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Abstract

This project is about evolving a control system for a snake called Transformer <-> #
13. This is a mechanical snake with several body parts. The choise was to use a cellular
genetic algorithm where each body part is a cell. These contain “DNA”, one ruleset
for each degree of freedom in the joints, which decides how it will behave in relation
to its neighbour body parts. Three different fitness functions have been implemented
which each gives a distinct and different behaviour. The goal of the different fitness
functions is; crawling far, rising high and making geometry. The crawling part was
successfull, while the other two goals was much harder for the snake and didnt provide
great results. Concluding that the snake is appropriate for crawling around and making
an impression of different cubic forms. Which for artist purposes is adequate, but it
fails on getting into specific shapes.
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Preface

“Trans<->Former # 13”

This project is a further development of the sculpture 11 cubes from 1998.

A 3.5 meter high steel piece constructed from one single line that due to it’s movements
round the axis XYZ, based on a partically algorithm, forms a volume which becomes
the modelled sculpture. The project are trying to develop computer controlled joints
for this sculpture. The assembled sculpture will then be able to change its shape by
automatically repositioning it’s parts. The sculpture parts mutual positions will be
altered by various forms of external or internal trigging. The sculpture can interact
with the audience at sight, by instance transforming it’s positions and shape according
to the wievers amount and distance. The sculpture is powered by solarpanels and is
undependent of external wiring.

As an art piece this sculpture origin within a constructuvist tradition, but as a moving
object it can also be seen upon as part of a futurist movement. The object cant be
read from just one angle of vision, it is in constant change despite it’s frozen state
(originally). I like to think that it lives it own live, and that it suggest an alternative
place of origin: in time , in space, in dimension.

A snapshot of an otherwise unavailable world.

Espen Gangvik, 2007

Acknowledgments

Thanks to Gunnar Tufte, Espen Gangvik and others who have given support to this
thesis.

Karl Hatteland
June 9, 2007

ix



x PREFACE



Part I

Setting

1





Chapter 1

Introduction

This chapter will introduce the snake, touch some of the basics of Evolutionary Com-
putation (EC) and comment on the choise of the evolutionary algorithm to be used.
Evolutionary Computation will be explained more thoroughly in the Theory part, chap-
ter 2. And give an introduction to the Breve simulation environment.

1.1 The Snake

The snake is a mechanical construct designed by artist Espen Gangvik, see figure 1.1. It
is made up by body’s which are linked together by joints. An earlier thesis by Ragnar
Melz [8] has done an analysis of the snake and how it can be realized. Some of his
findings have been used when simulating the snake to make the simulation as realistic
as possible.

1.1.1 Mechanics

The snake used in the simulations consists of 9 bodies which are linked together by
joints, an example can be seen in figure 1.2. The joints have two degrees of freedom
they can rotate around their own axis and it can bend in one direction. This effectively
makes it possible to reach all directions possible for the joint.

The rotating joint is restricted to rotate from neg 180 to pos 180 degrees which is a
full circle. There were discussions in Melz thesis about rotation joints that didnt need
wires running thru it, which would avoid the problem of wires getting twinned by the
rotation. This would enable the rotating joint to be able to go on and on, without ever
having to think about twisting wires. It was however decided that the restriction was
to be used when simulating, a solution which would work in either way the snake was
made rather than implementing a solution that might not work.
In his thesis Melz set the two motors in different locations. The rotating one was in

3
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Figure 1.1: Possible positions of the snake as imagined by Espen Gangvik.

Figure 1.2: A picture of the simulated snake.



1.1. THE SNAKE 5

the midle of the body part while the bending one was the one who actually linked it to
the next body part. In the simulation both rotation and bending is done in the same
place. This difference in location is trivial; there are no changes in the behavior of the
snake from this difference.

Figure 1.3: A picture showing the possible positions of the bending joint.

The bending joint bends from neg 90 degrees to pos 90 degrees. The reason for this
is that we use 90 degrees steps to get the cubic look of the snake and the -180 or 180
degrees would bend the snake over and it would crash with its neighbour so the possible
possitions would be -90, 0 and 90degrees, see figure 1.3.

1.1.2 Behaviour

The behaviour of the snake is not forced to any particular pattern. It will react and
adapt to the environment and in some cases input from onlookers.
Each of the snake’s body parts contains two rule sets which are used to decide the next
movement of the snake. These rules are changed by an evolutionary algorithm. The
bodies are awarded their own fitness value depending on how well they accomplish the
goal that is set for the snake. The rulesets are copied between the bodies and every
time that happens there is a small chance for mutations of the rulesets.
So thru these copying and mutation of the rulesets the snake change its behavior over
time, adapting to the environment.

1.1.3 Art and Ideas

To get elegant movement, the speeds of the joints are restricted to a maximum of 30
degrees per second. And they are restricted to increments of 90 degrees per movements
so as to make the figure the snake makes appear volumetric. This restriction is not
set in stone and can be changed depending on how the snake will be used. Possible
changes would be to allow increments of 45 degrees. Or even free movement.
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The first idea that prompted this snake was the sculpture 11 cubes from 1998. A snake
that would rotate and bend itself until it finally settled into that position. See figure
1.4 for an example of the 11 cubes shape, designes by Espen Gangvik.

Figure 1.4: Trans<->Former #13. Envisioned by Artist Espen Gangvik

Other ideas have been to put the snake in glass cubicle in public areas and have the
snake move inside it and change shape depending on the number of onlookers and how
close they are or thru the onlookers choosing its decided goal (fitness function) thru
options on a computer.
Think about hanging the snake up on some loose wires one at each end, and have it
take different shapes in the middle of the air, when it contracts it would go higher and
when it stretches out it would go lower. Or one could hang it from one end so when all
stretched out touches the ground. The artistic possibilities for the snake is great.

1.2 Evolutionary Computation

Evolutionary Computation (EC) is the section of computer science which uses the
principles of evolution to find solutions to non-linear and complex systems. There is
several different approaches to evolutionary computation, some of these are; genetic
algorithms (GA) [4], genetic programming (GP) [7], evolutionary strategies (ES) [10]
and evolutionary programming (EP) [2]. All of these implement in different ways two
functions 1) random search and 2) selection.

Figure 1.5 is showing a fictional search space and the steps of a genetic algorithm.
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Figure 1.5: An example search space, showing the initial random search, the arrows show the
direction each generation and the convergance towards the optimum.

Usually the optimum is not known, but it was added to show how the algorithm can
converge on local or global maximums. Even if it’s stuck on a local maximum, mutations
make it possible to escape them and eventually find the global max.

1.2.1 Evolutionary Computation in control systems

Evolutionary Computation is being used more and more recently to control systems,
often making the behavior seem realistic. Such effects are used in computer games
where there are computer controlled agents, they then learn and adapt to a changing
situations. Sushil J. Louis and Chris Mules used a method they called CIGARs (case-
injected genetic algorithms) [9]. To improve computer game play.
Yannakakis and Hallam write about evolving opponents for interresting interactive
computer games. Using the familiar Pac-Man game they comment that the emergent
near-optimal behaviours of the predators makes the game less interresting to play, being
too hard [3].
Maybe the most famous use of evolutionary computation to design and control agents
is the work done by Karl Sims. His creations has evolved physically by using a genetic
algorithm and then teached to walk, swim, jump and follow [11]. See figure 1.6 for
some examples of creatures evolved for swimming.

As a commercial product that uses evolutionary computing one has Sonys dog Aibo
which uses neural nets to learn to recognize people and situations and reacting thereafter
[13].

1.2.2 Evolutionary Computation and the environment

Using a genetic algorithm as an example, it creates a generation of several individuals.
These individuals have some traits, which is evaluated and gives them a fitness value
depending on how well they perform. When the environment change, then the traits
that was good before may now be bad for the individual. And those traits that were
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Figure 1.6: The creations of Karl Sims which has been tought to swim [11].

hurting an individual may now be good. This will affect the fitness value for the
individuals, because they do no longer work as good. Thus changing which individuals
gets selected for next generation. And after a couple of generation the individuals
that live now have adapted to the new environment. The communication between the
environment and the genetic algorithm is illustrated in figure 1.7.

1.2.3 Choice of evolutionary algorithm

The evolutionary algorithm that is going to be used in the snake has to be adaptive to
environment and that the number of body parts of the snake change, making the snake
longer or shorter. It cannot take too much computing power per body part, because
the computing power is limited. The computer power is limited by more than the speed
and effectivity of the micro controller, it is also limited by the available power source,
batteries or solar panels. So the lesser amount of time and power needed to do the
calculations the better.
To meet these requirements the choise was a cellular genetic algorithm. This algorithm
meets the requirements. It is adaptable to the environment; it’s easy to add body parts
to the snake. In addition it can also provide the movement desired by artist Espen
Gangvik. The computing power needed is relative small because there are no global
control, every body part acts individually. The body parts just look at its position
relative to its neighbour and looks up its rulesets and acts as the ruleset says. A simple
example shows how the internal communication between the body parts work, see figure
1.8. The workings of the cellular genetic algorithm is explained in detail in section 2.3.



1.3. BREVE – A 3D SIMULATION ENVIRONMENT 9

Figure 1.7: An illustration of how the interaction goes. The environment affects the individual,
making it perform differently which in turn changes the individuals fitness value. And in turn
affect the outcome of the selection made by the genetic algorithm.

Figure 1.8: Each body part can only communicate to the neighbouring body parts. And the
communication is limited to exchanging rulesets and asking about the neighbours’ fitness. And
when communicating rulesets mutations can occur.

1.3 Breve – a 3D simulation environment

Breve is a simulation environment with a physics engine. It is open source and free to
use. It also includes several classes for setting up floor, objects, connect the objects to
eachother, write to file and apply physics-like conditions like collision and gravity. It
comes in two versions, IDE and CLI [6].

1.3.1 IDE and CLI mode

The IDE version contains a source code editor and a window showing the simulation in
real time. It also has the ability to record movies of the simulations or take snapshots.
This is really nice when developing the snake. Being able to check that the snake
behaves correctly and see the changes directly. Breve parses the source file at simulation
start, so after you have done a change it’s just to stop and restart the simulation for
changes to take effect. A picture displaying a screenshot of Breve IDE can be seen in
figure 1.9.

The CLI version is the command line interface, when used the simulation goes alot
faster, but no graphics are shown. When running longer simulations this is the only
way, else the simulations would take very long time.
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Figure 1.9: A screenshot of the snake in an early implemetation showing the 3D simulation
window in the upper left. A log window at the lower left and the source code on the right side.

1.3.2 Programming language

From the documentation of the programming language of Breve: “Simulations in breve
are written using a language called “steve”. Steve is a simple language which aims to
allow rapid construction of advanced simulations while avoiding a great deal of the
programming overhead associated with constructing simulations in other languages.”
Steve is an object-oriented language. This means that programming in steve involves
working with components called objects which contain data (variables) and behaviors
(methods). In breve, objects can be either real, meaning they have a presence in the
simulated world; or abstract meaning that they are used to store data or to perform
computations, but do not appear in the simulated world.
For documentation on the steve language check out the Breve webpage [5].

1.4 Objectives

The objectives for this thesis are to create the snake in a simulation environment.
Implement the cellular genetic algorithm on the simulated snake. And run experiments
to test the implemented algorithm in different situations. These differnt situations are
created by changing the fitness function to get the snake to act towards different goals.

1.4.1 Setting up the snake in Breve

The first objective is implementing the snake and the cellular genetic algorithm in
Breve.
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1.4.2 Experiment 1: GoFar

This experiment is trying to make the snake go as far as possible. This is the simplest
experiment, because very many movements of the snake will achieve this.
The distance is calculated using

√
x2 + z2. This gives the position in the floor plane,

the height isnt neccesary to include. This function also does so that the snake gets
better fitness nomatter which direction it chooses. The only thing that matters is that
it gets futher away from the start position.

1.4.3 Experiment 2: GoHigh

This experiment is trying to get the snake to strech itself upwards. For the snake this is
a harder experiment. There is less choises that lead to success compared to experiment
1. Many of the movements the snake can do will lead to loosing balance and fall, thus
loosing heigth. Can there be evolved a rule set which manage to rise the snake high?
The global fitness here is the fitness of the highest body part of the snake. The fitness
of the individual body parts are 0, 0.5 of 1. 0 if its lower than its neighbour, 0.5 if its
equal and 1 if its better.

1.4.4 Experiment 3: GoCircle

This experiment will try to get the snake into a specific position. A circle is defines as
the state where all the angles are the same. The fitness is calculated after how close to
the needed angle the snake is. Using 9 body parts, the angle between each body part
would have to be 36degrees to get the closest possible to a circle for the snake used in
the simulations.

1.5 Results

The results are varied between the different experiments. As expected the first exper-
iment proved to be easier for the snake and it managed well to keep going the same
way when it first started a direction. Even if it kept going further and further in the
long run it sometimes took lapses back, before going forward again. See section 3.1.1
for complete results and fitness over time graphs of the simulation.
The second experiment was not as successfull; the snake lifted itself from the ground,
but kept falling down. From the logs it can be seen that the highest it got was 4 body
parts length up. While normally it was only one or two body parts length above the
ground. See section 3.1.2 for complete results.
The snake managed to partially make a circle but very often it moved into something
resembling a circle and then after the next movement would go out of formation again.
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1.6 Thesis Outline

Part 1 contains introductions.
Part 2 is the Theory part. It explains genetic algorithm and the cellular genetic algo-
rithm in more detail.
Part 3 is experiments and results. This part will go thru exactly what was done and
the results from the experiments.
Part 4 contains a discussion and conclusions and possible future work.
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Chapter 2

Biologically Inspired

All the evolutionary algorithms are inspired by biology. We observe complex living
organisms grow, adapt and learn. By examining how they accomplish this in nature we
can try to replicate these techniques within computer programs to make the programs
resilient, adaptable and able to find solutions in complex search spaces. Sipper et al [1]
sets up a POE model which classify and describe the different aspects of biology and
their properties.

2.1 POE model

“If one considers life on Earth since its very beginning, then the following three levels
of organization can be distinguished” - Sipper et al [1]. These three levels are called
Phylogenetic, Ontogenetic and Epigenetic (POE).

The first level Phylogeny concerns the evolution of the genetic code, similar to the
evolution of species. Which is done by recombination of the genes and subject it to a
low error (mutation) rate? The recombination and mutation provide diversity which is
indispensible for the survival of a species. While it also makes the species able to adapt
to the environment over time.

The second level Ontogeny concerns growth, similar to the division of a cell. Each
cell being divided has the same code as the mother cell. The behavior of each new
cell is deceided by the surrounding cells; this behavior is called cellular differentiation.
Ontogeny thus makes creatures very robust, in the way that all the information of the
whole is in each cell. And even if a great part of it is destroyed it can grow back.

The third level Epigenesis concerns accumulated knowledge, similar to a brain, nervous
system and the immune system. Upon reaching a certain lever of complexity it is no
longer possible to store all information in the cells directly, so there emerge a different
process that permits the individual to integrate the interactions with the outside world.
This process is called epigenesis. These are structures which are defined by the genome

15
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and modified by experience.

Figure 2.1: The three levels described as different planes.

2.2 Genetic Algorithms

Belonging to the phylogenetic level the genetic algorithm works by recombination and
mutation. These algorithms encode a potential solution to a specific problem on a
simple chromosome like data structure. This data structure is then modified by recom-
bination of different potential solutions with an added small chance of mutation. Often
the best potential solution is transfered to the next generation without change to not
loose good solutions.

Figure 2.2: The flow of a general genetic algorithm.
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Following figure 2.2 one first creates a generation and initializes them randomly. These
are then evaluated and get assigned a fitness value. The fitness value will represent the
solution we are searching for in such a manner that the closer the potential solutions
comes to wanted solution the higher fitness the potential solution is assigned.

Then we check if a stop condition is reached, this might be how many generations has
passed, the best fitness got over some level or simply a time constraint. If this condition
is not met the GA goes on by making the next generation.

This is done by selection from the old generation; this is often used with roulette-wheel
selection where the chance for being selected is proportional with the fitness of the
potential solution. So the better fitness the greater chance at being selected. Two are
selected and are crossovered and when crossover happens there is a small chance of
mutation. The resulting new potential solution is added to the new generation. This
is repeated until the new generation is as big as the previous one was.

The new generation is then evaluated and the cycle repeates until stop condition stops
the algorithm.

2.3 Cellular Genetic Algorithms

To understand how Cellular Genetic Algorithms works, imagine the cells in your body.
They communicate by chemicals; they can only communicate to their nearest neight-
bours. The number of neighbours also changes depending on where in the body the
cells are located and what type of cells it is.

Moshe Sipper divides the cellular genetic algorithms into two; the uniform and the non-
uniform cellular genetic algorithms. The uniform has the same rules in every cell while
the non-uniform has different rules in every cell [12]. In non-uniform cellular genetic
algorithms the evolution takes place not only in the state space but also in the rule
space, meaning the rules will evolve and adapt. The state space is the physical position
or the state of each cell while the rule space is the rules that dictate the cells behavior.

In this thesis the non-uniform cellular genetic algorithm will be used. The rulesets in
each part of the snake will be different and they will be evolved over time.

The cellular genetic algorithm works in principle like the genetic algorithm from section
2.2. At the start each cells ruleset is randomized. Then the system goes on for a defined
number of steps, the cells react and change depending on their neighbours as the rulesets
decide. After the decided number of steps, all cells are given a fitness value telling how
good each cell did to better the whole. Each cell then looks at its neightbours and three
things may happen:

1. None of the neighbouring cells are better than self. If so, do nothing.

2. One and only one of the neighbours are better than self. If so replace its rulesets
with that found in the one that was better.
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3. If more than one of the neighbours are better than self. Using roulette wheel
or similar selection method to select two of the neighbours, the ones with bet-
ter fitness has better chance to be selected. Do a crossover of the two selected
neighbours and replace the old ruleset with the result from the crossover.

Moshe Sipper supplies this pseudo code on page 81 of his book on cellular genetic
algorithms [12].

for each cell i in CA do in parallel

initialize rule table of cell i

fi = 0 { fitness value }

end parallel for

c = 0 { initial configurations counter }

while not done do

generate a random initial configuration

run CA on initial configuration for M time steps

for each cell i do in parallel

if cell i is in the correct final state then

fi = fi + 1

end if

end parallel for

c = c + 1

if c mod C = 0 then { evolve every C configurations }

for each cell i do in parallel

compute nfi(c) { number of fitter neighbors }

if nfi(c) = 0 then rule i is left unchanged

else if nfi(c) = 1 then replace rule i with the fitter neighboring

rule, followed by mutation.

else if nfi(c) = 2 then replace rule i with the crossover of the

two fitter neighboring rules, followed by mutation.

else if nfi(c) > 2 then replace rule i with the crossover of two

randomly chosen fitter neighboring rules, followed by mutation (this case can occur if the cellular neighborhood includes more than two cells).

end if

fi = 0

end parallel for

end if

end while

2.4 Implemented fitness functions

The cellular genetic algorithm was implemented in the snake so that each body part of
the snake became its own cell. These cell contains rulesets which tells the body part
how to react. The snake moves every 10 seconds. When it comes into position it waits
a second or so before doing next move. In the implemented cellular genetic algorithm
runs 10 time steps before it calculates new fitness and perform its genetic operations.

The fitness function for experiment one GoFar is the distance from the starting point.
The floor created by Breve is only 1000x1000 units big and the start point is in the
middle. This does so that the snake can fall over the side, when that happens the
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current fitness is saved and the snake is transported back to the middle and continues
its run from there. The shape of the snake is unchanged, in a way it doenst notice
its been moved. One simulation atleast was ruined by this, the snake fell over and fell
further and further away from the start point looking really good. Until it was too
good to be true. As was mentioned earlier the global fitness is the distance the snake
has traveled away from the start point. The fitness of the individual body parts is -1, 0
or 1 depending on their position compared to their previous position. If they are better
than last time they get 1, similar they get 0 and if worse they got -1.

The fitness function for experiment two GoHigh works by giving fitness to the first body
part using its height over the ground. For the other body parts its relative position
to the previous neighbour is used. The second body part got fitness 1 if it was lower
than the first body part, 0 if similar height and -1 if itself was higher. And for third it
looked at the second. This would make the best possible fitness if the snake stood on
its last body part and all the others was straight up.

The fitness function for the third experiment GoCircle counts the number of body parts,
adds one, then takes 360degrees and divide it on the number of body parts + 1. This
gives the angle that must be between each one if it is to make a circle. The fitness
is then calculated from how close to this value it is. This experiment also require the
snake to not only move in cubic 90 degree angles.
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Chapter 3

Results

3.1 Results

Each experiment was intended simulated for 8days in real time, which equates to about
10 million seconds simulated (115days). The snake move once every 10 seconds. And
every 10 times it moves new fitness is calculated and genetic operations is performed.
Giving about 100000 genetic operations per simulation. On the graphs the Y axis
displays the global fitness of the snake while the X axis shows simulated time in seconds.
Several of the simulation will however not be as long as 10 million seconds due to the
computers running the simulations getting turned off, restarted or canceled for different
reasons.
The rulesets found in the appendix is two rules for each body part. RuleX and RuleZ.
X is the bending joint, while Z is the rotation. The rulesets look like:

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

The body part checks the angle, called A, between itself and the previous body part
then the the angle, called B, between itself and the next body part. First for the X
joint, if A is -1.57 and B is -1.57 then the next position will be the first value in the
RuleX list, -1.57 and 0 the second etc. for all 9 combinations. This is then repeated
for the Z angle. The resulting values are then used for the join between itself and the
next body part.

3.1.1 Experiment 1: GoFar

Experiment GoFar was about getting the snake to go as far as possible. The graph in
figure 3.1 shows the results from the first GoFar simulation. The resulting rulesets after
the last genetic operation of the simulation one, can be found in the appendix A.1.1.
The graph in figure 3.2 shows the results from the second simulation. And the evolved
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ruleset from the second simulation can be found in the appendix A.1.2. The graph in
figure 3.3 shows the results from the third simulation. The evolved rulesets from the
third simulation can be found in the appendix A.1.3. The graph in figure 3.4 shows the
results from the fourth simulation. The evolved ruleset from the fourth simulation can
be found in the appendix A.1.4.

Figure 3.1: A graph showing results from the first GoFar experiment.

3.1.2 Experiment 2: GoHigh

The purpose of this experiment was to get the snake to try to rise as high as possible.
Stretch one of its ends as high up as possible, doing this the snake need to balance well
or it will fall. The results from one simulation can be seen in figure 3.5. While the
evolved rulesets can be found in the appendix A.1.5.

3.1.3 Experiment 3: GoCircle

This experiment tries to make the snake attain certain shapes, in this case a circle. The
result from this experiment can be seen in the figure 3.6. The resulting ruleset from
this experiment can be found in the appendix A.1.6.
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Figure 3.2: A graph showing results from the second GoFar experiment

Figure 3.3: A graph showing results from the third GoFar experiment.
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Figure 3.4: A graph showing results from the fourth GoFar experiment.

Figure 3.5: A graph showing results from the first GoHigh experiment.
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Figure 3.6: A graph showing results from the first GoCircle experiment.
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Chapter 4

Synopsis

4.1 Discussion

The results are varied. The expected graph for the first experiment would be a graph
that average at the start then improved, making the graph steeper and steeper as the
rulesets are optimized by the cellular genetic algorithm and its fitness function. Looking
at the graphs in the figures 3.1 to 3.4 it is clear that the graphs goes in steps with some
periods where they are actually going backwards. Even if the task is completed one
can see from the graphs that there is no continuing progression where it improves much
over time. If you look closer at figure 3.2 you can see that it found good rulesets to
accomplish the task at about 800000 seconds into the simulation and it lasted until
about 1.1million seconds into the simulation. One reason that it changed for worse
can be that the mutation is too severe. At first it only changed one of values in the
lists. The problem with this was that the snake ended up in repeating movement, and
even after very long times, millions of seconds simulated, didnt get out of them. So
the mutation was change to have greater effect and changed one of the rulesets in the
individual completely. It looks like this change were too much and that something in
the middle would be better. In figure 3.4 there is a period after about 2million seconds
simulated where it gets stuck in a pattern of movement where it never really changes
position.
Evaluating the rulesets from the four simulations from experiment one there is no
obvious pattern. They all seem very different. This means that either the simulations
need longer time to converge towards a similar ruleset or the cellular genetic algorithm
isnt set properly to make the convergance. This could be because of the 10 steps
between fitness evaluation or the mutation effect being so big it makes the cellular
genetic algorithm almost like random search. To analyze this there need to be done
more simulations with different settings.
The graph in figure 3.5 is not very nice. The fitness function gives fitness depending
on how high above the ground the first body part is. The snake has a tendancy to get
it somewhat high up and then falling down again. And you can see this in the graph
where it varies between 0 and about 14 all the time. Something interresting happened
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at 4.9milliong seconds simulated; the extreme positions of 0 and 14 didnt happen so
often anymore. It came into a position where it kept the first body part up more reliable
over time.
The third experiment was a challenge aswell for the snake, it tries to find a particular
shape, while at the same time it changes form every 10 seconds. This resulted in the
snake getting close, then next move it was no longer close to being a circle. A circle
for the snake was defined to be 360degree divided on body parts + 1. So for the snake
that was 9 body parts long it was 36degrees between each bodypart. The closer the
angle got to 36degrees the better fitness it got. The graph in figure 3.6 is very similar
to the graph for experiment GoHigh. This is because it moved into and out of position
all the time.
The two experiments GoHigh and GoCircle did not go very well with the snake. It
seemed to restless and didnt manage to follow a sequence of steps for GoHigh or sit
in a position in GoCircle. For artist purpose it still looked great when moving and
sometimes looked like its living. If the puprose of the snake was to do particular tasks
the current control system would be inadequate. But for the purpose of electronic art
in a glass cubicle og on the floor in a store it accomplish the goal of using movments
which look cubic and give the impression of volume.

4.2 Conclusion

This document try to evolve a control system for a multi joint snake. With the im-
formation provided by Melz master thesis [8] the snake is implemented in the Breve
simulation environment. Which provide a suitable environment to simulate the snake
with realistic physics. A cellular genetic algorithm is implemented in the snake, due to
its low demand on processing power, expandability and adaptibility. For simple tasks
like going far in one direction the algorithm does well. The results of simulations can
be seen in the result section 3.1. The second experiment were the snake was supposed
to balance upwards and stretch itself as high as possible and the third where it was
supposed to attain a special shape it performed poorly. When trying to stretch high
it always did some movements that made it fall down. While when trying to find a
specific shape, like the circle in experiment three, it sometimes got close, but then next
time it moved again it moved out of the shape.

That been said the snake in experiment one does give the impression of volume when
it moves with 90 degrees angles. So for artist purposes it functions well.

4.3 Future work

For experiment one what is needed as future work would be to run simulations and fine
tune the mutation function. It does seem too severe at this moment. It could also be
an idea to also figure in the speed of the movement when calculating the fitness. As
now it gets good fitness if it moves away from the starting point, but it doesnt take into
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account the speed it moves. This should be able to improve the snakes performance and
perhaps attain the fast speed the snake shows from time to time. One example of this
was in experiment two, figure 3.2, during the time from 800000 seconds to 1.1million
second simulated time.

For movment to specific positions like in experiment two and three a change in the al-
gorithm could make it possible to reliably solve the problems. Maybe evolve a sequence
of movements that takes the snake from a position to the goal position. This could
be done by a regular genetic algorithm and the snake performed one of the potential
solutions in each generation, seeing how far it got.

Alot more simulations should be done aswell, as the low number of simulations here does
not make the results statistically significant. It could be good luck or bad luck, thus
making it impossible to generalise with too much certanity. This simulation would take
a dedicated computer and alot of time to perform. With more simulations done with
different settings of the cellular genetic algorithm it could be analyzed if other settings
would make the evolved rulesets converge better toward an optimal configuration.
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Appendix A

Rulesets for the result section

A.1 Rulesets

Rulesets as they were when the simulation was ended.

A.1.1 GoFar one

The rulesets from the first GoFar simulation.

RuleX -1.57, 1.57, 1.57, 0.00, 0.00, -1.57, -1.57, -1.57, 1.57
RuleZ 1.57, 1.57, 1.57, 0.00, 1.57, 1.57, -1.57, 0.00, 1.57

RuleX -1.57, 1.57, 1.57, 0.00, 0.00, -1.57, -1.57, -1.57, 1.57
RuleZ 0.00, -1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 0.00, 0.00

RuleX 0.00, 0.00, 1.57, 1.57, 0.00, 0.00, -1.57, 0.00, -1.57
RuleZ 1.57, 1.57, 1.57, -1.57, 1.57, 0.00, -1.57, 1.57, 0.00

RuleX 1.57, 1.57, 1.57, 0.00, 0.00, 0.00, -1.57, 0.00, 0.00
RuleZ 0.00, 0.00, -1.57, 0.00, -1.57, -1.57, 0.00, 1.57, 1.57

RuleX 1.57, 1.57, 1.57, 0.00, 0.00, 0.00, -1.57, 0.00, 0.00
RuleZ 0.00, 0.00, -1.57, 0.00, -1.57, -1.57, 0.00, 1.57, 1.57

RuleX 1.57, 1.57, 1.57, 0.00, 0.00, 0.00, -1.57, 0.00, 0.00,
RuleZ 0.00, 0.00, -1.57, 0.00, -1.57, -1.57, 0.00, 1.57, 1.57

RuleX 0.00, -1.57, -1.57, 0.00, 0.00, 0.00, 0.00, 0.00, -1.57
RuleZ 0.00, -1.57, 1.57, 1.57, 0.00, 0.00, -1.57, -1.57, 0.00
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RuleX 0.00, -1.57, 1.57, 1.57, -1.57, 0.00, 1.57, 1.57, -1.57
RuleZ 0.00, 0.00, -1.57, 0.00, 0.00, 1.57, 0.00, 0.00, 1.57

RuleX 0.00, -1.57, 1.57, 1.57, -1.57, 0.00, 1.57, 1.57, -1.57
RuleZ 0.00, 0.00, -1.57, 0.00, 0.00, 1.57, 0.00, 0.00, 1.57

A.1.2 GoFar two

The rulesets from the second GoFar simulation.

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57,
RuleZ -1.57, 0.00, -1.57, 0.00, 1.57, 1.57, 1.57, -1.57, -1.57,

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57
RuleZ -1.57, 0.00, -1.57, 0.00, 1.57, 1.57, 1.57, -1.57, -1.57

RuleX 1.57, 0.00, 0.00, -1.57, -1.57, 1.57, 0.00, -1.57, -1.57
RuleZ -1.57, -1.57, -1.57, -1.57, -1.57, 1.57, 1.57, 1.57, -1.57

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 1.57

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 1.57

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 1.57

RuleX 1.57, 1.57, 1.57, 0.00, 1.57, -1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 1.57

RuleX 0.00, 1.57, 1.57, 1.57, 1.57, -1.57, -1.57, 0.00, 1.57
RuleZ 1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 0.00, -1.57, 1.57

RuleX -1.57, -1.57, 1.57, -1.57, 0.00, -1.57, 0.00, 1.57, 0.00
RuleZ -1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00, -1.57, 1.57

A.1.3 GoFar three

The rulesets from the third GoFar simulation.

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57
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RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

RuleX 1.57, 1.57, 0.00, 1.57, 0.00, 0.00, -1.57, 1.57, 0.00
RuleZ 0.00, -1.57, 0.00, -1.57, 1.57, 0.00, 0.00, 0.00, -1.57

A.1.4 GoFar four

The rulesets from the fourth GoFar simulation.

RuleX 1.57, 0.00, 0.00, -1.57, 1.57, 1.57, 1.57, -1.57, 1.57
RuleZ 0.00, -1.57, -1.57, 1.57, 1.57, -1.57, 1.57, 0.00, -1.57

RuleX 0.00, 0.00, 0.00, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00
RuleZ -1.57, 1.57, -1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57

RuleX 0.00, 0.00, 0.00, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00
RuleZ -1.57, 1.57, -1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57

RuleX 0.00, 0.00, 0.00, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00
RuleZ -1.57, 1.57, -1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57

RuleX 0.00, 0.00, 0.00, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00
RuleZ -1.57, 1.57, -1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57

RuleX 0.00, 0.00, 0.00, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00
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RuleZ -1.57, 1.57, -1.57, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57

RuleX 1.57, -1.57, 1.57, 0.00, 1.57, 0.00, -1.57, -1.57, 0.00
RuleZ 1.57, 1.57, 0.00, 0.00, -1.57, 1.57, -1.57, 0.00, 0.00

RuleX -1.57, -1.57, -1.57, 1.57, 0.00, -1.57, 0.00, 1.57, 0.00
RuleZ -1.57, -1.57, 0.00, 1.57, 1.57, 1.57, -1.57, 1.57, 0.00

RuleX 1.57, -1.57, 1.57, 0.00, 1.57, 0.00, -1.57, -1.57, 0.00
RuleZ 0.00, 1.57, -1.57, -1.57, 1.57, 0.00, -1.57, -1.57, 0.00

A.1.5 GoHigh one

The rulesets from the first GoHigh simulation.

RuleX 0.00, 0.00, 0.00, 0.00, -1.57, -1.57, 1.57, -1.57, 0.00
RuleZ 1.57, 0.00, 1.57, 1.57, -1.57, -1.57, 1.57, 1.57, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX -1.57, 0.00, 0.00, 1.57, -1.57, -1.57, 0.00, 1.57, 1.57
RuleZ -1.57, 1.57, 1.57, 1.57, -1.57, -1.57, 0.00, 0.00, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX -1.57, 0.00, -1.57, 1.57, 0.00, 1.57, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, 0.00, 0.00, 0.00, 1.57, 0.00, -1.57, -1.57

RuleX 0.00, -1.57, 1.57, -1.57, 1.57, 0.00, 0.00, -1.57, 1.57
RuleZ 0.00, 1.57, 0.00, 0.00, 1.57, 0.00, 0.00, 0.00, 1.57
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A.1.6 GoCircle one

RuleX 1.57, 1.57, -1.57, -1.57, 0.00, 0.00, -1.57, -1.57, 1.57
RuleZ 0.00, 1.57, 1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00

RuleX 1.57, 1.57, -1.57, -1.57, 0.00, 0.00, -1.57, -1.57, 1.57
RuleZ 0.00, 1.57, 1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00

RuleX 0.00, -1.57, -1.57, 0.00, -1.57, -1.57, 0.00, -1.57, 1.57
RuleZ 0.00, 1.57, 1.57, -1.57, 1.57, -1.57, 1.57, 1.57, 0.00

RuleX 0.00, -1.57, -1.57, 0.00, -1.57, -1.57, 0.00, -1.57, 1.57
RuleZ 0.00, -1.57, 0.00, 0.00, 0.00, -1.57, 1.57, -1.57, 1.57

RuleX 0.00, -1.57, -1.57, 0.00, -1.57, -1.57, 0.00, -1.57, 1.57
RuleZ 0.00, -1.57, 0.00, 0.00, 0.00, -1.57, 1.57, -1.57, 1.57

RuleX 0.00, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57, 1.57, 1.57
RuleZ 0.00, -1.57, 0.00, 0.00, 0.00, -1.57, 1.57, -1.57, 1.57

RuleX 0.00, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57, 1.57, 1.57
RuleZ 0.00, -1.57, 0.00, 0.00, 0.00, -1.57, 1.57, -1.57, 1.57

RuleX 0.00, 0.00, -1.57, 1.57, -1.57, -1.57, 1.57, 1.57, 1.57
RuleZ 0.00, -1.57, 0.00, 0.00, 0.00, -1.57, 1.57, -1.57, 1.57

RuleX -1.57, -1.57, -1.57, -1.57, -1.57, 0.00, -1.57, 1.57, 1.57
RuleZ -1.57, -1.57, -1.57, 1.57, -1.57, 1.57, -1.57, -1.57, 0.00
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