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Abstract

The Semantic Web is an emerging framework for data reuse and sharing. By
giving data clear semantics it allows for machine processing of this information.
The Semantic Web technologies range from simple meta data to domain models
using the Web Ontology Language (OWL). Large parts of the semantics of OWL
stems from the Knowledge Representation field of Description Logics.

In Case-Based Reasoning (CBR) specific knowledge in the form of cases is in
problem-solving. The Creek system is a Knowledge-Intensive approach to CBR
that combines specific knowledge with general domain knowledge.

Part of this work is to define an OWL vocabulary for Creek. This vocabu-
lary will contain concepts and relations used to describe case-bases and domain
models. Using this vocabulary, a Creek knowledge model can be described in
OWL and shared with others on the Semantic Web. We also examines how
domain ontologies can be reused and imported into a Creek knowledge model.

We propose a design for Creek to operate in the context of the Semantic
Web and its distributed nature of knowledge representation. Part of the design
will be tested by implementation.



Problem description The Semantic Web is an emerging framework for data
reuse and sharing. By giving data clear semantics it allows for machine
processing of this information. The Semantic Web technologies range from
simple meta data to domain models using the Web Ontology Language
(OWL).

Case-Based Reasoning (CBR) uses specific knowledge in the form of cases
to solve problems. The Creek system is a Knowledge-Intensive approach
to CBR that combines specific knowledge with general domain knowledge.

This thesis project consists of three parts

1. Study knowledge representation related to the Semantic Web in gen-
eral and OWL in particular

2. Define an OWL vocabulary for Creek.

3. Exemplify how this vocabulary can export and import to/from other
ontologies.

The cand. scient project combines a theoretical study of Web ontologies
with a design and implementation of an OWL ontology adapted to the
Creek system.



Quotes The quotes at the beginning of each chapter is from the novel Neuro-
mancer (Gibson, 1984). Gibson was one of the pioneers of the cyberpunk
genre, and he is often credited to have coined terms like ’cyberspace’ and
’the matrix’. Much of the action in this book centers around themes such
as artificial intelligence and cyberspace. When the protagonist of the book
is called Case, it all fits the theme of this report — Case-Based Reasoning
and the Semantic Web.
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Chapter 1

Introduction

’Cyberspace. A consensual hallucination experienced daily by bil-
lions of legitimate operators, in every nation, by children being taught
mathematical concepts... A graphic representation of data abstracted
from the banks of every computer in the human system. Unthinkable
complexity. Lines of light ranged in the nonspace the mind, clusters
and constellations of data. Like city lights, receding...’ William Gib-
son, Neuromancer

1.1 Goal

The goal of the research presented in this master thesis is to explore how to share
the knowledge of a knowledge based system, and how to use reuse knowledge
when building domain models. This will be done within the framework of Creek
and the Semantic Web.

The goal will be approached by:

• studying the Creek architecture and knowledge representation

• studying knowledge representation in the Semantic Web

• extending the Creek architecture by

– define an OWL vocabulary for Creek

– represent Creek knowledge models in OWL

– import OWL ontologies into a Creek knowledge model

• implementing the OWL/Semantic Web functionality for jCreek

13



1.2 Background and Motivation

Case-Based Reasoning (CBR) is a machine learning technique that relies on
specific knowledge from previously solved cases to solve problems. Creek is a
CBR architecture developed at the Department of Computer and Information
Science at NTNU1. Creek uses general domain knowledge in addition to a case
base for knowledge-intensive problem solving and learning (Aamodt, 2004). A
general domain model is built of, among other things, concepts, classes, in-
stances, properties and relations.

The Semantic Web is a World Wide Web Consortium activity concerning struc-
turing information on the Internet. Part of it will be simple metadata describing
resources on the Web, but more complex domain ontologies will also be in the
Semantic Web. Domain ontologies will consist of classes, subclass, relations and
so on.

As we see the Semantic Web’s domain ontologies and the CBR domain models
have much in common with regard to their representations. A Creek system will
have knowledge, both specific and general, about a specific domain. It might
be interesting to share this knowledge with others. The Semantic Web may be
the medium for this. Other CBR systems might have use for the case-base as a
whole or some specific case. The general domain knowledge may have broader
interest.

The sharing of knowledge may be the other way around. When building a
general domain model for a Creek system, there may already exist domain
ontologies on the Semantic Web appropriate for the problem area at hand.

1.3 Methods Used

This report will begin with an analytical approach discussing Case-Based Rea-
soning and the Semantic Web. The background and Knowledge Representation
aspects of both of these will be examined. Other related research will be pre-
sented. A design for sharing and reuse of knowledge of a Creek system using the
Semantic Web will be presented. This design will be tested by implementation.

A Creek OWL Vocabulary and a namespace will be defined in the work pre-
sented. The publication and online availability of these should also be considered
part of the work in this thesis. These resources can be retrieved at the location
http://creek.idi.ntnu.no/owl/. A textual description of the Creek OWL
Vocabulary is published, akin to what is presented here in section 5.2.

1Norwegian University of Science and Technology, http://ntnu.no/
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1.4 Structure of Thesis

This thesis starts by going into the details of the background and motivation
given above. Chapter 2 gives a short introduction of Case-Based Reasoning and
the Creek system. A more detailed analysis of the Semantic Web follows in
chapter 3. Three related research projects covering Case-Based Reasoning and
the Semantic Web are described in chapter 4.

The approach and result will be described in chapter 5. A design for knowledge
sharing and reuse for Creek is proposed in section 5.1. Section 5.2 presents
the Creek OWL vocabulary, and the following sections goes into details of the
design. The implementation done is described in chapter 6.

Finally, in chapter 7 we discuss the results and problems that might arise from
our design. In the appendix A you find the Creek OWL Vocabulary and an
example OWL domain model. Appendix B contains the API summaries of the
implementation done.
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Chapter 2

Creek

The density of information overwhelmed the fabric of the matrix,
triggering hypnagogic images. Faint kaleidoscopic angles centered in
to a sliver-black focal point. Case watched childhood symbols of evil
and bad luck tumble out along translucent planes. William Gib-
son, Neuromancer

This chapter gives a short introduction of Case-Based Reasoning and an overview
of the Creek architecture. The focus is on Knowledge Representation in Creek
and other aspect relevant to the work described in this thesis. Some familiarity
with Creek and Case-Based Reasoning is assumed. For more elaborate back-
ground of Case-Based Reasoning and Creek see (Aamodt, 1991), (Aamodt and
Plaza, 1994), (Aamodt, 1994), (Sørmo, 2000), (Tomassen, 2002) and (Aamodt,
2004).

2.1 Case-Based Reasoning

Case-Based Reasoning (CBR) is an approach to problem solving and machine
learning that uses previously solved problems as the base for the reasoning and
learning. A case is a problem situation described by a set of relevant findings.
Knowledge is retained in past cases that also have attached the solution for
each particular problem. New problems, or cases, are matched to the case-base
to find a suitable solution. The typical four-step CBR cycle can be seen in
figure 2.1.

When given a new problem, a relevant case is retrieved from the case-base. To
be reused, the solution from this case might need some adaption for the new
problem at hand. This possible solution is then tested and revised. Finally the
new case and its solution is retained in the case-base for use in future problem
solving.

Creek is a theoretical CBR framework and “a knowledge intensive approach to

17



Figure 2.1: The CBR cycle. From (Aamodt and Plaza, 1994)

problem solving and learning” (Aamodt, 1991). Knowledge intensive here means
that in addition to cases, denoted specific knowledge, Creek uses general domain
knowledge in the reasoning and problem solving.

2.2 Knowledge Representation in Creek

Creek uses frames and semantic networks for knowledge representation. The
general and the specific knowledge is tightly bound together in Creek. Cases
are described in terms of findings that have relations to concepts in the general
knowledge.

Figure 2.2 shows the structure and the interconnectivity of the knowledge base
in Creek. The top-level generic concepts are special concepts and relations that
Creek uses internally in its reasoning, like the concept of Case itself and the
relations hasFinding or hasSubclass. This is known as the ISOPOD model
(Aamodt, 1991). The rest of the knowledge model are subclasses or instances
of entities here.

The general domain concepts part of the knowledge base contains concepts about
the domain at hand and, among other, causal, structural and functional relations
between these concepts. This part is also called the general knowledge.

The cases makes up the specific knowledge. The findings are, as mentioned
above, relations to the general knowledge. The solution of a case will typically
be a concept in the general knowledge, but it might also be another case.

18



Figure 2.2: Integrating cases and general knowledge. From (Aamodt, 2004).

2.3 Reasoning in Creek

Creek is well suited to represent knowledge within open and weak theory do-
mains, domains in which knowledge is uncertain and incomplete. The main in-
ference type in Creek is abduction, “inference to the best explanation” (Aamodt,
1994). The reasoning in Creek follows a tree-step ACTIVATE-EXPLAIN-FOCUS
process. Relevant parts of the semantic network are activated, a set of possible
hypotheses with explanations are generated and the best solution is focused or
selected. This is done in each of the retrieve, reuse and retain phases in figure 2.1

Inheritance is another reasoning mechanism used in Creek, and default reason-
ing is supported. With default reasoning properties that are inherited may
be overridden at the local level. Another inheritance mechanism used in the
abductive reasoning is plausible inheritance (Sørmo, 2000). This allows rela-
tions to be inherited or transferred over other than the usual subclassOf and
instanceOf relations. Relations can be given weights to quantify its importance
and strength. By adding up and comparing weights for relations that transfers
other relations, Creek concludes whether it is plausible that some given relation
should or should not be inherited.

Default reasoning, plausible inheritance and abduction are non-monotonic rea-
soning methods. In non-monotonic reasoning it is allowed to add new infor-
mation such that previously drawn conclusions may be rendered invalid. By
using default reasoning you may draw conclusions on the lack of contradicting
evidence, that is as long as there is no local overriding of an inherited property.
This conclusion may be changed if you later add new information by overriding
this property, hence the non-monotonicity.

Overall, the integration of general domain knowledge and cases and the ab-

19



ductive reasoning makes Creek a flexible architecture for learning and problem
solving.

The Creek architecture is implemented in Java in the jCreek1 package.

1jCreek, see http://creek.idi.ntnu.no/
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Chapter 3

The Semantic Web

He’d operated on an almost permanent adrenaline high, a byproduct
of youth and proficiency, jacket into a custom cyberspace deck that
projected his disembodied consciousness into the consensual halluci-
nation that was the matrix. William Gibson, Neuromancer

In this chapter we will go into detail about the Semantic Web and the technolo-
gies underlying it. The focus will be on the aspects being relevant to knowledge
representation.

3.1 Background

The Semantic Web 1 is a World Wide Web consortium (W3C) 2 activity. It was
initiated by Tim Berners-Lee, the man behind the WWW, HTTP and HTML
technologies (Berners-Lee, 1998b).

While there is a seemingly endless amount of information on the Web today, it
is often hidden in HTML pages. While good for presenting data for humans, the
data is not structured for machine processing in a meaningful way. This kind
of information presentation has efficiency and integrity limitations (Berners-Lee
et al., 1999) with regard to computer processing.

By giving meaning — that is semantics — to content in documents, the Semantic
Web aims to create an universal framework for information exchange.

The Semantic Web is an extension of the current Web in which
information is given well-defined meaning, enabling computers and
people to work in better cooperation. (Berners-Lee and Miller, 2002)

1Semantic Web, http://www.w3.org/2001/sw/
2W3C, http://w3.org
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Figure 3.1: A RDF Statement. From (Klyne and Carroll, 2004)

Adding structure to meaningful content allows for automatic processing. In
this environment any kind of resource in the Semantic Web, like web pages,
programs or hardware devices, may publish its own data or use data published
by others to its own needs.

[ It ] will provide an infrastructure that enables not just web pages,
but databases, services, programs, sensors, personal devices, and
even household appliances to both consume and produce data on the
web. (Hendler et al., 2002)

The spectre of information complexity in the Semantic Web spans from simple
metadata for web pages to complex ontologies. The rest of this chapter will
focus on parts of the Semantic Web that are relevant to building taxonomies,
ontologies and domain models.

The Semantic Web is realized through a set of increasingly complex standard
languages, namely XML, XML Schema, RDF, RDF-S and OWL. XML is a well
known, general purpose markup language. It provides a syntax for structured
documents, while XML Schema puts restrictions on the structure. RDF, RDF-S
and OWL are discussed in more detail in the following sections.

3.2 Resource Description Framework

In the Semantic Web data and information are linked and defined. This is
done by structuring data in descriptive statements. The language for doing this
is RDF, Resource Description Framework (Klyne and Carroll, 2004) (Beckett,
2004). RDF grew out of a community need and design efforts for a framework
for representing metadata on the web (Miller, 1998).

As its name implies, RDF describes resources. In the context of RDF and the
Semantic Web, a resource is defined as anything that can be identified by an
Uniform Resource Identifier (URI) (Masinter et al., 2005) (W3C, 2001). An
URI is simply a string, and does not necessarily tell you how to access the
actual resource or whether it is accessible online at all. Resources that can be
located on the web, physical entities that exist in the real world, things that
are entirely abstract — they can all be identified by URIs (Jacobs and Walsh,
2004). The work presented in this report will describe concepts and relations in
domain models as RDF resources.

A simple RDF statement is a subject-predicate-object triple as seen in fig-
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Figure 3.2: An example RDF graph

ure 3.1. A predicate, also called a property, describes a directed binary relation
between a subject and an object. The subject and the predicate are resources,
that is they are identified by an URI. The object is either a resource or a literal.
Literals have atomic values like a string or a number. A set of RDF triples
define a directed graph in which the nodes are the subjects and objects of the
triples. There may be blank nodes, that is anonymous nodes without an URI.
Figure 3.2 shows an example RDF graph, and listing 3.1 shows the equivalent
RDF triples using N-Triples notation (Beckett and Barstow, 2001).

3.2.1 XML vs RDF

RDF itself is an abstract data model. There exists several notations for seri-
alizing a RDF model, the N-Triples notation is one of them. This report will
use the RDF/XML notation (Beckett, 2004), which is the most widely used and
the official notation endorsed by the W3C. Listing 3.2 shows the RDF/XML
notation of the graph in figure 3.2.
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Listing 3.1: N-Triples notation of RDF graph in figure 3.2
<http:// creek.idi.ntnu.no/owl/example/car -model#Engine >

<http: // creek.idi.ntnu.no/owl/example/car -model#partOf >

<http: // creek.idi.ntnu.no/owl/example/car -model#Car > .

<http: // creek.idi.ntnu.no/owl/example/car -model#Engine >

<http: // creek.idi.ntnu.no/owl/example/car -model#hasEngineStatus >

<http: // creek.idi.ntnu.no/owl/example/car -model#EngineRunning > .

<http: // creek.idi.ntnu.no/owl/example/car -model#Car >

<http: // creek.idi.ntnu.no/owl/example/car -model#hasColor >

"some color" .

Listing 3.2: RDF/XML notation of RDF graph in figure 3.2
<rdf:RDF

xmlns = "http: //creek.idi.ntnu.no/owl/example/car -model#"

xml:base = "http:// creek.idi.ntnu.no/owl/example/car -model"

xmlns:rdf = "http: //www.w3.org /1999/02/22 -rdf -syntax -ns#">

<rdf:Description rdf:ID="Engine">

<partOf rdf:resource="#Car"/>

<hasEngineStatus rdf:resource="#EngineRunning"/>

</rdf:Description >

<rdf:Description rdf:ID="Car">

<hasColor >some color </hasColor >

</rdf:Description >

<rdf:Description rdf:ID="EngineRunning"/>

</rdf:RDF >
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There has been some discussion about how well suited the XML notation is.
Some of the objections are that it is verbose, hard to write manually and that
people focus on syntax rather than on the underlying data model and so on
(Lassila, 2005). By comparing the N-triples notation in listings 3.1 with the
XML notation in listing 3.2, you find that the actual RDF triples get somewhat
lost in the XML syntax.

Some of this arise because a XML document defines a tree structure, while a
RDF document defines a graph. Thus in XML the order of the elements is
important and a XML tree can only be represented one way. In RDF it is
not so. Order is not important and it is possible to have different RDF/XML
representations of the same graph. So why bother with RDF, why not just use
XML? No doubt the structure in figure 3.2 could be represented using XML.
However, there is a lack of clear semantics in XML (Heflin and Hendler, 2000).
The semantics is bound to the structure (van Harmelen and Fensel, 1999) of
the XML document. While it is easy for humans to interpret it, machines need
knowledge about this structure in order to understand the semantics. This is
what RDF has to offer – clear semantics (Hayes, 2004) easily interpreted by
machines.

3.2.2 RDF Documents, Namespaces and Vocabularies

RDF resources often have URIs in the form of some-URI#local-name. This
kind of URI is called an URI reference, a URIref (Manola and Miller, 2004).
Resources having the same some-URI part are said to belong to the namespace
some-URI#. A XML namespace is by definition a collection of names, identified
by an URIref (Bray et al., 1999). In the RDF/XML notation a namespace
http://www.some-URI.org/example# is often assigned a prefix ex: such that
ex:term is used as a shorthand for, and should be interpreted as, the full URIref
http://www.some-URI.org/example#term.

The rdf:ID attribute identifies new resources, and only the local-name part is
given. The resource’s full URIref is obtained by adding the namespace or the
URIref of the containing RDF document.

However, RDF and the Semantic Web is not only about identifying new re-
sources. It is possible to make statements about other resources, about re-
sources in arbitrary namespaces, using the rdf:about attribute. This makes
the Semantic Web decentralized. This aspect will be more thoroughly discussed
in section 3.4.

A RDF/XML document is a collection of RDF statements in RDF/XML no-
tation, at some given location, organized in a XML file with one rdf:RDF root
element and most often having its own namespace.

A set of URIrefs intended for some purpose or sharing some context is known
as a vocabulary. A vocabulary will normally be defined in a namespace, and is
often identified by its namespace URIref or the namespace prefix. Note that an
URIref is itself an URI, as is a namespace name.
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To exemplify; the RDF vocabulary is the set of terms

http://www.w3.org/1999/02/22-rdf-syntax-ns#RDF,
http://www.w3.org/1999/02/22-rdf-syntax-ns#Description,
http://www.w3.org/1999/02/22-rdf-syntax-ns#ID,
http://www.w3.org/1999/02/22-rdf-syntax-ns#about,
http://www.w3.org/1999/02/22-rdf-syntax-ns#resource,
and so on,

the namespace is http://www.w3.org/1999/02/22-rdf-syntax-ns#, by con-
vention assigned the prefix rdf: such that it is identified as the rdf:-vocabulary.
The RFD vocabulary is defined in (Beckett, 2004), which is a W3C Recommen-
dation document, not a RDF/XML document.

3.2.3 RDF Schema

RDF Schema (RDF-S) (Brickley and R.V.Guha, 2004) is an extension to RDF
used to create and specify application or user specific vocabularies. It is itself a
vocabulary defined in the http://www.w3.org/2000/01/rdf-schema# names-
pace, assigned the rdfs: prefix.

RDF-S provides a type system (Manola and Miller, 2004) to RDF, making it
possible to structure resources and properties in class hierarchies. A class is a
resource describing a type or a category of things. Being a resource, a class has
an URIref identifying it. A class has a class extension associated with it, which
is the set of instances of the class. The resource rdfs:Class is the superclass
of all RDF classes, and new classes are instances, or class members, of this
class. RDF-S also introduces the class rdfs:Resource, which is the class of
everything. All resources are instances of this class. A class may be an instance
of itself, for example is rdfs:Class the class of RDF-S classes and is defined as
an instance of itself:

<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Class"/>

A resource may be an instance of more than one class. Class membership is ex-
pressed with the rdf:type property, so the RDF triple <myClass> <rdf:type>
<rdfs:Class>. defines a new class myClass. The RDF/XML syntax allows for
an abbreviation for such instantiation, such that

<rdfs:Class rdf:ID="myClass"/>

is equal to

<rdf:Description rdf:ID="myClass">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>
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and further makes it possible to declare a resource myInstance an instance of
myClass writing

<myClass rdf:ID="myInstance"/>

Classes may be organized taxonomically using the rdfs:subClassOf property.
The meaning, or the semantics, of a class B being a subclass of class A, is
that all instances of class B will also be instances of class A. rdfs:subClassOf
is transitive, so given class A and B above and that C is a subclass of B, all
instances of C will also be instances of B and A.

RDF-S also introduces constructs to organize and describe properties. The
rdf:Property resource is the class of all RDF properties, and properties are
instances of this class. Note that rdf:Property is not a super-property of
all properties. rdf:Property is itself an instance of rdfs:Class. Properties
may be organized hierarchically with the rdfs:subPropertyOf property. The
semantics of rdfs:subPropertyOf is that given that a property Q is a sub-
property of a property P, all resources related by Q are also related by P.

The use of a given property may be restricted using the rdfs:range and the
rdfs:domain properties. rdfs:domain is used to state that a property may be
applied to only instances of a certain class, that the subject of a RDF state-
ment in which the property is used is an instance of a certain class. Likewise,
rdfs:range restricts the values, or the object of a RDF statement, to an in-
stance of some class.

For example, declaring a property myProperty with a domain and range

<rdf:Property rdf:ID="myProperty">
<rdfs:range rdf:resource="#A"/>
<rdfs:domain rdf:resource="#B"/>

</rdf:Property>

allows for consistent use on some instances mySubject and myObject such as

<A rdf:ID="myObject"/>
<rdf:Description rdf:ID="mySubject">
<myProperty rdf:resource="#A"/>

</rdf:Description>

given that A and B are rdfs:Class’es. This also allows to infer that mySubject
is an instance of B.

A property may have more than one class in its range and/or domain. In this
case, the resource being the subject/object must be an instance of all the stated
classes.

As rdfs:range and rdfs:domain are properties, that is they are instances of
the rdf:Property class, they may be applied to themselves. The range for both
of them is the class rdfs:Class, and their domain is the class rdf:Property.
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In RDF-S properties are independent of class definitions and thus will generally
have global scope. The use of a given property may be restricted as described
above, but such restrictions describe how properties are applied to given classes
and what might be inferred from their usage. They do not put any other
limitations on the use of these classes.

Even if RDF-S is an extension of RDF, all legal RDF-S documents are also
legal RDF documents. By this is meant that an RDF-S document define a RDF
graph, and even if some program have no understanding of the RDF-S concepts
such as rdfs:subClassOf, rdf:Property, rdfs:range and so on, it can still
see a RDF-S document as a set of RDF statements.

3.3 Web Ontology Language

What is an ontology? “An ontology is a specification of a conceptualization” (Gru-
ber, 1993). In other words, an ontology is about describing and defining meaning
of terms and concepts and interrelationships between them, in some specific do-
main of interest. (McGuinness, 2002) defines an ontology at least to have these
properties:

• Finite controlled (extensible) vocabulary

• Unambiguous interpretation of classes and term relationships

• Strict hierarchical subclass relationships between classes

As we see, RDF-S allows us to make simple ontologies. A more expressive
and powerful language for defining ontologies is the Web Ontology Language,
another W3C Recommendation (McGuinness et al., 2004) (McGuinness and
van Harmelen, 2004) (Dean and Schreiber, 2004).

The Web Ontology Language is known under the acronym OWL. Reasons for
choosing this rather than the more ’acronymically correct’ WOL might be the
easier pronunciation of ’owl’ and the wisdom often ascribed to owls. It is also
said to be a tribute (wikipedia.org, OWL) to a Knowledge Representation (KR)
project at the MIT in the 70’s by Bill Martin called “One World Language”,
also known as OWL.

OWL was not the first ontology language developed for use on the web. It is
built upon work on other web-oriented ontology languages such as SHOE (Heflin
et al., 1999), DAML-ONT (Ogbuji and Ouellet, 2002), OIL (Horrocks, 2000)
and DAML+OIL (van Harmelen et al., 2001). SHOE introduced the idea of us-
ing URIs for names and terms in ontologies. DAML-ONT was part of a DARPA
program working on Semantic Web ontology languages, and later merged with
OIL, an European initiative, into DAML+OIL. DAML+OIL is the direct pre-
decessor of OWL, and was the starting point when the development of the OWL
language began.
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3.3.1 Description Logics

Much of the formal basis and semantics for OWL come from the field of Descrip-
tion Logics (DL). This section will give a short introduction to and background
of DL. See (Nardi and Brachman, 2003), (Donini et al., 1996) and (Horrocks
et al., 2003) for more details about DL, its logical foundations and its relation
with OWL.

The motivation behind DL was the lack of clear semantics in the frames and
semantic network (SNF) approaches to Knowledge Representation (KR). For
example, most of SNF systems have some kind of is-a relation, but it can
sometimes be unclear if this means something is an instance of something, if it
is a subclass, if it is a prototype and so on. DL combines the naturalness of
SNF with the clear semantics of logical KR systems. One of the ancestors of
DL is the Kl-One (Brachman and Schmolze, 1985) system, which started to
move the semantic networks approach towards a more logical foundation.

DL is a subset of first order predicate calculus (FOPC). An important point was
to have the clear formal semantics of FOPC, but still maintain computational
tractability. With respect to FOPC, DL sacrifices some of the expressive power
to effectiveness. DL also has more primitives than FOPC. DL is one of the most
active fields of research within KR, and is one of the best understood formalisms
in terms of complexity, decidability and expressiveness.

In DL knowledge is divided in two distinct “domains”, the TBox and ABox. The
TBox, the terminological box, contains taxonomical hierarchies and definitions
of concepts. In DL terminology, a concept corresponds to a class, and a role
corresponds to a property. The knowledge in the TBox is intensional, it refers to
the meaning of the underlying concept. The ABox, the assertional box, contains
facts about individuals and their relations to concepts in the TBox. DL use the
term individual for an instance. The knowledge in the ABox is extensional, it
points to things in the real world.

Description Logics has the ability to express the following:

Conjunctions, disjunctions and negations. New concepts can be defined
as conjunctions, disjunctions and/or negations of other concepts. For
example, if given the concepts of Car and Red, one might express the
concept of ’cars that are not red’ by

Car u ¬Red

Or given the concepts of EngineNotRunning and EngineNotStarting
the expression

EngineNotRunning t EngineNotStarting

refers to the concept of the problem of an ’engine not running or not
starting’.

Quantified restrictions. Roles might be restricted with existential quantifi-
cations and value restrictions. The concepts of ’individuals having the
color red’ can be described by
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∃hasColor.Red

and the concept of ’cars all of whose passengers are male’ by

Car u ∀passengers.Male

Number restrictions. Cardinality for roles is set using number restrictions.
All cars having three or more doors and four or less seats, can be expressed
with

Car u (≥ 3hasDoors) u (≤ 4seats)

The main inference method in DL is subsumption. A concept D subsumes
another concept C if D is considered more general than C, written C v D. In
other words, if C is a subset of D. A classification task for a given concept can be
solved by finding the most specific concepts subsuming it, and the most general
concepts subsumed by it, thus finding the right place in the hierarchy. Another
inference method is satisfiability, which is to test if a given expression do not
necessarily denote the empty set. Instance checking is an inference testing if
an individual is an instance of a given class. It is used for instantiation, which
is to find the most specific class for a given individual. In DL being a subset
of FOPC, inference in DL is sound and complete. Thus, inference in DL is
monotonic. The monotonic nature of DL and the the implications for reasoning
in the Semantic Web in general will be discussed in section 3.5.

The meaning of the OWL language and its constructs is formalized through a
model theory based on DL (Patel-Schneider et al., 2004).

3.3.2 OWL Vocabulary

OWL builds on top of and uses constructs from RDF and RDF-S. OWL uses a
RDF syntax, which means an OWL document is also a RDF graph — and is
serialized with the RDF/XML notation. The OWL vocabulary is defined in the
http://www.w3.org/2002/07/owl# namespace, assigned the prefix owl:.

3.3.2.1 Classes and Individuals

A class is a set of individuals, where individual is OWL jargon for instance. The
set of a class’ members is known as the extension of the class. Every individual
is defined to be member of the class owl:Thing. OWL also specify the empty
class owl:Nothing.

A resource is defined as an OWL class by declaring it to have owl:Class as
the value for the property rdf:type. Class hierarchies are expressed using the
RDF-S construct rdfs:subClassOf. Individuals are defined by declaring them
to be member of a class. For example

<owl:Class rdf:ID="Status"/>
<owl:Class rdf:ID="EngineStatus">

<rdfs:subClassOf rdf:resource="#Status"/>
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</owl:Class>
<EngineStatus rdf:ID="EngineRunning"/>

declares a class Status, a subclass EngineStatus and an instance EngineRunning
of the class EngineStatus. The semantics for the subclass relation is the same
as in RDF-S. For the example above, every instance of EngineStatus is also an
instance of Status. Remember that the rdfs:subClassOf relation is transitive.
In OWL, a class is defined intensionally, that is the meaning of the underlying
concept. So two classes may have the same set of members, but still be two
different classes.

Two classes may be defined to have exactly the same members, that their class
extensions are equal, by using the property owl:equivalentClass. Similarly,
two instances may be defined to be identical by the owl:sameAs property. And
opposite, two instances might be asserted to be distinct using the property
owl:differentFrom. OWL does not make a unique names assumption. In
other words, several URIrefs or several OWL individuals can refer to the same
thing. Unless owl:sameAs or owl:differentFrom is specified, OWL does not
make an assumption of either.

OWL allows classes to be described using the set operators union, intersection
and complement using the OWL properties owl:unionOf, owl:intersectionOf
and owl:complementOf. These applies to classes’ extensions, the set of their
members, and can describe new classes as, say, an union of two other classes.
These work as the conjunction, disjunction and negation operators in Descrip-
tion Logics. Other ways to describe a class is by enumerating exactly and only
its members, or by declaring it to be disjoint with other classes.

Further, OWL allows for anonymous classes which contains individuals which
properties match certain restrictions. These restrictions and how they are used
with and apply to properties are described below.

3.3.2.2 Properties

OWL separates between two property classes; owl:DatatypeProperty and
owl:ObjectProperty. New properties are defined as instances of these two
OWL classes. Object properties are relations between instances of classes.
Datatype properties are relations between instances and RDF literals or XML
Schema datatypes (XSD) (Biron and Malhotra, 2004). The XSD datatypes
xsd:integer and xsd:string are required by the OWL specification to be
supported by OWL reasoners.

OWL uses the constructs rdfs:subPropertyOf, rdfs:domain and rdfs:range
from RDF-S to describe and organize properties. These have the same meaning
in OWL as in RDF-S. Properties can further be described to be transitive,
symmetric and functional. A property might be defined as an inverse of another
property. Given

<owl:ObjectProperty rdf:ID="hasEngineStatus">
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<rdfs:range rdf:resource="#EngineStatus"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="engineStatusOf">
<owl:inverseOf rdf:resource="#hasEngineStatus"/>

</owl:ObjectProperty>

if an individual or class X is related to an individual or class Y by hasEngineStatus,
then Y is related to X by engineStatusOf.

Two properties may be declared to be the same using owl:equivalentProperty.

While rdfs:range and rdfs:domain are global in their scope, OWL allows to
restrict properties locally. owl:allValuesFrom can restrict all the values for a
property of instances of some class to be from a given class. owl:someValuesFrom
make a similar restriction that at least one value be from a given class. These
work as the existential quantifier and the value restriction in Description Log-
ics. A property can be required to have as value an instance of a given class by
owl:hasValue. The number restrictions from Description Logics are expressed
by defining a cardinality constraint using owl:cardinality or setting an upper
and/or lower bound using owl:maxCardinality and/or owl:minCardinality.

All the OWL constructs described above might be used to define arbitrary
complex classes. For example, to define the class of all red cars, given the
classes Car, Red and the property hasColor one might write

<owl:Class rdf:ID="RedCars">
<owl:intersectionOf rdf:parsetype="Collection">

<owl:Class rdf:about="#Car">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasColor"/>
<owl:hasValue rdf:resource="#Red"/>
<owl:cardinality> 1 </owl:cardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Note that the part within the owl:Restriction tag defines an anonymous class
which class extension is all individuals having exactly one hasColor property
with the value being exactly Red. The class RedCars is the intersection of this
class and the Car class.

All OWL classes can be described using Description Logics syntax. The defini-
tion of the RedCars class above is the same as RedCars≡Caru(≥1hasColor.Red)
in DL syntax.

Listing 3.3 shows an simple example OWL ontology with some classes, sub-
classes, properties and restrictions.
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Listing 3.3: Example OWL Ontology
<rdf:RDF

xmlns = "http: //creek.idi.ntnu.no/owl/example/car -model.owl#"

xml:base = "http:// creek.idi.ntnu.no/owl/example/car -model.owl"

xmlns:owl = "http: //www.w3.org /2002/07/ owl#"

xmlns:rdf = "http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:rdfs = "http://www.w3.org /2000/01/ rdf -schema#">

<owl:Ontology rdf:about="">

<rdfs:label >Car example domain model </rdfs:label >

</owl:Ontology >

<owl:Class rdf:ID="Car">

<rdfs:label >a car </rdfs:label >

</owl:Class >

<owl:Class rdf:ID="Engine">

<partOf rdf:resource="#Car"/>

<rdfs:subClassOf >

<owl:Restriction >

<owl:onProperty rdf:resource="#hasStatus"/>

<owl:allValuesFrom rdf:resource="#EngineStatus"/>

<owl:Restriction >

<rdfs:subClassOf >

</owl:Class >

<owl:Class rdf:ID="Battery">

<partOf rdf:resource="#Car"/>

<rdfs:subClassOf >

<owl:Restriction >

<owl:onProperty rdf:resource="#hasStatus"/>

<owl:allValuesFrom rdf:resource="#BatteryStatus"/>

<owl:Restriction >

<rdfs:subClassOf >

</owl:Class >

<owl:Class rdf:ID="Status"/>

<owl:Class rdf:ID="EngineStatus">

<rdfs:subClassOf rdf:resource="#Status"/>

</owl:Class >

<EngineStatus rdf:ID="EngineRunning"/>

<EngineStatus rdf:ID="EngineNotRunning">

<owl:differentFrom rdf:resource="#EngineRunning"/>

</EngineStatus >

<owl:Class rdf:ID="BatteryStatus">

<rdfs:subClassOf rdf:resource="#Status"/>

</owl:Class >

<BatteryStatus rdf:ID="BatteryOK"/>

<BatteryStatus rdf:ID="BatteryEmpty">

<owl:differentFrom rdf:resource="#BatteryOK"/>

</BatteryStatus >

<owl:ObjectProperty rdf:ID="partOf"/>

<owl:ObjectProperty rdf:ID="hasStatus">

<rdfs:range rdf:resource="#Status"/>

</owl:ObjectProperty >

</rdf:RDF >
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3.3.2.3 Importing

An OWL ontology may import another ontology using the owl:imports con-
struct. All the content of the importee ontology is considered part of the im-
porter ontology. owl:imports is a transitive statement, meaning that if the
ontology being imported is itself importing a third ontology, this one is also
imported to the first and so on.

3.3.2.4 OWL Variants

OWL comes in three sub-languages; OWL Full, OWL DL and OWL Lite. These
differ in expressiveness and computational tractability.

OWL Full is an extension to and compatible with RDF-S. All RDF constructs
may be used, and in general, all RDF documents will also be OWL
Full documents. In OWL Full, owl:Class is equivalent to rdfs:Class,
owl:Thing is equivalent to rdfs:Resource and owl:ObjectProperty is
equivalent to rdf:Property. OWL Full have maximum expressiveness,
for example might a class be both a collection of instances and an in-
stance itself. However this comes at the cost that there is no guaranties
about computational tractability.

OWL DL is a sub-language of OWL Full. It support all OWL constructs,
but puts constraints of how some of these might be used. For example,
the sets of classes, instances and properties must be disjoint. In OWL
DL, owl:Class is a proper subclass of rdfs:Class. The DL part of the
name of course stems from OWL’s relation to Description Logics. The
constraints in OWL DL are based on the work on Description Logics
so that reasoners, inference engines and other tools made to work with
Description Logics can be utilized. OWL DL has maximum expressiveness
while at the same time the reasoning being computational complete and
decidable.

OWL Lite is a sub-language of OWL DL. It has the same constraints as OWL
DL, but does not support all the language constructs. The objective is
to have a minimal set of useful features with limited expressiveness, but
more easy implementation for tools and inference engines.

Every legal OWL Lite ontology is a legal OWL DL ontology, and every legal
OWL DL ontology is a legal OWL Full ontology. The same holds for valid
inferred conclusions. For the rest of this report, when referring to OWL we
refer to OWL Full unless the DL or Lite variants are specified.
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3.4 Knowledge Representation in the Semantic
Web

The Semantic Web as a whole is not an Artificial Intelligence (AI) or Knowl-
edge Representation (KR) project. It is about making information on the Web
processable for machines. On the other hand, OWL is very much based on AI
and KR research from fields such as Description Logics — and is indeed a KR
language. This section will discuss some KR related aspects about OWL.

OWL is not just another ontology language, it is a web ontology language. It
is designed to to operate in the framework of the Internet in general and the
Semantic Web in particular. This has some implications that give OWL some
distinct properties compared to more traditional KR languages. As the web
itself, KR in OWL is distributed and decentralized.

3.4.1 Decentralized Representation

“The Semantic Web is what we will get if we perform the same glob-
alization process to Knowledge Representation that the Web initially
did to Hypertext. We remove the centralized concepts of absolute
truth, total knowledge, and total provability, and see what we can do
with limited knowledge.” (Berners-Lee, 1998a).

One key aspect of KR in the Semantic Web is the global scope of the names of
concepts, relations and so on. ’Global’ here means global in the widest sense
of the word. By using URIrefs for identification, a name is universally unique.
A concept described or defined in one ontology can be referred to in any other
ontology. Because an URIref is identifying the concept, there is no ambiguity
of what concept it is. There is no central control of the URI/URIref naming
scheme. Anyone or anywhat can name any concept one wish, even though it is
good practice using URIrefs from domains one has control over. So everyone is
free to make whatever ontology one might wish, naming the terms freely and
make it available over the Semantic Web.

As important is the fact that anybody might make assertions about concepts
defined by others. One can use terms from other ontologies, say things about
them, extend them and so on. This together with the OWL constructs to import
other ontologies, extend them, assert that a concept is equal to another concept
— all this makes knowledge distributed.

It’s about creating things from data you’ve complied yourself, or com-
bining it with volumes [...] of data from other sources to make new
discoveries. (Updegrove, 2005)

Even though decentralized and distributed Knowledge Representation is possi-
ble on the Semantic Web, it is not necessarily a precise description of its current
state. It is a field of continuing development and active research. The size and
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number of available ontologies is somewhat limited. It is still an open question
if the Semantic Web will be as successful and widespread as the World Wide
Web and Internet in general.

3.4.2 Open World

OWL makes an open world assumption. This is the assumption that anything
not currently known to be true is considered unknown. This in contrast to
the closed world assumption where such things are considered false. In closed
worlds, one assumes all relevant information is specified. Database systems is
an example of such closed worlds, and also many traditional KR systems makes
this assumption.

Because OWL allows concepts or classes defined in one ontology to be extended
by other ontologies, and because of the size and possible rate of change on the
Web, one cannot assume something to be false based on lack of any assertion.

3.5 Reasoning in the Semantic Web

The OWL specification states when extending an ontology, the consequences is
monotonic. Reasoning is monotonic if; S and T are sets of propositions, A is a
valid inference of S and S ⊆ T, then A is a valid inference of T (O’Donnell, 1993)
In other words, the addition of new information cannot make a previously drawn
conclusion invalid. With regard to the open world assumption, an extension of
a class or a concept cannot retract information declared elsewhere. Assertions
might be added, but never deleted.

All reasoning based on logics such as FOPC are monotonic. Thus the reasoning
endorsed by Description Logics are monotonic — which again leads to reasoning
with OWL DL resources being monotonic. The attitude of the W3C Semantic
Web Working Group is quite clear in its support for monotonic reasoning. The
actual reasoning, if there is such a thing, will be manifested as a wide range
of various web services, differing in complexity, what language constructs is
supported and competence.

The monotonicity of the Semantic Web does not make it immune to inconsis-
tencies. This is not necessarily a problem though,

[...] criticize the Semantic Web because they think that everything
in the whole Semantic Web will have to be consistent, which is of
course impossible. In fact, the only things I need to be consistent
are the bits of the Semantic Web I am using to solve my current
problem. (Updegrove, 2005).

Conflicting and inconsistent data might possible be a characteristic of the Se-
mantic Web as it is of the Web as a whole. Validation and establishing trust is
therefore an important task faced by reasoners operating in the Semantic Web.
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Chapter 4

Other related research

’You’re the other AI. You’re Rio. You’re the one who wants to stop
Wintermute. What’s your name? Your Turing code. What is it?’
William Gibson, Neuromancer

This chapter gives an overview over research related to Case-Based Reasoning in
the context of the Semantic Web. Three projects are described; CaseML, a Web
Case Language; DzCBR, a framework for decentralized Case-Based Reasoning;
and Colibri, a framework for software reuse in building Case-Based Reasoning
systems.

4.1 Case Markup Language

The Case Markup Language (CaseML) (Chen and Wu, 2003) is a RDF based
vocabulary to describe cases for sharing them over the Semantic Web. Cases are
defined as ordered pairs (p, s) ∈ P×S, where P is the problem space and S is the
solution space. Individual problems are of the form P (x1, x2, ..., xn), where xi

are features describing the problem. Individual solutions are similar, but from
S rather than P . Cases can be represented in several ways; described textually
in free-text, described as attribute-value pairs or described structurally by a set
of objects, which again is a set of attribute-value pairs.

The CaseML namespace is http://grid.zju.edu.cn/caseml#, using caseml:
as prefix.

The CaseML vocabulary defines the following classes; caseml:CaseBase,
caseml:Case, caseml:Problem, caseml:Feature, caseml:Solution and
caseml:SimilarityAssessment.

The following properties are defined; caseml:domainOntology,
caseml:hasProblem, caseml:hasDescription, caseml:hasSolution,
caseml:hasSimilarityAssessment, caseml:measureMethod and
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Figure 4.1: RDF graph of a case described in CaseML. From (Chen and Wu,
2003)

caseml:hasAdaptionRule.

The definition of the case, problem, solution and feature classes and properties
are as described above. The CaseBase is the set of cases. A CaseBase can have
one or more SimilarityAssements, which is the class of assessment algorithms
used to match a problem to a solution. A CaseBase belongs to one domain, in
which the vocabulary used to describe the cases are defined. The domainOntol-
ogy property is used to declare the URI to the domain ontology.

Figure 4.1 shows an example case described structurally.

CaseML is a small vocabulary to describe cases. It puts some restrictions for
how cases can be represented, and on what can actually be represented. The use
of RDF gives it clear semantics, but limited expressiveness compared to OWL.

4.2 Decentralized Case-Based Reasoning

DzCBR (Decentralized Case-Based Reasoning) (d’Aquin et al., 2005) is a frame-
work for distributed reasoning. It is a knowledge-intensive approach to CBR
(KI-CBR) that relies on knowledge from domain knowledge during the problem
solving process. DzCBR is designed for use within the Semantic Web, but uses
knowledge from ’contextualized ontologies’ using Context OWL (C-OWL) (Bou-
quet et al., 2003).

C-OWL differs between shared knowledge and local knowledge. An ontology is
a shared model having a common representation. A context is a local model,
having its own language and its own interpretation. Even though knowledge
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Figure 4.2: A similarity path path from srce to tgt and an adaption path from
Sol(srce) to Sol(tgt). From (d’Aquin et al., 2005)

is local and thus not shared, it is still compatible with other representations.
C-OWL is an extension of OWL that “allow to relate [...] concepts, roles and
individuals in different ontologies” using bridge rules. A bridge rule is a semantic
relation between entities in different local ontologies, that is contexts. A set of
bridge rules is a context mapping. A contextual ontology is an OWL ontology
that by the use of context mappings is related to other OWL ontologies. In this
way, C-OWL facilitates modular ontologies, where each context is a different
viewpoint on the same domain. DzCBR processes are distributed among these
viewpoints, collaborating through the bridge rules constructs of C-OWL.

In DzCBR, a case is a problem pb and the solution to that problem Sol(pb).
A case base is a set of source cases (srce, Sol(srce)). The CBR process is
the solving of a target problem tgt, and has two steps:

Retrieval Find a matching case (srce, Sol(srce)) from the case base.

Adaption Adapt the found solution into Sol(tgt). This solution is tested,
repaired and possibly retained for future problem solving.

4.2.1 Adaption Knowledge

In addition to domain knowledge, ontologies in DzCBR may contain adaption
knowledge. The basic elements of the adaption knowledge are reformulations.
A reformulation is a pair (r,Ar) where r is a relation between two problems and
Ar is an adaption function such that if r relates pb1 to pb2, then Sol(pb1) can
be adapted into Sol(pb2) using Ar.

DzCBR uses the decentralized knowledge in a C-OWL contextualized ontology.
Each viewpoint has local knowledge about how to solve some particular kind of
problem and also context dependent adaption knowledge. The retrieval step in
the CBR process consists of finding a similarity path, a set of relations ri that
relate a source case srce to the target problem tgt. Through a reformulation
each relation has an according adaption function Ari

. These adaption functions
makes up an adaption path, forming Sol(srce) into Sol(tgt). See figure 4.2
for how these to paths relate to each other.
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4.2.2 Reasoning with C-OWL Ontologies

DzCBR defines two OWL classes Problem and Solution, which members are
the problems and the solutions in the domain of discourse. The hasSolution
property relates a problem pb to its solution Sol(pb). OWL axioms are used to
relate problems and solution to the domain knowledge. Further, reformulations
and adaption functions are formalized using OWL constructs. Not much specific
is said about this, other than “ [...] by Web services implementing transforma-
tion operations like specialization, generalization and property substitution on
OWL individuals”.

DzCBR uses reasoning mechanisms from Description Logics. Classification is
used to structure the case base, and a class represents an index for a source prob-
lem. If a source case srce is an instance of some index class, then Sol(srce)
is considered to be a reusable solution for all instances of this class. During the
retrieval step, instantiation is used to find index classes for source problems.
New information are inferred about an individual during this process.

4.2.3 Distributed Reasoning

The use of C-OWL and modular ontologies are responsible for the ’decentralized’
part of DzCBR. Reasoning is divided into local and global reasoning. The local
reasoning is the classification and instantiation tasks as described above, but
within a specific context or viewpoint. Global reasoning is the global subsump-
tion and global instantiation with the use of bridge rules. Information known
about some individual in a given context can be completed using inferences
made in other contexts.

The case-based reasoning in DzCBR has a global target problem which is a set of
local target problems. Each of the local target problems are solved by a DzCBR
process within some context. This is an approach taken from decentralized AI.
It consists of agents, each having its own goal. In this case, this goal is to solve
a local problem case. The agents collaborate through knowledge sharing to find
a global solution.

The rationale behind this approach is among other things that some domains
are better represented as a modularized ontology, and the use of contexts in
C-OWL is a simpler way of doing this than having all such knowledge in one
place.

4.3 Colibri

Colibri (Dı́az-Agudo et al., 2005) is a framework for software reuse in CBR sys-
tems. It is designed to be of aid in building knowledge-intensive CBR (KI-CBR)
systems. As mentioned before, KI-CBR is an approach to case-based reason-
ing that use both specific knowledge in the form of cases, and general domain
knowledge. The reuse aspect covers both software, that is Problem-Solving
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Methods as described in section 4.3.1 below, and reuse of domain knowledge in
the form of ontologies. There is a clear separation between reasoning and the
knowledge base in this approach. The reasoning tasks are described in units
called Problem-Solving Methods. The knowledge base is declared using terms
defined in an ontology; CBROnto. Also there is a separation between domain-
independent CBR concepts and the knowledge in the domain model used in
KI-CBR systems.

Colibri is implemented in Java in the jColibri1 package.

4.3.1 Problem-Solving Methods

Problem-Solving Methods (PSMs) (Fensel and Motta, 2001) are application and
domain independent, reusable reasoning components. A PSM is a reasoning
task, and is decomposed into a number of subtasks. A task is a goal that must
be achieved, and a PSM contains the problem-solving behaviour needed to do
that. Related to this is the IBROW (Benjamins et al., 1998) project, aimed at
intelligent brokering service for reuse of PSMs, and UPML (Fensel et al., 1999),
a language developed to describe and implement such components.

A PSM consists of three parts; competence, operational specification and require-
ments. The competence is a declarative statement of what can be achieved, the
operational specification a description of the reasoning process and the require-
ments is a description of what knowledge is required to achieve the competence
of the PSM.

4.3.2 CBROnto

CBROnto (Dı́az-Agudo and González-Calero, 2001) is an OWL ontology de-
scribing a common CBR terminology. The work on CBROnto is still an active
field of research, but the current vocabulary is defined in the
http://gaia.sip.ucm.es/cbronto.owl# namespace. We use the prefix cbronto:
for this namespace.

CBROnto is used to describe the CBR process (Dı́az-Agudo and González-
Calero, 2002), such as the PSMs described below and also an ontology used
to describe knowledge models used in CBR (Dı́az-Agudo and González-Calero,
2000). We describe these two aspects in the two following subsections.

4.3.2.1 A task/method ontology

The jColibri approach describes PSMs in CBR. There is four main tasks; the
retrieve, reuse, revise and retain tasks in the CBR cycle in figure 2.1. A PSM is
a method to achieve the goal of a task, so there can be several alternate PSMs
that solve the same task. Each of these PSMs are decomposed into subtasks.

1http://sourceforge.net/projects/jcolibri-cbr/
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Figure 4.3: CBROnto task structure. From (Dı́az-Agudo et al., 2005).
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Figure 4.3 shows how these four tasks are decomposed into methods and sub-
tasks in the Colibri framework.

The ontology defines the class cbronto:Task and its four subclasses:

<owl:Class rdf:ID="Task"/>
<owl:Class rdf:ID="Reuse">
<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>
<owl:Class rdf:ID="Retrieve">
<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>
<owl:Class rdf:ID="Retain">
<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>
<owl:Class rdf:ID="Revise">
<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>

These tasks can be solved by a PSM. The methods are of the class cbronto:Method:

<owl:Class rdf:ID="Method"/>

The following properties can be used to describe a method:

<owl:DatatypeProperty rdf:ID="hasName"/>
<owl:DatatypeProperty rdf:ID="hasTextualDescription"/>

<owl:ObjectProperty rdf:ID="hasMethodPrecondition">
<owl:ObjectProperty rdf:ID="hasMethodPostCondition"/>
<owl:ObjectProperty rdf:ID="hasApplicationRequirements"/>
<owl:ObjectProperty rdf:ID="hasMethodType"/>

<owl:ObjectProperty rdf:ID="#hasCompetences">
<rdfs:range rdf:resource="#Task"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="#hasSubTasks">
<rdfs:range rdf:resource="#Task"/>

</owl:ObjectProperty>

These describe the methods in terms of the competence, specifications and re-
quirements properties of the PSM. The CBROnto itself does not specify any
PSMs, but defines the vocabulary to do so.

When PSMs are used in the building of a CBR system, the PSMs must be
connected with the domain knowledge. Because each PSM is a reusable generic
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component, some gaps may be needed to be filled in order to apply the meth-
ods to the domain knowledge. This is done by mapping terms in the domain
knowledge to terms in CBROnto, using the classification offered by Description
Logics reasoners.

4.3.2.2 A knowledge model ontology

The CBR tasks are applied to the knowledge in the knowledge base. The general
domain knowledge may be reused in the form of imported ontologies. Descrip-
tion Logics (DL) classification method is used to integrate the domain knowledge
with the CBROnto terms.

The specific knowledge takes the form of cases, and the concepts and relations
used to describe and structure a case base are generic in respect to many CBR
systems. CBROnto defines a vocabulary aimed at being a standard way to
describe CBR cases. CBROnto defines the class cbronto:Case as

<owl:Class rdf:ID="Case">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDescription"/>
<owl:someValuesFrom rdf:resource="#CaseDescription"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="CaseDescription"/>

<owl:Class rdf:ID="CaseSolution"/>

In other words, the class of instances having at least one property
cbronto:hasDescription having value from the class cbronto:CaseDescription.
CBROnto also defines properties to relate and describe cases:

<owl:ObjectProperty rdf:ID="hasSolution">
<rdfs:domain rdf:resource="#Case"/>
<rdfs:range rdf:resource="#CaseSolution"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDescription">
<rdfs:domain rdf:resource="#Case"/>
<rdfs:range rdf:resource="#CaseDescription"/>

</owl:ObjectProperty>

A case is an instance of the cbronto:Case class, or instances of various sub-
concepts of this class. An instance of cbronto:CaseDescription is used to
describe a case, and the relation cbronto:hasDescription is used to link a
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case to its description. Further, the CBROnto contains terms to describe the
description. Likewise, an instance of cbronto:CaseSolution is used to repre-
sent the solution of a case.

The owl:Restriction part of the cbronto:Case declaration above is what
makes the DL classification possible. It says that any instance that have a
hasDescription property, or a sub-property of this, with a value from the class
cbronto:CaseDescription, is also an instance of cbronto:Case. This is an
inference one can make without this being explicitly stated, and thus makes it
possible to classify instances in a knowledge model as a cbronto:Case.

4.3.3 Software Reuse

jColibri is framework for developing CBR systems. By describing components of
reasoning in CBR as PSMs, these components can be reused when new systems
are made. jColibri contains a library of code that supports these methods. The
configuration of a new system is an interactive process between the user and
the jColibri system. One selects a task, and then select some methods for this
task. One might also need to develop new tasks or methods. This is possible in
jColibri. It is an extensible, distributed framework, and the design envisions new
methods being published and put in a central registry. Web Services may then
be used to detect and find PSMs developed by others and that are applicable
for useage.
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Chapter 5

Creek and the Semantic
Web

Headlong motion through walls of emerald green, milky jade, the sen-
sation of speed beyond anything he’d known before in cyberspace ...
William Gibson, Neuromancer

This chapter will discuss the approach and the research done to reach the goals
of this master thesis. We propose a framework for knowledge sharing and reuse
in the Creek framework. Further, an OWL vocabulary of the Creek ISOPOD
model is defined.

5.1 A Design for Distributed Knowledge

This section will present a design for sharing and reuse of knowledge from and
to a Creek Case-Based Reasoning (CBR) system.

A CBR system based on Creek has a knowledge model on which the reasoning
is based. This knowledge is dynamic — it changes as the system solves new
problems. Assuming that this knowledge is of interest to others, the sharing of
this knowledge on the Semantic Web should be useful. Likewise, one might find
domain models defined by others and reuse this in order to create or extend the
knowledge base in an effective manner. The knowledge will in both these cases
be in the form of OWL ontologies, as described in chapter 3.

We will assume that we have a Creek CBR system running and accessible
on the Web. We call this system CreekServer. Such a system will have
knowledge about some problem domain. For illustrative purposes we assume
that the knowledge of the CreekServer is the domain knowledge from the
car-model.owl ontology from appendix A.2.

From chapter 2 and figure 2.2 we have that a Creek knowledge model can be
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Figure 5.1: The different parts of a Creek knowledge model and how they are
split into different OWL ontologies

divided in three distinct parts:

Generic concepts The top-level general concepts used internally in the rea-
soning and to describe and structure the knowledge model

Case base The specific knowledge of past problem situations and the corre-
sponding solutions

General domain model The general domain knowledge used in the reasoning
in Knowledge-Intensive CBR in addition to the case-base

The generic concepts form what is called the ISOPOD model. This is indepen-
dent of the problem domain of the case-base and general domain knowledge,
and is the same for all Creek systems. This part of the knowledge model will
be static. The ISOPOD model also contains concepts and relations to describe
and structure the case-base and general domain knowledge model.

In order to share and reuse knowledge over the Semantic Web, one need to agree
upon what terms to use, what they mean and how they relate to each other. We
propose an ontology based on the ISOPOD model to define a vocabulary. We
call this the Creek OWL Vocabulary. We use the term vocabulary rather
than ontology on the background that it defines terms to describe and model
a knowledge base. Such a knowledge base may contain both general domain
knowledge and specific knowledge in the form of cases. Using this vocabulary
one can share and reuse knowledge over the Semantic Web such that any system
can interpret the knowledge in a meaningful way. The Creek OWL Vocabulary
is defined in section 5.2.

The case-base and general domain model is the knowledge that the Creek-
Server will share to the Semantic Web. This knowledge is shared in the form of
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Figure 5.2: The different parts of a Creek knowledge model and where they are
placed in the Semantic Web

an OWL ontology, which means that the knowledge model of the Creek system
needs to be exported to OWL. This is further described in section 5.3.

Finally, the CreekServer system may import domain models in the form
of OWL ontologies into its knowledge base. Section 5.4 goes into detail about
the importing of knowledge.

Pulling the strings together, in our design we have the knowledge distributed
among several OWL ontologies;

1. The Creek vocabulary

2. The case-base and domain model

3. The imported domain models

Figure 5.1 shows how these three ontologies correspond to the Creek knowledge
model as described in figure 2.2. How these ontologies are organized between
the Semantic Web and the CreekServer is shown in figure 5.2. All three
ontologies shown are part of the knowledge used internally in the CBR process,
but the Creek vocabulary and the imported domain models are defined outside
of the CreekServer.
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In the following three sections we go into detail of each of these parts of the
proposed design.

5.2 Creek OWL Vocabulary

This section defines the Creek OWL Vocabulary. The vocabulary is available
as a RDF/XML document in appendix A.1, as well as online at the location
http://creek.idi.ntnu.no/owl/creek-vocabulary. The terms vocabulary,
namespace and document are used in this chapter as described in section 3.2.2.

The vocabulary defined here is based on the ISOPOD model in the Creek ar-
chitecture. The goal and approach for this vocabulary is very similar to the
knowledge model ontology part of CBROnto described in section 4.3.2.2. As
we shall see, we define some terms in this vocabulary to be equal to terms in
CBROnto. This aspect is further discussed in sections 7.1.3 and 7.3.

5.2.1 Namespace

The Creek OWL Vocabulary is defined in the namespace identified by the URIref

http://creek.idi.ntnu.no/owl/creek-vocabulary#

This namespace is assigned the prefix creek:, which is used for the remaining
of this report. For example is creek:Case used in place of the full URIref
http://creek.idi.ntnu.no/owl/creek-vocabulary#Case.

The creek: namespace should only be used together with terms that belong to
the Creek ISOPOD model.

Also, we use the prefixes rdf:, rdfs: and owl: as they have been used and
defined in the previous chapters.

5.2.2 ISOPOD Version

The vocabulary is based on the ISOPOD model from jCreek version 0.96 build
56 from September 2005. This is stated in the ontology header using the
owl:versionInfo property:

<owl:Ontology rdf:about="">
<owl:versionInfo>0.96-56</owl:versionInfo>

</owl:Ontology>
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Figure 5.3: The part of a Creek knowledge model defined by the Creek OWL
Vocabulary

5.2.3 An OWL Representation

The Creek OWL Vocabulary defines a set of terms — classes, individuals and
properties — that are used to describe knowledge models for Creek systems.
The vocabulary contains the terms from the ISOPOD model. More precise, it
is an OWL representation of the Creek ISOPOD model. It is defined using the
OWL Full variant. Reasons for are discussed in section 7.2.4. Figure 5.3 shows
what portion of a Creek knowledge model that is defined by the vocabulary.

One of the key new aspects being introduced by making an OWL representa-
tion of the Creek ISOPOD model, is the URIref naming scheme. When someone
referring to a creek:Case, there is no doubt that it is a ’case’ as understood
in a Creek context — intended for use in Case-Based Reasoning. The seman-
tics of the OWL constructs, such as class hierarchies and individuals, are also
well defined and should be well known. Some difficulties arise with regard to
semantics in the Creek framework versus semantics in the Semantic Web. This
is discussed further in section 7.2.1.

Another way to look at the vocabulary is as an informal mapping of the ISOPOD
model to an OWL model. As we shall see in the next section, some of the
central concepts in the ISOPOD model corresponds to OWL concepts, such as
creek:Thing / owl:Thing, creek:Concept / owl:Class and creek:Relation
/ owl:ObjectProperty.

As stated above, this vocabulary defines the set of terms used to describe Creek
knowledge models. However, these terms are general enough and the vocabulary
wide enough for it to be used as a starting point to describe knowledge models for
other Artificial Intelligence systems in general and other Case-Based Reasoning
systems in particular. Such reuse of knowledge and vocabularies are indeed part
of the motivation behind the development of the Semantic Web.
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5.2.4 The Vocabulary

Here we give an informal and textual description of the more important and
central parts of the vocabulary. The full formal definition is available in ap-
pendix A.1 and online. In case there are differences between what is described
here, the document in appendix A.1 and/or the document available online, the
online version should be considered to be correct.

Figure 5.4: The Creek ISOPOD model top-level classes

5.2.4.1 owl:Thing and owl:Nothing

A Creek knowledge model has two top-class concepts, creek:Thing and creek:Concept.
Everything in the world one wants to talk about is a subclass or an instance
of creek:Thing. In OWL, every instance and user defined class is a member
of the class owl:Thing. So, from a Creek system standpoint, creek:Thing and
owl:Thing are the same.

Similarly, creek:NoValue is same in meaning as owl:Nothing, the empty class.

It is recommended to use the OWL classes owl:Thing and owl:Nothing rather
than the two corresponding creek: classes.

5.2.4.2 owl:Class, rdfs:subClassOf, rdf:type

The other top-level class is creek:Concept. This class contains all things that
can be described with a relation. creek:Concept is similar in meaning to
owl:Class.

The Creek framework operates with subclasses and instances. The ISOPOD
model uses the relations creek:subclassOf and creek:instanceOf to organize
class hierarchies and declare instants. We recommend using the OWL constructs
rdfs:subClassOf and rdf:type instead. Remember that rdf:type is used to
declare class membership, that is to declare instances.

Further, we use the RDF/XML abbreviation for the rdf:type property, such
that
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<creek:Case rdf:ID="CarCase1"/>

states that CarCase1 is an instance of the class creek:Case, and is equal in
meaning to

<owl:Thing rdf:ID="CarCase1">
<rdf:type
rdf:resource="http://creek.idi.ntnu.no/owl/creek-vocabulary#Case"/>

</owl:Thing>

which again is similar in meaning to

<creek:Thing rdf:ID="CarCase1">
<creek:instanceOf
rdf:resource="http://creek.idi.ntnu.no/owl/creek-vocabulary#Case"/>

</creek:Thing>

5.2.4.3 creek:Entity

creek:Entity is a subclass of creek:Thing and creek:Concept. An entity
corresponds to physical or abstract entities in the real world. An entity is
something having relations to it and from it describing it. The current im-
plementation of Creek allows for procedures and attachments in the form of
Java classes represented as entities. This feature is not supported in the OWL
representation.

creek:Entity is the superclass of the following classes (which again have various
subclasses and instances. See the full ontology for details): creek:Context,
creek:Environment, creek:Role, creek:Situation, creek:PhysicalObject,
creek:MentalObject, creek:State, creek:Task and creek:Case.

5.2.4.4 creek:Case

creek:Case is the class of all cases. In a Creek reasoning system, a case describes
a solution to a previously solved problem. In a knowledge model the cases are
the specific knowledge, as opposed to the general domain knowledge, and is used
in the problem-solving process of a Case-Based Reasoning system.

We define the class creek:Case to be the same class as cbronto:Case:

<owl:Class rdf:ID="Case">
<owl:equivalentClass

rdf:resource="http://gaia.sip.ucm.es/cbronto.owl#Case"/>
</owl:Class>

Cases that are modelled or represented in a knowledge model are instances of
creek:Case. Typically, a case is described by a set of relations to concepts from
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Figure 5.5: Graph of example case

Listing 5.1: RDF/XML notation of the graph in figure 5.5
<creek:Case rdf:ID="CarCase2">

<rdfs:label >This is a description of car problem </rdfs:label >

<hasColor rdf:resource="#Blue"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#OKBattery"/>

<creek:hasSolution rdf:resource="#AnotherSolution"/>

<creek:hasCaseStatus rdf:resource="http: // creek.idi.ntnu.no\\

/owl/creek -vocabulary#SolvedCase"/>

</creek:Case >

the general domain knowledge. These relations can themselves be defined in
the general domain knowledge, or one might use the generic creek:hasFinding
relation

<owl:ObjectProperty rdf:ID="hasFinding">
<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

</owl:ObjectProperty>

The concept, class or instance that are the solution of the case is described by
the creek:hasSolution relation

<owl:ObjectProperty rdf:ID="hasSolution">
<rdfs:subPropertyOf rdf:resource="#caseRelation"/>
<owl:equivalentProperty

rdf:resource="http://gaia.sip.ucm.es/cbronto.owl#hasSolution"/>
</owl:ObjectProperty>

This relation is defined to be the same as cbronto:hasSolution defined in
CBROnto.

Further, a case has a status described by the hasCaseStatus relation. It is
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either creek:SolvedCase, creek:ProcessedCase or creek:UnsolvedCase.

<owl:ObjectProperty rdf:ID="hasCaseStatus">
<rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="#CaseStatus"/>
<rdfs:domain rdf:resource="#Case"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="CaseStatus">
<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>

<CaseStatus rdf:ID="SolvedCase"/>
<CaseStatus rdf:ID="ProcessedCase"/>
<CaseStatus rdf:ID="UnsolvedCase"/>

If no status is specified and there is no hasSolution relation, one should consider
the case unsolved.

Cases can be organized using the creek:hasSubcase relation:

<owl:ObjectProperty rdf:ID="hasSubcase">
<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

</owl:ObjectProperty>

Figure 5.5 and listing 5.1 shows the RDF graph and RDF/XML notation of
an example creek:Case. The graph is shown without using full URIrefs. Here
hasColor, hasEngineStatus and hasBatterystatus are relations from some
given general domain model, and Blue, EngineNotStarting, OKBattery and
AnotherSolution are concepts (classes or individuals) from the same general
domain model.

5.2.4.5 creek:DescriptiveThing

creek:DescriptiveThing is a subclass of creek:Thing. It is the class of things
that represents how other things are described. Included in this in the Creek
ISOPOD model is classes for datatypes such as text and numbers. We recom-
mend to use the datatypes defined by XML Schema Datatypes (XSD) the same
way OWL uses these atomic datatypes. More complex datatypes may be better
represented using terms from the creek: namespace or other vocabularies.

5.2.4.6 creek:Relation, creek:RelationInverse and owl:inverseOf

The class creek:Relation is the superclass of all relations in a Creek knowledge
model. As seen in figure 5.4, in the ISOPOD model creek:Relation is a
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subclass of the creek:Thing and creek:Concept classes. In this vocabulary we
define creek:Relation to be both a subclass of the two top-level classes and
an instance of owl:ObjectProperty:

<owl:Class rdf:ID="Relation">
<rdfs:subClassOf rdf:resource="#Thing"/>
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
</owl:Class>

All relations in Creek have an inverse relation. The super-property of these are
the property creek:RelationInverse;

<owl:ObjectProperty rdf:ID="RelationInverse">
<owl:inverseOf rdf:resource="#relation"/>

</owl:ObjectProperty>

The property creek:hasInverse is used to declare a property the inverse of
another. We recommend using the OWL built-in owl:inverseOf property.

<owl:ObjectProperty rdf:ID="hasInverse">
<rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
</owl:ObjectProperty>

The plausible inheritance reasoning described in section 2.3 can be modelled
using the creek:transfers and creek:inheritsOver properties;

<owl:ObjectProperty rdf:ID="transfers">
<rdfs:subPropertyOf rdf:resource="#systemRelationInverse"/>
<rdfs:subPropertyOf rdf:resource="#isopodRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="inheritsOver">
<rdfs:subPropertyOf rdf:resource="#systemRelationInverse"/>
<rdfs:subPropertyOf rdf:resource="#isopodRelationInverse"/>
<owl:inverseOf rdf:resource="#transfers"/>

</owl:ObjectProperty>

owl:inverseOf, creek:transfers and creek:inhertitsOver are all proper-
ties that apply to other properties. Properties in RDF and OWL are binary, in
that they describe a relationship between two resources. Relations or properties
in Creek may have other information attached to them, such as their weight.

N-ary relations may be modelled using an anonymous creek:Relation node.
This way several values may be tied together. When using such structured val-
ues, the rdf:value property is used to indicate the ’main’ value for the relation.
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Figure 5.6: Graph of example case using anonymous Relation node

Listing 5.2: RDF/XML notation of the graph in figure 5.6
<creek:Case rdf:ID="CarCase1">

<hasColor >

<creek:Relation >

<creek:hasImportance rdf:resource="http: // creek.idi.ntnu.no\\

/owl/creek -vocabulary#Irrelevant"/>

<creek:hasPredictiveStrength rdf:resource="http: // creek.idi\\

.ntnu.no/owl/creek -vocabulary#Spurious"/>

<rdf:value rdf:resource="#Red"/>

</creek:Relation >

</hasColor >

<hasBatteryStatus >

<creek:Relation >

<creek:hasImportance rdf:resource="http: // creek.idi.ntnu.no\\

/owl/creek -vocabulary#StronglyIndicative"/>

<creek:hasPredictiveStrength rdf:resource="http: // creek.idi\\

.ntnu.no/owl/creek -vocabulary#Charecteristic"/>

<rdf:value rdf:resource="#EmptyBattery"/>

</creek:Relation >

</hasBatteryStatus >

<creek:hasSolution rdf:resource="#SomeSolution"/>

<creek:hasCaseStatus rdf:resource="http:// creek.idi.ntnu.no/owl\\

/creek -vocabulary#SolvedCase"/>

</creek:Case >
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Figure 5.6 shows an RDF graph of a creek:Case adding more information to
the findings relations. Listing 5.2 shows how this is modelled in RDF/XML
notation. This way to describe n-ary relations is the method used for ’Use Case
1’ described in (Noy and Rector, 2004).

A relation can be weighted by giving them a creek:Importance and/or a
creek:PredictiveStrength strengths. These are defined as

<owl:Class rdf:ID="Importance">
<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>
<Importance rdf:ID="Necessary"/>
<Importance rdf:ID="Characteristic"/>
<Importance rdf:ID="Informative"/>
<Importance rdf:ID="DefaultImportance"/>
<Importance rdf:ID="Irrelevant"/>

<owl:ObjectProperty rdf:ID="hasImportance">
<rdfs:range rdf:resource="#Importance"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="PredictiveStrength">
<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>
<PredictiveStrength rdf:ID="Sufficient"/>
<PredictiveStrength rdf:ID="StronglyIndicative"/>
<PredictiveStrength rdf:ID="DefaultPredictiveStrength"/>
<PredictiveStrength rdf:ID="Indicative"/>
<PredictiveStrength rdf:ID="Spurious"/>

<owl:ObjectProperty rdf:ID="hasPredictiveStrength">
<rdfs:range rdf:resource="#PredictiveStrength"/>

</owl:ObjectProperty>

These textual weights are translated internally to a numerical weight between
0 and 1 in a Creek knowledge model.

The Creek OWL vocabulary defines other classes of properties such as;
creek:CausalRelation, creek:associationalRelation,
creek:structuralRelation, creek:functionalRelation,
creek:temporalRelation and creek:spatialRelation.
See the full ontology for further details.

5.2.4.7 Restrictions

The OWL constructs for declaring restrictions and defining classes using re-
strictions are not currently supported by the Creek framework. More on this in
section 7.2.3.
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Figure 5.7: The part of a Creek knowledge model being exported

5.3 Sharing Knowledge

In this section we go into the details of our design concerning sharing of knowl-
edge.

As described in section 5.1 above, a CreekServer system has an internal
knowledge model on which the reasoning is based. This is the knowledge we
want to share — using the Semantic Web as the medium. In order to share the
knowledge we export the the internal knowledge model of the CreekServer
to an OWL ontology.

5.3.1 Relation with the ISOPOD Model

The ISOPOD part of the knowledge model is already defined in the Creek OWL
Vocabulary. The concepts and relations that is defined here will not be exported.
Figure 5.7 shows what parts of the knowledge model that is being exported to
OWL. Still, it is important to remember that the ISOPOD model is part of the
internal knowledge model of the CreekServer. In our design we make this
clear by using the owl:imports construct in the ontology header of the ontology
we export;

<owl:Ontology rdf:about="">
<owl:imports

rdf:resource="http://creek.idi.ntnu.no/owl/creek-vocabulary#"/>
</owl:Ontology>

Note that it is not necessary to import an ontology in order to use and/or refer
to resources defined in it. It is perfectly legal to define a case in some ontology
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like

<creek:Case rdf:ID="Case1">
<creek:hasFinding rdf:resource="#EngineRunning"/>
<creek:hasFinding rdf:resource="#BatteryLow"/>
<creek:hasCaseStatus

rdf:resource="http://creek.idi.ntnu.no/owl/creek-vocabulary#Unsolved"/>
</creek:Case>

without the creek: vocabulary being imported. It is sufficient to define the
creek: prefix and namespace. By using owl:imports, all the concepts and
relations in the importee ontology will also be part of the importer ontology.
Given the tight integration in Creek between the generic concepts, the general
domain knowledge and the cases, it is natural to explicitly make the Creek OWL
ontology part of the knowledge we share.

5.3.2 An OWL Representation

We use the Semantic Web as the medium for sharing the knowledge from the
CreekServer system — in the form of an OWL ontology.

Like other OWL ontologies, the knowledge shared by the CreekServer system
is defined in a namespace. The namespace is
http://creek.idi.ntnu.no/owl/example/car-model.owl#. Remember that
we use the ontology from appendix A.2 as our knowledge model. We assign the
prefix km: to this namespace. Other similar Creek systems will of course have
different namespaces.

We have to translate our knowledge in the CreekServer from the semantic
net/frame representation used internally in Creek to an OWL representation
used within the Semantic Web. We need to make some choices for how the
translation takes place. When we represent our knowledge model in OWL, we
follow these rules:

• Represent all Creek concepts as owl:Class’es or individuals

• Represent all Creek relations as owl:ObjectProperty’s

– Represent creek:subclassOf relations as rdfs:subClassOf or
rdfs:subPropertyOf properties

– Represent creek:instanceOf relations as rdf:type properties

– Represent creek:hasInverse relation as owl:inverseOf property

• Represent Creek entities that represents literals as XML literals

The reason for using the owl: constructs is because when we share our knowl-
edge model, we want to make it as accessible and general as possible. As these
constructs are integral parts of OWL they are in general more familiar and
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Figure 5.8: Frame view from TrollCreek of CarCase1

Listing 5.3: RDF/XML notation of CarCase1 from figure 5.8
<creek:Case rdf:ID="CarCase1">

<rdfs:label >This is a description of car problem </rdfs:label >

<km:hasColor rdf:resource="#Red"/>

<km:hasEngineStatus rdf:resource="#EngineNotStarting"/>

<km:hasBatteryStatus rdf:resource="#EmptyBattery"/>

<creek:hasSolution rdf:resource="#SomeSolution"/>

<creek:hasCaseStatus rdf:resource="http: // creek.idi.ntnu.no/owl/

creek -vocabulary#SolvedCase"/>

</creek:Case >

more widely used than the corresponding Creek ones. The semantics of, say
rdfs:subClassOf, should be well known as opposed to creek:subclassOf.
These Creek constructs makes most sense within a Knowledge-Intensive CBR
context, whereas the OWL ones is used throughout the Semantic Web.

This seems simple enough. But given the different backgrounds of Creek and
OWL, some of the OWL primitives we use have somewhat different semantics
than the Creek primitives we substitute them with. This is further discussed in
section 7.2.1.

Figure 5.8 shows a frame view of a Creek case from the km: ontology. The
RDF/OWL representation of this is shown in listing 5.3. Note that here all
properties for the km:CarCase1 individual is clustered together, but that an
ontology model can be serialized to different RDF/OWL representations.

The last point we make here is that in our design, every entity and relation in the
knowledge model of the CreekServer is identified by an URIref. The case from
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Figure 5.9: The different parts of a Creek knowledge model after importing
another OWL domain model

listing 5.3 is universally identified by the URIref km:CarCase1, as the relations
km:hasColor and km:hasEngineStatus and the entities km:EmptyBattery and
km:Somesolution and so on are identified by their URIrefs.

5.4 Reusing Knowledge

The last part of our proposed design is about reuse of knowledge. Say for
example we want to use the knowledge about car engines from an ontology
http://someURI/engine.owl#. We would want to import this into the knowl-
edge base of our CreekServer.

Conceptually this ontology is imported into CreekServer the same way as the
creek: vocabulary:

<owl:Ontology rdf:about="">
<owl:imports

rdf:resource="http://creek.idi.ntnu.no/owl/creek-vocabulary#"/>
<owl:imports

rdf:resource="http://someURI/engine.owl#"/>
</owl:Ontology>

We now have knowledge from three different sources in CreekServer, each
identified by a namespace; the Creek Vocabulary from
http://creek.idi.ntnu.no/owl/creek-vocabulary#, the domain knowledge
and case-base from http://creek.idi.ntnu.no/owl/example/car-model.owl#,
and the engine ontology from http://someURI/engine.owl#.
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Listing 5.4: Concepts from the km: ontology not attached to the Creek ISOPOD
model
<owl:Class rdf:ID="Car">

<rdfs:label >a car </rdfs:label >

</owl:Class >

<owl:ObjectProperty rdf:ID="requires">

<creek:inheritsOver rdf:resource="#hasPart"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="requiredBy">

<owl:inverseOf rdf:resource="#requires"/>

</owl:ObjectProperty >

The case-base and domain model is a combination of the to last parts. Figure 5.9
shows how these three ontologies are organised in the knowledge model of the
CreekServer.

As when exporting, we need to make some choices for how to actually do the
translation from the ontology we import to the representation used internally
in Creek:

• Represent all classes and individuals as Creek Entities

– Use the Creek ’Symbol’ Entity as superclass if none is defined

• Represent all properties as new Creek RelationTypes

– Use the Creek ’has finding’ RelationType as superclass if none is
defined

– Use the Creek ’instance of’, ’subclass of’ and ’has inverse’ for the
corresponding OWL constructs

In Creek, all the entities and the relation types in the knowledge model must be
connected to the ISOPOD model. That is, they must all be subclasses, members
or sub-properties of entities in the ISOPOD model. Classes and properties in a
given ontology may explicitly be defined to be so (by the use of the Creek OWL
Vocabulary), but in general they will have no relation to the ISOPOD model.
In that case, we represent a class as a subclass of the Creek ’Symbol’ Entity,
and a property as a subclass of the Creek ’has finding’ RelationType. This is
not a random choice. The Symbol entity has special comparators attached to
it. These are used in the reasoning during the CBR process in Creek. Thus in
order for Creek to use such resource in for example case matching, we need to
define them as subclasses of ’Symbol’. As for the ’has finding’, all relation types
used for describing a case must be a sub-property of this. It is likely that we
want to use some of the properties defined in an ontology we import to describe
cases.

Listing 5.4 shows part of the km: ontology with concepts that are not related
to the ISOPOD model. Figure 5.10 shows how these are integrated into the
ISOPOD model after importing this ontology.
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Figure 5.10: The km:Car class and km:requires property from listing 5.4 at-
tached to the ISOPOD model
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Chapter 6

Implementation

The Kuang program spurted from tarnished cloud. Case’s conscious-
ness divided like the beads of mercury, arcing above an endless beach
the color of the dark silver clouds. His vision was spherical, as though
a single retina lined the inner surface of a globe that contained all
things, if all things could be counted. William Gibson, Neuromancer

This chapter describes the proof-of-concept implementation of the design pro-
posed in the previous chapter. The three sections 5.2 - 5.4 describing the design
each have an according section in this chapter describing the implementation
done.

The implementation uses APIs from the jCreek and Jena packages. jCreek is
the Java implementation of the Creek framework. Jena 1 (McBride, 2001) is
an open source Java framework for Semantic Web functionality developed by
HP Labs 2. It includes among other things a RDF API and an OWL API. These
again consist of classes such as OntModel, Ontology, OntResource, OntClass,
OntProperty and Individual to handle the according OWL concepts. OntModel
is a class for representing a knowledge model in the form of an OWL ontology.
OntResource is a representation of a Semantic Web resource, that is something
identified by an URIref, and is the superclass of OntClass, OntProperty and
Individual.

All the three Java classes described in the following subsections belong to the
jcreek.representation.sw package in jCreek. In addition, two other Java
classes are created to handle the GUI and interaction with TrollCreek 3:

• jcreek.cke.importexport.owl.OWLexport

• jcreek.cke.importexport.owl.OWLimport

1Jena, http://jena.sourceforge.net/
2HP Labs, http://www.hpl.hp.com/semweb/
3TrollCreek is a GUI front-end for knowledge modelling in jCreek
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The code for these last two classes is mostly copied from the corresponding
classes handling the import and export of the JCXML format (Tomassen, 2002).
These classes are not described further in this chapter, but their JavaDocs are
included in appendix B.2.

Minor additions are done to the jcreek.cke.importexport.ImportExportsWizards
class to handle the OWL functionality. This is not included in this report.

6.1 Vocabulary

Jena includes schemagen, an utility that makes a Java class out of a vocabulary.
This is used to convert the creek: vocabulary defined in section 5.2 into the
CREEK class. This contains static constants for all the OWL resources in the
vocabulary. For example is the creek:Case resource defined as

public static final OntClass Case = m_model.createClass(
"http://creek.idi.ntnu.no/owl/creek-vocabulary#Case" );

These constants can be used like for example

if (swProperty.equals(CREEK.instanceOf))
...

to check if the object swProperty (an instance of OntResource) represents the
same OWL or Semantic Web resource as creek:instanceOf.

Jena includes similar classes for the rdf:, rdfs: and owl: vocabularies.

The JavaDoc for the jcreek.representation.sw.CREEK class can be found in
appendix B.1.1.

6.2 Export

The sharing of knowledge is implemented as an extension to TrollCreek. The
internal knowledge model is exported to an OWL ontology, which is saved to a
file.

The algorithm for exporting a Creek knowledge model to an OWL ontology is
as follows:

1. Create a new (Jena) OntModel

2. Add an (Jena) Ontology

3. Set metadata (such as author, name, description) for the (Jena) Ontology
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Figure 6.1: Exporting to OWL: Select ’Export as XML’

Figure 6.2: Exporting to OWL: Select ’OWL/RDF’

Figure 6.3: Exporting to OWL: Namespace input
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4. FOR ALL (jCreek) Entities in the (jCreek) KnowledgeModel not defined
in the creek: vocabulary DO

(1) IF (jCreek) Entity is a subclass/instance of (jCreek) Relation THEN

1. add as (Jena) ObjectProperty to the (Jena) Ontology
2. set the owl:inverseOf, owl:subPropertyOf,

creek:hasDefaultExplanationStrength, rdfs:label and
rdfs:comment properties.

(2) ELSE

1. add as (Jena) OntClass to the (Jena) Ontology
2. add rdfs:label and rdfs:comment properties to the (Jena)

OntClass
3. FOR ALL (jCreek) localRelations from this (jCreek) Entity DO

1. IF Relation == creek:instanceOf THEN
• add rdf:type property to the (Jena) OntClass
• change the (Jena) OntClass to (Jena) Individual

2. ELSE IF (jCreek) Relation == creek:subClassOf THEN
• add rdfs:subClassOf property to the (Jena) OntClass/In-

dividual
3. ELSE IF the inverse (jCreek) Relation is not added
• add the (jCreek) Relation as (Jena) ObjectProperty along

with its value to the (Jena) OntClass/Individual

5. Write the (Jena) OntModel to file

The export functionality is made available through the TrollCreek Knowledge
Editor. The procedure for exporting to OWL is the same as when exporting to
the JCXML format.

To create an OWL ontology from a knowledge model, select ’Export as XML’
from the ’File’ menu, then select the ’OWL/RDF’ format and the file to write
the exported OWL ontology to. Finally, give an URIref that will be the names-
pace for the OWL ontology. Figures 6.1 and 6.2 show the first two steps. Fig-
ure 6.3 shows the namespace input dialog.

The export functionality is implemented in the
jcreek.representation.sw.OWLexportParser class, whose JavaDoc can be
found in appendix B.1.2.

6.3 Import

The reuse of knowledge is, as the sharing of knowledge described above, imple-
mented as an extension to TrollCreek. This takes place as an import of an OWL
ontology into a Creek knowledge model. The ontology to import is identified
by an URI.

Below is the algorithm for importing an OWL ontology:
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1. Create a new (jCreek) CBRModel

2. Load the importing ontology URI into a (Jena) OntModel

3. Gather the metadata from the (Jena) Ontology

4. FOR ALL (Jena) OntResources (classes and individuals) in the (Jena)
OntModel DO

(1) IF (Jena) OntResource is not part of the ISOPOD model THEN

1. IF (Jena) OntResouce is instance of creek:Case
• Add (Jena) OntResource as (jCreek) Case to the (jCreek)

CBRModel
2. ELSE

• Add (Jena) OntResource as (jCreek) Entity to the (jCreek)
CBRModel

3. Add rdfs:label and rdfs:comment as (jCreek) Description to
the (jCreek) Entity

4. FOR ALL (Jena) OntProperties from this (Jena) OntResource
DO
1. IF (Jena) OntProperty == rdfs:subclassOf THEN
• add as (jCreek) ’subclass of’ RelationType

2. ELSE IF (Jena) OntProperty == rdf:type THEN
• add as (jCreek) ’instance of’ RelationType (if it is an in-

stance of owl:Class, add as instance of (jCreek) Symbol
Entity)

3. ELSE
• add OntProperty as new (jCreek) RelationType, along

with the (jCreek) inverse RelationType and (jCreek) Rela-
tionType superclass (if no superclass, set creek:hasFinding
as superclass)

• add as this (jCreek) RelationType

Like the export functionality, the procedure for importing an OWL ontology is
the same as for importing from JCXML. In the TrollCreek Knowledge Editor,
select ’Import from XML’ from the ’File’ menu, then select the ’OWL/RDF’
format The OWL ontology to import is decided by giving its URI. This can be an
online resource such as http://creek.idi.ntnu.no/owl/example/car-model.owl,
or some local file like for example file:///somefolder/car-model.owl.

Figures 6.4, 6.5 and 6.6 show the GUI of these steps.

As this is a proof-of-concept implementation, not all OWL constructs are sup-
ported. Anonymous nodes and certain OWL constructs such as restrictions and
set operators are not handled.

The class jcreek.representation.sw.OWLimportParser handles the import-
ing. Appendix B.1.3 contains the JavaDoc for this class.
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Figure 6.4: Importing from OWL: Select ’Import from XML’

Figure 6.5: Importing from OWL: Select ’OWL/RDF’

Figure 6.6: Importing from OWL: URI for ontology
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Chapter 7

Evaluation and Discussion

’An artificial intelligence, but you know that. Your mistake, and it’s
quite a logical one, is in the confusing the Wintermute mainframe,
Berne, with the Wintermute entity.’ William Gibson, Neuromancer

In this final chapter we start by evaluating the result from in chapter 5 with
regard to distributed knowledge and Case-Based Reasoning. The result is com-
pared to the other related work presented in chapter 4. Further, we will discuss
some limitations to the approach and then some of the difficulties that arise.
We finish this report by summarizing and concluding the work done and suggest
some interesting areas for further research.

7.1 Evaluation

7.1.1 Distributed Knowledge

From a Creek perspective, the work done in chapter 5 introduces some new
ideas and concepts:

• The ISOPOD model is defined as a vocabulary identified by a namespace

• The knowledge base itself is identified by a namespace

• All concepts and relation types in the knowledge model will be universally
identified by an URIref

• By consequence, all cases in the case-base is also identified by an unique
URIref

• Ontologies from other namespaces might be imported into the Creek
knowledge model
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All these aspects play a part when it comes to the theme of this thesis —
distributed knowledge. The knowledge model of the CreekServer system from
section 5.1 is made up of knowledge from at least two sources; from the creek:
and km: namespaces (we use the same prefixes as in the previous chapters).
The possible imported ontologies come in addition.

The ISOPOD part of a Creek knowledge model is defined in an ontology. This
knowledge will be reused by all Creek knowledge bases that are exported to
OWL. The vocabulary is identified by the creek: namespace. All concepts and
relations here are universally identifiable. For example is the concept of a case
identified by the URIref creek:Case. This, and all the other terms defined in
the vocabulary, may be referred to and used by other ontologies or vocabularies.
More importantly, there is a common understanding and agreement of the terms,
and how they are used in modelling the knowledge and case base. It is this
agreement that ensure that knowledge can be shared between systems using the
creek: vocabulary.

Similarly, the knowledge base for some specific Creek system is identifiable by
a namespace, that is an URIref. The knowledge base for the CreekServer is
identified by the km: namespace. Also, all concepts and relations defined in this
knowledge base have their own URIref. The URIref km:CarCase1 conceptually
refers to the following case and its findings:

<creek:Case rdf:ID="CarCase1">
<hasColor rdf:resource="#Red"/>
<hasEngineStatus rdf:resource="#EngineNotStarting"/>
<hasBatteryStatus rdf:resource="#EmptyBattery"/>
<creek:hasSolution rdf:resource="#SomeSolution"/>
<creek:hasCaseStatus rdf:resource="http://creek.idi.ntnu.no/owl/

creek-vocabulary#SolvedCase"/>
</creek:Case>

Another Creek system, with a knowledge model defined in some cb: namespace,
can refer to and use this specific case. Given a concept cb:SomeConcpet

<owl:Class rdf:ID="SomeConcept">
<creek:reminding rdf:resource="http://creek.idi.ntnu.no/owl/example/

car-model.owl#CarCase1"/>
</owl:Class>

km:CarCase1 is a reminder for cb:SomeConcept. The system using the cb:
knowledge model might choose to import the whole or parts of the km: ontology.

The export and import of OWL ontologies further integrate our approach with
the distributed nature of the Semantic Web.
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Figure 7.1: km:CarCase3 matched against km:CarCase2 in TrollCreek
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Listing 7.1: km:CarCase3 and km:CarCase2

<creek:Case rdf:ID="CarCase2">

<hasColor rdf:resource="#Blue"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#BatteryOK"/>

<creek:hasSolution rdf:resource="#AnotherSolution"/>

<creek:hasCaseStatus rdf:resource="http: // creek.idi.ntnu.no/owl/

creek -vocabulary#SolvedCase"/>

</creek:Case >

<creek:Case rdf:ID="CarCase3">

<hasColor rdf:resource="#Green"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#LowBattery"/>

<creek:hasCaseStatus rdf:resource="http: // creek.idi.ntnu.no/owl/

creek -vocabulary#UnsolvedCase"/>

</creek:Case >

7.1.2 CBR with Semantic Web Resources

In this section we will show that Creek reasoning can be done on knowledge
based on Semantic Web resources. We do a case matching, and show an example
of the plausible inheritance reasoning method.

Again we use the km: ontology from appendix A.2. The reasoning is done after
this ontology is imported into a knowledge model in TrollCreek as described in
section 6.3.

Two cases from this ontology and their findings are shown in listing 7.1. Fig-
ure 7.1 shows km:CarCase3 matched against km:CarCase2 done in TrollCreek.
The result is a 33% match, which is due to the common
km:hasEngineStatus km:EngineNotStarting property.

Default inheritance is a reasoning mechanism in Creek where properties can be
inherited over other relations than the usual subclass and instance relations.
The creek:inheritsOver and creek:transfers properties are used in Creek
to realize this. Listing 7.2 shows a part of our km: ontology. km:hasPart is
defined to be inherited over the km:requires relation. Given the structure
of the km:Car, km:Engine and km:Oil classes, Creek concludes that there is a
km:Car km:requires km:Oil relation. Figure 7.2 shows the dialog in TrollCreek
explaining this inherited relation.

These are two very simple examples of the reasoning possible within Creek. It is
presented here to show that the reasoning from Semantic Web resources works
out as one would expect from a Creek point of view.
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Figure 7.2: The km:Car km:requires km:Oil relation explained

Listing 7.2: Plausible inheritance in the km: ontology
<owl:Class rdf:ID="Car">

<hasPart >

<owl:Class rdf:ID="Engine">

<requires >

<owl:Class rdf:ID="Oil"/>

</requires >

</owl:Class >

</hasPart >

</owl:Class >

<owl:ObjectProperty rdf:ID="requires">

<creek:inheritsOver >

<owl:ObjectProperty rdf:ID="hasPart">

</creek:inheritsOver >

</owl:ObjectProperty >
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7.1.3 Comparison with Other Research

In chapter 4 we presented three related areas of research, namely CaseML,
DzCBR and Colibri and its CBROnto. Compared to each other and to the
work done in the previous chapter, they have some similarities but also some
distinct differences.

All these three have a similar way to represent a case. Given the problem space
P and the solution space S, a case is a pair (p, s) ∈ P × S. CBROnto does this
by defining two classes cbronto:CaseDescription and cbronto:CaseSolution
and relate each case to an instance of subclass of each of these classes. In
Creek, the cases are more tightly integrated into the general domain knowledge.
The representation of a case is not limited to only its solution and an object
representing its description. A case may be described by several relations from
the domain model as for example the case shown in listings 5.1.

Both CaseML and CBROnto define vocabularies with terms used to describe
case bases and domain models. The CaseML is very basic when compared to
CBROnto and the Creek vocabulary. It has a limited set of terms, and it can
only be used to describe cases. In other words, there is no direct integration
with the domain model as is possible with jColibri and Creek. The CaseML
vocabulary is defined in RDF rather than OWL, which further restricts what
might expressed using this vocabulary.

CaseML, CBROnto and the Creek Vocabulary are aimed at distributed knowl-
edge in that they facilitates reuse and sharing of knowledge. DzCBR is different
in that the CBR process itself is a distributed process. This is due to the internal
decentralization of the ontologies resulting from using C-OWL. Another unique
aspect of DzCBR compared to jColibri and Creek is the inclusion of adaption
knowledge. This type of knowledge is not expressed in either of the other two
systems.

The one of the three other system most similar to Creek is Colibri. They are
both approaches within a Knowledge-Intensive CBR framework. They both use
a large amount of general domain knowledge in addition to the cases in the
reasoning process. One thing that separate them is jColibri’s focus on Problem-
Solving Methods and software reuse. The work done with the Creek framework
in this report is about reuse and sharing of knowledge, and knowledge alone.

As the goals of the Creek vocabulary and CBROnto are very much similar,
further work should be done to define one single vocabulary for KI-CBR. This
is discussed further in section 7.3 below.
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7.2 Discussion

In this section we discuss some of the limitations of our approach and some of
the difficulties that we have come across.

7.2.1 Semantics

One of the major difficulties that arise from the work done in chapter 5 is the
question of semantics. When we share or reuse knowledge between a Creek
system and the Semantic Web, does a piece of knowledge mean the same thing?

Does a frame or an entity in Creek give the same meaning as a concept in De-
scription Logics? Generally speaking, an entity in Creek represent a prototype
of the underlying concept, described by various findings or relations. The ter-
minological knowledge in Description Logics defines concepts in terms of other
concepts. As shown in the work done in the previous chapters, it is possible to
go from one of these representation to the other and still maintain the knowl-
edge in a meaningful way. The next sections below will discuss other things
that might get lost in this process.

RDF, OWL and the Semantic Web in general all have their semantics firmly
rooted in the logistic branch of Knowledge Representation (KR). Reasoning is
deductive and monotonic. Creek on the other hand uses frames and semantic
nets for the KR, and the reasoning is abductive and non-monotonic.

The debate between these two approaches have been long (see for example
(Nilsson, 1991) versus (Birnbaum, 1991)), and is still ongoing — even in the
context of the Semantic Web (Russell, 2003). It is beyond the scope of the
work in this thesis to conclude what is the correct or best way of reasoning.
However, we will point out some difficulties arising when going from knowledge
representation formalism to the other.

One of the basic reasoning methods in Creek is default inheritance. This allows
subclasses and instances inherit relations from a superclass, unless it is over-
ridden at the local level. Default inheritance is therefor non-monotonic in na-
ture. Given the knowledge base from the CreekServer system, a new concept
km:TwoStrokeEngine is added. Here, the value of the relation km:requires is
overridden from km:Oil to the value km:OilInGasTank. Figure 7.3 shows part
of the knowledge model, and a frame-view of the km:TwoStrokeEngine entity.

There is no way to express default inheritance in OWL. The result of repre-
senting the knowledge from figure 7.3 would be something like the RDF/XML
in listing 7.3. A Description Logics reasoner will based on this conclude that
an instance of km:TwoStrokeEngine both has a relation km:requires km:Oil
and a relation km:requires km:OilInGasTank. As we see, we may end up with
inconsistencies in the OWL representation of our knowledge model — or incon-
sistencies between our original Creek knowledge model and the OWL ontology
exported from it.
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Figure 7.3: km:requires overridden in the TwoStrokeEngine entity

No solution to this problem is presented here. The problem is a fundamental
one, so one need to have this is in mind when knowledge models are to be
exported from a Creek representation to an OWL ontology.

7.2.2 Simplification

Generally speaking, when exporting a Creek knowledge model to OWL the
resulting ontology will be a more simple model than the original Creek model.
In the Semantic Web a property is binary — it is a relation from one subject
to one object. Relations in Creek each have a weight assigned. This is used in
the reasoning, for example in plausible inheritance to decide which relations to
inherit. These weights are lost when a knowledge model is exported.

Figure 7.4 shows a frame view of an example relation in Creek. Listing 7.4
shows how this will be represented after being exported to OWL.

We have shown in our design that it is possible to use anonymous nodes to
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Listing 7.3: OWL representation of km:TwoStrokeEngine entity from figure 7.3
<owl:Class rdf:ID="TwoStrokeEngine">

<rdfs:subClassOf >

<owl:Class rdf:ID="Engine">

<requires >

<owl:Class rdf:ID="Oil">

</requires >

</owl:Class >

</rdfs:subClassOf >

<requires >

<owl:Class rdf:ID="OilInGasTank"/>

</requires >

</owl:Class >

<owl:ObjectProperty rdf:ID="requires">

<owl:inverseOf >

<owl:ObjectProperty rdf:ID="requiredBy"/>

</owl:inverseOf >

</owl:ObjectProperty >

Listing 7.4: OWL representation of the has colour relation from figure 7.4
<owl:ObjectProperty rdf:ID="has_colour">

<owl:inverseOf rdf:resource="#colour_of"/>

<creek:hasDefaultExplanationStrength >

0.1

</creek:hasDefaultExplanationStrength >

<rdfs:subPropertyOf rdf:resource="http:// creek.idi.ntnu.no/owl/

creek -vocabulary#hasFinding"/>

</owl:ObjectProperty >

attach additional information to a property in OWL. Figure 5.6 and listing 5.2
in chapter 5 show how importance and predictive strength properties can be
expressed for the findings of a given Creek case. However, this adds a level
of complexity to the ontology that is being exported. Also, it will only be
meaningful to other Creek systems or other systems weighting the relations. A
reasoning system based on Description Logics will for example not be able to
utilize these weights.

Other aspects of a Creek knowledge model are also left out. For example, it is
possible to define what Java class to use when cases and concepts are matched
in the CBR process. This will not be included in the OWL ontology when
exporting a knowledge model.

7.2.3 Restrictions

One major limitation to how Creek imports OWL ontologies are the lack of
support for the Description Logics style restrictions that can be expressed in
OWL. When importing an ontology, such restriction declarations are ignored.
As these may define important aspects of the problem domain, it is possible
that random part of the knowledge is actually removed. As in the section about
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Figure 7.4: Internal Creek representation of the has colour relation

semantics above, we may end up with inconsistencies between the ontology we
import from, and the resulting Creek knowledge model. The ontologies used
as examples in this work are chosen as not to contain OWL constructs such as
owl:Restriction.

The original Creek framework was implemented in Lisp. The frame-based lan-
guage CreekL was used to describe the semantic net/frame based knowledge in
this system. CreekL allowed for some constraints to be expressed. The current
Java implementation of Creek does not support this however. There is ongoing
research (Stige, 2006) to express constraints in Creek models again. The work
focuses on constraints in general such as cardinality and value constraints, but
also include domain and range restrictions as the ones found in RDF and OWL.

Once this is in place, it could be possible to use constraints in Creek to represent
imported OWL classes defined using restrictions. One might need to discuss the
semantic differences of the Description Logics restrictions, and the constraints
that one choose to add to the Creek system.

7.2.4 Description Logics

Beside restrictions as described above, other aspect of Description Logics are
shown useful in CBR. (Gómez-Albarrán et al., 1999) describes how for exam-
ple the retrieval task in CBR can be performed using Description Logics (DL)
reasoning such as classification and instance checking. Also, jColibri uses DL
classification for organizing the cases in the case base.

The Creek OWL vocabulary is defined using the OWL Full variant. In OWL
DL, the sets of classes and the set of properties must be disjoint. In the
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Creek vocabulary creek:Relation is defined both as an owl:Class and as
an owl:ObjectProperty:

<owl:Class rdf:ID="Relation">
<rdfs:subClassOf rdf:resource="#Thing"/>
<rdfs:subClassOf rdf:resource="#Concept"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

</owl:Class>

This is legal in OWL Full. Also, OWL DL requires separation between the set
of classes and the set of individuals. For example creek:Process is used both
as an instance of creek:Symbol, and a superclass of creek:Method:

<Symbol rdf:ID="Process">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</Symbol>
<owl:Class rdf:ID="Method">
<rdfs:subClassOf rdf:resource="#Process"/>

</owl:Class>

The ontology resulting from the export of an Creek knowledge model will in
general be in OWL Full. Description Logics reasoning — such as with OWL
DL resources — is computational tractable. OWL Full sacrifices effectiveness
to expressiveness. As long as the OWL resources offered by Creek systems are
of the Full variant, this may have a negative influence on the attractiveness and
usability of them for others.

7.3 Further Work

Both Creek and jColibri are frameworks for Knowledge-Intensive Case-Based
Reasoning (KI-CBR). As discussed in section 7.1.3 above, the Creek OWL Vo-
cabulary and CBROnto are in many respects similar. The goal of both of them
is to define a standard vocabulary so that knowledge can be shared and reused.
It would be fruitful to agree upon one single vocabulary for use in KI-CBR.
This should be possible given the common background and approach by these
two systems. One might giving it a cbronto:, cbr: or similar prefix and some
namespace, and defining an ontology that can be used by both the Creek and
jColibri systems. Obvious terms are cbr:Case and cbr:hasSolution and so
on. One need to agree upon a common subset or a common superset of the two
existing vocabularies.

The ISOPOD vocabulary presented in this report uses OWL constructs such as
owl:equivalentClass and owl:equivalentProperty to map a few terms in
the Creek ISOPOD ontology and CBROnto to each other. This should be seen
as a first step towards a KI-CBR vocabulary that can be used by both systems.
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To further integrate Creek with jColibri, some of the reasoning processes in
Creek, such as the explanation and plausible inheritance, could be described as
Problem-Solving Methods.

7.4 Conclusion

In this thesis we have proposed a design for knowledge sharing and reuse for
the Creek architecture and the Semantic Web. A vocabulary for Knowledge-
Intensive Case-Based Reasoning based on the ISOPOD model has been defined.
This together with the import and export parts of the design integrate the Creek
framework with the distributed nature of the Semantic Web.

Knowledge is represented and shared in the form of web ontologies using the
OWL language. OWL and the Semantic Web are World Wide Web Consortium
(W3C) activities. As the Semantic Web and OWL are both new technologies,
it is somewhat difficult to predict their success and eventual breakthrough. If,
however, the Semantic Web evolves as envisioned by Tim Berners-Lee and the
other people behind it, vast amount of knowledge in the form of structured
ontologies could be available on the Web. The ability to handle and under-
stand OWL ontologies in Creek and Case-Based Reasoning will no doubt be an
important feature enhancing knowledge sharing and reuse.
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Appendix A

Creek OWL Representation

A.1 Creek OWL Vocabulary

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY base "http://creek.idi.ntnu.no/owl/creek-vocabulary">

<!ENTITY creek "&base;#">

<!ENTITY dc "http://purl.org/dc/elements/1.1/">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY cbronto "http://gaia.sip.ucm.es/cbronto.owl#">

]>

<rdf:RDF

xmlns = "&creek;"

xml:base = "&base;"

xmlns:creek = "&creek;"

xmlns:owl = "&owl;"

xmlns:rdf = "&rdf;"

xmlns:rdfs = "&rdfs;"

xmlns:xsd = "&xsd;"

xmlns:dc = "&dc;"

xmlns:cbronto = "&cbronto;">

<owl:Ontology rdf:about="">

<owl:versionInfo>0.96-56</owl:versionInfo>

<rdfs:label>Creek OWL Vocabulary of the ISOPOD model</rdfs:label>

<rdfs:comment>

Based on the ISOPOD knowledge model from

jCreek devbuild version 0.96 build 56,

built 22/09/2005

</rdfs:comment>

<dc:creator>Fidjeland, Mikael Kirkeby</dc:creator>
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<dc:title>Creek OWL Vocabulary</dc:title>

<dc:date>2006-02</dc:date>

</owl:Ontology>

<owl:Class rdf:ID="Thing">

<rdfs:label>creek thing superclass</rdfs:label>

<rdfs:comment>

Any thing in the world worth naming or characterising.

Everything we want to talk about IN THE WORLD is a (subclass of) Thing.

Differs from Concept in that everything in a CONCEPTUAL MODEL

is a (subclass of) concept, including Thing itself.

</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Concept">

<rdfs:label>concept</rdfs:label>

</owl:Class>

<!-- ENTITY -->

<owl:Class rdf:ID="Entity">

<rdfs:label>entity</rdfs:label>

<rdfs:subClassOf rdf:resource="#Thing"/>

<rdfs:subClassOf rdf:resource="#Concept"/>

</owl:Class>

<!-- no value -->

<Symbol rdf:ID="NoValue">

<rdfs:label>no value</rdfs:label>

<rdfs:comment>Note; same as owl:Nothing</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Entity"/>

<rdf:type rdf:resource="&owl;Class"/>

</Symbol>

<!-- case -->

<owl:Class rdf:ID="Case">

<rdfs:label>a creek case</rdfs:label>

<rdfs:comment>

a case is used in case-based reasoning

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Entity"/>

<owl:equivalentClass rdf:resource="&cbronto;Case"/>

</owl:Class>

<!-- process -->

<Symbol rdf:ID="Process">

<rdfs:label>process</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

</Symbol>
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<owl:Class rdf:ID="Method">

<rdfs:label>method</rdfs:label>

<rdfs:subClassOf rdf:resource="#Process"/>

</owl:Class>

<owl:Class rdf:ID="Activity">

<rdfs:label>activity</rdfs:label>

<rdfs:subClassOf rdf:resource="#Process"/>

</owl:Class>

<owl:Class rdf:ID="Service">

<rdfs:label>service</rdfs:label>

<rdfs:subClassOf rdf:resource="#Activity"/>

</owl:Class>

<!-- context -->

<Symbol rdf:ID="Context">

<rdfs:label>context</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

</Symbol>

<owl:Class rdf:ID="EnvironmentalContext">

<rdfs:label>environmental context</rdfs:label>

<partOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="PersonalContext">

<rdfs:label>personal context</rdfs:label>

<partOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="MentalContext">

<rdfs:label>mental context</rdfs:label>

<partOf rdf:resource="#PersonalContext"/>

</owl:Class>

<owl:Class rdf:ID="SpatioTemporalContext">

<rdfs:label>spatio-temporal context</rdfs:label>

<partOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="SpatialContext">

<rdfs:label>spatial context</rdfs:label>

<rdfs:subClassOf rdf:resource="#SpatioTemporalContext"/>

</owl:Class>

<owl:Class rdf:ID="TemporalContext">

<rdfs:label>temporal context</rdfs:label>

<rdfs:subClassOf rdf:resource="#SpatioTemporalContext"/>

</owl:Class>

<owl:Class rdf:ID="SocialContext">

<rdfs:label>social context</rdfs:label>

<partOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="TaskContext">

<rdfs:label>task context</rdfs:label>

<partOf rdf:resource="#Context"/>
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</owl:Class>

<owl:Class rdf:ID="PhysicalContext">

<rdfs:label>physical context</rdfs:label>

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="PhysiologicalContext">

<rdfs:label>physiological context</rdfs:label>

<partOf rdf:resource="#PersonalContext"/>

<rdfs:subClassOf rdf:resource="#PhysicalContext"/>

</owl:Class>

<owl:Class rdf:ID="AgentContext">

<rdfs:label>agent context</rdfs:label>

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="TagContext">

<rdfs:label>tag context</rdfs:label>

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="UserContext">

<rdfs:label>user context</rdfs:label>

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<!-- environment -->

<Symbol rdf:ID="Environment">

<rdfs:label>environment</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#EnvironmentalContext"/>

</Symbol>

<!-- situation -->

<Symbol rdf:ID="Situation">

<rdfs:label>situation</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#Context"/>

</Symbol>

<owl:Class rdf:ID="StaticSituation">

<rdfs:label>static situation</rdfs:label>

<rdfs:subClassOf rdf:resource="#Situation"/>

</owl:Class>

<owl:Class rdf:ID="Event">

<rdfs:label>event</rdfs:label>

<rdfs:subClassOf rdf:resource="#Situation"/>

</owl:Class>
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<owl:Class rdf:ID="Action">

<rdfs:label>event</rdfs:label>

<rdfs:subClassOf rdf:resource="#Event"/>

<hasResult rdf:resource="#Goal"/>

</owl:Class>

<!-- role -->

<Symbol rdf:ID="Role">

<rdfs:label>role</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#SocialContext"/>

</Symbol>

<owl:Class rdf:ID="ServiceProvider">

<rdfs:label>service provider</rdfs:label>

<rdfs:subClassOf rdf:resource="#Role"/>

<rdfs:subClassOf rdf:resource="#PhysicalObject"/>

<performs rdf:resource="#Service"/>

</owl:Class>

<owl:Class rdf:ID="User">

<rdfs:label>user</rdfs:label>

<rdfs:subClassOf rdf:resource="#Role"/>

<rdfs:subClassOf rdf:resource="#Agent"/>

<performs rdf:resource="#Service"/>

<hasContext rdf:resource="#UserContext"/>

<hasState rdf:resource="#UserState"/>

</owl:Class>

<!-- physical object -->

<Symbol rdf:ID="PhysicalObject">

<rdfs:label>physical object</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#PhysicalContext"/>

</Symbol>

<owl:Class rdf:ID="Agent">

<rdfs:label>agent</rdfs:label>

<rdfs:subClassOf rdf:resource="#PhysicalObject"/>

<hasContext rdf:resource="#AgentContext"/>

</owl:Class>

<owl:Class rdf:ID="ComputerAgent">

<rdfs:label>computer agent</rdfs:label>

<rdfs:subClassOf rdf:resource="#Agent"/>

</owl:Class>

<owl:Class rdf:ID="TangibleObject">

<rdfs:label>tangible object</rdfs:label>

<rdfs:subClassOf rdf:resource="#PhysicalObject"/>

</owl:Class>

<owl:Class rdf:ID="IntangibleObject">
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<rdfs:label>intangible object</rdfs:label>

<rdfs:subClassOf rdf:resource="#PhysicalObject"/>

</owl:Class>

<owl:Class rdf:ID="ContextTag">

<rdfs:label>tangible object</rdfs:label>

<rdfs:subClassOf rdf:resource="#PhysicalObject"/>

<hasContext rdf:resource="#TagContext"/>

</owl:Class>

<!-- mental object -->

<Symbol rdf:ID="MentalObject">

<rdfs:label>mental object</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#MentalContext"/>

</Symbol>

<!-- state -->

<Symbol rdf:ID="State">

<rdfs:label>state</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

</Symbol>

<owl:Class rdf:ID="NormalState">

<rdfs:label>normal state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="HumanState">

<rdfs:label>human state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="EnvironmentalState">

<rdfs:label>environmental state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="UserState">

<rdfs:label>user state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="AlarmState">

<rdfs:label>alarm state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="ManagementState">

<rdfs:label>management state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="EquipmentState">

<rdfs:label>equipment state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>
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<owl:Class rdf:ID="FailureState">

<rdfs:label>failure state</rdfs:label>

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<!-- task -->

<Symbol rdf:ID="Task">

<rdfs:label>task</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#Entity"/>

<hasContext rdf:resource="#TaskContext"/>

<triggers rdf:resource="#Action"/>

<achieves rdf:resource="#Goal"/>

</Symbol>

<owl:Class rdf:ID="DataManagementTask">

<rdfs:label>data management task</rdfs:label>

<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>

<owl:Class rdf:ID="FormulateNewCase">

<rdfs:label>formulate new case</rdfs:label>

<rdfs:subClassOf rdf:resource="#DataManagementTask"/>

</owl:Class>

<owl:Class rdf:ID="UpdateKnowledgeModel">

<rdfs:label>datamanagement task</rdfs:label>

<rdfs:subClassOf rdf:resource="#DataManagementTask"/>

</owl:Class>

<owl:Class rdf:ID="OperationalTask">

<rdfs:label>operational task</rdfs:label>

<rdfs:subClassOf rdf:resource="#Task"/>

</owl:Class>

<owl:Class rdf:ID="ObserveParameters">

<rdfs:label>observe paramters</rdfs:label>

<rdfs:subClassOf rdf:resource="#OperationalTask"/>

</owl:Class>

<owl:Class rdf:ID="RepairFailure">

<rdfs:label>repair failure</rdfs:label>

<rdfs:subClassOf rdf:resource="#OperationalTask"/>

</owl:Class>

<owl:Class rdf:ID="PredictProblem">

<rdfs:label>predict problem</rdfs:label>

<rdfs:subClassOf rdf:resource="#OperationalTask"/>

</owl:Class>

<owl:Class rdf:ID="ClassifySituation">

<rdfs:label>repair failure</rdfs:label>

<rdfs:subClassOf rdf:resource="#OperationalTask"/>

</owl:Class>

<owl:Class rdf:ID="DetermineMissingInformation">

<rdfs:label>determine missing information</rdfs:label>

<rdfs:subClassOf rdf:resource="#OperationalTask"/>

<rdfs:subClassOf rdf:resource="#ClassifySituation"/>

</owl:Class>
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<owl:Class rdf:ID="ClassifyFailureState">

<rdfs:label>repair failure</rdfs:label>

<rdfs:subClassOf rdf:resource="#ClassifySituation"/>

</owl:Class>

<owl:Class rdf:ID="IdentifyNormalState">

<rdfs:label>identify normal state</rdfs:label>

<rdfs:subClassOf rdf:resource="#ClassifySituation"/>

<rdfs:subClassOf rdf:resource="#PredictProblem"/>

</owl:Class>

<owl:Class rdf:ID="IdentifyAlarmState">

<rdfs:label>identify alarm state</rdfs:label>

<rdfs:subClassOf rdf:resource="#ClassifySituation"/>

<rdfs:subClassOf rdf:resource="#PredictProblem"/>

</owl:Class>

<owl:Class rdf:ID="IdentifyWarningState">

<rdfs:label>identify warning state</rdfs:label>

<rdfs:subClassOf rdf:resource="#ClassifySituation"/>

<rdfs:subClassOf rdf:resource="#PredictProblem"/>

</owl:Class>

<!-- goal -->

<owl:Class rdf:ID="Goal">

<rdfs:label>goal</rdfs:label>

<rdfs:comment>

a particular end state associated with a Task

</rdfs:comment>

</owl:Class>

<!-- java class-->

<owl:Class rdf:ID="JavaClass">

<rdfs:label>Java Class</rdfs:label>

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:ID="Comparator">

<rdfs:label>Comparator</rdfs:label>

<rdfs:subClassOf rdf:resource="#JavaClass"/>

</owl:Class>

<Comparator rdf:ID="URLComparison">

<rdfs:label>URLComparison</rdfs:label>

<comparatorOf rdf:resource="#URL"/>

</Comparator>

<Comparator rdf:ID="SymbolComparison">

<rdfs:label>SymbolComparison</rdfs:label>

</Comparator>

<Comparator rdf:ID="CaseComparison">

<rdfs:label>CaseComparison</rdfs:label>

</Comparator>

<Comparator rdf:ID="StringComparison">

<rdfs:label>StringComparison</rdfs:label>
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<comparatorOf rdf:resource="#String"/>

</Comparator>

<Comparator rdf:ID="NumberComparison">

<rdfs:label>NumberComparison</rdfs:label>

</Comparator>

<!-- string & URL -->

<owl:Class rdf:ID="String">

<rdfs:label>String</rdfs:label>

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:ID="URL">

<rdfs:label>URL</rdfs:label>

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<!-- DESCRIPTIVE THING -->

<owl:Class rdf:ID="DescriptiveThing">

<rdfs:label>descriptive thing</rdfs:label>

<rdfs:comment>

A meta-level thing that represents how other things

(entities and relations) are described and represented.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Thing"/>

</owl:Class>

<!-- parameter -->

<Symbol rdf:ID="Parameter">

<rdfs:label>parameter</rdfs:label>

<rdfs:comment>

Descibes the name and structure of value assignments

</rdfs:comment>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#DescriptiveThing"/>

</Symbol>

<!-- basic representional type -->

<owl:Class rdf:ID="BasicRepresentionalType">

<rdfs:label>basic representional type</rdfs:label>

<rdfs:subClassOf rdf:resource="#DescriptiveThing"/>

</owl:Class>

<owl:Class rdf:ID="Symbol">

<rdfs:label>symbol</rdfs:label>

<rdf:type rdf:resource="&owl;Class"/>

<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>
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<owl:Class rdf:ID="CaseStatus">

<rdfs:label>case status</rdfs:label>

<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>

<CaseStatus rdf:ID="SolvedCase">

<rdfs:label>solved</rdfs:label>

</CaseStatus>

<CaseStatus rdf:ID="ProcessedCase">

<rdfs:label>processed</rdfs:label>

</CaseStatus>

<CaseStatus rdf:ID="UnsolvedCase">

<rdfs:label>unsolved</rdfs:label>

</CaseStatus>

<owl:Class rdf:ID="Importance">

<rdfs:label>importance</rdfs:label>

<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>

<Importance rdf:ID="Necessary">

<rdfs:label>neccessary</rdfs:label>

</Importance>

<Importance rdf:ID="Characteristic">

<rdfs:label>characteristic</rdfs:label>

</Importance>

<Importance rdf:ID="Informative">

<rdfs:label>informative</rdfs:label>

</Importance>

<Importance rdf:ID="DefaultImportance">

<rdfs:label>default importance</rdfs:label>

</Importance>

<Importance rdf:ID="Irrelevant">

<rdfs:label>irrelevant</rdfs:label>

</Importance>

<owl:Class rdf:ID="PredictiveStrength">

<rdfs:label>predictive strength</rdfs:label>

<rdfs:subClassOf rdf:resource="#Symbol"/>

</owl:Class>

<PredictiveStrength rdf:ID="Sufficient">

<rdfs:label>sufficient</rdfs:label>

</PredictiveStrength>

<PredictiveStrength rdf:ID="StronglyIndicative">

<rdfs:label>strongly indicative</rdfs:label>

</PredictiveStrength>

<PredictiveStrength rdf:ID="DefaultPredictiveStrength">

<rdfs:label>default predictive strength</rdfs:label>

</PredictiveStrength>

<PredictiveStrength rdf:ID="Indicative">

<rdfs:label>indicative</rdfs:label>

</PredictiveStrength>

<PredictiveStrength rdf:ID="Spurious">

<rdfs:label>spurious</rdfs:label>

</PredictiveStrength>

<owl:Class rdf:ID="Set">

<rdfs:label>set</rdfs:label>
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<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>

<owl:Class rdf:ID="Table">

<rdfs:label>table</rdfs:label>

<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>

<owl:Class rdf:ID="MathematicalExpression">

<rdfs:label>mathematical expression</rdfs:label>

<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>

<owl:Class rdf:ID="Text">

<rdfs:label>text</rdfs:label>

<rdfs:comment>text realized directly in the owl structure</rdfs:comment>

<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>

<owl:Class rdf:ID="Number">

<rdfs:label>number</rdfs:label>

<rdfs:comment>number realized through xsd:decimal type</rdfs:comment>

<rdfs:subClassOf rdf:resource="#BasicRepresentionalType"/>

</owl:Class>

<!-- RELATION -->

<owl:Class rdf:ID="Relation">

<rdfs:label>relation</rdfs:label>

<rdfs:comment>

all relations defined as owl:ObjectProperty

also used as anonymous node to make n-ary relations</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Thing"/>

<rdfs:subClassOf rdf:resource="#Concept"/>

<rdf:type rdf:resource="&owl;ObjectProperty"/>

<inheritsOver rdf:resource="#instanceOf"/>

<inheritsOver rdf:resource="#subclassOf"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="RelationInverse">

<rdfs:label>inverse relation</rdfs:label>

<owl:inverseOf rdf:resource="#Relation"/>

</owl:ObjectProperty>

<!-- isopod relation -->

<owl:ObjectProperty rdf:ID="isopodRelation">

<rdfs:comment>

Special relation used only internally in the ISOPOD structure

</rdfs:comment>

<rdfs:label>creek isopod relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0
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</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isopodRelationInverse">

<rdfs:label>inverse creek isopod relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#isopodRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInverse">

<rdfs:label>has inverse</rdfs:label>

<rdfs:comment>realized through owl:inverseOf constructs</rdfs:comment>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelation"/>

<rdfs:subPropertyOf rdf:resource="#systemRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="transfers">

<rdfs:label>transfers</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="inheritsOver">

<rdfs:label>inherits over</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#systemRelationInverse"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelationInverse"/>

<owl:inverseOf rdf:resource="#transfers"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<!-- system relation -->

<owl:ObjectProperty rdf:ID="systemRelation">

<rdfs:comment>Relation used by the core Creek system</rdfs:comment>

<rdfs:label>creek system relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="systemRelationInverse">

<rdfs:label>inverse creek system relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#systemRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasDefaultExplanationStrength">

<rdfs:label>has default explanation strength</rdfs:label>
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<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="defaultExplanationStrengthOf"/>

<owl:ObjectProperty rdf:ID="hasImportance">

<rdfs:label>has importance</rdfs:label>

<rdfs:comment>importance of a relation</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

<rdfs:range rdf:resource="#Importance"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPredictiveStrength">

<rdfs:comment>predictive strength of a relation</rdfs:comment>

<rdfs:label>has predictive strength</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

<rdfs:range rdf:resource="#PredictiveStrength"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasCaseStatus">

<rdfs:label>has case status</rdfs:label>

<rdfs:comment>status of a case’s solution</rdfs:comment>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

<rdfs:range rdf:resource="#CaseStatus"/>

<rdfs:domain rdf:resource="#Case"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="caseStatusOf">

<rdfs:label>case status of</rdfs:label>

<owl:inverseOf rdf:resource="#hasCaseStatus"/>

<rdfs:subPropertyOf rdf:resource="#systemRelationInverse"/>

<rdfs:domain rdf:resource="#CaseStatus"/>

<rdfs:range rdf:resource="#Case"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="makesSenseForDomain">

<rdfs:comment>realized through rdfs:domain contstruct</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasValueType">

<rdfs:comment>realized through rdfs:domain contstruct</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="valueTypeOf">

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#hasValueType"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="makesSenseForRange">

<rdfs:comment>realized through rdfs:range contstruct</rdfs:comment>
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<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFromType">

<rdfs:comment>realized through rdfs:range contstruct</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#systemRelation"/>

</owl:ObjectProperty>

<!-- structural relation -->

<owl:ObjectProperty rdf:ID="structuralRelation">

<rdfs:label>structural relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="structuralRelationInverse">

<rdfs:label>inverse structural relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#structuralRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasSubclass">

<rdfs:label>has subclass</rdfs:label>

<rdfs:comment>realized through owl:subClassOf constructs</rdfs:comment>

<owl:inverseOf rdf:resource="&rdfs;subClassOf"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelation"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="subclassOf">

<rdfs:label>subclass of</rdfs:label>

<rdfs:comment>realized through owl:subClassOf constructs</rdfs:comment>

<owl:inverseOf rdf:resource="#hasSubclass"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelationInverse"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="instanceOf">

<rdfs:label>instance of</rdfs:label>

<rdfs:comment>

realized through owl instanziation constructs (rdf:type)

</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#structuralRelationInverse"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInstance">

<rdfs:label>has instance</rdfs:label>

<rdfs:comment>

realized through owl instanziation constructs (rdf:type)

</rdfs:comment>

<owl:inverseOf rdf:resource="#instanceOf"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelation"/>

<rdfs:subPropertyOf rdf:resource="#isopodRelation"/>
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<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPart">

<rdfs:label>has part</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#structuralRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="partOf">

<rdfs:label>part of</rdfs:label>

<owl:inverseOf rdf:resource="#hasPart"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasValue">

<rdfs:label>has value</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#structuralRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="valueOf">

<rdfs:label>value of</rdfs:label>

<owl:inverseOf rdf:resource="#hasValue"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasMember">

<rdfs:label>has member</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#structuralRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="memberOf">

<rdfs:label>member of</rdfs:label>

<owl:inverseOf rdf:resource="#hasMember"/>

<rdfs:subPropertyOf rdf:resource="#structuralRelationInverse"/>

</owl:ObjectProperty>

<!-- functional relation -->

<owl:ObjectProperty rdf:ID="functionalRelation">

<rdfs:label>functional relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="functionalRelationInverse">

<rdfs:label>inverse functional relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#functionalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFunction">

<rdfs:label>has function</rdfs:label>
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<rdfs:subPropertyOf rdf:resource="#functionalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.8

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="functionOf">

<rdfs:label>function of</rdfs:label>

<owl:inverseOf rdf:resource="#hasFunction"/>

<rdfs:subPropertyOf rdf:resource="#functionalRelationInverse"/>

</owl:ObjectProperty>

<!-- associational relation -->

<owl:ObjectProperty rdf:ID="associationalRelation">

<rdfs:label>associational relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="associationalRelationInverse">

<rdfs:label>inverse associtational relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#associationalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="reminding">

<rdfs:label>finding</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="occursIn">

<rdfs:label>occurs in</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="siteOfOccurance">

<rdfs:label>site of occurance</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<owl:inverseOf rdf:resource="#occursIn"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAssociation">

<rdfs:label>has association</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>

<inheritsOver rdf:resource="#hasAssociation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="associatedWith">

<rdfs:label>associated with</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<inheritsOver rdf:resource="#associatedWith"/>

<owl:inverseOf rdf:resource="#hasAssociation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="involves">

<rdfs:label>involves</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>
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</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="involvedBy">

<rdfs:label>involved by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<owl:inverseOf rdf:resource="#involves"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasResult">

<rdfs:label>has result</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="resultOf">

<rdfs:label>result of</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<owl:inverseOf rdf:resource="#hasResult"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="describes">

<rdfs:label>describes</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="describedBy">

<rdfs:label>involved by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<owl:inverseOf rdf:resource="#describes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="achieves">

<rdfs:label>achieves</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="achievedBy">

<rdfs:label>achieved by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

<owl:inverseOf rdf:resource="#achieves"/>

</owl:ObjectProperty>

<!-- temporal relation -->

<owl:ObjectProperty rdf:ID="temporalRelation">

<rdfs:label>temporal relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporalRelationInverse">

<rdfs:label>inverse temporal relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>
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<owl:ObjectProperty rdf:ID="before">

<rdfs:label>before</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="after">

<rdfs:label>achieved by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

<owl:inverseOf rdf:resource="#before"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyEqual">

<rdfs:label>temporally equal</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="during">

<rdfs:label>during</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyContains">

<rdfs:label>temporally contains</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelationInverse"/>

<owl:inverseOf rdf:resource="#during"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyStarts">

<rdfs:label>temporally starts</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyStartedBy">

<rdfs:label>temporally started by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelationInverse"/>

<owl:inverseOf rdf:resource="#temporallyStarts"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyOverlaps">

<rdfs:label>temporally overlaps</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyOverlappedBy">

<rdfs:label>temporally overlapped by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelationInverse"/>

<owl:inverseOf rdf:resource="#temporallyOverlaps"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyMeets">

<rdfs:label>temporally meets</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="temporallyMetBy">

<rdfs:label>temporally started by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelationInverse"/>
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<owl:inverseOf rdf:resource="#temporallyMeets"/>

</owl:ObjectProperty>

<!-- state-effect relation -->

<owl:ObjectProperty rdf:ID="stateEffectRelation">

<rdfs:label>state-effect relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

<hasActivity rdf:resource="#hasState"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="stateEffectRelationInverse">

<rdfs:label>inverse state-effect relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<owl:inverseOf rdf:resource="#stateEffectRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasState">

<rdfs:label>has state</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#stateEffectRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.1

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="stateOf">

<rdfs:label>state of</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#temporalRelationInverse"/>

<owl:inverseOf rdf:resource="#hasState"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="CausalRelation">

<rdfs:label>causal relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#stateEffectRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

<inheritsOver rdf:resource="#CausalRelation"/>

<transfers rdf:resource="#CausalRelation"/>

<inheritsOver rdf:resource="#partOf"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="CausalRelationInverse">

<rdfs:label>inverse causal relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#stateEffectRelationInverse"/>

<owl:inverseOf rdf:resource="#CausalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causes">

<rdfs:label>causes</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.7

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causedBy">

<rdfs:label>caused by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>
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<owl:inverseOf rdf:resource="#causes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causesAlways">

<rdfs:label>causes always</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causedByAlways">

<rdfs:label>caused by always</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<owl:inverseOf rdf:resource="#causesAlways"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causesSometimes">

<rdfs:label>causes sometimes</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causedBySometimes">

<rdfs:label>caused by sometimes</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<owl:inverseOf rdf:resource="#causesSometimes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causesOccasionally">

<rdfs:label>causes occasionally</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.3

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="causedByOccasionally">

<rdfs:label>caused by occasionally</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<owl:inverseOf rdf:resource="#causesOccasionally"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="implies">

<rdfs:label>implies</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.8

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="impliedBy">

<rdfs:label>implied by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<owl:inverseOf rdf:resource="#implies"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="leadsTo">

<rdfs:label>leads to</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>
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<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.1

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="leadToBy">

<rdfs:label>lead to by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#CausalRelation"/>

<owl:inverseOf rdf:resource="#leadsTo"/>

</owl:ObjectProperty>

<!-- case relation -->

<owl:ObjectProperty rdf:ID="caseRelation">

<rdfs:label>case relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="caseRelationInverse">

<rdfs:label>inverse case relation</rdfs:label>

<owl:inverseOf rdf:resource="#caseRelation"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFinding">

<rdfs:label>has finding</rdfs:label>

<owl:inverseOf rdf:resource="#reminding"/>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="findingOf">

<rdfs:label>finding of</rdfs:label>

<owl:inverseOf rdf:resource="#hasFinding"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasSubcase">

<rdfs:label>has subcase</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="subcaseOf">

<rdfs:label>subcase of</rdfs:label>

<owl:inverseOf rdf:resource="#hasSubcase"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

<rdfs:subPropertyOf rdf:resource="#findingOf"/>

<rdfs:subPropertyOf rdf:resource="#reminding"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>
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</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasSolution">

<rdfs:label>has solution</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

<inheritsOver rdf:resource="#causedBy"/>

<owl:equivalentProperty rdf:resource="&cbronto;hasSolution"/>

<rdfs:range rdf:resource="&owl;Class"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="solutionOf">

<rdfs:label>solution of</rdfs:label>

<owl:inverseOf rdf:resource="#hasSolution"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasTask">

<rdfs:label>has task</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="taskOf">

<rdfs:label>task of</rdfs:label>

<owl:inverseOf rdf:resource="#hasTask"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasContext">

<rdfs:label>has context</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="contextOf">

<rdfs:label>context of</rdfs:label>

<owl:inverseOf rdf:resource="#hasContext"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.1

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOutcome">

<rdfs:label>has outcome</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="outcomeOf">

<rdfs:label>outcome of</rdfs:label>

<owl:inverseOf rdf:resource="#hasOutcome"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5
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</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="textualRelation">

<rdfs:label>textual relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="textualRelationInverse">

<rdfs:label>inverse textual relation</rdfs:label>

<owl:inverseOf rdf:resource="#textualRelation"/>

<rdfs:subPropertyOf rdf:resource="#caseRelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasLessonsLearned">

<rdfs:label>has lessons learned</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#textualRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="lessonsLearnedOf">

<rdfs:label>lessons learned of</rdfs:label>

<owl:inverseOf rdf:resource="#hasLessonsLearned"/>

<rdfs:subPropertyOf rdf:resource="#textualRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Pointer">

<rdfs:label>pointer</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#caseRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasURL">

<rdfs:label>has URL</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Pointer"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="pointsAtDatabase">

<rdfs:label>points at database</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Pointer"/>

</owl:ObjectProperty>

<!-- spatial relation -->

<owl:ObjectProperty rdf:ID="spatialRelation">

<rdfs:label>spatial relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="spatialRelationInverse">

<rdfs:label>inverse spatial relation</rdfs:label>

<owl:inverseOf rdf:resource="#spatialRelation"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

</owl:ObjectProperty>
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<owl:ObjectProperty rdf:ID="contains">

<rdfs:label>contains</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#spatialRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="containedIn">

<rdfs:label>contained in</rdfs:label>

<owl:inverseOf rdf:resource="#contains"/>

<rdfs:subPropertyOf rdf:resource="#spatialRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="movesBy">

<rdfs:label>moves by</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#spatialRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="modeOfMovementFor">

<rdfs:label>mode of movement for</rdfs:label>

<owl:inverseOf rdf:resource="#movesBy"/>

<rdfs:subPropertyOf rdf:resource="#associationalRelationInverse"/>

</owl:ObjectProperty>

<!-- enabling relation -->

<owl:ObjectProperty rdf:ID="enablingRelation">

<rdfs:label>enabling relation</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="enablingRelationInverse">

<rdfs:label>inverse enabling relation</rdfs:label>

<owl:inverseOf rdf:resource="#enablingRelation"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="triggers">

<rdfs:label>triggers</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#enablingRelation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.8

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="triggeredBy">

<rdfs:label>triggered by</rdfs:label>

<owl:inverseOf rdf:resource="#triggers"/>

<rdfs:subPropertyOf rdf:resource="#enablingRelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="enables">

<rdfs:label>enables</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#enablingRelation"/>
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<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.1

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="enabledBy">

<rdfs:label>enabled by</rdfs:label>

<owl:inverseOf rdf:resource="#enables"/>

<rdfs:subPropertyOf rdf:resource="#enablingRelationInverse"/>

</owl:ObjectProperty>

<!-- performs -->

<owl:ObjectProperty rdf:ID="performs">

<rdfs:label>performs</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="performedBy">

<rdfs:label>performed by</rdfs:label>

<owl:inverseOf rdf:resource="#performs"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.1

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<!-- has role -->

<owl:ObjectProperty rdf:ID="hasRole">

<rdfs:label>has role</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">1.0

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="roleOf">

<rdfs:label>performed by</rdfs:label>

<owl:inverseOf rdf:resource="#hasRole"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.9

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<!-- has activity -->

<owl:ObjectProperty rdf:ID="hasActivity">

<rdfs:label>has activity</rdfs:label>

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5

</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="activityOf">

<rdfs:label>activity of</rdfs:label>

<owl:inverseOf rdf:resource="#hasActivity"/>

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

<hasDefaultExplanationStrength rdf:datatype="&xsd;decimal">0.5
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</hasDefaultExplanationStrength>

</owl:ObjectProperty>

<!-- comparator -->

<owl:ObjectProperty rdf:ID="comparatorOf">

<rdfs:subPropertyOf rdf:resource="#RelationInverse"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasComparator">

<rdfs:subPropertyOf rdf:resource="#Relation"/>

<owl:inverseOf rdf:resource="#comparatorOf"/>

</owl:ObjectProperty>

<!-- extend with more ..... -->

</rdf:RDF>
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A.2 Example OWL Domain Model

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rdf:RDF [

<!ENTITY base "http://creek.idi.ntnu.no/owl/example/car-model.owl" >

<!ENTITY km "&base;#" >

<!ENTITY car "http://mknows.etri.re.kr/moa/ontology/SamsungCar.owl#" >

<!ENTITY creek "http://creek.idi.ntnu.no/owl/creek-vocabulary#" >

]>

<rdf:RDF

xmlns = "&km;"

xmlns:km = "&km;"

xml:base = "&base;"

xmlns:creek = "&creek;"

xmlns:owl = "http://www.w3.org/2002/07/owl#"

xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">

<rdfs:label>Car example domain model and case base</rdfs:label>

<rdfs:comment>

by Stein L. Tomassen, 2002-06-01.

Modified by Mikael Kirkeby Fidjeland for OWL modelling demonstration, 2005

</rdfs:comment>

<owl:imports rdf:resource="&creek;"/>

</owl:Ontology>

<owl:Class rdf:ID="Car">

<rdfs:label>a car</rdfs:label>

</owl:Class>

<owl:ObjectProperty rdf:ID="requires">

<creek:inheritsOver rdf:resource="#hasPart"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="requiredBy">

<owl:inverseOf rdf:resource="#requires"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPart"/>

<owl:ObjectProperty rdf:ID="partOf">

<owl:inverseOf rdf:resource="#hasPart"/>

<creek:hasDefaultExplanationStrength>0.9</creek:hasDefaultExplanationStrength>

</owl:ObjectProperty>

<owl:Class rdf:ID="Engine">

<partOf rdf:resource="#Car"/>

<requires>

<owl:Class rdf:ID="Oil"/>

</requires>

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>
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</owl:Class>

<owl:Class rdf:ID="Battery">

<partOf rdf:resource="#Car"/>

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasStatus">

<rdfs:range rdf:resource="#Status"/>

<rdfs:subPropertyOf rdf:resource="&creek;hasFinding"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Status">

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>

</owl:Class>

<owl:Class rdf:ID="EngineStatus">

<rdfs:subClassOf rdf:resource="#Status"/>

</owl:Class>

<EngineStatus rdf:ID="EngineRunning">

<rdfs:label>engine is running</rdfs:label>

</EngineStatus>

<EngineStatus rdf:ID="EngineNotRunning">

<rdfs:label>engine is not running</rdfs:label>

</EngineStatus>

<EngineStatus rdf:ID="EngineNotStarting">

<rdfs:label>engine is not starting</rdfs:label>

</EngineStatus>

<owl:Class rdf:ID="BatteryStatus">

<rdfs:subClassOf rdf:resource="#Status"/>

</owl:Class>

<BatteryStatus rdf:ID="BatteryOK">

<rdfs:label>the battery is ok</rdfs:label>

<creek:causes rdf:resource="#EngineRunning"/>

</BatteryStatus>

<BatteryStatus rdf:ID="BatteryEmpty">

<rdfs:label>the battery is empty</rdfs:label>

<creek:causes rdf:resource="#EngineNotRunning"/>

</BatteryStatus>

<BatteryStatus rdf:ID="BatteryLow">

<rdfs:label>the battery is low</rdfs:label>

<creek:causes rdf:resource="#EngineNotRunning"/>

</BatteryStatus>

<owl:Class rdf:ID="Color">

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>

</owl:Class>

<Color rdf:ID="Red"/>

<Color rdf:ID="Green"/>

<Color rdf:ID="Blue"/>

<owl:Class rdf:ID="SomeSolution">

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>

</owl:Class>
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<owl:Class rdf:ID="AnotherSolution">

<rdfs:subClassOf rdf:resource="&creek;Symbol"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasColor">

<rdfs:label>describes the color of an entity</rdfs:label>

<rdfs:subPropertyOf rdf:resource="&creek;hasFinding"/>

<rdfs:range rdf:resource="#Color"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="colorOf">

<owl:inverseOf rdf:resource="#hasColor"/>

<rdfs:domain rdf:resource="#Color"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasEngineStatus">

<rdfs:label>points to the status of a car engine</rdfs:label>

<rdfs:subPropertyOf rdf:resource="&creek;hasFinding"/>

<rdfs:range rdf:resource="#EngineStatus"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="engineStatusOf">

<owl:inverseOf rdf:resource="#hasEngineStatus"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBatteryStatus">

<rdfs:label>points to the status of a car battery</rdfs:label>

<rdfs:subPropertyOf rdf:resource="&creek;hasFinding"/>

<rdfs:range rdf:resource="#BatteryStatus"/>

<creek:defaultStrength>0.5</creek:defaultStrength>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="batteryStatusOf">

<owl:inverseOf rdf:resource="#hasBatteryStatus"/>

</owl:ObjectProperty>

<creek:Case rdf:ID="CarCase1">

<rdfs:label>This is a description of car problem</rdfs:label>

<hasColor rdf:resource="#Red"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#EmptyBattery"/>

<creek:hasSolution rdf:resource="#SomeSolution"/>

<creek:hasCaseStatus rdf:resource="&creek;SolvedCase"/>

</creek:Case>

<creek:Case rdf:ID="CarCase2">

<rdfs:label>This is a description of car problem</rdfs:label>

<hasColor rdf:resource="#Blue"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#BatteryOK"/>

<creek:hasSolution rdf:resource="#AnotherSolution"/>

<creek:hasCaseStatus rdf:resource="&creek;SolvedCase"/>

</creek:Case>

<creek:Case rdf:ID="CarCase3">
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<rdfs:label>This is a description of car problem</rdfs:label>

<hasColor rdf:resource="#Green"/>

<hasEngineStatus rdf:resource="#EngineNotStarting"/>

<hasBatteryStatus rdf:resource="#LowBattery"/>

<creek:hasCaseStatus rdf:resource="&creek;UnsolvedCase"/>

</creek:Case>

</rdf:RDF>
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Appendix B

jCreek API

B.1 Package jcreek.representation.sw

B.1.1 Class CREEK

Vocabulary definitions from http://creek.idi.ntnu.no/owl/creek-vocabulary

B.1.1.1 Declaration

public class CREEK

extends java.lang.Object

B.1.1.2 Fields

• public static OntModel m model

–

The ontology model that holds the vocabulary terms

• public static final String NS

–

The namespace of the vocabulary as a string

• public static final Resource NAMESPACE
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–

The namespace of the vocabulary as a resource

• public static final ObjectProperty structuralRelationInverse

–

• public static final ObjectProperty Relation

–

all relations defined as owl:ObjectProperty also used as anonymous node
to make n-ary relations

• public static final ObjectProperty subclassOf

–

realized through owl:subClassOf constructs

• public static final ObjectProperty hasSubcase

–

• public static final ObjectProperty hasTask

–

• public static final ObjectProperty structuralRelation

–

• public static final ObjectProperty hasFunction

–

• public static final ObjectProperty textualRelation

–

• public static final ObjectProperty memberOf

–

• public static final ObjectProperty hasOutcome

–

• public static final ObjectProperty impliedBy

–

• public static final ObjectProperty activityOf

–

• public static final ObjectProperty instanceOf

–

realized through owl instanziation constructs

• public static final ObjectProperty temporalRelationInverse

–

• public static final ObjectProperty hasValue

–

• public static final ObjectProperty siteOfOccurance

–
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• public static final ObjectProperty hasMember

–

• public static final ObjectProperty caseRelationInverse

–

• public static final ObjectProperty involves

–

• public static final ObjectProperty functionalRelationInverse

–

• public static final ObjectProperty triggeredBy

–

• public static final ObjectProperty functionalRelation

–

• public static final ObjectProperty enablingRelation

–

• public static final ObjectProperty solutionOf

–

• public static final ObjectProperty achievedBy

–

• public static final ObjectProperty causes

–

• public static final ObjectProperty containedIn

–

• public static final ObjectProperty movesBy

–

• public static final ObjectProperty causesOccasionally

–

• public static final ObjectProperty associationalRelationInverse

–

• public static final ObjectProperty describedBy

–

• public static final ObjectProperty caseStatusOf

–

• public static final ObjectProperty spatialRelationInverse

–

• public static final ObjectProperty associationalRelation

–

• public static final ObjectProperty hasResult

–

• public static final ObjectProperty spatialRelation

–
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• public static final ObjectProperty caseRelation

–

• public static final ObjectProperty hasFinding

–

• public static final ObjectProperty contains

–

• public static final ObjectProperty outcomeOf

–

• public static final ObjectProperty temporallyMeets

–

• public static final ObjectProperty occursIn

–

• public static final ObjectProperty reminding

–

• public static final ObjectProperty transfers

–

• public static final ObjectProperty findingOf

–

• public static final ObjectProperty causedByOccasionally

–

• public static final ObjectProperty RelationInverse

–

• public static final ObjectProperty systemRelation

–

Relation used by the core Creek system

• public static final ObjectProperty hasURL

–

• public static final ObjectProperty valueOf

–

• public static final ObjectProperty makesSenseForDomain

–

realized through rdfs:domain contstruct

• public static final ObjectProperty temporallyEqual

–

• public static final ObjectProperty hasInverse

–

realized through owl:inverseOf constructs

• public static final ObjectProperty temporallyContains

–
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• public static final ObjectProperty hasSubclass

–

realized through owl:subClassOf constructs

• public static final ObjectProperty temporalRelation

–

• public static final ObjectProperty describes

–

• public static final ObjectProperty enabledBy

–

• public static final ObjectProperty during

–

• public static final ObjectProperty systemRelationInverse

–

• public static final ObjectProperty inheritsOver

–

• public static final ObjectProperty before

–

• public static final ObjectProperty temporallyMetBy

–

• public static final ObjectProperty roleOf

–

• public static final ObjectProperty Pointer

–

• public static final ObjectProperty taskOf

–

• public static final ObjectProperty hasContext

–

• public static final ObjectProperty implies

–

• public static final ObjectProperty subcaseOf

–

• public static final ObjectProperty involvedBy

–

• public static final ObjectProperty stateEffectRelation

–

• public static final ObjectProperty causesAlways

–

• public static final ObjectProperty performedBy

–
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• public static final ObjectProperty leadToBy

–

• public static final ObjectProperty hasLessonsLearned

–

• public static final ObjectProperty leadsTo

–

• public static final ObjectProperty CausalRelation

–

• public static final ObjectProperty isopodRelationInverse

–

• public static final ObjectProperty hasRole

–

• public static final ObjectProperty modeOfMovementFor

–

• public static final ObjectProperty hasPredictiveStrength

–

predictive strength of a relation

• public static final ObjectProperty partOf

–

• public static final ObjectProperty hasImportance

–

importance of a relation

• public static final ObjectProperty hasValueType

–

realized through rdfs:domain contstruct

• public static final ObjectProperty valueTypeOf

–

• public static final ObjectProperty valueTypeOf2

–

• public static final ObjectProperty hasComparator

–

• public static final ObjectProperty comparatorOf

–

• public static final ObjectProperty causesSometimes

–

• public static final ObjectProperty hasPart

–

• public static final ObjectProperty triggers

–
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• public static final ObjectProperty performs

–

• public static final ObjectProperty stateOf

–

• public static final ObjectProperty hasActivity

–

• public static final ObjectProperty makesSenseForRange

–

realized through rdfs:range contstruct

• public static final ObjectProperty hasInstance

–

realized through owl instanziation constructs

• public static final ObjectProperty after

–

• public static final ObjectProperty enablingRelationInverse

–

• public static final ObjectProperty hasCaseStatus

–

status of a case’s solution

• public static final ObjectProperty CausalRelationInverse

–

• public static final ObjectProperty textualRelationInverse

–

• public static final ObjectProperty associatedWith

–

• public static final ObjectProperty achieves

–

• public static final ObjectProperty temporallyOverlappedBy

–

• public static final ObjectProperty temporallyStartedBy

–

• public static final ObjectProperty causedBy

–

• public static final ObjectProperty isopodRelation

–

Special relation used only internally in the ISOPOD structure

• public static final ObjectProperty temporallyStarts

–
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• public static final ObjectProperty hasSolution

–

• public static final ObjectProperty contextOf

–

• public static final ObjectProperty causedBySometimes

–

• public static final ObjectProperty pointsAtDatabase

–

• public static final ObjectProperty stateEffectRelationInverse

–

• public static final ObjectProperty hasState

–

• public static final ObjectProperty resultOf

–

• public static final ObjectProperty enables

–

• public static final ObjectProperty temporallyOverlaps

–

• public static final ObjectProperty lessonsLearnedOf

–

• public static final ObjectProperty hasFromType

–

realized through rdfs:range contstruct

• public static final ObjectProperty functionOf

–

• public static final ObjectProperty hasAssociation

–

• public static final ObjectProperty causedByAlways

–

• public static final DatatypeProperty hasDefaultExplanationStrength

–

• public static final ObjectProperty defaultExplanationStrengthOf

–

• public static final OntClass UpdateKnowledgeModel

–

• public static final OntClass CaseStatus

–

• public static final OntClass Symbol

–
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• public static final OntClass StaticSituation

–

• public static final OntClass State

–

• public static final OntClass Text

–

text realized directly in the owl structure

• public static final OntClass SpatioTemporalContext

–

• public static final OntClass Process

–

• public static final OntClass PredictiveStrength

–

• public static final OntClass PhysiologicalContext

–

• public static final OntClass TemporalContext

–

• public static final OntClass IdentifyNormalState

–

• public static final OntClass Thing

–

Any thing in the world worth naming or characterising. Everything we
want to talk about IN THE WORLD is a (subclass of) Thing. Differs
from Concept in that everything in a CONCEPTUAL MODEL is a
(subclass of) concept, including Thing itself.

• public static final OntClass TangibleObject

–

• public static final OntClass Table

–

• public static final OntClass ClassifyFailureState

–

• public static final OntClass SpatialContext

–

• public static final OntClass User

–

• public static final OntClass ContextTag

–

• public static final OntClass Task

–

• public static final OntClass MentalContext
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–

• public static final OntClass Entity

–

• public static final OntClass PersonalContext

–

• public static final OntClass BasicRepresentionalType

–

• public static final OntClass ServiceProvider

–

• public static final OntClass Case

–

a case is used in case-based reasoning

• public static final OntClass MentalObject

–

• public static final OntClass RepairFailure

–

• public static final OntClass Agent

–

• public static final OntClass Context

–

• public static final OntClass IntangibleObject

–

• public static final OntClass DataManagementTask

–

• public static final OntClass EnvironmentalContext

–

• public static final OntClass SocialContext

–

• public static final OntClass UserState

–

• public static final OntClass FailureState

–

• public static final OntClass TagContext

–

• public static final OntClass NormalState

–

• public static final OntClass NoValue

–

Note; same as owl:Nothing
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• public static final OntClass DetermineMissingInformation

–

• public static final OntClass Concept

–

• public static final OntClass Role

–

• public static final OntClass Parameter

–

Descibes the name and structure of value assignments

• public static final OntClass OperationalTask

–

• public static final OntClass Importance

–

• public static final OntClass IdentifyWarningState

–

• public static final OntClass FormulateNewCase

–

• public static final OntClass PhysicalObject

–

• public static final OntClass EnvironmentalState

–

• public static final OntClass Method

–

• public static final OntClass PhysicalContext

–

• public static final OntClass Event

–

• public static final OntClass ManagementState

–

• public static final OntClass ObserveParameters

–

• public static final OntClass Activity

–

• public static final OntClass ComputerAgent

–

• public static final OntClass Goal

–

a particular end state associated with a Task

• public static final OntClass EquipmentState
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–

• public static final OntClass UserContext

–

• public static final OntClass AlarmState

–

• public static final OntClass Environment

–

• public static final OntClass AgentContext

–

• public static final OntClass Action

–

• public static final OntClass MathematicalExpression

–

• public static final OntClass Number

–

number realized through xsd:decimal type

• public static final OntClass IdentifyAlarmState

–

• public static final OntClass Set

–

• public static final OntClass ClassifySituation

–

• public static final OntClass Service

–

• public static final OntClass DescriptiveThing

–

A meta-level thing that represents how other things (entities and
relations) are described and represented.

• public static final OntClass PredictProblem

–

• public static final OntClass Situation

–

• public static final OntClass HumanState

–

• public static final OntClass TaskContext

–

• public static final OntClass String

–

• public static final OntClass URL
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–

• public static final OntClass JavaClass

–

• public static final OntClass Comparator

–

• public static final Individual URLComparison

–

• public static final Individual SymbolComparison

–

• public static final Individual CaseComparison

–

• public static final Individual StringComparison

–

• public static final Individual NumberComparison

–

• public static final Individual Indicative

–

• public static final Individual DefaultPredictiveStrength

–

• public static final Individual Characteristic

–

• public static final Individual Informative

–

• public static final Individual Spurious

–

• public static final Individual Sufficient

–

• public static final Individual StronglyIndicative

–

• public static final Individual DefaultImportance

–

• public static final Individual Irrelevant

–

• public static final Individual ProcessedCase

–

• public static final Individual UnsolvedCase

–

• public static final Individual Neccessary

–

• public static final Individual SolvedCase

–
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B.1.1.3 Constructors

• CREEK
public CREEK( )

B.1.1.4 Methods

• getURI
public static String getURI( )

– Usage

∗

The namespace of the vocabulary as a string
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B.1.2 Class OWLexportParser

Does the parsing of the Creek Knowledge Model and extracts the complete model to
OWL.

B.1.2.1 Declaration

public class OWLexportParser

extends java.lang.Object

B.1.2.2 Constructors

• OWLexportParser
public OWLexportParser( KnowledgeModel km, java.lang.String

namespace )

– Usage

∗ Does set some basic settings before any parsing may begin.

– Parameters

∗ km - the Knowledge Model in Creek to export
∗ namespace - the namespace for the ontology

B.1.2.3 Methods

• addConcept
public OntResource addConcept( Entity kmConcept )

– Usage

∗ Adds a Creek concept as a Class to OntModel

Adds all relations from this concept

Recursive call to all relations from and concepts related to this
concept

– Parameters

∗ kmConcept - Creek Entity

– Returns - The OntClass that were added to the OntModel

• addProperty
public Property addProperty( Entity kmRelation )
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– Usage

∗ Adds a Creek relation as an ObjectProperty to OntModel if it is not
added already

Adds owl:inverseOf, rdfs:subPropertyOf,
creek:hasDefaultExplanationStrength, rdfs:label and rdfs:comment
properties of the relation

Recursive call to parent property and inverse property

– Parameters

∗ kmRelation - Creek Relation

– Returns - The OntModel Property that were added, or the
corresponding property if it is allready added.

• changeName
public String changeName( java.lang.String name )

– Usage

∗ Translates a name from Creek form to OWL/Java etc. form, e.g.
’has finding’ ->’hasFinding’

– Parameters

∗ name - Name in Creek form

– Returns - name in OWL/Java etc form

• createOntology
public void createOntology( )

– Usage

∗ Starts the creation of the OWL document.

• nameToURI
public String nameToURI( java.lang.String name )

– Usage

∗ Translate Creek Entity name to URI.

Removes spaces and capitalize character after space in names

Adds namespace to name, using default namespace

If name is already a valid URIref, just return it

– Parameters

∗ name - Entity name in Creek knowledgemodel

– Returns - URIref for Entity

• nameToURI
public String nameToURI( java.lang.String name,
java.lang.String namespace )

– Usage
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∗ Translate Creek Entity name to URI.

Removes spaces and capitalize character after space in names

Adds namespace to name

– Parameters

∗ name - Entity name in Creek knowledgemodel
∗ namespace - Namespace URI

– Returns - URIref for Entity

• write
public void write( )

– Usage

∗ Writes the Jena OntModel to stdout

• write
public void write( java.lang.String fileName )

– Usage

∗ Writes the Jena OntModel to disk

– Parameters

∗ fileName - Path to file
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B.1.3 Class OWLimportParser

Does the parsing of an OWL ontology and imports it into a Creek km.

Creates a new empty ISOPOD model before importing

B.1.3.1 Declaration

public class OWLimportParser

extends java.lang.Object

B.1.3.2 Constructors

• OWLimportParser
public OWLimportParser( java.lang.String importURI,
KnowledgeModel km )

– Usage

∗ Does the parsing of an ontology and imports it into a Creek
knowledge model

– Parameters

∗ importURI - the URI of the ontology
∗ km - the knowledge model to import into

B.1.3.3 Methods

• addConcept
public String addConcept( OntResource concept )

– Usage

∗ Adds a OntResource (Class or Individual) from the ontology as an
Enitiy in the knowledge model

– Parameters

∗ concept - the Class or Individual from the Ontology to add

– Returns - the name of the entity added

• addRelationType
public String addRelationType( OntProperty prop )

– Usage

∗ Adds the properties of the ontology as new relation types in Creek
Adds inverse, super property, default explanationstrength, transfers
and inherits over relations
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– Parameters

∗ prop - the Ontology property to add

– Returns - the name of the property added

• importOntology
public void importOntology( )

– Usage

∗ Starts the importing. Goes through all ObjectProperty’s,
DatatypeProperty’s, Class’es and Individual’s in the model and adds
them to the knowledge model.

• URItoName
public String URItoName( java.lang.String URI )

– Usage

∗ Translates a URI to the format used in jCreek

– Parameters

∗ URI - Name of resource

– Returns - Name in the form used internally in jCreek
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B.2 Package jcreek.cke.importexport.owl

B.2.1 Class OWLexport

This class is the one having the overall control of the export process of the
Knowledge Model of Creek to OWL ontology representation

Copied from JCXMLexport by Tomassen, 2002

B.2.1.1 Declaration

public class OWLexport

extends java.lang.Thread
implements jcreek.cke.importexport.ProcessControlInterface

B.2.1.2 Constructors

• OWLexport
public OWLexport( java.awt.Frame parent,
jcreek.representation.KnowledgeModel km )

– Usage

∗ Constructor for OWLexport, which does set some basic settings
before the process of exporting the Knowledge Model may start.

– Parameters

∗ parent - the parent frame window.
∗ km - the JavaCreek knowledge model to export the model to.

B.2.1.3 Methods

• abortProcess
public void abortProcess( )

– Usage

∗ Aborts the export process.

• isAborted
public boolean isAborted( )

– Usage

∗ Checks if the process was aborted;

– Returns - true if the porcess was aborted, otherwise false.
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• startExport
public void startExport( )

– Usage

∗ Starts the process by first showing the FileChooser dialog then starts
the export process, by first starting the thread and gives feedback of
the process to the OWL status dialog.
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B.2.2 Class OWLimport

This class is the one having the overall control of the import process of OWL files to
the Knowledge Model of Creek.

Copied from JCXMLimport, Stein L. Tomassen, NTNU 2002

B.2.2.1 Declaration

public class OWLimport

extends java.lang.Thread
implements jcreek.cke.importexport.ProcessControlInterface

B.2.2.2 Constructors

• OWLimport
public OWLimport( java.awt.Frame parent,
jcreek.representation.KnowledgeModel km )

– Usage

∗ Constructor for OWLimport, which sets some basic settings.

– Parameters

∗ parent - the parent frame window.
∗ km - the JavaCreek knowledge model to import the model to.

B.2.2.3 Methods

• abortProcess
public void abortProcess( )

– Usage

∗ Aborts the import process. This is the implementation of the
method from ’ProcessControlInterface’. This method could be used
by other classes to abort a process.

• isAborted
public boolean isAborted( )

– Usage

∗ Checks if the process was aborted;

– Returns - true if the porcess was aborted, otherwise false.

• startImport
public void startImport( )
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– Usage

∗ Starts the process by first showing the URI input dialog then starts
the import process, by first starting the thread and gives feedback of
the process to the OWL status dialog.
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