
Master of Science in Computer Science
Master's thesis
Programme of study:

Supervisor:

Thorvald Natvig

Automatic Optimization of MPI
Applications
Turning Synchronous Calls Into Asynchronous

Anne Cathrine Elster, IDI

Trondheim, January 2006

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Thesis Goal

The introduction of MPI software for supercomputing clusters of regular comput-
ers has increased the number of HPC users. These users often have only rudimen-
tary knowledge of parallel optimization techniques.

This thesis will focus on developing techniques for automatically optimizing MPI
communication in users’ applications. In particular, it will focus on turning syn-
chronous communication calls into asynchronous calls which may allow overlap-
ping communication with computations. The code developed should allow for
this overlap without changing the dataflow of the original application.

Testcase codes comparing the automatic optimizations with manual optimizations
using different optimization techniques will be developed and results presented.

ii

Abstract

The availability of cheap computers with outstanding single-processor perfor-
mance coupled with Ethernet and the development of open MPI implementations
has led to a drastic increase in the number of HPC clusters. This, in turn, has led
to many new HPC users.

Ideally, all users are proficient programmers that always optimize their programs
for the specific architecture they are running on. In practice, users only invest
enough effort that their program runs correctly. While we would like to teach all
HPC users how to be better programmers, we realize most users consider HPC a
tool and would like to focus on their application problem.

To this end, we present a new method for automatically optimizing any appli-
cation’s communication. By protecting the memory associated with MPI_Send,
MPI_Recv and MPI_Sendrecv requests, we can let the request continue in the
background as MPI_Isend or MPI_Irecv while the application is allowed to con-
tinue in the belief the request is finished. Once the data is accessed by the ap-
plication, our protection will ensure we wait for the background transfer to finish
before allowing the application to continue.

Also presented is an alternate method with less overhead based on recognizing
series of requests made between computation phases. We allow the requests in
such a chain to overlap with each other, and once the end of such a chain of
requests is reached, we wait for all the requests to complete. All of this is done
without any user intervention at all. The method can be dynamically injected at
runtime, which makes it applicable to any MPI program in binary form.

We have implemented a 2D parallel red-black SOR PDE solver, which due to its
alternating red and black cell transfers represents a "worst case" communication
pattern for MPI programs with 2D data domain decomposition. We show that our
new method will greatly improve the efficiency of this application on a cluster,
yielding performance close to that of manual optimization.

iv

Acknowledgements

Thanks to Dr. Anne C. Elster for being the primary advisor for this thesis. Without
her continued pushing and encouragement, this thesis would have ended once the
coding was complete and before a single page was written.

Thanks to Dr. Lloyd Clark for spelling and grammar advice.

Thanks to NTNU for providing me with sufficient hardware resources to do my
experiments.

And a special (and honest) thanks to all those out there who are HPC users and
not programming experts. Without being frustrated over the underutilization of
resources your programs represent, we would have never gotten this idea. Hope-
fully, we now have at least a partial solution we are all happy with.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Thesis goal . 2

1.2 Problem statement . 2

1.2.1 Parallel efficiency . 2

1.3 Method overview . 3

1.3.1 Memory protection of program buffers 3

1.3.2 Detecting communication chains 3

1.4 Thesis outline . 4

2 Background material 5

2.1 MPI . 5

2.1.1 Cartesian groups . 6

2.1.2 Datatypes . 6

2.1.3 Point-to-point communication 7

2.2 Memory and page faults . 8

2.2.1 Manipulating page tables 8

2.2.2 Shortcomings of page protection 9

2.2.3 Alternate methods of page manipulation 9

2.3 Previous and related Work . 10

2.3.1 MPICH and LAM . 10

2.3.2 Jumpshot and TAU . 10

viii CONTENTS

2.3.3 D.U.M.A. 11

2.3.4 Internal MPI Optimizations 11

3 Test program 13

3.1 PDE Problem . 13

3.1.1 Discretizing . 13

3.1.2 Red-black SOR . 14

3.2 Test program . 14

3.3 Test results . 17

3.3.1 Test methodology . 19

3.3.2 Analysis of Norgrid results 20

3.3.3 Analysis of Snehvit results 20

3.3.4 Expectations of new method 21

4 Pagefault-assisted request tracking 23

4.1 Overview . 23

4.2 Injecting into the process . 23

4.2.1 Compile time injection 24

4.2.2 Runtime injection . 24

4.3 Marking memory . 25

4.3.1 Overlapping elements 25

4.3.2 Overlapping pages . 26

4.3.3 Overriding malloc() and free() 26

4.4 Adding and waiting for requests 27

4.5 Page fault handling . 28

4.6 Tracking MPI_Status . 29

4.7 Overridden functions . 29

4.7.1 MPI_Init . 30

4.7.2 MPI_Send and MPI_Recv 30

4.7.3 MPI_Sendrecv . 30

CONTENTS ix

4.7.4 MPI_Ssend, MPI_Rsend, MPI_Bsend and the MPI_Isend
family . 30

4.7.5 MPI_Get_count and MPI_Get_elements 31

5 Tracking request chains 33

5.1 Overview . 33

5.2 Chains of requests . 33

5.3 Recognizing chains of requests 34

5.3.1 MPI call signatures . 34

5.3.2 Confidence of chains . 34

5.3.3 Terminating chain . 35

5.4 Using request chains . 35

5.4.1 Interoperability with paging 36

5.5 Failure points of chaining . 36

6 Results and Discussion 39

6.1 Test results . 39

6.2 Snehvit results . 40

6.2.1 Paging . 40

6.2.2 Chaining . 41

6.3 Norgrid results . 42

6.3.1 Paging . 42

6.3.2 Chaining . 43

6.4 Projections for other architectures 43

6.5 Discussion . 43

6.5.1 Why optimize naive code? 43

6.5.2 Portability . 44

6.5.3 3D PDE Solvers . 45

7 Conclusion and Future work 47

7.1 Conclusion . 47

x CONTENTS

7.2 Future work . 48

7.2.1 Caller address in signature 48

7.2.2 Overlapping tests . 48

7.2.3 Modeling of transfer time 49

7.2.4 Per-thread page protection 49

7.2.5 Partial communication 49

7.2.6 Communication priority 49

7.2.7 Ready sends . 50

7.2.8 Safe breaking of chains 51

7.2.9 Application database . 51

7.2.10 Instrumentation . 51

A Installation and User’s Guide 55

A.1 Compilation . 55

A.1.1 Static library . 55

A.1.2 Dynamic library . 56

A.2 Using the library . 56

A.2.1 Compiling with static library 57

A.2.2 Injection dynamic library 57

A.2.3 Controlling library use 57

A.3 Global installation . 58

B MPII Class Documentation 59

B.1 MemReq Struct Reference . 59

B.1.1 Detailed Description . 60

B.1.2 Constructor & Destructor Documentation 61

B.1.3 Member Data Documentation 62

B.2 Range Struct Reference . 63

B.2.1 Detailed Description . 64

B.2.2 Constructor & Destructor Documentation 64

CONTENTS xi

B.2.3 Member Function Documentation 64

B.3 ReqInfo Struct Reference . 67

B.3.1 Detailed Description . 67

B.4 ReqSig Struct Reference . 69

B.4.1 Detailed Description . 70

B.4.2 Constructor & Destructor Documentation 70

B.4.3 Member Function Documentation 71

C MPII File Documentation 73

C.1 layer.cpp File Reference . 73

C.1.1 Detailed Description . 77

C.1.2 Function Documentation 78

C.2 mpii.h File Reference . 83

C.2.1 Detailed Description . 84

C.2.2 Function Documentation 84

C.3 stattest.cxx File Reference . 86

C.3.1 Detailed Description . 86

D MPII Page Documentation 87

D.1 Todo List . 87

E Program Code 89

E.1 Red-Black 2D SOR Solver . 89

E.2 Status validation test . 96

E.3 MPI replacement header . 97

E.4 Injected library . 98

xii CONTENTS

List of Tables

3.1 Average iteration execution time in milliseconds of regular
Sendrecv, Isend and overlapping communication and computation
on 16 nodes of the Norgrid(Dell) cluster. 19

3.2 Overrate iteration execution time in milliseconds of regular
Sendrecv, Isend and overlapping communication and computation
on 16 nodes on the Snehvit(Altix) machine. 19

6.1 Average iteration execution time in milliseconds of automatically
optimized program compared to manually optimized on 16 nodes
on the Snehvit(Altix) machine. 40

6.2 Average iteration execution time in milliseconds of automatically
optimized program compared to manually optimized on 16 nodes
on the Norgrid(Dell) cluster. 40

xiv LIST OF TABLES

List of Figures

3.1 Red-black SOR domain marking and ghost elements. 15

3.2 Efficiency of MPI_Sendrecv, MPI_ISend and full overlapping on
both Norgrid and Snehvit with different grid sizes. 21

3.3 Speedup of using MPI_ISend or full overlapping instead of just
MPI_Sendrecv on both Norgrid and Snehvit with different grid
sizes. 22

4.1 Left: Memory cells used by border exchange in Jacobi PDE
Solver. Right: Cells shown in structured form. 25

6.1 Speedup of automatic optimization and manual optimization on
Snehvit. 41

6.2 Speedup of automatic optimization and manual optimization on
Norgrid. 42

Chapter 1

Introduction

1.1 Motivation

When working as a computer scientist in the HPC field, we frequently work with
and share resources with scientists from other disciplines. Quite often, such scien-
tists will be more interested in the results of their computation than the efficiency
and beauty of their code. The code may be written using only basic methods of
communication and with a "works – don’t touch" mentality that prevents further
optimization once it works. While most code that enters production is eventually
optimized by either the original scientists or a computer engineer assigned to the
task, such optimization does not happen for code that only uses a smaller amount
of time on the HPC machines and it almost never happens during the development
stage of the code.

As computer scientists that are somewhat annoyed with this abuse of our mar-
velous HPC machines, we are left with the options of either teaching all other
scientists in the world how to properly optimize their HPC code, or we can do the
job for them. There are a lot of scientists out there, and most of them rightfully
consider HPC just a tool that they already feel works well enough, so we have
chosen to go with the second option. As optimizing all other code in the world by
hand would be an impossible task, we have further chosen to go with automatic
optimizations, specifically the reduction of communication overhead in parallel
code.

2 Introduction

1.1.1 Thesis goal

It is the goal of this thesis work to achieve a solution that automatically optimizes
the communication of MPI programs. The solution should not require any user
intervention at all to be enabled, and should ideally be fully usable on all MPI
based parallel architectures.

It is important that the solution does not in any way alter the result of the MPI
program, so we have to make sure any optimizations done do not alter the data
flow of the program, only the communication. The only difference the user should
notice should be somewhat better wallclock running time.

In this thesis, we present a solution that has been implemented and tested which
satisfies these criteria and also serve as a base for further work for the Ph.D.

1.2 Problem statement

Optimizing for parallel machines requires extensive knowledge of both general
optimization techniques and the specific machine. Any parallelization will add
some overhead for communication. For example, when parallelizing Game of
Life, an iterative 2D partial differential equation solver (PDE) or any other kind
of grid-based domain, each iteration requires the borders of its subdomain to be
exchanged with the "neighbors".

1.2.1 Parallel efficiency

The efficiency of a parallel implementation is measured by its speedup.

Sp =
Tsequential

TParallelCompute + Tcommunication

where Tsequential is the wallclock time the serial program used, TParallelCompute is
the wallclock time the parallel version uses for computation and Tcommunication

is the time it spends communicating. In most cases, TParallelCompute will never
be better than Tsequential/P , where P is the number of processors. Ideally, we’d
like Sp = P , but that requires Tcommunication to be zero. This is not possible in
practice, but a lot can be done to make it smaller.

As shown in 3.3, a substantial reduction of communication time can be achieved
by using overlapping communication to multiple neighbors at the same time.

1.3 Method overview 3

1.3 Method overview

The specific task we have chosen to focus on is turning synchronous sends (send
and wait for completion) into asynchronous sends (start sending in the back-
ground). While it sounds easy, it’s not just a matter of replacing the synchronous
sends with asynchronous ones. What happens if the original code first received
into a buffer and then performed computation on this data? If the reception is
started in the background, the data will not have arrived by the time computation
starts, and hence the results will be wrong.

1.3.1 Memory protection of program buffers

By using the memory protection features of the machine, it is possible to start the
communication in the background while having the memory marked inaccessible
to the program. Hence, if the program uses the memory in any way (such as
computing some value), a fault will occur that can be intercepted, and at that time
we wait for communication to complete before allowing the program to continue.
While simple in theory, in practice there are a lot of challenges as the memory
protection on most machines has a lot of shortcomings that need to be worked
around, and there is also the overhead of the memory protection itself.

1.3.2 Detecting communication chains

With the basis of the information learned through the memory protection method,
it’s possible to build information about communication chains. A chain is defined
as any series of communications that is followed by computation. For example,
for 2D domain problems, the usual iteration is exchange north, exchange east,
exchange south, exchange west, compute.

Once a chain has been detected and a high confidence established in its validity,
we can avoid the overhead of memory protection by simply waiting for the entire
chain to complete. This reduces the overhead drastically, as no tricks or copying
have to be used to avoid buffer problems. While the memory protection alone
provides good results, and indeed is the basis on which this and other optimization
ideas are built, it is this chaining optimization that fully shows the potential of
this method. As shown in chapter 6, wallclock times close to that of a manually
optimized program are possible.

4 Introduction

1.4 Thesis outline

Chapter 1 has been this brief introduction.

Chapter 2 will detail the background material for the project, including a brief
background on MPI (2.1 and a very short summary of memory page protection
(2.2). This chapter also has the list of related work in Section 2.3.

The test application to be optimized is described in Chapter 3, with detailed tim-
ings in Section 3.3.

Chapter 4 details the basic framework of memory protected asynchronous opti-
mizations. It will explain how to inject into the target application (4.2), how to
mark memory properly 4.3 and how to add and remove background requests (4.4).
The handling of program page faults, which occur when the program accesses
data that’s still in transit, is explained in Section 4.5. The importance of keeping
MPI_Status intact and a method to allow it with background transfers is explained
in Section 4.6. Finally, Section 4.7 lists the functions we chose to override.

Chapter 5 shows how confidence in communications patterns allows us to build
chains of requests (5.2). There are two major parts to this: Recognizing a chain
(5.3) and using it (5.4). It is important to note that unlike basic paging, the chain-
ing idea may break program data flow, and a theoretical example of this is shown
and discussed in Section 5.5.

Chapter 6 shows results of running our method on the test program. Explanations
for results on Snehvit, a highly parallel SMP machine is detailed in Section 6.2,
and results for Norgrid, a Ethernet connected cluster, is detailed in Section 6.3.
Section 6.5 has the discussion, showing strengths and weaknesses of our program
based on the results and the development experience.

Chapter 7 contains all the future work we’d like to see done with this idea. In
Section 7.1 we have the conclusion.

In Appendix A is a short installation and enduser’s guide.

Most of the code in the text of this thesis is pseudocode, intended to show the
method. The actual implementation is detailed in Appendix B, C and D, but the
code in the implementation (Appendix E) is written for efficiency and not for easy
reading.

Chapter 2

Background material

2.1 MPI

MPI is a library specification for message-passing, proposed as a stan-
dard by a broadly based committee of vendors, implementors, and
users.

MPI is the de-facto parallel message-passing environment, available on all mod-
ern HPC machines. The first version of the standard (1.0 [1]) was released in
June 1994. Version 2.0 was finalized in July 1997, but most implementations still
only contain partial support for all the features of MPI 2.0. MPI contains official
bindings for C, C++ and Fortran, but people have ported the bindings to numerous
other languages.

MPI focuses on messaging and contains both point-to-point and collective com-
munication. Point-to-point is the simple "send this data to another processor",
while collective communication covers communication between groups of proces-
sors, such as "find the minimum value", "distribute this array among processors"
and so on.

In general, one would like to keep the amount of collective communication to a
minimum as it usually scales as O(logP), meaning the more processors one has
the longer it takes to complete. Most iterations of 2D problems use only point-
to-point communication with the neighbors. The background information here
focuses on point-to-point communication, 2D cartesian groups and datatypes. For
more information, please refer to Peter Pacheco’s excellent "Parallel Programming
with MPI" [2].

6 Background material

2.1.1 Cartesian groups

Many parallel programs are parallelized by decomposing the problem domain into
subdomains and having each processor work on a specific subdomain. Between
iterations, processors usually need to exchange some values with the processors
handling the subdomains next to it’s own ("neighbor" processors) to make sure
the values along the borders of the domain are correct.

Many highly optimized HPC machines have a communication network organized
as a 3D torus. Each node has a dedicated physical link to its 6 closest neighbors.
Even if such a dedicated network isn’t present, the MPI functions dealing with
cartesian decomposition are highly flexible and help ensure that "neighbors" are as
close as possible. For example, on a cluster of SMP machines, the MPI cartesian
functions will help ensure that as many neighboring nodes as possible are on the
same physical machine to minimize the amount of communication that has to pass
over the communications network.

MPI makes using cartesian groups very simple, as it has methods for finding ideal
decomposition of a n-dimensional problem of p nodes (MPI_Dims_create) as well
as creation of cartesian communicators (MPI_Cart_create).

2.1.2 Datatypes

Quite often, the data to be sent is not simply contiguous chunks of memory, but
data that is interleaved in some way. For example, for the red-black SOR, we
would like to send "only red nodes" which is every 2nd memory location when
sending the top or bottom rows, and every 2nth memory location for the left and
right borders.

To avoid having to copy the data in and out of temporary buffers, MPI provides
the concept of datatypes which can describe any organization of data in memory.

2.1.2.1 Datatype extents

To use our idea of memory protection, we need to know precisely what area in
memory a datatype occupies. For contiguous chunks of memory, this is simple,
but for more advanced datatypes the problem becomes harder.

As an example, consider a plain n × n 2D area in memory where we want to
send columns of data. The datatype will simply be a vector with stride n, defined
using MPI_Type_vector. However, if we want to use this datatype to send many
columns at once, we have to tell MPI that the datatype really is only 1 element

2.1 MPI 7

large, so that if column 1 starts at position x, column two would start at position
x + 1 and after the last element of column 1, which would be at x + n(n− 1) + 1.
We do this by setting the upper bound of the datatype.

Unfortunately, this flexibility and these tricks make it much harder for us to deter-
mine the actual memory used by a datatype, and as explained in Section 4.3.1 we
need this to find the minimum area to protect.

2.1.3 Point-to-point communication

MPI provides two basic facilities for point-to-point communication, sending and
receiving, implemented as MPI_Send and MPI_Recv. Both of these take argu-
ments for a pointer to the start of the area to send, a datatype, the number of
elements, the node to send/receive to/from, a message tag and the communicator
to use as parameters. In addition, MPI_Recv takes a pointer to a status variable
that can be queried.

While there is only one MPI_Recv, there are many variations of MPI_Send. Most
MPI implementations feature a buffer of some kind, and if there is enough room in
the buffer, MPI_Send will usually return immediately after copying the data to the
buffer without waiting for the receiving end to issue a MPI_Recv. To avoid this,
you can use MPI_Ssend which always waits for the receiver to accept the data.
If you know the other end has already posted a receive, you can use MPI_Rsend
(ready send). To use your own buffering, use MPI_Bsend.

In addition to this, all of the above are also available in asynchronous modes, so
called "immediate" mode (as it returns immediately to the caller without wait-
ing). So there is MPI_Isend, MPI_Issend, MPI_Irsend, MPI_Ibsend as well as
MPI_Irecv. The immediate mode versions return a request variable which can
later be queried for completion (MPI_Test) and waited for (MPI_Wait family of
functions). The idea behind asynchronous communication is simple; allow the
program to continue computing while communication takes place in the back-
ground.

If this wasn’t convoluted enough, there is also the problem of deadlock. Let’s
say you have two processes, A and B, which first send a bit of data to the other
processor and then receive. Using basic MPI_Send, this works as long as the
buffer is large enough. However, if the datasize is too large for the buffer, both
processes will hang waiting for the other to finish its send and start receiving.
To make it easier to avoid this problem, MPI provides MPI_Sendrecv, which is
MPI_Send and MPI_Recv merged into one to make it easier to avoid deadlocks.

8 Background material

2.2 Memory and page faults

Page Fault: An interrupt that occurs when a program requests data
that is not currently in real memory. The interrupt triggers the oper-
ating system to fetch the data from a virtual memory and load it into
RAM.

An invalid page fault or page fault error occurs when the operating
system cannot find the data in virtual memory. This usually happens
when the virtual memory area, or the table that maps virtual addresses
to real addresses, becomes corrupt.

– Webopedia on "Page fault"

All modern machines which implement virtual memory have some kind of page
protection. The basic mechanism is to divide the address space into evenly sized
pages, and map each virtual page to a corresponding page in physical memory. A
page may also be marked as "not available" in some form, causing an interrupt to
occur. Operating systems use this to fake having more memory than is actually
present, by moving infrequently used pages of memory to disk and marking these
as inaccessible. If the program accesses the page, an interrupt occurs and the OS
copies the data back info physical memory and then resumes program execution.

When a program accesses memory, the virtual to physical mapping happens
through page tables. In its most basic form, a page table is a linear set of val-
ues, so that the nth index in the table contains the page number of the physical
page for virtual page n. On modern OSes and CPUs which often use discontinu-
ous memory allocation (so that pages 37, 100 and 192 might be used, but none in
between), a tree structure of pages is used instead. Basically, each level in the tree
correspond to a certain number of bits of the virtual address, and if a tree node is
missing, then the program is accessing memory it didn’t allocate.

Different architectures support different page sizes. For example, the x86 archi-
tecture supports 4KiB and 4MiB page sizes while the Itanium2 defaults to 16KiB.
Smaller page sizes mean better granularity, but also imply larger page tables which
take more space and have a larger overhead when they need to be updated for large
chunks of memory.

2.2.1 Manipulating page tables

Page tables can be used for other things than just virtually extending memory. It is
also used to map files into memory (mmap’ing) and making sure a program only

2.2 Memory and page faults 9

modifies its own memory. On a machine without any page protection, a program
can intentionally or unintentionally (through bugs) modify the memory of other
programs, causing them to fault.

Modern operating systems allow a user to manipulate the page table for any pages
that are allocated. On UNIX, this is done through the mprotect() system call,
which takes a pointer to the area to protect, a size and set of flags of allowable
access. If used to remove privileges to a page that is subsequently accessed, a
segment violation fault will occur. This can be intercepted by writing a signal
handler to handle the signal. This method is fully portable to all POSIX compliant
OSes.

2.2.2 Shortcomings of page protection

The smallest amount of memory that can be protected is a single page, meaning
4KiB on the most favorable architectures. Unfortunately, this is way too large to
protect a single variable or a even a small data structure – one will unavoidably
end up protecting a lot of other data as well.

Furthermore, while the standard specifies individual protection access for read,
write and execute, it is frequently seen that read privilege grants execute, and
there are very few architectures which allow write-only pages. It is important to
be aware of these shortcomings, as a mprotect() call to create a write-only page
will succeed, but might end up giving you a writable, readable and executable
page.

2.2.3 Alternate methods of page manipulation

A problem encountered in our implementation is the fact that you can’t just mpro-
tect() the memory from the user program. The MPI implementation runs in the
same executable context as the user program, so if you change the access param-
eters, the MPI implementation will not be able to access the data either and hence
cannot complete its background data handling.

In this implementation, we have solved this with manual buffering of data, but
a more elegant solution is to run the MPI background transmission in a sepa-
rate thread, and modify the kernel to allow per-thread pagetable manipulations.
Unfortunately, this requires some non-trivial changes to the kernel and is lim-
ited to kernels for which we have the source code. It is also quite difficult to
get acceptance for installing such changes on production machines, defeating our
implementation’s purpose of being generally applicable.

10 Background material

2.3 Previous and related Work

From our research, we cannot see that the idea of runtime tuning MPI requests
using page protection has ever been tried before. As such, there is no direct previ-
ous work using this method. There are, however, various related works that have
inspired us and we will detail those here.

2.3.1 MPICH and LAM

MPICH [3, 4, 5] and LAM [6, 7] are freely available MPI implementations that
enable anybody to build their own "supercomputer" using a group of machines
connected with simple Ethernet or low latency dedicated interconnect.

The availability of these free implementations has been used as a starting point for
many research projects, as they allow ideas for improvements to be tried without
having to write an entire MPI implementation.

2.3.2 Jumpshot and TAU

Jumpshot [8] is a classic postmortem performance analysis tool and comes with
MPICH. By compiling a program with MPI trace enabled, a file will be generated
containing the call trace of the program. This can be used to visualize the com-
munication pattern of the entire program, and one can easily find the areas of the
program where optimization effort has the most impact.

Jumpshot lets the user see the time period which is "wasted" between the start of a
MPI_Recv call and when data actually starts arriving, and it was this wasted time
that inspired us to investigate the effects of using MPI_Isend on clusters.

TAU (Tuning and Analysis Utilities [9]) is another and more comprehensive anal-
ysis package, covering much more than basic MPI. Instead of using the trace file,
TAU inserts itself into the program (which need not be an MPI program) and gen-
erates extensive profiling which can be easily visualized.

However, all of these analysis tools have one weakness: They assume the user
will understand and care about the information they provide. While the benefits
of checking the analysis and implementing its suggestions would be immense,
there is often an equally large benefit in using profile-feedback compilation, and
this is also not done.

2.3 Previous and related Work 11

2.3.3 D.U.M.A.

D.U.M.A. (Detect Unintended Memory Access [10]) is the successor to Electric
Fence - efence. It is intended to detect buffer overruns on the heap, and does this
by allocating an extra page for all memory requests and protect this page. It can
work in one of two modes:

• underrun protection, where the page before the returned memory pointer is
protected and the returned pointer is aligned to the page boundary.

• overrun protection, where the page after the returned memory is protected
and the returned pointer is such that pointer + size is at a page boundary.

Note that efence cannot detect both underruns and overruns at the same time un-
less the requested allocation size divides evenly with the pagesize.

Electric Fence was one of the first programs to use the same dynamic injection
techniques we use, which allows it to be used to debug binaries for which no
source is available.

Lately Valgrind [11] has become more popular than D.U.M.A., since it can detect
both heap and stack overruns and underruns along with numerous other memory
problems. Valgrind does this by interpreting the code as it runs, meaning it results
in a massive slowdown. So while Valgrind provides better results for debugging,
its techniques are of little use for us.

2.3.4 Internal MPI Optimizations

Numerous work has been done on optimizing the individual MPI functions. Some
of these are inspired by the ATLAS (Automatically Tuned Linear Algebra Soft-
ware [12]) idea of taking a basic routine and trying thousands of small variations
until you find the specific set of parameters that is perfect for the architecture you
are compiling on. Faraj and Yuan [13] have presented such a method for auto-
matically optimizing the MPI Collective subroutines, and Østvold has presented
numerous ways of timing collective communication [14].

Ogawa and Matsuoka [15] use compiler modifications to optimize the MPI. The
compiler will recognize the MPI calls in a program, do a static analysis to find out
what arguments are static and then create specialized MPI functions for that pro-
gram. With the introduction of interprocedural optimizations such as is available
in the Intel C++ Compiler [16], such optimizations can be extended to all function
calls and not just MPI Calls.

12 Background material

There are numerous other approaches, but they all assume the actual application
is already optimized, while we assume it is just a regular application.

Chapter 3

Test program

During the development of this thesis, we have used a simple test program solving
a 2 dimensional partial differential equation (2D PDE) using the parallel red-black
successive over-relaxation algorithm. In this chapter, we will present the neces-
sary background material for this test program, as well as test results.

3.1 PDE Problem

We have chosen a simple Laplacian problem on the unit square. To visualize this
type of problem, think of a sheet of metal kept at 0 ◦K on 3 edges, and the last
edge is kept at 300 ◦K. After the system stabilizes, what will be the temperature
in the middle of the sheet?

Our specific problem domain is as follows:

∂2u
∂x2 + ∂2u

∂y2 = 0

u(x, 1) = 1 0 ≤ x ≤ 1
u(x, 0) = −1 0 ≤ x ≤ 1
u(0, y) = u(1, y) = −1 0 ≤ y ≤ 1

3.1.1 Discretizing

To solve this iteratively, the system is discretized with m points in the x and y
direction, and for each iteration the approximate value of ui,j is computed as

un+1
i,j =

1

4
(un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1), i = 1..m, j = 1..m

14 Test program

This is the Jacobi iteration. To speed up convergence, it is possible to use the
new values of ui,j as soon as they are available, which gives us the Gauss-Seidell
method. Finally, by observing that each iteration brings us a small step closer to
the solution, it is possible to over-relax to speed up convergence. This method is
called Successive Over-Relaxation, and can be written as

un+1
i,j =

ω

4
(un+1

i−1,j + un
i+1,j + un+1

i,j−1 + un
i,j+1)− (1− ω)un

i,j

where ω is the amount of over-relaxation. A good default value of ω is 1.8, but
an ideal implementation will have ω vary with the size of the problem and the
iteration number using Chebyshev acceleration [17].

3.1.2 Red-black SOR

In SOR with a 4-point stencil, each point requires the updated value of the point
above and to the left, meaning the lower right point in an iteration recursively
depends on all other points. This makes it very hard to parallelize.

An alternate, but equally effective algorithm was therefore developed. If one
marks each point either red or black after a checkerboard pattern, it is easy to see
that each red point depends only on black points, and each black point depends
only on red points. This is illustrated in Figure 3.1.

Each iteration now computes all the red nodes, then uses these updated values to
compute all the black nodes.

3.2 Test program

Our test implementation is of red-black SOR using 2D decomposition. The prob-
lem is stated in 3.1.

We chose the SOR PDE solver as it’s a typical usage of a iterative 2D algorithm,
and the same method is easily extended to 3D. It also has stresses the datatypes of
MPI, as it needs to exchange red and black nodes separately.

We have chosen a 2D domain decomposition among the processors, meaning the
data points are spread over processors organized as a 2D grid. As long as P can
be factored into two numbers, this needs less bandwidth than the 1D case (4 n√

P
vs 2n). 1D would also avoid the problem of requests with overlapping memory
areas (the left/right edges), a case we need to both test and validate as working.

3.2 Test program 15

Figure 3.1: Red-black SOR domain marking and ghost elements.

Each node in the computation has allocated memory for it’s own subdomain along
with a layer of "ghost cells" along the edges. These ghost cells will receive the
values from the neighboring nodes, as updating the elements on the edges requires
the values from the subdomains belonging to the neighbors.

The test program contains a serial implementation as well as 3 parallel implemen-
tations. In the following discussion and algorithm descriptions, we have focused
on the communication patterns as that is the focus of this thesis and the computa-
tion part is mostly unchanged from the serial code. For a complete example, see
the code accompanying the thesis.

The most basic version uses just MPI_Sendrecv, and can be seen in Algorithm
1. For each phase of red or black, the elements along the edges of the other
color are exchanged, and then all elements of the same color are updated. It will
not deadlock as there is always a receiver for every send, and MPI takes care of
sends/receives going to non-existent neighbors becoming no-ops (for the nodes
that have subdomains along the edges of the whole domain). This algorithm is
the simplest and easiest to write, but also has the worst performance. It does 8
MPI_Sendrecv pairs, but each pair has to wait for the previous to complete before
the next can start.

A more advanced version using MPI_Isend and MPI_Irecv can be seen in Algo-
rithm 2. It communicates with all neighbors in parallel, but does not overlap any

16 Test program

Algorithm 1: Basic parallel red-black SOR PDE Solver.
begin1

for each iteration do2

// Red phase
MPI_Sendrecv(Send top black elements to "above" node, receive3

bottom black ghost elements from "below" node) ;
MPI_Sendrecv(Send bottom black elements to "below" node,4

receive top black ghost elements from "above" node) ;
MPI_Sendrecv(Send left black elements to "left" node, receive right5

black ghost elements from "right" node) ;
MPI_Sendrecv(Send right black elements to "right" node, receive6

left black ghost elements from "left" node) ;
Update all red elements ;7

// Black phase
MPI_Sendrecv(Send top red elements to "above" node, receive8

bottom red ghost elements from "below" node) ;
MPI_Sendrecv(Send bottom red elements to "below" node, receive9

top red ghost elements from "above" node) ;
MPI_Sendrecv(Send left red elements to "left" node, receive right10

red ghost elements from "right" node) ;
MPI_Sendrecv(Send right red elements to "right" node, receive left11

red ghost elements from "left" node) ;
Update all black elements ;12

end13

3.3 Test results 17

communication with computation. As can be seen, this algorithm is slightly more
complex and requires use of more advanced MPI functions.

Algorithm 2: Parallel red-black SOR PDE Solver using overlapping com-
munication with multiple neighbors.

begin1

for each iteration do2

// Red phase
MPI_Irecv(top black ghost elements from "above" node) ;3

repeat for bottom, left and right ;4

MPI_Isend(top black elements to "above" node) ;5

repeat for bottom, left and right ;6

MPI_Waitall(all 8 requests) ;7

Update all red elements ;8

// Black phase
MPI_Irecv(top red ghost elements from "above" node) ;9

repeat for bottom, left and right ;10

MPI_Isend(top red elements to "above" node) ;11

repeat for bottom, left and right ;12

MPI_Waitall(all 8 requests) ;13

Update all black elements ;14

end15

The "perfect" version, seen in Algorithm 3, overlaps communication and compu-
tation, and should in theory be "as good as it gets".

3.3 Test results

The results of running the test program on the Norgrid cluster (Dell 750, 3.4 Ghz
Pentium 4, Gigabit Ethernet) and on Snehvit (Altix 350, 1.4Ghz Itanium 2, NU-
MAlink) are found in Table 3.1 and Table 3.2 respectively. The Dell cluster has
a high speed CPU which does very well on the semi-unstructured access patterns
of the red-black SOR, but it has a very slow interconnect. On the Altix, which
is a shared-memory machine, copying data to another processor is about as fast
as copying it to memory. It therefore has excellent latency, but still suffers from
limited bandwidth when all processors communicate at once.

18 Test program

Algorithm 3: Parallel red-black SOR PDE Solver using overlapping com-
munication and computation.

begin1

MPI_Irecv(top black ghost elements from "above" node) ;2

repeat for bottom, left and right ;3

MPI_Isend(top black elements to "above" node) ;4

repeat for bottom, left and right ;5

for each iteration do6

// Red phase
MPI_Waitall(black border exchanges) ;7

Update red elements along the edges ;8

MPI_Irecv(top red ghost elements from "above" node) ;9

repeat for bottom, left and right ;10

MPI_Isend(top red elements to "above" node) ;11

repeat for bottom, left and right ;12

Update all interior red elements ;13

// Black phase
MPI_Waitall(red border exchanges) ;14

Update black elements along the edges ;15

MPI_Irecv(top black ghost elements from "above" node) ;16

repeat for bottom, left and right ;17

MPI_Isend(top black elements to "above" node) ;18

repeat for bottom, left and right ;19

Update all interior black elements ;20

MPI_Waitall(black border exchanges) ;21

end22

3.3 Test results 19

Method Timing n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
Wallclock 1.14 3.01 3.01 3.49 6.05 16.98

MPI_Sendrecv Compute 0.01 0.05 0.19 0.80 3.27 12.97
Communicate 1.12 2.96 2.82 2.70 2.76 4.01

Wallclock 0.36 0.99 1.00 1.97 4.48 14.09
MPI_Isend Compute 0.02 0.05 0.19 0.80 3.32 12.92

Communicate 0.35 0.94 0.81 1.16 1.17 1.19
Wallclock 0.35 0.99 1.00 1.15 3.87 13.84

Full overlapping Compute 0.02 0.05 0.20 0.86 3.53 13.32
Communicate 0.34 0.94 0.80 0.28 0.34 0.52

Table 3.1: Average iteration execution time in milliseconds of regular Sendrecv,
Isend and overlapping communication and computation on 16 nodes of the Nor-
grid(Dell) cluster.

Method Timing n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
Wallclock 0.12 0.22 0.59 1.92 8.00 106.68

MPI_Sendrecv Compute 0.03 0.10 0.39 1.60 6.61 56.22
Communicate 0.10 0.12 0.20 0.32 1.38 50.45

Wallclock 0.11 0.21 0.55 1.87 7.80 106.18
MPI_Isend Compute 0.03 0.10 0.39 1.60 6.60 56.03

Communicate 0.09 0.11 0.16 0.27 1.21 50.15
Wallclock 0.11 0.20 0.54 1.80 7.36 105.63

Full overlapping Compute 0.03 0.10 0.38 1.60 6.61 56.97
Communicate 0.08 0.10 0.15 0.21 0.75 48.67

Table 3.2: Overrate iteration execution time in milliseconds of regular Sendrecv,
Isend and overlapping communication and computation on 16 nodes on the Sne-
hvit(Altix) machine.

3.3.1 Test methodology

The tests were run such that each method had 20 iterations, the execution times
of the iterations sorted and the median picked. This avoids the outlier values that
will always be present. For example, it seems most MPI implementations delay
allocation of buffers and final commit of datatypes until they are actually used,
meaning the first iteration may be as much as 20 times slower than the median
one.

All tests are run on 16 nodes. This is to make sure there are some nodes that have
to communicate in all 4 directions. For example, with just 4 nodes, all nodes will
have 2 edges that it are not shared with another node, so the amount of communi-
cation is halved. With 16 nodes, the 4 nodes in the middle all have to communicate
with 4 different neighbors.

The most challenging part of the tests were making sure no external factors influ-
enced our timings. On the Altix machine, this meant running in the middle of the
night when no interactive jobs from other users could influence the execution, and

20 Test program

on Norgrid it meant repeated runs until we had a run where other users didn’t use
the shared switch.

3.3.2 Analysis of Norgrid results

Norgrid has an interconnect with very high latency. For small grid sizes, the nodes
spend more time waiting for communication than computing.

On the cluster, programs will get a substantial performance boost by using
MPI_Isend to multiple neighbors. As each node just has a single Ethernet cable to
connect to the backbone, this is a somewhat unexpected result. It is quite logical
though; the high latency means that the program has to wait for the ’receive’ part
of MPI_Sendrecv before it can start the next exchange. By using 4 Isends and
Ireceives, we only have to wait once, effectively quartering the overhead of the
network latency.

Another interesting observation is that, while the fully overlapping version does
overlap communication and computation, the actual computation time is increased
somewhat as the CPU now has to service network interrupts while computing.
However, the overhead of servicing the network card is more than compensated
for by the decrease in communication wait time. Especially noteworthy is the
change from n = 512 to n = 1024. Here the increase in computation time is
enough to overlap the majority of the communication, meaning less time is spent
purely waiting for n = 1024 than for n = 512.

3.3.3 Analysis of Snehvit results

Snehvit is a SMP machine, as has very low latency on messages. This is clearly
seen for the cases where n is low. For example, at n = 128, it is 10 times faster
than Norgrid using basic MPI_Sendrecv.

Something that is quickly observed is that Snehvit doesn’t benefit much from over-
lapping communication with multiple neighbors or from overlapping communi-
cation and computation. The reason is simple; sending and receiving messages
are just memory copy operations, and the bottleneck becomes the CPU bus. The
single CPU can either copy memory or compute, but not both. The small gain that
is seen, results from the CPU just copying data to cache, and the cache will be
synchronized in the background.

Snehvit uses more time for computation than Norgrid does. Without carefully
tuned algorithms written by experts on the Itanium2, the machine is unable to

3.3 Test results 21

deliver the performance it is capable of. Indeed, when n becomes large enough
that the problem no longer fits in L1 cache, execution time rises drastically, to the
point that Norgrid is nearly 10 times faster at n = 4096.

3.3.4 Expectations of new method

Figure 3.2 shows the efficiency of the different methods on both machines, where
efficiency is measured simply as 1 − TWall/TCommunicate, so a high efficiency
means less time wasted waiting for communication. Figure 3.3 shows the speedup
of switching to different methods than MPI_Sendrecv on the two architectures.

Figure 3.2: Efficiency of MPI_Sendrecv, MPI_ISend and full overlapping on both
Norgrid and Snehvit with different grid sizes.

Based on the timing from the two very different HPC machines, we can conclude
that overlapping communication with multiple neighbors results in a negligible to
substantial improvement, but it is always an improvement.

Overlapping communication with computation in a perfect way results in even
better results, but the improvement will be less than that seen from the multiple-
neighbor case.

The perfect overlapping requires the data flow of the program to change, hence
it requires either a rewrite of the application or a method capable of analyzing
the application and determine its goal. Such a method is called "analysis and

22 Test program

Figure 3.3: Speedup of using MPI_ISend or full overlapping instead of just
MPI_Sendrecv on both Norgrid and Snehvit with different grid sizes.

understanding" and is, for the time being, something only a human mind can do.
While we can use a lot of tricks to get closer to the timing results of this method, it
is practically impossible to automatically tune the simple MPI_Sendrecv program
into this.

It is fully possible to tune the basic MPI_Sendrecv into something close to the
MPI_Isend case. A method to achieve this is presented in the following chapters.

Chapter 4

Pagefault-assisted request tracking

4.1 Overview

The pagefault assisted request tracking is the backbone on which this method
builds. The idea is to mark pages that are in use by background processes as
inaccessible to the program, and then deal with it when the program accesses one
of them.

The first problem is getting our method inserted into the program, and this is
discussed in Section 4.2. Then comes the problem of requests with overlapping
memory areas as well as requests with non-overlapping memory but which still
share the same pages in memory, and this is discussed in Section 4.3. To avoid
page-protecting data initialized outside the targeted application, it’s necessary to
track memory allocation, and a method for this is explained in 4.3.3. Section 4.4
explains the methods used to add and wait for requests as necessary, and section
4.5 explains how the pagefault signal handler works. Finally, section 4.7 details
the MPI functions we have chosen to override and how.

4.2 Injecting into the process

There are two separate methods for a program to link to the MPI library. It can
use static linking, in which parts of the MPI library are included in the application
binary, or it can use dynamic linking, where the program loads and links to the
MPI functions at runtime.

There are also two separate methods for injecting our method into a program. It
may be done at compile time, in a way transparent to the user but still requiring a

24 Pagefault-assisted request tracking

compile, or it may be done at runtime by changing things "on the fly".

4.2.1 Compile time injection

Compile time injection is facilitated by including mpii.h instead of mpi.h, and
linking to injlib.a. For this thesis project this is done manually, but it is a trivial
task to change the mpicc wrappers used to compile mpi programs to enable this
for an entire machine.

When using static injection, the header defines the functions we want to over-
ride,such as MPI_Init, to be aliases for function names such as Inj_MPI_Init. That
way, only code compiled with our new header will use the overridden functions.
To find the address of the original function which we need to chain to, it’s just
to take the address of the original function name. So taking the address of the
symbol MPI_Init will indeed return a function pointer to the original.

For compile time injection it doesn’t matter what way the MPI library is included.

4.2.2 Runtime injection

Runtime injection is only possible if the MPI library is included dynamically. If
it’s included statically, the address of the MPI functions might not be resolvable.
Attempts were made to work around this by analyzing the binary and looking
for function signatures identical to the MPI library, but advanced compilers with
cross-object inlining ruins this idea, and there was also the chance of misdetection
meaning we would end up replacing the programs fopen() with our MPI_Init,
which was catastrophic.

When using runtime injection on a dynamically linked process, we use the
LD_PRELOAD method. LD_PRELOAD is an environment variable which spec-
ifies a library that is to be loaded for every process, and it is put first in the search
chain of functions to resolve. We therefore name our overridden functions the
same as the functions they should override. The problem then becomes finding
the original function, since taking the address of the function name will return our
own function. We solve this by using dlsym() and the RTLD_NEXT parameter,
which means "resolve this somewhere down the chain, but not here". This means
the dynamic loader will go down the list of libraries and resolve the function name
in the original MPI library (which hopefully is also linked against).

4.3 Marking memory 25

4.3 Marking memory

When a overridden synchronous MPI function is called and turned into an asyn-
chronous one, we need to track the memory area in use. When a pagefault occurs,
we need to know what request we should wait for, and more importantly we need
to make sure we don’t have two active requests to the same memory area. Al-
lowing two write requests to the same addresses would violate the dataflow of the
program.

There are two problems in tracking memory. Overlapping elements and over-
lapping pages. Overlapping elements deals with two requests needing to access
the exact same memory location, while overlapping pages deal with two requests
needing access to the same page.

See Figure 4.1 for an example used in the following discussion. This is a theoret-
ical example of all the requests for a classic Jacobi PDE solver with a 8x8 local
grid, 1 layer of shadow cells, and a theoretical page size of 128 bytes. Each row
represents one page in memory, and each color is a separate request, with bright
colors being sends and dark colors being receives. No receive requests have over-
lapping elements, but the sends do for the corners. Additionally, the only requests
that do not share pages are the ones for the top and bottom.

Figure 4.1: Left: Memory cells used by border exchange in Jacobi PDE Solver.
Right: Cells shown in structured form.

4.3.1 Overlapping elements

Accurately detecting overlapping elements is hard. At the moment, we use a
simple approach of testing if the lower and upper bound of the requests overlap.
This has a major shortcoming though, as requests that do not share a single actual
address might still have their extents overlap. Consider the two columns to be
sent to the left and right side respectively; they have overlapping extents but do
not have any addresses in common.

26 Pagefault-assisted request tracking

Since MPI datatypes can be arbitrarily complex, the only sure way to detect if two
operations overlap is to track all calls to the MPI_Type family of functions and
build a memory stencil. When a request starts, the stencil is repeated count times,
and then compared to the stencils of other requests. Unfortunately, this requires
ub− lb bits of memory for both requests as well as (ub− lb)r comparisons (where
r is the number of outstanding requests). As such, the overhead becomes larger
than the gain, and we stay with the simple solution of checking extents.

4.3.2 Overlapping pages

Detecting the overlapping pages is considerably easier, and unfortunately the de-
tection is frequently true. Unless the application took care and aligned every row
of data on a page boundary, there will be major page overlapping. As a goal of
this new method is to be fully user transparent, page-alignment does not occur in
practice.

If a new request is added which uses pages already protected from use, it can tem-
porarily unprotect them, copy the data it needs, and then reprotect. The problem
is actually in waiting for requests to complete, as a page cannot be unprotected
before all requests dealing with it are finished. Failing to do this means the pro-
gram could read data before it was actually there or write to data that hasn’t been
sent yet, violating data flow.

4.3.3 Overriding malloc() and free()

A problem that was discovered on the SGI implementation of MPI is that it fre-
quently dynamically allocates memory, and does so by just placing data at the top
of the program heap. If this data is placed in an area that we have protected, we
have a logical deadlock, as our method will not release the page until the MPI call
is complete, and the MPI call itself needs that data. The result is a program crash.

To avoid this problem, we override malloc() so that they always return page-
aligned addresses, and we increase the size of the allocated area so it fills the
data page. This way we can ensure that the MPI library’s use of the heap does not
interfere with that of the application or our method.

free() is overridden too, as it needs the original allocated memory address and not
our page-aligned one.

Allocated memory pages are marked in a map, and the overridden MPI functions
will only optimize the call if the memory area starts in a marked page. This avoids

4.4 Adding and waiting for requests 27

the problems of programs that use buffers allocated on the stack or as static data,
which again would cause logical deadlocks (especially the stack).

This method of ensuring page-granularity of malloc() requests can cause massive
increase of memory usage if there are hundreds of small malloc()s. For this rea-
son, the overridden malloc() and free() functions are not used before the call to
MPI_Init. This is especially important for runtime injection, as we will override
malloc() in all programs, including mpiexec and the shell itself, and we do not
want to bloat memory allocation in these programs. Most scientific MPI pro-
grams and development code we have looked at start with the call to MPI_Init and
then allocate memory in large chunks, so the bloat should be a minor problem.

4.4 Adding and waiting for requests

When a new request is made, it is added to the set of active requests. The al-
gorithmic overview of this process is shown in Algorithm 4. The accompanying
algorithm for waiting for requests is shown in Algorithm 5.

Algorithm 4: Turning synchronous request into asynchronous and adding
to set of active requests.

input: issend signifying send or receive request
begin1

overlap← false ;2

for each other request r do3

if r has overlapping elements with this request then4

Wait for r ;5

if is_send and r overlaps our pages then6

overlap← true ;7

if overlap then8

Unprotect memory area ;9

Allocate temporary buffer large enough to hold data ;10

if is_send then11

Copy data from memory into buffer ;12

Mark memory inaccessible ;13

Start background transfer ;14

Add request to set of active transfers ;15

end16

28 Pagefault-assisted request tracking

Algorithm 5: Waiting for requests to finish.
input: A request w to wait for
begin1

Remove w from set of active transfers. ;2

Call MPI_Wait for request of w. ;3

for each other request r do4

if r overlaps pages of w then5

Wait for r. ;6

Mark memory area of w accessible;7

if w is a receive request then8

Copy data from buffer into memory.;9

end10

There is one complication not shown in the algorithm, which is pairs of requests
such as those from MPI_Sendrecv. For these, we mark the accompanying request,
and we do not wait for that request to finish even if our primitive test for over-
lapping elements succeed. The MPI specification clearly states that the send and
receive buffer should not have overlapping elements, so any violation of data flow
would also occur without optimization and as such we can ignore the test. Without
this added logic, calls to MPI_Sendrecv might deadlock when it shouldn’t.

4.5 Page fault handling

The OS mechanism of page fault signal handlers is simple and effective. Upon a
page fault, the handler is called with a list of parameters, including the memory
address at which access was attempted. When the signal handler returns, the
instruction that caused the fault is attempted again and program flow continues.

Our method handles page faults as explained in Algorithm 6. The hardest part
here is gracefully handling "real" page faults caused by bugs in the application. If
that happens, we need to finish all our outstanding requests and restore the original
handler. When we return, the original instruction will immediately cause a page
fault again, but this time the original handler will handle it and the application will
crash properly.

We do not modify the page tables at all in the page handler, the function to wait
for requests handle that for us.

4.6 Tracking MPI_Status 29

Algorithm 6: Handling page faults.
input: address which caused fault
begin1

found← false ;2

for each active request r do3

if r pages include address then4

Wait for r. ;5

found← true ;6

if not found then7

Wait for all active requests ;8

Restore original handler ;9

end10

4.6 Tracking MPI_Status

A problem that became apparent after a bit of testing was that the original idea
violated the concept of the status parameter to MPI_Recv. As the request is most
likely not finished yet, trying to figure out the number of bytes received becomes
meaningless.

The solution to this problem was unexpectedly simple. As MPI defines all query-
ing of status through functions, we simply override these functions. When a re-
ceive request is added, we map the address of the status variable to the request,
and if a call is made to query the status variable, we wait for the request to finish
before chaining to the original function.

With this added logic to handle MPI_Status, our program ensures that the logical
data flow of the program remains exactly the same as without our optimizations,
meaning that our optimizations cannot cause the program to misbehave.

4.7 Overridden functions

We will here provide a short detail of the functions we override as well as the ones
we leave unmodified.

30 Pagefault-assisted request tracking

4.7.1 MPI_Init

MPI_Init is used as our entry point into the program. It is here that we initialize
the function pointers to the original functions, as well as initialize our data tables.
In addition, it is only after this initialization that the page-alignment of malloc()
is enabled.

After chaining to the original MPI_Init, we initialize our signal handler for page
faults (or segment violations which they are still archaically called). It is necessary
to call the original MPI_Init first, as most MPI implementations add their own
signal handler which simply returns an error to the user, but does not check for
any previous signal handlers. This MPI-specific signal handler would then replace
our own, meaning the program will page fault and crash on the first access to the
memory of a request.

4.7.2 MPI_Send and MPI_Recv

MPI_Send adds a new send request and immediately returns to the caller, and
MPI_Recv similarly adds a new receive requests.

If the environment variable INJ_IGNORE evaluates to true, both functions will
simply chain to the original MPI implementation without using the page tricks
and immediately wait for it’s completion. This enables applications to easily see
the improvements added by our method.

4.7.3 MPI_Sendrecv

MPI_Sendrecv adds both a receive and a send request, making use of the added
logic to disable overlapping tests between the two requests.

MPI_Sendrecv also honors the INJ_IGNORE flag.

4.7.4 MPI_Ssend, MPI_Rsend, MPI_Bsend and the
MPI_Isend family

Calls to any of these functions are not optimized in any way and will go though
completely untouched.

Our method is aimed at optimizing unoptimized applications, and applications
using any of these functions already have some degree of optimization in them.

4.7 Overridden functions 31

It is unnecessary to check the memory areas of the requests against the list of ac-
tive requests and protected pages. As the MPI implementation runs in the context
of the application, any page faults will be handled by our normal signal han-
dler. This way, an application may use both simple MPI_Send, MPI_Recv and
MPI_Sendrecv which will be optimized as well as it’s own optimizations.

4.7.5 MPI_Get_count and MPI_Get_elements

These functions will check the mapping between status variables and requests.
If such a mapping exists, they will wait for the request and chain to the original
function. As waiting for a request will remove the mapping, this solution incurs
practically no overhead.

32 Pagefault-assisted request tracking

Chapter 5

Tracking request chains

5.1 Overview

The pagetable manipulation tricks we propose are able to give us good improve-
ments on some architectures, but on architectures where MPI operations are essen-
tially memory operations it will cause a slowdown. The trick gives us something
else though, it gives us a accurate way of determining when the results of an MPI
request is actually needed. By remembering this information, it is possible to turn
single MPI commands into chains of them and avoid the page protection overhead.

The first stage of such a technique is explaining what a chain is, and this is done
in Section 5.2. Recognizing chains from program and data flow is explained in
Section 5.3.

5.2 Chains of requests

A chain of requests is any phase of the program that is pure communication. For
example, in our Red-Black SOR PDE Solver, the exchange of red borders is a
chain of requests.

By recognizing such chains, and the knowledge that the majority of communica-
tion improvements are in communicating with multiple neighbors simultaneously,
we can avoid the overhead of page protection by allowing the requests to start
background transmission and wait for all outstanding requests at the end.

It is important that chains be remembered, as it’s only once we have great confi-
dence that a chain is identical for every iteration that we can perform this trick;

34 Tracking request chains

otherwise the "end of chain" might never happen and the program might read or
write unavailable data.

5.3 Recognizing chains of requests

Recognizing a chain requires both a method for recognizing identical MPI calls
and a way to recognize the sequence of MPI calls.

5.3.1 MPI call signatures

To recognize MPI calls, a signature of the call is made. This signature contains all
the parameters passed to the MPI function, such as base address, datatype, count,
communicator, tag and receiving/sending rank. Two signatures are identical only
if all parameters are identical.

For each maintained signature, a small record is kept with the following data:

• Seen count - the number of times this exact signature has been used by the
application.

• Previous and Next - what we believe to be the next and previous requests in
the chain to be.

• Confidence of Previous and Next - how many times we’ve seen these
requests in the same sequence.

• PageBreak pointer - the address that caused a pagebreak when this was the
last active request.

• WaitPoint - if this request has been used as a end-of-chain for another
request.

5.3.2 Confidence of chains

The confidence of chains is used to validate sequences that will always repeat.
High confidence reduces the risk of data flow violation. It might still occur, but
the higher the confidence the lower the chance.

Every time a request is made from the application, it’s signature is looked up and
the matching record found. Our method keeps track of the last signature seen,

5.4 Using request chains 35

and checks if LastSignature.Next equals the new request. If it does, the
Confidence of LastSignature.Next as well as ThisSignaure.Prev is increased. If it
isn’t, the pointers are updated and Confidence is set to 0.

5.3.3 Terminating chain

When a page fault occurs, the signal handler checks if there is a LastSignature. If
there is, the PageBreak pointer is set in the matching record, indicating that no
request in a chain should be allowed to proceed after this point in the application.

5.4 Using request chains

To make use of the request chains, the algorithm to add new requests is amended
according to 7. It is only if we have a high confidence of chains all the way to a
record with PageBreak set that we attempt using chains.

Algorithm 7: Testing for and adding a recognized request from part of a
chain.

input: R
New request begin1

Compute signature for R ;2

Lookup record record for signature ;3

Update record confidence. ;4

recognized← true ;5

recptr← record ;6

while recognized and recptr .Next and not recptr .PageBreak do7

if recptr .Next confidence low then8

recognized← false ;9

if recptr neq signature and recognized then10

recptr .waitpoint← true ;11

Submit request asynchronously with no parameter change. ;12

else13

Submit request using normal paging method. ;14

if recognized .waitpoint then15

Wait for all outstanding requests. ;16

end17

36 Tracking request chains

It is important to note that all communication in a recognized chained is done
in-place, so there is no overhead of buffering and no overhead of paging.

5.4.1 Interoperability with paging

The most troublesome part of the chaining implementation is its interoperability
with the paging. As chaining request are done in-place, they cannot overlap with
the page-protected ones. Unfortunately, chains tend to grow gradually as larger
confidence is built. At the start it might be just the terminating request and it’s
partner send or receive request, and once confidence builds up it will include
communication with the other neighbors as well.

During this transition period, a recognized request in a chain might still be
demoted to a page-protected request if it overlaps a request which need page
protection. After all, the other request is already in progress and we can’t change
it. Similarly, if a paging request is starting that overlaps a recognized request, we
have no choice but to wait for the recognized request to finish. Otherwise the
MPI implementation would try to background write or read to data we just
protected.

As seen in the results chapter, this transition period incurs a substantial overhead
as we get the overhead of both methods and in addition might have to wait for
more requests to finish.

5.5 Failure points of chaining

Chaining is not perfect. Even with a very high confidence in the chain it might
break. Consider the small program given in 8. After a few iterations, the chain
will be

SendA→ RecvB → SendC → RecvD → Terminate

This comes from the fact that the only time the program accesses data is between
the communication exchanges, and so that will become the end of chain. As the
number of iterations increase, the confidence that SendC always follows RecvB
becomes very high.

Unfortunately, this means the wrong value of B will be printed, as we never wait
for that request to finish. There is no easy workaround for this that will enable us
to maintain the same amount of improvement, but thankfully it only applies to

5.5 Failure points of chaining 37

Algorithm 8: Example program that terminates in the middle of a recog-
nized chain, violating data flow.

begin1

a← 1 ;2

c← 2 ;3

for each iteration do4

Send c to Rank + 1 ;5

Recv d from Rank + 1 ;6

c← a ;7

a← c + d + b ;8

Send a to Rank − 1 ;9

Recv b from Rank − 1 ;10

Print b;11

end12

programs with rather illogical communication patterns such as the example
provided.

38 Tracking request chains

Chapter 6

Results and Discussion

This chapter will show and discuss the results of running our new method on the
test program.

6.1 Test results

The same testing methodology was used as explained in 3.3.1. We ran tests with
the confidence threshold set higher than the number of iterations to get results for
just the paging method, and set it to just 2 to get results for the chaining. We also
only measured the improvements on the "classic" part of the test program, the
one using just MPI_Sendrecv.

It is now very hard to split timing into communication and computation parts, as
a lot of the "waiting for communication" will happen in the pagefault handler,
which is called during the test programs computation phase. While we note that
in general the communication time has decreased drastically, the computation
time has also increased noticeably. The results therefore focus on wallclock time,
which after all is the final measurement of a program’s execution time.

To validate that the program still computes the same results, we ran several test
runs both with and without optimization and compared the results, and they were
in all cases identical. Since the paging method does not allow for data flow
violations, we have confidence the method should not alter execution results of
any program.

40 Results and Discussion

Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
MPI_Sendrecv 0.12 0.22 0.59 1.92 8.00 106.68
MPI_Isend 0.11 0.21 0.55 1.87 7.80 106.18
Full overlap 0.11 0.20 0.54 1.80 7.36 105.63
Paging 0.44 0.64 0.96 2.58 8.60 102.45
Chaining 0.21 0.31 0.66 1.96 7.91 106.29

Table 6.1: Average iteration execution time in milliseconds of automatically
optimized program compared to manually optimized on 16 nodes on the Sne-
hvit(Altix) machine.

Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
MPI_Sendrecv 1.14 3.01 3.01 3.49 6.05 16.98
MPI_Isend 0.36 0.99 1.00 1.97 4.48 14.09
Full overlap 0.35 0.99 1.00 1.15 3.87 13.84
Paging 0.92 1.13 1.32 2.94 6.34 22.01
Chaining 0.43 1.07 1.06 2.04 4.55 14.17

Table 6.2: Average iteration execution time in milliseconds of automatically opti-
mized program compared to manually optimized on 16 nodes on the Norgrid(Dell)
cluster.

6.2 Snehvit results

The results on Snehvit are detailed in Table 6.1, and the speedup of the different
methods are shown in Figure 6.1. Snehvit is a SMP machine with a highly
optimized MPI engine, and already before we started the difference between a
manually optimized and an unoptimized application was small.

6.2.1 Paging

On Snehvit, the overhead of paging far outweighs the benefits. Each time
requests overlap, something they frequently do for the smaller data sizes, pages
have to be unprotected and reprotected frequently.

As seen, paging consistently leads to a slowdown, with the notable exception that
when n = 4096, the paging program has better results than any of the others. We
ran the test numerous times and always got the same result. Part of the reason
may be the fact that the paging version always optimizes memory to be page
aligned, leading all requests to be aligned to the start of a cache line and fewer
cache misses.

Additionally, with large data sets, computation is allowed to start at an earlier
point. As soon as the top, left and right borders are done, all nodes except the

6.2 Snehvit results 41

Figure 6.1: Speedup of automatic optimization and manual optimization on Sne-
hvit.

ones at the bottom can be updated, meaning computation for interior nodes start
while communication is still in progress, which leads to a very high degree of
overlapping.

6.2.2 Chaining

Once chains are recognized and executed without page protection, there is a
pretty consistent overhead of 10 milliseconds. This overhead comes mainly from
looking up the request signature in the map and iterating over "active requests" to
check for overlapping.

For the small request sizes, this overhead still leads to a slowdown, but once
n > 2048, the overhead is small enough that there’s a small gain. Since chaining
aims to be equal to the MPI_Isend case, it will always wait at the end of the chain
for all communication, so the benefit of overlapping interior computation and
communication will not happen here. So for the n = 4096 case, paging is faster
than chaining, a result which was totally unexpected when we started
development.

42 Results and Discussion

6.3 Norgrid results

The results on Norgrid are detailed in Table 6.2, and the speedup of the different
methods are shown in Figure 6.2. Norgrid is a regular Cluster of Dell
rack-mounted Pentium4 PCs with Gigabit Ethernet. MPI operations are quite
expensive, as they will ultimately be passed over Ethernet after being
encapsulated in TCP/IP. As our method mainly deals with reducing the effect of
latency, expectations for this architecture were high.

Figure 6.2: Speedup of automatic optimization and manual optimization on Nor-
grid.

6.3.1 Paging

On this architecture the overhead of a page fault is small, but it seems pages
which get their access attributes changed are flushed from cache. For small data
sizes, this still gives a decent speedup compared to regular MPI_Sendrecv, but as
the data size grows, the overhead of reloading data from main memory
outweighs the benefits, and there’s a noticeable slowdown once n > 2048.

The sweet spot for paging seems to be in the 256 ≤ n ≤ 512 range, where the
running time was reduced by over 60%.

6.4 Projections for other architectures 43

6.3.2 Chaining

As it was on Snehvit, chaining has pretty much a constant overhead which may
be added to the MPI_Isend case. However, on this architecture, that overhead is
smaller, so for any size of n, chaining leads to a substantial speedup over
MPI_Sendrecv, getting close to the MPI_Isend case.

In short, this means that as long as the program doesn’t have any communication
patterns that tricks the chain confidence tests, there will always be a speedup
when applying our new method on this architecture.

6.4 Projections for other architectures

Our new method deals primarily with reducing latency. On any kind of cluster or
SMP machine where latency is a dominating factor, the method may provide
substantial improvements.

On machines with dedicated low-latency MPI hardware where writing to a
remote machine is almost as fast as writing to local memory, the method
currently does not offer any improvements. However, we have a few ideas on
how to achieve speedup even on these architectures, and this is discussed in
Chapter 7.

6.5 Discussion

Our new method deals primarily with automatically optimizing MPI programs
for which no previous optimization has been done. The first point of discussion
becomes whether or not it’s worth putting effort into optimizing for these kinds
of applications?

6.5.1 Why optimize naive code?

While we have no studies or data to prove it, our own observations of other MPI
programs running on the machines we have access to lead to the conclusion that
optimizations are frequently not done at all. Indeed, previous work at NTNU
with the Unified Model [18] shows that even production code can have horrible
code quality, and that the major point of interest for the users of the code is just
the results.

44 Results and Discussion

At the same time, there is a growing trend for Desktop applications that
optimizations aren’t necessary. By the time the application is developed, faster
processors and more memory will be available for the end user to buy. At the
same time, the fact that program libraries like the Java Foundation Classes, the
Standard Template Library (C++) and the .NET Framework provide optimized
sort functions is the only reason bubblesort is no longer the most commonly
implemented sorting algorithm.

As computer scientists, we can either optimize our own code, going from 99%
efficiency to 99.5%, or we can take a stab at optimizing all the other horrible
code out there, going from 50% efficiency to 80%. While the glamor and fame of
the former might be higher, the real world savings in computer time is much
higher for the latter.

6.5.2 Portability

The current version of the code is made with portability in mind. Indeed, we use
the same code on both Norgrid and Snehvit, which are completely different
machines. The code also compiles and runs on Gridur, an Origin 3800, but the
instability in timing on this machine precludes measuring improvements with
any confidence.

It is possible to achieve better results by using machine specific functions and
hardware features. For example, having per-thread page protection attributes
would avoid the overhead of copying to a temporary buffer for the paging
method, and SGIs implementation of memory allocation pools would allow us to
avoid the page-alignment of malloc.

Likewise, it’s possible to use a specific feature of certain compilers. For example,
it’s easy to use the inter-procedural optimizations of the Intel C Compiler to
inline our code at compile time in the target application.

However, any such optimization would limit the programs usability. We would
lock it to a specific set of platforms, and hence limit the users choices. As it is
our goal to make this method available and useful to everyone, we are willing to
sacrifice a small bit of theoretical peak performance in favor of having it
available on more platforms.

6.5 Discussion 45

6.5.3 3D PDE Solvers

Our current tests are done with a 2D PDE Solver. While it has not been tested,
the performance increase for a 3D PDE Solver should be just as good.

In the 3D PDE solver, surfaces are exchanged instead of borders, so the amount
of data to transfer will be larger. However, it will also be necessary to transfer to
6 neighbors instead of 4, and with chaining they will all be done at once meaning
the latency overhead is even further reduced than in the 2D case.

46 Results and Discussion

Chapter 7

Conclusion and Future work

7.1 Conclusion

We have implemented, tested and verified a method for automatic runtime
optimization of communication patterns. Our method requires little or no user
intervention and, with paging only, cannot break data flow.

It is fully transparent, so a system administrator might install the static injection
as part of the mpicc system, and users would not notice anything but a small
speedup of their programs.

The improvements make normal applications based on MPI_Sendrecv rival those
written with MPI_Isend. This allows users to think and write using simple
communication patterns which leads to greater productivity and faster
application development or them, and it lets us focus on the optimization part at
runtime. We hope this focus on optimizing "average" applications is something
we can inspire others to follow.

Our implementation demonstrates unconventional use of hardware resources to
aid optimization, and also demonstrates dynamic changing of a precompiled
program we have no source for, something that’s previously been restricted to
interpreted or Just-in-Time compiled languages.

With chaining enabled, our method has very little overhead, and will improve the
running time of most applications running on regular clusters.

48 Conclusion and Future work

7.2 Future work

Our new method is mostly a proof-of-concept at this point, enough to show that
the idea works in real life on a given test case. There are still a lot of things that
can be done that may or may not improve the runtime even further, but
unfortunately we didn’t have time to implement them all. We will list some of
these ideas here.

7.2.1 Caller address in signature

It would be beneficial to add the call-return address to the signature of the
request, to make sure the request originated from the exact same point in the
source code as well. Currently, if two completely different places in the source
code transfer the exact same data, the signatures would be identical. Most likely
the communication pattern will vary slightly between the two places, and this
will preclude chains from building up enough confidence.

Getting the call-return address means peeking at the stack, which is very
architecture specific, and can change depending on what compiler options are
used (-fomit-frame-pointer being a good example). The best solution is probably
to make a small macro to fetch the return address on architectures that support it
and just return 0 on the others, so unsupported architectures just fall back to the
same signature we use today.

7.2.2 Overlapping tests

At the moment, we use a very simple test for overlapping regions of data; if the
upper and lower bounds intersect in any way, it’s an overlap. However, as was
explained in Section 2.1.2.1, this gives us a lot of false positives. Unfortunately,
proper analysis of overlapping is computationally expensive and is likely to
generate more overhead than we have to gain.

An idea is to use the fast method during the paging phase, but if enough
confidence is achieved that we move into chaining, we can do the expensive
analysis once. As long as the signatures stay identical, two requests that didn’t
overlap the first time will not overlap later on. By delaying until we reach the
chaining phase, we also ensure that the added overhead will be spread over many
following iterations.

7.2 Future work 49

7.2.3 Modeling of transfer time

As was seen in Chapter 6, the potential improvement in runtime varies with the
size of messages. If better modeling was added to the method, one could predict
when no speedup was possible, and then fall back to just using the original
function. Unfortunately, the classic model of TC = TS + βn is not accurate
enough to cover our needs here, as it does not fit well for very small data packets,
nor does it model multiple concurrent communications.

If a better model was available that was very fast to compute and update, it could
be updated on the fly based on the time transfers actually took, and then
continually be used to make proper decisions on what to do.

7.2.4 Per-thread page protection

While it will be limited to just one OS (Linux kernel based ones), a kernel
module that enables per-thread page manipulations would enable us to find the
"best possible" time, and more accurately measure how much we actually lose by
our current copying scheme.

7.2.5 Partial communication

Based on the results for the n = 4096 case on Snehvit, we see a potential for
allowing partial unlocking of pages. For the left and right sides, unlocking half
the pages once half the transfer is complete would allow half the computation to
finish while we finish the last half of communication. While such a method
would add overhead, it is better than simply waiting for communication to finish.

Unfortunately, there is no good way to measure the progress of a MPI transfer, as
it’s either done or not done. So such a method would require some modification
of the underlying MPI library.

7.2.6 Communication priority

Once n is high, communication is not bound by latency, but by bandwidth. At
that point the current method fails to offer much of an improvement.

By delaying the parts of communication that won’t be needed until the end of the
computation phase until the end of the communication phase, some speedup will
be possible here too. For our test program, this would work roughly as follows:

50 Conclusion and Future work

• The application submits exchanges of top, left, right and bottom borders.

• The improved method protects all the pages, but only starts transferring the
top and left borders before returning.

• The application will page fault at the very first element, belonging to the
left and top borders.

• The improved method waits for top and left to finish, then starts the
transfer for right border. Pages for top and left are unprotected.

• The application computes the top row of elements, page faulting at the last
one.

• The improved method waits for right border to finish, then starts the
transfer for bottom border. Pages for right are unprotected.

• The application finishes computation for all rows but the last one, which
will be done by the time it gets there.

In theory, this should provide a 25% decrease in communication time even on
machines with very good interconnect. It is absolutely essential that the
communication model be accurate though, as otherwise this method will just add
overhead.

7.2.7 Ready sends

On SMP machines, it is customary to use either an "eager" or a "rendezvous"
communication mode. In "eager" mode, the data is copied to a buffer by the
sending processor and copied out of the buffer again by the receiver. This is used
for very small messages. In "rendezvous" mode, the sender waits for the receiver
to post a receive, then copies the data directly to the target memory.

Normally, eager is used for short messages and rendezvous for larger ones. eager
is "faster" as it doesn’t require the two processes to be synchronized, but
rendezvous avoids the extra buffer copy. The MPI implementation switches
between these based on a heuristic of the transfer size.

However, sometimes it makes sense to use a different method than what the MPI
implementation heuristic wants. For example, if we know the receive is ready at
the other end, we would improve runtime by forcing rendezvous. And if we
know it will not be ready for some time, we should force eager.

7.2 Future work 51

Knowing whether or not a receive is ready ahead of time is very hard. However,
by expanding our request record associated with a signature a bit, we can try
forcing a different method each time we see the request and measure the time
taken. One of the two methods will give better results, and as our heuristic is
based on program-specific request history it should give a better heuristic than
the built-in one.

7.2.8 Safe breaking of chains

If a program breaks a recognized chain as demonstrated in Section 5.5, there is
currently nothing we can do.

The problem can be worked around by setting program execution mark points at
each start of chain, and using copy-on-write semantics to preserve the execution
image at that point, but this would add far more overhead than we could save.

What we can do, however, is warn the user that a chain broke. Each time a MPI
function is called, we check if it came unexpectedly. If it does, program
execution flow changed and we broke the chain. At this point, we would inform
the user of the problem.

7.2.9 Application database

The ideas of Better modeling, Ready sends and Safe breaking of chains would
benefit immensely from having their data stored between runs. It should be fairly
trivial to store the database once MPI_Finalize is called and reload it in MPI_Init.
While this won’t help much during development, where communication and
execution patterns change all the time, it will help a lot once the application
reaches the "verification" stage in which numerous runs with different data sets
are used, and it will also help for unoptimized applications that are in production.

7.2.10 Instrumentation

While our method is primarily targeted at unoptimized programs for normal
users, it’s idea of chains and confidence, it’s analysis of Ready Sends and
Communication priority would be a very good starting point for manual
optimization.

If the Application database is implemented along with Caller address, it would
be possible to read the debug data of the application and print out the source code

52 Conclusion and Future work

line for each MPI function call and a recommendation on what to do.

Bibliography

[1] M. P. I. Forum, Technical Report No. UT-CS-94-230 (unpublished). 5

[2] P. S. Pacheco, Parallel programming with MPI (Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996). 5

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, Parallel Computing 22, 789
(1996). 10

[4] W. Gropp and E. Lusk, Parallel Computing 22, 1513 (1997). 10

[5] W. Gropp and E. Lusk, The International Journal of Supercomputer
Applications and High Performance Computing 11, 103 (1997). 10

[6] G. Burns, R. Daoud, and J. Vaigl, in Proceedings of Supercomputing
Symposium (PUBLISHER, ADDRESS, 1994), pp. 379–386. 10

[7] J. M. Squyres and A. Lumsdaine, in Proceedings, 10th European PVM/MPI
Users’ Group Meeting, No. 2840 in Lecture Notes in Computer Science
(Springer-Verlag, Venice, Italy, 2003), pp. 379–387. 10

[8] O. Zaki, E. Lusk, W. Gropp, and D. Swider, The International Journal of
High Performance Computing Applications 13, 277 (1999). 10

[9] S. Shende et al., Portable Profiling and Tracing for Parallel Scientific
Applications using C, 1998. 10

[10] D.U.M.A. - Detect Unintended Memory Access. 11

[11] N. Nethercote and J. Seward, Valgrind: A Program Supervision
Framework, 2003. 11

[12] R. C. Whaley, A. Petitet, and J. J. Dongarra, Parallel Computing 27, 3
(2001), also available as University of Tennessee LAPACK Working Note
#147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps). 11

54 BIBLIOGRAPHY

[13] A. Faraj and X. Yuan, in ICS ’05: Proceedings of the 19th annual
international conference on Supercomputing (ACM Press, New York, NY,
USA, 2005), pp. 393–402. 11

[14] Åsmund Østvold, Timing and Measurement Techniques for MPI Collective
Communication Operations, 2003. 11

[15] H. Ogawa and S. Matsuoka, in Supercomputing ’96: Proceedings of the
1996 ACM/IEEE conference on Supercomputing (CDROM) (IEEE
Computer Society, Washington, DC, USA, 1996), p. 37. 11

[16] C. Dulong et al., Intel Technology Journal 15 (1999). 11

[17] L. Hageman and D. Young, Applied Iterative Methods (Academic Press,
New York, 1981). 14

[18] L. E. Eilertsen and J. A. Amundsen, Unified Model Optimization, Personal
Communication, 2005. 43

Appendix A

Installation and User’s Guide

This chapter contains a brief introduction on how to compile and install our new
method as well as a short end user guide on how to use it.

A.1 Compilation

The only file that needs to be compiled is layer.cpp, but it has to be compiled
both as a static library and as a dynamic injectable one.

Note that the method of dynamic injection doesn’t apply unless you also have a
dynamically loaded MPI library. The easiest way to test this, is to compile a
simple MPI program, and run

ldd programname

If the output contains a line with something like libmpi.so then you have a
dynamically loaded MPI library.

A.1.1 Static library

Static compilation should be just like compiling any other object file on your
architecture.

g++ -O3 -DINJECT_STATIC -o layer.o layer.cpp

56 Installation and User’s Guide

This syntax works with the Intel C Compiler and MIPSPro as well. The
-DINJECT_STATIC is just a flag to include the initialization options necessary
for the static library.

Next, the object file needs to be linked into a static library. On most UNIX
architectures, this can be achieved as follows:

ar r libinjlib.a layer.o
ranlib libinjlib.a

ar archives the object files (in this case just one) into an archive, and ranlib
generates an index of symbol names in the archive to make it suitable for linking.

A.1.2 Dynamic library

Compiling a dynamic library is often slightly more complicated, and even more
so in this case as the library has to be fully dynamically relocatable. To compile
the object file with GCC or Intel C, use the following:

g++ -O3 -DINJECT_DYNAMIC -rdynamic -fPIC -o layer.ro layer.cpp

-DINJECT_DYNAMIC is just a flag for the source to include the parts necessary
for dynamic injection. -fPIC produces Position Independent Code in which most
variable references are made relative to the program counter, and constant
addresses use the GOT (Global Offset Table). To be able to be injected into a
precompiled process, we need to ensure a GOT exists, and -rdynamic forces the
compiler to generate one.

To link the object into a library, the following is used:

g++ -shared -Wl,-soname,injlib.so.1 -o injlib.so.1.0.1 layer.ro -lc -ldl -lmpi -lmpi++

-shared specifies a shared library, the -soname specifies the internal linker name
(so we can make inlib.so.1 a symlink to injlib.so.1.0.1 and later just update the
symlink). -lc -ldl -lmpi -lmpi++ include the necessary libraries for linking.

A.2 Using the library

Depending on whether you use static or dynamic injection, you’ll have to modify
either the compilation or running phase of your program. Do not do both, as that

A.2 Using the library 57

would make our new method try to optimize our new method, and the added
overhead will decrease performance somewhat.

A.2.1 Compiling with static library

To compile with the static library, include mpii.h instead of mpi.h in your
program source. Modify your final linking stage to include -linjlib before -lmpi,
or if you use a mpicc wrapper, just include -linjlib in options to the final linker.

For example, if your original program was linked by

gcc -o hello hello.o -lmpi

then you should instead use

gcc -o hello hello.o -linjlib -lmpi

If you didn’t put libinjlib.a in the library path, add a options for
-L/path/to/injlib/directory.

A.2.2 Injection dynamic library

To run the program with dynamic injection, set the environment variable
LD_PRELOAD to /full/path/to/injlib.so.1.0.1. It is safest not to set this variable
globally, as that would make injlib be inserted into every subsequently run
program. The safest is to use it on the line of mpirun as follows:

LD_PRELOAD=./injlib.so.1.0.1 mpirun -np 4 hello

A.2.3 Controlling library use

If the library has been successfully inserted, it will print out a line saying
something like

MPII Init (debug -1, ignore 0)

from each process.

To disable the library, set the environment variable INJ_IGNORE to 1. This will
make the overridden functions wait for results to complete, and will disable both

58 Installation and User’s Guide

the paging and chaining mechanisms. This option is very useful if you suspect a
fault in the library.

To enable extended debugging, set the environment variable INJ_DEBUG. A
value of -1 (the default) disables debugging. -2 will enable debugging output
from all processes, and any other value will enable debugging only from the
process whose rank matches INJ_DEBUG.

A.3 Global installation

A global installation enables our new method transparently for all users, using
the static injection method on all compiled MPI programs.

Most cluster architectures provide a mpicc wrapper to compile MPI programs.
You will need to modify this wrapper to add -linjlib everywhere it adds -lmpi. In
the MPICH distribution, this is accomplished by adding

mpilibs="-linjlib $mpilibs"

just before the linker is run.

Modify mpii.h to include mpi_orig.h instead of mpi.h. Rename the original mpi.h
to mpi_orig.h and then rename mpii.h to mpi.h and put it in the same directory as
mpi_orig.h. This will make sure the symbols are right for all loaded programs.

Finally, we recommend modifying mpirun to set INJ_IGNORE to 1 unless the
environment variable already exists. Most users react negatively to forced
changes, and this change will change the timing of any benchmarks or
comparisons. However, once all the above is done, users just have to

export INJ_IGNORE=0

to enable our new method in their programs.

Appendix B

MPII Class Documentation

B.1 MemReq Struct Reference

A memory area in use by an active MPI request.

Public Member Functions

• MemReq (bool is_send, unsigned char ∗base, int count, MPI_Datatype
datatype, MPI_Comm comm, MPI_Status ∗status)

Construct a new active request.

• ∼MemReq ()

Destructor.

Public Attributes

• bool is_send

Indicates if is a MPI_∗send or MPI_∗recv request.

• bool is_protected

Is the memory area mprotect()ed?

• bool is_waitall

60 MPII Class Documentation

Is this request the end of a chain?

• Range reqmem

Memory range (in user program) of request.

• Range pages

Memory range of request, page-aligned for.

• void ∗ base

Base address used in request, identical to reqmem.start.

• int count

Number of elements in request.

• MPI_Datatype datatype

Datatype used in request.

• MPI_Request req

Request handle.

• MPI_Comm comm

Communicator used in request.

• MPI_Status ∗ status

Status (if any).

• int bufsize

Size of buffer for MPI_Pack and MPI_Unpack.

• unsigned char ∗ buffer

Allocated buffer for packing/unpacking data.

B.1.1 Detailed Description

A memory area in use by an active MPI request.

B.1 MemReq Struct Reference 61

This struct holds all the information about an active request.

Definition at line 187 of file layer.cpp.

B.1.2 Constructor & Destructor Documentation

B.1.2.1 MemReq::MemReq (bool is_send, unsigned char ∗ base, int count,
MPI_Datatype datatype, MPI_Comm comm, MPI_Status ∗ status)
[inline]

Construct a new active request.

Parameters:
is_send Is this request a MPI_∗send?

base Buffer to send/recv to.

count Number of elements.

datatype Datatype.

comm Communicator to use.

status Pointer to status variable. This will initialize reqmem and pages
based on the datatype and count, and will allocate a buffer for packing
and unpacking.

Definition at line 236 of file layer.cpp.

References buffer, bufsize, is_protected, is_waitall, Range::pageAdjust(), pages,
reqmem, Range::start, and Range::stop.

B.1.2.2 MemReq::∼MemReq () [inline]

Destructor.

Deallocates memory for buffer.

Definition at line 267 of file layer.cpp.

References buffer.

62 MPII Class Documentation

B.1.3 Member Data Documentation

B.1.3.1 bool MemReq::is_waitall

Is this request the end of a chain?

If this is true, this is the end of a chain and we should wait for all outstanding
requests to finish before moving along.

Definition at line 199 of file layer.cpp.

Referenced by add_req(), and MemReq().

The documentation for this struct was generated from the following file:

• layer.cpp

B.2 Range Struct Reference 63

B.2 Range Struct Reference

A range of memory.

Public Member Functions

• Range ()

Null constructor.

• Range (void ∗start, void ∗stop)

Basic contructor.

• bool operator== (const Range &o) const

Compare two ranges.

• bool overlaps (const Range &o) const

Check if two ranges overlap (intersect).

• bool overlaps (void ∗ptr) const

Check if address is inside range.

• Range pageAdjust () const

Adjust range to page boundries.

• size_t size () const

Compute size of range.

Public Attributes

• void ∗ start

Start of range.

• void ∗ stop

End of range.

64 MPII Class Documentation

B.2.1 Detailed Description

A range of memory.

This is a convenience class to work with an manipulate a range of memory (such
as the buf variable of most MPI calls).

As many compilers don’t like pointer arithmetics with void ∗ pointers, this makes
the rest of the codemuch cleaner.

Definition at line 117 of file layer.cpp.

B.2.2 Constructor & Destructor Documentation

B.2.2.1 Range::Range (void ∗ start, void ∗ stop) [inline]

Basic contructor.

Parameters:
start Start of range.

stop End of range.

Definition at line 133 of file layer.cpp.

B.2.3 Member Function Documentation

B.2.3.1 bool Range::operator== (const Range & o) const [inline]

Compare two ranges.

Parameters:
o Other range to compare with.

Returns:
true if ranges are identical.

Definition at line 142 of file layer.cpp.

References start, and stop.

B.2 Range Struct Reference 65

B.2.3.2 bool Range::overlaps (void ∗ ptr) const [inline]

Check if address is inside range.

Parameters:
ptr Address to check.

Returns:
true if address is in range.

Definition at line 159 of file layer.cpp.

References start, and stop.

B.2.3.3 bool Range::overlaps (const Range & o) const [inline]

Check if two ranges overlap (intersect).

Parameters:
o Other range to compare with.

Returns:
true if ranges overlap.

Definition at line 150 of file layer.cpp.

References start, and stop.

B.2.3.4 Range Range::pageAdjust () const [inline]

Adjust range to page boundries.

Returns:
New adjusted range.

start is adjusted downwards to the start of page boundry, and stop is likewise
adjusted upwards.

Definition at line 169 of file layer.cpp.

References PAGE_MASK, PAGE_SIZE, start, and stop.

Referenced by MemReq::MemReq().

66 MPII Class Documentation

B.2.3.5 size_t Range::size () const [inline]

Compute size of range.

Returns:
Size of range in bytes.

Definition at line 177 of file layer.cpp.

References start, and stop.

Referenced by add_req(), and wait_req().

The documentation for this struct was generated from the following file:

• layer.cpp

B.3 ReqInfo Struct Reference 67

B.3 ReqInfo Struct Reference

Information about a request we’ve seen.

Public Attributes

• int seen

How many times this exact request has been seen.

• ReqInfo ∗ prev

Next and previous request in chain.

• ReqInfo ∗ next

Next and previous request in chain.

• int prevcount

How many times have we seen the same next and previous requests.

• int nextcount

How many times have we seen the same next and previous requests.

• void ∗ faultat

Address of page fault while this request was last active request.

• bool waitall

If true, some earlier request specified this as chain end.

B.3.1 Detailed Description

Information about a request we’ve seen.

The library tracks and records the most recent requests done by the user program.
This is used to build information about request chains; requests that always
follow each other without any computation inbetween them. Such chains can
then be started with their original buffer area, removing the overhead of copying,
and we simply wait at the end of the chain for all requests to finish.

68 MPII Class Documentation

Chains are recognized in add_req(), and are simply a series of requests where
prevcount and nextcount are fairly high, and the chain terminates in the request
which has faultat set.

Definition at line 365 of file layer.cpp.

The documentation for this struct was generated from the following file:

• layer.cpp

B.4 ReqSig Struct Reference 69

B.4 ReqSig Struct Reference

Signature of MPI Request.

Public Member Functions

• ReqSig (bool is_send, void ∗base, int count, MPI_Datatype datatype, int
partner, int tag, MPI_Comm comm)

Construct a new signature.

• bool operator== (const ReqSig &o) const

Compare two signatures.

• bool operator< (const ReqSig &o) const

Compare two signatures.

Public Attributes

• bool is_send

Is this is a send request?

• void ∗ base

Base memory address of request.

• int count

Number of elements.

• MPI_Datatype datatype

Datatype.

• int partner

Source or destination rank.

• int tag

Message tag.

70 MPII Class Documentation

• MPI_Comm comm

Communicator handle.

B.4.1 Detailed Description

Signature of MPI Request.

This is the signature of an MPI request. If two signatures are identical, they
should transfer the same range of memory in the same way to the same
destination. This is used to recognize requests we’ve seen before on subsequent
iterations in the user program.

The member variables here will be the parameters seen to the MPI_Send or
MPI_Recv calls.

This struct has no virtual functions, no parent and should not have any children
as it relies on being "just a chunk of memory" for its assignment and comparison
operators.

Definition at line 287 of file layer.cpp.

B.4.2 Constructor & Destructor Documentation

B.4.2.1 ReqSig::ReqSig (bool is_send, void ∗ base, int count, MPI_Datatype
datatype, int partner, int tag, MPI_Comm comm) [inline]

Construct a new signature.

Parameters:
is_send Is this a send requst?

base The initial address of the send/receive buffer.

count Number of elements in buffer.

datatype Datatype of each element.

partner Rank of source or destination.

tag Message tag.

comm Communicator handle.

B.4 ReqSig Struct Reference 71

This constructor just does assignments, so it should be reasonably fast. C++ will
provide copy and assignment constructors for us (which will basically be
memcpy() versions).

Definition at line 317 of file layer.cpp.

B.4.3 Member Function Documentation

B.4.3.1 bool ReqSig::operator< (const ReqSig & o) const [inline]

Compare two signatures.

Parameters:
o Other signature to compare with.

Returns:
true if this signature is "less than" o.

See also:
operator==()

This is primarily to allow use as key in std::map<>.

Definition at line 344 of file layer.cpp.

B.4.3.2 bool ReqSig::operator== (const ReqSig & o) const [inline]

Compare two signatures.

Parameters:
o Other signature to compare with.

Returns:
true if signatures are identical.

See also:
operator<()

Definition at line 333 of file layer.cpp.

The documentation for this struct was generated from the following file:

• layer.cpp

72 MPII Class Documentation

Appendix C

MPII File Documentation

C.1 layer.cpp File Reference

Main library for the pagefault assisted automatic tuning.

#include <mpi.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

#include <dlfcn.h>

#include <limits.h>

#include <signal.h>

#include <sys/mman.h>

#include <errno.h>

#include <set>

#include <map>

#include "layer.h"

Namespaces

• namespace std

74 MPII File Documentation

Classes

• struct Range

A range of memory.

• struct MemReq

A memory area in use by an active MPI request.

• struct ReqSig

Signature of MPI Request.

• struct ReqInfo

Information about a request we’ve seen.

Defines

• #define PAGE_SIZE 16384

Size of a hardware page, in bytes.

• #define PAGE_MASK 0xffffffffffffc000

And-mask for aligning an address to the start of page.

• #define CHAIN_MIN_ITER 3

Minimum number of stable iterations before recognizing chain.

• #define INJ_METHOD extern "C"

Calling convention and name mangling of exported symbols.

• #define MEM_VALID_TEST(x) (mallocpages.find((unsigned long int)x /
PAGE_SIZE) != mallocpages.end())

Check if x is inside our overriden malloc()ed pages.

C.1 layer.cpp File Reference 75

Functions

• void dbgout (const char ∗format,...)

Output debug string.

• void wait_req (MemReq ∗mr)

Wait for request and release memory.

• void wait_all_req ()

Wait for all outstanding requests.

• MemReq ∗ add_req (bool is_send, void ∗base, int count, MPI_Datatype
datatype, int rank, int tag, MPI_Comm comm, MPI_Status ∗status,
MemReq ∗ignore=NULL)

Start new request.

• void sigact (int signal, siginfo_t ∗siginfo, void ∗ucontext)

Segment violation signal handler.

• void Inj_init_chain ()

Initialize injection.

• INJ_METHOD int Inj_MPI_Init (int ∗argc, char ∗∗∗argv)

Initialize MPI and injection.

• INJ_METHOD int Inj_MPI_Send (void ∗buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

• INJ_METHOD int Inj_MPI_Recv (void ∗buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm, MPI_Status ∗status)

• INJ_METHOD int Inj_MPI_Sendrecv (void ∗sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void ∗recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status ∗status)

Overridden MPI_Sendrecv().

• INJ_METHOD int Inj_MPI_Get_count (MPI_Status ∗status,
MPI_Datatype datatype, int ∗count)

Overridden MPI_Get_count().

76 MPII File Documentation

• INJ_METHOD void ∗ Inj_malloc (size_t size)

Overridden malloc().

• INJ_METHOD void Inj_free (void ∗ptr)

Overridden free().

Variables

• int do_debug

Holds the rank of the process that should output debug information.

• int do_nothing

If nonzero, the user has requested no "messing" should take place.

• int rank

Rank of current process.

• int(∗ Orig_MPI_Init)(int ∗, char ∗∗∗)
Pointer to original MPI_Init() function.

• int(∗ Orig_MPI_Isend)(void ∗, int, MPI_Datatype, int, int, MPI_Comm,
MPI_Request ∗)

Pointer to original MPI_Isend() function.

• int(∗ Orig_MPI_Irecv)(void ∗, int, MPI_Datatype, int, int, MPI_Comm,
MPI_Request ∗)

Pointer to original MPI_Irecv() function.

• int(∗ Orig_MPI_Wait)(MPI_Request ∗, MPI_Status ∗)
Pointer to original MPI_Wait() function.

• int(∗ Orig_MPI_Get_count)(MPI_Status ∗, MPI_Datatype, int ∗)
Pointer to original MPI_Get_count() function.

• void ∗(∗ Orig_malloc)(size_t)

C.1 layer.cpp File Reference 77

Pointer to original malloc() function.

• void(∗ Orig_free)(void ∗)
Pointer to original free() function.

• sigaction sa

Information about new and old signal handler.

• sigaction oldsa
• set< MemReq ∗ > requests

Set of active requests.

• map< MPI_Status ∗, MemReq ∗ > statuses

Map of statuses we might wait for.

• map< void ∗, void ∗ > mallocmap

Map between returned page-aligned address and "true" address.

• map< void ∗, size_t > mallocsizes

Map of malloc sizes (number of bytes).

• set< unsigned long int > mallocpages

Set of pages we’ve pre-aligned (page number, not address).

• map< ReqSig, ReqInfo ∗ > reqhist

Map of signatures and matching information.

• ReqInfo ∗ last_req = NULL

Last active request.

C.1.1 Detailed Description

Main library for the pagefault assisted automatic tuning.

This is the main portion of the library which handles the automatic tuning of MPI
code. The library can be injected either dynamically (via LD_PRELOAD) or
statically (by including mpii.h and linking with the generated injlib.a.

78 MPII File Documentation

Note that most variables, functions and classes in this file are limited to the
file-scope (static), to avoid polluting the function namespace of the process we’re
injecting into, and also allow the compiler as much flexibility with inlining as it
cares to do.

Todo
Use MPI_Irsend for MPI_Rsend. Or maybe not, as programs which use
MPI_Rsend are kinda optimized already.
If seen>10, make it a persistant request.
Runtime option to mprotect() entire area of a chain.
LD_PRELOAD oveeride for operator new.

Definition in file layer.cpp.

C.1.2 Function Documentation

C.1.2.1 MemReq∗ add_req (bool is_send, void ∗ base, int count,
MPI_Datatype datatype, int rank, int tag, MPI_Comm comm,
MPI_Status ∗ status, MemReq ∗ ignore = NULL) [static]

Start new request.

Parameters:
is_send Is this a send request?

base Base address of request.

count Number of elements.

datatype Datatype of elements.

rank Source or destination rank.

tag Message tag.

comm Communicator handle.

status Pointer to status receptor.

ignore Address of MemReq for which we ignore overlapping. (SendRecv
pairs)

Returns:
Address of MemReq

C.1 layer.cpp File Reference 79

This adds a new tracked request. First, it updates chain information, and if there
is sufficient confidence this is part of a chain, skip memory protection alltogether.
If this is the end of a chain, wait for all outstanding requests to finish before
returning.

For new requests, or requests not part of a chain, make sure any requests which
use the same memory addresses are already done (unless they were a send, and
this is also a send).

Definition at line 535 of file layer.cpp.

References MemReq::buffer, MemReq::bufsize, CHAIN_MIN_ITER, dbgout(),
ReqInfo::faultat, MemReq::is_protected, MemReq::is_waitall, last_req,
ReqInfo::next, ReqInfo::nextcount, Orig_MPI_Irecv, Orig_MPI_Isend,
MemReq::pages, ReqInfo::prev, ReqInfo::prevcount, rank, MemReq::req,
reqhist, requests, ReqInfo::seen, Range::size(), Range::start, statuses,
wait_all_req(), wait_req(), and ReqInfo::waitall.

Referenced by Inj_MPI_Sendrecv().

C.1.2.2 void dbgout (const char ∗ format, ...) [static]

Output debug string.

Parameters:
format format of string (printf format).

This outputs a debug string to stderr if the environment variable INJ_DEBUG
equals the rank of the calling process.

Definition at line 411 of file layer.cpp.

References do_debug, and rank.

Referenced by add_req(), Inj_MPI_Get_count(), Inj_MPI_Init(),
Inj_MPI_Sendrecv(), sigact(), wait_all_req(), and wait_req().

C.1.2.3 INJ_METHOD void Inj_free (void ∗ ptr)

Overridden free().

This is an overridden free() which replaces the pointer with the "orignal" if this
memory slab was allocated through our overridden Inj_malloc().

Definition at line 937 of file layer.cpp.

80 MPII File Documentation

References INJ_METHOD, mallocmap, mallocpages, mallocsizes, Orig_free,
Orig_MPI_Init, and PAGE_SIZE.

C.1.2.4 void Inj_init_chain () [static]

Initialize injection.

The guts of this function will differ betweenthe static and dynamic injection
types, but their function is to initialize Orig_MPI_Init and related functions.

Definition at line 764 of file layer.cpp.

References Orig_free, Orig_malloc, Orig_MPI_Get_count, Orig_MPI_Init,
Orig_MPI_Irecv, Orig_MPI_Isend, and Orig_MPI_Wait.

Referenced by Inj_MPI_Init().

C.1.2.5 INJ_METHOD void∗ Inj_malloc (size_t size)

Overridden malloc().

This is an overridden malloc() which ensures the allocated area is to page
boundries. Without this, small dynamic allocations (such as those done by the
MPI library itself) could end up in the same page as the original buffer, meaning
they too would be inaccessible once we mprotect().

However, if MPI_Init hasn’t been called yet, this just chains through
immediately. If called via LD_PRELOAD, we would also be injected into
mpirun, and it doesn’t make sense to pagealign that.

Definition at line 913 of file layer.cpp.

References INJ_METHOD, mallocmap, mallocpages, mallocsizes, Orig_malloc,
Orig_MPI_Init, PAGE_MASK, and PAGE_SIZE.

C.1.2.6 INJ_METHOD int Inj_MPI_Get_count (MPI_Status ∗ status,
MPI_Datatype datatype, int ∗ count)

Overridden MPI_Get_count().

This waits for the request to actually finish, then chains through.

Definition at line 889 of file layer.cpp.

References dbgout(), INJ_METHOD, Orig_MPI_Get_count, statuses, and
wait_req().

C.1 layer.cpp File Reference 81

C.1.2.7 INJ_METHOD int Inj_MPI_Init (int ∗ argc, char ∗∗∗ argv)

Initialize MPI and injection.

This is the overridden versionof MPI_Init(), and will initialize the signal handler
and status variables in addition to calling the original MPI_Init().

Definition at line 784 of file layer.cpp.

References dbgout(), do_debug, do_nothing, Inj_init_chain(), INJ_METHOD,
Orig_MPI_Init, rank, sa, and sigact().

C.1.2.8 INJ_METHOD int Inj_MPI_Sendrecv (void ∗ sendbuf, int
sendcount, MPI_Datatype sendtype, int dest, int sendtag, void ∗
recvbuf, int recvcount, MPI_Datatype recvtype, int source, int
recvtag, MPI_Comm comm, MPI_Status ∗ status)

Overridden MPI_Sendrecv().

If do_nothing is true, this just transforms the request into a Irecv and Isend, but
waits on them immediately before returning.

During normal operation, add_req() is called for both the send and receive parts
of the request before we return.

Definition at line 862 of file layer.cpp.

References add_req(), dbgout(), do_nothing, INJ_METHOD,
MEM_VALID_TEST, Orig_MPI_Irecv, and Orig_MPI_Isend.

C.1.2.9 void sigact (int signal, siginfo_t ∗ siginfo, void ∗ ucontext)
[static]

Segment violation signal handler.

Parameters:
signal Signal number.

siginfo Information about signal.

ucontext User context.

This handles page faults, which most likely are caused by the user program
accessing protected pages.

82 MPII File Documentation

We simply iterate the active requests, wait for all requests that overlap the faulted
address to finish. wait_req() will unprotect the pages again, so we simply return
to userspace when done.

Definition at line 689 of file layer.cpp.

References dbgout(), do_debug, ReqInfo::faultat, last_req, rank, requests, sa,
wait_all_req(), and wait_req().

Referenced by Inj_MPI_Init().

C.1.2.10 void wait_all_req ()

Wait for all outstanding requests.

This waits for all outstanding requests, used at the end of chains and in the case
of "true" segment faults.

Definition at line 504 of file layer.cpp.

References dbgout(), requests, and wait_req().

Referenced by add_req(), and sigact().

C.1.2.11 void wait_req (MemReq ∗ mr) [static]

Wait for request and release memory.

Parameters:
mr Request to wait for.

This will wait for an MPI request to finish, then wait for any requests using the
same pages it has locked, and finally unprotect the pages so they can be accessed
by the application again. If the request was a receive, the data will be copied
from the buffer to the user buffer.

If the request was part of chain and not protected, just wait for it finish.

Definition at line 441 of file layer.cpp.

References MemReq::base, MemReq::buffer, MemReq::comm, MemReq::count,
MemReq::datatype, dbgout(), MemReq::is_protected, MemReq::is_send,
Orig_MPI_Get_count, MemReq::pages, MemReq::req, requests, Range::size(),
Range::start, MemReq::status, and statuses.

Referenced by add_req(), Inj_MPI_Get_count(), sigact(), and wait_all_req().

C.2 mpii.h File Reference 83

C.2 mpii.h File Reference

Header to use insted of mpi.h.

#include <mpi.h>

Defines

• #define MPI_Init Inj_MPI_Init
• #define MPI_Send Inj_MPI_Send
• #define MPI_Recv Inj_MPI_Recv
• #define MPI_Sendrecv Inj_MPI_Sendrecv
• #define MPI_Get_count Inj_MPI_Get_count
• #define malloc Inj_malloc
• #define free Inj_free

Functions

• int Inj_MPI_Init (int ∗, char ∗∗∗)
Initialize MPI and injection.

• int Inj_MPI_Send (void ∗, int, MPI_Datatype, int, int, MPI_Comm)
• int Inj_MPI_Recv (void ∗, int, MPI_Datatype, int, int, MPI_Comm,

MPI_Status ∗)
• int Inj_MPI_Sendrecv (void ∗, int, MPI_Datatype, int, int, void ∗, int,

MPI_Datatype, int, int, MPI_Comm, MPI_Status ∗)
Overridden MPI_Sendrecv().

• int Inj_MPI_Get_count (MPI_Status ∗, MPI_Datatype, int ∗)
Overridden MPI_Get_count().

• void ∗ Inj_malloc (size_t size)

Overridden malloc().

• void Inj_free (void ∗ptr)

Overridden free().

84 MPII File Documentation

C.2.1 Detailed Description

Header to use insted of mpi.h.

This header, when used instead of (or after) mpi.h will override the functions we
replace with their auto-optimized variants.

This is only necesarry for static injection.

Definition in file mpii.h.

C.2.2 Function Documentation

C.2.2.1 void Inj_free (void ∗ ptr)

Overridden free().

This is an overridden free() which replaces the pointer with the "orignal" if this
memory slab was allocated through our overridden Inj_malloc().

Definition at line 937 of file layer.cpp.

References INJ_METHOD, mallocmap, mallocpages, mallocsizes, Orig_free,
Orig_MPI_Init, and PAGE_SIZE.

C.2.2.2 void∗ Inj_malloc (size_t size)

Overridden malloc().

This is an overridden malloc() which ensures the allocated area is to page
boundries. Without this, small dynamic allocations (such as those done by the
MPI library itself) could end up in the same page as the original buffer, meaning
they too would be inaccessible once we mprotect().

However, if MPI_Init hasn’t been called yet, this just chains through
immediately. If called via LD_PRELOAD, we would also be injected into
mpirun, and it doesn’t make sense to pagealign that.

Definition at line 913 of file layer.cpp.

References INJ_METHOD, mallocmap, mallocpages, mallocsizes, Orig_malloc,
Orig_MPI_Init, PAGE_MASK, and PAGE_SIZE.

C.2 mpii.h File Reference 85

C.2.2.3 int Inj_MPI_Get_count (MPI_Status ∗ status, MPI_Datatype
datatype, int ∗ count)

Overridden MPI_Get_count().

This waits for the request to actually finish, then chains through.

Definition at line 889 of file layer.cpp.

References dbgout(), INJ_METHOD, Orig_MPI_Get_count, statuses, and
wait_req().

C.2.2.4 int Inj_MPI_Init (int ∗ argc, char ∗∗∗ argv)

Initialize MPI and injection.

This is the overridden versionof MPI_Init(), and will initialize the signal handler
and status variables in addition to calling the original MPI_Init().

Definition at line 784 of file layer.cpp.

References dbgout(), do_debug, do_nothing, Inj_init_chain(), INJ_METHOD,
Orig_MPI_Init, rank, sa, and sigact().

C.2.2.5 int Inj_MPI_Sendrecv (void ∗ sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void ∗ recvbuf,
int recvcount, MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status ∗ status)

Overridden MPI_Sendrecv().

If do_nothing is true, this just transforms the request into a Irecv and Isend, but
waits on them immediately before returning.

During normal operation, add_req() is called for both the send and receive parts
of the request before we return.

Definition at line 862 of file layer.cpp.

References add_req(), dbgout(), do_nothing, INJ_METHOD,
MEM_VALID_TEST, Orig_MPI_Irecv, and Orig_MPI_Isend.

86 MPII File Documentation

C.3 stattest.cxx File Reference

Test MPI_Get_count.

#include <stddef.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <mpi.h>

#include "mpii.h"

Functions

• main (int argc, char ∗∗argv)

Variables

• int rank
• int nump

C.3.1 Detailed Description

Test MPI_Get_count.

This tests the chaining of MPI_Get_count in a simple one-to-one transfer.

Definition in file stattest.cxx.

Appendix D

MPII Page Documentation

D.1 Todo List

File layer.cpp Use MPI_Irsend for MPI_Rsend. Or maybe not, as programs
which use MPI_Rsend are kinda optimized already.

If seen>10, make it a persistant request.

Runtime option to mprotect() entire area of a chain.

LD_PRELOAD oveeride for operator new.

88 MPII Page Documentation

Appendix E

Program Code

E.1 Red-Black 2D SOR Solver
i n c l u d e < s t d d e f . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e <mpi . h>
i n c l u d e < s t r i n g . h>

/ / S t a t i c i n j e c t i o n t e s t
i n c l u d e " mpi i . h "

i n t r ank ;
i n t nump ;
bool show = f a l s e ;

d e f i n e DO_SIMPLE
undef DO_ISEND
undef DO_OVERLAP

void p r i n tn u m (double v , double min=−1.0 , double max = 1 . 0) {
i f (v < min)

v = min ;
i f (v > max)

v = max ;
double r = (v−min) / (max−min) ;

bool bo ld = f a l s e ;
char c = 0 ;

/ / Mørkblå , blå , mørk cyan , cyan , gul , mørk gul , rød , mørk rød , h v i t

i f (v == 0 . 0) {
} e l s e i f (r == 0 . 0) {

c = 3 0 ;
bo ld = t rue ;

} e l s e i f (r == 1 . 0) {
c = 3 7 ;
bo ld = t rue ;

} e l s e i f (r < 0 . 1 2 5) {
c = 3 4 ;

} e l s e i f (r < 0 . 2 5 0) {
c = 3 4 ;
bo ld = t rue ;

} e l s e i f (r < 0 . 3 7 5) {
c = 3 6 ;

} e l s e i f (r < 0 . 5) {
c = 3 6 ;
bo ld = t rue ;

} e l s e i f (r < 0 . 6 2 5) {
c = 3 3 ;

90 Program Code

bo ld = t rue ;
} e l s e i f (r < 0 . 7 5 0) {

c = 3 3 ;
} e l s e i f (r < 0 . 8 7 5) {

c = 3 1 ;
bo ld = t rue ;

} e l s e {
c = 3 1 ;

}

f p r i n t f (s t d e r r , "%c[%dm" , 27 , c) ;
i f (bo ld)

f p r i n t f (s t d e r r , "%c [1m" , 2 7) ;
f p r i n t f (s t d e r r , " %6.3 f " , v) ;
f p r i n t f (s t d e r r , "%c [0m" , 2 7) ;

}

s t r u c t V ec to r {
f r i e n d c l a s s Ma t r ix ;

p r o t e c t e d :
double * v e c t o r ;
i n t dim ;

p u b l i c :
V ec to r (i n t dim) {

t h i s−>dim=dim ;
v e c t o r =(double *) ma l lo c (dim * s i z e o f (double)) ;
memset (v e c t o r , s i z e o f (double) * dim , 0) ;

}
~ V ec to r () {

f r e e (v e c t o r) ;
}
operator double * () {

re turn v e c t o r ;
}
operator c o n s t double * () c o n s t {

re turn v e c t o r ;
}

} ;

s t r u c t Ma t r ix {
p r o t e c t e d :

V ec to r v ;
i n t _n , _m ;

p u b l i c :
Ma t r i x (i n t m, i n t n) : v (n*m) {

_n = n ;
_m = m;

}
i n t n () c o n s t {

re turn _n ;
}
i n t m() c o n s t {

re turn _m ;
}

operator double * () {
re turn v ;

}
double * operator [] (i n t i) {

re turn v+_n* i ;
}
c o n s t double * operator [] (i n t i) c o n s t {

re turn v+_n* i ;
}

} ;

/ *
* Mode o f o p e r a t i o n :
* I f f == NULL , assume t h e case where f (x , y) = 1
* I f u == NULL , r e t u r n umax
* I f u != NULL , compare t h e e s t i m a t e d u w i t h t h e
* p r o v i d e d u and r e p o r t emaxx
* /

t y p e d e f double (* Po i s sonFunc) (double , double) ;

double f one (double , double) {
re turn 1 . 0 L ;

}

d e f i n e UPDATE(j , i) u [j] [i] = (s / 4 . 0) * (u [j−1][i]+ u [j + 1] [i]+ u [j] [i−1]+u [j] [i + 1]) + (1 . 0 − s) * u [j] [i]

void s o r s o l v e (i n t n , i n t s t e p s = 10 , Po i s sonFunc f f u n c = NULL, Po i s sonFunc ufunc = NULL)

E.1 Red-Black 2D SOR Solver 91

{
double h ;
i n t i , j , t ;
double iv , j v ;

c o n s t double s= 1 . 8 ;

Ma t r i x u (n , n) ;

h = 1 . 0 L / (double) (n−1);

i f (f f u n c == NULL)
f f u n c = fone ;

f o r (j =0 ; j < n ; j ++) {
f o r (i =0 ; i < n ; i ++) {

i v = (double) (i) * h ;
j v = (double) (j) * h ;
u [j] [i] = f f u n c (iv , j v) ;

}
}

f o r (t =1 ; t <= s t e p s ; t ++) {
p r i n t f (" I t e r %d (omega = %f) \ n " , t , s) ;

f o r (j =1 ; j < n−1; j ++) {
f o r (i =(j & 1) ? 1 : 2 ; i <n−1; i +=2) {

UPDATE(j , i) ;
}

}
f o r (j =1 ; j < n−1; j ++) {

f o r (i =(j & 1) ? 2 : 1 ; i <n−1; i +=2) {
UPDATE(j , i) ;

}
}

f o r (j =0 ; j < n ; j ++) {
f o r (i =0 ; i <n ; i ++) {

p r i n tn u m (u [j] [i]) ;
}
p r i n t f (" \ n ") ;

}
}

}

void r e p t i m i n g (c o n s t i n t s t e p s , double * e l a p s e d , double * com_elapsed , c o n s t char * what) {
double *min , *max , *avg , *com_min , *com_max , *com_avg ;
min = new double [s t e p s] ;
max = new double [s t e p s] ;
avg = new double [s t e p s] ;
com_min = new double [s t e p s] ;
com_max = new double [s t e p s] ;
com_avg = new double [s t e p s] ;
i n t i ;

MPI_Al l reduce (e l a p s e d , min , s t e p s , MPI_DOUBLE, MPI_MIN , MPI_COMM_WORLD) ;
MPI_Al l reduce (e l a p s e d , max , s t e p s , MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Al l reduce (e l a p s e d , avg , s t e p s , MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;
f o r (i =0 ; i < s t e p s ; i ++)

avg [i] /= nump ;

MPI_Al l reduce (com_elapsed , com_min , s t e p s , MPI_DOUBLE, MPI_MIN , MPI_COMM_WORLD) ;
MPI_Al l reduce (com_elapsed , com_max , s t e p s , MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Al l reduce (com_elapsed , com_avg , s t e p s , MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;
f o r (i =0 ; i < s t e p s ; i ++)

com_avg [i] /= nump ;

i f (r ank == 0) {
p r i n t f ("%s \ n " , what) ;
f o r (i =0 ; i < s t e p s ; i ++)

p r i n t f (" I t e r %3d %f −> %f [% f] (% fcpu %fcom) \ n " , i , min [i] , max [i] , avg [i] , avg [i]−com_avg [i] , com_avg [i]) ;
}

d e l e t e [] min ;
d e l e t e [] max ;
d e l e t e [] avg ;
d e l e t e [] com_min ;
d e l e t e [] com_max ;
d e l e t e [] com_avg ;

}

/ / Upper l e f t i s red

92 Program Code

void p a r a s o r s o l v e (c o n s t i n t n , c o n s t i n t s t e p s = 10 , Po i s sonFunc f f u n c = NULL, Po i s sonFunc ufunc = NULL)
{

double h ;
i n t lx , l y ;
i n t i , j , t ;
double iv , j v ;
double umax ;
c o n s t double s= 1 . 4 ;

c o n s t i n t showrank=show ? ((nump==1) ? 0 : nump−1) : −1;

i n t dims [2] ;
i n t p e r i o d s [2] = {0 , 0 } ;
MPI_Comm comm_cart ;
MPI_Group g r o u p _ c a r t ;
i n t r a n k _ c a r t ;
i n t c o o r d _ c a r t [2] ;
MPI_Datatype type_column , type_row ;
MPI_Sta tus s t a t u s ;
i n t r a n k _ l e f t , r a n k _ r i g h t , rank_up , rank_down ;

double s t a r t , s t op , c o m _ s t a r t , com_stop ;

double * e l a p s e d = new double [s t e p s] ;
double * com_elapsed = new double [s t e p s] ;

dims [0] = dims [1] = 0 ;
MPI_Dims_create (nump , 2 , dims) ;

i f ((n % dims [0]) | | (n % dims [1])) {
i f (r ank ==0)

p r i n t f (" F a i l e d t o d i v i d e %dx%d g r i d i n t o %dx%d nodes \ n " , n , n , dims [0] , dims [1]) ;
re turn ;

}

l x = n / dims [0] ;
l y = n / dims [1] ;

i f ((l x %2) | | (l y % 2)) {
i f (r ank ==0)

p r i n t f (" Can ’ t c r e a t e d a t a t y p e s wi th uneven r e d / b l a c k l e n g t h s \ n ") ;
re turn ;

}

i f (r ank == 0)
p r i n t f (" Organ i zed i n t o %dx%d nodes (%dx%d p o i n t s , %dx%d t o t a l) \ n " , dims [0] , dims [1] , lx , ly , n , n) ;

M P I _ C a r t _ c r e a t e (MPI_COMM_WORLD, 2 , dims , p e r i o d s , true , &comm_cart) ;
MPI_Comm_group (comm_cart , &g r o u p _ c a r t) ;
MPI_Group_rank (g r o u p _ c a r t , &r a n k _ c a r t) ;
MPI_Car t_coords (comm_cart , r a n k _ c a r t , 2 , c o o r d _ c a r t) ;

MPI_Type_vector (l y / 2 , 1 , (l x +2) * 2 , MPI_DOUBLE, &type_co lumn) ;
MPI_Type_commit(& type_co lumn) ;

MPI_Type_vector (l x / 2 , 1 , 2 , MPI_DOUBLE, &type_row) ;
MPI_Type_commit(& type_row) ;

M P I _ C a r t _ s h i f t (comm_cart , 0 , 1 , &r a n k _ l e f t , &r a n k _ r i g h t) ;
M P I _ C a r t _ s h i f t (comm_cart , 1 , 1 , &rank_up , &rank_down) ;

Ma t r i x u (l y +2 , l x + 2) ;

h = 1 . 0 L / (double) (n + 1) ;

i f (f f u n c == NULL)
f f u n c = fone ;

f o r (j =0 ; j <= l y +1; j ++) {
f o r (i =0 ; i <= l x +1; i ++) {

i v = (double) (i + c o o r d _ c a r t [0] * l x) * h ;
j v = (double) (j + c o o r d _ c a r t [1] * l y) * h ;
u [j] [i] = f f u n c (iv , j v) ;

}
}

i f d e f DO_SIMPLE
MPI_Bar r i e r (MPI_COMM_WORLD) ;
MPI_Bar r i e r (comm_cart) ;

f o r (t =0 ; t < s t e p s ; t ++) {
i f (r ank ==showrank) {

E.1 Red-Black 2D SOR Solver 93

f f l u s h (s t d o u t) ;
f f l u s h (s t d e r r) ;

f p r i n t f (s t d e r r , " I t e r %d \ n " , t) ;
}

com_elapsed [t] = 0 . 0 ;
s t a r t = MPI_Wtime () ;

/ / Exchange b l a c k b o r d e r s

c o m _ s t a r t = MPI_Wtime () ;

MPI_Sendrecv (&u [1] [2] , 1 , type_row , rank_up , 0 , &u [l y + 1] [2] , 1 , type_row , rank_down , 0 , comm_cart , &s t a t u s) ;
MPI_Sendrecv (&u [l y] [1] , 1 , type_row , rank_down , 0 , &u [0] [1] , 1 , type_row , rank_up , 0 , comm_cart , &s t a t u s) ;

MPI_Sendrecv (&u [2] [1] , 1 , type_column , r a n k _ l e f t , 0 , &u [2] [l x + 1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &s t a t u s) ;
MPI_Sendrecv (&u [1] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , &u [1] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &s t a t u s) ;

com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute red
f o r (j =1 ; j <= l y ; j ++) {

f o r (i =(j & 1) ? 1 : 2 ; i <= l x ; i +=2) {
UPDATE(j , i) ;

}
}

/ / Exchange red b o r d e r s

c o m _ s t a r t = MPI_Wtime () ;

MPI_Sendrecv (&u [1] [1] , 1 , type_row , rank_up , 0 , &u [l y + 1] [1] , 1 , type_row , rank_down , 0 , comm_cart , &s t a t u s) ;
MPI_Sendrecv (&u [l y] [2] , 1 , type_row , rank_down , 0 , &u [0] [2] , 1 , type_row , rank_up , 0 , comm_cart , &s t a t u s) ;

MPI_Sendrecv (&u [1] [1] , 1 , type_column , r a n k _ l e f t , 0 , &u [1] [l x + 1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &s t a t u s) ;
MPI_Sendrecv (&u [2] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , &u [2] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &s t a t u s) ;

com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute b l a c k
f o r (j =1 ; j <= l y ; j ++) {

f o r (i =(j & 1) ? 2 : 1 ; i <= l x ; i +=2) {
UPDATE(j , i) ;

}
}

s t o p = MPI_Wtime () ;
e l a p s e d [t] = s top−s t a r t ;

i f (r ank ==showrank)
f o r (j =0 ; j <= l y +1; j ++) {

f o r (i =0 ; i <= l x +1; i ++) {
p r i n tn u m (u [j] [i]) ;

}
f p r i n t f (s t d e r r , " \ n ") ;

}
}

r e p t i m i n g (s t e p s , e l a p s e d , com_elapsed , " R e g u l a r s e n d r e c v ") ;

e n d i f

MPI_Request r e q [8] ;
MPI_Sta tus s t a t u s e s [8] ;

i f d e f DO_ISEND

MPI_Bar r i e r (MPI_COMM_WORLD) ;
MPI_Bar r i e r (comm_cart) ;

f o r (t =0 ; t < s t e p s ; t ++) {
i f (r ank ==showrank)

p r i n t f (" I t e r %d (ISend) \ n " , t) ;

com_elapsed [t] = 0 . 0 ;
s t a r t = MPI_Wtime () ;

/ / Exchange b l a c k b o r d e r s

c o m _ s t a r t = MPI_Wtime () ;

94 Program Code

MPI_Irecv (&u [l y + 1] [2] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [0]) ;
MPI_Irecv (&u [0] [1] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [1]) ;
MPI_Irecv (&u [2] [l x +1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [2]) ;
MPI_Irecv (&u [1] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [3]) ;

MPI_Isend (&u [1] [2] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [4]) ;
MPI_Isend (&u [l y] [1] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [5]) ;
MPI_Isend (&u [2] [1] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [6]) ;
MPI_Isend (&u [1] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [7]) ;

MPI_Wai ta l l (8 , req , s t a t u s e s) ;

com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute red
f o r (j =1 ; j <= l y ; j ++) {

f o r (i =(j & 1) ? 1 : 2 ; i <= l x ; i +=2) {
UPDATE(j , i) ;

}
}

/ / Exchange red b o r d e r s

c o m _ s t a r t = MPI_Wtime () ;

MPI_Irecv (&u [l y + 1] [1] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [0]) ;
MPI_Irecv (&u [0] [2] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [1]) ;
MPI_Irecv (&u [1] [l x +1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [2]) ;
MPI_Irecv (&u [2] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [3]) ;

MPI_Isend (&u [1] [1] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [4]) ;
MPI_Isend (&u [l y] [2] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [5]) ;
MPI_Isend (&u [1] [1] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [6]) ;
MPI_Isend (&u [2] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [7]) ;

MPI_Wai ta l l (8 , req , s t a t u s e s) ;

com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute b l a c k
f o r (j =1 ; j <= l y ; j ++) {

f o r (i =(j & 1) ? 2 : 1 ; i <= l x ; i +=2) {
UPDATE(j , i) ;

}
}

s t o p = MPI_Wtime () ;
e l a p s e d [t] = s top−s t a r t ;

i f (r ank ==showrank)
f o r (j =0 ; j <= l y +1; j ++) {

f o r (i =0 ; i <= l x +1; i ++) {
p r i n tn u m (u [j] [i]) ;

}
p r i n t f (" \ n ") ;

}
}

r e p t i m i n g (s t e p s , e l a p s e d , com_elapsed , " ISend / IRecv ") ;

e n d i f

i f d e f DO_OVERLAP

MPI_Bar r i e r (MPI_COMM_WORLD) ;
MPI_Bar r i e r (comm_cart) ;

/ / Exchange b l a c k b o r d e r s
MPI_Irecv (&u [l y + 1] [2] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [0]) ;
MPI_Irecv (&u [0] [1] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [1]) ;
MPI_Irecv (&u [2] [l x +1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [2]) ;
MPI_Irecv (&u [1] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [3]) ;

MPI_Isend (&u [1] [2] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [4]) ;
MPI_Isend (&u [l y] [1] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [5]) ;
MPI_Isend (&u [2] [1] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [6]) ;
MPI_Isend (&u [1] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [7]) ;

f o r (t =0 ; t < s t e p s ; t ++) {
i f (r ank ==showrank)

E.1 Red-Black 2D SOR Solver 95

p r i n t f (" I t e r %d (ISend o v e r l a p) \ n " , t) ;

com_elapsed [t] = 0 . 0 ;
s t a r t = MPI_Wtime () ;

/ / Wait f o r b l a c k b o r d e r s
c o m _ s t a r t = MPI_Wtime () ;
MPI_Wai ta l l (8 , req , s t a t u s e s) ;
com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute red b o r d e r s
f o r (i =1 ; i <= l x ; i +=2) {

UPDATE(1 , i) ;
UPDATE(ly , i + 1) ;

}

f o r (j =2 ; j < l y ; j +=2) {
UPDATE(j +1 , 1) ;
UPDATE(j , l x) ;

}

/ / Exchange red b o r d e r s
c o m _ s t a r t = MPI_Wtime () ;
MPI_Irecv (&u [l y + 1] [1] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [0]) ;
MPI_Irecv (&u [0] [2] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [1]) ;
MPI_Irecv (&u [1] [l x +1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [2]) ;
MPI_Irecv (&u [2] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [3]) ;

MPI_Isend (&u [1] [1] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [4]) ;
MPI_Isend (&u [l y] [2] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [5]) ;
MPI_Isend (&u [1] [1] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [6]) ;
MPI_Isend (&u [2] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [7]) ;
com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute red i n t e r i o r
f o r (j =2 ; j < l y ; j ++) {

f o r (i =(j & 1) ? 3 : 2 ; i < l x ; i +=2) {
UPDATE(j , i) ;

}
}

/ / Wait f o r red b o r d e r s
c o m _ s t a r t = MPI_Wtime () ;
MPI_Wai ta l l (8 , req , s t a t u s e s) ;
com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute b l a c k b o r d e r s
f o r (i =1 ; i <= l x ; i +=2) {

UPDATE(1 , i + 1) ;
UPDATE(ly , i) ;

}

f o r (j =2 ; j < l y ; j +=2) {
UPDATE(j , 1) ;
UPDATE(j +1 , l x) ;

}

/ / Exchange b l a c k b o r d e r s
c o m _ s t a r t = MPI_Wtime () ;
MPI_Irecv (&u [l y + 1] [2] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [0]) ;
MPI_Irecv (&u [0] [1] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [1]) ;
MPI_Irecv (&u [2] [l x +1] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [2]) ;
MPI_Irecv (&u [1] [0] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [3]) ;

MPI_Isend (&u [1] [2] , 1 , type_row , rank_up , 0 , comm_cart , &r e q [4]) ;
MPI_Isend (&u [l y] [1] , 1 , type_row , rank_down , 0 , comm_cart , &r e q [5]) ;
MPI_Isend (&u [2] [1] , 1 , type_column , r a n k _ l e f t , 0 , comm_cart , &r e q [6]) ;
MPI_Isend (&u [1] [l x] , 1 , type_column , r a n k _ r i g h t , 0 , comm_cart , &r e q [7]) ;
com_stop = MPI_Wtime () ;
com_elapsed [t] += com_stop − c o m _ s t a r t ;

/ / Compute b l a c k i n t e r i o r
f o r (j =2 ; j < l y ; j ++) {

f o r (i =(j & 1) ? 2 : 3 ; i < l x ; i +=2) {
UPDATE(j , i) ;

}
}

s t o p = MPI_Wtime () ;

96 Program Code

e l a p s e d [t] = s top−s t a r t ;

i f (r ank ==showrank)
f o r (j =0 ; j <= l y +1; j ++) {

f o r (i =0 ; i <= l x +1; i ++) {
p r i n tn u m (u [j] [i]) ;

}
p r i n t f (" \ n ") ;

}
}

r e p t i m i n g (s t e p s , e l a p s e d , com_elapsed , " ISend / IRecv o v e r l a p p e d ") ;

e n d i f

d e l e t e [] e l a p s e d ;
d e l e t e [] com_elapsed ;

}

double example f (double x , double y) {
/ *

i f (x == 0 . 5 && y == 0 . 5)
r e t u r n 1 . 0 ;

r e t u r n 0 . 0 ;
* /

/ / Wi l ey c o y o t e problem
i f (x == 0 . 0 | | x == 1 . 0)

re turn −1.0;
i f (y == 0 . 0)

re turn −1.0;
i f (y == 1 . 0)

re turn 1 . 0 ;
re turn 0 . 0 ;

}

double exampleu (double x , double y) {
re turn s i n (M_PI * x) * s i n (2 . 0 L * M_PI * y) ;

}

main (i n t argc , char ** a rgv)
{

i n t n = 8 ;

M P I _ In i t (& argc , &argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &nump) ;

i f ((r ank == 0) && (a r g c == 2))
n = a t o i (a rgv [1]) ;

MPI_Bcast (&n , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;

i f (n < 20)
show = t rue ;

/ / s o r s o l v e (n , 40 , example f , exampleu) ;

p a r a s o r s o l v e (n , 20 , examplef , exampleu) ;

M P I _ F i n a l i z e () ;
}

E.2 Status validation test
/ * ! \ f i l e s t a t t e s t . cxx

* \ b r i e f T e s t MPI_Get_count
*
* T h i s t e s t s t h e c h a i n i n g o f MPI_Get_count i n a s i m p l e
* one−to−one t r a n s f e r .
* /

i n c l u d e < s t d d e f . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e <mpi . h>

/ / S t a t i c i n j e c t i o n t e s t

E.3 MPI replacement header 97

i n c l u d e " mpi i . h "

i n t r ank ;
i n t nump ;

main (i n t argc , char ** a rgv)
{

i n t n = 8 ;

M P I _ In i t (& argc , &argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &nump) ;

i f (nump != 2) {
f p r i n t f (s t d e r r , "nump != 2 \ n ") ;
e x i t (−1);

}

unsigned char * b u f f e r =(unsigned char *) ma l lo c (1 2 8) ;
unsigned char * r b u f f e r =(unsigned char *) ma l lo c (1 2 8) ;
f o r (i n t i =0 ; i <128; i ++)

b u f f e r [i]= r ank *128+ i ;

f p r i n t f (s t d e r r , " Rank %d : A l l o c %p %p \ n " , rank , b u f f e r , r b u f f e r) ;

i n t o t h e r _ r a n k = (r ank + 1) % 2 ;

MPI_Sta tus s t a t u s ;
MPI_Sendrecv (b u f f e r , 128 , MPI_UNSIGNED_CHAR , o t h e r _ r a n k , 0 , r b u f f e r , 128 , MPI_UNSIGNED_CHAR , o t h e r _ r a n k , 0 , MPI_COMM_WORLD, &s t a t u s) ;
f p r i n t f (s t d e r r , " Rank %d : Oooout \ n " , r ank) ;

i n t s i z e ;
MPI_Get_count (& s t a t u s , MPI_UNSIGNED_CHAR , &s i z e) ;
f p r i n t f (s t d e r r , " Rank %d : S i z e %d \ n " , rank , s i z e) ;

i n t sum = 0 ;
i n t v a l i d = 0 ;
f o r (i n t i =0 ; i <128; i ++) {

sum += b u f f e r [i] ;
sum += r b u f f e r [i] ;
v a l i d += i ;
v a l i d += (i + 1 2 8) ;

}
f p r i n t f (s t d e r r , " Rank %d : Sum %d V a l i d %d \ n " , rank , sum , v a l i d) ;

M P I _ F i n a l i z e () ;
}

E.3 MPI replacement header

/ * ! \ f i l e mp i i . h
* \ b r i e f Header t o use i n s t e d o f mpi . h
*
* T h i s header , when used i n s t e a d o f (or a f t e r) mpi . h w i l l o v e r r i d e t h e f u n c t i o n s
* we r e p l a c e w i t h t h e i r auto−o p t i m i z e d v a r i a n t s .
*
* T h i s i s o n l y n e c e s a r r y f o r s t a t i c i n j e c t i o n .
* /

i f n d e f _INJ_MPII_H
d e f i n e _INJ_MPII_H

i n c l u d e <mpi . h>

/ * Make s u r e t h e i n c l u d e works i n bo th C and C++ programs ! * /

i f d e f i n e d (_ _ c p l u s p l u s)
e x t er n "C" {
e n d i f

/ * P r o t o t y p e s f o r our i n j e c t e d v e r s i o n s , i d e n t i c a l t o t h e o r i g i n a l s . * /

i n t I n j _ M P I _ I n i t (i n t * , char * * *) ;
i n t Inj_MPI_Send (void * , i n t , MPI_Datatype , i n t , i n t , MPI_Comm) ;
i n t Inj_MPI_Recv (void * , i n t , MPI_Datatype , i n t , i n t , MPI_Comm , MPI_Sta tus *) ;
i n t In j_MPI_Sendrecv (void * , i n t , MPI_Datatype , i n t , i n t , void * , i n t , MPI_Datatype , i n t , i n t , MPI_Comm , MPI_Sta tus *) ;
i n t In j_MPI_Get_coun t (MPI_Sta tus * , MPI_Datatype , i n t *) ;

98 Program Code

void * I n j _ m a l l o c (s i z e _ t s i z e) ;
void I n j _ f r e e (void * p t r) ;

i f d e f i n e d (_ _ c p l u s p l u s)
}
e n d i f

/ * Use p r e p r o c e s s o r t r i c k t o use our v e r s i o n i n s t e a d o f t h e o r i g i n a l . * /

d e f i n e M P I _ In i t I n j _ M P I _ I n i t
d e f i n e MPI_Send Inj_MPI_Send
d e f i n e MPI_Recv Inj_MPI_Recv
d e f i n e MPI_Sendrecv In j_MPI_Sendrecv
d e f i n e MPI_Get_count In j_MPI_Get_coun t

d e f i n e ma l l oc I n j _ m a l l o c
d e f i n e f r e e I n j _ f r e e

e n d i f

E.4 Injected library

/ * ! \ f i l e l a y e r . cpp
* \ b r i e f Main l i b r a r y f o r t h e p a g e f a u l t a s s i s t e d a u t o m a t i c t u n i n g .
*
* T h i s i s t h e main p o r t i o n o f t h e l i b r a r y which h a n d l e s t h e a u t o m a t i c
* t u n i n g o f MPI code . The l i b r a r y can be i n j e c t e d e i t h e r d y n a m i c a l l y
* (v i a LD_PRELOAD) or s t a t i c a l l y (by i n c l u d i n g mp i i . h and l i n k i n g
* w i t h t h e g e n e r a t e d i n j l i b . a .
*
* Note t h a t most v a r i a b l e s , f u n c t i o n s and c l a s s e s i n t h i s f i l e are
* l i m i t e d t o t h e f i l e−scope (s t a t i c) , t o a v o i d p o l l u t i n g t h e
* f u n c t i o n namespace o f t h e p r o c e s s we ’ re i n j e c t i n g i n t o , and
* a l s o a l l o w t h e c o m p i l e r as much f l e x i b i l i t y w i t h i n l i n i n g as
* i t c a r e s t o do .
*
* \ t odo Use MPI_Irsend f o r MPI_Rsend . Or maybe not , as programs
* which use MPI_Rsend are k i n d a o p t i m i z e d a l r e a d y .
* \ t odo I f seen >10 , make i t a p e r s i s t a n t r e q u e s t .
* \ t odo Runt ime o p t i o n t o m p r o t e c t () e n t i r e area o f a c h a i n .
* \ t odo LD_PRELOAD o v e e r i d e f o r o p e r a t o r new .
* /

i n c l u d e <mpi . h>
i n c l u d e < u n i s t d . h>
i n c l u d e < s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e < s t d a r g . h>
i n c l u d e < d l f c n . h>
i n c l u d e < l i m i t s . h>
i n c l u d e < s i g n a l . h>
i n c l u d e < s y s / mman . h>
i n c l u d e < e r r n o . h>
i n c l u d e < s e t >
i n c l u d e <map>

us ing namespace s t d ;

/ / ! \ b r i e f S i z e o f a hardware page , i n b y t e s .
d e f i n e PAGE_SIZE 16384

/ / ! \ b r i e f And−mask f o r a l i g n i n g an a d d r e s s t o t h e s t a r t o f page .
d e f i n e PAGE_MASK 0 x f f f f f f f f f f f f c 0 0 0

/ / ! \ b r i e f Minimum number o f s t a b l e i t e r a t i o n s b e f o r e r e c o g n i z i n g c h a i n
d e f i n e CHAIN_MIN_ITER 3

/ / Make s u r e e i t h e r INJECT_STATIC or INJECT_DYNAMIC i s s e t , b u t n o t bo th
i f n d e f INJECT_STATIC
i f n d e f INJECT_DYNAMIC
error Must s e t i n j e c t i o n t y p e
e n d i f
e l s e
i f d e f INJECT_DYNAMIC
error Can not have bo th i n j e c t i o n t y p e s
e n d i f
e n d i f

/ / I f we ’ re d y n a m i c a l l y i n j e c t i n g , don ’ t use a two−s t a g e wrapper , j u s t

E.4 Injected library 99

/ / r e p l a c e t h e f u n c t i o n d i r e c t l y . We ’ l l use dynamic l o a d e r t r i c k s t o
/ / f i n d t h e r i g h t a d d r e s s .

i f d e f INJECT_DYNAMIC
d e f i n e I n j _ M P I _ I n i t M P I _ I n i t
d e f i n e Inj_MPI_Send MPI_Send
d e f i n e Inj_MPI_Recv MPI_Recv
d e f i n e In j_MPI_Sendrecv MPI_Sendrecv
d e f i n e In j_MPI_Get_coun t MPI_Get_count
d e f i n e I n j _ m a l l o c ma l l oc
d e f i n e I n j _ f r e e f r e e
e n d i f

/ / ! \ b r i e f C a l l i n g c o n v e n t i o n and name mangl ing o f e x p o r t e d symbo l s .
d e f i n e INJ_METHOD e x t er n "C"

/ / ! \ b r i e f Holds t h e rank o f t h e p r o c e s s t h a t s h o u l d o u t p u t debug i n f o r m a t i o n .
s t a t i c i n t do_debug ;

/ / ! \ b r i e f I f nonzero , t h e u s e r has r e q u e s t e d no " mess ing " s h o u l d t a k e p l a c e .
s t a t i c i n t d o _ n o t h i n g ;

/ / ! \ b r i e f Rank o f c u r r e n t p r o c e s s .
s t a t i c i n t r ank ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l M P I _ I n i t () f u n c t i o n .
s t a t i c i n t (* O r i g _ M P I _ I n i t) (i n t * , char * * *) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l MPI_Isend () f u n c t i o n .
s t a t i c i n t (* Orig_MPI_Isend) (void * , i n t , MPI_Datatype , i n t , i n t , MPI_Comm , MPI_Request *) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l MPI_Irecv () f u n c t i o n .
s t a t i c i n t (* Or ig_MPI_I recv) (void * , i n t , MPI_Datatype , i n t , i n t , MPI_Comm , MPI_Request *) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l MPI_Wait () f u n c t i o n .
s t a t i c i n t (* Orig_MPI_Wait) (MPI_Request * , MPI_Sta tus *) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l MPI_Get_count () f u n c t i o n .
s t a t i c i n t (* Orig_MPI_Get_count) (MPI_Sta tus * , MPI_Datatype , i n t *) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l ma l l oc () f u n c t i o n .
s t a t i c vo id *(* O r i g _ m a l l o c) (s i z e _ t) ;

/ / ! \ b r i e f P o i n t e r t o o r i g i n a l f r e e () f u n c t i o n .
s t a t i c vo id (* O r i g _ f r e e) (void *) ;

/ / ! \ b r i e f I n f o r m a t i o n abou t new and o l d s i g n a l h a n d l e r .
s t a t i c s t r u c t s i g a c t i o n sa ;
s t a t i c s t r u c t s i g a c t i o n o l d s a ;

/ * ! \ b r i e f A range o f memory .
*
* T h i s i s a c o n v e n i e n c e c l a s s t o work w i t h an m a n i p u l a t e a range
* o f memory (such as t h e b u f v a r i a b l e o f most MPI c a l l s) .
*
* As many c o m p i l e r s don ’ t l i k e p o i n t e r a r i t h m e t i c s w i t h v o i d * p o i n t e r s ,
* t h i s makes t h e r e s t o f t h e codemuch c l e a n e r .
* /

s t r u c t Range {
/ / ! \ b r i e f S t a r t o f range .
void * s t a r t ;
/ / ! \ b r i e f End o f range .
void * s t o p ;

/ / ! \ b r i e f N u l l c o n s t r u c t o r .
Range () {

s t a r t = s t o p = NULL;
}

/ * ! \ b r i e f B a s i c c o n t r u c t o r .
* \ param s t a r t S t a r t o f range .
* \ param s t o p End o f range .
* /

Range (void * s t a r t , void * s t o p) {
t h i s−> s t a r t = s t a r t ;
t h i s−>s t o p = s t o p ;

}

/ * ! \ b r i e f Compare two ra ng es
* \ param o Other range t o compare w i t h .
* \ r e t u r n t r u e i f ran ge s are i d e n t i c a l .
* /

100 Program Code

bool operator ==(c o n s t Range &o) c o n s t {
re turn ((o . s t a r t == s t a r t) && (o . s t o p == s t o p)) ;

}

/ * ! \ b r i e f Check i f two ra ng es o v e r l a p (i n t e r s e c t) .
* \ param o Other range t o compare w i t h .
* \ r e t u r n t r u e i f ran ge s o v e r l a p .
* /

bool o v e r l a p s (c o n s t Range &o) c o n s t {
re turn (((o . s t a r t >= s t a r t) && (o . s t a r t <= s t o p)) | |

((o . s t o p >= s t a r t) && (o . s t o p <= s t o p))) ;
}

/ * ! \ b r i e f Check i f a d d r e s s i s i n s i d e range .
* \ param p t r Addres s t o check .
* \ r e t u r n t r u e i f a d d r e s s i s i n range .
* /

bool o v e r l a p s (void * p t r) c o n s t {
re turn ((p t r >= s t a r t) && (p t r <= s t o p)) ;

}

/ * ! \ b r i e f A d j u s t range t o page b o u n d r i e s .
* \ r e t u r n New a d j u s t e d range .
*
* s t a r t i s a d j u s t e d downwards t o t h e s t a r t o f page boundry , and
* s t o p i s l i k e w i s e a d j u s t e d upwards .
* /

Range p a g e A d j u s t () c o n s t {
Range o ((void *) ((long i n t) s t a r t & PAGE_MASK) , (void *) (((long i n t) s t o p & PAGE_MASK) + (PAGE_SIZE − 1))) ;
re turn o ;

}

/ * ! \ b r i e f Compute s i z e o f range .
* \ r e t u r n S i z e o f range i n b y t e s .
* /

s i z e _ t s i z e () c o n s t {
re turn (long i n t) s top−(long i n t) s t a r t ;

}
} ;

/ * ! \ b r i e f A memory area i n use by an a c t i v e MPI r e q u e s t .
*
* T h i s s t r u c t h o l d s a l l t h e i n f o r m a t i o n abou t an a c t i v e r e q u e s t .
* /

s t r u c t MemReq {
/ / ! \ b r i e f I n d i c a t e s i f i s a MPI_* send or MPI_* r e c v r e q u e s t .
bool i s _ s e n d ;

/ / ! \ b r i e f I s t h e memory area m p r o t e c t () ed ?
bool i s _ p r o t e c t e d ;
/ * ! \ b r i e f I s t h i s r e q u e s t t h e end o f a c h a i n ?

*
* I f t h i s i s t r u e , t h i s i s t h e end o f a c h a i n and we s h o u l d
* w a i t f o r a l l o u t s t a n d i n g r e q u e s t s t o f i n i s h b e f o r e
* moving a long .
* /

bool i s _ w a i t a l l ;

/ / ! \ b r i e f Memory range (i n u s e r program) o f r e q u e s t .
Range reqmem ;
/ / ! \ b r i e f Memory range o f r e q u e s t , page−a l i g n e d f o r
/ / f a s t a c c e s s .
Range pages ;

/ / ! \ b r i e f Base a d d r e s s used i n r e q u e s t , i d e n t i c a l t o reqmem . s t a r t .
void * base ;
/ / ! \ b r i e f Number o f e l e m e n t s i n r e q u e s t .
i n t c o u n t ;
/ / ! \ b r i e f D a t a t y p e used i n r e q u e s t .
MPI_Datatype d a t a t y p e ;
/ / ! \ b r i e f R e q u e s t ha nd l e .
MPI_Request r e q ;
/ / ! \ b r i e f Communicator used i n r e q u e s t .
MPI_Comm comm ;
/ / ! \ b r i e f S t a t u s (i f any)
MPI_Sta tus * s t a t u s ;

/ / ! \ b r i e f S i z e o f b u f f e r f o r MPI_Pack and MPI_Unpack
i n t b u f s i z e ;
/ / ! \ b r i e f A l l o c a t e d b u f f e r f o r p a c k i n g / unpack ing da ta .
unsigned char * b u f f e r ;

E.4 Injected library 101

/ * ! \ b r i e f C o n s t r u c t a new a c t i v e r e q u e s t .
* \ param i s _ s e n d I s t h i s r e q u e s t a MPI_* send ?
* \ param base B u f f e r t o send / r e c v t o .
* \ param c o u n t Number o f e l e m e n t s .
* \ param d a t a t y p e D a t a t y p e .
* \ param comm Communicator t o use .
* \ param s t a t u s P o i n t e r t o s t a t u s v a r i a b l e .
* T h i s w i l l i n i t i a l i z e reqmem and pages based on t h e d a t a t y p e and
* count , and w i l l a l l o c a t e a b u f f e r f o r p a c k i n g and unpack ing .
* /

MemReq(bool i s _ s e n d , unsigned char * base , i n t count , MPI_Datatype d a t a t y p e , MPI_Comm comm , MPI_Sta tus * s t a t u s) {
MPI_Aint e x t e n t , lb , ub ;

t h i s−>base = base ;
t h i s−>c o u n t = c o u n t ;
t h i s−>d a t a t y p e = d a t a t y p e ;
t h i s−>comm = comm ;
t h i s−>i s _ s e n d = i s _ s e n d ;
t h i s−>s t a t u s = s t a t u s ;

MPI_Type_lb (d a t a t y p e , &l b) ;
MPI_Type_ub (d a t a t y p e , &ub) ;
MPI_Type_extent (d a t a t y p e , &e x t e n t) ;
MPI_Pack_s ize (count , d a t a t y p e , comm , &b u f s i z e) ;

MPI_Aint s i z e = (count−1) * ub + e x t e n t ;

reqmem . s t a r t = base + l b ;
reqmem . s t o p = base + s i z e ;
pages = reqmem . p a g e A d j u s t () ;

b u f f e r =new unsigned char [b u f s i z e] ;

i s _ p r o t e c t e d = t rue ;
i s _ w a i t a l l = f a l s e ;

}

/ * ! \ b r i e f D e s t r u c t o r .
*
* D e a l l o c a t e s memory f o r b u f f e r .
* /

~MemReq () {
d e l e t e [] b u f f e r ;

}
} ;

/ * ! \ b r i e f S i g n a t u r e o f MPI R e q u e s t .
*
* T h i s i s t h e s i g n a t u r e o f an MPI r e q u e s t . I f two s i g n a t u r e s are i d e n t i c a l ,
* t h e y s h o u l d t r a n s f e r t h e same range o f memory i n t h e same way t o t h e same
* d e s t i n a t i o n . T h i s i s used t o r e c o g n i z e r e q u e s t s we ’ ve seen b e f o r e on
* s u b s e q u e n t i t e r a t i o n s i n t h e u s e r program .
*
* The member v a r i a b l e s here w i l l be t h e p a r a m e t e r s seen t o t h e MPI_Send
* or MPI_Recv c a l l s .
*
* T h i s s t r u c t has no v i r t u a l f u n c t i o n s , no p a r e n t and s h o u l d n o t have
* any c h i l d r e n as i t r e l i e s on b e i n g " j u s t a chunk o f memory " f o r
* i t s a s s i g n m e n t and compar i son o p e r a t o r s .
* /

s t r u c t ReqSig {
/ / ! \ b r i e f I s t h i s i s a send r e q u e s t ?
bool i s _ s e n d ;
/ / ! \ b r i e f Base memory a d d r e s s o f r e q u e s t .
void * base ;
/ / ! \ b r i e f Number o f e l e m e n t s .
i n t c o u n t ;
/ / ! \ b r i e f D a t a t y p e
MPI_Datatype d a t a t y p e ;
/ / ! \ b r i e f Source or d e s t i n a t i o n rank .
i n t p a r t n e r ;
/ / ! \ b r i e f Message t a g .
i n t t a g ;
/ / ! \ b r i e f Communicator ha nd l e .
MPI_Comm comm ;

/ * ! \ b r i e f C o n s t r u c t a new s i g n a t u r e .
* \ param i s _ s e n d I s t h i s a send r e q u s t ?
* \ param base The i n i t i a l a d d r e s s o f t h e send / r e c e i v e b u f f e r .
* \ param c o u n t Number o f e l e m e n t s i n b u f f e r .
* \ param d a t a t y p e D a t a t y p e o f each e l e m e n t .

102 Program Code

* \ param p a r t n e r Rank o f s o u r c e or d e s t i n a t i o n .
* \ param t a g Message t a g .
* \ param comm Communicator han d l e .
*
* T h i s c o n s t r u c t o r j u s t does a s s i g n m e n t s , so i t s h o u l d be
* r e a s o n a b l y f a s t . C++ w i l l p r o v i d e copy and a s s i g n m e n t
* c o n s t r u c t o r s f o r us (which w i l l b a s i c a l l y be memcpy ()
* v e r s i o n s) .
* /

ReqSig (bool i s _ s e n d , void * base , i n t count , MPI_Datatype d a t a t y p e , i n t p a r t n e r , i n t t ag , MPI_Comm comm) {
t h i s−>i s _ s e n d = i s _ s e n d ;
t h i s−>base = base ;
t h i s−>c o u n t = c o u n t ;
t h i s−>d a t a t y p e = d a t a t y p e ;
t h i s−>p a r t n e r = p a r t n e r ;
t h i s−>t a g = t a g ;
t h i s−>comm=comm ;

}

/ * ! \ b r i e f Compare two s i g n a t u r e s .
* \ param o Other s i g n a t u r e t o compare w i t h .
* \ r e t u r n t r u e i f s i g n a t u r e s are i d e n t i c a l .
* \ s e e o p e r a t o r <()
*
* /

bool operator ==(c o n s t ReqSig &o) c o n s t {
re turn (memcmp(t h i s , &o , s i z e o f (ReqSig)) = = 0) ;

}

/ * ! \ b r i e f Compare two s i g n a t u r e s .
* \ param o Other s i g n a t u r e t o compare w i t h .
* \ r e t u r n t r u e i f t h i s s i g n a t u r e i s " l e s s than " o .
* \ s e e o p e r a t o r ==()
*
* T h i s i s p r i m a r i l y t o a l l o w use as key i n s t d : : map<>.
* /

bool operator <(c o n s t ReqSig &o) c o n s t {
re turn (memcmp(t h i s , &o , s i z e o f (ReqSig))==−1);

}

} ;

/ * ! \ b r i e f I n f o r m a t i o n abou t a r e q u e s t we ’ ve seen .
*
* The l i b r a r y t r a c k s and r e c o r d s t h e most r e c e n t r e q u e s t s done
* by t h e u s e r program . T h i s i s used t o b u i l d i n f o r m a t i o n
* abou t r e q u e s t c h a i n s ; r e q u e s t s t h a t a lways f o l l o w each o t h e r
* w i t h o u t any c o m p u t a t i o n i n b e t w e e n them . Such c h a i n s can
* t h e n be s t a r t e d w i t h t h e i r o r i g i n a l b u f f e r area , removing
* t h e overhead o f copy ing , and we s i m p l y w a i t a t t h e end o f
* t h e c h a i n f o r a l l r e q u e s t s t o f i n i s h .
*
* Chains are r e c o g n i z e d i n add_req () , and are s i m p l y a s e r i e s
* o f r e q u e s t s where p r e v c o u n t and n e x t c o u n t are f a i r l y high ,
* and t h e c h a i n t e r m i n a t e s i n t h e r e q u e s t which has f a u l t a t
* s e t .
* /

s t r u c t ReqInfo {
/ / ! \ b r i e f How many t i m e s t h i s e x a c t r e q u e s t has been seen .
i n t s een ;
/ / ! \ b r i e f Nex t and p r e v i o u s r e q u e s t i n c h a i n .
s t r u c t ReqInfo * prev , * n e x t ;
/ / ! \ b r i e f How many t i m e s have we seen t h e same n e x t and p r e v i o u s r e q u e s t s .
i n t p r e v c o u n t , n e x t c o u n t ;
/ / ! \ b r i e f Addres s o f page f a u l t w h i l e t h i s r e q u e s t was l a s t a c t i v e r e q u e s t .
void * f a u l t a t ;
/ / ! \ b r i e f I f t r u e , some e a r l i e r r e q u e s t s p e c i f i e d t h i s as c h a i n end .
bool w a i t a l l ;
ReqInfo () {

seen =0;
p rev = n e x t = NULL;
p r e v c o u n t = n e x t c o u n t = 0 ;
f a u l t a t = NULL;
w a i t a l l = f a l s e ;

}
} ;

/ / ! \ b r i e f S e t o f a c t i v e r e q u e s t s .
s t a t i c s e t <MemReq *> r e q u e s t s ;

/ / ! \ b r i e f Map o f s t a t u s e s we migh t w a i t f o r .
s t a t i c map< MPI_Sta tus * , MemReq *> s t a t u s e s ;

E.4 Injected library 103

/ / ! \ b r i e f Map be tween r e t u r n e d page−a l i g n e d a d d r e s s and " t r u e " a d d r e s s .
s t a t i c map< void * , void *> mallocmap ;
/ / ! \ b r i e f Map o f ma l l oc s i z e s (number o f b y t e s)
s t a t i c map< void * , s i z e _ t > m a l l o c s i z e s ;
/ / ! \ b r i e f S e t o f pages we ’ ve pre−a l i g n e d (page number , n o t a d d r e s s) .
s t a t i c s e t < unsigned long i n t > m a l l o c p a g e s ;

/ / ! \ b r i e f Map o f s i g n a t u r e s and match ing i n f o r m a t i o n .
s t a t i c map<ReqSig , ReqInfo *> r e q h i s t ;

/ / ! \ b r i e f L a s t a c t i v e r e q u e s t .
s t a t i c ReqInfo * l a s t _ r e q = NULL;

/ * ! \ b r i e f Outpu t debug s t r i n g
* \ param f o r m a t f o r m a t o f s t r i n g (p r i n t f f o r m a t) .
*
* T h i s o u t p u t s a debug s t r i n g t o s t d e r r i f t h e e n v i r o n m e n t
* v a r i a b l e INJ_DEBUG e q u a l s t h e rank o f t h e c a l l i n g p r o c e s s .
* /

s t a t i c vo id dbgou t (c o n s t char * format , . . .)
{

s t a t i c i n t l i n e = 1 ;

i f ((do_debug == rank) | | (do_debug ==−2)) {
v a _ l i s t a r g s ;

f p r i n t f (s t d e r r , "%d[%d] : " , rank , l i n e + +) ;
v a _ s t a r t (a rg s , f o r m a t) ;
v f p r i n t f (s t d e r r , fo rmat , a r g s) ;
va_end (a r g s) ;
f p r i n t f (s t d e r r , " \ n ") ;

}
}

/ * ! \ b r i e f Wait f o r r e q u e s t and r e l e a s e memory .
* \ param mr R e q u e s t t o w a i t f o r .
*
* T h i s w i l l w a i t f o r an MPI r e q u e s t t o f i n i s h , t h e n
* w a i t f o r any r e q u e s t s u s i n g t h e same pages i t has
* locked , and f i n a l l y u n p r o t e c t t h e pages so
* t h e y can be a c c e s s e d by t h e a p p l i c a t i o n aga in .
* I f t h e r e q u e s t was a r e c e i v e , t h e da ta w i l l be
* c o p i e d from t h e b u f f e r t o t h e u s e r b u f f e r .
*
* I f t h e r e q u e s t was p a r t o f c h a i n and n o t
* p r o t e c t e d , j u s t w a i t f o r i t f i n i s h .
* /

s t a t i c vo id w a i t _ r e q (MemReq *mr) {
MPI_Sta tus s t a t u s ;
i f (mr−>s t a t u s)

s t a t u s e s . e r a s e (mr−>s t a t u s) ;
e l s e

mr−>s t a t u s = &s t a t u s ;

dbgou t (" MPI_Wait %p . . s t a t u s %p " , mr , mr−>s t a t u s) ;
MPI_Wait(&mr−>req , mr−>s t a t u s) ;
r e q u e s t s . e r a s e (mr) ;

/ / Memory ra ng es ca nn o t o v e r l a p , b u t pages might , and we don ’ t want
/ / t o u n p r o t e c t t h e pages o f r e q u e s t s t h a t aren ’ t done , so w a i t
/ / f o r them t o o .

s e t <MemReq * > : : c o n s t _ i t e r a t o r i t e r ;
bool ok ;

do {
ok = t rue ;
f o r (i t e r = r e q u e s t s . b e g i n () ; i t e r != r e q u e s t s . end () ; ++ i t e r) {

i f ((* i t e r)−>pages . o v e r l a p s (mr−>pages) && (* i t e r)−> i s _ p r o t e c t e d) {
dbgou t (" Found p a r t n e r %p t o w a i t f o r " , * i t e r) ;
w a i t _ r e q (* i t e r) ;
ok = f a l s e ;
break ;

}
}

} whi le (! ok) ;

/ / I s t h i s a u n p r o t e c t e d r e q u e s t ? (Par t o f c h a i n)
i f (! mr−>i s _ p r o t e c t e d) {

dbgou t (" U n p r o t e c t e d , e a r l y e x i t ") ;

104 Program Code

d e l e t e mr ;
re turn ;

}

/ / Get number o f b y t e s t r a n s f e r r e d
i n t b s i z e = 0 ;
Orig_MPI_Get_count (mr−>s t a t u s , MPI_PACKED , &b s i z e) ;

/ / U n p r o t e c t pages
m p r o t e c t (mr−>pages . s t a r t , mr−>pages . s i z e () , PROT_READ | PROT_WRITE) ;

/ / Copy from b u f f e r t o userprogram i f t h i s was a r e c e i v e .
i f (! mr−>i s _ s e n d) {

dbgou t (" Going t o copy ") ;
i f (! b s i z e | | b s i z e == MPI_UNDEFINED)

re turn ;
i n t pos = 0 ;
MPI_Unpack (mr−>b u f f e r , b s i z e , &pos , mr−>base , mr−>count , mr−>d a t a t y p e , mr−>comm) ;

}

dbgou t (" Go in t t o d e l e t e and r e t u r n ") ;
d e l e t e mr ;

}

/ * ! \ b r i e f Wait f o r a l l o u t s t a n d i n g r e q u e s t s .
*
* T h i s w a i t s f o r a l l o u t s t a n d i n g r e q u e s t s , used a t t h e end o f c h a i n s and
* i n t h e case o f " t r u e " segment f a u l t s .
* /

void w a i t _ a l l _ r e q () {
s e t <MemReq * > : : i t e r a t o r i t e r ;

dbgou t (" Wait a l l r e q ") ;

whi le ((i t e r = r e q u e s t s . b e g i n ()) ! = r e q u e s t s . end ())
w a i t _ r e q (* i t e r) ;

}

/ * ! \ b r i e f S t a r t new r e q u e s t .
* \ param i s _ s e n d I s t h i s a send r e q u e s t ?
* \ param base Base a d d r e s s o f r e q u e s t .
* \ param c o u n t Number o f e l e m e n t s .
* \ param d a t a t y p e D a t a t y p e o f e l e m e n t s .
* \ param rank Source or d e s t i n a t i o n rank .
* \ param t a g Message t a g .
* \ param comm Communicator han d l e .
* \ param s t a t u s P o i n t e r t o s t a t u s r e c e p t o r .
* \ param i g n o r e Addres s o f MemReq f o r which we i g n o r e o v e r l a p p i n g . (SendRecv p a i r s)
* \ r e t u r n Addres s o f MemReq
*
* T h i s adds a new t r a c k e d r e q u e s t . F i r s t , i t u p d a t e s c h a i n i n f o r m a t i o n , and
* i f t h e r e i s s u f f i c i e n t c o n f i d e n c e t h i s i s p a r t o f a chain , s k i p
* memory p r o t e c t i o n a l l t o g e t h e r . I f t h i s i s t h e end o f a chain , w a i t
* f o r a l l o u t s t a n d i n g r e q u e s t s t o f i n i s h b e f o r e r e t u r n i n g .
*
* For new r e q u e s t s , or r e q u e s t s n o t p a r t o f a chain , make s u r e any r e q u e s t s
* which use t h e same memory a d d r e s s e s are a l r e a d y done (u n l e s s t h e y were
* a send , and t h i s i s a l s o a send) .
* /

s t a t i c MemReq * add_req (bool i s _ s e n d , void * base , i n t count , MPI_Datatype d a t a t y p e , i n t rank , i n t t ag , MPI_Comm comm , MPI_Sta tus * s t a t u s , MemReq * i g n o r e = NULL) {
i f (r ank == MPI_PROC_NULL)

re turn NULL;

ReqSig r s (i s _ s e n d , base , count , d a t a t y p e , rank , t ag , comm) ;
ReqInfo * r i ;
bool nopage ;

/ / Find p r e v i o u s R e q I n f o f o r t h i s s i g n a t u r e , or make a new one .
r i = r e q h i s t [r s] ;
i f (! r i) {

r i = new ReqInfo ;
r e q h i s t [r s] = r i ;

}
r i−>seen ++;

/ / Was t h e p r e v i o u s r e q u e s t t h e same as l a s t t i m e ?
i f (r i−>prev == l a s t _ r e q) {

r i−>p r e v c o u n t ++;
} e l s e {

i f (r i−>prev) {
r i−>prev−>n e x t = NULL;

E.4 Injected library 105

r i−>prev−>n e x t c o u n t = 0 ;
}
r i−>prev = l a s t _ r e q ;
r i−>p r e v c o u n t =1 ;

}

/ / Was t h i s t h e " n e x t " r e q u e s t o f t h e p r e v i o u s
/ / r e q u e s t l a s t t i m e ?
i f (l a s t _ r e q) {

i f (l a s t _ r e q−>n e x t == r i) {
l a s t _ r e q−>n e x t c o u n t ++;

} e l s e {
l a s t _ r e q−>n e x t = r i ;
l a s t _ r e q−>n e x t c o u n t ++;

}
} e l s e i f (r i−>prev) {

r i−>prev = NULL;
r i−>p r e v c o u n t = 0 ;

}

l a s t _ r e q = r i ;

/ / T e s t c o n f i d e n c e o f c h a i n . I f i t i s a chain ,
/ / we have h igh n e x t c o u n t s .
ReqInfo * r p t r = r i ;
i n t s t e p s = 1 ;
whi le (r p t r−>n e x t && r p t r−>n e x t c o u n t >=CHAIN_MIN_ITER) {

r p t r = r p t r−>n e x t ;
s t e p s ++;

}

/ / Did we end up a t s o m e t h i n g t h a t p a g e f a u l t e d ?
i f (r p t r && r p t r−>f a u l t a t && r p t r != r i && s t e p s >=2) {

r p t r−>w a i t a l l = t rue ;
nopage = t rue ;

} e l s e {
nopage = f a l s e ;

}

dbgou t (" ReqInfo %p : Next %p prev %p Ncnt %d Pcn t %d s t e p s %d W a i t a l l %d Npage %d " , r i , r i−>next , r i−>prev , r i−>n e x t c o u n t , r i−>p r e v c o u n t , s t e p s , r i−>w a i t a l l , nopage) ;

/ / A l l o c a t e new a c t i v e r e q u e s t .
MemReq *mr = new MemReq(i s _ s e n d , (unsigned char *) base , count , d a t a t y p e , comm , s t a t u s) ;

i f (nopage | | r i−>w a i t a l l)
mr−>i s _ p r o t e c t e d = f a l s e ;

i f (r i−>w a i t a l l)
mr−>i s _ w a i t a l l = t rue ;

bool memlap = f a l s e ;

/ / I f memory ra ng es o v e r l a p , w a i t f o r r e q u e s t t o f i n i s h
s e t <MemReq * > : : c o n s t _ i t e r a t o r i t e r ;
bool ok ;
do {

ok = t rue ;

f o r (i t e r = r e q u e s t s . b e g i n () ; ok && i t e r != r e q u e s t s . end () ; + + i t e r) {
i f ((* i t e r)−>pages . o v e r l a p s (mr−>pages) && ((mr−>i s _ p r o t e c t e d | | (* i t e r)−> i s _ p r o t e c t e d))) {

i f (mr−>i s _ p r o t e c t e d && (* i t e r)−> i s _ p r o t e c t e d)
memlap = t rue ;

e l s e i f (* i t e r == i g n o r e) {
/ / T h i s i s a s e n d r e c v p a i r and t h e y d i s a g r e e , which
/ / i s t r o u b l e s o m e . No c h o i c e b u t t o e q u a t e them , p o s s i b l y w a i t i n g .
mr−>i s _ p r o t e c t e d = (* i t e r)−> i s _ p r o t e c t e d ;
i f (! mr−>i s _ p r o t e c t e d)

mr−>i s _ w a i t a l l = t rue ;
ok = f a l s e ;
break ;

} e l s e {
/ / O v e r l a p p i n g and d i f f e r e n t t y p e s .
w a i t _ r e q (* i t e r) ;
ok = f a l s e ;
break ;

}
}

}
} whi le (! ok) ;

/ / I f i t i s a send r e q u e s t w i t h p r o t e c t e d memory , copy i n t o s e n d i n g b u f f e r
i n t pos = 0 ;

i f (memlap && i s _ s e n d)

106 Program Code

m p r o t e c t (mr−>pages . s t a r t , mr−>pages . s i z e () , PROT_READ | PROT_WRITE) ;

i f (i s _ s e n d && mr−>i s _ p r o t e c t e d)
MPI_Pack (base , count , d a t a t y p e , mr−>b u f f e r , mr−>b u f s i z e , &pos , comm) ;

i f (mr−>i s _ p r o t e c t e d) {
/ / Mark pages
i f (m p r o t e c t (mr−>pages . s t a r t , mr−>pages . s i z e () , PROT_NONE) != 0) {

p e r r o r (" MPII f a i l e d t o a c c e s s p r o t e c t pages ! ") ;
a b o r t () ;

}

i f (i s _ s e n d)
Orig_MPI_Isend (mr−>b u f f e r , pos , MPI_PACKED , rank , t ag , comm , &mr−>r e q) ;

e l s e
Orig_MPI_I recv (mr−>b u f f e r , mr−>b u f s i z e , MPI_PACKED , rank , t ag , comm , &mr−>r e q) ;

} e l s e {
i f (i s _ s e n d)

Orig_MPI_Isend (base , count , d a t a t y p e , rank , t ag , comm , &mr−>r e q) ;
e l s e

Orig_MPI_I recv (base , count , d a t a t y p e , rank , t ag , comm , &mr−>r e q) ;
}

r e q u e s t s . i n s e r t (mr) ;
i f (s t a t u s)

s t a t u s e s [s t a t u s] = mr ;

/ / I f t h i s was t h e end o f a chain , w a i t f o r e v e r y t h i n g t o be done .
i f (mr−>i s _ w a i t a l l) {

w a i t _ a l l _ r e q () ;
l a s t _ r e q = NULL;

}

re turn mr ;
}

/ * ! \ b r i e f Segment v i o l a t i o n s i g n a l h a n d l e r .
* \ param s i g n a l S i g n a l number .
* \ param s i g i n f o I n f o r m a t i o n abou t s i g n a l .
* \ param u c o n t e x t User c o n t e x t .
*
* T h i s h a n d l e s page f a u l t s , which most l i k e l y are caused by t h e u s e r
* program a c c e s s i n g p r o t e c t e d pages .
*
* We s i m p l y i t e r a t e t h e a c t i v e r e q u e s t s , w a i t f o r a l l r e q u e s t s t h a t
* o v e r l a p t h e f a u l t e d a d d r e s s t o f i n i s h . w a i t _ r e q () w i l l u n p r o t e c t
* t h e pages again , so we s i m p l y r e t u r n t o u s e r s p a c e when done .
* /

s t a t i c vo id s i g a c t (i n t s i g n a l , s i g i n f o _ t * s i g i n f o , void * u c o n t e x t) {
void * add r = s i g i n f o−>s i _ a d d r ;

bool found = f a l s e ;

dbgou t (" S i g a c t i o n ") ;

/ / I f memory ra ng es o v e r l a p , w a i t f o r r e q u e s t t o f i n i s h
s e t <MemReq * > : : c o n s t _ i t e r a t o r i t e r ;
bool ok ;
do {

ok = t rue ;
f o r (i t e r = r e q u e s t s . b e g i n () ; i t e r != r e q u e s t s . end () ; + + i t e r) {

dbgou t (" T e s t i n g %p " , * i t e r) ;
i f ((* i t e r)−>pages . o v e r l a p s (add r)) {

found = t rue ;
ok = f a l s e ;
dbgou t (" Found . Wai t i ng . ") ;
w a i t _ r e q (* i t e r) ;
break ;

}
}

} whi le (! ok) ;

dbgou t (" Did i t e r ") ;

/ / I f we d idn ’ t f i n d a n y t h i n g , t h i s i s a " r e a l " segment v i o l a t i o n ,
/ / so we s h o u l d a b o r t .
i f (! found) {

do_debug = rank ;
dbgou t (" MPII : SIGSEGV −− t r y i n g t o c h a i n \ n ") ;

i f (s i g a c t i o n (SIGSEGV , &o l d s a , &sa) != 0) {
p e r r o r (" MPII : r e s t o r e s i g a c t i o n ") ;

E.4 Injected library 107

}

w a i t _ a l l _ r e q () ;
}

dbgou t (" Did check ") ;

/ / Mark t h e l a s t a c t i v e r e q u e s t as a end−of−c h a i n c a n d i d a t e .
i f (l a s t _ r e q) {

l a s t _ r e q−>f a u l t a t = add r ;
l a s t _ r e q = NULL;

}
dbgou t (" S i g a c t r e t ") ;

}

/ * ! \ b r i e f I n i t i a l i z e i n j e c t i o n .
*
* The g u t s o f t h i s f u n c t i o n w i l l d i f f e r b e t w e e n t h e s t a t i c and dynamic
* i n j e c t i o n t y p e s , b u t t h e i r f u n c t i o n i s t o i n i t i a l i z e Or ig_MPI_ In i t
* and r e l a t e d f u n c t i o n s .
* /

i f d e f INJECT_DYNAMIC
s t a t i c vo id I n j _ i n i t _ c h a i n ()
{

/ / Use RTLD_NEXT t o r e s o l v e i n " t h e n e x t l i b r a r y down t h e l i n e "
/ / which i s e i t h e r t h e o r i g i n a l MPI l i b r a r y or o t h e r MPI t r a c e r
/ / code . T h i s way we ’ re as f r i e n d l y as p o s s i b l e .
O r i g _ M P I _ I n i t = (i n t (*) (i n t * , char * * *)) dlsym (RTLD_NEXT, " M P I _ In i t ") ;
Or ig_MPI_Isend = (i n t (*) (void * , i n t , unsigned i n t , i n t , i n t , unsigned i n t , MPI_Request *)) dlsym (RTLD_NEXT, " MPI_Isend ") ;
Or ig_MPI_I recv = (i n t (*) (void * , i n t , unsigned i n t , i n t , i n t , unsigned i n t , MPI_Request *)) dlsym (RTLD_NEXT, " MPI_Irecv ") ;
Orig_MPI_Wait = (i n t (*) (MPI_Request * , MPI_Sta tus *)) dlsym (RTLD_NEXT, " MPI_Wait ") ;
Or ig_MPI_Get_count = (i n t (*) (MPI_Sta tus * , MPI_Datatype , i n t *)) dlsym (RTLD_NEXT, " MPI_Get_count ") ;
i f (! O r i g _ M P I _ I n i t) {

f p r i n t f (s t d e r r , " MPII f a i l e d t o f i n d o r i g i n a l M P I _ In i t \ n ") ;
a b o r t () ;

} e l s e {
f p r i n t f (s t d e r r , " MPII . so i n j e c t i o n \ n ") ;

}
}
e l s e
s t a t i c vo id I n j _ i n i t _ c h a i n ()
{

/ / S i mp ly r e s o l v e t h e symbo l s a t l i n k t i m e .
O r i g _ M P I _ I n i t = M P I _ I n i t ;
Or ig_MPI_Isend = MPI_Isend ;
Or ig_MPI_I recv = MPI_Irecv ;
Orig_MPI_Wait = MPI_Wait ;
Or ig_MPI_Get_count = MPI_Get_count ;
O r i g _ m a l l o c = ma l lo c ;
O r i g _ f r e e = f r e e ;

}
e n d i f

/ * ! \ b r i e f I n i t i a l i z e MPI and i n j e c t i o n .
*
* T h i s i s t h e o v e r r i d d e n v e r s i o n o f M P I _ I n i t () , and w i l l
* i n i t i a l i z e t h e s i g n a l h a n d l e r and s t a t u s v a r i a b l e s
* i n a d d i t i o n t o c a l l i n g t h e o r i g i n a l M P I _ I n i t () .
* /

INJ_METHOD i n t I n j _ M P I _ I n i t (i n t * argc , char *** a rgv)
{

i f (g e t e n v ("INJ_DEBUG"))
do_debug = a t o i (g e t e n v ("INJ_DEBUG")) ;

e l s e
do_debug = −1;

i f (g e t e n v (" INJ_IGNORE") && a t o i (g e t e n v (" INJ_IGNORE")))
d o _ n o t h i n g = 1 ;

e l s e
d o _ n o t h i n g = 0 ;

I n j _ i n i t _ c h a i n () ;

s a . s a _ s i g a c t i o n = s i g a c t ;
s i g e m p t y s e t (& sa . sa_mask) ;
s a . s a _ f l a g s = SA_SIGINFO ;

i n t r e t = O r i g _ M P I _ I n i t (a rgc , a rgv) ;

108 Program Code

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

MPI_Bcast (&do_debug , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;
MPI_Bcast (& do_no th ing , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;

i f (s i g a c t i o n (SIGSEGV , &sa , &o l d s a) != 0) {
p e r r o r (" MPII : s i g a c t i o n ") ;

}

dbgou t (" MPII : A l l i s i n o r d e r . ") ;

f p r i n t f (s t d e r r , " MPII I n i t (debug %d , i g n o r e %d) \ n " , do_debug , d o _ n o t h i n g) ;

re turn r e t ;
}

/ / ! \ b r i e f Check i f x i s i n s i d e our o v e r r i d e n ma l l oc () ed pages .
d e f i n e MEM_VALID_TEST(x) (m a l l o c p a g e s . f i n d ((unsigned long i n t) x / PAGE_SIZE) != m a l l o c p a g e s . end ())

INJ_METHOD i n t Inj_MPI_Send (void * buf , i n t count , MPI_Datatype d a t a t y p e , i n t d e s t , i n t t ag , MPI_Comm comm)
{

i f (d o _ n o t h i n g | | !MEM_VALID_TEST(buf)) {
MPI_Request r e q ;
MPI_Sta tus s t a t ;

Or ig_MPI_Isend (buf , count , d a t a t y p e , d e s t , t ag , comm , &r e q) ;
re turn Orig_MPI_Wait (& req , &s t a t) ;

}

dbgou t (" MPI_Send c h a i n e d t o ") ;
add_ req (true , buf , count , d a t a t y p e , d e s t , t ag , comm , NULL) ;
re turn MPI_SUCCESS ;

}

INJ_METHOD i n t Inj_MPI_Recv (void * buf , i n t count , MPI_Datatype d a t a t y p e , i n t sou rce , i n t t ag , MPI_Comm comm , MPI_Sta tus * s t a t u s)
{

i f (d o _ n o t h i n g | | !MEM_VALID_TEST(buf)) {
MPI_Request r e q ;
Or ig_MPI_I recv (buf , count , d a t a t y p e , sou rce , t ag , comm , &r e q) ;
re turn Orig_MPI_Wait (& req , s t a t u s) ;

}

dbgou t (" MPI_Recv c h a i n e d t o ") ;
add_ req (f a l s e , buf , count , d a t a t y p e , sou rce , t ag , comm , s t a t u s) ;
re turn MPI_SUCCESS ;

}

/ * ! \ b r i e f O v e r r i d d e n MPI_Sendrecv ()
*
* I f d o _ n o t h i n g i s t r u e , t h i s j u s t t r a n s f o r m s t h e r e q u e s t i n t o a I r e c v and
* Isend , b u t w a i t s on them i m m e d i a t e l y b e f o r e r e t u r n i n g .
*
* During normal o p e r a t i o n , add_req () i s c a l l e d f o r bo th t h e send and
* r e c e i v e p a r t s o f t h e r e q u e s t b e f o r e we r e t u r n .
* /

INJ_METHOD i n t In j_MPI_Sendrecv (void * sendbuf , i n t sendcoun t , MPI_Datatype send type , i n t d e s t , i n t s e n d t a g , void * r e c v b u f , i n t r e c v c o u n t , MPI_Datatype r e c v t y p e , i n t sou rce , i n t r e c v t a g , MPI_Comm comm , MPI_Sta tus * s t a t u s)
{

i f (d o _ n o t h i n g | | !MEM_VALID_TEST(s e n d b u f) | | !MEM_VALID_TEST(r e c v b u f)) {
MPI_Request r e q [2] ;

MPI_Sta tus s t a t [2] ;
Or ig_MPI_I recv (r e c v b u f , r e c v c o u n t , r e c v t y p e , sou rce , r e c v t a g , comm , &r e q [0]) ;
Or ig_MPI_Isend (sendbuf , s endcoun t , s end type , d e s t , s e n d t a g , comm , &r e q [1]) ;

MPI_Wait(& r e q [1] , &s t a t [1]) ;
re turn MPI_Wait(& r e q [0] , s t a t u s) ;

}

dbgou t (" MPI_Sendrecv c h a i n e d t o ") ;

MemReq * s e n d r e q = add_req (true , s endbuf , s endcoun t , s end type , d e s t , s e n d t a g , comm , NULL) ;
add_req (f a l s e , r e c v b u f , r e c v c o u n t , r e c v t y p e , sou rce , r e c v t a g , comm , s t a t u s , s e n d r e q) ;

dbgou t (" MPI_Sendrecv c h a i n e d o u t ") ;

re turn MPI_SUCCESS ;
}

/ * ! \ b r i e f O v e r r i d d e n MPI_Get_count ()
*
* T h i s w a i t s f o r t h e r e q u e s t t o a c t u a l l y f i n i s h , t h e n c h a i n s t h r o u g h .
* /

E.4 Injected library 109

INJ_METHOD i n t In j_MPI_Get_coun t (MPI_Sta tus * s t a t u s , MPI_Datatype d a t a t y p e , i n t * c o u n t) {
dbgou t (" MPI_Get_count c h a i n e d ") ;

map< MPI_Sta tus * , MemReq * > : : c o n s t _ i t e r a t o r i t e r ;

i t e r = s t a t u s e s . f i n d (s t a t u s) ;
i f (i t e r != s t a t u s e s . end ())

w a i t _ r e q ((* i t e r) . second) ;

re turn Orig_MPI_Get_count (s t a t u s , d a t a t y p e , c o u n t) ;
}

/ * ! \ b r i e f O v e r r i d d e n ma l l oc () .
*
* T h i s i s an o v e r r i d d e n m a l l oc () which e n s u r e s t h e a l l o c a t e d area i s
* t o page b o u n d r i e s . W i t h o u t t h i s , s m a l l dynamic a l l o c a t i o n s (such as t h o s e
* done by t h e MPI l i b r a r y i t s e l f) c o u l d end up i n t h e same page as t h e
* o r i g i n a l b u f f e r , meaning t h e y t o o would be i n a c c e s s i b l e once we
* m p r o t e c t () .
*
* However , i f M P I _ I n i t hasn ’ t been c a l l e d y e t , t h i s j u s t c h a i n s t h r o u g h
* i m m e d i a t e l y . I f c a l l e d v i a LD_PRELOAD , we would a l s o be i n j e c t e d
* i n t o mpirun , and i t doesn ’ t make s e n s e t o p a g e a l i g n t h a t .
* /

INJ_METHOD void * I n j _ m a l l o c (s i z e _ t s i z e) {
i f (! O r i g _ m a l l o c)

O r i g _ m a l l o c = (void * (*) (s i z e _ t)) dlsym (RTLD_NEXT, " m a l loc ") ;
i f (! O r i g _ M P I _ I n i t)

re turn O r i g _ m a l l o c (s i z e) ;

void * base = O r i g _ m a l l o c (s i z e + 2*PAGE_SIZE) ;
unsigned long i n t a d j u s t e d = ((long i n t) ba se + PAGE_SIZE − 1) & PAGE_MASK;
mallocmap [(void *) a d j u s t e d] = base ;
m a l l o c s i z e s [(void *) a d j u s t e d] = s i z e ;

f o r (unsigned long i n t i = a d j u s t e d / PAGE_SIZE ; i <=(a d j u s t e d + s i z e) / PAGE_SIZE ; i ++)
m a l l o c p a g e s . i n s e r t (i) ;

re turn (void *) a d j u s t e d ;
}

/ * ! \ b r i e f O v e r r i d d e n f r e e () .
*
* T h i s i s an o v e r r i d d e n f r e e () which r e p l a c e s t h e p o i n t e r
* w i t h t h e " o r i g n a l " i f t h i s memory s l a b was a l l o c a t e d
* t h r o u g h our o v e r r i d d e n I n j _ m a l l o c () .
* /

INJ_METHOD void I n j _ f r e e (void * p t r) {
i f (! O r i g _ f r e e)

O r i g _ f r e e = (void (*) (void *)) dlsym (RTLD_NEXT, " f r e e ") ;
i f (! O r i g _ M P I _ I n i t)

re turn O r i g _ f r e e (p t r) ;

void * base =mallocmap [p t r] ;
i f (ba se) {

O r i g _ f r e e (ba se) ;
unsigned long i n t a d j u s t e d =(long i n t) p t r ;
f o r (unsigned long i n t i = a d j u s t e d / PAGE_SIZE ; i <=(a d j u s t e d + m a l l o c s i z e s [p t r]) / PAGE_SIZE ; i ++)

m a l l o c p a g e s . e r a s e (i) ;
m a l l o c s i z e s . e r a s e (p t r) ;

}
e l s e

O r i g _ f r e e (p t r) ;
mallocmap . e r a s e (p t r) ;

}

Index

∼MemReq
MemReq, 61

add_req
layer.cpp, 78

dbgout
layer.cpp, 79

Inj_free
layer.cpp, 79
mpii.h, 84

Inj_init_chain
layer.cpp, 80

Inj_malloc
layer.cpp, 80
mpii.h, 84

Inj_MPI_Get_count
layer.cpp, 80
mpii.h, 84

Inj_MPI_Init
layer.cpp, 80
mpii.h, 85

Inj_MPI_Sendrecv
layer.cpp, 81
mpii.h, 85

is_waitall
MemReq, 62

layer.cpp, 73
add_req, 78
dbgout, 79
Inj_free, 79
Inj_init_chain, 80
Inj_malloc, 80

Inj_MPI_Get_count, 80
Inj_MPI_Init, 80
Inj_MPI_Sendrecv, 81
sigact, 81
wait_all_req, 82
wait_req, 82

MemReq, 59
MemReq, 61

MemReq
∼MemReq, 61
is_waitall, 62
MemReq, 61

mpii.h, 83
Inj_free, 84
Inj_malloc, 84
Inj_MPI_Get_count, 84
Inj_MPI_Init, 85
Inj_MPI_Sendrecv, 85

operator<
ReqSig, 71

operator==
Range, 64
ReqSig, 71

overlaps
Range, 64, 65

pageAdjust
Range, 65

Range, 63
operator==, 64
overlaps, 64, 65
pageAdjust, 65

INDEX 111

Range, 64
size, 65

ReqInfo, 67
ReqSig, 69

ReqSig, 70
ReqSig

operator<, 71
operator==, 71
ReqSig, 70

sigact
layer.cpp, 81

size
Range, 65

stattest.cxx, 86

wait_all_req
layer.cpp, 82

wait_req
layer.cpp, 82

