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ABSTRACT
This work investigates how a turbulent free-stream (TFS) affects the transition-in-
wake state of flow past a cylinder. Direct numerical simulations have been performed,
where the intensity of a decaying TFS varied from 3.6% to 12.2% (as it reaches the
cylinder), with integral scales 0.5, 0.75 and 1.0 times the cylinder diameter for the
high intensity case. Distinct effects of the TFS are observed for Reynolds numbers
in the lower (Re < 190) and upper (Re ≥ 250) ranges of the transitional regime.
For a flow with a laminar free-stream (LFS) the onset of the transition-in-wake is
observed at a critical Reynolds number Rec ≈ 190, where the first three-dimensional
effects develop in the wake (mode A instabilities). A TFS perturbs the flow, forcing
the onset of the transition at a lower Reynolds number and inhibiting a sharply
defined critical Reynolds number. Quasi-stable states, where the wake alternates
between two- and three-dimensional vortex shedding, are observed for Re < 190.
These states are closely related to intermittent vortex dislocations in the wake. In
the upper Re part of the transition-in-wake regime, mode B instabilities dominate
the wake of the LFS flow. A TFS stimulates the existence of mode A instabilities,
resulting in mixed A–B instabilities in the wake for Re ≥ 250. This effect correlates
with the turbulence intensity, and is strongest for the high intensity TFS.

1. Introduction

The unsteady vortex shedding and the transition to turbulence in flows past a circular
cylinder have been an actively studied field of fluid mechanics during the last century.
The flow problem has a generic nature and direct relevance to engineering applications.

The flow past a circular cylinder is steady at sufficiently low Reynolds numbers.
The Reynolds number of the flow is defined as Re = ŪD/ν, where Ū is the mean
velocity of the flow, D is the diameter of the cylinder and ν is the kinematic viscosity.
At Re ' 47 the flow becomes unsteady by a Hopf bifurcation (see, e.g., [21]), which
can be observed as oscillations in the wake of the cylinder. As the Reynolds number
is increased, the characteristic von Kármán vortex street develops. The flow pattern
of alternating vortices being shed from the cylinder is purely two-dimensional. With
a further increase in the Reynolds number the first three-dimensional effects can be
observed in the flow. At this point the flow past the cylinder is in the transition-in-wake
state, which spans the range of Reynolds numbers: (180 − 200) < Re < (350 − 400)
[31,33]. Following the transition-in-wake state of the flow, increasingRe leads to further
break-up of the flow through several transitional regimes, before it can be characterized



as fully turbulent.
The focus of this study is on the transition-in-wake state of the flow, and the effects

that any turbulence in the free-stream (TFS) may have on this particular transition.
Although it was noted above that this transition starts at 180 < Re < 200, there is
considerable variation in the reported critical point where this transition first occurs
(see [31], and references therein). We will henceforth denote this point the critical
Reynolds number, abbreviated as Rec for flow with laminar free-stream (LFS) and
Rec,TFS for the TFS case. This is a secondary instability of the flow (opposed to the
primary instability at Re ' 47 [3]), and other authors may use Re2, Retr, etc. to
denote the onset of this instability. We will not consider the primary instability any
further and therefore find Rec to be an appropriate notation for the Reynolds number
at onset of the transition-in-wake state of the flow.

By Floquet stability analysis, Barkley and Henderson [3] could identify the on-
set of transition at Rec = 189 and Henderson and Barkley [12] further proved that
the transition is subcritical, explaining the hysteresis effect observed experimentally
[28]. For Re & 189 three-dimensional modes with spanwise length of approximatly four
cylinder diameters develop in the flow. These mode A instabilities [28,30] are the dom-
inant flow features in the spanwise direction in the first part of the transition-in-wake
regime, along with spot-like vortex dislocations. The vortex dislocations are large-
scale intermittent structures that grow downstream of the cylinder. These dislocations
were discovered experimentally by Williamson [29], and similar features have been re-
produced in numerical simulations (see [11,34]). Zhang et al. [34] call these structures
vortex adhesion, due to vortices evidently adhering to the cylinder over many shedding
periods, and found them to be self-sustained in the range 160 < Re < 230. Hender-
son [11] points out that the spot-like dislocations must be generated by the mode A
instability, and concludes that a nonlinear interaction between self-excited modes in
the A-band is responsible for the appearance of large-scale structures in the wake.
Here, the A-band refers to the different possible wavelengths of the mode A instabil-
ity. The observed spanwise wavelength of the three-dimensional pattern developing in
the wake correponds to the most unstable wavelength of the A-band. The wavlength
is λA ≈ 4D at Rec, decreasing somewhat as Re is increased (details in [3] Fig. 12).
Through high accuracy numerical simulations, Posdziech and Grundmann [19] repro-
duced the transition-in-wake with excellent agreement with experimental results. By
using a spanwise domain length equal to the most unstable mode A instability the
authors claim to exclude vortex dislocations in the wake, and conclude therefore that
the role of such dislocations are overrated in experimental studies of the transitional
regime.

When the Reynolds number is further increased, a new mode of instabilities develops
in the wake: mode B instabilities. These instabilities are streamwise structures with
spanwise length of approximately one cylinder diameter, dominating the flow at Re &
260 (see [30] and references therein). At Reynolds numbers between 210 and 220 the
mode A and mode B instabilities start to co-exist in the wake. The transition from
a flow dominated by one mode to dominance of the other is gradual, with energy in
the flow shifting continuously from the larger to the smaller instabilities (see, e.g.,
[4]) over a range of Reynolds numbers. Note that unlike the transition where mode
A instabilities first occur, the second transition in the transition-in-wake state of the
flow is supercritical [4].

The onset of the three-dimensional transition-in-wake can be identified by a sharp
drop in the Strouhal number as Re is increased. The Strouhal number is defined as
St = fD/Ū , where f is the vortex shedding frequency. The drop in St is observed at
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the onset of the subcritical instability where the first mode A instabilities develop in
the cylinder wake. As mode B instabilities start to develop alongside of the mode A
instabilities, the shedding frequency is gradually increased towards that of the two-
dimensional shedding state. As already mentioned, there is a considerable scatter in
the reported critical Reynolds number where this St drop occurs. This is especially
prominent in experimental results, which can be seen by comparing data from e.g.,
Gerrard [8], Williamson [28] and Norberg [16], where Rec-values between 140 and 200
are reported. This point should be kept in mind when studies where the effect of
free-stream turbulence upstream of the cylinder in the transitional regime is consid-
ered. The effect of TFS may have been overrated by some authors and underrated by
others in previous studies, due to other disturbances (e.g., contamination from end
conditions).

In studies performed in two different wind tunnels, Bloor [6] found a significant
effect of TFS on the critical Reynolds number. The experiments were performed with
low turbulence intensity, Ti = urms/Ū = 0.03% and 1% (where urms is the root-mean-
square value of the three-dimensional velocity fluctuations). Instabilities developed in
the wake for Re between 160 and 200, where the higher Re consistently corresponded
to the experimental set-up with the lowest turbulence intensity. How large the con-
tribution of e.g. end conditions was on the onset of transition in these experiments
is hard to say, but it cannot be ruled out as an influencing parameter in the experi-
ments, since the different turbulence intensities correspond to different experimental
rigs in this study. Hussain and Ramjee [13] studied the effect of TFS on the shedding
frequency at Reynolds numbers in the range of the von Kármán vortex street. The
experiments were performed for 60 < Re . 160 and Ti up to 8%. No effect of the TFS
on the flow was found. This result has been used to argue that the transition-in-wake
state of the flow is insensitive to TFS [32]. This is not a valid argument, since Hussain
and Ramjee [13] only considered Re below the Rec reported in the majority of studies
on the subject. In a study by Norberg [15], flow past a cylinder for a large Re span was
investigated, and the flow was deemed ‘rather insensitive’ to low intensity, free-stream
turbulence (Ti = 1.4%) for 50 < Re < 103. Norberg [15] did, however, find an increase
in the relative bandwidth of Re spanning the transitional regime, thereby supporting
the observations by Bloor [6].

Beyond the investigation mentioned here, there exists few studies on the effect of
TFS on the transition-in-wake state of the flow past a circular cylinder. To the best of
our knowledge, no such studies have been performed using direct numerical simulations
(DNS) as the main research tool. An advantage of DNS is that the end conditions,
turbulence intensity, etc., can be kept exactly the same in all the simulations. This
makes it an ideal tool for further investigations of the effect of TFS on the transition-
in-wake, since the effects of the turbulence can be isolated from other disturbances of
the flow.

In this paper, a DNS study on the effect of TFS on the transition-in-wake regime of
a circular cylinder is presented. The aim of the study is to determine if and how the
transition with TFS differs from a transition with LFS. The entire transition-in-wake
regime is considered, by using 120 ≤ Re ≤ 350. The structure of the paper is the
following: In Section 2 the framework and validation of the numerical simulations are
described. Section 3 is a presentation of the main results, with the discussion split
into the different Reynolds number spans where effects from the TFS are seen. In
Section 4, TFS flows with different turbulence properties (intensity, scale, and length
of the turbulence production domain) are considered, before conclusions are drawn in
Section 5.
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2. Methodology

To perform the simulations, the high-order finite-difference code for compressible hy-
drodynamic flows known as The Pencil Code (see [7,23]) has been used. The governing
equations of the flow are the continuity equation:

Dρ

Dt
= −ρ∇ · u , (1)

and the momentum equation:

ρ
Du

Dt
= −∇p+ ∇ · (2µS) , (2)

where ρ, t, u and p are the density, time, velocity vector and pressure, respectively.
The traceless rate of strain tensor is given by:

S =
1

2

(
∇u + (∇u)T

)
− I

(
1

3
∇ · u

)
, (3)

where I is the identity matrix. The pressure is computed by the ideal gas law, p = c2
sρ ,

where cs is the speed of sound. The flow is isothermal and weakly compressible (the
Mach number is 0.1 in all simulations).

2.1. Numerical method

The equations are discretized with sixth-order central-differences in space and a third-
order Runge-Kutta scheme in time. An equidistant Cartesian mesh is used to simplify
the process of inserting turbulence upstream of the circular cylinder. The cylinder is
situated in the center of the flow domain (details in Section 2.3), and an immersed
boundary method is used to resolve the cylinder boundary.

The immersed boundary method, introduced by Peskin in the 1970s to model flow
around heart valves [17], is a class of methods that represent a boundary immersed in
a flow with non-body conformal grids (see review article by Mittal & Iaccarino [14] and
references therein). As the grid does not conform to the solid boundary, incorporating
the boundary conditions requires a modification of the governing equations in the
vicinity of the boundary. In our implementation a discrete forcing approach is used,
in which the boundary conditions at the cylinder are enforced through ghost points
inside the cylinder. The advantage of this approach is that it allows direct control over
the numerical accuracy, stability and discrete conservation properties of the solver.

The seven point finite-difference stencil used for the sixth-order method is not al-
tered near the surface. Rather, a three point deep ghost point zone is constructed
inside the solid geometry (unlike the more common single ghost point discretization,
see, e.g., [25]). To resolve the boundary conditions set at the cylinder surface, the
ghost points are assigned values from corresponding mirror points. These are no-slip
and impermeability for the velocity, and zero gradient in the radial direction for the
density. The latter condition can be derived from the ideal gas law and the boundary

layer approximation
(
∂p
∂n = 0 ,where n is the wall normal direction

)
for an isothermal

flow.
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Figure 1. Immersed boundary method. (a) Ghost points (x,y,z; #) used in the central-difference stencils of

fluid points (a–c;  ) are set by mirror points (x′,y′,z′; �). The mirror points are interpolated along grid lines.
When (x; #) is used to compute vertical velocity components of fluid points (d–f ;  ) the corresponding mirror

point is (x′′; �). (b) For a fluid point (a; #) very close to the cylinder surface, interpolation between a surface

point (s;  ) and the intersection between the surface normal and the first grid line at (p;  ) is used.

Ghost- and mirror points used for velocity are computed along Cartesian grid lines,
see Fig. 1a). Note that ghost point x is set by mirror point x′ when used to compute
the horizontal velocity component at fluid points a–c, and by mirror point x′′ when
used to compute the vertical velocity component at fluid points d–f . Ghost points
used to resolve the density gradient are set from mirror points in the radial direction,
since only the radial gradient is known (details in [10]). Computation along radial lines
minimizes the distance between a ghost point and its corresponding mirror point. The
use of mirror points along grid lines, however, ensures that the mirror points are
closer to the fluid points where the corresponding ghost points are used in the finite-
difference stencils. This has been found advantageous, as spurious effects that arise due
to of the effective delocalized dependency in the finite-differences are reduced. Further,
interpolation along grid lines is cheap and implementation of higher order Lagrangian
interpolation is trivial. Here, quadratic interpolation is used along the grid lines. The
point where a grid line intersects the surface is always included in an interpolation
stencil, thus extrapolation is avoided. Tri-linear interpolation is used to compute the
density mirror points.

Special handling is used for fluid points very close to the solid surface: If a fluid point
is closer to the surface than some pre-defined cutoff (e.g., 0.7∆x), a value is explicitly
assigned to the fluid point based on an interpolation along the surface normal, as
shown in Fig.1b). The fluid point a is computed by linear interpolation of the values
at the surface point s and at the grid intersection point p. The intersection point p is
itself interpolated from its nearest neighbours along the grid line.

2.2. Grid resolution

Grid refinement has been performed to determine the necessary resolution to capture
the flow phenomena in the transition-in-wake. The number of equidistant grid points
on a two-dimensional flow domain with dimensions Lx × Ly = 10D × 20D was varied
from 160×320 to 800×1600 for Reynolds numbers from 100 to 350. The inflow velocity
and cylinder diameter were held constant, while the viscosity was used as a control
parameter to set the Reynolds number.

From the grid refinement study, a resolution ofD/∆x = D/∆y = 40 (i.e., a 400×800
grid) is found to be sufficient for Reynolds numbers spanning the transition-in-wake
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Table 1. Comparison of mean drag coefficient CD and Strouhal number St for a range of resolutions and

Reynolds numbers for a two-dimensional domain with Lx = 10D and Ly = 20D.

Re = 100 Re = 200 Re = 300 Re = 350

Resolution CD St CD St CD St CD St

160× 320 1.49 0.174 1.48 0.204 1.53 0.218 1.55 0.223
240× 480 1.49 0.176 1.46 0.206 1.46 0.206 1.52 0.225
320× 640 1.46 0.176 1.42 0.206 1.44 0.220 1.45 0.225
400× 800 1.47 0.176 1.43 0.205 1.46 0.220 1.47 0.224
480× 960 1.47 0.176 1.43 0.205 1.45 0.219 1.46 0.224
640× 1280 1.46 0.176 1.43 0.205 1.46 0.219 1.47 0.224
800× 1600 1.46 0.176 1.43 0.205 1.46 0.219 1.47 0.223

Table 2. Comparison of the Kolmogorov microscales with spatial and temporal resolution for the TFS with

integral scale Λ/D ≈ 1 for Re = 100 and Re = 350. Non-dimensional properties given by ε̃ = εD/Ū3 , η̃ =

η/D , τ̃η = τηŪ/D. The grid is equidistant with ∆x = ∆y.

Re ε̃max η̃ τ̃η η/∆x τη/∆t

100 0.0161 0.089 0.788 3.55 606
350 0.0116 0.038 0.497 1.51 382

state of the flow (see Tab. 1). For simplicity, the same resolution is used for all Reynolds
numbers, although a coarser grid would be sufficient at the lower Reynolds numbers.
The laminar boundary layer around the cylinder is thinnest at the front stagnation
point. This (non-dimensional) boundary layer thickness is δ̃ = δ/D = 2.4

√
ν/(BD2),

where B ≈ 4Ū/D for weakly compressible flows [26]. Hence, with dimensionless grid
spacing ∆x̃ = ∆ỹ = 0.025, the boundary layer is at minimum 4.8 grid points deep for
Re = 100 (δ̃ = 0.12) and 2.6 grid points deep for Re = 350 (δ̃ = 0.064). In practice,
this guarantees that at most one of the grid points used for interpolation of the mirror
point farthest from the surface (z′ in Fig. 1a)) is (barely) outside the boundary layer
for Re = 350. All other interpolation grid points, and all mirror points, are guaranteed
to be inside the boundary layer at this resolution. This is due to the special handling
of grid points closer to the surface than 0.7∆x, ensuring that a ghost point is not used
if it is farther than 2.3∆x from the surface.

The stability requirement for the Runge-Kutta method for a weakly compressible
flow imposes a very strict limit on the time step. An adaptable time step is used,
which results in the dimensionless time step ∆t̃ = ∆tŪ/D ≤ 1.3 × 10−3 after the
development of the von Kármán vortex street. To verify that this time step is adequate,
two-dimensional flow simulations were performed on the 400×800 grid, with fixed time
stepping. Reducing the time step to ∆t̃ ≤ 1.0 × 10−4 had a negligible impact on the
flow simulation, increasing CD and St only by 0.015% and 0.06%, respectively.

For DNS it is not sufficient to resolve the boundary layer around the cylinder,
all scales of the TFS (spatial and temporal) must also be resolved. Fortunately, at
the low to moderate Reynolds numbers spanning the transition-in-wake regime, the

Kolmogorov length scale η =
(
ν3/ε

)1/4
, where ε is the average energy dissipation rate,

is larger than the necessary resolution required to resolve the boundary layer, for the

turbulence considered in this research. The Kolmogorov time scale, τη = (ν/ε)1/2, is
substantially larger than the required temporal resolution imposed by the stability
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Figure 2. Computational domain, split into two rectangular boxes. Left box for turbulence generation and

right box for flow domain. Thin slices of velocity data are taken from the turbulence domain and added to the
velocity on the inlet of the flow domain, illustrated here by a thin rectangular box between the two domains.

The slice thickness and cylinder diameter are not to scale.

requirement (details are found in Tab. 2).

2.3. Computational domain

The computational domain consists of two rectangular boxes. In the first box, isotropic
turbulence is generated by external forcing on given wave numbers (details in [9]).
This domain (left box in Fig. 2, henceforth called the turbulence domain) has periodic
boundary conditions in all directions and is equal in size to the flow domain (more
on this in Section 4.3). Once the forced turbulence is statistically stationary, slices of
flow quantities from the turbulence domain are added to the inlet of the flow domain
(right box in Fig. 2). The flow domain has mean inlet velocity Ū = (Ū , 0, 0). Since
the mean velocity in the turbulent box is zero, this mean inlet velocity is not affected
by the added turbulent velocities. Hence, the inlet velocity is U = Ū + u′, where u′ is
updated at every time step using data from the turbulence domain. To avoid outflows
at the inlet, the turbulence intensity is limited such that max |u′x| ≤ Ū . Navier-Stokes
characteristic boundary conditions (NSCBC), which is a formulation that use one-
dimensional characteristic wave relations to allow acoustic waves to pass through the
boundaries, are used both at the inlet and at the outlet of the flow domain [18]. The
boundaries normal to the mean flow direction are periodic.

The size of the flow domain is (Lx, Ly, Lz) = (12D, 6D, 8D). The size of the do-
main is chosen to be sufficiently large to resolve the flow phenomena qualitatively.
Consider the solid blue curve with o-markers in Fig. 3, depicting the Strouhal num-
ber as a function of Reynolds number for the flow in the transitional regime with
LFS. The results are compared with experimental results from Williamson [28] (black
dots). Results from two-dimensional simulations, where the transition-in-wake does
not occur, are also included in the figure (dashed blue line). The qualitative match
between the three-dimensional simulations and the experimental results is good, but
the quantitative match is poor. A discrepancy between the oblique vortex shedding
results by Williamson [28] and the parallel vortex shedding from the DNS is expected,
as parallel vortices are shed at a somewhat higher frequency than oblique vortices (see
[27]). The mismatch between the experimental and DNS results is, however, too large
to be attributed to this effect alone. It is well known that a limited Ly will generate
blockage effects in the flow [2,5]. Previous validation runs show that Ly is the domain

7



150 200 250 300
Re

0.17

0.18

0.19

0.2

0.21

0.22

0.23

S
t

Ly = 6D
Ly = 12D
Williamson [6]

Figure 3. Comparison of St–Re relationships for flows with laminar free-stream conditions, for Reynolds

numbers spanning over the transition-in-wake regime. Ly = 6D: -o- 3D, - - 2D; Ly = 12D: -x- 3D, - - 2D;

• data from experiments by Williamson [28].

size parameter that has the greatest influence on the computed Strouhal number [1].
The blockage ratio is D/Ly = 0.167, and significantly larger St values are found in
the simulations than in the experimental data. The blockage effect does, however, not
affect the value of Rec or the increase in St in the upper Re part of the transition.
Doubling Ly, from 6D to 12D, and thus approaching the recommended distance of
8D from the lateral boundaries to the cylinder, as suggested by Behr et al. [5], reduces
the St values by ≈ 9% (red curve with x-markers in Fig. 3). Since the quantitative
value of St is not of interest to us, Ly = 6D is used in the subsequent simulations in
order to keep the computational costs manageable. Similarly to Thompson et al. [24],
we believe that the restricted domain does not alter the essential physics underlying
the development and interaction of the three-dimensional structures. Note that even
with this limited domain width, the typical cost of running a simulation resulting in
a single point in Fig. 3 is 5.4× 103 CPU hours. For simulations with TFS the typical
simulation time is approximately 40% longer.

Two-dimensional simulations with varying upstream and downstream lengths have
been performed, and the results showed that a cylinder situated in the centre of a 12D
long flow domain give accurate results for the shedding frequency. The simulations
were performed for Re = 100, with upstream and downstream lengths varied up to
50D each. The Strouhal number St was barely affected by these lengths, as long as
the lengths were above a certain threshold. Results from validation runs with Lx = 20
and Re spanning over the transition-in-wake region (with the cylinder in the centre
of the domain) are not included in Fig. 3 since they are indistinguishable from the
corresponding results with Lx = 12D.

The spanwise length Lz is chosen sufficiently large to allow room for at least two
wavelengths of the mode A instabilities inside the flow domain at Rec. The choice
of the spanwise length is based on the findings of Posdziech and Grundmann [19],
that an Lz twice as large as the most unstable wavelength of the mode A instabilities
(λA . 4D) guarantees an accurate reproduction of the measurements.
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Figure 4. The computed instantaneous drag and lift coefficients, CD and CL respectively, for Reynolds

numbers 180 (left), 190 (middle) and 210 (right) as a function of the dimensionless time t̃ = tŪ/D.

2.4. Measuring the shedding frequency

There is a large variation in the size of the error bars in Fig. 3. This stems from the
nature of the shedding of vortices in the transitional regime, particularly for Reynolds
numbers where several vortex dislocations occur.

Let us consider as an illustration Fig. 4, depicting the drag and lift coefficients
for Re = 180, 190 and 210. For the two-dimensional vortex shedding (Re = 180) the
coefficients vary sinusoidally with a constant shedding frequency. For Re > Rec, the
oscillations diverge from a sinusoidal behaviour. The sharpest amplitude drops in the
drag and lift coefficients correspond to time instants where vortex dislocations develop
in the cylinder wake. The vortex dislocations also affect the vortex shedding frequency,
i.e., strong intermittent vortex dislocations result in a drop in St over a short time
interval.

To find the shedding frequency from the lift data, a Lomb-Scargle power spectral
density estimate (PSD) [22] is computed, followed by a Gaussian curve fitting. The
Lomb-Scargle periodogram is preferred rather than a Fourier transform, due to un-
even time sampling from the adaptable time step in the simulations. A curve fitting
in frequency space is necessary since the Strouhal number varies with time in the
transitional regime (particularly in regions with intermittent vortex dislocations). A
Gaussian fit is used since the strongest peaks in frequency space generate a normal-like
distribution (admittedly skewed for Re > Rec), see Fig. 5. The error bars in the St–Re
curves in Figs. 3, 6, 10, 12 and 13 are standard deviations of the curve-fitted Gaussian
distributions in frequency space. Although using a moving average over extrema would
suffice for computing St in the LFS simulations, for flow with a TFS high-frequency
noise from the turbulence makes measurements of shedding frequency without the
transformation to frequency space hard and inaccurate. Another advantage of the
Gaussian fitting (compared to, e.g., setting St equal to the dominant frequency of the
PSD) is that the standard deviation of the fitted curve provides information about the
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Figure 5. Power spectral density (PSD) as a function of Strouhal number with curve fitted Gaussian distri-

bution (GF), for flow LFS flow at Re = 180 (PSD:×,GF:—) and Re = 190 (PSD: ,GF:- - -).

St span at each Re. In particular, this brings attention to simulations that develop
vortex shedding that alternates between two- and three-dimensional vortex shedding.
These quasi-stable states (see Section 4) are easily overlooked by using the dominating
shedding frequency directly.

The simulations are run for 50–120 shedding periods after the vortex shedding
has developed. The simulations in which the strongest vortex dislocations appear are
run for the longest time to avoid an incorrect influence of the dislocations on St.
Imagine, for instance, that only 30 periods were included for Re = 210, i.e., terminating
the simulation at t̃ between 200 and 250. This would give an excessive influence of
the strong vortex dislocation close to t̃ = 200 on the flow statistics. For all but a
few simulations, the flow is considered to be developed after a time corresponding
to approximately 20 shedding periods. The exceptions are for Re very close to the
critical Reynolds number, where the flow needs longer time to develop before the
measurements start.

3. Effects of high-intensity free-stream turbulence on the
transition-in-wake

Turbulence with intensity Ti = 25% and integral scale Λ = D is inserted at the inlet
of the flow domain for simulations with Reynolds numbers ranging from 120 to 350.
The high intensity turbulence decays in the flow direction, and reaches the cylinder
surface with an intensity of 10.5%–13.5% (highest decay of Ti for the lowest flow Re).
Figure 6 depicts the resulting St–Re relationship, together with results from the LFS
simulations. For the lowest and intermediate Re, corresponding to Regions I and III
in the figure, the difference between St for the two cases is negligible. In Regions II
and IV this is not the case. In this section we will discuss the two regions where the
TFS and LFS results differ, before considering the effect of varying the properties of
the TFS (intensity, scale and length of the turbulence domain) in Section 4.
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Figure 6. Comparison of St–Re relationships for flows with and without free-stream turbulence introduced

upstream of the cylinder, for Reynolds numbers spanning over the transition-in-wake regime: -o- LFS; -x- TFS;
- - 2D LFS.

3.1. Mode A instabilities and the onset of three-dimensionality in the
wake

The drop in shedding frequency at the onset of three-dimensionality in the wake is
known to be closely related to the mode A instabilities and vortex dislocations in the
wake of the cylinder for flows with LFS conditions. This is confirmed in our simulations
by looking at instantaneous plots of the vorticity (~ω = ∇×~u) in a plane along the flow
direction and the cylinder axis (the xz -plane). The wake at Re = 180 is purely two-
dimensional, as seen by the lack of cross-stream vorticity in Fig. 7a). At Re = 190,
mode A instabilities (with λA ≈ 4D) have developed in the wake, see Figs. 7c)–f).
A vortex dislocation is seen in Figs. 7e)–f), obscuring the observations of mode A
instabilities.

The drop in St occurs at lower Re for the TFS simulations as compared to the
LFS, hence, Rec,TFS < Rec (see Region II of Fig. 6). Based on the results with LFS,
one would expect this to be due to mode A instabilities with vortex dislocations
occurring at lower Reynolds numbers as a result of the TFS in the flow. Figure 8
shows instantaneous contours for the TFS flow in Region II and confirms this to some
degree: The inherent three-dimensionality in the TFS results in three-dimensional flow
effects even at Re < Rec,TFS, distorting the vorticity plots. This is apparent as ωy 6= 0
in the near wake in Fig. 8a) although St has not dropped from the two-dimensional
mode (Re = 160 data point in Fig. 6). Despite this ‘noise’, coherent flow structures
can be observed in the contour plots. Let us compare Figs. 8c)–d) to Figs. 7c)–d),
depicting ωy and ωz for TFS flow with Re > Rec,TFS and LFS flow with Re > Rec,
respectively. Vortex dislocations do not dominate the near wake at the specific time
instant of these snapshots. While a mode A instability is clearly visible in the LFS
contours, this mode is less clear in the TFS case. There is an alternation between
positive and negative ωy in Fig. 8c), similar to the variation in the LFS flow, and the
wavy structures in Fig. 8d) appear to have a wavelength close to 4D. The mode A
instability is present, but the view is obscured by a vortex dislocation beginning to
develop in the upper half of the frames.

Strong vortex dislocations develop at Re = 170, as can be seen in Figs. 8e)–f).
The pattern is similar to the experimental flow visualization by Zhang et al. (see
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Figure 7. Laminar free-stream. Contours of instantaneous vorticity ωy (top) and ωz (bottom) in a plane

along the streamwise direction, through the cylinder axis, plotted for Re = 180 (left) and Re = 190 (middle
and right). Top and bottom frames correspond to the same time instant. Contour plots for two time instants

are given for Re = 190: t1, time instant without vortex dislocation; t2, time instant with vortex dislocation.
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Figure 8. Turbulent free-stream. Contours of instantaneous vorticity ωy (top) and ωz (bottom) in a plane
along the streamwise direction, through the cylinder axis, plotted for Re = 160 (left) and Re = 170 (middle

and right). Top and bottom frames correspond to the same time instant. Contour plots for two time instants

are given for Re = 170: t1, time instant with vortex dislocation beginning to develop; t2, time instant with
fully developed vortex dislocation.
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[34], Fig. 5), where the term vortex adhesion is used to describe this phenomenon.
The development in time, from Figs. 8d) to 8f), appears to be the development of
a large-scale structure, and similar vortex dislocation patterns occur repeatedly after
the initialization of the simulation for this Re. The snapshot in Fig. 8f) is among the
clearest observations of a vortex dislocation appearing to adhere to the cylinder at
this Reynolds number.

Henderson [11] reported that spot-like disturbances (i.e., vortex dislocations) always
developed from small perturbations at sufficiently large Re > Rec and Lz > λA, and
that these large-scale structures only appear in a natural transition after mode A
instability. The results of the present study can hardly be considered as a natural
transition, as the TFS acts as a strong perturbation on the wake instability; the shift
of the critical Reynolds number to a lower value is a direct consequence of the TFS.
Yet, similar to the observations by Henderson [11], the vortex dislocations in the
wake first occur for Re > Rec,TFS. The strong vortex dislocation and inherent three-
dimensionality of the TFS obscure the view of mode A instability in the flow. Still,
the similarity between the drop in St in Region II of Fig. 6 for the two flow cases, the
presence of vortex dislocations in Figs. 8e)–f), and the vorticity snapshot in Fig. 8d),
are strong indications of the existence of mode A instabilities at Re = 170 for the TFS
flow past the cylinder.

3.2. Mixed instability modes in the upper part of the transition

In moving from Region III to Region IV of Fig. 6 the results for TFS and LFS diverge.
The difference in shedding frequency between the two cases remains almost constant
for 250 ≤ Re ≤ 300, before decreasing somewhat for Re = 350.

The detailed analysis by Henderson [11] revealed a spatio-temporal chaos in the
transition to a wake dominated by mode B instabilities at Re = 265. Since mode B
instabilities are slower to develop than mode A instabilities (in development of the
mode B dominated near wake) there exists a temporal region dominated by mode
A instabilities and a temporal region of mixed mode A and B instabilities even at
Re above the threshold where mode B is dominant. During this development the
shedding frequency is reduced by ∆f ∈ (−0.004,−0.014) (corresponding to ∆St ∈
(−0.04,−0.14)) as compared to the frequency for the 2D shedding state (see [11],
Fig. 12).

Figure 9 depicts snapshots of spanwise vorticity ωz in the central xz -plane, with
and without TFS, at two different Reynolds numbers in Region IV. The snapshots are
taken at times that show the early development of the wake (Figs. 9a) and b)) and
at times where the wake has had time to reach an asymptotic state (Figs. 9c) – f)).
After a temporal region of mode A dominated flow (Fig. 9a), the mode B dominated
near wake develops for the LFS flow. At t2 � t1 the mode B instability is clearly
visible, with a spanwise wavelength of approximately 1D (see Figs. 9c) and e)). The
spatio-temporal chaos [11] is present in the development of mode B instabilities, but
comes to an end as the wake settles in a state dominated by mode B instabilities. For
the flow with TFS mode B instabilities have barely started to develop at Re = 250.
The vorticity in the near wake (Fig. 9d)) reveals that the flow is more similar to that
at the onset of the transition (Fig. 8d)) than with the flow with LFS at Re = 250.
Thus, the mode A dominated state at t1 (Fig. 9b)) is not temporal when the free-
stream is turbulent. At Re = 350, smaller scale instabilities have developed, with
vortex fingers that adhere strongly to the cylinder before the vortices are distorted
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Figure 9. Contours of instantaneous vorticity ωz in a plane along the streamwise direction, through the

cylinder axis, plotted for Re = 250 (left and middle) and Re = 350 (right) for flow simulations with LFS
(top) and TFS (bottom). Contour plots for two time instants are given for Re = 250, t1, early development of

instabilities; t2, asymptotic state (t2 � t1). Only the asymptotic state is shown for Re = 350.

and dissipate downstream, see Fig. 9f). The flow is more similar to the LFS case at
this Re, although larger scale disturbances are still present in the near wake.

From the vorticity plots and the reduced shedding frequency it is evident that the
disturbances from the TFS suppress the transition to a near-wake dominated by mode
B instabilities. The asymptotic state with no discernible large-scale pattern reported
by Henderson [11] is not reached with a high-intensity TFS. Rather, the TFS stimulates
the existence of mode A instabilities, resulting in the mixed state of mode A and B
instabilities at higher Re when the free-stream is turbulent than when it is laminar.

Williamson [30] discussed measurements by Prasad and Williamson [20], where ma-
nipulation of the end conditions in experiments made vortex dislocations at Re > 260
possible. By means of this disturbance, the jump to higher St in Region IV of Fig. 6 did
not occur. A low frequency curve, similar to our TFS results, is shown for Re up to 400
in Williamson [30]. This instability state was called B∗ instabilities, where the asterisk
denotes vortex dislocations in the flow. It is likely that end conditions might have a
similar effect as the TFS, and that the B∗ instabilities reported by Williamson [30]
are the mixed A–B instabilities we observe in the present study. Hence, the asterisk
denoting vortex dislocations is somewhat misleading. Dislocations are a product of
interacting self-exiting mode A instabilities, present due to disturbances in the flow,
and not unrelated to the flow instabilities and simply forced by end conditions.

4. Effects of varying free-stream turbulence properties on the
transition-in-wake

So far, the turbulence inserted at the inlet of the flow domain has been of high intensity
and with the integral scale equal to the cylinder diameter. The turbulence has been
generated in a turbulence domain equal in length to the flow domain. In this Section
we shall consider the effect (if any) that varying these properties of the TFS has on
the St–Re relationship in the transition-in-wake state of the flow.
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Figure 10. Comparison of St–Re relationships for flows with TFS with different turbulence intensities Ti on

the inlet of the flow domain: -x- 25%; -o- 13.5%; -+- 8.1%; -*- 4.8%; - - LFS.

4.1. The effect of the intensity of the TFS

Figure 10 depicts the development of St for a span of Re for flows with TFS with
four different turbulence intensities: Ti = 25%, 13.5%, 8.1% and 4.8%, henceforth
denoted high, medium high, medium low and low turbulence intensity. At Re = 200,
the turbulence intensity decays to 12.2%, 7.4%, 5.2% and 3.6%, respectively, before
reaching the cylinder. Lower Re gives a more rapid decay, e.g., the high intensity
turbulence (Ti = 25%) decays to 11.1% for Re = 150 and 13.5% for Re = 350, before
reaching the cylinder surface.

Consider first the upper part of the St–Re relationship for varying Ti, as seen
in Fig. 10b). The effect of the turbulence intensity in the part of the transition-in-
wake, where the role of mode B instabilities becomes important, is perhaps what one
intuitively would expect: A lower Ti yields a St–Re relationship that is more similar
to what is found for LFS in the range 250 ≤ Re ≤ 350. The correlation between Ti
and St can be understood in light of our discussion in Section 3.2. The TFS stimulates
the mode A instabilities in the mixed A–B instability (inhibiting the development of
pure mode B in the near wake). The larger the effect of the mode A instabilities,
the lower the shedding frequency. While the high intensity TFS in Section 3 almost
completely suppresses the mode B instabilities, the results for moderate Ti reflect a
more even mix between the two modes for Re = 250 and a wake dominated by mode
B instabilities for Re = 350.

Consider now the more complex situation at the onset of three-dimensionality in
the wake, seen in Fig. 10a). At Re = 170, all TFS simulations have St below the LFS
flow (which is two-dimensional for this Reynolds number), yet there is a scatter in the
TFS data. For the Ti = 13.5% and Ti = 4.8% cases, St is surprisingly high, indicating
that the wakes have not fully developed to three-dimensional flows. Further, the early
drop in St for the case with medium low turbulence intensity contradicts a possible
simple correlation between high Ti and low Rec,TFS for our Ti range. This reflects the
complicated nature of the instability in the transition-in-wake state of the flow. To
gain insight into the mechanisms in play here, we take a more detailed look at the
temporal development of the flow at Re = 170.

Figure 11 depicts the instantaneous lift coefficient of the cylinder at Re = 170 for
the four different TFS intensities. For Ti = 25% and Ti = 8.1% the transition to a
three-dimensional wake happens at 200 < t̃ < 300, where the amplitude of CL drops
significantly in Figs. 11 a) and c). The frequency of the oscillations decreases together
with the drop in amplitude. A similar drop in CL also occurs for the Ti = 13.5% and
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Figure 11. Instantaneous lift coefficient CL of the cylinder as a function of the dimensionless time t̃ = tŪ/D,

for flows with Re = 170 and free-stream turbulence upstream of the cylinder. The intensity Ti of the turbulence
at the inlet of the flow domain is: a) 25%; b) 13.5%; c) 8.1%; d) 4.8%.

Ti = 4.8% cases at 200 < t̃ < 400, but CL returns quickly to its previous amplitude,
see Figs. 11b) and d). This behaviour can be explained in terms of a single vortex
dislocation that is unable to saturate the wake in a mode A instability state. When
the vortex dislocation disperses, the wake resumes two-dimensional vortex shedding.
Such a drop also occurs at t̃ ≈ 800 for the Ti = 13.5% case, again followed by a rebound
to the two-dimensional vortex street. The low intensity TFS case (Fig. 11d)), shows
several short periods of three-dimensionality in the wake for t̃ > 400. A saturated state
of mode A instabilities is not reached, and the wake alternates between two- and three-
dimensional flow. The result of these quasi-stable shedding modes is a St in-between
frequencies computed for three-dimensional flows (high and medium low intensity) and
the two-dimensional flow (LFS) at Re = 170. The instantaneous shedding frequency
varies between a high and a low mode as the wake alternates between two- and three-
dimensional states.

The results for varying turbulence intensities suggest that the TFS destabilizes
the wake when Re is near the critical Reynolds number, resulting in possible alter-
nations between two- and three-dimensional flow. Furthermore, the onset of three-
dimensionality at Re = 150 for Ti = 8.1% and quasi-stable transition at Re = 170
for Ti = 13.5% and Ti = 4.8% suggest that Rec,TFS is not sharply defined when large
disturbances are present in the flow. This is in accordance with the discussion by
Williamson [31] on scattered Rec data reported in experiments. In our cases, how-
ever, the disturbance is a TFS, not a contamination in the form of vortex dislocations
excited by the end conditions in the experiments.

4.2. The effect of the integral scale of the TFS

Figure 12 depicts the St–Re relationship in the transition-in-wake regime for flows with
TFS with different integral scales. The turbulence intensity is approximately 25% at
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the inlet for each case. However, as small-scale turbulence decays significantly faster
than large-scale turbulence, the turbulence intensities for the different flow cases are
no longer equal when the turbulence reaches the cylinder. For Re = 200, Ti is 12.2%,
7.2% and 6.7% at the front side of the cylinder for the turbulence with Λ/D = 1.0,
Λ/D = 0.75 and Λ/D = 0.5, respectively.

The deviations between the St–Re relationships in Fig. 12 are similar to those
discussed in the previous subsection. Again, the complicated nature of the onset of
the transition-in-wake is seen, particularly by considering the case with Λ/D = 0.75 for
low Re. At Re = 160, three-dimensionality has developed in the flow, but at Re = 170
a quasi-stable shedding mode with St alternating between results for large-scale TFS
and LFS occurs. The behaviour is a result of interactions of the TFS with the wake.
At Re = 160, conditions are favorable for a saturated state of mode A dominating the
flow, while at Re = 170 they are not. The results show that the quasi-stable state can
occur for Re > Rec,TFS. For very long simulations, we expect that alternation between
arbitrarily long periods of two- and three-dimensional flow in the wake will appear in
several of the simulations with TFS. At present, we cannot conclude that a flow in
a quasi-stable shedding state eventually will end up in a saturated three-dimensional
state.

In the upper part of the transition-in-wake regime, the deviation between the curves
in Fig. 12 is in accordance with the observations in Section 4.1. The low intensity
turbulence associated with the shorter integral scales results in a mixed A–B instability
at Re = 250, whereas the wake is dominated by mode B instability at Re = 350.

4.3. The effect of the length of the turbulence domain

As described in Section 2.3, slices of forced turbulence from the turbulence domain
are inserted on the inlet of the flow domain, from where the inflow turbulence is
convected past the cylinder. The validity of introducing turbulence in a flow in such a
way has not yet been addressed. Therefore, a short validation section is included here,
with a focus on the effect of the size of the domain used for turbulence generation.
The interesting length of the turbulence domain is the length corresponding to the
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Figure 13. Comparison of St–Re relationships for flows with TFS, with turbulence generated in domains of
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streamwise direction in the flow domain (denoted by LxT ). This is the only free length
parameter of the turbulence domain (the other lengths must match the size of the flow
domain inlet).

Inserting turbulence from slices taken from a rectangular domain into the flow
domain will introduce an artificial periodicity. This is because the same turbulence
re-enters the inlet several times over the time span that the wake flow is investigated,
due to the cycling over slices along LxT . The artificial period introduced is the time it
takes to iterate through all the slices along the x-direction in the turbulence domain,
i.e., the time between each re-occurrence of the same slice at the inlet of the flow
domain. The frequency introduced from the turbulence domain is fT = Ū/LxT . Non-
dimensionalizing this frequency. with the characteristic length (cylinder diameter D)
and characteristic velocity in the flow domain, yields f̃T = D/LxT . For a turbulence
domain equal in length to the flow domain (12D), f̃T = 0.083, which is close enough
to the Strouhal number in the transitional regime to not be neglected prior to further
investigations.

Figure 13 depicts results from flow simulations with TFS generated in domains with
LxT = 12D and LxT = 24D. Turbulence of two different integral scales are included
for both domain sizes. Doubling LxT does not affect the general trends in the St–Re
relationship, but a deviation occurs for Re = 170 for the cases with Λ/D = 1.0. The
deviation is in the behaviour at Re close to Rec,TFS, discussed in Sections 4.1 and
4.2. Unlike the flow with TFS generated in the LxT = 12D domain, flow from the
simulations with LxT = 24D and Λ/D = 1.0 enters a quasi-stable state, alternating
between two- and three-dimensional shedding modes, at Re = 170. The resulting St
is therefore in-between the results for TFS and LFS at this Re. This is not an effect
related to the artificial periodicity, but rather of a different realization of the same
turbulence having less favorable conditions for a saturated mode A dominated flow for
this particular simulation. The effect of the turbulence domain length is negligible.
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5. Conclusions

In the direct numerical simulations presented here, free-stream turbulence has been
inserted upstream of a circular cylinder for Reynolds numbers spanning over the entire
transition-in-wake state of the flow. Distinct effects of the turbulence on the transition-
in-wake are observed in two particular Re regions. These regions (denoted Region II
and IV in Fig. 6) have Re near the onset of three-dimensionality in the flow and Re
where mode B instabilities dominate the wake for flows with LFS, respectively.

With TFS, the critical Reynolds number, identified by the sudden drop in shedding
frequency due to the three-dimensional flow effects, is not sharply defined. This is not
surprising, as the instability at the onset of the transition-in-wake state of the flow
is subcritical, hence, disturbances in the flow can shift the point where the transition
occurs. The shift due to the TFS is, however, to lower Re than allowed by the hystere-
sis pattern seen in experiments for the subcritical instability. With TFS we observe
150 . Rec,TFS . 170 (as compared to Rec ' 190 for LFS), with intermittent vortex
dislocations present in the wake for Re > Rec,TFS. Quasi-stable shedding states, in
which the wake alternates between two- and three-dimensional vortex shedding, are
observed in several of our simulations for Re ≈ Rec,TFS. In such cases, the shedding
frequency is reduced when vortex dislocations occur in the wake. The vortex dislo-
cations do not, however, lead to a saturated state of mode A instabilities. Rather,
the wake either returns to a state of two-dimensional vortex shedding, until the next
vortex dislocation occurs, or stays in a three-dimensional shedding state for some time
before returning to the two-dimensional state.

Variations of the intensity and integral scale of the TFS revealed the complexity of
the onset of the transition-in-wake state of the flow. For turbulence intensity between
3.6% and 12.2% no correlation between intensity and Rec,TFS was found. Surprisingly,
the lowest Rec,TFS was seen for Ti in-between the two extremes. A reduction of the
integral scale of the turbulence resulted in a lower Rec,TFS . Unfortunately, the integral
scale of the turbulence could not be isolated from the intensity as small-scale turbu-
lence decays faster than the large scales in the flow domain. The results are therefore
inconclusive in regard to the effect of the integral scale.

In the discussion by Williamson [31] regarding the scatter in Rec data reported from
experiments, Williamson concluded that (in absence of other effects) the scatter can
be accounted for by contamination from end conditions. The scatter of the critical
Reynolds number in our simulations show another possible source of Rec variation.
The disturbances in the flow from the TFS were large enough to perturb the flow
and initiate the transition at a significantly lower Re than for a corresponding flow
with LFS and identical end conditions. Hence, in absence of other effects (including
contamination from end conditions), the scatter in Rec can be ascribed to turbulence
in the free-stream.

The second range of Re, in which an effect from the TFS is seen, is the region that
for LFS is dominated by mode B instabilities. A lower shedding frequency is observed
for the simulations with TFS in this region. This is due to the TFS stimulating the
existence of mode A instabilities, thereby inhibiting the development of a near wake
dominated by mode B instabilities. Simulations with varying turbulence intensities
revealed a correlation between this effect and Ti. A lower Ti means a closer relationship
between the TFS flow and the LFS flow for Re ≥ 250.

The lowest intensity case of our DNS has turbulence with Ti that has decayed
to approximately 3% before it reaches the cylinder for Re ≈ Rec. An interesting
extension of this study would be to find a cutoff for the intensity of the TFS that
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forces the transition.
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