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Abstract

In this master’s thesis a ghost-point immersed boundary method for the compressible
Navier-Stokes equations using higher order summation by parts operators is described and
implemented for two-way coupled fluid-structure interaction (FSI). Two FSI problems are
presented: a) an elastically mounted circular cylinder in free stream and b) an elastic plate
attached to a stationary circular cylinder in channel flow.
a) An elastically mounted circular cylinder is modeled as a harmonic oscillator with two
degrees of freedom. The harmonic oscillator system is coupled to the flow solver through
the drag and lift forces acting on the cylinder and through the imposed boundary con-
ditions at the immersed boundary. The results are compared against those of Yang and
Stern [Yang, J., Stern, F., 2012. ”A simple and efficient direct forcing immersed boundary
framework for fluid-structure interactions”. Journal of Computational Physics 231 (15),
5029-5061] at Re=200. The immersed boundary method (IBM) shows a good capabil-
ity to describe this FSI problem. The harmonic oscillator system is solved numerically
by the explicit Euler method and the classical explicit 4-stage Runge-Kutta method. A
convergence study of the harmonic oscillator system gave an unexpectedly low order of
convergence when external forces were applied. The transfer of energy between the fluid
and structure is investigated for the elastically mounted cylinder in free stream.
b) An elastic plate behind a circular cylinder was modeled with the Euler-Bernoulli thin
beam model for transverse motion. The plate was implemented with a higher order im-
mersed boundary method to match the FSI benchmark by Turek and Hron [Turek, S.,
Hron, J., 2007. Proposal for Numerical Benchmarking of Fluid-Structure Interaction Be-
tween an Elastic Object and Laminar Incompressible Flow. Vol. 53.]. The systems are
coupled through the immersed boundary and the pressure loads on the structure. The re-
sults indicate that the IBM describe FSI problems with deformable bodies well compare
to the benchmark at Reynolds numbers Re=20 and Re=100. The implementation of the
pressure forces on the structure in the FSI coupling was found to cause amplifying errors
which made the simulations unstable.
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Sammendrag

I denne oppgaven beskrives en ghost-point immersed boundary-metode for de kompress-
ible Navier-Stokes-ligningene for toveiskoblet fluid-strukturinteraksjon (fluid-structure in-
teraction, FSI). Summation by parts-operatorer av høyere orden brukes for estimere de
førstoveiskoblettederiverte i ligningsystemene. To problemstillinger med fluid-strukturinteraksjon
presenteres: a) En elastisk montert sirkulær sylinder i uforstyrret strømning og b) en
elastisk plate festet til en stasjonær, sirkulær sylinder i kanalstrmning.
a) En elastisk montert sirkulær sylinder modelleres som en harmonisk oscillator med to
frihetsgrader. Dette systemet kobles med en strømningsløser gjennom drag- og løftkreftene
som virker på sylinderen og gjennom grensebetingelsene påsatt ved immersed boundary-
grensen. Resultatene blir sammenlignet med resultater fra Yang og Stern [Yang, J., Stern,
F., 2012. ”A simple and efficient direct forcing immersed boundary framework for flu-
idstructure interactions”. Journal of Computational Physics 231 (15), 5029-5061] med
Reynoldstall Re=200. Sammenligningen viser at immersed boundary-metoden kan beskrive
fluid-strukturinteraksjoner godt. Det harmoniske oscillator-systemet løses numerisk med
den eksplisitte Euler-metoden og den klassiske eksplisitte Runge-Kutta-metoden med fire
nivåer. En konvergensstudie av det harmoniske oscillator-systemet ga lavere konvergen-
sorden enn forventet nr eksterne pådrag ble påført. Overføringen av energi mellom fluid
og struktur undersøkes for den elastisk monterte sylinderen.
b) En elastisk plate festet til en sirkulær sylinder modelleres med Euler-Bernoullis thin
beam-modell for tverrgående bevegelser. Platen ble implementert med en immersed boundary-
metode av høyere orden etter Turek- og Hrons fluid-struktur benchmark [Turek, S., Hron,
J., 2007. Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between
an Elastic Object and Laminar Incompressible Flow. Vol. 53.]. Resultatene indikerer
at denne immersed boundary-metoden kan beskrive fluid-strukturinteraksjons problemer
med deformerende strukturer godt ved Reynoldstall Re=100 og Re=20. Implementerin-
gen av trykklastene på platen forårsaket selvforsterkende feil som gjorde simuleringene
ustabile.
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Chapter 1
Introduction

Computational fluid dynamics (CFD) for biomedical applications has been becoming an
increasingly powerful and important tool for the understanding of flows in the human body.
Investigations have already been done for many biomedical applications, such as patient-
specific models of the nasal flows [31], modeling of the cardiovascular system [13][45],
and CFD for the deposition of aerosols in the human lungs [25].

One application of interest is the modeling of airflow through the upper human airways
and how this affects obstructive sleep apnea. Obstructive sleep apnea syndrome (OSAS)
is a disorder where repetitive closure of the upper airways can cause sleep fragmentation
and blood oxygen desaturation. The symptoms of OSAS are daytime sleepiness and heavy
snoring [14][27][53]. This has been investigated by Khalili [27] for the research project
”Modeling of obstructive sleep apnea by fluid-structure interaction in the upper airways”,
funded by the Research Council of Norway [34]. To further understand the importance
of turbulence in flows in the upper human airways an investigation was done by Aasgrav
et al. [1], where different turbulence models were tested. It was found that the effects of
turbulence were insignificant for these flows. A better understanding of flows in the upper
human airways will allow medical professionals to improve upon and better comprehend
the impact of surgical treatment in the nasal cavity. However, the development of CFD
tools is hampered by the complexity of the modeling problem. The geometry of the up-
per human airways is intricate and contains flexible tissue which has to be modeled, cf.
Figure 1.1. Furthermore, conventional CFD-software is often of limited use when fac-
ing tasks with moving complex geometries, as these require remeshing of the geometry, a
computationally heavy and complicated task. This issue is made substantially simpler by
the application of non-body-fitted methods. One such method is the immersed boundary
method (IBM).

The immersed boundary method was originally developed by Peskin [43] to investigate
the flow of blood in the heart. The premise of the method is to define a solid boundary in
the fluid domain and indirectly impose the structure boundary conditions at this boundary.
Peskin [43] imposes these boundary conditions through a forcing term in the momentum
equation. An alternative way was proposed by Fadlun et al. [15], where the boundary con-
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Chapter 1. Introduction

Figure 1.1: Illustration of the human upper airways [41]

ditions are imposed by setting the flow variables inside the immersed boundary such that,
on average, the boundary conditions are respected at the immersed boundary. This method
came to be called the ghost-cell immersed boundary method (GCIBM). A description of
the ghost cell immersed boundary method can be found in Ringstad [46]: ”In CFD, the
most conventional and common way to handle boundary conditions, such as a wall, is to
make the grid conform to the body and thereby imposing the boundary condition at the grid
points fitted to the boundary. This is referred to as a body-fitted grid. The mesh generation
of highly complex or moving geometries is a computationally heavy and complicated task
for any body-fitted grid. The immersed boundary method avoids this problem by keeping a
simple, usually Cartesian grid and treating the boundary conditions at internal boundaries
indirectly. This boundary can with much lower computational cost be moved by recalcu-
lating where and how to impose the new boundary conditions. In the ghost-point version
of the IBM, the indirect imposition of these boundary conditions is done by wisely set-
ting the values of flow variables on the solid side of the boundary. These points are lying
inside the solid (see figure 3.1). However, the ghost points are treated by the discretized
equations as fluid points, and so they affect the flow variables at the fluid points outside
the boundary. Due to their effect on the fluid points without themselves being ”real” fluid
points they are referred to as ghost points. Points inside the solid which do not appear in
the discretized flow equations are considered solid points. An illustration of this general
case is shown in figure (3.1).”

In recent advancements, the immersed boundary method has successfully been im-
plemented alongside the level-set method. The level-set method has been used for an
improved description of free surface, two-phase flow [5], and compressible [12] and in-
compressible flows with stationary or moving bodies [11][48].

Due to its simple implementation for arbitrary geometries, the immersed boundary
method is well suited for problems with moving geometries and is as such a good fit for
investigating the interactions between deforming structures and surrounding fluid. These
types of problems are referred to as fluid-structure interaction (FSI) problems. In fluid-
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structure interaction, the equations of fluid motion and the structure model must be solved
in parallel and coupled to capture these interactions. The two systems are coupled through
the imposed conditions on each other, such as through the kinematic structure bound-
ary conditions in the fluid and the fluid traction on the structure. Fluid-structure interac-
tion has been well utilized for many applications, from aerodynamics [19] to magneto-
hydrodynamics [17] and biomedical applications [35][7]. The equations and interface
conditions in FSI are highly nonlinear and in many cases hard to experimentally verify
[22].

The numerical solutions of these problems are often classified by whether the solution
of the structure and fluid flow equations are mathematically treated separately or unified,
referred to as the monolithic approach and the partitioned approach, respectively [22]. In
the monolithic approach [47][37][23] the fluid and structure equations are solved simul-
taneously as one system of equations. In the partitioned approach, the fluid and structure
equations are solved separately simplifying the implementation and use of codes at the
cost of synchronization [22].

The interactions of fluid and structure are, by its nature, multidisciplinary and merge
the fields of structure and fluid mechanics. Correct modeling of the structure is critical
for a successful combination with a fluid model. Structure dynamics is trying to model
the behavior of deformations, stresses, and strains under different assumptions. Many
structure models have been applied to FSI problems. Also, the immersed boundary notion
has been combined with different structure methodologies. The combination of the finite-
element method with the immersed boundary method, as proposed by Zhang et al. [56],
shows promise for the simulation of very flexible solids. One of the earliest and simplest
models in structure-dynamics is the Euler-Bernoulli thin beam model. This model has
already been used for dynamic plate modeling of a simplified soft palate [2][28] and the
modeling of plate dynamics behind a cylinder [42]. Results with the Euler-Bernoulli beam
model by Garcia [16] compare well with the structure-dynamics results of the benchmark
presented by Turek and Hron [52].

To properly describe the FSI, the proper solution of the equations of fluid and structure
motion is required. Since the IBM requires high grid resolution, a higher order numerical
method is preferable for the solution of these equations. However, such methods are often
less stable. A stable way to implement higher order discretizations is using summation by
parts (SBP) operators.

The following paragraph is taken from Ringstad [46]. A summation by parts operator
is a finite difference method to approximate the first derivative such that the discrete ana-
log of integration by parts is satisfied [18]. That discretization ensures that the energy of a
hyperbolic system is bounded by the initial condition. The idea is to get a stable method
by devising a discretization scheme such that the energy of the discrete equations behaves
similarly as the energy of the continuous hyperbolic partial differential equation. This fi-
nite difference method was introduced by Kreiss and Scherer [32][33]. Higher order SBP
operators with diagonal discrete norm matrices were devised by Strand [50] with order 2s
in the interior and order s near the boundaries, s = 1, 2, 3, 4. To keep the method stable
during time integration a weakly imposed boundary condition was suggested by Carpenter
et al. [9]. This is done by a boundary term called the ”simultaneous approximation term”
(SAT). This term is applying the boundary condition by ”dragging” the computed bound-
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Chapter 1. Introduction

ary value towards the prescribed boundary value by a differential equation. Later SBP
operators of the second space derivative for parabolic problems were devised by Mattsson
and Nordström [36].

In this master’s thesis, a higher order compressible fluid solver is coupled with different
structure models to investigate the fluid-structure interactions of two cases: a) flow over
an elastically mounted circular cylinder, and b) flow over an elastic plate attached to a
stationary circular cylinder. The cylinder and the attached plate are implemented with
the immersed boundary method using three layers of ghost points. The movement of the
structures is found from the interactions with the surrounding fluid by a two-way explicit
coupling with the arbitrary-Lagrangian-Eulerian (ALE) formulation. The fluid-structure
coupling and the rate of energy transfer between the structure and the fluid are investigated.
SBP operators are used for the spatial discretization of the fluid equations. The elastically
mounted cylinder is modeled by a second-order ODE for harmonic oscillators. The ODE
system is solved numerically by the explicit Euler method and the classical explicit 4-stage
Runge-Kutta method. Other methods are investigated as well. The elastic plate is modeled
by the Euler-Bernoulli thin beam theory and solved by the Newmark method. This thesis
is based on the work by Khalili [27] on the immersed boundary method and continues to
further investigate fluid-structure interactions using this IBM.

The thesis is structured as follows: In chapter 2, some background theory for com-
pressible flow, harmonic oscillators, and Euler-Bernoulli thin beam theory are presented.
In chapter 3 the numerical model is described, and the immersed boundary method and
its implementation for an elastic plate are presented. The numerical setup is presented in
chapter 4, in which the results of the simulations are shown and discussed. The method
is verified against previous results by Yang and Stern [55] for flow over an elastically
mounted circular cylinder, cf. section 4.2. The results of FSI simulations of an elastic
plate behind a circular cylinder are shown and discussed in section 4.3. The conclusions
are given in chapter 5. Lastly, suggestions for further work are presented in chapter 6.

The image shown on the front page is presented in this master’s thesis in Figure ??.
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Chapter 2
Governing equations

Sections 2.1-2.2 are restated as presented in the author’s project work [46]. The model for
the fluid flow solver is described in further detail in Khalili et al. [30].

2.1 Compressible gas dynamics
The 2D compressible Navier-Stokes (NS) equations are considered. These are a system
of transport equations: the continuity equation for the density of the fluid (2.1), the mo-
mentum equation for the two components of the momentum density (2.2) and the energy
equation for the total energy (2.3). This gives four equations for six variables, including
the pressure and temperature. The system is closed by the equations of state (2.4-2.5).
The compressible Navier-Stokes without external forces can be written with the Einstein
summation convention:

∂ρ

∂t
+ ∂

∂xj
[ρuj ] = 0, (2.1)

∂

∂t
(ρui) + ∂

∂xj
[ρuiuj + pδij − τij ] = 0, i = 1, 2, (2.2)

∂

∂t
(ρE) + ∂

∂xj
[ρujE + ujp+ qj − uiτij ] = 0, (2.3)

where ρ, u1, u2, p, E are the mass density, x- and y-velocity components, pressure and
specific total energy, respectively. δij is the Kronecker delta, i.e. =1 if i=j, and =0 else.

The equations of state for perfect gas are used:

p = ρRT, (2.4)

e = cvT, (2.5)

where e = E − 1
2 (u2

1 + u2
2) is the specific internal energy. R, cv, T are the gas constant of

the fluid, specific heat at constant volume and temperature, respectively. These equations
are solved in dimensionless, perturbation form, discussed in section 2.2.
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Chapter 2. Governing equations

The viscous stress tensor components for Newtonian fluids are defined as:

τij = µ( ∂ui
∂xj

+ ∂uj
∂xi

)− 2µ
3
∂uk
∂xk

δij , (2.6)

where µ is the viscosity of the fluid. The viscosity is determined by the Sutherland law
µ
µ0

= ( TT0
)1.5[(1 + Sc)/( TT0

+ Sc)], where Sc is the dimensionless Sutherland constant,
Sc = 110

301.75 , and T0 is the stagnation temperature. µ0 is the viscosity at T0.
The heat flux component qj is defined as:

qj = −κ ∂T
∂xj

, (2.7)

where κ is the thermal conductivity of the fluid.
The pressure can be related to the conservative variables by

p = (γ − 1)
(
ρE − 1

2ρ(u2
1 + u2

2)
)

(2.8)

where γ is the ratio of specific heats at constant pressure and volume γ = cp/cv .

2.2 Compressible Navier-Stokes equations
The compressible Navier Stokes equations (2.1-2.3) are expressed in conservative form
for the vector of the conserved unknown variables ~U :

~U =


ρ
ρu
ρv
ρE

 . (2.9)

The variables are defined in dimensionless, perturbation form. The variables are solved
for the perturbation of the variables with respect to the stagnation values, ~U0 = (ρ0, 0, 0, (ρE)0)T ,
where ρ0 and (ρE)0 are the stagnation density and the stagnation total energy density, re-
spectively. This is further described in [29]. The conserved variables are non-dimensionalized
by ρ0, ρ0c0, ρ0c0, ρ0c

2
0, respectively, where c0 is the stagnation speed of sound. In this

form the compressible Navier Stokes equations can be written as:

~U ′t + ~F cx + ~Gcy = ~F vx + ~Gvy, (2.10)

where ~U ′ =


ρ′

(ρu)′
(ρv)′
(ρE)′

 with ρ′ = ρ−ρ0
ρ0

, (ρu)′ = ρu
ρ0c0

, (ρv)′ = ρv
ρ0c0

, and (ρE)′ =

ρE−(ρE)0
(ρ0c20) . F and G are the perturbation flux vectors in the x- and y-directions, respectively.

The subscripts indicate differentiation with respect to those variables. The superscript c
indicates the convective flux vectors including the pressure terms and v the viscous flux
vectors, defined as:
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2.3 Coordinate transformation

~F c =


(ρu)′

(ρu)u′ + p′

(ρu)′v′
((ρH)0 + ρH ′)u′

 ~Gc =


(ρv)′

(ρv)′u′
(ρv)′v′ + p′

((ρH)0 + ρH ′)v′

 (2.11)

~F v =


0
τxx
τxy

τxxu
′ + τxyv

′ + κT ′x

 ~Gv =


0
τyx
τyy

τyxu
′ + τyyv

′ + κT ′y

 (2.12)

where ((ρH)0 = (ρE)0 + p0) /ρ0c
2
0 is the nondimensional stagnation total enthalpy per

unit volume. u′ = u
c0

= (ρu)′
(1+ρ′) , v′ = v

c0
= (ρv)′

(1+ρ′) , T ′ = T−T0
T0

.

Constant Prandtl numbers Pr = µcp
κ were considered, and the ratio of specific heats

for air γ = 1.4 was used. The τij terms are here the nondimensional components of the
viscous stress tensor of equation (2.6).

Whereas time t and the Cartesian coordinates x and y are dimensional variables in
section 2.1, they are nondimensional in section 2.2. The reference time and length are D

c0
and D, respectively, where D is the diameter of the circular cylinder considered here.

2.3 Coordinate transformation

This section in taken from Ringstad [46]. The fluid flow equations are solved on a 2D
Cartesian grid in the transformed coordinates ξ and η. A coordinate transformation ξ =
ξ(x, y), η = η(x, y) is used to improve the resolution near the immersed boundary as seen
in figure (2.1). The coordinate transformation is described in [26]. The transformed 2D
compressible Navier-Stokes equations are then written as:

~̂
Ut + ~̂

Fξ + ~̂
Gη = 0, (2.13)

where ~̂U = J−1~U ′, ~̂F = J−1(ξx(~F c− ~F v)+ξy(~Gc− ~Gv)) and ~̂G = J−1(ηx(~F c− ~F v)+
ηy(~Gc − ~Gv)). The Jacobian determinant of the transformation is J−1 = xξyη − xηyξ
and metric terms are:

J−1ξx = yη, J−1ξy = −xη
J−1ηx = −yξ, J−1ηy = xξ

For simplicity the ξ− and η− derivatives will be referred to as the normal x- and y
derivatives in this report. This corresponds to the trivial transformation: ∂ξ

∂x = 1, ∂η∂y = 1,
∂ξ
∂y = 0, ∂ξ∂x = 0.
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Chapter 2. Governing equations

Figure 2.1: Cartesian grid near the circular cylinder for (x, y)ε[18D, 22D]x[18D, 22D], and
stretched grid away from the cylinder. Every 5th line is plotted

2.4 Harmonic oscillators
The harmonic oscillator is one of the classical engineering problems and finds its applica-
tions in many engineering problems where vibrations are of interest. The simplest vibra-
tion problems are models for a single point-mass with mass m attached to a linear spring
with constant stiffness k. The position of the point mass with respect to time is described
by the function x(t). The spring exerts a force Fk = −k(x−x0) on the point mass depen-
dent on its displacement from an equilibrium position x0. This simple system will oscillate

around the equilibrium point indefinitely with the frequency ωn =
√

k
m . Additional mod-

eling must be added for the loss of energy. The natural process of energy dissipation in
such systems is not fully understood [51]. However, these losses will reduce the amplitude
of the oscillations. Here this damping is modeled by viscous damping, where the damping
force is proportional to the velocity through the constant damping b, Fb = −bdxdt . For a
mass influenced by external forces such as gravity or fluid drag, an external force must
be added. Newton’s second law of motion yields an ordinary differential equation for the
motion of the circular cylinder, md2x

dt2 = Fb + Fk + Fext. This law is applied to a 2D
cylinder with externally imposed drag and lift forces:

mẍ+ bẋ+ k(x− x0) = FD(t), (2.14)

mÿ + bẏ + k(y − y0) = FL(t), (2.15)

where the lift and drag forces, FL and FD, are the external fluid forces decomposed in the
x and y-directions. These problems are in literature referred to as a mass-spring-damper
system, as the system involves only those three components.

The modeling of an elastically mounted circular cylinder in cross flow with FSI is
examined to investigate the accuracy of the FSI treatment of the current IBM. The elastic
mounting of the cylinder is modeled as a mass-spring-damper system in the x- and y-
directions. The cylinder is allowed to move freely in the x- and y directions, restrained by
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2.5 Elastic plate

a spring and damper. The equations of cylinder motion (2.14-2.15) are then written as in
[55] for the position variable q, where q correspond to either the x- or y- component of the
displacement vector:

q̈ + 2ζ
(

2π
U∗

)
q̇ +

(
2π
U∗

)2
q = 2

πm∗
cD,L(t), (2.16)

where ζ = b/(2
√
kms) is the dimensionless damping,m∗ = ρs

ρf
is the dimensionless mass

and U∗ = U/(fND) the dimensionless undisturbed velocity, where fN = 1
2π
√
k/ms is

the natural frequency of the structure and U is the undisturbed fluid velocity away from
the cylinder. x and y are nondimensionalized by the cylinder diameter D and t by D/U .
q̇ = dq(t)

dt and q̈ = d2q(t)
dt2 . The physical quantities k and b are the spring and damping

constants, respectively. ms, ρs, and ρf are the cylinder mass, the cylinder mass density
and the surrounding fluid mass density, respectively. These values were set according to
[55] and are presented in section 4.2.1.

The second order ordinary differential equations (ODEs) (2.16) for the displacement
components are rewritten as a system of two first order ODEs for the vector of variables

~q =
(
x
y

)
.

The system is then rewritten from the form ~̈q = f(t, ~q, ~̇q) into Q̇ = G(t,Q), where

Q =
(
~Q1
~Q2

)
=
(
~̇q
~q

)
and t is the physical time. ~Q1 =

(
ẋ
ẏ

)
and ~Q2 =

(
x
y

)
.

The time dependence of f and G is due to the drag and lift components, cD(t) and
cL(t), respectively. This gives the system of equations:

d

dt

(
~Q1
~Q2

)
=
(
G1(t, ~Q1, ~Q2)

~Q1

)
= G(t,Q), (2.17)

where the first component of (2.17) corresponds to equation (2.16) solved for the acceler-

ation, i.e., G1 = −2ζ
( 2π
U∗

)
~Q1 −

( 2π
U∗

)2 ~Q2 + 2
πm∗

(
cD(t)
cL(t)

)
.

2.5 Elastic plate
The Euler-Bernoulli thin beam theory will be applied for the modeling of a deformable
elastic plate. A beam is defined by its geometry having one dimension longer than the
other two [4]. This is the axial dimension of the beam. The Euler-Bernoulli model attempts
to relate the transverse motion to the applied load normal to the axial direction. The
axial forces and transverse shear forces are neglected [4]. The Euler-Bernoulli theory also
requires constant density and stiffness along the beam length. Under these restrictions, the
Euler-Bernoulli theory can model the transverse motion of the plate to a sufficient degree
for FSI-application [27]. The displacements perpendicular to the neutral axis can then
be described by a function along the plate length φ(t, x). The plate is influenced by the
internal shear forces and external forces. The external forces are introduced through the
pressure difference, δp, on either side of the plate. The shear forces are applied through
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Chapter 2. Governing equations

the variation of the bending moment, M, across the beam axis. The bending moment is
related to the curvature of the plate through: M(x, t) ≈ −EI ∂

2φ
∂x2 , where E is the Young

modulus and I is the moment of inertia. For further details see [4][27]. This yields the
equation for the vertical displacement of the centerline of the beam expressed as:

ρsh
∂2φ

∂t2
+ d

∂φ

∂t
+B

∂4φ

∂x4 = −δp, (2.18)

where ρs is the structure density and h the plate thickness. Damping can also be applied to
the equations through the damping term d∂φ∂t , where d is the structural damping. This was
not applied in these simulations. The flexural rigidity B is defined byB = EI = Eh3

12(1−ν2) ,
where ν is the Poissons ratio.

The length and time were non-dimensionalized as for the fluid solver with respect to
the reference length D and the reference time scale D

c0
. The massm = ρsh, damping d and

stiffness B were nondimensionalized using the fluid stagnation density ρ0, speed of sound
c0, cylinder diameter D, and reference pressure ρ0c

2
0. These non-dimensional quantities

are presented in table 2.1. The gravitational load −ρsgh was not imposed on the system

Table 2.1: Dimensionless variables of equation 2.18. The apostrophe indicating the dimensionless
quantity.

B’ B
ρ0c20D

3

d’ d
ρ0c0

m’ ρsh
ρ0D

in these simulations. However, as it was used in [16] to evaluate the accuracy of the model
it is included here for completeness. The plate is attached to the cylinder at the leading
edge of the plate, x = 0, by clamping and allowed to freely move in the y-direction at the
trailing edge, x = L, where L is the length of the plate. These boundary conditions read
in continuous form [28]:

φ(t, 0) = 0, , (2.19)

∂φ(t, 0)
∂x

= 0, (2.20)

The boundary conditions at the free end can, under the assumption of zero bending mo-
ment and zero shear force, be written:

∂2φ(t, L)
∂x2 = 0, (2.21)

∂3φ(t, L)
∂x3 = 0, (2.22)

10



Chapter 3
Discretization

The immersed boundary method is described in section 3.1. The discretization of the flow
equations, the mass-spring-damper system and the elastic plate is described in sections
3.2.1, 3.2.2 and 3.2.3, respectively. The fluid-structure coupling is outlined in section
3.2.4. Special attention is given to the implementation of the plate model which is de-
scribed in detail in section 3.3.

3.1 Ghost point immersed boundary method
The immersed boundary method is a method to impose solids in a discretized fluid domain.
It imitates a boundary between the solid and the fluid by imposing boundary conditions
that correspond those of a solid wall at this boundary. The boundary between solid and
fluid is referred to as the immersed boundary as the solids are ”immersed” into the fluid
domain. In the IBM by Khalili et al. [29], the solids are immersed into the fluid domain
by imposing boundary conditions with the ghost point methodology. In this methodology,
the fluid domain is discretized with a Cartesian grid. The solid is introduced by defining
the immersed boundary. Each point inside the immersed boundary is identified as a solid
point and points outside the immersed boundary are labeled as fluid points. To impose the
boundary conditions at the immersed boundary the points inside the solid are used. The
solid points near the boundary that appear in the discretization of the fluid flow equations
are called ghost points, cf. Figure 3.1. Khalili et al. [29] uses three layers of ghost points
to impose the solid boundary conditions. This is necessary as the higher order flow solver
uses three neighboring points in its discretization.

The flow variables at these ghost points are chosen such that, when averaged over
the flow variables adjacent to the boundary, the boundary condition is respected at the
immersed boundary. A line normal to the immersed boundary is extended from the ghost
point. The point of intersection between the immersed boundary and the normal line is
called the boundary intersection point (BI). The image point (IP) is found by reflecting the
ghost point about the boundary intersection point along the normal line, cf. Figure 3.1.
The value of the flow variables at the image point is found by bi-linear interpolation from
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Chapter 3. Discretization

Figure 3.1: Illustration of the ghost-, image- and boundary intersect-points [29]

the nearby fluid points, this is discussed in more detail in [27].
The imposition of the boundary conditions is described in [46]: ”To implement the

physical boundary conditions at the boundary of the body the ghost points are given values
such that the correct condition is applied at the immersed boundary. For a generic variable
φ a Dirichlet condition would be imposed by setting the ghost point value φgp such that
the average of the ghost point value and the value at its corresponding image point (ip)
imposes the condition φbi = φboundary, where bi is the boundary intersection point, that
is to say, equation (3.1) holds. As mentioned above, the present IBM solver uses a higher
order flow solver, which requires three layers of ghost points. An illustration is given in
figure (3.2) of how multiple layers the different ghost points are treated.

φgp + φip
2 = φbi (3.1)

A Neumann condition, ∂φ∂n = β, can be similarly imposed by setting the ghost point
value such that the change of φ across the boundary is the given condition β. Thus, the
ghost point value φgp should be set such that difference approximation of ∂φ∂n using the dif-
ference between the ghost point value and the image point value over the distance between
them imposes the boundary condition. This is described by”:

φip − φgp
∆l = β. (3.2)
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3.1 Ghost point immersed boundary method

Figure 3.2: Illustration of the ghost-, image- and boundary intersect-points, [26]

3.1.1 Ghost point imposed boundary conditions
The boundary conditions imposed at the structure boundaries used in this thesis are pre-
sented here as in [46]: ”The physical boundary conditions imposed at solid boundaries are
discussed here. For compressible flow, four boundary conditions are needed to close the
system. The boundary conditions used in the work by [27] are the no slip-condition for
the velocity, the adiabatic wall Neumann condition for the temperature and the boundary
layer approximation Neumann condition for the pressure.

~u = ~Uwall, (3.3)

∂T

∂n
= 0, (3.4)

∂p

∂n
= 0, (3.5)

where ~Uwall is the prescribed velocity of the wall and n denotes the wall normal direction.
By the perfect gas law; ρ = RT

P (2.4), the boundary condition for the density can be
found, closing the system and enforcing the adiabatic wall condition eqn. (3.4) by”:

dρ

dn
=
d(RTp )
dn

= 0. (3.6)

In this thesis, the immersed boundary method is used to impose a circular cylinder and
a deformable plate. In the present work, the boundary conditions above are imposed at
the immersed boundary. The center of the circular cylinder is used to define the immersed
boundary a radius D

2 , where D is the cylinder diameter, away from the cylinder center
point. The image point is then found further along in the radial direction, with respect to
the cylinder center, from the ghost point. The cylinder velocities are imposed through the
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velocity boundary conditions at the immersed boundary. The cylinder velocity is found
by FSI for the case of an elastically mounted circular cylinder. In the case of an elastic
plate attached to a circular cylinder, the cylinder was stationary. The implementation of
the elastic plate is described in section 3.3.

The immersed boundary is well suited for complex and deforming solid geometries,
however, it has its limitations. A high number of grid points near solid surfaces is required
to accurately describe the boundary layer near solid walls. To have a very fine grid in
the entire discretized domain is if often computationally unrealistic and not necessary to
capture the flow phenomena of interest. In a Cartesian grid system, grid refinements are
needed in all directions. However, for body-fitted grids, grid refinement only to capture a
boundary layer is easily implemented. A grid transformation, such as described in section
2.3, or adaptive mesh refinement [24] is then often needed to get the desired fine grid. If the
geometry of the boundary has a sharp turn, such as near the trailing edge of a wing profile,
the body may contain fewer ghost points than is needed for higher order discretization.
The method would then require special treatment. Other issues appear when the immersed
boundary creates small sub-domains that do not hold enough points for a higher order
discretization, such an issue is further discussed in section 3.3.
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3.2 Numerical method

3.2 Numerical method

The fluid-structure interaction problems investigated in this thesis are solved with a par-
titioned approach, as the fluid and structure systems are solved as two separate systems
coupled at the immersed boundary.

3.2.1 Flow solver

This section is taken from the author’s project work [46]. The present immersed boundary
method uses the standard central 6th order accurate finite difference stencil for the dis-
cretization of the first derivatives in space in the interior, i.e. the ~F cξ , ~G

c
η, ~F

v
ξ ,
~Gvη -terms in

equation (2.13). The viscous flux vector terms, ~F v, ~Gv , in equation (2.12) need additional
discretizations for their internal derivative terms, i.e., τij and (κT )ξ, (κT )η . This is done
by applying the first derivative approximation again. Near the boundaries of the domain
and near the immersed boundary a sixth order SBP operator with 3rd order, finite differ-
ence approximation near the boundaries is applied. The method as a whole gives a global
4th order of accuracy in space [18][50]. The spatial discretization is based on a summa-
tion by parts operator. By the energy method that operator will guarantee stability and
will keep the energy of the system bounded by the initial conditions if proper boundary
conditions are applied. The in- and outflow boundary conditions are applied by injection
of the Navier-Stokes characteristic boundary condition [29][44].

For the time discretization of the fluid solver, the classical explicit 4-stage Runge-Kutta
method is used giving a 4th order accurate solution in time.

3.2.2 Numerical solution of mass-spring-damper system

This ODE-system (2.17) was solved numerically with the Euler, Heun, Størmer-Verlet and
Runge-Kutta 4-stage methods discussed below.

Euler’s method

The first method used is the explicit Euler method. The ODE-system (2.17) is evaluated at
the old time step, in semi-discrete form written as:

dQn

dt
= G(tn,Qn). (3.7)

The time derivative is approximated by the first order forward difference approxima-
tion. By this, the solution at the new time step can be evaluated by:

Qn+1 = Qn + ∆tG(tn,Qn) (3.8)

This method was also used for the solution of the mass-spring-damper system when
coupled with FSI, see section 4.2.1.
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Heun’s method

The second method investigated was Heun’s method. Heun’s method corresponds to a
two-stage Runge-Kutta method. It calculates in the first stage k = G(tn,Qn). From the
first stage the system is moved forward to time level n+ 1 by:

Qn+1 = Qn + ∆t
2 (k + G(tn + ∆t,Qn + k∆t)) . (3.9)

Størmer- Verlet method

The third investigated method is the Størmer- Verlet method. Numerical methods have
been developed for the preservation of different invariants in the system. Methods such as
the Størmer-Verlet method are designed to be symplectic for a smooth Hamiltonian system,
that is that the method preserves the area in the solution space. The Hamiltonian corre-
sponds to the total energy of the system [20]. Neglecting the damping, the Hamiltonian H
can be written as a function of the position q and the momentum, p = mq̇:

H(p, q) = 1
2m (p2 + kmq2), (3.10)

such that pt = −Hq and qt = Hp, where the subscript implies differentiation by that
variable. With damping this system cannot be considered Hamiltonian, as the total energy
decays with time.

The Størmer- Verlet method [20] treats the position system and the velocity system
differently, here only an intermediate value for the velocity is computed. The method
reads:

Q
n+1/2
1 = Qn1 + ∆t

2 G1(Qn2 , Qn1 ) (3.11)

Qn+1
2 = Qn2 + ∆tQn+1/2

1 (3.12)

Qn+1
1 = Q

n+1/2
1 + ∆t

2 G1(Qn+1
2 , Q

n+1/2
1 ). (3.13)

This method did not take into consideration damping in its original form. In this system
Qn+1

1 should be evaluated using G1 evaluated at time level n + 1. However as Gn+1
1 is

dependent on Qn+1
1 through the damping term, the system would be implicit. This value

is not yet evaluated. In the simulations, the function G1 was evaluated with the with the
intermediate velocity Qn+1/2

1 to keep the explicit form. This is thought to have reduced
the order of the method, cf. section 4.2.4.

4-stage Runge Kutta method

The classical explicit 4-stage Runge-Kutta method was also investigated. The solution
of the system is done by regarding the intermediate values of the Runge Kutta stages
km, {m = 1, 2, 3, 4}, as estimates of the acceleration and velocity Q̇(tn + ∆tm) at the
intermediate times of the 4-stage Runge Kutta method. Here the time step vector of the
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4-stage Runge-Kutta method is (∆t1, ...,∆t4)T =
(
0, ∆t

2 ,
∆t
2 ,∆t

)T
. The stages are then

evaluated by:

km = G(tn + ∆tm,Qn + km−1∆tm), {m = 1, 2, 3, 4} . (3.14)

Here k0 corresponds to the acceleration and velocity at time tn, i,e., Q̇n
. From the Runge-

Kutta stages, the solution at the new time level is calculated as:

Qn+1 = Qn + ∆t
(

1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)
. (3.15)

These evaluations require that the time dependencies of G(tn+∆tm,Qn+km−1∆tm)
are evaluated, and thereby the values of cD(tn + ∆tm) and cL(tn + ∆tm) have to be cal-
culated. In the uncoupled system, this is done by computing the analytical function values
cD(tn + ∆tm) and cL(tn + ∆tm). The system was also solved coupled to the flow solver.
To do this the lift and drag coefficients had to be recalculated in each intermediate stage.
This was done by moving the immersed boundary of the cylinder according to the esti-
mates of acceleration and velocity at each intermediate stage, m. The corresponding flow
variables are evaluated as U ′(m) = U ′n + km−1∆tm, where km = R(tn + ∆tm, U ′(m))
with R the residual of the discretized compressible Navier-Stokes equations (2.10). From
this, the drag and lift coefficients were recalculated and imposed at the corresponding time
stage levels as cD(tn + ∆tm) and cL(tn + ∆tm), respectively. This is presented as a
pseudo-code in section 3.2.4 b).

The results of this method when coupled with FSI are presented in section 4.2.1.

3.2.3 Numerical solution of plate model
The Euler-Bernoulli beam theory was used to model the plate motion. Equation (2.18)
was numerically solved with the second order accurate implicit Newmark method [39],
implemented for an infinitely thin plate in Khalili et al. [28]. The Newmark method solves
for the displacement and velocity by using the velocity and acceleration evaluated at the
old and new time steps weighted by the factors γ and β. The integration from time level n
to n+ 1 is calculated by[39]:

φ̇n+1 = φ̇n +
(
(1− γ)φ̈n + γφ̈n+1)∆t, (3.16)

φn+1 = φn + φ̇n∆t+
[
(1
2 − β)φ̈n + βφ̈n+1

]
∆t2. (3.17)

The coefficient values used were γ = 1
2 and β = 1

4 , which yield unconditional stability
and the best accuracy of the Newmark methods [28].

The attached edge is clamped corresponding to the boundary conditions (2.19) and
(2.20). These boundary conditions read in discrete form:

φ1 = 0, (3.18)
φ2 = φ2. (3.19)
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The boundary condition at the free end (2.21) and (2.22), are written in discrete form:

φN−1 = 2φN−2 − φN−3, (3.20)
φN = 3φN−2 − 2φN−3. (3.21)

3.2.4 Fluid-structure coupling
Two methods were used to solve the mass-spring-damper ODE with FSI, the classical
explicit Runge-Kutta 4-stage method, and the explicit Euler method. The explicit Euler
method for the mass-spring-damper system was implemented in the fluid solver to inte-
grate the movement of the cylinder from time level n to time level n+1. First, the structure
equations are solved based on the fluid coupling, i.e., the forces drag and lift forces on the
cylinder at time level n, to find the new velocities and positions at time level n + 1. The
cylinder is then moved to the new position at time level n+ 1. The structure velocities and
displacements at time level n + 1 are imposed at the immersed boundary when the fluid
flow system is integrated to find U′n+1 from U′n. At all intermediate time levels of the
Runge-Kutta flow solver, the structure state at time level n+ 1 is then imposed instead of
estimates of the structure position and velocities at their corresponding intermediate time
stages. This introduces a time integration error. A pseudo-code of the algorithm from
time level n to n+ 1 with the explicit Euler method structure solver for the calculation of
moving immersed boundaries is included below for clarity. The same way of moving the
elastic plate was used with the Newmark method.
a) Pseudo code for explicit Euler/Newmark algorithm

1: Solve the mass-spring-damper system (2.17) or the Euler-Bernoulli thin beam equation (2.18)
based on forces or pressure loads, respectively, at time level n.
Move boundary to time level n+ 1.
Set the classical Runge- Kutta stage level m = 1.

2: Determine the ghost points values ugp, vgp, ρgp and pgp using the boundary conditions (3.3-3.6)
at three layers of ghost points based on solution U ′(m).

3: Compute approximations of the viscous fluxes F v and Gv , eqn. (2.12), at all fluid and ghost
points using the sixth order SBP operator on each line in ξ- and η- directions, respectively.

4: Compute the residual R(U ′(m)) based on the approximations of the derivatives F̂ξ and Ĝη
at all fluid points determined by using the sixth order SBP operator on each line in x- and
y- directions, respectively, but the standard sixth order difference operator near the immersed
boundary.

5: Determine U ′(m+1) using the classical Runge-Kutta method.

6: Apply the Navier Stokes characteristic boundary condition at inlet and outlet and apply the
necessary boundary conditions at the bottom and top boundaries to determine U ′(m+1) at those
boundaries.

7: Set m := m+ 1.

8: if m < 5 then

9: goto 2

10: else
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11: Compute Un+1 at all fluid points.

12: Apply sixth order filter operators in x and y directions at all fluid points [27].

13: end if

The classical explicit Runge-Kutta method was implemented for the structure solver
for the mass-spring-damper system. The Runge-Kutta structure solver was solved in par-
allel with the Runge-Kutta flow solver in an alternating manner. At each stage the inter-
mediate flow variables, U ′(m+1), are used to estimate the forces exerted on the structure
as discussed in section 3.2.2. From these forces, the new position and velocity at the
structure intermediate time levels are evaluated. Those intermediate evaluations of the
structure velocities are used to move the cylinder. These velocities were also imposed as
the velocity boundary conditions at the cylinder surface at their corresponding interme-
diate Runge-Kutta flow stage. This was done to ensure that the Runge-Kutta flow solver
was synchronous with the Runge-Kutta structure solver which would reduce the numerical
time integration error. The pseudo code for the synchronous classical explcit Runge-Kutta
flow and structure solver is shown below:

b) Pseudo code for classical explicit Runge-Kutta 4-stage algorithm

Set the classical Runge- Kutta stage level m := 1.

1: if m < 4 then

2: Solve the mass-spring-damper system (2.17) based on forces at time level m − 1 for the inter-
mediate accelerations and velocities km−1. m = 0 corresponds to time level n.
Move boundary according to intermediate time level m based on km−1.

3: else
Find the position and velocity at time level n+ 1 from equation (3.15).
Move boundary to time level n + 1.

4: end if

5: Determine the ghost points values ugp, vgp, ρgp and pgp using the boundary conditions (3.3-
3.6) at three layers of ghost points based on solution U ′(m). The imposed no-slip velocity
corresponds to the intermediate structure velocity at stage m.

6: Compute approximations of the viscous fluxes F v and Gv , eqn. (2.12), at all fluid and ghost
points using the sixth order SBP operator on each line in ξ− and η− directions, respectively.

7: Compute the residual R(U ′(m)) based on the approximations of the derivatives F̂ξ and Ĝη
at all fluid points determined by using the sixth order SBP operator on each line in ξ− and
η− directions, respectively, but the standard sixth order difference operator near the immersed
boundary.

8: Determine U ′(m+1) using the classical RungeKutta method.

9: Apply the Navier Stokes characteristic boundary condition at inlet and outlet and apply the
necessary boundary conditions at the bottom and top boundaries to determine U ′(m+1) at those
boundaries.

10: Set m := m+ 1.

11: if m < 5 then

12: goto 4*

13: else
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14: Compute Un+1 at all fluid points.

15: Apply sixth order filter operators in x- and y directions at all fluid points [27].

16: end if

Here m corresponds to the stage number of the classical explicit Runge-Kutta method,
n corresponds to the time level. The mentioned filter in step 12 for a) and 15 for b) is
further explained in [29].

The equations (2.18) or (2.14-2.15) are coupled to the fluid solver through the pressure
load term, −δp and cD,L respectively. The pressure difference driving the plate model
−δp is calculated as the difference between the top and bottom of the plate at the immersed
boundary in the fluid, this is further discussed in section 3.3. The lift and drag coefficients
of the elastically mounted cylinder are at each time level, or at calculated each intermediate
stage when solved simultaneously, by integration of pressure and friction forces over the
cylinder surface.

The coupling from the structure system to the fluid flow system is done through the
boundary conditions imposed at the immersed boundary. The conditions of equation (3.3
- 3.6) are therefore indirectly imposed at the ghost points near the immersed boundary.
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3.3 Implementation of a deformable plate with immersed
boundary method

The elastic plate trailing a circular cylinder described by Turek and Hron [52] is to be im-
plemented in this solver by the immersed boundary method. A summary of the geometry
used in this report is given in Table 4.1 and shown in Figure 4.1.

The plate model used, i.e. the Euler-Bernoulli thin beam equations (2.18), is described
by the displacement φ(x) about the center line of the plate at y=2D. This model is based
on a thin plate assumption as the plate thickness goes to zero. Instead of considering this
infinitely thin plate an artificial thickness, h, was added to the center line. This has the
benefit of being able to include ghost points without special treatment.

To describe the flexible plate, the displaced centerline is parameterized by a vector of
connecting joints which will be referred to as joint points (jp), s(t) =

(
s(1)(t), ..., s(m)(t)

)T
.

Here m is the number of joint points in the plate vector and the components of s(i) are the
x- and displaced y-coordinates at joint i, s(i) =

(
x(i), y(i) − y0

)
, such that s describes the

displaced center line of the plate. This is illustrated in Figure 3.3.

Figure 3.3: Illustration of the joint point vector s(t) of an elastic plate attached to a circular cylinder.

From this displaced centerline the immersed boundary defining the boundary between
fluid and structure can be identified by adding half the plate thickness h in the normal
direction of the plate. With this immersed boundary the ghost points are identified. This
is done by regarding all grid points within a distance h

2 from the centerline and a radius
h
2 from the end joint s(m) as inside the structure and therefore a solid point and all points
outside as fluid points. All solid points that have at least one fluid point among its three
neighboring points in the positive or negative x- or y-directions are then identified as ghost
points. To each ghost point, a projection point (pr) is assigned corresponding to the point
projected from the ghost point onto the displaced center line s along the normal of the
center line s. This is implemented by this short algorithm:
- For each ghost point take the closest joint point s(l) to the ghost point, where l is the
number in the joint point vector corresponding to this point.
- Make two line segments, one to the right of joint point l between the points s(l) and
s(l+1), and one to the left, between points s(l−1) and s(l).
- Take the normal from these two line segments and project the ghost point onto both line
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segments. Denote the points from the right and left segments by R and L, respectively. The
closest point of L and R to the ghost point is selected to be the correct projection point of
the ghost point, cf. Figure 3.4.
-The normal of the line segment with the projection point, ~n, is then used to find the image
point, which is found by reflection about the immersed boundary. The immersed boundary
is found at a distance h

2 along the normal line ~n, cf. Figure 3.5 (upper).

Figure 3.4: Illustration of how the projection points are found

A special treatment is needed near the connection between the plate and the cylinder.
Ghost points inside the cylinder find their image point by reflection about the cylinder cir-
cumferential boundary. However, near the plate attachment, there are ghost points that find
their image points inside the solid plate when reflected about the cylinder circumference.
These ghost points are instead given image points reflected about the attachment point, i.e.,
the point where the plate immersed boundary would meet the cylinder immersed bound-
ary, cf. Figure 3.5(lower). The distance between the ghost point and the attachment point
was used to find the image point. Taking this distance from the ghost point along the line
that connects the ghost point and the attachment point the image point was identified, cf.
Figure 3.5(lower). This corresponds to reflection about an artificial boundary. In Figure
3.5(lower) original image point is the image point found by reflection about the cylinder
circumference, and artificial image point is the new artificially moved image point.

The plate end was rounded which was not done in [52]. This was done here to avoid
problems surrounding the corners at the plate end. Near these corners, the plate could
produce a situation where there were not enough ghost points to properly impose the im-
mersed boundary conditions were available. The rounding of the trailing edge of the plate
expected to change some of the near plate-end dynamics. But is not expected to massively
influence the plate oscillations over the whole plate as the length is much larger than the
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3.3 Implementation of a deformable plate with immersed boundary method

Figure 3.5: (Upper) Illustration of the artificial plate thickness added along the normal of the center
line on its upper side and how the image point is found. (Lower) Illustration of the ghost points near
the attachment of the plate at the circular cylinder are treated.
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plate thickness. The round trailing edge of the plate can be seen in Figure 3.6.

Figure 3.6: Scatter plot of the boundary intersection points near the plate trailing edge for an elastic
plate behind circular cylinder. The boundary intersection points are the points where the immersed
boundary method imposes the boundary conditions.

Information is transferred between the systems through the ghost points and their clos-

est joint points. The velocity of the structure at a joint point i is v(i)
y (t) = ds(i)y

dt , where sy
is the second component of the joint point vector s, i.e., the displaced y-coordinate of the
center line. This velocity is given to all ghost points that have joint i as its closest joint
point and is imposed as a boundary condition at the immersed boundary. To find the pres-
sure load on the structure at joint number i the pressures at ghosts points that have joint i
as its closest joint point are identified. Since the Neumann condition for pressure (3.5) is
imposed the pressure at the image point is the same as that at the ghost point. This means
summation over the ghost points is the same as summation over the image points. The
pressure at the ghost points which lie above the plate, i.e., have a positive y-component
with respect to the centerline are averaged to find the upper pressure p(i)

upper at this joint
point. The same is done for the ghost points that lie below the plate i.e., have a negative
y-component with respect to the centerline, to find the lower pressure p(i)

lower. The pressure
load imposed at joint i can then be calculated as: δp(i) = p

(i)
upper − p(i)

lower.
The pressure difference at the end of the plate, point number m, is extrapolated from

the last four neighboring points, δp(m) = 1
4Σ4

j=1δp
(m−j). This was due to large errors

that appeared upon summation over the plate trailing edge. Due to problems with the
pressure interpolation, setting δp(m) = δp(m−1) gave more unstable solutions than this 4
point averaging for the trailing edge pressure difference.
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3.3 Implementation of a deformable plate with immersed boundary method

Figure 3.7: Illustration of the required SBP-boundary operator stencil width being wider than the
number of available points.

Issues and solutions

a) Concave corners with too few fluid points
To exploit the stability properties of the summation by parts (SBP) method, the SBP dif-
ferencing operator is used. At the immersed boundary viscous flux vectors ~F v and ~Gv are
also determined at the three layers of ghost points. The SBP operator applied at these ghost
points and neighboring fluid points will, however, require a locally wider stencil where 12
points are required to evaluate the derivatives. This causes a problem where the immersed
boundary meets sharp corners such as illustrated in Figure 3.7. In this illustration, the re-
quired 12-point stencil width is not available, as only 8 fluid or ghost points are present on
the middle grid line in the x-direction. This problem appears near the intersection of the
plate and the cylinder surfaces. To remedy this the plate is held flat near the intersection,
i.e., s(j)

y = s
(1)
y = 0, j = 2, ..., N , where s(1)

y is the displacement of the first joint point,
and N is the number of points held in place. N depends on the density of the plate points
compared to the grid density, in these simulations N = 20 was chosen. This assumes
that the x- derivative of the displacement is equal to zero near the plate cylinder intersec-
tion. This assumption also corresponds to the boundary condition for the Euler-Bernoulli
structure model. This assumption is also reduced when grid point density is increased as a
smaller length of the plate has to be held in place.
b) Third ghost points without enough neighboring ghost points
As mentioned above, at least 12 points are required to evaluate the derivatives of the vis-
cous flux vectors ~F v and ~Gv at the immersed boundary. In certain situations, small per-
turbations created regions without enough ghost or fluid points to define these derivatives.
These situations appeared more frequently near the flat plate configuration, as a small
perturbation from the zero displacement line could cause jumps in the ghost point con-
figuration. Such a situation is illustrated in Figure 3.8. The solution to this issue was to
calculate the local derivatives with the number of points available with non-SBP methods
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if less than 12 points were available. These derivatives were calculated with the second-
order central difference scheme where three points were available, the first order one-sided
scheme where two points were available. Certain situations arose were only one point was
available to evaluate the derivative. To ease the implementation the local derivative was
set to zero at those points. These problems only occur at the third ghost point from the
immersed boundary and therefore can only interact with the flow through how this changes
the viscous fluxes. A discussion of these effects can be found in section 4.3.

Figure 3.8: Illustration of a region with too few neighboring ghost points to determine the ξ−
derivatives of u, v, T in the viscous fluxes.
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Chapter 4
Results

4.1 Simulation setup
Two cases of FSI problems are considered. An elastically mounted circular cylinder in
crossflow demonstrates our immersed boundary method’s capabilities to capture rigid
body fluid-structure interaction. The modeling of such a system has applications for
structure problems where vibration due to periodic vortex shedding is of interest. Vortex-
induced vibrations is a problem with large interest from the petroleum industry due to its
applications for drilling risers [54]. These vibrations cause fatigue damage on the struc-
tures which can endanger safe and continued operation [21]. These vibrations are caused
by the structure interaction with the shed vortexes and can involve complex vortex patterns.

A circular cylinder with an attached elastic plate was implemented to investigate this
IBM’s ability to capture FSI-problems with deforming structures. Proper modeling of
elastic plates and beams is a challenge in many engineering applications. Fluid-structure
interaction of deformable plates is used for hydrodynamic simulations for marine applica-
tions [49][10] as well as biomechanical modeling of the soft palate in the pharynx [28].

4.1.1 FSI of elastically mounted circular cylinder in freestream

This test case is taken from Yang and Stern [55], to verify our FSI method against their,
cf. section 4.2. The circular cylinder is imposed as in [46] and [29] by the immersed
boundary method. The cylinder with diameter D is centered at x0 = y0 = 20D, in
a channel 90D long and 40D high. This domain is large enough to reduce boundary-
and wave reflection effects [27]. Symmetry boundary conditions were imposed at the
upper and lower boundaries. In this work, the in- and outflow boundary conditions are
applied by injection of the Navier-Stokes characteristic boundary condition [44][29] as
mentioned in section 3.2.1. Yang and Stern [55] used a smaller domain where the total
domain was 40D long and 20D high. Yang and Stern [55] applied freestream condition
at the top and bottom boundaries, freestream inlet condition and a convective outflow
condition. As the boundaries are far from the cylinder and these boundary conditions are
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expected to have little impact on the flow, these differences are assumed negligible when
considering the near cylinder flow. The cylinder was held in place until non-dimensional
time t′ = tc0

D = 520, when periodic vortex shedding had developed, as was done in
[55]. The cylinder was then released and allowed to interact with the flow as an elastically
mounted cylinder modeled as a mass-spring-damper system.

The same grid as considered in [46] was used, described there as follows: ”The solu-
tions were calculated on a 441x261 grid, with 115101 grid points in total. The domain is
structured by blocks, where the block with the cylinder had the finest grid. The nine blocks
are used for the parallelization of the flow solver, this is described in [29]. In the block
containing the cylinder, a fine grid spacing of (∆x=∆y=D/50) was used. The grid spacing
is smoothly stretched to (∆x ≈ ∆y ≈ D/2) near the domain boundaries.” [46] Two grid
refinements were considered, one corresponding to grid size ∆ = D

25 near the cylinder and
the other refined with twice as many grid cells in the whole domain, corresponding to grid
spacing ∆ = D

50 near the cylinder. The grid is presented in Figure 2.1.

4.1.2 FSI of cylinder with attached elastic plate in channel flow

A circular cylinder with diameterD is placed in a channel with its center locked at position
x0 = 20D, y0 = 2D. The channel domain considered is a long 2D channel with length
L = 90D and height H = 4.1D. Attached on the right of the cylinder is a flexible plate
with thickness h = 0.2D and length l = 3.5D. The end point of the plate will be referred
to as point A and is used for comparison with previous results, cf. Figure 4.1. The physical
geometrical sizes introduced in [52] are presented below in Table 4.1.

Figure 4.1: Illustration of computational domain (above) and structure details (below), taken from
[52].

The plate is held in place until dimensional time t = 1[sec] such that the initial con-
dition would not affect the simulations. The initial conditions in the entire domain corre-
spond to U(x, y, t = 0) = 0.
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Table 4.1: Geometric dimensions as used in [52], except for L, which was L=2.5 in [52].

D 0.1 [m]
L 9.0 [m]
H 0.41 [m]
h 0.02 [m]
l 0.35 [m]
x0 0.2 [m]
y0 0.2 [m]

The equations of fluid motion are transformed from Cartesian coordinates into trans-
formed coordinates described in section 2.3. The transformation gives a finer grid near the
cylinder and plate as to properly capture the near structure dynamics. Near the structure
the grid spacing is ∆ = D

100 , the grid is then stretched according to the transformation
given in [29] to approximately a grid spacing of ∆x ∼ D

20 near the inlet and ∆x ∼ D
2 near

the outlet. The grid was stretched to a grid spacing of ∆y ∼ D
50 near the top and bottom

walls. To compare with [52], no-slip, adiabatic temperature boundary conditions with the
boundary layer approximation for the pressure were applied at the top and bottom bound-
aries. The inlet velocity profile was imposed according to [52] written in dimensionless
form as:

u0(y∗) = 1.5Ma
4

(HD )2 y
∗(H
D
− y∗), (4.1)

where y∗ is the non-dimensional y-coordinate y∗ = y
D , Ma = Ū

c0
, where Ū is the mean

inflow velocity. Similar to [52] the imposed velocity profile was progressively introduced
by a transient increase from zero to u0:

u(0, y, t) =
{
u0(y)

(
1−cos(π2 t)

2

)
, if t ≤ 2[s]

u0(y) otherwise
(4.2)
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Figure 4.2: Grid for FSI of circular cylinder with attached elatic plate in channel flow. The darker
shape is the circular cylinder with attached plate. Cartesian grid near the cylinder for (x, y)ε[18D,
24.5D]x[1D, 3D] with local grid spacing ∆ = D

100 , and stretched grid away from the cylinder. Every
10th line is plotted.
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4.2 Elastically mounted cylinder

The elastically mounted circular cylinder in crossflow was simulated at Reynolds number
Re=200, Ma=0.25 as to be comparable with the results of Yang and Stern [55] and Black-
burn and Karniadakis [6]. The flow was simulated with air at standard conditions as the
fluid. The flow was simulated as two-dimensional laminar flow, with no turbulence model
implemented. The Reynolds number 200 is near the limit of what the 2D Navier-Stokes
equations can accurately predict, as it is near the transition to turbulence. For further
discussion of this see [46].

The cylinder was initiated at position (20D,20D), which was chosen as the equilibrium
position of the mass-spring-damper system. As described in section 4.1.1, the cylinder
was held in place until non-dimensional time t′ = tc0

D = 520, when vortex shedding
had developed for the fine grid solution. For the unrefined solution with grid spacing
∆x = ∆y = D

25 near the cylinder, the vortex shedding had not fully developed. However,
at the time of release, the cylinder was quickly accelerated in the x-direction due to drag
forces. This appears to have initiated the vortex shedding. This can be seen in Figure
4.12, as both systems appear to have reached the same periodic state these results at grid
spacing ∆ = D

25 were used for comparison. The nondimensional time step was set to
∆t′ = ∆t c0D = 8 · 10−3, corresponding to Courant number, C = 0.48 and C = 0.24 for
the fine grid ∆ = D

50 and the coarse grid ∆ = D
25 , respectively. Convergence is further

discussed in section 4.2.3.

4.2.1 Comparison with previous results

The test case was set up to be comparable to the simulations of Yang and Stern [55],
where the same system of structure equations was solved with an IBM incompressible flow
solver. The parameters of equation (2.16) were set in accordance with [55] as U∗ = 5, ζ =
0.01 and m∗ = 4

π . The results in this section are from simulations where a simultaneous
4-stage Runge-Kutta solver was used for the time integration of the system, cf. section
3.2.2. The results of these simulations are presented below in Figures 4.3 and 4.4. Figure
4.3 shows the periodic motion of the cylinder after a periodic solution was reached. The
axis of Figure 4.3 is shifted so that x=0 matches the point where the trajectory crosses itself
in the x−direction. This point corresponds to the center of the figure eight oscillations.
The frequency of the oscillation are fy = 14.9[Hz], and fx = 30.0[Hz], where subscript
indicate the direction of oscillation. To compare with previous results the frequency was
non-dimensionalized with f0 = 1

t0
= U

D . The dimensionless frequency in the y-direction

was found to be f∗y = 0.181, where f∗y = fyD
U∞

, which is the Strouhal number, St [3]. This
result is in quite good agreement with [55] where the observed frequency was f∗y = 0.187.
The observed frequency lies very close to the observed vortex shedding frequency of the
released cylinder, St = 0.182, meaning that the oscillations synchronize with the vortex
shedding frequency. The observed vortex shedding frequency before cylinder release was
funreleased = 0.190. The frequency of oscillation in the x-direction was f∗x = 0.364 for
the fine grid solution ∆ = D

50 , the frequency was lower for the coarser grid with ∆ = D
25

where the frequency was found to be f∗x = 0.360. In the y-direction the same oscillation
frequency was observed for both grids.
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Figure 4.3: Comparison of the cylinder centerline trajectory (left plot) and the cylinder velocity
components phase plots (right plot) for elastically mounted circular cylinder at Re=200, Ma=0.25,
m*= 4

π
. Figures taken from [55] and overlayed with present results.

Green solid line: Yang and Stern [55] results with a coarse grid (160x120 grid points)
Cyan dashed line: Yang and Stern [55] results with a medium grid (320x240 grid points)
Blue dashed-dotted line: Yang and Stern [55] results with a coarse grid (640x480 grid points)
Black circles (o): Blackburn and Karniadakis [6](only left plot)
Red sold line : Present fine grid (∆ = D

50 ) and ODE and PDE simultaneously solved with RK4.

Figure 4.3 (left) shows that both the present and previous simulations appear to create
the same periodic motion, a slanted figure eight shape. Previous results appear to converge
towards a solution upon grid refinement, this is also observed in present results, which is
discussed in section 4.2.3. The results using a coarser grid and the explicit Euler method
with a fine ∆ = D

50 and coarse ∆ = D
25 grid is also present in section 4.2.3.

The present method has previously been investigated in [27] and [46]. From these
investigations, the IBM appears to underestimate the drag coefficient compared to other
numerical results, while it appears to better approximate experimental results [46]. In
Ringstad [46], the lift coefficient was found to be in better agreement with other numerical
results. Figure 4.3 (lower right) show that the center of oscillation for the finest grid
solution of [55] is about xc = x0 + 0.651D, where xc is the center of oscillations. The
present results place the center of oscillation further upstream at xc = x0 + 0.616D.
The present results are therefore in better agreement with the results of Blackburn and

32



4.2 Elastically mounted cylinder

Karniadakis [6], where the center of oscillation was xc = x0 + 0.62D. The trajectory of
the cylinder is wider in the x− direction for the present method than those of [55][6]. This
indicates that either the drag forces or the solution of the structure equations differ between
the present and previous work. The present results with the classical explicit Runge-Kutta
method with a fine grid (∆ = D

50 ) is compared to the results using a coarser grid (∆ =
D
25 ) and with the explicit Euler method for a fine and a coarse grid in Figure 4.13. For
all methods and grid resolutions, the y−direction results match each other and previous
results. The results in the x−direction match each other for the same grid resolution.
This indicates that the method used to solve the structure-dynamics is not decisive for the
results. This suggests that it is likely that different calculated drag forces are the reason
for differing results. This supported by the fact that the drag force calculated by this IBM
was lower than those of other numerical results for a stationary cylinder in cross-flow
[46]. In the present results presented in Figure 4.3 (left) a jump in the trajectory near
(x/D = 0.75, y/D = 0.55) is observed. This is where the start and end of the last period
of the simulation. This indicates that the solution is not fully converged in time.

Figure 4.4: Cylinder centerline trajectory
x- and y-displacement from equilibrium position (0,0) for Re=200, Ma=0.25. ∆ = D

25 , m∗ = 4
π

and m∗ = 1
2 . (Upper) Present results, Red line: m∗ = 1

2 , blue line: m∗ = 4
π

(Lower) Yang and
Stern [55], Green line: m∗ = 1

2 , black line: m∗ = 4
π
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The simulations were also performed with mass ratio m∗ = 0.5, with the ODE (2.17)
solved with the explicit Euler method and the Navier-Stokes equations solved with grid
size ∆ = D

25 . These simulations were initiated with the circular cylinder at position x0 =
19, y0 = 20 to keep the cylinder inside a single parallel block in the computational domain.
From Figure 4.4 it is clear that the reduced mass moves the center of the oscillations further
downstream. This effect is larger for the present simulations than that of [55]. The blue
and black lines are the results with the higher m∗ = 4

π , these also differ location of the
center of oscillation.

The instantaneous non-dimensional vorticity plot is shown in Figure 4.5. This shows
the vortex shedding happens with the expected two alternating single vortices shed, which
was also observed in [55]. These shed vortexes travel downstream in what is called a von-
Karman vortex street. The vorticity of the flow field is defined with the Einstein summation
convention as:

ωi = εijk
∂uk
∂uj

, (4.3)

where εijk is the Levi-Cevita symbol, i.e., =+1 if (i,j,k) is an even permutation, -1 if it is
an odd permutation, and 0 if any index is repeated [38].

Figure 4.5: Instantaneous vorticity ωz of the dimensionless velocity field ~u/c0 for an elastically
mounted circular cylinder at Re=200, Ma=0.25, m*= 1

2

It was also of interest to investigate sound propagation. By looking at the pressure
fluctuation defined as:

pfluctuation = p′ − p̄, (4.4)
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where p′ = p
ρ0c20

, and p̄ is defined as:

p̄(x, y) = 1
t2 − t1

∫ t2

t1

p(x, y, t)dt, (4.5)

where t1 and t2 are the time instants of one period of cylinder oscillation.
This is shown in Figure 4.6, the average pressure of eqn. (4.5) was averaged over three

full oscillations of the cylinder.
Figure 4.6 shows that the main pressure fluctuations at this Reynolds number are due

to the von-Karman vortex street following the cylinder [8]. The imposed boundary condi-
tions create reflecting pressure boundary conditions. The pressure waves that are reflected
off the top and bottom walls are suspected to bounce off the wall and interfere with the
established pressure waves caused by the von Karman vortex street.

Figure 4.6: Dimensionless fluctuation pressure, eq. (4.4) for Re=200, Ma=0.25, ∆ = D
25 , m∗ = 1

2

4.2.2 Energy exchange
The energy exchange between the flow and the structure is investigated. The rate of energy
lost from the flow to the structure can be expressed in the form:

P =
∫
∂Ω

(pnjuj − njuiτij)dA = uFD + vFL, (4.6)
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Figure 4.7: Dimensionless average pressure, eq. (4.4) for Re=200, Ma=0.25, ∆ = D
25 , m∗ = 1

2

where ∂Ω is the boundary interface between the fluid and the structure, nj is the j-th
component of the unit normal vector pointing into the structure, FD and FL are the lift
and drag forces, u and v the velocity components of the moving structure, P is the rate
of work exerted from the fluid flow on the structure. For these simulations, the adiabatic
boundary condition was applied. Thus, no heat is transferred between the structure and
the fluid. This energy transfer at the interface can be recovered in the structure model by
considering the forcing terms FD(t) and FL(t) in equations (2.14) and (2.15), respectively.
By regarding the total energy of the structure system:

Etot = 1
2(kx2 +mẋ2 + ky2 +mẏ2), (4.7)

the rate of change of energy with time can be derived from differentiation and inserting
equations (2.14) and (2.15) for the terms mẍ and mÿ, respectively. This yields:

∂Etot
∂t

= FDu+ FLv − b(u2 + v2). (4.8)

The term −b(u2 + v2) is the rate of energy removal through the damping term −bu and
−bv in equations (2.14) and (2.15), respectively, that removes energy from the system.
From this it is evident that the same energy removed from the fluid system is analytically
added to the structure system as the same energy transfer terms, FDu + FLv, appear in
both equations. The energy transfer from the fluid to the structure, FDu + FLv, will be
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4.2 Elastically mounted cylinder

referred to as the rate of added energy to the system. The energy lost through damping in
the harmonic oscillator is lost from both systems as it is not regained in the fluid model.
This rate of energy loss must be modeled as additional heating of the structure to maintain
the physical rate of energy conservation. The rate of added and lost energy over time
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Figure 4.8: (Upper) Dimensionless power, Ė
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added and lost by the structure ODE over dimen-

sionless time. (Lower) Total, kinetic and potential dimensionless energy E
ρ0c20

of the cylinder over

dimensionless time t′ = tc0
D

. Re=200, Ma=0.25, ∆ = D
50 , m*= 4

π

in eq. (4.8) is shown in Figure 4.8 (upper). This shows that the damped energy rate,
−b(u2 +v2), is dominated by the energy exchange done by the external forces to and from
the cylinder. Figure 4.8 (lower) shows how the total energy is partitioned to the kinetic and
potential energy. In this system the kinetic energy is defined by Ekin = 1

2m(ẋ2 + ẏ2) and
is the energy stored in the movement of the cylinder. The potential energy is defined by
Epot = 1

2k(x2 + y2). It is the potential energy stored in the spring due to compression or
extension of the spring. The total energy is defined as the sum of the potential and kinetic
energy, cf. equation (4.7).

Most of the total energy in the mass-spring-damper system is stored as potential en-
ergy. This is due to the static displacement of the cylinder at the center of oscillation. To
investigate the conservation of the energy the power to the mass-spring-damper system,
eqn. (4.8), was integrated from t = 0 to t = tend using the trapezoidal rule. This should
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analytically match the total energy in the system, eqn. 4.7. These do not exactly match and
the numerical error in conservation was estimated as Eerr = Etot −

∫ tend
0

∂Etot
∂t dt. From

this error estimate, it was shown that the error is relatively small, err ∼ 2% of the total
energy, at non-dimensional time tend = 830.
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.

This analysis is furthered by looking at how the energy is transferred between the
systems when periodic oscillations are reached. By looking at the added power, FDu +
FLv, at different velocities the pattern of rate of energy transfer can be found. This can be
seen in Figure 4.9. The added power in the x- and y-directions are separated and shown
plotted against the velocity components u and v, respectively. To relate these velocities
to their corresponding positions along the cylinder centerline trajectory at evenly spaced
time-intervals an additional plot is added in the upper right of this Figure. These points
are shown for one upper loop of the cylinder centerline trajectory and are symmetric about
the lower loop. Intuitively, the added and removed power must sum to zero during one
whole loop of the trajectory, else the solution energy will grow with time. This can readily
be seen for the x-direction as the rate of energy added is symmetric about the zero-power
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axis.
In the x-direction, the most power is transferred near the midpoint between the two

extremes in x-position, i.e., at points 1 and 5. Point 1 corresponds to the most positive
added power. Here the drag force and the x-velocity coincide at the point of maximum
velocity. In this region, the fluid is exerting forces on the cylinder, this power is transferred
over time into the spring’s potential energy. The spring force slows down the cylinder up to
point 3. From point 3 to 5 here the spring force accelerates the cylinder in the negative x-
direction, opposing the drag forces from the fluid. This is exchanging the stored potential
energy of the spring for kinetic energy, which in turn is transferred back to the fluid.

The rate of energy transfer between fluid and structure in the y-direction is more com-
plex due to the variation of the lift coefficient. Starting from point 1 through 3 the lift force
and v-velocities coincide as to increase the power to the system. At the peak y-position,
near point 5, the spring pulls the cylinder down which opposes the lift forces exerted from
the fluid. This continues until point 7, as the cylinder reaches its most negative v-velocity.
At this point, the lift coefficient switches from positive to negative due to the shedding of
a vortex, cf. Figure 4.10. After this, the effect is symmetric to the rate of energy transfer
from points 1-4.

The noisy disturbances in Figure 4.9 near points 1, 6 and 7 in the y-direction are
suspected to be numerical errors. It is suspected that these occur near these regions as they
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happen near the crossing point of the trajectory, i.e., where the cylinder has the highest
velocity. As the energy transfer is largest for largest velocities, cf. eq. (4.8), the error is
scaled to be larger for those regions. These numerical errors are investigated for different
grid refinements in Figure 4.11. This is discussed further in section 4.2.3.
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4.2.3 Convergence
In Figure 4.3 the results of the simulations using the Runge-Kutta method with grid size
∆ = D

50 were compared to those of [55]. In this section, different methods and grid
refinements for the same simulation are compared.

Two grid refinements have been investigated for this case, a grid spacing of ∆ = D
25

near the cylinder and a refined run with grid spacing twice refined to ∆ = D
50 near the

cylinder. This was investigated for the explicit Euler method and the 4-stage Runge-Kutta
method. The implementation of these methods are presented in pseudo-code a) and b) in
section 3.2.4. These results are presented in Figure 4.13.

The present results indicate that the y-direction velocities appear to be quite well con-
verged, cf. Figure 4.13 (upper right), both for the Runge-Kutta and the explicit Euler
methods. This is also observed in the results by [55], cf. Figure 4.3 (upper right). On
the other hand, the results of Yang and Stern [55] show that in the x-direction the center
position is clearly shifting to the right upon grid refinement, cf. Figure 4.3(lower right).
This trend is also observed for the present results. Both the Runge-Kutta method and the
explicit Euler appear to converge toward the same fine grid solution.

As mentioned above the drag tends to be underestimated by this method compared
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4.2 Elastically mounted cylinder

to other methods. The increased drag upon grid refinement is suspected to be caused by
the better resolution of the boundary layer and through this an increase in friction forces.
The trend of adding an increased mean drag force with grid refinement is evident from
the time-history of the lift and drag coefficients presented in Figure 4.12. Here the drag
coefficient of the refined solution is oscillating about a higher value. The
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Figure 4.12: The time developement of the lift and drag coefficients for the explicit Euler method
at ∆ = D

25 and ∆ = D
50 , Re=200, Ma =0.25, m∗ = 4

π
.

The numerical noise observed in Figure 4.9 mentioned above was investigated. The
same plot is shown for both grid refinements in Figure 4.11. From this, it is clear that the
noise is a numerical issue, as it is exacerbated by increased grid spacing. This indicates
that a finer resolution than D

25 is required to inspect the rate of energy transfer properly.
It was concluded in [29] that this immersed boundary method was only properly re-

solved for a transversely oscillating circular cylinder at a grid spacing of the order ∆ = D
50 .

This is supported by the clear numerical noise generated at ∆ = D
25 in Figure 4.11. From

previous work with this method [46], it was found that the IBM method shows only slightly
above first-order convergence upon space- and time refinement for the lift and drag coeffi-
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cients. However, the solutions in [46] might not have been run long enough to be conclu-
sive. It was also found that due to stability restrictions a proper time refinement analysis
was not achievable.

4.2.4 Numerical methods
Four different numerical methods were used to solve the system of ODEs (2.16). The
numerical methods were investigated for two cases a) and b):

a) The system was initiated with zero velocity ẋ(0) = 0 and position from equilibrium
x(0) = x0 = 20D, and an external forcing of a sinusoidal drag force, cD(t) = Acos(ft)
was applied, where the force amplitude, A, was set to 100, and the frequency was set to
f = 10.

b) The system was initiated with zero velocity ẋ(0) = 0 and an initial perturbation
from the equilibrium position, x(0) = x0 + 0.2D = 20.2D, where x0 is the equilibrium
position at x = 20D. No external forcing was applied, i.e. cD = 0.

The simulations were run up to nondimensional end time tend = 100 with time-step
sizes ~∆t =

[
5 · 10−5, 1 · 10−4, 2 · 10−4, 4 · 10−4]T · 10j , for j = 0, 1, 2. Other simula-

tions were done with higher frequency and longer simulation time, but these yielded very
similar results. The mass-spring-damper parameters were set as described in section 4.2.1.
As no analytic solution is available the results were compared to the finest time step so-
lution with ∆t = 5 · 10−5 referred to as the reference solution. The 2-norm is used to
estimate the error of the different numerical methods. The 2-norm of the error is defined
as L2 =

√
∆tΣ(err)2. The results are shown in Figure 4.14.

To investigate the order of accuracy the error is assumed to be of the form: err(∆t) =
C∆tp, where ∆t is the time step size. The exponent of the error reduction is referred
to as the order of the method, The L2-norm is used to estimate the error. To estimate
the order of the temporal error reduction one can compare the errors after halving of the
time step, ˆerr = err( ∆t

2 )
err(∆t) ≈ ( 1

2 )(p). This can be solved for the order of the method,

p = ln( err(∆t)
err(∆t/2) )/ln(2).

Table 4.2: Estimated order of convergence, p, for the different cases and methods.

Method Forced oscillation Free oscillation Theoretical order
Explicit Euler 1.55 1.52 1
Størmer-Verlet 1.55 1.56 2
Heun’s method 1.55 2.5 2
Runge-Kutta 4-stage 1.55 4.5 , 0.5 * 4

Figure 4.14 and Table 4.2 show that the investigated methods do not converge accord-
ing to their theoretically expected order of accuracy, discussed below.

Forced oscillations

It appears that the forced oscillations impose a limit for the convergence rate of the meth-
ods, all the methods reach almost exactly the same order of convergence. Also, the errors
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4.2 Elastically mounted cylinder

of Heun’s method and the Størmer-Verlet method almost exactly overlap in Figure 4.14.
It is not known why this upper limit is imposed on the system, but it is speculated that
another error enters the equations and dominates the error. The only potential suspect
is the external forcing. This would imply that this external forcing carries with it some
upper limit to the convergence. These strange results could be indicative of a bug in the
implementation of the methods.

Free oscillations

The more expected orders of these methods are found when the external forcing is removed
from the equations and only free oscillations are considered. The Euler and Heun meth-
ods both converge at a rate slightly higher than their expected theoretical order, p ∼ 1.5
and p ∼ 2.5, respectively. The Størmer-Verlet method showed lower than second order
convergence, reaching only order ∼ 1.5. This is thought to be caused by the dependency
on damping. As discussed in section 3.2.2 the low order observed for the Størmer-Verlet
method is suspected to be due the velocity used in the damping term was taken from the
intermediate stage Qn+1/2. The Runge-Kutta method did not show a single consistent or-
der of convergence for all time-steps and will be discussed in further detail. From Figure
4.14 the Runge-Kutta method shows slightly above the expected order of convergence for
large time steps. However, at approximately ∆t = 10−2, the error is only reduced with
order p ∼ 0.5, meaning that a halving of the time step reduces the error by a factor of√

2 ≈ 1.414. This sudden reduction in order indicates that the method reaches a point
where further reduction of the time step is not significant for the method. This is thought
to be an effect of round-off errors. An investigation of these effects using an exact solution
for the reference solution is suggested for future work. The strange results are suspected
to be caused by a programming error which was not found.
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Figure 4.14: ζ = 0.01 method = 1(cyan): Stormer-Verlet; method = 2(blue): Heuns; method =
3(green): Explicit Euler; method = 4(red): RK4
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4.3 Elastic plate behind circular cylinder
Simulations of an elastic plate behind a circular cylinder were performed as to be compa-
rable to the proposed FSI-benchmark by Turek and Hron [52]. A summary of the physical
parameters of [52] is presented in Table 4.3.

The plate was initiated with displacements and velocity s(i)
y = d

dts
(i)
y = 0, for all plate

points, i=1...m, where subscript indicate the component of s. The simulations were done
with m = 220 joint points describing the elastic plate, corresponding to a spacing of the
joint points comparable to ∆s = s

(i+1)
x − s(i)

x = l
m ≈

D
63 , where i and i + 1 are two

neighboring indices of the joint point vector s.
Geometrical and initial conditions were set as described in section 4.1.2. The param-

eters of the fluid and structure solvers were initially set according the benchmark, which
is presented in Table 4.3. The parameters presented are the fluid density ρf , the fluid vis-
cosity νf , the undisturbed fluid velocity U∞, the flow Mach number Ma∞ = U∞

c0
, the

Reynolds number Re = U∞D
ν , the structure mass density ρs, the structure elastic Young’s

modulus E, and the structure Poisson ratio νs. Two of the parameter settings proposed
in [52] were tested, these are referred to as FSI1 and FSI2, respectively. These settings
will be referred to as the reference settings. Turek and Hron [52] used an incompressible
solver. In the present simulations, the Mach number was chosen such that the compress-
ible effects were negligible. To speed up the simulations the speed of sound was artificially
set to c0 = 1[m/s] and c0 = 3[m/s] for the test cases FSI1 and FSI2, respectively. This was
set as to impose the Mach-number Ma = 0.2 and Ma = 1

3 at the velocity scale U∞ used
in [52].

Table 4.3: Parameters set for the plate and fluid models in the benchmark of Turek and Hron [52],
except ρs and ρf which were both set ≈ 103 times higher in [52] at 103 kg

m3 .

FSI1 FSI2
ρf 1 kg

m3 1.18 1.18
νf 10−3 m2

s 1 1
U∞ 1 m

s 0.2 1
Ma∞ - 0.2 1/3
Re - 20 100
ρs 1 kg

m3 1.18 11.8
E 106 kg

ms2 1.4 1.4
νs - 0.4 0.4

This structure model was investigated for this test case by Garcia [16] also using the
Newmark method. Garcia [16] found that the structure model was able to accurately pre-
dict the movement of the plate.

The benchmark was simulated with an incompressible solver [52]. The present solver
was, however, designed for gas dynamics. So the density of the fluid and the structure
were both reduced by a factor of ρf

ρair
, such that the gas density is set to ρair. This change

was also done for the structure density as to keep the density ratio ρs
ρf

constant and in
correspondence with the ratio of [52].
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4.3 Elastic plate behind circular cylinder

The results of the simulation of FSI1 is shown in Figure 4.15. This indicates that point
A, the plate trailing edge is trending towards a displacement near φA/D ≈ 7.67 ·10−3 ,i.e.
φA = 0.767 · 10−3[m]. This is quite close to the results by [52] where the FSI problem
reached a steady state solution with tip displacement φA = 0.821 · 10−3[m]. Figure 4.15
indicates that the simulations had not yet reached steady state. However, they were ended
early due to time constraints. Further simulation is required for a proper comparison with
the results of the FSI-benchmark by Turek and Hron [52].
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Figure 4.15: Displacement of point A φA
D

over dimensional time, according benchmark test FSI1
of [52] for elastic plate behind circular cylinder, at Re=20, Ma =0.2. The dashed line indicates the
time of release.

Figure 4.16 shows the dimensionless pressure near the cylinder plate arrangement for
the case FSI1. Figure 4.16 shows the instantaneous vorticity of the dimensionless velocity
field. No periodic motion is observed and a symmetrical solution about the plate is found.
The symmetric and opposite vorticity above and below the cylinder is generated as the
flow is forced around the obstructing cylinder. This vorticity is then carried with the flow
across the plate and travels in a band of positive and negative vorticity down the flow.
The vorticity near the top and bottom wall are due to vorticity generated by the boundary
layer. The pressure is highest near the cylinder stagnation point. The pressure is reduced
downstream in the channel as the pressure has to overcome the frictional forces at the
walls.
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Figure 4.16: Dimensionless perturbation pressure p′ = p

ρ0c20
distribution according benchmark test

FSI1 of [52] for elastic plate behind circular cylinder at Re=20, Ma=0.1.

Figure 4.17: Instantaneous vorticity ωz of the dimensionless velocity field ~u/c0 according bench-
mark test FSI1 of [52] for elastic plate behind circular cylinder at Re=20, Ma=0.1.
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The results of the simulation of FSI2 is shown in Figure 4.18. This shows the periodic
motion of the plate tip at point A, cf. Figure 4.1. The oscillations are comparable to those
of [52] where the displacement of point A was found to be φA/D ≈ 0.0123 ± 0.802 =
1.23 ± 80.2 · 10−3[m]. From the present results the displacement for the last period of
oscillation was observed to be φA/D ≈ 0.0365±0.8387 = 3.65±83.87 ·10−3[m]. These
results are in quite good agreement and indicate that the immersed boundary method can
properly describe FSI. However, instabilities that are thought to originate from the FSI-
coupling made the solution unstable beyond t = 8.76 [s]. This is further discussed in
section 4.3.1. The power added to the elastic plate system across the beam length is shown
in Figure 4.23. The sinusoidal shaped power over the plate length seen at time t = 8.25 is
the discussed instabilities. At time t = 8.25 the instabilities dominate the power transfer
of the fluid-structure interaction. Before this time the interactions are well behaved and
the growing instabilities are thought to have a negligible effect on the large-scale dynamics
of the plate. From Figure 4.15 it is clear that the periodic oscillations had not reached a
steady solution. The implementation of a stable solution of the FSI-coupling is needed for
better results to compare with [52].
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Figure 4.18: Displacement of point A φA
D

over dimensional time, according benchmark test FSI2 of
[52] for elastic plate behind circular cylinder, at Re=100, Ma = 1

3 . The dashed line indicate the time
of release.

Figure 4.19 shows the dimensionless pressure near the cylinder plate arrangement for
the case FSI2. The pressure varies across the plate. The pressure difference between the
top and bottom side of the plate accelerates the plate upwards. Figure 4.19 shows the
instantaneous vorticity of the dimensionless velocity field. As in Figure 4.20 for FSI1 a
band of positive and negative vorticity is observed behind the plate. The plate motion is
pushing the vorticity band to oscillate with the plate oscillations.
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Figure 4.19: Dimensionless perturbation pressure p′ = p

ρ0c20
distribution according benchmark test

FSI2 of [52] for elastic plate behind circular cylinder at Re=100, Ma= 1
3 .

Figure 4.20: Instantaneous vorticity ωz of the dimensionless velocity field ~u/c0 according bench-
mark test FSI2 of [52] for elastic plate behind circular cylinder at Re=100, Ma= 1

3 .
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4.3.1 Differential pressure

A proper description of the pressure load on the plate was found to be critical for stable FSI
solutions. Due to the implementation of the pressure load, certain ratios of grid point den-
sity to joint point density were prone to instabilities in the pressure load. If the joint point
density and grid point density were nearly exactly matched to a whole number fraction, sit-
uations where every other joint point did not have a pressure occurred. For example with a
grid size ∆ = D

100 with m = 350 points, corresponding to ∆s = s
(i+1)
x − s(i)

x = L
m ≈

D
50 ,

this was an issue as this density is close to exactly half that of the grid. These situations
were reduced by interpolating between nearby values. This interpolation created sporadic
pressure spikes in the pressure load, thought to be caused by the ghost point configuration
jumps discussed in section 3.3 b). This problem was reduced for m = 220 compared to
m = 350. These pressure spikes can be seen in Figure 4.21 for the case FSI2. The spikes
are suspected to cause the onset of a numerical instability of the FSI. Some small ampli-
tude spikes were observed for the case FSI1, but these were small enough to not influence
the solution at simulation end time. The pressure spikes in FSI2 should in the future be
removed either by interpolation from nearby pressures or by identifying the underlying
issue. The implementation of a high frequent filter to dampen the oscillatory pressure
forces is also suggested. The inclusion of a non-zero damping term d in the elastic plate
equations (2.18) could reduce the unstable oscillations.

4.3.2 Transfer of energy for the elastic plate

The energy exchange due to the fluid-structure interaction is investigated for the elastic
plate system. The power from the fluid to the structure is as found in section 4.2.2:

Pf =
∫
∂Ω

(pnjuj − njuiτij)dA (4.9)

where δΩ is the boundary interface between the fluid and the structure, nj is the unit nor-
mal vector in index notation, Pf is the work exerted from the fluid model to the structure.

The rate of change of energy in the Euler-Bernoulli equation has been evaluated by
[30] and reads:

d

dt

(
1
2ρsh

∫ L

0
φ̇2dx+ 1

2B
∫ L

0
(φxx)2dx

)
=
∫ L

0
(−δp)φ̇dx− d

∫ L

0
φ̇2dx (4.10)

The pressure load transfers energy to the system through the term Ps =
∫ L

0 (−δp)φ̇dx.
This corresponds analytically to the fluid power term pnjuj of eqn. (4.9). The energy from
the fluid through viscous forces are however not regained in the elastic plate system. This
is a consequence of the assumptions of the Euler-Bernoulli model since only loads normal
to the axial dimension are considered. Since damping was set to zero for this system the
exchange of energy can be investigated by looking at the pressure load power term. Figure
4.23 shows the power added to the plate across the plate length for FSI2. The most power
is transferred at the plate end where the largest velocities occur. The spikes observed at
t = 5.28 [s] and t = 6.27 [s] are due to spikes in the pressure load. The oscillatory
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Figure 4.21: Dimensionless pressure perturbation along the joint point elements of the plate m =
350 for Re=100, Ma=0.1.

instabilities that are observed for FSI2 are not observed in the power transfer of FSI1, cf.
Figure 4.22.

4.4 Computations
All simulations were run on the IDUN/EPIC cluster at NTNU [40]. The simulations were
run on 9 nodes, one for each parallel block in the domain.
The cluster hardware specifications can be found at:
https://www.hpc.ntnu.no/pages/viewpage.action?pageId=22413575[40]
The most common computer on this cluster is included here cited from [40]:
-Dell PE630 with 2 x E5-2630 v4 10 cores 2.20GHz, 128GB RAM, 300GB local disk

Example of simulation time:
Simulation of a circular cylinder with an attached elastic plate took 90 hours for 881 ×
301 = 265181 grid points and 106704 time steps.
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4.4 Computations
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Figure 4.22: Dimensionless power Ps = (−δp)φ̇ to the plate along the dimensionless plate length
with m = 220 for FSI1 at Re=20, Ma=0.2
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Chapter 5
Conclusions

The purpose of this thesis is to investigate the higher order ghost-point immersed boundary
method by Khalili [27] for fluid-structure interaction. The implementation of two FSI-
cases has been presented: a) an elastically mounted circular cylinder in free stream and b)
an elastic plate attached to a circular cylinder in channel flow.

a) The immersed boundary method shows quite good agreement with the results of
Yang and Stern [55] and Blackburn and Karniadakis [6] for an elastically mounted circular
cylinder at Re=200. Second-order ordinary differential equations governing the cylinder
motion have been investigated and the order of convergence showed a dependency on the
external forcing which has not been understood. The energy transfer between the fluid and
the structure for an elastically mounted circular cylinder has been investigated. A pattern
for the energy transfer has been presented and physical interpretations of the results have
been suggested.

b) The implemented model for an elastic plate behind a circular cylinder indicates
that our IBM method is able to reproduce the results of the benchmark for FSI by Turek
and Hron [52]. The immersed boundary method shows the ability to impose moving and
deforming geometries. However, the implementation of the pressure load on the structure
is prone to interpolations errors. It is suspected that these errors are amplified by the
fluid-structure interactions, which made the simulation of the test case FSI2 unstable. An
issue with the higher order IBM was encountered were narrow regions did not contain the
required 12 point stencil width. These regions need an estimation of the derivatives of
the viscous fluxes. This problem was solved in these regions using crude assumptions. It
is suggested that the derivatives of the viscous fluxes should, in the future, be calculated
with a lower order SBP-operator or that an alternative local estimation of the derivatives is
implemented.
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Chapter 6
Future outlook

Some aspects of the current work have been left for future work due to computational- and
time restrictions. The suggested points to investigate are listed below:

• The application of this IBM with FSI for other geometries and benchmarks is of
interest to further verify and validate this immersed boundary method.

• The order of time convergence of the different numerical methods in section 4.2.4
is not properly understood and suspected to be caused by a programming error.
The order of convergence should be further investigated for the harmonic oscillator
system.

• The elastically mounted cylinder simulations should be simulated longer in time to
achieve more converged steady-state solutions.

• An investigation of the temporal order of our immersed boundary method with FSI
is of interest. This is a challenge to estimate as the temporal errors are dominated
by the spatial errors, as discussed in [46]. The importance of solving the FSI system
on synchronous intermediate time stages in the Runge-Kutta method is one aspect
that would be of interest.

• Further work on the elastic plate model is needed. Insights into the growing instabil-
ities are important for future implementation of this method with FSI. The effect of
a filtering of the pressure load or inclusion of damping is suggested for the reduction
of these instabilities.

• The effect of plate models for the fluid-structure interaction for the benchmark by
Turek and Hron [52] should be investigated.

• The goal of the OSAS-research project is the modeling of fluid-structure interaction
in the upper human airways. The implementation of the present plate model into a
model of the upper human airways could give insights into the interactions between
the biomechanical tissues and the airflow.
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