
Experimental evaluation of DDoS
detection and prevention using open-
source and commodity hardware

Meklit Elfiyos Dekita

Master of Science in Telematics - Communication Networks and Networked

Supervisor: Yuming Jiang, IIK
Co-supervisor: Ivar Arnesen, Ivar Arnesen invest AS

Department of Information Security and Communication Technology

Submission date: March 2018

Norwegian University of Science and Technology

.

Title: Experimental Evaluation of Inline DDoS Detection and Prevention
using Open-source Solutions and Commodity Hardware

Student: Meklit Elfiyos Dekita

Problem description:

Distributed Denial of Service (DDoS) is one of the rapidly growing attacks posing a
significant threat to internet resources. If a DDoS attack is not handled during the
initial states, the attack may result in service unavailability and has potential
costly consequences. There are different DDoS detection and prevention
mechanisms. If we could compare a live network traffic with a pattern of normal
network traffic, alerts could be raised and filters applied to filter away any
potential packet storm. Considering the ongoing improvements in modern
commodity hardware and software architecture, there is a tremendous power for
further network traffic processing. Combining this with online available, flexible
and cost-effective open source DDoS detection tools can be an effective solution.
Putting that into consideration, this thesis will mainly study the possibilities and
performance of DDoS detection and prevention on commodity server using open
source solutions. An experimental testbed will be setup and evaluation of the
proposed solution will be conducted using that testbed.

Responsible professor: Yuming Jiang, IIK
Supervisor: Ivar Arnesen, Ivar Arnesen Invest AS

Abstract

Distributed Denial of Service (DDoS) attack is a serious threat to
companies with an active online business as its scope is increasing in
size, frequency and complexity. That is why it has become a high
priority task to prevent DDoS attack for the internet stakeholders.
The complexity of DDoS attacks makes their detection and mitigation
difficult. Moreover, the high operational costs to deploy mitigation
solutions makes deployment at the edge of victim networks not cost-
effective. On the other hand, improvements in modern commodity
hardware and software architecture exhibit tremendous power to process
network traffics. Combining this with online available, flexible and
effective open source DDoS detection tools can give an efficient solution
to mitigate DDoS attacks.

The goal of this research is to study the possibilities and performance
of DDoS detection and prevention on commodity hardware using open
source solutions. The experiment is carried out in the implemented
experimental DDoS detection testbed. Based on findings during the work
of this thesis, we have come to the conclusion that using commodity
hardware with effective DDoS detection application like fastnetmon
and improved fast packet capturing frameworks such as netmap and
PF_Ring ZC, has a potential and can effectively be used at the victim
end for DDoS defense mechanism.

Preface

This thesis is submitted to the Department of Information Security
and Communication Technology at the Norwegian University of Science
and Technology (NTNU) for partial fulfillment of the requirements
for the MSc. degree in Telematics - Communication Networks and
Networked Services. The thesis work has been performed from September
2017- February 2018 under the supervision by Ivar Arnesen from Ivar
Arnesen Invest AS and Pof. Yuming Jiang from the the Department of
Information Security and Communication.

First of all, I would love to praise God for everything. Secondly, I
would like to thank Professor Yuming Jiang and Ivar Arnesen for guiding
and motivating me throughout this thesis work. Finally, I would love to
thank my family in Ebenezer Church for being there for me during my
stay in Trondheim.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem statements . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 The thesis Outline . 3

2 Background 5
2.1 DDoS . 5
2.2 Types of DDoS attacks . 6

2.2.1 Volumetric/ Volume based attacks 7
2.2.2 Protocol attacks . 9

2.3 DDoS Detection methods . 9
2.3.1 Signature detection . 9
2.3.2 Anomaly detection . 10

2.4 DDoS defense mechanism . 11
2.4.1 Victim-end defense mechanism 12
2.4.2 Source-end defense mechanism 12
2.4.3 Intermediate or Network-based DDoS Defense Mechanisms 12

2.5 Traffic processing in Commodity Hardware 12
2.6 Life cycle of packet in Commodity hardware 13

2.6.1 Netmap . 14
2.6.2 PF_RING . 15

2.7 Related works . 16
2.7.1 Summary . 16

3 Methodology 19

v

4 Implementation and Tools 21
4.1 Choice of DDoS detection software 21
4.2 FastNetMon . 22

4.2.1 Fastnetmon packet capturing engine (PCE) 23
4.2.2 FastNetMon Detection Method 24
4.2.3 FastNetMon report . 25

4.3 Implemented feature . 25
4.4 Tools for packet generation . 27

4.4.1 iPerf3 . 28
4.4.2 pkt-gen . 28

4.5 DDoS attack tools . 28
4.5.1 hping3 . 28
4.5.2 Low orbit ion cannon (LOIC) 29

4.6 Experimental testbed setup . 29
4.7 Hardware . 30

4.7.1 FastNetMon in DDoS detection hardware 31

5 Evaluation Methodology 33
5.1 Network topology . 33
5.2 Evaluation metrics . 33

5.2.1 Maximum throughput . 33
5.2.2 Packet delay . 34
5.2.3 Resource usage . 34
5.2.4 Detection accuracy . 35

5.3 Scenarios . 35
5.3.1 Under normal operation . 35
5.3.2 Under User Datagram Packets (UDP) flood attack 36
5.3.3 Under TCP SYN flood attack 36

5.4 Measurement setups and tools . 36
5.4.1 Starting DDoS detection . 37
5.4.2 Starting DDoS attack . 37
5.4.3 Generating normal traffic 38
5.4.4 Scrips developed for measurements and validation 38

6 Results 39
6.1 Traffic input . 39
6.2 Maximum throughput . 39
6.3 Packet Delay . 41
6.4 Resource usage . 43
6.5 Detection accuracy . 44

7 Discussion 47

7.1 Maximum throughput . 47
7.2 Packet delay . 47
7.3 Resource usage . 48
7.4 Detection Accuracy . 49
7.5 Summary . 49

8 Conclusion 51
8.1 Future Work . 52

References 55

Appendices
A Script for traffic monitoring 59

B Modified source code for fastnetmon 61

C Modified pcap based packet capturing and forwarding 71

List of Figures

2.1 Bot or Zombie based DDoS attack [BDKC10] 6
2.2 Volumetric DDoS attack [Net] . 7
2.3 UDP flood attack[Inc] . 8
2.4 TCP SYN flood attack [Imp]. 10
2.5 Deployment locations of DDoS defense mechanism [ZJT13] 11
2.6 Traditional packet capturing process in commodity hardware [BDKC10] 14
2.7 Netmap based packet capturing [BDKC10] 15
2.8 PF-Ring based packet capturing [D+04] 15

3.1 Logic of the workflow used to address the research question 20

4.1 FastNetMon deployment scheme [LTDa] 23
4.2 Fastnetmon internal architecture . 24
4.3 FastNetMon inline deployment . 26
4.4 Flow diagram of traffic in the modified FastNetMon 27
4.5 LOIC in action . 29
4.6 The experimental testbed structure 30
4.7 Systems detail with different processor 31

5.1 Network topology in testbed . 34

6.1 Fastnetmon detection throughput for different packet size and pps . . 40
6.2 Packet delay under normal traffic versus the reference RTT 42
6.3 Packet delay under UDP flood attack case 2 42
6.4 Packet delay under TCP-SYN flood 43
6.5 CPU usage and throughput for different packet sizes under 50 Kilo

packets per second (kpps) . 44

7.1 Comparing the hardware throughput vs fastnetmon in different processors 48

ix

List of Tables

4.1 Open-source DDoS detection tools . 23
4.2 Hardware specifications . 30

5.1 Hardware configuration for the scenarios 35
5.2 Tools for experiment measurements . 36

6.1 The traffic inputs used in our experiment 39
6.2 Maximum throughput result using interface in bridge mode 40
6.3 Fastnetmon Maximum throughput results in different processors. . . . 41
6.4 Reference round trip time in ms between victim and normal traffic

generator system. 41
6.5 packet loss during TCP-SYN and UDP flood attack 43
6.6 Resource utilization and traffic load of the scenarios. 43
6.7 Detection accuracy output. 45

xi

Chapter1Introduction

One of the biggest challenges in ensuring network security is detecting and handling
of network traffic for possible DDoS attack. DDoS uses multiple systems of a
bot-network to generate attack traffic targeting a single victim causing Denial of
Service (DoS) of the victim network. It is an attempt to consume finite resources of
the victim network in order to make services unavailable to the legitimate users.
An attacker builds a bot-network to start DDoS attack so that it can send multiple
requests at the same time to exhaust the resources of the victim network. DDoS
attack is increasing in size, frequency and complexity. However, nowadays, anyone
can launch DDoS attack [Sea]. DDoS attack is a serious threat to companies with
an active online business. Therefore, it has become a high priority task to prevent
DDoS for the internet stakeholders.

The complexity of DDoS attack makes detection and mitigation difficult. Moreover,
it also increases the overall operational costs to deploy mitigation solutions and it
is not cost-effective to deploy at the edge of victim networks.

Quite a lot of research has been done to classify DDoS attacks and suggesting
techniques to detect and mitigate them [BSA+16],[ZJT13]. Also, there are several
open source based intrusion and DDoS detection softwares available online. Open
source systems have increased considerable inclination because of their adaptability,
support and cost-effectiveness [Sno].

Beside the open source solutions, it has become common and feasible using com-
modity hardware for network traffic processing [BDKC10]. However, this is not an
easy task. It requires careful design and implementation of software to leverage the
available commodity hardware resources performance.

Our work is to study the feasibility of using opensource DDoS detection tools in
commodity hardware. Furthermore, to set up a complete experimental testbed and
evaluate the performance and detection capability of the testbed. We hope this

1

2 1. INTRODUCTION

thesis work will help as a benchmark for future works in exploring the potential of
software-based DDoS mitigation in commodity hardware.

1.1 Motivation

Some of the driving forces and motivation to pursue the thesis work on this specific
topic are:

– Traffic processing in a commodity hardware become a feasible task. The
performance improvements made to the software and hardware architecture
of commodity hardware brings interest to study and explore it’s potential to
build network security solutions on it.

– The availability of flexible open source DDoS detection tools and the high cost
of commercial DDoS mitigation solutions motivated us to study the feasibility
of DDoS detection and mitigation in a commodity hardware.

– Most of the previous research works focuses on detecting DDoS using general
purpose network monitoring and analysis Tools, which could be performance
bottleneck to detect DDoS in real-time. Therefore, we are interested to
implement and experiment DDoS detection by taking performance into con-
sideration.

1.2 Problem statements

This thesis work will try to analyze and give answer to the following questions:

– Can DDoS detection be done in software on commodity hardware?

– What are the processing requirements of such an approach?

– What are the business potential of this approach.

1.3 Objectives

– To evaluate and select the best DDoS detection tool from the existing open
source DDoS detection solutions based on an important characteristics.

– Customizing the open-source software and configuring the hardware in order
to leverage the available hardware performance.

– To carry out performance analysis in the implemented experimental tested.

1.4. CONTRIBUTIONS 3

1.4 Contributions

This thesis provides the following contributions:

– We built up an experimental testbed composed of a chosen open source DDoS
detection tool deployed in a commodity hardware and DDoS attack generator
tools.

– We have modified the detection source code and implemented forwarding and
filtering function which is essential to deploy in inline mode so that we can
evaluate the performance based on different metrics.

– Some scripts are developed that helps to measure the experiment and create
filter policy for detection application.

– Finally, the performance and detection accuracy carried out in the tesbed and
discussion and conclusion are made based on the obtained results.

1.5 The thesis Outline

– Chapter 2: Background -The background chapter will provide the reader
general overview of the technologies which is a part of this thesis work. Some
of the literature review and related works also summarized in the subsection
of this chapter.

– Chapter 3: Methodology- Discusses the research methodology used to
address the research question of this thesis.

– Chapter 4: Implementation and Tools - This chapter presents all nec-
essary information regarding tools and implementation made to complete the
experimental testbed.

– Chapter 5: Evaluation methodology - This chapter define all metrics
and scenarios used for evaluation in the testbed.

– Chapter 6: Results - This chapter presents the results obtained from the
experimental measurements.

– Chapter 7: Discussion - Presents analysis and discussion of the obtained
results.

– Chapter 8: Conclusion - This chapter includes conclusion made based on
the findings of this thesis and some recommendation for future works.

4 1. INTRODUCTION

The modified source code of the chosen DDoS detection software and scripts we
have developed can be found in the Appendix A,B.

Chapter2Background

This background chapter will provide general overview of the technologies covered in
the scope of this thesis work. An Introduction to DDoS, classification of DDoS, DDoS
detection methods and defence mechanisms as well as challenges and improvements
made to commodity hardware for traffic processing will be discussed briefly. Some
of the literature review and related works will also be summarized and presented in
the subsections of this chapter.

2.1 DDoS

Amongst various types of threats targeting to compromise the security of information
assets, DDoS attack targets an availability and utility of computing and network
resources. It is an attempt to consume finite resources of the service provider to
make services unavailable to the legitimate users. DDoS is an attack where multiple
systems (attackers) are used to target a single victim causing Denial of Service
DoS of the victim system. The effectiveness of DDoS attack is achieved by using
compromised machines and networked devices like botnet as a source of the attack
to overwhelm the victim’s finite resources. Another approach, which is possible
but not common, is an attacker using a single machine by means of generating
packets with the spoofed-IP1 address as the source IP address so that it will arrive
at the victim side as it’s from different machines or sources. Using spoofed-IP is
common in both approaches. The effect of an effective DDoS attack result in service
unavailability and has a potential costly consequences.

In the DDoS-attack, attacker commonly uses a bot-network (botnet) also known as
a zombie network[NIG+17]. Most of the DDoS attack is generated from multiple
compromised machines. An attacker, from a single source, builds bot-network
before it starts the DDoS attack. First, an attacker remotely gains access to

1 Manipulating Internet Protocol (IP) packets with a false source IP address.

5

6 2. BACKGROUND

compromised machines and makes them part of the bot-network. Botnets are
considered as a perfect tool for launching DDoS attacks[RGMFGT13]. Botnets are
employed by an attacker to generate multiple requests at the same time to exhaust
the resources of the victim as shown in Fig 2.

Figure 2.1: Bot or Zombie based DDoS attack [BDKC10]

2.2 Types of DDoS attacks

Several research surveys have been published on the DDoS attack classification
and category [BSA+16],[HSS12], [NIG+17], [MR04]. Different DDoS attacks use
different approach to attack any part of victim network or services that are vulnerable
to attack. Parts of the attack surface could be servers, protocols, routers, applications
or databases.

Bhardwaj et al.[BSA+16] study presented a review on literature research work on
the DDoS attack on the cloud. They introduced new DDoS attack classification
taxonomy based on a different basis. They Classified DDoS on basis of per degrees of
automation, vulnerabilities exploited, attack rate dynamics and impact of the attack.
The classification of attacks under vulnerabilities exploited includes bandwidth
depletion and resource depletion, this includes most of the current DDoS attacks
and the scope of our thesis work also focus on attacks under this classification. The

2.2. TYPES OF ATTACKS 7

bandwidth depletion involves flooding of The Internet Control Message Protocol
(ICMP), SYN and and amplification attacks.

Generally, DDoS attacks can be classified into three main groups based on type and
magnitude of traffic used: volumetric or volume based attacks, protocol attacks
and application attacks. According to [CPPM], DDoS is divided in to two based on
the attack target: Infrastructure layer and application layer. In this section we will
discuss the infrastructure layer, which includes volumetric and protocol attacks.

2.2.1 Volumetric/ Volume based attacks

This type of attack saturates the bandwidth of the network by sending packet storm.
The magnitude of attack is measured in Bits per second (bps). The attack involves
bots and zombies to send a huge amount of traffic to exhaust the bandwidth capacity
of the network. The effect of the attack saturates the network links and overwhelms
routers, switches, firewalls and Internet Service provider (ISP) and overall network
level devices. Afterwards, the legitimate users request will be dropeed from reaching
to service provider end. Common attacks of this category are UDP flood, TCP
flood, ICMP flood and packet flood.

Figure 2.2: Volumetric DDoS attack [Net]

UDP flood attack

The stateless, connection-less communication model, nature of UDP makes a
common tool for different attacks which requires manipulating packet. UDP packet
is easy to construct and generate. As it is stateless, it is easy to forge source IP so

8 2. BACKGROUND

that it could be spoofed and hard to trace the right source of the sender. Therefore
flooding using UDP packets become one of the most well known and compelling
methods for DoS and DDoS attack [XMZ09]. UDP can be constructed as a very
small packet, so that the attacker can easily send a high volume of small-sized UDP
packets which causes forwarding issues for network level forwarding devices such as
routers, firewalls, and inline traffic processing devices. The less effective UDP flood
attack can cause jitter and latency in real time streaming protocols for voice and
video.

Under the normal condition, a server which receives UDP request goes through two
steps. First, the server checks if a requested port is open and a specific application
is running to handle the requests coming through the port. Second, if there is no
application is running to handle the request it will respond with ICMP packet setting
destination unreachable flag to inform the source address that a unavailability of
the requested service. During UDP flood attack, the attacker uses a large flood of
UDP with spoofed-IP address and saturates network resources with the request
and also with the same amount of destination unreachable ICMP packets responses.
As a result, the finite resource of victim network will be exhausted by the process
of checking and responding for a huge volume of UDP request floods. This results
in denial of service for legitimate traffic.

Figure 2.3: UDP flood attack[Inc]

2.3. DETECTION METHODS 9

2.2.2 Protocol attacks

Protocol attack works by exploiting a weakness in transport layer and network layer
protocols of Open Systems Interconnections (OSI) models based applications and
protocols in victim network. It misuses a specific feature or implementation bug
of protocols used at the victim network in order to exhaust its limited resources
[DM04]. Magnitude of the attack is measured in Packets per second (pps). This
type of attack exhausts resources of server and intermediate equipment’s working in
layer 4 and 5 such as load-balancer and firewalls. Common and well known attacks
of this type is Transmission Connection Protocol (TCP) SYN flood.

TCP SYN flood attack

TCP is connection-oriented protocol, unlike UDP. It provides flow control, reliable,
ordered and error control services for an application using TCP protocol. Before
sending data using TCP it must go three steps known as the TCP three-way
handshake to setup a reliable connection [LSBM15]. First, the initiator host sends
TCP-SYN (synchronize/start) and then the receiver sends SYN-ACK (synchro-
nize/acknowledge) packet back, Finally the initiator sends ACK. Afterwards, the
data communication carries on the established reliable connection.

TCP SYN flood attack uses the first step of TCP three-way handshake stages
and sends a huge amount of TCP SYN request to exhaust the victim server. In a
normal operation, the server receiving TCP SYN will send back SYN ACK flag and
waits for ACK or timeout to expire the connection. Like other DDoS attack, TCP
SYN flood attack sends TCP SYN packets from multiple sources with spoofed IP
addresses. While trying to handle every request from the attacker which is TCP
SYN flood the server become busy and it fails to respond to the legitimate users’
requests. Due to the limited resources of server is exhausted by the attack traffic, it
creates Denial of Services condition to the legitimate users.

2.3 DDoS Detection methods

According to [AR12], there are two types of network attack detection or intrusion
detection methods: signature based detection or anomaly based detection.

2.3.1 Signature detection

Signature based detection, uses a predefined sets of signatures to inspects the
network traffic for the presence of attacks [MR04]. The detection application
employed this mechanism will compare each packet, commonly it’s payload, of the
network traffic with a given set of patterns of DDoS attacks. This method is capable
of attaining high accuracy and less false positive in identifying attacks. However, it

10 2. BACKGROUND

Figure 2.4: TCP SYN flood attack [Imp].

fails to identify unknown attacks which has no stored signature in the a given set of
patterns for an attack.

Amtul et al. [SAA13] did experimental evaluation of signature based detection
method, Snort 2, against DDoS attack. They have analyzed snort detection capabil-
ity and accuracy against TCP flooding attack under different hardware configuration.
Based on their findings, Even though, signature based detection helps to achieve
low false positive, They strongly suggest the need to develop different detection
methods like flow-based to analyze packets by checking only the protocol header
of incoming packets in the form of flows or groups. They indicate that flow-based
DDoS detection could be more efficient and faster than signature based detection
as less information is extracted from packets to detect attacks. Finally, they have
suggested integrating flow and signature based detection will make it much more
proficient by referring to H. Alaidaros et al. [AMAM+11] research work.

2.3.2 Anomaly detection

Anomaly detection unlike signature based it identifies malicious traffic in a network
by detecting anomalies network traffic pattern [HAG10]. The behavior of network
can be analyze in different ways, for example:

2https://www.snort.org/

2.4. DEFENSE MECHANISM 11

– Analyzing using packet size to check if the size is too short and violate
application layer protocols.

– Rate-based detection uses a time-based profile of normal traffic volume to
detect against DDoS flooding attacks.

The advantages of the anomaly detection over signature based is that it is not
limited to known attacks, it can detect previously unknown attacks based on the
behavior of the attack traffic.

S.H.C. Haris et al. [HAG10] did research on how to anomaly detect TCP SYN
flood attack. They have developed algorithm to detect TCP SYN attack by
analyzing Internet Protocol (IP) and TCP protocol header. They have presented
the experimental result and found that their algorithm based on anomaly detection
method can detect TCP SYN flood in the network.

2.4 DDoS defense mechanism

Along with the increasing DDoS attack in size and complexity, many research
have been done to propose defense mechanism and classification based on different
basis. DDoS defense mechanism can be classified into three based on their deploy-
ment locations [BSA+16]: victim-end, source-end and intermediate router defense
mechanism, as shown in Figure 2.5.

Figure 2.5: Deployment locations of DDoS defense mechanism [ZJT13]

12 2. BACKGROUND

2.4.1 Victim-end defense mechanism

Victim-end defense mechanism is deployed at the gateway of the victim network,
mostly employed in the edge router of the victim network. DDoS attack detection
at the victim end is comparatively easier than others, the collectively high volume
of incoming traffic from distributed attackers can be used as a sign of DDoS attack
[MPR03]. Currently, most defense systems are located at the victim end and also
the most motivated to deploy DDoS defense [MR04].

While detecting DDoS using victim-end mechanism employed in the router of the
victim network is relatively easy, the problem is that the victim resources including
the router could be overwhelmed by DDoS attack and the legitimate users request
could be denied. Therefore, effort should be made to minimize the computation
required for attack detection while maintaining high detection accuracy [KB12].

2.4.2 Source-end defense mechanism

It has the same architecture to victim-end defense mechanism. It is deployed at
edge router to prevent the source from generating DDoS attack. The outgoing
traffic is monitored and filtered by DDoS detection and mitigation solutions. Source-
end detection can be achieved by deploying solutions such as: source-end firewall
using signature based detection, threshold anomaly detection by defining a set
of thresholds for various traffic types such as average packet rate per connection
and average number of outgoing UDP packets per destination [MPR03]. However,
detecting DDoS at source-end is not easy because of the widely distributed sources
of DDoS attack [SAA13].

2.4.3 Intermediate or Network-based DDoS Defense
Mechanisms

Network-based DDoS defense mechanisms deployed in intermediate routers of
the autonomous systems. Routers exchanges information on detected source of
generating DDoS attack. Some of the main network-based DDoS defense mechanisms
presented in [ZJT13] are: route-based packet filtering and detecting and filtering
malicious routers. This mechanism is not yet used widely, because it is not considered
as effective and efficient because of their large overhead of network communication
[ZJT13].

2.5 Traffic processing in Commodity Hardware

Nowadays, deploying network security solutions are based on a specialized equipment
for specific solutions from different vendors such as: Firewalls, load-balancer,
intrusion detection and prevention system to control abnormal traffic. The high cost

2.6. LIFE CYCLE OF PACKET IN COMMODITY HARDWARE 13

of Distributed Denial of Service (DDoS) mitigation devices is not a cost-effective
model to deploy them at the true edge of the victim network [CDL16]. On the other
hand, commodity hardware are available, which are capable of handling big traffic
in Giga speed and equipped with high multi-core processing power. Capturing
network traffic with commodity hardware has become common in many industries,
improvements in modern commodity hardware and software architecture exhibit
tremendous power which previously were the domain of expensive special purpose
hardware [BDKC10].

Commodity hardware and its subsystems are designed for general purpose usage.
While this approach is enough for general purposes, it is a performance bottleneck
for applications processing high-speed traffic on commodity hardware. The packet
journey from Network Interface Card (NIC) to the processing application is long
because of its initial design purpose. Another challenge is, the constant increase in
internet link speed and attack magnitude brings addition performance overhead to
implement software-based traffic processing application in a commodity hardware.

Processing traffic in such hardware has to be quick and low-latency. In order to
process and forward network traffic in high-speed, packet capturing and forwarding
has to be fast possibly operate in line-rate3. Several researches have been done to
improve the packet capturing subsystem of the commodity hardware [BDKC10].
Another performance bottleneck is packet delay in a processing application. Every
packet received has to be examined and forwarded by the software. If the software
is not designed to minimize packet delay while processing, it could be another
limitation to the performance.

2.6 Life cycle of packet in Commodity hardware

In a commodity hardware, capturing packets involves several software subsystems as
illustrated in Figure 2.6. NIC manages incoming and outgoing packets by copying
to kernel space and sending out from kernel space. The driver is notified when new
packets arrive and when there is a packet to be transmitted, the driver copies to
NIC and notifies by updating a card register in NIC. The kernel thread responsible
for packet handling copies packets to network stack of the operating system. Finally,
packets are provided to packet processing application by user-space packet capturing
libraries like libpcap 4.

This long process of traditional packet capturing and forwarding solution in com-
modity hardware limits the packet processing performance. It incur a large amount

3is the maximum capacity to send frames of a specific size at the transmit clock frequency of
the Device Under Test [For]

4a portable library for network traffic capture.

14 2. BACKGROUND

of overhead as operating system copies packets multiple times. It makes unable keep
up with high-speed traffic, resulting in packet drops. While costly special purpose
commercial hardware exists to handle high speed traffics, different software-based
approaches introduced, which improved the capturing and forwarding performance
in commodity hardware. Some of the frameworks are presented in this section.

Figure 2.6: Traditional packet capturing process in commodity hardware [BDKC10]

2.6.1 Netmap

Netmap is an open source software framework uses kernel module and modified
NIC drivers in order to improve the speed of packet capturing and forwarding in
a commodity hardware. [Riz12] defines netmap, a novel framework that enables
commodity operating systems to handle the millions of packets per seconds traversing
1..10 Gbit/s links, without requiring custom hardware or changes to applications.
NIC using Netmap can be operate in two ways: regular mode where the NIC
exchanges packet with the host stack as usual and netmap mode, where the the data
path is disconnected between the NIC and the operating systm [RDC12]. Netmap
provides fast access to network packets API for traffic processing applications in
user space, as shown in Figure 2.7. This framework provides a huge performance
improvements to a wide range of applications require fast packet capturing and
forwarding such as: software based routers and firewalls. [Riz12].

2.6. LIFE CYCLE OF PACKET IN COMMODITY HARDWARE 15

Figure 2.7: Netmap based packet capturing [BDKC10]

2.6.2 PF_RING

PF_RING is another fast packet capturing framework developed by Ntop [nLc].
PF_Ring also disconnects kernel intervention in packet capturing and forwarding
process. It implements a memory-mapped memory buffer (socket ring) where the
incoming packets are copied and user-space applications can simply access this
memory, as shown in Figure 2.8. Ntop introduced variant version of PF_Ring with
some advanced features. An open source version called Vanilla and commercial
version Zero Copy (ZC) [nLc].

Figure 2.8: PF-Ring based packet capturing [D+04]

16 2. BACKGROUND

2.7 Related works

Alfredo et al. [CDL16] presented the design and implementation of a software
based DDoS mitigation called nscrub [nLa]. They have tested and validated the
detection performance and accuracy in their testbed using commodity server and
traffic generating tools. The result of their research has shown the practicality and
feasibility of using DDoS detection software in commodity server for edge network
traffic up to 10Gb/s. nScrub uses signature based packet inspection method to
detect DDoS attack. However, using only this method for DDoS attack is inefficient
as stated in [PLR07]. And also we were interested to include nScrub as candidate
tool but they have only commercial version.

Route Soumaa [Mer17] published a paper titled "An Approach for Detecting and
Preventing DDoS Attacks in Campus". They have evaluated Snort , open-source
Intrusion Detection System (IDS) in terms of packet processing and detection on
windows server 2012 with XEON processor and 128 GB ram. They have installed
Snort with winpcap, windows version of libpcap PCE. On thier experiment LOIC
tool is used to simulate botnet based DDoS flooding attack. They have defined
different metrics to evaluate the effect of attack on victim resources (Central
Processing Unit (CPU) load and Memory). They have improved Snort detection
capabilities in terms of accuracy by modifying the available rule sets, which is based
on signature based detection method, to protect DDoS attack. Overall, their work
show possibilities of detecting and preventing DDoS using open-source solutions
and to suggest new approach for Snort campus network security solutions. Their
proposal is to show the possibilities of detecting DDoS using snort but they did not
discuss or explain the limitation of such approach in high speed network traffic and
attack.

Jati et al. [JHP+16] also did research in similar topic to detect DDoS using open-
source traffic monitoring tool, Ntopng[nLb], on hardware equipped with 2 Intel
processor speed of 1.8 Ghz , 4GB memory and link capacity of 2Gbits/s. They
evaluated Ntopng in terms of accuracy , sensitivity and resource usage. The result
shows that the maximum traffic handling capacity of Ntopng in a given hardware
configuration is about 128 Mega bits per second (mbps). Ntop uses libpcap and
signature based detection method and it is designed for general network traffic
monitoring purpose. Using such approachs can be performance bottleneck to tackle
high volume DDoS like volumetric attacks.

2.7.1 Summary

Most of the proposed works and researches we have covered in the related works
mainly focus on possibilities of detecting DDoS using open-source tools, which are

2.7. RELATED WORKS 17

designed for signature-based IDS or general traffic processing or monitoring. And
also, their proposed architecture and design did not consider or included to improve
commodity hardware limitation on packet processing, except Alfredo et al. [CDL16]
design. Since our objective is to evaluate the performance and accuracy of open
source based DDoS detection in commodity hardware, these issues have been taken
into consideration during the selection process of DDoS detection tool and using
commodity hardware.

Chapter3Methodology

In order to address the research question stated as problem statement, we have
mainly designed and implemented an experimental tesbed and some additional steps
are carried out to supplement that. Using the testebed, we conducted experiments
to evaluate DDoS detection system performance and detection accuracy while
detecting DDoS attacks. Figure 3.1 shows the logic and steps of the work-flow and
the overall steps. The methodology used in this thesis work includes the following
ones:

Literature survey: A literature survey was first conducted in different online
databases such as Google scholar, Association for Computing Machinery (ACM) ,
springer and Institute of Electrical and Electronics Engineers (IEEE) using a key-
words: DDoS detection, anomaly detection, DDoS mitigation and traffic processing
in commodity hardware. We have reviewed different research works related to our
topic and found suggestions to appropriate tools and methods for our experiment.

Implementing the missing feature: In direct follow up to the literature survey
and before setting up the experimental testbed, we have chosen fastnetmon open-
source DDoS detection application based on the important characteristics such as
detection methods and type of attacks it support. Afterwards, we have identified
the missing feature and implemented to complete the functional requirement for
our testbed. The selection criteria and implemented feature is covered in chapter 4

Experimental testbed setup: The chosen detection application with our imple-
mented feature is deployed in to our testbed hardware. Different tools that would
be essential for this study which are selected based on the previous experiences
of different research works are also installed in the testbed hardware. Finally,
different performance and accuracy metrics are defined to carry out evaluation and
measurements.

19

20 3. METHODOLOGY

Measurements and analyzing results: the results from measurements are
analyzed, discussed and conclusion and future works are made.

Figure 3.1: Logic of the workflow used to address the research question

Chapter4Implementation and Tools

This chapter presents the different tools and implementation carried out to setup
the experimental testbed. The important features of the chosen DDoS detection
software, added feature and necessary information regarding the tools used in our
testbed are described.
When setting the experimental testbed, we relied on the design and requirements
developed by the author in the study [Der03]. The author defines the decisions
he made based on the objectives of his research. The decisions we have made to
conduct our research are:

– All the hardware components need to be available on the market at reasonable
price.

– All the softwares used need to be open source and available for free.

– The softwares need to be flexible to modify in order to leverage the available
hardware capabilities.

4.1 Choice of DDoS detection software

Our experiment is based on commodity hardware and open source software. On
the software side, the requirement to use open source software is motivated by the
availability, flexibility and it’s practicality of providing solution for network security
based on the previous works. It is very important to have an essential requirement to
choose the best open source from those available on the internet. The requirements
are based on the important characteristics of detection engine that which are to
be evaluated in the implementation. The following lists of requirements have been
taken into consideration during the selection process of DDoS detection tool from
online available software:

21

22 4. IMPLEMENTATION AND TOOLS

– The capability of detecting the attack categories described in the previous
chapter.

– Detection method or algorithm used.

– The flexibility of the software to modify.

The list of candidate DDoS detection open source tools are presented in Table 4.1.
After validating the listed DDoS detection tools, FastNetMon is found to be the
best open source DDoS detection software based on our requirements. Most of the
open sources we have validated doesn’t support detecting the well-known DDoS
attacks, where as FastNetMon detects most of the infrastructure layer DDoS attacks
targeting network level devices. FastNetMon has two version: Community version,
which is open to everyone and with limited detection capability, while advanced or
commercial version supports advanced detection and mitigation features[LTDb]. The
community version we have used has the necessary features required to implement
in our experimental testbed. FastNetMon also has many online forums and well-
organized documentation which can simplify the installation and customization
process.

4.2 FastNetMon

FastNetMon is a very high-performance DDoS detector built on top of multiple
packet capture engines: PF_Ring, netmap, sFLOW, Netflow, PCAP. One of the
interesting features of FastNetMon is that it supports most of the network vendors
and has a flexibility to be installed and modified by developer in different Linux
distribution including Debian, CentOS, Ubuntu, Fedora and Gentoo. As it is
designed to detect DDoS attacks, it has core algorithms that detect a pattern
of different DDoS attacks. It supports anomaly detection using rate-based and
protocol based to the hosts in the network. It also has additional signature-based
deep packet inspection (DPI) against false positive attack detection.

Example of FastNetMon deployment scheme is presented in the Figure 4.1. Figure 4.2
presents traffic flow in FastNetMon and it’s main software components. The main
FastNetMon software components are: Policy manager, PCE, detection engine and
report manager. The policy manager is responsible for selecting one of the packets
capturing modules and initializing resources (memory and CPU) based on the
given hardware configuration preferences. Detection engine analysis every packet
passed by the selected PCE. For some attacks, if the selected PCE provides packets
with payload then advanced DPI will process the packet for false positive attack
detection. Finally, report manager reports based on the detection status whether

4.2. FASTNETMON 23

Table 4.1: Open-source DDoS detection tools

Detection application Description
FastNetMon High performance DDoS mitigation tool which is

based on a packet analyzer engine (PF_RING,
netmap, sFLOW, Netflow, PCAP) [LTDb].

Snort It is an intrusion prevention system capable of real-
time traffic analysis and packet logging based libpcap
packet capturing engine[Sno].

ntopng High-Speed Web-based Traffic Analysis and Flow
Collection [nLb].

the incoming traffic is an attack or not. Afterwards, different policy enforcement
devices may take an action based on the report.

Figure 4.1: FastNetMon deployment scheme [LTDa]

4.2.1 Fastnetmon PCE

Network traffic analysis is a process used to monitor the communication pattern
between hosts and towards internet in the network. This involves capturing traffic
which may give limited information of a packet, which is a flow data or detailed
information including packet payload. Fastnetmon supports most of current packet
capturing techniques and frameworks. It supports NetFlow, sFlow and IPFIX based
flow data analysis for traffic collected from devices such as router or switches. This
data commonly used to track key fields like: source interface, source and destination
IP address, layer 4 protocols, source and destination port numbers and type of
service value.

24 4. IMPLEMENTATION AND TOOLS

(a) Flow diagram of detection in Fastnetmon (b) FastNetMon software architecture

Figure 4.2: Fastnetmon internal architecture

Fastnetmon also supports high performance packet capturing frameworks discussed
in previous chapter such as netmap and PF_Ring ZC as well as common but slow
packet capturing library libpcap. There is netmap-enabled version of libpcap, which
enables libpcap based applications to run on top of netmap at much higher speeds.
These frameworks provide packets with payload , so that FastNetMon can apply
deep packet inspection on the packet of the network traffic.

4.2.2 FastNetMon Detection Method

Fastetmon detection logic is based on both anomaly and signature based detection
methods, As can be seen from Figure 4.2. Anomaly, it detects based on the rate of
the traffic incoming to or outgoing from a given networks in Classless Inter-Domain
Routing (CIDR) format by policy manager. The rate is based on number of pps,
mbps and flows per host. For advanced detection if the PCE provides packets with
payload it uses signature based detection called nDPI 1[Nto].

Memory consumption of FastNetMon during detection is depends on the total
number of monitored hosts. It assigns small amount of memory per host, which are
data counter, current speed counter and traffic counters. For the version we have
installed, which is 1.1.3, for hosts in /16 network the total memory consumption is
about 40 mega byte of a given RAM.

Using the above detection methods, FastNetMon detects the following attack types:

1Open and Extensible LGPLv3 Deep Packet Inspection Library

4.3. IMPLEMENTED FEATURE 25

– TCP-SYN flood: TCP packets with enabled SYN flag.

– UDP flood: flood with UDP packets.

– ICMP flood: flood with ICMP packets.

– IP fragmentation flood: IP packets with MF2 flag set or with non zero fragment
offset.

4.2.3 FastNetMon report

After detecting attack FastNetMon report module will write details of the attack in
file or dumps traces in pcap for the attack traffics. If FastNetMon is configured to
take action based on the report it runs external triggers to :

– notify attack summery using custom script.

– Announce with Border Gateway Protocol (BGP) (EaxBGP) [fas].

The FastNetMon sample configuration file is presented in 4.1.

4.3 Implemented feature

As presented in Figure 4.1 FastNetMon deployment is offline. To have a complete
experimental testbed of our interest we have implemented packet forwarding and
filtering module by modifying FastNetMon source code. The implemented feature
enables us to have inline deployment scheme as displayed in Figure 4.3. Using
an inline or transparent deployment, fastnnetmon can operate inline by checking
the incoming traffic content and makes decision to forward or discard based on
detection result. The modified sub internal architecture of FastNetMon is displayed
in Figure 4.4.

2More Fragments flag

26 4. IMPLEMENTATION AND TOOLS

Algorithm 4.1 FastNetMon sample configuration

We could disable processing for certain direction of traffic
process_incoming_traffic = on
process_outgoing_traffic = off
Different approaches to attack detection
ban_for_pps = on
ban_for_bandwidth = off
ban_for_flows = off
Limits for Dos/DDoS attacks
threshold_pps = 28000
threshold_mbps = 3400
threshold_flows = 28000

Traffic capture methods
mirror_netmap = on
pcap = off
netflow = off
sflow = off
enable_pf_ring_zc_mode = on
interfaces = enp0s25
collect_attack_pcap_dumps = on
process_pcap_attack_dumps_with_dpi = on
This script executed for ban, unban and atatck detailes collection
notify_script_path = /usr/local/bin/notify_about_attack.sh
ExaBGP could announce blocked IPs with BGP protocol
exabgp = off
exabgp_command_pipe = /var/run/exabgp.cmd
exabgp_community = 65001:666
exabgp_next_hop = 10.0.3.114

Figure 4.3: FastNetMon inline deployment

4.4. TOOLS FOR PACKET GENERATION 27

Figure 4.4: Flow diagram of traffic in the modified FastNetMon

We have modified both netmap and libpcap PCE plugins. FastNetMon in offline
mode captures both outgoing and incoming traffic from one or more interfaces
based on the configuration and detects attack and then writes attack report to
files, as depicted in Figure 4.2a. This process is modified to capture packet, detect
and forward for the incoming traffic. For the outgoing traffic, which is not being
detected, we have developed a script which runs in background. This script bridges
the interfaces in one direction, outgoing. This way we could deploy FastNetMon in
inline mode and measure throughput and detection accuracy. Both the background
and modified source code for netmap and pcap can be found in the Appendix B.

The traffic capturing code of FastNetMon is modified to filter the incoming traffic
based on the given rule, which is generated from the attack report file of FastNetMon.
The source code snippet in 4.2 shows an example, how the filtering algorithm filters
TCP SYN attack reported.

4.4 Tools for packet generation

A lot of tools are available for generating packets in different formats and volumes.
The following tools are selected based on our requirements to generate background
traffic which are used to simulate traffic under normal operation of the network.
Therefore, the selection is based on specially tools with monitoring the exchanged
packets in terms of size, type and magnitude as well as based on the previous works
experiences.

28 4. IMPLEMENTATION AND TOOLS

Algorithm 4.2 source code snippet for traffic filtering.

char filterin_expression[255] = " not (dst host 10.10.10.172
and dst port 2323 and tcp[tcpflags]==tcp-syn) ";

struct bpf_program filter;
bpf_u_int32 subnet_mask, ip;
if (pcap_compile(descr, &filter, filterin_expression, 0, ip) == -1)
{

printf("Bad filter - %s\n", pcap_geterr(descr));
}
if (pcap_setfilter(descr, &filter) == -1)
{

printf("Error setting filter - %s\n", pcap_geterr(descr));

}

4.4.1 iPerf3

iPerf3 is a tool for active measurements of the maximum achievable bandwidth on
IP networks[ipe]. It is a client-server based tool for both UDP and TCP protocols.

4.4.2 pkt-gen

Pkt-gen is another packet sender and receiver application at high rates based on
netmap PCE. It is possible to generate packets with a number of tuning options
such as: packet rate in pps, packet size and protocol types.

4.5 DDoS attack tools

In our experimental testbed, the most common DDoS tools such as LOIC and
hping3 [Hpi] are used based on the capability of types of DDoS attacks they can
generate and previous experiences in [SAA13], [NSCP15] [Mer17],[DHKB16].

4.5.1 hping3

Hping3 is one of the de-facto tools for security auditing and testing of firewalls
and networks, and was used to exploit the Idle Scan scanning technique now
implemented in the Nmap port scanner [LTDa]. Hping is designed to generate
packets and analyses TCP/IP protocols. It is a command-line oriented with desirable
parameters including:

– flood: sending packets as fast as possible.

4.6. EXPERIMENTAL TESTBED SETUP 29

– S: TCP with SYN flag.

– D: data size.

– c: packet count.

– Random-source: random the source address or spoofing.

and much more parameters can be passed to hping3. It is easy to manipulate
packets using hping, which makes it a best tool for DDoS attack.

4.5.2 LOIC

LOIC is another opensource tool designed to generate common DDoS attacks such
as TCP flood, UDP flood, and HTTP flood to a specified web server or IP address.
It can simulate bot-network for a given number of hosts, as illustrated in Figure 4.5.

Figure 4.5: LOIC in action

4.6 Experimental testbed setup

The experimental setup of our testbed is a simulation of architecture of victim
end defense mechanism, as presented in Figure 4.6. FastNetMon is installed in
the hardware with two network interface cards for the incoming and outgoing
traffic of the victim network. The victim network hosted simple web-server in the
victim server and DDoS attack tools are installed in DDoS attack generator system.
Background traffic generator tools are installed in normal traffic generator system.

30 4. IMPLEMENTATION AND TOOLS

Figure 4.6: The experimental testbed structure

4.7 Hardware

We have used a hardware to experiment on a system equipped with an Intel(R)
Core(TM) i7 CPU CPU at 2.80GHz, 8 GB RAM and a dual port 1 Gbit/s card
based on Intel NIC the detail hardware specifications for each system is displayed
in Table 4.2.

Table 4.2: Hardware specifications

No. Hostnam Processor RAM OS NIC
1 DDoS detection 8 Intel(R)

Core(TM)i7
CPU 860
@2.80GHz

8 GB Cetos 7 x64 Dual In-
tel NIC
1Gibts/s

1 DDoS Generator
with Hping

Intel(R)
Core(TM)i7
CPU 860
@2.80GHz

8 GB Kali Linux 7
x64

Intel NIC
1Gbits/s

1 Normal traffic Gen-
erator with pkt-gen
and iperf3

Intel(R)
Core(TM)i7
CPU 860
@2.80GHz

8 GB Cetos 7 x64 Intel NIC
1Gbits/s

4.7. HARDWARE 31

Most of the experimental measurements are done using the above hardware specifi-
cation. For some measurements, we have changed the DDoS detection processor
capacity from 2.80Ghz to 3.40Ghz to compare the performance of FastNetMon in
different CPU speed in the same test environment, as shown in Figure 4.7 .

(a) system with CPU @2.80 (b) system with CPU @3.40

Figure 4.7: Systems detail with different processor

4.7.1 FastNetMon in DDoS detection hardware

The chosen detection software, FastNetMon is automatically installed using the
following command from git repository:

wget https://raw.githubusercontent.com/pavel-odintsov/
fastnetmon/master/src/fastnetmon_install.pl -Ofastnetmon_install.pl
sudo perl fastnetmon_install.pl

In order to modify the source code of FastNetMon, we have installed the com-
munity developer version using the following command after the above automatic
installation:

cd /usr/src/fastnetmon
git checkout master
cd src/build
cmake ..
make
./fastnetmon

32 4. IMPLEMENTATION AND TOOLS

The configuration file to define being detected network, specifying interfaces and to
configure detailed detection preference can be found in /etc/fastnetmon.conf.

Chapter5Evaluation Methodology

This chapter will define all metrics used in our experiment and describes the
experimental tested in details for different scenarios. The main objective of this
thesis work is to analyze DDoS detection on commodity hardware in terms of
performance and detection accuracy. For evaluation methodology we relied on the
testing methodology used in [PZC+96]. The paper presents detailed procedures
for testing an intrusion detection system. We have applied some of the procedures
listed such as:

– Intrusion identification test: this method is used to test the detection accuracy
of the chosen DDoS detection software.

– Resource usage test: this testing method is used to measure the resource
usage of the detection software in different defined scenarios.

5.1 Network topology

The network topology for the experimental testbed illustrated in Figure 5.1. All
links in the topology share the same link capabilities and properties. The IP
addresses are used to identify the source and destination of the network traffic.

5.2 Evaluation metrics

The evaluation metrics are chosen which can give us a reasonable results for the de-
tection accuracy and performance of fastnetmon in different hardware configuration
and scenarios.

5.2.1 Maximum throughput

This metric is used to measure the maximum processing and forwarding capability
of the DDoS detection in a given hardware configuration. The processing capability

33

34 5. EVALUATION METHODOLOGY

Figure 5.1: Network topology in testbed

is measured in terms of magnitude of pps and bps processed and forwarded. The
hardware configurations are carefully assigned and measurements are recorded
using different tools for a reasonable period of time. Maximum throughput can
be calculated by measuring the input and output traffic in a given hardware
configuration. For throughput test we followed the guidelines for throughput test
presented in [tB17], which the author listed out from Request for Comments (RFC)s
as standard and best practices.

5.2.2 Packet delay

When processing packet in inline packet processing applications, the latency should
be low and the processes must be quick. The packet delay is measured to study the
packet processing time of the detection software. The ping utility is used to measure
the round-trip delay time with and without running the detection application. The
packet delay is calculated from the measured results.

5.2.3 Resource usage

The resource utilization(CPU and RAM) of the detection software in different sce-
narios and hardware configurations are measured and analyzed. Resource utilization
is measured using resource monitoring tools selected for this experiment.

5.3. SCENARIOS 35

5.2.4 Detection accuracy

The detection accuracy of the software is measured to study the attack detection
accuracy of fastnetmon following the intrusion identification test procedure and
calculated using the equation in [KS11]. The parameters used are:

Accuracy = TP + TN

TP + FP + TN + FN
(5.1)

– True positive: number of packets correctly predicted as attack packets.

– False positive: number of packets incorrectly predicted as attack packets.

– True Negative: number of packets correctly predicted as normal packets.

– False Negative: number of packets incorrectly predicted as normal packets.

5.3 Scenarios

We have selected three scenarios with in the same hardware configuration: under
normal operation, under UDP flood attack, and under TCP SYN attack. All of the
scenarios are carried out in the same hardware configurations and measured and
logged for analysis.

Hardware configurations used for the scenarios are summarized in the table Table 5.1.
Beside the link speed and capacity limitation of the hardware in our testbed, the
reason we have used a single core CPU is that fastnetmon shares the traffic load to
the CPUs using load-balancer based on the IP addresses of victim network hosts.

Table 5.1: Hardware configuration for the scenarios

No. Processor RAM NIC speed
1 1 * Intel Core(TM) 860 @2.80 GHz 8 Giga Byte a dual 1 Gbits/s

5.3.1 Under normal operation

Network normal operation is simulated by generating network traffic classified
as normal. Fastnetmon detection accuracy and performance are examined by
generating a variable amount of normal traffic. As shown in page 34 the normal traffic
generator from 10.10.10.161 sends normal traffic to the victim server 10.10.10.172.
The fastnetmon resource usage and the above-mentioned metrics have been analyzed.

36 5. EVALUATION METHODOLOGY

5.3.2 Under UDP flood attack

UDP flood attack is generated from DDoS attack generator, 10.10.10.161 with
different traffic magnitudes. Normal traffic is also mixed which is generated from
normal traffic generator, 10.10.10.227. The detection accuracy and performance
of fastnetmon have been analyzed. This scenario is used to study the effect of
volumetric attack on both the fastnetmon and resources of victim network.

5.3.3 Under TCP SYN flood attack

TCP SYN flood is generated from 10.10.10.161 with mixed normal traffic from
10.10.10.227 to the victim system. TCP SYN flood effect on fastnetmon detection
software and victim network resources are measured and analyzed.

5.4 Measurement setups and tools

The tools used for measurements are summarized in Table 5.2. The resource usage
test procedure used in [PZC+96] and we have followed are:

– Minimize other background activities and process in the test environment.

– Start the detection software.

– Start testing scripts.

– Start tools to measure and monitor resources.

– Repeat and save the logs.

Table 5.2: Tools for experiment measurements

Tools Description
taskset[Lov] is used to set or retrieve the CPU affinity

of a running process given its process-
id or to launch a new command with a
given CPU affinity.

htop[hto] process viewer for Linux used to measure
resource usage.

nload[Rie] displays the current network usage in
realtime.

tshark[Wir] Dump and analyze network traffic.
ping[Wir] measure delay.

5.4. MEASUREMENT SETUPS AND TOOLS 37

5.4.1 Starting DDoS detection

The command to start FastNetMon DDoS detection in a given hardware configura-
tion Table 5.1, which is a single CPU core is:

taskset 0x0 ./fastnetmon

The above command will bind the fastnetmon process to the specific CPU ID 0.

The following command is used to capture and dump the incoming traffic to the
victim network and also bind the process to other available CPUs .The traffic is
filtered by src MAC address of the generator in order to identify the amount of
traffic received at the detection system. The command is:

1 t a s k s e t 0x4 tshark − i enp0s25 e the r s r c 00 :0 c : 2 9 : a5 : ce : f a −F
2 pcap −w at tacke r . pcap
3 t a s k s e t 0x5 tshark − i enp0s25 e the r s r c 1 8 : 0 3 : 7 3 : ad : ce : ba −F
4 pcap −w normal . pcap

we have used the physical address instead IP because DDoS attack tool generates a
traffic with spoofed-IP sources.

5.4.2 Starting DDoS attack

Starting DDoS attack using LOIC tool is easy because of the provided simple GUI.
However, the tool is not flexible to generate DDoS traffic in a specific magnitude
and it exhausts the processing resource of the system. As a result, it was difficult to
do other tasks while it is running. For this reason we have used hping3 to generate
both UDP and TCP-SYN flood attacks. The commands used to start both attacks
are:

1 hping3 −−udp −−data 32 −−f l o od 10 . 1 0 . 1 0 . 1 72 −p
2 1234 −−rand−source
3 hping3 −d 120 −S −w 64 −p 2323 −−f l o od −−rand−source
4 10 . 1 0 . 1 0 . 1 72

The first line of command is used to send UDP flood to victim network with
parameters: data size 32 + header 28 total of 60 bytes, destination port 1234,
and with random IP sources. The magnitude of the traffic is about 180 kpps for
one instance of the above command and multiple instances are used to increase
the attack magnitude. The second line is used to start TCP-SYN attack with
parameters: TCP-SYN flag, a window size of 64, a packet size of 120 bytes. A
single instance can generate about 152 kpps in our testbed.

38 5. EVALUATION METHODOLOGY

5.4.3 Generating normal traffic

Normal traffic is generated using the iperf3 tool. The server-side script of iperf3
is used to run on victim system and the client side script is on the normal traffic
generator system. The command used to generate and receive are:

1 i p e r f 3 −s
2 i p e r f 3 −c 10 . 1 0 . 1 0 . 1 72 −p 5201 −t 60

A single instance of the above iperf3 command can generate about 28 kpps. Pkt-gen
tool is used to test the maximum throughput of fastnetmon in a given hardware
configuration. The command used to generate and receive are:

1 pkt−gen −f tx − l 60 #Send packets in high speed
2

3 pkt−gen −f rx #r e c e i v e and d i sp l ay the magnitude o f
4 #the the incoming t r a f f i c

5.4.4 Scrips developed for measurements and validation

We have developed scripts to measure and cross-validate the traffic size and magni-
tude generated and received. The bash script is added to Appendix A displays the
current network usage in bytes per second and packets per second.

Chapter6Results
6.1 Traffic input

The results discussed in this chapter are based on the traffic input parameters
summarized in Table 6.1. We have used tools and scripts presented in previous
chapters to generate traffic and measure the experiment outputs.

Table 6.1: The traffic inputs used in our experiment .

Scenarios kpps packet size mbps
Normal Traffic 28 1448 324.5

UDP flood attack case 1 180 60 86.4
UDP flood attack case 2 360 60 172.8

TCP-SYN attack 152 120 145.92

6.2 Maximum throughput

Using hardware configuration in Table 5.1. First, we have measured the maximum
throughput capability of a given hardware and operating system before starting
the detection application. This is is used as a benchmark to generate packets for
other test scenarios and to understand the limitation of our testbed environment
in terms of link speed, bus or hardware limitations. The maximum throughput
of the detection hardware tested in interface bridge-mode with small raw packet
size using pkt-gen application is 850218 pps . Table 6.2 shows summary of different
packet sizes throughput.

The result in Figure 6.1 shows the throughput in pps and FastNetMon CPU usage
in percentage for the 4 types of packet sizes. Especially, in the case of a traffic with
packet size 60 bytes the CPU percentage reached to 100 %. In other test cases, with
byte sizes from 500 - 1500 we reached to the hardware limitation before CPU peak.

39

40 6. RESULTS

Table 6.2: Maximum throughput result using interface in bridge mode .

No. packet size output kpps mbps
1 60 850.1 408
2 500 191.2 760
3 1000 100.1 803
4 1500 70 842

The memory usage was constant for all types of scenarios because of fastnetmon
memory usage, as described in Section 4.2.2.

Figure 6.1: Fastnetmon detection throughput for different packet size and pps

Another throughput test case is measured using fastnetmon on different hardware
with better processing capacity, which is presented in Figure 4.7. The test case is
intended to study the throughput of fastnetmon in different CPU types. The result
is shown in Table 6.3.

6.3. PACKET DELAY 41

Table 6.3: Fastnetmon Maximum throughput results in different processors.

CPU type packet size output kpps mbps
Intel Core i7 CPU 860 @2.80Ghz 60 4̃80.1 230.4
Intel Xeon(R) CPU @3.40Ghz 60 7̃90.2 379.2

6.3 Packet Delay

The packet delay generally occurs weather in copying packets from NIC to user-space
or processing packet in detection application, as described in Section 2.6. We have
developed a script to measure the time detection application takes to process each
packets, but the result couldn’t give us reasonable output so that we didn’t include
in this section. We have used ping utility to test packet delay. There reference
Round-Trip Time (RTT) is measured before starting the fastnetmon and generating
packets. Afterwards, packet delay is measured for the defined scenarios while
fastnetmon is running. The reference packet delay is displayed in Table 6.4. Every
packet delay measurement is a average of a round trip time in Milli seconds (ms)
after running the ping utility for 60 seconds between the normal traffic generator
system and victim system.

Table 6.4: Reference round trip time in ms between victim and normal traffic
generator system.

Minimum Average Maximum standard de-
viation

RTT in ms 1.51 4.46 6.46 1.3

The packet delay under normal operation and the reference are close to each other.
The offered traffic load as normal traffic in a given hardware didn’t affect the latency
of the packet as shown in Figure 6.3. For the UDP flood attack case 1 packet delay
remain almost the same as the reference and normal operation cases.

On the rest of the two scenarios, under UDP flood case 2 and TCP-SYN flooding
the detection engine experienced packet delay causing packet drops. The UDP
flood attack mixed with normal traffic let the CPU to reach the peak and started
dropping packets. The TCP-SYN flood cause packet delay and loss because the
detection engine requires more time to check TCP packet than UDP.

The packet loss caused by the packet delay and CPU overload by DDoS attacks
are summarized in the Table 6.5. The packet loss measurements are done for the
normal traffic which is used analyze the legitimate user requests lost.

42 6. RESULTS

Figure 6.2: Packet delay under normal traffic versus the reference RTT

Figure 6.3: Packet delay under UDP flood attack case 2

6.4. RESOURCE USAGE 43

Figure 6.4: Packet delay under TCP-SYN flood

Table 6.5: packet loss during TCP-SYN and UDP flood attack .

ATTACK TYPE Normal Traffic sent sent packets dropped packets lost in %
UDP flood UDP 1720455 771441 45%

TCP-SYN FLOOD UDP 1627694 427700 26%

6.4 Resource usage

The CPU and RAM utilization is measured for the three types of scenarios. The
results of measurements for the scenarios are summarized inTable 6.6.

Table 6.6: Resource utilization and traffic load of the scenarios.

Scenario CPU % RAM % kpps
Under Normal 10 0.1 28

UDP flood case 1 74 0.1 180
UDP flood case 2 100 0.1 360
TCP-SYN flood 70 0.1 152

Another CPU utilization measurement is done using different packets size in the
the same kpps magnitude. The details of traffic magnitude and the obtained results
for all types of packet sizes could be found in appendix. The only result we could

44 6. RESULTS

obtained before reaching to the reference benchmark of the hardware limitation is
for the traffic magnitude of 50 kpps, as displayed in Figure 6.5.

Figure 6.5: CPU usage and throughput for different packet sizes under 50 kpps

6.5 Detection accuracy

Detection accuracy results are measured using tools: mainly tshark, nload, iperf
and our developed script. In our test environment we have measured traffic in each
systems in terms of packet number , magnitude and direction for all the scenarios.
Direction is a traffic direction to identify its source and destination. Tshark can
filter and dump packets based on their Physical (MAC) and IP address, so that we
could easily identify the traffic amount and it’s direction.

The traffic is filtered based on the report of fastnetmon, which is detected anomaly
and signature based against a given normal network traffic profile. The result
displayed in Table 6.7 shows the received traffic measured in victim system for each
scenarios.

6.5. DETECTION ACCURACY 45

Table 6.7: Detection accuracy output.

scenarios Generated traffic source Received
in Victim
system %

under Normal 1720455 packets normal traf-
fic generator

1720455
packets

under UDP flood case 1 180 kpps of size 60 DDoS attack
generator

0

under UDP flood case 2 360 kpps of size 60 DDoS attack
generator

0

under TCP-SYN flood 152 kpps of size 120 DDoS attack
generator

0

Table 6.7 shows filtering based on fastenetmon report and based on the accuracy
equation (5.1).

Chapter7Discussion

The results obtained from the performance and detection accuracy measurements
are presented in the previous chapter. This chapter is a discussion of the obtained
results.

7.1 Maximum throughput

The first throughput test aim was to analyze the maximum packet capturing and
forwarding capability of a given hardware and the packet capturing framework
used. This result is compared with the fastnetmon throughput in the same testing
environment using different traffic magnitude. Fastnetmon CPU utilization reached
to 100 % for all types of processors used while processing the traffic magnitude of
50 kpps.

As shown in Figure 7.1 Fastnetmon throughput for different CPU is different. This
indicates fastetmon throughput performance is directly related to the processor
speed of a given hardware. Maximum throughput was also studied by saboor
[SAA13] as maximum packet rate in two different CPU cores and it has been
found that snort packet handling capacity is doubled. Their result shows that in a
processor with 2.04 Ghz and 3.40 ghz are 950 pps and 1700 pps, respectively. This
also indicates that fastnetmon with improved PCE handles significantly high traffic
rate than snort.

7.2 Packet delay

Packet delay is measured to analyze the effect of DDoS traffic on fastnetmon. The
reference RTT is measured before starting packet generator and fastnetmon to
compare with the scenarios packet delay. Under normal operation and UDP flood
case1 the packet delay is not affected by the load of the traffic. Under UDP flood
case 2 the CPU reached its peak performance. As a result, packets are started to

47

48 7. DISCUSSION

Figure 7.1: Comparing the hardware throughput vs fastnetmon in different proces-
sors

drop before being processed and forwarded. This indicates how UDP flood can
easily overwhelms network level forwarding devices and resources.

Under TCP-SYN flood the result shows that fastnetmon begins to drop packets
while the CPU usage was at 70 % as shown in Figure 6.4. The cause of packet delay
in this scenario is the fact that fastnetmon takes more time to process TCP packets
than other protocols like UDP. While most of the packets in fastnetmon including
UDP are checked anomaly using packet size and rate, for TCP packets additional
header values like the TCP flags are checked to detect TCP-SYN flood. As a result
the incoming packets are dropped because the packet processing speed in a given
hardware couldn’t cope up with the incoming traffic speed.

7.3 Resource usage

Table 6.6 shows the resource utilization of fastnetmon for the scenarios. The memory
utilization of fastnetmon is constant through out the experiment. Fastnetmon
allocates memory during the initial state for the hosts in victim network.

We have observed that CPU utilization is vary from scenarios to scenarios and for
traffic in different packet sizes. Under normal operation our test was based on client
to server data exchange over UDP protocol. The average transaction magnitude
was about 28 kpps using UDP data size 1448 and the average CPU usage was 10 %
of the the given hardware configuration.

7.4. DETECTION ACCURACY 49

Under UDP flood case 2 the victim network couldn’t response to almost 50 % of
the requests from the normal traffic generator, as displayed Table 6.5. The CPU
utilization of fastnetmon hardware increased to 100 % as soon son as the UDP flood
is reached and it stayed same for the whole test duration. Under TCP-SYN flood
the CPU utilization of fastnetmon was 70%.

Another important observation during the experiment is that the CPU utilization
for different packet sizes under the same traffic magnitude results in different CPU
utilization. Figure 6.5 shows, when the packet size increases the CPU utilization
increases slightly. It indicates that even if fastnetmon process the same types of
packet in a uniform format, CPU utilization is affected by the size of packet because
packet length is the size of buffer on physical memory which CPU handles.

7.4 Detection Accuracy

To measure detection accuracy we have developed a script that makes traffic filter
policy from fastnetmon attack report file. The modified Fastnetmon uses to filter
the incoming traffic based on a given filter policy. The accuracy result for all
scenarios was 100 % accurate, as shown in Table 5.1.

Accuracy result shows that the possibility of DDoS attack mitigation using fastnet-
mon if it is configured properly. We have implemented simple filtering algorithm
based on pcap packet filtering API. While this is enough to test the accuracy of the
fastnetmon detection, it is not standard and best practice of packet filtering.

Another important thing we have observed during traffic filtering is that filtering
traffic before it enters to the victim network prevents resources from being over-
whelmed by DDoS flooding attacks. This was witnessed when we were able to filter
during both TCP and UDP attack scenarios. We have used pre-filtering techniques
of libpcap PCE, which can filter packets before it passes to traffic processing appli-
cation, fastnetmon detection engine. As a result,the CPU utilization of fastnetmon
remain same as normal operation.

7.5 Summary

Overall, we are satisfied with our experimental testbed setup and the obtained
results. However, we are aware of that the result could be better if the test
environment is not limited by hardware and software constraints and also it has
some imperfections in the implementation. The result and the gained experience
could be used as the basis for the conclusion for this thesis. We hope improving the
testbed developed in thesis can be used as a benchmark for future studies.

Chapter8Conclusion

In this thesis, we have studied the possibility of software-based DDoS detection
in a commodity hardware. There has been much research in this topic and we
have taken advantage of several previously proposed solutions and suggestion in the
areas of traffic capturing, measuring and detection of denial of service attacks. We
have developed an experimental testbed consists of a chosen DDoS detection, DDoS
attack tools, and commodity hardware and carried out performance and detection
accuracy evaluation.

In chapter 4, the chosen DDoS detection application, fastnetmon, is presented.
This includes the PCE to capture traffic, detection methods and capability, and
deployment architecture it supports, as well as the modification we made to the
fastnetmon software architecture. An introduction to traffic generator and DDoS
attack tools were also provided to give the reader an understanding of the func-
tionality, capability, and limitation of the tools. Finally, the complete experimental
testbed setup is presented.

Evaluation methodology for the testbed in terms of performance and detection
accuracy is presented in chapter 5. The well-defined metrics and scenarios are
described including the hardware configuration used in the testbed.

The experimental result has shown that open source based DDoS detection perfor-
mance can be increased in commodity hardware by utilizing the available hardware
resources. This was witnessed by using netmap, one of the packet capturing im-
provements done for modern commodity hardware to achieve fast packet capturing.
We have shown that, an inexpensive commodity hardware and fastnetmon that we
have used in our testbed can process and forward small-sized packets at several
kpps using only a single core processor. A similar research on performance analysis
of snort against DDoS in a similar hardware without improved PCE carried out
by Saboor [SAA13]. The results we obtained is much higher than their result.
Therefore, we recommend using improved PCE frameworks to achieve a better

51

52 8. CONCLUSION

performance in traffic processing capacity in a commodity hardware.

While processing network traffic inline, packet delay can be caused by PCE or
processing application. We have observed that processing TCP packets than UDP
and larger packets than smaller has a direct impact on packet delay. As a result,
the processing delay increased the RTT and decrease the throughput performance
of the fastnetmon in a given hardware configuration and also cause packet loss.
The same is true for detection methods used, signature-based detection takes more
time to process packet than anomaly detection. It indicates that relying more on
anomaly detection than signature-based detection can also improve the throughput
performance in inline deployment.

The experiment practically showed that the fastetmon detection performance is
directly related to the CPU processing capacity of a given hardware. Comparing the
result obtained from the experiment while using two different processor, it shows
that changing the CPU speed of 2.40 GHz processor to 3.80 GHz processor the
throughput performance increased by 40%. The RAM usage remained constant.
Therefore, the performance of DDoS detection can be improved by using CPU with
a higher processing capacity and multi-core.

The detection accuracy of fastnetmon observed in the experiment shows that
fastnetmon is efficient. Fastnetmon anomaly detection method detects DDoS by
comparing previously defined patterns of normal traffic rate in terms of pps, mbps
and number of flows with anomalies of network traffic. According to the research
work by Cviti’c et al. [CPPM] detection accuracy of using such approach to detect
DDoS is about 98 % accurate. This indicates that fastnetmon is using an effective
way of detecting DDoS attack.

Based on findings during the work with this thesis, we conclude that commodity
hardware with effective DDoS detection application like fastnetmon and improved
fast packet capturing frameworks such as netmap and PF_Ring ZC, has a potential
to be used as DDoS defense mechanism in victim end.

8.1 Future Work

Due to the available hardware and software limitation during this thesis work, we
have used a single core of the hardware. It may also be helpful to use better software
architecture and higher giga interface links in order to take full advantage of modern
multi core processing power of commodity hardware.

we propose a suggestion for further work:

8.1. FUTURE WORK 53

– Increase the number of CPU core used: Modern commodity hardware
have multple multi-core CPUs. It would be interesting to see the performance
of DDoS detection by leveraging the CPU power provided by such hardware.

References

[AMAM+11] Hashem Alaidaros, Massudi Mahmuddin, Ali Al-Mazari, et al. An overview
of flow-based and packet-based intrusion detection performance in high speed
networks. 2011.

[AR12] Mohammed Alenezi and M Reed. Methodologies for detecting dos/ddos attacks
against network servers. In Proceedings of the Seventh International Conference
on Systems and Networks Communications—ICSNC, 2012.

[BDKC10] Lothar Braun, Alexander Didebulidze, Nils Kammenhuber, and Georg Carle.
Comparing and improving current packet capturing solutions based on com-
modity hardware. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 206–217. ACM, 2010.

[BSA+16] Akashdeep Bhardwaj, GVB Subrahmanyam, Vinay Avasthi, Hanumat Sastry,
and Sam Goundar. Ddos attacks, new ddos taxonomy and mitigation solutions—a
survey. In Signal Processing, Communication, Power and Embedded System
(SCOPES), 2016 International Conference on, pages 793–798. IEEE, 2016.

[CDL16] Alfredo Cardigliano, Luca Deri, and Tord Lundstrom. Commoditising ddos
mitigation. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2016 International, pages 523–528. IEEE, 2016.

[CPPM] Ivan Cvitić, Dragan Peraković, Marko Periša, and Mario Musa. Network
parameters applicable in detection of infrastructure level ddos attacks. network,
82:1.

[D+04] Luca Deri et al. Improving passive packet capture: Beyond device polling. In
Proceedings of SANE, volume 2004, pages 85–93. Amsterdam, Netherlands, 2004.

[Der03] Luca Deri. Passively monitoring networks at gigabit speeds using commodity
hardware and open source software. In Proceedings of the Passive and Active
Measurement Conference, pages 1–7, 2003.

[DHKB16] Ashaq Hussain Dar, Beenish Habib, Farida Khurshid, and M Tariq Banday.
Experimental analysis of ddos attack and it’s detection in eucalyptus private
cloud platform. In Advances in Computing, Communications and Informatics
(ICACCI), 2016 International Conference on, pages 1718–1724. IEEE, 2016.

55

56 REFERENCES

[DM04] Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and defense mecha-
nisms: classification and state-of-the-art. Computer Networks, 44(5):643–666,
2004.

[fas] fastnetmon. Bgp flow spec. https://fastnetmon.com/docs/bgp_flow_spec/.
Accessed: 2-12-2017.

[For] Internet Engineering Task Force. Data center benchmarking terminology. https:
//tools.ietf.org/html/rfc8238#page-10. Accessed: 31-01-2018.

[HAG10] SHC Haris, RB Ahmad, and MAHA Ghani. Detecting tcp syn flood attack
based on anomaly detection. In Network Applications Protocols and Services
(NETAPPS), 2010 Second International Conference on, pages 240–244. IEEE,
2010.

[Hpi] Hping. active network security tool. http://www.hping.org. Accessed: 12-12-
2017.

[HSS12] Mohd Jameel Hashmi, Manish Saxena, and Rajesh Saini. Classification of ddos
attacks and their defense techniques using intrusion prevention system. Interna-
tional Journal of Computer Science and Communication Networks, 2(5):607–14,
2012.

[hto] htop. htop. https://hisham.hm/htop/. Accessed: 2-11-2017.

[Imp] Imperva. Tcp syn flood. https://www.incapsula.com/ddos/attack-glossary/
syn-flood.html. Accessed: 5-12-2017.

[Inc] Cloudflare Inc. Udp flood attack. https://www.cloudflare.com/learning/ddos/
udp-flood-ddos-attack/. Accessed: 5-12-2017.

[ipe] iperf3. https://iperf.fr/. Accessed: 2016-11-06.

[JHP+16] Grafika Jati, Budi Hartadi, Akmal Gafar Putra, Fahri Nurul, M Riza Iqbal,
and Setiadi Yazid. Design ddos attack detector using ntopng. In Big Data
and Information Security (IWBIS), International Workshop on, pages 139–144.
IEEE, 2016.

[KB12] Hirak Jyoti Kashyap and DK Bhattacharyya. A ddos attack detection mechanism
based on protocol specific traffic features. In Proceedings of the Second Inter-
national Conference on Computational Science, Engineering and Information
Technology, pages 194–200. ACM, 2012.

[KS11] P Arun Raj Kumar and S Selvakumar. Distributed denial of service attack
detection using an ensemble of neural classifier. Computer Communications,
34(11):1328–1341, 2011.

[Lov] Robert M. Love. Linux man page. https://linux.die.net/man/1/taskset. Ac-
cessed: 2018-02-06.

https://fastnetmon.com/docs/bgp_flow_spec/
https://tools.ietf.org/html/rfc8238#page-10
https://tools.ietf.org/html/rfc8238#page-10
http://www.hping.org
https://hisham.hm/htop/
https://www.incapsula.com/ddos/attack-glossary/syn-flood.html
https://www.incapsula.com/ddos/attack-glossary/syn-flood.html
https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://iperf.fr/
https://linux.die.net/man/1/taskset

REFERENCES 57

[LSBM15] Jessica A Lopez, Yali Sun, Peter B Blair, and M Shahid Mukhtar. Tcp three-way
handshake: linking developmental processes with plant immunity. Trends in
plant science, 20(4):238–245, 2015.

[LTDa] Fastnetmon LTD. Fastnetmon. https://fastnetmon.com/screenshoots/. Accessed:
17-1-2018.

[LTDb] Fastnetmon LTD. Fastnetmon. https://fastnetmon.com. Accessed: 19-12-2017.

[Mer17] Mehdi Merouane. An approach for detecting and preventing ddos attacks in
campus. Automatic Control and Computer Sciences, 51(1):13–23, 2017.

[MPR03] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Source-end ddos defense. In
Network Computing and Applications, 2003. NCA 2003. Second IEEE Interna-
tional Symposium on, pages 171–178. IEEE, 2003.

[MR04] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53,
2004.

[Net] Arbor Networks. Ddos attacks and rise of iot botnets. https://ripe75.ripe.
net/presentations/53-RIPE75-DDoS-and-Rise-of-IOT-botnets.pdf. Accessed:
2-12-2017.

[NIG+17] Kseniya Yu Nikolskaya, Sergey A Ivanov, Valentin A Golodov, Aleksey V
Minbaleev, and Gregory D Asyaev. Review of modern ddos-attacks, methods
and means of counteraction. In " Quality Management, Transport and Infor-
mation Security, Information Technologies"(IT&QM&IS), 2017 International
Conference, pages 87–89. IEEE, 2017.

[nLa] ntop LTD. nscrub. https://www.ntop.org/products/ddos-mitigation/nscrub/.
Accessed: 31-01-2018.

[nLb] ntop LTD. ntop. https://www.ntop.org/products/traffic-analysis/ntop/. Ac-
cessed: 31-01-2018.

[nLc] ntop LTD. Pf ring. https://www.ntop.org/products/packet-capture/pf_ring/.
Accessed: 31-01-2018.

[NSCP15] Bharti Nagpal, Pratima Sharma, Naresh Chauhan, and Angel Panesar. Ddos
tools: Classification, analysis and comparison. In Computing for Sustainable
Global Development (INDIACom), 2015 2nd International Conference on, pages
342–346. IEEE, 2015.

[Nto] Ntop. ndpi. https://www.ntop.org/products/deep-packet-inspection/ndpi/.
Accessed: 12-12-2017.

[PLR07] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-
based defense mechanisms countering the dos and ddos problems. ACM Com-
puting Surveys (CSUR), 39(1):3, 2007.

https://fastnetmon.com/screenshoots/
https://fastnetmon.com
https://ripe75.ripe.net/presentations/53-RIPE75-DDoS-and-Rise-of-IOT-botnets.pdf
https://ripe75.ripe.net/presentations/53-RIPE75-DDoS-and-Rise-of-IOT-botnets.pdf
https://www.ntop.org/products/ddos-mitigation/nscrub/
https://www.ntop.org/products/traffic-analysis/ntop/
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/deep-packet-inspection/ndpi/

58 REFERENCES

[PZC+96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, and
Ronald A. Olsson. A methodology for testing intrusion detection systems. IEEE
Transactions on Software Engineering, 22(10):719–729, 1996.

[RDC12] Luigi Rizzo, Luca Deri, and Alfredo Cardigliano. 10 gbit/s line rate packet
processing using commodity hardware: Survey and new proposals, 2012.

[RGMFGT13] Rafael A Rodríguez-Gómez, Gabriel Maciá-Fernández, and Pedro García-
Teodoro. Survey and taxonomy of botnet research through life-cycle. ACM
Computing Surveys (CSUR), 45(4):45, 2013.

[Rie] Roland Riegel. Linux man page. https://linux.die.net/man/1/nload. Accessed:
2-11-2017.

[Riz12] Luigi Rizzo. Netmap: a novel framework for fast packet i/o. In 21st USENIX
Security Symposium (USENIX Security 12), pages 101–112, 2012.

[SAA13] Amtul Saboor, Monis Akhlaq, and Baber Aslam. Experimental evaluation of
snort against ddos attacks under different hardware configurations. In Informa-
tion Assurance (NCIA), 2013 2nd National Conference on, pages 31–37. IEEE,
2013.

[Sea] Tara Seals. Ddos-for-hire costs just $38 per hour. https://www.
infosecurity-magazine.com/news/ddosforhire-costs-just-38-per-hour/. Accessed:
9-12-2017.

[Sno] Snort. What is snort. https://www.snort.org/#documents. Accessed: 05-01-
2018.

[tB17] Bram ter Borch. Session based high bandwidth throughput testing. 2017.

[Wir] Wireshark. tshark. https://www.wireshark.org/docs/man-pages/tshark.html.
Accessed: 2-12-2017.

[XMZ09] Rui Xu, Wen-li Ma, and Wen-ling Zheng. Defending against udp flooding by
negative selection algorithm based on eigenvalue sets. In Information Assurance
and Security, 2009. IAS’09. Fifth International Conference on, volume 2, pages
342–345. IEEE, 2009.

[ZJT13] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense
mechanisms against distributed denial of service (ddos) flooding attacks. IEEE
communications surveys & tutorials, 15(4):2046–2069, 2013.

https://linux.die.net/man/1/nload
https://www.infosecurity-magazine.com/news/ddosforhire-costs-just-38-per-hour/
https://www.infosecurity-magazine.com/news/ddosforhire-costs-just-38-per-hour/
https://www.snort.org/#documents
https://www.wireshark.org/docs/man-pages/tshark.html

AppendixAScript for traffic monitoring

1 INTERVAL=" 1 " # update i n t e r v a l in seconds
2 i f [−z " $1 "] ; then
3 echo
4 echo usage : $0 [network−i n t e r f a c e]
5 echo
6 echo e . g . $0 eth0
7 echo
8 echo shows packets−per−second
9 e x i t

10 f i
11

12 IF=$1
13 whi le t rue
14 do
15 RPP1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx_packets ‘
16 TPP1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx_packets ‘
17

18 RBP1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx_bytes ‘
19 TBP1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx_bytes ‘
20 s l e e p $INTERVAL
21

22 RPP2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx_packets ‘
23 TPP2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx_packets ‘
24

25 RBP2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx_bytes ‘
26 TBP2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx_bytes ‘
27 TXPPS=‘expr $TPP2 − $TPP1 ‘
28 RXPPS=‘expr $RPP2 − $RPP1 ‘
29

30 TXBPS=‘expr $TBP2 − $TBP1 ‘
31 TXBPS=‘expr $TXBPS \∗ 8 ‘
32

33 RXBPS=‘expr $RBP2 − $RBP1‘
34 RXBPS=‘expr $RXBPS \∗ 8 ‘
35

36

37 echo "TX PPS $1 : $TXPPS pkts / s RX PPS $1 : $RXPPS pkts / s "

59

60 A. SCRIPT FOR TRAFFIC MONITORING

38 echo "TX BPS $1 : $TXBPS b i t s / s RX BPS $1 : $RXBPS b i t s / s "
39 done

Listing A.1: traffic monitoring bash script

1 \ l a b e l { appendix : f i l t e r r e p o r t }
2 grep −rnw ’/ var / log / fastnetmon_attacks / ’ −e ’> 10 . 1 0 . 1 0 ’ | awk ’{ p r i n t

$5 } ’ | s o r t | uniq > / root /ddos_measrments/ f o l t e r _ l i s t . txt
3 sed − i ’ s / : / and not dst port / ’ / root /ddos_measrments/ f o l t e r _ l i s t .

txt
4 sed − i ’ s /129.241/ (not dst 129 .241/ ’ / root /ddos_measrments/

f o l t e r _ l i s t . txt
5 sed −e ’ : a ’ −e ’N’ −e ’ $! ba ’ −e ’ s /\n/) or /g ’ / root /

ddos_measrments/ f o l t e r _ l i s t . txt > / root /ddos_measrments/
f i n a l _ l i s t 2 . txt

6 echo ’) ’>> / root /ddos_measrments/ f i n a l _ l i s t 2 . txt
7 sed −e ’ : a ’ −e ’N’ −e ’ $! ba ’ −e ’ s /\n/ /g ’ / root /ddos_measrments/

f i n a l _ l i s t 2 . txt > / root /ddos_measrments/ f i l t e r . txt
8 sed −e ’ : a ’ −e ’N’ −e ’ $! ba ’ −e ’ s /\n/ /g ’ / root /ddos_measrments/

f i l t e r . txt > / root /ddos_measrments/ f i l t e r 2 . txt
9 / root /ddos_measrments/ send_rec iev / compi le . sh

Listing A.2: script developed for retrieving filter policy from fastnetmon report

AppendixBModified source code for
fastnetmon

1

2 /∗ ∗∗∗
3 ∗ f i l e : netmap_plugin . c
4 ∗ date : 2018−Feb−14 12 : 14 : 19 AM
5 ∗ Author : Mekl it E l f i y o s
6 ∗ Last Modif ied :2018−Feb−14 12 : 14 : 19 AM
7 ∗
8 ∗ Desc r ip t i on : fastnetmon pcap based \ g l s {pce}
9 ∗∗ ∗/

10 #inc lude <sys / types . h>
11 #inc lude <pcap . h>
12 #inc lude <ne t i n e t / i f_e the r . h>
13 #inc lude <ne t i n e t / ip . h>
14 #inc lude <ne t i n e t / tcp . h>
15 #inc lude <ne t i n e t /udp . h>
16 #inc lude <ne t i n e t / ip_icmp . h>
17 #inc lude <s td i o . h>
18 #inc lude <sys / time . h>
19 // log4cpp l ogg ing f a c i l i t y
20 #inc lude " log4cpp /Category . hh "
21 #inc lude " log4cpp /Appender . hh "
22 #inc lude " log4cpp /FileAppender . hh "
23 #inc lude " log4cpp /OstreamAppender . hh "
24 #inc lude " log4cpp /Layout . hh "
25 #inc lude " log4cpp /BasicLayout . hh "
26 #inc lude " log4cpp /PatternLayout . hh "
27 #inc lude " log4cpp / P r i o r i t y . hh "
28

29 #inc lude <boost / ve r s i on . hpp>
30 #inc lude <boost / a lgor i thm/ s t r i n g . hpp>
31

32 #inc lude " . . / f a s t_ l i b r a r y . h "
33

34 // For support uint32_t , uint16_t
35 #inc lude <sys / types . h>
36

37 // For c on f i g map ope ra t i on s

61

62 B. MODIFIED SOURCE CODE FOR FASTNETMON

38 #inc lude <s t r i ng>
39 #inc lude <map>
40

41 #inc lude <s td i o . h>
42 #inc lude <iostream>
43 #inc lude <s t r i ng>
44 #de f i n e NETMAP_WITH_LIBS
45

46 // Disab le debug messages from Netmap
47 #de f i n e NETMAP_NO_DEBUG
48 #inc lude <net /netmap_user . h>
49 #inc lude <boost / thread . hpp>
50

51 #i f de f ined (__FreeBSD__)
52 // On FreeBSD func t i on pthread_attr_seta f f in i ty_np dec l a r ed here
53 #inc lude <pthread_np . h>
54

55 // Also we have d i f f e r e n t type name f o r cpu s e t ’ s s t o r e
56 typede f cpuset_t cpu_set_t ;
57 #end i f
58

59 #inc lude " . . / fastnetmon_packet_parser . h "
60

61 #inc lude " . . / un i f i ed_par s e r . hpp "
62

63 // For poo l ing ope ra t i on s
64 #inc lude <po l l . h>
65

66 // For support : IPPROTO_TCP, IPPROTO_ICMP, IPPROTO_UDP
67 #inc lude <sys / types . h>
68 #inc lude <sys / socket . h>
69 #inc lude <ne t i n e t / in . h>
70

71 #inc lude " netmap_col lector . h "
72 //================================
73 pcap_t∗ descr_snd=NULL;
74 //================================
75

76 // By de f au l t we read packet s i z e from l i n k l ay e r
77 // But in case o f Juniper we could crop f i r s t X bytes from packet :
78 // maximum−packet−l ength 110 ;
79 // And t h i s opt ion become mandatory i f we want c o r r e c t bps speed in

t o o l k i t
80 bool netmap_read_packet_length_from_ip_header = f a l s e ;
81

82 uint32_t netmap_sampling_ratio = 1 ;
83 unsigned long max=0,min=0, df=0;
84 /∗ prototypes ∗/
85 void netmap_thread (s t r u c t nm_desc∗ netmap_descriptor , i n t

netmap_thread) ;
86 void consume_pkt (u_char∗ bu f f e r , i n t len , i n t thread_number) ;
87

63

88 // Get log4cpp l ogg e r from main program
89 extern log4cpp : : Category& logg e r ;
90

91 // Pass unparsed packets number to main program
92 extern uint64_t total_unparsed_packets ;
93

94 // Global c on f i g u r a t i on map
95 extern std : : map<std : : s t r i ng , std : : s t r i ng> configuration_map ;
96

97 u_int num_cpus = 0 ;
98

99 // This v a r i a b l e name should be uniq f o r every p lug in !
100 process_packet_pointer netmap_process_func_ptr = NULL;
101

102 bool execut e_s t r i c t_cpu_a f f i n i ty = true ;
103

104 i n t r ece ive_packet s (s t r u c t netmap_ring∗ r ing , i n t thread_number) {
105 u_int cur , rx , n ;
106

107 cur = ring−>cur ;
108 n = nm_ring_space (r i ng) ;
109

110 f o r (rx = 0 ; rx < n ; rx++) {
111 s t r u c t netmap_slot∗ s l o t = &ring−>s l o t [cur] ;
112 char ∗ p = NETMAP_BUF(r ing , s l o t −>buf_idx) ;
113

114 // proce s s data
115 consume_pkt ((u_char ∗)p , s l o t−>len , thread_number) ;
116

117 cur = nm_ring_next (r ing , cur) ;
118 }
119

120 r ing−>head = ring−>cur = cur ;
121 r e turn (rx) ;
122 }
123

124 void consume_pkt (u_char∗ bu f f e r , i n t len , i n t thread_number) {
125 // We should f i l l t h i s s t r u c tu r e f o r pas s ing to FastNetMon
126 simple_packet packet ;
127 packet . sample_ratio = netmap_sampling_ratio ;
128

129 i f (! parse_raw_packet_to_simple_packet (bu f f e r , len , packet ,
netmap_read_packet_length_from_ip_header)) {

130 total_unparsed_packets++;
131

132 r e turn ;
133 }
134 //====================== Packet Delay c a l c u l a t o r ==========
135 s t r u c t t imespec tps , tpe ;
136 i f (c lock_gett ime (CLOCK_REALTIME, &tps) != 0)
137 {
138 pe r ro r (" c lock_gett ime ") ;

64 B. MODIFIED SOURCE CODE FOR FASTNETMON

139

140 }
141 netmap_process_func_ptr (packet) ;
142

143 i f (c lock_gett ime (CLOCK_REALTIME, &tpe) != 0)
144 {
145 pe r ro r (" c lock_gett ime ") ;
146

147 }
148

149 e l s e
150 i f ((df=tpe . tv_nsec−tps . tv_nsec)> max)
151 max=df ;
152

153 p r i n t f ("%lu s , %lu ns\n" , tpe . tv_sec−tps . tv_sec ,) ;
154

155 gett imeofday(& a f t e r , NULL) ;
156 before_detection_ms = (double) be f o r e . tv_sec + (double) be f o r e . tv_usec

;
157 after_detect ion_ms = (double) a f t e r . tv_sec + (double) a f t e r . tv_usec ;
158 d i f f = (double) after_detect ion_ms − (double) before_detection_ms ;
159 p r i n t f (" Total time e lapsed : %.0 l f us\n" , d i f f) ;
160 //===
161 //===
162 i f (descr_snd== NULL)
163 {
164

165 char e r r b f [PCAP_ERRBUF_SIZE] ;
166 char f i l t e r_exp [2 5 5] = " " ;
167 s t r u c t bpf_program f i l t e r ;
168 bpf_u_int32 subnet_mask , ip ;
169 descr_snd = pcap_open_live (" enp0s25 " ,1500 ,1 , −1 , e r r b f) ;
170 i f (descr_snd == NULL)
171 {
172 p r i n t f (" pcap_open_live () : At sending ") ;
173 // re turn ;
174 }
175 i f (pcap_compile (descr_snd , &f i l t e r , f i l t e r_exp , 0 , ip) == −1)
176 {
177 p r i n t f ("Bad f i l t e r − %s\n" , pcap_geterr (descr_snd)) ;
178

179 }
180 i f (p c ap_s e t f i l t e r (descr_snd , &f i l t e r) == −1)
181 {
182 p r i n t f (" Error s e t t i n g f i l t e r − %s\n" , pcap_geterr (descr_snd)) ;
183 }
184

185

186 }
187 pcap_inject (descr_snd , &p , s l o t−>len) ;
188 //==
189 }

65

190

191 void r e c e i v e r (std : : s t r i n g i n t e r f a c e_ f o r_ l i s t e n i n g) {
192 s t r u c t nm_desc∗ netmap_descriptor ;
193

194 s t r u c t nmreq base_nmd ;
195 bzero(&base_nmd , s i z e o f (base_nmd)) ;
196

197 // Magic from pkt−gen . c
198 base_nmd . nr_tx_rings = base_nmd . nr_rx_rings = 0 ;
199 base_nmd . nr_tx_slots = base_nmd . nr_rx_slots = 0 ;
200

201 std : : s t r i n g i n t e r f a c e = " " ;
202 std : : s t r i n g system_interface_name = " " ;
203 // I f we haven ’ t netmap : p r e f i x in i n t e r f a c e name we w i l l append

i t
204 i f (i n t e r f a c e_ f o r_ l i s t e n i n g . f i nd (" netmap : ") == std : : s t r i n g : : npos)

{
205 system_interface_name = in t e r f a c e_ f o r_ l i s t e n i n g ;
206

207 i n t e r f a c e = "netmap : " + i n t e r f a c e_ f o r_ l i s t e n i n g ;
208 } e l s e {
209 // We should sk ip netmap p r e f i x
210 system_interface_name = boost : : rep lace_al l_copy (

i n t e r f a c e_ f o r_ l i s t e n i n g , " netmap : " , " ") ;
211

212 i n t e r f a c e = i n t e r f a c e_ f o r_ l i s t e n i n g ;
213 }
214

215 #i f d e f __linux__
216 manage_interface_promisc_mode (system_interface_name , t rue) ;
217 l o gg e r . warn (" Please d i s ab l e a l l types o f o f f l o a d f o r t h i s NIC

manually : e t h t oo l −K %s gro o f f gso o f f t so o f f l r o o f f " ,
system_interface_name . c_str ()) ;

218 #end i f
219

220 netmap_descriptor = nm_open(i n t e r f a c e . c_str () , &base_nmd , 0 , NULL)
;

221

222 i f (netmap_descriptor == NULL) {
223 l o gg e r . e r r o r ("Can ’ t open netmap dev i c e %s " , i n t e r f a c e . c_str ())

;
224 e x i t (1) ;
225 r e turn ;
226 }
227

228 l o gg e r . i n f o ("Mapped %dKB memory at %p" , netmap_descriptor−>req .
nr_memsize >> 10 , netmap_descriptor−>mem) ;

229 l o gg e r . i n f o ("We have %d tx and %d rx r i n g s " , netmap_descriptor−>
req . nr_tx_rings ,

230 netmap_descriptor−>req . nr_rx_rings) ;
231

232 i f (num_cpus > netmap_descriptor−>req . nr_rx_rings) {

66 B. MODIFIED SOURCE CODE FOR FASTNETMON

233 num_cpus = netmap_descriptor−>req . nr_rx_rings ;
234

235 l o gg e r . i n f o ("We have number o f CPUs b igge r than number o f NIC
RX queues . Set number o f "

236 "CPU’ s to number o f threads ") ;
237 }
238

239 /∗
240 pro to co l s tack and may cause a r e s e t o f the card ,
241 which in turn may take some time f o r the PHY to
242 r e c on f i g u r e . We do the open here to have time to r e s e t .
243 ∗/
244

245 i n t wait_l ink = 2 ;
246 l o gg e r . i n f o ("Wait %d seconds f o r NIC r e s e t " , wait_l ink) ;
247 s l e e p (wait_l ink) ;
248

249 boost : : thread_group packet_receiver_thread_group ;
250

251 f o r (i n t i = 0 ; i < num_cpus ; i++) {
252 s t r u c t nm_desc nmd = ∗netmap_descriptor ;
253 // This opera t i on i s VERY important !
254 nmd. s e l f = &nmd;
255

256 uint64_t nmd_flags = 0 ;
257

258 i f (nmd. req . nr_f lags != NR_REG_ALL_NIC) {
259 l o gg e r . e r r o r ("Ooops , main d e s c r i p t o r should be with

NR_REG_ALL_NIC f l a g ") ;
260 }
261

262 nmd. req . nr_f lags = NR_REG_ONE_NIC;
263 nmd. req . nr_ring id = i ;
264

265 /∗ Only touch one o f the r i n g s (rx i s a l r eady ok) ∗/
266 nmd_flags |= NETMAP_NO_TX_POLL;
267

268 s t r u c t nm_desc∗ new_nmd =
269 nm_open(i n t e r f a c e . c_str () , NULL, nmd_flags | NM_OPEN_IFNAME |

NM_OPEN_NO_MMAP, &nmd) ;
270

271 i f (new_nmd == NULL) {
272 l o gg e r . e r r o r ("Can ’ t open netmap d e s c r i p t o r f o r netmap per

hardware queue thread ") ;
273 e x i t (1) ;
274 }
275

276 l o gg e r . i n f o ("My f i r s t r i ng i s %d and l a s t r i ng id i s %d I ’m
thread %d" ,

277 new_nmd−>f i r s t_rx_r ing , new_nmd−>last_rx_ring , i) ;
278

279

67

280 /∗
281 l ogger<< log4cpp : : P r i o r i t y : : INFO<< "We are us ing Boost "
282 << BOOST_VERSION / 100000 << " . " // major v e r s i on
283 << BOOST_VERSION / 100 % 1000 << " . " // minior v e r s i on
284 << BOOST_VERSION % 100 ;
285 ∗/
286

287 l o gg e r . i n f o (" S ta r t new netmap thread %d" , i) ;
288

289 // Well , we have thread a t t r i b u t e s from Boost 1 .50
290

291 #i f de f ined (BOOST_THREAD_PLATFORM_PTHREAD) && BOOST_VERSION / 100 %
1000 >= 50 && ! de f ined (__APPLE__)

292 /∗ Bind to c e r t a i n core ∗/
293 boost : : thread : : a t t r i b u t e s thread_attrs ;
294

295 i f (execu te_s t r i c t_cpu_a f f i n i ty) {
296 cpu_set_t current_cpu_set ;
297

298 i n t cpu_to_bind = i % num_cpus ;
299

300 CPU_ZERO(¤t_cpu_set) ;
301 // We count cpus from zero
302 CPU_SET(cpu_to_bind , ¤t_cpu_set) ;
303

304 l o gg e r . i n f o (" I w i l l bind t h i s thread to l o g i c a l CPU: %d" ,
cpu_to_bind) ;

305

306 i n t s e t_a f f i n i t y_ r e s u l t =
307 pthread_attr_seta f f in i ty_np (thread_attrs . native_handle () ,

s i z e o f (cpu_set_t) , ¤t_cpu_set) ;
308

309 i f (s e t_a f f i n i t y_ r e s u l t != 0) {
310 l o gg e r . e r r o r ("Can ’ t s p e c i f y CPU a f f i n i t y f o r netmap

thread ") ;
311 }
312 }
313

314 // Star t thread and pass netmap d e s c r i p t o r to i t
315 packet_receiver_thread_group . add_thread (
316 new boost : : thread (thread_attrs , boost : : bind (netmap_thread ,

new_nmd, i))) ;
317 #e l s e
318 l o gg e r . e r r o r (" Sorry but CPU a f f i n i t y did not supported f o r

your plat form ") ;
319 packet_receiver_thread_group . add_thread (new boost : : thread (

netmap_thread , new_nmd, i)) ;
320 #end i f
321 }
322

323 // Wait a l l threads f o r complet ion
324 packet_receiver_thread_group . j o i n_a l l () ;

68 B. MODIFIED SOURCE CODE FOR FASTNETMON

325 }
326

327 void netmap_thread (s t r u c t nm_desc∗ netmap_descriptor , i n t
thread_number) {

328 s t r u c t nm_pkthdr h ;
329 u_char∗ buf ;
330 s t r u c t p o l l f d fd s ;
331 f d s . fd = netmap_descriptor−>fd ; // NETMAP_FD(netmap_descriptor) ;
332 f d s . events = POLLIN;
333

334 s t r u c t netmap_ring∗ rx r i ng = NULL;
335 s t r u c t netmap_if∗ n i f p = netmap_descriptor−>ni fp ;
336

337 // p r i n t f (" Reading from fd %d thread id : %d " , netmap_descriptor−>
fd , thread_number) ;

338

339 f o r (; ;) {
340 // We w i l l wait 1000 microseconds f o r re t ry , f o r i n f i n i t e

t imeout p l e a s e use −1
341 i n t p o l l_ r e s u l t = po l l (&fds , 1 , 1000) ;
342

343 i f (p o l l_ r e s u l t == 0) {
344 // p r i n t f (" p o l l r e turn 0 re turn code ") ;
345 cont inue ;
346 }
347

348 i f (p o l l_ r e s u l t == −1) {
349 l o gg e r . e r r o r ("Netmap plug in : p o l l f a i l e d with re turn code

−1") ;
350 }
351

352 f o r (i n t i = netmap_descriptor−>f i r s t_rx_r ing ; i <=
netmap_descriptor−>last_rx_ring ; i++) {

353 // p r i n t f (" Check r ing %d from thread %d " , i , thread_number
) ;

354 rx r i ng = NETMAP_RXRING(ni fp , i) ;
355

356 i f (nm_ring_empty (rx r i ng)) {
357 cont inue ;
358 }
359

360 r ece ive_packet s (rxr ing , thread_number) ;
361 }
362

363 // TODO: t h i s code could add performance degradat ion
364 // Add i n t e r r up t i on po int f o r c o r r e c t t o o l k i t shutdown
365 // boost : : th i s_thread : : i n t e r rupt i on_po in t () ;
366 }
367

368 // nm_close (netmap_descriptor) ;
369 }
370

69

371 void start_netmap_col l ect ion (process_packet_pointer func_ptr) {
372 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "Netmap p lug in s t a r t ed " ;
373 netmap_process_func_ptr = func_ptr ;
374

375 num_cpus = sys con f (_SC_NPROCESSORS_ONLN) ;
376 l o gg e r . i n f o ("We have %d cpus " , num_cpus) ;
377

378 std : : s t r i n g i n t e r f a c e s_ l i s t = " " ;
379

380 i f (configuration_map . count (" i n t e r f a c e s ") != 0) {
381 i n t e r f a c e s_ l i s t = configuration_map [" i n t e r f a c e s "] ;
382 }
383

384 i f (configuration_map . count (" netmap_sampling_ratio ") != 0) {
385 netmap_sampling_ratio = convert_str ing_to_integer (

configuration_map [" netmap_sampling_ratio "]) ;
386 }
387

388 i f (configuration_map . count ("
netmap_read_packet_length_from_ip_header ") != 0) {

389 netmap_read_packet_length_from_ip_header = configuration_map ["
netmap_read_packet_length_from_ip_header "] == " on " ;

390 }
391

392 std : : vector<std : : s t r i ng> i n t e r f a c e s_ f o r_ l i s t e n ;
393 boost : : s p l i t (i n t e r f a c e s_ f o r_ l i s t e n , i n t e r f a c e s_ l i s t , boost : :

is_any_of (" , ") , boost : : token_compress_on) ;
394

395 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "netmap w i l l l i s t e n on " <<
in t e r f a c e s_ f o r_ l i s t e n . s i z e () << " i n t e r f a c e s " ;

396

397 // Thread group f o r a l l " master " p r o c e s s e s
398 boost : : thread_group netmap_main_threads ;
399

400 f o r (std : : vector<std : : s t r i ng >: : i t e r a t o r i n t e r f a c e =
i n t e r f a c e s_ f o r_ l i s t e n . begin () ;

401 i n t e r f a c e != i n t e r f a c e s_ f o r_ l i s t e n . end () ; ++i n t e r f a c e) {
402

403 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "netmap w i l l s n i f f
i n t e r f a c e : " << ∗ i n t e r f a c e ;

404

405 netmap_main_threads . add_thread (new boost : : thread (r e c e i v e r , ∗
i n t e r f a c e)) ;

406 }
407

408 netmap_main_threads . j o i n_a l l () ;
409 }

Listing B.1: c script for netmap packet capture

AppendixCModified pcap based packet
capturing and forwarding

1 \ l a b e l {pcap}
2 /∗ ∗∗∗
3 ∗ f i l e : pcap_plugin . c
4 ∗ date : 2018−Feb−14 12 : 14 : 19 AM
5 ∗ Author : Mekl it E l f i y o s
6 ∗ Last Modif ied :2018−Feb−14 12 : 14 : 19 AM
7 ∗
8 ∗ Desc r ip t i on : fastnetmon pcap based \ g l s {pce}
9 ∗∗ ∗/

10 #inc lude <sys / types . h>
11 #inc lude <sys / socket . h>
12 #inc lude <ne t i n e t / in . h>
13 #inc lude <s td i o . h>
14 #inc lude <s t r i n g . h>
15 #inc lude <s t d l i b . h>
16 #inc lude <sys / types . h>
17 #inc lude <in t type s . h>
18

19 #inc lude <map>
20 #inc lude <s t r i ng>
21

22 #inc lude <pcap . h>
23 #inc lude <ne t i n e t / i f_e the r . h>
24 #inc lude <ne t i n e t / ip . h>
25 #inc lude <ne t i n e t / tcp . h>
26 #inc lude <ne t i n e t /udp . h>
27 #inc lude <ne t i n e t / ip_icmp . h>
28

29 // log4cpp l ogg ing f a c i l i t y
30 #inc lude " log4cpp /Category . hh "
31 #inc lude " log4cpp /Appender . hh "
32 #inc lude " log4cpp /FileAppender . hh "
33 #inc lude " log4cpp /OstreamAppender . hh "
34 #inc lude " log4cpp /Layout . hh "
35 #inc lude " log4cpp /BasicLayout . hh "
36 #inc lude " log4cpp /PatternLayout . hh "
37 #inc lude " log4cpp / P r i o r i t y . hh "

71

72 C. MODIFIED PCAP BASED PACKET CAPTURING AND FORWARDING

38

39 #inc lude " pcap_co l l e c to r . h "
40

41

42 // Standard s h i f t f o r type DLT_EN10MB, Ethernet
43 unsigned i n t DATA_SHIFT_VALUE = 14 ;
44

45 /∗ Complete l i s t o f e the r type s : http :// en . w ik iped ia . org /wik i /EtherType
∗/

46 /∗ This i s the decimal equ iva l en t o f the VLAN tag ’ s e the r frame type
∗/

47 #de f i n e VLAN_ETHERTYPE 0x8100
48 #de f i n e IP_ETHERTYPE 0x0800
49 #de f i n e IP6_ETHERTYPE 0x86dd
50 #de f i n e ARP_ETHERTYPE 0x0806
51 /∗ 802 .1Q VLAN tags are 4 bytes long . ∗/
52 #de f i n e VLAN_HDRLEN 4
53 #inc lude " loop . c "
54 extern log4cpp : : Category& logg e r ;
55 extern std : : map<std : : s t r i ng , std : : s t r i ng> configuration_map ;
56

57 // This v a r i a b l e name should be uniq f o r every p lug in !
58 process_packet_pointer pcap_process_func_ptr = NULL;
59

60 // Enlarge r e c e i v e bu f f e r f o r PCAP f o r minimize packet drops
61 unsigned i n t pcap_buffer_size_mbytes = 10 ;
62

63 // pcap handler , we want i t as g l oba l v a r i a b l e beacuse i t used in
s i ngna l handler

64 //pcap_t∗ desc r = NULL;
65 pcap_t∗ descr_send=NULL;
66 // char e r rbu f [PCAP_ERRBUF_SIZE] ;
67 s t r u c t pcap_pkthdr hdr ;
68 i n t s e t_buf f e r_s i z e_res ;
69 char devce []= " enp13s0 " ;
70 // Prototypes
71 void parse_packet (u_char∗ user , s t r u c t pcap_pkthdr∗ packethdr , const

u_char∗ packetptr) ;
72 void pcap_main_loop (const char ∗ dev) ;
73

74 void s ta r t_pcap_co l l e c t i on (process_packet_pointer func_ptr) {
75 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "Pcap p lug in s t a r t ed " ;
76

77 pcap_process_func_ptr = func_ptr ;
78

79 std : : s t r i n g i n t e r f a c e_ f o r_ l i s t e n i n g = " " ;
80

81 i f (configuration_map . count (" i n t e r f a c e s ") != 0) {
82 i n t e r f a c e_ f o r_ l i s t e n i n g = configuration_map [" i n t e r f a c e s "] ;
83 }
84

73

85 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "Pcap w i l l s n i f f i n t e r f a c e : "
<< in t e r f a c e_ f o r_ l i s t e n i n g ;

86

87 pcap_main_loop (i n t e r f a c e_ f o r_ l i s t e n i n g . c_str ()) ;
88 }
89

90 void stop_pcap_col l ect ion () {
91 // stop pcap loop
92 pcap_breakloop (desc r) ;
93 }
94

95 // We do not use t h i s f unc t i on now ! I t ’ s buggy !
96 void parse_packet (u_char∗ user , s t r u c t pcap_pkthdr∗ packethdr , const

u_char∗ packetptr) {
97 s t r u c t ip ∗ iphdr ;
98 s t r u c t tcphdr ∗ tcphdr ;
99 s t r u c t udphdr∗ udphdr ;

100

101 s t r u c t ether_header ∗ eptr ; /∗ net / e the rne t . h ∗/
102 eptr = (s t r u c t ether_header ∗) packetptr ;
103

104 i f (ntohs (eptr−>ether_type) == VLAN_ETHERTYPE) {
105 // I t ’ s tagged t r a f f i c we should s j o f t f o r 4 bytes f o r g e t t i n g

the data
106 packetptr += DATA_SHIFT_VALUE + VLAN_HDRLEN;
107 } e l s e i f (ntohs (eptr−>ether_type) == IP_ETHERTYPE) {
108 // Skip the da ta l i nk l ay e r header and get the IP header f i e l d s

.
109 packetptr += DATA_SHIFT_VALUE;
110 } e l s e i f (ntohs (eptr−>ether_type) == IP6_ETHERTYPE or ntohs (eptr

−>ether_type) == ARP_ETHERTYPE) {
111 // we know about i t but does ’ t not care now
112 } e l s e {
113 // p r i n t f (" Packet with non standard ether type found : 0x%x\n " ,

ntohs (eptr−>ether_type)) ;
114 }
115

116 iphdr = (s t r u c t ip ∗) packetptr ;
117

118 // s r c / dst UO i s an in_addr , http ://man7 . org / l i nux /man−pages /man7/
ip . 7 . html

119 uint32_t src_ip = iphdr−>ip_src . s_addr ;
120 uint32_t dst_ip = iphdr−>ip_dst . s_addr ;
121

122 // The ntohs () func t i on conver t s the unsigned shor t i n t e g e r
ne t shor t from network byte order to

123 // host byte order
124 unsigned i n t packet_length = ntohs (iphdr−>ip_len) ;
125

126 simple_packet current_packet ;
127

128 // Advance to the t ranspor t l a y e r header then parse and d i sp l ay

74 C. MODIFIED PCAP BASED PACKET CAPTURING AND FORWARDING

129 // the f i e l d s based on the type o f hearder : tcp , udp or icmp
130 packetptr += 4 ∗ iphdr−>ip_hl ;
131 switch (iphdr−>ip_p) {
132 case IPPROTO_TCP:
133 tcphdr = (s t r u c t tcphdr ∗) packetptr ;
134

135 #i f de f ined (__FreeBSD__) | | de f i ned (__APPLE__) | | de f i ned (
__DragonFly__)

136 current_packet . source_port = ntohs (tcphdr−>th_sport) ;
137 #e l s e
138 current_packet . source_port = ntohs (tcphdr−>source) ;
139 #end i f
140

141 #i f de f ined (__FreeBSD__) | | de f i ned (__APPLE__) | | de f i ned (
__DragonFly__)

142 current_packet . de s t inat i on_port = ntohs (tcphdr−>th_dport) ;
143 #e l s e
144 current_packet . de s t inat i on_port = ntohs (tcphdr−>dest) ;
145 #end i f
146 break ;
147 case IPPROTO_UDP:
148 udphdr = (s t r u c t udphdr ∗) packetptr ;
149

150 #i f de f ined (__FreeBSD__) | | de f i ned (__APPLE__) | | de f i ned (
__DragonFly__)

151 current_packet . source_port = ntohs (udphdr−>uh_sport) ;
152 #e l s e
153 current_packet . source_port = ntohs (udphdr−>source) ;
154 #end i f
155

156 #i f de f ined (__FreeBSD__) | | de f i ned (__APPLE__) | | de f i ned (
__DragonFly__)

157 current_packet . de s t inat i on_port = ntohs (udphdr−>uh_dport) ;
158 #e l s e
159 current_packet . de s t inat i on_port = ntohs (udphdr−>dest) ;
160 #end i f
161 break ;
162 case IPPROTO_ICMP:
163 // there are no port f o r ICMP
164 current_packet . source_port = 0 ;
165 current_packet . de s t inat i on_port = 0 ;
166 break ;
167 }
168

169 current_packet . p ro to co l = iphdr−>ip_p ;
170 current_packet . src_ip = src_ip ;
171 current_packet . dst_ip = dst_ip ;
172 current_packet . l ength = packet_length ;
173

174 // Do packet p ro c e s s i ng
175 pcap_process_func_ptr (current_packet) ;
176 //==

75

177 /∗ open dev i ce f o r read ing ∗/
178 pcap_sendpacket (handler , packetptr , packethdr−>len) ;
179 //==
180 }
181

182 void pcap_main_loop (const char ∗ dev) {
183 char e r rbu f [PCAP_ERRBUF_SIZE] ;
184 /∗ open dev i ce f o r read ing in promiscuous mode ∗/
185 i n t promisc = 1 ;
186

187 bpf_u_int32 maskp ; /∗ subnet mask ∗/
188 bpf_u_int32 netp ; /∗ ip ∗/
189

190 l o gg e r << log4cpp : : P r i o r i t y : : INFO << " Star t l i s t e n i n g on " << dev ;
191

192 /∗ Get the network address and mask ∗/
193 pcap_lookupnet (dev , &netp , &maskp , e r rbu f) ;
194

195 desc r = pcap_create (dev , e r rbu f) ;
196

197 i f (de sc r == NULL) {
198 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << " pcap_create was f a i l e d

with e r r o r : " << er rbu f ;
199 e x i t (0) ;
200 }
201

202 // Se t t i ng up 1MB bu f f e r
203 s e t_buf f e r_s i z e_res = pcap_set_buf fer_size (descr ,

pcap_buffer_size_mbytes ∗ 1024 ∗ 1024) ;
204 i f (s e t_buf f e r_s i z e_res != 0) {
205 i f (s e t_buf f e r_s i z e_res == PCAP_ERROR_ACTIVATED) {
206 l o gg e r << log4cpp : : P r i o r i t y : :ERROR
207 << "Can ’ t s e t bu f f e r s i z e because pcap a l ready

ac t i va t ed \n" ;
208 e x i t (1) ;
209 } e l s e {
210 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << "Can ’ t s e t bu f f e r

s i z e due to e r r o r : " << set_buf f e r_s i z e_res ;
211 e x i t (1) ;
212 }
213 }
214

215 i f (pcap_set_promisc (descr , promisc) != 0) {
216 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << "Can ’ t a c t i v a t e promisc

mode f o r i n t e r f a c e : " << dev ;
217 e x i t (1) ;
218 }
219 pcap_setd i r e c t i on (descr , PCAP_D_IN) ;
220

221 i f (pcap_act ivate (de sc r) != 0) {
222 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << " Cal l pcap_act ivate was

f a i l e d : " << pcap_geterr (desc r) ;

76 C. MODIFIED PCAP BASED PACKET CAPTURING AND FORWARDING

223 e x i t (1) ;
224 }
225 //================================= f i l t e r ====================
226 char f i l t e r_exp [2 5 5] = " not (dst host 1 0 . 1 0 . 1 0 . 1 72 and dst port

2323 and tcp [t c p f l a g s]==tcp−syn) " ;
227 s t r u c t bpf_program f i l t e r ;
228 bpf_u_int32 subnet_mask , ip ;
229 i f (pcap_compile (descr , &f i l t e r , f i l t e r_exp , 0 , ip) == −1) {
230 p r i n t f ("Bad f i l t e r − %s\n" , pcap_geterr (de sc r)) ;
231

232 }
233 i f (p c ap_s e t f i l t e r (descr , &f i l t e r) == −1) {
234 p r i n t f (" Error s e t t i n g f i l t e r − %s\n" , pcap_geterr (de sc r)) ;
235

236 }
237 //==
238 // man pcap−l i nk type
239 i n t l ink_layer_header_type = pcap_datal ink (desc r) ;
240

241 i f (l ink_layer_header_type == DLT_EN10MB) {
242 DATA_SHIFT_VALUE = 14 ;
243 } e l s e i f (l ink_layer_header_type == DLT_LINUX_SLL) {
244 DATA_SHIFT_VALUE = 16 ;
245 } e l s e {
246 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "We did not support l i n k

type : " << link_layer_header_type ;
247 e x i t (0) ;
248 }
249 i f (dev == NULL)
250 { p r i n t f ("%s \n" , e r rbu f) ; e x i t (1) ; }
251

252 i f (de sc r == NULL) {
253 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << " pcap_create was f a i l e d

with e r r o r : " << er rbu f ;
254 e x i t (0) ;
255 }
256 handler = pcap_create (" enp0s25 " , e r rbu f) ;
257 // Se t t i ng up 1MB bu f f e r
258 s e t_buf f e r_s i z e_res = pcap_set_buf fer_size (handler ,

pcap_buffer_size_mbytes ∗ 1024 ∗ 1024) ;
259 i f (s e t_buf f e r_s i z e_res != 0) {
260 i f (s e t_buf f e r_s i z e_res == PCAP_ERROR_ACTIVATED) {
261 l o gg e r << log4cpp : : P r i o r i t y : :ERROR
262 << "Can ’ t s e t bu f f e r s i z e because pcap a l ready

ac t i va t ed \n" ;
263 e x i t (1) ;
264 } e l s e {
265 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << "Can ’ t s e t bu f f e r

s i z e due to e r r o r : " << set_buf f e r_s i z e_res ;
266 e x i t (1) ;
267 }
268 }

77

269

270 i f (pcap_set_promisc (handler , promisc) != 0) {
271 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << "Can ’ t a c t i v a t e promisc

mode f o r i n t e r f a c e : " << dev ;
272 e x i t (1) ;
273 }
274 pcap_setd i r e c t i on (handler , PCAP_D_IN) ;
275

276 i f (pcap_act ivate (handler) != 0) {
277 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << " Cal l pcap_act ivate was

f a i l e d : " << pcap_geterr (desc r) ;
278 e x i t (1) ;
279 }
280

281 // man pcap−l i nk type
282 l ink_layer_header_type = pcap_datal ink (handler) ;
283

284 i f (l ink_layer_header_type == DLT_EN10MB) {
285 DATA_SHIFT_VALUE = 14 ;
286 } e l s e i f (l ink_layer_header_type == DLT_LINUX_SLL) {
287 DATA_SHIFT_VALUE = 16 ;
288 } e l s e {
289 l o gg e r << log4cpp : : P r i o r i t y : : INFO << "We did not support l i n k

type : " << link_layer_header_type ;
290 e x i t (0) ;
291 }
292 i f (handler == NULL) {
293 l o gg e r << log4cpp : : P r i o r i t y : :ERROR << " pcap_create was f a i l e d

with e r r o r : " << er rbu f ;
294 e x i t (0) ;
295 }
296 handler = pcap_open_live (" enp0s25 " , pkt_sizes ,1 , −1 , e r rbu f) ;
297

298 pcap_loop (descr , −1, (pcap_handler) parse_packet , NULL) ;
299 }
300

301 std : : s t r i n g get_pcap_stats () {
302 std : : s t r i ng s t r eam output_buffer ;
303

304 s t r u c t pcap_stat current_pcap_stats ;
305 i f (pcap_stats (descr , ¤t_pcap_stats) == 0) {
306 output_buffer << "PCAP s t a t i s t i c s "
307 << "\n"
308 << " Received packets : " << current_pcap_stats .

ps_recv << " \n"
309 << "Dropped packets : " << current_pcap_stats .

ps_drop << " ("
310 << in t ((double) current_pcap_stats . ps_drop /

current_pcap_stats . ps_recv ∗ 100) << "%)"
311 << "\n"
312 << "Dropped by d r i v e r or i n t e r f a c e : " <<

current_pcap_stats . ps_i fdrop << " \n" ;

78 C. MODIFIED PCAP BASED PACKET CAPTURING AND FORWARDING

313 }
314

315 r e turn output_buffer . s t r () ;
316 }

Listing C.1: c script for pcap based fastnetmon packet capture engine

1 \ l a b e l { outgoing }
2 /∗ ∗∗∗
3 ∗ f i l e : outgoing . c
4 ∗ date : 2018−Feb−14 12 : 14 : 19 AM
5 ∗ Author : Mekl it E l f i y o s
6 ∗ Last Modif ied :2018−Feb−14 12 : 14 : 19 AM
7 ∗
8 ∗ Desc r ip t i on : captures from one i n t e r f a c e and sends to another

i n t e r f a c e
9 ∗∗ ∗/

10

11 #inc lude <pcap . h>
12 #inc lude <s td i o . h>
13 #inc lude <s t d l i b . h>
14 #inc lude <errno . h>
15 #inc lude <pthread . h>
16

17 #inc lude <sys / socket . h>
18 #inc lude <ne t i n e t / in . h>
19 #inc lude <arpa/ i n e t . h>
20 #inc lude <ne t i n e t / i f_e the r . h>
21 i n t pkt_s izes=(10∗ 1024 ∗ 1024) ;
22 /∗ Ethernet header ∗/
23 s t r u c t s n i f f_e th e rn e t {
24 u_char ether_dhost [ETHER_ADDR_LEN] ; /∗ Des t ina t i on host address ∗/
25 u_char ether_shost [ETHER_ADDR_LEN] ; /∗ Source host address ∗/
26 u_short ether_type ; /∗ IP? ARP? RARP? etc ∗/
27 } ;
28

29 /∗ IP header ∗/
30 s t r u c t s n i f f_ i p {
31 u_char ip_vhl ; /∗ ve r s i on << 4 | header

l ength >> 2 ∗/
32 u_char ip_tos ; /∗ type o f s e r v i c e ∗/
33 u_short ip_len ; /∗ t o t a l l ength ∗/
34 u_short ip_id ; /∗ i d e n t i f i c a t i o n ∗/
35 u_short ip_o f f ; /∗ fragment o f f s e t f i e l d ∗/
36 #de f i n e IP_RF 0x8000 /∗ r e s e rved fragment f l a g ∗/
37 #de f i n e IP_DF 0x4000 /∗ dont fragment f l a g ∗/
38 #de f i n e IP_MF 0x2000 /∗ more fragments f l a g ∗/
39 #de f i n e IP_OFFMASK 0 x 1 f f f /∗ mask f o r fragmenting b i t s

∗/
40 u_char ip_t t l ; /∗ time to l i v e ∗/
41 u_char ip_p ; /∗ p ro to co l ∗/
42 u_short ip_sum ; /∗ checksum ∗/

79

43 s t r u c t in_addr ip_src , ip_dst ; /∗ source and dest address ∗/
44 }∗ ip=NULL;
45 i n t i ;
46 char ∗dev ;
47 char e r rbu f [PCAP_ERRBUF_SIZE] ;
48

49 const u_char ∗ packet ;
50 s t r u c t pcap_pkthdr hdr ; /∗ pcap . h ∗/
51 s t r u c t ether_header ∗ eptr ; /∗ net / e the rne t . h ∗/
52 const s t r u c t s n i f f_e th e rn e t ∗ e the rne t ; /∗ The e the rne t header ∗/
53 pcap_t∗ handler_send=NULL;
54 pcap_t∗ handler=NULL;
55 /∗ ca l l ba ck func t i on that i s passed to pcap_loop (. .) and c a l l e d each

time
56 ∗ a packet i s r e c i e v ed
57 ∗/
58 unsigned long long user_mac_in_int (const s t r u c t s n i f f_e th e rn e t ∗

ethernad)
59 {
60 unsigned long long user_mac=0,tmp=0;
61

62 tmp =ethernad−>ether_shost [0] ;
63 user_mac=tmp ;
64 tmp =ethernad−>ether_shost [1] ;
65 user_mac<<=8;
66 user_mac+=tmp ;
67 tmp =ethernad−>ether_shost [2] ;
68 user_mac<<=8;
69 user_mac+=tmp ;
70 tmp =ethernad−>ether_shost [3] ;
71 user_mac<<=8;
72 user_mac+=tmp ;
73 tmp =ethernad−>ether_shost [4] ;
74 user_mac<<=8;
75 user_mac+=tmp ;
76 tmp =ethernad−>ether_shost [5] ;
77 user_mac<<=8;
78 user_mac+=tmp ;
79 r e turn user_mac ;
80 }
81 //==
82 void my_callback (u_char ∗ u s e l e s s , const s t r u c t pcap_pkthdr∗ pkthdr ,

const u_char∗
83 packet)
84 {
85 dev = " eth1 " ; //pcap_lookupdev (e r rbu f) ;
86 i f (handler_send== NULL)
87 {
88 handler_send = pcap_open_live (dev , pkt_sizes ,1 , −1 , e r rbu f) ;
89 i f (handler_send == NULL)
90 {
91 p r i n t f (" pcap_open_live () : %s \n" , e r rbu f) ; e x i t (1) ; }

80 C. MODIFIED PCAP BASED PACKET CAPTURING AND FORWARDING

92 }
93 i f (pcap_sendpacket (handler_send , packet , pkthdr−>caplen) == 0) {
94

95 }
96 }
97

98 i n t main (i n t argc , char ∗∗ argv)
99 {

100 dev = " eth1 " ;
101 i f (dev == NULL)
102 { p r i n t f ("%s \n" , e r rbu f) ; e x i t (1) ; }
103 /∗ open dev i ce f o r read ing ∗/
104

105 handler = pcap_open_live (dev , pkt_sizes ,1 , −1 , e r rbu f) ;
106 pcap_setd i r e c t i on (handler , PCAP_D_IN) ;
107 i f (handler == NULL)
108 {
109 p r i n t f (" pcap_open_live () : %s \n" , e r rbu f) ; e x i t (1) ;
110 }
111

112 pcap_loop (handler ,−1 ,my_callback ,NULL) ;
113 r e turn 0 ;
114 }

Listing C.2: c script for outgoing traffic

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem statements
	Objectives
	Contributions
	The thesis Outline

	Background
	 ddos
	Types of ddos attacks
	Volumetric/ Volume based attacks
	Protocol attacks

	ddos Detection methods
	Signature detection
	Anomaly detection

	ddos defense mechanism
	Victim-end defense mechanism
	Source-end defense mechanism
	Intermediate or Network-based ddos Defense Mechanisms

	Traffic processing in Commodity Hardware
	Life cycle of packet in Commodity hardware
	Netmap
	PF_RING

	Related works
	Summary

	Methodology
	Implementation and Tools
	Choice of ddos detection software
	FastNetMon
	Fastnetmon pce
	FastNetMon Detection Method
	FastNetMon report

	Implemented feature
	Tools for packet generation
	iPerf3
	pkt-gen

	ddos attack tools
	hping3
	loic

	Experimental testbed setup
	Hardware
	FastNetMon in ddos detection hardware

	Evaluation Methodology
	Network topology
	Evaluation metrics
	Maximum throughput
	Packet delay
	Resource usage
	Detection accuracy

	Scenarios
	Under normal operation
	Under udp flood attack
	Under TCP SYN flood attack

	Measurement setups and tools
	Starting ddos detection
	Starting ddos attack
	Generating normal traffic
	Scrips developed for measurements and validation

	Results
	Traffic input
	Maximum throughput
	Packet Delay
	Resource usage
	Detection accuracy

	Discussion
	Maximum throughput
	Packet delay
	Resource usage
	Detection Accuracy
	Summary

	Conclusion
	Future Work

	References
	Script for traffic monitoring
	Modified source code for fastnetmon
	Modified pcap based packet capturing and forwarding

