
May 2007
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Quantification and Traceability of
Requirements

Gyrd Norvoll

Problem Description

Software development is a highly dynamic process, primarily caused by its foundation in the
dynamic human world. Requirements traceability alleviates the detrimental effects of this
dynamism by providing increased control over the artifacts of the software
development processes and their interrelationships.

The implementation of requirements traceability in software development projects is a
challenging task. The work overhead can increase significantly, and the benefits could soon
become second to the amount of work required to harvest them. This situation destroys the
purpose of implementing RT, and must be amended by reducing the work overhead associated
with RT, which can be accomplished by introducing an RT tool.

This thesis shall research how an RT tool should be implemented to reduce the work overhead
associated with implementing RT in a software development project. The research shall conclude
with the development of an evolutionary prototype of an RT tool, but preparatory to this, the
applicability of the traceability models presented in the preceding in-depth study must be verified
by means of empirical work. The internal representation of the artifacts and traces of the
traceability models must be determined, in addition to addressing the issue of representation of
stakeholders’ organisational hierarchies.

Further, the thesis shall present a full requirements specification and an architectural description
of an RT tool, suggesting solutions to the issue of increased work overhead when implementing
RT. Based on the requirements specification and the architectural description, an evolutionary
prototype of the described RT tool shall be developed, to give its users an impression of the
functionality of the designed RT tool, and illustrating how full forwards and backwards
requirements traceability can be provided.

Assignment given: 19. January 2007
Supervisor: Tor Stålhane, IDI

Abstract

Software development is a highly dynamic process, primarily caused by its foundation
in the dynamic human world. Requirements traceability alleviates the detrimental
effects of this dynamism by providing increased control over the artifacts of the software
development processes and their interrelationships.

This thesis investigates how an RT tool should be designed and implemented in order
to assist with the tasks of requirements traceability, and outlines a tool that primar-
ily focuses on reducing the work overhead associated with the tasks of implementing
requirements traceability in software development projects.

Preparatory to the development of the RT tool, the applicability of the traceability
models presented in the in-depth study has been confirmed through empirical work. A
detailed representation of the models has been compiled, elaborating on the internal
representation of artifacts and traces. The models were extended to be able to represent
organisational hierarchies, enabling trace information analysis to deduce the context of
important decisions throughout the software development processes, an important tool
in understanding how requirements are determined.

The thesis presents a requirements specification and architecture with a firm foundation
in the findings of the in-depth study, outlining an RT tool that addresses important
issues concerning the implementation of requirements traceability, in particular focusing
on reducing the associated work overhead. Based on the requirements specification and
architecture, a evolutionary prototype is developed, giving its users an impression of
the functionality of the outlined RT tool. The prototype addresses the issues pointed
out by the requirements specification and architectural description, and, throughout
development, attention is given the evolvability of the prototype. Consequently, the
prototype provides a good foundation for the future development of a complete RT
tool.

i

Preface

This thesis is written as the concluding part of a Master’s degree in Computer Science.
The thesis is written during the spring semester of 2007, at the Department of Computer
and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU) in Trondheim, Norway.

The thesis includes an in-depth study, researching the field of requirements traceability.
The thesis investigates how an RT tool should be designed in order to assist with the
tasks of implementing requirements traceability in software development projects.

Thanks is given to the assigned teaching supervisor Tor St̊alhane, for his continuous
support and feedback.

Gyrd Norvoll

Trondheim, June 2007

iii

Contents

I Thesis directive 1

1 Introduction 3
1.1 Purpose . 3
1.2 Scope . 3
1.3 Overview . 3

2 Thesis mandate 4
2.1 Background . 4
2.2 Motivation . 5
2.3 Problem Definition . 5
2.4 Context . 6
2.5 Audience . 6
2.6 Scope . 6
2.7 Report Outline . 6

3 Thesis processes and methods 8
3.1 Methodology . 8
3.2 Preparatory work . 8
3.3 Prototype development . 9

4 Summary 10

II Preparatory Work 11

5 Introduction 13
5.1 Purpose . 13
5.2 Scope . 13
5.3 Overview . 13

6 Applicability of results from in-depth study 15
6.1 Industrial experiences . 15
6.2 Evaluation of results . 16

6.2.1 Using the traceability models as a vehicle of communication 16
6.2.2 An alternative application of the pre-RS traceability model 16
6.2.3 The need for information . 17
6.2.4 Challenges in modern IT development . 17

6.3 Alterations in TRACY . 17
6.3.1 Pre-RS traceability submodel . 18
6.3.2 Pre-FRS traceability submodel . 18
6.3.3 Post-FRS traceability submodel . 19

7 Representation of stakeholders and their organisational roles 21
7.1 Stakeholder hierarchy . 21

7.1.1 Status networks . 21
7.2 Group dynamics . 22

7.2.1 Majority and minority influence . 22

v

CONTENTS

7.2.2 Pressure to conform . 23
7.3 Determining stakeholders’ roles . 23

8 Internal representation of artifacts and traces 25
8.1 Application of Planguage . 25
8.2 Traceability granularity . 26
8.3 Internal representation of artifacts . 26

8.3.1 Pre-RS Traceability Submodel . 26
8.3.2 Pre-FRS Traceability Submodel . 30
8.3.3 Post-FRS Traceability Submodel . 32

8.4 Internal representation of traces . 34
8.4.1 Pre-RS traceability submodel . 34
8.4.2 Pre-FRS traceability submodel . 35
8.4.3 Post-FRS traceability submodel . 35

9 Summary 36

III Requirements Specification 37

10 Introduction 39
10.1 Document information . 39
10.2 Purpose . 39
10.3 Scope . 39
10.4 Definitions, acronyms, and abbreviations . 40
10.5 References . 40
10.6 Overview . 40

11 Overall description 41
11.1 Product perspective . 41
11.2 Product functions . 41
11.3 User characteristics . 42
11.4 Constraints . 42
11.5 Assumptions and dependencies . 43
11.6 Requirements subsets . 43

12 Specific requirements 44
12.1 External interface requirements . 44
12.2 Functional requirements . 45

12.2.1 Traceability projects . 45
12.2.2 Gathering trace information . 47
12.2.3 Maintaining trace information . 48
12.2.4 Searching trace information . 50
12.2.5 Visualising trace information . 51
12.2.6 Help and assistance . 52
12.2.7 Administrative functions . 53

12.3 Use case modelling . 54
12.3.1 The concept of use case modelling . 54
12.3.2 Description of actors . 54
12.3.3 System use cases . 55
12.3.4 Tracing of use cases . 55

12.4 Performance requirements . 56
12.5 Design constraints . 57
12.6 Software system attributes . 58
12.7 Other requirements . 60

13 Requirements dependencies 61

vi

CONTENTS

IV Architectural Description 65

14 Introduction 67
14.1 Document information . 67
14.2 Summary . 67
14.3 Scope . 67
14.4 Context . 67
14.5 Glossary . 68
14.6 References . 68
14.7 Overview . 68

15 Identification of stakeholders and concerns 70
15.1 Stakeholders . 70
15.2 Concerns . 71

16 Architectural strategies 73

17 Selection of architectural viewpoints 78
17.1 Logical viewpoint . 78
17.2 Process viewpoint . 79
17.3 Development viewpoint . 80
17.4 Physical viewpoint . 80

18 Architectural views 82
18.1 Logical view . 82

18.1.1 The domain model . 82
18.1.2 Component-based architecture . 84

18.2 Process view . 87
18.2.1 Three-tier client-server . 87

18.3 Development view . 88
18.4 Physical view . 91

19 Consistency among architectural views 93

20 Architectural rationale 95

V Prototype development 97

21 Introduction 99
21.1 Purpose . 99
21.2 Scope . 99
21.3 Overview . 99

22 Implementation details 101
22.1 Technical details . 101
22.2 Prototype development . 102

23 Using the prototype 104
23.1 Accessing the prototype . 104
23.2 Managing projects and other administrative work 105
23.3 Project contents . 108
23.4 Creating and maintaining trace information . 109

23.4.1 Artifacts . 110
23.4.2 Traces . 114

23.5 Visualising trace information . 115
23.6 Search . 118
23.7 Help and assistance . 118

vii

CONTENTS

24 Prototype evaluation 121
24.1 Prototype evolvability . 121
24.2 Prototype contributions . 121

24.2.1 Fulfilment of functional requirements . 122
24.2.2 Fulfilment of non-functional requirements 124

25 Prototype evolution 126
25.1 Model-View-Controller design pattern . 126
25.2 Model Persistence . 126
25.3 Concurrency . 127
25.4 Alpha functionality . 127

26 Summary 128

VI Evaluation & Discussion 129

27 Introduction 131
27.1 Purpose . 131
27.2 Scope . 131
27.3 Overview . 131

28 Evaluation 133
28.1 Fulfilment of research agenda . 133
28.2 Preparatory work . 133

28.2.1 Validity of empirical work . 134
28.2.2 Representation of stakeholders and their organisational roles 134
28.2.3 Internal representation of artifacts and traces 135
28.2.4 Evaluation of Planguage . 135

28.3 Requirements specification . 136
28.4 Architectural description . 136

28.4.1 Identified tradeoff points . 136
28.4.2 Identified risks and nonrisks . 137

28.5 Prototype . 137

29 Discussion 139

30 Summary 141

VII Conclusion & Further Work 143

31 Introduction 145
31.1 Purpose . 145
31.2 Scope . 145
31.3 Overview . 145

32 Conclusion 146

33 Further work 147

VIII Appendices 149

A A brief overview of the in-depth study 150
A.1 Study Outline . 150
A.2 Important findings . 150

B Employed Planguage attributes 152

C Internal representation of artifacts 154

viii

CONTENTS

D Eight golden rules of interface design 156

E High-level Requirements Specification 158

F Full Requirements Specification 159
F.1 External interface requirements . 159

F.1.1 User interface requirements . 159
F.1.2 Hardware interfaces . 162
F.1.3 Software interfaces . 162
F.1.4 Communications interfaces . 163

F.2 Functional requirements . 163
F.2.1 Traceability projects . 163
F.2.2 Gathering trace information . 166
F.2.3 Maintaining trace information . 167
F.2.4 Visualising trace information . 170
F.2.5 Help and assistance . 173
F.2.6 Administrative functions . 175

F.3 Performance requirements . 176
F.3.1 Throughput . 176
F.3.2 Response time . 178
F.3.3 Storage capacity . 181

F.4 Design constraints . 182
F.4.1 Standards compliance . 182
F.4.2 Hardware limitations . 182

F.5 Software system attributes . 182
F.5.1 Functionality . 182
F.5.2 Reliability . 184
F.5.3 Maintainability . 185
F.5.4 Portability . 186
F.5.5 Usability . 188

G Use cases 191

H Prototype development 199
H.1 Prototype design . 199
H.2 Prototype installation . 205

H.2.1 Downloading the Application Server . 205
H.2.2 Installing the Application Server . 205
H.2.3 Starting the Application Server . 206
H.2.4 Deploying the prototype . 206

ix

List of Figures

3.1 Thesis processes . 8
3.2 Development process . 9

6.1 Pre-RS Traceability Submodel . 18
6.2 Pre-FRS Traceability Submodel . 19
6.3 Post-FRS Traceability Submodel . 19

8.1 Internal representation of the Prose requirement artifact 27
8.2 Internal representation of the Stakeholder artifact 28
8.3 Internal representation of the Functional requirement artifact 31
8.4 Internal representation of the Non-functional requirement artifact 31
8.5 Internal representation of the System component artifact 33

12.1 Summary of external interface requirements . 44
12.2 Summary of functional requirements . 46
12.3 Tracking matrix - Use cases/Requirements . 56
12.4 Summary of performance requirements . 57
12.5 Summary of design constraints . 58
12.6 Summary of software system attributes . 59

13.1 Tracking matrix - Requirements/Requirements 62
13.2 Tracking matrix - High-level requirements/Detailed requirements 63

16.1 Component-based architecture . 74
16.2 Model-View-Controller (MVC) design pattern . 75
16.3 Virtual Machine . 75
16.4 Three-tier Client-Server design pattern . 76

17.1 ”4+1” view model of software architecture . 78
17.2 UML concepts - class diagram . 79
17.3 UML concepts - component diagram . 79
17.4 UML concepts - sequence diagram . 80
17.5 UML concepts - deployment diagram . 81

18.1 Domain model . 83
18.2 High-level logical structure . 84
18.3 Logical structure . 85
18.4 Project model . 86
18.5 High-level process architecture . 88
18.6 The layers of the RT tool . 89
18.7 Detailed components . 90
18.8 Deployment of the RT tool . 91

23.1 TraceMe - Login . 105
23.2 TraceMe - Welcome screen . 105
23.3 TraceMe - User details . 106
23.4 TraceMe - Project details . 107

xi

LIST OF FIGURES

23.5 TraceMe - Register new user . 107
23.6 TraceMe - Create new project . 107
23.7 TraceMe - Edit project . 108
23.8 TraceMe - Attach user to project . 108
23.9 TraceMe - Project contents . 109
23.10TraceMe - Artifact categories . 110
23.11TraceMe - Artifact instances . 110
23.12TraceMe - Artifact instance details . 111
23.13TraceMe - Artifact instance details - Example 2 111
23.14TraceMe - Artifact instance details - Example 3 112
23.15TraceMe - Artifact instance details - Example 4 112
23.16TraceMe - Create artifact . 113
23.17TraceMe - Import system components . 114
23.18TraceMe - Defined traces . 115
23.19TraceMe - Create trace - step 1 . 116
23.20TraceMe - Create trace - step 2 . 116
23.21TraceMe - Complex predetermined visualisation 117
23.22TraceMe - Custom-made visualisation . 117
23.23TraceMe - Custom-made visualisation - Example 2 118
23.24TraceMe - Visualisations . 119
23.25TraceMe - Search . 119
23.26TraceMe - Help menu . 120

A.1 Requirements traceability . 151

C.1 Internal representation of artifacts - Pre-RS traceability submodel 154
C.2 Internal representation of artifacts - Pre-FRS traceability submodel 155
C.3 Internal representation of artifacts - Post-FRS traceability submodel 155

H.1 Organisation of JSP files . 200
H.2 Prototype design . 201
H.3 Detailed specification of the domain object model - pre-RS 202
H.4 Detailed specification of the domain object model - pre-FRS 203
H.5 Detailed specification of the domain object model - post-FRS 204

xii

List of Tables

8.1 Artifacts in the pre-RS traceability submodel . 27
8.2 Artifacts in the pre-FRS traceability submodel 30
8.3 Artifacts in the post-FRS traceability submodel 33

12.1 Actor description - regular user . 54
12.2 Actor description - administrative user . 54
12.3 Actor description - System . 55

24.1 Fulfilment of functional requirements . 122
24.2 Supported use cases . 123

E.1 High-level Requirements Specification . 158

F.1 User Interface Requirement - Window-based application 159
F.2 User Interface Requirement - Feedback . 159
F.3 User Interface Requirement - Navigation . 160
F.4 User Interface Requirement - Location . 160
F.5 User Interface Requirement - Escape . 160
F.6 User Interface Requirement - Menu . 161
F.7 User Interface Requirement - Logout . 161
F.8 User Interface Requirement - Eight Golden Rules of HCI Design 161
F.9 Hardware Interface Requirement - Hardware Independency 162
F.10 Software Interface Requirement - Application Server 162
F.11 Software Interface Requirement - Database Server 162
F.12 Communication Interface Requirement - Underlying Communication 163
F.13 Functional Requirement - Create a new project 163
F.14 Functional Requirement - Remove a project . 163
F.15 Functional Requirement - Attach users with project 164
F.16 Functional Requirement - Choose project to work with 164
F.17 Functional Requirement - Exit project . 165
F.18 Functional Requirement - Determine Traceability Stage 165
F.19 Functional Requirement - Navigating the trace information 165
F.20 Functional Requirement - Creating an artifact instance 166
F.21 Functional Requirement - Choosing a starting artifact instance 166
F.22 Functional Requirement - Choosing a ending artifact instance 166
F.23 Functional Requirement - Registering auxiliary trace information 167
F.24 Functional Requirement - Choose artifact to edit 167
F.25 Functional Requirement - Save changes to edited artifact instance 168
F.26 Functional Requirement - Choose artifact to delete 168
F.27 Functional Requirement - Choose trace to edit 168
F.28 Functional Requirement - Save changes to edited traces 169
F.29 Functional Requirement - Choose trace to delete 169
F.30 Functional Requirement - System-initiated trace deletion 170
F.31 Functional Requirement - Searching trace information 170
F.32 Functional Requirement - Requesting visualisation of single artifacts or traces . . 170
F.33 Functional Requirement - Requesting complex visualisations 171

xiii

LIST OF TABLES

F.34 Functional Requirement - Simple predetermined visualisations 171
F.35 Functional Requirement - Complex predetermined visualisations 172
F.36 Functional Requirement - Adapting simple visualisations 172
F.37 Functional Requirement - Creating custom-made complex visualisations 172
F.38 Functional Requirement - Choosing starting and ending artifact of complex custom-

made visualisations . 173
F.39 Functional Requirement - Help Messages . 173
F.40 Functional Requirement - Help Menu . 174
F.41 Functional Requirement - Search Help Menu . 174
F.42 Functional Requirement - Adding a user . 175
F.43 Functional Requirement - Removing a user . 175
F.44 Functional Requirement - Changing user password 175
F.45 Functional Requirement - Changing access level 176
F.46 Functional Requirement - User Authentication 176
F.47 Performance Requirement - Throughput: Number of simultaneously active users 176
F.48 Performance Requirement - Throughput: Number of requests to system 177
F.49 Performance Requirement - Throughput: Number of requests to database 178
F.50 Performance Requirement - Response time: User requests 178
F.51 Performance Requirement - Response time: Database requests 179
F.52 Performance Requirement - Response time: Search 179
F.53 Performance Requirement - Response time: User authentication 180
F.54 Performance Requirement - Response time: Visualisations 180
F.55 Performance Requirement - Storage capacity: Registered users 181
F.56 Performance Requirement - Storage capacity: Trace information 181
F.57 Design Constraint - Architectural description . 182
F.58 Design Constraint - Hardware limitations . 182
F.59 Software System Attribute - Nonrepudiation . 182
F.60 Software System Attribute - Confidentiality . 183
F.61 Software System Attribute - Auditing . 183
F.62 Software System Attribute - Recoverability . 184
F.63 Software System Attribute - Availability . 184
F.64 Software System Attribute - Changeability . 185
F.65 Software System Attribute - Testability . 186
F.66 Software System Attribute - Installability: Installation costs 186
F.67 Software System Attribute - Installability: Time to install 187
F.68 Software System Attribute - Adaptability: Increase number of simultaneous users 187
F.69 Software System Attribute - Adaptability: Alterations to the traceability model . 188
F.70 Software System Attribute - Understandability 188
F.71 Software System Attribute - Learnability . 189
F.72 Software System Attribute - Operability: Visualisation flexibility 189
F.73 Software System Attribute - Operability: Change functionality 190

G.1 Use case - User login . 191
G.2 Use case - Choose project . 191
G.3 Use case - Choose traceability stage . 192
G.4 Use case - Working with artifacts . 192
G.5 Use case - Create an artifact . 193
G.6 Use case - Edit an existing artifact . 193
G.7 Use case - Delete an existing artifact . 194
G.8 Use case - Locate an existing artifact . 194
G.9 Use case - Add a trace between artifacts . 195
G.10 Use case - Delete a trace between artifacts . 195
G.11 Visualise trace information . 196
G.12 Use case - Search through trace information . 196
G.13 Use case - Creating a project . 197
G.14 Use case - Register a user . 197
G.15 Use case - Search through help directory . 198

xiv

Part I

Thesis directive

1

Chapter 1

Introduction

In this chapter, a short summary of the purpose and scope of the thesis directive is given, along
with an overview of the chapters.

1.1 Purpose

The purpose of this part is to provide a framework for the thesis, to be used as guidance during
the remainder of the thesis work.

1.2 Scope

The following chapters describe the foundations of the thesis, i.e. its background, motivation
and problem definition. In addition, the scope of the thesis is stated, informing the reader of
the focus of this thesis, and defining the boundaries of the scope. The chapters do not describe
any of the results, only which results are to be obtained, as well as what methods and processes
that should be used in obtaining them.

1.3 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part.

• Chapter 2 - Thesis Mandate
This chapter describes the mandate of the thesis, which contains information such as the
background and motivation of the thesis, and its research agenda.

• Chapter 3 - Thesis Processes and Methods
This chapter describes the processes and methods employed during the work of the thesis.

• Chapter 4 - Summary
A summary of the key decisions of the thesis directive.

3

Chapter 2

Thesis mandate

The thesis mandate presents all necessary information regarding the justification of this thesis,
and its purpose. This chapter begins by giving an introduction to the background of the thesis
and its field of research, continuing with the motivation of the thesis. The chapter concludes
with a research agenda, scope, and context of the thesis.

2.1 Background

In preparation for this Master’s Thesis, an in-depth study [Nor06]1 was conducted, focusing on
the theoretical aspects of the field of quantification and traceability of requirements (RT), a
field that has arisen as a response to the challenges created when software engineers attempt to
keep up with the human dynamism of their customers and the ever-changing nature of software
development.

The in-depth study defined requirements traceability as “the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these phases).”

In order to be able to describe and follow the life of a requirement, the in-depth study presented
a set of traceability models, which defined artifacts of the software development processes
and their interrelationships. Examples of artifacts include stakeholders, requirements, change
proposals, system components and verification procedures.

Software engineering is a highly dynamic process, mainly because the process is located in the
human world. The traceability models establishes how the artifacts of software development
processes are interrelated and influence each other, providing an instrument for controlling not
the dynamism of software engineering itself (a seemingly impossible task), but the influence
of the dynamism on the results of the software engineering processes, thus alleviating any
destructive influences.

The benefits of employing RT in software development projects would incontestably bring added
value to a project, particularly in the form of increased control over the influence of dynamism.
However, employing RT is not a triviell task, and cannot be accomplished without consider-
able effort. The added value will soon loose its valour if it can only be achieved through an
undesirable work overhead.

1A brief overview of the in-depth study can be found in Appendix A

4

2.2. Motivation

2.2 Motivation

In short, requirements traceability requires access to and analysis of information on the artifacts
of the software development processes and their interrelationships. This information, referred
to as trace information, must be gathered and maintained, tasks that cause undesirable work
overhead, reducing the effect of any added value gained by employing RT.

The reason why the tasks of gathering and maintaining trace information incur such work
overhead, is found by considering the dynamism of the human nature. Software development
processes are located in the human world, and are subject to our inclination to change our minds.
Consequently, the artifacts of the system development processes are often altered during their
life cycle. Whenever an artifact changes, its trace information must be updated, adding to the
work overhead.

By using a tool designed to assist with the tasks of requirements traceability, e.g. with the
means of automation, this work overhead can be significantly reduced, allowing focus to be
shifted to the analysis of the trace information. In order to harvest the benefits of requirements
traceability, the gathered trace information must be analysed, and the conclusions drawn should
initiate actions that brings added value to the project, such as quality assurance. If the majority
of effort must be spent on gathering the trace information rather than analysing it, it is likely
that the analysis and its impact on the software development processes will suffer.

Consequently, the task of implementing requirements traceability in a software development
project can be significantly alleviated by providing an RT tool that is able to assist its user
with gathering and maintenance of trace information, allowing the majority of effort to be
spent on analysis of this information, as well as providing mechanisms for efficient analysis of
the gathered trace information.

2.3 Problem Definition

The implementation of requirements traceability in software development projects is a chal-
lenging task. The work overhead can increase significantly, and the benefits could soon become
second to the amount of work required to harvest them. This situation destroys the purpose of
implementing RT, and must be amended by reducing the work overhead associated with RT,
which can be accomplished by introducing an RT tool.

Research Agenda

This thesis shall, based on the results of the in-depth study [Nor06], research how an RT
tool should be implemented to reduce the work overhead associated with implementing RT
in a software development project. The research shall conclude with the development of an
evolutionary prototype of an RT tool, but preparatory to this, some issues referred from the
in-depth study must be resolved. The applicability of the traceability models presented in the
in-depth study must be verified by means of empirical work. The internal representation of the
artifacts and traces of the traceability models must be determined, in addition to addressing
the issue of representation of stakeholders’ organisational hierarchies.

Further, the thesis shall present a full requirements specification and an architectural description
of an RT tool, suggesting solutions to the issue of increased work overhead when implementing
RT. Based on the requirements specification and the architectural description, an evolution-
ary prototype of the described RT tool shall be developed, to give its users an impression of
the functionality of the designed RT tool, and illustrating how full forwards and backwards
requirements traceability can be provided.

5

Chapter 2. Thesis mandate

2.4 Context

This thesis is a Master’s Thesis at the Norwegian University of Technology and Science, and
takes place during the spring semester of the fifth year of the Master of Computer Science pro-
gramme. The thesis includes an in-depth study [Nor06], conducted during the autumn semester
of the fifth year of the programme, which researched the field of requirements traceability with
the intent of uncovering how RT can assist the processes of software engineering.

2.5 Audience

This study is primarily intended to be of interest to those involved in the requirements engineer-
ing processes of software development, in particular those who seek better control of software
requirements throughout the project life cycle. The thesis researches how an RT tool can assist
with the task of implementing RT in a software development project, and suggests how an RT
tool can be implemented. The thesis is directed at those interested in implementing RT in
their software development projects, and should be of particular interest to those attempting
to develop their own RT tool.

2.6 Scope

In addition to the development of an RT tool, this thesis will limit itself to the preparatory
work required to commence the development. This includes the empirical work investigating the
applicability of the results of the in-depth study, as well as the representation of organisational
hierarchies, and artifacts and traces. All the other required research has been performed by the
preceding in-depth study.

The development of the RT tool is primarily intended to provide an illustration of how the
functionality of an RT tool can alleviate the task of implementing RT in a software develop-
ment project. Consequently, the scope of the development is narrowed down to an evolutionary
prototyping technique, which allows the development to illustrate the concepts related to re-
quirements traceability without having to invest effort on technical details not of interest to the
field of requirements traceability. By creating an evolutionary prototype, an foundation is built
from which a complete RT tool can be developed.

In addition to the technical details not of interest to RT, it falls outside the scope of the RT
tool to teach its users the elementary processes of software development, such as requirements
elicitation. The tool is only intended to assist with the gathering, maintaining and analysis
of trace data, thus requiring of its users some knowledge of elementary software development
processes. However, knowledge of RT shall not be required to use the system.

2.7 Report Outline

In this section, an outline of the report is given, describing each of the following parts.

Preparatory Work - This chapter describes the results of the preparatory tasks and inves-
tigations executed due to mandates prescribed in the in-depth study. These results are
required for the development of the RT tool, and thus provide a foundation for the re-
mainder of the thesis.

Requirements Specification - In this part, a precise and detailed specification of all re-
quirements to an RT tool is given. The document targets developers of the tool, but any
stakeholder with invested interest will also find the document useful.

6

2.7. Report Outline

Architectural Description - This part documents the architecture of an RT tool, a tool pro-
viding traceability of requirements by assisting with the elicitation, quantification, and
evolution of the requirements, as well as relating the requirements to other important ar-
tifacts of the software development processes, such as system components and verification
procedures.

Prototype Development - The purpose of this chapter is to provide an example of how an
RT tool could be implemented, based on the requirements specification and architec-
tural description. An evolutionary prototype has been developed, and is described and
evaluated in this part.

Evaluation & Discussion - This part evaluates and discusses the results presented in the pre-
vious parts. The aim of this part is to validate the results, and point out any weaknesses
and strengths of the results.

Conclusion & Further Work - This part offers a conclusion based on both the presented
results, as well as the evaluation and discussion of these results. In addition, any further
work is described.

7

Chapter 3

Thesis processes and methods

This chapter presents the processes and methods employed in this thesis, providing a framework
for how the work of the thesis is to be conducted.

3.1 Methodology

The activities of this thesis are primarily concerned with the development of the prototype of
the RT tool. However, some preparatory work is included, adding an element of research to
the software development. The development itself will be done as evolutionary prototyping,
an iterative approach to software development. As evolutionary prototyping shifts between
the activities of software development, an agile approach is opted for, abandoning the classic
waterfall model [Vli00a]. However, the required research must take place before the development
iterations can commence, leaving us with a process as shown in Figure 3.1.

Figure 3.1: Thesis processes

The research and the development processes as a whole are sequential, and performed in parallel
with the report writing activity, as shown in Figure 3.1. The development process can be
decomposed into four activities, as shown in Figure 3.2. These four activities are performed
iteratively, in conformance to the iterative nature of evolutionary prototyping. Testing the
prototype will often cause additions or changes to the requirements, causing a new iteration of
the development process. When a complete RT tool has been developed, satisfying all tests,
the development process is exited.

3.2 Preparatory work

The preparatory work consists of empirical work in the shape of interviews, and detailed inves-
tigation of specific findings in the in-depth study [Nor06].

8

3.3. Prototype development

Figure 3.2: Development process

Interviews

The objective of the interviews are to gather expert opinions of the applicability of the re-
sults presented in the in-depth study. The interviewees were chosen based on their experience
within software engineering and requirements traceability, opting for subjects with extensive
experience.

The interviews were prepared by determining which information was needed to gather, and
preparing a procedure for gathering this information. This procedure is recounted below, indi-
cating active the participant(s). The interviewees are informed of the purpose of the interview
when invited to participate, enabling them to decline the invitation if they do not wish to
participate, as well as prepare for the interview session.

• Introduction on the context and purpose of the interview - Interviewer

• Brief presentation of requirements traceability - Interviewer

• Narration on previous experience with requirements traceability - Interviewee

• Brief presentation of traceability models - Interviewer

• Discussion on applicability of traceability models - Interviewer & Interviewee

• Suggestions on changes to traceability models - Interviewee

The interviews are to be conducted in an informal manner, and any divergence from the original
procedure is welcomed, as it could lead to important findings otherwise left unnoticed. The
interviews are conducted face-to-face, and are estimated to last approximately 1.5 hours. During
the interviews, notes are taken. These notes are subsequently analysed, and the results will be
presented anonymously, in Chapter 6.

Investigation of previous findings

The investigation of previous findings looks deeper into aspects only slightly touched by the
in-depth study. It is primarily a literature study, but it also focuses on how the findings of the
study can be applied when implementing an RT tool. The literature study is a narrow study,
as its boundaries are determined by the in-depth study. Unlike the in-depth study, an agile and
iterative process is not important to ensure the quality of the study. Consequently, the entire
preparatory work is executed before the prototype development commences.

3.3 Prototype development

The prototype development is an iterative process, consisting of several sub-activities, which
are executed in sequence. At the end of the sequence, the need for another iteration is evaluated
by considering the requirements to the prototype. If any requirements are added or altered, a
new iteration is required. However, this thesis will not perform more than a single iteration, as
this is serves to illustrate how an RT tool can solve the problems of implementing requirements
traceability.

9

Chapter 4

Summary

Due to the dynamic nature of requirements engineering, changes are an inevitable part of
software engineering. This has introduced the field of requirements traceability, providing an
instrument for controlling how this dynamism influences the software engineering processes.
Requirements traceability requires access to large amounts of information regarding the arti-
facts of software engineering processes, which renders the implementation of RT in a software
development project difficult, due to a potentially significant increase in the work overhead.

The research agenda of this thesis is to research how an RT tool should be implemented to
reduce the work overhead associated with implementing RT in a software development project.
A requirements specification and architectural description shall be presented, concluding with
the development of an evolutionary prototype, intended to give its users an impression of the
functionality of the designed RT tool.

Due to the evolutionary prototyping technique employed in the development of the prototype,
the development process of the project will be agile and iterative. In addition to the develop-
ment process, the thesis has two other main processes, preparatory work, and report writing.
The preparatory work is performed prior to the prototype development, and report writing is
performed in parallel with the other two processes.

10

Part II

Preparatory Work

11

Chapter 5

Introduction

The in-depth study pointed out future work that should be tended to by the Master’s Thesis
([Nor06], Chapter 25). The primary task was the development of an RT tool providing full
traceability of requirements. However, before this development could commence, preparatory
tasks and investigations had to be done. The results of these activities are presented in this
chapter.

5.1 Purpose

The purpose of this part is to describe the results of the preparatory tasks and investigations
executed due to mandates prescribed in the in-depth study. These results are required for the
development of the RT tool, and thus provide a foundation for the remainder of the thesis.

5.2 Scope

The following chapters describe the results of those specific tasks pointed out by the in-depth
study, i.e., the empirical work performed to ascertain the applicability of the results presented
in the in-depth study, research regarding the representation of stakeholder authority and power
interrelations, and a specification of how Planguage is to be employed to represent the artifacts
of the traceability models internally.

This part does not look deeper into the primary task pointed out by the in-depth study, i.e.,
the development of an RT tool. The work related to this task is referred to parts III through
V.

5.3 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part.

• Chapter 6 - Applicability of results from in-depth study
This chapter discuss the results of the empirical work, in addition to any changes these
results have brought about. In addition, the chapter presents a remodelled version of the
traceability models in the in-depth study, a remodelling caused by the empirical work.

• Chapter 7 - Representation of stakeholders and their organisational roles
This chapter discusses the relationships that can occur in groups, referred to as group dy-
namics, and looks deeper into how these relationships could be represented in an RT tool.

13

Chapter 5. Introduction

• Chapter 8 - Internal representation of artifacts and traces
In this chapter, the internal representation of each artifact in the traceability models is
determined, using Planguage. In addition, the representation of traces are discussed.

• Chapter 9 - Summary
A summary of the results presented in this part.

14

Chapter 6

Applicability of results from
in-depth study

As a foundation for the development of an RT tool, an in-depth study was conducted, research-
ing the field of requirements traceability. Preparatory to the work of the thesis, the in-depth
study proposed a set of traceability models, modelling the problem domain, and a high-level
requirements specification, listing the issues of requirements traceability an RT tool must ad-
dress. In addition, the in-depth study presented a checklist of key focus areas that should
be considered when deciding to implement RT in a software development organisation. This
checklist is not further addressed by this thesis.

The in-depth study concluded by presenting the required further work. This work included the
need to investigate the applicability of the results from the in-depth study in practice. These
results are based upon compilation of literature studies and surveys of existing RT models
and tools, and are consequently only connected to reality through the empirical work of other
authors, work which might have been conducted several years ago and thus do not necessarily
depict the current situation in the industry.

In order to achieve an updated and direct connection to the industrial practices, experiences,
and needs, we have interviewed experienced software engineers, mapping the experiences and
best practices of the industry, described further in Section 6.1. The gathered experiences and
best practices were used to gain a deeper understanding of the current situation in the software
engineering industry, and further to evaluate the applicability of the results from the in-depth
study, described in Section 6.2.

6.1 Industrial experiences

The interviewees were two software engineers with several years of experience with software
projects and hands-on experience from traceability of requirements. They were interviewed
separately, making them independent sources of information.

The first interviewee have several years of experience from large consulting houses, working as an
IT architect in the majority of these years. After working on projects for one of her employers,
she and her colleagues discovered that they needed a tool that could trace requirements, in
particular change requests to requirements during the project life cycle. One of the primary
drivers for acquiring such a tool was to maintain control over the economic aspects of the
software engineering process.

The IT consulting industry revolves around developing and delivering software solutions to
customers (henceforth referred to as acquirers), their primary sources of income. In many cases,
the acquirer provides a requirements specification, from which the consulting firm estimates
its quotation. More often than not, the acquirer will request changes to this requirements

15

Chapter 6. Applicability of results from in-depth study

specification throughout the project life cycle. In such cases, requirements traceability, both
horizontally and vertically, were found to be a valuable tool, assisting with the task of keeping
the change requests under control . The interviewee related that her employer decided that they
required a change request traceability system. When looking for existing tools, they discovered
no suitable applications nor applications with similar functionality, and consequently they had
to develop their own in-house application.

The second interviewee, also with several years of experience, came from a smaller consulting
firm, but could still relate his experiences from a large project with approximately 2400 require-
ments. Due to the shear amount of requirements, they decided that some sort of traceability
would be required, as no human could maintain an inventory of the requirements otherwise, and
as a result requirements could easily be lost. In addition, traceability would be useful during
the acceptance tests, simplifying the process of proving to the acquirer that all requirements
had been fulfilled.

Consequently, they implemented a custom-made web application for registering the require-
ments and some additional data (i.e., requirement ID, project ID, stakeholders, functionality,
type, risk levels, workflow status and a regular status), persisting this data in an underlying
database. The requirements were then sorted based on which system module they described,
which later proved helpful when linking the requirements to models and tests. Both models and
tests were described in other systems, and consequently, the traceability web application was
extended to include references to these artifacts. Representations of the requirements were also
included in the other systems. However, when requirements changed throughout the project life
cycle, as they generally do in practice, problems with determining the prevailing requirement
version were discovered. This was caused by the difficulties of propagating changes throughout
the collection of systems holding a representation of the requirements.

6.2 Evaluation of results

In addition to relating their experiences with requirements traceability in practice, the inter-
viewees also reviewed the traceability models from the in-depth study, elaborating on how they
could be applied in practice. Their remarks and suggestions are related below.

6.2.1 Using the traceability models as a vehicle of communication

When communicating with the costumer throughout the project, formal procedures such as
minutes of meetings are important, as they ensure agreement on decisions reached, keeping
them from passing into oblivion, and ensuring support from all stakeholders. An interviewee
suggested to use the traceability models as a supplement to these formal procedures. The
models form a framework for what information should be kept, and when maintained, they
can be used as a vehicle of communication between the various stakeholders, enabling them at
all time to review the current situation of the project. This will give all interested parties the
opportunity to express any deviating opinions, which in turn ensures agreement upon reached
decisions.

6.2.2 An alternative application of the pre-RS traceability model

In the consulting industry, projects usually take on one of the following two shapes; either the
acquirer provides a ready-made requirements specification, upon which a solution is developed,
or the acquirer requires help with making the requirements specification. It is suggested by
one of the interviewees that the pre-RS traceability model, focusing on the processes occurring
when making the requirements specification, is particularly of interest to the acquirer.

The interviewees relate that contact between the acquirer and those developing the solution
often consists of just one or a few contact persons, thus shielding the acquirer’s organisation from
those developing a solution. These contact persons often hold high decision-making authority

16

6.3. Alterations in TRACY

within their organisation, enabling them to make impromptu decisions without consulting with
other stakeholders in their organisations. As the given requirements specification is often poorly
defined, new decisions will often have to be reached throughout the project. This in turn could
cause that the solution does not reflect the needs nor opinions of all the stakeholders in the
organisation, and can potentially cause dismay when presented to its end users.

It is often the contact person(s) who is held responsible for project success in the acquirer’s
organisation. Consequently, he or she will attempt to ensure support throughout the acquirer’s
organisation, and it is suggested that the pre-RS traceability model could assist with this. By
employing the model and gathering the required traceability information, the contact person
can legitimate the reached requirements, thus gaining support. In addition, employing the
model drives the inclusion of stakeholders from the entire acquirer’s organisation, thus ensuring
that the end users are given the possibility to influence the end result. Further, it is suggested
that any organisation could benefit from external assistance with the process of employing the
pre-RS traceability model to reach a requirements specification, an assistance that could be
delivered by the consulting firm. This will also prove beneficiary for the consulting firm, as it
will assure the quality of the provided requirements specification.

6.2.3 The need for information

The interviewees places emphasis on the need for information, in particular focusing on that
the gathered traceability information should not exceed the employed traceability information,
i.e., that no more information should be gathered than what is useful to the project. The
amount of instances of artifacts to trace between will increase exponentially when traversing
the model, from fewer artifacts when dealing with pre-RS traceability, to more artifacts when
dealing with post-FRS traceability. Serious thought must be given to the granularity of the
traces, i.e. how deep should the traces travel. This will vary depending on the project at hand,
and a pragmatic attitude must be maintained towards the required amount of traceability
information. The generalised artifacts and the possibility to extend or reduce the models help
with the process of acquiring precisely the required information. Section 8.2 addresses the issue
of trace granularity in detail.

6.2.4 Challenges in modern IT development

The introduction of agile development, and project administration methods such as Scrum
[RJ00] [BDS+00], have brought with them a new need for requirements traceability. This
paradigm is highly dynamic, with a high level of influential force throughout the project life-
cycle. This means that requirements often will be altered or removed, and new requirements
will surface. The processes are informal by nature, making it difficult to find the sources of
requirements at a later stage. Employing a requirements traceability scheme will assist with
keeping the dynamism under control, but it is important that this is accomplished without
inhibiting it. The proposed traceability model is highly adaptable with its generalised artifacts
and non-existing restrictions on its environment. The only requirement the model imposes on
its environment is the gathering and maintenance of the required traceability information. It
says nothing of how this is to be accomplished, and can thus coexist with any project adminis-
tration method. The task of specifying how the traceability information is to be gathered and
maintained falls in the hands of the RT tool, encapsulating the model with constructs suitable
for use in the current environment.

6.3 Alterations in TRACY

The information gathered through the empirical work, described in the previous sections,
brought about some changes to the traceability models of TRACY. In the following sections,
changes to each of the submodel are described, along with a discussion on why the changes

17

Chapter 6. Applicability of results from in-depth study

were deemed necessary. In general, the changes were implemented to increase the applicabil-
ity of the models in real software development projects, i.e. enhancing their reflection of real
circumstances.

The old versions of the traceability models can be found in Chapter 15.1 in the in-depth study
[Nor06], Figures 15.1 through 15.3.

6.3.1 Pre-RS traceability submodel

The remodelled pre-RS traceability submodel is shown in Figure 6.1.

Figure 6.1: Pre-RS Traceability Submodel

The most profound change from the old pre-RS traceability submodel concerns the Stakeholder
artifact. Previously, this artifact was only connected to the prose requirements and change
proposals. This was found to be inadequate, as it did not illustrate sufficiently the diversity of
a stakeholder’s role in the processes resulting in prose requirements. Thus, several new traces
were added, connecting a stakeholder to any artifacts her or she are interested in. In particular, a
stakeholder is now connected to the Prose requirement artifact via two traces, one registering the
“propose” relationship between a stakeholder and a requirement, the other registering a “affect”
relationship, signalling that a stakeholder is affected by a specific requirement. The intent
behind this trace is the possibility to register how stakeholders can be connected to requirements
other than by proposing them (e.g., by designing solutions that fulfil them, implementing these
solutions, etc.).

Another important change is the introduction of a generalisation, requirement descriptors. This
allows for several types of requirement descriptors to be registered, rather than simply just use
case scenarios, as in the old version of the model. The Requirement descriptor artifact is also
connected to the Stakeholder artifact by a “make” trace.

6.3.2 Pre-FRS traceability submodel

The remodelled pre-FRS traceability submodel is shown in Figure 6.2.

The in-depth study separate between functional and non-functional requirements, and this is
repeated by the previous version of the pre-FRS traceability submodel. The remodelled pre-
FRS traceability submodel has been adapted to the regulations enforced by IEEE, in Std.
830-1998 [IEEmlb]. This standard describes how to specify requirements, and distinguishes
five categories of requirements rather than the previous two. The five requirement categories
are external interface requirements, functional requirements, performance requirements, design
constraints and software system attributes. In addition, Std. 830-1998 employs a generic

18

6.3. Alterations in TRACY

Figure 6.2: Pre-FRS Traceability Submodel

category for requirements that do not fit in any other category. The traceability models classifies
these requirements as prose requirements, and employs no generic category among the formal
requirements.

The classification of requirements is based on IEEE’s regulations, but Planguage will also exert
influence on the traceability models. The internal representation of the artifacts will be achieved
with the use of Planguage attributes. This is further discussed in Chapter 8.

6.3.3 Post-FRS traceability submodel

The remodelled post-FRS traceability submodel can be found in Figure 6.3.

Figure 6.3: Post-FRS Traceability Submodel

Most importantly, the Function artifact has been removed from the post-FRS traceability model.
The Planguage attribute Tag allows for a hierarchic classification of artifacts by establishing a
structure within the tag. This technique is commonly used when determining package names
within i.e. the Java programming language. Each artifact is assigned a tag, and this tag
potentially consists of elements of other tags. If two requirements describe the same module

19

Chapter 6. Applicability of results from in-depth study

within a system, their tag will start with the tag of the module, and append a requirement-
specific tag (e.g., Module1.Requirement1 and Module1.Requirement2). Thus, the function of a
requirement can be found by analysing its tag. The first parts of the tag describes the function
of the artifact, thus enabling the user to quickly determine the context of the artifact.

Secondly, the System components artifact has been decomposed into a number of component
types, such as modules, packages, and classes. This enables the user to control the granularity
of the traceability, as discussed in Section 6.2.3. This granularity control is further discussed in
Section 8.3.3.

20

Chapter 7

Representation of stakeholders
and their organisational roles

Stakeholders are almost always members of an organisation. An organisation more often than
not consists of a intricate set of power relations due to the human nature of its members.
Specifying requirements can be an unpredictable affair, as discussed in detail in Chapter 7 in
the in-depth study [Nor06]. Stakeholders with opinions and requirements that are important to
the system to be developed can be overruled by stakeholders with higher authority, regardless
of the value of their proposals. The following sections discusses how power relations and their
influence upon the stakeholders can be recorded by an RT tool and used to understand how
and why the given system is developed.

7.1 Stakeholder hierarchy

There will often exist a hierarchy among the stakeholders, created by the amassed status and
authority of the individuals. This hierarchy is based on several factors such as authority and
technological expertise. When analysing the inclusion of some requirements and the exclusion
of others, in addition to the priority given to specific requirements, it could be useful to have
the opportunity to review the influence of the stakeholders, in particular with respect to their
organisational position.

A stakeholder hierarchy will to some extend correspond to the organisational hierarchy of the
stakeholders’ organisation. However, there are some aspects that disturbs this hierarchy. First,
it will frequently happen that not all stakeholders originate from the same organisation. Often a
customer and a development team will cooperate on developing a solution, and the stakeholders
will thus originate from two organisations. This complicates the task of unveiling an organi-
sational hierarchy. Secondly, authority in the requirement specification processes is not only
given by a stakeholder’s position in the organisation hierarchy. It could also be influenced by
the stakeholder’s technological expertise. A stakeholder with vigorous technological expertise
could potentially overrule any stakeholders with lesser expertise when discussing technical ques-
tions. Personal attributes could also influence the amount of authority held by an individual,
attributes such as presence, vigour and drive, even attributes such as age, sex, and race could
unfortunately influence the authority of an individual. In other words, the field is delicate, with
many aspects that must be considered carefully.

7.1.1 Status networks

[For06a] employs the concept of status networks when describing structures in groups. A status
network is a stable pattern of difference in authority and power, and could also be described as
a chain of command. A status network describe a group structure where some group members

21

Chapter 7. Representation of stakeholders and their organisational roles

amass a higher level of authority and power (status) than others, thus creating a hierarchy
sorting group members based on their status.

No severe difficulties are encountered when trying to represent a status network or hierarchy.
Hierarchic representations are common in science, and an RT tool could from a technical view-
point easily arrange stakeholder artifacts in a predetermined hierarchy. The problem lies in
unveiling the stakeholders’ relative status, and determining the sorting attributes that decide
how the hierarchy is arranged. This requires extensive knowledge of the field of group dynamics,
and the following sections look at some of the research in this field, particularly looking into
how group members influence each other.

7.2 Group dynamics

A group is defined by [For06b] as two or more individuals who are connected to one another by
social relationships. Requirements engineering is a highly social process [Gog93], as discussed
in Chapter 7.3 of the in-depth study [Nor06]. Consequently, the participants of these processes
are members of a group, connected to each other by social relationships. When determining a
status network within this group, it is these social relationships that must be unveiled.

The social relationships seldom remain unchanged throughout the lifecycle of the group. [Tuc65]
describes how a group pass through five stages during its development; the forming stage (for-
mation of the group), the storming stage (conflicts arise on the group), the norming stage
(norms are developed), the performing stage (the group becomes productive), and the adjourn-
ing stage (the group is dissolved). Throughout these stages the individuals constituting the
group, in this context henceforth referred to as stakeholders, establish and maintain a status
network, which evolves just as the group itself evolves.

From a requirements traceability perspective, a stakeholder’s role in a group or organisation
is important for determining why requirements are included or excluded. Stakeholders are
profoundly influenced by the group they belong to [For06b]. If one wishes to understand the
behaviour of individual stakeholders, it is necessary to understand the group they belong to,
and how the group’s members influence each other. As the social relationships in according to
[Tuc65] changes throughout the lifecycle of the group, requirements traceability is required to
update any information relating to a stakeholder’s position within a group.

7.2.1 Majority and minority influence

[For06c] introduces the concepts of majority and minority influence. Majority influence occurs
when a majority of group members fronts a specific solution, a solution that not necessarily
represent the best option. The remaining minority stands little chance of resisting the opposi-
tion, and experiments have shown that the minority is most likely to conform to the majority’s
choice.

Usually a minority resisting the choice of the majority will not waver the opinion of the ma-
jority. The minority will in such cases be ignored or even ridiculed. However, occasionally the
majority will listen to the minority. This is most likely to occur when the minority argues its
case with consistency, when the minority consists of group members with credibility, and when
the minority is growing. Persuasion, loosely defined by [O’K02] as “a successful intentional
effort at influencing another’s mental state through communication in a circumstance in which
the persuadee has some measure of freedom”, is an important success factor for minority influ-
ence. A group member that converts from supporting the majority to supporting the minority
demonstrates a stronger will than a group member complying with the majority’s choice, as
conversion requires an inner acceptance caused by persuasion rather than simply acquiescence.

Understanding majority and minority influence is important for analysing how requirements
were chosen. An observer could be able to spot if the requirement resulted from major influ-
ence or minor influence, and an RT tool could in turn allow the observer to tag the requirements,
thus storing this information for future use. An RT tool can not directly influence the processes

22

7.3. Determining stakeholders’ roles

of decision making, and the observer’s task of detecting the true influence behind a decision is
difficult, as it delves into the field of human psychology. But if the required observations are
present, the RT tool can provide a mechanism for attaching the observations to the artifacts
for future reference. A requirement accepted due to majority influence could prove dangerous
in the long run, as important opinions of the minority drown in their compliance. Thus, such
requirements potentially represent a greater risk than requirements accepted due to minority
influence, and flagging a requirement as“majority-accepted”could helpful as an aid in risk man-
agement. Minority-accepted requirements often represent a source of innovation, spotting new
and previously unknown issues regarding the system to be developed, and flagging requirements
as “minority-accepted” could influence e.g. their assigned priority.

7.2.2 Pressure to conform

Groups traditionally meet face to face, and are thus faced with immediate scrutiny from oth-
ers and public evaluation. This is commonly understood to amplify conformity among group
members [For06c]. Requirements engineering is an inherently social process, thus it is difficult
to imagine the activities of this process to take place in a situation where participants are sep-
arated by time and place. However, this might occasionally be the case, in particular with the
increasing focus on outsourcing of software development [out03] [HQ95]. Computer-Supported
Cooperative Work [CS99] addresses the issues concerning group interaction through computers,
and can be of assistance in situations where requirements engineering takes place in locations
separated in both time and geography. An RT tool supporting cooperative work can prove
valuable, helping the participants in keeping control over contributions. This is especially true
if the tool leaves an auditing trail of contributions.

It has been suggested that CSCW reduces the pressure to conform to the majority’s opinion.
However, research has shown that this alleged reduction in conformity pressure does not exist.
[SPLW02] proposes that people often conform more when interacting through a computer-
supported medium. This is suggestively caused by depersonalisation of group members, thus
increasing focus on the group identity, which in turn increases the conformity of the group.
Consequently, an RT tool designed for CSCW-specific purposes will not necessarily reduce or
remove the pressure to conform within the group applying the tool.

Thus, the desire to conform is difficult to avoid, and detecting when requirements are included
or excluded due to conformity remains an important task. It is a task that requires human
effort, a task that cannot be automatically solved by the RT tool. The concluding section of
this chapter looks deeper into how the problem of conformity should be recorded by the RT
tool, in addition to discussing how status networks should be determined within a group or
organisation.

7.3 Determining stakeholders’ roles

The objective of determining stakeholders’ roles in the requirement engineering processes is
to be able to analyse why and how the given stakeholders became those that directed the
proposed solution. Detecting this “why” and “how” is important for providing qualitative pre-
RS traceability, and could, as pointed out by an industrial representative (see Section 6.2.2),
become important to those customer representatives seeking to justify the end result within
their own ranks.

The RT tool should thus store information on the status (position in the status network) of
the stakeholders, in addition to tagging requirements as results of either majority or minority
influence. Both these pieces of information could prove difficult to ascertain, in particular
the status of the stakeholder, as this status could be gained by different means, not only a
organisational position. However, it is not the task of the RT tool to gather this information, it
is even beyond the tool’s abilities to do so, as such a task is complicated and requires extensive
human effort, such as observations and interviews. The RT tool is left the responsibility to
register and preserve the information for future analysis.

23

Chapter 7. Representation of stakeholders and their organisational roles

Tagging requirements as minority or majority-decided could be considered a question of gran-
ularity. The tool could (applying a coarse granularity) for instance register that requirement A
was determined by a majority among the proposing stakeholders, trace information with little
detail and consequently little value. If more detail is required, the tool could (with a fine granu-
larity) register that requirement A was determined by a majority consisting Stakeholder 1, 2, 3,
and 4, where Stakeholder 3 and 4 only complied with the majority decision. This latter version
provides more detail and thus a better traceability, enabling the user to determine the roles of
the various stakeholders. However, the RT tool must remain adaptable in order to ensure the
user’s freedom when employing the tool, and should thus leave it to the user to determine the
level of detail in the registered information.

The tagging of requirements as minority or majority-decided is accomplished using the Decision
artifact of the pre-RS traceability submodel. As explained in Section 8.3.1, the Decision allows
the user to register how a decision was reached and which stakeholder made it. This information
could then be analysed, providing the analyst with important insight in the power relations
within a software development project.

When determining a stakeholder’s role in the group or organisation, it is natural to attempt to
ascertain the stakeholder’s authority and power within the group or organisation. As mentioned
earlier, this authority and power can be caused by different factors, not only the stakeholder’s
official position. Still, it remains outside the scope of the RT tool to provide a means for deter-
mining the status of stakeholders. Only a means for registering and preserving this information
is required, leaving the comprehensive task of investigating group status networks to humans.
Registering stakeholder status is accomplished by adding attributes to the internal representa-
tion of the Stakeholder artifact that addresses the position and authority of the stakeholder,
explained further in Section 8.3.1.

The RT tool should thus be able to describe a stakeholder’s authority and power, and use this
attribute to place the stakeholders in a reciprocal hierarchy, thus illustrating which stakehold-
ers have more authority and power than others. This could at a later point be employed to
discovering why certain stakeholders’ requirements were chosen above others.

24

Chapter 8

Internal representation of
artifacts and traces

Chapter 6 presents three traceability submodels, which when combined provides full traceabil-
ity. These models consists of artifacts and traces between these artifacts. However, discussions
concerning the internal representation of artifacts were deferred to this chapter, and will con-
sequently be discussed in the following sections.

8.1 Application of Planguage

The in-depth study determines that Planguage, a planning language proposed by Tom Gilb,
and its subset the Requirements Specification Language, shall be employed for specifying the
requirements in a formal manner. As discussed in the in-depth study, requirements are often
proposed in a prosaic manner at first by the non-technical stakeholders (i.e., the customer).
This is captured in the traceability models, separating between prose requirements and formal
requirements. Planguage will first and foremost be applied to transform the prose requirements
into formal requirements, applying quantifying attributes that assist in making the requirements
measurable and testable, as discussed in the in-depth study. This is accomplished by employing
specific attributes that establish the foundations for judging whether a requirement is fulfilled by
the proposed solution. This is discussed further in Section 8.3.2. These attributes are referred
to as the core representation of the requirements.

Secondly, Planguage contains attributes that are originally intended to be used to specify the
requirements further, such as the Stakeholder, Rationale, and Priority. These attributes are
applied to specify, amongst others things, the origin of the requirements, invested interest, and
decision-making authority, and are collectively referred to as the added requirement representa-
tion. However, the traceability models have created additional artifact categories (henceforth
simply referred to as artifacts) that capture these specifications, such as Stakeholder, Decisions,
and Rationale, connecting them to each other and the requirement artifacts (i.e., the core rep-
resentation) with the use of traces. Thus, the attributes that constitute the added requirement
specification are either contained within these additional artifacts, or represented by the use of
traces between artifacts. The following sections elaborate this topic further by presenting the
artifacts of the traceability models and how they should be internally represented. However,
the issue of traceability granularity is addressed first, discussing how the model must allow the
user to decide the desired granularity.

25

Chapter 8. Internal representation of artifacts and traces

8.2 Traceability granularity

Section 6.2.3 pointed out the issue of traceability information granularity. When gathering
traceability information, it is important to do so with a pragmatic approach. Spending time
and effort gathering traceability information that will never be used is pointless, and the internal
representation of both artifacts and traces must leave room for the user to decide the desired
granularity of traceability.

Each artifact is represented with the means of Planguage attributes, and by leaving non-
identifying attributes optional, the user is allowed to determine the level of detail included in
the model. However, this only addresses the internal granularity of each artifact. Granularity
can also be found in the hierarchies of artifacts, and in the traces connecting artifacts.

By creating a hierarchy of artifacts, the model allows the user to determine how far down
the hierarchy he or she wishes to trace. If fine granularity is deemed necessary by the user,
additional hierarchy levels can be added. The System component artifact of the post-FRS
traceability submodel exemplifies an artifact hierarchy, where additional hierarchy levels can
be added to allow the user a finer traceability granularity. The System component artifact is
addressed further in Section 8.3.3.

The granularity of traces is determined not only by the artifacts they connect (i.e., where in
the hierarchy the artifacts reside), but also by the auxiliary trace information included. The
concept of auxiliary trace information is further explained in Section 8.4, and by allowing the
user to determine which information is required, a finer or coarser granularity can be achieved
when desired.

Overall, varying traceability granularity is primarily achieved by allowing the user to determine
the required level of gathered trace information, i.e. by not imposing any restrictions on the
user other than the gathering of identifying trace information, information that assists with
uniquely identifying artifacts and traces. Such information (i.e. identification numbers, tags,
etc.) cannot be left optional, as this would render the model useless for requirements traceability
purposes.

8.3 Internal representation of artifacts

Appendix B contains an alphabetical list of the attributes discussed in the following sections,
providing a short description of their purpose and contents. The reader is referred to this
appendix when looking for further detail on the attributes and how they are used.

Each artifact contains an ID attribute, providing a unique identification of the artifact. The
ID attribute coexists with the tag attribute, which in turn provides useful metainformation in
addition to serving as an identification means.

8.3.1 Pre-RS Traceability Submodel

The pre-RS traceability submodel presents a large number of artifacts, the submodel with the
most artifacts. Pre-RS traceability focuses on capturing the actions and processes that lead
to a requirement, and the artifacts reflect this. A short summary of the artifacts is given in
Table 8.1. In the following sections, a discussion of the internal representation of each of these
artifacts will be presented, concluding how to represent the artifact in question.

Prose Requirements

A prose requirement is a small piece of text that describes a requirement, often lacking in detail
and precision. This is due to the human aspect of software development (discussed in detail in

26

8.3. Internal representation of artifacts

Table 8.1: Artifacts in the pre-RS traceability submodel

Artifact Description

Prose Requirements The prose specification of the requirement.
Stakeholders Information on stakeholders of the system under development.
Change proposals Proposals for changes made by stakeholders.
Rationale The underlying rationale behind prose requirements.
Requirement descriptors Documents, models, etc., describing the prose requirements.
Decisions Decisions made during the process of specifying requirements.
Assumptions Assumptions that decisions are dependent upon.
Alternatives The alternatives between which a decision-maker chooses when

making a decision.
Arguments The arguments supporting and opposing alternatives.
Issues or conflicts Problems arising when specifying requirements, problems that

are solved by making decisions.

the in-depth study), causing modern software development methodologies to assume an agile
and iterative nature.

The prose requirements will be transformed into formal requirements at a later stage, and
consequently the internal representation of this artifact is minimal compared to a formal re-
quirement, only providing an id, title, status, and prose specification of the requirement. The
Prose requirement artifact is one of the most important artifacts of the pre-RS traceability sub-
model, and the id, title, status, and prose specification alone is not sufficient in providing full
traceability. However, the other artifacts of the submodel, and the important traces between
these artifacts capture the necessary information for providing full pre-RS traceability. The
internal representation of these artifacts will be discussed in the following sections. Figure 8.1
presents the internal representation of the Prose requirement artifact, also illustrating how this
artifact connects to other artifacts in order to provide full pre-RS traceability.

Figure 8.1: Internal representation of the Prose requirement artifact

Stakeholders

Stakeholders represent those people with an invested interest in the system, both as proposers
of requirements, and as people being affected by the requirements. A stakeholder is connected
to several of other artifacts in the pre-RS traceability submodel, depending on the stakeholder’s
degree of participation in the processes leading to a requirements specification. This is illus-
trated in Figure 8.2, along with the internal representation of a Stakeholder artifact.

The most important part of the internal representation of a stakeholder is its contact informa-
tion. The primary objective of including a stakeholder as an artifact in the traceability model

27

Chapter 8. Internal representation of artifacts and traces

Figure 8.2: Internal representation of the Stakeholder artifact

is to be able to contact this stakeholder for clarification if a requirement appears ambiguous.

Sorting stakeholders into categories depending on their connection to the project assists in
the task of determining where the requirements originated, e.g. from the customer or the
development staff. This is particularly helpful in dynamic development processes such as Scrum,
where new requirements surface in a setting where it could prove difficult in retrospect to
determine who proposed the requirement. Thus, by being aware that a proposer must be
registered, such issues can be avoided.

Section 7.3 describes how the RT tool will be able to place stakeholders into a hierarchy (a
status network) according to their amassed authority and power. The internal traces of the
Stakeholder artifact (higher authority and lower authority), shown to the left in Figure 8.2,
creates a status network by allowing a stakeholder to sort other stakeholders either below or
above him or her in the hierarchy. In addition, the authority attribute allows the user to classify
the authority of a stakeholder as either low, medium, or high, relating the decision-making
abilities of the stakeholder will often prove valuable, as decisions made by certain stakeholders
will have stronger impact.

Change proposals

Change proposals are suggested by stakeholders when they feel that an existing requirement is
inadequate, and describe an alteration in this specific requirement. Figure C.1a of Appendix
C describes the internal representation of a change proposal, in addition to the connecting
artifacts.

A tag is as always required, in order to be able to identify the change proposal at a later stage.
In addition, a description of the change proposal as well as a status indicator is required to
model a complete change proposal. The status indicator relates whether the change proposal
has been accepted by all stakeholders and consequently been included in the requirement. It is
important to be able to tell which requirement the change proposal affects, and this is recorded
by a trace between the change proposal and the affected Prose requirement artifact. The
rationale behind the change proposal is recorded by a trace to a Rationale artifact, upon which
the change proposal is based.

Rationale

A requirement is always based upon a rationale, and the Rationale artifact relates the underlying
reasons for specifying the requirement in question. Figure C.1b of Appendix C presents the
internal representation of the Rationale artifact, including the traces to other artifacts.

The Rationale artifact is quite simple, with only a tag and a specification of the rationale itself.
However, the rationale behind a requirement can be based upon several assumptions, ranging
from simple project-specific assumptions to external and possibly legislated constraints that

28

8.3. Internal representation of artifacts

serve as assumptions and could consequently affect the choice of requirements. This is captured
in the model by a trace between the Rationale artifact and the Assumption artifact. In addition,
both the established prose requirements and any change proposals are based upon a rationale,
captured by traces between these artifacts.

Requirement descriptors

Requirement descriptors are any documents, models and alike that describe the requirement
in an alternative fashion, such as user stories or use case models. Figure C.1e of Appendix C
depicts the internal representation of the Requirement descriptor artifact, and the traces that
assist with providing full traceability.

In addition to the required tag, the other attributes of the Requirement descriptor artifact
describes what kind of requirement descriptor the artifact represents, and where the actual
artifact can be found. As requirement descriptors often are models or documents existing in
specific formats, they cannot be fully represented as pure artifacts and should preferably be
handled as objects. Consequently, a link to the descriptor location is provided in addition to
the other artifact attributes, enabling the user to look up the descriptor. In addition to this
location attribute, the type is captured in the artifact.

The stakeholders participating in the development of the requirement descriptors are captured
by a trace to the Stakeholder artifact. Several stakeholders can be included in this process, as
authors and contributing resources.

Decisions

Decisions are made throughout the process of specifying requirements, and they affect the
resulting set of requirements, often pointing to specific requirements. Decisions choose between
alternatives that address issues or conflicts between the stakeholders, and the stakeholders that
make the decisions do this on the basis of specific assumptions. This is all captured by the
traceability submodel, and the internal representation of the Decision artifact and its traces to
other artifacts are depicted in Figure C.1c of Appendix C.

A context attribute is employed to describe the context in which the decision was made. The
context can include any information regarded as useful, for instance whether a decision was made
under minority or majority influence. In addition to the context, the Decision artifact registers
a decision maker. This information in combination with the context can e.g. provide the user
with knowledge of the power hierarchy of stakeholders. The decision is further elaborated by
the trace to an Assumption artifact. In addition, a description of the actual decision is required.
A decision affects a prose requirement, recorded by a trace to a Prose requirement artifact. A
timestamp is also included, indicating the time at which the decision was made.

Assumptions

The Assumption artifact describes any conditions, constraints, or similar, that are assumed by
the stakeholders. Reasoning behind requirements, such as rationale and decisions, could depend
upon assumptions, and this is captured in the traceability submodel by adding traces between
the Assumption artifact and the Rationale, Decision, and Argument artifact. The internal
representation of the Assumption artifact is shown in Figure C.1h of Appendix C.

Alternatives

When a decision is made, an evaluation of alternatives is performed, and a selection of the most
appropriate alternative is made. Figure C.1d of Appendix C depicts the internal representation
of the Alternative artifact, along with its connecting traces.

29

Chapter 8. Internal representation of artifacts and traces

The internal representation of the Alternative artifact is simple, with a tag and a description
attribute. However, the traces connected to this artifact are many. Decisions evaluate and
select alternatives, whilst arguments oppose or support them. Alternatives are proposed by
stakeholders, and stakeholders with opposing alternatives often participate in a conflict or issue
on the subject.

Arguments

The same stakeholders that propose alternatives will often simultaneously propose arguments
that support their alternatives. These arguments can depend upon assumptions made by the
stakeholder proposing them. Figure C.1g of Appendix C shows the internal representation of
the artifact, along with traces to other artifacts.

Just like the Alternative artifact, the Argument artifact is simple in its internal representation,
with just a tag and a description attribute. The description attribute provides a specification
of the argument, and how it supports or opposes a specific alternative.

Issues or conflicts

The Issue/conflict artifact describes any situations that arise due to opposing forces within the
group of stakeholders. Again, this is a simple artifact, it only provides a tag and a description
of the issue or conflict. Additional important traceability information is captured by the traces
between this and other artifacts, such as participating stakeholders, resolving decisions, and last
but not least the prose requirement that spurred the conflict or issue. Figure C.1f of Appendix
C depicts the internal representation of the Issue/conflict artifact, as well as traces to and from
the artifact.

8.3.2 Pre-FRS Traceability Submodel

The pre-FRS traceability submodel’s primary focus is on converting the prose requirements into
formal requirements while ensuring traceability between these two categories of artifacts. Table
8.2 summarises the artifacts of the pre-FRS traceability submodel.

Table 8.2: Artifacts in the pre-FRS traceability submodel

Artifact Description

Prose Requirements A connecting artifact, repeated from the pre-RS traceability
submodel.

Formal requirements A formalised and quantified version of the prose requirements.
Mandates Mandates placing constraints on how the formal requirements

are shaped.

Formal requirements

The formal requirements are split into five major categories, as shown in Figure 6.2. The
establishment of these categories were discussed in Section 6.3. The task of refining prose re-
quirements into formal requirements is a task not only of sorting requirements into these five
categories, but also managing the prose specification of the requirements. The prose specifica-
tion must be made quantifiable, and for this we will use some of the attributes of Planguage.
A basic set of attributes are applied in all categories of requirement artifacts, providing basic
information on the requirement, such as its tag, type, version, status, priority and description.

30

8.3. Internal representation of artifacts

In addition, traces connect the requirement artifacts to other artifacts, thus representing other
attributes of Planguage, such as owner (a stakeholder owns a requirement), and rationale (a re-
quirement is based on a rationale). This is accomplished in the traceability model by connecting
the pre-RS and pre-FRS traceability model. Thus, to be able to find the stakeholders of a for-
mal requirement, a backwards trace must be performed via the connected prose requirement(s)
to the pre-RS traceability model.

A hierarchical relationship between requirements are represented by the concept of internal
traces. An internal trace connects two instances of the same artifact, and the internal traces
of the Formal Requirement artifact are illustrated in the pre-FRS traceability model, in Figure
6.2. As these internal traces are the same for all types of formal requirements, they are not
repeated in the individual figures.

The two main categories of requirements are functional requirements (relating what the system
should do) and non-functional requirements (relating how the system should perform its func-
tions). The functional requirements can be divided into to subcategories: external interface
requirements, functional requirements, and design constraints. Non-functional requirements is
divided into the subcategories performance requirements and software system attributes. Figure
8.3 describes the internal representation of functional requirements, whilst Figure 8.4 describes
the internal representation of non-functional requirements.

Figure 8.3: Internal representation of the Functional requirement artifact

Figure 8.4: Internal representation of the Non-functional requirement artifact

The non-functional requirements could also be referred to as scalar requirements, as their
presence in a system is measurable. In contradiction, functional requirements are either present
or not; a binary circumstance. Measuring the fulfilment of a functional requirement is in
comparison to non-functional requirements a relatively simple task, involving a check to see

31

Chapter 8. Internal representation of artifacts and traces

whether the required functionality is present or not. Measuring the fulfilment of a non-functional
requirement is more demanding, as such requirements can be partially fulfilled, bringing with
them the need to ascertain whether the degree of fulfilment is satisfactory to the stakeholders.

Thus, the formalisation of non-functional requirements requires the specification of several lev-
els and goals, which assist with measuring the fulfilment of the requirements. As shown in
Figure 8.4, the attributes employed to enable measurement of a non-functional requirement are
grouped into three main categories, Benchmarks, describing past numeric values of existing or
similar systems, Targets, describing future numeric values of the system to be developed, and
Constraints, describing any restrictions to the system to be developed. The numerical values of
benchmarks, targets and constraints define attribute levels, creating intervals of acceptance and
rejection, referred to as e.g. Goal, Stretch, Fail, and Survival. Thus, a scalar representation of
the requirement and consequently a formalisation of a non-functional requirement is provided.

The five categories of requirements does not cover all existing requirements. As discussed in
Section 6.3, IEEE Std. 830-1998 employs an additional generic category allowing the inclusion
of requirements that do not fit into any of the other categories, such as resource requirements.
These requirements (relating how much resources are available to the system and its develop-
ment) could be considered a non-functional requirement type, but as they do not place any
direct requirements to the system itself, only to the development of the system, they require
a separate category. As concluded in Section 6.3, the Prose requirement artifact replaces the
generic category of the IEEE standard, including resource requirements. An important aspect
of the relationship between the non-functional and resource requirements is their contradicting
goals. Non-functional requirements seek high performance and quality, which often come at
a high price, whilst resource requirements attempt to keep costs at a level acceptable to the
stakeholders. This is often referred to as a trade-off in system engineering, and the science of
interlacing multiple resource and non-functional requirements in a balanced fashion falls some-
what outside the scope of this Master’s Thesis. However, it is not entirely without purpose that
the concept of requirement trade-offs have been brought up. By quantifying non-functional re-
quirements, it is easier to calculate the costs of achieving those requirements. Thus, the process
of balancing the requirements and achieving the best possible trade-offs is simplified by de-
manding quantification of non-functional requirements by employing the Planguage attributes.

Thus, only those requirements that can be partially implemented, i.e. non-functional require-
ments (scalar requirements), demands an extended use of Planguage attributes, in particular
the sets of benchmarks, targets, and constraints. Binary requirements, those who are either
fulfilled by a solution or not, require a smaller set of attributes, avoiding the specification
of benchmarks, targets, and constraints. These requirements include functional requirements,
design constraints and condition constraints.

Mandates

The Mandate artifact describes any methodologies, standards or policies that the formal re-
quirements support. These superimposed guidelines can be put down by authorities within
both the customer’s organisation and the development organisation, or even by governmental
authorities. Mandates often exist in a separate document, consequently only a referral to the
actual document, its type, and a short description is necessary, in addition to a tag. Figure C.2
of Appendix C depicts the internal representation of the Mandate artifact.

8.3.3 Post-FRS Traceability Submodel

The post-FRS traceability submodel connects the formal requirement artifacts to any artifacts
created during the process of developing a solution fulfilling the requirements. The artifacts
are characterized by this, representing mainly tangible products of the software development
processes, such as design artifacts, system components, and verification procedures. Table 8.3
summarises the artifacts of the post-FRS traceability submodel.

32

8.3. Internal representation of artifacts

Table 8.3: Artifacts in the post-FRS traceability submodel

Artifact Description

Formal requirements A connection artifact, repeated from the pre-FRS traceability
submodel.

System components The key components of the system to be developed, such as
packages, classes, components and modules.

Design Artifacts within the design process, such as domain models
and architecture.

External systems Any external systems that the system under development
will be dependent upon.

Verification procedures Artifacts that verify that the requirements have been fulfilled
by the system.

System components

The System component artifacts relates to how the formal requirements are fulfilled by the
system. The artifacts point to components in the system, such as packages, modules, and
classes, thus linking requirements to the specific system component that fulfils it. The System
component artifact holds a description of the component, and a reference to its location, as the
actual component is located outside the traceability model, e.g. in an integrated development
environment (IDE) [Env]. Figure 8.5 shows the internal representation of the System component
artifact.

Figure 8.5: Internal representation of the System component artifact

In addition, a tag attribute identifying the component is employed, as well as a type attribute
specifying the type of system component. System components exist in a hierarchy, where
modules contain packages, and packages contain classes. The tag attribute supports the es-
tablishment of such a hierarchy. However, the granularity of the hierarchy must be carefully
considered. When tracing from requirements to system components, one must consider how
deep the trace is required to be. The deeper the trace (i.e., finer granularity), the higher load on
all requirements traceability efforts, both gathering of trace information and storing and main-
taining it. Carefully balancing the benefits and the required efforts, thus creating an acceptable
trade-off, is an important aspect of requirements traceability. By employing a type attribute
that can be set to different levels of the hierarchy, the model leaves to the user to determine
the desired granularity of the traceability.

Design

The Design artifact introduces to the traceability model those artifacts that are a product of the
design processes of the software development processes, such as architecture specifications, UML
diagrams, and graphical user interface (GUI) designs. As with system components, the artifact

33

Chapter 8. Internal representation of artifacts and traces

is stored outside the traceability model, with the Design artifact serving as a representation of
the actual artifact. Thus, the attributes include a tag, the type of design, a short description
of the design, and a reference to its location. The internal representation of the Design artifact
is given in Figure C.3a of Appendix C.

External systems

More and more often, systems communicate with other systems in order to perform their tasks.
The External system artifact represents those systems that the system to be developed will
communicate with. The internal representation of this artifact includes a tag, a type describing
what sort of system is represented, a owner attribute specifying the origin of the system, and a
short description of the system and its purpose. Figure C.3b of Appendix C depicts the internal
representation of the External system artifact.

Verification procedures

Verification procedures are employed to ensure the stakeholders that their requirements are
fulfilled by the proposed system. Several verification procedures exists, and which of these that
are employed will change from project to project. Consequently, the Verification procedure
artifact contains a type attribute specifying some of the most common verification procedures,
allowing the user to specify other procedure types. The verification procedure itself will be
stored outside the traceability model, leaving a location attribute as a reference. In addition,
a short description of the verification procedure is given. The internal representation of the
Verification procedure artifact is given in Figure C.3c of Appendix C.

8.4 Internal representation of traces

The artifacts of the traceability models are connected by traces. A trace illustrates a relationship
between two artifacts, either of the same type, or of two different types. Several kinds of traces
exist, conveying the diversity of relationships between artifacts. Traces can occur in both
directions between two artifacts, illustrating different relationships. In addition, several traces
can cooperate and connect several artifacts of the same artifact category to a single other
artifact.

A trace should in general be able to identify its two connecting artifacts, but occasionally it
is also required to relate additional information describing the relationship further, referred
to as auxiliary trace information. The following sections discusses the traces of each of the
submodels, concluding how they should be internally represented.

System components exist in a hierarchy, where modules contain packages, and packages contain
classes. The tag attribute supports the establishment of such a hierarchy. However, the granu-
larity of the hierarchy must be carefully considered. When tracing from requirements to system
components, one must consider how deep the trace is required to be. The deeper the trace
(i.e., finer granularity), the higher load on all requirements traceability efforts, both gathering
of trace information and storing and maintaining it. Carefully balancing the benefits and the
required efforts, thus creating an acceptable trade-off, is an important aspect of requirements
traceability. The required granularity will vary, depending on the nature of the software de-
velopment project being modelled. By allowing the user to add and remove artifacts to the
hierarchy of system components, and specifying their position in the hierarchy with the tag
attribute, the model leaves to the user to determine the desired granularity of the traceability.

8.4.1 Pre-RS traceability submodel

In the pre-RS traceability submodel, only the traces between the Stakeholder artifact and
the Prose requirement artifact requires additional trace information. All other traces is only

34

8.4. Internal representation of traces

required to register the ID and tag attribute of their two connecting artifacts.

The affect trace must contain information, relating to how the stakeholder is affected by the
prose requirement. This is because the affect trace is a generalisation of the many relationships
that can exist between a stakeholder and a requirement (e.g., “implements”, “designs”, “tests”,
etc.). Thus, the affect trace must contain the ID and tag of the two connecting artifacts, in
addition to an attribute specifying the type of relationship.

The propose trace is a complex trace, as it is used to reflect how the specification of the proposed
requirement was reached. The presence of minority or majority influence, described in Section
7.2.1, must be captured by this trace. Section 7.3 explains how the level of detail stored by
the RT tool must be left to the user. Thus, this trace allows the user to connect one or more
stakeholders to a prose requirement, still appointing one of the stakeholders as an owner of the
requirement. In addition, for each stakeholder their position regarding the requirement can be
recorded as either “compliance” or “conversion”, implying that they either quietly accept the
requirement although they hold a different private opinion, or that they privately accept the
requirement. If the user do not wish to provide this elaborate information, only an proposing
owner of the requirement need to be provided.

8.4.2 Pre-FRS traceability submodel

The pre-RS and pre-FRS traceability submodel are connected by two traces, ensuring bidirec-
tional traceability. Only the ID and tag of the connecting artifacts need to be registered.

The same applies to the remainder of the traces of the pre-FRS traceability submodel, only the
ID and tag of the two connecting artifacts need to be registered.

8.4.3 Post-FRS traceability submodel

The pre-FRS and post-FRS traceability submodels are connected by four traces, and still the
same applies to these and almost all other traces of this submodel; only the ID and tag of the
two connecting artifacts need to be registered.

However, this submodel contains an extraordinary trace, the verified by trace, connecting the
“fulfil” trace to the Verification procedure artifact. Instead of connecting two artifacts, the trace
connects another trace to an artifact. Thus, the trace must register the ID of the other trace,
as well as the ID and tag of the connected artifact.

35

Chapter 9

Summary

Before the task of developing a tool providing requirements traceability could commence, the
in-depth study [Nor06] specified preparatory tasks and investigations that had to be done in
order to verify the results presented in the study.

First, interviews were conducted with experienced software engineers, mapping the experiences
and best practices of the industry concerning requirements traceability. The interviewees related
their experiences with requirements traceability in practice, in particular focusing on situations
where RT tools had been developed and used to keep in control of the project. In addition,
they reviewed the traceability models from the in-depth study, elaborating on how they could
be used in practice. The interviews resulted in a few changes to the traceability models, making
them reflect the conditions and relationships in real software development projects.

The stakeholders’ role in the organisational hierarchy and how this could be represented in the
traceability models was investigated, concluding that the models should capture the position
and authority of a stakeholder, in addition to tagging how requirements are determined by
storing the circumstances of decisions affecting the requirement.

Finally, the preparatory work reviewed the internal representation of the artifacts and traces
of the submodels. The planning language Planguage provides a set of attributes that are used
to specify and quantify requirements, and these attributes in addition to some custom-made
attributes are used to specify the artifacts of the traceability models.

36

Part III

Requirements Specification

37

Chapter 10

Introduction

This chapter provides a full description of the requirements to a requirements traceability (RT)
tool, in addition to other important attributes of the finished product, such as its context of
use, user characteristics, and all constraints and dependencies. The structure of the chapter is
based on the IEEE std. 830-1998: Software Requirements Specification [IEEmlb].

10.1 Document information

This section lists information regarding the identification of the requirements specification, its
status, version number, and origin.

Date of Issue: June 1st, 2007.

Status: Ready for implementation.

Issuing organisation: Gyrd Norvoll, IDI/NTNU.

Change history: No current change history.

10.2 Purpose

The purpose of this part is to provide a precise and detailed specification of all requirements
to an RT tool. The document targets developers of the tool, but any stakeholder with invested
interest will also find the document interesting.

10.3 Scope

The primary purpose of the RT tool described by the requirements is to provide the users with
full traceability of requirements. This is accomplished by assisting the users with gathering,
storing, and visualising traceability information. The RT tool will not dictate how the require-
ments engineering processes or any other software development processes are executed, other
than specifying what information is required to provide full traceability. Even though not in-
cluded in the IEEE standard, a use case model is included to the requirements specification,
providing added value to the specification of functional requirements.

39

Chapter 10. Introduction

10.4 Definitions, acronyms, and abbreviations

For clarification of terms and concepts from the domain of application, i.e., quantification and
traceability of requirements, the reader is referred to the in-depth study [Nor06], Part II.

ORM (Object-relational mapping) - Creating a mapping from the objects of an object-
oriented programming language to the structure of a relational database. Hibernate is
an example of ORM.

Java EE (Java Enterprise Edition) - A programming environment for developing and run-
ning distributed Java applications based on a tiered architecture.

10.5 References

The IEEE standard upon which this architectural description is based, was approved in 1998
by the IEEE Standards Board, and is named IEEE Recommended Practice for Software Re-
quirements Specifications [IEEmlb].

The remainder of this requirements specification refers to no specific documents, founding its
specifications on the findings throughout both the in-depth study and part II of this thesis.

10.6 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part. As
this part is based on the structure of the IEEE std. 830-1998, a summary of the part is not
included at the end.

• Chapter 11 - Overall description
This chapter describes any aspects that concern the overall product and its requirements,
and provides a foundation for understanding the requirements specified later in the re-
quirements specification.

• Chapter 12 - Specific requirements
In this chapter all requirements are stated in detail, with all information necessary to
commence the design of the system. Both functional and non-functional requirements
are given, in addition to use cases describing the functional requirements in detail.

• Chapter 13 - Requirements dependencies
This chapter provides a tracking matrix, visualising the dependencies between require-
ments, assisting with determining the priorities of requirements.

40

Chapter 11

Overall description

This requirements specification dictates how an RT tool should function in order to provide
full traceability of requirements by specifying both functional and non-functional requirements.
The following sections provide the reader with a perspective for understanding the requirements
of Chapter 12.

The in-depth study [Nor06] presented a high-level requirements specification (given in Appendix
E) that shapes the foundation of the RT tool that is to be developed as a result of this Master’s
Thesis. The in-depth study underlines that this requirements specification is at too high a level,
and should thus be further developed in the Master’s Thesis. Functional and non-functional
requirements will be further specified in Chapter 12, and use case modelling will be employed
for specifying the functional requirements further, the concept of which is briefly described in
Section 12.3.1.

11.1 Product perspective

The RT tool (in this chapter henceforth referred to as the product) is not part of a larger
product, and should thus be considered an independent product. The product will not require
other hardware than a client computer and a server.

11.2 Product functions

An overview of the main functions of the product is listed below. These functions are described
further in Chapter 12.

• Traceability projects
– Managing projects
– Working with projects

• Gathering trace information
– Creating artifacts
– Creating traces

• Maintaining trace information
– Search for artifacts
– Editing artifacts
– Deleting artifacts
– Search for traces
– Editing traces

41

Chapter 11. Overall description

– Deleting traces

• Searching trace information

• Visualising trace information
– Viewing predetermined visualisations
– Creating and viewing custom-made visualisations

• Help and assistance
– Help Messages
– Help Menu

• Administrative tasks
– Maintaining a user list
– User Authentication

11.3 User characteristics

The users of the product can be divided into two main categories: non-technological and tech-
nological users.

The non-technical users, often represented by those stakeholders partaking in the software
development processes as customer representatives, have no or little experience with software
development. These users take part in the activities of requirements elicitation, and will thus
primarily be exposed to the pre-RS traceability stage of RT.

The technical users primarily constitute engineers and developers, but in general, this group of
users consist of any user with knowledge of the processes and activities of software development.
These users will generally partake in all activities occurring during the software development
lifecycle, but due to resource management, such users are often assigned specific roles within
a software development project, such as requirements analysts, architects, designers, program-
mers, and testers. Thus, they will primarily be exposed to those stages of traceability that
relate to their field of expertise.

The administrative user is a user group with a higher access level than the regular user. The
administrative user can perform all tasks that the regular user can perform, but have been given
the authority to perform some additional tasks, such as maintaining a user list for authentication
purposes. Administrative and regular users can be either technical or non-technical users,
although administrative users will often be technical users.

11.4 Constraints

A product of this kind will contain information that is often regarded as sensitive for its users,
and if accessed by intruders with bad intentions, the information could be abused, e.g. for
reengineering purposes. The product is particularly vulnerable to malicious attacks as it is
based on a client-server architecture, thus dependent on network communication. Security
regulations are thus required, and will be specified further in Section 12.6.

The product represents a source of information that can be employed amongst others in problem
analyses, and business and strategy decisions. Making important decisions based on faulty
information makes up a significant risk in any project, in the worst case the decision could
obliterate any chance of project success. It is important that the information is accurate and
precise, and reliability is a significant constraint of the product.

In addition, the product’s ability to gather the required amount of trace information without
neither creating an imposing work overhead for the user nor gathering useless traceability
information, and its ability to adapt this to the current environment, is an important constraint
of the product. The granularity of the trace information must be adaptable to the environment
and user at hand, as well as the envisioned usage of the trace information.

42

11.5. Assumptions and dependencies

11.5 Assumptions and dependencies

The system described by this requirements specification is of such a nature that hardware
dependencies are few, only relying on hardware technology common today, as this delivers the
required interfaces, performance, and possibilities. Still, the requirements specification leaves
room for choosing between a range of technical possibilities, creating no particular dependencies.

However, the performance requirements make some architectural assumptions, i.e. assuming
that the RT tool will employing a three tier Client-Server design pattern. The architecture of
the RT tool is further discussed in Part IV, and other than the assumption of the Client-Server
design pattern, no assumptions on the architecture will be made.

11.6 Requirements subsets

The functional requirements of custom-made visualisations of trace information could be re-
ferred to future works, as this is not vital for the first version of the RT tool. Predetermined
visualisations, a simpler alternative to the custom-made visualisations, provide enough trace-
ability functionality to offer the user a satisfactory preliminary solution. Likewise, search func-
tionality can be referred to future works, as the overall functionality of the tool is not dependent
on search functionality.

43

Chapter 12

Specific requirements

This chapter presents the requirements specifying how an RT tool should function. The infor-
mation stated in this chapter will be of value to any work related to the architectural description
of the RT tool. All stated requirements are quantifiable, thus ensuring objectivity when de-
termining whether a requirement has been fulfilled or not. The requirements are stated with
the means of Planguage (see Chapter 8), based on the determined internal representation of
formal requirements given in Section 8.3.2. Explanation of Planguage attributes can be found
in Appendix B.

In order to demonstrate the hierarchy of requirements in the requirements specification, special
attributes are employed. A requirement residing at the top-most level of the hierarchy is referred
to as a complex requirement. Such a requirement is identified by the existence of sub-functions,
which are requirements extracted from the complex requirement. This decomposition can be
spotted in both the tag attribute of the decomposed requirements (the sub-functions), and in
the sub-functions attribute of the complex requirement. Likewise, decomposed requirements
list their supra-functions in a supra-functions attribute.

Full requirement specifications are listed in tables in Appendix F, and this chapter only sum-
marises the main categories of requirements, describing their overall purposes and intentions.

12.1 External interface requirements

This section states the external interface requirements of the product, and describes in detail
the inputs and outputs of the product. Four different types of interfaces are established, rang-
ing from interfaces with humans, with other systems, and hardware, as well as interfaces for
intersystem and intrasystem communication. A summary of the external interface requirements
are given in Figure 12.1, presenting the requirements according to their hierarchical location.

Figure 12.1: Summary of external interface requirements

44

12.2. Functional requirements

User interfaces

The product must be usable through a window-based application, as most users currently
employ such user interfaces and are accustomed to how they work. This requirement is stated
below, in Table F.1. The other user interface requirements are given in Tables F.2 through F.8.

Hardware interfaces

The hardware interface requirement is stated in Table F.9.

Software interfaces

The software interface requirements are stated in Tables F.10 through F.11.

Communications interfaces

The communication interface requirement is stated in Table F.12.

12.2 Functional requirements

The functional requirements are classified according to the main functions listed in Section 11.2.
Each category contains several features, which in turn is described by one or more functional
requirements. For each requirement, key attributes like priority, required inputs and outputs,
and assumed frequency of use are listed.

The features described by the functional requirements are also described by use cases, in Section
12.3. Use cases provide an extended description of the context of the functional requirements.
A summary of the functional requirements are given in Figure 12.2, presenting the requirements
according to their hierarchical location.

12.2.1 Traceability projects

The following section describes the features associated with creating and managing traceabil-
ity projects. Traceability projects constitute the topmost categorisation of trace information,
associating the gathered trace information with a specific development project.

Managing projects

Tag: Functional.ManagingProjects

Description The gathered trace information must be categorised according to which project
it belongs to. All artifacts and traces, i.e., an instance of TRACY, must be associated with a
specific project. An administrative user must be able to create and remove projects, specifying
which users are allowed to access the projects.

Requires An administrative user that has logged on to the system.

Ensures Project-wise association of artifacts and traces.

Inputs An administrative user requests the system to create a project with a given name, and
states the users that are allowed to work with the project. The administrative user can notify
the system to remove users from a project, in addition to removing entire projects.

45

Chapter 12. Specific requirements

Figure 12.2: Summary of functional requirements

Outputs The system creates a project with the given name, and attaches the specified users
to the project, allowing them to access the traceability stages of the project. The system will
also, if asked, remove users from projects or remove entire projects. The system always returns
a feedback message to the administrative user, informing him of the result of the request.

Priority High.

Frequency of use High.

Functional requirements

The functional requirements are listed in Tables F.13 through F.15.

Working with projects

Tag: Functional.WorkingWithProjects

Description When gathering trace information and registering it in the system, the user must

46

12.2. Functional requirements

associate the information with a specific project. Rather than specifying an owner relationship
each time a new piece of information is entered, the user chooses a project to work with, and
must exit this project if he or she is to work with another project.

Requires An user that has logged on to the system.

Ensures Project-wise association of artifacts and traces.

Inputs A user informs the system which project he or she wishes to work with. If necessary,
the user asks the system to quit the project, and can then tell the system to work with another
project.

Outputs When requested by the user to work with a specific project, the system presents the
traceability stages of the project, giving the user full access to all functions related to gathering,
maintaining, searching and visualising trace information.

Priority High.

Frequency of use Medium.

Functional requirements

The functional requirements are listed in Tables F.16 through F.19.

12.2.2 Gathering trace information

The features of this section describe functions that regard the collection of trace information.

Creating artifacts

Tag: Functional.CreatingArtifacts

Description Creating artifacts requires the ability to create instances of the artifacts of the
traceability models of TRACY (see Section 6.3), registering the trace information TRACY
has determined necessary for the artifact in question, and finally storing this information in a
persistent manner.

Requires A user that has logged on to the system and are able to provide the required trace
information.

Ensures Creation of a new artifact of the desired type, and persistent storage of this artifact
and any required trace information.

Inputs The user informs the system of which artifact he or she wishes to create an instance of.
When requested by the system, the user states the required trace information required by the
desired artifact and requests that the system stores the information.

Outputs The system, after requested to create an artifact instance, presents the user with
a form requesting the required trace information. After storing the information, the system
outputs feedback, stating either success or failure.

Priority High.

Frequency of use High.

Functional requirements

The functional requirement is listed in Table F.20.

47

Chapter 12. Specific requirements

Creating traces

Tag: Functional.CreatingTraces

Description Traces connect the artifacts of the traceability model, representing relationships
between the artifacts. Traces are the glue that hold the traceability model together, and without
them, no traceability of requirements can be offered. Representation of traces usually requires
a user specification of which two artifacts are to be connected, as well as any other information
determined necessary in Section 8.4.

Requires A user that has logged on to the system and is able to provide the required trace
information. In addition, the artifacts that are to be connected, must have existing instances.

Ensures The registration of a relationship between two artifact instances in accordance with
the relationships presented by the traceability models, thus creating a trace between these
artifacts.

Inputs The user specifies which existing artifact instance he or she wisher to trace from. When
the system provides a list of potential artifacts to trace to, the user selects the appropriate
artifact, provides any requested auxiliary trace information and requests that the system stores
the information.

Outputs When informed of the starting artifact of the trace, the system provides a list of all
possible ending artifacts, in accordance with the traceability models. When the starting and
ending artifact of the trace have been determined by the user, the system checks the internal
representation of the trace, and asks the user for any auxiliary trace information. After storing
the information when requested, the system outputs feedback, stating either success or failure.

Priority High.

Frequency of use High.

Functional requirements

The functional requirements are listed in Tables F.21 through F.23.

12.2.3 Maintaining trace information

The features of this section describe functions that regard the maintenance of trace information,
an important part of requirements traceability due to its lifecycle perspective.

Editing artifacts

Tag: Functional.EditingArtifacts

Description Artifacts change throughout the project lifecycle, and it is important to be able to
edit an artifact instance when its trace information changes. The alternative is to create a new
instance, and then delete the old instance, which is not a particularly effort-saving approach.
Editing artifacts involve locating the existing instance, editing its trace information, and store
it for future use.

Requires A user that has logged on to the system and is able to provide the required traceability
information. The artifact instance that is to be edited, must already exist within the system.

Ensures Updatable, maintainable, and current representations of the artifacts of the project.

Inputs User informs system of which artifact he or she wishes to edit, states the new trace
information, and requests that system stores the information.

Outputs When being informed by the user which artifact is to be edited, the system presents
the existing trace information recorded in that artifact, and allows this information to be edited

48

12.2. Functional requirements

by the user. After storing the information when requested, the system outputs feedback, stating
either success or failure.

Priority High.

Frequency of use Medium.

Functional requirements

The functional requirements are listed in Tables F.24 through F.25.

Deleting artifacts

Tag: Functional.DeletingArtifacts

Description In order to depict the current situation in a project, it will at times be necessary to
delete artifacts. When artifacts are deleted, any of their belonging traces must also be deleted.

Requires A user that has logged on to the system and is able to provide the required traceability
information. The artifact instance that is to be deleted, must already exist within the system.

Ensures Removable and current representations of the artifacts of the project.

Inputs User informs the system of which artifact instance that is to be deleted, and when system
requests confirmation, the user provides a suitable reply, either acknowledging or renouncing it.

Outputs When requested to delete an artifact instance, the system requests the user for a con-
firmation of the request. Depending on the user’s answer, either acknowledging or renouncing
the request, the system deletes or keeps the artifact instance, presenting a feedback message to
the user with the result of the request.

Priority High.

Frequency of use Low.

Functional requirements

The functional requirement is listed in Table F.26.

Editing traces

Tag: Functional.EditingTraces

Description Just as with artifacts, traces will occasionally require an update in order to be
able to represent the current situation within a project. Editing traces involve locating the
existing instance, changing any of the two connecting artifact instances, edit its auxiliary trace
information, and store any changes for future use.

Requires A user that has logged on to the system and is able to provide the required trace
information. The trace that is to be edited, must already exist within the system.

Ensures Updatable, maintainable, and current representations of the relationships between
artifacts of the project.

Inputs User informs the system of which trace he or she wishes to edit, alters the connected
artifacts to any other existing instances of the same artifact category, states any new auxiliary
trace information, and requests that system stores the information.

Outputs When being informed by the user which trace is to be edited, the system presents
the existing trace information recorded on that trace, i.e. the connecting artifacts and any
auxiliary trace information, and allows this information to be edited by the user. After storing
the information when requested, the system outputs feedback, stating either success or failure.

Priority High.

49

Chapter 12. Specific requirements

Frequency of use Medium.

Functional requirements

The functional requirements are listed in Tables F.27 through F.28.

Deleting traces

Tag: Functional.DeletingTraces

Description In order to depict the current situation in a project, it will at times also be
necessary to delete traces. This can both be due to relationships that cease to exist between
two still existing artifacts, or that an artifact is deleted and consequently all its relationships
are terminated. In the case of a deleted artifact, the request for deletion of a trace originates
from the system itself.

Requires A user that has logged on to the system and is able to provide the required traceability
information. The trace that is to be deleted, must already exist within the system.

Ensures Removable and current representations of the relationships of the project.

Inputs A user or the system itself informs the system of which trace that is to be deleted, and
when the system requests confirmation in the case of a user-initiated request, the user provides
a suitable reply, either acknowledging or renouncing it.

Outputs When requested by a user to delete a trace, the system requests the user for a con-
firmation of the request. Depending on the user’s answer, either acknowledging or renouncing
the request, the system deletes or keeps the artifact instance, presenting a feedback message to
the user with the result of the request. When requested by the system itself to delete a trace,
the system presents a feedback message to the originating system process.

Priority High.

Frequency of use Low.

Functional requirements

The functional requirements are listed in Tables F.29 through F.30.

12.2.4 Searching trace information

Tag: Functional.SearchingTraceInformation

Description The system gathers potentially large amounts of trace information, and it is
important that the user is able to locate this information quickly. Thus, a search function is
important, as it provides a quick and easy manner to find the information needed. A search
function uses search terms specified by the user, and lists any information including those terms.

Requires A user that has logged on the system.

Ensures Quick access to the needed information.

Inputs A user specifies a set of search terms, and requests the system to list all information
containing these search terms.

Outputs When being requested by the user to search for information containing a set of search
terms, the system locates all data containing the search terms, and presents this to the user.

Priority Medium.

Frequency of use Low.

Functional requirements

The functional requirement is listed in Table F.31.

50

12.2. Functional requirements

12.2.5 Visualising trace information

The features of this section describe functions regarding the visualisation of the available trace
information, ranging from simple visualisation of singular artifacts and traces, to the more
complex visualisations of full traceability models.

Viewing predetermined visualisations

Tag: Functional.PredeterminedVisualisations

Description Predetermined visualisations are predetermined by the system, and the user can-
not cahnge the visualisations to suite his current needs. A predetermined visualisation can
either be a simple visualisation of the internal representation of an artifact instance or a trace,
or it can be a complex visualisation showing the traces between several artifacts, even crossing
the boundaries of the traceability stages (pre-RS, pre-FRS, and post-FRS traceability). Com-
mon for them both is that the user cannot change what information is displayed, or which
artifacts are included in the visualisations. Simple visualisations only display a single artifact
or trace at the time, chosen by the user. For complex visualisations, the included artifacts are
predetermined by the system, illustrating e.g. the pre-RS traceability artifacts and how they
interrelate.

Requires A user that has logged on to the system and is able to provide the required traceability
information. For simple visualisations, a generic view must exist for representing the trace
information, whilst for complex visualisations, a set of views for predetermined visualisations
must exist. These generic views leaves only one task for the system; inserting the gathered
trace information in the views and presenting them to the user.

Ensures Visual representations of the gathered trace information, allowing analysis of the data.

Inputs A simple visualisation requires the user to select an artifact instance or a trace, whilst
a complex visualisation requires the user to choose among a set of predetermined visualisations.

Outputs When requested by the user to display a specific visualisation, the system gathers the
required trace information, inserts this information into the prespecified view, and presents the
view to the user.

Priority High.

Frequency of use High.

Functional requirements

The functional requirements are listed in Tables F.32 through F.35.

Creating and viewing custom-made visualisations

Tag: Functional.CustommadeVisualisations

Description Custom-made visualisations consists of either simple custom-made visualisations
or complex custom-made visualisations. Simple custom-made visualisations are simple prede-
termined visualisations regulated by filters activated by the user, thus enabling the user to
adapt the amount of presented information and how it is presented. Complex custom-made
visualisations could be viewed as an extension of the complex predetermined visualisation, al-
lowing the user to a certain degree to decide which artifacts are included in the visualisation.
However, the traceability models imposes certain restrictions on the visualisations, reducing the
range of user options to the selection of a starting and ending artifact instance. The remainder
of the included artifact instances is chosen from the traceability models; any artifact instances
that are required to trace from the chosen starting and ending artifact instance.

51

Chapter 12. Specific requirements

Requires A user that has logged on to the system and is able to provide the required traceability
information. For simple visualisations, a generic view alterable by predefined filters must exist
for representing the trace information.

Ensures Dynamic visual representations of the gathered trace information, allowing analysis
of the data.

Inputs A simple visualisation requires the user to select an artifact instance or a trace and
activate the desired filters, chosen from a list. A complex visualisation requires the user to
choose a starting artifact among the existing artifact instances, and when presented with a set
of compatible ending artifacts, choose the desired ending artifact.

Outputs When requested by the user to display a specific simple visualisation, the system
gathers the required trace information, inserts this information into the prespecified view, and
presents the view to the user. Depending on the filters activated by the user, the system
must alter the view to represent the trace information differently. If a user requests a complex
visualisation, the system must present the user with a list of possible starting artifacts (any
artifact within the chosen traceability stage). When the user have selected the desirable starting
artifact instance, the system must, with the means of the traceability models, determine any
connected artifact categories, and display their instances as possible ending artifacts. When the
user has chosen a ending artifact instance, the system must present the user with a visualisation
of these two artifacts, along with any artifacts required to trace between them.

Priority Medium.

Frequency of use Low.

Functional requirements

The functional requirements are listed in Tables F.36 through F.38.

12.2.6 Help and assistance

Tag: Functional.Help

Description Providing electronic help functionality enables the user to solve problems related
to executing tasks of the system, without having to call on external resources. Such functionality
is an important part of fulfilling the usability requirements to the system, specified in Section
12.6. When implementing help functionality, several factors must be considered. The user must
be given the opportunity to review and search through a directory of documents describing
common problems and course of actions, referred to as passive help functionality. In addition,
the user must receive feedback when performing tasks incorrectly, referred to as active help
functionality.

Requires A user that has logged on the system.

Ensures A user that is able to use the system independently and solve his or her problems
without calling on external resources, such as expert users.

Inputs The user executes a task within the system incorrectly, causing the system to respond
with feedback on what went wrong, or the user visits the help functionality independently of
executing tasks, looking through and searching for interesting topics.

Outputs When the user has executed a task incorrectly, the system responds by displaying a
feedback message stating what went wrong, and how the user should correct the problem. If
the user visits the help functionality independently of task execution, the system lists the help
topics, allowing the user to search through and read interesting topics.

Priority Medium.

Frequency of use Medium.

Functional requirements

52

12.2. Functional requirements

The functional requirements are listed in Tables F.39 through F.41.

12.2.7 Administrative functions

The administrative functions include every task in the system that does not influence the
gathered trace information, but rather focus on tasks such as maintaining a list of users of the
system, and appointing access levels to users.

Maintaining a user list

Tag: Functional.Administrative.MaintainingUserList

Description A list of users specify the users of the system, their access level, and authentication
passwords, and are used by the system as a security measure against intruders. Only registered
users with validated passwords can access the system. Chosen users can be given administrative
rights, enabling them to add other users.

Requires An administrative user that has logged on to the system.

Ensures The ability to add and remove users of the system and assign user-specific access
rights.

Inputs An administrative user requests that a new user is to be added to the system. The
administrative user specifies the access level, authentication password and username of the user.

Outputs When being requested by the user to add a new user, the system requests the user to
specify the necessary information (access level, username and authentication password). When
the necessary information is stated, the system stores a new user instance persistently in the
user list, allowing the specified username and password access the system with the given access
level.

Priority High.

Frequency of use Medium.

Functional requirements

The functional requirements are listed in Tables F.42 through F.45.

User Authentication

Tag: Functional.Administrative.UserAuthentication

Description In order to secure the system, user authentication is required. This makes it more
difficult for intruders with malicious purposes to access the system. A user is required to log on
to the system before gaining access to system resources, by providing a username and password
that the system will validate before admitting the user.

Requires A user that is registered as a user of the system, and has been given a username and
password.

Ensures A secured application with user authentication.

Inputs A user provides a username and a password for validation by the system.

Outputs The system validates the given username and password, and if the user is an allowed
and authenticated user of the system, the system presents the list of projects the user is attached
to, granting the user his given access level. If authentication failed, the system informs the user
of this, and the user is asked to re-enter his username and password. If authentication failed in
three consecutive attempts, the user is requested to contact the system administrator.

Priority High.

53

Chapter 12. Specific requirements

Frequency of use Medium.

Functional requirements

The functional requirement is listed in Table F.46.

12.3 Use case modelling

Section F.2 specify the functional requirements of the system to be developed. This section
extends a selection of these requirements by specifying a set of use cases, illustrating the use
of the main features described by the requirements. Thus, a single use case can include the
functionality specified in several requirements. The remaining non-functional requirements will
be further elaborated in Sections 12.4 through 12.7.

12.3.1 The concept of use case modelling

Use case modelling is the process of building a use case model, a model that describes the
functional requirements of the system to be developed. First, descriptions of participating
actors are given, continuing with the use cases themselves. The use cases capture what could
be thought of as a contract between the stakeholders of a system about its behaviour [Coc05].
Use cases describe scenarios, exemplifying the use of the system, and consequently illustrating
the functional behaviour of the system in a different manner than the requirements specification,
which could enhance the understanding among the stakeholders.

Use cases can be presented in two different forms, a fundamental text form and a graphical form
such as flow charts, UML diagrams, and so forth. The use cases presented in this chapter will
be textual use cases, allowing a greater level of detail than graphical use cases and consequently
richer and more informative use cases, better suited as tools for communication [SK06] [Coc05].

12.3.2 Description of actors

In this section, a textual description of each actor that will appear in the use cases is given.
For each actor, important attributes are listed, i.e., name, description, and examples. In Table
12.1, you will find a description of the regular users of the application, i.e. the ones without
administrative rights. In Table 12.2, a description of administrative users of the application is
given, and in Table 12.3, a description of the system itself is given.

Table 12.1: Actor description - regular user

Comment

Actor Regular user

Description The regular user of the application will primarily use it for registering and
viewing traceability information. This actor will be the most frequent user of
the application, and any technical knowledge is most likely highly fluctuating,
ranging from super users to inexperienced users.

Examples Customer representatives, business intelligence analysts, requirements engi-
neers, developers, testers

Table 12.2: Actor description - administrative user

Comment

Actor Administrative user

Continued on next page

54

12.3. Use case modelling

Table 12.2 – continued from previous page
Comment

Description The administrative user of the application have extended user rights, enabling
this actor perform administrative tasks within the system, such as registering
new users. This indicates that this user has a higher degree of authority
within the project than regular users. Technical knowledge is assumed to be
substantial.

Examples Architects, team leaders, project managers, main customer representative

Table 12.3: Actor description - System

Comment

Actor System

Description The system collects, stores, and visualises the trace information in the project,
in addition to exert control over the users of the system.

12.3.3 System use cases

System use cases describe how actors and the system interacts, and includes information con-
cerning actors, triggers, pre-conditions, scenarios and exceptions to scenarios. Each use case
is given a descriptive title, referring to its contents, and are presented in Tables G.1 through
G.15, listed in Appendix G.

12.3.4 Tracing of use cases

This section presents a tracking matrix visualising how the use cases describe specific require-
ments. In their specification, each use case lists the requirements it extends, thus providing a
link between the requirements specification and the use cases.

The matrix is given in Figure 12.3. The use cases are listed horizontally and requirements verti-
cally. When a use case addresses a requirement, this relationship is indicated by an occurrence
in the matrix. For example, if use case X addresses requirement Y and Z, this is indicated in
the tracking matrix by an occurrence at the Yth and Zth element of the Xth row.

Use cases describe the most common uses of the system, and explain in simple terms how the
user interact with the system. Thus, the requirements they extend are important require-
ments to the system, and visualising which requirements are extended helps to determine
the priority of functionality corresponding to the use cases and requirements when imple-
menting a solution. According to the occurrences of the tracking matrix, concentrating on
Functional.WorkingWithProjects and Functional.Administrative.UserAuthentication,
functionality providing a user with the opportunity to log in, and work with projects stands out
as vital functionality. Priority is further discussed in Chapter 13, where dependencies between
requirements assist with defining the priority of requirements further.

55

Chapter 12. Specific requirements

Figure 12.3: Tracking matrix - Use cases/Requirements

12.4 Performance requirements

This section describes the performance requirements of the system: non-functional require-
ments. Performance requirements describe how the system must perform by stating “how
much” the system must perform. These requirements describes the workload capacity of the
system, specifying the amount of work the system must be able to handle.

Specific requirements can also be stated describing how much resources (e.g. time and effort)
should be saved in comparison with a benchmark system, often a previous version of the system
to be developed. However, such requirements will not be given in this requirements specification,
as the system to be developed have no significant benchmark system it can be compared with.
Other requirements traceability tools exist, but they are hard to use for comparison, as they
all approach the task somewhat different. The reader is referred to the in-depth study for more
information on other RT tools.

The performance requirements are given below, in Tables F.47 through F.56. The system’s
response time must be considered the primary objective for the performance requirements. The

56

12.5. Design constraints

response time will primarily depend on the performance of i.e. web and database servers, as
well as communication lines. The performance requirements regarding response time are based
on response-time guidelines in [Shn98a]. A summary of the performance requirements are given
in Figure 12.4, presenting the requirements according to their hierarchical location.

Figure 12.4: Summary of performance requirements

Throughput

Throughout measures the system’s ability to process work, and is measured along a scale con-
sisting of the amount of work done per unit of time. Tables F.47 through F.49 lists the quality
requirements concerning throughput.

Response time

The response time illustrates the delay between initiating or requesting some action, and the
arrival of the result. The response time requirements are stated in Tables F.50 through F.54.

Storage capacity

Storage capacity is a system ability to store units of some defined kind, such as users or units
of information, in this case trace information. The storage capacity requirements are stated in
Tables F.55 through F.56.

12.5 Design constraints

Design constraints are, like functional requirements, nonnegotiable. They are either fulfilled or
not. As explained earlier, this is a binary circumstance. Design constraints consists of standards
compliance, introducing constraints put down by either external or internal authorities, and

57

Chapter 12. Specific requirements

hardware limitations, constraints caused by the use of certain hardware. A summary of the
design constraints are given in Figure 12.5, presenting the requirements according to their
hierarchical location.

Figure 12.5: Summary of design constraints

Standards compliance

Several standards exist in the world of software development, both universally accepted stan-
dards proposed by boards or organisations such as ISO or IEEE, and internal standards that
are valid only within the proposing organisation. A standard put down a set of rules that
must be followed if standards compliance is the objective. Only a single standards compliance
requirement apply to the development of the system, given in Table F.57.

Hardware limitations

Hardware limitations are requirements that influence the software requirements, placing con-
straints on how the software should be developed in order for it to be compatible with the given
hardware. Only a single hardware limitation is put down for the system, listed in Table F.58.

12.6 Software system attributes

Software system attributes describe quality requirements to the system, focusing on selected
attributes. It is important that these requirements are measurable and verifiable. ISO 9126
is an international standard for the evaluation of software, presenting a classification of soft-
ware system attributes. This classification form a foundation for the chosen attributes in this
requirements specification. The requirements are sorted after the attributes they concern, and
are listed in Tables F.59 through F.73. A summary of the software system attributes is given
in Figure 12.6, presenting the requirements according to their hierarchical location.

Functionality

The software system attribute of functionality addresses the quality of the software functions,
and focuses on security. The security attribute measures the system’s ability to resist unau-
thorized access and usage while still being able to provide its legitimate users with its services.
A secured system can be established in a number of ways, e.g. by providing nonrepudiation,
confidentiality, integrity, assurance, availability, and auditing. The requirements related to the
functionality attribute are listed in Tables F.59 through F.61.

Reliability

The reliability attribute addresses the software’s capability to maintain its performance level
under stated conditions such as load, system mode and period of time. The two reliability
attributes focused on in this requirements specification are recoverability and availability. Re-
coverability addresses how well the system can recover after failure, whilst availability is defined

58

12.6. Software system attributes

Figure 12.6: Summary of software system attributes

in accordance with Equation 12.1. Tables F.62 through F.63 lists the quality requirements con-
cerning reliability.

Availability =
Mean time to f ailure

Mean time to f ailure + Mean time to recover
(12.1)

Maintainability

Maintainability concerns the efficiency and cost with which a system can be changed. The issues
of maintainability addressed in this requirements specification are testability and changeability.
The requirements to maintainability are listed in Tables F.64 through F.65.

Portability

A system’s ability to be transferred from one environment to another is referred to as its
portability. The portability attribute addresses the issues installability and adaptability. The
quality requirements concerning portability are listed in Tables F.66 through F.69.

Usability

A system’s ease of use is often referred to as its usability. This attribute is concerned with
how easy it is for the user to execute a desired task, and is one of the most common quality
attributes considered when developing a system intended for human use. Tables F.70 through
F.73 lists the requirements concerning usability.

59

Chapter 12. Specific requirements

12.7 Other requirements

There are no other requirements at this stage.

60

Chapter 13

Requirements dependencies

Figure 13.1 illustrates the dependencies between the requirements by displaying the require-
ments in a matrix. An occurrence in the intersection between a row and a column indicates
a dependency between the requirements. These dependencies are also listed in the descrip-
tion of each requirement in the requirements specification, also illustrating the direction of the
dependency; a requirement X listing requirement Y in its dependencies needs requirement Y
to be fulfilled in order for itself to be fulfilled. Thus, dependencies help define the priority of
requirements.

Hierarchical relationships (sub- and supra-functions) also represent a dependency, as a supra-
function requires the fulfilment of its sub-functions in order for itself to be fulfilled. Hierarchical
relationships have been illustrated in the figures summarising the requirements of this require-
ments specification, and are found in Figures 12.1, 12.2, 12.4, 12.5, and 12.6.

As can be seen in the matrix, many requirements are dependent upon the requirements of creat-
ing artifacts and traces, Functional.CreatingArtifacts and Functional.CreatingTraces. These re-
quirements are in turn dependent upon the requirements belonging to Functional.ManagingProjects,
Functional.WorkingWith Projects and last but not least Functional.Administrative.UserAuthentication.
Every requirement is dependent upon user authentication, so this requirement is the most im-
portant requirement of the entire system. Thus, the matrix helps visualise the priority of the
requirements.

The use case tracking matrix of Section 12.3.4 also points out that functionality regarding user
authentication and working with projects are important, which supports the priority reached
when studying the requirements dependencies.

Due to the spatial limitations, only the requirements with dependencies are listed in the tracking
matrix.

The requirements of this requirements specification is based on the high-level requirements
defined in the in-depth study, summarised in Appendix E. Figure 13.2 shows a tracking matrix
linking the high-level requirements to the requirements detailing them in the requirements
specification. A single high-level requirement can be linked to several of the specific requirements
in the full requirements specification.

61

Chapter 13. Requirements dependencies

Figure 13.1: Tracking matrix - Requirements/Requirements

62

Figure 13.2: Tracking matrix - High-level requirements/Detailed requirements

63

Part IV

Architectural Description

65

Chapter 14

Introduction

In this chapter, a short summary of the purpose and scope of this part is given, along with an
overview of its chapters.

14.1 Document information

This section lists information regarding the identification of the architectural description, its
status, version number, and origin.

Date of Issue: June 1st, 2007.

Status: Ready for implementation.

Issuing organisation: Gyrd Norvoll, IDI/NTNU.

Change history: No current change history.

14.2 Summary

This architectural description documents the architecture of an RT tool, a tool providing trace-
ability of requirements by assisting with the elicitation, quantification, and evolution of the
requirements, as well as relating the requirements to other important artifacts of the software
development processes, such as system components and verification procedures.

14.3 Scope

The scope of this architectural description is limited to the elaboration of the architecture of
the system outlined by the requirements listed in the requirements specification of Part III. The
architectural description will not handle any aspects beyond this requirements specification.

14.4 Context

This architectural description is part of a Master’s Thesis concerning the topic of quantification
and traceability of requirements, and is written according to the IEEE std. 1471-2000. Con-
sequently, this document can be read independently of the remainder of the Master’s Thesis.
However, it is recommended that the user reviews the effort put down in order to reach the
current architecture, including both an in-depth study [Nor06], additional preparatory work
(see Part II) and a requirements specification (see Part III).

67

Chapter 14. Introduction

14.5 Glossary

Problem domain

A problem domain is a domain where the parameters defining the boundaries of the domain,
the entities of the domain, and the relationships between these entities are not well enough
understood to provide a systematic description of the domain [dom]. In simpler terms, the
problem domain represents an unknown situation or environment where few or no conditions
are known.

Problem domain analysis

By performing a problem domain analysis, the analyst acquaints himself with the problem do-
main and creates a domain model describing the problem to be solved. This model is completely
independent of the constructs of the solution, and once the model is built it can be applied to
a wide range of technologies. This creates a good approach to software evolution, as older
technologies can be replaced by new and emerging technologies in the future [da].

14.6 References

The IEEE standard upon which this architectural description is based, was approved in 2000
by the IEEE Standards Board, and is named IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems [IEEmla].

14.7 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part. As
this part is based on the structure of the IEEE std. 1471-2000, a summary of the part is not
included at the end.

• Chapter 15 - Identification of stakeholders and concerns
This chapter introduces the stakeholders of the architecture and consequently the system
itself. In addition to a description of the stakeholders, the chapter identifies their main
concerns which are architecturally relevant.

• Chapter 16 - Architectural strategies
The system is constrained by a number of quality requirements, and this chapter inves-
tigates which architectural strategies should be applied to help with the fulfilment of
quality requirements.

• Chapter 17 - Selection of architectural viewpoints
In this brief chapter, a description of the selected viewpoints is given, along with the
rationale behind the decisions.

• Chapter 18 - Architectural views
The views presented in this chapter consists of architectural models that describe the
behaviour of the system, and each view corresponds to exactly one viewpoint of the pre-
vious chapter.

• Chapter 19 - Consistency among architectural views
Any known inconsistencies among the views described previously, are described in this
chapter, in addition to an analysis of the consistency across all of the architectural views.

68

14.7. Overview

• Chapter 20 - Architectural rationale
This chapter presents the architectural rationale, which explains the choice of architec-
tural concepts throughout the architectural description.

69

Chapter 15

Identification of stakeholders and
concerns

Architectural descriptions have signification influence on the final result of the system develop-
ment processes, and are thus of great importance to all the stakeholders in the project. This
chapter identifies these stakeholders, in addition to the main concerns of the architecture.

15.1 Stakeholders

The RT tool described by this architecture, is more of an off-the-shelf application than a custom-
made application, with no specified acquirers or customers. The tool is developed with a specific
use in mind; assisting software developers with the quantification and tracing of requirements.
Thus, the stakeholders of this architecture are identified within the group of people associated
with a general software development project, such as users, acquirers, and developers.

Users

The users of the system are divided into to major groups; technical and non-technical users.
Technical users often have an IT-related education, work with IT, and are experienced with
software development processes in general, and often requirements engineering in particular.
The non-technical users do not work with IT-related tasks, and are inexperienced with software
development and its processes.

The non-technical users often have a rather limited prospective on the potential benefits of
requirements traceability, seeing only the immediate effort required. The technical users have
an extended prospective, seeing more of the long-term benefits. However, these users can also
be overwhelmed by the immediate effort required. Thus, the primary concern of the users,
whether they are technical users or non-technical users, is the usability of the system. This
is a key quality attribute of the system, and the users pay particular attention to the ease
with which the repetitive tasks of requirements traceability can be executed. It is important
to avoid situations creating additional workload among the users, rendering the activities of
requirements traceability an undesirable hassle. As the primary objective of the system is to
alleviate the activities of requirements traceability, it is important to avoid such situations by
carefully considering the usability of the system.

Acquirers

The acquirers of the system are assumed to be those participants of software development
projects with the authority of introducing the use of an RT tool into the existing procedures

70

15.2. Concerns

and processes of the project. They have extensive experience with both technical and non-
technical aspects of software development, and are distinguished by a long-term prospective on
the benefits of requirements traceability.

Acquirers are primarily concerned with the effort needed for introducing the system, and the
benefits gained by its introduction. The effort required for introducing the system addresses
several quality attributes, among them installability, portability, and learnability.

Requirement Analysts

The requirement analysts communicate with the acquirers, attempting to uncover their re-
quirements to the product. The analyst have considerable skills in uncovering both latent
information and objectively extracting obvious information from the acquirerers, and are pri-
marily concerned with creating a requirements specification containing all requirements of the
acquirer.

Architects

The architects are presented with a full requirements specification, and given the task of cre-
ating an architecture that satisfies the requirements. They have an all-encompassing view of
the problem domain, and can consider both sides of conflicting requirements though trade-off
analyses. The requirement analyst and the architect roles could be held by the same person, as
each role require extensive knowledge of the tasks and results of the other.

Developers

The developers are responsible for the implementation of the architecture, and are thus keenly
interested in both the functional and non-functional requirements of the system, and how the
architecture addresses these requirements. In addition, the developers are concerned with how
the development of the system will be organised, e.g. in software increments, modules, etc.

Testers

The task of the testers is to ensure that the system fulfils its requirements as well as its architec-
ture, and their primary concern is the testability of the system. Testers are generally concerned
with every aspect of the system, depending on which level tests are executed.

Maintainers

Maintainers handle the system throughout its lifecycle, solving problems that arise as time goes
by. They are naturally interested in the software system attributes regarding maintainability,
as the effectiveness of their work is dependent on these attributes.

15.2 Concerns

The primary purpose of the system is to assist software development projects with the task of
requirements quantification and traceability, without impeding the other activities of software
development. Requirements traceability involve large amounts of information, connecting all
artifacts of the software development processes, such as documents, requirements, use cases,
designs, and system components. Maintaining requirements traceability by hand is a task too
demanding and cost-inefficient to tolerate, consequently introducing the need for an electronic

71

Chapter 15. Identification of stakeholders and concerns

system that at a low cost can trace from e.g. a requirement to a system component, includ-
ing all influencing artifacts along the way. The major concern of the system described in this
architectural description is to provide a dynamic and efficient approach to requirements trace-
ability, overcoming the significant workload represented by the task of gathering, maintaining,
and visualising trace information.

A significant risk when developing and employing the system, is the integration of the system
within the employing organisation, i.e. how well the system can be adapted to the projects it is
used within, and its unimposingness on the users of the system. This aspect must be considered
throughout both development, deployment, and operation of the system. Otherwise, the system
would risk being regarded as a hindrance rather than an aiding tool, which in turn would reduce
the tool’s support among its users. This would significantly reduce the benefits gained from
introducing an RT tool.

Privacy and security are also important concerns when defining an architecture. An RT tool
contains detailed information on both the development processes and the end product itself,
and security breaches rendering the information visible to malicious users could cause serious
damage to the organisation, and its competitiveness.

72

Chapter 16

Architectural strategies

This chapter takes a closer look at the non-functional requirements of the high-level require-
ments specification1, attempting to uncover architectural strategies [LB03] fulfilling these re-
quirements. An architectural strategy is a collection of chosen tactics, which in turn are design
decisions that influences the fulfilment of non-functional requirements. Several tactics combined
are referred to as a design pattern, representing a best practice solution to a common problem.
In addition to presenting suitable architectural strategies and discussing their functionality, this
chapter goes beyond architectural decisions and discusses some implementation-specific details
such as programming language. Choices made regarding implementation do not belong within
the architectural description, and will be properly addressed in Part V. However, as these
choices influence the fulfilment of the non-functional requirements, they have been included in
this chapter. The functional requirements are not considered, as they are not influenced by the
choice of strategy to the same degree as the non-functional requirements.

The non-functional requirements place constraints on the choice of strategy used in the de-
velopment of the outlined system by addressing e.g. the reliability, adaptability, platform
independency, and scalability of the system. This chapter investigates these constraints, with
the aim of uncovering the best assembly of strategies and technology. As a natural part of
the investigation, the rationale behind the chosen architectural strategies is to some extent in-
cluded in this chapter. However, the architectural description has devoted a separate chapter
to the presentation and discussion of the architectural rationale, and the rationale will here
be discussed in detail. The remainder of this architectural description outlines in full how
the strategies outlined in this chapter will be applied to provide a satisfying architecture of a
solution, fulfilling all the requirements of the full requirements specification.

Each of the following sections discusses how architectural strategies can be applied to help
satisfy the high-level requirements, i.e., how tactics, design patterns, and technology can be a
means to an end. The full high-level requirements are given in Appendix E, and only an ID
and key title are given here. Chapter 13 provides a tracking matrix (Figure 13.2) linking the
high-level requirements to the complete set of requirements specified in the full requirements
specification.

NFR1 - Persistent storage

This requirement states that all information gathered by the system, must be stored persistently,
which in turn improves the reliability of the system, as it reduces the probability of data loss.
This is usually accomplished by employing a database, most commonly a relational database
such as MySQL or Oracle. Thus, by building the system atop a database management system
(DBMS), persistence is assured. A DBMS handles all maintenance tasks such as backup, and

1The reader is referred to Chapter 13 for a tracking matrix linking the high-level requirements to
the requirements of the full requirements specification.

73

Chapter 16. Architectural strategies

provides an interface through which the system can retrieve and pass on data, functioning as a
database server.

A relational database’s viewpoint on data differs widely from the object-oriented program-
ming paradigm’s viewpoint [Kin04]. The object-oriented programming paradigm is currently
one of the most popular programming paradigms, and consequently problems arise when at-
tempting to map objects to a relational database. Many programming languages support the
object-oriented programming paradigm, among them Java. Hibernate is an object-to-relational
mapping (ORM) persistence framework for Java, which allows the programmer to ignore the
problems arising when mapping objects to a relational database [Hem06].

NFR2 - Adaptability

The RT tool will be employed in widely different settings, in projects of different sizes and
complexities. Adaptability is important to consider when designing how the system gather
traceability information, making sure that the user can mould the system into a tool that is
appropriate and useful in the user’s context. In other words, it is important that the front-end
functionality of the system, i.e., the functionality experienced by the user, can provide the user
with a sense of dynamism and adaptability. This is a challenging task, and will be addressed by
both the functional and non-functional requirements of the system, as it relies upon a responsive
system design, both in functionality and quality.

In addition, adaptability should be considered when designing the system itself. By creating a
component-based architecture, the system will be able to handle future needs and changes better
than if all functionality in the system was interwoven. Component-based architecture divides the
functionality into blocks with determined interfaces (referred to as components), thus enabling
quick replacement of functionality. The component-based architecture can be combined with a
layered approach, as depicted in Figure 16.1. This improves the compartmentalisation of the
system, by letting each layer contain several components. The only prerequisite for replacing
components is that interfaces must remain unchanged. Components can be added and removed
when desirable, thus creating an adaptable system.

Figure 16.1: Component-based architecture

The component-based architecture could be further extended with a Model-View-Controller
design pattern, an architectural choice that allows the application to separate between applica-
tion components that handles the application logic (the controller), the application data (the
model), and the presentation of the application data (the view). This design pattern is illus-
trated in Figure 16.2. Employing this pattern simplifies the process of replacing specific parts
of the application, e.g. all parts that are related to a specific view, primarily because of the
separation of functionality.

74

Figure 16.2: Model-View-Controller (MVC) design pattern

NFR3 - Platform independency

Platform independency ensures that the system is independent of its environment. It is impor-
tant that the RT tool can operate in any environment, as this will lower the threshold for using
the tool. The degree of platform independency will vary depending on the choice of technology.

By employing a virtual machine, such as in Sun’s Java technology [Tec], an application will
run in the runtime environment provided by the virtual machine rather than in the enveloping
operating system, thus removing itself from its external environment, resulting in platform
independency. This is depicted in Figure 16.3.

Figure 16.3: Virtual Machine

However, virtual machines provide a limited platform independency, as they require that the
user have physical access to the hardware on which it executes. Designing an application in
conformance to the client-server architectural style [BCK05a] allows the user to be physically
removed from the application, contacting it via some sort of communication technology, most
commonly a network. Communication technology falls outside the scope of this discussion, and
it is merely assumed to exist, providing the necessary services.

The client-server architectural style requires that the application resides either completely or
partially within a server, offering a set of defined services to clients (i.e., the users of its services).
The application might in turn require other services, such as a DBMS. The DBMS often resides
in a separate server (a database server), and the application server connects to this server, and
is offered the required services. Other potential resources required by the application, such as
web services [W3C04], offer their services, and the application is only required to connect and
request their services, possibly required to authenticate itself, depending on the nature of the
requested service.

The client-server architectural style (shown in Figure 16.4) have been further divided into thin
and thick clients. Thin clients have little functionality, relying heavily on the server, whilst thick
clients implement more functionality, removing themselves from the server. When discussing
platform independency, a thin client is often preferable to a thick client, as a thin client will be
less dependent upon its environment, more or less ignoring attributes such as client computing
power. Web applications are examples of thin clients, where the server performs most tasks,
and the client (often a web browser) is only required to forward user input to the server, and
display the result handed over from the server. In addition, a web application can be configured
to handle requests from a wide variety of clients, such as web browsers, mobile phones, and

75

Chapter 16. Architectural strategies

PDAs, thus providing the user with an application that can function independently of the user’s
context, a high level of platform independency.

Figure 16.4: Three-tier Client-Server design pattern

Many technologies exists that support the client-server design pattern. However, Sun’s Java EE
[EE] technology combines the virtual machine with the client-server architectural style, thus
providing a large degree of platform independency. By using this technology, applications can
be created without particular requirements to local computing resources, thus removing most
client-side dependencies. In addition, Hibernate supports Java EE, which simplifies the object-
relational mapping between the domain model of teh application and the relational model of
the database.

NFR4 - Scalability

When creating a client-server application, it is important to ensure scalability. The server must
handle fluctuations in the number of clients requesting its services, and it must also handle
fluctuations in the workload requested by each client. Scalability is a quality requirement that
is easily quantifiable, and by putting down measurable requirements to the scalability of the
system, the system can be tested to ensure that it handles the required down- or upscales in
load. Scalability is tightly connected with performance, and the system must be able to down-
or upscale without degrading the performance.

Key attributes are the number of client connections and sessions a server shall handle, how
many database connections are allowed, and the maximum allowed response time of the server
(which in turn places constraints on the number of simultaneous connections, etc). In addition,
scalability must be considered when designing the system; a web application that produces
more server requests than necessary will upscale poorly when compared to an application that
produces a minimal amount of requests.

NFR5 - Unintrusiveness

Unintrusiveness is a quality that is removed from the choice of technology. Whether choosing
to develop the application with one programming language instead of another, or applying a
client-server design patter, the quality of unintrusiveness will remain largely unaffected. Unin-
trusiveness is achieved by the system’s ability to seamlessly integrate with the user’s daily tasks
and work environment, and is thus achieved by system functionality and operation, and hard-
ware interfaces rather than the technology implementing the system. Thus, the fulfilment of
this non-functional requirement is not dependent upon the choice of implementation technology
used in developing the system, but rather depends on the design choices made when designing
for usability, flexibility and other software system attributes.

NFR6 - Usability

Usability refers to the ease with which the system and user communicate [Sch98], and is tightly
interconnected with the unintrusiveness of the system. When designing a system with usability
in mind, the system can be viewed from two different angles, the design of the graphical user

76

interface (GUI), and the design of the processes the user performs when using the system. How-
ever, these prospects are tightly interconnected, as a high-quality GUI can improve the usability
of the user-system communication processes amongst others by improving the learnability of
the system.

When designing a system with usability in mind, it is important not only to make the graphical
user interface intuitive and easy to grasp, it is also important to ensure that tasks are not
complicated unnecessary. Unnecessarily complicated tasks implies that the user uses more
keystrokes than necessary performing the task, the work becomes tedious, and thus the usability
is rendered poor.

When implementing a system of high usability, certain guidelines exist (see Appendix D),
based upon best practices and experiences of the industry. Simplicity and consistency are
two important features that should be considered during the design process. Other guidelines
regards features such as learnability and memorability. Following these guidelines are important
to achieve a high usability.

77

Chapter 17

Selection of architectural
viewpoints

Architecture is described by different views, where each view conforms to a viewpoint. A view-
point determines how a view is created, illustrated, and analysed by establishing conventions
concerning the languages employed for conveying a view. The viewpoints employed in this
architectural description reflects the stakeholders identified in Chapter 15, and adheres to the
“4+1” view model of software architecture created by P. Kruchten [Kru95]. This model is de-
picted in Figure 17.1. This model starts with a logical viewpoint, representing the functionality
of the system. These functional components are mapped onto run-time processes in the process
viewpoint, and onto development modules in the development viewpoint. The processes and
modules of these views are in turn mapped onto physical hardware in the physical viewpoint.
The scenarios are instances of use cases, illustrating how the elements of the four views work
together. The scenarios provide no new information to the architectural description, they only
function as a validation and illustration tool after the completion of the architecture design.
However, this architectural description will limit itself to the use of the four other views, and
does not encompass redundant scenarios. The combination of the use cases defined in Part
III, and the prototype development of Part V replaces the scenarios as descriptors of system
functionality.

Figure 17.1: ”4+1” view model of software architecture

17.1 Logical viewpoint

The logical viewpoint describes the functional requirements of the system, and applies an object-
oriented decomposition of the system, describing the functionality of the system.

The Unified Modelling Language (UML) provides a notation for views conforming to the logical
viewpoint. For more information on this and other notations of UML, the reader is referred

78

17.2. Process viewpoint

to [Fow03]. The class diagrams of UML describe the objects of the system, thus providing the
object-oriented decomposition, and the static relationships between these objects. Figure 17.2
summarises the most important concepts of class diagrams.

Figure 17.2: UML concepts - class diagram

The component diagrams of UML describe the modules of the system, their interrelationships
through interfaces, and their decomposition. Figure 17.3 summarises the concepts of component
diagrams.

Figure 17.3: UML concepts - component diagram

The logical viewpoint is directed towards the users, developers, maintainers, and testers of the
system, as it presents the system in a prospective that is useful for these stakeholders. Further,
the viewpoint addresses the concerns regarding the system’s ability to ensure requirements
traceability by addressing the functional requirements of the system, which is the primary
rationale for applying the logical viewpoint.

17.2 Process viewpoint

The process viewpoint addresses the behavioural aspects of the system, mapping the functional
components of the logical viewpoint onto run-time processes. When describing the run-time
processes of the system, the process viewpoint also takes into account some of the non-functional
requirements of the system, such as performance and availability.

79

Chapter 17. Selection of architectural viewpoints

The UML concept of Sequence diagrams is used for modelling the process viewpoint. Sequence
diagrams models the main processes of the system, where the actions of the system (small
independent operations containing key functionality) are included. The actions are described
by means of use cases, explained in Section 12.3.1. Figure 17.4 summarises the concepts of
sequence diagrams.

Figure 17.4: UML concepts - sequence diagram

The process viewpoint is found most interesting by the developers, testers, and maintainers, and
addresses the concerns of organisation integration, e.g. by allowing the stakeholders to review
how much interaction the system requires, which in turn affects the usability of the system. In
addition, the performance and availability of the system can be understood through analysing
the models of the process viewpoints, thus rendering the viewpoint interesting to maintainers.
Thus, the process viewpoint is included in the architectural description amongst others due to
its abilities to focus on the non-functional requirements of the system.

17.3 Development viewpoint

The development viewpoint maps functional components onto development modules, thus de-
scribing the actual organisation of the software modules within the system. The development
viewpoint is partially regarded as an external viewpoint, assisting activities that are external
to system functionality and processes, such as work assignment, team organisation, project
progress, and cost evaluation.

The development viewpoint uses a simple layered notation for presenting the layers of the
system. System components represented with the UML notation for component diagrams (see
Figure 17.3) are divided into layers with the use of boxes, and dependencies between layers
indicated by arrows.

The other notation of the development viewpoint is taken from UML, where the class diagrams
describe the system components established in the logical viewpoint in a more detailed manner,
decomposing them into packages and classes. This notation is also employed by the logical
viewpoint, and Figure 17.2 summarises the concepts of class diagrams.

The development viewpoint is primarily aimed at the needs of the acquirers, developers, testers,
and maintainers of software, as it focuses on how the outlined system is to be developed.

17.4 Physical viewpoint

The processes and modules of the process and development viewpoints must be mapped onto
physical hardware. This mapping is described in the physical viewpoint with the means of de-
ployment diagrams, describing which modules are deployed where. Thus, the physical viewpoint

80

17.4. Physical viewpoint

pays attention to the performance requirements of the system, enabling the representation of
deployment of multiple resources. Figure 17.5 summarises the concepts of deployment diagrams.

Figure 17.5: UML concepts - deployment diagram

The physical viewpoint is primarily of interest to the testers and maintainers of the system,
as these are the stakeholders in charge of testing that the system fulfils its performance re-
quirements, and ensuring that the system continues to fulfil the performance requirements
throughout its lifecycle.

81

Chapter 18

Architectural views

This chapter presents the views of this architectural description, describing the system from
several angles. The architectural views conform to the four viewpoints defined in Chapter 17.
For each viewpoint, a set of views can be defined, but each view can only conform to a single
viewpoint. The models presented in the views must conform to the defined notations of the
belonging viewpoint, following the UML standard [Fow03].

The architectural decisions made in this chapter originate from the discussions in Chapter 16,
and are explained further in Chapter 20, stating the architectural rationale. A separation of
the presentation of the architectural choices and the reasoning behind these choices, i.e. the
rationale, is in accordance with the IEEE Std. 1471-2000, and allows the reader fast access to
any required information.

18.1 Logical view

The logical view presents the services the system must be able to provide to the user, and is
strongly interrelated with the functional requirements of the system. Chapter 16 discusses a
range of architectural strategies and styles that assist in fulfilling the non-functional require-
ments of an RT tool. It was concluded that a component-based architecture combined with a
client-server design pattern will provide a maintainable, platform-independent, and adaptable
architecture. This section presents the logical structures of the system, conforming to the chosen
architectural styles. Before these structures can be presented, an important concept referred
to as the domain model must be explored further, as this concept serves as the foundation for
all other logical structures of the RT tool. Section 18.1.1 presents this concept, before focus is
returned to the high-level logical structures of the tool in the sections that follows.

18.1.1 The domain model

The functional requirements of the requirements specification in Part III describe what users
require of the system, outlining the problem domain in which the system will exist. A prob-
lem domain analysis examines the problem domain in detail, and creates a domain model,
representing the problem to be solved without regard to any potential solution. This domain
model will then serve as a problem description on which a number of different solutions can
be founded. The traceability model referred to as TRACY (first introduced in the in-depth
study, then remodelled in Part II) serves as a first approach to a domain model, and is shown
in Figures 6.1 through 6.3. However, the traceability submodels of TRACY are inadequate
for architectural purposes, as they do not comply with the object-oriented paradigm. Figure
18.1 presents the object model of the problem domain, where each artifact of the traceability
submodels is represented as an object. Each object belongs to a specific traceability stage, as
determined by the traceability submodels, and the boundaries of the submodels are indicated
by packages.

82

18.1. Logical view

Figure 18.1: Domain model

83

Chapter 18. Architectural views

Critical to the ability to provide full traceability (i.e. the ability to trace between artifacts
of all traceability stages) are the connections between the traceability stages, which does not
exist between the traceability stages themselves, but rather between key artifacts of the stages.
These key artifacts were pointed out in the traceability submodels, referred to as key connect-
ing artifacts. In TRACY there are two key connecting artifacts, i.e. ProseRequirement and
FormalRequirement. These remain key connecting artifacts, but in addition we need two new
artifacts, SystemComponent and VerificationProcedure, as the term key connecting artifact is
broadened to include both parties of the relationship tying together two traceability stages.

Each of the objects in the domain model of Figure 18.1 are shown only with their name and
their associations to other objects, as this provide a simplified, yet substantial overview of the
logical architecture of the model. However, more details could provide useful when we need an
understanding of the high-level architecture. This issue is further addressed in the development
view of Section 18.3.

18.1.2 Component-based architecture

The domain model presented in the previous section represents a description of the problem. A
solution must use this model, providing constructs that encapsulate it and assist with solving
its problem. A component-based architecture combined with a layered approach, as described
in Chapter 16, allows the domain model to be encapsulated at a separate layer, referred to as
the business layer. In addition, applying the MVC design pattern (also described in Chapter
16) enhances the compartmentalisation of the system. The rationale behind a component-based
architecture encapsulating the model is discussed further in Chapter 20. Figure 18.2 shows a
high-level representation of the logical structure of the system as a class diagram, conforming
to the MVC design pattern.

Figure 18.2: High-level logical structure

As a result of using the MVC design pattern, the system is divided into three main components:
the controller, the model, and the view, working together on performing the system tasks. The
controller represents the authority within the system, and the main functionality of the system
is implemented with the means of actions, existing within the controller.

An action represents a single task within the system, causing an update of the domain model,
and will often have an equivalent among the functional requirements or the use cases, as it
represents a basic functionality of the system. The actions are supported by a framework

84

18.1. Logical view

consisting of a FrontController and Dispatcher, which control which actions are performed and
selects the views presenting the results of the chosen action.

As illustrated in Figure 18.2, the controller depends on both of the two other main components
of the system, whereas the view depends on only the model, and the model depends on neither
of the other two components. This ensures encapsulation of the model, an important aspect of
reuse and evolution of code.

Figure 18.3 shows a detailed representation of the logical structure of the system as a component
diagram, where the three main components of the system are decomposed.

Figure 18.3: Logical structure

Figure 18.3 shows how the MVC pattern is implemented, encapsulating system behaviour in
the Controller component, the domain model in the Model component and the presentation of
data (the views) in the View component. Each of these main components are decomposed into
several smaller components, and are discussed below.

The Model Component

The responsibility of the Model Component is to create a representation of the domain model,
shielding it from the remainder of the system. The model must provide persistence mechanisms,
and interfaces towards the other components of the system.

The Model component are decomposed into three smaller components. Their importance are
equivalent, but their purpose vary. The Domain Model subcomponent represent the domain
model, sorting the objects into subcomponents according to their traceability stage. The Do-
main Model subcomponent exists independently of the other components in the Model com-

85

Chapter 18. Architectural views

ponent, and are not aware of any of them. Thus, the Domain Model subcomponent does not
rely on any other components to provide its functionality, and the other subcomponents of the
Model component make use of its interfaces.

The Model Persistence subcomponent’s sole responsibility is to assure persistent storage of
the Domain Model subcomponent’s data. With the means of HibernateUtility, the Model
Persistence subcomponent provides an interface used by the Controller component for persisting
the domain model to the database, and removes all references to a database from the domain
object model, providing encapsulation of the model. This is accomplished with the means of
Data Access Objects (DAOs), a common design pattern [CK03]. A DAO contains all necessary
data access code for a specific object of the domain model, and defines an interface to persistence
operations relating to a specific object of the domain model.

The Tool Model subcomponent models the RT tool itself, rather than the problem domain, and
the full tool model can be seen in Figure 18.4.

Figure 18.4: Project model

A Project object represents a software development project, and the user can attach any object
(i.e., artifact) of the domain model to a project. Thus, each project contains a collection of
objects from the domain model. In order to control these objects, a project contains three
traceability stage containers, which represent each of the three traceability stages. A project’s
artifacts are sorted into the appropriate traceability stage container. The Property object is a
helper class that helps the traceability stage containers describe the properties of their contained
artifacts. The RT tool can contain several projects, each of which encompasses an independent
set of objects from the domain model, separated into traceability stage containers. Several users
can be attached to a single project, and the RT tool keeps track of its users and projects by
maintaining a user list and project list.

The View Component

The main responsibility of the View component is to present the data chosen by the Controller
component and held by the Model component. The View component is decomposed into three
subcomponents: the Trace Views, the Artifact Views, and the Visualisation Views. This de-
composition supports the functional decomposition of the Controller component. Each of these
View subcomponents contains two types of views: views presenting functionality the system
provides (represented by the actions of the Controller component), and views presenting the
data of each artifact and trace. Thus, the Controller component determines which views must
exist in order to provide the functionality implemented by the actions, whilst the Model com-
ponent determines which views must exist in order to present the data of the objects of the
domain object model.

86

18.2. Process view

The Controller Component

The Controller component’s main responsibility is to control the behaviour of the system, with
the aid of the Model and View components. The Controller component uses the other two main
components of the system to provide the functionality demanded by the functional requirements,
and represents the authority within the system.

The Controller component is decomposed into six subcomponents. Two of these, the Main Con-
troller and the Dispatcher component, focus on controlling the behaviour of the system, whilst
the remaining four, the Trace Management, Artifact Management, Visualisation Management,
and Project Management components, implement actions that provide the functionality pre-
scribed by the requirements specification.

The Main Controller intercepts all requests directed to the system, performs any common tasks
that apply to all requests, and then forwards the request to the Dispatcher. The Dispatcher
then examines the request and selects the appropriate action, contained within one of the three
components implementing actions (Trace Management, Artifact Management and Visualisation
Management). The action performs the required manipulations and updates of the domain
model, after which the Dispatcher selects the appropriate view for displaying the data. Thus, the
actions are not responsible for view selection, as all navigation is encapsulated in the Dispatcher.
Functionality that does not require updates of the domain model, only access to existing data,
do not require an action. Instead, a view will suffice, presenting the required data. This process
is described further in Section 18.2. The Main Controller uses the Tool Model subcomponent
(in the Model component) as a source of information assisting with maintaining control over
the administrative aspect of the RT tool, such as existing projects and users, which users are
attached to which projects, and the collection of artifacts within each project.

The actions implemented within the Controller component uses the Model Persistence sub-
component of the Model component. This gives them access to the persisted data held by
the Domain Model component, an important part of the functionality provided by the system.
Actions perform the necessary operations and updates on the data, depending on the request
initiating the action. The updated data is then persisted to a database, and displayed to the
user with the means of the View component. This process is further described in Section 18.2.

18.2 Process view

The process view describes the behavioural aspects of the system. The main abstractions of
the logical view are mapped onto process elements, describing how each component’s opera-
tion is executed. The presentation of the process view begins with a discussion of the chosen
architectural style, three-tier client-server, before focusing on the models describing the view.

18.2.1 Three-tier client-server

Employing the architectural style referred to as three-tier client-server implies designing the
RT tool as a web application with a separation between a client tier, a presentation tier, and
a business tier. This assists with ensuring platform independency on the client side, as several
types of clients can be supported. The three-tier Client-Server design pattern is highly com-
patible with the component-based architectural approach, as it exhibits a natural division into
layers (i.e., tiers). As the mapping of system components to processing nodes (e.g. application
and database servers) is further discussed in the physical view of Section 18.4, this section will
limit itself to elaborating the flow of control within the system, i.e. the internal processes.

Figure 18.5 depicts the high-level process blueprint of the system when receiving a request from
a user, and is an implementation of the Service to Worker design pattern. The process conforms
to the use of the Model-View-Controller design pattern as prescribed by the logical view. The
process resides in an execution environment (i.e., an application server), providing a means of
sharing variables between e.g. requests or sessions, referred to as scope variables.

87

Chapter 18. Architectural views

Figure 18.5: High-level process architecture

The execution environment receives all client requests, and passes them through an authorisa-
tion filter. If the user is not authorised, the filter initiates an authorisation, and when this has
been completed, the FrontController checks to see whether a Dispatcher instance exists as a
scope variable. If so, the FrontController uses the existing Dispatcher instance, which may have
a different internal state than a newly created instance. If no Dispatcher instance exists as a
scope variable, the FrontController creates a new instance of the appropriate dispatcher, based
on the nature of the request. When a dispatcher has been found, the FrontController allows it
to continue the processing of the request.

The Dispatcher, which is a state machine, consults its inner state, performs the action that
belongs to its current state, and informs the FrontController of which view should be presented.
The FrontController then forwards control to the selected view, which presents the requested
data to the user.

The actions are an important part of this blueprint, as this is where the main functionality of the
system resides. Depending on the request, different actions will be invoked by the Dispatcher.
Use cases G.1 through G.15, found in Appendix G, describes the actions of the system.

18.3 Development view

The development architecture focuses on the organisation of the software components. Starting
with the components specified in Section 18.1, the development view reveals further detail and
establishes smaller units that can be developed by one developer or a small team. However,
before reviewing these units, we present the organisation of the software components of the
logical view into layers. Figure 18.6 presents the software components of the system in a
layered style. A component in a certain layer can only depend on components in the same or
lower layers.

As shown in Figure 18.6, the models of the bottom layer are independent of all other components,
due to their problem-describing nature, as explained in Section 18.1.1. The models only describe
the problem, they do not offer any solution. The solution construct is provided by the other
layers of the system, which encapsulates the models and provide the mechanisms that constitute
an RT tool. Thus, all other layers are directly or indirectly dependent on the Model layer.

The View component accesses the Model Persistence component to fetch trace information to
display to the user. If executed by the Dispatcher, an Action will also connect to the Model
Persistence component, performing updates and/or manipulations of the data. At the topmost
layer, the Behavioural layer, the FrontController and the Dispatcher, which determines the
behaviour of the system, resides, and are dependent on all the other layers in order to perform
their tasks.

88

18.3. Development view

Figure 18.6: The layers of the RT tool

Figure 18.6 suggests the order in which the components can be developed, as it is advisable
that development start with the component at the bottom layer, i.e. the components with no
outwards dependencies. The components, however, only provide a high-level overview of the
system, identifying only the major elements of the software. Figure 18.7 provide some additional
detail to these major elements, explaining how the components function and interact.

The chosen main architectural style applied to the system models a three-tier client-server appli-
cation. Chapter 16 discusses how Java EE, a programming platform specialising in developing
and running distributed Java applications, should be employed to create a platform-independent
application. In this view, we briefly describe some Java EE-specific details concerning the de-
velopment of a web application, but as the application of a programming language falls outside
the scope of the architectural description, most details are referred to Part V, describing the
development of a RT tool prototype. However, the details regarding deployment of the web
application are discussed in the physical view of Section 18.4.

The Java EE technology employs regular java classes for implementing system functionality,
but in addition introduces the concept of servlets and Java Server Pages (JSP files). Servlets
are created by extending the HttpServlet class provided by the Java EE programming platform.
As shown in Figure 18.7, the FrontController is a servlet, as it extends the HttpServlet class.
This allows the FrontController to process requests from clients, determining the proper action
required to return a response. As explained in the process view of Section 18.2, the FrontCon-
troller lets the Dispatcher decide the required operation, actions are performed if necessary, and
a view is chosen, providing a response that is returned to the client.

The model package of Figure 18.7 (the development view equivalent of the Model component of
Figure 18.3) is based on the Java standard edition programming language, and is encapsulated
by the other Java EE-compliant components. Thus, the model package has no knowledge of
the Java EE programming platform, allowing it to be reused by other applications. The only
dependency of the model package is created by the model persistence package, which implements
the Hibernate framework for persistent storage of the objects of the domain model. Hibernate
acts as an interface to a number of database management systems, abstracting their operations
and consequently allowing the application to disregard any vendor-specific details concerning
the use of a database. The views are implemented as JSP files, allowing both dynamic and
static content. The dynamic content is fetched from the domain model, represented in Figure
18.7 by the domainModel package.

89

Chapter 18. Architectural views

Figure 18.7: Detailed components

90

18.4. Physical view

The package structure of Figure 18.7 correspond to the components determined in the logical
view of Section 18.1. When a package has been considered too complex to develop without
additional information, it has been decomposed, revealing its internal structure. The depen-
dencies and associations between the objects of the domain model are only depicted in Figure
18.1, allowing the presentations of the detailed specification of the domain model to focus on
the internal structures of each object. Consequently, the implementation of the domain model
will not be further addressed here, but referred to Part V.

18.4 Physical view

The physical view presents how the software is mapped onto the hardware providing its execu-
tion environment, primarily focusing on the non-functional requirements of the system. Figure
18.8 shows how the web application is deployed on a Java EE-compliant application server,
where a web container provides an execution environment.

Figure 18.8: Deployment of the RT tool

The web application is packaged into a JAR (a Java library) file with a .war (Web ARchive)
extension, depicted in the figure as RT_tool.war, and is referred to as a web module. A web
module contains compiled servlets, JSP files, supporting class files, and any required static
resources, such as GIF images or HTML files. Figure 18.8 shows the most important parts
of the contents of the web module package, consisting of the three main components of the
web application, the model, the view, and the controller. In addition, four other artifacts are
displayed, two deployment descriptors, XML files defining the workflow of the application, and
a ResourceManagerListener responsible for initialising the web application when first deployed.

The deployment descriptors are XML files that describe the deployment settings of the web
module, and two types exist. The Java EE deployment descriptor (shown in Figure 18.8 as
web.xml) is used to configure deployment settings on any Java EE-compliant implementation.
The runtime deployment descriptor (shown in Figure 18.8 as sun-web.xml) is used to configure
Java EE implementation-specific parameters. Together, the two deployment descriptors ensures
that the web application is configured and functions properly.

The XML files defining the workflow of the system is read by the Dispatcher within the Con-
troller component at runtime, allowing the system’s behaviour to be altered without changing
any source code or recompiling it, ascertaining application adaptability.

91

Chapter 18. Architectural views

The ResourceManagerListener is only called by the application when first deployed, and is
responsible for initialising the resources required by the application, primarily the HibernateU-
tility of the Model component, ensuring model persistence.

The web application connects to a database server, employing its services when persisting the
model, and the HibernateUtility of the Model Component provides the required interface for
communicating with the database server.

92

Chapter 19

Consistency among architectural
views

Chapter 18 presented four views, in accordance with Kruchten’s 4+1 view model of software
architecture [Kru95]. This chapter focuses on describing the consistency among the views. As
shown by the arrows in Figure 17.1, the process view and the development view are based on the
logical view, whilst the physical view is in turn based on the process view and the development
view. A similar approach is taken in this chapter, discussing the consistencies among the views
in the same order as they were defined. Thus, the chapter commences with a description of the
consistencies among the logical view and the process view, continuing with the consistencies
among the logical view and development view, concluding with the consistencies among the
process and development view and the physical view.

Logical view to process view

The logical view presents the main functional components of the system, amounting to three
components, the model, the view, and the controller. These main components were decomposed,
revealing their functionality. The process view discusses how the system behaves to provide
this functinality, using the same (decomposed) components as the logical view. This ensures
consistency among the views. In addition, the process view extends the presentation of the
actions in the system, as each action is presented as a separate workflow.

Logical view to development view

The development view layers the components presented in the logical view, pointing out the
dependencies between the components. The same components are employed, only viewed from
a different viewpoint emphasising the dependencies between the components rather than their
functionality. Further, the development view presents a detailed decomposition of the logical
structure presented in the logical view, establishing units of software ready for development.

Process and development view to physical view

The physical view explains how the web application is deployed to an application server, and
specifies some deployment-specific artifacts not previously described by any of the other views,
i.e., the workflow XML files, the ResourceManagerListener, and the deployment descriptors.
These artifacts, with the exception of the workflow XML files, are only useful to consider in
the physical view, as they only influence the deployment of the application. The workflow

93

Chapter 19. Consistency among architectural views

XML files, however, describe the actions of the system, and are based on the action workflows
presented in the process view. In addition, the view shows how the three main components of
the application, the model, the view, and the controller component, are mapped onto a web
container providing an execution environment, allowing them to provide their services to the
client, accessing them through a browser.

Overall consistency

The consistency among the four view is overall good, and the views generally discuss the same
components, but from a different viewpoint. Decomposition of components occur, to provide a
more detailed view, but these decompositions do not affect the consistency among the views.
The only exception is the specification of deployment-specific artifacts in the physical view,
which are not discussed in any other view. The process view could have included the artifacts,
but as they focus on factors outside the internal processes of the application (the focus area of
the process view), such as mapping of requests, they were not.

94

Chapter 20

Architectural rationale

Chapter 16 discusses the choice of architectural strategies for the RT tool, strategies that assist
in fulfilling the non-functional requirements of the system. The rationale behind the chosen
strategies is partly discussed absently, and this chapter completes the discussion by presenting
the full architectural rationale.

The strategies suggested in Chapter 16 can be divided into two categories. One category
contains all high-level strategies, i.e., strategies that places constraints on high-level design
decisions. The discussions emphasised that building a component-based architecture ensures
adaptability, and by extending it with the use of the Model-View-Controller (MVC) design
pattern, a robust and extensible architecture is created. Further, using a client-server design
pattern and building the system as a web application rather than a local desktop applica-
tion improves the platform independency. A database management system ensures persistent
storage of data. The low-level strategies are of a more technical nature than the high-level
strategies, focusing on distinct technologies, such as programming languages and frameworks,
thus removing itself from the unbiased approach of an architectural description. Other than
the short introductions given in this part, these low-level solutions will not be discussed further
until Part V, where they will be revisited.

The discussions emphasised that employing the Java programming language improves the plat-
form independency of the system, as this is a programming language that relies on a virtual
machine, enabling cross-platform deployment. In addition, the Java alternative is attractive due
to previous development experience. Using Java as the programming language of choice enables
the use of the Hibernate framework, simplifying the task of storing object-oriented information
in a relational database, e.g. by allowing automatic database schema generation from a domain
model, thus eliminating the need to design both a domain model and a corresponding database
schema. In addition, the Hibernate framework provides an abstraction of the database, allowing
the system to ignore the nature of the database operations. Further, as the Java EE technology
is especially designed to develop web applications, its use coincides with the client-server design
pattern, a chosen high-level solution.

The MVC design pattern, which creates a clean cut between system data, presentation of data,
and system behaviour, has been extended with the Service to Worker pattern, a pattern that
specifies in detail how the system should handle a large and complex implementation of the
MVC pattern, ensuring a clean separation of concerns among the components of the system.
A division of labour is particularly useful in a web application, where the FrontController can
screen all user request and perform common functionality such as authorisation and navigation,
whilst the distinguished Dispatchers focus on manipulating the required model and views. This
will in turn increase the adaptability of the system, as replacing components becomes a less
complex task. In addition, taking care when designing the actions of the Controller component
can enhance the scalability of the system by reducing the amount of generated requests, and
decrease the intrusiveness of the system by requiring the minimum amount of user interaction,
which in turn enhances the usability of the system.

95

Part V

Prototype development

97

Chapter 21

Introduction

SO far, a requirements specification (see Part III) and an architectural description (see Part
IV) has been presented, describing an RT tool. This chapter presents a prototype of the RT
tool, referred to as TraceMe.

21.1 Purpose

The purpose of this chapter is to describe how an RT tool could be implemented, based on the
given requirements specification and architectural description. An evolutionary prototype has
been developed, and is described and evaluated in this part.

21.2 Scope

The developed prototype focuses on exemplifying how an RT tool could provide full requirements
traceability. Consequently, the prototype concentrates on how trace information is gathered
from and conveyed to the user. The following chapters reflect this, and describes how the
system presents its information rather than underlying technical solutions. However, a short
summary of the technical aspects of the prototype is also given. In addition, it falls within the
scope of this part to describe the work remaining to turn the prototype into a usable application.

21.3 Overview

An overview of the structure and a quick summary of all chapters in this part is given below.

• Chapter 22 - Implementation
This chapter provides a short description of the underlying technical solutions of the
prototype, clarifying the design of the prototype.

• Chapter 23 - Using the prototype
In this chapter, the functionality of the prototype is described. Particular attention is
paid to how the system is used, i.e., system workflow and the interaction between the
system and its users.

• Chapter 24 - Prototype evaluation
This chapter evaluates the prototype, paying particular attention to the fulfilment of the
functional requirements.

99

Chapter 21. Introduction

• Chapter 25 - Prototype evolution
The prototype does not represent a usable application, and this chapter focuses on the
remaining work that must be done before the prototype is rendered usable in real life,
thus developing it from a prototype into a full-scale RT tool.

• Chapter 26 - Summary
A summary of the results presented in this part.

100

Chapter 22

Implementation details

This chapter discusses the implementation of an RT tool based on the decisions made in Parts
III and IV, and starts with a discussion on the technology used for implementing the RT tool.
Further, the chapter discusses the implementation of the prototype, pointing out how it differs
from a complete RT tool implementation.

22.1 Technical details

The implementation of the RT tool outlined in Parts III and IV requires the use of technical
solutions previously discussed in Chapter 16. In other words, the RT tool is dependent on its
employed technology. This is primarily a software dependency, and not a hardware dependency,
as the application places no extraordinary requirements on the choice of hardware technology,
the requirements specification even emphasises that the system is to be implemented in a
hardware-independent fashion (see Section 12.1).

The discussion on architectural strategies concluded with the use of Java EE [EE] as its primary
technology, with assistance of the Hibernate framework [Kin04] for object-relational mapping
(ORM) purposes. In order to develop and deploy web applications, Java EE requires a container,
also referred to as an application server. Java EE is freely distributed by Sun Microsystems,
and this distribution includes the application server Sun Java System Application Server. Open
source solutions providing analogous container capabilities exist, but due to simpler installation,
the bundled server is employed in the implementation of the RT tool. Thus, the RT tool is
dependent on the continued support and updates from Sun Microsystems for the Application
Server. If problems occur, the RT tool could migrate to any of the open source solutions
supporting Java EE, such as Apache Tomcat [Tom].

The RT tool also assumes the availability of a relational database, for persistent storage of
traceability data. In addition to the Application Server, a relational database named Derby is
distributed with the installation of Java EE, and is used by the RT tool due to the ease with
which it is combined with the Application Server. Other relational databases exist, one popular
option being MySQL [MyS], and thus the RT tool could migrate to this or another solution if
support for Derby discontinues.

Java EE and any related technologies, e.g. application servers and Hibernate, are popular
technologies at the present. However, in the future new technologies will probably be introduced,
maybe leaving present technologies obsolete. Still, this is not a factor that can be reckoned with,
as it is far too difficult to predict, and even so, hard to counteract.

101

Chapter 22. Implementation details

22.2 Prototype development

The technique employed for developing the prototype is referred to as evolutionary prototyping
[Vli00b]. Starting with the requirements, a basic prototype is created, which acts as a first
version of the RT tool. The main purpose of evolutionary prototyping is to create a prototype
that can evolve to the final product. Rather than spending time and effort focusing on the
technical details of the implementation of the tool, attention should be directed at the tasks of
gathering and presentation of trace information. Consequently, the first version of the RT tool
focuses on the information it contains rather than technical details concerning e.g. persistence,
concurrency, or performance. The user starts working with the first version, which in most
cases spurs changes to the requirements. The next version can then be developed, and after a
number of such iterations, the final RT tool can be delivered. The prototype developed in this
thesis represents a first version of the RT tool, as it focuses on illustrating how the functional
requirements can be fulfilled, rather than making large investments of effort realizing the system.
Technical details of a web application are not of interest, and a prototype helps focusing on those
aspects that are important: delivering functionality that provides full requirements traceability
in a user-friendly and cost-effective manner providing its users added value. As a result of the
focus area of the prototype, it contains what could be referred to as alpha functionality, i.e.,
functionality that has not yet been implemented, but provides the user with an understanding
of how it is intended to work. This underlines the evolutionary nature of the prototype.

Even though the prototype primarily focuses on illustrating the functionality of the system, it
is important when developing an evolutionary prototype to give attention to software system
attributes regarding adaptability and changeability. As an evolutionary prototype, the proto-
type is intended to be altered, perhaps frequently, and the ease with which it can be altered is
vital for the success of the prototyping process. Consequently, attention is given those archi-
tectural strategies of Part IV that focus on the adaptability of the implementation of the tool.
The prototype is developed with a component-based architecture, ensuring simple expansion of
functionality. The Model-View-Controller design pattern is employed in a simplified manner,
making sure that the simplifications does not prohibit transition to the complete design pattern.
In addition, the prototype is shaped in conformance to the client-server architectural style. As
extensive knowledge of the implementation details are not required to discuss and evaluate the
prototype, the implementation details of the prototype are referred to Appendix H.1.

The prototype has been developed as a web application (using Java EE) accessible through a
web browser, and is deployed to a Sun Java System Application Server for testing purposes.
The configured application server is generally not accessible, and if requiring explicit access to
the prototype, e.g. for testing, the user is referred to Appendix H.2 for information on how to
install an application server and deploy the prototype.

The development gives particular attention to the workflows of the system, attempting to
achieve the best possible interaction between system and user. The eight golden rules of human
interface design, found in Appendix D, have been used as guidelines throughout the develop-
ment process. Chapter 23 presents screenshots of the prototype, showing the human-computer
interfaces, and discusses how the golden rules of interface design have been applied.

As discussed earlier, spending effort on designing system workflows and human-computer in-
terfaces implies spending less effort on the underlying technical aspects of the implementation.
In keeping with this, the prototype has been stripped of functionality regarding persistence of
data and concurrency management. The domain model presented in Figure 18.1 of Section
18.1.1 form the foundation of the RT tool, and has been implemented as a separate component
in the Prototype, in conformance with the Model-View-Controller design pattern (acting as
the Model component of the pattern). In order to reduce the complexity of the prototype, the
View component and the Controller component of the MVC design pattern have been merged.
Thus, in the prototype JSP files serve both as the view and the controller, determining the
behavioural and presentational aspect of the application.

The prototype does not persist the model with the use of Hibernate. Instead, it relies on the
combination of a predefined set of domain objects initialised at deployment, and additional
objects defined by the user when using the prototype. These additional objects will be lost if

102

22.2. Prototype development

the application fails, but as it is a prototype not employed for gathering real traceability data,
this is not a problem. How to implement model persistence is further addressed in Chapter 25.

Issues concerning concurrency has not been addressed by the prototype, as the prototype is
intended to illustrate the concepts of requirements traceability to a single user at the time. As
the prototype is developed as a web application, it is possible for several users to access the
application simultaneously, although with a limited degree of success. They might experience
apparently inexplicable loss of data, or other errors, as two users requests changes or access to
the same domain object simultaneously. Chapter 25 discusses how concurrency issues should
be handled by the final RT tool.

103

Chapter 23

Using the prototype

This chapter presents the functionality of the prototype (which has been given the name
TraceMe), discussing the human-computer interfaces and how the user interacts with the sys-
tem. The prototype’s main goal is to give the user an impression of how traceability of re-
quirements can be achieved, and the discussions of the prototype functionality concentrate
on highlighting how the given functionality assists with providing full requirements traceability.
Throughout the discussions, references will be made to the eight golden rules of human-computer
interface design, pointing out how they were applied to the prototype’s interfaces. The rules
provide a guideline for developing human-computer interfaces of high quality, and Appendix D
summarises the rules.

The functionality of the prototype is separated into subfunctionalities, each of which is described
in a separate section below. The main subfunctionalities correspond roughly to the major
groups of functional requirements as described in Section F.2. In addition, screenshots from
the prototype will be presented, illustrating the available functionality.

Chapter 24 evaluates the prototype, and summarises which requirements are addressed by the
prototype.

23.1 Accessing the prototype

When the application server to which the prototype has been deployed is online (as described
in Appendix H.2), the prototype is accessed by opening a Firefox web browser and entering the
following address.

http://localhost:8080/traceme/

Due to its status as a prototype, the development has given little attention to the detailed non-
functional requirements of the system. However, the software system attribute security has been
considered to a certain degree, as it is important to the concept of requirements traceability. In
addition to considering this attribute when developing the functionality of the system (which
will be discussed in the following sections), the system presents a login screen when it is first
entered, shown in Figure 23.1.

Login functionality is alpha functionality, but it provides the user with an impression of the
security of the system. Figure 23.1 shows how the system is accessed through a web browser.
In future screenshots, only the screen of the system and not the surrounding web browser will
be displayed.

When the user has logged on the system (with a random username and password), he or she
will by greeted by the welcome screen of the prototype, given in Figure 23.2. The welcome
screen greets the user by name, and displays the upcoming events within the system through
a message board, such as maintenance notifications. In addition, a shortcut to the ten most

104

23.2. Managing projects and other administrative work

Figure 23.1: TraceMe - Login

recent projects existing within the system is given. The human-computer interface design rules
recommends the use of shortcuts, as it allows frequent users to increase the pace of interaction.

Figure 23.2: TraceMe - Welcome screen

By employing Cascading Style Sheets, the prototype’s graphical design is rendered consistently
throughout the system. The look of the banners, menus, tables, and text presented in the
welcome screen remains the same throughout the system, thus applying the first rule of the
interface design rules.

23.2 Managing projects and other administrative work

As discussed in Appendix H.1, the prototype consists of two abstract components, where one
(the administrative component) encapsulates the other (the project component). The current
section describes the functionality of the administrative component, which includes the regis-

105

Chapter 23. Using the prototype

tration of users, creation of projects, and attaching users to projects, granting them access to
the contents of each project. In addition, the administrative component provide functionality
for manipulating the attributes of users and projects, such as user access rights and project
descriptions.

The vertical left-hand menu presented in the screens of the project component allows the user to
choose between the most important functionality of the component. As shown in Figure 23.2,
the administrative component allows the user to view existing projects and users and their
attributes (Figures 23.3 and 23.4), register new users (Figure 23.5), and create new projects
(Figure 23.6). In addition, menu items providing search and help functionality is included at the
bottom, allowing the user to search for the desired project or user, or seek assistance in the help
menu. Section 23.6 describes the search functionality further, whilst Section 23.7 discusses the
help menu. The menu items in the left-hand menu have been given a hover effect, in compliance
with the third rule of the interface design rules. When the user hovers the mouse pointer above
the menu item, the colour of the text will change, signalling to the user that an action can be
performed.

Figure 23.3: TraceMe - User details

In addition to the left-hand menu choices, some screens provide a horizontal detailed menu,
as can be seen in Figure 23.4, which shows the screen presenting project details, amongst
others references to users attached to the project. All these references are linked to the screen
presenting user information (Figure 23.3), allowing the user quick access to the details on the
attached users.

The detailed menu allows the user to edit (Figure 23.7) or delete the project, and maintain the
list of users added to the project (Figure 23.8). When editing or deleting projects or users,
the system offers feedback informing the user of the result of the operation, as can be seen
in Figure 23.7b. This complies with the third and fourth rule of the interface design rules,
signalling closure of the action, and offering informative feedback of the result of the action.

Most importantly, the detailed menu allows the user to open the project and view its contents.
This causes the user to enter the project component, thus loosing access to the functionality of
the administrative component until the project component is exited.

106

23.2. Managing projects and other administrative work

Figure 23.4: TraceMe - Project details

Figure 23.5: TraceMe - Register new user

Figure 23.6: TraceMe - Create new project

107

Chapter 23. Using the prototype

Figure 23.7: TraceMe - Edit project

Figure 23.8: TraceMe - Attach user to project

23.3 Project contents

Each project has its own instantiation of the domain model, and maintains a set of artifacts
instantiated as domain objects and sorted according to the traceability stage they belong to.
When opening the contents of a specific project1, the user is presented with the screen displayed
in Figure 23.9.

This is a summary screen, allowing the user to quickly get an impression of the current sit-
uation within the projects. Note that the graphical design have changed slightly from the
administrative module, but that major features still resembles each other. This is done in order
to ensure consistency, whilst still providing the user with recognisable features, enabling him
or her to distinguish the administrative component from the project component. In addition,
the left-hand menu has new options, reflecting the functionality of the project component. By
choosing the “Exit project” option, the user will exit the project component and re-enter the
administrative component, allowing him or her to e.g. open another project.

The title of the chosen project is displayed near the top of the screen, informing the user of which
project he or she is currently working on. Throughout the screens of the project component,
the project title is always displayed in the same area of the screen, ensuring conformance to the
first rule of the interface design rules. In addition, it reduces the short-term memory load, as
recommended by the last rule of the interface design rules.

The summary screen presents three tables, providing the user with quick access to important
functionality. However, each user is able to individually decide which summary tables should be
displayed by clicking the “Add/remove summaries” link at the top right of the screen. All data
presented in tables throughout the project component is, if possible, hyperlinked to the source

1As an example, a project representing the development of the RT tool itself has been created,
named TraceMe RT tool

108

23.4. Creating and maintaining trace information

Figure 23.9: TraceMe - Project contents

of the information. This allows the user quick access to additional data, and when combined
with the adaptable summaries, allows frequent users to create useful shortcuts, which complies
with the second rule of the interface design rules.

23.4 Creating and maintaining trace information

Artifacts are sorted according to the traceability stage they belong to. Thus, in order to create
an artifact instance, the user must select a traceability stage from the left-hand menu. Doing so
triggers the project module to enter the chosen stage, and present a list of the artifact categories
of the stage, shown in Figure 23.10. Note that this list can also be reached by clicking the
traceability stage headers of the “Existing artifacts categories” summary table on the summary
screen, in addition to from many other locations within the system, as will be shown later.
This enables users to quickly gain access to the required functionality, as recommended by the
second rule of the interface design rules.

By entering a traceability stage, the menus of the project component changes, reflecting the
additional functionality available. The user is no able to view artifacts and traces of the chosen
stage (although the system automatically displays the artifacts when entering a traceability
stage), as well as creating new instances and edit existing instances. In addition, a line of
tabs have appeared near the top of the screen, allowing the user to quickly establish the current
traceability stage, as well as jumping between stages. The title of the chosen project is displayed
next to this line of tabs.

109

Chapter 23. Using the prototype

Figure 23.10: TraceMe - Artifact categories

23.4.1 Artifacts

Choosing the “Artifacts” option in the left-hand menu allows the user to work with artifacts.
A detailed horizontal menu is displayed, providing the user access to functionality for creat-
ing a new artifact, as well as editing and deleting existing artifacts. In addition, the project
component presents the list of artifact categories belonging to the chosen stage, along with the
number of existing artifact instances within each category. The user is able to click the artifact
category, causing the project component to present a list of the artifacts instances, as shown in
Figure 23.11.

Figure 23.11: TraceMe - Artifact instances

In turn, each of these instances is clickable, linked to a screen presenting the attributes of the
specific artifact instance. An example of such an artifact instance presentation is shown in
Figure 23.12. The presentation of artifact instances vary, depending on the chosen artifact, and
additional examples can be viewed in Figures 23.13 through 23.15.

In general, the artifact instance presentations contains a presentation of the artifact’s attributes
(shown to the top left in Figure 23.12), a summary of the version history of the artifact (shown
in the bottom left in Figure 23.12), and a summary of artifact instances connected to the chosen
artifact as defined in the underlying domain object model (shown to the top right in Figure
23.12).

110

23.4. Creating and maintaining trace information

Figure 23.12: TraceMe - Artifact instance details

Figure 23.13: TraceMe - Artifact instance details - Example 2

111

Chapter 23. Using the prototype

Figure 23.14: TraceMe - Artifact instance details - Example 3

Figure 23.15: TraceMe - Artifact instance details - Example 4

112

23.4. Creating and maintaining trace information

The summary of connected artifact instances is particularly interesting, as it provides easy
access to important trace information by creating predetermined traceability visualisations. The
summary lists all artifact categories directly connected to the chosen artifact, and the number of
connected artifact instances (one or more). The summary also describes the relation (referred
to as trace) between the chosen artifact and the connected artifact, and the user is allowed
to click each listing for additional information. This causes the system to present the details
of the connected artifact instance (if only one connected instance), or a list of the connected
artifact instances (if more than one connected instance). In addition, the summary provides
quick access to functionality for creating new artifact instances or traces by listing “create”
and “attach” buttons next to each artifact. E.g., by clicking the “create” button next to the
Stakeholder listing in Figure 23.12, the system initiates the process of creating a new instance
of the Stakeholder artifact.

In addition to the general characteristics of the artifact instance presentation, the individual
artifacts occasionally require the presentation of special trace information. The bottom right
position in the screen is reserved for this. Often, this position is used for presenting details of
a particularly interesting type of connected artifact, thus creating an alternative visualisation
of the trace information, as a connected artifact will always be accessible via the summary of
all connected artifact in the top right position. Figure 23.12 exemplifies the use of alternative
visualisations by providing a summary table accepted change proposals, whilst Figures 23.13
through 23.15 does not make use of this extra space, as it is not required by the presented
artifacts.

Create artifacts

When creating a new artifact, the user chooses an artifact category, and fills in a form requesting
the necessary trace information (an example of which is displayed in Figure 23.16). The system
then instantiates a new domain object corresponding to the chosen artifact category, and saves
it in the set of artifact instances held by the project. The forms requesting trace information
are built automatically based on the underlying model, which ensures cost-effective addition of
new artifacts. Some simple traces are created when creating a new artifact instance, such as
“proposing stakeholder” (the user chooses from a list of existing stakeholders). This is often the
case when the trace allows only a single artifact instance to be connected to the created artifact.
However, the majority of traces are created after the creation of both artifacts included in the
trace.

Figure 23.16: TraceMe - Create artifact

In compliance with the fifth rule of interface design, the forms for creating artifacts are designed
to prevent errors caused by the user entering incorrect data, e.g. by opting for menu selections
rather than fill-in fields whenever possible. Long and complicated forms are divided into steps,
not overwhelming the user with information.

113

Chapter 23. Using the prototype

Some artifacts are linked to external resources (e.g., RequirementDescriptors and Designs),
which requires the user to enter the location of resource. The location can be specified either
by browsing the file system, or by providing a URL, allowing different sorts of resources to be
added.

When creating SystemComponent artifacts (belonging to the post-FRS traceability stage), the
user is allowed to import artifacts from external development environments. For instance,
rather than manually creating Class artifacts for an entire development project, the user can
import archives of compiled classes, and the system will automatically create Class and Package
artifacts based on the contents of the classes, such as its JavaDoc comments [Jav]. The user
imports system components by requesting the system to create a SystemComponent artifact,
and then choosing “Import system component” from the horizontal detailed menu, as shown in
Figure 23.17.

Figure 23.17: TraceMe - Import system components

23.4.2 Traces

By choosing the “Traces” option from the left-hand menu, the system presents a list of the
traces within the chosen traceability stage, as defined by the underlying domain model. This
screen is shown in Figure 23.18. In addition, the detailed horizontal menu changes, allowing
the user to create and maintain traces rather than artifacts.

When clicking the “View” button next to a trace listing, the user is presented with a list of
the existing traces, specifying starting and ending artifact instance. Again, this provide an
alternative representation of trace information, as the individual artifact instance presentations
lists connecting artifact instances. However, the list of existing traces summarises all existing
traces between two artifact categories, which could spare the user several keystrokes, e.g. when
trying to establish whether a certain relationship exists.

114

23.5. Visualising trace information

Figure 23.18: TraceMe - Defined traces

Create traces

When creating new traces, the user is first requested to choose among the possible traces of the
chosen traceability stage (shown in Figure 23.19). Traces crossing the boundaries of traceability
stages are only included in the starting artifact’s traceability stage. After choosing the trace
type, the user can choose among artifact instances, choosing those instances he or she wishes to
be starting and ending artifact instances (shown in Figure 23.20), and establish a trace between
the instances.

23.5 Visualising trace information

The visualisations of trace information comes in two flavours. The predetermined visualisations
are not configurable by the user, and are amongst others used in the individual presentations
of artifact instances. In addition, the project component offers three complex predetermined
visualisations (an example of which is shown in Figure 23.21), presenting the three traceability
stages as modelled by the underlying domain object model. This enables the user to see how
all the artifacts are connected, i.e. providing the big picture, and still provides quick access to
details by allowing the user to click each individual domain object.

In addition to these predetermined visualisations, the system allows the user to create custom-
made visualisations, an example of which is shown in Figure 23.22.

A custom-made visualisation is created by allowing the user to choose a starting and ending
artifact category, and representing existing instances within these categories, connected with
an arrow. If the artifact categories are not directly linked, intermediate artifacts are displayed
as grey boxes, depicting the route of the traces. These intermediate artifacts are clickable,
generating a new custom-made visualisation consisting of the original starting artifact, and
the intermediate artifact as the new ending artifact. This is illustrated in Figure 23.23. The
displayed artifact instances are also clickable, forwarding the user to the individual artifact
instance presentation.

Both the complex predetermined visualisation and the custom-made visualisation can be viewed
by choosing “Visualisations” in the left-hand menu, which presents the screen shown in Figure

115

Chapter 23. Using the prototype

Figure 23.19: TraceMe - Create trace - step 1

Figure 23.20: TraceMe - Create trace - step 2

116

23.5. Visualising trace information

Figure 23.21: TraceMe - Complex predetermined visualisation

Figure 23.22: TraceMe - Custom-made visualisation

117

Chapter 23. Using the prototype

Figure 23.23: TraceMe - Custom-made visualisation - Example 2

23.24. This screen lists both the three complex predetermined visualisations and any existing
custom-made visualisations, as well as allowing the user to create new custom-made visualisa-
tions.

23.6 Search

In order to enable the user to locate trace information fast and simple, the prototype offers a
search functionality (albeit as alpha functionality), located near the bottom of the left-hand
menu in all screens. Figure 23.25 shows how the user is able to enter search terms and execute
a search (Figure 23.25a), whereupon the system presents the search result (Figure 23.25b).

In addition to the regular search functionality, the prototype offers an advanced search option,
which allows the user to specify constraints on the search, for instance specifying which terms
are not to be included in the search result.

23.7 Help and assistance

To assist the user if problems arise, the prototype provides a set of help mechanisms. If tasks are
performed incorrectly, the user will be informed of what went wrong. I.e., if the user attempts
to delete a registered user that also acts as a project manager in one of the existing projects,
the system will refuse to delete the registered user until another project manager has been
appointed, informing the user of the problem.

In addition, the prototype contains a help menu that lists all tasks of the system, describing
them and how they are performed. This menu is shown in Figure 23.26. The help menu allows

118

23.7. Help and assistance

Figure 23.24: TraceMe - Visualisations

Figure 23.25: TraceMe - Search

119

Chapter 23. Using the prototype

to user to browse through it contents, but also provide an index of the help contents, and a
search function, allowing the user to locate help instructions without having to look through
all of them.

Figure 23.26: TraceMe - Help menu

120

Chapter 24

Prototype evaluation

This chapter evaluates two different aspects of the prototype. First, the prototype’s adaptability
and changeability, as discussed in Section 22.2 is evaluated, determining the ease with which
the prototype can be evolved into a complete RT tool (i.e., its evolvability). This evaluation
focuses on the prototype itself and its implementation. Second, the functionality provided
by the prototype is evaluated. This evaluation focuses not on the prototype itself nor its
implementation, but its fulfilment of the functional requirements, and its contribution as a
prototype of a complete RT tool.

24.1 Prototype evolvability

The evolvability of the prototype is highly dependent on the prototype’s ability to conform to the
architectural styles presented in the architectural description (see Chapter 16). As mentioned
in Section 22.2, the prototype is designed according to the component-based architectural style.
This is achieved by compartmentalising the functionality of the prototype with the means of a
simplified Model-View-Controller design pattern.

Another important aspect of the prototype is its ability to add new artifacts to the underlying
domain model. This enables the prototype to be adapted to the different needs of users, and
effort has been invested to ensure that the addition of new artifacts adds little to the work
overhead. This is accomplished by describing artifacts with Property objects. The addition of
new artifacts is then primarily done by configuring parameters. For instance, the properties of
an artifact is used to automatically generate new forms for creating instances of the artifact.

Overall, the prototype’s evolvability is satisfactory, both concerning the prototype’s encapsula-
tion of the underlying domain model, and its ability to alter its functionality. This allows the
prototype to be evolved into a complete RT tool with iterations of user input and continued
development. However, evolving the prototype into a complete RT tool is only an option if
its contributions satisfies both the requirements specification and the research agenda of this
thesis, evaluated in the next section.

24.2 Prototype contributions

In order to evaluate the contributions of the prototype, it’s fulfilment of the functional require-
ments of the requirements specification (see Part III) must first be ascertained. As the prototype
does not provide a complete implementation of the functionality, the evaluation of the fulfilment
of the functional requirements can only consider whether a requirement has been addressed by
the prototype. Testing can be applied to investigate whether a requirement has been fulfilled
by the proposed solution. Due to the agile development process, testing have been performed
throughout the development of the prototype. Consequently, we have no need for a formal

121

Chapter 24. Prototype evaluation

test plan. Consequently, the tables presenting the fulfilment of the functional requirements are
based on informal testing performed in parallell with development.

24.2.1 Fulfilment of functional requirements

The functionality demanded by an addressed requirement can either be implemented by the
prototype as a beta functionality, i.e., a crude implementation of the functionality, or as a
alpha functionality, only mimicking the functionality without actually implementing it. Table
24.1 summarises the requirements and states how the prototype addresses them. The column
marked α represents alpha functionality, β represents beta functionality, and N/A marks the
requirements that are not addressed.

Table 24.1: Fulfilment of functional requirements

Requirement α β N/A

Functional.ManagingProjects.CreateNewProject X

Functional.ManagingProjects.RemoveProject X

Functional.ManagingProjects.AttachUsers X

Functional.WorkingWithProjects.ChooseProject X

Functional.WorkingWithProjects.EscapeProject X

Functional.WorkingWithProjects.DetermineTraceabilityStage X

Functional.WorkingWithProjects.NavigateTraceInformation X

Functional.CreatingArtifacts.CreatingAnArtifactInstance X

Functional.CreatingTraces.ChoosingStartingArtifactInstance X

Functional.CreatingTraces.ChoosingEndingArtifactInstance X

Functional.CreatingTraces.RegisteringAuxiliaryTraceInformation X

Functional.EditingArtifacts.ChooseArtifactToEdit X

Functional.EditingArtifacts.SaveChangesToArtifact X

Functional.DeletingArtifacts.ChooseArtifactToDelete X

Functional.EditingTraces.ChooseTraceToEdit X

Functional.EditingTraces.SaveChangesToTrace X

Functional.DeletingTraces.ChooseTraceToDelete X

Functional.DeletingTraces.SystemInitiatedTraceDeletion X

Functional.SearchingTraceInformation X

Functional.PredeterminedVisualisations.RequestingSimpleVisualisation X

Functional.PredeterminedVisualisations.RequestingComplexVisualisation X

Functional.PredeterminedVisualisations.RequestingComplexVisualisation X

Functional.PredeterminedVisualisations.SimpleVisualisations X

Functional.PredeterminedVisualisations.ComplexVisualisations X

Functional.CustommadeVisualisations.AdaptingSimpleVisualisations X

Functional.CustommadeVisualisations.CreatingComplexVisualisations X

Functional.CustommadeVisualisations.CreatingComplexVisualisations.
ChooseStartingAndEndingArtifact

X

Functional.Help.Messages X

Functional.Help.Menu X

Functional.Help.Menu.Search X

Functional.Administrative.MaintainingUserList.AddingUser X

Functional.Administrative.MaintainingUserList.RemovingUser X

Functional.Administrative.MaintainingUserList.ChangingPassword X

Functional.Administrative.MaintainingUserList.ChangingAccessLevel X

Functional.Administrative.MaintainingUserList.UserAuthentication X

As can be seen from Table 24.1, only two functional requirements have not been addressed
by the prototype. Functional.CreatingTraces.RegisteringAuxiliaryTraceInformation should, if

122

24.2. Prototype contributions

implemented, allow the user to add auxiliary trace information to certain traces, as discussed
in Section 8.4. However, this functionality is not required to create traces, it only adds value
to the trace information. As this is a first version of the prototype, this functionality has been
referred to future versions.

System-initiated trace deletion has also been ignored by this version of the prototype. System-
initiated trace deletion is used for deleting an artifact instance’s traces when the artifact itself is
deleted. As the functionality for deleting artifacts is only represented in the prototype as alpha
functionality, the system-initiated trace deletion is not required by the system. Consequently,
when artifact deletion is implemented as beta functionality, the system-initiated trace deletion
should also be implemented.

The use cases of Section 12.3.1 elaborates on the functional requirements of the requirements
specification by describing how the functionality is intended to be used. Table 24.2 summarises
which use cases are supported by the prototype. As previously, the column marked α denotes
alpha functionality, whilst the column marked β denotes beta functionality. The column marked
N/A indicates that the prototype does not support the use case. As can be seen in Table 24.2,
all use cases are addressed by the prototype, either as alpha or beta functionality.

Table 24.2: Supported use cases

Use case α β N/A

UseCase.UserLogin X

UseCase.ChooseProject X

UseCase.ChooseTraceabilityStage X

UseCase.WorkingWithArtifacts X

UseCase.CreateAnArtifact X

UseCase.EditAnArtifact X

UseCase.DeleteExistingArtifact X

UseCase.LocateExistingArtifact X

UseCase.AddTrace X

UseCase.DeleteTrace X

UseCase.VisualiseTraceInformation X

UseCase.SearchTraceInformation X

UseCase.CreateProject X

UseCase.RegisterUser X

UseCase.SearchHelpDirectory X

Part II concluded that the RT tool must take care to seamlessly integrate Planguage and its
attributes. By explicitly specifying the attributes of the artifacts with the use of tables and
forms, the prototype does not require the user to have detailed knowledge of Planguage, nor
is the user required to remember which attributes an artifact employs in its specification, in
compliance with the last rule of the human-computer interface design guidelines of Appendix
D.

Otherwise, two-thirds of the functional requirements are implemented as beta functionality.
This functionality increases the value of the prototype, bringing it closer to the final version.
The remaining one-third of alpha functionality is justified by the system’s status as a proto-
type. We will discuss briefly why selected functional requirements where implemented as alpha
functionality rather than beta functionality. Chapter 25 discusses how the alpha functionality
can evolve to beta functionality, and eventually, complete functionality.

Functionality for editing and deleting artifacts and traces were implemented as alpha function-
ality because it is easy for a user to grasp the underlying actions. In addition, functionality for
editing and deleting projects and users have been implemented as beta functionality, giving the
user an impression of how functionality for editing and deleting is intended to work.

123

Chapter 24. Prototype evaluation

Search functionality has been added to the prototype as alpha functionality due to the sheer
complexity of such functionality. The same applies to the creation of custom-made visualisa-
tions. Both these functionalities incur a significant development effort, and are consequently
referred to future versions of the prototype.

The prototype will primarily be used for testing purposes, for instance in a scenario where a user
and a member of the development staff sits down and tests the functionality of the prototype,
attemptively discovering new requirements or altering existing requirements. Consequently, the
help functionality is implemented as alpha functionality, as the user can turn to the development
staff member for help. It is, however, important to signal to the user that help functionality
will exist in the final version, consequently it is implemented as alpha functionality rather than
ignored by the prototype altogether.

Overall, the prototype addresses the majority of functional requirements, and all use cases,
thus giving the user a good impression of how the RT tool is intended to function. This paves
the way for further development of the prototype. However, in order to be able to determine
whether further development of the prototype is viable, the prototype’s current or future ability
to fulfil the non-functional requirements must be evaluated.

24.2.2 Fulfilment of non-functional requirements

The in-depth study [Nor06] presented a high-level requirements specification, based on im-
portant findings in the study. This high-level requirements specification consisted of both
functional and non-functional requirements, and has served as the foundation of the full re-
quirements specification of Part III. The prototype’s fulfilment of the functional requirements
have been evaluated above, and attention is now shifted to the non-functional requirements.
As previously argued (see Section 22.2), the prototype is to a certain degree allowed to ignore
the non-functional requirements. However, the non-functional requirements of the high-level
requirements specification address fundamental issues for an RT tool that it is important to
consider if an RT tool is to be capable of decreasing the work overhead associated with im-
plementing RT in software development projects. As an evolutionary prototype, the system
is intended to evolve into a complete RT tool. Consequently, evaluating how the prototype
addresses these fundamental issues, and more importantly, how the prototype is able to evolve
into a tool that addresses the issues, enables us to determine whether it is worth the effort to
perform the necessary iterations evolving the prototype into a complete RT tool.

The high-level requirements specification lists six non-functional requirements, that each ad-
dresses an issue an RT tool must address. We choose to evaluate the prototype with respect to
the high-level requirements specification rather than the full requirements specification in order
to reduce the complexity of the evaluation. The following sections discuss how the prototype,
either in its current or future versions, fulfils the non-functional requirements. The rationale
behind each functional and non-functional requirement is given in the in-depth study [Nor06].
Consequently, this evaluation does not consider why these requirements are stated, only that
they must be fulfilled in order for the prototype to satisfy its goals.

The first non-functional requirement demands persistent storage of all trace information. This
is, as discussed in Section 22.2, not implemented by the prototype. However, due to the
component-based architecture, adding functionality for persistent storage is not a complicated
task, albeit a large one, primarily due to the size of the underlying domain object model. Thus,
future versions of the prototype will be able to offer persistent storage of trace information.

Next, the non-functional requirements demand that the tool should be easily adaptable to its
environment. The prototype challenges this demand from several angles. First, adaptability
is ensured by developing a prototype conforming to a component-based architecture, making
it easier to change, remove, or add functionality. Second, the underlying model is designed to
accommodate the introduction of changes, such as adding a new artifact as a domain object to
the domain model. This ensures a domain model that can be adapted to new environments,
i.e., reflect the nature of the software development project that is being modelled. Third and
last, the prototype strive for adaptable human-computer interfaces, allowing the user to adapt

124

24.2. Prototype contributions

the interfaces to the current working situation. The summary screen of each project (shown in
Figure 23.9) is an example of this, allowing the individual users to choose which summaries are
to be displayed.

The non-functional requirements further states that the tool must be scalable, enabling it to
handle small and large amounts of trace information equally well. The RT tool’s scalability
is determined by the tool’s ability to handle many artifact instances without causing latency
within the system, as well as the tool’s ability to handle an increase in the number of users.
These abilities are primarily determined by two factors: the performance of the architecture,
and the performance of the hardware, the latter of which is not a concern of the prototype.
The prototype conforms, to the degree determined in Section 22.2, to the architecture de-
scribed in Part IV. This architecture is specifically designed to accommodate the demands of
the non-functional requirements to the RT tool, and consequently, is designed to be scalable.
However, as discussed in Section 28.4, scalability vs. performance represent a tradeoff point
in the architecture, as improving one of these attributes deteriorates the other. Consequently
this represents a risk in the future evolution of the prototype. Although the prototype handles
an increase in the number of artifact instances (i.e., the size of the underlying model and its
contents), the prototype does not consider the issue of concurrency. This causes it to not scale
well with regard to an increase in the number of users. For simplicity, the prototype is designed
to be used by a singular user, and future versions must address the issue of concurrency.

Further, the non-functional requirements demands the ability to gather the necessary trace
information without imposing the user. This is a difficult requirement to fulfil, as the user is
required to provide input to the system. However, automating tasks relieves the workload of
the user, and renders the tool less intrusive. The prototype provides alpha functionality for
importing system components from i.e. Java class files, creating artifact instances based on the
contents of the files. This is a simple example of how tasks can be automated to create a less
imposing tool.

Finally, the non-functional requirements demand that the user must be able to record and find
desired trace information easily and quickly. The usability of the prototype is dependent on the
quality of the human-computer interface design, and the eight golden rules of interface design
(see Appendix D) were applied to ensure high-quality human-computer interfaces. Throughout
Chapter 23, the use of the rules were pointed out. Overall, the majority of the rules were
applied, with particular focus on consistency, use of shortcuts, informative feedback, dialogue
closure, error-prevention, and reduction of short-term memory load. For example, the proto-
type provides shortcuts to trace information with the means of hyperlinks, linking references to
trace information to the originating source, thus allowing the user quick access to supplemen-
tary information. In addition, the prototype provides alpha functionality for trace information
searches, which simplifies the task of locating a specific piece of trace information, enabling
quick access to the required trace information.

Overall, the prototype addresses all issues that must be amended by an RT tool, with the
exception of persistent storage of trace information, concurrency, and scalability. In addition,
the prototype addresses all functional requirements of the requirements specification, with few
exceptions. Thus, the prototype provides a good foundation for an RT tool attempting to re-
duce the work overhead associated with implementing RT in software development projects.
Consequently, we can conclude that the further development of the prototype can safely com-
mence, giving particular attention to persistent storage of trace information, concurrency, and
scalability. Chapter 25 describes the effort required to evolve the prototype into a complete RT
tool.

125

Chapter 25

Prototype evolution

This chapter discusses the remaining work that is required to evolve the prototype into a com-
plete RT tool. As pointed out in Section 22.2, and then again in Section 24.2.2, the prototype
ignores issues concerning model persistence and concurrency. This chapter does not discuss
in detail how these issues could be addressed, but focuses on how much effort it requires to
implement the functionality that amend the issue. The prototype also employs a simplified
version of the Model-View-Controller design pattern, combining the Controller and the View
components. This chapter describes the work required to make the prototype adhere to the
complete MVC pattern. In addition to discussing the MVC pattern, model persistence, and
concurrency, the chapter considers the alpha functionality, arguing how much effort is required
to implement this functionality as beta functionality.

25.1 Model-View-Controller design pattern

Currently, the prototype has combined the behavioural and presentational components, in the
form of JSP files. In order to comply with the full MVC design pattern as described by the
architectural description (see Part IV), the prototype is required to split the View component
(consisting of JSP pages) from the Controller component (consisting of servlets). Consequently,
the actions currently embedded in the JSP pages must be implemented as individual actions
in Java classes implementing the Action interface, as explained in Section 18.1. In addition,
rather than encoding behaviour in hyperlinks in the JSP files, a FrontController and several
dispatchers must be implemented, determining how the system is to handle HTTP requests,
depending on the URI of the request. Thus, hyperlinks are altered from linking to a specific
JSP file, to specifying the desired action.

Implementing these changes are a relatively complex task, primarily due to the fusion of the
Controller and View components. However, as the component-based architecture is attemp-
tively sustained in spite of this fusion, especially by maintaining a clean-cut interface towards
the model component, the implementation of the changes is not out of reach.

25.2 Model Persistence

The task of model persistence is to ensure that the data held by the domain objects of the
domain model is stored in a database, ensuring persistent storage of the data. As explained
in Chapter 16, this can be accomplished with by of Hibernate in combination with a database
management system. Due to the compartmentalisation of the domain model, adding function-
ality for persisting it involves no changes to the model itself, only requiring the implementation
of Data Access Objects and mechanisms for accessing the database, a simple, albeit large task.

126

25.3. Concurrency

As the interfaces between the Model component and the fused View-Controller component are
clean-cut (they exist in separate layers of the system), inserting a model persistence layer in
between as shown in Figure 18.6, is not a task of high complexity. Any implemented actions of
the Controller component must add functionality to use the Data Access Objects rather than
the underlying domain model, allowing clean layering of the components.

25.3 Concurrency

Presently, the prototype is not able to handle more than a single user at the time. The choice to
ignore concurrency issues in the prototype was made, as discussed in Section 22.2, to lessen the
complexity of the prototype. Concurrency is most important when considering gathering and
maintenance of trace information. When several users are logged on the system, and accesses
the same artifact instance simultaneously, a problem with data preservation can occur. Only a
single user must be allowed to edit an artifact instance at any time, in order to avoid accidental
overwrites of data. This is implemented by placing a read-only lock on the artifact, signalling
that it is in use by another user, and can only be read, not altered. Reading trace information
contained by an artifact instance is in comparison considered a safe operation, and several users
can perform simultaneous read operations.

Implementing read-only locks on artifact instances is a simple task when done in its most
crude form, and the real work lies in making the actions of the Controller component use the
functionality provided by the locks, which involves checking the status of an artifact instance
before accessing it.

25.4 Alpha functionality

Section 24.2.1 discusses how the prototype fulfils the functional requirements of the RT tool,
marking functionality as either alpha or beta functionality. This section shortly discusses the
work required to evolve from alpha functionality to beta functionality, and eventually, complete
functionality.

Functionality for editing and deleting artifacts and traces is easy to implement, and implemen-
tation details from editing and deleting projects and users can be reused, saving effort. Likewise,
help functionality requires no complex implementation, but significant attention must be given
the contents and phrasing of the help instructions, a task that could incur considerable cost.

Implementing search functionality is a complex task. In its most crude form, a search function-
ality could involve a range of queries to a database. More sophistically, the field of information
retrieval [BYRN99] provides a number of methods for searching through large amounts of data.
Information retrieval is beyond the scope of this thesis, and will consequently not be addressed
further.

The alpha functionality of custom-made visualisation provides a foundation on which the beta
functionality can be based, by illustrating how the data can be visualised. What remains, is the
implementation of the underlying algorithm. This algorithm must be able to traverse the under-
lying domain model, looking for a path from the chosen starting artifact to the chosen ending
artifact. Once this path has been determined, the View component can build a visualisation as
illustrated by the alpha functionality.

127

Chapter 26

Summary

The primary objective of this thesis is to show how requirements traceability can be provided
by the means of an RT tool. The previous chapters have presented a evolutionary prototype
of an RT tool, based on the requirements specification and architectural description of Parts
III and IV. The prototype is intended to give the user an impression of how the RT tool will
function, without investing the effort needed to realise the complete functionality.

The prototype is developed as a web application by using the programming platform Java
EE, provided by Sun Microsystems. Due to the evolutionary nature of the prototype, i.e., its
ability to evolve into a complete RT tool, the design emphasises a component-based and layered
architecture. This simplifies the process of adding or changing functionality as the prototype
evolves.

The prototype’s functionality is implemented as either alpha or beta functionality. Alpha
functionality gives the user an impression of the functionality, without providing the required
underlying implementation. Beta functionality extends the alpha functionality to include an
implementation, albeit not complete functionality. All functional requirements of the require-
ments specification have been addressed by the prototype as either alpha or beta functionality,
with the exception of a few requirements, that have not been addressed. The majority of the
prototype’s functionality is beta functionality, forming a solid foundation for further evolution
into a complete RT tool.

In addition to the functional requirements, the design and implementation of an RT tool is
driven by non-functional requirements. The prototype primarily focuses on the functional
requirements, but in order to provide an evolvable foundation for an RT tool, the prototype
gives attention to the majority of issues pointed out by the non-functional requirements. These
issues are important to address if full requirements traceability is to be provided in a satisfactory
manner by an RT tool. Consequently, the prototype encourages the further development of an
RT tool by establishing an evolvable foundation that provide the required functionality and
focus on key issues.

128

Part VI

Evaluation & Discussion

129

Chapter 27

Introduction

The previous chapters have suggested how an RT tool can be implemented, providing mecha-
nisms that reduce the complexity of the task of implementing RT in a software development
project, and the work overhead associated with this task. In order to assess the value of the
proposed solution, it must be evaluated. Thereafter, its influence on the problem domain can
be discussed.

27.1 Purpose

The main purpose of this part is to evaluate to what degree the research agenda put down in
Section 2.3 has been realised, and discuss the influence the realised research agenda exerts on
the problem domain. The proposed solution is reviewed as a whole to see if it achieves the
goals put down by the research agenda. In addition, the individual parts of the solution are
evaluated, focusing on their contribution to the solution as a whole. Further, this part of the
thesis offers a discussion on the ramifications of the outlined RT tool, looking deeper into how
the RT tool will impact the processes of a software development.

27.2 Scope

This part evaluates the preparatory work of the thesis, as well as the requirements specification,
architectural description of the prototype, and the prototype itself. However, the prototype was
duly evaluated in Chapter 24, and only a summary of this evaluation will be given here. An
overall assessment of the realisation of the research agenda will also be given.

27.3 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part.

• Chapter 28 - Evaluation
This chapter evaluates the overall realisation of the research agenda, as well as the indi-
vidual parts of the proposed solution.

• Chapter 29 - Discussion
In this chapter, the reader is presented with a discussion of the significance of the pro-
posed solution.

131

Chapter 27. Introduction

• Chapter 30 - Summary
This part summarises the most important findings in this part.

132

Chapter 28

Evaluation

The following sections evaluate the work of the previous parts, starting with the preparatory
work. The validity of the empirical work will be evaluated, in addition to the ascertaining the
value of the remainder of the research. Further, the requirements specification is evaluated,
followed by the architectural description. Finally, the prototype is evaluated.

However, before any of these evaluations are given, the fulfilment of the research agenda is
evaluated, summarising the work of the thesis.

28.1 Fulfilment of research agenda

The research agenda presented a number of goals that should be achieved during the thesis
work. The achievements of the thesis has been evaluated in detail in the previous sections, and
this section only provide a summary of how the research agenda has been fulfilled.

In the thesis, we have performed the empirical work required to establish the applicability
of the results presented in the in-depth study [Nor06], and the validity of the results of the
empirical work has been deemed adequate (see Section 28.2). We have performed the required
preparatory work, allowing the development of a evolutionary prototype to commence. How to
represent stakeholders’ organisational hierarchies have been determined, likewise the internal
representation of artifacts and traces.

Further, the thesis has presented a requirements specification and an architectural description,
outlining an RT tool that assists its users with the tasks of implementing RT in a software
development project. Finally, the thesis has presented an evolutionary prototype, describing
development details, functionality, and an evaluation of how full forwards and backwards re-
quirements traceability is provided by the prototype.

In all stages of the work of the thesis, the objective has been to design an RT tool that as-
sists with the tasks of requirements traceability and implementing RT in software development
projects. How the work overhead associated with these tasks can be reduced to an acceptable
level have been the primary focus, in conformance to the research agenda.

28.2 Preparatory work

The preparatory work consists of three major tasks. The first includes empirical work, attempt-
ing to ascertain the applicability of the results presented in the in-depth study [Nor06], and the
validity of this empirical work will be reviewed. The two remaining tasks are narrow literature
studies, focusing on how specific findings in the literature regarding the internal representation
of stakeholders, and artifacts and traces can be applied by an RT tool. The proposed use of
the findings is evaluated, including a summary of the evaluation of the use of Planguage.

133

Chapter 28. Evaluation

28.2.1 Validity of empirical work

When performing empirical work, it is important to consider the validity of the results. If the
results are of adequate validity, they are “valid for the population to which we would like to
generalize” [WRH+00]. The empirical work, in the shape of interviews, were intended to uncover
the applicability of the results of the in-depth study by gathering expert opinions. Several factors
can cause threats to the validity of the results, and they are categorised according to the type
of threat they constitute for the validity. In this context, the internal validity and external
validity of the results from the interviews are of high priority.

Internal validity is concerned with ensuring that the participants of the interview realise the
subject of the interview, i.e., what they are discussing. This is important to be able to trust
the results of the interview. The interviewees came from two different software development
organisations, where one was a large organisation, whereas the other was a small organisation.
This gave the interviewees an individual foundation for evaluating the applicability of the results.
However, in spite of the differences in foundation, the interviewees points out many of the same
aspects of the results. This increases the internal validity of the results, as they are confirmed
by two independent sources.

External validity is concerned with ensuring that the results can be generalised to the entire
problem domain, i.e. that it is safe to conclude that the suggestions given by the interviewees
would also be suggested by any other individual with the same pretences in the problem domain.
By choosing two independent interviewees, with experience from several software development
projects, the external validity is increased. Their experiences will reflect a wide variety of
development projects, allowing generalisation of their suggestions. In addition, by including
representatives from both a small and a large software development organisation, the external
validity increases further. This is caused by the similar results of the two interviews, indicating
that the size of the software development organisation does not matter.

However, the external validity is threatened by the number of conducted interviews. By con-
ducting only two interviews, we cannot be certain that the results can be generalised. Additional
interviews should be conducted to remove this threat. However, due to the reduction of other
threats to both the internal and external validity, as discussed above, the results of the interview
is regarded to be of adequate validity. Thus, the changes to the traceability models caused by
the interviews are considered to be valid.

28.2.2 Representation of stakeholders and their organisational roles

Determining a stakeholder’s role in a organisational hierarchy, his or her authority and position,
and the context in which decisions are made, were in Chapter 7 found to be a complex task
requiring human effort, and consequently excluded from the scope of the RT tool. The tasks of
the RT tool was limited to registering the information required to deduce the structure of the
organisational hierarchy.

A simple approach was outlined by the findings in theory, as this provided adaptability (by
allowing a wide variety of information to be registered). However, the in-depth study [Nor06]
discusses briefly a more complex solution to this problem, Contribution structures.

The contribution structure separates the modelling of artifacts from the modelling of contrib-
utors (i.e., stakeholders), mapping the artifacts to a structure of contributors. This structure
of contributors reflect the underlying organisation, but as the contribution structure is limited
to modelling tangible artifacts only (e.g., documents, memos, etc), it is left insufficient when
attempting to map the hidden aspects of the organisational hierarchy, e.g. group dynamics and
authority.

The approach outlined in Chapter 7 enables the construction of organisational hierarchies based
on both visible and hidden aspects of stakeholder influence, as both a stakeholder’s position
and authority can be registered. In addition, the approach enables the traceability models to
capture the context of decisions affecting artifacts of the traceability model by means of the

134

28.2. Preparatory work

Decision artifact. Such information makes it possible to deduce the underlying group dynamics,
thus gaining greater understanding of the outcome of the decision.

Overall, the approach of Chapter 7 is implemented in the RT tool as it provides the ability to
represent both the visible and the hidden aspects of the organisational hierarchy.

28.2.3 Internal representation of artifacts and traces

The traceability models specify a set of artifacts interrelated by means of traces. Chapter 8
discusses the internal representation of artifacts and traces, and how this can be accomplished
with the means of Planguage.

Primarily, Planguage is used to specifying the requirements in a formal manner, i.e., quan-
tifying them. Planguage provides a set of attributes that is originally intended to be used to
describe software requirements. As the traceability models include other artifacts in addition to
requirements, the set of Planguage attributes has been extended to suit the included artifacts.
The choice of attributes for the individual artifacts is discussed in Chapter 8, and will not be
addressed here. Adding additional attributes is a small task, and the artifacts are consequently
susceptible for changes, reflecting the dynamism of the problem domain they model. However,
in order to ascertain the appropriateness of using Planguage for quantifying and representing
artifacts, its use must be evaluated.

28.2.4 Evaluation of Planguage

Planguage is a rich planning language which can be employed within many of the software
engineering activities, in particular requirements engineering. The language contains a set of
attributes that assist with specifying and quantifying requirements. However, this set of at-
tributes is large, in order to enable the user to express any range of requirements. Planguage
provides a full glossary, explaining both every attribute and any employed concepts. Plan-
guage’s ability to express all eventualities also becomes its failing, as its users are required to
remember large amounts of syntax and semantics. Using Planguage alone implies writing i.e. a
requirements specification from scratch, which requires extensive user knowledge of the use of
Planguage, and could lead to a dependency on glossaries and templates; a severe problem, as
it complicates the process of introducing new users to the world of Planguage.

The primary challenge of an RT tool is to render Planguage an intuitive aid in the process of
specifying and quantifying requirements. The RT tool must integrate Planguage seamlessly, so
that a user unfamiliar with the concepts of Planguage will still be able to specify requirements
within the RT tool. The Planguage concept of templates have been of assistance, helping
with the task of determining which attributes should be included in each artifact. A major
difference between the internal representation of the artifacts of the traceability models and the
original concepts of Planguage, is the dispersion of attributes across several artifacts, rather
than gathering them in a single large artifact representing a requirements specification. Doing
this join together the two worlds of the traceability models and Planguage, employing key
concepts from both. The concept of several artifacts connected by traces is preserved, whilst
the attributes of Planguage are employed throughout the traceability models, ensuring the
benefits Planguage presents regarding formalisation and quantification of requirements.

However, the attributes of Planguage relates only what information each artifact should hold.
Planguage also suggests how some attributes should be expressed, employing a notion referred
to as qualifiers. Qualifiers represent a formal way of expressing the context of the attribute, i.e.
where, if, and when. E.g., when specifying a goal for a non-functional requirement, qualifiers can
be employed to express different goals for different context. A good example is the differentiation
of novice and expert users. A novice user will often have a lower-level goal than an expert
user, and qualifiers can be employed to create separate goals for each type of user. It is
important that the RT tool makes the use of qualifiers an implicit and intuitive part of specifying
requirement, whenever it is needed. It is likewise important that the RT tool conveys in an easily

135

Chapter 28. Evaluation

understandable manner what information the user is required to state. The desired content of
each attribute must be clearly communicated to the user.

Teaching the user how to specify requirements is not the main objective of the RT tool, and
could potentially impose severe restrictions on the user if forced, in particular if the user favours
his or hers own methods for specifying requirements. The RT tool exists in order to assist with
the traceability of requirement rather than their specification, although these two concepts are
tightly intertwined. Thus, it is important that the RT tool allows the user some freedom when
stating the contents of each attribute. In addition, the employed set of attributes should be
dynamic, allowing the user to choose which attributes should be employed. This provides an
additional degree of freedom and adaptability to the tool.

28.3 Requirements specification

The full requirements specification of Part III is based on the high-level requirements specifica-
tion presented in the in-depth study [Nor06]. The requirements of the high-level requirements
specification are in turn based on important findings in the literature studies of the in-depth
study, ensuring a rationale deeply rooted in the problem domain.

Figure 13.2 shows a tracking matrix, linking each requirement of the high-level requirements
specification to at least one requirement of the full requirements specification. Additional re-
quirements have been specified, primarily requirements not classified as functional requirements
or software system attributes. Thus, the full requirements specification addresses the issues
pointed out in the in-depth study, and includes additional requirements focusing on aspects of
the RT tool not considered in the in-depth study.

Due to the evolutionary prototyping technique, the development processes are agile and itera-
tive. Thus, the inclusion of any future requirements is enabled by performing a new iteration of
the development process. This helps to ensure an always updated requirements specification,

28.4 Architectural description

Evaluation of software architectures can be done by performing an Architecture Tradeoff Anal-
ysis Method (ATAM). This is a thorough and comprehensive method for revealing how well
an architecture satisfies specified quality goals, and how quality goals interacts [BCK05b]. As
performing a complete ATAM requires substantial effort, this evaluation performs a simpli-
fied and informal ATAM. The steps of the ATAM is then reduced to include basic versions of
mapping of architectural decisions to quality requirements, identification of tradeoff points, and
identification of risks and nonrisks. However, the mapping of architectural decisions to quality
requirements is thoroughly discussed in Chapter 16, and will not be addressed further. The
results of the remaining two steps are described in the following sections.

28.4.1 Identified tradeoff points

A tradeoff point is defined as an architectural decision that affect more than one software system
attribute, some positively and some negatively.

Model persistence ensures that the trace information gathered by the RT tool is persistently
stored in a database, which improves the reliability of the system, as the probability of data
loss is reduced. However, persisting the model consumes system resources and will consequently
affect performance negatively. Consequently, there exists a tradeoff point between model per-
sistence (reliability) and performance.

Adaptability is ensured by designing a component-based architecture extended with the Model-
View-Controller design pattern. Combining this with a layered approach creates a layered
application, where all communication must pass through the neighbouring layers. In situations

136

28.5. Prototype

where a component in the top-most layer requires the services of a component in the the bottom
layer, a layered approach will cause an increase in the work overhead for the intermediate layers,
thus reducing the performance of the application. This is a tradeoff point between adaptability
and performance, as increased performance in this case will reduce the adaptability of the
application due to complex interfaces.

Scalability is an important attribute of the client-server architectural style. However, when a
system upscales, i.e. in the number of simultaneous database clients, the performance could
deteriorate, as the number of transactions processed per second is difficult to upscale. In
addition, an architecture generating a minimal amount of requests has improved scalability
when compared to an architecture that gives no attention to the amount of produced requests.
Consequently, there exists a tradeoff point between the scalability and the performance of the
architecture.

Usability must be considered when implementing human-computer interfaces. However, these
interfaces must be designed to suit both novice and expert users. Expert users will often desire a
greater level of control than novice users, implying the need for more complicated user interfaces
than those required by novice users. Consequently, there exists a tradeoff point in the design
of human-computer interfaces, as the interfaces must be suit the needs of both novice and
experienced users.

28.4.2 Identified risks and nonrisks

A risk is defined as an architectural decision that may lead to undesirable consequences in light
of system software attributes.

In addition to the risks associated with the tradeoff points discussed in the previous section,
every software system attribute of the full requirements specification have been quantified,
specifying failure and survival constraints. These constraints specify risks in the system, as
they describe values that are unacceptable or close to unacceptable if the software system
attribute is to be satisfied. However, this section will limit itself to evaluating the risks and
nonrisks among the tradeoff points described in the previous section.

The tradeoff point caused by model persistence is classified as a nonrisk in the architecture, as
the reduction of performance is insignificant compared to the loss of reliability. An RT tool is
dependent on being able to provide reliable storage of data, as the information it contains could
prove vital for its stakeholder. Thus, reduction in performance caused by persisting the model
to a database is acceptable.

The same applies to the tradeoff point caused by designing an adaptable architecture. The
reduced performance constitutes a minor risk when compared to the benefits harvested by an
adaptable architecture. This is primarily due to the dynamism of the problem domain, creating
the need for an RT tool able to adapt to its environment.

However, the tradeoff point that exists between the scalability and performance of the system
constitutes a risk to the architecture, as the importance of the two attributes are assimilated. A
reduction in the scalability of the system is equally detrimental as a reduction in the performance
of the system. Consequently, an equilibrium between the two software system attributes must
be established.

The final tradeoff point regards the usability of the system, and is also classified as a risk to
the architecture, as the usability of the system is equally important to novice and experienced
users, even though they have different demands on the usability. Complying to guidelines for
good human-computer interface design, established through best practices, mitigates this risk.

28.5 Prototype

The evaluation of the prototype is given in Chapter 24. Only a short summary of this evaluation
is given below.

137

Chapter 28. Evaluation

The prototype’s functionality is implemented as either alpha or beta functionality, where alpha
functionality mimics the functionality without actually providing an implementation, and beta
functionality provides a basic implementation of the functionality. All functional requirements
of the requirements specification have been addressed by the prototype as either alpha or beta
functionality, with the exception of a few requirements, that have not been addressed at all.
The majority of the prototype’s functionality is beta functionality, forming a solid foundation
for further evolution into a complete RT tool.

The prototype primarily focuses on the functional requirements, but in order to provide an
evolvable foundation for an RT tool, the prototype gives attention to the majority of issues
pointed out by the non-functional requirements. These issues are important to address if full
requirements traceability is to be provided in a satisfactory manner by an RT tool, thus re-
ducing the work overhead associated with implementing RT in software development projects.
Consequently, the prototype encourages the further development of an RT tool by establishing
an evolvable foundation that provide the required functionality and focus on key issues.

138

Chapter 29

Discussion

It has been established by the evaluation of Chapter 28 that the prototype provides a solid
foundation for further development of an RT tool, as it addresses the majority of requirements
presently stated. This chapter discusses the ramifications of the prototype to the field of re-
quirements traceability, and gives particular attention to aspects important to consider when
introducing the RT tool in software development organisations. We choose to discuss the ramifi-
cations of a fully implemented RT tool, rather than the prototype, as the prototype is an outline
of the tool, a first step towards a RT tool ready for use in software development projects. Thus,
the properties of the prototype will in general apply to the fully implemented RT tool, allowing
the discussion of the ramifications of the RT tool to be based on the properties of the prototype.

The RT tool provides mechanisms to control the artifacts of the software development pro-
cesses, and their evolution as the development processes proceed. When introducing the RT
tool to software development projects, the offered control mechanisms can assist with bringing
closer the theoretical aspects of requirements traceability and the practical tasks of software
development, thus allowing the participants of the software development project to harvest the
benefits of implementing requirements traceability without adding unacceptable amounts to
the work overhead. These benefits are elaborated by the in-depth study [Nor06], and include
amongst others increased ability to handle changes, reduction in the influence of detrimental
forces caused by the dynamism of software development, and an improved lifecycle perspective
of the software, all adding qualitative value to the project.

However, if an RT tool is to provide these benefits to a software development project, it must
first be introduced to the organisation conducting the project. The in-depth study discusses
organisational aspects that must be considered when implementing RT, but this discussion will
not delve deeper into the issues concerning the implementation of requirements traceability in
general. Rather, attention will be given the issues concerning the introduction of the RT tool
and how the costs associated with this task can be kept at a minimum. Large costs associated
with the introduction of the RT tool will act as an obstacle, impeding its use in the field of
requirements traceability. Consequently, the costs associated with introducing the RT tool
must be discussed. This requires the consideration of several aspects, focusing on the cost of
introduction versus the cost of use and added value to the project.

A prerequisite of introducing the RT tool is the installation of the tool. This includes configur-
ing servers, and deploying the application. The architecture of the RT tool takes into account
the portability of the tool, including its installability and adaptability. Several architectural
strategies were chosen to support these software system attributes, including a client-server ar-
chitectural style based on a virtual machine. Due to the effort invested in designing a portable
architecture, the cost of installation are significantly reduced. Consequently, the cost of instal-
lation is not rendered an obstacle to the introduction of the RT tool.

In addition, the adaptability of the RT tool enables it to adjust to its environment. The
underlying model is easily extended, and the component-based architecture combined with a
layered approach decreases the overhead associated with introducing additional artifacts to the

139

Chapter 29. Discussion

model. Consequently, even though adapting the RT tool to fit the present environment does
not come effortlessly, the size of this cost is still acceptable.

Further, the successful introduction of the RT tool is dependent on the usability of the tool,
including its understandability, learnability, and operability. The RT tool emphasises usability,
and the belonging software system attributes have been given attention throughout the develop-
ment processes. High-quality usability reduces the cost of introducing an RT tool, as the need
for courses, training, and other user-oriented learning sessions is decreased. Thus, the design of
the RT tool encourages a minimal latency between installing the RT tool and full operability
of the tool, significantly reducing the cost of introducing the RT tool to software development
projects.

Overall, the design of the RT tool facilitates an cost-efficient introduction of the tool to software
development projects. The costs of installation, adaptation, and user training can be kept at
an acceptable level, and the time and effort spent before harvesting the benefits is equally
acceptable.

140

Chapter 30

Summary

This part has evaluated the work of this thesis, and discussed the ramifications of the proposed
RT tool. The research agenda stated at the beginning of this study was found to be satisfied,
both when considering the focus of the study, and the presented results.

The presented results of the thesis were evaluated, beginning with the preparatory work, contin-
uing with the requirements specification, architectural description, and finally, the evolutionary
prototype of the RT tool.

The preparatory work included empirical work in the shape of interviews, which was evaluated
to be of adequate validity. In addition, the applicability of the narrow literature studies were
found satisfying, allowing the development of the prototype to commence.

The full requirements specification fulfilled all high-level requirements from the in-depth study,
thus providing a good foundation for the continued design of the RT tool. The architecture was
evaluated by means of a simplified ATAM, revealing several tradeoff points in the architecture.
However, the majority of these tradeoff points were found to be nonrisks, with the exception of
the scalability vs. performance tradeoff point, which constitutes a risk to the architecture.

Finally, the prototype was evaluated, concluding that the prototype forms a good foundation
for the continued development of the RT tool, and that attention in particular must be given
model persistence, scalability, and concurrency.

A discussion was included, regarding the ramifications of the prototype to the field of require-
ments traceability. The discussion gave particular attention to aspects important to consider
when introducing the RT tool in software development organisations, and concluded that the
introduction of the RT tool to real development projects comes at an acceptable cost compared
to the harvested benefits.

141

Part VII

Conclusion & Further Work

143

Chapter 31

Introduction

The following part offers a conclusion on the results presented in this thesis, emphasising aspects
of significance. In addition, any further work is presented, outlining the future direction of the
RT tool.

31.1 Purpose

The purpose of this part is to conclude the thesis, by summarising the most important results,
and reaching a conclusion regarding their significance and applicability. In addition, further
work of the thesis will be deliberated.

31.2 Scope

The conclusion will only conclude on the results presented in this thesis, and will not consider
the results presented in the in-depth study [Nor06], as a separate conclusion is included in the
study.

Further work will not be outlined in detail, as this could place constraints on the future evolution
of the RT tool.

31.3 Overview

Here we give an overview of the structure and a quick summary of all chapters in this part.

• Chapter 32 - Conclusion
This chapter presents a conclusion, based on the results presented throughout this thesis.

• Chapter 33 - Further work
In this chapter, the future work of this thesis is outlined, giving particular attention to
the future work of the evolutionary prototype.

145

Chapter 32

Conclusion

The tasks of implementing requirements traceability in software development projects are chal-
lenging, often adding to the work overhead of the project. By using an RT tool designed to assist
with the tasks of requirements traceability, this work overhead can be reduced to an acceptable
level. The reduction in the work overhead is important, as it allows focus to be shifted from
gathering and maintaining trace information to the analysis of the trace information, enabling
the harvest of the benefits of implementing RT in software development projects.

The work of the thesis has a firm foundation in an in-depth study conducted preparatory to the
thesis. The in-depth study researched the field of requirements traceability, and proposed a set
of traceability models, modelling the problem domain. In addition, a high-level requirements
specification was presented, listing the issues of requirements traceability an RT tool must
address, based on key findings in the literature.

The applicability of the traceability models were confirmed through empirical work, in the
shape of interviews. The analysis of the results of the interviews brought some changes to the
models, increasing the models’ ability to model practical aspects of software projects. Due to
the adequate validity of the empirical work, the models’ firm foundation in the world of software
development is ensured.

Further, the models were extended with the ability to represent visible and hidden aspects
of the organisational hierarchy, enabling trace information analysis to deduce the context of
important decisions throughout the software development processes, an important tool in un-
derstanding how requirements are determined. The internal representation of artifacts and
traces was determined, registering trace information with the means of Planguage, seamlessly
integrated within the RT tool. This integration enables users to employ Planguage and harvest
its benefits without extensive knowledge of or previous experience with the language.

The presented requirements specification and architecture outlines an RT tool that addresses
the issues pointed out by the high-level requirements specification of the in-depth study, with
a firm foundation in the theories of the field of requirements traceability, giving particular
attention to how requirements traceability is to be provided. Consequently, an RT tool based
on the presented requirements specification and architecture will be able provide its users with
qualitative forwards and backwards requirements traceability.

Based on the requirements specification and architectural description, a evolutionary prototype
of an RT tool has been developed. The prototype is considered a first version of a complete
RT tool, giving its users the impression of how requirements traceability is provided by the
tool. The prototype addresses the majority of requirements to an RT tool, which ensures that
the fundamental issues of requirements traceability are addressed. This, in addition to the
prototype’s focus on facilitating its own evolution, makes the prototype a good foundation for
further development of an RT tool.

146

Chapter 33

Further work

The thesis has presented an evolutionary prototype of the RT tool outlined by the requirements
specification and architectural description, giving its users the impression of how a complete
RT tool is intended to function, without investing the effort required to realise the complete
functionality.

Evolutionary prototyping is an iterative technique, were each iteration is concluded by user-
involved testing of the prototype. This testing is conducted by allowing the end-users of the RT
tool use the prototype, play around with it, and determine whether the provided functionality
covers their need. If new requirements are discovered, or existing requirements altered, a new
iteration is required, causing the prototype to evolve. After several such iterations, a complete
RT tool can be presented.

This project has only performed a single iteration of the prototyping technique, and the testing
concluding the iteration has not been conducted, as additional iterations are assumed to be
required. Consequently, it is left to the further work to conduct the concluding tests and
perform the additional iterations required to present a complete RT tool. However, Chapter
25 presents an outline of the work required to evolve the prototype into a complete RT tool,
pointing out the need for an improved implementation of the Model-View-Controller design
pattern, model persistence, concurrency, and the evolution of alpha functionality into beta
functionality and beyond.

When the complete RT tool has been presented, its use in software development projects must
be investigated. It has previously been argued that the cost of introducing the RT tool in
software development projects is acceptable when considered along the value added to the
project by implementing requirements traceability. However, this preposition remains to be
tested, leaving it to the further work to investigate the cost of introducing the RT tool to
software development projects. Further, the applicability of the RT tool must be investigated,
giving particular attention to how much (if at all) the RT tool actually reduces the work
overhead. Thus, a case study of the tool is required, investigating the tool’s impact on the work
overhead associated with implementing requirements traceability.

147

Part VIII

Appendices

149

Appendix A

A brief overview of the
in-depth study

The in-depth study was conducted during the autumn semester of 2006, at the Norwegian
University of Technology and Science. The study preceded the Master’s Thesis, and its contri-
butions serve as a foundation for the thesis.

A.1 Study Outline

The study consists of four major parts, starting with research of the State of the Art of quan-
tification and traceability of requirements (RT). This part looks closer at software requirements
and requirements engineering, and discusses the current situation in the field of quantification of
requirements and RT, focusing in particular on how the human element of software engineering
can be handled. In addition, existing techniques and solutions are reviewed.

The study continues with an introduction to its own contributions to the field; an RT model,
a requirements specification for an RT tool, and a checklist for important focus areas when
integrating RT into an organisation.

An evaluation and discussion of these contributions follows, reviewing how and to what degree
they affect the field of RT. The study concludes by summarising the findings of the study, and
presents further work, which is referred to the Master’s Thesis itself.

A.2 Important findings

When investigating the State of the Art of quantification and traceability of requirements, the
study focused primarily on the human aspects of RT. A definition of requirements traceability
were established, dividing RT into three different stages, as shown in Figure A.1. The pre-RS
traceability stage focuses on the elicitation of the first requirements, the pre-FRS traceability
stage is concerned with quantifying these requirements, and the post-FRS traceability stage
maps requirements to artifacts of the development. The lines represent traces between artifacts.

Due to the focus on human aspects, the study found that many of the problems that lead to
the invention of the concept of RT, were brought about by the dynamic human nature, which
often caused frequent changes to project specifications, tasks, and processes. Focusing on the
human aspects, an RT integration checklist was proposed, pointing out key focus areas that
should be maintained in order to successfully integrate RT into an organisation.

An important part of the study was to investigate how RT can be implemented, and several
challenges were identified. The quantification of prose requirements, i.e., the process of for-
malising the requirements of the stakeholders, expressing them in a quantifiable manner, was

150

A.2. Important findings

Figure A.1: Requirements traceability

found to be one of the prefatory challenges. The in-depth study proposed the use of Planguage
to quantify functional and non-functional requirements. Further, gathering trace information
without creating unnecessary work overhead for the users, as well as ensuring that the gathered
amount of trace information is satisfactory and of high quality, were other challenges that must
be overcome. As a solution to these challenges, the use of traceability models and automation
of repeated tasks is suggested. Maintenance of trace information is also one of the challenges
that must be overcome, as well as making the information available to the users, i.e., ensuring
accessibility.

151

Appendix B

Employed Planguage attributes

This appendix alphabetically lists all the attributes employed in the internal representation of
the artifacts of the traceability models. The internal representation of the artifacts is discussed
in Chapter 8, and is based on the planning language described by Tom Gilb, named Planguage.
Each attribute is accompanied by a short description of its purpose, and how it should be
expressed. Full descriptions of the attributes can be found in the Planguage Concept Glossary
[Gil05]. Some additional attributes have been added for practical reasons, these are labelled
with an asterisk.

Ambition - States the requirement concerned (like “Usability”) and must contain a notion of
the kind of level being sought (like “high”).

Authority - Indicates the specific level of Authority, approval, commitment, sanction, or
support held by an individual or group.

Budget - A Budget is a resource target allocating a limited resource, implicating a commitment
to stay within the limits of the Budget.

Category* - Specifying a Category to which the artifact belongs.

Company* - Specifying a stakeholder’s employing Company.

Context - A Context describes a (system) view from any useful perspective, for instance
describing the context in which a decision was made.

Description - A Description is a set of word and/or diagrams, which describe, and partially
define, an artifact.

E-mail* - E-mail address specifying an access point to a stakeholder.

Fail - A Fail constraint signals an undesirable and unacceptable system state by specifying
the point at which system or attribute failure begins.

Gist - The Gist states the essence or main points of a specification.

Goal - The Goal is a primary numeric target level of performance, implying a commitment to
deliver the Goal level.

Location* - This attribute specifies a Location external to the traceability model where
additional information can be found.

Meter - A Meter attribute is used to identify, or specify, the definition of a practical measuring
device, process, or test that has been selected for use in measuring a numeric value (level) on a
defined Scale.

Name* - This attribute states the Name of e.g. a stakeholder, for identification purposes.

Office* - This attribute states the Office address of a stakeholder, for contact purposes.

Owner - A person or group responsible for an object, and for authorising any change to it.

152

Past - A Past parameter is used to specify historical experience.

Phone* - This attribute states the Phone number of a stakeholder, for contact purposes.

Position* - The Position attribute states the Position of a stakeholder in the organisational
hierarchy.

Priority - A Priority is the determination of a relative claim on limited resources, stating the
relative right of a competing requirement to the budgeted resources.

Rationale - A Rationale is the reasoning or principle that explains and thus seeks to justify
a specification.

Record - A Record attribute is used to inform us about an interesting extreme of achievement.

Risk - A Risk is any factor that could result in a future negative consequence.

Scale - A Scale attribute is used to define a scale of measure, stating the units of measurement,
and any required scalar qualifiers. The measuring instrument is specified by the Meter attribute.

Status - Status is the outcome of an evaluation of a defined condition (or set of conditions).

Stretch - A Stretch attribute is used to define a somewhat more ambitious target level than
the committed Goal or Budget levels.

Specification - A Specification communicates one or more system ideas and/or descriptions
to an intended audience, usually a formally, written means for communicating information.

Survival - Survival is a state where the system can exist, but in nearby existence of “sudden
death”. A Survival specification should always have a clearly stated source specified.

Tag - A term that serves to identify a statement, or a set of statements (or artifacts), unam-
biguously.

Timestamp* - This attribute timestamps a Specification version.

Title* - Specifies a Title of a Specification.

Trend - A Trend attribute is used to specify how we expect or estimate attribute levels to be
in the future, and is used as a benchmark.

Type - Type specifies the category of a Planguage concept, and may be defined by both
Planguage and by local extensions.

Version - A version is an initial or changed Specification instance.

Wish - A Wish attribute is used to specify a stakeholder-valued uncommitted target level for
a scalar attribute.

153

Appendix C

Internal representation of
artifacts

Figure C.1: Internal representation of artifacts - Pre-RS traceability submodel

154

Figure C.2: Internal representation of artifacts - Pre-FRS traceability submodel

Figure C.3: Internal representation of artifacts - Post-FRS traceability submodel

155

Appendix D

Eight golden rules of interface
design

This section introduces the reader to the subject of human-computer interface design by elabo-
rating the eight golden rules of interface design originated from Ben Shneiderman. These eight
golden rules are renowned in the world of graphical user interface design. The specification
given below is taken from [Shn98b]. For more information, the reader is referred to the source.
Chapter 23 discusses how the developed prototype applies these rules.

1. Strive for consistency.
• Consistent sequences of actions should be required in similar situations.
• Identical terminology should be used in prompts, menus, and help screens.
• Consistent colour, layout, capitalization, fonts, and so on should be employed

throughout.

2. Enable frequent users to use shortcuts.
• To increase the pace of interaction use abbreviations, special keys, hidden com-

mands, and macros.

3. Offer informative feedback.
• For every user action, the system should respond in some way (in web design, this

can be accomplished by DHTML - for example, a button will make a clicking sound
or change color when clicked to show the user that something has happened).

4. Design dialogs to yield closure.
• Sequences of actions should be organized into groups with a beginning, middle, and

end.
• The informative feedback at the completion of a group of actions shows the user

that their activity has completed successfully.

5. Offer error prevention and simple error handling.
• Design the form so that users cannot make a serious error; for example, prefer

menu selection to form fill-in and do not allow alphabetic characters in numeric
entry fields.

• If users make an error, instructions should be written to detect the error and offer
simple, constructive, and specific instructions for recovery.

• Segment long forms and send sections separately so that the user is not penalized
by having to fill in the form again - but make sure you inform the user that multiple
sections are coming up.

6. Permit easy reversal of actions.

7. Support internal locus of control.

156

• Experienced users want to be in charge. Surprising system actions, tedious se-
quences of data entries, inability or difficulty in obtaining necessary information,
and inability to produce the action desired all create anxiety and dissatisfaction.

8. Reduce short-term memory load.
• A famous study suggests that humans can store only 7 (plus or minus 2) pieces of

information in their short term memory. You can reduce short term memory load
by designing screens where options are clearly visible, or using pull-down menus
and icons.

157

Appendix E

High-level Requirements
Specification

Table E.1: High-level Requirements Specification
ID Requirement

FR1 The tool must allow the creation of artifacts, as specified
in TRACY.

FR2 The tool must allow modification of existing artifacts.
FR3 The tool must be able to record traces between artifacts as

specified in TRACY, and must support different trace types.
FR4 Automatic detection of traces must be employed when possible.
FR5 The tool must be able to visually represent the recorded trace

information to its users.
FR6 The visual representation of the trace information should consist

of several views, each representing the trace information
differently.

FR7 The tool must implement a search function, enabling users to
search for specific traces.

NFR1 The tool must store all trace information persistently.
NFR2 The tool should be easily adaptable to its current environment.
NFR3 The tool must be platform-independent.
NFR4 The tool must be scaleable, enabling it to handle small and large

amounts of trace information equally well.
NFR5 The tool must make sure the necessary trace information is

gathered, without imposing the user.
NFR6 The user must be able to record and find the desired trace

information easily and quickly.

158

Appendix F

Full Requirements Specification

F.1 External interface requirements

F.1.1 User interface requirements

Table F.1: User Interface Requirement - Window-based application

Attribute Contents

Tag ExternalInterface.UserInterface.WindowApplication

Title Window-based application

Description The product must be usable through a window-based application.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Table F.2: User Interface Requirement - Feedback

Attribute Contents

Tag ExternalInterface.UserInterface.Feedback

Title Provide user with feedback

Description Each task must, when completed, provide the user with feedback describing
the results of the previous user action.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

159

Chapter F. Full Requirements Specification

Table F.3: User Interface Requirement - Navigation

Attribute Contents

Tag ExternalInterface.UserInterface.Navigation

Title Navigation

Description The user must be able to navigate within the system.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Sub-
functions

ExternalInterface.UserInterface.Navigation.Location
ExternalInterface.UserInterface.Navigation.Escape
ExternalInterface.UserInterface.Navigation.Menu
ExternalInterface.UserInterface.Navigation.Menu.Logout

Table F.4: User Interface Requirement - Location

Attribute Contents

Tag ExternalInterface.UserInterface.Navigation.Location

Title Location within system

Description The user must at all times be notified of the current location (i.e. which task
he is currently working on) within the system, also know as the current path.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Supra-
functions

ExternalInterface.UserInterface.Navigation

Table F.5: User Interface Requirement - Escape

Attribute Contents

Tag ExternalInterface.UserInterface.Navigation.Escape

Title Escaping system tasks

Description The system must always provide the user with navigation possibilities for es-
caping tasks in progress.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Supra-
functions

ExternalInterface.UserInterface.Navigation

160

F.1. External interface requirements

Table F.6: User Interface Requirement - Menu

Attribute Contents

Tag ExternalInterface.UserInterface.Navigation.Menu

Title Navigation Menu

Description The system must always provide the user with a navigation menu enabling the
user to select any major navigational choices, consisting of traceability stages,
artifacts, traces, and visualisations .

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Supra-
functions

ExternalInterface.UserInterface.Navigation

Sub-
functions

ExternalInterface.UserInterface.Navigation.Menu.Logout

Table F.7: User Interface Requirement - Logout

Attribute Contents

Tag ExternalInterface.UserInterface.Navigation.Menu.Logout

Title User logging off

Description The navigation meny must contain the choice of logging out of the system.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Supra-
functions

ExternalInterface.UserInterface.Navigation.Menu

Table F.8: User Interface Requirement - Eight Golden Rules of
HCI Design

Attribute Contents

Tag ExternalInterface.UserInterface.GoldenRules

Title The Eight Golden Rules of HCI Design

Description The design of the user interfaces must comply with the eigth golden rules of
humancomputer interface design (as defined in Appendix D).

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

161

Chapter F. Full Requirements Specification

F.1.2 Hardware interfaces

Table F.9: Hardware Interface Requirement - Hardware Indepen-
dency

Attribute Contents

Tag ExternalInterface.HardwareInterface.HardwareIndependency

Title Hardware Independency

Description The system is to be implemented in a hardware-independent fashion, and
should not rely on any particular hardware interface.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

F.1.3 Software interfaces

Table F.10: Software Interface Requirement - Application Server

Attribute Contents

Tag ExternalInterface.SoftwareInterface.ApplicationServer

Title Application Server

Description The system requires a underlying application server, providing an environment
in which the system will run. The application server will serve as a front-end
to clients, offering its services and handling all communication, thus shielding
the system from the implementation of communication interfaces.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Table F.11: Software Interface Requirement - Database Server

Attribute Contents

Tag ExternalInterface.SoftwareInterface.DatabaseServer

Title Database Server

Description The system requires a back-end database server, providing persistant storage
of data.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

162

F.2. Functional requirements

F.1.4 Communications interfaces

Table F.12: Communication Interface Requirement - Underlying
Communication

Attribute Contents

Tag ExternalInterface.CommunicationsInterface.UnderlyingCommunication

Title Underlying Communication

Description No external communication interfaces are required by the system, as all such
communication are handled by the underlying application server.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

F.2 Functional requirements

F.2.1 Traceability projects

Table F.13: Functional Requirement - Create a new project

Attribute Contents

Tag Functional.ManagingProjects.CreateNewProject

Title Create a new project

Description The administrative user must be able to create a new project with a given
name.

Version 1

Stakeholder Administrative user
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication

Table F.14: Functional Requirement - Remove a project

Attribute Contents

Tag Functional.ManagingProjects.RemoveProject

Title Remove a project

Description The administrative user must be able to remove a project, deleting all trace
information associated with the project.

Version 1

Continued on next page

163

Chapter F. Full Requirements Specification

Table F.14 – continued from previous page
Attribute Contents

Stakeholder Administrative user
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.ManagingProjects.CreateNewProject

Table F.15: Functional Requirement - Attach users with project

Attribute Contents

Tag Functional.ManagingProjects.AttachUsers

Title Attach users to a project

Description The administrative user must be able to attach users to a project, and remove
users from a project.

Version 1

Stakeholder Administrative user
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.ManagingProjects.CreateNewProject
Functional.Administrative.MaintainingUserList

Table F.16: Functional Requirement - Choose project to work with

Attribute Contents

Tag Functional.WorkingWithProjects.ChooseProject

Title Choose project to work with

Description The user must be able to choose which project her or she wishes to work with.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.ManagingProjects

164

F.2. Functional requirements

Table F.17: Functional Requirement - Exit project

Attribute Contents

Tag Functional.WorkingWithProjects.ExitProject

Title Exit project

Description The user must be able to quit working with a specific project, thus exiting the
project.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects.ChooseProject

Table F.18: Functional Requirement - Determine Traceability
Stage

Attribute Contents

Tag Functional.WorkingWithProjects.DetermineTraceabilityStage

Title Determine traceability stage

Description The user must be able to switch between the traceability stages of the trace-
ability model, i.e. between the pre-RS traceability, pre-FRS traceability, and
post-FRS traceability stage.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects.ChooseProject

Table F.19: Functional Requirement - Navigating the trace infor-
mation

Attribute Contents

Tag Functional.WorkingWithProjects.NavigateTraceInformation

Title Navigating the trace information

Description The user must be able to navigate through the available trace information,
viewing artifacts and traces and their belonging trace information.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects

165

Chapter F. Full Requirements Specification

F.2.2 Gathering trace information

Table F.20: Functional Requirement - Creating an artifact instance

Attribute Contents

Tag Functional.CreatingArtifacts.CreatingAnArtifactInstance

Title Creating an artifact instance

Description The system must allow the user to create instances of any of the artifacts
modelled in TRACY, requesting the required trace information, and thereafter
storing it persistently.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects.DetermineTraceabilityStage

Table F.21: Functional Requirement - Choosing a starting artifact
instance

Attribute Contents

Tag Functional.CreatingTraces.ChoosingStartingArtifactInstance

Title Choosing starting artifact instance

Description The system must allow the user to choose a starting artifact instance for a
trace, deciding among existing artifact instances in the determined traceability
stage.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts

Table F.22: Functional Requirement - Choosing a ending artifact
instance

Attribute Contents

Tag Functional.CreatingTraces.ChoosingEndingArtifactInstance

Title Choosing ending artifact instance

Description The system must allow the user to choose an ending artifact instance for a
trace, deciding among a list of existing artifact instances. This list must be
made up of only the artifacts that can be connected to the chosen starting
artifact, as determined in the traceability model.

Continued on next page

166

F.2. Functional requirements

Table F.22 – continued from previous page
Attribute Contents

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces.ChoosingStartingArtifactInstance

Table F.23: Functional Requirement - Registering auxiliary trace
information

Attribute Contents

Tag Functional.CreatingTraces.RegisteringAuxiliaryTraceInformation

Title Register auxiliary trace information

Description The system must request any required auxiliary traceability information in
accordance with the internal representation of the chosen trace, and store the
trace.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces.ChoosingStartingArtifactInstance
Functional.CreatingTraces.ChoosingEndingArtifactInstance

F.2.3 Maintaining trace information

Table F.24: Functional Requirement - Choose artifact to edit

Attribute Contents

Tag Functional.EditingArtifacts.ChooseArtifactToEdit

Title Choose artifact to edit

Description The user must be able to edit a selected aritfact instance.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts

167

Chapter F. Full Requirements Specification

Table F.25: Functional Requirement - Save changes to edited arti-
fact instance

Attribute Contents

Tag Functional.EditingArtifacts.SaveChangesToArtifactInstance

Title Save changes to edited artifact instance

Description Any changes to an existing artifact instance during edit must be saved by the
system when requested by the user.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.EditingArtifacts.ChooseArtifactToEdit

Table F.26: Functional Requirement - Choose artifact to delete

Attribute Contents

Tag Functional.DeletingArtifacts.ChooseArtifactToDelete

Title Choose artifact to delete

Description The user must be able to delete any artifact instance, and then be presented
with a request for confirmation of deletion, in which the user can either ac-
knowledge or renounce the request for deletion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts

Table F.27: Functional Requirement - Choose trace to edit

Attribute Contents

Tag Functional.EditingTraces.ChooseTraceToEdit

Title Choose trace to edit

Description The user must be able to request that a selected trace is to be edited, and then
be presented with a list of alternative artifact instances of the same categories
as the previous artifact instances. An editable version of the existing auxiliary
trace information of the selected trace must also be presented to the user.

Version 1

Stakeholder User
Architect
Developer
Tester

Continued on next page

168

F.2. Functional requirements

Table F.27 – continued from previous page
Attribute Contents

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

Table F.28: Functional Requirement - Save changes to edited traces

Attribute Contents

Tag Functional.EditingTraces.SaveChangesToTrace

Title Save changes to edited traces

Description Any changes to an existing trace during edit must be saved by the system
when requested by the user.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.EditingTraces.ChooseTraceToEdit

Table F.29: Functional Requirement - Choose trace to delete

Attribute Contents

Tag Functional.DeletingTraces.ChooseTraceToDelete

Title Choose trace to delete

Description The user must be able to delete a selected artifact instance, and then be
presented with a request for confirmation of deletion, in which the user can
either acknowledge or renounce the request for deletion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

169

Chapter F. Full Requirements Specification

Table F.30: Functional Requirement - System-initiated trace dele-
tion

Attribute Contents

Tag Functional.DeletingTraces.SystemInitiatedTraceDeletion

Title System-initiated trace deletion

Description The system itself must be able to request a deletion of a trace, when deleting an
artifact, without having to acknowledge or renounce the request for deletion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

Table F.31: Functional Requirement - Searching trace information

Attribute Contents

Tag Functional.SearchingTraceInformation

Title Searching Trace Information

Description The system must be able to list information that contains part of or all search
terms listed by a user, and the hit ratio of the search must be at least 80 %,
meaning that at least 80 % of the result set of the search must be related to
the search terms listed by the user.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

F.2.4 Visualising trace information

Table F.32: Functional Requirement - Requesting visualisation of
single artifacts or traces

Attribute Contents

Tag Functional.PredeterminedVisualisations.RequestingSimpleVisualisation

Title Requesting visualisation of single artifacts or traces

Description The user must be able to request a visualisation of a single artifact or trace,
selected by the user.

Version 1

Continued on next page

170

F.2. Functional requirements

Table F.32 – continued from previous page
Attribute Contents

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces
Functional.PredeterminedVisualisations.SimpleVisualisations

Table F.33: Functional Requirement - Requesting complex visual-
isations

Attribute Contents

Tag Functional.PredeterminedVisualisations.RequestingComplexVisualisation

Title Requesting complex visualisations

Description The user must be able to request predetermined visualisations of complex
relationships within the traceability models, including several artifact instances
and traces. The user should choose from a list of predetermined visualisations.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces
Functional.PredeterminedVisualisations.ComplexVisualisations

Table F.34: Functional Requirement - Simple predetermined visu-
alisations

Attribute Contents

Tag Functional.PredeterminedVisualisations.SimpleVisualisations

Title Simple predetermined visualisations

Description The system must contain a predetermined set of simple visualisations, cor-
responding to the artifacts and traces of the traceability models, to be used
when the user requests a visualisation of a single artifact or trace.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

171

Chapter F. Full Requirements Specification

Table F.35: Functional Requirement - Complex predetermined vi-
sualisations

Attribute Contents

Tag Functional.PredeterminedVisualisations.ComplexVisualisations

Title Complex predetermined visualisations

Description The system must contain a predetermined set of complex visualisations, visu-
alising an assortment of the artifacts and traces of the traceability models.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

Table F.36: Functional Requirement - Adapting simple visualisa-
tions

Attribute Contents

Tag Functional.CustommadeVisualisations.AdaptingSimpleVisualisations

Title Adapting simple visualisations

Description The system must provide the ability to add filters to the predetermined set of
simple visualisations, enabling the user to impose regulations on the displayed
information, thus creating an adapted (custom-made) simple visualisation.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces
Functional.PredeterminedVisualisations

Table F.37: Functional Requirement - Creating custom-made com-
plex visualisations

Attribute Contents

Tag Functional.CustommadeVisualisations.CreatingComplexVisualisations

Title Creating custom-made complex visualisations

Description The user must be able to create custom-made complex visualisations of a set
of user-specified artifacts and traces.

Version 1

Continued on next page

172

F.2. Functional requirements

Table F.37 – continued from previous page
Attribute Contents

Stakeholder User
Architect
Developer
Tester

Priority Low

Risk Low

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces

Sub-
functions

Functional.CustommadeVisualisations.CreatingComplexVisualisations.
ChooseStartingAndEndingArtifact

Table F.38: Functional Requirement - Choosing starting and end-
ing artifact of complex custom-made visualisations

Attribute Contents

Tag Functional.CustommadeVisualisations.CreatingComplexVisualisations.
ChooseStartingAndEndingArtifact

Title Choosing starting and ending artifact of complex custom-made visualisations

Description When creating a custom-made complex visualisations, the user must be able
to specify a starting artifact instance from a set of existing instances. The
system must provide a list of possible ending artifact instances based on the
traceability models, and the user must be able to choose one of these, causing
the system to generate a custom-made complex visualisation.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Low

Risk Low

Dependencies Functional.Administrative.UserAuthentication
Functional.CreatingArtifacts
Functional.CreatingTraces
Functional.CustommadeVisualisations.CreatingComplexVisualisations

Supra-
functions

Functional.CustommadeVisualisations.CreatingComplexVisualisations

F.2.5 Help and assistance

Table F.39: Functional Requirement - Help Messages

Attribute Contents

Tag Functional.Help.Messages

Title Help Messages

Description Help must be available for all tasks within the product. If tasks are attemp-
tively performed incorrectly, the product must present the user with a message
explaining the problem, shedding light on how the task is to be performed cor-
rectly.

Continued on next page

173

Chapter F. Full Requirements Specification

Table F.39 – continued from previous page
Attribute Contents

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Dependencies Functional.Administrative.UserAuthentication

Table F.40: Functional Requirement - Help Menu

Attribute Contents

Tag Functional.Help.Menu

Title Help Menu

Description The user must be able to look through a help menu describing all tasks of the
system, and how these are executed.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Dependencies Functional.Administrative.UserAuthentication

Sub-
functions

Functional.Help.Menu.Search

Table F.41: Functional Requirement - Search Help Menu

Attribute Contents

Tag Functional.Help.Menu.Search

Title Help Menu

Description The user must be able to search through the help menu, in order to locate
help instructions without having to look trough all of them.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Dependencies Functional.Administrative.UserAuthentication
Functional.Help.Menu

Supra-
functions

Functional.Help.Menu

174

F.2. Functional requirements

F.2.6 Administrative functions

Table F.42: Functional Requirement - Adding a user

Attribute Contents

Tag Functional.Administrative.MaintainingUserList.AddingUser

Title Adding a user

Description An administrative user must be able to add a user to the user list, specifying
the granted access level, as well as a username and password.

Version 1

Stakeholder Administrative user
Architect
Developer
Tester

Priority High

Risk High

Dependencies Functional.Administrative.UserAuthentication

Table F.43: Functional Requirement - Removing a user

Attribute Contents

Tag Functional.Administrative.MaintainingUserList.RemovingUser

Title Removing a user

Description An administrative user must be able to remove a user from the user list.

Version 1

Stakeholder Administrative user
Architect
Developer
Tester

Priority Medium

Risk Medium

Dependencies Functional.Administrative.UserAuthentication
Functional.Administrative

Table F.44: Functional Requirement - Changing user password

Attribute Contents

Tag Functional.Administrative.MaintainingUserList.ChangingPassword

Title Changing password

Description An administrative user and regular users must be able to change their own
password. In addition, an administrative user must be able to change the
password of all other users, in case of forgotten passwords.

Version 1

Stakeholder Administrative user
Regular user
Architect
Developer
Tester

Priority High

Risk Medium

Dependencies Functional.Administrative.UserAuthentication
Functional.Administrative

175

Chapter F. Full Requirements Specification

Table F.45: Functional Requirement - Changing access level

Attribute Contents

Tag Functional.Administrative.MaintainingUserList.ChangingAccessLevel

Title Changing access level

Description An administrative user must be able to change the access level of all other
users.

Version 1

Stakeholder Administrative user
Architect
Developer
Tester

Priority Medium

Risk Low

Dependencies Functional.Administrative.UserAuthentication
Functional.Administrative

Table F.46: Functional Requirement - User Authentication

Attribute Contents

Tag Functional.Administrative.UserAuthentication

Title User Authentication

Description A user must log in by providing a username and password for authentication
before being given access to system resources. If login succeeded, the user is
granted his or her prespecified access level and shown the list of projects he or
she is attached to. If login failed, the user is notified and access is not granted.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

Dependencies Functional.Administrative

F.3 Performance requirements

F.3.1 Throughput

Table F.47: Performance Requirement - Throughput: Number of
simultaneously active users

Attribute Contents

Tag Nonfunctional.Performance.Throughput.ActiveUsers

Title Throughput: Number of simulatenously active users

Description The system must support at least 50 simultaneously active users, where an
active user represents a logged-in user performing tasks within the system.

Continued on next page

176

F.3. Performance requirements

Table F.47 – continued from previous page
Attribute Contents

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition A high level of simultaneous users, without violating any other performance
requirements.

Scale Number of simultaneously active users

Targets Goal: 70
Stretch: 100
Wish: 150

Constraints Fail: 30
Survival: 40

Rationale The goal was set at 70 simultaneous users so that the system can be employed
by both small projects (with perhaps 0-10 participants) and large projects
(with perhaps 20-100 participants). The number of supported simultaneous
users does not need to equal the number of participants in the project, as not
all participants in a software development project partake in the traceability
processes.

Table F.48: Performance Requirement - Throughput: Number of
requests to system

Attribute Contents

Tag Nonfunctional.Performance.Throughput.SystemRequests

Title Throughput: Number of requests to system

Description The throughput of system requests must be at least 50 processed requests per
second.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition A high throughput in number of processed system requests.

Scale Number of processed requests per time unit

Targets Goal: 50 processed requests per second
Stretch: 100 processed requests per second
Wish: 150 processed requests per second

Constraints Fail: 20 processed requests per second
Survival: 35 processed requests per second

Rationale The number of requests processed by a system per second is highly fluctuating,
depending on the type of requests, and how many other requests are present
in the system. A higher load often deteriorates the throughput. The number
of processed requests is also dependent upon the application server.

177

Chapter F. Full Requirements Specification

Table F.49: Performance Requirement - Throughput: Number of
requests to database

Attribute Contents

Tag Nonfunctional.Performance.Throughput.DatabaseRequests

Title Throughput: Number of requests to database

Description The throughput of database requests must be at least 15 processed requests
per second.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition A high throughput in number of processed database requests, both when stor-
ing and fetching trace information.

Scale Number of processed database requests per time unit

Targets Goal: 15 processed requests per second
Stretch: 30 processed requests per second
Wish: 70 processed requests per second

Constraints Fail: 5 processed requests per second
Survival: 10 processed requests per second

Rationale The number of requests processed by a database per second is highly fluctu-
ating, depending on the type of requests, type of database, and which perfor-
mance improvements have been implemented on the database server.

F.3.2 Response time

Table F.50: Performance Requirement - Response time: User re-
quests

Attribute Contents

Tag Nonfunctional.Performance.ResponseTime.UserRequests

Title Response time: User requests

Description The response time for requests from the user to the system, including any
system-generated requests to the database, should not exceed 5 seconds, as
this increases the chance of user exhaustion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Ambition A short response time that will help removing the risk of user exhaustion.

Scale The mean average speed to perform a defined task when requested.

Targets Goal: 5 seconds
Stretch: 2 seconds
Wish: 1 second

Constraints Fail: 10 seconds
Survival: 7 seconds

Rationale User exhaustion occurs after approximately 3-5 seconds, according to [Shn98a].

178

F.3. Performance requirements

Table F.51: Performance Requirement - Response time: Database
requests

Attribute Contents

Tag Nonfunctional.Performance.ResponseTime.DatabaseRequests

Title Response time: Database requests

Description The response time for requests from the system to the database should not
exceed 3 seconds, as this increases the chance of user exhaustion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Ambition A short response time that will help removing the risk of user exhaustion.

Scale The mean average speed to perform a defined task when requested.

Targets Goal: 3 seconds
Stretch: 1 second
Wish: 0.5 seconds

Constraints Fail: 7 seconds
Survival: 5 seconds

Rationale User exhaustion occurs after approximately 3-5 seconds, according to [Shn98a].

Table F.52: Performance Requirement - Response time: Search

Attribute Contents

Tag Nonfunctional.Performance.ResponseTime.Search

Title Response time: Search

Description The results of a search initiated by the user must be displayed to the user
within at least 5 seconds, as this decreases the chance of user exhaustion.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Ambition A short response time that will help removing the risk of user exhaustion.

Scale The mean average speed to perform a defined task when requested.

Targets Goal: 5 seconds
Stretch: 2 seconds
Wish: 1 second

Constraints Fail: 10 seconds
Survival: 7 seconds

Rationale User exhaustion occurs after approximately 3-5 seconds, according to [Shn98a].

179

Chapter F. Full Requirements Specification

Table F.53: Performance Requirement - Response time: User au-
thentication

Attribute Contents

Tag Nonfunctional.Performance.ResponseTime.UserAuthentication

Title Response time: User authentication

Description When the user has requested an authentication, the system response must be
provided within 3 seconds.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Ambition A short response time that will help removing the risk of user exhaustion.

Scale The mean average speed to perform a defined task when requested.

Targets Goal: 3 seconds
Stretch: 1 seconds
Wish: 0.5 second

Constraints Fail: 10 seconds
Survival: 5 seconds

Rationale User exhaustion occurs after approximately 3-5 seconds, according to [Shn98a].

Table F.54: Performance Requirement - Response time: Visualisa-
tions

Attribute Contents

Tag Nonfunctional.Performance.ResponseTime.Visualisations

Title Response time: Visualisations

Description The response time for generating visualisations of artifacts specified by the
user must not exceed 7 seconds.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Ambition A short response time that will help removing the risk of user exhaustion.

Scale The mean average speed to perform a defined task when requested.

Targets Goal: 7 seconds
Stretch: 3 seconds
Wish: 1 second

Constraints Fail: 10 seconds
Survival: 7 seconds

Rationale User exhaustion occurs after approximately 3-5 seconds, according to [Shn98a].

180

F.3. Performance requirements

F.3.3 Storage capacity

Table F.55: Performance Requirement - Storage capacity: Regis-
tered users

Attribute Contents

Tag Nonfunctional.Performance.StorageCapacity.RegisteredUsers

Title Storage capacity: Registered users

Description

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition Providing a system that in normal mode can be employed by an extensive
number of users.

Scale The capacity to store defined units under defined conditions

Targets Goal: 500
Stretch: 700
Wish: 1000

Constraints Fail: 70
Survival: 200

Rationale By allowing the system to register at least 200 users, and preferable at least 500
users, the tool can be employed by large software development organisations,
introducing all the benefits of requirements traceability.

Table F.56: Performance Requirement - Storage capacity: Trace
information

Attribute Contents

Tag Nonfunctional.Performance.StorageCapacity.TraceInformation

Title Storage capacity: Trace information

Description The system must be able to store at least 2000 artifacts of each kind and their
belonging traces.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Low

Ambition Providing an apparently endless storage facility for trace information.

Scale The capacity to store defined units under defined conditions.

Targets Goal: 2000 instances of each artifact category, with trace
Stretch: 4000 instances of each artifact category, with traces
Wish: 1000 instances of each artifact category, with traces

Constraints Fail: 500 instances of each artifact category, with traces
Survival: 1000 instances of each artifact category, with traces

Rationale Enabling the system to store large amounts of data is not difficult, as the
database can easily be expanded. Ensuring valid response times and through-
put when the system grows could prove difficult, this is a potential trade-off.

181

Chapter F. Full Requirements Specification

F.4 Design constraints

F.4.1 Standards compliance

Table F.57: Design Constraint - Architectural description

Attribute Contents

Tag NonFunctional.DesignConstraints.StandardsCompliance.ArchitecturalDescription

Title Architectural description

Description The architectural description of the system must comply with the IEEE stan-
dard 1471-2000 [IEEmla].

Version 1

Stakeholder Architect

Priority High

Risk Medium

F.4.2 Hardware limitations

Table F.58: Design Constraint - Hardware limitations

Attribute Contents

Tag NonFunctional.DesignConstraints.HardwareLimitations

Title Hardware limitations

Description The system must be able to be deployed, run, and tested on a regular desktop
computer with an installation of an application server and a database server,
with a minimum of 1 GB internal memory, a CPU of at least 1 GHz, and a
minimum of 1 GB of available space on a disk.

Version 1

Stakeholder Architect
Developer
Tester

Priority Medium

Risk Low

Rationale The given specifications are the specifications of a modern desktop computer,
and will most likely be superdimensioned in this context.

F.5 Software system attributes

F.5.1 Functionality

Table F.59: Software System Attribute - Nonrepudiation

Attribute Contents

Tag Nonfunctional.Attribute.Security.Nonrepudiation

Title Nonrepudiation

Description Any transactions within the system during normal operation mode storing
trace information must be nonrepudiative by any party.

Continued on next page

182

F.5. Software system attributes

Table F.59 – continued from previous page
Attribute Contents

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Ambition Trace information stored by the system must be nonrepudiative, not allowing
any parties to deny the origin of the information, thus avoiding any false trace
information representations.

Scale Probability of detecting individual responsible for unauthorised modification
of data.

Targets Goal: 80 %
Stretch: 95 %
Wish: 99 %

Constraints Fail: 50 %
Survival: 70 %

Table F.60: Software System Attribute - Confidentiality

Attribute Contents

Tag Nonfunctional.Attribute.Security.Confidentiality

Title Confidentiality

Description Any data and services within the system must be protected from unauthorised
access in both normal and degraded operation mode.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition Trace information stored by the system, and the services provided by the
system must be impossible to access for illegitimate users in both normal and
degraded system operation mode.

Scale Probability of detecting individuals attempting unauthorised access.

Targets Goal: 95 %
Stretch: 99 %
Wish: 99.9 %

Constraints Fail: 85 %
Survival: 90 %

Table F.61: Software System Attribute - Auditing

Attribute Contents

Tag Nonfunctional.Attribute.Security.Auditing

Title Auditing

Description The usage of any services within the system in normal system operation mode
must be audited, as well as the storage of any trace information, registering
the information required to backtrack any actions when necessary.

Version 1

Continued on next page

183

Chapter F. Full Requirements Specification

Table F.61 – continued from previous page
Attribute Contents

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Ambition Any activity within the system must be possible to reconstruct.

Scale Amount of time required to restore data.

Targets Goal: 12 hrs
Stretch: 6 hrs
Wish: 1 hr

Constraints Fail: 24 hrs
Survival: 16 hrs

F.5.2 Reliability

Table F.62: Software System Attribute - Recoverability

Attribute Contents

Tag Nonfunctional.Attribute.Recoverability

Title Recoverability

Description When experiencing fatal error and subsequent downtime and degraded system
operation mode, the downtime of the system must be no more than 1 hour per
24 hours (mean time to recover)

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition A high degree of recoverability, allowing users to quickly regain access to the
application after a failure.

Scale Mean time to recover after failure, measured in hours.

Targets Goal: 1 hour
Stretch: 30 minutes
Wish: 10 minutes

Constraints Fail: 5 hours
Survival: 2 hours

Table F.63: Software System Attribute - Availability

Attribute Contents

Tag Nonfunctional.Attribute.Reliability.Availability

Title Availability

Description In normal system operation mode, and with a mean time to recover as specified
in NonFunctional.Attribute.Reliability.Recoverability, the availability rate (as
specified in Equation 12.1) must be at least 0.95

Version 1

Continued on next page

184

F.5. Software system attributes

Table F.63 – continued from previous page
Attribute Contents

Stakeholder User
Architect
Developer

Priority High

Risk High

Ambition A high degree of availability, allowing users to access the application whenever
desirable.

Scale
Mean time to f ailure

Mean time to f ailure + Mean time to recover
(F.1)

Targets Goal: 0.95
Stretch: 0.98
Wish: 1.00

Constraints Fail: 0.50
Survival: 0.70

F.5.3 Maintainability

Table F.64: Software System Attribute - Changeability

Attribute Contents

Tag Nonfunctional.Attribute.Maintainability.Changeability

Title Changeability

Description The system must be designed in a manner that lessens the effort of introducing
a change to the system.

Version 1

Stakeholder Architect
Developer

Priority High

Risk High

Ambition Ensuring fast and cost-effective introduction of changes to the system.

Scale Time spent by a developer (with the specified level of knowledge of the system’s
architecture and design) introducing a new component to the system (not
including time spent implementing the component itself)

Targets Goal: A developer with medium experience spends 3 hours introducing a new
component.
Stretch: A developer with some experience spends 3 hours introducing a new
component.
Wish: A developer with medium experience spends 1 hour introducing a new
component.

Constraints Fail: A developer with extensive experience spends 8 hours introducing a new
component.
Survival: A developer with medium experience spends 6 hours introducing a
new component.

Dependencies None

185

Chapter F. Full Requirements Specification

Table F.65: Software System Attribute - Testability

Attribute Contents

Tag Nonfunctional.Attribute.Maintainability.Testability

Title Testability

Description Preparing the system for unit testing of an implemented change, and perform-
ing the unit test must not require more resources than those specified below.

Version 1

Stakeholder Tester

Priority Medium

Risk Low

Ambition A system design that can be easily tested during and after development.

Scale The amount of effort required for setting up a unit test harness for the system
and performing the unit tests, measured in work hours.

Targets Goal: 3 hours.
Stretch: 1 hours

Wish: 15 minutes

Constraints Fail: 16 hours
Survival: 8 hours

F.5.4 Portability

Table F.66: Software System Attribute - Installability: Installation
costs

Attribute Contents

Tag Nonfunctional.Attribute.Portability.Installability.InstallationCosts

Title Installability

Description The cost of deploying the system must be acceptable to expert users of the
system.

Version 1

Stakeholder User
Architect
Developer

Priority Medium

Risk Low

Ambition The system must be deployable at acceptable cost by expert users, i.e. IT
professionals.

Scale Invested user effort, measured in simple user operations (e.g. a mouse click or
keystrokes), for deploying the system.

Targets Goal: Maximum 40 simple user operations
Stretch: Maximum 30 simple user operations
Wish: Maximum 15 simple user operations

Constraints Fail: 100 simple user operations
Survival: 60 simple user operations

186

F.5. Software system attributes

Table F.67: Software System Attribute - Installability: Time to
install

Attribute Contents

Tag Nonfunctional.Attribute.Portability.Installability.TimeToInstall

Title Portability

Description The cost, measured in time, of moving the system from an initial location to a
target location must be acceptable to the developing staff and the user group
(or customer).

Version 1

Stakeholder User
Architect
Developer

Priority High

Risk High

Ambition The system must be able to be relocated to a different environment without
disturbing the daily work to an unacceptable degree.

Scale Amount of time spent porting the system from the initial location to the target
location with the assistance of expert users.

Targets Goal: Maximum 1 hrs
Stretch: Maximum 0.5 hr
Wish: Maximum 0.25 hrs

Constraints Fail: More than 4 hrs
Survival: Maximum 2 hrs

Table F.68: Software System Attribute - Adaptability: Increase
number of simultaneous users

Attribute Contents

Tag Nonfunctional.Attribute.Portability.Adaptability
IncreaseNumberOfSimultaneousUsers

Title Adaptability: Increase number of simultaneous users

Description

Version 1

Stakeholder Architect
Developer
Tester

Priority High

Risk High

Ambition Cost-efficient addition of functionality for handling an increased number of
users.

Scale Invested user effort, measured in time, for increasing the number of simulta-
neous users within the system.

Targets Goal: Maximum 3 working days, i.e. 24 hrs
Stretch: Maximum 2 working days, i.e. 16 hrs
Wish: Maximum 1 working day, i.e. 8 hrs

Constraints Fail: More than 6 working days, i.e 48 hrs
Survival: Maximum 5 working days, i.e. 40 hours

Dependencies NonFunctional.Performance.Throughput.ActiveUsers
Functional.Administrative.UserAuthentication

187

Chapter F. Full Requirements Specification

Table F.69: Software System Attribute - Adaptability: Alterations
to the traceability model

Attribute Contents

Tag Nonfunctional.Attribute.Portability.Adaptability.Improveability.
AlterationsToTraceabilityModel

Title Adaptability: Alterations to the traceability model.

Description Improving the system by applying changes to the traceability model must be
accomblishable at an acceptable cost, measured in time.

Version 1

Stakeholder Architect
Developer
Tester

Priority Medium

Risk Medium

Ambition A system that easily handles changes to the core element of the system, i.e.
the traceability models.

Scale Invested user effort, measured in time, for applying changes to the traceability
model, where the changes include between 0 and 10 artifacts. For a greater
number of artifacts, the allowed amount of time spent applying the changes
can be doubled.

Targets Goal: Maximum 2 working days, i.e. 16 hrs
Stretch: Maximum 1 working days, i.e. 8 hrs
Wish: Maximum 0.5 working day, i.e. 4 hrs

Constraints Fail: More than 4 working days, i.e 32 hrs
Survival: Maximum 3 working days, i.e. 24 hours

F.5.5 Usability

Table F.70: Software System Attribute - Understandability

Attribute Contents

Tag Nonfunctional.Attribute.Usability.Understandability

Title Understandability

Description The amount of experience required to understand the overall application and
use of the system.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Medium

Risk Medium

Ambition The developed system shall not require extensive domain knowledge, i.e. ex-
tensive knowledge and/or previous experience with requirements traceability,
in order to be used efficiently.

Scale The defined level of knowledge required to understand and perform the basic
operations of the system

Targets Goal: Novice users with a minimum of 1 year experience with software devel-
opment, and knowledge of, but no experience with RT.
Stretch: Novice users with at least six months experience with software de-
velopment, but no previous experience with nor knowledge of RT.
Wish: Novice users with no previous experience with nor knowledge of soft-
ware development or RT.

Continued on next page

188

F.5. Software system attributes

Table F.70 – continued from previous page
Attribute Contents

Constraints Fail: Users with a minimum of 3 years experience with software development
and 1 year experience with RT.
Survival: Users with a minimum of 5 years experience with software devel-
opment and 2 years experience with RT, in addition to at least 1 encounter
with other RT tools.

Table F.71: Software System Attribute - Learnability

Attribute Contents

Tag Nonfunctional.Attribute.Usability.Learnability

Title Learnability

Description Novice users (users with no previous experience with the system apart from
training) with a maximum of 1 hour one-to-one training (one student, one
teacher) are required to execute a certain amount of the tasks of the system
with a specified degree of proficiency, as defined in the targets.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk Medium

Ambition A system that require little user training regardless of the entry level experience
of the user.

Scale The degree of training required for a defined user type to achieve a defined
degree of proficiency with the system.

Targets Goal: 1 hour of training for a novice user results in 90 % successfully accom-
plished tasks.
Stretch: 1 hour of training for a novice user results in 95 % successfully ac-
complished tasks.
Wish: 1 hour of training for a novice user results in 99 % successfully accom-
plished tasks.

Constraints Fail: 1 hour of training for a novice user results in 60 % successfully accom-
plished tasks.
Survival: 1 hour of training for a novice user results in 75 % successfully
accomplished tasks.

Table F.72: Software System Attribute - Operability: Visualisation
flexibility

Attribute Contents

Tag Nonfunctional.Attribute.Operability.VisualisationFlexibility

Title Visualisation Flexibility

Description The visualisations of trace information must in normal system operation mode
be adaptable by the users of the system, allowing enhanced system operability.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority Low

Continued on next page

189

Chapter F. Full Requirements Specification

Table F.72 – continued from previous page
Attribute Contents

Risk Low

Ambition The system must be easily operable in order to accommodate users in a wide
range of working situations.

Scale Invested user effort, measured in simple user operations (e.g. a mouse click or
a keystroke), for adapting trace information to current working situation.

Targets Goal: Maximum 6 simple user operations
Stretch: Maximum 4 simple user operations
Wish: Maximum 2 simple user operations

Constraints Fail: 15 simple user operations
Survival: 10 simple user operations

Dependencies Functional.CustommadeVisualisations

Table F.73: Software System Attribute - Operability: Change func-
tionality

Attribute Contents

Tag Nonfunctional.Attribute.Usability.Operability.SwitchFunctionality

Title Switch between functionality

Description A user must, in normal system operation mode, face acceptable costs when
changing focus between main system components, in order to work with dif-
ferent functionalities and tasks.

Version 1

Stakeholder User
Architect
Developer
Tester

Priority High

Risk High

Ambition Changing between the different functionalities of the system must represent
an unacceptable cost to the user.

Scale Invested user effort, measured in simple user operations (e.g. a mouse click or
a keystroke), for changing between the different functionalities of the system.

Targets Goal: Maximum 3 simple user operations
Stretch: Maximum 2 simple user operations
Wish: Maximum 1 simple user operations

Constraints Fail: 5 simple user operations
Survival: 4 simple user operations

Dependencies Functional.WorkingWithProjects

190

Appendix G

Use cases

Table G.1: Use case - User login

Comment

Use Case User login

Tag UseCase.UserLogin

Included
functional
requirements

Functional.Administrative.UserAuthentication

Actors User, system

Pre-
conditions

The user has opened a web browser and entered the URL of the application.

Main Success
Scenario

1: System presents user with a login window, requesting username and pass-
word.
2: User provides the required information.
3: System validates the information and checks the user access level.
4: System sets the appropriate access rights and grants the user access.
5: System redirects the user to the main page of the application.

Extensions 3a. User is not registered within the system.
.1: System denies the user access, and displays a rejection message to the user.
.2: User can retry login, or contact a system administrator for assistance.

Table G.2: Use case - Choose project

Comment

Use Case Choose project

Tag UseCase.ChooseProject

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects.ChooseProject
Functional.WorkingWithProjects.EscapeProject

Actors Regular user, system

Pre-
conditions

The user is logged in.

Main Success
Scenario

1: System presents user with a choice of the projects the user is attached to.
2: User selects the desired project.
3: System presents the traceability stages of the chosen project.
4: User chooses the desired traceability stage.

Continued on next page

191

Chapter G. Use cases

Table G.2 – continued from previous page
Comment

Extensions 3a. User has chosen the wrong project.
.1: User asks system to exit the current project.
.2: System exits the current project.
.3: Enter MMS at step 1.

Table G.3: Use case - Choose traceability stage

Comment

Use Case Choose traceability stage

Tag UseCase.ChooseTraceabilityStage

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkingWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage

Actors Regular user, system

Pre-
conditions

The user is logged in and has has chosen a project.

Main Success
Scenario

1: System presents user with a choice of the three traceability stages pre-RS
traceability, pre-FRS traceability, and post-FRS traceability.
2: User selects the desired stage.
3: System presents the tasks sorting under this traceability stage.

Extensions None

Table G.4: Use case - Working with artifacts

Comment

Use Case Working with artifacts

Tag UseCase.WorkingWithArtifacts

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage

Actors Regular user, system

Pre-
conditions

The user is logged in, has choosen a project, and has
chosen a traceability stage.

Main Success
Scenario

1: User informs system that he or she wishes to work with artifacts.
2: System presents a list of possible artifact actions.
3. User selects desired artifact action.

Extensions 3a: User cannot find the desired artifact action in the presented list.
.1: User uses the help functionality and searches through the help topics,
looking for the desired action.
.2: System presents the list of related help topics.
.3: User selects a suitable topic, or if no suitable topic is found, informs the
system of this.
.4: System informs the system administrator of the missing functionality.
.5: System administrator evaluates the missing functionality, and if deemed
necessary, forwards a change proposal to the RT tool development team. .6:
The development team implements the missing functionality.

192

Table G.5: Use case - Create an artifact

Comment

Use Case Create an artifact

Tag UseCase.CreateAnArtifact

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.CreatingArtifacts.CreateAnArtifactInstance

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage, then selected to work with artifacts.

Main Success
Scenario

1: User selects to create a new artifact.
2: System presents the artifact categories.
3: User selects which artifact type he or she wishes to create.
4: System presents the attributes belonging to the artifact type, prompting
the user to provide this information.
5: User provides the desired attributes of the artifact.
6: System saves the artifact.
7: System confirms the creation of the new artifact.

Extensions 6a. System fails to save the artifact due to incorrect user input .
.1: System notifies the user of the failure, specifying what went wrong and
how it could be corrected.
.2: User reattempts to save the artifact by correcting the specified errors.
.3: Enter MSS (Main Success Scenario) at step 6.
6b. System fails to save the artifact due to system error.
.1: System notifies the user of the failure, specifying that the error was caused
by the system and not the user. .2: System notifies the maintenance team of
the error, specifying which user experienced the problem .
.3: Maintenance team corrects the error, and informs the users that the error
have been corrected.
.4: Enter MSS at step 1.

Table G.6: Use case - Edit an existing artifact

Comment

Use Case Edit an existing artifact

Tag UseCase.EditAnArtifact

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.EditingArtifacts.ChooseArtifactToEdit
Functional.EditingArtifacts.SaveChangesToArtifactInstance

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage, then selected to work with artifacts.

Main Success
Scenario

1: User locates the artifact that is to be edited.
2: User informs system that this artifact shall be edited.
3: System presents existing details on artifact.
4: User performs desired changes.
5: System saves changes.
7: System confirms a successful save.

Continued on next page

193

Chapter G. Use cases

Table G.6 – continued from previous page
Comment

Extensions 6a. System fails to save the artifact due to incorrect user input .
.1: System notifies the user of the failure, specifying what went wrong and
how it could be corrected.
.2: User reattempts to save the artifact by correcting the specified errors.
.3: Enter MSS at step 6.
6b. System fails to save the artifact due to system error.
.1: System notifies the user of the failure, specifying that the error was caused
by the system and not the user. .2: System notifies the maintenance team of
the error, specifying which user experienced the problem .
.3: Maintenance team corrects the error, and informs the users that the error
have been corrected.
.4: Enter MSS at step 1.

Table G.7: Use case - Delete an existing artifact

Comment

Use Case Delete an existing artifact

Tag UseCase.DeleteExistingArtifact

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.DeletingArtifacts.ChooseArtifactToDelete
Functional.DeletingTraces.SystemInitiatedTraceDeletion

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage, then selected to work with artifacts.

Main Success
Scenario

1: User locates the artifact that is to be deleted.
2: User informs system that this artifact shall be deleted.
3: System asks the user for a confirmation of deletion.
4: User provides the necessary confirmation.
5: System deletes the artifact, and any belonging traces.
7: System confirms a successful deletion.

Extensions 4a. User aborts the deletion of the artifact.
.1: System confirms that the artifact was not deleted.
.2: System forwards user to the view of the artifact.

Table G.8: Use case - Locate an existing artifact

Comment

Use Case Locate an existing artifact

Tag UseCase.LocateAnExistingArtifact

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.WorkingWithProjets.NavigatingTraceInformation
Functional.SearchingTraceInformation

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage, then selected to work with artifacts.

Continued on next page

194

Table G.8 – continued from previous page
Comment

Main Success
Scenario

1: System presents a list of the existing categories of artifacts.
2: User chooses the desired category of artifact.
3: User chooses to search for the desired artifact.
4: User enters keywords into a search field.
5: System presents the search results, limited to artifacts within the chosen
category.
6: User selects the desired artifact.
7: System presents the information stored within the artifact.

Extensions 2a. User chooses to search for the desired artifact.
.1: User enters keywords into a search field.
.2: System presents the search results, limited to artifacts.
.3: Enter MSS at step 3.

Table G.9: Use case - Add a trace between artifacts

Comment

Use Case Add a trace between artifacts

Tag UseCase.AddTrace

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.CreatingTraces

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, has
chosen the desired traceability stage, and then indicated that he or she
wishes to work with artifacts.

Main Success
Scenario

1: User notifies the system that he or she wishes to register a trace. 2: System
presents the user with the artifacts that are possible to trace between, accord-
ing to the model representing the chosen traceability stage (pre-conditions).
3: User selects an artifact.
4: System presents the possible artifacts that the chosen artifact can be linked
to.
5: User chooses the desired second artifact.
6: System presents any attributes that requires filling out.
7: User provides any required attribute information.
8: System creates a trace between the two artifacts.

Extensions 2a. No artifacts have yet been registered in the system.
.1: System notifies the user.
.2: User aborts the registration of a trace.
.3: System forwards user to the visualisations of existing traces.

Table G.10: Use case - Delete a trace between artifacts

Comment

Use Case Delete a trace between artifacts

Tag UseCase.DeleteTrace

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.DeletingTraces

Actors Regular user, system

Continued on next page

195

Chapter G. Use cases

Table G.10 – continued from previous page
Comment

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage.

Main Success
Scenario

1: User informs system that he or she wishes to delete a trace.
2: System presents the user a list of traces belonging to the current traceability
stage, sorted after the artifacts they connect.
3: User selects a trace.
4: System requests a confirmation that this trace is to be deleted.
5: User provides the necessary confirmation.
6: System deletes the trace.
7: System confirms a successful deletion.
8: System forwards the user to the visualisation of existing traces.

Extensions 4a. User aborts deletion of the trace.
.1: System confirms that the trace was not deleted.
.2: Enter MSS at step 8.
6a. System fails to delete trace.
.1: System informs user that the deletion failed, and that the trace still exists.
.2: Enter MSS at step 8.

Table G.11: Visualise trace information

Comment

Use Case Visualise trace information

Tag UseCase.VisualiseTraceInformation

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.DetermineTraceabilityStage
Functional.PredeterminedVisualisations
Functional.CustommadeVisualisations

Actors Regular user, system

Pre-
conditions

The user is logged in, has chosen a project, and has
chosen the desired traceability stage.

Main Success
Scenario

1: User selects to visualise traceability data.
2: System asks the user to choose between a pre-defined visualisations or
creating custom-made visualisations.
3: User selects to create a custom-made visualisation.
4: System presents a list of starting artifact categories.
5: User selects one of these starting categories.
6: System presents the artifacts belonging to the chosen category.
7: User selects the desired start artifact.
8: System presents a list of potential ending artifact categories.
9: User selects one of these ending categories.
10: System presents the visualisation.

Extensions None

Table G.12: Use case - Search through trace information

Comment

Use Case Search through trace information

Tag UseCase.SearchTraceInformation

Continued on next page

196

Table G.12 – continued from previous page
Comment

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.WorkinWithProjects.ChooseProject
Functional.WorkingWithProjects.NavigateTraceInformation
Functional.SearchingTraceInformation

Actors Regular user, system

Pre-
conditions

The user is logged in, and has chosen a project.

Main Success
Scenario

1: User enters keywords into the search field.
2: System searches through trace information, building a result set containing
references to the keywords
3: System presents the result set to the user.

Extensions 3a. The result set is empty.
.1: System notifies user that his or her keywords didn’t have any hits within
the trace information
.2: System allows the user to enter a new query into the search field.

Table G.13: Use case - Creating a project

Comment

Use Case Create a project

Tag UseCase.CreateProject

Included
functional
requirements

Functional.Administrative.UserAuthentication
Functional.ManagingProjects.CreateNewProject
Functional.ManagingProjects.AttachUsers

Actors Administrative user, system

Pre-
conditions

The user is logged in.

Main Success
Scenario

1: User notifies system that a project is to be created.
2: System asks user for the name of the new project.
3: User states the name of the new project.
4: System creates a new project with the name specified by the user, and
informs the user of the results of its action.
5: User tells system to attach users to the project.
6: System presents a list of users registered within the system.
7: User selects the users that are to be attached to the system.
8: System attaches the users, and informs the user of the results of its action.

Extensions 6a. No users are registered within the system other than the administrative
user performing the task.
.1: System informs user that no other users exist and allows user to
register a user within the system.
8a: User discovers the wrong users have been attached to the project.
.1: User asks system to remove the incorrect user(s).
.2: System removes the specified user(s).
.3: System presents user with the list of currently attached users.

Table G.14: Use case - Register a user

Comment

Use Case Register a user within the system

Tag UseCase.RegisterUser

Continued on next page

197

Chapter G. Use cases

Table G.14 – continued from previous page
Comment

Included
functional
requirements

Functional.Administrative

Actors Administrative user, system

Pre-
conditions

The user is logged in.

Main Success
Scenario

1: User notifies system that a new user is to be registered.
2: System asks user to specify the username, password and access level of the
new user.
3: User states the required information and asks system to store the informa-
tion.
4: System registers a new user with the attributes specified by the user and
presents the stored results to the user.

Extensions 4a. System cannot register a new user because a user with the specified at-
tributes already exists.
.1: System informs the user of the problem, and asks the user to enter a new
username, password and access level.
.2: Enter MSS at step 3.

Table G.15: Use case - Search through help directory

Comment

Use Case Search through help directory

Tag UseCase.SearchHelpDirectory

Included
functional
requirements

Functional.Help

Actors User, system

Pre-
conditions

The user is logged in, and have a problem with figuring out how to register
new artifacts.

Main Success
Scenario

1: User asks system for the help directory.
2: System displays the help directory, allowing the user to look through the
topics, as well as searching for interesting topics by entering key words.
3: User enters the key word “artifact”, and requests system to search for topics
including this key word.
4: System searches through topics and lists the results.
5: User look through topics and finds a topic concerning the creation of arti-
facts.

Extensions 4a. System finds no topics including the given key word.
.1: System displays an error message to the user, stating that no topics were
found.
.2: User asks system to perform another search.
.3: Enter MSS at step 2.

198

Appendix H

Prototype development

H.1 Prototype design

The prototype can be described as two abstract components, where one encapsulates the other.
The outer component, referred to as the administrative component, provides functionality for
creating and managing projects within the RT tool, whilst the inner component, referred to as
the project component, provides functionality for working with specific projects. Complying
with a simplified Model-View-Controller design pattern, the administrative component uses
the Tool Model of Figure 18.3 as its underlying model, whilst the project component uses the
Domain Model shown in the same figure. The views and controller are combined, implemented
in a number of JSP files, organised according to Figure H.1.

Figure H.1 primarily shows the organisations of the JSP files into folders, but some select JSP
files have been included in the file hierarchy. JSP fragments (fragments of JSP code meant to
be included in complete JSP files) are used to include banners and navigation functionality on
every page, these files are stored in the WEB-INF folder, which ensures that they cannot be
accessed unless they are included by a regular JSP file. JSP files acting as the controller and
views for the Tool Model are stored in the project and user folder, whilst the controller and
views of the Domain Model are stored in tool folder. The login screen (login.jsp) and welcome
screen (welcome.jsp) are stored directly under the root of the prototype, and are shown in the
bottom of Figure H.1. In addition, the style sheet determining the layout of the graphical user
interfaces is stored directly under the root (traceme_styles.css).

Figure H.2 presents the structure of the prototype, using the notation of UML class diagrams
(presented in Section 17.1). In the model shown in the figure, the boundaries of the project
component is illustrated by heavy dotted lines. The boundaries of the administrative component
is not shown, as the component constitutes the entire model. However, the Project object have
a special role, as shown in Figure H.2, the object exists in both components, aggregated by
the administrative component by the ProjectList, and displaying its content in the project
component.

The administrative component contains a list of projects, and provides functionality for ma-
nipulating this list and the properties of each project, and opening the contents of projects. In
addition, the administrative component keeps a list of registered users within the system, and
provides functionality for changing the attributes of a user, such as name password, and access
level. Users and projects are implemented as individual objects, and the web container of the
application server controls the administrative component by instantiating the ProjectList and
UserList object when the prototype is first deployed (using the ResourceManagerListener shown
in Figure 18.8). Only a single instance of these objects exist. The preRS, preFRS, and post-
FRS packages contain the domain model, sorted according to traceability stage. The detailed
specification of the domain model is given in Figure H.3 through H.5.

An instance of the Project object contains, in addition to a list of users attached to the project,
a set of artifacts instantiated from the domain objects of the domain model, sorted according

199

Chapter H. Prototype development

Figure H.1: Organisation of JSP files

200

H.1. Prototype design

Figure H.2: Prototype design

201

Chapter H. Prototype development

Figure H.3: Detailed specification of the domain object model - pre-RS

202

H.1. Prototype design

Figure H.4: Detailed specification of the domain object model - pre-FRS

203

Chapter H. Prototype development

Figure H.5: Detailed specification of the domain object model - post-FRS

204

H.2. Prototype installation

to the traceability stage they belong. This is accomplished by the artifact containers. Each
Project instance contains three containers, one for each traceability stage. The containers
are tailored to suit their traceability stage, and contains the sets of artifact instances, and
functionality for adding and removing instances. The containers are a part of the underlying
model, and keeps a record of the properties of contained artifact categories, as well as existing
traces between artifact categories. When adding new artifacts, an implementation of the domain
object is required, in addition to specifying the properties to the container, and any traces
including the new artifact. The container uses this information to automatically build new
views, e.g. forms for creating new artifact instances.

H.2 Prototype installation

The prototype is packaged as a WAR file, and must be deployed to an application server to be
accessed. Instructions for installing the Sun Java System Application Server, and then deploying
the prototype is given below (only for Windows). Detailed installation guides is provided by
Sun Microsystems, and can be found in the same location as the download location.

H.2.1 Downloading the Application Server

The Java EE bundle distributed by Sun Microsystems can be downloaded from

http://java.sun.com/javaee/downloads/index.jsp

To deploy and test the prototype, it is only required to download and install the Sun Java
System Application Server Platform. Individual download of the components can be found at
the bottom of the page, amongst them the application server.

H.2.2 Installing the Application Server

1. Navigate to the directory where you downloaded the .exe file.

2. Double-click the .exe file to start the installation program.

3. Follow the instructions on the wizard screens of the installation program.

4. In the Admin Configuration page (or at the command line), enter the following:

• Admin User Name - Name of the user who administers the server.

• Password - Admin user’s password to access the Admin Server (8-character mini-
mum).

• Prompt or Don’t Prompt for Administrator User Name - The user name can be
stored in a preferences file so that you do not have to provide it to perform admin-
istrative tasks.

• Admin Port - Administration port number for initial server instance.

• HTTP Port - Port number to access the default server instance.

• HTTPS Port - Secure port number to access the initial server instance.

5. Enter the directory where you want to install Application Server.

6. In the Installation Options page, select the options that you want.

7. Follow the instructions on the wizard screens of the installation program.

8. On the Ready to Install page choose Install Now.

9. After the installation completes, if you did not select the corresponding option on the
Installation Options screen, set the PATH environment variable to include the Application
Server install-dir/bin directory.

205

Chapter H. Prototype development

H.2.3 Starting the Application Server

You may have already started the server when you installed, using the Start Server button
on the last installation screen. However, if your server is not running, start it using the steps
below.

1. From the Start menu, choose Programs ⇒ Sun Microsystems ⇒ Application Server PE
9 ⇒ Start Default Server.

2. A command window appears showing initialization messages. When the server has
started, a message appears stating that the server has been started and is ready to
receive requests. The output also includes information on ports used by the Application
Server.

3. Press any key to dismiss the command window.

To verify that the server is running on your system, open a web browser and visit the URL
listed below.

http://localhost:8080

You should now see the server Welcome page.

H.2.4 Deploying the prototype

The thesis includes a ZIP file that contains the distributable prototype, packaged in a WAR
file, and the source code of the java libraries employed by the prototype (the implementation
of the underlying domain model).

1. Find the directory where the prototype WAR file is stored (named traceme.war)

2. Copy traceme.war to the install-dir/domains/domain1/autodeploy/ directory.

The prototype can now be accessed through a web browser by entering the URL listed below.

http://localhost:8080/traceme/

A note of caution

The prototype uses Cascading Style Sheets for controlling the layout of the application, i.e.,
the rendering of the HTML elements of the JSP pages. Web browsers from different vendors
interpret the styles of CSS differently, causing the prototype’s layout to be rendered differently,
depending on the used browser. Consequently, the prototype is optimised for viewing in the
Mozilla Firefox web browser [Fir], and should not be viewed in any other browser. The Firefox
web browser was chosen because it complies with the standards of CSS as defined by W3C
[sta].

206

Bibliography

[BCK05a] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
chapter 2, pages 38–40. Addison Wesley, 2005.

[BCK05b] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
chapter 11, pages 271–288. Addison Wesley, 2005.

[BDS+00] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.
SCRUM: A pattern language for hyperproductive software development. In Neil
Harrison, Brian Foote, and Hans Rohnert, editors, Pattern Languages of Program
Design 4, pages 637–652. Addison Wesley, 2000.

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[CK03] William Crawford and Jonathan Kaplan. J2EE Design Patterns, chapter 8, pages
143–152. O’Reilly, 2003.

[Coc05] Alistair Cockburn. Writing Effective Use Cases. The Agile Software Development
Series. Addison Wesley, 2005.

[CS99] P. Carstensen and K. Schmidt. Computer supported cooperative work: New chal-
lenges to systems design, 1999.

[da] Problem domain analysis.
http://en.wikipedia.org/wiki/problem domain analysis - last accessed 26.04.07.
Wikipedia.

[dom] Problem domain.
http://en.wikipedia.org/wiki/problem domain - last accessed 26.04.07. Wikipedia.

[EE] Java EE.
http://java.sun.com/javaee/index.jsp - last accessed 26.04.07. Sun Microsystems.

[Env] Integrated Development Environment.
http://en.wikipedia.org/wiki/integrated development environment - last accessed
12.04.07. Wikipedia.

[Fir] Mozilla Firefox.
http://www.mozilla.com/firefox - last accessed 25.05.07.

[For06a] Donelson R. Forsyth. Group Dynamics, chapter 6. Thomson Wadsworth, fourth
edition, 2006.

[For06b] Donelson R. Forsyth. Group Dynamics, chapter 1. Thomson Wadsworth, fourth
edition, 2006.

[For06c] Donelson R. Forsyth. Group Dynamics, chapter 7. Thomson Wadsworth, fourth
edition, 2006.

[Fow03] Martin Fowler. UML Distilled. Addison Wesley, third edition, 2003.

[Gil05] Tom Gilb. Competitive Engineering - Planguage Concept Glossary, pages 321–438.
Elsevier Butterworth Heinemann, 2005.

[Gog93] J. Goguen. Social issues in requirements engineering, 1993.

207

BIBLIOGRAPHY

[Hem06] Anil Hemrajani. Agile Java Development with Spring, Hibernate and Eclipse, chap-
ter 1, page 15. Sams Publishing, 2006.

[HQ95] Frederick G. Hillmer and James Brian Quinn. Strategic outsourcing. The McKinsey
Quarterly, (1), 1995.

[IEEmla] IEEE. Std 1471-2000: Recommended practice for ar-
chitectural description of software-intensive systems.
”http://standards.ieee.org/reading/ieee/std public/description/se/1471-
2000 desc.html”. last accessed April 12th, 2007.

[IEEmlb] IEEE. Std 830-1998: Recommended practice for software requirements spec-
ification. http://standards.ieee.org/reading/ieee/std public/description/se/830-
1998 desc.html. last accessed April 11th, 2007.

[Jav] JavaDoc.
http://java.sun.com/j2se/javadoc/ - last accessed 26.05.07.

[Kin04] Gavin King. Hibernate in Action. Manning Publications, 2004.

[Kru95] Phillippe Kruchten. Architecture blueprints - the ”4+1” view model of software
architecture. In TRI-Ada ’95: Tutorial proceedings on TRI-Ada ’91, pages 540–
555, New York, NY, USA, 1995. ACM Press.

[LB03] Rick Kazman Len Bass, Paul Clements. Software Architecture in Practice, chap-
ter 4. Addison Wesley, 2nd edition, 2003.

[MyS] MySQL.
http://www.mysql.com/ - last accessed 01.05.07.

[Nor06] Gyrd Norvoll. Quantification and traceability of requirements, an in-depth study
. Technical report, NTNU,
http://folk.ntnu.no/norvoll/forprosjekt Gyrd Norvoll.pdf, 2006.

[O’K02] Daniel J. O’Keefe. Persuasion - Theory & Research. Sage Publications, second
edition, 2002.

[out03] Global IT Outsourcing: Software Development Across Borders. Cambridge Univer-
sity Press, 2003.

[RJ00] Linda Rising and Norman S. Janoff. The Scrum software development process for
small teams. IEEE Software, 17(4):26–32, /2000.

[Sch98] Ben Schneiderman. Designing the User Interface - Strategies for Effective Human
Computer Interaction. Addison Wesley Longman, third edition, 1998.

[Shn98a] Ben Shneiderman. Designing the User Interface, chapter 10, page 367. Addison
Wesley Longman, Inc., third edition, 1998.

[Shn98b] Ben Shneiderman. Designing the User Interface - Strategies for Effective Human
Computer Interaction, chapter 2, pages 74–76. Addison Wesley Longman, third
edition, 1998.

[SK06] Gerd Melteig Stalheim and Margrethe Adde Kjeøy. Use cases as a tool for com-
munication: An empirical study of the understandability of use cases. Technical
report, NTNU, 2006.

[SPLW02] R. Spears, T. Postmes, M. Lea, and A. Wolbert. When are net effects gross prod-
ucts? the power of influence and the influence of power in computer-mediated
communication. Journal of Social Issues, (58):91–107, 2002.

[sta] CSS standards.
http://www.w3.org/style/css/ - last accessed 25.05.07. W3C.

[Tec] Java Technology.
http://www.sun.com/java - last accessed 26.04.07. Sun Microsystems.

[Tom] Apache Tomcat.
http://tomcat.apache.org/ - last accessed 01.05.07.

208

BIBLIOGRAPHY

[Tuc65] B.W. Tuckman. Developmental sequences in small groups. Psychological Bullentin,
(63):384–399, 1965.

[Vli00a] Hans Van Vliet. Software Engineering - Principles and Practice, chapter 3.1, pages
49–50. Wiley, 2nd edition, 2000.

[Vli00b] Hans Van Vliet. Software Engineering - Principles and Practice, chapter 3.1, pages
52–56. Wiley, 2nd edition, 2000.

[W3C04] W3C. Web services architecture. W3C Working Group Note, 2004.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2000.

209

