in both directions. The concept of a case is thus represented by creating an
entity called CASE with a relation to the entity called ENTITY of type
instance_of. This is still on a metadata level, as an actual instance of a
case is represented by an entity with a relation to the CASE entity of type
instance_ of. These entities can be named in any way convenient, but must
be unique within the given knowledge model.

Features of a case are also represented in a similar way. All instances of
features are connected to an entity called FEATURE with an instance of
relation, and this entity is connected to the ENTITY entity. Features and
cases are connected with a has_finding relation from a case instance entity
to a feature instance entity. The features have both a type and a value. The
type is represented as an entity connected to the feature instance with a
has_type relation, and to a TYPE entity with an instance of relation. Sev-
eral cases might have features of the same type e.g. “name”. The value of this
feature extends the graph even another level through a has wvalue relation to
a value instance entity, which has the relations instance of to the VALUE
entity, has_type to a entity describing the type of the value e.g. TEXT, and
has_wvalue to a entity holding the actual value e.g. “Roger”.

This very general way of representation has both advantages and disadvan-
tages. The use of instance entities for the actual cases and features give
us the possibility to set the weight between a case and a feature using the
strength of their relation, this being set independent of all other cases having
the same type of feature. This weight is important when finding the next

3.2: THE REPRESENTATION 23

: -"ihslnnue';nf ! St =
instance_of _ 1 instance_of
instance_of / | instance_of hY
."I ."I | | ", |
.'III III |
|
|
)
|
| . . .
Y Y 7y F
| ll instance_aof instance_of

| I
| |
| instance_of
I'. instance of Name Case #1
Roger \
has._ type 3 haf_flndTH g\
\ has_type | Feature# |« |
h;s_\ralue . i /]
— 0 value® __has_value hasjﬁndin_g

#2 has_finding
= has_valu;

e

Value #2 e /

e/

Figure 3.2: TCBR graph representation.

question to ask in a CCBR system. Even though the features are represented
as different instance entities they use the same instance of the type entity,
which allows us to list e.g. all “name” features in the case base by access-
ing the relations of the type instance and finding the target of all type of
relations (corresponding to the has type relation). Methods like this prove
useful e.g. when you need to find the number of different features in the
case base, but require working with entities and relations in the first layer of

TCBR.

24 CHAPTER 3: FRAMEWORK: TCBR

3.3 The functionality

The TCBR framework includes only the most basic methods needed in a
CBR system, and as it is the first version of the framework it has some
problems. The following will include a basic description of some issues with
the framework, the methods needed for implementing a CCBR. system with
dialogue learning as they are implemented in TCBR, and an overview of
extensions to the framework that has been implemented in other thesis’s
using it.

3.3.1 Performance

The first version TCBR framework suffers from slow code and is extremely
computationally demanding; simple case creation takes hours for small case
bases. Due to memory leakage the framework also fail after some amount
of time, rendering it useless in its original form. In a project thesis by
Houeland (2007), also using the framework, the framework was revised and
improved resulting in a stable and more computational efficient version of
the framework. This version of the framework was made available for the
other thesis’s using the TCBR framework.

3.3.2 Case retrieval

The implementation of case retrieval in TCBR is fairly basic. The method
is located in the case base, taking a new case as its input and returning a
vector of the most similar cases paired with their similarity:

vector<pair<Case*, double> >* mostSimilarCases;
mostSimilarCases = cb.retrieveSimilarCases(newCase) ;

The way the method finds these most similar cases is by finding all cases
with one or more features common with the new case, and then computing
the distance between these cases and the new case in the Euclidian space,
using a k-NN algorithm with k=1. The distance is increased by one for every
feature in the new case which the other case does not have, and for every
feature they both have but where the value is unequal. All cases with the
lowest distance are included in the result set. Because the search for cases is
driven by what features the new case has rather than the cases in the case
base, we have a query-biased similarity calculation method, shown to be the

best method for CCBR (Gu et all (2005)).

3.3: THE FUNCTIONALITY 25

CaseRetriever
-caseBase_ . CaseBase*
+CaseRetrievericaseBase | CaseBass *) CaseBase
+retrieveSimilarC ases(inputCase | Case *) : vedor=pair=Case* double=> [_ _ _}
uses

l‘}‘ex‘tends

Similarity MeasureCaseR efri ever
-gimilarityil easure_: Similarityieasure*

+SimilarityWeasureC assRetriever(caseBase | CaseBase *, similartyMeasure : SimilarityMeasure *)
+retrieveSimilarC ases{inputCase | Case *) ;. vedor=pair<Case*, double==

T
| LUses
|

W
Similarity Measure
+compute CaseSimilarity(from . Case * to: Case *): double

“f‘}‘enends

QueryBiasedSymbolicComparator
+compute CaseSimilarity(from . Case * to: Case *): double
+getSymbolicDifferenca(from : Case * to : Case * type : Entity *): double

Figure 3.3: The object oriented implementation of the case retriever.

3.3.2.1 Object oriented case retrieval

In the project thesis by Houeland (2007) the basic retrieval method of the
TCBR framework was rewritten to fit a more object oriented view. The
concepts of a case retriever and a similarity measurer were introduced (see
Figure B3]). Rather than retrieving the most similar cases directly from a
method in the case base, a similarity measurer is defined and together with
a case base used to create a case retriever:

SimilarityMeasure similarityMeasure;
CaseRetriever caseRetriever(caseBase, similarityMeasure);
vector<pair<Case*, double> > mostSimilarCases;

mostSimilarCases = caseRetriever.retrieveSimilarCases(newCase)

This enables different means of retrieval to be implemented, with different
similarity measures, without changing the representation of the case base;
making it possible to implement different case retrievers for application cases
and dialogue cases.

26 CHAPTER 3: FRAMEWORK: TCBR

3.3.3 Case weighting

A case in the second layer of TCBR system does not have a built in method
for setting the importance of a feature. Such weights can be important for
the question selection mechanism, if one wishes to use an importance weight
metric, and should be implemented. Two approaches are possible, a local
approach and a global approach.

As mentioned in the representation description this functionality already
exists in the first layer as the strength of a relation between a case instance
entity and a feature instance entity. In the TCBR system these strengths
are left out in the second layer, and defaulted to “1.0”. A simple way to
implement local weights is thus to extended the implementation of a case
with methods for setting, and getting, this strength as its weight.

The global approach to weighting introduces the relation has_weight for
features in the knowledge model, enabling to set and get a weight common
to all instances of a feature type. This approach was implemented in the
project thesis by IHoueland (2007), and made available for other users of the
TCBR framework.

3.3.3.1 Information gain for setting weights

In a diploma thesis by [Kokkersvold (2007), also based on the TCBR frame-
work, a version of the information gain metric for feature ranking was imple-
mented. In this context a method for finding all values of a given feature was
also added to the case base representation. The metric was made available
for testing and use for the problem in this thesis.

Chapter 4

Results

This chapter consist of two parts; design, and implementation. First, a choice
of design for a CCBR system with dialogue learning, and an environment for
testing this system, is presented. Second, a description of the implementation
of this system and its use is given.

4.1 Design

As a sub-goal for this thesis a model for building a CCBR system with
dialogue learning based on the TCBR framework is to be specified. Such a
system could as shown in Figure 1] profitably be designed as two separate
parts; a dialogue system, controlling the course of the dialogues and methods
for reusing and retaining these, and a basic CCBR system conducting the
conversation by generating questions and retrieving possible solutions. A
major advantage of designing the system as two separate parts is the ability
to do ablation testing not including the dialogue system, thus be able to
evaluate the impact of the dialogue system on the results. Ablation testing
was for instance used in |Gu and Aamodt (2006a). Both the CCBR system
and the dialogue system will be using the TCBR framework as a basis for
their internal methods.

A party that can be regarded as a third part of the system is the user. The
tasks of the user are to initiate the conversation with a problem description,
answering the questions asked, and considering the solutions presented by
the CCBR system. This interaction could take place through a graphical
user interface with a human user or through an interface with a software
agent, the last being particular interesting during testing of the system.
Clear interfaces between the two main parts, the CCBR system and the
dialogue system, and between the user and the CCBR system, is therefore

27

28 CHAPTER 4: RESULTS

CCBR Dialogue system

Query solution for

a problem description Conversation ==Extend==>
o .~~~ e | ke Dialogue co...

Extension Points

Dialogue system . 3
h s

4 E =<|nclude== / Y ==include==
/ i ! Irprove questighs learmn by retaining
==Include== ! B

: O ==includes= and solutions the most general
chti bestkque?honl: "Find best solutions ’ ' dialogues
oasknext S \

]
i

' |

User

; s Reuse Retain
Generate Retrieve similar wak
5 rnast similar most general
guestions cases ; :
dialogues dialogues

Figure 4.1: The main parts and concepts of the system design.

important.

The rest of the design section goes into detail for each of these parts of the
system; first the CCBR system, second the dialogue system, then a design for
a user agent is described, and lastly an environment for testing the complete
system is defined.

4.1.1 Conversational CBR system

The CCBR system, as mentioned, is a basic system conducting the conver-
sation by generating questions, retrieving possible solutions, and interacting
with the user based on these. As shown in Figure the process is similar
to the one described in Figure 2.2] but with some differences:

e A new query case is generated from the problem description, but as
questions are answered the query case is updated, not regenerated.

e Questions are generated on basis of features returned from the case
base, not from the retrieved cases. The reason for this is explained in
Section L.T.1.2]

e Solutions are only presented for consideration if their similarity exceeds
a threshold value.

e Questions are generated when either no solutions are presented, or the
solutions presented are rejected

The sequential rather than parallel presentation of solutions and questions
simplify the process, and has the advantage that the user is not bothered with
insignificant solutions at a early stage of the conversation. The corresponding
disadvantage is that if the threshold value is set too high the system might
not find a solution at all, never presenting the candidate solutions for the

4.1: DESIGN 29

User CCBR
Problem
Mew case
description 5o g
MNew query
case
Answersd
i Update
quastion 5 i 2
[Ranked -
A
qun:s::rn * questions Solutions
DoLes o Genarale
solutlons ol Guestions

Solution
—*] answer

\ N s o S LY)
Case base Most similar 1y
Legend: toares | | "G *L,_J ¢
G Case base B
R
Temporary

daia
Function |

module

—p= Data flow

3
{i

Figure 4.2: Design for the CCBR, system.

user. In the setting of this thesis, where users are patients and solutions
could be diagnosis, it is reasonable to believe that solutions should not be
presented unless they are likely to be correct.

Both solution retrieval and question generating relay on the TCBR frame-
work; questions are generated using the feature types stored in the case
base, and solutions are found as the most similar cases returned from the
case retriever.

4.1.1.1 Solution retrieval

The process for retrieving the most similar cases to the current query, solu-
tions that should be presented to the user, relay on the modified retrieval
methods implemented for the framework (see Section B:3.2.1]). These meth-
ods are query biased (only considering the features in the query case), and
similar to a k-NN algorithm they use the Euclidean distance between two
cases to find the similarity measure. Rather than returning the k most sim-
ilar cases, a threshold value is used; only the cases with higher similarity
than the threshold value are returned as possible solution. A solution is
represented as a pair; the retrieved case, and the similarity value.

30 CHAPTER 4: RESULTS

4.1.1.2 Question ranking

In this system questions are simply considered as features given a rank.
There are no transformations from features to user readable questions, as this
is not relevant to the topic of dialogue learning. Before selecting a method
for ranking these questions it is important to consider which features should
be included as candidates, and what scope these features should be ranked
in. The set of question candidate features could contain all features in the
case base, or e.g. only features included in the currently most similar cases.
The selected set of features could be ranked locally for each case, or globally
for the entire case base.

In a diploma master thesis (Kokkersvold (2007)) also using the TCBR frame-
work, the information gain metric for question ranking was implemented.
This method takes into consideration the most similar cases retrieved in
each cycle of the CCBR process, which means that the weights are com-
puted every time a question is to be asked. The information gain metric
prove to be a very computational demanding method, and thus too time
consuming to support testing of the dialogue system.

A method for question ranking used in |Gu and Aamodt (2006a) is an im-
portance weight metric similar to the EACH algorithm (Salzberg (1991)).
This method is used to get a set of global weights corresponding to each of
the features appearing in the case base. The EACH algorithm uses a 1-NN
algorithm to for each case in the case base find the most similar case. If this
most similar case suggests the same solution as the basis case, the weight of
each common feature similar values is increased by a fixed positive amount,
while if the solutions are dissimilar the weights for common similar features
is decreased by the same amount. This method is also computational de-
manding due to the retrieval process done for each case, but the weights are
only set once, which makes it feasible.

Although local weights could be implemented in the TCBR framework (see
Section B.3.3)), for simplicity the global weighting structure implemented in
the project thesis by [Houeland (2007) is used.

All features that appear in the case base but have not been assigned a
value in the current query are considered as possible discriminative ques-
tions, and a simplified EACH algorithm is used to set global weights for
each of these.

4.1.2 Dialogue system

Figure 3] shows how the dialogue system extends the CCBR system. First,
when generating a new query case, a new session is started in the dialogue

4.1: DESIGN 31

User CCBR Dialogue system

‘Pruhlleil'n | Mew case /—-—-———————__1 Sttt

b generation SESSion
m New query
case
Answerad Update
quastien -9 query casa |-
Ranked .

l:‘l'l:sﬁ < L‘“&ﬂ’"&l Solutions

Considear | Generate

solutions: ull Guestions ’

Vol e gl ? ko e—— b
! Most similar
R I
G Case base
Tempaorary
data
Function
madule

= Data flow

DmwmOH

Figure 4.3: Including the dialogue system.

system and contained in a dialogue case as the current session. Second, when
updating the query case in the CCBR, system, the progress in the dialogue is
added as a new step in the current session in the dialogue system. The third
change is that the most similar cases and generated questions are processed
by the reuse function in the dialogue system before they are presented to
the user in the CCBR system. Lastly, if a solution is considered sufficient,
the solution is sent to the dialogue system to be retained together with the
current session. It is important to notice that the dialogue system extends
the CCBR system, and thus has no purpose as a standalone module without
the CCBR system.

The main concepts of the dialogue system design are equal to those described
in Section 2.47] but differ in how a dialogue is represented due to limita-
tions in the TCBR framework. As the dialogue cases are represented in a
special way, the retrieve and retain methods must be modified correspond-

ingly.

32 CHAPTER 4: RESULTS

<name, 1> “ <name, "Jack™>
<gge, 4= =age, 35=
<ayecolor, 2= =gyecalor, "Blue™>
<height, 3> Application <haight, 190>
<gender, 5> case base <gender, "Male™>

<feature, position= =faature, value=

<ds solution, "App case #3™> _‘__/‘

Figure 4.4: Representation of a dialogue case.

4.1.2.1 Representing a dialogue

In Section 2.4.1.1] a dialogue case representation is defined as a vector con-
taining quadruples of feature, value, weight, and position, together with a
solution ((24])), but case representation in the TCBR framework only al-
low feature-value pairs. The solution is stored as a feature of a predefined
type, with the name of the corresponding application case as its value. This
application case is the key to how all necessary information can be stored
using only feature-value pairs. The values of the features do not need to
be stored both in the application case and in the dialogue case because the
cases are interconnected. In addition the weight variable can be disregarded
as the weights are set globally. Figure A4 shows a structure where a dia-
logue case store the position of a feature as a feature-position pair, and a
reference to the application case serving as the solution of the dialogue case.
The application case stores the feature-value pairs. This design enables all
features to be stored with both value and position for dialogue cases, but
create a tight coupling between the application case base and the dialogue
case; if the application case is removed from the case base, the dialogue case
is rendered useless. A requirement for this design to work is also that the
dialogue system gain access to the application case base at creation time,
and the current query case when starting a new session.

4.1.2.2 Controlling a dialogue

Dialogue cases are used as an internal structure in the dialogue system. To
interfere with the system and create and use new dialogue cases the methods
for dialogue control must be used. To store a conversation from the CCBR
system as a dialogue case, a new session must be started. That creates an

4.1: DESIGN 33

internal dialogue case containing the current session. For each question that
is answered, the corresponding feature should be added as a step in the
dialogue system. The position of a feature is controlled internally based on
the order they are added in.

To reuse dialogues the retrieved solutions and generated questions can be
sent to the dialogue system through the reuse method. The dialogue system
has the currently most similar dialogue, and can update both solutions and
questions.

If a conversation end in failure and no solution is found, the method for
terminating the session should be used. In the case of a successful conversa-
tion, the method for committing the session should be used. The dialogue
system internally decides which sessions should be retained in the dialogue
case base.

4.1.2.3 Retrieving and reusing a dialogue

Based on the current session, the most similar dialogue case are retrieved us-
ing a query biased method using (2.5)) defined in Section 2.4.1.21 The method
is specialized for the complex representation of dialogues. The dialogue case
that is retrieved is used when updating the questions and solutions. The
application case serving as the solution of the dialogue case is simply added
to the set of solutions, using the similarity value from the dialogue case. The
weight of each question in the question set, also appearing in the dialogue
case, is adjusted using (2.8]) described in Section 2413l

4.1.2.4 Retaining a dialogue

The dialogue system partly follows the retain method described by (2.9) in
Section 2414 only retaining the most general dialogue cases in the dialogue
case base. When a committed session faces retention, a standard query
biased retrieve is used to find all dialogue cases that have a similarity value
of 1.0. Since the solution is included as a feature, this automatically ensures
that the retrieved cases have the same solution as the new case. Because of
the method being query biased all cases returned are either equal to the new
case, or have all the features in the new case in addition to other features.
In the latter, they have the same solution and the new case have a subset
of the features in the retrieved case, which by the definition of the formula
means that the new case is more general. Thus a simple design to trim the
dialogue case base is to delete all the cases returned by the retrieve method,
as the new case is more general.

34 CHAPTER 4: RESULTS

4.1.3 User simulation

In order to test the total system it is necessary to simulate the actions of a
user. As seen in Figure[d.2]and Figure 3] the user starts by giving a problem
description to the CCBR system. To simulate such a problem description
it is necessary for the user to have access to a set of feature-value pairs to
choose from. These feature-value pairs are also needed when the user is
asked to answer a question. Lastly, to evaluated solutions the user needs to
know what the correct solution is. The best way to give the user realistically
feature-value pairs and solutions is to use a previous stored application case
as a test case.

4.1.3.1 Creating a problem description

A problem description is defined as a set of feature-value pairs supplied to
the CCBR system to create the query. There are two things to consider
when creating a problem description of this type; which features should be
used, and how many features are needed?

First, selecting these feature-value pairs from the test case can be done in
several ways; in (Gu and Aamodt (2006a) they are selected randomly where
the probability of a feature selected is in proportion to the weight of the
feature. The conversation will thus be biased by the fact that the problem
description is more likely to consist of the most relevant features, thus giving
the conversation a potential unnatural good start. To simulate a user that
does not know which information is most relevant when starting the conver-
sation, a method using random selection of features with equal probability
is therefore designed.

Second, the amount of features to use as a typical problem description is
difficult to set. One may argue that no problem description should be needed,
e.g. in a questionnaire setting, but using a query biased similarity metric this
brings some problems in the aspects of testing and automatically classifying
of a query. In the case where the CCBR process simply start by asking the
most relevant question, let us say it asks about the feature “sex”, the user
answers the question and the CCBR system starts a new retrieval process.
The result of such a process based on only one feature, would be that all cases
matching the supplied value for this feature are returned with a similarity
value of 1.0. Consider this in our example with the feature “sex” answered to
be “female”. All cases in the case base regarding females would so far match
the query by 100%. This is of course the result we want from a query biased
similarity metric, but if by chance one of these returned cases also have the
correct solution, an automated agent would consider it as a perfectly good
solution for the query; a dialogue with length 1, resulting in a classification

4.1: DESIGN 35

because the user is female. Thus in order to test the dialogue system, or
other situations where automatic acceptance of a solution is necessary, a
problem description of some size is preferable. Still, it is hard to set a size;
we do not want to ask for more than necessary as the goal is to reduce the
number of questions asked. A parameter containing the percentage of the
total feature set that should be used in the problem description is therefore
used, enabling testing with different sizes.

4.1.3.2 Answering questions

The CCBR system generates a list of ranked questions and asks the user for
an answer to one of these questions. This enables a user to select a question
that is ranked lower than others if that question is more relevant for the
user. A design to simulate this is to let the automated user agent answer the
highest ranked question that it knows the answer to. The agent knows the
answer to a question if the corresponding feature exists in the test case used.
If the agent is unable to answer any of the ranked questions, the CCBR
system registers it as if there are no more questions that can be asked and
the conversation ends.

4.1.3.3 Evaluating solutions

Similar to the list of questions, the CCBR system presents the user with a
list of solution cases. The list is only displayed if there are any solution cases
better than the predefined similarity threshold, and the similarity measure
is used to rank the solution cases.

The task of an automated user agent is to either reject the solution cases, or
select one solution case as the correct one, thus terminating the conversation.
To evaluate the list of solution cases the agent matches the value of their
solution feature against the value of the same feature in the test case. The
agent can check if the desired solution is the best ranked solution, it can
check if the desired solution is among the top & best ranked solutions, or it
can simply be satisfied by finding the desired solution among the solutions
passing the threshold check.

4.1.4 Test environment

The system designed is an interactive system, and an environment for auto-
matic testing is needed to examine if the system improves as more dialogues
are conducted. Each test should be repeated for a number of cycles to prove
improvement over time due to learning. The test environment must also

36 CHAPTER 4: RESULTS

conduct an ablation study for each test, performing the test both with di-
alogue learning, and without dialogue learning. Automatically simulating a
large amount of dialogues is necessary to get a solid basis for considering the
results of a test.

Based on a application case base filled with cases, a leave one out cross vali-
dation (LOOCV) method is used to simulate these dialogues; such methods
have been used successfully by the CCBR community (Aha et all (1998);
Gu et al. (2005); \Gu and Aamodt (20064)). The preconditions for carrying
out an experiment in the test environment are as follows:

e An application case base must be built, including only cases usable for
testing.

e The cases in the application case base must be considered by a feature
ranking metric to set global weights for all features.

e Threshold values for similarity measures in case retrieval, both for the
CCBR system and for the dialogue system, must be set.

e The number of LOOCYV cycles must be set.

Figure shows an overview of the test environment. LOOCYV starts with
selecting a case from the application case base as the target case; the case
supplied to the agent as a test case. This target case is left out when the
system searches for the most similar case. The agent performs the dialogue
returning the dialogue length required to find an adequately similar case
with the same solution as the test case. The dialogue length includes the
number of features in the problem description. If no similar case is found,
the dialogue length is equal to the sum of features in the test case. LOOCV
further selects the next case in the application case base as a new target
case, returning the former target case to the case base to be included in the
search. The process continues until all cases in the case base have served
as a target case, and is repeated for the number of cycles wanted without
dialogue learning, and with dialogue learning. Any cases with a solution not
used in other cases in the case base can never serve as a target case for a
successful dialogue; such cases are thus removed from the case base before
LOOCV is initiated.

To ensure that the improvements in results are due to dialogue learning and
not due to a growing application case base also containing the new queries,
a stable application case base is used. New query cases are removed after
completion of a dialogue, and, rather than the query itself, the most similar
application case is used as the solution for the dialogue stored.

The post conditions of an experiment should consist of a set of data that for
each cycle in the test describes the results achieved:

4.2: IMPLEMENTATION 37

Application case base | (Test environment

Agent 4 Dialogue length, with leaming

Leave-One-Out CCBR /
Cross Validation - it ————# Dialogue length, without learning
dialogue simulation v)

Dialogue
system

Global feature weights. . ‘

T

Similarity treshold values -

“ Number of stored dialogues

Number of cycles /
umber cycles \\- F,

Figure 4.5: An overview over the test environment.

e The average dialogue length achieved using dialogue learning.
e The average dialogue length achieved not using dialogue learning.
e The number of dialogues currently stored in the dialogue system.

Using these output data, the improvement over time (cycles) and the differ-
ence between using dialogue learning and not using it, can be found. The
number of dialogues stored over time also shows if the dialogue system is able
to maintain a sustainable case base size by retaining only the most general
cases.

4.2 Implementation

The third sub-goal of this thesis is to implement a prototype of the system
designed. Even though the problem description only mentions implementing
a part of the designed system, it is necessary to implement the complete
system in order to test the methods for dialogue learning. Rather than im-
plementing only a part of the system, the complete system is implemented
but with some parts as simplified as possible. This prototype includes an
agent, the CCBR system, the dialogue system, and the test environment,
whereof the agent and the CCBR system are very basic simple implemen-
tations. The prototype is primarily a program for automatically testing the
included parts, and can not be used for human interaction without source
code changes. Still, no changes should be necessary in the CCBR. system or
the dialogue system.

In the rest of this section the implementation of each of the sub-parts of the
prototype will be described, followed by an explanation of how they are put
together, and a step by step example run of the prototype.

38 CHAPTER 4: RESULTS

FeatureRanker

-caseBase_ . CaseBase*
-zolutionFeature_ @ string
-weights_ : map<sting, double=

+F eatureR ankericazeBasze | CaseBase *, solutionF eature ; string)

+rankF eatures() : void

-processCase(c: Case *, orsc : SimilartyWeasureC aseRetriever * | deltaWeight ; double) : void
-updateMatchingF eatures{cl : Case *, c2 : Case * | deltaWeight . double) : void
-normalizeVWeights() . void

Figure 4.6: Class diagram for the feature ranker.

4.2.1 Global feature weighting

As mentioned in the design of the test environment, a method for ranking
features is needed, and in the design for question ranking (Section ELT.T.2)
the EACH algorithm is chosen to set global weights for the features. The
feature ranker is implemented based on this algorithm. As shown in Figure
the feature ranker has the variables caseBase , solutionFeature , and
weights, denoting a reference to the case base in which the weights must be
set, the feature type serving as the solution in the cases, and a map between
the feature types and their corresponding weights, respectively. The feature
ranker is constructed with the case base, and the solution feature type. To
make sure that weights will be set for all feature types, all feature types are
assigned the default weight 1.0.

After construction the ranking process is invocated through the rankFea-
tures() method, which implements a simplified version of EACH; only con-
sidering the most similar case, rather than the two most similar cases. In
order to be able to retrieve the most similar case, a case retriever and a sim-
ilarity measure is created. For the similarity measure the QueryBiasedSym-
bolicComparator is used, and for the case retriever the SimilarityMeasure-
CaseRetriever is used, both implemented by Houeland (2007). Following the
algorithm in Table 1] each case in the case base is processed as a base case;
finding the most similar case, checking whether the base case and the most
similar case have the same solution, if the solutions are equal the weights
of the matching features they share are increased by a fixed amount, if the
solutions are different the weights are decreased by the same fixed amount.
Finally the weights are normalized to summarize to 1.0, all weights being
between 0.0 and 1.0, and the resulting feature type-weight map is used to
set global weights in the case base.

4.2: IMPLEMENTATION 39

Table 4.1: Pseudo code of the simplified EACH algortihm.
Procedure simpleEACH(CaseBase casebase)
For Each Case c&casebase
processCase(c)
End Loop
normalizeWeights()
Return
Procedure processCase(Case case)
Case match = findMostSimilarCase(case)
If solution(match) = solution(case)
For Each Feature f&caseUmatch

If value(f, match) = value(f, case)

increaseWeight (f)
End If
End Loop
Else
For Each feature fccaseUmatch

If value(f, match) = value(f, case)

decreaseWeight (f)
End If
End Loop
End If
Return

40 CHAPTER 4: RESULTS

Agent

-cchiE ngine_ : CoarE ngine®
-solutionFeature_ ; string

-minfank_: int
-dialoguelength_: int=10
-problem o Casst

-problemSolution_: string

+agent{cchrEngine . CobE ngine *, solutionF eature_: string, minRank_ : int)
+stantSimulationi{problem : Case * | problem DescriptionSize © double) : int

+a gk Questionsg questions | vedor=pair=sting, double=> *} . pair=grng, double=>
+a sk Solutionsisolutions | vedor=pair=Case*, double=>*); Case *

Figure 4.7: Class diagram for the agent.

4.2.2 Automated agent

The user simulation was designed as an automated agent. As shown in Figure
.7 the agent implementation includes the variables ccbrEngine , solution-
Feature_, minRank_, dialogueLength , problem_, and problemSolution
denoting a reference to the CCBR system, the feature type serving as the
solution in the cases, the lowest allowed ranking for the accepted case, the
length of the current dialogue, the test case serving as a problem, and the so-
lution of this case, respectively. The agent is constructed with the reference
to the CCBR system, the feature type serving as the solution, and the lowest
allowed ranking, as these variables are constant during a simulation.

The designed agent is used by the test environment to start the dialogue.
This is implemented through the startSimulation() method which accepts a
test case as its problem, and a double value denoting the portion of the test
case that should be used as the problem description. To determine the set of
questions that the agent can answer, the features of the test case is retrieved.
Using the size of this set, the number of features corresponding to the portion
value is found. Features are then selected randomly without replacement
from the set, and added to a problem description as feature-value pairs.
With the created problem description the agent starts a query to the CCBR
system, which in turn interacts with the agent using the askQuestions() and
the askSolutions() methods.

The askQuestions() method enables the CCBR system to present a vector
of feature type-weight pairs (implying that the features are ranked by their
estimated importance) for the agent to consider and answer. The imple-
mented method considers the feature types in a descending order, checking
if the test case has the corresponding feature; if the feature is found in the

4.2: IMPLEMENTATION 41

test case its value is retrieved as the answer, if the feature is not found the
method moves on to the next best feature name. The answered feature type
is returned to the CCBR system as a feature type-value pair. In the special
case of the agent not being able to find any of the feature names in the vec-
tor, an empty pair is returned. This, as explained in Section 23] in fact
means, due to the way the vector of feature name-weight pairs is generated,
that the dialogue is over.

The askSolutions() method, similar to askQuestions(), enables the CCBR
system to present a vector of case-similarity pairs for the agent to consider.
These cases are possible solutions ranked by their similarity value to the
current query. The implemented method uses the value for lowest allowed
ranking for an accepted case, and considers only the cases better than this.
For example if the lowest allowed rank is 1, only the best case is considered,
but if the lowest allowed rank is 3, the 3 best cases are considered. The
implemented method considers a case by retrieving the solution feature of
the case, and matching this with the solution stored for the problem; if the
match is successful, the case is accepted as the solution to the query. If
such a solution case is found, it is returned to the CCBR system. In any
other case the method simply returns NULL, to imply that no solutions are
acceptable.

When the query returns control to the startSimulation() method the accumu-
lated dialogue length is returned to the test environment, and the simulation
is completed.

4.2.3 CCBR system

In the implementation the CCBR system is called an engine, because this is
the part that drives the dialogue by finding new questions to ask. As shown
in Figure .8 the CCBR engine includes the variables casebase , dialogueSys-
tem_, features , queryCounter, solutionFeature, similarityThreshold_, and
dl_, denoting a reference to the application case base, a reference to the
dialogue system, the complete set of features in the application case base,
the number of queries performed, the feature type serving as the solution
in the cases, the threshold deciding if a solution has high enough similarity
to be used, and whether or not the dialogue system is enabled, respectively.
The CCBR engine is constructed with a reference to the application case
base, the feature type serving as solution, and the similarity threshold for
both the application case base and for the dialogue case base as parameters.
During the construction the dialogue system is also created internally in the
CCBR engine, using the constructor explained later in Section 2.4l The
number of queries performed is simply used to give the query cases created
unique names.

42 CHAPTER 4: RESULTS

CcbrEngine

-casebase_: CaseBase*

-dialogueSystem_ : DialogueSystem*

-features_ ; set<Entity*>

-gqueryCounter_: int=10

-solutionFeature_ @ ring

-similarityT hresheld_ : double

-cll_: boolean =trus

+CchrEngine{casebase ; CaseBase *, solutionF eature ; string, applicationSim Threshold ; double, dialogueSim Threshold ; double)
+guery(problemDescription : vector<pairsstring , gtring>=, agent : Agent *): boolean
+enableDialoguelearning() : void

+disableDialoguelearning) : veid

+gethumberOfStoredDialogues() ; int

Figure 4.8: Class diagram for the CCBR engine.

When the CCBR engine is created it is ready to receive queries through
the query() method. This method accepts a vector of feature type-value
pairs as a problem description, as well as a reference to the agent invocating
it. As seen in Table L2 the feature type serving as the solution is first
removed from the set of question candidate features. Next, a new query case
is created, and the feature name-value pairs from the problem description
are added as features in it. These features are then also removed from
the set of question candidate features. In order to be able to retrieve the
most similar cases a case retriever and a similarity measure is created. As
in the feature ranker (see Section A.2.1]) the similarity measure used is the
QueryBiasedSymbolicComparator. For the case retriever a modified version
of the SimilarityMeasureCaseRetriever is used. The modifications consist of
introducing the similarity threshold, making sure that the retrieve method
only returns the cases that have a higher similarity to the query case than the
threshold (shown in the class diagram in Figure [£10). The method further
invocate the newSession() method of the dialogue system (see Figure £.0)
using the query. After this, the method enters a loop that it leaves only when
a solution is found, or there are no more question candidate features.

The first step in the loop is using the case retriever to find the most similar
cases to the query case, with a higher similarity than the threshold value,
and storing the result as the solutions. The second step is to generate a
set of ranked questions candidate features, which is done using the private
method generateQuestions(); the method iterates the set of remaining ques-
tion candidate features, looking up the global weights set (by the feature
ranker described in Section L2.1]) for their corresponding feature type in
the case base, and returning a vector of feature type-weight pairs sorted de-
scending by their weight. The third step is a check for whether any questions
were generated or not. If the set is empty, the query case is deleted, and
the method discardSession() in the dialogue system is invocated. Further
the query method returns with value false, meaning that the dialogue failed
to solve the query case. If the set is not empty, the process continues by

4.2: IMPLEMENTATION 43

Table 4.2: Pseudo code for the query.
CaseBase cb
DialogueSystem ds
Agent agent
Procedure query(problemDescription)
Feature[] candidates = cb.getFeatureTypes()
candidates.remove (solutionFeature)
Case query
For Each feature fe&problemDescription
query.addFeature (f)
candidates.remove (f)
End Loop
ds.newSession(query)
While !solution And candidates

solutions = retrieveMostSimilarCases(query)
questions = generateQuestions(candidates)
If !questions Then

Delete query

ds.discardSession()

Return false
Else

ds.reuseDialogue(questions,solutions)
answer = agent.askQuestions()
If 'answer Then
Delete query
ds.discardSession()
Return false
Else
query.addFeature (answer)
ds.addFeature(answer)
End If
End If
If solutions Then

solution = agent.askSolutions(solutions)
End If
End Loop
ds.commitSession(solution)
Delete query
Return true

44 CHAPTER 4: RESULTS

invocating the reuseDialogue() method in the dialogue system, possible im-
proving the sets of question candidate features and solution cases. Further
the agents askQuestions() is invocated and an answer is received. If the pair
containing the answer is empty, it means that the agent was unable to answer
any of the questions. As the nature of the question generating is to present
all remaining possible question candidate features in a ranked fashion, this
in turn means that none of the remaining question candidate features can
be answered, thus the query case is deleted, the method discardSession() in
the dialogue system is invocated, and the method returns with value false.
In the case where the pair contains an answer, a corresponding feature is
added to the query case, and the feature is removed from the set of question
candidate features. The dialogue system is also informed of the new step
in the dialogue using the addFeature() method. Finally, the last step of the
loop is, if the solution set not being empty, to ask the agent for a solution
using the askSolutions() method. If either the solution set was empty, or the
agent declined the solutions in it, the loop continues. If the agent returned
an accepted solution the loop ends, and the query is successful. In a normal
CCBR system the query case would be considered for retaining, but as a
stable application case base is wanted the query case is simply deleted. The
solution found is sent to the dialogue system invocating the commitSession()
method, and the query method returns the true value at success.

As mentioned in the explanation above; the query case is deleted both when
the dialogue fails to solve the query, and when it succeeds (in order to keep
the application base stable). As later described in Section B.2.4] deleting
of cases is also necessary when retaining dialogues. This ability to delete
cases is not implemented in the TCBR framework, resulting in lots of faulty
relations in the underlying knowledge model if any case objects are deleted.
Therefore the framework had to be changed to handle this problem. As both
cases and features are entities, the code for removing the corresponding re-
lations was placed in the entity class. When deleting a case instance, all
belonging feature instances is also deleted, triggering the C++ destructor
code for each entity. This code is set to delete the entity from the knowledge
model, and iterate trough the local relations invocating the new removeRela-
tionsTo(this) method for each target entity. As given by the methods name,
all relations in entities that point to the deleted entity are thus removed. The
destructor for the relation class is set to remove itself from the knowledge
model, making sure that the knowledge model does not contain pointers to
any destroyed entities or relations. To achieve this, the code in the classes
for cases, entities, relations, and knowledge models in the TCBR framework
had to be extended.

Lastly, the CCBR engine has three methods for controlling the use of the dia-
logue system; enableDialogueLearing() and disableDialogueLearning() simply
enables or disables the dialogue system for use. The method getNumberOfS-

4.2: IMPLEMENTATION 45

DialogueSystem

-dialogueC aseBase_: CascBase®
-applicationC aseBase_ . CaseBase”
-similantyThreshold_ : double
-sessionMumber_:int=0
-currentSession_: Case*
-currentAppCase ; Case*

-currentP osition_ . int=0

+DialogueSystem (applicationC aseBase | CaseBass *, similartyThreshold : double)
+newSession(nitialAppCase | Cass *) . void

+reuselialoguelsolutions ;. vector<pair<Case*, double>= * guestions: vectorpair=gring, double>= *); void
+addFeature(feature Type ;. sting) ; void

+discardSession(): void

+commitSession(applicationCase | Case *) : boolean

+getlumberOfStoredDialogues) @ int

Figure 4.9: Class diagram for the dialogue system.

toredDialogues() give the test environment access to the size of the dialogue
case base. This is necessary since the dialogue system is an internal part
of the CCBR engine, and thus can not be reached directly from outside the
CCBR engine. If the dialogue system is disabled, the query does not use
any of its methods for improving the questions or solutions, or retaining
dialogues.

4.2.4 Dialogue system

The implemented dialogue system, as designed, very much follows the meth-
ods described in Section with some adjustment to fit the use of the
TCBR framework. As shown in Figure [£.9] the dialogue system has the vari-
ables dialogueCaseBase_, applicationCaseBase_, similarityThreshold_, ses-
sionNumber , currentSession_, currentAppCase_, and currentPosition |
denoting a reference to the dialogue case base, a reference to the application
case base used in the CCBR system, the threshold for how similar a dialogue
case have to be to the current dialogue before reusing it, the number of di-
alogue sessions, the dialogue case containing the current session, the query
case currently used in the CCBR system, and the current position in the
dialogue (the number of steps currently conducted), respectively. The dia-
logue system is constructed with the reference to the application case base
and the similarity threshold as parameters, as these variables are constant
through the existence of the system. The session number is simply used to
give the new dialogue cases unique names.

The dialogue system is a closed system; you can not manually add dia-
logue cases to the case base. A new dialogue case must be built using the
newSession() method which resets the current position to zero and creates

46 CHAPTER 4: RESULTS

an internal dialogue case as the current session. The features included in
the initial application case is not added as steps of the dialogue, due to
the totally random selection of these, and the positive computational effect
of having shorter dialogue case descriptions. To extend this dialogue case
when new steps in the dialogue occur, the addFeature() method is used. This
method stores a new feature in the current dialogue case of the added feature
type with the current position as its value, before incrementing the current
position.

The reuseDialogue() method is the dialogue system’s opportunity to effect
the dialogue process. The method retrieves the dialogue most similar to
the current session using the new DialogueCaseRetriever implementation of
the case retriever, and the new DialogueCaseComparator implementation
of the similarity measure (see Figure [LI0)). This case retriever is created
with not only a reference to the dialogue case base, but also to the appli-
cation case base, thus making it possible to find both the position and the
value of a feature type in a dialogue case. Both the dialogue case represent-
ing the current session, and the application case representing the current
query, are necessary to retrieve the most similar dialogue. The retriever fol-
lows equation (2.1) to find the distance between the cases. The similarity
measure method getSymbolicDifference() in QueryBiasedSymbolicCompara-
tor follows by equation (2.6) and is inherited and used together with the
getPosition Weight() method in DialogueCaseComparator which follows by
equation (2.7). The most similar dialogue case is, if better than the sim-
ilarity threshold, used as the basis for updating the weights in the set of
question candidate features, and potentially to add a new solution to the
set of ranked solution cases. For each feature types in the set of question
candidate features also included in the most similar dialogue case, the corre-
sponding weight is updated using equation (2.8]). The solution of the most
similar dialogue case is simply added to the set of ranked solutions if it is
not already included, using the similarity strength assigned to the dialogue
case.

If the proceeding query in the CCBR system at any time fails, the discard-
Session() method should be used to make sure that the current session is not
stored as a dialogue case in the case base. In the case of a successful dialogue,
the commitSession() method should be used. This method implements the
retain strategy explain in Section L 1.2.4] using a similarity measure of the
QueryBiasedSymbolicComparator type, and a case retriever of the modified
SimilarityMeasureCaseRetriever (with a threshold limit, see Figure HI0).
The cases retrieved with threshold limit 1.0 are considered as equal or more
specialized than the current session, and is thus deleted from the dialogue
case base. Finally, the dialogue system has the method getNumberOfStored-
Dialogues() in order to let the CCBR system pass on the current size of the
dialogue case base to the test environment.

4.2: IMPLEMENTATION

47

CaseRetriever

-caseBase_: CaseBase*

+C aseRetriever(caseBase : Cas=Bass ")

+retrieveSimilarC ases(inputCase - Case *) : vedor=pair<Case* double=>

uses

CaseBase

?extends

SimilarityMeasureCaseRetri ever*

-similaritytd easure_: SimilarityMeasure®
-threshold_: double

+Similarit WM easureCase Retriever{caseBase | CaseBase *, similantyWeasure : SimilartyMeasure *, threshold : double)
+retrieveSimilarC ases(inputCase : Case *) . vedor=pair<Case’, double=>

Ja |
| uses
v
SimilarityMeasure
+compute CaseSimilarity(from : Case * to: Case *): double
extends extends
QueryBiasedSymboli it
+compute CaseSimilarity(from : Casse * to: Case*): double
+oetSymbolicDifference(from : Case * to : Cass *, type: Entity *): couble
? extends
DialogueCa seComparator
+compute CaseSimilaritylguery : Case *, stored ; Case”, appQuery : Cass* |, appSolution : Case *): double
+getP ositionVWeight(from : Case * to: Case *, type : Entity *) ; double
: uses
]
DialogueCaseRefriever
-appCaseBase | CaseBase*

+Digloguet

triever{dialogusC Bass . Casebase *, appCaseBase | CassBase *, similartyMeasure ; DialogueCaseComparator *, threshold : double)
+retrieveSimiarC ases{inputCase | Case *, appinpuiCase : Case ') @ vedor=pair=Case*, double==>

Figure 4.10: Class diagram for the dialogue case retriever.

48 CHAPTER 4: RESULTS

4.2.5 Putting the system together

The task of constructing and connecting the sub parts of the system falls
on the test environment, which creates a CCBR system and an agent with
reference to this. The test environment needs access to the CCBR system
in order to enable and disable the dialogue learning, while the simulations
are started using the agent. The evaluation process follows the pseudo code
in Table 43l A case base is created, and the features in this are ranked
using the feature ranker. A LOOCYV loop is started first with the dialogue
learning disabled, then with the dialogue learning enabled. The results from
each simulation are stored, and presented in the end. To avoid deleting
the case that is left out from the case base during simulation, methods for
handling deactivation of cases was developed.

The case implementation in the TCBR framework was altered to include the
methods activate(), deactivate(), and isActive(). To store whether a case
is deactivated or not, the special feature type _deactivated was introduced.
Syntax for feature types was defined, deciding that feature types starting
with the underscore symbol would regard system data rather than case data.
The activate() method thus simply add the feature type _deactivated to the
case, while the deactivate() method removes it. The isActive() method sim-
ply checks if the case has the feature. Knowing this, a new method was
implemented in the case base representation in the TCBR framework; in ad-
dition to the old method getCases(), the new method getActiveCases() was
added. This new method was then used instead of the old one in the imple-
mentations of the case retriever, ensuring that only active cases are searched.
The introduction of feature types not regarding the case data demanded a
change in the getFeatureTypes() method in the case base implementation,
not returning the feature types regarding the system data.

With the evaluation process explained and the ability to deactivate cases
established, simulations are performed by the LOOCYV loop. The internal
communication between the sub parts of the system during a simulation can
best be illustrated by the sequence diagram shown in Figure .11l The figure
shows the initial methods to activate the system, the loop which drives the
dialogue, and the alternative endings of the simulation.

4.2.6 An example run

To demonstrate how the complete prototype works, the output from an ex-
ample run is explained in this section. As described in Table[44], the program
accepts a set of parameters for configuration that can be supplied at execu-
tion time, but all parameters have default values. An example start is:

4.2: IMPLEMENTATION

49

Table 4.3: Pseudo code of the evaluation process.
Procedure evaluation()
CaseBase casebase
insertCases (casebase)
rankFeatures (casebase)
Results results
disableDialogueLearning()
For Each cycle
For Each Case cccasebase
deactivate(c)
startSimulation(c)
update (results)
activate(c)
End Loop
End Loop
enableDialogueLearning()
For Each cycle
For Each Case cc&casebase
deactivate(c)
startSimulation(c)
update (results)
activate(c)
End Loop
End Loop
print (results)
Return

20 CHAPTER 4: RESULTS

sid O\renriewl

1: startC chrSystem) } Cchr system

2: createDialogues ystem | Dialogue system

3 startQuery (aroklem Description)

4 newSession() |
While more que stions and DH:I
soluti on not accepted

lo...] 5: retrieveSimilarCases()

t]

6: generateGuestions()

7: reuseDial ogue(solutions, guedtions)

8: retrieveBestDialogue()

]

9 add Solution(solutions)

i 10: adjustWei ghts{guestions)

T

11: updated solutions and guestions

12; askQuestions(guestions)

13: incrementDial oguelength()

-

answerBestGue stion{answer)

15 addFeature()

L
I
|
|
|
|
|
|
|
I
16 addFeature) |
17: askSolutions(solutions) DI;'
|
|
|
1
|
|
|
i

18: accept or reject

alt
—) 19 commitSesd on(solution)

20: retain(session)

P

21: returnitrue) -i—
T T |
T i
i 22 discardSession()
23 delete(session)
24: returnifalse) Qtl

Figure 4.11: The internal communication sequence in the system.

4.2: IMPLEMENTATION o1

dialearn.exe -sof "class" -dat "C:\\lung-cancer.dat"
-npat -pds 0.10 -ast 0.7 -dst 0.5 -noc 32 -cyc 2

The order of the parameters is of no consequence, as long as the correct
prefix is used.

The data file must be in a tabulator separated text-format, where the first
line in the file consists of the feature types, and the following lines includes
the feature values, one case for each line (see Table [43]).

The dataset used in this example run is the lung-cancer dataset from the
UCI repository (D.J. Newman and Merz (1998)) (for further information on
the dataset see Section [£.2.2.7)).

The first output the program produces is from the case base generator (read
more about the case base generator in Section (.2.3]). In the example the
number of cases is set to 32, which is equal to the number of cases available,
thus no random selection is necessary and the case base generator use the
simple method for inserting a section of cases in the range 0 to 32.

CBG-> Stored 32 cases from file: C:\lung-cancer.dat

CBG-> Number of cases equal to or larger than range.

CBG-> Inserting cases O to 32 from a dataset with 32 cases,
into casebase ACBase

The second output produced is from the test environment, giving the char-
acteristics for the case base generated.

MAIN-> Case base characteristics:
MAIN-> Cases: 32

MAIN-> Features: 57

MAIN-> Solutions: 3

The next output produced is from the test environment starting the feature
ranker, which outputs a line when each case is processed. It might be a time
consuming process to process all cases, and some form of progression sign
is practical. When all cases is processed the feature ranker normalizes the
weights.

MAIN-> Global feature ranking started...
FR-> Processing Case #1
FR-> Processing Case #2
FR-> Processing Case #3

FR-> Normalizing weights.

The next output produced is from the CCBR system informing that the
dialogue learning was disabled in order to run the cycles with ablation of the
dialogue system first.

52 CHAPTER 4: RESULTS
Table 4.4: Start parameters for the program.
‘ Prefix ‘ Parameter ‘ Default Explanation

-sof Solution db_primdiagnosis | The feature type serving
feature as the solution for the

cases.

-dat Data file Location of the data file,

e.g. “C:\\datafile.dat”.

-npat | Setup for | No value. Use this if other datasets
other than than the PAT-C dataset
PAT-C is used. No value should

be supplied, only the
prefix.

-noc Number 40 The number of cases
of cases that is randomly selected

from the data file.

-pos Selection -1 The start position for the
start case section selection,

e.g. from case -pos to
case -noc. Default is
random selection.

-msr Min. 1 The minimum rank for
solution an acceptable solution
rank case.

-msc Min. 2 The minimum number of
solution cases in a classification.
count

-cyc Number 2 The number of cycles to
of cycles repeat the LOOCV

process to demonstrate
learning.

-pds Problem 0.10 The portion of the
descrip- features in a test case
tion used as the problem
size description (0.10 is 10%

of the features).

-ast Application| 0.6 The similarity threshold
case base for retrieval of
similarity application cases.
threshold

-dst Dialogue 0.5 The similarity threshold
case base for retrieval of dialogue
similarity cases.
threshold

4.2: IMPLEMENTATION o3

Table 4.5: A data file example.

Age Sex Height Weight
32 M 180 78
23 F 170 56
26 F 175 69

CCBR-> Dialogue learning disabled.

Next, the test environment informs that it is starting a simulation with the
case “Case #1” left out. The output also include the time currently elapsed
since the program started.

MAIN-> Starting simulation. (Case: Case #1) 2.66667min

The agent has been activated and informs that it has selected 5 features for
the problem description (10% of the 57 features, floored).

AGENT-> Selecting 5 features for problemdescription

The next output produced is from the CCBR system. A new query has been
started, similar cases are retrieved, and questions are generated.

CCBR-> New query started.
CCBR-> Retrieve similar cases.
CCBR-> Generate ranked questions.

The agent then selects the best ranked question to answer, which has the fea-
ture type “p8” (in this data file denoting the eight parameter of the dataset).
The weight of the questions is also displayed.

AGENT-> Answers best ranked question: p8 (0.0346667)

The agent further informs that it was asked to confirm solutions. The cur-
rently best case is printed with its similarity rank and solution value. The
correct solution for the query is also displayed.

AGENT-> Solution display 6(Correct: 1)
Case #18 (0.728503) Solution: 2

This process continues, building a larger query case:

CCBR-> Retrieve similar cases.

CCBR-> Generate ranked questions.

AGENT-> Answers best ranked question: p44 (0.0346667)
CCBR-> Retrieve similar cases.

CCBR-> Generate ranked questions.

AGENT-> Answers best ranked question: p53 (0.032)
CCBR-> Retrieve similar cases.

54 CHAPTER 4: RESULTS

CCBR-> Generate ranked questions.
AGENT-> Answers best ranked question: p23 (0.0293333)

This particular query ended with failure, by the CCBR. system informing
that it has no more questions available, and the agent informing of a false
simulation ending with maximum dialogue length:

CCBR-> No more questions available.
AGENT-> Simulation: O Length: 56

The test environment informs that the simulation was completed in some
amount of time after the start of the program, and starts a new simulation
with the next case left out.

MAIN-> Simulation complete. 4.65min
MAIN-> Starting simulation. (Case: Case #2) 4.6bmin

The same procedure as in the last simulation is repeated, but this simulation
ends differently. The agent informs that the correct solution is found, and
that the simulations thus was true, with dialogue length 11.

AGENT-> Solution display 11(Correct: 1)
Case #4 (0.775079) Solution: 1

AGENT-> Solution correct. Case #4
AGENT-> Simulation: 1 Length: 11

MAIN-> Simulation complete. 4.71667min

After some time the CCBR system informs that the dialogue learning is
enabled. This means that both cycles without learning are completed. A
new simulation is started as before:

CCBR-> Dialogue learning enabled.

MAIN-> Starting simulation. (Case: Case #1) 29.3833min
AGENT-> Selecting 5 features for problemdescription
CCBR-> New query started.

When the query has started, the dialogue system presents us with new lines
of output. A new session is started, and the current dialogue case base size
is displayed.

DS-> New session started.

DS-> Current dialogue base size: 1

The next time the dialogue system gives any output is to inform that when
trying to reuse dialogues no dialogue cases better than the similarity thresh-
old value were found.

CCBR-> Retrieve similar cases.
CCBR-> Generate ranked questioms.

4.2: IMPLEMENTATION 95

DS-> No dialogue cases better than threshold value.
AGENT-> Answers best ranked question: p44 (0.0346667)

The rest of the process continues as before, until the case base has reached a
size that makes it useful for reuse. In the following simulation the case base
has reached a size of 18:

MAIN-> Starting simulation. (Case: Case #18) 33.0167min
AGENT-> Selecting 5 features for problemdescription:
CCBR-> New query started.

DS-> New session started.

DS-> Current dialogue base size: 18

After answering the first question the dialogue system finds a dialogue case
witch has a high enough similarity measure. This dialogue case is thus used
to update the weights of all question candidate features also in the dialogue
case:

CCBR-> Retrieve similar cases.

CCBR-> Generate ranked questions.

DS-> Best: Dialogue #18 (1)

DS-> Weight for p44 changed from 0.0346667 to 0.0520136
DS-> Weight for p53 changed from 0.032 to 0.0490918
DS-> Weight for pl changed from 0.0293333 to 0.04617
DS-> Weight for p49 changed from 0.0293333 to 0.0454047
DS-> Weight for p6 changed from 0.0293333 to 0.0459149
DS-> Weight for p23 changed from 0.0293333 to 0.0456598

DS-> Weight for p48 changed from 0.0266667 to 0.0419728
DS-> Weight for p52 changed from 0.0266667 to 0.042483
DS-> Weight for p24 changed from 0.024 to 0.0387959
DS-> Weight for p50 changed from 0.024 to 0.039051

DS-> Weight for p30 changed from 0.024 to 0.0385408
DS-> Weight for p54 changed from 0.0213333 to 0.035619
DS-> Weight for p35 changed from 0.0186667 to 0.0316769
DS-> Weight for p33 changed from 0.0186667 to 0.0314218
DS-> Weight for pl9 changed from 0.0186667 to 0.0309116
DS-> Weight for p45 changed from 0.0186667 to 0.031932
DS-> Weight for pl7 changed from 0.0186667 to 0.0306565
DS-> Weight for pl6 changed from 0.0186667 to 0.0304014
DS-> Weight for p46 changed from 0.0186667 to 0.0321871
DS-> Weight for p21 changed from 0.0186667 to 0.0311667
DS-> Weight for p55 changed from 0.0186667 to 0.0324422
DS-> Weight for p56 changed from 0.0186667 to 0.0326973
DS-> Weight for p51 changed from 0.016 to 0.0274796
DS-> Weight for p40 changed from 0.016 to 0.0272245

o6 CHAPTER 4: RESULTS

DS-> Weight for p39 changed from 0.016 to 0.0267143
DS-> Weight for p2 changed from 0.016 to 0.0269694
DS-> Weight for p28 changed from 0.016 to 0.0254388
DS-> Weight for p27 changed from 0.016 to 0.0256939
DS-> Weight for p4 changed from 0.0133333 to 0.022517
AGENT-> Answers best ranked question: p44 (0.0520136)

The process continues, and when the correct solution is found the dialogue
system informs that the session is retained.

AGENT-> Solution correct. Case #20
DS-> Session retained.
AGENT-> Simulation: 1 Length: 14

In a later simulation, the dialogue system not only informs that the session
is retained, but that a formerly stored dialogue case is removed due to the
new session being a more general dialogue case.

DS-> Removed Dialogue #34 as a result of a more general
case stored.
DS-> Session retained.

Finally, when all the simulations are completed, the test environment out-
puts the results. The total execution time is displayed, and the case base
characteristics are repeated. For each cycle the average dialogue length with
and without dialogue learning, and the number of stored dialogue cases in
the dialogue system, is displayed.

MAIN-> Results for this case base:

MAIN-> Total time: 59.7333min

MAIN-> Total cases: 32

MAIN-> Features: 57

MAIN-> Solutions: 3

MAIN-> Cycle O

MAIN-> Dialogue length, no learning: 19.1562
MAIN-> Dialogue length, learning: 12.3438
MAIN-> Stored dialogue cases: 31

MAIN-> Cycle 1

MAIN-> Dialogue length, no learning: 17.75
MAIN-> Dialogue length, learning: 16.4062
MAIN-> Stored dialogue cases: 49

Press any key to terminate experiment.

Using these results, the average dialogue length over the cycles can be found,
and potential improvements due to dialogue learning can be shown. In the
example run an average dialogue length reduction of 22.1% was achieved.

4.2: IMPLEMENTATION o7

The size of the dialogue case base over several cycles also give important
information about whether or not the retain strategy used is working.

o8

CHAPTER 4: RESULTS

Chapter 5

Evaluation

This chapter concerns the evaluation of the system designed and imple-
mented. The properties of the test environment are explained, the choices
of datasets justified and parameters for them selected, finally the results for
the system on each of the datasets are presented.

5.1 Properties of the test environment

The most interesting elements included in the test environment is the use of
LOOCYV for simulation, the use of ablation to evaluate improvements, and
the use of cycles to show learning and maintainability over time.

LOOCV is a practical method for simulating the human-computer conver-
sation process when a sufficient number of human subjects to run the exper-
iments are unavailable. The method excludes one case from the case base,
using this case as the test case, and searching the remaining cases for similar
solutions. Due to the fact that the test case is excluded there is no guaran-
tee that a solutions will be found, in contrast to leave-one-in cross validation
(LOICV) where the test case is included in the search as a possible solution.
Classes consisting of only one case can never be reached because of this case
being left out, and are thus not applicable for LOOCV. The test environ-
ment accepts a parameter which sets the minimum number of cases for each
classification, and deletes the cases belonging to a classification that does not
satisfy this number. The default minimum number is two. Methods similar
to LOOCYV have also earlier been successfully used in the CCBR community
(Aha et al. (1998); |Gu et al) (2005); \Gu and Aamodt (2006a)).

Ablation evaluation is a method for analyzing the contributions of different
modules of a system to the total performance improvement (Gu and Aamodt
(2006h)). The tests are performed with one or more modules deactivated,

59

60 CHAPTER 5: EVALUATION

removed, or replaced, and the results are compared against the complete
system. This method was used to evaluate the PROTOS system (Bareiss
(1989)), the SIROCCO system (McLaren (2003)), the NaCoDAE system
(Aha et all (2001)), and was also used by |Gu and Aamodt (2006a). Because
of the nature of the dialogue system, being an extension to the CCBR sys-
tem, ablation evaluation is a practical approach for testing. Tests are thus
conducted both with the dialogue system disabled, and enabled.

To inspect the continuous learning characteristics of the dialogue system
the LOOCYV is repeated for more then one cycles, typically two. For the
LOOCYV with the dialogue system disabled there are no difference between
the cycles other than the random selection of problem descriptions. On the
other hand, when the dialogue system is enabled, the first cycle starts with
an empty dialogue case base, delaying the effect of reusing dialogues until
some are retained. The second cycle should thus improve due to the existence
of retained dialogues from the first cycle. Another effect of the second cycle
is the ability to see if the retain strategy is effective. Over several cycles the
growth of the dialogue case base should decline. The use of random problem
description have the effect that there can be created many more dialogues
than there exist test cases, which in turn makes it possible to get different
simulations for each run on the same dataset.

5.2 Datasets

Data is necessary in order to evaluate the system, and the choice of datasets is
influenced by several criteria. First, the purpose of the system is to reduce the
number of questions asked during a conversation, but as discussed in Section
E. 137 there is a problem with too short problem descriptions. Datasets
with a certain minimum amount of features must thus be used to get useful
results. It is also more interesting to see the effect on longer dialogues, as
they are in greater need of length reduction. Short dialogues do not give
very heavy cognitive load for the user.

The second thing that influences the choice of datasets is the connection
between the size of the dataset and the computational effort needed to use
them. The number of cases in the dataset, and especially the number of
features they have, thus decides the amount of time needed for a simulation.
Since the system uses query biased retrieval methods the process goes slower
and slower as more features are added to the query case, meaning that if
an acceptable case is hard to find the amount of time used to search for it
increases rapidly.

The third influencing element is the fact that the TCBR framework only
supports discrete textual values for features. If the dataset includes a high

5.2: DATASETS 61

amount of continuous valued features this might be the reason for bad per-
formance, independent of the actions of the dialogue system. It is thus
preferable if the datasets have mostly discrete nominal, or Boolean, valued
features, since these are handled well by the TCBR framework.

Forth, it would be interesting to use data relevant to the problem to be
addressed by the EPCRC project. The datasets finally chosen were a dataset
from a project related to the EPCRC project, and two datasets from the UCI
repository (D.J. Newman and Merz (1998)).

5.2.1 Data from PAT-C

In relation to the EPCRC project a study have been carried out by the De-
partment of Cancer Research and Molecular Medicine, NTNU (Pain et al.
(2006)), where a series of tests were performed through computer fixed test-
ing (CFT). Hospitals located in Trondheim, Molde, Bergen, Hamar, Oslo
and Skien were involved, and data collected from approximately 1000 pa-
tients. The Palliative Assessment Tool - Computerized (PAT-C) was used
to perform the testing with a computerized questionnaire where the patient
answers questions in a given sequence. The reply can be added by either the
patient himself, or some assisting health person, depending on the patient’s
abilities.

These tests resulted in a substantial amount of data on pain measurements
from real patients, and give a good foundation for creating a set of test
cases. Not all tests were completed, either because of the patient being too
tired to continue, or of other problems, leaving some of the data incom-
plete and without a diagnosis. A process to convert the data to cases was
necessary.

5.2.1.1 Pruning irrelevant data

The first step in creating cases was a selection of relevant variables from the
dataset. The dataset included personal data such as patient id and residence,
test data such as where and on what computer the test was performed,
which version of the test software was used etc. These variables were left
out from the case data both to make it anonymous, and to keep only the
data of clinical importance. It is the answers from, and the condition of, the
patient which give the foundation for a diagnosis, not the software version or
computer type. The dataset also included variables containing the time used
to answer each question. These variables were set automatically when the
patient proceeded to the next question, and might not be a measure of how
much time the patient needed, rather a measure of how long the application

62 CHAPTER 5: EVALUATION

remained idle. The variable for total time used was also in some occasions
much higher than the sum of the time for each question because the patient,
or assistant, forgot to close the test when it was done. All time variables
are therefore excluded from the case data for simplicity; they may not be
of clinical value, and also the TCBR framework does currently not support
a time format for features. Remaining variables used for case data includes
db_bornyear, db_sex, and db_ karnofsky which all were filled before the test
started, db_ primdiagnosis holding the classification of the data, followed by
a series of variables containing the answers to every question the patient got.
Some of the variables are dependent on other variables; the questionnaire
includes a graphical map of the human body with zones that can be marked
as painful areas, this map is never displayed for the patient if he previously
answered zero to two different questions about the amount of pain felt in
some recent time period. Thus if the map is not displayed the variables
linked to this map is not filled, but the data is still to be considered as
complete. A total of 97 variables for each test are kept when the map is
used, 61 variables when it is not.

5.2.1.2 Omitting incomplete or strange data

Having selected the interesting variables the second step was to extract all
the complete cases from the dataset, as aborted cases not would give any use-
ful information for the CCBR system. Another problem in the dataset was
that the values supplied for patient diagnosis, which is used as classification,
not always was standardized. The values mainly follow the International
Statistical Classification of Diseases and Related Health Problems 10th Re-
vision (ICD) (WHO et all (2007)), but some values use old versions of ICD,
or simply textual expressions. For some of the data several classifications are
supplied. This was solved by simply excluding all data where the values for
classification could not be recognized as an ICD classification, as it would
require competent health personnel to reclassify this data using ICD.

5.2.1.3 Resulting data

The processing of the data results in 649 remaining cases, all qualified by the
requirements decided. The total number of different features is 97, but for
some cases only 61 of them is used. Most of the features in the PAT-C data
have scaled values, e.g. from 0 to 10. The effect of this on the current TCBR
framework is that 0 and 1 on the scale is dealt with as just as different as 0
and 10, even though the values in fact are quite similar. The feature used
for classification is db_ primdiagnosis, and based on the value restrictions for
this feature the data includes 88 possible different classifications.

5.2: DATASETS 63

I C34
PAT-C class distribution | C50
0 C61
0C34.9
mC18
O C50.9
W C25
o Cas6
| Cz20
W C64
OC43.9
bc18.9
mC67.9
W C34.3
W C85.1
mC16
@ C43
0 c4s
0cs29
0Ocs4.1
O C53
O Can
oG12.2
0C53.9

Figure 5.1: Pat-C class distribution.

An analysis of the distribution in the data reveals some interesting properties.
As seen in Figure Bl most of the classifications only include a small number
of cases. There are 40 classifications only including one case, making them
unsuited for LOOCYV testing, as it would be impossible to find a case with
the correct classification. The largest class consist of 16% of the cases, and
the six largest classes consist of as much as 53% of the cases, which shows
that the cases are very unevenly distributed.

Another analysis shows that the most similar case can serve as the correct
solution for only 46% of the cases. The most similar correct case exceed a
threshold value of 0.5 for 94% of the cases, only leaving the 6% consisting
of the 40 cases mentioned, that never can be classified correct. A threshold
value of 0.6 is exceeded by 87%, 0.7 by 32%, and 0.8 by 4% of the cases.
This shows that a threshold value higher than 0.6 removes the possibility of
finding an acceptable solution for 68% of the cases, independent of how low
the minimum rank for an acceptable solution is set. The application case
retrieval threshold is thus set to 0.6 for the PAT-C data during testing.

64 CHAPTER 5: EVALUATION

5.2.2 Data from UCI

The UCI machine learning repository is a repository of databases, domain
theories and data generators that are used by the machine learning commu-
nity for the empirical analysis of machine learning algorithms. As a wider
basis for evaluation 2 of the datasets from this repository are selected in
addition to the data from PAT-C. These datasets are well known and have
been used successfully by e.g. |Guand Aamodt (20064); IGu et all (2005),
and could compensate for risk involved in the PAT-C data being formerly
unknown and potentially not well suited to show how the system performs.
The selected datasets are the lung-cancer dataset, and the soybean-large
dataset.

5.2.2.1 Lung cancer

The lung cancer dataset has 32 cases and 56 features, where class is the
classification feature with the values 1, 2, and 3. All the features are sym-
bolic, and should not be affected by the fact that the TCBR framework only
supports discrete comparison of feature values. There are some missing val-
ues in the dataset, which results in some cases not having all features. The
class distribution analysis for the lung cancer dataset (see Figure [5.2)) shows
that the 3 different possible classifications have an even distribution of the
cases, and there are no problems by any cases not being suitable for LOOCV
testing.

An analysis of the most similar case for each case in the dataset shows that
the most similar case is an acceptable solution for 72% of the cases. The
most similar correct case exceeds a threshold value of 0.6 for 100% of the
cases, but the most similar correct case does never exceed a threshold value
of 0.7 for any of the cases. The application case retrieval threshold value is
thus set to 0.6 during testing with this dataset.

5.2.2.2 Soybean large

The soybean large dataset has 307 cases and 36 features, where class is the
classification feature. There are 18 different classifications. Also this dataset
has only symbolic features, and some missing values.

The class distribution analysis for the soybean large dataset (see Figure [£.3))
shows that the four largest classes consist of more than 50% of the dataset.
One class consist of only one case, and can not be used in LOOCV, the rest
of the dataset should be applicable.

5.2: DATASETS 65

Lung cancer class distribution

a1
|z
m]

Figure 5.2: Lung cancer class distribution.

Soybean large class distribution O alternarialeat-spot
W brow respot

Ofrog-eyve-leatspot
O pkwtophthora-rot
W anthracnose

E541

10 40

O brow e stern-rot

W bacterial-blight

O bacterial-pustule

W charcoakrot

B diaporthe-stermrcanker
OO doweery- il den

O phyllosticta-leat-spot
W powdeny-mildewy

W purple-seed-stain

W rhiz octonia-root-rot

W cyst- nematode

20 40 3 diaporthe-pod- &-stem-blight
O herbicide-injury

O 2-d4- dinjury

40

Figure 5.3: Soybean large class distribution.

66 CHAPTER 5: EVALUATION

Caseb aseGenerator
+C azeBaseGeneratoridatafle ; string)
+C aseBassGeneratoridatafile ; sting, patc | boolean)
+insetRandominumber Dint, cb CassBase ') void
+insetRandom{number Cint, from ;. int 1o int, cb . CaseBase *). vaid
+insstSelectionifrom ;int, to cint, ch CaseBasze) woid
+etCasstum ber) : lang

Figure 5.4: Class diagram for the case base generator.

An analysis of the most similar case for each case in the dataset shows that
the most similar case is an acceptable solution for 74% of the cases. The
most similar correct case exceeds a threshold value of 0.6 for 98%, 0.7 for
95%, and 0.8 for 59% of the cases. The application case retrieval threshold
value is thus set to 0.7 during testing with this dataset.

5.2.3 Case base generator

The PAT-C dataset was meant to serve as test data not only for this thesis,
but for both the diploma thesis by [Kokkersvold (2007), and the project thesis
by Houeland (2007). Both theses are connected to the EPCRC project and
use the TCBR framework, so in order to share the processed dataset with
these other theses easily, an interface for filling TCBR case bases with the
data was implemented (see Figure [5.4)).

The current version of the TCBR framework does not include any mean for
serialising a case base for later use, and thus all cases must be added in the
initial program load. As it is not a part of this thesis to implement such
means, a simple way of solving this is to read from the dataset file in the
constructor of the case base generator. The case base generator has two
constructors, both accepting the path to the dataset file as a string. The
simplest constructor assumes that the file contains PAT-C data, while the
other one accepts a Boolean value to assign whether the data is from PAT-C
or from any other source. PAT-C data is treated as described in Section
(21Tl and Section If the data file is marked to contains other data
(such as from the UCI repository), it is accepted with missing values given
as white spaces, without any modifications by the case base generator.

In the TCBR framework all cases must belong to a case base, but to create
a more flexible interface towards the datasets a new internal representation
of cases was implemented. All the data about the cases and their features
were stored independent of the TCBR system in the case base generator,
and three methods for inserting the data into a TCBR case base were im-

5.3: TEST RESULTS 67

Table 5.1: Case base generator example
CaseBase* caseBase = new CaseBase("MyBase");
CaseBaseGenerator* cbg = new CaseBaseGenerator("C:\\pat-c.dat");
cbg.insertRandom(10, caseBase);
cbg.insertRandom(10, 100, 200, caseBase);
cbg.insertSelection(0, 10, caseBase);

plemented:

e There are two insertRandom() methods, selecting a given number of
random cases from the dataset and inserting them into the case base
specified. If the from and to parameters are specified, the random cases
are selected within that section of the dataset. Both methods selects
randomly without replacement. If the number of cases given is larger
than or equal to the section given, or to the size of the dataset, the
insertSelection() method assume the task.

e The insertSelection() method selects all cases in a given section of the
dataset specified by the from and to parameters, and inserts them into
the case base specified. This method always returns the same cases
given the same parameters and dataset, making it possible to repeat
tests under the same conditions.

In Table B.1] an example is given: The case base and the case base generator
is first constructed. The first insertRandom() method inserts 10 random
cases to the case base. The second insertRandom() method inserts another
10 random cases, but this time all of them are found in the section from case
number 100 to case number 200. The insertSection() method simply inserts
the first 10 cases in the dataset into the case base.

5.3 Test results

The test results have been organized in tables for each of the datasets. For
both cycles the dialogue length without learning (DLNL), the dialogue length
with learning (DLL), and the number of stored dialogue cases (CASE) are
recorded, and the average DLNL and DLL for the cycles have been com-
puted. The last to columns of the table concerns the dialogue length (DL)
and the dialogue case base (DCB). For the dialogue length the concept of
length reduction (LR) is introduced; simply finding the difference between
the average DLNL and DLL as a percentage of the average DLNL. A higher
percentage indicates a larger reduction in dialogue length do to dialogue
learning. For the dialogue case base the interesting matter to investigate is
the growth reduction (GR). The growth of the dialogue case base is defined

68 CHAPTER 5: EVALUATION

Table 5.2: Result table for lung cancer dataset.

‘ Cyclel ‘ Cycle2 ‘ Avg. ‘ DL ‘ DCB ‘
= B 2 m| 2 S X
Z = n Z = n Z = ~
= = | <] 4 = | < = = o K
A A |0 A A | O A A =)
19.16 | 12.34 | 31 | 17.75 | 16.41 | 49 | 18.45 | 14.38 | 22.10 | 40.63
20.13 | 17.22 | 24 | 16.47 | 10.91 | 45 | 18.30 | 14.06 | 23.14 | 9.38
19.25 | 14.00 | 27 | 15.81 | 14.41 [49 | 17.53 | 14.20 | 18.98 | 15.63
20.31 | 15.91 | 22 [20.69 | 11.53 | 42 | 20.50 | 13.72 | 33.08 | 6.25

19.91 | 14.53 | 28 | 18.16 | 10.63 | 49 | 19.03 | 12.58 | 33.90 | 21.88
15.06 | 12.19 | 28 | 15.28 | 13.09 | 43 | 15.17 | 12.64 | 16.68 | 40.63
19.00 | 14.72 | 25 | 19.94 | 12.19 | 44 | 19.47 | 13.45 | 30.90 | 18.75
18.75 | 14.34 | 28 | 22.53 | 11.16 | 43 | 20.64 | 12.75 | 38.23 | 40.63
16.44 | 12.63 | 24 | 21.13 | 11.53 | 43 | 18.78 | 12.08 | 35.69 | 15.63
18.38 | 11.78 | 28 | 20.97 | 13.09 | 48 | 19.67 | 12.44 | 36.78 | 25.00
15.25 | 12.28 | 22 | 17.06 | 11.91 | 39 | 16.16 | 12.09 | 25.15 | 15.63
17.38 | 16.13 | 21 | 13.50 | 14.19 | 43 | 15.44 | 15.16 1.82 | -3.13
19.75 | 14.44 |1 29 | 22.00 | 13.13 | 44 | 20.88 | 13.78 | 33.98 | 43.75
17.69 | 13.84 | 26 | 16.72 | 11.00 | 50 | 17.20 | 12.42 | 27.79 6.25
20.03 | 13.44 | 27 | 20.78 | 12.88 | 50 | 20.41 | 13.16 | 35.53 | 12.50

Avg. | 18.51 | 13.26 | 27.58 | 20.63

as the percentage of the test cases stored as new dialogue cases. The growth
reduction is thus the difference between the dialogue case base growth in
cycle 1 and cycle 2. If there is no reduction in growth, the dialogue retain
strategy is ineffective. The growth reduction will not approach 100% by the
second cycle due to the random selection of problem descriptions from the
test cases, but both the growth and the growth reduction will steady over
time if no new test cases is introduced.

5.3.1 Lung cancer

The lung cancer dataset is the smallest dataset with 32 cases with up to
56 features, all classified as one of 3 classes. Because of the random factors
involved the test results are different for every run. An average over 15
runs show a dialogue length reduction of 27.58%, and a dialogue case base
growth reduction of 20.63%. In other words; for the lung cancer dataset the
dialogue learning has a significant positive effect on the dialogue length, and
the retaining of dialogue cases is maintainable.

5.3: TEST RESULTS 69

Table 5.3: Result table for part 1 of the soybean large dataset.

‘ Cyclel ‘ Cycle2 ‘ Avg. ‘ DL ‘ DCB ‘
= m | = B | = X
1 3|2/ 5|3 |2| 4|32 .
A A O A A O A A O

6.97 | 7.29 | 80 | 7.23 | 6.52 | 126 | 7.10 | 6.91 34.00

6.99 | 7.52 | 77 | 6.83 | 6.68 | 120 | 6.91 | 7.10 34.00

6.80 | 6.07 | 73 | 6.47 | 6.35 | 122 | 6.64 | 6.21 24.00
71

S
M
=
2.75
-2.75
6.41
6.31 | 6.58 7.07 | 6.75 | 123 | 6.69 | 6.67 | 0.37 | 19.00
6.92 | 646 | 71 | 7.13 | 6.46 | 115 | 7.03 | 6.46 | 8.04 | 27.00
2.68
2.19
0.36
5.97
-0.78
2.52

729 1668 | 74| 6.51 | 6.75 | 119 | 6.90 | 6.72 29.00
6.80 | 6.72 | 65 | 6.89 | 6.67 | 117 | 6.85 | 6.70 13.00
7.17 | 7.00 | 70 | 6.88 | 7.00 | 114 | 7.03 | 7.00 26.00
7.03 | 6.78 | 69 | 7.38 | 6.77 | 125 | 7.21 | 6.78 13.00
722|716 | 70 | 6.80 | 697 | 124 | 7.01 | 7.07 16.00

Avg. | 6.93 | 6.76 23.50

5.3.2 Soybean large

The soybean large dataset is a much larger dataset than the lung cancer
dataset; 307 cases with up to 36 features, distributed over 18 possible clas-
sifications. To ease the computational effort needed to run the tests the
dataset is split into tree parts. The first 100 cases is used as part 1, cases
101 to 200 as part 2, and cases 201 to 300 as part 3.

5.3.2.1 Part 1

In the first part the cases are distributed over 6 solutions. Averaged over 10
test runs the dialogue case base, as for the lung cancer dataset, shows to be
maintainable, but the dialogue length reduction gives moderate results. For
two of the test runs the dialogue length is increased with dialogue learning,
and the dialogue length is on an average only reduced by 2,52%.

5.3.2.2 Part 2

In the second part the cases are also distributed over 6 solutions. Aver-
aged over 10 test runs the dialogue case base growth reduction shows similar
results as for part 1. The dialogue length reduction gives even worse re-
sults than for part 1; the dialogue length is on an average increased by

1.23%.

70 CHAPTER 5: EVALUATION

Table 5.4: Result table for part 2 of the soybean large dataset.

| Cyclel | Cycle2 | Avg. | DLDL | DCB |

= Q| = o = S X

Z R | ® | Z _ | @ Z |3 ~

= = | < 2 = | < = |3 e o

A A O] A A |0 A | A = ©)
5.88 | 6.37 | 90 | 6.02 | 6.55 | 162 | 5.95 | 6.46 | -8.57 | 18.00
6.07 | 6.14 | 92 | 6.08 | 6.22 | 168 | 6.08 | 6.18 | -1.73 | 16.00
5.56 | 6.02 | 89 | 6.42 | 5.87 | 157 | 5.99 | 5.95 | 0.75 | 21.00
5.97 | 6.04 | 89 | 6.13 | 6.56 | 156 | 6.05 | 6.30 | -4.13 | 22.00

6.35 1591 |91 |6.12 | 6.04 | 159 | 6.24 | 5.98 4.17 23.00
6.47 | 6.71 | 96 | 5.93 | 6.11 | 164 | 6.20 | 6.41 -3.39 28.00
6.57 | 6.21 | 87 | 6.06 | 6.01 | 160 | 6.32 | 6.11 3.25 14.00
6.20 | 6.13 | 86 | 6.36 | 6.27 | 156 | 6.28 | 6.20 1.27 16.00
5.98 |1 6.06 | 88 | 5.89 | 6.27 | 165 | 5.94 | 6.17 -3.88 11.00
5.9716.12 | 91 | 6.01 | 5.87 | 159 | 5.99 | 6.00 -0.08 23.00

Avg. | 6.10 | 6.17 | -1.23 | 19.20

5.3.2.3 Part 3

In the third part the cases are distributed over 5 solutions. Averaged over
10 test runs the dialogue case base growth reduction shows similar results,
dialogue length reduction on the other hand, gives better results than for the
former parts; the dialogue length is on an average decreased by 6.48%.

The dialogue lengths for all three parts are quite short with regard to the
fact that the maximum dialogue length is 36. This implies that the classes
are easy to distinguish, and that the CCBR process solves the problem in a
matter of few dialogue steps, regardless of the effect of the dialogue learning.
Dialogue learning gives the best results in part 3, where the dialogue length
without learning on average is significant higher than for part 1 and 2, which
shows that dialogue learning has better effect with longer dialogues.

5.3.3 PAT-C

The PAT-C dataset is the largest dataset with 649 cases with up to 97 fea-
tures, distributed over 88 possible classifications. The computational effort
needed to run tests over the whole dataset is increased tremendously com-
pared to the soybean large dataset due to the cases having almost three times
as many features. The testing was performed by randomly selecting small
subsets of cases, giving a large variety of different compositions of cases. Due
to the large amount of classes consisting of only a few cases, the minimum

5.3: TEST RESULTS 71

Table 5.5: Result table for part 3 of the soybean large dataset.

‘ Cyclel ‘ Cycle2 ‘ Avg. ‘ DL ‘ DCB ‘

= B = g | = S X

Z I 4 Q| ® Z H ~

I = T I S I B = o ~

A A O A A | O A A = U
8.46 | 7.82 | 80 | 7.17 | 6.97 | 132 | 7.82 | 7.40 | 5.37 | 28.00
7.12 1 6.64 | 87| 6.96 | 6.03 | 153 | 7.04 | 6.34 | 10.01 | 21.00
6.69 | 743 | 89 | 7.89 | 6.84 | 145 | 7.29 | 7.14 | 2.13 | 33.00
8.46 | 6.37 | 80 | 7.05 | 6.75 | 140 | 7.76 | 6.56 | 15.41 | 20.00

719 | 7.86 | 79| 7.56 | 7.13 | 142 | 7.38 | 7.50 | -1.63 | 16.00
739 | 7.01 | 80 | 859 | 7.66 | 135 | 7.99 | 7.34 | 820 | 25.00
879 | 7.57 | 88 | 7.79 | 7.52 | 146 | 8.29 | 7.55 | 8.99 | 30.00
744 | 752 | 8 | 791 | 7.24 | 147 | 7.68 | 7.38 | 3.84 | 23.00
785|714 | 84 | 801 | 7.04 | 154 | 7.93 | 7.34 | 7.44 | 14.00
769 | 6.81 | 81 | 7.52 | 7.64 | 155 | 7.61 | 7.23 | 5.00 7.00
Avg. | 7.68 | 7.17 | 6.48 | 21.70

number of cases for an included class was set to 5. All cases classified as
a class not satisfying this limit were deleted from the case base before the
simulations started. A different number of cases and classes represented in
the case base for each of the tests introduced the need for two extra columns
in the result table, holding these variables. The number of dialogue cases
stored in each of the cycles, in proportion to the total number of cases, is
very low compared to the results for the other datasets. This is because only
46% of the cases in the complete dataset are classified correct by their most
similar case, which give a high probability of dialogues failing and not being
retained in the dialogue system. This large amount of failed dialogues have
a negative impact on the average dialogue length for each test, but most of
them still result in relatively short dialogue length averages. This implies
that the dialogues which succeed do so in a matter of few questions. Despite
of this, the dialogue length seems to be reduced by dialogue learning, at least
for the dialogues that are successful.

72 CHAPTER 5: EVALUATION
Table 5.6: Result table for the PAT-C dataset.

5| O
ACB | Cyclel Cycle2 Avg. Al A

n

Z

o
- —~
215 o SR g 2 AR

n | Z) n Z) n Z) ~

<|o| <2 = < = = < = = xr | &
O | wm A A O A A O A A = | O
19 | 3 | 2532 | 22,79 | 12 | 26,84 | 20,74 | 22 | 26,08 | 21,76 17| 11
24 | 3 | 40,71 | 14,38 | 21 | 20,54 | 10,54 | 33 | 30,63 | 12,46 | 59 | 38
19 | 3 | 25,95 | 22,79 | 15 | 34,79 | 22,68 | 27 | 30,37 | 22,74 | 25| 16
37| 5 | 25,59 | 24,38 | 30 | 24,49 | 29,30 | 48 | 25,04 | 26,84 -7 1 32
21| 3 4095 | 31,05 | 11 | 40,90 | 18,76 | 19 | 40,93 | 24,90 | 39 | 14
27 | 4 | 33,33 | 27,56 | 20 | 33,52 | 22,41 | 32 | 33,43 | 2498 | 25| 30
19 | 3 | 48,37 | 32,89 | 11 | 44,37 | 38,47 | 18 | 46,37 | 35,68 | 23 | 21
38 | 5 | 48,34 | 30,26 | 22 | 41,53 | 30,03 | 35 | 44,93 | 30,14 | 33 | 24
24 | 4 | 28,83 | 20,08 | 19 | 34,33 | 22,63 | 27 | 31,58 | 21,35 | 32 | 46
24| 3 | 17,25 | 19,83 | 16 | 29,29 | 17,50 | 29 | 23,27 | 18,67 | 20 | 13
32| 4 (2991|2947 | 20 | 43,22 | 25,69 | 40 | 36,56 | 27,58 | 25 0
26 | 3 | 16,85 | 19,00 | 21 | 20,54 | 18,12 | 28 | 18,69 | 18,56 1| 54
24 | 2 | 14,25 | 14,08 | 16 | 19,75 | 17,00 | 21 | 17,00 | 15,54 9| 46
35| 4 | 23,03] 3283 |22 26,71 | 27,86 | 35 | 24,87 | 30,34 | -22 | 26
32| 410,28 | 13,16 | 26 | 13,31 | 10,81 | 35 | 11,80 | 11,98 -2 | B3
32| 4 (10,09 | 13,38 | 23 | 10,47 | 10,53 | 37 | 10,28 | 11,95 | -16 | 28
24| 4 | 23,00 | 25,08 | 15 | 28,00 | 22,21 | 25 | 25,50 | 23,65 71 21
35| 5 | 37,77 | 38,94 | 16 | 36,57 | 26,51 | 39 | 37,17 | 32,73 | 12 | -20
44 | 5 | 23,59 | 22,18 | 32 | 23,41 | 22,36 | 60 | 23,50 | 22,27 5 9
78 | 4| 20,33 | 18,83 | 55 | 16,83 | 17,77 | 96 | 18,58 | 18,30 2| 18
Avg. | 27,83 | 22,62 | 14 | 24

Chapter 6

Discussion

This final chapter concerns the conclusions drawn based on this thesis, a
number of theoretical and practical issues that have arisen during the design
and development process, and some ideas for future work.

6.1 Conclusions

This thesis contains a study of methods for reducing the number of questions
asked in a questionnaire. This includes CAT with IRT, but is mainly fo-
cused on CCBR with dialogue learning. Methods for similarity measure and
question ranking were reviewed. The NaCoDAE system (Aha and Breslow
(19974)) and the framework for dialogue learning in CCBR developed in
Gu and Aamodt (2006a) were also examined. The thesis also includes an
introduction to a TCBR framework; a CBR core system used as a basis for
the system designed in the thesis.

Based on this background knowledge, methods for building a CCBR system
with dialogue learning were chosen, and the system was designed as pre-
sented in Section Il The concrete result of this thesis is the system whose
implementation is presented in Section The system is a prototype in-
cluding a test environment using user simulation, a CCBR engine, and a
dialogue system.

The testing of the implemented system has been done through well-established
methods for evaluation of CCBR systems, with elements such as LOOCV
and ablation evaluation. Part of the testing was performed using well-known
data from the UCI repository (D.J. Newman and Merz (1998)), part using
new data from PAT-C (Pain et all (2006)).

Evaluating the system has shown that dialogue learning can shorten the

73

74 CHAPTER 6: DISCUSSION

number of questions asked; especially if there are a large number of questions
available and the cases are hard to distinguish.

6.2 Theoretical and practical issues

In this section some issues that have arisen during the design and develop-
ment processes are reviewed.

6.2.1 Practical problem descriptions

As described in Section LT.3.T] it can be problematic to use query biased
case retrieval in systems where there is a need to classify the query au-
tomatically. It is required a certain amount of features set as a problem
description before the CCBR, process starts. This is in contrast to the paper
based questionnaire where the patient answers questions without any infor-
mation given in advance. To address this problem, a possibility would be to
let the CCBR system start asking the highest ranked questions and build an
internal problem description. The retrieval process should not be activated
before a sufficient problem description is given, thus no solutions would be
presented in the first steps of the dialogue.

6.2.2 Global and local approximation of the target func-
tion

When it comes to the goal of finding the best question to ask, the use of
global feature ranking gives a global approximation of the target function.
The SimpleEACH algorithm (Table EI) considers the case base and sets
the feature weights before any simulations are started. The current dialogue
is thus not taken into consideration, as it would have been when using the
computational demanding information gain method (Section B3.31]). The
use of dialogue learning changes this and gives a combination of both global
and local approximation. At every step of the dialogue the weights from
the global approximation is sent to the dialogue system which takes the
current dialogue into consideration and adjusts the weights according to the
most similar dialogue stored, giving the local approximation typical for CBR
systems.

These observations can be used to explain why some datasets get better
results using dialogue learning, while other datasets hardly are improved by
the method. If the dataset is easily covered by a global approximation, the
CCBR system will perform well regardless of the dialogue system. As a

6.2: THEORETICAL AND PRACTICAL ISSUES 75

consequence of the fact that the local and global approximations give the
same results, the dialogue system will strengthen the weights, but not in a
manner that changes the ranking of the features.

6.2.3 The most general dialogue

The goal of storing dialogue cases is to reuse them in order to present smarter
questions and solutions, and thus reducing the dialogue length. In order to
keep the dialogue case base maintainable only the most general dialogues
are stored, following the definition in equation (2.9]). Despite this, it is
not clear when to stop generalizing the dialogues. In theory, the effect of
the dialogue learning is shorter dialogues, which in many cases typically is
stored as more general dialogues that replace formerly stored dialogues. In
addition, an automated agent as used in this thesis is not able to understand
when a solution is struck in a matter of very few questions just by chance.
This might result in storing dialogues with only one or two steps that are
very general in the way they cover a large variety of possible endings for
the dialogues, but they are not of any use for aiding longer dialogues. One
might say that the automated agent should be able to detect such “fortunate”
results, but as the goal is to reduce the number of questions asked it seems
difficult to set a minimum of questions needed to say that the dialogue is
interesting enough to store.

6.2.4 Variance in the test results

The use of average dialogue lengths in the test results, without performing a
variance analysis on the results, may in some cases give a wrong impression
of how well the system performs. In particular some of the results from the
PAT-C data show this, where over half the dataset is wrongly classified by
the most similar case and thus does not end in successful dialogues. A lot
of the cases from the other half of the dataset are classified correctly by
only the problem description and a few features, and altogether this gives
some strange results that at first sight looks good. A typical sign of this
situation is that very few dialogues are stored in the first cycle, due to the
conversations ending in failure.

6.2.5 Scalability

A practical problem with the system is that although the representation of
large case bases not is a problem, it becomes a problem when retrieving
similar cases. The system performs well on the smaller datasets such as
lung cancer, and the parts of soybean large, but for the complete soybean

76 CHAPTER 6: DISCUSSION

large dataset or the PAT-C dataset the retrieval process is so computational
demanding that it might not be feasible to expect a patient to wait for it to
complete. This is especially a problem when a solution is hard to find and a
lot of questions are asked, as this results in more features to compare during
retrieval.

6.3 Future work

The implementation in this thesis regards implementing a CCBR, system
with dialogue learning using the CBR core of the TCBR framework. In
order to achieve better results from the dialogue learning this framework
must be improved with regard to the value types accepted for features. The
introduction of continuous values could increase the performance on datasets
such as from PAT-C dramatically.

With regards to evaluation, a variance analysis should be performed on the
test results in order to expose potential problems regarding the average val-
ues.

One of the most interesting topics to investigate further is the use of query bi-
ased similarity methods in a CCBR system where classification is performed
automatically. Finding criteria for deciding when a solution is adequate is
problematic; the similarity measures might be high from the beginning of
the conversation and a threshold value will thus not be enough, at the same
time shorter conversations are preferred so it is not desirable to demand a
minimum length for the conversation.

Another interesting topic, tightly connected to the former, is regarding the
problems that occur when the automatic system generates very short con-
versations that are stored in the dialogue system as more general than the
existing dialogues, even though those would be more useful for reuse.

Bibliography

Aamodt, A. (1994). Explanation-driven case-based reasoning. In Topics in
Case-based reasoning, pp. 274-288. Springer Verlag.

Aamodt, A. (2004). Knowledge-intensive case-based reasoning in creek. In
Advances in Case-Based Reasoning, pp. 1-15. Springer Berlin.

Aamodt, A. and E. Plaza (1994, March). Case-based reasoning: Founda-
tional issues, methodological variations, and system approaches. Al Com-
munications 7(1), 39-59.

Aha, D. W. (1991). Case-based learning algorithms. In DARPA Case-Based
Reasoning Workshop, pp. 147-158. Morgan Kaufmann.

Aha, D. W. and L. Breslow (1997a). Refining conversational case libraries.
In ICCBR, pp. 267-278.

Aha, D. W. and L. A. Breslow (1997b). Nacodae: Navy conversational
decision aids environment. Technical Report AIC-97-018.

Aha, D. W., L. A. Breslow, and H. Mufnioz-Avila (2001). Conversational
case-based reasoning. Applied Intelligence (14), 9-32.

Aha, D. W., T. Maney, and L. A. Breslow (1998). Supporting dialogue
inferencing in conversational case-based reasoning. Furopean Workshop
on Case-Based Reasoning, 262-273.

Bareiss, R. (1989). The experimental evaluation of a case-based learning
apprentice. In Proceedings of the Case-Based Reasoning Workshop, pp.
162-167. Morgan Kaufmann Publishers Inc.

Bjorner, J. B. and J. E. W. Jr. (1998). Using modern psychometric methods
to measure health outcomes. Med Outcomes Trust Monitor (3), 12-16.

D.J. Newman, S. Hettich, C. B. and C. Merz (1998). Uci repository of
machine learning databases.

EPCRC (2005). Fp6-2005-lifescihealth-6, combating major diseases, com-
bating cancer, specific targeted research project. Technical report.

7

78 BIBLIOGRAPHY

Gu, M. (2006). Knowledge-Intensive Conversational Case-Based Reasoning
in Software Component Retrieval. Ph. D. thesis.

Gu, M. and A. Aamodt (2006a, May 11-13). Dialog learning in conversational
cbr. In G. C. J. Sutcliffe and R. G. Goebel (Eds.), Proceedings of the 19th
International FLAIRS Conference, pp. 358-363. AAAI Press.

Gu, M. and A. Aamodt (2006b, 4 - 7, Septemper). Evaluating cbr systems
using different data sources: A case study. In accepted by the §th European
Conference on Case-Based Reasoning, Volume 4106 of Lecture Notes in
Artificial Intelligence, pp. 121-135. Springer Verlag.

Gu, M., X. Tong, and A. Aamodt (2005, August). Comparing similarity cal-
culation methods in conversational cbr. In D. Zhang, T. M. Khoshgoftaar,
and M.-L. Shyu (Eds.), Proceedings of the 2005 IEEE International Con-
ference on Information Reuse and Integration, pp. 427-432. IEEE Press.

Hendler, J., K. Stoffel, and M. Taylor (1996). Advances in high performance
knowledge representation. Technical Report CSTR -3672, University of
Maryland Institute for Advanced Computer Studies Dept. of Computer
Science.

Houeland, T. G. H. (2007). Learning of feature weigths in conversational
cbr. Master’s thesis, Norwegian University of Science and Technology.

Kira, K. and L. A. Rendell (1992). The feature selection problem: Traditional
methods and a new algorithm. In AAAI pp. 129-134.

Kokkersvold, I. (2007). Conversational cbr for an adaptive qa system. Mas-
ter’s thesis, Norwegian University of Science and Technology.

Kolodner, J. (1993). Case-based reasoning. Morgan Kaufmann Publishers
Inc.

McHorney and A. Colleen (1997). Generic health measurement: Past ac-
complishments and a measurement paradigm for the 21st century. Ann
Intern Med 127(8), 743-750.

McLaren, B. M. (2003). Extensionally defining principles and cases in ethics:
an ai model. Artificial Intelligence Journal 150, 145—181.

Mitchell, T. M. (1997). Machine learning. The McGraw-Hill Companies,
Inc.

Pain, T., N. U. o. S. Palliation Research Group, Faculty of Medicine, and
N. Technology (NTNU), Trondheim (2006). Protocol for the pat-c proto-
type: pain, physical and cognitive function.

BIBLIOGRAPHY 79

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1(1),
81-106.

Revicki, D. A. and D. F. Cella (1997). Health status assessment for the
twenty-first century: item response theory, item banking and computer
adaptive testing. Quality of Life Research 6(6), 595-600.

Richter, M. M. and S. Wess (1993). Similarity, uncertainty and case-based
reasoning in patdex.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine
Learning (6), 251-276.

Schmitt, S. (2002). simvar: A similarity-influenced question selection crite-
rion for e-sales dialogs. Artif. Intell. Rev. 18(3-4), 195-221.

Wainer, H. (2000). Computerized adaptive testing 2nd: A primer. Lawrence
Erlbaum Associates.

Ware, J. E., J. B. Bjorner, and M. Kosinski (2000). Practical implications
of item response theory and computerized adaptive testing. a brief sum-
mary of ongoing studies of widely used headache impact scales. Medical

Care 38(9), 73-82.

WHO, D. G. L. of Medical Documentation, and Information) (2007). Inter-
national statistical classification of diseases and related health problems
10th revision.

Yang, Q. and J. Wu (2001). Enhancing the effectiveness of interactive
case-based reasoning with clustering and decision forests. Applied Intelli-
gence 12, 49-64.

80

BIBLIOGRAPHY

Appendix A

Analysis of the datasets

To gain knowledge about the nature of the datasets a process was carried
out for finding, for each case in the dataset, the solution and the similarity
value of the most similar case, and the similarity value of the most similar
correct case (with the same solution as the base case). This gives a basis for
finding the number of cases that are misclassified by their most similar case,
and also the probability of finding an acceptable solution given a specific
similarity threshold.

A.1 The PAT-C dataset

Name Solution | Solution | Similarity | Similarity
of most of most of most

similar similar similar

correct

Case #1 C50 C50 0,679623 | 0,679623
Case #2 C50 C50 0,726717 | 0,726717
Case #3 C50 C50 0,741754 | 0,741754
Case #4 C50 C50 0,741754 | 0,741754
Case #5 C50 C50 0,719813 | 0,719813
Case #6 C50 C50 0,701927 | 0,701927
Case #7 C61 C61 0,719813 | 0,719813
Case #8 C61 C61 0,684666 | 0,684666
Case #9 C61 C61 0,684666 | 0,684666
Case #10 C61 C61 0,713259 | 0,713259
Case #11 C61 C61 0,701065 | 0,701065
Case #12 C61 C61 0,713259 | 0,713259
Case #13 C26 C26 0,796132 | 0,796132

81

82

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #14 C26 C34 0,796132 | 0,796132

Case #15 C61 C34 0,627121 | 0,608443

Case #16 C61 C34 0,665549 0,66117

Case #17 Co64 C34 0,65693 0,648833

Case #18 Co64 Co61 0,670077 0,66117

Case #19 Co64 Co64 0,684666 | 0,684666

Case #20 Co64 C50.9 0,641198 | 0,637537

Case #21 C25 C25 0,630504 | 0,630504

Case #22 C64 Co4 0,641807 | 0,641807

Case #23 C64 Co4 0,641807 | 0,641807

Case #24 C61 Co61 0,66117 0,66117

Case #25 C61 Co61 0,66117 0,66117

Case #26 C61 C34 0,637537 | 0,633975

Case #27 C61 Co61 0,648833 | 0,648833

Case #28 C61 Co61 0,670077 | 0,670077

Case #29 C61 Co61 0,670077 | 0,670077

Case #30 C16 C38 0,719813 | 0,695369

Case #31 C16 Co61 0,701065 | 0,695369

Case #32 C16 C16 0,670077 | 0,670077

Case #33 C16 C16 0,665549 | 0,665549

Case #34 C16 C16 0,684666 | 0,684666

Case #35 C16 C16 0,684666 | 0,684666

Case #36 C18 C92 0,65282 0,620601

Case #37 C21 Co61 0,620601 0,58216

Case #38 C18 C18.9 0,679623 | 0,641198

Case #39 C18.9 C18 0,679623 | 0,665549

Case #40 C25 C34 0,695369 | 0,684666

Case #41 C25 Co61 0,741754 | 0,719813

Case #42 Co64 Co64 0,70702 0,70702

Case #43 Co64 C34 0,741754 0,70702

Case #44 C61 Co61 0,648833 | 0,648833

Case #45 C61 Co61 0,648833 | 0,648833

Case #46 Co64 C82.9 0,66117 0,65693

Case #47 C50 C50 0,644961 | 0,644961

Case #48 C50 C50 0,695369 | 0,695369

Case #49 C08 Co4 0,633975 0

Case #50 C20 C64 0,689909 | 0,674764

Case #51 C50 C34 0,623821 | 0,620601

A.1: THE PAT-C DATASET

83

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #52 C50 C50 0,617457 | 0,617457

Case #53 C61 C61 0,66117 0,66117

Case #54 C61 C61 0,66117 0,66117

Case #55 C18 C63 0,620601 | 0,620601

Case #56 C18 C61 0,633975 | 0,627121

Case #57 C61 C61 0,661311 | 0,661311

Case #58 C61 C61 0,661311 | 0,661311

Case #59 C61 C16 0,65282 0,65282

Case #60 C18 C18 0,758828 | 0,758828

Case #61 C18 C18 0,796132 | 0,796132

Case #62 C18 C18 0,777424 | 0,777424

Case #63 C18 C18 0,832634 | 0,832634

Case #64 C18 C18 0,768338 | 0,768338

Case #65 C18 C18 0,832634 | 0,832634

Case #66 C61 C61 0,648833 | 0,648833

Case #67 C61 C61 0,665549 | 0,665549

Case #68 C61 C61 0,665549 | 0,665549

Case #69 C61 C61 0,665549 | 0,665549

Case #70 C61 C70 0,637537 | 0,633975

Case #71 C20 C12.2 0,670077 | 0,627121

Case #72 C43 C18.9 0,630223 | 0,576198

Case #73 C50 C50 0,637537 | 0,637537

Case #74 C50 C50 0,633975 | 0,633975

Case #75 C18 C50 0,641198 | 0,617457

Case #76 C5h5 C18 0,637537 0,59206

Case #77 cr7 C34 0,633975 0

Case #78 C92 C18 0,65282 0,511912

Case #79 C56 C43.9 0,65282 0,620601

Case #80 C55 C34.9 0,644961 0,59206

Case #81 C18 C25 0,701065 | 0,684666

Case #82 C18 C43 0,66117 0,644961

Case #83 C50 C49 0,627121 | 0,620601

Case #84 C43 C61 0,726717 0,65693

Case #85 C25 C20 0,637537 | 0,620601

Case #86 cr1 C50.9 0,641198 | 0,528179

Case #87 C50 C50 0,623821 | 0,623821

Case #88 Ch4 C61 0,644961 0

Case #89 C43 C09 0,689909 | 0,614384

84

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #90 C48 C21 0,65282 0

Case #91 C50 C34.3 0,648833 | 0,630504

Case #92 C20 C20 0,65693 0,65693

Case #93 C20 C20 0,65693 0,65693

Case #94 C34 C50 0,630504 | 0,627121

Case #95 C34 C34 0,644961 | 0,644961

Case #96 C34 C20 0,66117 0,648833

Case #97 C61 C34 0,713259 | 0,713259

Case #98 C61 Co61 0,758828 | 0,758828

Case #99 C25 Ca1 0,637537 | 0,630504

Case #100 C61 C38 0,713259 | 0,713259

Case #101 C61 C34 0,641198 | 0,637537

Case #102 C25 C18 0,670077 | 0,648833

Case #103 C90 M89 0,637537 | 0,627121

Case #104 C18 C18 0,674764 | 0,674764

Case #105 C34 C18 0,641198 | 0,630504

Case #106 C25 Co61 0,641198 | 0,620601

Case #107 C90 Co61 0,734014 | 0,633975

Case #108 C25 Co61 0,734014 | 0,719813

Case #109 C61 C34 0,758828 | 0,758828

Case #110 C34 C85.1 0,641807 | 0,630223

Case #111 C25 Co64 0,679623 | 0,641198

Case #112 C50 C43.9 0,684666 | 0,644961

Case #113 C50 C25 0,644961 | 0,614384

Case #114 C34 C26 0,7118 0,701927

Case #115 C61 Co4 0,670077 | 0,641198

Case #116 C50.9 C50 0,623821 0,59206

Case #117 C50.9 C20 0,614384 0,59206

Case #118 C18 C45 0,627121 | 0,614384

Case #119 C71 C26 0,746963 0,5495

Case #120 C50.9 C5h6 0,630504 | 0,623821

Case #121 Co64 Co08 0,589515 | 0,579797

Case #122 C61.9 C50 0,648833 | 0,633975

Case #123 C18 C34 0,670077 0,66117

Case #124 C85 C38 0,7118 0,654489

Case #125 C50 Co61 0,637537 | 0,627121

Case #126 C85.9 C5h3 0,65693 0

Case #127 C34.9 C34.9 0,647998 | 0,647998

A.1: THE PAT-C DATASET

85

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #128 C80 C34 0,695369 | 0,648833

Case #129 C24.9 C34 0,665549 | 0,529766

Case #130 C34 C34 0,66117 0,66117

Case #131 C34.9 C34.9 0,7118 0,7118

Case #132 C50.9 C50.9 0,641198 | 0,641198

Case #133 C50.9 C53.9 0,644961 | 0,637537

Case #134 C34.9 C34 0,647998 | 0,619562

Case #135 C91.1 C38 0,7118 0

Case #136 C20 C67.9 0,734014 | 0,674764

Case #137 C61 C82 0,648833 | 0,627121

Case #138 C43.9 C18 0,66117 0,623821

Case #139 Co64 C43 0,66117 0,641198

Case #140 C20.9 C18 0,719813 0

Case #141 C50.9 C20 0,65693 0,633975

Case #142 C18.2 C82 0,674764 0

Case #143 C61.9 C34.9 0,637537 | 0,633975

Case #144 C50.9 C18 0,741754 | 0,679623

Case #145 C43.9 C56 0,684161 | 0,624787

Case #146 C71.9 C71.9 1 1

Case #147 C71.9 C71.9 1 1

Case #148 C34.9 C61 0,627121 | 0,602756

Case #149 C85 C34 0,726717 | 0,575192

Case #150 C59 Co64 0,65693 0

Case #151 C34.9 C50 0,620601 0,5973

Case #152 C34 C50 0,695369 | 0,674764

Case #153 C34 C34 0,701065 | 0,701065

Case #154 C20 C20 0,726717 | 0,726717

Case #155 C34 C34 0,679623 | 0,679623

Case #156 C34 C34 0,65282 0,65282

Case #157 C34 C34 0,674764 | 0,674764

Case #158 C34 C34 0,674764 | 0,674764

Case #159 C34 C34 0,695369 | 0,695369

Case #160 C34 C34 0,695369 | 0,695369

Case #161 C43 C43.9 0,726717 0,65693

Case #162 C34 C34 0,701927 | 0,701927

Case #163 C34 C34 0,679623 | 0,679623

Case #164 C50 C50.9 0,65693 0

Case #165 C34 C34 0,846689 | 0,846689

86

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #166 C34 Co61 0,758828 | 0,741754

Case #167 C34 C34 0,846689 | 0,846689

Case #168 C34 C34 0,796132 | 0,796132

Case #169 C34 C34 0,846689 | 0,846689

Case #170 C34 C34 0,846689 | 0,846689

Case #171 C34 C34 0,741754 | 0,741754

Case #172 C34 C34 0,734137 | 0,734137

Case #173 C34 C25.9 0,734014 | 0,734014

Case #174 C34 C34 0,7118 0,7118

Case #175 C34 C34 0,684161 | 0,684161

Case #176 C34 C25 0,719813 0,70702

Case #177 C34 C34 0,648833 | 0,648833

Case #178 C34 C34 0,648833 | 0,648833

Case #179 C34 C34.9 0,630504 | 0,627121

Case #180 C34 Co61 0,633975 | 0,623821

Case #181 C34 C34 0,609688 | 0,609688

Case #182 C34 C25 0,623821 | 0,623821

Case #183 C45 C45 0,701065 | 0,701065

Case #184 C38 C45 0,695369 | 0,602756

Case #185 C45 C45 0,701065 | 0,701065

Case #186 C45 C45 0,695369 | 0,695369

Case #187 C34 C22 0,734137 0,7118

Case #188 C34 C34 0,684161 | 0,684161

Case #189 C34 C82 0,734014 | 0,726717

Case #190 C34 C34 0,695369 | 0,695369

Case #191 C34 C25 0,695369 | 0,684666

Case #192 C34 C34 0,713259 | 0,713259

Case #193 C34 C34 0,679623 | 0,679623

Case #194 C34 C34 0,741754 | 0,741754

Case #195 C34 C34 0,644961 | 0,644961

Case #196 C34 C50 0,648833 | 0,648833

Case #197 C34 Co61 0,679623 | 0,665549

Case #198 C34 C56 0,661311 | 0,647998

Case #199 C45 C34 0,684666 | 0,648833

Case #200 C34 C20 0,684161 | 0,668501

Case #201 C34 C34 0,746963 | 0,746963

Case #202 C38 C39.9 0,734014 | 0,605569

Case #203 C34 C34 0,66117 0,66117

A.1: THE PAT-C DATASET

87

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #204 C34 C34 0,70702 0,70702

Case #205 C34 C34 0,637537 | 0,637537

Case #206 C34 C34 0,679623 | 0,679623

Case #4207 C45 C18 0,734014 | 0,695369

Case #208 C34 C45 0,719813 0,70702

Case #209 C34 C61 0,713259 0,70702

Case #210 C34 C34 0,741754 | 0,741754

Case #211 C34 C34 0,741754 | 0,741754

Case #212 C34 C39.9 0,679623 | 0,670077

Case #213 C34 C38 0,726717 | 0,701065

Case #214 C34 C34 0,713259 | 0,713259

Case #215 C34 C34 0,741754 | 0,741754

Case #216 C34 C34 0,741754 | 0,741754

Case #217 C34 C22 0,761252 | 0,746963

Case #218 C34 C18 0,701065 | 0,665549

Case #219 C34 C61 0,734014 | 0,726717

Case #220 C34 C64 0,70702 0,70702

Case #221 C34 C64 0,741754 | 0,713259

Case #222 C34 C38 0,70702 0,70702

Case #223 C34 C34 0,674764 | 0,674764

Case #224 C38 C45 0,761252 | 0,630223

Case #225 C45 C38 0,761252 | 0,746963

Case #226 C45 C45 0,746963 | 0,746963

Case #227 C34 C34 0,734137 | 0,734137

Case #228 C34 C34.9 0,641198 | 0,627121

Case #229 C34 C82 0,719813 | 0,713259

Case #230 C34 C34 0,768338 | 0,768338

Case #231 C34 C34 0,701065 | 0,701065

Case #232 C50 C50.9 0,665549 | 0,633975

Case #233 C50 C50 0,627121 | 0,627121

Case #234 C50 C34 0,65282 0,644961

Case #235 C49 G12.2 0,674764 | 0,617457

Case #236 Co64 Co64 0,65693 0,65693

Case #237 C34 C45 0,684666 | 0,648833

Case #238 C34 Ch4.1 0,665549 | 0,644961

Case #239 C25 C34 0,63589 0,624787

Case #240 C15 C25 0,627121 | 0,594654

Case #241 C50 C56 0,644961 | 0,637537

88

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #4242 C5h3 C34.9 0,627121 | 0,577474

Case #243 C18 C56 0,623821 | 0,620601

Case #244 C18 C34 0,670077 0,65693

Case #245 C56 C18 0,679623 | 0,633975

Case #246 C56 C25 0,641198 | 0,605569

Case #247 C50 C25 0,637537 | 0,620601

Case #248 C18 C25 0,713259 | 0,689909

Case #249 C56 C34 0,623821 | 0,611381

Case #250 C15.9 C34 0,679623 0

Case #251 c67 C82 0,65282 0,608443

Case #4252 C92 C34 0,722486 | 0,519943

Case #253 C61 Co61 0,627121 | 0,627121

Case #254 C61 C5h3 0,589515 | 0,584567

Case #255 C18 C34 0,695369 | 0,674764

Case #256 C16 C34 0,623821 | 0,608443

Case #257 C49 G12.2 0,644961 | 0,641198

Case #258 C49 G12.2 0,641198 | 0,641198

Case #259 C64 C50 0,644961 | 0,627121

Case #260 C61 Co61 0,633975 | 0,633975

Case #4261 C5h5 C34 0,641198 0,58216

Case #262 C61 Co61 0,65693 0,65693

Case #263 C50 C50 0,633975 | 0,633975

Case #2064 C61 C16 0,644961 | 0,633975

Case #265 Ce67 Co61 0,637537 | 0,608443

Case #266 C64 C34.9 0,647998 | 0,614534

Case #267 C50 Co61 0,644961 | 0,630504

Case #268 C15 C25 0,630504 | 0,589515

Case #269 C56 C25 0,648833 | 0,620601

Case #270 C18 C20 0,633975 | 0,620601

Case #271 C41 C34 0,670077 | 0,579797

Case #272 C50 Co61 0,641198 | 0,630504

Case #273 C82 C34 0,674764 | 0,641198

Case #274 C34 C34 0,768338 | 0,768338

Case #275 C49.2 C18 0,674764 | 0,577474

Case #276 C34 C50 0,647998 | 0,630223

Case #277 C34 C18 0,620601 | 0,617457

Case #278 ca97 C20 0,641198 0

Case #279 C34 C50 0,623821 | 0,608443

A.1: THE PAT-C DATASET

89

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #280 C50 C34.9 0,684666 | 0,684666

Case #281 C50 C83 0,608443 | 0,602756

Case #282 C34 C85.1 0,668501 | 0,668501

Case #283 C61 C34 0,644961 | 0,641198

Case #284 C43 C50.9 0,65282 0,614384

Case #285 C56 C34 0,734137 | 0,722486

Case #286 C22 Co64 0,641198 | 0,536318

Case #287 C34 C34 0,648833 | 0,648833

Case #288 C90 C61 0,637537 | 0,614384

Case #289 C81 G12.2 0,623821 0

Case #290 C18 C61 0,641198 | 0,620601

Case #291 C25 C90 0,679623 0,65282

Case #292 C17 C34.9 0,684666 0

Case #293 C18 C63 0,633975 | 0,627121

Case #294 C56 C56 0,66117 0,66117

Case #295 C20 C20 0,726717 | 0,726717

Case #296 C20 C50.9 0,614384 | 0,605569

Case #297 C20 C16 0,65282 0,637537

Case #298 C56 C56 0,65693 0,65693

Case #299 C56 C50 0,644961 | 0,620601

Case #300 C56 C56 0,886496 | 0,886496

Case #301 C56 C56 0,846689 | 0,846689

Case #302 C34.9 C18.9 0,758828 0,66117

Case #303 C49.2 C49.2 0,65693 0,65693

Case #304 C34.9 C82.9 0,668501 | 0,641807

Case #305 C34.9 C34.9 0,633975 | 0,633975

Case #306 C34.9 C34.9 0,674764 | 0,674764

Case #307 C34.9 C34.9 0,70702 0,70702

Case #308 C34.9 C34.9 0,70702 0,70702

Case #309 C50.9 C50.9 0,70702 0,70702

Case #310 C50.9 C50.9 0,665549 | 0,665549

Case #311 C50.9 C50.9 0,689909 | 0,689909

Case #312 C50.9 C50.9 0,758828 | 0,758828

Case #313 C50.9 C50.9 0,758828 | 0,758828

Case #314 C50.9 C50.9 0,70702 0,70702

Case #315 C50.9 C50.9 0,734014 | 0,734014

Case #316 C50.9 C50.9 0,713259 | 0,713259

Case #317 C50 C49 0,637537 | 0,633975

90

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #318 C5h3 C5h3.9 0,627121 | 0,608443

Case #319 C5h3.9 C5h3 0,689909 | 0,684666

Case #320 C50.9 C50.9 0,65282 0,65282

Case #321 C50.9 C43 0,654489 | 0,600493

Case #322 C34.3 C34.3 0,633975 | 0,633975

Case #323 C34.3 C34.3 0,674764 | 0,674764

Case #324 C34.3 C34.3 0,70702 0,70702

Case #325 C34.3 C34.3 0,734014 | 0,734014

Case #326 C34.3 C34.3 0,65282 0,65282

Case #327 C34.3 C34.3 0,70702 0,70702

Case #328 C34.3 C34.3 0,778654 | 0,778654

Case #329 C34.3 C34.3 0,778654 | 0,778654

Case #330 C34.9 Ch4.1 0,633975 | 0,623821

Case #331 C34.9 C50 0,633975 | 0,623821

Case #332 G12.5 C12.2 0,679623 0

Case #333 C12.2 G12.2 0,679623 0,65282

Case #334 G12.2 G12.2 0,713259 | 0,713259

Case #335 G12.2 G12.2 0,695369 | 0,695369

Case #336 C43.9 C43.9 0,741754 | 0,741754

Case #337 C43.9 C43.9 0,768338 | 0,768338

Case #338 C43.9 C43.9 0,778654 | 0,778654

Case #339 C43.9 C43.9 0,778654 | 0,778654

Case #340 C43.9 C43.9 0,816504 | 0,816504

Case #341 C34.9 C43.9 0,741754 | 0,648833

Case #342 C43.9 C43.9 0,816504 | 0,816504

Case #343 C43.9 C43.9 0,816504 | 0,816504

Case #344 C20 C18 0,66117 0,65282

Case #345 C50.9 C50.9 0,719813 | 0,719813

Case #346 C50.9 C50.9 0,741754 | 0,741754

Case #347 C50.9 C50.9 0,758828 | 0,758828

Case #348 C50.9 C50.9 0,758828 | 0,758828

Case #349 C50.9 C50.9 0,734014 | 0,734014

Case #350 C67.9 C67.9 0,734014 | 0,734014

Case #351 C67.9 C67.9 0,778654 | 0,778654

Case #352 C67.9 C67.9 0,80245 0,80245

Case #353 C67.9 C67.9 0,832634 | 0,832634

Case #354 C67.9 C67.9 0,816504 | 0,816504

Case #355 Ch4.1 Ch4.1 0,641198 | 0,641198

A.1: THE PAT-C DATASET

91

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #356 Ch4.1 C50 0,644961 | 0,641198

Case #357 Ch4.1 Ch4.1 0,670077 | 0,670077

Case #358 Ch4.1 Ch4.1 0,670077 | 0,670077

Case #359 Ch4.1 C50 0,630504 | 0,611381

Case #360 Ch4.1 Ch4.1 0,641198 | 0,641198

Case #361 C82.9 C82.9 0,701065 | 0,701065

Case #362 C82.9 C82.9 0,719813 | 0,719813

Case #363 C82.9 C82.9 0,722486 | 0,722486

Case #364 C82.9 C82.9 0,818487 | 0,818487

Case #365 C82.9 C82.9 0,777424 | 0,777424

Case #366 C82.9 C82.9 0,796132 | 0,796132

Case #4367 C19 C19 0,758828 | 0,758828

Case #368 C18.9 C19 0,734014 | 0,689909

Case #369 C18.9 C34.9 0,758828 | 0,726717

Case #370 C18.9 C18.9 0,75 0,75

Case #371 C18.9 C18.9 0,75 0,75

Case #372 C18.9 C18.9 0,741754 | 0,741754

Case #373 C85.1 C85.1 0,684161 | 0,684161

Case #374 C85.1 C85.1 0,722486 | 0,722486

Case #375 C85.1 C85.1 0,722486 | 0,722486

Case #376 C34 C34.9 0,65282 0,641198

Case #377 C34 C34 0,679623 | 0,679623

Case #378 C34.9 C34 0,674764 | 0,665549

Case #379 C34.9 C34.9 0,679623 | 0,679623

Case #380 C34.9 C34.9 0,679623 | 0,679623

Case #381 C34.9 C34.9 0,66117 0,66117

Case #382 C50 C50 0,684666 | 0,684666

Case #383 C50 C50 0,695369 | 0,695369

Case #384 C50 C50 0,701065 | 0,701065

Case #385 C50 C50 0,701065 | 0,701065

Case #386 C50 C50 0,778654 | 0,778654

Case #387 C50 C50 0,734014 | 0,734014

Case #388 C50 C50 0,75 0,75

Case #389 C50 C50 0,768338 | 0,768338

Case #390 C50 C50 0,741754 | 0,741754

Case #391 C50 C50 0,778654 | 0,778654

Case #392 C20 C18.9 0,623821 | 0,620601

Case #393 C18.9 C18.9 0,746963 | 0,746963

92

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #394 C18.9 C18.9 0,761252 | 0,761252

Case #395 C34.9 C34.9 0,689909 | 0,689909

Case #396 C34.9 C34.9 0,726717 | 0,726717

Case #397 C34.9 C34.9 0,713259 | 0,713259

Case #398 C34.4 C34.9 0,70702 0

Case #399 C56 C56 0,734137 | 0,734137

Case #400 C78.2 C56 0,674764 0

Case #401 G12.2 C34 0,65693 0,648833

Case #402 C50 C50 0,80245 0,80245

Case #403 C50 C50 0,80245 0,80245

Case #404 C34.9 C34.9 0,778654 | 0,778654

Case #405 C34.9 C34.9 0,789947 | 0,789947

Case #406 C34.9 C39.9 0,832634 0,80245

Case #407 C34.9 C34.9 0,789947 | 0,789947

Case #408 C39.9 C34.9 0,832634 0

Case #409 C34.0 C34.9 0,778654 0

Case #410 C34.9 C34.0 0,778654 | 0,778654

Case #411 C18 C18 0,684666 | 0,684666

Case #412 C18 C18 0,684666 | 0,684666

Case #413 C90 C18.9 0,65282 0,630504

Case #414 C25 C34.9 0,637537 | 0,630504

Case #415 C61 C49 0,630504 | 0,620601

Case #416 C43 Co61 0,637537 | 0,617457

Case #417 C25 C43 0,66117 0,630504

Case #418 C15 C12.2 0,648833 | 0,594654

Case #419 C50 C34 0,630504 | 0,611381

Case #420 C39 C34 0,627121 0

Case #421 C45 C34 0,641198 | 0,614384

Case #422 C45 C45 0,695369 | 0,695369

Case #423 C50 C34 0,701927 0,63589

Case #424 C63 C34 0,633975 | 0,556259

Case #425 C56 C16 0,627121 | 0,605569

Case #426 C34 C81 0,623821 | 0,617457

Case #427 C43 Co4 0,66117 0,617457

Case #428 C34 C34 0,648833 | 0,648833

Case #429 C61 C50 0,65282 0,648833

Case #430 C61 C18 0,641198 | 0,637537

Case #431 C50 C50 0,633975 | 0,633975

A.1: THE PAT-C DATASET

93

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #432 C63 C61 0,665549 | 0,614384

Case #433 C50 C25 0,630504 | 0,623821

Case #434 C34 C61 0,644961 | 0,641198

Case #435 C50 C25 0,648833 | 0,627121

Case #436 C61 C63 0,665549 0,65693

Case #437 C79 C34 0,633975 0

Case #438 C34 C79 0,633975 | 0,605569

Case #439 C25 C50 0,665549 | 0,641198

Case #440 C41 J44.9 0,623821 | 0,579797

Case #441 C50 C34 0,637537 | 0,630504

Case #442 C18 C50 0,679623 | 0,674764

Case #443 C34 C61.9 0,633975 | 0,627121

Case #444 C80 C34 0,66117 0,648833

Case #445 C61 C63 0,617457 | 0,611381

Case #446 C25 C50 0,644961 | 0,620601

Case #447 C78 C61 0,617457 | 0,579797

Case #448 C61 C43 0,679623 0,65282

Case #449 C62 C34 0,695369 | 0,679623

Case #450 C18 C18 0,623821 | 0,623821

Case #451 C34 C34 0,66117 0,66117

Case #452 C82 C18.2 0,674764 | 0,641198

Case #453 C25 C61 0,623821 | 0,614384

Case #454 C20 C20 0,648833 | 0,648833

Case #455 M54.2 C43.9 0,641198 0

Case #456 MS&9 C90 0,637537 0

Case #457 C38 C43 0,684666 | 0,605569

Case #458 C24.9 C63 0,641807 0,5495

Case #459 C34 C50 0,627121 | 0,623821

Case #460 C50.9 C45 0,713259 | 0,679623

Case #461 C50 C50 0,637537 | 0,637537

Case #462 C25.9 C45 0,695369 | 0,695369

Case #463 C25.9 C34 0,741754 | 0,695369

Case #464 C25.1 C50 0,637537 0

Case #465 C25 C34 0,611381 0,6

Case #466 C63 C34 0,637537 | 0,614384

Case #467 C34 G12.2 0,65282 0,648833

Case #468 C17.9 C50 0,65693 0

Case #469 C34 C20 0,648833 | 0,637537

94

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #470 C18 Co61 0,66117 0,614384

Case #471 C21 C48 0,65282 0,58216

Case #472 C34 C50 0,670077 0,66117

Case #473 C34 C50 0,641807 | 0,630223

Case #474 C16 C20 0,65282 0,602756

Case #475 C25.9 C5h3 0,633975 | 0,594654

Case #476 C80 C20 0,648833 | 0,589515

Case #477 C61 Ch4.1 0,637537 | 0,633975

Case #478 C25.9 C49 0,637537 0,58216

Case #479 C61 C92 0,623821 | 0,620601

Case #480 C61 C50 0,665549 0,65693

Case #4381 C67.9 C18 0,65282 0,617457

Case #482 C61 Co61 0,630504 | 0,630504

Case #483 C56 Ch4.1 0,65693 0,620601

Case #484 C34.9 G12.2 0,637537 | 0,608443

Case #4485 C61 Co61 0,620601 | 0,620601

Case #486 C61 C50 0,620601 0,5973

Case #487 C64 Co4 0,679623 | 0,679623

Case #488 C64 C64 0,695369 | 0,695369

Case #489 C61 C18 0,637537 | 0,633975

Case #490 C34 C50 0,623821 | 0,620601

Case #491 Co64 Co64 0,637537 | 0,637537

Case #492 C50 C50 0,695369 | 0,695369

Case #493 C09 C43 0,689909 0

Case #494 C61 Co61 0,741754 | 0,741754

Case #495 C61 Co61 0,741754 | 0,741754

Case #496 C20 C45 0,65282 0,627121

Case #497 C50.9 C50 0,611381 0,59206

Case #498 C61 C18 0,66117 0,65693

Case #499 C18.9 C18.9 0,665549 | 0,665549

Case #500 C20 C26 0,630223 | 0,624787

Case #501 C18 Co61 0,644961 | 0,633975

Case #502 C61 C16 0,648833 | 0,623821

Case #503 C18.9 Ch4.1 0,641807 | 0,614534

Case #504 C61 Co61 0,66117 0,66117

Case #505 C61 Co61 0,66117 0,66117

Case #506 C20 C26 0,761252 | 0,661311

Case #507 Ca1 C25 0,637537 0

A.1: THE PAT-C DATASET

95

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #508 C18 C26 0,722486 | 0,701927

Case #509 C61 C61 0,734014 | 0,734014

Case #510 C19 Co64 0,719813 | 0,641198

Case #511 C5h3 C67.9 0,695369 0,65693

Case #512 C50.9 C34 0,722486 | 0,684161

Case #513 C18 C56 0,679623 | 0,674764

Case #514 C18 C18 0,70702 0,70702

Case #515 C16 C34 0,661311 0,58779

Case #516 Co1 C64 0,644961 0

Case #517 C5h3 C34.9 0,65282 0,644961

Case #518 C18.7 C18 0,689909 0

Case #519 C61 C61 0,65282 0,65282

Case #520 C62 C34 0,726717 | 0,679623

Case #521 C25 C25 0,719813 | 0,719813

Case #522 C50 C34.3 0,605569 0,6

Case #523 C50 C61 0,734014 | 0,684666

Case #524 C34 C82 0,674764 0,66117

Case #525 C82 C18 0,741754 | 0,633975

Case #526 C18 C61 0,758828 | 0,726717

Case #527 C61 C34 0,65693 0,65282

Case #528 C50 C61 0,65282 0,637537

Case #529 C50 C34.9 0,695369 | 0,684666

Case #530 J43 C81 0,605569 0

Case #531 J44.9 C49 0,630504 0

Case #532 C50.9 C50.9 0,602756 | 0,602756

Case #533 C25 C50 0,648833 0,6

Case #534 C88 C61 0,689909 0

Case #535 C83 Ch4.1 0,648833 0

Case #536 C25 C25 0,630504 | 0,630504

Case #537 C85 C18.9 0,668501 | 0,641807

Case #538 C22 C34 0,761252 | 0,562171

Case #539 C78 C61 0,719813 | 0,579797

Case #540 C34 C49 0,614384 | 0,608443

Case #541 C34 C61 0,66117 0,65282

Case #542 C34 C50 0,620601 | 0,611381

Case #543 C43 C50 0,620601 | 0,602756

Case #544 C79.3 C61 0,70702 0

96

CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct

Case #4545 C34.9 C82 0,719813 | 0,679623
Case #546 C34 C34 0,719813 | 0,719813
Case #547 C34.9 C45 0,611381 0,5973
Case #548 C34 C38 0,641198 | 0,630504
Case #549 C34.9 C34 0,630504 | 0,614384
Case #550 C03.1 C18 0,695369 0
Case #551 C43 C50 0,641198 | 0,614384
Case #4552 C50 C34.9 0,608443 0,5973
Case #553 C16 C56 0,627121 | 0,605569
Case #554 C34.9 C18 0,637537 | 0,614384
Case #4555 C50.9 Co61 0,679623 0,65693
Case #556 C50 C25 0,665549 | 0,641198
Case #557 C12 C50.9 0,637537 0
Case #558 C90 C25 0,679623 | 0,665549
Case #559 C90 C90 0,665549 | 0,665549
Case #560 C70 C90 0,648833 0
Case #4561 C15.5 G12.2 0,614384 0
Case #4562 C5h3 C25.9 0,633975 | 0,608443
Case #563 C56 C50 0,633975 | 0,605569
Case #564 C83.1 C82.9 0,661311 0
Case #565 C49.2 C49.2 0,65693 0,65693
Case #566 C34.9 C34.9 0,641198 | 0,641198
Case #4567 C34.9 C34.9 0,66117 0,66117
Case #568 C34.9 C34.9 0,674764 | 0,674764
Case #569 C50.9 C50.9 0,674764 | 0,674764
Case #570 C50.9 C50.9 0,726717 | 0,726717
Case #571 C50.9 C50.9 0,734014 | 0,734014
Case #572 C50.9 C50.9 0,614384 | 0,614384
Case #573 C53.9 C53.9 0,66117 0,66117
Case #574 C53.9 C5h3 0,778654 | 0,701065
Case #575 C5h3 C53.9 0,778654 0,65693
Case #576 C53.9 C67.9 0,719813 | 0,701065
Case #577 C53.9 C53.9 0,701065 | 0,701065
Case #578 C50.9 C50.9 0,633975 | 0,633975
Case #579 C50.9 C50.9 0,630504 | 0,630504
Case #580 C34.3 C34.3 0,70702 0,70702
Case #4581 C34.3 C34.3 0,70702 0,70702
Case #582 C34.3 C34.3 0,701065 | 0,701065

A.1: THE PAT-C DATASET

97

Name Solution | Solution | Similarity | Similarity
of most of most of most
similar similar similar

correct
Case #583 C34.3 C34.3 0,734014 | 0,734014
Case #584 C34 C18 0,644961 | 0,641198
Case #585 G12.2 G12.2 0,701065 | 0,701065
Case #586 C12.2 G12.2 0,684666 0,65282
Case #587 G12.2 G12.2 0,701065 | 0,701065
Case #588 G12.2 G12.2 0,713259 | 0,713259
Case #589 C43.9 C43.9 0,768338 | 0,768338
Case #590 C43.9 C43.9 0,741754 | 0,741754
Case #591 C43.9 C43.9 0,768338 | 0,768338
Case #592 C43.9 C43.9 0,768338 | 0,768338
Case #593 C43.9 C43.9 0,778654 | 0,778654
Case #594 C43.9 C43.9 0,789947 | 0,789947
Case #595 C43.9 C43.9 0,778654 | 0,778654
Case #596 C20 C16 0,637537 | 0,633975
Case #597 C50.9 C50.9 0,758828 0
Case #598 C50.9 C50.9 0,758828 | 0,758828
Case #599 C50.9 C50.9 0,734014 | 0,734014
Case #600 C67.9 C67.9 0,768338 | 0,768338
Case #601 C67.9 C67.9 0,80245 0,80245
Case #602 C67.9 C67.9 0,778654 | 0,778654
Case #603 C67.9 C67.9 0,832634 | 0,832634
Case #604 C67.9 C67.9 0,816504 | 0,816504
Case #605 C67.9 C67.9 0,816504 | 0,816504
Case #606 C67.9 C67.9 0,816504 | 0,816504
Case #607 Ch4.1 Ch4.1 0,623821 | 0,623821
Case #608 Ch4.1 C50 0,665549 0,65693
Case #609 C82.9 C82.9 0,734137 | 0,734137
Case #610 C82.9 C18 0,726717 | 0,719813
Case #611 C82.9 C82.9 0,818487 | 0,818487
Case #612 C19 C19 0,758828 | 0,758828
Case #613 C18 C18.9 0,726717 | 0,670077
Case #614 C18.9 C18.9 0,75 0,75
Case #615 C85.1 C50.9 0,701065 | 0,589515
Case #616 C85.1 C85.1 0,701927 | 0,701927
Case #617 C85.1 C85.1 0,722486 | 0,722486
Case #618 C85.1 C85.1 0,777424 | 0,777424
Case #619 C85.1 C85.1 0,777424 | 0,777424
Case #620 C85.1 C85.1 0,722486 | 0,722486

98 CHAPTER A: ANALYSIS OF THE DATASETS

Name Solution | Solution | Similarity | Similarity
of most of most of most

similar similar similar

correct

Case #621 C85.1 C85.1 0,7118 0,7118
Case #622 C85.1 C85.1 0,722486 | 0,722486
Case #623 C34.9 C34.9 0,674764 | 0,674764
Case #624 C50 C50 0,701065 | 0,701065
Case #625 C50 C50 0,726717 | 0,726717
Case #626 C50 C50 0,726717 | 0,726717
Case #627 C50 C50 0,768338 | 0,768338
Case #628 C50 C50 0,734014 | 0,734014
Case #629 C50 C50 0,768338 | 0,768338
Case #630 C50 C50 0,768338 | 0,768338
Case #631 C20 C20 0,65282 0,65282
Case #632 C18.9 C18.9 0,746963 | 0,746963
Case #633 C18.9 C18.9 0,761252 | 0,761252

Case #634 C80 C18 0,641198 0,5973
Case #635 C34.9 C34.9 0,734014 | 0,734014
Case #636 C34.9 C34.9 0,734014 | 0,734014
Case #637 C34.9 C34.4 0,689909 | 0,689909
Case #638 C56 C78 0,674764 | 0,66117
Case #639 C56 C56 0,777424 | 0,777424
Case #640 C56 C56 0,886496 | 0,886496
Case #641 C56 C5h6 0,846689 | 0,846689
Case #642 C56 C34.9 0,684666 | 0,633975
Case #643 C34.9 C34.9 0,80245 0,80245
Case #644 C34.9 C34.9 0,741754 | 0,741754
Case #645 C34.9 C34.9 0,778654 | 0,778654
Case #646 C18 C50 0,633975 | 0,617457
Case #647 C61 Co61 0,65282 0,65282
Case #648 C18 C34 0,777424 | 0,701927
Case #649 C18 C56 0,701927 | 0,684161

A.2 The lung cancer dataset
Name Solution | Solution | Similarity | Similarity
of most | of most of most
similar similar similar

correct

A.3: THE SOYBEAN LARGE DATASET

99

A.3

Name Solution | Solution | Similarity | Similarity
of most | of most of most
similar similar similar

correct

Case #1 1 2 0,657568 | 0,644187

Case #2 1 1 0,67244 0,67244

Case #3 1 1 0,680549 | 0,680549

Case #4 1 1 0,65071 0,65071

Case #5 1 1 0,664797 | 0,664797

Case #6 1 1 0,657568 | 0,657568

Case #7 1 1 0,657568 | 0,657568

Case #8 1 1 0,657568 | 0,657568

Case #9 1 1 0,680549 | 0,680549

Case #10 2 3 0,626331 | 0,626331

Case #11 2 2 0,644187 | 0,644187

Case #12 2 2 0,65071 0,65071

Case #13 2 3 0,698428 | 0,65071

Case #14 2 2 0,657568 | 0,657568

Case #15 2 2 0,644187 | 0,644187

Case #16 2 3 0,644187 | 0,632022

Case #17 2 1 0,644187 | 0,644187

Case #18 2 2 0,65071 0,65071

Case #19 2 2 0,632022 | 0,632022

Case #20 2 1 0,664797 | 0,657568

Case #21 2 1 0,644187 | 0,637967

Case #22 2 1 0,664797 | 0,637967

Case #23 3 3 0,605714 | 0,605714

Case #24 3 3 0,644187 | 0,644187

Case #25 3 3 0,644187 | 0,644187

Case #26 3 3 0,605714 | 0,605714

Case #27 3 3 0,610578 | 0,610578

Case #28 3 3 0,615626 | 0,615626

Case #29 3 3 0,626331 | 0,626331

Case #30 3 3 0,626331 | 0,626331

Case #31 3 3 0,689186 | 0,689186

Case #32 3 2 0,698428 | 0,689186

The soybean large dataset

100 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #1 diaporthe- diaporthe- 0,75 0,75
stem-canker stem-canker
Case #2 diaporthe- diaporthe- 0,809256 | 0,809256
stem-canker stem-canker
Case #3 diaporthe- diaporthe- 0,809256 | 0,809256
stem-canker stem-canker
Case #4 diaporthe- diaporthe- 0,809256 | 0,809256
stem-canker stem-canker
Case #5 diaporthe- diaporthe- 0,809256 | 0,809256
stem-canker stem-canker
Case #6 diaporthe- diaporthe- 0,775991 | 0,775991
stem-canker stem-canker
Case #7 diaporthe- diaporthe- 0,75 0,75
stem-canker stem-canker
Case #8 diaporthe- diaporthe- 0,775991 | 0,775991
stem-canker stem-canker
Case #9 diaporthe- diaporthe- 0,775991 | 0,775991
stem-canker stem-canker
Case #10 | diaporthe- diaporthe- 0,809256 | 0,809256
stem-canker stem-canker
Case #11 | charcoal-rot charcoal-rot 0,857143 | 0,857143
Case #12 | charcoal-rot charcoal-rot 0,75 0,75
Case #13 | charcoal-rot charcoal-rot 0,775991 | 0,775991
Case #14 | charcoal-rot charcoal-rot 0,775991 | 0,775991
Case #15 | charcoal-rot charcoal-rot 0,857143 | 0,857143
Case #16 | charcoal-rot charcoal-rot 0,775991 | 0,775991
Case #17 | charcoal-rot charcoal-rot 0,75 0,75
Case #18 | charcoal-rot charcoal-rot 0,775991 | 0,775991
Case #19 | charcoal-rot charcoal-rot 0,809256 | 0,809256
Case #20 | charcoal-rot charcoal-rot 0,809256 | 0,809256
Case #21 | rhizoctonia- rhizoctonia- 0,809256 | 0,809256
root-rot root-rot
Case #22 | rhizoctonia- rhizoctonia- 0,857143 | 0,857143
root-rot root-rot
Case #23 | rhizoctonia- rhizoctonia- 0,710102 | 0,710102
root-rot root-rot
Case #24 | rhizoctonia- rhizoctonia- 0,809256 | 0,809256
root-rot root-rot

A.3: THE SOYBEAN LARGE DATASET 101
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #25 | rhizoctonia- rhizoctonia- 0,809256 | 0,809256
root-rot root-rot
Case #26 | rhizoctonia- rhizoctonia- 0,857143 | 0,857143
root-rot root-rot
Case #27 | rhizoctonia- rhizoctonia- 0,809256 | 0,809256
root-rot root-rot
Case #28 | rhizoctonia- rhizoctonia- 0,809256 | 0,809256
root-rot root-rot
Case #29 | rhizoctonia- rhizoctonia- 0,857143 | 0,857143
root-rot root-rot
Case #30 | rhizoctonia- rhizoctonia- 0,857143 | 0,857143
root-rot root-rot
Case #31 | phytophthora- phytophthora- 0,775991 | 0,775991
rot rot
Case #32 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #33 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #34 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #35 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #36 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #37 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #38 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #39 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #40 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #41 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #42 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #43 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot

102 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #44 | phytophthora- phytophthora- 0,710102 | 0,710102
rot rot
Case #45 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #46 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #47 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #48 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #49 | phytophthora- phytophthora- 0,775991 | 0,775991
rot rot
Case #50 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #51 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #52 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #53 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #54 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #55 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #56 | phytophthora- phytophthora- 0,75 0,75
rot rot
Case #57 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #58 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #59 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #60 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #61 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #62 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot

A.3: THE SOYBEAN LARGE DATASET 103
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #63 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #64 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #65 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #66 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #67 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #68 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #69 | phytophthora- phytophthora- 0,809256 | 0,809256
rot rot
Case #70 | phytophthora- phytophthora- 0,857143 | 0,857143
rot rot
Case #71 | brown-stem-rot | brown-stem-rot | 1 1
Case #72 | brown-stem-rot | brown-stem-rot | 1 1
Case #73 | brown-stem-rot | brown-stem-rot | 0,710102 | 0,710102
Case #74 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #75 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #76 | brown-stem-rot | brown-stem-rot | 0,857143 | 0,857143
Case #77 | brown-stem-rot | brown-stem-rot | 0,728503 | 0,728503
Case #78 | brown-stem-rot | brown-stem-rot | 0,728503 | 0,728503
Case #79 | brown-stem-rot | brown-stem-rot | 0,710102 | 0,710102
Case #80 | brown-stem-rot | brown-stem-rot | 0,728503 | 0,728503
Case #81 | brown-stem-rot | brown-stem-rot | 0,728503 | 0,728503
Case #82 | brown-stem-rot | brown-stem-rot | 0,728503 | 0,728503
Case #83 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #84 | brown-stem-rot | brown-stem-rot | 0,710102 | 0,710102
Case #85 | brown-stem-rot | brown-stem-rot | 0,857143 | 0,857143
Case #86 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #87 | brown-stem-rot | brown-stem-rot | 0,857143 | 0,857143
Case #88 | brown-stem-rot | brown-stem-rot | 0,857143 | 0,857143
Case #89 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #90 | brown-stem-rot | brown-stem-rot | 0,809256 | 0,809256
Case #91 | powdery- powdery- 0,75 0,75
mildew mildew

104 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #92 | powdery- powdery- 0,75 0,75
mildew mildew
Case #93 | powdery- powdery- 0,809256 | 0,809256
mildew mildew
Case #94 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #95 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #96 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #97 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #98 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #99 | powdery- powdery- 0,775991 | 0,775991
mildew mildew
Case #100 | powdery- powdery- 0,809256 | 0,809256
mildew mildew
Case #101 | downy-mildew downy-mildew 0,75 0,75
Case #102 | downy-mildew downy-mildew 0,75 0,75
Case #103 | downy-mildew downy-mildew 0,775991 | 0,775991
Case #104 | downy-mildew downy-mildew 0,75 0,75
Case #105 | downy-mildew downy-mildew 0,775991 | 0,775991
Case #106 | downy-mildew downy-mildew 0,775991 | 0,775991
Case #107 | downy-mildew downy-mildew 0,775991 | 0,775991
Case #108 | downy-mildew downy-mildew 0,728503 | 0,728503
Case #109 | downy-mildew downy-mildew 0,75 0,75
Case #110 | downy-mildew downy-mildew 0,775991 | 0,775991
Case #111 | brown-spot brown-spot 0,809256 | 0,809256
Case #112 | brown-spot brown-spot 0,809256 | 0,809256
Case #113 | brown-spot brown-spot 0,857143 | 0,857143
Case #114 | brown-spot brown-spot 0,775991 | 0,775991
Case #115 | brown-spot brown-spot 0,809256 | 0,809256
Case #116 | brown-spot brown-spot 1 1
Case #117 | brown-spot brown-spot 0,775991 | 0,775991
Case #118 | brown-spot brown-spot 0,857143 | 0,857143
Case #119 | brown-spot brown-spot 0,857143 | 0,857143
Case #120 | brown-spot brown-spot 0,809256 | 0,809256

A.3: THE SOYBEAN LARGE DATASET 105
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #121 | brown-spot brown-spot 0,857143 | 0,857143
Case #122 | brown-spot brown-spot 0,809256 | 0,809256
Case #123 | brown-spot brown-spot 0,857143 | 0,857143
Case #124 | brown-spot brown-spot 0,857143 | 0,857143
Case #125 | brown-spot brown-spot 0,857143 | 0,857143
Case #126 | brown-spot brown-spot 0,809256 | 0,809256
Case #127 | brown-spot brown-spot 0,857143 | 0,857143
Case #128 | brown-spot brown-spot 0,728503 | 0,728503
Case #129 | brown-spot brown-spot 0,728503 | 0,728503
Case #130 | brown-spot brown-spot 0,775991 | 0,775991
Case #131 | brown-spot brown-spot 0,809256 | 0,809256
Case #132 | brown-spot brown-spot 0,809256 | 0,809256
Case #133 | brown-spot brown-spot 0,809256 | 0,809256
Case #134 | brown-spot brown-spot 0,775991 | 0,775991
Case #135 | brown-spot brown-spot 0,857143 | 0,857143
Case #136 | brown-spot brown-spot 1 1
Case #137 | brown-spot brown-spot 0,857143 | 0,857143
Case #138 | brown-spot brown-spot 0,710102 | 0,710102
Case #139 | brown-spot brown-spot 0,809256 | 0,809256
Case #140 | brown-spot brown-spot 0,809256 | 0,809256
Case #141 | brown-spot brown-spot 0,809256 | 0,809256
Case #142 | brown-spot brown-spot 0,809256 | 0,809256
Case #143 | brown-spot brown-spot 0,728503 | 0,728503
Case #144 | brown-spot brown-spot 0,857143 | 0,857143
Case #145 | brown-spot brown-spot 0,809256 | 0,809256
Case #146 | brown-spot brown-spot 0,857143 | 0,857143
Case #147 | brown-spot brown-spot 0,809256 | 0,809256
Case #148 | brown-spot brown-spot 0,857143 | 0,857143
Case #149 | brown-spot brown-spot 0,809256 | 0,809256
Case #150 | brown-spot brown-spot 0,75 0,75
Case #151 | bacterial-blight | bacterial-blight | 0,775991 | 0,775991
Case #152 | bacterial-blight | bacterial-blight | 0,809256 | 0,809256
Case #153 | bacterial-blight | bacterial-blight | 0,775991 | 0,775991
Case #154 | bacterial-blight | bacterial-blight | 0,809256 | 0,809256
Case #155 | bacterial-blight | bacterial-blight | 0,809256 | 0,809256
Case #156 | bacterial-blight | bacterial-blight | 0,775991 | 0,775991
Case #157 | bacterial-blight | bacterial-blight | 0,809256 | 0,809256
Case #158 | bacterial-blight | bacterial-blight | 0,809256 | 0,809256

stain

stain

106 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct

Case #159 | bacterial-blight | bacterial-blight | 0,775991 | 0,775991

Case #160 | bacterial-blight | bacterial-blight | 0,775991 | 0,775991

Case #161 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #162 | bacterial- bacterial- 0,710102 | 0,710102
pustule pustule

Case #163 | bacterial- bacterial-blight | 0,775991 | 0,710102
pustule

Case #164 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #165 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #166 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #167 | bacterial- bacterial- 0,775991 | 0,775991
pustule pustule

Case #168 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #169 | bacterial- bacterial- 0,775991 | 0,775991
pustule pustule

Case #170 | bacterial- bacterial- 0,728503 | 0,728503
pustule pustule

Case #171 | purple-seed- purple-seed- 0,693982 | 0,693982
stain stain

Case #172 | purple-seed- purple-seed- 0,809256 | 0,809256
stain stain

Case #173 | purple-seed- purple-seed- 0,75 0,75
stain stain

Case #174 | purple-seed- purple-seed- 0,75 0,75
stain stain

Case #175 | purple-seed- purple-seed- 0,75 0,75
stain stain

Case #176 | purple-seed- purple-seed- 0,809256 | 0,809256
stain stain

Case #177 | purple-seed- purple-seed- 0,728503 | 0,728503
stain stain

Case #178 | purple-seed- purple-seed- 0,75 0,75

A.3: THE SOYBEAN LARGE DATASET 107
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #179 | purple-seed- purple-seed- 0,728503 | 0,728503
stain stain
Case #180 | purple-seed- purple-seed- 0,728503 | 0,728503
stain stain
Case #181 | anthracnose anthracnose 0,710102 | 0,710102
Case #182 | anthracnose anthracnose 0,666667 | 0,666667
Case #183 | anthracnose anthracnose 0,775991 | 0,775991
Case #184 | anthracnose anthracnose 0,693982 | 0,693982
Case #185 | anthracnose anthracnose 0,728503 | 0,728503
Case #186 | anthracnose anthracnose 0,75 0,75
Case #187 | anthracnose anthracnose 0,809256 | 0,809256
Case #188 | anthracnose anthracnose 0,693982 | 0,693982
Case #189 | anthracnose anthracnose 0,809256 | 0,809256
Case #190 | anthracnose anthracnose 0,728503 | 0,728503
Case #191 | anthracnose anthracnose 0,75 0,75
Case #192 | anthracnose anthracnose 0,693982 | 0,693982
Case #193 | anthracnose anthracnose 0,679623 | 0,679623
Case #194 | anthracnose anthracnose 0,809256 | 0,809256
Case #195 | anthracnose anthracnose 0,710102 | 0,710102
Case #196 | anthracnose anthracnose 0,75 0,75
Case #197 | anthracnose anthracnose 0,775991 | 0,775991
Case #198 | anthracnose anthracnose 0,75 0,75
Case #199 | anthracnose anthracnose 0,809256 | 0,809256
Case #200 | anthracnose anthracnose 0,809256 | 0,809256
Case #201 | phyllosticta- phyllosticta- 0,809256 | 0,809256
leaf-spot leaf-spot
Case #202 | phyllosticta- phyllosticta- 0,75 0,75
leaf-spot leaf-spot
Case #203 | phyllosticta- phyllosticta- 0,809256 | 0,809256
leaf-spot leaf-spot
Case #204 | phyllosticta- phyllosticta- 0,75 0,75
leaf-spot leaf-spot
Case #205 | phyllosticta- phyllosticta- 0,728503 | 0,728503
leaf-spot leaf-spot
Case #206 | phyllosticta- phyllosticta- 0,728503 | 0,728503
leaf-spot leaf-spot
Case #207 | phyllosticta- phyllosticta- 0,728503 | 0,728503
leaf-spot leaf-spot

108 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #208 | phyllosticta- brown-spot 0,728503 | 0,728503
leaf-spot
Case #209 | phyllosticta- phyllosticta- 0,728503 | 0,728503
leaf-spot leaf-spot
Case #210 | phyllosticta- brown-spot 0,75 0,728503
leaf-spot
Case #211 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #212 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #213 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #214 | alternarialeaf- alternarialeaf- 1 1
spot spot
Case #215 | alternarialeaf- alternarialeaf- 0,75 0,75
spot spot
Case #216 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #217 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #218 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #219 | alternarialeaf- alternarialeaf- 1 1
spot spot
Case #220 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #221 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #222 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #223 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #224 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #225 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #226 | alternarialeaf- frog-eye-leaf- 0,809256 | 0,775991
spot spot

A.3: THE SOYBEAN LARGE DATASET 109
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #227 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #228 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #229 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #230 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #231 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #232 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #233 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #234 | alternarialeaf- alternarialeaf- 0,75 0,75
spot spot
Case #235 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #236 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #237 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #238 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #239 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #240 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #241 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #242 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #243 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #244 | alternarialeaf- frog-eye-leaf- 0,809256 | 0,775991
spot spot
Case #245 | alternarialeaf- alternarialeaf- 0,775991 | 0,775991
spot spot

110 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #246 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #247 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #248 | alternarialeaf- alternarialeaf- 0,857143 | 0,857143
spot spot
Case #249 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #250 | alternarialeaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #251 | frog-eye-leaf- frog-eye-leaf- 0,728503 | 0,728503
spot spot
Case #252 | frog-eye-leaf- alternarialeaf- 0,775991 | 0,75
spot spot
Case #253 | frog-eye-leaf- frog-eye-leaf- 0,710102 | 0,710102
spot spot
Case #254 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #255 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #256 | frog-eye-leaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #257 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #258 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #259 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #260 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #261 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #262 | frog-eye-leaf- frog-eye-leaf- 0,775991 | 0,775991
spot spot
Case #263 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #264 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot

A.3: THE SOYBEAN LARGE DATASET 111
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #265 | frog-eye-leaf- frog-eye-leaf- 0,75 0,75
spot spot
Case #266 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #267 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #268 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #269 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #270 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #271 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #272 | frog-eye-leaf- frog-eye-leaf- 0,728503 | 0,728503
spot spot
Case #273 | frog-eye-leaf- brown-spot 0,693982 | 0,693982
spot
Case #274 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #275 | frog-eye-leaf- alternarialeaf- 0,809256 | 0,809256
spot spot
Case #276 | frog-eye-leaf- alternarialeaf- 0,775991 | 0,775991
spot spot
Case #277 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #278 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #279 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #280 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #281 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #282 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #283 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot

112 CHAPTER A: ANALYSIS OF THE DATASETS
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #284 | frog-eye-leaf- frog-eye-leaf- 0,75 0,75
spot spot
Case #285 | frog-eye-leaf- alternarialeaf- 0,809256 | 0,775991
spot spot
Case #286 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #287 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #288 | frog-eye-leaf- frog-eye-leaf- 0,775991 | 0,775991
spot spot
Case #289 | frog-eye-leaf- frog-eye-leaf- 0,857143 | 0,857143
spot spot
Case #290 | frog-eye-leaf- frog-eye-leaf- 0,809256 | 0,809256
spot spot
Case #291 | diaporthe-pod- | diaporthe-pod- | 0,855409 | 0
&-stem-blight &-stem-blight
Case #292 | diaporthe-pod- | diaporthe-pod- | 0,807073 | O
&-stem-blight &-stem-blight
Case #293 | diaporthe-pod- | diaporthe-pod- | 0,855409 | 0
&-stem-blight &-stem-blight
Case #294 | diaporthe-pod- | diaporthe-pod- | 0,725708 | 0
&-stem-blight &-stem-blight
Case #295 | diaporthe-pod- | diaporthe-pod- | 0,807073 | O
&-stem-blight &-stem-blight
Case #296 | diaporthe-pod- | diaporthe-pod- | 0,855409 | 0
&-stem-blight &-stem-blight
Case #297 | cyst-nematode | cyst-nematode | 0,857143 | 0,857143
Case #298 | cyst-nematode | cyst-nematode | 0,857143 | 0,857143
Case #299 | cyst-nematode | cyst-nematode | 0,857143 | 0,857143
Case #300 | cyst-nematode | cyst-nematode | 1 1
Case #301 | cyst-nematode | cyst-nematode | 1 1
Case #302 | cyst-nematode | cyst-nematode | 0,857143 | 0,857143
Case #303 | 2-4-d-injury herbicide- 0,651669 | 0
injury
Case #304 | herbicide- herbicide- 0,857143 | 0,857143
injury injury
Case #305 | herbicide- herbicide- 0,809256 | 0,809256
injury injury

A.3: THE SOYBEAN LARGE DATASET 113
Name Solution Solution of Similarity | Similarity
most similar of most of most
similar similar
correct
Case #306 | herbicide- herbicide- 0,809256 | 0,809256
injury injury
Case #307 | herbicide- herbicide- 0,857143 | 0,857143
injury injury

