
Master's thesis
Programme of study:

Supervisor:
Co-Supervisor(s):

Master of Science in Computer Science

Terje Sanderud Haaland

Virtual Reality Techniques in
the Domain of Surgical
Simulators

Trondheim, 2006

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Torbjørn Hallgren, IDI
Odd Erik Gundersen, IDI

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

MASTEROPPGAVE

Kandidatens navn: Terje Sanderud Haaland

Fag: Datateknikk

Oppgavens tittel (norsk): Teknikker for virtuell virkelighet med hensyn på
kirurgisimulatorer

Oppgavens tittel (engelsk): Virtual reality techniques in the domain of Surgical
simulators

Oppgavens tekst:

Over the last decades, modern technology continously has offered new
applications within medicine. The new technology have contributed both in
training of medical personnel and in operative environments.Computer graphics,
Haptic interface and Physical modeling are all essential components of a surgical
simulator.

This thises will study the priciples and concepts regarding surgical simulators.
The main goal will be to develop a prototype of a surgical simulater where the
main focus should be on ceeping the design conceptually clear and easy to
understand. The prototype should be easy to expand and change.

Oppgaven gitt: 29. september 2005

Besvarelsen leveres innen: 6. april 2006

Besvarelsen levert: 6. april 2006

Utført ved: Institutt for datateknikk og informasjonsvitenskap.

Veileder: Odd Erik Gundersen

Trondheim, 6.april 2006

Torbjørn Hallgren
Faglærer

ii

Abstract

Virtual reality based surgical simulators offer an elegant approach to enhanc-
ing traditional training in surgery. For interactive surgery simulation to be
useful, however, there are several requirements needed to be fulfilled. A good
visualisation is needed. The physical behavior of an organ must be modeled
realistically. Finally there is a need of a device capable of force feedback to
realise the possibility of “feeling” a virtual object.

In this thesis a basic prototype was developed to demonstrate all necessary
concepts needed in a surgical simulator. The study was aimed at finding
a suitable architecture and design for development of a surgical simulation
application which is conceptually clear and easy to comprehend. Moreover,
it was considered important that the prototype can provide a good basis for
further experimentation. The main focus was on finding a satisfactory method
that demonstrates the main concepts, while keeping the complexity as low as
possible.

In the developed prototype, the visual impression of 3D is present, the haptic
feedback works satisfactory, and the physical modelling proved to be feasi-
ble for simulating a virtual object. The object oriented design resulted in a
compact and clear application, where changes in the implementation can be
applied locally without unwanted implications elsewhere in the code.

Due to these qualities, implementing multi resolution and cutting was an easy
task. Only minor changes to limited parts of the application was needed.
This shows its suitability as a starting point for future experimenting and
demonstration of consepts, in the field of surgical simulation.

iv

Preface

This study is carried out as a part of Terje Sanderud Haaland’s MSc studies at
the Norwegian Uneversity of Technology and science, Faculty of Information
Technology, Mathematics and electrical engeneering, Department of Computer
and Information Science. The study is the result of a master thesis in the field
og Algorithm constructions and Visualisation.

I would like to thank my supervisor Odd Erik Gundresen for his guidance
throughout the development, and for his excellent advice on the writing the
thesis.

I would also like to thank Silje Kufaas Tellefsen for invaluable encouragment
and support reading through the study. I would like to thank Geir Kjetil
Ferkingstad Sandve for many hours of helpful guidance and rich discussions.
Finally I would like to thank H̊avard Sjøvold for help and support during the
main development periode for the prototype.

Trondheim 6. April 2006

Terje Sanderud Haaland

vi

Contents

1 Introduction 1

1.1 Surgical simulators . 1

1.2 Objective . 3

1.3 Structure of the report . 3

2 Background 5

2.1 Concepts regarding surgical simulators 5

2.2 Summary . 7

3 Related research 9

3.1 Introduction . 9

3.2 Spring mass models . 10

3.3 Finite element modelling . 11

3.4 Multi resolution . 13

3.5 Hybrid models . 13

3.6 Cutting . 14

3.7 Summary . 17

viii CONTENTS

4 Conceptual design 19

4.1 Introduction . 19

4.2 Geometrical representation . 20

4.2.1 Cubes . 21

4.2.2 Vertices . 22

4.3 Multi-resolution . 23

4.4 Physical simulation . 24

4.5 Cutting . 25

4.6 Summary . 26

5 Implementation 27

5.1 Introduction . 27

5.2 Haptic interface . 27

5.3 Cubes . 29

5.4 Vertices . 31

5.5 Simulation . 32

5.6 Traversing and searching . 33

5.7 Multi resolution . 34

5.8 Cutting . 37

5.9 Visualisation . 39

5.10 Summary . 39

6 Discussion and conclusion 41

6.1 Discussion . 41

CONTENTS ix

6.2 Conclusion . 43

6.3 Future work . 44

x CONTENTS

Chapter 1

Introduction

In this chapter we present the subject of this thesis. In section 1.1 we give
a short introduction to the topic Surgical Simulators. In section 1.2 we state
the objective and the requirements of this thesis. At the end we present the
structure of this paper.

1.1 Surgical simulators

Modern computer science continuously offers new applications within medicine.
Both within the training of medical personnel as well as during surgical inter-
vention the new technology has developed and improved the routines.

Based on the scientific accomplishments of flight simulators and 3-D graphics
visualisation, the virtual reality for surgical simulation and medical training
began in the late 1980’s [SJ98]. At this time, the systems were neither es-
pecially realistic, nor interactive. They were mainly used for examining the
human anatomy and foreseeing consequences of medical interventions. Only
some years later there was an intense progress in this area, where access to
real human data was obtained. The “Visible Human Project” was a project
producing one of the first data set containing anatomical data from a whole
human being.

Moreover, there was also a vast development in the area of haptic devices, a
device that let the user move a tool in three dimensions which aigain controls a

2 CHAPTER 1. INTRODUCTION

virtual tool on the computer screen. The haptic device is capable of producing
physical force in all three degrees of freedom, providing the feeling of of a
virtual object. Together with visual feedback, haptic devices are powerful
tools in a wide range of applications, including medicine.

Training of surgeons is a major motivation for developing surgical simulators.
Education of medical personnel today has a great potential for improvement.
Currently most of the training is done on dead bodies and animals. The
differences between dead and living tissue taken into consideration, this is not
very satisfactory. On top of this the human and animal anatomy is not alike.
Due to these weaknesses, there is a great need for students to operate on
live persons under the supervision of experienced surgeons. But the risks and
costs this involve, make it desirable to reduce the need of performing operations
under supervision as much as possible. Although surgical simulators never can
fully compensate for the training on live humans, they are expected to become
as important for training of medical personnel as flight simulators are for pilots
today [BTB+04].

Bro-Nielsen [BN98] point out three essential components that a surgical sim-
ulator needs:

Computer graphics: Graphics is needed to render realistic views of the vir-
tual surgery scene and provide the surgeon with a visual illusion of reality.

Haptic interface: Haptic interfaces can provide the users with a physical
sensation of touching and sensing objects in the virtual scene using force-
feedback techniques. Use of surgical simulations requires that the opera-
tor ”feel” the resistance of the object that is being virtually manipulated.
That is, the action of the user results in a reaction, reflecting the me-
chanical characteristics of the virtual object.

Physical modeling: Physical models provide the surgeon with a behavioural
illusion of reality. By modeling the visco-elastic deformation of human
skin, like the fluid flow of blood from a wound, the models ensure that
the virtual scene reflects the behaviour of the physical reality.

Implementing a realistic, full functioning, surgical simulator that fulfills all of
these requirements, would be far to extensive for a Master thesis.

1.2. OBJECTIVE 3

1.2 Objective

The objective of this thesis is to design and implement a basic prototype of a
surgical simulator. This prototype should be suitable for reuse and experiment-
ing by future students and researchers.To meet these demands, the following
requirements are put forward:

• Virtual objects should be visualised in 3D

• A Haptic module making it possible to touch and feel virtual objects in
the scene

• Physical simulation of a virtual object. That is, the object must respond
when touched by a virtual tool controlled by the haptic device. E.g. like
an organ would respond to a surgical tool.

• The virtual object model must be able to represent the “inner matter”
of an object and not just the surface.

The main goals are that the prototype to a high degree holds the following
qualities:

• Conceptually clear and easy to comprehend

• Easy to alter and expand

1.3 Structure of the report

This report is structured as follows:

- Chapter 1, Introduction presents the domain, problems and objective of
the master thesis.

- Chapter 2, Background gives an overview of the background theory of
the field of surgical simulators.

- Chapter 3, Related research presents different research related to the
objective of the master thesis.

4 CHAPTER 1. INTRODUCTION

- Chapter 4, Conceptual design describes and discusses the overall archi-
tecture and design in accordance with the requirements.

- Chapter 5, Implementation documents and substantiates the implemen-
tation of the prototype.

- Chapter 6, Discussion and conclusion evaluates the work in relation with
the objectives, concludes the thesis and discusses future work.

Chapter 2

Background

In this chapter we present the background theory. First, we name some re-
quirements for a surgical simulator. Then we give an overview over methods
and techniques used to design and build such an application.

2.1 Concepts regarding surgical simulators

As mentioned in chapter 1, there has been a vast development of technologies
related to surgical simulators over the last years.

In development of surgical simulators, physical simulation has proven the most
difficult task. During contact between the user guided virtual tool and the
physically modelled virtual object under consideration, visual deformations
and haptic feedback must be calculated and presented to the user. Whereas
the visual feedback only need an update frequency of about 30 Hz to be realistic
[BTB+04], the haptic feedback has much greater demands. Our tactile senses
need an update frequency of about 300 Hz if the feedback is going to appear
realistic [CDA99].

Organic tissue has a complex anatomy, which has proven difficult to recon-
struct in a data model. In addition to the physical modelling, high resolution
is required for visual realism. If the material should appear natural, our data
model should take into account non-linearity, anisotropy and visco-elasticity
[BTB+04].

6 CHAPTER 2. BACKGROUND

In order to simulate the physical behaviour of organic objects, there are mainly
two different methods used [SHS01]:

Spring-Mass: A common approach is to regard the material as elastic. The
most popular way of realising this is through a spring-mass system
[WH04]. Objects are then modeled as a discretization of points. The
points are connected to its neighbours through springs to simulate inter-
action throughout the object. This could be fulfilled in several different
ways. E.g. if you have a surface model of an object consisting of triangles
(which is very common), you could simply model all the vertices as mass
points and all the edges as springs. More complex modeling schemes
exists to try to improve realism.

Finite element method: For the best possible realism, it is necessary to
make models based on the law of physics. Finite element methods (FEM)
are often use to get a more realistic simulation of objects [SHS01]. These
methods are based on actual stiffness and other parameters of the soft
tissue being modelled. These methods are also well approved in other
disciplines, like computational fluid dynamics, and are extensively used
to model e.g. strain and stress in different materials.

Like with the physical behaviour, there are different ways of modeling the
spatial extent of the organic objects. The most common way is to use a
tetrahedron mesh due to its good adaptability to any object shape [rKWP04].
It is also often used in a way where the surface is extracted directly as all
the tetrahedral faces that is not adjacent to any other tetrahedron. If more
regular modeling primitives, like cubes, are used, one normally need to model
the surface explicitly, and attach this to the volume model in a consistent way.

As mentioned above, for a simulation to appear realistic, we need to keep the
visualisation and haptic rendering loops running at respectively 30 and 300
Hz. An important issue therefore becomes computational power. A way to
concentrate the computational effort on what’s important, is to use a multi
resolution model. Another technique, is to make use of different simulation
methods in the area of interest and areas more distant to the interaction.

Cutting in an organ, is an important issue of surgical procedures. To accom-
plish this, there are some challenges that must be overcome. E.g. the cutting

2.2. SUMMARY 7

has an immediate impact on the topology of the mesh representing the or-
gan. This leads to different updating issues, depending on both the spatial
modelling and the simulation method used.

To minimize these problems and help keeping the amount of data in a reason-
able quantity, some make use of several layers of surfaces, or other ”modelling
tricks” to depict a volume [BM02]. This gives you the most important volume
properties without having to explicitly model the entire volume.

2.2 Summary

In this chapter we have looked at the genaral background to the field of surgical
simulators. We give an overview of the different concepts and subjects in this
area. This includes physical simulation methods, ways of modelling the spatial
extant of virtual objects, issues regarding computational power, and challanges
when cutting in virtual models is to be supported.

8 CHAPTER 2. BACKGROUND

Chapter 3

Related research

In this chapter we study previous work on different subjects related to surgival
simulators. In section 3.2 and section 3.3 we look in to the to leading ways of
representing the physical behavior of virtual objects. In section 3.4 we study
multi-resolution techniches, before we in section 3.5 briefly discusses hybrid
models. Finally we study cutting techniques in section 3.6.

3.1 Introduction

As mentioned in chapter 1, [BN98] points out three essential components of a
surgical simulator, namely Computer graphics, Haptic interface and Physical
modeling.

There are countless ways and techniques for visualising our simulation on a
computer screen. But it is not the objective of this thesis to explore the
different possibilities when it comes to the actual visualisation. We therefore
use some common approaches which will be described in chapter 5.

There are also different ways of doing the haptic rendering, but almost all
articles that discusses some form of surgical simulation, bases their haptic on
a phantom device. As this part is also not the main objective of this theses,
we will simply use the phantom desktop and its ”open haptic” interface for this
purpose.

10 CHAPTER 3. RELATED RESEARCH

When it comes to the physical modeling, there are, as mentioned in chapter 2,
mainly to ways of doing this: The spring-mass model which is the easiest to
implement and which typically requires less computational power. The FEM
models which aim to model more accurate the physical behaviour of an object.

In order to consentrate the computational power where it is needed, a technique
often used is multi-resolution. By having a finer mesh representing relevant
parts of the virtual object, valuable cpu-time is not wasted on uniteresting
partts of the object.

Cutting in a virtual object is a comlicated task and several technique have
been developed to achieve this matter. Different techniques are elaborated in
section 3.6.

3.2 Spring mass models

[GCMS00] presents a spring-mass system. They use a particle representation
defined on a tetrahedral decomposition of their organ model. Each particle is
described by its mass, position and velocity. The behaviour of the system is
then governed by the well known Newtonian second law:

Mẍ + Dẋ + Kx = f (3.1)

Given a tetrahedral mesh, their particle system is simply obtained by consider-
ing each vertex as a particle and each edge as a linear elastic relation between
the two particles. Then the mass is distributed among the particles according
to the size of the incident tetrahedrons.

[Xav95] describes a spring-mass system that simulates cloth objects. The
physics are based on elastically deformable models, but the simulation is im-
proved to take into account the non-elastic properties of woven fabrics. The
cloth object is first discretized into a set of masses and springs. In ares of
locally high stress, the result becomes non realistic in such simulations. Nor-
mally this is solved by increasing the stiffness of the springs that are elongated
to much. But this is a method that drastically increases the computational
costs. Dynamic inverse procedures are presented as a solution to this problem.
The spring becomes a max elongation factor. E.g. 10%. If a spring is elon-
gated more than this, the to endpoints of the spring are move towards each

3.3. FINITE ELEMENT MODELLING 11

other such that the spring elongation match the max elongation factor. If one
of the mass points are fixed, only the other endpoint of the spring is moved.

In [Mos04] Moseg̊ard presents a method he calls local relaxation (LR) Spring
Mass model. This model is based on a static formulation of the Spring mass
problem. After evaluating different systems with surgeons, Moseg̊ard made the
conclusion that a dynamic simulation does not offer any better realism over a
static simulation when regarding surgery simulations. In a static simulation
there are no notion of mass, damping or inertia. For each force there is one
equilibrium, and to simulate the system this equilibrium is what you calculate.
It is done by seeking the configuration such that for internal forces g and
external forces f for nodes j and i:

∑
j

gij − fi = 0, for all i

That is, when the external and internal forces are in equilibrium for all nodes.
The internal forces are calculated as linear springs (default length l and spring
stiffness k):

gij = kij(lij −
∥∥xi − xj

∥∥)
xi − xj∥∥xi − xj

∥∥
In [VS02] Vassilev and Spanleg presents a volume preserving mass spring
method for real time simulation of deformable solids. They introduce a new
type of spring, named support-spring which models the “matter” inside the
object. This preserves the object’s volume without the need of explicit volume
calculations during simulation. To achive this affect they model such a spring
from all points in the object to the objects centre. If the sum of the length of
all these springs at a given time is less then at start of simulating, the springs
induces a force outwards on all the points. And opposite if the sum is greater
than at start of simulation.

3.3 Finite element modelling

When simulating dynamic behaviour, spring-mass and other adaptive ap-
proaches may result in unwanted artifacts in the models behaviour.

12 CHAPTER 3. RELATED RESEARCH

Debunne et al. [DDCB01] presents a finite element multi resolution model for
animating dynamic deformations of a visco-elastic object in real-time. The
model consist of a continuous differential equation that is solved using a local
explicit finite element method. A strain tensor representation of the physi-
cal forces allows simulation of large displacements without unwanted physical
artifacts. Thus, the main advantage over other methods, is the avoidance of
vibration at different frequencies, even if different resolutions are applied.

Serby et al [SHS01] assert that the most accurate procedures for modeling
elastic deformations of tissue using the finite element method to solve the
governing mechanical equations. In each element positions and displacements
are interpolated from discrete nodal values. For every element, the partial
differential equation governs the motion of material points of a continuum. A
discrete system of differential equations yields [SHS01]:

Mü + Du̇ + Ku = r (3.2)

where:

• u is the vector of nodal displacements

• M is the mass matrix

• C is the damping matrix

• K is the stiffness matrix

• r is the vector of external node forces

However, several interventions may require topological changes of the finite
element mesh, thus making a non-trivial remeshing step necessary. A method
for simulating such interventions is presented in [SHS01]. The central idea is
to not introduce new nodes, but to displace the existing ones to account for
the topological changes. After the displacement of the nodes/elements, the
mesh is homogenized to avoid tiny elements which destabilize the explicit time
integration necessary for solving the equations of motion. The soft tissue de-
formations are determined using a complex, non-linear, explicit finite element
model.

3.4. MULTI RESOLUTION 13

3.4 Multi resolution

[GCMS00] presents a multi-resolution (MR) method. The main contribution
by Ganovelli et al in this work is their way of utilizing a MR representation
of their object. The MR models of the objects are built in a pre-processing
step. The actual representation of the object, that is; which part of the object
is represented by which resolution, are changed dynamically throughout the
simulation.

A framework called multi resolution triangulation (MT) is used which was
introduced by [6] and [14] in [GCMS00]. A MR model is built by step by
step refining or simplifying an original mesh. As Ganovelli notes himself, the
update of the MR data structure introduces some time overhead.

In the finite element model presented by Debunne [DDCB01], a non-nested
multi resolution hierarchy of tetrahedral meshes is used to represent the de-
formable body, since they can accurately fit arbitrary geometry. The local
resolution is determined by a quality condition that indicates where and when
the resolution is too coarse. It is supposing that the motion of a node can
be computed from values (positions or displacements) at neighbouring nodes.
As the object moves and deforms, the sampling is refined to concentrate the
computational load into the regions that deform the most. In this, the space
and time sampling is automatically adapted locally to concentrate the compu-
tational effort where and when it is needed the most.

3.5 Hybrid models

Combining a finite element method and the tensor mass method is one way to
allow for real time simulate and at the same time allow cutting and tearing.
Delingette [DCA99] presents a hybrid model. One model based on linear
elasticity theory and one model based on finite elements modeling constitute
this hybrid model.

The first model pre-computes the deformations and forces applied on a finite
element model. This supports the deformation of large structures in real-time.
This model does not allow any topology change of the mesh, thus forbidding
the simulation of cutting.

14 CHAPTER 3. RELATED RESEARCH

A second physical model is analogous to spring-mass models for linear elastic-
ity. This model is based on a dynamic law of motion and allows volumetric
deformations and cuttings. However, it has to be applied to a limited number
of nodes to run in real-time.

Those two approaches combined into a hybrid model allows real time defor-
mations of large enough anatomical structures. This model is, however, only
valid for small displacements.

For this reason the above mentioned hybrid model is further improved by in-
corporating non-linear elasticity [PDA01]. This property improves the realism
of the deformations and solves the problems related to the shortcomings of lin-
ear elasticity. The author also addresses the problem of an isotropic behaviour
and volume variations by adding incompressibility constraints to the model.
This solves the problem of rotational invariance of deformations and takes into
account the incompressibility properties of biological tissues. Delingette con-
cludes that this adds realism to the model by improving its bio mechanical
realism and thus increases its impact in the learning and training processes.

3.6 Cutting

Cutting is an important aspect of surgical simulation. There are a lot of
different ways to attack the relatively difficult problem of cutting. In [BSM+02]
Bruyns et al. presents different cutting techniques and group them after how
they handle different tasks. [Søb05] has made a good survey of this.

Definition of the cut path: The easiest way of doing this is finding the
starting- and endpoint of the cut. Then you open the edges between
these to points. Another approach would be to directly trace the virtual
tool as it is dragged through the object. The chosen method depends of
the wanted/needed realism.

Primitive removal and re-meshing: A simple method for this is to simply
remove all adjacent faces to the cut-path. This is however not very
realistic, and also here the method chosen depends on the needed realism.
A more realistic approach here would be to split the faces adjacent to
the cutting path.

3.6. CUTTING 15

Number of new primitives created: [BSM+02] states that existing cut-
ting techniques handle remeshing by either:

(a) disallowing new primitives,

(b) allowing unnecessary new primitives, or

(c) creating a minimal number of new primitives.

where one simply select a subset of the mesh traversed by the tool to
represent the cut mesh.

When re-meshing is performed: Generation of new primitives can be done
at different times during a cutting procedure. You can generate new
primitives while the tool and the primitive are in intersection, after the
tool is no longer intersecting the primitive, or after the tool has changed
direction. It is easiest to make the new primitives after the cutting is
ended, but it is visually more realistic to generate new primitives on the
fly, as the cutting propagates.

Representation of the cutting tool: The most common representation is
a single point. Other representations can be line segments, triangles or
shapes consisting on several primitives.

A cutting procedure that do not produce any new faces is presented in [LD04].
This is achieved by snapping nodes lying on edges intersecting the cutting
trajectory, to the cut path.

After initial collision of tool with the organ, the nearest vertex is snapped to the
collision point. As the cut progresses the vertices nearest to the intersection
point of the tool with the underlying polygon edge are snapped to the tool
path.To approve visual realism they have implemented a local refinement of
the mesh surrounding the intersection of the tool.

Finally they create a “cutting gutter” to make the illusion of cutting in a
volume model. They simply create new triangles from the cutting edge into
the object. For the physical simulation they use a mesh free method known as
the point collocation-based method of finite spheres developed for minimally
invasive surgery.

[ZSJ] shows a cutting algorithm that allows generation of new faces. They
have different states of a cutting procedure. Where the cutting starts and

16 CHAPTER 3. RELATED RESEARCH

ends, only one edge of the primitive (triangle) is intersected and one algorithm
for subdividing such a triangle is called. All the triangles in between the start
and end triangle have two of their edges cut, and an algorithm for subdividing
such triangles is than called.

Also in this article new triangles are generated inside the cut to give an im-
pression of cutting in a volumetric mesh. The article also discusses how to join
to separate cuts (e.g. a cut looping back to its starting position).

In [ZSJ04] Zhang et al. present a an improvement to their above presented
approach. Here a local refinement technique is used as they cut through a
triangle. The triangle intersected by the virtual tool is deleted from the mesh
and replaced by a “patch” consisting of tree smaller triangles. Then these
triangles are divided according to how the virtual tool propagates through the
patch. This interim subdividing gives a much more realistic impression of the
cutting, as the cut much more gives the impression of being opened as you cut.
When the tool trajectory has passed through the hole originally triangle, the
patch is replaced by a single cut triangle. This also discusses how an object
can be split into two or more separate objects if one cuts completely part the
originally object.

[BM02] presents schemes for real-time generalized mesh cutting in objects of
arbitrary topology. They present a method for cutting in single surface mod-
els, multiple surfaces models and a method for cutting in hybrid models in
addition to methods for volumetric models. This article also discusses the use
of different virtual tools consisting of one or more sharp edges. The cutting
occur against these sharp edges. The sharp edges of the tools are enclosed by
bounding boxes, and collision detection is performed against the part of the
object contained in this bounding box. The decision whether to cut a prim-
itive is dependent on its state. These states are stored as information in the
primitive class and used during re-meshing. For example, if the primitive has
not been intersected before, then the intersection is recorded and the primitive
is said to be in the start state. If at the next iteration the primitive is still in
collision, then it is thought to be in the update state. In subsequent iterations,
if the primitive is no longer in collision, then it is said to be in the move state
and the primitive is cut based on the configuration of face and edge intersec-
tions that have been stored previously. In this way the primitives are cut as
the virtual tool is dragged through the object.

3.7. SUMMARY 17

3.7 Summary

In this chapter we have presented previus work on the field of virtual real-
ity for surgical simulators. First we looked into the two major methods for
simulating the physical behavior of virtual objects, namely Spring mass and
FEM. Secondly we looked into techniques for applying multi-resolution to a
geometrical representation before we briefly discussed hybrid models. Finally
we elaborated the field of cutting techniques.

18 CHAPTER 3. RELATED RESEARCH

Chapter 4

Conceptual design

In this chapter we describe the architecture and design of our prototype. Sec-
tion 4.1 give an overview of aspects influencing the design. Section 4.2 discusses
the choice of geometrical representations and its implications. In section 4.3
the concept of multi resolution is presented and the reasons for incorporating
that technique is given. In section 4.4 the different possibilities for modelling
physical behavior of an object is given, and our choises are substantiated.
Finally ctting is discussed in section 4.5.

4.1 Introduction

Many different models for representation of virtual objects and simulation of
their physical behavior have been proposed. Finite element methods (FEM)
and spring-mass models are most commonly used for the physical simula-
tion [SHS01]. Tetrahedron are most often used for the graphic representation
[rKWP04]. For surface models, triangle meshes are the most used modelling
method. To be able to model the inside of objects it is important to use a
volume-based model, or several layers of surfaces to make an illusion of volume.
This is of course also a necessity if cutting is to be implemented.

To have a model that is conceptually easy to understand and work with,
[rKWP04] suggests a cube based approach instead of tetrahedron, due to its
simplicity. This geometric structure also lends itself very well to implement-
ing multi resolution. Similar to most others, [rKWP04] does not discuss their

20 CHAPTER 4. CONCEPTUAL DESIGN

implementation any further than to the conceptual level.

However, to assure a clear code-base to work with, the actual implementa-
tion is also of great importance. It does not help to have an elegant and
understandable conceptual design, if the implementation makes it difficult to
maintain clarity and a good overview.

The choice of physical simulation method and data structures also are impor-
tant factors that influences how good the over all concept becomes with respect
to simplicity and maintainability. Design philosophy of course also plays an
important role.

To help keep a good overview and to achieve the maintainability and extensi-
bility, an object oriented design will be used. This is a well documented and
tested design philosophy to handle great complexity.

As [rKWP04], we adopt a cube based octree representation as our architecture.
This a architecture lends itself very well to object orientation. Each cube
consists of eight vertices which are displaced when exposed for forces, thus
animating the object. An overview of this architecture is provided in figure
4.1.

4.2 Geometrical representation

As described above, the geometry of the object is represented as an octree
in this thesis. Initially, the root node represent the entire object. Then the
root node is split into eight children. Each of these new cubes are again split,
and so on, until one reaches the wanted starting resolution of the object. At
the end of this process the object is represented by all the leaf-nodes of our
structure. That is, all cubes that have no children.

Each cube will have references to the vertices of which it consists of. Contrary
each vertex have references to each cube of which this vertex is a corner. The
need of the references in a cube to its corners will be explained below in section
4.2.1.

The references in a vertex to all the cubes it is a part of, are needed for a
vertex to find all its neighbouring vertices. It is also needed when a vertex is
split, which will be further described in section 4.5.

4.2. GEOMETRICAL REPRESENTATION 21

Figure 4.1: Overview of the architecture

The octree structure assures the possibility for implementing multi-resolution
without destroying the data structure and also makes it easy to implement both
depth first and breadth first traversal and search through the data structure.

An alternative way to design the cube structure would be to also introduce the
concept of faces in our architecture. Each cube would have six faces and each
face have four corners. This would not contribute much to clarity however, and
would actually create more complex functions for building the data structure.
This is due to the fact that faces would normally be shared by two cubes,
and vertices would be shared among several faces. With only vertices directly
under cubes in the hierarchy, we only have one level of “sharing”. When the
faces are needed, e.g. when drawn by OpenGL, the faces are given implicitly
through the different corners of the cube.

4.2.1 Cubes

A cube consists, as explained in the start of this section, of its eight corners.
A cube can have anywhere from three to six neighbours. A corner cube of the

22 CHAPTER 4. CONCEPTUAL DESIGN

Figure 4.2: Vertex (red dot) with its neighbours (grey dots)

structure would have three, whearas a cube totally surrounded by other cubes
would have six neighbours. A cube have a list of references to its corners.
These references are as told passed on to its children when the cube is split in
8 child-cubes. If it had not the references to its corners, these vertices would
have to be instantiated again, when the children were generated. It is essential
that a vertex is actually the same instance by all the different cubes that has
this vertex as one of their corners. How exactly to achieve this we’ll get back
to in chapter 5

4.2.2 Vertices

The corner of the cubes are named vertices. The vertices are the main part
of the physical simulation. In our model each cube represent a discretized
element of the object. Its movement as the object is simulated, is realized
through moving each of its corners. The vertices will have a variable holding
its position and and a variable holding possible extern force influencing them.
Each vertex has from three to six neighbours. See figure 4.2

When simulating the object, the vertex is influenced from all its neighbours as
well as from extern forces. The forces influencing the vertex will be covered in
section 4.4.

4.3. MULTI-RESOLUTION 23

Figure 4.3: Multi-resolution. The nearest, upper subvolume is expanded 3 levels

4.3 Multi-resolution

To be able to model the geometry with appropriate solution without getting
to many nodes, we adapt the multi-resolution technique from [rKWP04].

A complete model for virtual surgery training should be realistic, interactive,
and should enable the user to modify the topology of the simulated objects.
In order to ensure the required speedup and to support dynamic changes of
the topology due to cuts of the represented tissue, a multi-resolution technique
is adapted. In doing this, time used for simulation and rendering is saved by
representing at high resolution only the object parts considered more impor-
tant or critical. The general idea underlying the multi-resolution technique
is that any multi-resolution mesh can be built through local operations that
progressively modify an initial mesh through refinement. The original cell, in
our case a cube, is split into child cells. Figure 4.3 illustrates a cubestructure
with cells split into deifferent levels.

24 CHAPTER 4. CONCEPTUAL DESIGN

4.4 Physical simulation

To simulate the interaction with the organ that is represented, a method to
model the physical behaviour of the object is needed. As stated in chapter 2,
there are mainly two different methods for realising this. A Spring mass model
or FEM could be implemented. As the Spring mass model is conceptually eas-
ier to understand and also easier to implement, it is a good choice when aiming
for maintainability and extensibility. [Mos04] states that the surgeons do not
need the information from a time dynamic simulation, so a static simulation
is sufficient. This leads to his formulation of the LR Spring mass model as
described in chapter 3. In such a system the solution can be found by the
following algorithm presented as pseudo code:

Repeat until time δ has elapsed
for every i∈ {1, 2, ..., n}

(a) Fi =
∑

j gij + fi

(b) xi = xi + αFi

where
∑

j gij is the sum of the forces on i from all of i’s neighbours, and fi is
the external force on i, i.e. the force from the virtual tool.

For every particle we find the vector representing forces onto the particle. The
particle is then displaced along this vector. As [Mos03] explains:

The algorithm looks very much like an Euler integration without
the velocity variable. The constant is in many ways like the step
size of a numerical solution of a differential equation. It must be
low enough for the algorithm to converge, but as big as possible for
real time performance.

To apply forces on an object, the forces acting upon the objcet need to be
specified. The only force considered is the force from the virtual tool. The
haptic API will exhibit functions that return a force vector when touching an
object in the scene. The coordinates of the hit are also returned. Our object
is composed of cubes. When we recognise a hit, we can localize which cube
and which face of the cube is hit. As explained in section 4.2, the faces are
not modelled explicitly in our design, but are given implicitly through a cube’s

4.5. CUTTING 25

Figure 4.4: Object were two vertices have been cut

corners. Ideally, the force would be weighted on all the four corners of the
hit face, according to the distance from the hit point in the face till each of
the corners. A simplification however, is just to apply the force to the nearest
vertex.

Each vertex stores the external force acting upon it. Under the simulation
iteration, the vertex check its distance to all its neighbours and add the force
from each neighbour to its force vector. Finally, all the forces are summed and
as described in the pseudo code above the vertex is moved a short distance
along this vector.

4.5 Cutting

As discussed in chapter 3, there are many ways of cutting in a virtual model.
There are methods of different degree of realism and thus different complexity.
But all methods are to a certain extent complex, and they all involve quite
some computational power.

To realize cutting in a simplest possible manner, and not disturb the regular
mesh, an original idea is proposed. The cubes are attached through the vertices
they share. If the resolution is high enough, implementing cutting could be
achieved through detaching the four cubes adjacent to the nearest vertex of
the cutting tool. This is achieved by having each cube instantiate a new vertex
instead of the one being cut. This will be thoroughly explained in chapter 5.8.
The cubes would obviously be detached only in the one vertex nearest the tool.
In figure 4.4, vertices that have bin “cut” in this manner are illustrated.

26 CHAPTER 4. CONCEPTUAL DESIGN

To avoid the procedure implementing cutting being run several times, we sim-
ply mark each cut vertex as cut, and test this property before executing the
cutting algorithm.

All organs have an intern tension which causes an incision to gap when cut.
The idea is that this tension can be modelled by having each vertex experience
a “positional force” that works in such a way that if the vertex is moved away
from its original position, it acts a force on this particle in the direction of
its original position. Then you can initialise the model so that the spacing
between its nodes is greater then the virtual springs constituting the physical
modeling of the object, and thus the tension is achieved.

When a vertex than is split, the new vertices being created, will be attracted
to their neighbours. Thus, the incision would open up as supposed.

This “positional force” also makes sure the model do not drift away when
touched.

4.6 Summary

In this chapter we have discussed the conceptual design of the prototype to
be implemented. The focus have been on the overall architecture of the datas-
tructure, which will be based on an octree structure. The main objects in the
design are cubes and vertices. The principles behind the physical simulation,
how to achieve multi-resolution, and in which way cutting is to be handled,
have also been elaborated.

Chapter 5

Implementation

In this chapter, we describe the actual implementation of our design and sub-
stantiate the major choices. The implementation of all main parts and proce-
dures will be thoroughly documented, and actual code example will be shown
where adequate.

5.1 Introduction

The code is written in C++ using Microsoft Visual Studio.NET as IDE. The
choice of C++ is natural because this is by far the most used programming lan-
guage when it comes to visualization and haptic programming. The OpenGL
and OpenHaptics api’s are also implemented in C++ and thus makes it an
advantage in itself using C++.

As stated in section 4.1, the thesis adopt an object oriented design and thus
it is natural to use an object oriented programming technique.

5.2 Haptic interface

A phantom desktop, delivered by Sensable Technologies Incorporated, is used
for haptic output. The phantom desktop has six degrees of freedom. In addi-
tion to 3 degrees of freedom positional sensing, it reflects the roll, pitch and

28 CHAPTER 5. IMPLEMENTATION

Original OpenGL code OpenGL code for haptic rendering

hlBeginFrame()
hlBeginShape(SHAPE TYPE)

glBegin(GL QUADS) glBegin(GL QUADS)
glVertex3f(0,0,0) glVertex3f(0,0,0)
glVertex3f(1,0,0) glVertex3f(1,0,0)
glVertex3f(1,2,0) glVertex3f(1,2,0)
glVertex3f(0,2,0) glVertex3f(0,2,0)
glEnd() glEnd()

hlEndShape()
hlEndFrame()

Table 5.1: OpenGL vs OpenHaptics

yaw of the virtual tool it guids. The device is capable of 3 degrees of freedom
positional force feedback whereas the rotation (roll, pitch and yaw) have no
feedback.

OpenHapticsTM is chosen as api towards the haptic device. This is an open
source api, also delivered by Sensable. The choice of OpenHaptics is mainly
due to its perfect match to the OpenGL api. The OpenHaptics api uses
OpenGL commands for capturing the geometry and it is therefore easy to
reuse the OpenGL code for the haptic rendering. Table 5.1 illustrates this
with a banal example.

The OpenHaptics api is divided in two parts. The first one is named Haptic
Device API (HDAPI). This is a low level api where you have total control of
all functionality of the haptic device. You may for instance render the forces
directly to the device. The other part, the Haptic Library API (HLAPI), is on
the other hand a high level api which hides much of the low level functionality.
E.g. force equations and thread handling. Obviously it is the HLAPI which is
designed familiar with OpenGL, and thus will be used in this work.

The collision detection is also done by open OpenHaptics. It is not described
in detail, but there is two different methods available. The choice of method is
decided by the call to hlBeginShape(...). The alternatives are HL SHAPE
FEEDBACK BUFFER and HL SHAPE DEPTH BUFFER. When the feed-

5.3. CUBES 29

back buffer method is used OpenHaptics uses OpenGL’s feedback buffer to
capture the geometry. Here all primitives of the geometry are stored, so you
can feel the hole object independent of what camera view you have. E.g. you
can also feel the backside of the object. This would obviously be the easiest
choice, as we want to be able to feel the hole object without having to change
the visual view. This method has however a bug, and this causes the virtual
tool to ”fall through” the object between its adjacent faces.

To accommodate this problem it is possible to use a feature called “haptic
camera view.” When enabling this feature OpenHaptics sets up a camera
additional to the one used for the visualizing. This haptic camera follows the
viewpoint of the virtual tool, and thus enables us to touch the backside of an
object even with the HL SHAPE DEPTH BUFFER method. Accordingly we
use the HL SHAPE DEPTH BUFFER method with the haptic camera view
enabled.

To make the collision detection more effective, we should not all the time
check the whole geometry for collision. Rather it should be made a selection
of the primitives, based on a bounding box algorithm, or other approaches. It
was not time to implement this efficiency improvement, but it will be briefly
discussed in chapter 6.3.

5.3 Cubes

The class Cube is implemented to represent the octree structure. Cubes are
represented as eight vertices. To realize the hierarchical structure, the Cube

class has a member variable named myChildren. This is a pointer to a struct
holding pointers to 8 instances of Cube. These 8 instances of Cube are referred
to as the relevant cube’s children. To generate its children, the Cube class has
the member function Split(). To achieve not having different instances of
any vertices, the parent cube generates all vertices needed by its children, and
passes on the references.

To generate the 19 extra needed vertices when a cube’s children are generated,
it is iterated through the x- y- and z-dimensions of the cube. During this
iteration the vertices are given positions half way between the parent’s corners.
This is illustrated by the code in example 1.

Pointers to all the 27 different vertices needed for the cube and its 8 children,

30 CHAPTER 5. IMPLEMENTATION

are already stored in the cubes member variable cv. cv holds a tree dimensional
array of pointers to vertices. The eight corners are already initialised, so what’s
needed is to initialise the other 19.

These 19 uninitialized vertices in a cube could also be used in correcting an
artifact coursed by adjacent cubes of different resolution. This possibility will
be discussed in chapter 6.3.

Example 1 Initialising vertex positions (fragment of the Split() method)

dimOrg = cube.size;

for (int k=0; k<3; k++){
for (int j=0; j<3; j++){
for (int i=0; i<3; i++){
//Internal Vertices (not one of the corners)
if (i==1 || j==1 || k==1){

cv->v[i][j][k]->origPos.x = cv->v[0][0][0]->origPos.x + float(i)*(dimOrg/2);
cv->v[i][j][k]->origPos.y = cv->v[0][0][0]->origPos.y + float(j)*(dimOrg/2);
cv->v[i][j][k]->origPos.z = cv->v[0][0][0]->origPos.z + float(k)*(dimOrg/2);

}
}

}
}

When the system is initialised, the cubes are split to a certain level, giving the
standard resolution for the whole object. This is achieved through a test in
the constructor of the cube class. This is implemented by the code fragment
in example 2.

Example 2 Generating subcubes

//Calling split method if the cube is larger than default resolution
if (abs(corners->v[0][0][0]->origPos.x - corners->v[2][0][0]->origPos.x) > 1.0){
split();

}

5.4. VERTICES 31

5.4 Vertices

The Vertices are implemented trough the class Verteks.1 As mentioned in
chapter 4, the vertices have from three to six neighbours. To keep track of these
neighbours, the Verteks class has a member variable vNeig, which is a list of
pointers to vertices. To find its neighbours, the Verteks class has a method
AddNeighb(). This method gather all the vertex’ neighbours from the vertex’
cubes, and add them to the vertex’ neighbour list vNeig. Duplicates must
be avoided during this procedure. Example 3 shows the code implementing
AddNeighb().

Example 3 Building the neighbour list

void Verteks::AddNeighb()
{
/*each call to a cubes RetVertN()
returns all three neighbours of the calling Verteks in this cube*/
Verteks** tmp;

for(int i=0; i<myCubes.size(); i++){
tmp = myCubes[i]->RetVertN(this);
for(int j=0; j<3; j++){
vNeig.push_back(tmp[j]);
for (int k=0; k<(vNeig.size()-1); k++){
/*If the vertex is found in the list before the last element,
it is popped off again*/
if (vNeig[k] == tmp[j]){
vNeig.pop_back();
break;

}
}

}
}

}//void Verteks::addNeighb()

When traversing the tree structure we end up with a lot of duplicates of the
vertices, because many cubes share the same vertex. To avoid having to check

1It seemed like the string Vertex overlapped with some reserved words, so Verteks was
chosen :-) !

32 CHAPTER 5. IMPLEMENTATION

for duplicates during the simulation iterations, which would be far to time con-
suming, a global list of the vertices is built. This list is built when generating
the tree structure, in the Split() method. Each time a new vertex is given its
original position, it is added to the global vertex list if it is not there before.
This is shown in example 4. This code fragment is run directly after the three
lines of code in example 1; inside the same triple for-loop.

Example 4 Building global vertex list

int h;
/*If the Verteks already exist we want it to be the same!*/
for (h=0; h<incVertList.size(); h++){
if (cv->v[i][j][k]->IsEqual(incVertList[h])){
cv->v[i][j][k] = incVertList[h];
break;

}
}
/*Than it wasn’t in incVertList from before and we add it*/
if(h >= incVertList.size()){
incVertList.push_back(cv->v[i][j][k]);

}

5.5 Simulation

The simulation is implemented in the Mesh class through the method Simu-

late. This method does nothing else than what is illustrated in the pseudo
code shown in chapter 4.4. It iterates through all vertices and call the method
Move() in the class Verteks that calculates the forces influencing the relevant
vertex. After the forces are calculated the vertex moves itself. The Move()

method is given in example 5

The SumNeigForce() method calculates the force from all the neighbours to
the vertex under consideration. If the distance from a neighbour is less than
original, a vector from the neighbour towards the relevant vertex is calculated.
An opposite vector is claculated if the distance is greater. This vector represent
the force from the actual neighbour acting upon the relevant vertex.

The force vectors from all the neighbours are then summed to get the resulting
force from all the neighbours combined. This force vector is finally scaled to

5.6. TRAVERSING AND SEARCHING 33

Example 5 Method for applying forces onto a vertex

void Verteks::Move()
{

float extFFac = 1.0;

hduVector3Df neighb = SumNeigForce(); //Force from neighbours
hduVector3Df nail = GetNailForce(); //Force from origo

ext_force *= extFFac;
hduVector3Df tmpF = ext_force + neighb + nail;

pos.x += (float)tmpF[0] * alfa;
pos.y += (float)tmpF[1] * alfa;
pos.z += (float)tmpF[2] * alfa;

}

get the appropriate magnitude of the force. Equivalent the “positional” force
is calculated in GetNailForce().

As seen in example 5 , the three factors extern force, neighbour force and nail
force, are summed to get the total influence on the vertex, and the vertex is
then moved according to this vector.

5.6 Traversing and searching

A convenient quality about a tree structure, is that it lends itself very well
both to a depth first traversal (DFT) and a breath first traversal (BFT) of the
data structure. Implementing a depth first traversal is extremely simple and
is illustrated by the pseudo code in example 6

In this prototype a DFT is used both to rebuild the vertex list after a cube is
split in a multi resolution action, and when the cubes are drawn by OpenGL.

A depth first search(DFS) is used to get the hit cube, or the nearest vertex of
the hit cube, when the virtual object is touched. This search is only a small
extension of a DFT. Code for this is shown in example 7.

As seen, the only functionality implemented on top of the traversal algorithm,

34 CHAPTER 5. IMPLEMENTATION

Example 6 Depth first Traversal

//recursive depth first traversal
recursive_DFT(rootNode)
{
//If node is not a leaf node
if (!root->isLeaf){
for (int=0; int<numChildren; i++){
recursive_DFT(children[i]);

}
}
else {
Do your matter;

}
}

is a help function to check if the coordinates passed by poxyPos is indeed in
the current cube. We don’t use a BFS in this prototype, but such an algorithm
could be used to speed up the simulation, which will be discussed in chapter
6.3.

5.7 Multi resolution

When a cube is touched, it is required that this is split in eight children.
Possibly these eight children can be split again, and so on, depending on how
many levels of subcubes that is wanted. To implement multi resolution, some
actions have to be taken in addition to calling Split() on the relevant cube.
First the cube must be removed from all its vertices’ myCubes list. Then
Split() is called. The method implementing this is Cube::MultiRes(int

l). As seen this method takes one parameter, l. l guides how many levels of
subdividing is to occur. So if l is greater than one, it is decremented by one
and Cube::MultiRes(int l) is called on all the eight generated subcubes.
Cube::MultiRes(int l) is shown in example 8.

After Cube::MultiRes(int l) is run, the global vertex list has to be cleared
and built again, to get a consistent vertex list. Finally all vertices have
to add their neighbours again. This is achieved through calling vertek-

sList.clear(), MakeVertList(meshRoot) and VAddNeighbors(). Figure 5.1

5.7. MULTI RESOLUTION 35

Example 7 Depth first Search

//Recursive depth first search
Cube* Cube::GetHitCube(hduVector3Dd proxyPos)
{
if (!inCube(proxyPos)){
return NULL;

}
//Is in Cube!
Cube* myRet;
if (!isLeaf){
for (int k=0; k<2; k++){
for (int j=0; j<2; j++){
for (int i=0; i<2; i++){
myRet = myChildren->cubes[i][j][k]->GetHitCube(proxyPos);
if (myRet != NULL){
return myRet;

}
}

}
}
return NULL;

}
else {
return this;

}
}

36 CHAPTER 5. IMPLEMENTATION

Example 8 Multi resolution

void Cube::MultiRes(int l)
{
//First we remove this cube from all it’s vertices’ myCubes
for (int k=0; k<3; k++){
for (int j=0; j<3; j++){
for (int i=0; i<3; i++){
cv->v[i][j][k]->RemoveCube(this);

}
}

}

//then we call split() to split the cube
split();

//If l is greater than one, we call MultiRes(...) on all the generated subcubes
if (l > 1){
for (int r=0; r<2; r++){
for (int q=0; q<2; q++){
for (int p=0; p<2; p++){
myChildren->cubes[p][q][r]->MultiRes(l-1);

}
}

}
}

}

5.8. CUTTING 37

Figure 5.1: Multi resolution

illustrates that some of the cubes in the surroundings of the tool is split one
level.

5.8 Cutting

To implement the cutting algorithm, the vertex that is to be cut simply have
to get all its cubes to instantiate a new vertex instead of itself.

These new vertices should have the same original position as the one they
are replacing. This is realised in the Verteks class by a call to the method
Cube::MakeNewVert(Verteks* v). This code is shown in example 9. After
Cube::MakeNewVert(Verteks* v) is run, the same clearing and rebuilding
procedure of the vertex list, as was explained necessary after the multi resolu-
tion procedure, is needed.

In figure 5.2 we se a cube where two vertices have bin cut.

38 CHAPTER 5. IMPLEMENTATION

Example 9 Cutting algorithm

void Cube::MakeNewVert(Verteks* v)
{
/*new Verteks, add this cube to new Verteks’
myCubes, change reference*/
Verteks* newV = new Verteks;

newV->origPos.x = v->origPos.x;
newV->origPos.y = v->origPos.y;
newV->origPos.z = v->origPos.z;

newV->pos.x = v->pos.x;
newV->pos.y = v->pos.y;
newV->pos.z = v->pos.z;

newV->isCut = true;
newV->myCubes.push_back(this);

/*Find the correct vertex and change
the reference to point to the new one*/
bool found = false;
for (int k=0; k<3; k++){
for (int j=0; j<3; j++){
for (int i=0; i<3; i++){
if (v == cv->v[i][j][k]){
found = true; //For debugging...
cv->v[i][j][k] = newV;

}
}

}
}

}//void Cube::MakeNewVert(Verteks* v)

5.9. VISUALISATION 39

Figure 5.2: Cube having been cut

5.9 Visualisation

The visualisation is as mentioned done by the use of the OpenGL api. Only
the most necessary features were implemented to visualise the object. This
includes i.a. a single directional light source. A lot of OpenGl features and
other techniques could be used to improve the visual realism. This includes
more and different light sources, other lightening models, textures and stereo-
scopic view to name some possibilities. But this was out of the scope of this
thesis.

5.10 Summary

In this chapter we have thouroughly documented the implementation. We have
described all main algorithms and we have explained the implementation of all
vital parts of the protoype. Code examples have been shown were adequate.

40 CHAPTER 5. IMPLEMENTATION

Chapter 6

Discussion and conclusion

In this chapter we discuss to what degree our work fulfills the requirements
stated in chapter 1.2. In section 6.3 we list recommendations for further work.

6.1 Discussion

As listed in chapter 1, there are four functional requirements for our prototype:

- 3D visualising

- Volume preservation

- Haptic module

- Physical simulation

The visual impression of 3D is present, and the virtual object is shown in a
satisfactory way. A lot of improvement could be done to better the visual
impression, but as mentioned in chapter 5.9, this was not in the scope of this
thesis. Some possible improvements are however listed in section 6.3.

Since the virtuel object is modeled as an octree representation of cubes, the
volume preservation is taken care of.

When touching the vitual object by the haptic device, the response is quite
realistic. As the tool touches the object, one can feel the resistance which

42 CHAPTER 6. DISCUSSION AND CONCLUSION

smoothly increase the harder one pusches. There is no noticable haptic arti-
facts, like the haptic device juddering.

When applying preassure onto the virtual object, the behaviour of the object is
quite realistic. The model deform inwards and when the virtual tool is moved
away, the object reshape in a controlled manner. Thus the physical simulation
of the object works very well.

As mentioned in chapter 5.2, increasing the efficiency of the collision detec-
tion, would be of great importance. This would especially be the case when
objects containing more data are to be modelled. For our model however, the
simulation runs fast enough to give the user the impression of working in real
time.

The cutting functionality works, but not satisfactory. When an incision is
made, the cubes are detached in their corners, and the result is a gap between
all four cubes surrounding the cut vertex. Accordingly the incision spread out
in two perpendicular directions instead of just in the cut direction.

Multi-resolution functionality is also implemented. When the virtual object is
touched, the touched cube is split into eight child cubes, thus increasing the
local resolution. A parameter guiding how many levels of subdivision are to
occure, is implemented in the method triggering the multi-resolution. This
technique makes it an easy task to adjust the level of detail.

As formulated in chapter 1.2, the main goals for the prototype are:

- Clearity and comprehendability

- Being easy to alter and expand

The choice of architecture is an octree based cube representation. “Cubes”
and “Vertices” are the main objects in this architecture. This design gives a
structure with objects reflecting real world objects, promoting overall clarity
and comprehensibility of the prototype.

In agreement with our choice of object oriented design, the functionality is
as far as possibly included within the relevant objects. This helps avoiding
unnecessary dependencies, and thus makes it easier to extend and alter the
functionality of the application.

Regarding the simulation, it is accomplished by simply iterating through the
vertex list. All vertices calculate the forces acting upon them from their

6.2. CONCLUSION 43

neighbours, add possible extern force, and move themself acoordingly. This
is achieved without implementing any logic finding the neighboursthanks to
the vertices’ neighbourlist which reflects the “spring” connections between the
vertices.

Multi resolution and cutting was implemented to further test the extensibility
and changeability of our prototype.

Implementing the multi resolution could easily be done since the logic involved
in splitting a cube in eight children, was already implemented in the Split()

method. Moreover, as the functionality for the different objects are indepen-
dent of eachother, the call to Split() is pretty much what is needed to be
done. As explained in chapter 5.7, after a cube is split it is needed to make
sure that the vertex list is consistent. This is achieved through three function
calls, making the need of extra functionality superfluous.

The cutting procedure was even easier to implement than the multi resolution
functionality. As elaborated in chapter 5.8, what is needed is simply to have
each cube adjacent to the relevant vertex, instantiating a new vertex instead
of the relevant one. Finally, the same procedure that is run after the mul-
tiresolution step to assure the vertex list is consistent, is run after the cutting
procedure.

Regarding the testing it would have been desirable to include an objective
outsider for a more thoroughly testing and evaluation.

6.2 Conclusion

In this master thesis, a prototype has successfully been developed according to
the objectives and goals of the study. It demonstrates all necessary concepts
needed in a surgical simulator, and the prototype is indeed easy to maintain
and extend. The prototype is also conceptually clear and easy to comprehend.
This is mainly due to choice of architecture and the choices of objects in the
design.

The prototype is far from a surgical simulator and are also not suitable for
a starting point to build a full fledged operating environment. It is however,
a basic prototype that is suitable for further experimentation and serves as a

44 CHAPTER 6. DISCUSSION AND CONCLUSION

foundation for implementing different features in the subject of surgical simu-
lators.

6.3 Future work

Here some recomendations for future work is suggested.

Collision detection: If larger data sets are to be modeled, increasing the
efficiency of the collision detection is possibly the single most important
improvement of the prototype. This could be done by only sending a
subset of the geometric primitives to the rendering engine of OpenHap-
tics. The selection could be based on what primitive is currently touched
by the virtual tool, and then only use the neighbouring primitives for the
haptic rendering.

Visualisation: For bettering the visual impression there are a lot of tech-
niques that could be implemented. These includes more and differ-
ent light sources, other lightening models, textures, bumb mapping and
stereoscopic view to list some alternatives.

Visual artifacts: Due to the different levels of resolution of adjacent cubes,
a visual artifact arise. This can be seen in figure 5.2. We can clearly
see gaps between the cubes that are split in multi-resolution and two of
the rightmost cubes of the front face of the object. This is due to the
fact that the cubes of the highest resolution have vertices not reflected
in adjecant cubes of lower resolution. It would be possible to implement
functionality that made cubes adjecant to cubes of higher resolution
instantiate vertices halfway between all their corners. These vertices
would constitute all possible vertices in adjecant cubes of one degree
higher resolution. Then the vertices having the same original position
could be combined to one vertex instance.

Breadth first search: In chapter 5.6 it is mentioned that a BFS could be
used to speed up the simulation algorithm. During the simulation itera-
tion the vertices are iterated through in the sequence they are inserted
in the list. Instead of this procedure, one could implemented a BFS with
the vertex being influenced by an external force, as a starting point. By
using this new sequence of vertices for the simulation, reaching all the

6.3. FUTURE WORK 45

neighbours of the influenced vertex first would be asured. Consequently
the force would propagate through the object in fewer iterations, thus the
algorithm would converge faster. Again this means that fewer iterations
are needed to get the same quality of the simulation.

46 CHAPTER 6. DISCUSSION AND CONCLUSION

Bibliography

[BM02] CD Bruyns and K Montgomery. Generalized interactions using
virtual tools within the spring framework: Cutting. In MMVR
Medicine Meets Virtual Reality, 2002.

[BN98] Morten Bro-Nielsen. Finite element modeling in surgery simula-
tion. Proceedings of the IEEE, 86(3):490–503, 1998.

[BSM+02] Cynthia D. Bruyns, Steven Senger, Anil Menon, Kevin Mont-
gomery, Simon Wildermuth, and Richard Boyle. A survey of inter-
active mesh-cutting techniques and a new method for implement-
ing generalized interactive mesh cutting using virtual tools. The
Journal of Visualization and Computer Animation, 13(1):21–42,
February 2002.

[BTB+04] Jeffrey Berkley, George Turkiyyah, Daniel Berg, Mark Ganter, and
Suzanne Weghorst. Real-time finite element modeling for surgery
simulation: An application to virtual suturing. IEEE Transactions
on Visualization and Computer Graphics, 10(3):314–325, 2004.

[CDA99] Stéphane Cotin, Hervé Delingette, and Nicholas Ayache. Real-time
elastic deformations of soft tissues for surgery simulation. IEEE
Transactions on Visualization and Computer Graphics, 5(1):62–73,
1999.

[DCA99] Hervé Delingette, Stéphane Cotin, and Nicholas Ayache. A hybrid
elastic model allowing real-time cutting, deformations and force-
feedback for surgery training and simulation. In CA ’99: Proceed-
ings of the Computer Animation, page 70, Washington, DC, USA,
1999. IEEE Computer Society.

[DDCB01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H.
Barr. Dynamic real-time deformations using space & time adap-

48 BIBLIOGRAPHY

tive sampling. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
31–36, New York, NY, USA, 2001. ACM Press.

[GCMS00] Fabio Ganovelli, Paolo Cignoni, Claudio Montani, and Roberto
Scopigno. A multiresolution model for soft objects supporting in-
teractive cuts and lacerations. Computer Graphics Forum, 19(3),
2000.

[LD04] Yi-Je Lim and Suvranu De. On the use of meshfree methods and a
geometry based surgical cutting algorithm in multimodal medical
simulations. In 12th International Symposium on Haptic Inter-
faces for Virtual Environment and Teleoperator Systems (HAP-
TICS’04), pages 295–301, 2004.

[Mos03] Jesper Mosegaard. Realtime cardiac surgical simulation, 2003.

[Mos04] Jesper Mosegaard. Lr-spring mass model for cardiac surgical simu-
lation. In Proceedings of Medicine Meets Virtual Reality 12, 2004.

[PDA01] G. Picinbono, H. Delingette, and N. Ayache. Non-linear and
anisotropic elastic soft tissue models for medical simulation. In
ICRA2001: IEEE International Conference Robotics and Automa-
tion, Seoul Korea, May 2001. Best conference paper award.

[rKWP04] Lenka Jeřábková, Torsten Kuhlen, Timm P. Wolter, and Norbert
Pallua. A voxel based multiresolution technique for soft tissue
deformation. In VRST ’04: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 158–161, New
York, NY, USA, 2004. ACM Press.

[SHS01] D. Serby, Matthias Harders, and Gábor Székely. A new approach
to cutting into finite element models. In MICCAI ’01: Proceedings
of the 4th International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 425–433, London, UK,
2001. Springer-Verlag.

[SJ98] R.M. Satava and S.B. Jones. Current and future applications of
virtual reality for medicine. Proceedings of the IEEE, 86(3):484–
489, 1998.

[Søb05] Stig Rune Søberg. Manipulation of biological model, based on a
mass-spring-system, using a phantom desktop., 2005.

BIBLIOGRAPHY 49

[VS02] Tzvetomir Vassilev and Bernhard Spanlang. A mass-spring model
for real time deformable solids. In Proceedings of East-West-Vision,
2002.

[WH04] Wen Wu and Pheng Ann Heng. A hybrid condensed finite element
model with gpu acceleration for interactive 3d soft tissue cutting:
Research articles. Comput. Animat. Virtual Worlds, 15(3-4):219–
227, 2004.

[Xav95] Provot Xavier. Deformation constraints in a mass-spring model to
describe rigid cloth behavior. In Proceedings of Graphics Interface,
page 141, 1995.

[ZSJ] Hui Zhang, Payandeh S., and Dill J. Simulation of progressive
cutting on surface mesh model. DRAFT6-08.

[ZSJ04] Hui Zhang, Payandeh S., and Dill J. In Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Confer-
ence, volume 4, pages 3908–3913, 2004.

50 BIBLIOGRAPHY

