
June 2007
Svein-Olaf Hvasshovd, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Apache Derby SMP scalability
Investigating limitations and opportunities for improvement

Anders Morken
Per Ottar Ribe Pahr

Problem Description

Investigate the scalability of Derby on multi-CPU and multi-core systems for an increasing
number of concurrent threads. Use a read-only (SELECT) workload. Identify performance limiting
factors and bottlenecks. Previous studies have identified latching as a potential area of resource
contention. Investigate the cost of latching and concurrent entry to the B-Tree access structure
and explore possible improvements.

Assignment given: 20. January 2007
Supervisor: Svein-Olaf Hvasshovd, IDI

Abstract

This report investigates the B-Tree access method of Apache Derby. Apache Derby is
an open source Java database system. The detailed focus of the report is on perfor-
mance aspects of the Derby page latch implementation. Our focal point is the inter-
action between the B-Tree access method and page latching, and the impact of these
components on the ability of Derby to scale on multiprocessor systems.

Derby uses simple and – in the single-threaded case – inexpensive exclusive-only page
latches. We investigate the impact on scalability of this design, and contrast it with a
version of Derby modified to support both shared read-only and exclusive page access
for lookups in index structures. This evaluation is made for single-threaded as well as
multi-threaded scenarios on multiprocessing systems.

Based on analyses of benchmark results and profiler traces, we then suggest how
Derby may be able to utilize modern Java locking primitives to improve multipro-
cessor scalability.

Preface

This master’s thesis is the result of our work in the course TDT4900 Master Thesis,
Engineering Programme at the Department of Computer and Information Science,
IDI, at the Norwegian University of Science and Technology, NTNU.

We have worked with Apache Derby, an open source database system, to identify and
understand performance bottlenecks and improve scalability on SMP systems. This
thesis builds upon our work in the autumn project for the course TDT4740 Database
Technology and Distributed Systems, Specialization.

The assignment was given in cooperation with Sun Microsystems’ Trondheim office.
Sun also helped us in initial discussions around the problem definition, and provided
us with access to an 8-way UltraSPARC system and a Niagara system for testing. We
would like to thank them, and in particular Olav Sandstaa, Øystein Grøvlen and Knut
Anders Hatlen for their input, advice and time.

We also consider ourself very lucky to be advised by professor Svein-Olaf Hvasshovd,
whose insights, advice and helpful feedback have been invaluable in the work on this
thesis.

Anders would also like to thank Hege for proofreading, patience and being such a
great girlfriend!

June 5, 2007

Per Ottar Ribe Pahr Anders Morken

vii

Contents

Abstract v

Preface vii

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1

1.1 Project context . 1

1.2 Motivation . 1

1.3 Problem definition . 2

1.4 Our contributions . 2

1.5 Thesis structure . 3

2 State of the art 5

2.1 Apache Derby . 5

2.2 Apache Derby performance and scalability 11

2.3 Concurrency control . 15

2.4 Access method concurrency . 17

2.5 Multithreading and concurrency control 24

3 Problem elaboration 29

3.1 Scalability . 29

3.2 B-Tree access and page latching . 30

3.3 Workload . 30

3.4 The B-Tree index . 30

3.5 Test systems . 32

ix

3.6 Environment . 33

4 Implementation 35

4.1 Benchmarks . 35

4.2 Shared latches . 36

4.3 Summary . 39

5 Benchmark results 41

5.1 Preliminary benchmarks . 41

5.2 Shared latches benchmarks . 45

5.3 Profiling results . 49

5.4 Summary . 54

6 Analysis 55

6.1 Preliminary benchmarks . 55

6.2 Shared latches benchmarks . 60

6.3 Profiling results . 65

6.4 Summary . 66

7 Conclusion and further work 69

7.1 Conclusion . 69

7.2 Further work and improvements . 70

Bibliography 71

Abbreviations and Terms 79

Appendices 81

A Raw results for “1704” patch 81

B Raw results for shared latches 83

C Enclosed source code and profiling snapshots 85

C.1 Benchmark application . 85

C.2 Shared latches patch . 85

C.3 Profiling snapshots . 85

x

List of Figures

2.1 Derby Embedded . 6

2.2 Derby Client/Server . 6

2.3 Derby Architecture . 7

2.4 Derby Subsystems . 8

3.1 B-Tree structure . 31

5.1 Throughput; Derby with “1704” patch; 8-way SMP system 42

5.2 Throughput; Derby with “1704” patch; T2000 CMT system 42

5.3 Response time; Derby with “1704” patch; T2000 CMT system 43

5.4 Latch wait time; 32 threads; 8-way SMP system 46

5.5 Throughput; 8-way SMP; Java 1.5 . 47

5.6 Throughput; 8-way SMP; Java 1.6 . 47

5.7 Throughput; T2000 CMT; Java 1.5 . 48

5.8 Throughput; T2000 CMT; Java 1.6 . 49

5.9 Netbeans profiler; drilldown to ArrayInputStream.<init>() 50

5.10 Netbeans profiler; comparing time spent in the ArrayInputStream class
between OLD (above) and SX (below) . 51

xi

List of Tables

2.1 Simple lock compatibility matrix . 9

2.2 Container lock compatibility matrix . 9

2.3 Row lock compatibility matrix . 10

5.1 Latch wait time; 2 threads; 8-way SMP system 44

5.2 Latch wait time; 32 threads; 8-way SMP system 44

xiii

List of Listings

4.1 SQL for test database creation . 35

4.2 diffstat output for the patch . 39

xv

Chapter 1

Introduction

This chapter is the introduction to the thesis. We will describe the background of the
project, the problem definition, our contributions and the structure of the thesis.

1.1 Project context

The course TDT4900 Master Thesis, Engineering Programme concludes the 5 year
master’s degree in Computer Science at NTNU. The master’s thesis is the result of
work during the final semester, corresponding to 30 credit points1.

We worked with Apache Derby and scalability in our “autumn project” for the course
TDT4740 Database Technology and Distributed Systems, Specialization in the autumn
semester of 2006. The project report is available online at [83]. The autumn project
was intended as a pre-study for a master’s thesis, and we chose to continue our work
on Apache Derby. In the autumn project we concluded that the scalability of Apache
Derby on SMP systems is limited, pointed out several performance bottlenecks and
suggested possible changes to improve scalability.

1.2 Motivation

The development of Apache Derby has focused on creating a lightweight database sys-
tem with a small memory footprint. This makes Derby ideal for use as an embedded
database in a Java application. Full transactional support and good support for SQL
features has set it apart from other lightweight databases. Thus, performance and scal-
ability have not been top priorities. Nor have other advanced features, e.g. replication
or clustering, which are not available in Derby at the moment2.

For embedded use in an application where access to the database is single threaded,
the data volume small and the complexity of queries low, this is not an issue. On the
other hand, there are many environments where Derby could benefit from improved
multithreaded scalability. Derby is frequently used as a backend for web applications,

1ECTS [43] credit points. An academic year of full-time study equals 60 credit points.
2It is possible to implement replication and clustering at the JDBC layer with Sequoia [90].

1

CHAPTER 1. INTRODUCTION

either in embedded or network server mode. Web applications are multithreaded by
nature, they must be able to handle multiple simultaneous requests. Web servers are
also often SMP or CMT (Chip Multi-Threading) systems, so scalability in these envi-
ronments is important. Depending on the application, the database might well be the
limiting factor of how many connections the web server can handle.

The development in the microprocessor industry has recently focused on multicore
architectures [12]. Increasing operating frequency and performance for a single core
has proven difficult, so multicore CPUs are seen as the way to execute an even higher
number of instructions per second. This means that applications must be parallelized,
i.e., multithreaded, to be able to benefit from multicore CPUs and provide the expected
performance. This is a challenge for programmers. They have to write efficient pro-
grams that scale well on parallel systems.

If Derby is to provide good performance on modern hardware and in multithreaded
applications, scalability is important. We found our work with the scalability of Derby
in the autumn project interesting, and we wanted to continue to work with Derby. We
want to further examine the scalability properties of Derby, and find ways to improve
its multithreaded performance.

1.3 Problem definition

The problem definition for this thesis was formulated as:

Investigate the scalability of Derby on multi-CPU and multi-core systems
for an increasing number of concurrent threads. Use a read-only (SELECT)
workload. Identify performance limiting factors and bottlenecks. Previous
studies have identified latching as a potential area of resource contention.
Investigate the cost of latching and concurrent entry to the B-Tree access
structure and explore possible improvements.

1.4 Our contributions

We have analyzed and benchmarked Derby to understand how it scales on SMP and
multicore CMT systems. A benchmark application has been developed, and some of
the recent and proposed changes to improve performance have been benchmarked. A
read-only workload was used.

Benchmarks and analyses point out the root node of the B-Tree index as a performance
bottleneck. We suggest shared latches as a way to improve index lookup performance
for a read-only, index intensive workload.

We have made an experimental implementation of shared, i.e., read/write, latches to
replace the exclusive latches in Derby. We have benchmarked our modified version of
Derby against two other versions. Support for shared latches improves performance
in high concurrency scenarios.

2

1.5. THESIS STRUCTURE

1.5 Thesis structure

This chapter has given an introduction to the thesis.

Chapter 2 will introduce the reader to the “state of the art”. An introduction to Apache
Derby is given, and some work on the performance and scalability of Derby presented.
This includes results from our previous “autumn project”. Then we discuss concur-
rency control and access method concurrency in database systems, with focus on B-
Tree indexes, and mechanisms for concurrency control in hardware and the Java pro-
gramming language.

Chapter 3 describes our problem, goals, hypothesis, test environment and the re-
sources available for the project.

Chapter 4 describes our contributions, i.e., the experimental implementation of sup-
port for shared latches, and a benchmark application.

Chapter 5 presents the results of benchmarking and profiling several different versions
of Derby, including our experimental implementation of shared latches support.

The results obtained are discussed and analyzed in Chapter 6. We will explain the
benchmark and profiling results, and discuss factors that limit the scalability of Derby.

Finally, Chapter 7 presents the conclusions of this thesis, and suggests possible im-
provements and future work.

3

Chapter 2

State of the art

This chapter is intended to introduce the reader to the state of the art. We give an intro-
duction to Apache Derby and present some previous work on Derby performance and
scalability. Then we will describe some of the problems associated with access meth-
ods and concurrency in database systems, and provide some insight to the problems
of multithreading and concurrency control, both at the Java level and how this relates
to the hardware Java is running on.

The reader is assumed to be somewhat familiar with database systems in general. For
an introduction to the fundamentals of a database system see our report from the “au-
tumn project” [83] and the references there.

2.1 Apache Derby

Apache Derby [5] is an Open Source [77] database management system (DBMS) writ-
ten entirely in the Java [59] programming language. The project is run by the Apache
Software Foundation (ASF) [9], and is distributed under the Apache License [10].

Derby is designed as a lightweight DBMS, with a small code1 and memory footprint.
This makes it easy to embed in Java applications. Despite being lightweight, Derby
supports SQL [58], and has full transactional support. In addition to embedded mode,
there is also a Derby network server and client. Derby implements the JDBC [60]
standard for connectivity.

2.1.1 Background

What is now known as Derby started out as JBMS when Cloudscape Inc. began de-
velopment of a Java database system in 1996. The first release was in 1997. Informix
Software, Inc. acquired Cloudscape in 1999. IBM then acquired the core database
assets2 of Informix in 2001, and the database was renamed IBM Cloudscape.

1The JAR file for the core derby engine and JDBC driver is 2.2MB for a normal build. The network server
requires another 200KB.

2The applications and tools part of Informix was split off as Ascential Software. Ascential Software was
acquired by IBM in 2005.

5

CHAPTER 2. STATE OF THE ART

In 2004, IBM decided to open the source code of Cloudscape, and donated the code
to the ASF. The project was named Derby, a subproject of the Apache DB [27] project.
Sun Microsystems joined the development, and included Derby in their stack of Java
products, under the name Java DB. As of Java 6, Java DB is included with the Java
Development Kit (JDK).

IBM has recently announced [21] that it will discontinue the IBM Cloudscape product,
but continue to support the Apache Derby project. IBM will stop selling and marketing
Cloudscape 10.0 and 10.1 June 13, 2007. The products will not be supported after
September 30, 2008.

2.1.2 Outline of Derby

As mentioned, Derby can run in either embedded or client/server mode. In embedded
mode the Derby engine runs in the same Java Virtual Machine (JVM) as the applica-
tion. In client/server mode the Derby engine and network server run in one JVM,
and client applications that run in other JVMs can access the Derby network server
over a TCP/IP network. Figure 2.1 illustrates Derby in embedded mode and Figure
2.2 illustrates operation in client/server mode. Derby supports JVM version 1.3 and
higher.

Java VM

JDBC API

Derby Engine

Application

Figure 2.1: Derby Embedded

Java VM

JDBC API

Derby Engine

Derby Network Server

Java VM

Application

JDBC Driver

Figure 2.2: Derby Client/Server

The interface between the Derby engine and client applications is provided by an im-
plementation of the JDBC standard. JDBC is used both for embedded connections to
the database and for network operation. Strict adherence to standards is important in
the development of Derby. This is also true for the SQL standards [58]. Derby supports
a subset of SQL, see [92] for a list of SQL features supported by Derby.

Network communication in client/server mode is based on the Distributed Relational
Database Architecture (DRDA) [23], which is a standard published by The Open Group
[78]. The DRDA architecture was originally developed by IBM [28], and it is also used
by the DB2 DBMS [55].

For transactional support, satisfying the ACID3 properties, Derby does logging and
recovery based on the Algorithm for Recovery and Isolation Exploiting Semantics

3Atomicity, Consistency, Isolation, Durability. These are required properties for a transaction processing
system. Precise definitions of these terms are given in [57].

6

2.1. APACHE DERBY

(ARIES) [74] protocol. ARIES uses Write Ahead Logging (WAL) and a steal/no-force4

policy. Recovery is done using repeating history and undo for uncomitted transactions.
A description of the Derby implementation of ARIES can be found in [34]. The use of
ARIES means that concurrency control in Derby is based on locking5.

2.1.3 Derby architecture

Derby is based on a modular architecture. A module provides a specific service. The
interface of a module is specified by Java interfaces, and the implementation code
is separated from the interfaces. In the Derby source code the interface definitions
for the internal Derby API can be found in the package org.apache.derby.iapi,
and the implementation code is found in org.apache.derby.impl. Note that this is
for the internal API and implementation of Derby. The external API available to the
application programmer is the JDBC standard API only, Derby does not provide a
custom API or extensions of the standard.

Figure 2.3: Derby Architecture

Figure 2.3 shows an overview of the Derby architecture. The core of Derby is the
database engine, which handles SQL and storage. All database access must go through
the JDBC layer. Other functions, e.g., lock management or buffer management, are
provided as services. The monitor subsystem handles loading (booting) of services
when required. This allows for the existence of different implementations of a service,
and the correct one to load may be determined at run time. E.g., different versions of
JDBC may be used depending on the JVM version Derby is running under.

2.1.4 Derby internals

Figure 2.4 illustrates some of the important subsystems in the Derby architecture. We
will describe some of the most important and relevant subsystems of Derby.

4A steal policy means that pages updated by a transaction can be written to disk before the transaction
is committed. This allows for greater IO flexibility and better performance, but undo operations may
have to be performed during recovery. A no-force policy means that updates done by a transaction
does not have to be forced to disk before the transaction can commit, it is enough that the operation is
logged to stable storage. Again this allows for better performance, but redo of operations may have to
be performed during recovery.

5As opposed to alternative methods for concurrency control. An introduction to concurrency control is
given in Section 2.3. Concurrency control methods and a performance analysis are presented in [3]. For
a description of multi-version concurrency control see [16].

7

CHAPTER 2. STATE OF THE ART

Figure 2.4: Derby Subsystems

JDBC

The JDBC driver is found in the package org.apache.derby.jdbc. Derby provides
both embedded and network client JDBC drivers. The JDBC layer is the interface to
the core engine, which handles parsing and execution of SQL queries.

SQL

Execution of an SQL statement consists of generating a query tree from the statement,
validation of the query, optimization and generation of Java byte code for execution.
Query optimization and access path selection is described in [89]. A description of the
Derby optimizer design can be found in [33]. Java byte code for the selected query
plan is generated, and the generated Java class can then be loaded and executed. This
is handled by the SQL execution service, implemented by the package org.apache.-
derby.impl.sql.execute. The results from the query are then made available as a
JDBC ResultSet.

Lock manager

The Derby lock manager is specified by the interfaces in the org.apache.derby.-

iapi.services.locks package. The LockFactory interface defines how locks can be
obtained and released for objects implementing the Lockable interface. This allows
the implementation of specific locking policies for different objects.

A lock is associated with a “compatibility space”, which is used to determine if a lock
request is compatible with locks already held for an object. As of Derby 10.3, the devel-
opment trunk, this is specified by the org.apache.derby.iapi.services.locks.-

CompatibilitySpace interface. The owner of a compatibility space is usually a trans-
action.

The LockFactory interface is implemented by org.apache.derby.impl.services.-
locks.SinglePool. This class holds a single pool of all the locks in the system, i.e., a
single LockSet object. A HashMap6 is used to store the pool of locks, and all access to
this object is protected by synchronization. This means that the lock table is a global
synchronization point, i.e., all lock requests are serialized.

6java.util.HashMap, included in the Java Standard Edition API.

8

2.1. APACHE DERBY

Held
Request Shared Update Exclusive
Shared X - -
Update X - -
Exclusive - - -

Table 2.1: Simple lock compatibility matrix

Held
Request CIS CIX CS CU CX
CIS X X X - -
CIX X X - - -
CS X - X - -
CU - - X - -
CX - - - - -

Table 2.2: Container lock compatibility matrix

Lock types

Shared, exclusive and update lock types are available for data locks. The compatibility
of these lock types are shown in Table 2.1. These locks have a scope of either row,
range, i.e., multiple rows, or table. Automatic escalation of multiple row locks to a
table lock is performed. The escalation threshold is a tunable parameter.

The implementation differs from this simplified view of locks. There is a difference be-
tween container, i.e., a table or index, and row locking. Hierarchical locking is used for
container locks, i.e., there are intention lock types. Hierarchical locking and intention
locks are explained in [47].

The lock types for container locking are defined in the interface org.apache.derby.-
iapi.store.raw.ContainerLock. The available types are Container Intent Shared
(CIS), Container Intent Exclusive (CIX), Container Shared (CS), Container Update (CU)
and Container Exclusive (CX). The compatibility matrix for these lock types is repro-
duced in Table 2.2.

Support for different isolation levels [13] complicates the implementation of row lock-
ing. Separate lock types exist for level 3 isolation and for level 2 and lower levels of
isolation. The lock types defined in org.apache.derby.iapi.store.raw.RowLock

are Row Shared level 2 (RS2), Row Shared level 3 (RS3), Row Update level 2 (RU2),
Row Update level 3 (RU3), Row Insert Previous key (RIP), Row Insert (RI), Row Ex-
clusive level 2 (RX2) and Row Exclusive level 3 (RX3). The compatibility matrix for
row locks is shown in Table 2.3.

Locking and isolation in Derby is explained in the Derby Developer’s Guide [32]. For
more in-depth information about the implementation, see the Derby Javadoc, available
online at [6], or the Derby source code [8].

9

CHAPTER 2. STATE OF THE ART

Held
Request RS2 RS3 RU2 RU3 RIP RI RX2 RX3
RS2 X X X X X - - -
RS3 X X X X - - - -
RU2 X X - - X - - -
RU3 X X - - - - - -
RIP X - X - X X X -
RI - - - - X - - -
RX2 - - - - X - - -
RX3 - - - - - - - -

Table 2.3: Row lock compatibility matrix

Store

The Derby store consists of the raw and access storage layers. The raw store pro-
vides page based storage in files. The access layer uses the raw store and provides
an interface for accessing conglomerates, i.e., tables or indexes, and rows. Locking is
performed at the access level, using the service provided by the lock manager.

Indexes in Derby are provided by a B-Tree [22] implementation. The org.apache.-

derby.impl.store.access.btree package implements a regular B+-Tree, i.e., all
pointers are stored at the leaf nodes. The B-Tree implementation in Derby is explained
in more detail at [82]. Note that the BTree class defines the root page of the B-Tree to
be the first page in the container used to store the index. The first page in a container
is defined as page number 1 in the ContainerHandle interface. The B-Tree index is
always stored in a separate container, i.e., file.

Concurrent access to the B-Tree index is made safe by the use of page level latches7.
The B-Tree scan protocol requests latches in a top-down and left-to-right order, and at
most two latches can be held at any time. This prevents deadlocks involving latches
during B-Tree operations. If latches are held for a parent and a child node during
B-Tree traversal, then the latch for the parent node has to be released before another
latch can be acquired. This is called a lock-coupling algorithm. Derby uses data-only
locking [73], so locks are not used for B-Tree keys. Locks are obtained only for the data
rows the index points to.

The raw storage layer provides page based storage. This service is used by the access
layer. Pages are organized in files and latches are used for mutual exclusion at the raw
page level. Latches in Derby are exclusive, there are no shared/read-only latches. In
the current release version8 of Derby, latches are implemented using the lock manager.
This means that the overhead for obtaining or releasing a latch is comparable to that of
obtaining or releasing a lock. This is contrary to the traditional assumption that latches
should be an order of magnitude cheaper than locks [74]. Using the lock manager also
means that latching will contribute to the contention on the global lock table.

7Latches are “lightweight” locks used to ensure physical consistency, usually at a disk page level. An
explanation of latches is provided in [74].

810.2 is the current stable branch. As of May 1 2007 the latest official release is 10.2.2.0, which was
released on Dec 12 2006.

10

2.2. APACHE DERBY PERFORMANCE AND SCALABILITY

In the development trunk of Derby, the implementation of latching has been changed
to not use the lock manager. Each page, implemented by org.apache.derby.impl.-

store.raw.data.BasePage, will instead keep track of its latch status. Latch acquisi-
tion and release is then synchronized on the page object itself instead of on the global
lock management subsystem.

Even though there is no global synchronization to obtain a latch, there might still be
contention for the page itself, i.e., for a “hot spot” database record or part of an index.
A typical example of this is the root node of a B-Tree. All threads accessing a table
through the index will have to obtain a latch on the root node, thus causing contention.
The Java wait()/notify() protocol [98] is used when several threads are waiting to
obtain a latch on the same page, so there is no fair queue. It is considered unlikely that
this will cause problems with starvation, since latches are only held for a short time.

Cache management

The cache management service in Derby is defined by interfaces in the org.apache.-
derby.iapi.services.cache package, and the implementation is found in org.-

apache.derby.impl.services.cache. The Clock class implements the CLOCK cache
replacement algorithm. The CLOCK policy is described in [19]. The cache implemen-
tation uses a synchronized Hashtable, so access to the cache is serialized. This syn-
chronization is for the cache itself only, thread safety for objects retrieved from the
cache must be handled separately.

Some work has been done to improve the cache manager in Derby and evaluate other
cache replacement algorithms. A Google Summer of Code project in 2006 investigated
possible improvements to the Derby cache manager. Results and a report from the
project can be found in the Apache Derby Wiki [35].

2.2 Apache Derby performance and scalability

This section presents a selection of work on the performance and scalability of Derby.
We will comment on some performance analyses and benchmark results. We will also
present our work and conclusions from the “autumn project”. For general perfor-
mance and tuning tips for Derby we refer to the Tuning Derby [100] guide.

2.2.1 Sun’s Apachecon US 2005 presentation

At Apachecon [11] US 2005, Sun Microsystems gave a presentation on the performance
of Derby [7]. A quick introduction to the Derby architecture was given, and a perfor-
mance evaluation presented. Tips are provided for host system configuration, and
for tuning Derby for better performance. This is illustrated with benchmarks. It is also
pointed out that use of prepared statements [20] and writing efficient SQL, using indexes
where appropriate, is crucial for performance.

The second part of the presentation is a performance comparison of Derby to two other
open source database systems, PostgreSQL [87] and MySQL [75]. Both the embedded

11

CHAPTER 2. STATE OF THE ART

and client/server versions of Derby are tested. No configuration or tuning for per-
formance was done for any of the systems, except that the database buffer was set to
64MB and the log kept on a separate disk from the database. Tests were run for a main-
memory database (10MB) and an on-disk database (10GB), and with 1-100 concurrent
clients. Two different workloads were used, TPC-B [99] like and single record SELECT.

For the TPC-B like load and a large on-disk database, Derby outperforms MySQL and
PostgreSQL. For the in-memory database MySQL wins, while PostgreSQL performs
poorly for the update intensive TPC-B like benchmarks. In the single record SELECT
benchmarks, Derby is outperformed by both competitors for the in-memory database.
For the on-disk database, Derby provides higher throughput than MySQL, but lower
than PostgreSQL.

The embedded and client/server versions of Derby provides similar throughput, ex-
cept for the main-memory database with a single record SELECT load. Measurements
show that there is higher CPU usage for client/server Derby. A count of the packets
sent in networked operation shows that Derby sends and receives four packets per
transaction for the single record SELECT load, compared to two packets per transac-
tion for the competing systems. This extra network overhead explains why the client-
/server version of Derby performs poorly for such workloads.

2.2.2 PolePosition benchmarks

The open source PolePosition [85] benchmark is a suite of tests for database and ORM9

systems. Benchmarks are implemented and results published for several open source
products. There are no results available for commercial database systems. This is
because the licenses for such systems generally disallow the publication of benchmark
results.

PolePosition provides a framework for writing and running tests, collecting results
and presenting the results as graphs. Several benchmarks are implemented. A test is
called a “circuit”, and these circuits implement different workloads. E.g., the “Bahrain”
circuit is a benchmark of write, query, update and delete operations on flat objects and
the “Imola” circuit is a read-only benchmark that retrieves objects by their native ID.
The published results for the benchmark suite is available online at [86].

The relevance of the PolePosition benchmark for comparison of Derby with other
products has been questioned. The tested systems have different transactional support
and ACID compliance. Derby has full transactional support, and the default isolation
level is “read committed”. This means that the results are not necessarily directly com-
parable.

The PolePosition source code also reveals that some of the tests are not using prepared
statements. For Derby this has a huge impact for queries that are executed multiple
times. When interpreting the PolePosition results one has to consider that the different
systems are not providing the same transactional consistency, and that details in the
implementation of a benchmark can affect the results.

9Object-Relational Mapping [1]. ORM systems provide automatic translation between an object model
and a relational database, i.e., they allow the transparent use of a relational database as the persistent
backend of an object oriented application.

12

2.2. APACHE DERBY PERFORMANCE AND SCALABILITY

2.2.3 Oracle Berkeley DB Java Edition vs Derby

A paper [81] published by Oracle in November, 2006, compares Derby to Oracle Berke-
ley DB Java Edition [80]. Berkeley DB Java Edition is an open source, lightweight,
embedded database system. It has a feature set and interface similar to the original
Berkeley DB10. Berkeley DB Java Edition has support for ACID transactions, but it is
not a relational database. Data is stored as simple key/value pairs and there is no
query language support. Thus it is quite limited, compared to Derby, which provides
SQL. Berkeley DB also lacks network support.

Benchmarks comparing performance for insert, update and delete operations are pre-
sented. Object persistence performance is benchmarked using the Direct Persistence
Layer (DPL) [15] with Berkeley DB Java Edition and the Hibernate [51] ORM frame-
work with Derby. While Hibernate does full translation of objects to a relational model
and SQL, DPL only provides object persistence. The overhead in using Hibernate and
Derby will be higher, but it provides a more flexible solution, and the data can also be
accessed through SQL.

Berkeley DB Java Edition and Apache Derby are quite different products. As the paper
points out, benchmarking them is an “apples to oranges” [88] comparison. The choice
between Derby and Berkeley DB Java Edition for a certain application is more likely to
be about the features needed, not about performance. Berkeley DB Java Edition per-
forms better than Derby, but has a minimal feature set. One of the Derby developers
has commented on the paper. His post, and a reply from one of the Berkeley DB Java
Edition developers, is available online at [26].

2.2.4 DERBY-1704

The Derby development community has been looking into the performance issues
with the lock manager. DERBY-1704 [29] is a ticket in the Apache Derby project’s
issue tracker, JIRA11. An experimental patch to split the hash tables in LockSet and
SinglePool into 16 tables each, to eliminate global contention, was made. Bench-
marks show performance increases for multiple clients, without negative impact for
single-threaded applications. Note that these results were obtained when latching was
done using the lock manager.

The work on DERBY-1704 has resulted in the removal of the Hashtable in SinglePool

from the current development version of Derby, but these changes are not yet in the
release version. LockSet remains a global synchronization point, but changes are pro-
posed for an implementation using ConcurrentHashMap, available in Java 1.5, to im-
prove multithreaded performance.

An experimental implementation of LockSet using ConcurrentHashMap is made avail-
able in DERBY-2327 [31]. Benchmarks show throughput improvements, especially for
lock intensive loads. There is no significant reduction in throughput for a single client.

10An open source embedded database, originally developed at U.C. Berkeley and then by Sleepycat Soft-
ware, which was acquired by Oracle in 2006. For more information about Berkeley DB and its history,
see [14].

11JIRA [61] is a bug and issue tracking system for use in project management. JIRA is made by Atlassian
Software Systems.

13

CHAPTER 2. STATE OF THE ART

This patch is not yet committed to the development version of Derby.

2.2.5 DERBY-2107

As mentioned in Section 2.1.4, the implementation of latches in Derby has been changed
from using the lock manager to setting a latch directly on the page object in question.
This change is the result of the work on the DERBY-2107 [30] issue. The changes have
been approved and included in the current development version of Derby.

The separation of page latches from the lock manager will reduce the load at the con-
tention point in the lock manager, and improve performance for latch-intensive loads.
Note that cheaper latching will not eliminate the problem of contention for the page
to be latched, e.g., the root node of a B-Tree will still be a contention point even if it is
cheaper to obtain a latch on the page.

2.2.6 Our “autumn project”

We did a project [83] on Apache Derby SMP scalability for our “autumn project” in
2006. In that project we benchmarked, profiled and analyzed Derby to understand
its multithreading scalability properties. We used a single record SELECT benchmark,
DTrace12 and profiling to locate points of resource contention that limit scalability. We
also analyzed the lock manager to understand how locking is performed for SELECT,
UPDATE and DELETE operations.

A summary of the results and suggested improvements from our “autumn project” is
included here.

Findings

The scalability of Derby on SMP systems is poor. For a SELECT only workload there is
a slight increase in throughput from one to two threads, but as more than two threads
are added the number of transactions executed per second decreases. At eight con-
current threads the throughput is lower than for a single thread. This indicates that
contention for resources is serializing the load.

The lock manager in Derby is identified as a contention point that impedes multi-
threaded performance. Global synchronization on the lock tables results in Java moni-
tor contention. A lot of CPU time is wasted on threads either waiting for synchroniza-
tion monitors, or executing explicit wait() calls, when trying to obtain a lock. While
the database level locks are necessary to provide consistent transaction processing, it
should be possible to reduce the contention caused by Java synchronization.

The use of the lock manager to implement latches causes performance problems for
latch intensive workloads, e.g., index lookup. For the SELECT workload we observe
that all the top ten locks ordered by wait time are latches. This is because of latches

12DTrace [42], short for Dynamic Tracing, is a tracing framework built into Sun Microsystem’s Solaris
10 [91] operating system. It provides the possibility for real-time instrumentation of both user and
kernel level code. This is useful for profiling and analyzing performance problems.

14

2.3. CONCURRENCY CONTROL

being obtained for the pages in the B-Tree during index traversal. The time required to
obtain a lock and a latch was measured using a profiler, and found to be respectively
68µs and 55µs on average. This can be compared to 1.5µs on average to acquire a
java.util.concurrent.locks.ReentrantLock13 on the same system.

Experiments with the DERBY-1704 patch, that splits the hash tables in the lock man-
ager, show that the cache manager is also a point of contention. The Clock class keeps
the cached pages in a synchronized hash table, and synchronization is also needed
when updating the state of the cache. The situation with the cache manager is much
like that of the lock manager, it is a global synchronization point. When contention in
the lock manager is reduced, the bottleneck moves to the cache manager.

Conclusions

We found that Derby scales poorly on SMP systems. For a high number of concurent
threads there is a negative speedup. The lock manager seems to be a major perfor-
mance bottleneck for a SELECT only workload. This is due to global synchronization
points resulting in serialization of lock and latch requests. The cache manager is also
identified as a performance bottleneck, again due to global synchronization across all
threads.

Several possible improvements are suggested. Some of these have already been im-
plemented, or work is in progress by the Derby community. Some possible changes
are:

• Splitting the Hashtable objects in the lock manager.

• Move latching out of the lock manager.

• Implement read/write latches.

• Let transactions keep track of their held locks.

• Use of concurrent data structures and lock-free algorithms.

• Reduce synchronization in the cache manager.

• Reimplementation of the CLOCK algorithm or implementation of other cache re-
placement algorithms.

• Look into the use of synchronization and synchronized data structures elsewhere
in the Derby code.

2.3 Concurrency control

If a database or transaction processing system is to support multiple users simultane-
ously, some sort of concurrency control is needed to provide transactional consistency.

13Available in Java 1.5 and newer versions.

15

CHAPTER 2. STATE OF THE ART

A lot of research effort has been put into the development of efficient concurrency con-
trol algorithms. A description of the problems associated with concurrency, and the
consistency requirements for transaction processing, can be found in [46].

We will give a short presentation of concurrency control mechanisms and the associ-
ated performance implications.

2.3.1 Concurrency control methods

Concurrency control methods can be classified as either blocking, i.e., methods that
use some form of locking, or non-blocking, also known as optimistic, methods. The
traditional locking methods will result in transactions being blocked, waiting for the
owner of the lock, if there is a lock conflict. Execution cannot resume until the owner
releases the lock, i.e., when the transaction commits or aborts if a strict 2PL14 protocol
is used. This means poor throughput, if transactions spend a lot of time waiting in a
blocked state. If coarse grained locking is used, it might result in a lot of unnecessary
waiting. Fine grained locking, on the other hand, gives extra overhead for the locking
protocol. Examples of database systems that use a locking approach to concurrency
control are IBM’s DB2 [55], Oracle [25] and, as explained in Section 2.1, Apache Derby.

The argument for optimistic concurrency control methods is that locking results in too
much overhead, if it is only needed in the worst case. The optimistic approach is to
let transactions execute without locking, and then, in a validation phase, verify that no
conflicting operations were performed, before the results are written and the transac-
tion commits. If a conflict is detected between two transactions, one of the transactions
is aborted and restarted. Optimistic methods, and two algorithms for validation, are
presented in [64]. Mimer SQL [71] is a DBMS using an optimistic concurrency control
algorithm. Optimistic concurrency control in Mimer is described in [70].

Another approach is multiversion concurrency control (MVCC) [16]. In MVCC rows
are not overwritten when they are updated. Instead the old version is kept, the new
version of the row is written to another location, and rows are timestamped. A trans-
action will read the most recent version of a row with a timestamp older than the
transaction. Thus read operations are never blocked. Write operations can either be
validated for consistency at commit time, i.e., like the optimistic methods, or locking
can be used in combination with multiversioning. The combination of timestamping
and locking is known as a mixed method. PostgreSQL [87] is an example of a DMBS
using a MVCC scheme.

2.3.2 Performance of concurrency control schemes

The idea behind optimistic concurrency control methods is to provide better perfor-
mance when locking is not really needed. On the other hand, resources will be wasted
when transactions have to be restarted. When transactions are restarted due to con-
flicts they have to perform operations again, thus wasting CPU time. Different con-

14Two Phase Locking. A transaction has a growing phase where locks can be acquired, and a shrinking
phase where locks can be released. No more locks can be acquired when the shrinking phase has been
entered. Strict 2PL requires that all locks are held until the transaction either commits or aborts.

16

2.4. ACCESS METHOD CONCURRENCY

currency control strategies are studied in [3], and results of performance simulations
are presented.

It is shown that blocking methods perform better than restart-oriented methods, when
resources are limited. This is because they conserve resources by waiting, contrary
to the optimistic methods, where more work has to be performed due to restarting
transactions. Under the assumption of infinite resources, or low resource utilization,
the optimistic algorithm performs best. This is because it allows a higher degree of
concurrency, and, under low utilization, wasted resources is not a problem. For a
practical system, with limited resources and designed for high utilization, a blocking
concurrency control strategy seems to be the best choice. As a result of this, almost all
DBMS implementations use a blocking approach to concurrency control.

2.4 Access method concurrency

In addition to providing transactional consistency, a database system also needs forms
of concurrency control to ensure consistency of internal data structures, e.g., indexes.
Insert, update and delete operations may modify the structure of the index. When
such modifications are done, it is important that concurrent access to the index does
not expose an inconsistent state.

In this section we give a brief introduction to the problems associated with concurrent
access to index structures, describe some of the algorithms for B-Tree concurrency, and
investigate the performance of some B-Tree variants. This will allow us to evaluate the
concurrency control mechanism used in the B-Tree index implementation in Derby.

2.4.1 Introduction to index concurrency

A DBMS provides indexed access methods to improve performance, i.e., the cost, in
IO operations, to retrieve a single row is likely to be significantly lower for an indexed
lookup than for a table scan. In the single client, i.e., single-threaded, case it is that easy.
A lower number of page accesses when using an index means better performance.

In a multi threaded scenario, however, it is more complicated. Concurrency control is
needed to make sure that the consistency of the index is maintained, and that index
lookups return the correct results. This concurrency control requirement may lead
to contention. Even though the problem of two threads competing for access to the
whole table, as would be the case if table scans were used, is reduced, there may still
be contention on the index. The index lookup might be a performance bottleneck, if
several simultaneous transactions are accessing a table via the same index.

For a hierarchical index, e.g., a B-Tree, the highest level may be a contention point. This
is because all index lookups start with reading the root node of the tree. If shared locks
are used, the impact of this is reduced, as the root node is seldom updated. Insert or
delete operations, that modify the structure of the index, require mutual exclusion to
ensure the consistency of the index. These operations require exclusive locks for struc-
ture modifications, while read-only search operations acquire only shared locks. For
workloads that result in a large number of index structure modifications, contention

17

CHAPTER 2. STATE OF THE ART

may be a more significant problem.

2.4.2 B-Tree concurrency

The problem of concurrency control in B-Trees has been studied extensively. Many
algorithms, locking protocols and modifications of the B-Tree have been proposed,
some of them are quite complex. An example is the B-link Tree, proposed in [68]. We
are primarily concerned with the B+-Tree variant, because this is the B-Tree variant
used in Derby, but for the purpose of discussion other variants and algorithms will
be described. B-Tree variants and algorithms for concurrency control are described
in [93]. We will present some of the algorithms here.

Naive approach

The simplest approach to concurrency control in B-Trees is to exclusively lock all parts
of the tree that might be modified. If a node may be modified, this means that ex-
clusive access to the entire sub-tree rooted at the node must be obtained. Because
structure modifications might propagate up the tree, there is a risk that the whole tree
must be locked. This simple solution provides a low level of concurrency, because
locking a sub-tree, or in worst cases the whole tree, in exclusive mode will block other
operations. If the index is not in main memory, it will be very inefficient to keep the
entire index locked while waiting for an IO operation to fetch the next node.

For an index that is kept entirely in main memory, the naive approach to concurrency
may give satisfactory performance for single CPU systems. In this case the overhead
to obtain and release a lock may be of the same order of magnitude as the index op-
erations. If no IO operations may be performed during index operations, it may be
more efficient to just lock the entire tree, compared to setting a high number of locks
for each node involved in the index operation. For scalability on a multi CPU system
it may be necessary to use multiple entry points to the tree structure, multiple trees or
other access methods.

Bayer-Schkolnick algorithms

The Bayer-Schkolnick algorithms for concurrent B-Tree modification use a hierarchical
locking protocol with S, X, IX and SIX locks15. Structure modifications in the Bayer-
Schkolnick algorithms are done with exclusive access to the entire scope of the update,
essentially as one atomic operation with respect to other concurrent operations. Read-
only index searches use S locks and lock-coupling16 during tree traversals. This ensures
that no conflicting modifications can be performed, because the exclusive lock types
are incompatible with shared locks. Because lock-coupling is used, a consistent tree
will be observed during a traversal.

For updates there are several variants of the Bayer-Schkolnick algorithm. They are
known as B-X, B-SIX and B-OPT. The B-X algorithm uses X locks and lock-coupling for

15These lock types are explained in [47].
16A lock-coupling algorithm holds at most two locks during tree traversal. The lock held for the current

node is released as soon as the lock for the child node has been obtained.

18

2.4. ACCESS METHOD CONCURRENCY

updates. The problem with this approach is that an exclusive lock must be obtained
for all nodes in the search path of an update operation. Requiring X locks for nodes
that may not be modified is inefficient. Especially for the frequently accessed root page
this leads to contention.

The B-SIX variant uses SIX locks and lock-coupling during tree traversal for update
operations, and upgrades to X locks when reaching a node that must be updated. This
allows a higher degree of concurrency, because SIX locks are compatible with S locks.
There will be no conflicts with read operations other than for the nodes that actually
have to be modified. This approach is still inefficient for concurrent updates, which
will be conflicting also at the higher levels of the tree, even if the nodes will not actually
be updated.

B-OPT is an “optimistic” version of the algorithm, which assumes that node splits are
not likely to happen. IX locks and lock-coupling are used during traversal for update
operations. When reaching the leaf node an X lock is acquired. If the child node is
safe17, the modification can be performed at the leaf level. If the leaf is not safe, the
locks will be released and the algorithm restarts from the root node like the SIX variant,
acquiring an exclusive lock the first time an unsafe node is encountered. For B-Trees
with high fanout18, page splits and merges are assumed to be rare. This version of the
algorithm is expected to perform well, even if it risks an extra traversal in worst cases.

Top-down algortihms

In top-down algorithms preparatory page splits and merges are performed. If an update
operation encounters a full node during traversal, the node will be split. Correspond-
ingly, a delete operation will merge nodes if a node with only one entry19 remaining
is found. This approach may split or merge nodes that otherwise might not have been
modified, but it ensures that parent nodes are always safe, so splits or merges can be
performed at lower levels without risk of changes propagating up the tree.

For updates, the top-down variants can be classified as the Bayer-Schkolnick algo-
rithms, i.e., TD-X, TD-SIX and TD-OPT. TD-X uses X locks and lock-coupling. Before
releasing the lock on the parent node during lock-coupling, a split or merge can be
performed if an unsafe node was reached. TD-SIX is a variation of the algorithm using
SIX locks, that will be upgraded to X locks only when needed, like the B-SIX algorithm.

The “optimistic” version of the top-down algorithm, TD-OPT, uses S locks and lock-
coupling on the first pass, assuming that structure modifications will most likely not
be needed at the higher levels. The leaf is locked with an X lock, and if it is unsafe the
algorithm restarts, using the TD-SIX protocol on the second pass.

The important improvement in the top-down algorithms, as opposed to the Bayer-
Schkolnick algorithms, is that modifications are reduced to a series of operations in-

17A safe node in a B-Tree is a node that will not have to be split or merged if an insert or delete occurs.
18Fanout is the number of pointers per node in the B-Tree. A high fanout means a higher number of

children per node, and a lower tree height for a given number of keys. For B-Trees stored in large disk
blocks the fanout can typically be quite large, a fanout of 100 or more is not uncommon.

19In practical implementations of B-Trees nodes are usually not required to be at least half full. Merges
are only performed when nodes become empty. This improves efficiency without wasting too much
space.

19

CHAPTER 2. STATE OF THE ART

volving only two nodes, i.e., the node to be split or merged, and the parent node. Thus
exclusive access is not needed for the entire subtree of the node to be updated. This
allows for higher concurrency, because concurrent modifications are allowed in the
parts of the tree structure that are not directly affected by the update.

The B-link Tree

The B-link Tree [68] is a B-Tree variant where nodes at each level20 are linked together
in increasing key order, i.e., each node is linked to its right sibling. Each node also
contains a high key, which is the highest key value of the sub-tree below the node. The
links and the high key value allow page splits to happen in two steps, this is called
half-splits. This means that in the B-link Tree algorithms, structure modifications can
be broken up into sub-operations that affect only nodes at one level.

When splitting a node, it is locked in exclusive mode. Then space for a new node is
allocated, and the higher half of the keys in the node are copied to the new node. The
right link of the original node is pointed at the new node, and the new node points to
the node that was linked from the original node. Then the link from the parent node
must be updated, and a link to the newly created node inserted. This requires locking
the parent in exclusive mode. But since the parent was not locked when the split was
performed, other operations might follow an inconsistent link to the newly split node,
which has now been unlocked. This situation is resolved by always comparing the
search value to the high key when reaching a node. If the search value is greater than
the high key, the node has been split. Then the link to the next page at the same level
must be followed, this is called a link chase.

The original B-link algorithm [68] gives no procedure for merging nodes, instead nodes
are allowed to underflow in the case of delete operations. An algorithm for merging
nodes in a corresponding two step manner, termed a half-merge, is given in [65]. This
algorithm requires the introduction of a new pointer, called the outlink. In a merge op-
eration, the keys in the node on the right side is moved to the node on the left, and the
outlink from the right node pointed at the left node, i.e., where the keys were moved.
This allows searches that reach the removed node, before it has been unlinked from
the parent, to follow the link to the newly merged node containing the keys.

Two variants of the B-link algorithm are LY (for Lehman-Yao) and LY-LC. In the LY
algorithm, searches use S locks during traversal. Locks on nodes are released before ac-
quiring a lock on the next node, this differs from the lock-coupling approach. Update
operations follow the same protocol during traversal, but when the leaf to be updated
is reached, the S lock is released, and an attempt made to acquire an X lock on the leaf.
At most one lock is held at any time.

When the X lock has been granted, the page might have been modified, in this case
link chases will be performed until the correct node is found. X locks are used during
these link chases, but locks are released before the next one is acquired. If the update
requires a split or a merge, the parent node will also have to be updated. Then the lock
is released, before the higher-level node that was used is locked in X mode. Note that
this node may have been updated, so link chasing may be necessary to find the correct

20As opposed to the B+-Tree, where only nodes at the leaf level are linked, in increasing key value order,
to allow efficient value range scans.

20

2.4. ACCESS METHOD CONCURRENCY

node to update.

The LY B-link algorithm allows operations to see inconsistent states. This is because
lock-coupling is not used, but a node is unlocked before the next one is locked. The
next node may already be locked, or a concurrent operation can obtain a lock on it,
thus leaving the node in a conflicting state when the lock is granted. E.g., an insert
operation might find the key it is inserting existing at a higher level, because a delete
operation on the key in question has not yet propagated up the tree. This is solved
by restarting update operations when such inconsistencies are detected. There is no
guarantee that an operation does not have to be restarted multiple times.

The possibility of inconsistent situations is resolved by the LY-LC algorithm. In this
algorithm, update operations release the lock on a node that has been split or merged
after the lock to update the parent has been acquired. Updaters retain an S lock on
newly split or merged nodes when requesting an X lock on the parent node to be
updated. This can be explained as “reverse” lock-copling, i.e., on the way up the tree
instead of down. This bottom-up approach to structure modifications allows higher
concurrency.

OPT-DLOCK

A new algorithm, called OPT-DLOCK, is introduced in [93]. As the name implies,
it is an “optimisic” algorithm, in the sense that it assumes that splits or merges will
most likely not have to be performed. The algorithm depends on deadlock detection
to decide if a restart is required. Updaters use S locks, that are kept until a safe node
is reached, during traversal. A node is only considered safe if it is safe for both insert
and delete operations. When the leaf is reached, it is locked in X mode. If the leaf is
unsafe, the lock is released and the highest level S lock still held is upgraded to an X
lock, then X locks are acquired for the lower-level nodes in the scope of the update,
and the updates performed.

If two updaters are in conflict, they will have the same high-level safe node. This
means that there will be a deadlock, when both operations try to upgrade their locks
on the node to an X lock. Because the conflicting operations must have the same
high-level safe node, deadlocks can be detected locally at nodes. When a deadlock
is detected, one of the operations is restarted. To avoid starvation, priority is given to
operations by timestamping.

ARIES/KVL and ARIES/IM

Two methods for improved concurrent performance of B-Tree operations, based on the
ARIES protocol, are presented in [73]. They are ARIES/KVL (ARIES using Key-Value
Locking) and ARIES/IM (ARIES for Index Management). In both algorithms, a B-Tree
variant where leaf nodes are linked to both their left and right siblings is used. This
allows efficient range scans. Structure modifications are performed bottom-up from
the leaf nodes.

In ARIES/KVL, lock-coupling (latch coupling) and S locks are used for tree traver-
sal. An exclusive latch is obtained for the leaf node before any modification to the

21

CHAPTER 2. STATE OF THE ART

tree structure, and this is held until all changes caused by the modification have been
performed.

During modification, another thread might read an inconsistent pointer from a node,
resulting from a split or merge at a lower level that has not yet propagated up the
tree. This is solved by setting a bit, called the Structure Modification Bit (SM_Bit), on
the modified pages. This bit is set when the modification of a leaf node is initiated,
indicating that the page is under modification.

When structure modifications propagate up the tree, the SM_Bit is set for all the pages
affected by the modification. This allows the detection of an inconsistent state. If in-
consistencies are encountered, the search is restarted. Remembering the parent nodes
that have been visited, and their version number, allows the search to be restarted from
the lowest possible consistent level in the tree, i.e., a restart from the root node can be
avoided in most cases. When the structure modification is complete, the SM_Bit is
reset for all the pages that was updated.

ARIES/IM uses the same protocol for latching and index traversal as ARIES/KVL, but
provides a more efficient logical locking protocol. Locks are obtained for individual
instances of keys, instead of key values as in ARIES/KVL. This allows a higher level of
concurrency for non-unique indexes. ARIES/IM requires a minimal number of locks,
and thus provides a higher level of concurrency.

There are two variants of ARIES/IM, one using data-only locking, the other uses index-
specific locking. If the transactional unit of locking is a page, data-only locking will lock
the page containing the data value. If the unit of locking is a row, only the specific data
row will be locked. Index-specific locking, on the other hand, differentiates between
a lock on a key value and a lock on the corresponding data value. Data-only locking
allows for a reduction in the number of locks required, while index-specific locking
provides higher concurrency in some cases, at the expense of more locking overhead.

2.4.3 Performance of B-Tree variants

In [93] several B-Tree concurrency control algorithms are discussed, and a performance
simulation is done for varying system parameters, e.g., the fanout of the B-Trees, num-
ber of CPUs and disks, and buffer size. Different workloads simulating low, moderate
and high contention scenarios are used. The performance of the algorithms are evalu-
ated when the level of concurrency increases.

Low contention

Simulations are first run for a low contention scenario. A workload consisting of 80%
search operations, 10% random inserts and 10% random deletes is used. The experi-
ment is configured with a buffer pool holding about 75% of the index. For a system
with one CPU and a single disk, the different algorithms give approximately the same
throughput. Increasing the concurrency level from 1 to 4 gives only a slight increase
in throughput, and all algorithms saturate at this level. This is because the single disk
becomes a bottleneck.

For a single CPU system with 8 disks all algorithms reach a higher throughput. The

22

2.4. ACCESS METHOD CONCURRENCY

lock-coupling, i.e., pessimistic, algorithms give about half the throughput of the opti-
mistic and B-link algorithms. For the optimistic variants disk utilization is high, but
for the pessimistic algorithms disk utilization is less than half of the maximum. This
indicates that the pessimistic algorithms are limited by lock contention, not by the
available resources. The waiting time to obtain locks for the root node is shown to
be high compared to the response time of the transactions for the lock-coupling algo-
rithms, i.e., the root node is a bottleneck.

Moderate contention

A workload with 100% inserts is used for a moderate contention scenario. Again a
buffer pool that can fit 75% of the initial index is used. The difference between the
algorithms is again small for a system with only a single disk. For 8 disks the B-link
algorithms perform best, closely followed by the optimistic variants. The pessimistic
algorithms perform much worse.

The reason for the B-link algorithms giving better throughput is that they manage to
utilize the disks completely, while the optimistic algorithms utilize only about 80% of
the maximum disk capacity. Of the optimistic algorithms, the highest peak throughput
is provided by the top-down variant. This is because the time spent waiting for locks
is lower with the TD-OPT than with B-OPT. TD-OPT results in a higher number of
restarts, but this is not a problem when throughput is limited by disk capacity.

To evaluate the performance of an in-memory index, simulations for the moderate
contention workload are also run for a scenario with infinite resources, i.e., unlimited
CPU and disk capacity. Under these conditions, B-OPT performs better than TD-OPT.
This is because TD-OPT performs a higher number of restarts, and the overhead of a
restart is higher in the case of infinite resources.

High contention

A high contention scenario was simulated with a workload consisting of 50% appends
and 50% random searches. Appends are done in increasing key order, this creates a
high level of contention for the rightmost nodes in the tree. The difference between the
algorithms is again small for a single CPU system with one disk. This is also the case
if the number of disks is increased to 8. If infinite resources are assumed, the B-link
algorithms perform better than the other variants, showing improved throughput at
high levels of concurrency. There was no significant difference between the LY and
LY-LC variants of the B-link Tree.

Simulations are also run for the high contention workload when the whole index is in
main memory. In this case, TD-SIX, a pessimistic algorithm, performs better than the
B-link and optimistic variants for a single CPU system with one disk. This is because
the high number of link chases for the B-link variants, caused by the high contention
append workload, results in much overhead at high levels of concurrency.

For the optimistic variants, a high number of restarts results in much overhead. For
the B-link variants, multiple link chases may be necessary because of the high con-
tention append workload. The paper points out that for an index that can be kept in
main memory only, the overhead of link chases or restarts is of the same order of mag-

23

CHAPTER 2. STATE OF THE ART

nitude as the response time of an operation. This means that a high number of link
chases or restarts will give a relatively high increase in response time, thus reducing
throughput. If a higher number of CPUs is used, or infinite resources assumed, the
B-link and optimistic variants perform better than the pessimistic algorithms, also for
an in-memory index. This is because the impact of wasted resources for link chases or
restarts is reduced when the CPU is not saturated.

Conclusions

The conclusions of the paper is that the B-link variants generally perform best for dif-
ferent system configurations and workloads. An algorithm that does lock-coupling
with exclusive locks will result in bad performance, because this reduces parallelism.
Bottlenecks form at the root node of B-trees if it is locked in exclusive mode. The
ARIES/IM algorithm is predicted to perform close to the B-link algorithms if several
page splits at one time are allowed. No further explanation is given for this assump-
tion. However, the ARIES variants are similar to the B-link algorithms, performing
structure modifications in a bottom-up manner.

2.4.4 The Derby B-tree protocol

The B-Tree scan algorithm in Derby uses lock-coupling, as explained in Section 2.1.4.
The B-Tree locking protocol uses the same page level latches that are used to ensure
low level physical consistency of all data pages in Derby. This means that there are
only exclusive latches. Latching in Derby was explained in Section 2.1.4. This means
that all index operations will have to obtain exclusive access to the root node at the
start of an index operation, i.e., the root node will be a bottleneck for high levels of
concurrency. As concluded in Section 2.4.3, lock-coupling with exclusive latches is
inefficient.

The Derby protocol for updates in the B-Tree is an optimistic variant, even though
the exclusive latches make it inefficient. In the first pass, updates are not performed
until the leaf is reached. If the leaf is unsafe for the operation, the algorithm releases
locks and restarts from the root node, this time splitting or merging the internal nodes
that are unsafe. After the internal nodes have been updated, the algorithm does a
normal restart of the operation. Because locks are released after the internal node
update phase, there is no guarantee that other transactions have not modified the tree,
and the leaf again has become unsafe. Thus several restarts might be required.

The Derby B-Tree algorithm is likely to provide poor performance for high levels of
concurrency. This is because it uses exclusive locking and lock-coupling. The possi-
bility of multiple restarts of operations that involve structure modifications may also
give extra overhead.

2.5 Multithreading and concurrency control

Derby executes all JDBC calls in the thread they were made from. As its clients are
often multithreaded, Derby also needs to maintain thread safety. In addition to thread

24

2.5. MULTITHREADING AND CONCURRENCY CONTROL

safety, Derby needs to maintain transactional isolation, which inherently works at a
level higher than threads, using different synchronization primitives and strategies.
While not directly related, the implementation of transactional isolation needs to use
lower-level thread synchronization primitives to ensure a coherent view of data.

To fully understand the performance implications of multithreaded Derby running
on a multiprocessor machine, it is important to understand the performance implica-
tions of low-level synchronization primitives, as well as how the implementation uses
them. In this section we will therefore describe some hardware features used for syn-
chronization, the synchronization primitives that are available in Java and how they
are implemented.

2.5.1 Hardware support for multithreaded software

Different hardware architectures present different low-level primitives for locking, but
the general building block is an operation that permits a read and subsequent write to
a memory location to happen atomically. We will discuss such atomic instructions, and
instruction reordering, which can have unwanted effects for thread synchronization,
and how memory barriers can be used to resolve this.

Locks and atomic instructions

Compare-And-Swap (CAS) is one of the more commonly available atomic memory
access primitives. It is available in the SPARC, i.e., the CASA instruction [104], and
Intel x86, i.e., the CMPXCHG instruction [24], architectures.

The MIPS21 approach to atomic memory access is the Load Linked / Store Conditional
instruction pair, which is interesting because it nicely illustrates how the atomic access
property is handled in hardware. A “linked” load will set a “link bit” in addition to
performing the load. This link bit will be checked by the conditional store operation,
which will fail if the link bit is unset. The hardware will take care of unsetting the
link bit if the underlying memory location is touched by another processor, i.e., if the
cache line is invalidated, or if bus snooping22 reveals that someone else has written to
the memory location.

This points to another problem with lock contention on multiprocessors. A heavily
contended lock on a shared-memory multiprocessor will not only force threads to wait
for resources, it also consumes system resources. Because blocking a thread using the
OS is an expensive operation, it is common to repeatedly attempt to acquire the lock
a few times, known as spinning on the lock, before yielding. With multiple processors
contending for a lock, this causes the processors to contend for ownership of the cache
line containing the lock. This causes cache coherency traffic on the CPU/memory
interconnect. More on this can be found in papers such as [17] and [4].

21MIPS [62], for Microprocessor without Interlocked Pipeline Stages, is a RISC processor architecture by
MIPS Technologies [72].

22Bus Snooping is a technique used to ensure cache coherence in multiprocessor systems. Processors listen
for broacasts about cache line status on a common bus, and invalidate and update lines as necessary.

25

CHAPTER 2. STATE OF THE ART

Out of order execution and memory barriers

Instruction reordering can happen both at compilation time and execution time. Mod-
ern compilers reorder instructions as part of the optimization, an example of this is
given in [63]. Modern processors also reorder instructions dynamically, e.g., to reduce
the amount of time spent waiting for memory loads and stores [50].

While this reordering carefully avoids changing the final result of the computation,
it can affect the order of reads and writes as seen from other concurrent threads of
execution, thus leading to very challenging debugging sessions.

To regain control of when memory is read and written, special instructions known as
memory barriers can be inserted into the instruction stream, which prevents reorder-
ing of loads and stores across the barrier.

One example of a place where such a barrier is needed is at the end of a critical section.
A write barrier is needed before the critical section ends, to make sure that any stores
intended to be protected by the critical section are not reordered and done outside of
the critical section.

2.5.2 Java threading and thread synchronization

The Java language provides support for multithreading. An execution thread in Java
is represented by the java.lang.Thread class. Java provides synchronization primi-
tives, to enable mutual exclusion for threads, and also higher level locking primitives
in the java.util.concurrent package.

To understand the implications of multithreading and thread synchronization in Java
we will discuss some of these features, and how they are implemented in the current
Sun JVM.

The Java Memory Model

The Java Memory Model is defined in chapter 17.4 of the Java Language Specification,
Third Edition [45]. The memory model specifies the rules that decide whether a partic-
ular execution of a program is valid or not. This approach, as opposed to defining how
a program should be executed, gives implementations a fair amount of leeway to op-
timize and reorder instructions, still ensuring that the observed behavior of software
is correct for the given rules.

Java monitors and synchronization

The principal concurrency control mechanism in Java is the monitor, a term coined
in [52]. Java monitors are not “true” monitors in this sense, see [48] and [49]. Concep-
tually, every Java object has a monitor associated with it. A Java monitor is essentially
a combined mutual exclusion lock and condition variable. We consider a full discus-
sion of monitors beyond the scope of this thesis.

The synchronized keyword is used to enter, i.e., lock and leave, i.e., unlock, mon-
itors. Either a method or a code block can be synchronized. The language and com-

26

2.5. MULTITHREADING AND CONCURRENCY CONTROL

piler are constructed in a way that ensures that monitors will always be symmetrically
locked. Monitors will always be released as the control flow leaves the synchronized
block or method.

This property of Java’s object locking means that it is unsuitable for some applications,
such as lock-coupling in B-trees. However, when combined with condition variable
functionality, implementing a simple old-fashioned lock, using monitors and a few
state variables, is straightforward.

The performance of Java synchronization has been the subject of much research. There
has been a significant focus of engineering effort, particularly in VM implementations
with mature JIT compilers, where code execution is fast enough to make synchroniza-
tion overhead a significant factor.

JVM implementation of synchronization primitives

JVMs are free to implement Java monitors however they like, as long as the require-
ments of the Java Memory Model are fulfilled. For a practical example, we will take a
look at how Sun Microsystems’ current releases of the HotSpot23 Java VM implements
monitors to see how the issues discussed above influence monitors and scalability.

Implementations of synchronization primitives have evolved as Java VM technology
has matured. JVMs prior to HotSpot placed relatively little emphasis on synchroniza-
tion performance, but it has received significant work in newer versions. [2] and [37]
are technical reports from 1999 and 2006, respectively, that discuss how JVMs can im-
plement synchronization primitives as efficiently as possible.

Both papers tell us about the costs of synchronization and how the authors seek to min-
imize the impact of those costs, and exploit the characteristic uses of synchronization.
For example, David Dice, one of the authors of [37], discusses the costs of HotSpot
1.6’s locking techniques in a weblog post at [39], and the gory details can be found in
the HotSpot source code, available at [53].

Current JVM releases use very cheap locking primitives in the simple and common
case of a single thread working on an object without contention, called biased locking,
and use increasingly heavy methods for more complex, but less common, situations.
While lock biasing [37] and lock inflation [2] technically are two separate techniques,
they are employed together by the HotSpot JVM.

We see in [54] that in the optimum fast-path24, i.e., a lock biased towards the locking
thread, locking entails essentially a few loads and compares to verify that the lock
remains biased towards the current thread. This avoids the potentially high latency of
the CAS operation in a common case.

CAS operations will be used when the owner of a lock is changed, but as long as a
lock is uncontended only a single data word is necessary to maintain the lock state. A
full lock data structure will not be used before a lock is contended, i.e., threads have to

23HotSpot is Sun’s current implementation of the JVM. It was originally developed by Longview Tech-
nologies, LLC, which was acquired by Sun Microsystems in 1997. It became the default Sun JVM for
Java 1.3. The latest version is 1.6, released December 11, 2006, as part of the Java 6 platform.

24The term fast-path means that the execution of complex synchronization code is skipped in the uncon-
tended case. This is explained in [37].

27

CHAPTER 2. STATE OF THE ART

wait, or when wait() is called on the monitor of an object.

Higher-level locking primitives

The java.util.concurrent package, formalized in JSR-166 [66], was added to Java
in the 1.5 release. It contains a number of more advanced concurrency primitives, as
an extension of the monitors specified by the language. It includes new versions of
locking primitives such as locks, read/write locks and semaphores. It also adds data
structures intended to aid concurrent programming, e.g., ConcurrentHashMap, a con-
current version of java.util.Hashtable, and ConcurrentLinkedQueue, a thread-
safe queue based on a wait-free algorithm [69].

Our primary interests in the java.util.concurrent package are the locks, specifi-
cally ReentrantLock and ReentrantReadWriteLock. These classes provide a mutual-
exclusion and a shared/exclusive lock, respectively. Both are implemented using the
AbstractQueuedSynchronizer helper class. For a further discussion of the imple-
mentation of the java.util.concurrent package, we recommend [67].

These locks provide memory model semantics similar to synchronized, but do not
force locking and unlocking to be balanced, or even to happen in the same method.
Implemented mostly in Java, these primitives are not as finely tuned as Java synchro-
nization, but they can still be a performant alternative where synchronized is not
applicable. This is discussed in [38].

28

Chapter 3

Problem elaboration

Our task is to investigate the scalability properties of Derby and determine possible
improvements. Our goal is to improve performance by modifying Derby to support
read/write latches. A proof of concept implementation of shared latches will allow
evaluation of the performance impact of latches on scalability. We will benchmark
different modifications of Derby to understand the impact of changes to the locking
system. We will limit the scope of our benchmarks to a read-only workload.

In this chapter we will describe the problem and our goals, our hypothesis, how we
will run test benchmarks, and the available resources and environment for this project.

3.1 Scalability

We are interested in the scalability of Derby for a multithreaded workload. We will
study how throughput, i.e., the number of transactions executed per second, devel-
ops for an increasing number of concurrent threads. We will run benchmarks both
on a SMP system with 8 CPUs, and on a single CPU CMT system with 8 cores and
simultaneous execution of 4 threads per core.

We will compare different modifications to Derby that have been made to improve
performance. The impact of these patches on benchmark results will be evaluated.
We will also run benchmarks with both version 1.5 and 1.6 of Sun’s implementation
of the Java Virtual Machine. This is intended to show the performance impact of the
enhancements to monitors and synchronization in the 1.6 JVM.

Applying the DERBY-1704 [29] patch, described in Section 2.2.4, to the development
trunk of Derby will allow us to benchmark a version of Derby where the problem
of contention in the lock manager has been reduced. This should make the problem
of latch contention more obvious. We will benchmark a version of Derby with the
DERBY-1704 patch applied to the current development trunk. This will allow us to
evaluate the impact of latch contention, especially for the pages in the B-Tree index.

29

CHAPTER 3. PROBLEM ELABORATION

3.2 B-Tree access and page latching

One of our conclusions in the autumn project was that the way latches are imple-
mented in Derby is inefficient. We will investigate the effect the implementation of
latches outside the lock manager has on multithreaded performance.

We also concluded that an implementation of shared latches should improve perfor-
mance for latch-intensive workloads. The root node of the B-Tree index is a significant
point of contention. All threads accessing the database through the index have to ob-
tain an exclusive latch on the root node.

Our hypothesis is that an implementation of read/write latches should provide a sig-
nificant performance gain for a high number of concurrent clients when running a
read-only workload, because the bottleneck effect at the root node can be reduced or
removed. If shared read-only access to the root node is allowed, for a read-only work-
load, threads do not have to wait to obtain exclusive access.

We will provide an experimental implementation of shared latches and benchmark the
modified version of Derby. This will allow us to study how reduced contention on the
B-Tree index affects performance.

3.3 Workload

As our task specifies, we study the performance and scalability of Derby for a read-
only workload. We use a very simple workload, where transactions run a single
SELECT operation. We are primarily interested in the cost of B-Tree index lookups,
so we choose an index intensive workload. Therefor we use a SELECT statement that
selects only the primary key for a single row.

The primary key is indexed1, i.e., the actual database does not have to be read if an
indexed access method is used, because the primary key is contained in the index.
Since only the value of the primary key column is selected, an index lookup to see if
the value is present is sufficient to execute the query. This access path will be preferred
by the optimizer.

We define a database schema with rows of approximately 100 bytes. Each row has
an INTEGER primary key value and a CHAR value. We will use a test database with
100 000 rows for our benchmarks. The read-only benchmark retrieves the indexed
primary key for random values in the valid key range. The details of the benchmark
application are described in section 4.1.

3.4 The B-Tree index

Knowledge about the number of rows to be indexed allows us to reason about the size
and structure of the B-Tree index for the primary key in our test database.

1Derby creates indexes for primary key values automatically. This is because indexes are used to enforce
the primary key constraint. Such indexes are called backing indexes.

30

3.4. THE B-TREE INDEX

Root

... ~ 500 leaf level nodes ...

Figure 3.1: B-Tree structure

The block size used for the B-Tree nodes in Derby is 4KB. An index entry must contain
a 4 byte integer and a pointer to a block at the next level, or to the data block for leaf
nodes. Allowing for at least 8 bytes for the pointer, and allowing for some overhead,
give an estimated entry size of 20 bytes per index record. 20 byte entries give a fanout
of 4KB

20B
≈ 200. For 100 000 rows, this means that the leaf level will have at least 100000

200
=

500 blocks.

Since the leaf level is is at least 500 blocks, this requires more entries at the next level
than the root block alone can hold. There must therefore be an intermediate level, i.e.,
the B-Tree will have 3 levels.

If we have 500 leaf nodes, this requires at least d500
200
e = 3 second level nodes. If the

second level nodes are half full, it would require 5 nodes. If the leaf nodes are not
full, i.e., there are significantly more than 500 leaf nodes, more than 3 second level
nodes would also be needed. This of course assumes that there are not enough leaf
nodes to warrant a 4th level, with a fanout of 200 this would mean more than about
2002 = 40000 leaf nodes. Figure 3.1 illustrates a possible 3 level B-Tree structure, with
5 blocks on the second level.

If the leaf level blocks are half full, 1000 leafs would be needed. Up to 1000 leaf blocks
can be supported by 5 second level blocks. Depending on the order in which keys are
inserted, and the algorithm for inserting and splitting, blocks may end up either full
or half full, or in an arbitrary state in between for random inserts.

Inserting data into our test database is done sequentially in increasing key order. We
have investigated the Derby source code to understand how B-Tree inserts are per-
formed. For splits when the key to be inserted is the highest value in the block, the
B-Tree insert algorithm in Derby splits the block by only moving the highest key to the
new block2. This approach to inserts is used regardless of what B-Tree level the insert
happens at. This means that the blocks in the B-Tree index for our test database will
be full, except for the rightmost blocks and the root node.

2This is implemented in the classes BranchControlRow and LeafControlRow in the package
org.apache.derby.impl.store.access.btree in the Derby source code [8].

31

CHAPTER 3. PROBLEM ELABORATION

3.5 Test systems

We will give a brief description of the two systems we have used to benchmark Derby
in this project. The systems were made available to us by Sun Microsystems, Inc. in
Trondheim. One is a traditional multiprocessor machine, and the other a multicore
CMT system.

Both systems were running the Solaris 10 [91] operating system. For our benchmarks
we used versions 1.5 and 1.6 of Sun’s JVM.

3.5.1 Sun Fire V880

The Sun Fire V880 [97] is a SMP system with support for up to 8 CPUs. We used a con-
figuration with 8 CPUs and 32GB main memory. The CPUs are 1.2GHz UltraSPARC
III [102] processors. The UltraSPARC III is a 64 bit CPU based on the SPARC V9 archi-
tecture. The SPARC V9 architecture uses big-endian instructions, but can access data
both in little-endian and big-endian mode.

3.5.2 Sun Fire T2000

The Sun Fire T2000 [96] server has one UltraSPARC T1 [103] CPU, also known as “Ni-
agara”. The T1 is the latest3 UltraSPARC processor. It is based on the Ultrasparc Archi-
tecture 2005 specification, which is compliant with the SPARC V9 architecture. The T1
is both a multi-core and a multithreading CPU. It has 8 cores and each core can execute
4 simultaneous threads. This means that the T1 can execute 32 simultaneous threads.
Sun has named its CMT technology “CoolThreads”. The T1 CPU and the T2000 server
architecture are described in [95]. Our test system was equipped with 16GB of main
memory.

Each core is simpler than a contemporary CPU, and the single-thread performance
offered is lower than for other recent processors, e.g., compared to the single threaded
performance of the UltraSPARC III CPUs in the V880. For multithreaded workloads
however, the T1 will provide good throughput. The T1 can only be used in single CPU
configurations, SMP is not supported. The T1 processor architecture and source code
has been released under an open source license in the OpenSPARC [79] project.

One weakness with the T1 architecture is that the CPU only has a single floating point
unit. This means that all threads performing floating point operations have to share
the same FPU. I.e., floating point operations are serialized and performance is poor.
Thus the T1 is not suited for scientific or other applications that require good floating
point performance. For its inteded server market, however, this is not a problem since
applications rarely rely on FPU performance. E.g., webservers and databases are typ-
ically multithreaded applications that require good integer performance. This makes
the T1 well suited for use in such systems.

3The successor to the T1, known as T2, is planned for a launch in the second half of 2007. The T2 will
have 8 cores, each capable of executing 8 threads, for a total of 64 simultaneous threads.

32

3.6. ENVIRONMENT

3.6 Environment

For this project we have used workstations provided by IDI, NTNU. We have used
mostly free/open software and tools. We will describe our available resources and
some of the important software used in this project.

3.6.1 Workstations

IDI has provided us with office space in a computer lab and workstations. Our devel-
opment workstations are 3GHz Intel Pentium 4 machines with 1GB of main memory.
We have used Ubuntu Linux [101] as the operating system for these workstations. For
Java we have used Sun’s JDK implementations for Linux. We have used Java versions
1.5 and 1.6 for development and testing. Building Derby also requires Java 1.3 and 1.4,
and some additional libraries.

3.6.2 Software

To aid us in the work with the Java source code for Derby, and the benchmark ap-
plication, we have used two different Java IDEs4. For revision control we have used
Subversion. We will give a brief description of these tools here.

NetBeans

NetBeans [76] is an open source Java IDE developed by Sun Microsystems. NetBeans
is also a framework for development of graphical Java applications. In addition to the
expected IDE features, NetBeans provides a powerful profiler. The profiler can be of
great help in the analysis and optimization of Java applications.

The NetBeans Profiler reports run-time statistics on CPU and memory usage, and
can be set up record timing information for specific methods. Information on active
threads is also provided, and thread state information is collected over the lifetime of
all threads. It is possible to attach the profiler to an application running in a remote
JVM. When the profiler is not attached, there is no instrumentation overhead.

IntelliJ IDEA

IntelliJ IDEA [56] is a proprietary and commercial Java IDE by JetBrains. IntelliJ IDEA
provides a powerful source code editor with support for “intelligent” code completion
and code refactoring. It has a powerful debugger with a graphical interface.

The debugger can be attached to an external JVM running in debug mode. Breakpoints
can be set or code executed step by step while the execution stack trace and state of

4An IDE, short for Integrated Development Environment, is an application that simplifies software de-
velopment by integrating a source code editor, compiler and debugging tools. IDEs also often support
version control and integration with other software development tools.

33

CHAPTER 3. PROBLEM ELABORATION

objects and variables can be explored. This has allowed us to attach the debugger to a
JVM running Derby and study execution in great detail.

We have used the time limited demo version of IntelliJ IDEA for this project.

Subversion

For revision control for our files we have used the Subversion (SVN) [94] Version Con-
trol System (VCS). SVN is also used for version control by the Derby project, and the
Derby source code is hosted at the Apache SVN repository.

SVN is developed by CollabNet, Inc. and released under the open source Subversion
License5. SVN is designed as a replacement for the traditional CVS. It has most of
the features from CVS. SVN also has a more extensive and flexible feature set. This
includes better metadata support, with versioning.

5The Subversion License is a modification of the BSD License. Reuse and redistribution is freely per-
mitted if the license is retained and distributed with the modified version. Some trademark clauses
apply.

34

Chapter 4

Implementation

We have implemented a benchmark application for the workload described in Section
3.3, and an experimental patch for shared latches. In this chapter we will present our
implementations. The benchmark application is used to test our modified version and
several other variants of Derby.

4.1 Benchmarks

For benchmarking we have used a simple test database and a Java application. This
section describes the workload and the benchmark application.

4.1.1 Test database and workload

For benchmarking we use a simple database definition. The test database has one table
with ∼100 byte rows. The SQL query for creating this table is included in Listing 4.1.

CREATE TABLE test(
A INTEGER NOT NULL,
B CHAR(96) FOR BIT DATA NOT NULL,
PRIMARY KEY(A)

);

Listing 4.1: SQL for test database creation

We have used a default table size of 100000 rows. This is tunable in the benchmark ap-
plication. The workload is implemented as a tunable number of threads, each running
transactions consisting solely of executing the query
SELECT a FROM test WHERE a = ?;

for random values within the range of a. This is run in a loop a configurable number
of times per active thread.

35

CHAPTER 4. IMPLEMENTATION

4.1.2 Benchmark application

We have implemented a benchmark application called selectload. The program con-
sists of a main class called Select, an abstract Worker class with the extension classes
SelectWorker, UpdateWorker and DeleteWorker, and the TransactionStats class.
The source code has been enclosed with this report in a .zip file, see Appendix C.1.

The Select class is the main class of the application. It is responsible for initializing
the test database if specified. Before the benchmark run there is an optional “warmup”
phase. This consists of first executing a SELECT * FROM test; query, and then run-
ning a warmup Worker thread for the specified number of transactions. This warmup
phase should ensure that the database and index are cached both by Derby and in the
operating system’s file system cache.

The mentioned SELECT query used for the read-only select workload is implemented
by the SelectWorker class. This is the default workload for the benchmark appli-
cation. We also implemented the classes UpdateWorker and DeleteWorker to study
how UPDATE and DELETE queries are executed by Derby.

Each Worker thread has a TransactionStats object that is used to keep track of statis-
tics for the number of transactions executed, time elapsed, response time, etc. At the
end of a benchmark run statistics for all Worker threads are collected and aggregated.

The total time that threads have spent waiting to latch a page can optionally be col-
lected on a per-page basis. Note that the total time spent waiting to obtain latches may
be higher than the elapsed wall clock time, if many threads are waiting to latch the
same page at the same time.

Measuring the latch wait time was made possible with a modification of Derby, using
the debug system, which, in combination with our benchmark application, allows for
the collection of the time spent in wait()1 calls on page objects to obtain latches. I.e.,
only the time spent in wait() calls for a contended latch is measured, not the time to
obtain an uncontended latch. This modification of Derby is included with our shared
latches patch.

4.2 Shared latches

As described in Section 2.1.4, Derby page consumers latch pages to receive exclusive
access to the in-memory page data structure. The logic for latching is implemented in
the org.apache.derby.impl.store.raw.data.BasePage class. We decided to ex-
periment with shared latches after preliminary benchmarks, the results of which will
be presented in Section 5.1, revealed very large wait times spent in the BasePage.-

setExclusive() method, escpecially for B-Tree root pages.

This section will describe the goals for our implementation of shared latches, some
of the challenges met during programming, and the resulting patch with support for
shared latches. This patched version of Derby was later used for benchmarking to
evaluate the performance impact of shared latches.

1The use of wait() when obtaining latches in Derby was explained in Section 2.1.4. For more about
the wait() and notify() methods in Java thread synchronization, see [98].

36

4.2. SHARED LATCHES

4.2.1 Implementation goals

Our stated goal to “explore possible improvements” guided our implementation to-
wards a simple one. We focused on making Derby work “good enough” to run our
simple workload – with little emphasis on the requirements of production quality
code, or even the ability to run workloads other than our own.

As we wanted to measure the impact of removing the latch bottleneck in the Derby
B-Tree implementation, our effort would be concentrated on the latch implementation
in BasePage and the B-Tree code in org.apache.derby.impl.store.access.btree.

In the spirit of “do the simplest thing that possibly might work”, and in the hope of
getting an indication of the cost of latching by comparing regular Derby to a Derby en-
tirely without latching, an initial attempt was made to make the methods BasePage.-
setExclusive() and BasePage.releaseExclusive() no-ops, and thus in effect dis-
able latching entirely.

However, we found that even with a read-only workload, the implementation of Base-
Page required some latching to be done.

4.2.2 Challenges

One of the significant problems with the change from exclusive ownership of pages to
shared ownership is the inherent assumption of single-theaded access while a page is
latched.

The original simplified latching code, which did not involve the full locking subsystem
to implement latches, actually piggybacked latching status on a member variable of
the BasePage class, BasePage.owner. When a page was latched, owner was set to
point to the ContainerHandle representing the opened B-tree instance to the page
consumer.

The associated logic to determine if a page was latched or not was:

• owner 6= null⇒ page is latched.

• owner = null⇒ page is unlatched.

As the owner field is used in subsequent calls to BasePage while the page is latched,
not setting the owner field, as we did when making latch operations a no-op, caused
NullPointerExceptions to be thrown in testing.

While not a showstopper, these and other assumptions around the use of the owner

field meant that we had to investigate how the field was used. We also looked for
other assumptions, regarding thread safety and data sharing, that would no longer be
valid when multiple readers may be accessing a page simultaneously.

The other significant thread safety assumption was a page internal org.apache.-
derby.iapi.services.io.ArrayInputStream instance, one for each BasePage in-
stance. It is used to read data values from the internal byte[] data array, and one part
of its internal state is an array index pointer which is moved as data is read from the

37

CHAPTER 4. IMPLEMENTATION

array. Multiple readers using the same pointer will “leapfrog” through the data and
bad things will happen.

A remedy for this problem was required if shared latching was to work at all. We tried
various ways to handle this, including creating a new ArrayInputStream for each
method invocation requiring one, giving each thread a private ArrayInputStream

using java.lang.ThreadLocal, and pooling and recycling the ArrayInputStream

instances. The patch as delivered uses the first method - creating new instances for
each invocation.

Changing BasePage to support both shared and exclusive latches started with em-
bedding a ReentrantReadWriteLock and modifying the methods setExclusive(),
setExclusiveNoWait(), and releaseExclusive() in BasePage to use the exclusive
write lock provided by ReentrantReadWriteLock. Corresponding setShared(), etc.,
methods were created to use the shared read lock. This was the easy part.

Modifying the B-Tree implementation to use shared latches was done without regard
for correctness in complex cases involving tree modification. This should not be a
problem in the case of a read-only workload, as no structure modifications are neces-
sary.

The interfaces and abstraction layers separating the B-tree code from the latching
methods of BasePage also required modification to support two different modes of
latching. This involved modifying method signatures to add a boolean shared flag,
and some modification of the logic of methods that maintain internal latching state.

4.2.3 Result

The end result is available as a patch produced with the svn diff2 command. It can
be applied to the Derby source code, revision 501369, with the patch utility [84]. The
patch is enclosed with this report, see Appendix C.2 for more information.

This is an experimental patch, database consistency is not guaranteed, and it is not
appropriate for inclusion in the Derby project in its current form.

In addition to the changes necessary to implement SX latches, we also added some
instrumentation code to measure the time spent waiting for latches. As we utilize
features only available in Java 1.5 and Java 1.6, other changes were necessary to make
Derby compile cleanly with Java 1.5 compilers. This was unrelated to our goal, but
still necessary. Java 1.5 and 1.6 compatibility was necessary to enable us to experiment
with modern Java language features, such as atomic operations and ReentrantRead-

WriteLock.

The changes made to the Derby code are summarized by the output from the diffstat
utility [41], included in Listing 4.2. The file BasePage.java received the largest amount
of modification. This is natural, as it contained the original latching code, and it was
also the most natural place to put latch instrumentation code.

The changes to the lock management code in java/engine/org/apache/derby/-

impl/services/locks are forward-ports of the split-hashtables.diff patch in

2svn diff is the SVN version of the diff [40] program, showing the difference between the local
copy of a file and the latest revision in the repository, or between two specified revisions.

38

4.3. SUMMARY

java/engine/org/apache/derby/iapi/store/raw/ContainerHandle.java | 19
java/engine/org/apache/derby/iapi/store/raw/Page.java | 24
java/engine/org/apache/derby/impl/services/build.xml | 8
java/engine/org/apache/derby/impl/services/locks/Deadlock.java | 41
java/engine/org/apache/derby/impl/services/locks/LockSet.java | 163 ++-
java/engine/org/apache/derby/impl/services/locks/LockSpace.java | 2
java/engine/org/apache/derby/impl/services/locks/LockTableVTI.java | 26
java/engine/org/apache/derby/impl/services/locks/SinglePool.java | 102 +-
java/engine/org/apache/derby/impl/store/access/btree/BTreeController.java | 15
java/engine/org/apache/derby/impl/store/access/btree/BTreeCostController.java | 6
java/engine/org/apache/derby/impl/store/access/btree/BTreeMaxScan.java | 2
java/engine/org/apache/derby/impl/store/access/btree/BTreePostCommit.java | 7
java/engine/org/apache/derby/impl/store/access/btree/BTreeScan.java | 11
java/engine/org/apache/derby/impl/store/access/btree/BranchControlRow.java | 15
java/engine/org/apache/derby/impl/store/access/btree/ControlRow.java | 54 -
java/engine/org/apache/derby/impl/store/access/btree/D_BTreeController.java | 12
java/engine/org/apache/derby/impl/store/access/btree/LeafControlRow.java | 9
java/engine/org/apache/derby/impl/store/access/btree/OpenBTree.java | 12
java/engine/org/apache/derby/impl/store/access/btree/index/B2IFactory.java | 15
java/engine/org/apache/derby/impl/store/access/btree/index/B2IRowLocking3.java | 6
java/engine/org/apache/derby/impl/store/access/btree/index/B2IUndo.java | 12
java/engine/org/apache/derby/impl/store/build.xml | 6
java/engine/org/apache/derby/impl/store/raw/data/AllocPage.java | 6
java/engine/org/apache/derby/impl/store/raw/data/BaseContainer.java | 49 -
java/engine/org/apache/derby/impl/store/raw/data/BaseContainerHandle.java | 9
java/engine/org/apache/derby/impl/store/raw/data/BasePage.java | 425 ++++------
java/engine/org/apache/derby/impl/store/raw/data/CachedPage.java | 21
java/engine/org/apache/derby/impl/store/raw/data/FileContainer.java | 61 -
java/engine/org/apache/derby/impl/store/raw/data/RAFContainer4.java | 2
java/engine/org/apache/derby/impl/store/raw/data/StoredPage.java | 43 -
java/shared/build.xml | 10
java/shared/org/apache/derby/shared/common/sanity/SanityManager.java | 10
java/testing/org/apache/derbyTesting/functionTests/tests/derbynet/DerbyNetAutoStart.java | 4
java/testing/org/apache/derbyTesting/unitTests/store/T_QualifierTest.java | 6
tools/ant/properties/compilepath.properties | 2
tools/ant/properties/modern.properties | 1
36 files changed, 676 insertions(+), 540 deletions(-)

Listing 4.2: diffstat output showing the files changed as part of the work

DERBY-1704. We added these to our source tree manually as they were not yet in the
mainline trunk when we started our work. We still wanted to remove the known bot-
tleneck in the lock management subsystem to enable us to better observe the behavior
of the latches.

java/engine/org/apache/derby/impl/store/access/btree contains the Derby B-
Tree implementation, and changes in this part of the source are naturally related to the
use of shared latches in B-Tree traversal, as well as the associated interface definition
changes which required changes to interface consumers.

4.3 Summary

We have implemented a benchmark application, and a patch that adds experimental
support for shared latches to Derby.

The benchmark application will be used to test the multithreaded scalability of differ-
ent versions of Derby for a read-only workload that selects a single, indexed primary
key value.

Support for shared latches was implemented to study the performance impact of re-
moving the bottleneck at the root node of the B-Tree index. The experimental patch
will allow us to run benchmarks, but it is not ready for production use. The patch uses
java.util.concurrent.locks.ReentrantReadWriteLock to implemented support
for shared / exclusive latches, and requires Java 1.5 or newer versions.

Benchmark results will be presented in Chapter 5.

39

Chapter 5

Benchmark results

In this chapter we present the results of our benchmarks.

At first we did some preliminary benchmarks to evaluate the split hash tables patch
from DERBY-1704 [29], described in Section 2.2.4. The changes introduced by this
patch remove the Java level synchronization bottleneck in the lock manager, thus mak-
ing the effects of latch contention more obvious. Measuring the wait time to obtain
latches will show if latch contention is a problem.

After implementing experimental support for shared latches, we benchmarked three
different versions of Derby, running in both Java 1.5 and Java 1.6. The versions tested
are the “old” version of the Derby development trunk, where latching is done using
the lock manager, a “new” version of the trunk that separates latches from the lock
manager, and our experimental version with shared latches not using the lock man-
ager.

All versions of Derby used for benchmarking have been compiled with the “insane”
build option, i.e., they do not include asserts and debugging information. This code,
available in a “sane” build is useful for testing and debugging during development,
but it causes extra overhead. Therefor, “insane” builds are preferred in production
environments when high performance is required. For more information about this,
and how to compile Derby from source, see the Building Derby guide [18].

We also include some results from profiling Derby.

5.1 Preliminary benchmarks

These are the results from the preliminary benchmarks. The version of Derby used is
the development trunk as of January, 2007, with the DERBY-1704 patch applied to split
the hash tables in the lock manager. Note that some work was needed for the patch
to apply cleanly, as the development trunk of Derby had changed since the patch was
made available.

Benchmarks were run on both the 8 CPU V880 system and on the T2000 multicore
system. Java version 1.6 was used for these benchmarks. A total number of 800 000
transactions were run for each test, i.e., the number of transactions executed per thread
depended on the number of active threads. A warmup phase, executing 100 000 trans-

41

CHAPTER 5. BENCHMARK RESULTS

1 2 4 8 16 32 64 128
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

V880, Java 1.6

“1704”

Threads

T
h
ro

u
g
h
p
u
t,

 t
x
n
s/

se
c

Figure 5.1: Throughput; Derby with “1704” patch; 8-way SMP system

1 2 4 8 16 32 64 128

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

T2000, Java 1.6

“1704”

Threads

Th
ro

ug
hp

ut
, t

xn
s/

se
c

Figure 5.2: Throughput; Derby with “1704” patch; T2000 CMT system

actions, was used in all the tests. Timing information for latch wait time per page was
collected.

5.1.1 Throughput and response time

Figure 5.1 shows the throughput, i.e., number of simple SELECT transactions executed
per second, for a varying number of concurrent threads on the 8-way V880 system.
Throughput increases until there is 8 concurrent threads, i.e., one thread per CPU.
However, the scaleup when adding threads is limited. There is only a 30% increase
in throughput for 2 threads compared to 1. The throughput for 8 threads is less than
double the throughput for 1 single thread. When the concurrency level is increased
beyond the number of available CPUs, there is a drop in throughput.

To study contention for a higher number of concurrent threads we also tested this
version of Derby on the T2000 system. We ran benchmarks for up to 128 concurrent

42

5.1. PRELIMINARY BENCHMARKS

1 2 4 8 16 32 64 128

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Response time, T2000, Java 1.6

avg resp. (ms)

Threads

A
vg

. r
es

po
ns

e
ti

m
e

(m
s)

Figure 5.3: Response time; Derby with “1704” patch; T2000 CMT system

threads. The results are shown in Figure 5.2. We see that throughput increases up to
16 concurrent threads. For 32 threads there is a drop, and then throughput sharply
declines for 64 and 128 concurrent threads.

Note that the increase in throughput from 8 to 16 concurrent threads is small. There
is also a drop for 32 concurrent threads, even though the T1 CPU should, in theory, be
able to execute 32 simultaneous threads.

The average response time for the tests on the T2000 systems have been graphed in
Figure 5.3. The increase in response time is nearly linear1 for up to 16 concurrent
threads. When the number of active threads is increased above 32, the response time
increases dramatically. This indicates that transactions spend a lot of time queued,
waiting for latches or locks.

The raw numbers from these benchmarks are included in Appendix A.

5.1.2 Latch wait time

For these benchmarks we also measured the aggregated wait time for threads to obtain
latches on pages. This is optional with our benchmark application, but requires a
modified version of Derby. As explained in Section 4.1.2, this is the time spent in
wait() calls for a contended page, i.e., it does not include the cost of acquiring a latch
in the uncontended case. Collecting the wait time for all contended pages will show if
there is significant contention for specific pages. We will look at the results for a single
thread, 2 threads and 32 threads for the 8-way SMP system.

For a single thread there is, obviously, no wait time to obtain latches. This is because
there cannot be any contention to obtain a latch if there is only a single active thread.
When increasing the number of active threads more wait time is observed. We have
chosen to include results from 2 and 32 concurrent threads on the 8-way SMP system
to illustrate this.

1Note that while the curve on the graph in Figure 5.3 may look exponential, the X axis is logarithmic –
we benchmarked threads in numbers of powers-of-two. See Table in Appendix A

43

CHAPTER 5. BENCHMARK RESULTS

Page # Total wait time, µs
Page(1,Container(0, 977)) 647134
Page(129,Container(0, 977)) 451776
Page(263,Container(0, 977)) 11719
Page(393,Container(0, 977)) 9729
Page(133,Container(0, 977)) 7903
Page(486,Container(0, 977)) 111
Page(512,Container(0, 977)) 95
Page(505,Container(0, 977)) 93
Page(183,Container(0, 977)) 90
Page(371,Container(0, 977)) 87

Table 5.1: Latch wait time; 2 threads; 8-way SMP system

Page # Total wait time, µs
Page(1,Container(0, 977)) 1130868904
Page(129,Container(0, 977)) 2343688
Page(263,Container(0, 977)) 1807935
Page(133,Container(0, 977)) 1485839
Page(393,Container(0, 977)) 968103
Page(273,Container(0, 977)) 831267
Page(210,Container(0, 977)) 19860
Page(250,Container(0, 977)) 13898
Page(90,Container(0, 977)) 13038
Page(355,Container(0, 977)) 11890

Table 5.2: Latch wait time; 32 threads; 8-way SMP system

44

5.2. SHARED LATCHES BENCHMARKS

The top 10 contended pages for the test with 2 concurrent threads on the 8-way SMP
system is included in Table 5.1. The elapsed real time for this test was 70.847 seconds.
The aggregated wait time for the most contended page was 647 134 µs, or 0.647 s. Note
that page number 1 in a B-Tree container is the root node, as explained in Section 2.1.4.

The total time spent waiting to obtain latches in this test was 1130ms, or 1.13s. The
time spent waiting for the root node thus accounts for 0.613s

1.13s
≈ 0.542, or 54.2% of the

time spent waiting for latches. Note that the time spent waiting for the second most
contended page, which is page #129, was 0.452 s. This is of the same order of magni-
tude as the time spent waiting for latches on the root node.

For 32 threads the wait time for the top 10 contended pages are shown in Table 5.2.
There is significantly more waiting time for 32 concurrent threads than for 2 threads.
The aggregated waiting time for the most contended page, again page number 1,
works out to 1 130 868 904µs, or 1130.869s. The elapsed wall clock time for the bench-
mark was 63.613 seconds.

For this case, with 32 active threads, the total “thread time”, i.e., aggregated run time
for all threads, is 32 · 63.613s = 2035.616s. The fraction of total run time spent waiting
to obtain a latch on the root node then is 1130.869s

2035.616s
≈ 0.555, i.e., 55.5% of the total time.

The total time spent waiting to obtain latches in this case was 1 140 910ms, or 1140.091s.
Thus the fraction of latch wait time that is spent waiting for the root node is 1130.869s

1140.091s
≈

0.992, or 99.2% of total latch wait time is for the root node of the B-Tree. Note that
the time spent waiting to latch the second most contended page, again page #129, was
2.34s.

Figure 5.4 illustrates the results from the test with 32 threads, included in Table 5.2, on
a chart with a logarithmic scale. This cleary shows that the wait time for the most con-
tended page is several orders of magnitude larger than for the second most contended
page. Then there are several pages with wait time of the same order, before there is
another considerable drop-off.

The time spent waiting for latches is related to the response time of transactions. If
many transactions wait to obtain a latch on the same page, a considerable amount
of time will be spent in the queue, as the time to obtain a latch is proportional to
the queue length2. The apparent contention for the root page of the B-Tree is also
illustrated by the response times of the transactions. For 2 concurrent threads on the
8-way system the average response time was 0.175 ms, for 32 threads it had increased
to 2.525 ms. As was illustrated by Figure 5.3, the response time suffers even more
when the concurrency level is increased above 32, but the times obtained on the T2000
system are not directly comparable.

5.2 Shared latches benchmarks

We benchmarked our experimental modification of Derby against an “old” version of
the development trunk, without the patch that removes latching from the lock man-

2The queue to obtain a latch in the version of Derby used in these benchmarks is a fair queue, since the
lock manager is used for latches. Even if a non-fair queue was used, the average time spent waiting
would be proportional to the number of waiters.

45

CHAPTER 5. BENCHMARK RESULTS

1 129 263 133 393 273 210 250 90 355
1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

Aggregated latch wait time, logarithmic

Wait time, µs

Page #

A
gg

re
ga

te
d

w
ai

t
ti

m
e,

 µ
s

Figure 5.4: Latch wait time; 32 threads; 8-way SMP system

ager, and a clean version of the development trunk with the newest modifications,
i.e., latching is done without the lock manager and the lock manager code has been
cleaned up.

We label our version “SX”, for Shared/eXclusive latches. The unmodified versions are
named “OLD” and “NEWCLEAN” respectively. “OLD” corresponds to SVN revision
500250 of the Derby source code, “NEWCLEAN” is revision 521680, and our “SX”
patch was made with revision 501369 as the starting point.

The benchmark results are presented here as graphs. The raw numbers are included
in Appendix B.

5.2.1 8-way SMP results

Here we present the benchmark results obtained on the 8-way SMP V880 system.
Benchmarks were run for Java 1.5 and Java 1.6.

Java 1.5

Benchmark results for Java 1.5 on the V880 are shown in Figure 5.5. We can see that for
a single thread the NEWCLEAN version of Derby provides the best throughput, 8209
transactions per second, followed by the OLD version, 7273 transactions per second,
and our experimental version, SX, 6362 transactions per second.

At 4 concurrent threads our SX version provides the best throughput, at 11789 trans-
actions per second, compared to 11415 and 10745, respectively, for the OLD and NEW-
CLEAN versions. The peak throughput is at 8 concurrent threads, where the SX ver-
sion executes 15032 transactions per second.

For a higher number of concurrent threads there is a drop in throughput for all ver-
sions. The drop in throughput is less for the SX version than for the other versions.
The throughput curve for SX is closer to the ideal flat line for max throughput when
increasing concurrency. At 128 threads the throughput is 12928 transactions per sec-

46

5.2. SHARED LATCHES BENCHMARKS

1 2 4 8 16 32 64 128
0

2500

5000

7500

10000

12500

15000

17500
8 CPUs, Java 1.5

SX
OLD
NEWCLEAN

Threads

Th
rou

gh
pu

t, t
xn

s/s
ec

Figure 5.5: Throughput; 8-way SMP; Java 1.5

1 2 4 8 16 32 64 128
0

2500

5000

7500

10000

12500

15000

17500

20000

22500
8 CPUs, Java 1.6

SX
OLD
NEWCLEAN

Threads

Th
rou

gh
pu

t, t
xn

s/s
ec

Figure 5.6: Throughput; 8-way SMP; Java 1.6

ond for the SX version, 10291 transactions per second for the OLD version, and the
NEWCLEAN version gives the lowest throughput at 7444 transactions per second.

Java 1.6

Results for Java 1.6 are shown in Figure 5.6. Java 1.6 provides higher throughput for
all versions and concurrency levels. The relative performance of the versions is similar
in the single-threaded case. The NEWCLEAN version provides the best throughput,
at 9417 transactions per second, the OLD version 8374 transactions per second, and
our SX version 7162 transactions per second.

At 8 concurrent threads the SX version provides the best throughput at 21084 transac-
tions per second. The NEWCLEAN and OLD versions follow, with 18642 and 17419
transactions per second, respectively. Again the peak throughput is reached for 8 con-
current threads.

47

CHAPTER 5. BENCHMARK RESULTS

1 2 4 8 16 32 64 128
0

1000

2000
3000
4000
5000
6000
7000
8000
9000

10000

11000
12000
13000
14000

T2000, Java 1.5

SX

OLD

NEWCLEAN

Threads

Th
ro

ug
hp

ut
, t

xn
s/

se
c

Figure 5.7: Throughput; T2000 CMT; Java 1.5

The throughput drops off when increasing the number of threads above 8. At 128
concurrent threads the throughput is 14156 transactions per second for the SX version,
11117 transactions per second for the OLD version, and the NEWCLEAN version is
again lowest at 10492 transactions per second.

5.2.2 T2000 CMT results

We ran the same benchmarks on the T2000 multicore system, both for Java 1.5 and 1.6.
The results are presented here.

Java 1.5

The benchmark results for Java 1.5 on the T2000 system is shown in Figure 5.7. For
a single thread the NEWCLEAN version is fastest, at 3971 transactions per second,
followed by OLD at 3705 and our SX version at 3254. Note that this is about half the
throughput of the corresponding benchmark on the 8-way SMP system.

Peak throughput is reached at 16 concurrent threads for all versions. At this concur-
rency level the SX version is the best at 13701 transactions per second, followed by the
OLD version at 11158 and the NEWCLEAN at 10708.

Througput drops off for all versions as the concurrency level is increased beyond 16.
At 128 threads, the SX version executes 8518 transactions per second, closely followed
by the OLD version at 8305 transactions per second. There is a considerable drop in
performance for the NEWCLEAN version, which manages only 4342 transactions per
second for 128 concurrent threads.

Java 1.6

Figure 5.8 shows the benchmark results with Java 1.6 on the T2000 system. For a single
thread, the situation is similar to the Java 1.5 results, but the throughput a little higher.

48

5.3. PROFILING RESULTS

1 2 4 8 16 32 64 128
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T2000, Java 1.6

SX

OLD

NEWCLEAN

Threads

Th
ro

ug
hp

ut
, t

xn
s/

se
c

Figure 5.8: Throughput; T2000 CMT; Java 1.6

The NEWCLEAN version is the best at 4752 transactions per second, then the OLD
version at 4354, and our SX version at 3585.

At 16 concurrent threads the SX version is the fastest, at 14756 transactions per second,
compared to 14744 for the NEWCLEAN version and 14263 for the OLD version. This
is the peak throughput both for the NEWCLEAN and OLD versions. Our version,
on the other hand, reaches peak throughput at 32 concurrent threads when running
in Java 1.6. Then the throughput is 16588 transactions per second for our SX version,
while it has dropped to 13188 and 13858, respectively, for the NEWCLEAN and OLD
versions.

For more than 32 threads throughput decreases for all versions. At a concurrency
level of 128, the SX version gives a throughput of 9944 transactions per second. This
is followed by the OLD version at 8341, and the NEWCLEAN at 6522 transactions per
second.

5.3 Profiling results

As discussed in Section 5.2, we see that in the single-threaded cases our SX patch is
significantly outperformed by the baseline, i.e., OLD, build as well as a newer trunk
build, i.e., NEWCLEAN.

A performance difference of 8374−7162
7162

= 16.9% is significant, and warranted further
investigations. We used the NetBeans Profiler [76], explained in Section 3.6.2, in an
attempt to pinpoint how and where the SX version spent more time and resources
than the OLD and NEWCLEAN versions.

5.3.1 Gathering the data

Figure 5.9 shows a screenshot of the profiler while browsing a profiling snapshot of a
run with our SX build. This run executed just 20 000 transactions in a single thread.

49

CHAPTER 5. BENCHMARK RESULTS

Figure 5.9: Netbeans profiler; drilldown to ArrayInputStream.<init>()

50

5.3. PROFILING RESULTS

Figure 5.10: Netbeans profiler; comparing time spent in the ArrayInputStream class
between OLD (above) and SX (below)

51

CHAPTER 5. BENCHMARK RESULTS

This is much less than for the benchmark runs, but as profiling overhead causes very
large slowdowns, even a relatively short run with 20 000 transactions takes a while to
complete.

We made profiling snapshots of both the SX, OLD and NEWCLEAN builds executing
20 000 transactions, and they were all collected on the 8-way SPARC machine men-
tioned earlier. We also limited profiling to classes in the org.apache.derby.* pack-
age hierarchy, to reduce profiling overhead. The disadvantage of this is that time spent
in the Java class libraries on behalf of Derby is not included in the timing statistics.

Profiling snapshots for the three different versions have been enclosed with this report.
See Appendix C.3 for a description.

Our examination of the gathered data primarily focused on finding the differences
between the SX and OLD versions, more specifically pinpointing any performance
regressions from OLD to SX. The immediate observation is that the worker thread,
i.e., Worker0, spends 55 372 ms of CPU time running the OLD version, and 62 495 ms
running the SX version. This means that the SX version spent 62 495 - 55 372 = 7132
ms more CPU time, i.e., about 12.8% more, than the OLD version.

5.3.2 The cost of thread safety

As Figure 5.9 suggests, the creation of new ArrayInputStream objects was identified
as a significant cost in the SX version, when compared to the OLD version.

We do not count the time spent allocating and garbage collecting these objects, as the
profiling data do not include time spent in the allocator or garbage collector. The addi-
tional memory management may thus affect the total run time and CPU consumption
of the tests, but it should not affect the CPU timing data collected by the profiler.

Figure 5.10 displays the difference in execution time spent inside methods of Array-
InputStream between the OLD and SX versions, as well as execution counts in both
cases. Note that Figure 5.10 does not include the time spent in methods called by the
listed methods, so the total cost of the listed method calls is higher.

This is illustraded by Figure 5.9, where 133 988 invocations of the ArrayInputStream
constructor takes 1532 ms including subcalls, while Figure 5.10 shows that it takes just
955 ms for 396 299 invocations when its subcalls are not counted.

When counting the additional invocations of ArrayInputStream.<init>, we find at
least 394 165 more invocations for SX compared to OLD. The total cost of these invo-
cations appear to be 4161.42 ms3.

This is a significant portion of the 7132 ms difference between OLD and SX, but there
is still about 3000 ms to account for.

5.3.3 The cost of S/X latches

We then turn our attention to the latching code itself, i.e., BasePage.setExclusive()
and its new partner BasePage.setShared(). In the OLD profiling snapshot, we

31532ms + 1383ms + 6.42ms + 195ms + 484ms + 152ms + 195ms + 214ms = 4161.42ms

52

5.3. PROFILING RESULTS

find 60 000 invocations of setExclusive(), with an aggregated time consumption
of 635.5 ms 4.

In the profiling snapshot of the SX version, many, but not all, of the invocations of the
BasePage.setExclusive() method have been replaced by BasePage.setShared().
For a fair comparison we summarize the time spent acquiring both S and X latches. In
total, we count 141 ms 5 spent acquiring X latches, and 2195 ms 6 acquiring S latches.
This adds up to a total of 2336 ms of CPU time for the same number of latch acquisi-
tions.

The SX patch thus spent about 1700 ms 7 more than the OLD version on latch acquisi-
tions alone.

Examining the time spent unlatching, we find that OLD spends a total of 1610 ms8

releasing latches, while SX spends 1902 ms 9 releasing shared latches and 204.4 ms 10

releasing exclusive latches. This adds up to (204.4ms + 1902ms) − 1610ms = 496.4ms
more time spent releasing latches in the SX build compared to the OLD version.

The differences accounted for so far, i.e., 4161.4 ms (ArrayInputStream.<init>) +
1700.5 ms (acquiring latches) + 496.4 ms (releasing latches), amount to a total of 6358
milliseconds. This is about 89% of the total CPU time difference of 7123 ms between
OLD and SX.

While looking for further differences is possible, we are approaching the point of di-
minishing returns. Looking for small differences apart from the large ones we already
have identified in a large pile of numbers is very time consuming, so we have ended
our search here.

5.3.4 Summary of profiling results

We have found that our changes to support shared latches have incurred a significant
cost in the single threaded no-contention case, and identified two major expenses: Cre-
ation of ArrayInputStream objects (4 CPU seconds on top of original 55 second total
CPU time for this workload), and more expensive latches (2.2 CPU seconds of addi-
tional CPU time compared to OLD - original latches used only about 2.2 seconds of
CPU time in total).

The additional object initialization and the fact that our ReentrantReadWriteLock

based latches are twice as expensive as the original simple latches thus explains nearly
90% of the additional CPU cost.

4Sum of time use in all invocation points: 206ms + 1.66ms + 157ms + 50.8ms + 220ms = 635.5ms
54.86ms + 136ms = 141ms, for 5024 invocations.
6804ms + 570ms + 821ms = 2195ms, for 54 976 invocations
72336ms− 635.5ms = 1700.5ms
8519ms + 550ms + 541ms = 1610ms, for 60 000 invocations.
9509ms + 702ms + 691ms = 1902ms, for 54 976 invocations.

10197ms + 7.4ms = 204.4ms, for 5024 invocations.

53

CHAPTER 5. BENCHMARK RESULTS

5.4 Summary

The preliminary benchmarks have shown that the scalability of Derby is limited for a
high number of concurrent threads. Measurements of the time spent waiting for con-
tended latches show that the root node of the B-Tree index is a performance bottleneck
at high levels of concurrency.

Benchmarks of the patched version with support for shared latches, against two other
variants of Derby, show that the SX patch performs worse for a single thread and low
levels of concurrency. The SX patch scales better at high levels of concurrency, and
provides the highest peak throughput in all benchmarks. Running Derby with Java
1.6 provides significant performance gains compared to Java 1.5.

Profiling results show that most of the extra overhead in the shared latches version
can be attributed to the construction of ArrayInputStream objects, and the higher
cost involved in latch / unlatch operations when ReentrantReadWriteLock is used.
Combined, these effects constitute nearly 90% of the extra time spent in the single-
threaded invocation of Derby with the SX patch.

We will provide further comments and our analysis of these results in Chapter 6.

54

Chapter 6

Analysis

In this chapter we present our analysis of the benchmarks and results presented in
Chapter 5. We will discuss the preliminary benchmarks, the benchmarks of our modi-
fied version of Derby with support for shared latches, and the profiling results.

We will give our interpretation and explanation of the results with basis in the con-
currency theory and description of Derby presented in Chapter 2. Understanding the
limiting factors for scalability will allow us to evaluate our experimental version of
shared latches, and also suggest other possible improvements.

6.1 Preliminary benchmarks

The results from the preliminary benchmarks were presented in Section 5.1. Our goal
for these benchmarks was to understand how the current version of Derby scales for a
multithreaded workload. We are particularily interested in the cost of latching and its
impact on multithreaded scalability.

Testing the “1704” version, explained in Section 2.2.4, with a latch intensive workload
should give a good indication of the limits to scalability. The patched version reduces,
but does not completely remove, contention in the lock manager, so the impact of
latch cost should be more obvious. This is because the global synchronization point
to obtain and release database locks is removed. Since the lock manager is used to set
latches, the cost to obtain a latch is high. This was explained in Section 2.2.6.

The SELECT only workload we have used for our benchmarks does an index lookup
on a single record only. Since only the primary key value is selected, it can be returned
directly after the index lookup, the database does not have to be touched. Database
locks has to be obtained, but for a SELECT only workload these will be shared locks –
there should be no conflicting database locks in our benchmarks. However, there may
be overhead and contention in the lock manager for setting and releasing database
locks, because of the synchronization in the lock manager.

Since we are running a SELECT only workload, there should not be any structure
modifications in the B-Tree index. All index operations will be read only searches.
The key values for lookups are random, so this should be a “best case” workload with
regards to B-Tree contention.

55

CHAPTER 6. ANALYSIS

This background knowledge allows us to analyze the results from the preliminary
benchmarks. We will comment on the throughput and response times, and on the
time spent waiting for latches.

6.1.1 Throughput and response time

We will first comment on the results for throughput and response time for a varying
number of concurrent threads. All tests were run with Java 1.6.

V880 8-way SMP system

For the benchmark on the 8-way SMP system the throughput increases up to 8 concur-
rent threads, i.e., one active thread per CPU. However, the scaleup is not as good as
might be expected. An ideal scenario would be doubled throughput when the num-
ber of threads is doubled, as long as CPU or other resources are not limiting factors.
However, this perfect linear scalability, as described in [36], can not be expected in a
real world scenario, because of different kinds of overhead involved in thread syn-
chronization.

As pointed out in Section 5.1.1, the increase in throughput when moving from 1 to 2
threads is only 30%. 8 concurrent threads, on an 8 CPU system, provides only double
the throughput compared to a single thread. This clearly shows that the scalability of
Derby is limited, even for a low number of concurrent threads.

When increasing the number of active threads to 16 and 32 there is a considerable
drop in throughput. The ideal scenario when increasing the concurrency level, af-
ter maximum throughput is reached, is a flat throughput curve. In such a scenario,
the response time of individual transactions would increase, as more transactions are
queued at higher levels of concurrency, but the throughput should not decrease. I.e., if
there is no overhead for queuing and synchronization of a higher number of threads,
the system should be able to process the same number of transactions per second, also
for a higher concurrency level.

Because there is overhead involved in queuing and synchronization, a flat through-
put curve for higher levels of concurrency can not be expected in a practical scenario.
However, the goal is a curve that is close to flat, i.e., the decrease in throughput when
the concurrency level is increased, beyond the point of maximum throughput, should
be as small as possible.

The drop in throughput for increased levels of concurrency is significant. For 16 con-
current threads the throughput is lower than for 4 threads, and for 32 threads the
throughput is only slightly higher than for 2 threads. It seems that scalability is lim-
ited to a concurrency level matching the number of CPUs for this system, however the
CPU utilization was not very high, even for a higher number of concurrent threads.
This suggests that synchronization overhead and contention are limiting factors for
scalability.

56

6.1. PRELIMINARY BENCHMARKS

T2000 CMT system

To evaluate scalability for an even higher number of concurrent threads, we also tested
this version of Derby on the T2000 multicore system. It should be able to execute 32
simultaneous threads.

On the T2000 there is only a marginal increase in throughput for 16 threads compared
to 8. This shows that the scalability beyond 8 threads is limited also on hardware
that supports concurrent execution of more than 8 threads. Increasing the number of
threads to 32 gives a reduction in throughput, even though the system should support
32 concurrent threads. Again, CPU utilization is not the limiting factor.

A further increase in concurrency level to 64 or 128 threads gives a sharp decline in
throughput. For 128 concurrent threads the throughput is less than half of the maxi-
mum throughput reached at 16 threads. This shows that this version of Derby scales
poorly for a high number of concurrent threads. This is also consistent with our earlier
observations from the “autumn project”.

Response time

Another important performance metric is transaction response time. For applications
that require a low response time, such as interactive applications, it does not matter
if the total throughput is good, if the response time for transactions is too high. Our
benchmarks show that response time increases dramatically for a high number of con-
current threads.

When the number of threads is increased above the concurrency level that provides
maximum throughput, there is a seemingly exponential increase in response time.
This increase is caused by transactions being queued, waiting for synchronization or
contended objects. Because the throughput decreases for a high number of concurrent
threads, this will have an adverse effect on response time.

When the concurrency level is increased, there are more transactions waiting. The
related drop in throughput leads to even more queuing, causing the observed increase
in response time for high concurrency levels.

6.1.2 Latch wait time

The measurements of time spent waiting1 to obtain latches show that there is signifi-
cant contention for latches at higher concurrency levels.

Because our workload only reads the index, we know that any observed latch con-
tention will be for the B-Tree index, not for the pages in the database itself. This is
confirmed by the results: All observed latch contention, i.e., calls to Object.wait()

when obtaining a latch in these benchmarks was for pages in Container(0, 977). This
was the file containing the B-Tree index in these benchmarks. This is also true for the
results for other concurrency levels, there was no latch contention observed for any
page not in Container(0, 977).

1This is, as explained in Section 4.1.2, the time spent in calls to the wait()method on contended latches,
not the time to acquire a latch in the uncontended case.

57

CHAPTER 6. ANALYSIS

Because we are interested in how Derby performs in the case of high concurrency, we
look at these numbers for 32 concurrent threads on the V880 system. For reference, we
also included the result from the test with 2 concurrent threads. For a single thread,
there can be no contention to obtain latches.

2 threads

For 2 concurrent threads, some contention was observed. 0.647s was spent by threads
waiting to latch page #1, i.e., the root node. This is comparable to the time spent
waiting for the second most contended page, which was 0.452s. It is likely that a
“true” bottleneck does not form at this low level of concurrency, because there can
only be one thread waiting while the other active thread has the latch.

Since lock-coupling is used, latches will not be held for a long time. This is because the
node is only used to look up the next node in the index traversal, no modification will
be performed, and there are no results to return or other work to be performed during
the index lookup. Thus with a maximum of one other thread waiting, i.e., there is only
one other working thread, and because latches are held for a short time, the root node
is unlikely to be a limiting bottleneck.

This is confirmed by the observations. There is some contention, but the waiting time
for contended latches is not significant compared to the total execution time. The dif-
ference between the root node and the second most contended latch is also small. If
the root node was a limiting factor, it would have a significantly higher wait time
compared to the other nodes. There is some wait time, but bottleneck behavior is not
observed for 2 concurrent threads.

32 threads

The high contention scenario is illustrated by the test with 32 concurrent threads, i.e., 4
threads per CPU in the V880 system. The root node is again the most contended node,
with an aggregated wait time of 1130.869s. This is 99.2% of the total time spent waiting
for contended latches, and also a significant share of the total thread life time. It is clear
that the root node is a bottleneck, and probably a limiting factor for performance, at
this level of concurrency.

With 32 concurrent threads it is more likely that a transaction will have to wait to latch
the root node of the B-Tree index, compared to the case with 2 concurrent threads.
This is because the formation of a queue is more likely with a higher number of active
threads that can possibly be queued. Because all threads have to access the root node
as part of the index lookup, it is highly likely that a queue will form at the root node.

The time spent in a queue is proportional to the queue length. This is under the as-
sumption that the processing rate is independent of the queue length. If the processing
rate is affected by the queue length, the time spent in the queue, and thus the response
time, will be even higher for a large number of queued threads. Thus it is more likely
that a thread will be queued if a queue has first formed, because of the overhead in-
volved in synchronization of the queued threads.

The root node stands out as a bottleneck when compared to the other pages in the

58

6.1. PRELIMINARY BENCHMARKS

B-Tree index. This is because it is a single point which all transactions have to access
in exclusive mode. Assuming a good random distribution of search keys, and k nodes
on the second level of the B-Tree, each of the second level nodes will be accessed N

k

times, where N is the total number of index searches. The root node will be accessed
N times.

This is a classic bottleneck situation, where contention for pages in the later stages of
the index search will be lighter than for the root node. If we assume that the time a
latch is held for a second level node is about the same as for the root node, this means
that the “processing rate” at which threads latch, fetch the correct pointer for the index
key, and unlatch the node will be comparable for the root node and the second level
nodes.

For k second level nodes, and an equal key distribution in the B-Tree, i.e., a probability
of 1

k
for a random index search accessing a specific second level node, this should give

an average queue length of L
N

at the second level nodes, L being the queue length at the
root node. For a high number of second level nodes, and if the time each thread holds
a latch for a second level node is comparable to the root node, it is unlikely that there
will be any significant queuing at the second level. This is exactly what we observe,
with 99.2% of the latch wait time being for the root node.

Looking back at Figure 5.4, which displays the wait times for the top 10 contended
pages on a logarithmic scale, the root page, i.e., Page #1, stands out with a wait time
several orders of magnitude higher than the other nodes. Then there are 5 nodes with
comparable wait times, before there is another drop of about two orders of magnitude
to the wait times for the rest of the nodes.

According to the argument presented in Section 3.4, the B-Tree index for this database
should have 3 levels. The 5 nodes on the “second tier” in Figure 5.4 suggests that there
are 5 nodes on the second level of the B-Tree. Thus we seem to have an index structure
like the one that was sketched in Figure 3.1.

In Section 5.3.3 we found that a 20 000 transaction benchmark run acquires and releases
latches a total of 60 000 times. This fits neatly with a three-level B-Tree as well.

6.1.3 Preliminary benchmarks wrapup

These benchmarks have shown that the root node of the B-Tree index is a performance
bottleneck when running a high number of concurrent threads and a latch-intensive
workload. Reducing the impact of the root node bottleneck should improve perfor-
mance.

An implementation of shared latches is one way to achieve this for a read-only work-
load. If only index searches are performed, no exclusive latches would have to be ob-
tained. Thus shared latches should provide better performance for a read-only work-
load, because the bottleneck at the root node is removed. However, there would still be
some overhead involved in setting and releasing latches, even though shared latches
allows concurrent access to the root node.

59

CHAPTER 6. ANALYSIS

6.2 Shared latches benchmarks

To evaluate the performance of our patch for shared latches we benchmarked it against
two other versions of Derby. Both were recent development versions, the “old” ver-
sion using the lock manager for latches, while the “new” version does locking directly
on the page objects, separate from the lock manager. This removes the global synchro-
nization involved in latching.

We expected our patch to provide som extra overhead in the single threaded case,
but we believed that shared latches would improve the multithreaded scalability for
latch-intensive workloads. This should be beneficial with our read-only test workload,
which only does B-Tree index lookups.

Our patched version was based on the version with split hash tables in the lock man-
ager, that was tested in the preliminary benchmarks. This means that the results ob-
tained can be compared to the preliminary benchmarks for Java 1.6.

We tested these versions of Derby on the V880 and T2000 systems for a varying number
of concurrent threads. All tests were run with both Java 1.5 and Java 1.6, to evaluate
the performance impact of the JVM, and to see if the scalability characteristics for the
different versions changed when running in another JVM. We expected Java 1.6 to
perform better, because the multithreaded workload and heavy use of synchronization
should benefit from the improvements to concurrent performance in Java 1.6.

6.2.1 V880 8-way SMP system

As explained in Section 5.2, we labeled the version with our shared latches patch “SX”,
while the old version of the development trunk was labeled “OLD” and the slightly
newer version “NEWCLEAN”. Here we will discuss our findings on the V880 SMP
system, presented in Section 5.2.1, both for Java 1.5 and 1.6.

Java 1.5

The benchmarks with Java 1.5 on the 8-way SMP system show that our SX version
does indeed perform worse than the OLD and NEWCLEAN versions for a single
thread, with the best throughput being provided by NEWCLEAN. The situation is
much the same for 2 concurrent threads, with throughput increasing a little for all
versions. However, for 4 concurrent threads the results are interesting. Then our SX
version provides the best throughput, and OLD is now faster than NEWCLEAN. This
indicates that our version does provide a performance improvement in a contended
scenario.

For 8 concurrent threads there is little improvement over 4 threads for the OLD and
NEWCLEAN versions, while our SX version reaches a max throughput of 15 032 trans-
actions per second. This is a 24.8% improvement over the 12 047 transactions per
second throughput of the OLD version, while the NEWCLEAN version provides a
slightly lower throughput of 11 795 transactions per second for 8 threads.

When the number of threads is increased above 8, throughput declines for all versions.
The NEWCLEAN version seems to be the worst for a high number of threads, while

60

6.2. SHARED LATCHES BENCHMARKS

the performance drop for a high number of threads is less for the OLD and SX versions.
Our SX version has a throughput curve that is nearly flat from 16 to 128 concurrent
threads. This shows that the cost of synchronization for a high number of threads
does not have a huge impact on performance.

Java 1.6

For Java 1.6 the relative results are similar for 1 and 2 threads. NEWCLEAN is the
fastest version, followed by OLD, while our SX version provides the lowest through-
put. The increase in throughput from 1 to 2 threads is similar for all versions, a bit less
than 40%, with NEWCLEAN showing the best improvement. However, the through-
put for all versions is significantly higher with Java 1.6 than with 1.5. The single
threaded throughput for NEWCLEAN was 8 209 transactions per second with Java
1.5, this is improved to 9 417 with Java 1.6, i.e., a 14.7% increase. Scalability from 1 to
2 threads is also improved with Java 1.6, for NEWCLEAN the improvement is 39.8%
with Java 1.6 compared to 20.9% with Java 1.5.

As opposed to the results for Java 1.5, NEWCLEAN is still the fastest version at 4 con-
current threads, again followed by OLD, while SX still provides the lowest throughput.
However, the performance increase from 2 to 4 threads is highest for our SX version,
at 55.7%, while OLD and NEWCLEAN follow with increases of 45.1% and 40.4%, re-
spectively. It is worth noting that all versions show an increased relative improvement
compared to the move from 1 to 2 threads, but for NEWCLEAN this is only a marginal
improvement.

At 8 concurrent threads SX performs best, reaching a maximum throughput of 21 084
transactions per second, i.e., a 37.7% increase in throughput from 4 threads. For NEW-
CLEAN and OLD however, the curves have flattened, with increases of 0.8% and 5.2%,
respectively. This shows that the SX version scales to a higher maximum throughput
also with Java 1.6.

The curves seem to decline steeper than for the Java 1.5 benchmarks, when the num-
ber of concurrent threads is increased to 16 and beyond. However, the throughput
is higher with Java 1.6 than with 1.5 for all concurrency levels in these benchmarks.
With Java 1.6, the curves for the different versions are closer to each other when the
concurrency level is increased to 16 and beyond. The NEWCLEAN version is again
the slowest at high levels of concurrency, and SX the fastest. At 64 concurrent threads
the results are close, with the OLD version edging out SX, with a throughput of 14 488,
compared to 14 328. At 128 threads, SX again provides significantly better throughput.

Again the results are consistent with our hypothesis that the SX version should provide
better throughput at high levels of concurrency, even though it performs worse for a
low number of threads. This is because the extra overhead is outweighed by the gains
from increased concurrency with shared latches.

Looking at the average response times, included in Appendix B, we note that the re-
sponse times for the SX version with Java 1.6 is worse at 64 and 128 threads than with
Java 1.5. Although the average response times are worse, Java 1.6 provides the best
throughput. For 1 to 32 concurrent threads, however, Java 1.6 gives the best response
times for the SX version. For the OLD and NEWCLEAN versions, Java 1.6 provides
better response times at all concurrency levels.

61

CHAPTER 6. ANALYSIS

We will get back to the differences between running Derby with Java 1.5 and 1.6.

6.2.2 T2000 CMT system

We ran corresponding benchmarks on the T2000 system, again both with Java 1.5 and
1.6. The T2000 system provides lower single-thread throughput than the V880, but
its multithreading, multicore architecture should allow scaling to a higher number of
concurrent threads.

Here we comment on the results presented in Section 5.2.2.

Java 1.5

The situation for a low number of concurrent threads is similar on the T2000 system.
For 1 to 4 concurrent threads, NEWCLEAN is faster, closely followed by OLD. SX
provides a little lower throughput, but scales correspondingly to the other versions.
For the V880 system SX was the fastest at 4 threads with Java 1.5, this is not the case
on the T2000.

When increasing the number of concurrent threads to 8, the SX version provides the
best throughput, and OLD is now better than NEWCLEAN. This is comparable to
the V880 results, but the relative performance difference between SX and the other
versions is not as large for 8 threads on the T2000.

However, when further increasing the concurrency level to 16, we observe different
behavior on the T2000. The SX version scales further, showing a performance improve-
ment of 22.8% from 8 to 16 concurrent threads. The OLD and NEWCLEAN versions,
however, have slightly decreasing throughput, but are still close to each other.

When the number of active threads is increased above 16, all versions have decreasing
throughput. The NEWCLEAN version provides the worst performance for a high
number of threads, while the OLD version has a close to flat throughput curve from 8
to 64 threads, only showing a slight decrease. From 64 to 128 threads, however, there is
a significant decrease also for the OLD version. The SX is the fastest at all concurrency
levels above 8, but for 64 and 128 threads OLD provides close to the same throughput.

The situation on the T2000 is much the same as on the V880 with Java 1.5. The NEW-
CLEAN version is the best for a low number of concurrent threads, while our SX ver-
sion scales best when the concurrency level is increased. The OLD version is also faster
than NEWCLEAN for 8 and more concurrent threads.

More interestingly, this shows that on the T2000 system, the SX version is able to in-
crease throughput up to 16 concurrent threads. This is different from the behavior on
the V880 system. However, running with Java 1.5, performance does not scale up to
32 threads, even though the T2000 should support 32 concurrent threads. The OLD
and NEWCLEAN versions, however, reach their maximum throughput already at 8
concurrent threads, compared to 16 threads for the SX version.

At 128 threads we also observe the highest performance improvement for SX com-
pared to the other versions. SX provides 96% higher throughput than the NEWCLEAN
version.

62

6.2. SHARED LATCHES BENCHMARKS

Java 1.6

Again, the situation is similar for a low number of concurrent threads, also with Java
1.6 on the T2000 system. For 1 to 4 threads NEWCLEAN gives the best throughput,
followed by OLD and our SX version. For 8 threads there is a difference in behavior
when running Java 1.6. NEWCLEAN is still the best at 8 threads, providing marginally
better throughput than the OLD version, and with SX a little bit lower.

When the concurrency level is increased to 16, SX marginally beats the performance of
the NEWCLEAN version. NEWCLEAN is faster than OLD at 16 concurrent threads, as
was also the case for 16 threads with Java 1.6 on the V880 system. Both NEWCLEAN
and OLD show slight improvements in throughput when the concurrency level is in-
creased from 8 to 16 threads. This shows that the scalability characteristics are different
on the T2000, also when running Java 1.6.

More noteworthy, the SX version provides a further increase in throughput when mov-
ing from 16 to 32 concurrent threads. This shows that with Java 1.6 it is possible to ex-
ploit the support for 32 concurrent threads on the T2000. The OLD and NEWCLEAN
versions, however, give lower throughput at 32 threads. The OLD version is also faster
than NEWCLEAN at 32 threads, showing that it does indeed perform better for a high
concurrency level, also with Java 1.6 on the T2000.

At 64 concurrent threads, the OLD version actually provides the best throughput. This
is similar to the situation with Java 1.6 on the V880 system. A further increase in the
concurrency level to 128 threads shows that SX is again the fastest, followed by OLD
and NEWCLEAN.

The throughput when running with Java 1.6 is better than for Java 1.5 for all concur-
rency levels, also on the T2000 system. However, at 128 concurrent threads it is close
to the throughput with Java 1.5 for the OLD version.

We have shown that when running with Java 1.6 on the T2000 system, the version of
Derby patched to support shared latches will actually show a performance improve-
ment when scaling to 32 concurrent threads. Removing the bottleneck at the root node
in the B-Tree index will allow better scalability for a read-only, index lookup intensive
workload. With Java 1.6, the support for 32 concurrent threads on the T2000 will allow
a performance increase for up to 32 threads with this version.

6.2.3 Java 1.5 vs 1.6

As explained in Section 2.5.2, a lot of effort has been put into the performance of mul-
tithreading and thread synchronization in the JVM implementations from Sun. Ver-
sion 1.6 of the HotSpot VM should provide improved performance for multithreaded
applications that use synchronization or the primitives provided by the java.util.-
concurrent package a lot. With this in mind, we expected Java 1.6 to provide better
performance with Derby, because the code makes heavy use of synchronization.

This is confirmed by our benchmarks. Java 1.6 provides better throughput for all tests
with all versions of Derby in these benchmarks. However, Java 1.6 does not solve the
problem of performance degradation at high concurrency levels. At high concurrency
levels, the time spent waiting at contention points is likely to be more significant than

63

CHAPTER 6. ANALYSIS

the overhead involved in acquiring a monitor or lock. Running Derby with Java 1.6
will reduce some of the overhead involved in synchronization and locking, but it can
not solve the problem of resource contention.

6.2.4 Shared latches wrapup

The benchmark results have shown the multithreaded performance characteristics of
our modified version of Derby with support for shared latches. Here we will try to
summarize our findings and also compare the results to the preliminary benchmarks,
to evaluate the performance gain of the shared latches version compared to the version
with the split hash tables in the lock manager, which was the starting point for our
patch.

Shared latches and multithreaded scalability

As expected, the extra overhead causes our shared latches version to perform slightly
worse for a single-thread and low levels of concurrency. Except for the test with Java
1.5 on the V880 system, the other versions beat the SX version at 4 concurrent threads.

When increasing the number of concurrent threads to 8, the SX version provides the
best throughput in all tests, except for on the T2000 system with Java 1.6. With Java 1.6
on the T2000 the SX version is the fastest at 16 concurrent threads, and provides peak
throughput at 32 threads. This is opposed to the other versions, which do not scale
beyond 16 threads even on the T2000.

Except for the special case of 64 threads with Java 1.6 on the T2000, the SX version
provides the best throughput for all tests with 16 or more concurrent threads. For the
V880 system, SX is fastes from 8 threads, and even from 4 threads with Java 1.5.

This shows that there is a lot to be gained with support for shared latches, when scaling
to a high number of concurrent threads. A clean and simplified implementation of
support for shared latches should be able to reduce the overhead, thus reducing or
eliminating the performance penalty for a single or few concurrent threads.

SX vs preliminary benchmarks

The results for the SX patch can also be compared to the results from the preliminary
benchmarks, presented in Section 5.1 and discussed in Section 6.1. The preliminary
benchmarks were done for a version of Derby with the “1704” patch, as explained in
Section 2.2.4. This modified version was the starting point for our patch, so the results
should be comparable. This concerns only Java 1.6, as we only used that version of the
JVM in the preliminary benchmarks.

On the V880 system, there was a performance decrease of 17% percent for SX com-
pared to the preliminary benchmarks for a single thread. The max throughput was
reached for 8 threads in both benchmarks on the V880, the SX patch provides an im-
provement of 26% compared to the preliminary benchmarks. Comparing single thread
to peak throughput at 8 threads, the preliminary benchmarks showed an increase of
1.9x, while the SX version scales to 2.9x the throughput for a single thread.

64

6.3. PROFILING RESULTS

On the T2000 system, the peak throughput was reached at 16 concurrent threads in the
preliminary benchmarks. The SX patch peaks at 32 threads when running with Java
1.6, for an improvement in peak throughput of 28%.

6.3 Profiling results

The profiling results show that most of the overhead incurred when running the SX
patch with a single thread, compared to the OLD version, can be attributed to the
creation of new ArrayInputStream objects and to time spent in the method calls to
latch and unlatch pages.

6.3.1 Object creation – ArrayInputStream

More than half of the difference in CPU consumption between OLD and SX in our
single-threaded profiling was spent running the constructor for ArrayInputStream,
constructing nearly 400 000 instances of this class. This is wasteful, to put it mildly, but
it was a simple way to replace the thread-unsafe shared per-page ArrayInputStream.

We have carried out some quick tests to see if primitive object pooling would allevi-
ate the costs of creating ArrayInputStream objects, but failed to see improvements
despite cutting down the number of allocations by nearly a factor of thousand.

The added costs of managing the pool, using data structures from the Java standard
library, such as ConcurrentLinkedQueue, to avoid pool monitor contention, and re-
setting the objects for reuse outweighed the savings from object allocation and con-
struction. This is in line with recommendations on object pooling in modern JVMs, as
explained in [44], where object pooling is discouraged due to the low overhead asso-
ciated with short-lived allocations.

Relieving this problem will probably require modifying ArrayInputStream, either
making it thread safe or making the constructor used in performance critical loops as
fast as possible.

6.3.2 Expensive latches

In section 5.3.4 we found that the latches we implemented using ReentrantRead-

WriteLock were about twice as CPU-intensive, in the single-threaded, non-contended
case, as the simple latches implemented using Java synchronized, a state variable and
wait()/notify().

This is not a very surprising observation. It is common to see a simple system outper-
form a more complex system in simple cases. In the uncontended case, the original
latch implementation only has to test and set a single variable, protected by a Java
monitor, which has been highly optimized by the JVM developers.

While it is generally accepted that more complex synchronization primitives are more
expensive than simple ones, it does not mean that complex synchronization primitives
should be avoided. However, it may be prudent to restrict their use to places where

65

CHAPTER 6. ANALYSIS

the benefits outweigh the cost.

In the case of ReentrantReadWriteLock, we can expect those places to be where many
read operations would contend for a lock, e.g., the upper levels of a B-Tree in a scenario
with multiple clients accessing the same tree. However, in our implementation these
locks are used for all pages in all cases, not necessarily just for the pages where the
benefit is tangible.

One could imagine a scenario where pages are assigned a lock implementation based
on their contents. A non-leaf B-Tree page would get a ReentrantReadWriteLock,
while leaf pages would contain a ReentrantLock, and simply map requests for shared
access to requests for exclusive access.

Optimizing even more aggressively we could skip latching entirely while running sin-
gle client workloads. This would be quite benchmark- and developer-friendly.

Advanced versions of per-page switchable lock implementations could have on-the-
fly replacement of lock implementations with automatic detection of contention. Such
a system would escalate the lock type if it detected readers contending for the cheap
write lock. It would probably be an interesting challenge to develop and optimize such
a system.

6.4 Summary

This section is intended to summarize our analysis. We review the findings for the
preliminary benchmarks, shared latches benchmarks and profiling.

6.4.1 Preliminary benchmarks

The preliminary benchmarks showed that Derby scales poorly for a high number of
concurrent threads on both the V880 and T2000 systems. Peak throughput was reached
at 8 concurrent threads on the V880, and for 16 concurrent threads on the T2000. The
response time increases dramatically when the concurrency level is increased.

The measurements of time spent waiting for latches on a per page basis shows that
contention for the root node of the B-Tree index is a significant performance overhead.
The root node is a bottleneck for index intensive workloads. An implementation of
shared latches should allow more concurrency for read-only index lookups.

6.4.2 Shared latches

The modified version of Derby with support for shared latches was expected to per-
form less well for a low number of threads, but scale better for high levels of concur-
rency. This is because the implementation adds overhead to obtain latches, but shared
latches allow more concurrency for index lookups. The benchmarks confirmed these
assumptions.

The SX patch provides the best throughput for high levels of concurrency on both
the SMP and multicore test systems. For the other two versions of Derby that was

66

6.4. SUMMARY

tested, NEWCLEAN is best at a low number of threads, while OLD is the best for high
concurrency levels.

Java 1.6 provides better performance than Java 1.5 for all test cases. With Java 1.6, the
SX patch is able to scale further on the T2000 system reaching peak throughput at 32
concurrent threads.

The SX patch provides an improvement in peak throughput over the “1704” patched
version, tested in the preliminary benchmarks. The improvement was 26% for 8 threads
on the V880 system, and 28% for 32 threads on the T2000 system, where the “1704”
reached peak throughput at 16 threads.

6.4.3 Profiling results

The results of profiling show that the overhead added in the SX patch is largely due
to the creation of a large number of ArrayInputStream objects, and the higher cost of
setting and releasing latches based on ReentrantReadWriteLock.

The first of these two problems is probably the most straightforward to remedy, thread
safety can be achieved by other means than simply creating a new ArrayInputStream

for every use.

Reducing the cost of latching may be harder, as ReentrantReadWriteLock is included
with the Java runtime, and implementing a cheaper version just for Derby may not be
realistic. We suggest looking at ways to use it more sparingly, to minimize the impact
of the higher overhead of this type of lock.

67

Chapter 7

Conclusion and further work

In this chapter, we present the conclusion on the basis of the obtained results and
analysis. We then suggest further work on the shared latch implementation, and on
improving the scalability of Derby and the B-Tree index.

7.1 Conclusion

The Derby B-Tree algorithm uses exclusive latches and a lock-coupling algorithm.
With basis in the theory presented in Chapter 2, we can conclude that this is inef-
ficient. The algorithm implements a top-down approach to structure modifications,
and structure modification operations may be restarted multiple times.

The preliminary benchmarks showed that the multithreaded scalability of Derby is
limited. We identified the root node of the B-Tree index as a performance bottleneck for
high concurrency levels, when running a read-only workload that performs a single
record index lookup. This prompted us to implement an experimental patch for shared
latches, to evaluate its performance impact for multithreaded workloads.

For a high number of concurrent threads, the version with shared latches scales better
than the other two benchmarked versions of Derby. Our version with shared latches
provides higher peak throughput than the other versions for all benchmarks on both
the V880 and T2000 test systems, both running with Java 1.5 and 1.6.

With 128 concurrent threads and Java 1.5 on the T2000 system, we observe the best per-
formance improvement. The shared latches version provides 96% higher throughput
than the “new” version of the Derby development trunk.

Java 1.6 provides a significant performance gain when running Derby, both for single-
threaded and high concurrency workloads. The best improvement is observed for the
“new” version with 4 concurrent threads on the V880 system, Java 1.6 provides an
increase in throughput of 72% compared to 1.5.

However, the version of Derby with support for shared latches provides less through-
put for single-threaded and low concurrency workloads. This is due to overhead in-
curred by the more expensive shared/exclusive latches, implemented with use of the
ReentrantReadWriteLock java class.

Profiling shows that about 90% of the extra overhead, in single-threaded execution,

69

CHAPTER 7. CONCLUSION AND FURTHER WORK

for the shared latches version is caused by the creation of ArrayInputStream objects
and the use of ReentrantReadWriteLock, which is more expensive than exclusive
locking.

7.2 Further work and improvements

The experimental implementation of shared latches needs further work before it is
ready for production use with Derby. There are also possibilities to further extend the
patch to provide better performance both in single- and multithreaded cases.

We will describe possible improvements to shared latches support, the Derby B-Tree
index and the general scalability of Derby. These are more specific than the suggestions
from our autumn project, summarized in Section 2.2.6.

7.2.1 Shared latches

Our patch has allowed us to evaluate the performance impact of shared latches, but it
is experimental and not ready for production use. The patch should be cleaned up, or
reimplemented, to improve code quality and ensure consistency for all workloads.

The overhead when running a single-thread workload should be reduced. This can
be achieved by more efficient solutions to thread safety for page access, i.e., with-
out the need to create many ArrayInputStream objects, and by looking into the use
of ReentrantReadWriteLock. A different locking strategy for single-threaded work-
loads is one possibility, another is escalation to shared lock types when contention is
detected.

7.2.2 B-Tree algorithm

With support in the relevant theory, we have concluded that the B-Tree algorithm
used in Derby is inefficient. The B-Tree algorithm should be reimplemented to pro-
vide higher concurrency for index operations. Some of the B-Tree variants presented
in Section 2.4.2 may be viable alternatives. The implementation of an advanced con-
current B-Tree algorithm, based on one of these variants, requires support for shared
latches. Therefore we would recommend that an effort to improve concurrency for the
B-Tree access method starts with an efficient, production quality implementation of
shared latches.

70

Bibliography

[1] Shailesh Agarwal, Christopher Keene, and Arthur M. Keller. Architecting object
applications for high performance with relational databases. In Proc. of OOPSLA
Workshop on Object Database Behavior, Benchmarks, and Performance, October 1995.

[2] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, YS Ramakrishna, and
D. White. An Efficient Meta-lock for Implementing Ubiquitous Synchronization.
1999.

[3] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control per-
formance modeling: Alternatives and implications. ACM Trans. Database Syst.,
12(4):609–654, 1987.

[4] T.E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16,
1990.

[5] Apache Derby. http://db.apache.org/derby/. Accessed 20 April 2007.

[6] Apache Derby JavaDoc. http://db.apache.org/derby/javadoc/. Ac-
cessed 30 April 2007.

[7] Apache Derby Performance. http://wiki.apache.org/
apachecon-data/attachments/Us2005OnlineSessionSlides/
attachments/ApacheCon05usDerbyPerformance.pdf. Accessed 1
May 2007.

[8] Apache Derby: Source Code. http://db.apache.org/derby/dev/derby_
source.html. Accessed 30 April 2007.

[9] The apache software foundation. http://www.apache.org/. Accessed 19
April 2007.

[10] Apache License, Version 2.0. http://www.apache.org/licenses/
LICENSE-2.0. Accessed 19 April 2007.

[11] ApacheCon Conferences. http://apachecon.com/. Accessed 1 May 2007.

[12] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.
Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, December 2006.

71

http://db.apache.org/derby/
http://db.apache.org/derby/javadoc/
http://wiki.apache.org/apachecon-data/attachments/Us2005OnlineSessionSlides/attachments/ApacheCon05usDerbyPerformance.pdf
http://wiki.apache.org/apachecon-data/attachments/Us2005OnlineSessionSlides/attachments/ApacheCon05usDerbyPerformance.pdf
http://wiki.apache.org/apachecon-data/attachments/Us2005OnlineSessionSlides/attachments/ApacheCon05usDerbyPerformance.pdf
http://db.apache.org/derby/dev/derby_source.html
http://db.apache.org/derby/dev/derby_source.html
http://www.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

BIBLIOGRAPHY

[13] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 1–10, 1995.

[14] Berkeley DB - Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Berkeley_DB. Accessed 1 May 2007.

[15] Berkeley DB Java Edition Direct Persistence Layer Basics. http://www.
oracle.com/database/docs/BDB-JE-DPL-Basics-Whitepaper.pdf.
Accessed 1 May 2007.

[16] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control –
theory and algorithms. ACM Trans. Database Syst., 8(4):465–483, 1983.

[17] L.N. Bhuyan, Q. Yang, and D.P. Agrawal. Performance of Multiprocessor Inter-
connection Networks. Computer, 22(2):25–37, 1989.

[18] Building Derby. http://svn.apache.org/repos/asf/db/derby/code/
trunk/BUILDING.txt. Accessed 28 May 2007.

[19] Richard W. Carr and John L. Hennessy. WSCLOCK – a simple and effective
algorithm for virtual memory management. In SOSP ’81: Proceedings of the
eighth ACM symposium on Operating systems principles, pages 87–95, New York,
NY, USA, 1981. ACM Press.

[20] D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W. Mehl, T. G.
Price, M. Schkolnick, P. Griffiths Selinger, D. R. Slutz, B. W. Wade, and R. A.
Yost. Support for repetitive transactions and ad hoc queries in system r. ACM
Trans. Database Syst., 6(1):70–94, 1981.

[21] Changes in Cloudscape Availability and Support. http://www-1.ibm.com/
support/docview.wss?rs=636&uid=swg21256502. Accessed 25 April
2007.

[22] Douglas Comer. The Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137, 1979.

[23] The Database Interoperability Consortium. Distributed Relational Database Archi-
tecture (DRDA). The Open Group, January 2004.

[24] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
Intel Corporation, 2006.

[25] Database 10g | Oracle Database - The First Database Designed for Grid Comput-
ing. http://www.oracle.com/database/index.html. Accessed 22 May
2007.

[26] David Van Couvering’s Blog: Oracle Benchmarks BDB vs Apache Derby.
http://weblogs.java.net/blog/davidvc/archive/2006/11/
oracle_benchmar_1.html. Accessed 1 May 2007.

[27] DB Apache Project. http://db.apache.org/. Accessed 20 April 2007.

[28] DBAzine.com: DRDA. http://www.dbazine.com/db2/
db2-mfarticles/mullins-drda. Accessed 23 April 2007.

72

http://en.wikipedia.org/wiki/Berkeley_DB
http://en.wikipedia.org/wiki/Berkeley_DB
http://www.oracle.com/database/docs/BDB-JE-DPL-Basics-Whitepaper.pdf
http://www.oracle.com/database/docs/BDB-JE-DPL-Basics-Whitepaper.pdf
http://svn.apache.org/repos/asf/db/derby/code/trunk/BUILDING.txt
http://svn.apache.org/repos/asf/db/derby/code/trunk/BUILDING.txt
http://www-1.ibm.com/support/docview.wss?rs=636&uid=swg21256502
http://www-1.ibm.com/support/docview.wss?rs=636&uid=swg21256502
http://www.oracle.com/database/index.html
http://weblogs.java.net/blog/davidvc/archive/2006/11/oracle_benchmar_1.html
http://weblogs.java.net/blog/davidvc/archive/2006/11/oracle_benchmar_1.html
http://db.apache.org/
http://www.dbazine.com/db2/db2-mfarticles/mullins-drda
http://www.dbazine.com/db2/db2-mfarticles/mullins-drda

BIBLIOGRAPHY

[29] [#DERBY-1704] Allow more concurrency in the lock manager - ASF JIRA. http:
//issues.apache.org/jira/browse/DERBY-1704. Accessed 2 May 2007.

[30] [#DERBY-2107] Move page latching out of the lock manager - ASF JIRA. https:
//issues.apache.org/jira/browse/DERBY-2107. Accessed 2 May 2007.

[31] [#DERBY-2327] Reduce monitor contention in LockSet - ASF JIRA. https://
issues.apache.org/jira/browse/DERBY-2327. Accessed 2 May 2007.

[32] Derby Developer’s Guide. http://db.apache.org/derby/docs/dev/
devguide/. Accessed 30 April 2007.

[33] Derby Optimizer Design. http://db.apache.org/derby/papers/
optimizer.html. Accessed 25 April 2007.

[34] Derby Logging and Recovery. http://db.apache.org/derby/papers/
recovery.html. Accessed 23 April 2007.

[35] DerbyLruCacheManager - Db-derby Wiki. http://wiki.apache.org/
db-derby/DerbyLruCacheManager. Accessed 3 May 2007.

[36] David DeWitt and Jim Gray. Parallel database systems: the future of high per-
formance database systems. Communications of the ACM, 35(6):85–98, 1992.

[37] Dave Dice, Mark Moir, and William III Scherer. Quickly Reac-
quirable Locks. http://home.comcast.net/~pjbishop/Dave/
QRL-OpLocks-BiasedLocking.pdf, 2006.

[38] David Dice. java.util.concurrent ReentrantLock vs synchronized() - which
should you use? http://blogs.sun.com/dave/entry/java_util_
concurrent_reentrantlock_vs, 2006. Accessed 22 May 2007.

[39] David Dice. Let’s say you’re interested in using HotSpot as a vehicle for syn-
chronization research. http://blogs.sun.com/dave/entry/lets_say_
you_re_interested, 2006. Accessed 22 May 2007.

[40] diff - Wikipedia, the free encyclopedia. WikimediaFoundation,Inc. Ac-
cessed 26 May 2007.

[41] DIFFSTAT - make histogram from diff-output. http://invisible-island.
net/diffstat/diffstat.html. Accessed 26 May 2007.

[42] Sun Microsystems – BigAdmin: DTrace. http://www.sun.com/bigadmin/
content/dtrace/. Accessed 02 May 2007.

[43] EUROPA - Education and Training - Socrates programme - ECTS - Euro-
pean Credit Transfer and Accumulation System. http://ec.europa.eu/
education/programmes/socrates/ects/index_en.html. Accessed 25
May 2007.

[44] Brian Goetz. Java theory and practice: Urban performance legends, revisited.
http://www.ibm.com/developerworks/java/library/j-jtp09275.
html. Accessed 30 May 2007.

73

http://issues.apache.org/jira/browse/DERBY-1704
http://issues.apache.org/jira/browse/DERBY-1704
https://issues.apache.org/jira/browse/DERBY-2107
https://issues.apache.org/jira/browse/DERBY-2107
https://issues.apache.org/jira/browse/DERBY-2327
https://issues.apache.org/jira/browse/DERBY-2327
http://db.apache.org/derby/docs/dev/devguide/
http://db.apache.org/derby/docs/dev/devguide/
http://db.apache.org/derby/papers/optimizer.html
http://db.apache.org/derby/papers/optimizer.html
http://db.apache.org/derby/papers/recovery.html
http://db.apache.org/derby/papers/recovery.html
http://wiki.apache.org/db-derby/DerbyLruCacheManager
http://wiki.apache.org/db-derby/DerbyLruCacheManager
http://home.comcast.net/~pjbishop/Dave/QRL-OpLocks-BiasedLocking.pdf
http://home.comcast.net/~pjbishop/Dave/QRL-OpLocks-BiasedLocking.pdf
http://blogs.sun.com/dave/entry/java_util_concurrent_reentrantlock_vs
http://blogs.sun.com/dave/entry/java_util_concurrent_reentrantlock_vs
http://blogs.sun.com/dave/entry/lets_say_you_re_interested
http://blogs.sun.com/dave/entry/lets_say_you_re_interested
Wikimedia Foundation, Inc.
http://invisible-island.net/diffstat/diffstat.html
http://invisible-island.net/diffstat/diffstat.html
http://www.sun.com/bigadmin/content/dtrace/
http://www.sun.com/bigadmin/content/dtrace/
http://ec.europa.eu/education/programmes/socrates/ects/index_en.html
http://ec.europa.eu/education/programmes/socrates/ects/index_en.html
http://www.ibm.com/developerworks/java/library/j-jtp09275.html
http://www.ibm.com/developerworks/java/library/j-jtp09275.html

BIBLIOGRAPHY

[45] J. Gosling, B. Joy, G.L. Steele, and G. Bracha. The Java Language Specification, Third
Edition. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2005.

[46] J. Gray. Notes on Database Operating Systems. In volume 60 of Lecture Notes in
Computer Science, pages 393–481. Springer Verlag, 1978.

[47] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Gran-
ularity of locks and degrees of consistency in a shared data base. In IFIP Working
Conference on Modelling in Data Base Management Systems, pages 365–394, 1976.

[48] P.B. Hansen. Operating System Principles. Prentice Hall PTR Upper Saddle River,
NJ, USA, 1973.

[49] P.B. Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices, 34(4):38–45,
1999.

[50] John L. Hennessy and David A. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[51] hibernate.org - Hibernate. http://hibernate.org/. Accessed 1 May 2007.

[52] C.A.R. Hoare. Monitors: An Operating System Structuring Concept. Communi-
cations, 1974.

[53] HotSpot Java virtual machine source code. http://openjdk.java.net/
groups/hotspot/. Accessed 21 May 2007.

[54] HotSpot Java virtual machine source code, biased locking code.
http://opengrok.neojava.org/hotspot/xref/src/cpu/i486/
vm/assembler_i486.cpp#4076. Accessed 21 May 2007.

[55] IBM Software - DB2 Product Family - Family Overview. http://www-306.
ibm.com/software/data/db2/. Accessed 23 April 2007.

[56] IntelliJ IDEA :: The Most Intelligent Java IDE. http://www.jetbrains.com/
idea/. Accessed 14 May 2007.

[57] International Organization for Standardization. ISO/IEC-9804:1998: Information
technology – Open Systems Interconnection – Service definition for the Commitment,
Concurrency and Recovery service element, 12 1998.

[58] International Organization for Standardization. ISO/IEC 9075-(1-4,9-
11,13,14):2003, The SQL:2003 Standard, 12 2003.

[59] Java Technology. http://java.sun.com. Accessed 19 April 2007.

[60] JDBC Documentation. http://java.sun.com/j2se/1.5.0/docs/
guide/jdbc/. Accessed 19 April 2007.

[61] JIRA - Bug tracking, issue tracking and project management software. http:
//www.atlassian.com/software/jira/. Accessed 15 May 2007.

[62] G. Kane and J. Heinrich. MIPS RISC architecture. Prentice-Hall, Inc. Upper Sad-
dle River, NJ, USA, 1992.

74

http://hibernate.org/
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
http://opengrok.neojava.org/hotspot/xref/src/cpu/i486/vm/assembler_i486.cpp#4076
http://opengrok.neojava.org/hotspot/xref/src/cpu/i486/vm/assembler_i486.cpp#4076
http://www-306.ibm.com/software/data/db2/
http://www-306.ibm.com/software/data/db2/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://java.sun.com
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/
http://www.atlassian.com/software/jira/
http://www.atlassian.com/software/jira/

BIBLIOGRAPHY

[63] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and implementa-
tion, pages 224–234, 1992.

[64] H. T. Kung and John T. Robinson. On optimistic methods for concurrency con-
trol. ACM Trans. Database Syst., 6(2):213–226, 1981.

[65] Vladimir Lanin and Dennis Shasha. A symmetric concurrent b-tree algorithm.
In ACM ’86: Proceedings of 1986 ACM Fall joint computer conference, pages 380–389,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[66] Doug Lea. Java Specification Request 166: Concurrency Utilities. http://www.
jcp.org/en/jsr/detail?id=166, 2004.

[67] Doug Lea. The java. util. concurrent synchronizer framework. Science of Com-
puter Programming, 58(3):293–309, 2005.

[68] Philip L. Lehman and s. Bing Yao. Efficient locking for concurrent operations on
B-trees. ACM Trans. Database Syst., 6(4):650–670, 1981.

[69] M.M. Michael and M.L. Scott. Simple, Fast, and Practical Non-blocking and
Blocking Concurrent Queue Algorithms. 1995.

[70] Mimer Developers - Features - Transaction Concurrency - Optimistic Concur-
rency Control. http://developer.mimer.com/features/feature_15.
htm. Accessed 27 May 2007.

[71] Mimer SQL - Mimer Information Technology. http://www.mimer.com/. Ac-
cessed 27 May 2007.

[72] MIPS Technologies - At the Core of the User Experience.®.
MIPSTechnologies,Inc. Accessed 25 May 2007.

[73] C. Mohan. Concurrency control and recovery methods for B+-tree indexes:
ARIES/KVL and ARIES/IM. In Performance of Concurrency Control Mechanisms
in Centralized Database Systems, pages 248–306. 1996.

[74] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: a transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–
162, 1992.

[75] MySQL AB :: Developer Zone. http://mysql.org/. Accessed 4 May 2007.

[76] NetBeans IDE. http://www.netbeans.org. Accessed 14 May 2007.

[77] The Open Source Definition. http://www.opensource.org/docs/osd. Ac-
cessed 19 April 2007.

[78] The Open Group: Enterprise Architecture Standards, Certification and Services.
http://www.opengroup.org/. Accessed 23 April 2007.

[79] OpenSPARC. http://www.sun.com/processors/opensparc/. Accessed
11 May 2007.

75

http://www.jcp.org/en/jsr/detail?id=166
http://www.jcp.org/en/jsr/detail?id=166
http://developer.mimer.com/features/feature_15.htm
http://developer.mimer.com/features/feature_15.htm
http://www.mimer.com/
MIPS Technologies, Inc.
http://mysql.org/
http://www.netbeans.org
http://www.opensource.org/docs/osd
http://www.opengroup.org/
http://www.sun.com/processors/opensparc/

BIBLIOGRAPHY

[80] Oracle Berkeley DB Java Edition | Oracle Berkeley DB. http://www.oracle.
com/technology/products/berkeley-db/je/index.html. Accessed 1
May 2007.

[81] Oracle Berkeley DB Java Edition vs. Apache Derby: A Performance Compar-
ison. http://www.oracle.com/technology/products/berkeley-db/
pdf/je-derby-performance.pdf. Published November, 2006.

[82] org.apache.derby.impl.store.access.btree. http://db.apache.org/derby/
papers/btree_package.html. Accessed 30 April 2007.

[83] Per Ottar Ribe Pahr and Anders Morken. Apache Derby SMP Scalability. http:
//base.google.com/base/a/1468576/D10343779029035238114. Pub-
lished 18 December 2006.

[84] patch(1): apply diff file to original - Linux man page. http://www.die.net/
doc/linux/man/man1/patch.1.html. Accessed 26 May 2007.

[85] PolePosition. http://www.polepos.org/. Accessed 1 May 2007.

[86] PolePosition results. http://polepos.sourceforge.net/results/
html/index.html. Accessed 1 May 2007.

[87] PostgreSQL: The world’s most advanced open source database. http://www.
postgresql.org/. Accessed 4 May 2007.

[88] Scott A. Sandford. Apples and Oranges – A Comparison. http:
//www.improbable.com/airchives/paperair/volume1/v1i3/
air-1-3-apples.html. Published in the Annals of Improbable Research
Volume 1, Issue 3, May/June 1995.

[89] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In
SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD international conference on
Management of data, pages 23–34, New York, NY, USA, 1979. ACM Press.

[90] Sequoia: Welcome to the Sequoia Project! http://sequoia.continuent.
org/HomePage. Accessed 9 May 2007.

[91] Solaris 10 Operating System. http://www.sun.com/software/solaris/.
Accessed 2 May 2007.

[92] SQLvsDerbyFeatures - Db-derby Wiki. http://wiki.apache.org/
db-derby/SQLvsDerbyFeatures. Accessed 23 April 2007.

[93] V. Srinivasan and Michael J. Carey. Performance of B+ Tree Concurrency Algo-
rithms. VLDB J., 2(4):361–406, 1993.

[94] subversion.tigris.org. http://subversion.tigris.org. Accessed 19 May
2007.

76

http://www.oracle.com/technology/products/berkeley-db/je/index.html
http://www.oracle.com/technology/products/berkeley-db/je/index.html
http://www.oracle.com/technology/products/berkeley-db/pdf/je-derby-performance.pdf
http://www.oracle.com/technology/products/berkeley-db/pdf/je-derby-performance.pdf
http://db.apache.org/derby/papers/btree_package.html
http://db.apache.org/derby/papers/btree_package.html
http://base.google.com/base/a/1468576/D10343779029035238114
http://base.google.com/base/a/1468576/D10343779029035238114
http://www.die.net/doc/linux/man/man1/patch.1.html
http://www.die.net/doc/linux/man/man1/patch.1.html
http://www.polepos.org/
http://polepos.sourceforge.net/results/html/index.html
http://polepos.sourceforge.net/results/html/index.html
http://www.postgresql.org/
http://www.postgresql.org/
http://www.improbable.com/airchives/paperair/volume1/v1i3/air-1-3-apples.html
http://www.improbable.com/airchives/paperair/volume1/v1i3/air-1-3-apples.html
http://www.improbable.com/airchives/paperair/volume1/v1i3/air-1-3-apples.html
http://sequoia.continuent.org/HomePage
http://sequoia.continuent.org/HomePage
http://www.sun.com/software/solaris/
http://wiki.apache.org/db-derby/SQLvsDerbyFeatures
http://wiki.apache.org/db-derby/SQLvsDerbyFeatures
http://subversion.tigris.org

BIBLIOGRAPHY

[95] Sun Fire T1000 and T2000 Server Architecture – Unleashing the UltraSPARC T1
Processor with CoolThreads Technology. http://www.sun.com/servers/
coolthreads/coolthreads_architecture_wp.pdf. White Paper, Pub-
lished December 2005.

[96] Sun Fire T2000 Server. http://www.sun.com/servers/coolthreads/
t2000/. Accessed 10 May 2007.

[97] Sun Fire V880 Server. http://www.sun.com/servers/midrange/v880/
spec.html. Accessed 10 May 2007.

[98] Threads and Locks. http://java.sun.com/docs/books/jls/second_
edition/html/memory.doc.html#29596. Accessed 25 May 2007.

[99] TPC-B. http://www.tpc.org/tpcb/default.asp. Accessed 1 May 2007.

[100] Tuning Derby. http://db.apache.org/derby/docs/dev/tuning/. Ac-
cessed 1 May 2007.

[101] Ubuntu Home Page. http://www.ubuntu.com/. Accessed 24 May 2007.

[102] UltraSPARC III processor. http://www.sun.com/processors/
UltraSPARC-III/. Accessed 10 May 2007.

[103] UltraSPARC T1 processor. http://www.sun.com/processors/
UltraSPARC-T1/. Accessed 10 May 2007.

[104] D.L. Weaver and T. Germond. The SPARC Architecture Manual: Version 9. PTR
Prentice Hall, 1994.

77

http://www.sun.com/servers/coolthreads/coolthreads_architecture_wp.pdf
http://www.sun.com/servers/coolthreads/coolthreads_architecture_wp.pdf
http://www.sun.com/servers/coolthreads/t2000/
http://www.sun.com/servers/coolthreads/t2000/
http://www.sun.com/servers/midrange/v880/spec.html
http://www.sun.com/servers/midrange/v880/spec.html
http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html#29596
http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html#29596
http://www.tpc.org/tpcb/default.asp
http://db.apache.org/derby/docs/dev/tuning/
http://www.ubuntu.com/
http://www.sun.com/processors/UltraSPARC-III/
http://www.sun.com/processors/UltraSPARC-III/
http://www.sun.com/processors/UltraSPARC-T1/
http://www.sun.com/processors/UltraSPARC-T1/

Abbreviations and Terms

Some abbreviations and terms used in this report.

Term Definition
2PL Two Phase Locking
ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
ARIES Algorithm for Recovery and Isolation Exploiting Semantics
ASF Apache Software Foundation
CAS Compare-And-Swap
CMT Chip Multi-Threading
CPU Central Processing Unit
CVS Concurrent Versioning System
DBMS Database Management System
DPL Direct Persistence Layer
DRDA Distributed Relational Database Architecture
ECTS European Credit Transfer and Accumulation System
FPU Floating Point Unit
IDE Integrated Development Environment
IO Input/Ouput
IP Internet Protocol
JAR Java ARchive
JDBC Java Database Connectivity
JDK Java Development Kit
JVM Java Virtual Machine
KVL Key Value Locking
MIPS Microprocessor without Interlocked Pipeline Stages
MVCC Multiversion Concurrency Control
ORM Object-Relational Mapping
RDBMS Relational Database Management System
SMP Symmetric Multiprocessing
SPARC Scalable Processor ARChitecture
SQL Structured Query Language
SVN Subversion
SX Shared / Exclusive
TCP Transmission Control Protocol
TPC Transaction Processing Performance Council
VCS Version Control System
WAL Write Ahead Logging

79

Appendix A

Raw results for “1704” patch

These are the raw numbers from the benchmarks of the “1704” patch.

V880, Java 1.6
Threads Throughput Avg. response time (ms)

1 8624 0.114626
2 11291 0.174921
4 15338 0.258150
8 16728 0.474062

16 14379 1.103958
32 12576 2.525081

T2000, Java 1.6
Threads Throughput Avg. response time (ms)

4 10665 0.371471
8 12764 0.621377

16 12934 1.226974
32 11924 2.641924
64 9321 6.755690

128 5762 21.853692

81

Appendix B

Raw results for shared latches

These are the raw numbers from the benchmarks of the shared latches patch.

V880, Java 1.5
Throughput Avg. response time (ms)

Threads SX OLD NEWCLEAN SX OLD NEWCLEAN
1 6362 7273 8209 0.155838 0.135451 0.120340
2 8295 9115 9921 0.238975 0.216482 0.199349
4 11789 11415 10745 0.334594 0.337805 0.367885
8 15032 12047 11795 0.521615 0.655912 0.672250

16 13696 10996 10959 1.146136 1.441663 1.443169
32 13398 11124 10014 2.324168 2.854482 3.132350
64 13113 10906 9014 4.254139 5.811324 7.022955

128 12928 10291 7444 7.975246 11.789528 17.007157

V880, Java 1.6
Throughput Avg. response time (ms)

Threads SX OLD NEWCLEAN SX OLD NEWCLEAN
1 7162 8374 9417 0.138350 0.118027 0.104768
2 9833 11415 13172 0.201129 0.172911 0.149675
4 15308 16563 18490 0.258619 0.238547 0.213813
8 21084 17419 18642 0.371578 0.454363 0.425914

16 18243 15481 16467 0.860991 1.023511 0.961125
32 16719 15158 15102 1.877340 2.088063 2.105491
64 14328 14488 13544 4.369171 4.358392 4.701581

128 14156 11117 10492 8.823511 11.319624 12.103009

83

APPENDIX B. RAW RESULTS FOR SHARED LATCHES

T2000, Java 1.5
Throughput Avg. response time (ms)

Threads SX OLD NEWCLEAN SX OLD NEWCLEAN
1 3254 3705 3971 0.304863 0.267275 0.249254
2 5149 5949 6214 0.385888 0.333709 0.317768
4 8557 9287 9402 0.464373 0.427413 0.419681
8 12254 11469 11032 0.648994 0.688204 0.716321

16 13701 11158 10708 1.152993 1.424874 1.470348
32 12779 10834 8875 2.385603 2.932017 3.538944
64 10971 10692 6565 5.130610 5.397780 9.594385

128 8518 8305 4342 12.923013 13.348098 29.281882

T2000, Java 1.6
Throughput Avg. response time (ms)

Threads SX OLD NEWCLEAN SX OLD NEWCLEAN
1 3585 4354 4752 0.276591 0.227365 0.208127
2 5703 7210 8069 0.348074 0.274994 0.245421
4 9197 12104 13064 0.432125 0.327562 0.303570
8 13128 14000 14240 0.605104 0.565213 0.558131

16 14756 14263 14744 1.076278 1.114718 1.079485
32 16588 13858 13188 1.909419 2.297579 2.412880
64 12685 13320 10283 4.407453 4.763810 6.190361

128 9944 8341 6522 11.483683 15.178643 19.491824

84

Appendix C

Enclosed source code and profiling
snapshots

Source code for the benchmark application, the patch for shared latches and profiling
snapshots have been enclosed with this report in a .zip file.

C.1 Benchmark application

The source code for the benchmark application is included in the selectload direc-
tory in the enclosed .zip file.

C.2 Shared latches patch

The patch to add support for shared latches to Derby is included in the SX-patch

directory in the enclosed .zip file.

The patch can be applied to the Derby development trunk, revision 501369, using the
patch utility [84]. For information on using SVN to check out the Derby source code,
see [8].

C.3 Profiling snapshots

The NetBeans profiler snapshots have been included. They can be found in the snap-
shots directory in the enclosed .zip file.

The profiler snapshots corresponds to the versions of Derby tested in the benchmarks.
The files are named sx-20k.nps, old-20k.nps, and newclean-20k.nps respectively,
for the SX, OLD and NEWCLEAN versions.

85

