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ABSTRACT

The glaucous gull (Larus hyperboreus) is a scavenger and top predator in the Arctic marine
food web. Due to its high trophic position, it is highly exposed to organohalogenated
compounds (OHCs) and metals originating from anthropogenic emissions. The high body
burden of contaminants is believed to cause adverse health effects, which assumingly affect
the species even at the population level. The aim of this project was to investigate the possible
effects of per-and polyfluoroalkyl substances (PFASs) and mercury (Hg) on the thyroid
hormone system, as expressed by circulating thyroid hormone (TH) and thyroid stimulating
hormone (TSH) levels, as well as the histology of the thyroid gland.

Fifteen glaucous gulls were euthanized in Sassendalen and Adventfjorden in Svalbard during
the pre-breeding period in April and May 2017. Samples were taken of plasma, feathers, liver,
and thyroid gland. PFAS concentrations were quantified in the liver, whereas Hg
concentrations were quantified in the liver, feathers, and plasma. TSH and total and unbound
fraction of TH were quantified in plasma. As selenium (Se) plays a role both in activation and
regulation of THs, and acts as a detoxifying agent for Hg, this element was analysed in the
same tissues as Hg. The histology of the thyroid glands was examined for histological
changes. Multivariate data analyses were conducted to evaluate associations between Hg,

PFASs and thyroid response variables.

Perfluorooctane sulfonate (PFOS) was the dominating PFAS, accounting for 71 % of the
PFAS load. Long-chained perfluorinated carboxylates (PFCAS) constituted the remaining

29 % of the load, and there were no major differences between male and female glaucous
gulls. Hg levels were highest in feathers of males, whereas liver and plasma concentrations
were similar in males and females. Se levels were higher than Hg levels in plasma, feather
and liver samples. Normal thyroid tissue was seen in five of fourteen birds. Eight birds had
epithelial cell proliferation, and nodular hyperplasia was seen in one bird. The results indicate
that Hg might contribute to a high follicle count in thyroid glands. TSH was negatively
correlated with PFOS and perfluoro tetradecanoate (PFTeDA), and positively correlated with
Se:Hg in liver (all, n=15) and plasma (males, n=7). Overall, the results from the present study
indicate that ecological exposure to PFASs and Hg may alter thyroid hormone economy and

thyroid histology in glaucous gulls in Svalbard.
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SAMANDRAG

Polarmaka (Larus hyperboreus) er ein atseletar og eit rovdyr som er pa toppen av narings-
kjeda i det arktiske marine gkosystemet. Menneskelege utslepp av miljggifter, som organo-
halogenerte sambindingar (OHCs) og tungmetall, hopar seg opp i den arktiske naringskjeda,
og polarmaka, med sitt hgge trofiske niva, er difor eksponert for svert hage konsentrasjonar.
Miljggiftene gir truleg alvorlege helseeffektar, og ein mistenkjer at desse effektane gjev utslag
0g pa populasjonsniva. Malet for denne studien var & undersgkje dei moglege verknadene av
per- og polyfluorerte stoff (PFAS) og kvikksylv (Hg) pa tyroidhormonsystemet hja
polarmaka, uttrykt som blodniva av tyroidhormon (TH) og tyroidstimulerande hormon (TSH),

i tillegg til endringar i histologien til skjoldbruskkjertelen.

Femten polarmaker vart avliva i Sassendalen og Adventfjorden pa Svalbard fer hekkesesong i
manadsskiftet april-mai i 2017. Prgvar vart tekne av blod, fjgr, lever og skjoldbruskkijertel.
Lever vart analysert for PFAS-ar, medan Hg vart kvantifisert i plasma, fjer og lever. TSH,
samt fri og proteinbunden TH vart kvantifiserte i plasma. Plasma, fjer og lever vart 0g
analyserte for selen (Se), som er viktig for aktivering og regulering av TH, i tillegg til at Se
detoksifiserer Hg. Skjoldbruskkjertlane vart undersgkte for histologiske endringar. Multivariat
dataanalyse vart nytta for & finne moglege samanhengar mellom Hg, PFAS-ar og

responsvariablane knytte til tyroid-tilhgvet.

Perfluoroktylsulfonat (PFOS) stod for 71 % av PFAS-ane, medan langkjeda perfluorinerte
karboksylatar (PFCA-ar) utgjorde dei resterande 29 %. Det var ingen store skilnader mellom
hannar og hoer i konsentrasjon og fordeling av dei ulike PFAS-ane. Hg-nivaet var hggast i
fjor fra hannar, medan det ikkje var nokon stor skilnad mellom kjgnna sine lever- og
plasmakonsentrasjonar. Det var meir Se enn Hg i bade plasma, fjer og lever. Fem av fjorten
fuglar hadde normalt skjoldbruskkjertel-vev. Atte fuglar hadde epitelcelleproliferasjon, og éin
fugl hadde noduleer hyperplasi. Resultata tyder pa at Hg kan ha ein positiv verknad pa talet
folliklar i skjoldbruskkjertelen. TSH stod i negativ samanheng med PFOS og perfluor-
tetradekanoat (PFTeDA), og i positiv samanheng med Se:Hg i lever (alle fuglar,” n=15) og
plasma (hannar, n=7). Alt i alt tyder resultata fra denne studien pa at gkologisk aktuelle niva
av PFAS-er og Hg i polarmaker pa Svalbard kan paverke tyroidhormonbalansen og
histologien i skjoldbruskkjertelen.

¥ smé dei er
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1 INTRODUCTION

1.1 Contamination in the Arctic

1.1.1 Persistent organic pollutants in the Arctic

Despite few local sources in the Arctic, this polar region has become a sink for anthropogenic
pollution sourced in more southerly latitudes (Letcher et al., 2010). Industrial and agricultural
compounds with certain physiochemical characteristics are transported north via complex
pathways involving atmospheric and ocean currents and river run-off, influenced by
temperature, precipitation, snow cover, and ice cover (AMAP, 2004). These transport systems
are dynamic, and may also be modified by climate changes (Alava et al., 2017). The physio
chemical properties of contaminants which are transported to the Arctic and taken up in the
food chain, are typically semi volatility, persistency, low water solubility, and high
lipophilicity (O'Sullivan, 2013). Organochlorinated compounds (OCs) are one big group of
such compounds. Marine organisms take up (bioconcentrate) these lipophilic compounds
directly from the water, or from their prey. During an organism’s lifetime, it accumulates
persistent, lipophilic compounds (bioaccumulation), and the concentrations are magnified
(biomagnification) up through the food chain (Borga et al., 2001). Organisms with reduced
ability to metabolize foreign compounds, like seabirds, have an increased accumulation
(Walker, 1992). High concentrations of persistent organic pollutants (POPs) are therefore
found in the Arctic top predators (Gabrielsen, 2007), and concentrations are above threshold
levels of toxic effects in certain species (e.g. polar bears (Ursus maritimus), glaucous gulls,
and ringed seals (Pusa hispida)) (De Wit et al., 2005, Dietz et al., 2015). The concentrations
of legacy persistent organic pollutants (POPs) have, however, decreased substantially over the
last decades partly as a result of international regulations like the Stockholm Convention
(Hung et al., 2016). Yet, several compounds, i.e. the so-called emerging contaminants, are not
declining in the Arctic: Polybrominated flame retardants (BFRS) like polybrominated
diphenyl ethers (PBDES) now seem to increase again, after a decline at the beginning of the
2000s (Rigét et al., 2016, Sagerup et al., 2010); and PFASs (which are not lipophilic like the
other POPs, but rather bind to proteins), show variable trends. However most PFASs
increased between the 1970s to the 2000s, and stabilized or decreased after 2004 (Bultt et al.,
2010, Rigét et al., 2016, Rotander et al., 2012, Routti et al., 2016).



Mercury, a toxic element present in the Arctic due to anthropogenic emissions, increased by
1.6 — 1.7 % yearly from 1892 to 2008 in polar bear hair (Dietz et al., 2011), but recent years
have shown more variable temporal trends (Braune et al., 2015). Hg concentrations in eastern

parts of the Arctic seabirds now seem to be stable (Braune et al., 2015).

1.1.2 Per- and polyfluorinated compounds (PFASs)

Contrary to the lipophilic chlorinated and brominated POPs, PFASs are not lipid soluble, but
bind to the proteins in organisms. The strong electronegativity and small size of the fluorine
make the compounds extraordinary stable and both water- and oil repellent (Wang et al.,
2017). These properties are the reason why such compounds are so popular in a variety of
industrial and consumer applications (Wang et al., 2017, KEMI, 2015). The stability of
PFASs also make them resistant to metabolization, and they accumulate in the liver of
exposed organisms (Jones et al., 2003). There are two main groups of PFASs, namely
perfluorinated sulfonates (PFSAs) and perfluorinated carboxylates (PFCAS). Perfluoroocrane
sulfonate (PFOS) belongs to the former group, and is now listed under the Stockholm
Convention, but more than 3000 PFASs are still, or have been, on the global market (Wang et
al., 2017). Volatile precursors such as fluorotelomer alcohols, are transported to the Arctic
with atmospheric transport, while the bulk of PFASs are transported north with ocean currents
(Armitage et al., 2009, Butt et al., 2010). Several PFASs are now detected in fairly high
concentrations in Arctic wildlife (Haukas et al., 2007, Routti et al., 2016, Butt et al., 2010).

1.1.3 Mercury (Hg)

Elemental mercury (Hg®) is the predominant form of atmospheric Hg, and its long residence
time in the atmosphere makes the element prone to long-range transport far from its emission
sources (Schroeder and Munthe, 1998). Iron- and sulphate-reducing bacteria in anaerobic
environments sediments can convert inorganic Hg to organic Hg by methylation (Schaefer et
al., 2011), and the product — MeHg — is lipophilic, and has strong affinity to soft nucleophiles,
thiols, and selenol (Se) groups. MeHg therefore readily binds to both lipids, and cysteine
(thiol) and selenocysteine (Se) groups on proteins and enzymes (Khan and Wang, 2009,
Mulder et al., 2012) and thereby magnify in the food chain (Braune et al., 2015, Jeeger et al.,
2009). Since Hg is a toxic element, the Se-Hg interaction detoxifies Hg, and recently more
attention has been directed on the detoxifying effect of the Se-Hg antagonism (Khan and

Wang, 2009, Mulder et al., 2012). However, Se availability is also affected by this interaction,



which may disrupt the function of Se dependent enzymes like deiodinase, and consequently
affect the thyroid hormone homeostasis (Mulder et al., 2012).

1.2 The glaucous gull

1.2.1 Population

The glaucous gull (Larus hyperboreus) is an avian predator with circumpolar distribution
breeding in the Arctic. Its global population size is estimated to 170 000 — 1 200 000 pairs
(Mitchell et al. 2004 in Fauchald et al., 2015), of which 7 000 — 17 000 pairs breed in the
Barents Sea region (Anker-Nilssen et al., 2000). The Svalbard population is estimated to

4 000 — 10 000 pairs (Strgm and Descamps, npolar.no), but the population trends in Svalbard
are unknown (Artsdatabanken). However, the Bjgrngya population has decreased by 65 %
from 1986 to 2006, from 2 000 pairs to 650 pairs (Sagerup et al., 2009 b), and there is concern
that increasing exposure to pollutants might contribute to the decrease (Erikstad et al., 2013,
Sagerup et al., 2009 b). The species is listed as “near threatened” on the Red list in Svalbard
(Fauchald et al., 2015) and “least concern” globally (BirdLife International, 2016,

iucnredlist.org ).

1.2.2 Biology

Glaucous gulls are opportunistic feeders, predators, and scavengers, feeding on algae, tundra
plants, molluscs, fish, birds, eggs, mammals, and crustaceans (Barry and Barry, 1990, Bustnes
et al., 2010, Gabrielsen et al., 1995, Lydersen et al., 1985, Lgvenskiold, 1964). In autumn,
they migrate south to winter in Northern Norway and Iceland, and return to Svalbard in
March-April to breed. They breed in all parts of Svalbard, and commonly nest on bird-cliffs,
where they lay 1-3 eggs (Lavenskiold, 1964). The oldest recorded glaucous gull on Svalbard

lived to be 19 years of age (Strgm and Descamps).

1.2.3 The glaucous gull as a bioindicator species

Since Bourne and Bogan (1972) first reported organochlorine pesticides in glaucous gulls at
Bjarngya forty-six years ago, the glaucous gull has been recognized as a bioindicator species
for contamination in the Arctic environment (Verreault et al., 2010). As a top predator, it is
exposed to the contaminant load that has biomagnified through the long, Arctic food chain,
and reaches some of the highest concentrations of legacy and emerging POPs of all animals in
the Arctic (Borga et al., 2001, Fisk et al., 2001, Gabrielsen et al., 1995, Haukas et al., 2007).



There are indications that glaucous gulls have a restricted capacity for metabolism of OCs
(Henriksen et al., 2000), and concentrations of > PCB, >DDT, and 2. CHL have been reported
to be higher than 1 part per million (ppm) in this bird, which is a general threshold level of
concern (Letcher et al., 2010). The chronic exposure to POPs is associated with
immunological, behavioural, and reproductive effects, as well as reduced survival in glaucous
gulls (AMAP, 2004, Erikstad et al., 2013, Letcher et al., 2010, Verreault et al., 2010) but also
additional natural stressors like prey abundance, competition, climate change, and pathogens
must be considered in the overall picture (Verreault et al., 2010). Still, a clear, causal link
between contaminant exposure and health effects in Svalbard glaucous gulls remains to be
established (Letcher et al., 2010, Verreault et al., 2010).

1.3 The thyroid hormone system and endocrine disruption

1.3.1 Function and regulation

Thyroid hormones (THSs) are required for normal development, growth and metabolism in
birds and mammals (Decuypere et al., 2005). They are produced in the thyroid glands located
ventrolaterally to the trachea and transported in the vascular system to the target cell (Sturkie,
2012). There are two main forms of thyroid hormones: Thyroxine (T4), which is a precursor
hormone, and triiodothyronine (T3), which is the active hormone. They are synthesized by
follicular epithelial cells in the thyroid gland and are stored in the colloid-containing follicles
within the gland until secretion. Secretion is stimulated by thyroid stimulating hormones
(TSH) produced in the pituitary, whose production is stimulated by thyrotropin releasing
hormone produced in the hypothalamus (McNabb, 2007, Sturkie, 2012). The entire system of
the hypothalamus, pituitary gland, and thyroid gland is called the HPT axis (Figure 1).
Secretion of THs is mainly in the form of T4, which has one iodide more than T3. In birds,
the circulating concentration of T4 is about ten times the concentration of T3 (Newcomer,
1974).
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Figure 1. The hypothalamus-pituitary-thyroid (HPT) axis (Embryology, 2012)

Deiodination from T4 to T3 occurs mainly in the liver, but also in target tissues, by the
enzyme deiodinase (Reyns et al., 2002). There are different tissue-specific deiodinase
enzymes, which provide the opportunity to tissue-specific regulation of thyroid hormone
action (Chang et al., 1999). Three key deiodination pathways are present in birds, as well as in
mammals: Type I, Type Il, and Type Il deiodination. Type | deiodinase (5'D 1) is present in
the liver, kidney, and small intestine, and converts T4 to T3 by outer ring deiodination, as
well as converts T4 to rT3 by inner ring deiodination. Type Il deiodinase (5°D 1) is present in
the brain, and converts T4 to T3 by outer ring deiodination, whereas Type Il (5°D IlI) is
present in liver and deactivates T3 to inactive T2 (McNabb, 2007). It is assumed that hepatic

5°D1 plays a major role in supplying most of the T3 for circulation in birds (McNabb, 2007).

Only a small fraction — 0.01% - of the total THs in plasma occurs in its free form, as the
majority of the THSs is bound to transport proteins (Hulbert, 2000). In birds, the main TH
binding proteins are transthyretin (TTR) and albumin, the latter being the most important.
Only free (unbound) THs are taken up in target cells and trigger cellular responses through
the TH receptor (TRs) (Mendel, 1989). Therefore, it is convenient to distinguish between the
free fraction and total fraction of THs, abbreviated FT3/FT4 and TT3/TT4, respectively.

There are two types of direct responses of THs: metabolic and developmental responses.



Other responses can be indirect effects of THs as well as interactive effects with other
hormones (Sturkie, 2012).

A negative feedback mechanism regulates the circulating TH levels to obtain homeostasis: A
decrease in circulating THs feeds back to the HPT axis and stimulates the pituitary to release
TSH. In response to TSH, the thyroid gland grows, takes up more iodide, and produces THs,
as well as releases THs from the colloid storage within the gland, restoring the circulating TH
levels. If, however, TH depletion persists, the increased thyroid gland function might not be
sufficient to compensate for the TH decrease, and a more chronic state of TH deficiency —
hypothyroidism — may arise (McNabb, 2007). Hypothyroidism typically leads to a decrease in
the mobilization and metabolism of lipids (McNabb, 2007), and might have severe
consequences during the developmental stages of an organism (Dentice et al., 2013).

The feedback mechanism of the HPT axis has a cyclic pattern. In addition, there are TH
variations associated with diurnal patterns, temperature conditions, and food related variations
(depending on food source, food availability, and iodide availability) (Cogburn and Freeman,
1987, Eales, 1988). Together, these characteristics make circulating TH a variable
measurement of TH status. Therefore, interpreting TH levels in relation to contaminant

exposure may not give a clear answer about possible thyroid disruption.

1.3.2 Thyroid hormone disruption

A number of chemicals that are released into the environment are known to disrupt the
endocrine homeostasis of humans and wildlife (Magbool et al., 2016). Several lab studies on
rats and mice have shown that PCBs, polybrominated biphenyls, and dioxins reduce the
circulating T4 levels (Allen-Rowlands et al., 1981, Collins and Capen, 1980, Hallgren et al.,
2001, Morse et al., 1992). This relationship is further indicated by several field studies. For
example, in birds Melnes et al. (2017) found indications of negative effects of OC exposure
on T3 and T4 in female glaucous gulls, but also a contrasting positive association between
PFOS and FT3 and TT3 in female gulls. Positive associations between fulmar (Fulmaris
glacialis) and kittiwake (Rissa tridactyla) chick TT4 levels and PFASs have also been
reported (Ngst et al., 2012). Furthermore, there are indications that mercury (Hg), and more
specifically the selenium to mercury ratio (Se:Hg), might affect circulating TH levels in
animals (Mulder et al., 2012, Soldin et al., 2008, Wada et al., 2009). The disruption may
occur at several levels of the HPT axis, i.e. synthesis, transport, activation, thyroid receptor
binding, metabolism, and elimination of THs. Some studies have investigated the different



compounds’ potential to interfere at these levels (Ishihara et al., 2003, Ren et al., 2016, Ucan-
Marin et al., 2009, Mortensen, 2015). Other studies have investigated whether the histology of
thyroid glands in birds and mammals are affected by exposure to contaminants (Jacobsen et
al., 2017, Movasseghi et al., 2017, Sonne et al., 2011, Sonne et al., 2013, Sonne et al., 2010).
However, studies on the effects of contaminant exposure on the thyroid function in birds are
ambiguous (Dawson, 2000) and more studies are needed to clarify this relationship.

1.4 Aim of study

The aim of this study was to investigate the potential effects of PFASs and mercury on the
thyroid hormone system of glaucous gulls from Svalbard, as expressed by changing levels of
circulating hormones and changed histology of the thyroid glands. Possible sex differences in
thyroid response related to PFAS- and mercury burden were also investigated in the present

study.

1.5 Hypothesis

In line with the findings reported by Melnes et al. (2017) and Ngst et al. (2012), it is
hypothesized that there is a positive correlation between PFASs and thyroid hormones.
Further, it is hypothesized that there is a negative correlation between thyroid hormones and
thyroid stimulating hormone, as a result of the feedback mechanism of the HPT axis. It is also
hypothesized that there is a negative relationship between Hg levels and T3 levels, and a
positive association between Hg and T4 levels, as a result of the inhibiting potential of Hg on
deiodinase enzymes (Mulder et al., 2012). Regarding the histology of thyroid glands, my
hypothesis is that there is an association between contaminant load and degree of pathology in
the glaucous gull thyroids, in line with the findings of Ness et al. (1993).



2 MATERIALS AND METHODS

2.1 Sampling area

Field sampling was conducted in Sassendalen and Adventfjorden, both located near
Longyearbyen (78°13’N 15°38’E) on the west coast of Spitsbergen, the largest island of the
Svalbard archipelago, Norway. Six glaucous gulls were collected in Brattlidalen in
Sassendalen, one close to Fredheim at the mouth of Sassendalen, and eight gulls were
collected in Adventfjorden (Figure 2). Sampling was conducted from April 24" — May 9™"
2017, during the pre-breeding period. At this time of the year, there is continuous daylight,
but the weather conditions may change rapidly between several degrees below zero, no winds,

plus degrees, and strong winds.

Figure 2. Sampling sites where glaucous gulls were collected in Adventfjorden and Sassendalen,
Svalbard, Norway. Red dots mark the sampling sites; Brattlidalen, Fredheim (Sassen), and
Adventfjorden.



2.2 Sampling procedure

The glaucous gulls were euthanized by shotgun, followed by decapitation with a heparinized
knife. Blood was collected from the birds’ necks to a glass beaker and mixed with a few
droplets of heparin, transferred to glass centrifuge tubes and centrifuged within 30 minutes
after euthanasia (10 minutes, 5 000 rpm). In some cases, only a small amount of blood
drained from the neck of the bird, therefore additional blood was collected directly from the

heart using a heparinized syringe.

From each glaucous gull we dissected samples from the liver, muscle, kidney, brain, gonad,
adrenal gland, thyroid gland, stomach, bile, and adipose tissue. Samples for organic analyses
and bioassays (samples of all abovementioned tissues) were wrapped in aluminium foil,
whereas samples for metal analyses (samples of liver, kidney, muscle) were packed in plastic
bags. Samples of blood and all tissues were rapidly frozen in liquid nitrogen after dissection
and packing, prior to storage in a -80°C freezer. Additional samples of muscle and liver were
packed in aluminium foil and frozen in ambient air temperatures (-2°C to -8°C) prior to
storage in a -20°C freezer. In addition, we collected samples from the gonads, adrenal glands,
kidneys, and thyroid glands from each glaucous gull. These samples were stored in 10 %
formalin for fixation. Feather samples were stored in paper envelopes.

For each glaucous gull we measured their body mass, liver mass and gonad mass. We also
measured tarsus lengths, wing lengths, beak length, and head length of all birds collected
prior to dissection. Liver mass of LH3 was eliminated from the data set because of a reading
error. Body condition index (BCI) was calculated using the method of Sagerup et al. (2009 a):
Principal component analysis was first used to obtain a single measure of size (Jolicoeur and
Mosimann, 1960). The first principal component from a PCA of head length and wing length
was used as a size index. Size indices were calculated separately for males and females
because the two sexes of glaucous gulls are dimorphic. Body mass variables were
standardized within each sex. Data for males and females were pooled. Residuals from the
linear regression of standardized body mass and size index were used as the BCI, according to
the method of Jakob et al. (1996).



Sexing of glaucous gulls was done by gonad identification. Age determination (juvenile/adult)
was done visually by recognizing glaucous gulls with a pale plumage as adults (>5 years), and

mottled grey and brown as juveniles (Strem and Descamps, npolar.no).

The project (RiS number 1063) was funded by The Research Council of Norway and
approved by the Governor of Svalbard (ref. 17/00414-2). Sampling of the birds was in

accordance with the regulations of the Norwegian Animal Welfare Act.

2.3 PFAS analyses

Analyses of hepatic concentrations of 21 per- and polyfluoroalkyl compounds (Table 1) were
performed at Norwegian Institute for Air Research (NILU), Framsenteret, Tromsg. The
Powley method was applied (Powley et al., 2005), including the main steps homogenization,
extraction, clean-up, and LC-MS-analysis. Two reference material samples (500 pl human
serum: AM-S-Y1701, positive control) and two blanks (negative control) were run in addition
to the 15 liver samples in one batch.

Table 1. The fluorinated compounds analysed in liver from glaucous gulls (Larus hyperboreus) living
in the Longyearbyen area, Svalbard, in spring 2017. PFSA: perfluoroalkylated sulfonic acid; PFCA:
perfluoroalkylated carboxylic acid; FASA: perfluoralkane sulfonates.

Group  Acronym Analyte Chain length [Group Acronym Analyte Chain length
PFSA 4:2 FTS 4:2 Fluorotelomer sulfonic acid 6 PFCA PFBA Perfluorobutanoic acid 4
6:2 FTS 6:2 Fluorotelomer sulfonic acid 8 PFPeA Perfluoro-n-butanoic acid 5
8:2 FTS 8:2 Fluorotelomer sulfonic acid 10 PFHXA Perfluorohexanoate 6
PFBS Perfluorobutane sulfonate 4 PFHpA Perfluoroheptanoate 7
PFHxS Perfluorohexane sulfonate 6 PFOA Perfluorooctanoate 8
PFHpS Perfluoroheptane sulfonate 7 PFNA Perfluorononanoate 9
F-53B 6:2 Chlorinated polyfluorinated 8 PFDA Perfluorodecanoate 10
ether sulfonate PFUNDA Perfluoroundecanoate 11
PFOS Perfluorooctane sulfonate 8 PFDoDA Perfluorododecanoate 12
PFNS Perfluorononane sulfonate 9 PFTrDA Perfluorotridecanoate 13
PFDcS Perfluorodecane sulfonate 10 PFTeDA Perfluorotetradecanoate 14
PFHxDA Perfluorohexadecanoate 15
FASA FOSA Perfluorooctane sulfonamide 8 PFODcA Perfluorooctadecanoate 16

Homogenization
Approximately 2 grams (1.61 grams - 2.15 grams) of liver from each bird were cut from the

frozen liver samples and homogenized by cutting into tiny pieces using a scalpel. Each liver
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sample was transferred to a centrifuge tube (50 ml PP tube, VWR, Germany), and spiked with
mass labelled internal standards (20ul 0.5 ng/ul 13C labelled PFAS analyte).

Extraction

LiChrosolv Acetonitrile (8 ml) was added to each tube as solvent. The tubes were capped and
vortexed, followed by ultrasonic bath. VVortexing and ultrasonic bath were then repeated twice
(sonication at 27°C, 32°C, and 31°C on level 8, all 10 minutes each). Ultrasonic waves
increase molecular vibrations and contact between matrix and solvent, facilitating the

extraction of PFASs from the matrix.

Clean-up

Samples were centrifuged (2000 rpm, 5 minutes) and the supernatant was transferred to 15 ml
PP vials. The supernatant was concentrated to just below 2 ml in RapidVap (Labconco,
Kansas City, USA), and acetonitrile was added to exactly 2 ml (LH 8: 2.3 ml). For clean-up
of the extracts, adsorption chromatography was applied using fine particulate coal (active
carbon treatment); 25 mg ENVI-Carb was weighed into new polypropylene microcentrifuge
tubes (1.7 ml) and glacial acetic acid (50 ul) was added, before supernatant solutions were
added (0.8 ml) and the tubes were capped and vortexed. The vials were then centrifuged (10
000 rpm, 10 minutes). An aliquot (0.5 ml) of the supernatant was transferred into an
autoinjector vial (Chromacol, ThermoFisher Scientific, USA) and recovery standards (20 pl
0.1 ng/ul 3,7-brPFDcA in methanol) were added to allow for determination of the amount of
internal standard lost during sample preparation. The samples were then kept cool prior to
LC-MS analysis.

Analysis

At the time of analyses, 50 ul of each extract was transferred to autosampler vials with insert
and mixed with an equal amount of aqueous ammonium acetate (NH4OAc, 2 mM in HLB
water). The samples were then injected to the UPLC/MS system and the concentrations of

PFASs were guantified.

The positive control was provided by AMAP. Internal standards (PFAS standards) were

obtained from Wellington Laboratories Inc. (Guelph, Ontario, Canada) and were of >98 %
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purity. All solvents used in this work were of Lichrosolv® grade, and were purchased from
Merck-Schuchardt (Hohenbrunn, Germany).

Instrumental analyses

PFASs were analysed by ultrahigh pressure liquid chromatography triple—quadrupole mass-
spectrometry (UHPLC-MS/MS). Analysis was performed on a Thermo Scientific quaternary
Accela 1250 pump (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a PAL Sample
Manager (Thermo Fisher Scientific Inc., Waltham, MA, USA) coupled to a Thermo Scientific
Vantage MS/MS (Vantage TSQ) (Thermo Fisher Scientific Inc., Waltham, MA, USA); 10 uL
was injected on a Waters Acquity UPLC HSS 3 T column (2.1% 100 mm, 1,8 pm) (Waters
Corporation, Milford, MA, USA) equipped with a Waters VVan guard HSS T3 guard column
(2.1% 5 mm, 1.8 um) (Waters Corporation, Milford, MA, USA). Separation was achieved
using 2 mM NH4OAc in 90:10 methanol/water and 2 mM NHsOAc in methanol as the mobile
phases, as described by Hanssen et al. (2013).

Quantification

Internal standards with known concentrations of 13C —labeled PFASs were analysed together
with liver samples for quantification of PFASs. Quantification was conducted using the
LCQuan software from Thermo Scientific (Version 2.6) (Thermo Fisher Scientific Inc.,
Waltham, USA), as described by Hanssen et al. (2013).

Quality control

The blank sample and the control sample described earlier were analysed for quality
assurance. No PFASs were detected in the blanks. The concentrations in the control samples
were within £ 15 % of reference values, except for PENA and PFUNDA, for which the mean
quantified concentrations were + 19 % and + 21 % of reference values, respectively.
Recovery of internal standards were within the guidelines at the NILU laboratory (See

Appendix C for details on recovery).

Limit of detection

Limit of detection (LOD) was set to 3 x signal to noise (S/N) ratio, which is common practice
at the NILU laboratory, and was 0.10 ng/g ww for all PFASs. When > 50 % of the individuals
had detections below LOD for a specific compound, the compound in question was removed
from the data set. Consequently, 4:2 FTS, 6:2 FTS, 8:2 FTS, FOSA, PFBS, PFNS, PFDcS,
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F53 b, PFBA, PFPeA, PFHXA, PFHpA, PFOA, PFHXDA, and PFODCcA were removed from
the data set. Concentrations of PFHpS were below LOD in LH3, LH5, LH6, LH14, and
LH15. These samples were each assigned a number <LOD calculated in R using the robust

regression on order statistics (ROS) method for censored data.

2.4 Element analysis

Plasma, liver and feathers from the 15 glaucous gulls were analysed for elements at
Department of Chemistry, NTNU Trondheim, using inductively coupled plasma mass
spectrometry (ICP-MS). Since samples introduced to the ICP-MS must be as solution, liver
and feathers were treated slightly differently from plasma prior to injection. Feather (app. 100
mg) and liver (app. 500 mg) samples were freeze-dried before digestion with 6 ml 50 % v/v
HNO:s in UltraCLAVE from Milestone (EMLS, Leutkirch, Germany). Feathers were also
washed prior to freeze-drying to remove external contaminants. Washing consisted of several
steps of flushing with water, acetone, and HNOs. (See Appendix B for details.) After
decomposition, samples were diluted to 60 ml (0.6 M HNOs3) and transferred to 15 ml PP
vials for ICP-MS. Plasma samples (app. 1000 mg) were added 2 ml concentrated HNOs,
digested in UltraCLAVE, and diluted to 30 ml (0.6 M HNOs3) before transfer to 15 ml PP
vials for ICP-MS. Concentrations of 62 elements in total were quantified, but only Hg and Se

were used further in this project.

LOD was calculated for Hg and Se based on both instrumental detection limits (IDLs) and
blanks. IDL based detection limit resulted in a higher value (Hg: 0.0319 ug/kg in blood,
0.0005 pg/g in feathers and 0.0001 pg/g in soft tissue; Se: 1.5957 pg/kg in blood, 0.0245 ug/g
on feathers and 0.0065 pg/g in soft tissue), and this was used as the LOD. All Hg and Se

values in blood, feathers and liver were above detection limit.

2.5 Thyroid hormone analyses

Plasma levels of total and free thyroid hormones (TT3, TT4, FT3, and FT4) were analysed at
the Norwegian University of Science and Technology, Trondheim, Norway using
commercially available 121 radioimmune assay (RIA) kits manufactured by MP Biomedicals,
LCC (New York, USA) (Catalogue No. 06-254215 (TT3), 06B-254011 (TT4), 06B-258709
(FT3), and 06B-257214 (FT4)). The kits are based on the principle that synthetic hormones
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labelled with radioactive 2l bind to binding sites in antibody-coated tubes with the same
affinity as hormones from the samples, and thereby the quantity of labelled analyte bound to
the tube is inversely related to the concentration of unlabelled analyte (natural hormones) in
the sample. In short, plasma from glaucous gulls and a tracer solution were added to the test
tubes, vortexed an incubated either at room temperature or in water bath at 37 °C. After
incubation, the tubes were aspirated and the reactivity was counted using a Packard Cobra-I11
Auto gamma counter. Standard curves for each hormone were established based on the
measured reactivity of the known concentrations in the standards, from which the hormone

levels in the plasma samples were quantified.

Assay validation

The RIA Kkits used for these assays were developed for quantification of human thyroid
hormones. To assure for the precision of the kits, quality controls of standard reference
material (SRM, Lyphocheck Immunoassay Plus Control Levels 1, 2 and 3. BioRad,
California, USA) and chicken plasma were also analysed. Three human serum controls were
assayed in each kit. The results were within the acceptable range of the Kits.

Quiality assurance

Samples were run in triplicates to test the repeatability of the assays, and samples with a
coefficient of variance (%CV) >15 were reanalysed. Eventually all triplicates for each TH
analysis had a %CV < 15, except for two (LH9 when analysed for FT4; %CV=15.4 and LH11
when analysed for TT4; %CV=17.2). However, these two were not excluded from the data set

since the %CVs were so close to 15.

Detection limit was set to the sensitivity limit reported by the kit protocols; 6.7 ng/dl (TT3),
0.76 ug/dl (TT4), 0.06 pg/ml (FT3), and 0.045 ng/dl (FT4). All values were above the
sensitivity limits. Units were converted to nmol/L (TT4 and TT3) and pmol/L (FT3 and FT4)
using the online converter calculator unitslab.com (unitslab.com, 2018). Average %CV
between plasma sample triplicates in each hormone kit was 3.8 for TT3; 8.3 for TT4; 4.7 for
FT3; and 7.7 for FT4. Average %CV for the reference material was 7.6 for TT3, 5.4 for TT4,
8.3 for FT3, and 13.7 for FT4.
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2.6 Thyroid stimulating hormone analyses

Plasma levels of thyroid stimulating hormone (TSH) were analysed at the Department of
Biology, NTNU Trondheim, using the commercially available one-step enzyme immunoassay
(EIA) kit Medizym TSH hs, manufactured by Medipan GMBH (Berlin, Germany) (Catalogue
No. MP55011). Medizym TSH hs is designed for human serum, but was applied to the
glaucous gull plasma as there is no avian TSH specific antibodies available (Troisi et al.,
2016) The principle for the EIA system is as follows; TSH from the sample act as antigens
and bind to a capture antibody that is coated on the wells of an EIA plate. By adding a second
antibody that also binds to the antigen, the whole sandwich complex is immobilized to the
plate. By adding a fluorescent substrate solution that binds to the secondary antibody, a colour
develops whose intensity is measurable, and directly reflects the THS concentration in the

samples.

In short, serum from glaucous gulls was added to the antibody-coated wells in addition to
standards and control sera. A conjugate containing a signal antibody coupled with horseradish
peroxidase was added to all wells, followed by 1-hour incubation (37°C, shaking) and
washing. A fluorescent substrate (3,3",5,5 -tetramethylbenzidine (TMB) in citrate buffer
containing hydrogen peroxidase) was added and the plate was incubated for 15 minutes in the
dark, before a stop solution (HCI) was added. The optical density was read at 450 nm using
Cytation 5 Cell Imaging Multi-Mode Reader from BioTek Instruments (Vermont, USA).
Based on the absorbance of the standards with known concentrations, a standard curve was

established and the TSH concentrations were read. All samples were run in duplicates.

Assay validation

To assure for the precision of the kits, quality controls of standard reference material (SRM,
Lyphocheck Immunoassay Plus Control Levels 1, 2 and 3. BioRad, California, USA) and
chicken plasma were also analysed. The results were within the acceptable range of the kits.

Quiality assurance

A quality control followed the Mezidym TSH kit and comparing the reported concentration
with the analysed concentration verified the quality of the analyses. Samples were run in
duplicates to test the repeatability of the assays. Eight of the 15 samples had CV values higher

than 15 %, but since these concentrations were in a low concentration range (0.007-0.093
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plU/ml), and the respective standard deviations were so low (0.0276 at the highest) none of
these samples were excluded. Average %CV between plasma sample triplicates was 17.6 for
TSH.

2.7 Thyroid gland histology

Thyroid glands were fixated for two days in 10 % formalin before changing solution to
ethanol. The tissue was then kept in ethanol until preparation for histology, which was done at
Copenhagen University, Section for Experimental Animal Models at the Department of
Veterinary and Animal Sciences. Thyroid glands from all birds were prepared for histology
reading except for the LH12 thyroid gland, which was lost in field. The glands were examined
grossly and trimmed before being enclosed in embedding cassettes and stored in formalin
while waiting for further processing. The glands were then washed and dehydrated in a series
of alcohol solutions of increasing alcohol concentrations using Excelsior ™ Tissue Processor
(Thermo Scientific, Waltham, USA) before they were embedded in melted paraffin. After
being cooled down, the glands were sectioned at 1um in a slicing machine (microtome) using
Microm HM 440 E Microtome (GMI, Minneapolis, USA). Single sections were placed on
glass microscope slides and rehydrated before staining, firstly with hematoxylin and then with
eosin (HE stain) using a linear stainer (Leica ST4040, Nussloch, Germany). Hematoxylin has
high affinity to nuclear DNA and areas of the cell containing cytoplasmic RNA, whereas the
counterstain eosin colours other structures, like intra- and extracellular proteins and the
cytoplasm. The combined staining effect of hematoxylin and eosin colours histology slides in

different shades of violet (Ross and Pawlina, 2006).

Stained thyroid gland slides were brought to Aarhus University, Institute for Bioscience,
campus Roskilde, for examination and classification. The slides were examined at 200 x
magnification using a Leica DC300 microscope (Leica microsystems, Cambridge, UK).
Thyroid glands were examined for epithelial cell proliferation and nodular hyperplasia, and
assigned three categorical classes based on their histological appearance; Class A for normal
thyroid tissue; Class B for moderate histological changes; and Class C for pronounced
histological changes. The microscope was coupled to a computer using TWAIN driver
software IM50, and density of follicles was estimated by counting the number of follicles on
the computer screen (showing fields of 326 x 244 um) in 20 semi-independent fields at 200 x

magnification. The first field was selected by locating the approximate centre of the thyroid
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gland. The following fields were selected by moving the field stepwise to the right until the
edge was reached, always keeping the reading field within the organ. Then the field was
moved up one step and stepwise to the left until the edge on the other side was reached. This
procedure was followed until the whole gland was covered. Only whole, clearly marked
follicles were counted. All fields counted were photographed (Appendix L). A follicle count

mean was calculated for each individual.

2.8 Plasma protein

Due to accidental dilutions of blood samples by body fluids in the field, total plasma protein
was analysed. The number of diluted samples is unknown. This lead to a replacement of the
planned response variable (hormone concentrations) with hormone to protein ratio
(TH:protein & TSH:protein) as the new response variable. Protein analysis was done by PhD
candidate Ase-Karen Mortensen at Department of Biology, NTNU Trondheim, using
Bradford assay. A detectable colour shift forms the basis of the Bradford principle. A
protonated dye in the Bradford reagent, Brilliant Blue G-250, is red under acidic conditions,
but turns blue when it is not protonated. When the dye binds to proteins, it converts to the
blue form, which is detectable at 595 nm (Bradford, 1976). The light intensity measured by a
microplate reader is proportional to protein concentration in the sample, and using prediluted
standards with known concentrations, light intensities from the samples are convertible to

protein concentrations.

In short, 5 pl of prediluted standards (Bradford bovine serum albumin stock, 14 mg/ml) and
plasma samples were added to a 96 well plate in triplicates before 250 ul Bradford reagent
was added to all wells. The plate was read in a Cytation 5 Cell Imaging Multi-Mode Reader
microplate reader (BioTek Instruments, Vermont, USA) after 5 minutes, and protein
concentrations were provided directly. The linear concentration range is 0.1 — 1.4 mg/ml

protein. All sample concentrations were within this range.

2.9 Statistical methods

Data plotting was done in Excel (Microsoft Excel 16.12), and statistical analyses were done in
SPSS (IBM SPSS Statistics 25, New York, USA). Orthogonal projection to latent structures
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(O-PLS) was done in Simca (15.0.0.4783, Umetrics, Umea, Sweden) and the ROS method for
censored data was carried out in R (3.4.1 GUI 1.70 EI Capitan).

The data was tested for normality using Shapiro Wilk’s normality test. Statistical significance
was set to p<0.05 and p values were two-tailed. All variables were normally distributed
except for TSH:protein and Se:Hg plasma (n=15), TT4:protein and TSH:protein (males), and
liver, HSI, FT3:protein, TT3:protein, and TSH:protein (females). TSH:protein had two
outliers (LH9 and LH14) which were two orders of magnitude higher than the other
individuals. However, since nothing notable had happened to these samples in field nor in the
lab, they were regarded biological outliers, and were kept in the data set. See Appendix J for
an overview of all variables and their p value from the Shapiro-Wilk normality test. All

variables were also visually investigated for normal distribution through quantile-quantile

(QQ) plots.

Pearson correlation analysis was applied to test for bivariate correlation between all normally
distributed variables. Variables that were not normally distributed were tested using Spearman
rank correlation. Correlation is given as rp (Pearson correlation coefficient) or rs (Spearman
correlation coefficient) and the significance level is given as p value. Since the data set
included multiple variables and few observations (n=15), significance level was not corrected
by Bonferroni correction or other correction methods. This was in order to avoid producing
false negatives, as recommended by Moran (2003).

Differences in biometric variables between sexes were tested using t-test (in Excel) for
normally distributed data, and Mann-Whitney Utest (in SPSS) for non-normally distributed
data.

2.9.1 Principal component analysis

Principal component analyses (PCA) were performed in SPSS to investigate the relationships
between hepatic PFAS concentrations, Hg concentrations in plasma, feathers, and liver,
Se:Hg ratios in plasma, feathers and liver, biometric measurements, and plasma ratios of THs
and TSH to protein. PCA is commonly used to reduce a large number of variables to a low-
dimensional plane in order to help with multivariate data interpretation (Eriksson et al., 2013).
The two first, most significant components, PC1 and PC2, were extracted and loadings
(representing variables) and scores (representing observations/individuals) were plotted in a

2-dimensional space.
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A score plot is a plot where each individual (here: each glaucous gull) is shown in a low-
dimensional plane, where the individual’s positioning on the plane reflects how the sum of its
multiple variables are loaded into this new plane. A loading plot shows which variables are
influential to the model (e.g. specific compounds or biometric measures). Both for score plot
and loading plot, the distance from a data point to the origin, and the relative positioning of
data points in the plot, indicate the properties of the data point and how it relates to other data
points in the plot. Variables on opposite sides of the origin are negatively correlated to each
other, and variables far from the origin have big influence on the model. Individuals that are
clustered together have similar properties, whereas individuals far from each other have
dissimilar properties (Eriksson et al., 2013).

2.9.2 Orthogonal projection to latent structures (O-PLS)

O-PLS modelling was conducted to model the influence of X-variables (PFAS levels, Hg
levels, Se:Hg ratios, and biometric variables) on the Y-values (TH:protein ratio and
TSH:protein ratio) in the glaucous gulls. Variables were logio-transformed in case of skewed
data (applied to TSH:protein only) and all variables were centred and scaled to unit variance.
The models obtained were visualized in regression coefficient (CoeffCS) plots, and variable
importance in projection (VIP) plots. The VIP values were used to optimize the models and
select the most important variables in explaining the variation in Y. X-variables with a VIP-
value < 0.5 were considered less important in explaining the variance in thyroid hormones
and were excluded. X-variables were thereafter excluded manually one by one until a
significant model was achieved (p<0.05). Analysis of variance-testing of cross-validated
predictive residuals (CV-ANOVA) was used to cross-validate that the results were reliable
according to Lundstedt’s guidelines of acceptable R? and Q? values in biological data
(Lundstedt et al., 1998); R? > 0.7 and Q? > 0.4. O-PLS was done by researcher Tomasz
Maciej Ciesielski at the Department of Biology, NTNU, Trondheim.
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3 RESULTS

3.1 Biometric results

Males of glaucous gulls had a significantly higher body weight than females (18.5 %,
p<0.001) (Table 2). Sex differences were also significant for the other size related biometrics
(head, wing, and tarsus lengths) with males being larger than females, but there was no
difference in body condition index (BCI) (p=1). There was a significant sex difference in HSI
(p=0.01), but there was no significant difference between liver masses (p=0.99). Individual

biometric measures can be found in Appendix A.

Table 2. Mean, standard deviation (SD), median, and range of biological variables of male (n=7) and
female (n=8) glaucous gulls (Larus hyperboreus) from Sassendalen and Adventfjorden, Svalbard, in
April and May 2017. Significant differences (p <0.05) and (p <0.001) are denoted with one * and two
** asterisks, respectively.

Males Females

Mean + SD Median Range Mean + SD Median  Range
Body mass (g) ** 1839+94.4 1875 1685 - 1950 1499 + 108 1475 1340 - 1687
Head length (mm) * 147.2+4.6 1455 141.6 - 154.26 133.7+5.2 132.2 128.93 - 145.48
Wing length (mm) ** 146.3+0.6 46.2 45.65 - 47.2 44.5+0.8 44.8 43.10 - 45.20
Tarsus length (mm) * |78.6 £3.0 78.2 75.48 - 84.55 759 +23 75.9 72.26 - 79.90
BCI 0+0.8 -0.1 -1.38-0.92 0+1 0 -1.40- 1.04
Liver mass (g) 45.0+15.0 42.7 33.3-76.25 39.8+6.8 38.3 34.30 - 55.45
Hepato somatic index * (2.46 + 0.9 2.2 1.74 - 4.36 2704 2.6 2.36- 3.49

3.2 Contaminants

Nine different compounds of individual PFASs were detected and quantified, of which three
were perfluoroalkylated sulfonic acids (PFSA; PFHXS, PFHpS, and PFOS) and six were
perfluoroalkylated carboxylic acids (PFCA; PFNA, PFDA, PFUnDA, PFDoDA, PFTIDA,
and PFTrDA). All hepatic PFAS concentrations are presented in Table 3 (ng/g ww) as well as
the sums of sulfonates and carboxylates. Females of glaucous gulls had significantly higher
concentrations of PFHpS than males (p = 0.029). There were no sex differences in
concentrations of the other PFASs. Therefore, a table showing mean, SD, median, and range
for all individuals together was made (Table 3). Concentrations of PFHpS, PFOSiin, 2.PFOS,

and > PFSA were significantly higher in livers from Class A glaucous gulls (gulls with normal
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thyroid tissue in the thyroid gland) than Class B glaucous gulls (gulls with moderate
histological changes in the thyroid glands) (Table Z; see 3.4 Thyroid gland histology).
Glaucous gulls in Class A had, in general, higher PFAS levels than those in Class B, but there
were no other significant differences between Class A and Class B. Class C (pronounced

histological changes) was not considered since it consisted of only one bird.

The results from Se and Hg in plasma, feathers and liver are presented in Table 3 (ng/g dw),
as well as the molar ratio between Se and Hg. Males had significantly higher Hg
concentrations in feathers than females (p = 0.007). There were no statistically significant
differences in Hg concentrations between glaucous gulls in histology Class A and Class B
(Table Z; See 3.4 Thyroid gland histology).

Table 3. Mean + standard deviation (SD), minimum, and maximum concentrations (ng/g ww) of
individual PFASs, 2. PFSA, and 2PFCA in liver from glaucous gull males (n=7) and females (n=8)
sampled in April — May 2017 in Sassendalen and Adventfjorden, Svalbard. Hg and Se concentrations
(ug/g ww) in plasma, feathers, and liver are also presented, as well as their ratio on molar basis.
Significant differences (p <0.05) between sexes are denoted with black up-pointing triangle A.
Significant differences (p <0.05) between histology classes A and B are denoted with white down-
pointing triangle V.

Males Females All individuals
Compound N Mean = SD Median Range N Mean + SD Median Range N Mean + SD Median Range
PFHxS (ng/g) 7 0.23+0.15 0.19 0.03 - 0.45 8 0.25+0.15 0.22 0.07-0.58 15 0.24+0.15 0.21 0.03 - 0.58
PFHpS (ng/g) O O 7 0.08 +0.03 0.08 0.045-0.14 8 0.14 +0.05 0.15 0.06-0.19 15 0.11+0.05 0.10 0.05-0.19
PFOSlin (ng/g) 0 7 23.54 +10.05 20.16 13.21-42.72 (8 24.13+12.44 21.88 9.24-48.25 15 23.86+10.99 20.61 9.24-48.25
SPFOS (ng/g) O 7 25.89+11.10 22.69 13.81-47.10 (8 26.83+13.26 24.06 11.84-52.73 |15 26.39+11.87 22.69 11.84-52.73
PFNA (ng/g) 7 2.16 £ 0.80 243 0.91-3.20 8 2.57+1.36 2.53 0.96 - 5.02 15 2.38+1.12 2.46 0.91-5.02
PFDA (ng/g) 7 1.97 £0.61 1.87 1.20-2.75 8 1.65 £ 0.96 1.60 0.58-3.48 15 1.18 £0.81 1.87 0.58 - 3.48
PFUNDA (ng/g) 7 432 +1.27 4.63 2.42-5.88 8 3.23+1.42 3.18 1.49-5.38 15 3.74+1.42 3.58 1.49 - 5.88
PFDoDA(ng/g) 7 0.73+£0.18 0.73 0.50-0.98 8 0.58 +£0.20 0.64 0.22-0.81 15 0.65+0.20 0.66 0.22-0.98
PFTrDA (ng/g) 7 1.91+0.39 2.03 1.32-2.50 8 1.55+0.52 1.75 0.71-2.24 15 1.72+£0.48 1.79 0.71 - 2.50
PFTeDA (ng/g) 7 0.34 £ 0.08 0.32 0.25-2.48 8 0.33+0.12 0.33 0.12-0.54 15 0.33+£0.10 0.32 0.12-0.54
SPFSA (ng/g) O 7 26.24 +11.12 22.91 13.93-4732 (8 27.25+13.27 2431 1256-53.33 |15 26.78+11.89 2291 12.56-53.33
SPFCA (ng/g) 7 11.44+3.21 12.18 6.88 - 15.32 8 9.91 + 4.00 9.62 4.74 - 16.87 15 10.62+3.61 11.03 4.74-16.87
Hg plasma (ng/g) 7 0.01 +0.00 0.01 0.009-0.015 |8 0.01 +0.00 0.01 0.01-0.02 15 0.01 +£0.00 0.01 0.01-0.02
Hg feathers (ug/g) 0 (7 4.62 +1.83 5.15 1.40-6.57 8 2.19+1.07 1.95 0.85-4.15 15 3.32+1.89 3.06 0.85-6.57
Hg liver (ng/g) 7 3.44+1.22 2.87 2.02-5.55 8 3.10+1.27 3.26 1.08-5.32 15 3.26+1.22 294 1.08 - 5.55
Se plasma (ug/g) 7 0.29+0.10 0.26 0.18 - 0.47 8 0.31+0.09 0.32 0.17-0.43 15 0.30 £0.09 0.30 0.17 - 0.47
Se feathers (ug/g) 7 1.17 £ 0.40 1.12 0.77 - 1.95 8 0.93 +0.10 0.92 0.75-1.10 15 1.04 £ 0.30 0.95 0.75-1.95
Se liver (nug/g) 7 5.74 +1.97 5.58 3.01-8.36 8 5.26 +1.38 5.01 2.78-7.27 15 5.48 + 1.64 5.30 2.78 - 8.36
Se:Hg ratio plasma 7 62.48 +26.65 52.69 37.99-112.87 |8 72.20 £35.67 53.20 46.88 - 145.84 |15 67.66 +31.08 52.69 37.99 - 145.84
Se:Hg ratio feather 7 0.75+0.39 0.64 0.40 - 1.55 8 1.32+0.62 1.25 0.53-2.25 15 1.06 £ 0.59 0.88 0.40-2.25
Se:Hg ratio liver 7 4.69 £ 2.19 3.87 1.71-7.73 8 5.12+2.94 4.25 2.21-11.35 15 4.92 £2.53 4.05 1.71-11.35
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Figure 3. Contribution of the fluorinated compounds to the total PFAS burden in livers of glaucous
gulls (Larus hyperboreus) collected in Sassendalen and Adventfjorden, Svalbard, in April and May
2017. 10.1 % of 2PFOS is branched, the remaining 89.9 % is linear PFOS.
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Figure 4. Contribution of the flourinated compounds to the total PFAS burden in livers of glaucous
gulls (Larus hyperboreus) collected in Sassendalen and Adventfjorden, Svalbard, in April and May
2017. A: Histology Class A. (n=5); B: Class B. (n=8); C: Class C (n=1). The percentage of >PFOS
which is branched, is (ClassA) 9.51 %, (Class B) 10.71 %, and (Class C) 7.2 %. The remaining PFOS
is linear.

The PFAS, Hg, and Se concentrations in each individual are presented in Appendix D and
Appendix E. A table showing the class wise contaminant levels is presented in Appendix F.
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3.3 Thyroid hormones and thyroid stimulating hormone

Concentrations of THs ranged from 0.66 — 7.32 nmol/L (TT3), 17.12 — 57.57 nmol/L (TT4),
1.00 — 16.62 pmol/L (FT3), and 7.56 — 33.53 pmol/L (FT4) in plasma, whereas circulating
concentrations of TSH ranged from 0.01 — 2.06 plU/ml (Table 4). There were statistically no
significant differences between males and females regarding circulating TH levels or TSH
levels (p=0.54, 0.54, 0.54, 0.41, and 0.96 for TT3, TT4, FT3, FT4, and TSH, respectively).

The ratios TH:protein and TSH:protein were calculated to avoid the effects of having diluted
some of the blood samples in the field. The TH:protein ratios ranged from 0.05 — 0.24
pmol:mg (TT3:protein), 0.57 — 2.63 umol:mg (TT4:protein), 0.07 — 0.55 nmol:mg
(FT3:protein), and 0.27 — 1.38 nmol:mg (FT4:protein), whereas the TSH:protein ranged from
0.18 — 69.00 mlU:mg. There were statistically no significant differences between males and
females with respect to TH:protein or TSH:protein ratios, nor between glaucous gulls in

histology class A and B (Table 4; See 3.4 Thyroid gland histology).

Individual TH levels, TSH levels, TH:protein ratios, and TSH:protein ratios are found in

Appendix G.

Table 4. A: Mean concentration of TT3 (nmol/L), TT4 (nmol/L), FT3 (pmol/L), FT4 (pmol/L), TSH
(ulU/ml), and total protein (mg/ml) in plasma from glaucous gull (Larus hyperboreus) males and
females captured in Sassendalen and Adventfjorden, Svalbard, in April and May 2017. SD, median,
minimum and maximum concentrations are also shown. B: Mean, SD, median, minimum and
maximum ratio between circulating TH &TSH concentrations and total protein concentration
(TT3:protein and TT4:protein: umol:mg; FT3 and FT4: nmol:mg; TSH:protein: plU:mg). There were
no significant differences between males and females, nor between histology Class A and Class B. C:
Mean, SD, median and range of follicle counts in 20 fields & 326 x 244 pum in the thyroid glands.

Males Females All individuals
Mean + SD Median Range Mean +SD  Median Range Mean+SD  Median Range
A TT3 (nmol/L) 3.30+1.50 3.51 0.66 - 4.75 3.24+1.74 2.69 1.89-7.32 3.27+157 274 0.66 - 7.32
TT4 (nmol/L) 28.51 +5.60 29.94 18.43-34.15 (35.34+14.31 35.81 17.12 - 57.57 [32.15+11.33 30.84 17.12 - 57.57
FT3 (pmol/L) 8.43 +4.41 9.12 1.00 - 13.10 6.99+4.34 6.01 2.26- 16.63 7.66 +4.28 6.90 1.00 - 16.62
FT4 (pmol/L) 14.16 £ 2.44 13.70 10.61-17.74 (17.14+890 17.01  7.56-33.54 15.75+£6.67 14.60 7.56 - 33.53
TSH (nlU/ml) 0.06 +0.11 0.02 0.01-0.32 0.27+0.72 0.01 0.01 - 2.06 0.17 £0.53 0.02 0.01 - 2.06
Total protein (mg/ml) 24.00 + 5.86 24.40 13.00-32.30 (27.84+4.79 28.90 20.70 - 36.00 |26.05+5.49 25.80 13.00 -36.00
B TT3:protein ratio (umol:mg) 0.13 + 0.05 0.14 0.05-0.2 0.12+0.06 0.10 0.08 - 0.24 0.12 + 0.05 0.10 0.05-0.24
TT4:protein ratio (umol:mg) 1.29+0.61 1.10 0.82 - 2.63 1.31+061 114 0.57 - 2.37 1.30+0.58 1.10 0.57-2.63
FT3:protein ratio (nmol:mg) 0.33+0.15 0.35 0.08 - 0.50 0.25+0.14 0.20 0.11-0.55 0.29+0.15 0.24 0.07 - 0.55
FT4:protein ratio (hnmol:mg) 0.63 +0.23 0.64 0.33-1.05 0.63+0.38 0.51 0.27-1.38 0.63 £0.30 0.57 0.27-1.38
TSH:protein ratio (mIU:mg) 2.59 +5.00 0.72 0.23-13.92 |9.08+24.21 0.55 0.18 - 69.00 6.05+17.75 0.67 0.18 - 69.00
C Follicle count 22.1+49 21.7 16.2 - 28.7 242+6.9 21.8 16.6 - 35.7 23.1+59 21.8 16.2 - 35.7
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3.4 Thyroid gland histology

Normal, active thyroid tissue was found in five of the 14 glaucous gulls (Figure 5), whereas
the thyroid glands of the nine remaining gulls (five males and four females) showed follicular
epithelial cell proliferation (Figure 6, Table 5). Nodular hyperplasia was identified in one of
these gulls (LH6), characterized by an area with extensive epithelial cell proliferation and
unclear follicles containing sparse amounts of colloid (Figure 7). Inflammation was not seen
in any of the thyroid glands. Overall, five gulls were assigned Class A (normal thyroid tissue),
eight gulls were assigned Class B (moderate histological changes), and one gull was assigned
Class C (pronounced histological changes).

Mean follicle count in each gland’s 20 fields a 326 x 244 um was 23.13 + 5.86 follicles
(Median: 21.78; Range: 16.2-35.7). Mean follicle count in thyroids from Class A was 20.1 +
4,1 follicles; Class B: 25.2 +; 6.5 follicles; and Class C: 21.8 follicles (Appendix H). Mean
follicle count for each thyroid gland = SD as well as histological features of each gland are

presented in Table 5.

Table 5. Presence of histological changes in 15 glaucous gulls (Larus hyperboreus) collected in
Sassendalen and Adventfjorden, Svalbard, in April and May 2017. Nodular hyperplasia: Benign
follicular lesions resulting from cell proliferation. Mean follicle count was calculated based on average
follicle count in 20 fields of 326 x 244 um in each thyroid gland.

Sex Epithelial cell proliferation ~ Nodular hyperplasia Classification Mean follicle count + SD

LHO1 F - - A 16.55 +5.52
LHO2 M - - A 26.95 1 12.43
LHO3 M X - B 28.70 £ 3.61
LHO4 F - - A 20.50 £ 4.61
LHO5 F X - B 27.60 £5.10
LHO6 F X X C 21.85+9.80
LHO7 F X - B 29.15 £ 5.59
LHO8 M X - B 25.10 £ 5.47
LHO9 F X - B 35.65+8.15
LH10 F - - A 17.80 + 3.46
LH11 M X - B 16.20 + 4.81
LH12 F n/a n/a n/a n/a

LH13 M - - A 18.80 + 5.04
LH14 M X - B 21.70 £ 5.00
LH15 M X - B 17.25+5.99
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Figure 5. Normal thyroid tissue in glaucous gulls (Larus hyperboreus) collected on Svalbard in April
and May 2017. The micrographs show colloid containing follicles (F) of similar size surrounded by a
single layer of follicular epithelial cells (FC). Left: LH1 (female) with active thyroid tissue; the
follicles are lined with high, cuboidal epithelium. Secretory droplets can be seen in several follicles.
Right: LH13 (male) with mostly inactive thyroid tissue. HE x 200, 326 x 244 pum.

Figure 6. Follicular epithelial cell proliferation (P) in glaucous gulls (Larus hyperboreus) collected on
Svalbard in April and May 2017. The micrographs also show follicles (F) of varying size. Left: LH5
(female). Right: LH15 (male). HE x 200, 326 x 244 um.

Figure 7. Nodular hyperplasia in LH6 (female) (Larus hyperboreus) collected in Sassendalen,
Svalbard in April 2017. Extensive epithelial cell proliferation and unclear follicles containing sparse
amounts of colloid (D). E: highly active hyperplastic cuboidal epithelium. HE x 200, 326 x 244 um.
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3.5 Relationships between contaminants and thyroid status

3.5.1 Principal component analyses and correlations

Principal component analyses (PCA) were performed to visualize the two-dimensional
relationship between biometric variables, PFASs, Hg, Se:Hg, THs, TSHSs, and thyroid gland
follicle density. Three separate PCA plots were made; one including only males, one
including only females, and one including all individuals. A score plot highlighting sampling
area was performed (see Appendix 1), but as there were no clear groupings between gulls

collected in Sassendalen and Adventfjorden, all 15 gulls were regarded as one population.

The two principal components in the PCA including all individuals explained 35.3 % (PC1)
and 16.4 % (PC2) of the variation in the data set (51.7 % in total). PC3 (not shown here)
explained 14.4 % of the variation in the data set. The loading plot is shown in figure 8A. The
PCA indicates a negative relationship between most PFASs and TSH along PC1, in addition
to a positive relationship between Se:Hg in liver and TSH. Along PC2, the plot indicates a

negative relationship between body size and Se:Hg ratio in feathers.

The negative relationship between PFASs and TSH (n=15, Figure 8A) was confirmed by
Spearman correlation only for PFOSiin, 2.PFOS (p=0.035, rs=-0.546 and p=0.046, rs=-0.521,
respectively), PFTeDA, and 2 PFSAs (p=0.010, rs=-0.639 and p=0.046, rs=-0.521,
respectively) (Table 8) (Appendix K). TSH associations with the remaining PFASs were all
negative, but not significant. The positive association between TSH and Se:Hg in liver was
also confirmed by Spearman correlations (p=0.028, rs=0.564). Further, the negative
relationship indicated by the PCA along PC2 between body size and PFHpS was confirmed
by Pearson correlation analyses for body mass (BM) and wing length (p=0.028, rp=-0.564 and
p=0.003, rp=-0.712, respectively).

Despite a close positioning on the PCA plot (Figure 8A), BCI and Se:Hgpiasma Were negatively
correlated: p=0.028, rs=-0.564. Further, follicle count and TSH:protein were positively
correlated; p=0.022, rs=0.605. Follicle count was also positively correlated to Hgplasma
(p=0.007, rp=0.686). All correlations between contaminants, thyroid variables, BM, and BCI
can be found in Appendix K.
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A score plot highlighting the individual sexes was made (n=15, Figure 8B). This separated
males and females in two groups on opposite sides of PC1, and principal component analyses

and correlation tests were therefore later performed for the two sexes individually.
A score plot highlighting the histology classes was made (Figure 8C, n=14). Data points for

the three histology classes were rather mixed, so no separate loading plots were made for the
individual classes.
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Figure 8. Loading plot (A) of biometric variables, contaminant levels, and thyroid related variables,
and score plots (B and C) for n=15 glaucous gulls (Larus hyperboreus) (males and females) captured
in Sassendalen and Adventfjorden, Svalbard, in April and May 2017. Component 1 explains 35.3 % of
the variation in the data set; component 2 explains 16.4 % of the variation in the data set. A: The
different colours highlight the subgroups in the plot: PFASs (red), TH related variables (green), Hg
related variables (blue), biometric variables (yellow). B: Data labels differentiate between males (blue)
and females (red). C: Data labels indicate the histology class each individual belongs to; A (blue), B
(red), or C (yellow). Thyroid gland from LH12 was lost in the field and is not included in the score
plot.
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The PCA including only males (Figure 9) (n=7) indicates the same negative relationship
between PFASs and TSH along PC1 (40.1 %), as was indicated for all individuals together.
This association was, however, not significant when tested with Spearman correlation
analysis. Further, the PCA for males indicates a positive association between Se:Hg ratio in
plasma and TSH, but this was not confirmed by correlation analysis either. PC2 (21.2 %)
indicates a significant negative relationship between T4 and T3 (TT4:protein and
TT3:protein: p=0.040, rp=-0.777). T4 is also negatively correlated to follicle count
(FT4:protein and follicle count: p=0.030, rp=-0.802) and Hg in feathers (FT4:protein and
Hgreathers: p=0.004, rp,=-0.914; TT4:protein and Hgfreathers: p=0.030, rp=-0.803). Further, a
positive relationship is indicated between follicle count and Hg in feathers (p=0.021,
rp=0.831), whereas a negative relationship is indicated between follicle count and BCI

(p=0.044, rp=-0.768). Body size measures are more spread in this loading plot.
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Figure 9. Loading plot of biometric variables, contaminant levels, and thyroid related variables in
glaucous gull (Larus hyperboreus) males captured in Sassendalen and Adventdalen, Svalbard, in April
and May 2017. PC1 explains 40.1 % of the variation in the data set; PC2 explains 21.2 % of the
variation in the data set. The different colours highlight the subgroups in the plot: PFASs (red), thyroid
hormone related variables (green), mercury related variables (blue), and biometric variables (yellow).
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The loading plot for female glaucous gulls (Figure 10) (PC1: 42.6 %, PC2: 23.7 %) also has a
grouping of the PFASs, which seems to be negatively related with TSH:protein, and the
correlation between PFTeDA and TSH:protein was significant (p=0.047, rs=-0.714) (Table 6).
Both biometric variables and Hg related variables are spread out in the plot. There were
positive correlations between TT3 and PFNA (p=0.047, rs=0.714), and TT4 and PFDoDA
(p=0.040, rp=0.730). In addition, there was a negative, significant correlation between BCI
and Se:Hg in plasma: p=0.003, rp=-0.891. See Appendix K for all correlations.
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Figure 10. Loading plot of biometric variables, contaminant levels, and thyroid related variables in
glaucous gull (Larus hyperboreus) females captured in Sassendalen and Adventdalen, Svalbard, in
April and May 2017. Component 1 explains 42.6 % of the variation in the data set; component 2
explains 23.7 % of the variation in the data set. The different colours highlight the subgroups in the
plot: PFASs (red), thyroid hormone related variables (green), mercury related variables (blue), and
biometric variables (yellow).
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Table 6. Significant correlations between thyroid response variables (TT3:protein, TT4:protein,
FT3:protein, FT4:protein, TSH:protein, and follicle count) and contaminants (hepatic PFASs, and Hg
and Se:Hg in plasma, feather and liver) in male (n=7) and female (n=8) glaucous gulls (Larus
hyperboreus) captured in Sassendalen and Adventdalen, Svalbard, in April and May 2017, as tested by
Pearson correlations and Spearman rank correlation (italic). Correlation coefficients (r) and
significance levels (p) are included.

Compound

TT3:protein

r

TT4:protein

FT3:protein

r

p

FT4:protein

TSH:protein
r p

Follicle count

PFOSlin all
PFOSlin m
PFOSIlin f
SumPFOS all
SumPFOS m
SumPFOS f
PFNA all
PFNA m
PFNA f
PFDA all
PFDA m
PFDA
PFUNDA all
PFUNDA m
PFUnDA f
PFDoDA all
PFDoDA m
PFDoDA f
PFTeDA all
PFTeDA m
PFTeDA f

—+

0.730 0.040

0.570

0.538

0.555

0.027

0.039

-0.546 0.035

SPFSAs all
SPFSAs m
SPFSAs f
SPFCAs all
SPFCAs m
YPFCAs f

Hg plasma all
Hg plasma m
Hg plasma f

Hg feather all
Hg feather m
Hg feather

-

0.686 0.007

0.831 0.021

Se:Hg plasma all
Se:Hg plasma m
Se:Hg plasma f
Se:Hg feathers all
Se:Hg feathers m
Se:Hg feathers f
Se:Hg liver all
Se:Hg liver m
Se:Hg liver f
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3.5.2 O-PLS

O-PLS models were made for each of the five hormone fractions (TT3, TT4, FT3 FT4, and
TSH), and one model, describing the TSH:protein ratios, was significant according to
Lundstedt’s criteria (Lundstedt et al., 1998). The TSH model (R?2X=0.521, R?Y=1, Q?=0.414,
CV-ANOVA: p=0.041) consisted of seven PFASs, Hg and Se:Hg ratio in liver, follicle count
mean, and HSI. PFDoDA was the X-variable with the highest importance in the model
(highest VIP value), followed by (in descending order) PFDA, PFUNDA, Hgiiver, PFTIDA,
PFOSIin, Se:Hgiiver, PFTeDA, PENA, follicle count, HSI, and PFHxS. The eight most
important variables had VIP > 1, and the remaining four had VIP > 0.5. The coefficient plot
(Figure 11) shows that Se:Hgiiver ratio was positively associated with TSH:protein ratio,
whereas most PFASs and Hgiiver Wwere negatively associated with TSH:protein, PFTeDA being

the most important.
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PFHxS
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Var ID (Primary)

Follicle count mean

Figure 11. Orthogonal projections to latent structures (O-PLS) regression coefficient plot visualizing
the importance of PFDoDA, PFDA, PFUNDA, Hgiiver, PFTrDA, PFOSIin, Se:Hgiiver, PFTeDA, PFNA,
follicle count, HSI, and PFHXS (X-variables) in modelling the TSH:protein ratio (Y-variable) in the
plasma of the 15 glaucous gulls (Larus hyperboreus) captured in Sassendalen and Adventfjorden,
Svalbard, in April and May 2017. Variables with VIP > 1 are presented in bright green.

32



The positive relationship between TSH:protein and Se:Hgiiver was confirmed by Spearman

correlation testing, as well as the negative relationship between TSH:protein and PFOSiin and
PFTeDA (Table 6; Figure 12 A, B, and C). The negative relationship between TSH:protein
and Hgiiver was only close to significant (p=0.052, rs=-0.511). The correlations between the

remaining variables in the model and TSH:protein were not statistically significant.

3.5.3 Linear regression

Significant linear regressions between TSH:protein and individual explanatory variables

(PFOSiin, PFTeDA, and Se:Hgiiver) are presented in Figure 11 A, B, and C.
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Figure 12. TSH:protein ratios in relation to PFOS;in (A), PFTeDA (B), and Se:Hgiiver in glaucous gulls
(Larus hyperboreus) from Svalbard. LH9 and LH14, which have TSH concentrations two orders of
magnitude higher than the other individuals, are excluded in the small figures embedded in A, B, and
C to display the spread of the remaining data. A: TSH:protein vs. PFOSi,: rs=-0.546, p=0.035. B:
TSH:protein vs. PFTeDA: rs=-0.639, p=0.010. C: TSH:protein vs. Se:Hgiiver: 1s=0.564, p=0.028.
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4 DISCUSSION

In the present study, PFAS concentrations in liver, and Hg and Se concentrations in liver,
plasma and feather, were analysed in 15 glaucous gulls from Svalbard. The Se:Hg molar ratio
was calculated in the same three tissue types. Contaminant levels were related to thyroid
related responses (TH:protein ratios TSH:protein ratios in plasma, and thyroid gland
histology). The major findings were significant negative correlations between PFASs and Hg
and TSH:protein, significant positive correlations between other PFASs and free and total

T3:protein, and a significant positive association between Hg in plasma and follicle count.

The reader should keep in mind that protein concentration in plasma is not a constant variable,
and the hormone:protein ratios used for the correlation analyses cannot be translated directly
to correlations with pure hormone concentrations. Nevertheless, hormone:protein ratios in the
present study seem to be a sensitive response variable when investigating thyroid disruption.
However, it is proposed that future studies use a sampling method for plasma that does not

involve a risk of diluting the samples with body fluids.

It is important to note that the present study is a correlative study. Correlation does not imply
causation, and the relationships need to be further investigated in order to fully understand the
possible disruptive effects of PFAS and Hg on the thyroid function in birds.

4.1 Contaminant levels and patterns

411 PFAS

The levels of PFASs detected in this study are somewhat different, but in the same order of
magnitude, as those reported in Svalbard glaucous gull liver (Haukas et al., 2007) and plasma
(Haugerud, 2011, Melnes et al., 2017, Verreault et al., 2005 b) (Table 7). However, PFASs
accumulate differently in different tissue compartments (here plasma and liver). Verreault et
al. (2005 b) found that plasma concentrations of PFOS were lower than liver concentrations in
glaucous gulls. The present liver concentrations can therefore be properly compared only to
those of Haukas et al. (2007), which were approximately twice as high as in the present study
(Table 7).
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Table 7. >PFOS and XPFAS concentrations reported in plasma and liver in glaucous gulls (Larus
hyperboreus) Svalbard: Sassendalen and Adventfjorden (present study), Kongsfjorden (Melnes et al.
2017, Haugerud 2011), Barents Sea East of Svalbard (Haukas et al. 2007), and Bjgrngya (Verreault et

al. 2005 b).
Study (Author, year) Males Females Males + females
Contaminant Tissue n Mean + SD n  Mean*SD n Mean + SD
Present study SPFOS (ng/g ww) Liver 7 25.89+11.10 (8 26.83+13.26 15  26.39+11.87
SPFAS (ng/g ww) Liver 7 37,68 +15.01 (8 31.16+17.15 15 37.40+15.0
Melnes et al 2017 SPFOS (ng/g ww) Plasma 15 14.26+8.01 24 47.22 £110.60
SPFAS (ng/g ww) Plasma 15 29.79+12.68 |24 60.58+ 113.86
Haugerud 2011 SPFOS (ng/g ww) Plasma - 19 31.12+96.78
SPFAS (ng/g ww) Plasma - 19 40.80 +102.62 -
Haukas et al 2007 SPFOS (ng/g ww) Liver - - 9 65.8+22.4
SPFAS (ng/g ww) Liver - - 9 69.6 + 23.7
Verreault etal 2005b  SPFOS (ng/g ww) Pasma - - 20 134+16.6

PFOS dominated the hepatic PFAS profile in all gulls (n=15), accounting for 71 % of the
PFAS load (ng/g ww), followed by PFUNDA (10 %), PFNA (6 %), and PFDA (5 %) (Figure
3). The dominance of PFOS is in line with findings in previous studies on PFAS levels in
glaucous gulls (Melnes et al., 2017, Verreault et al., 2005 b ), ringed seal (Roultti et al., 2016),
and in Arctic wildlife and environment in general (Butt et al., 2010, Kelly et al., 2009, Martin
et al., 2004). PFUnDA, PFNA, and PFDA are all long-chained (Cs-C14) PFCAs (11, 9, and 10
carbons, respectively), which, in addition to PFOS, is the group of PFASSs that are the most
bioaccumulative in the Arctic marine food web (Kelly et al., 2009, Martin et al., 2004).

Concentrations of PFSAs were higher in females than males, but PFHpS was the only
compound that was significantly higher (Table 3). This could support the finding of Jones et
al. (2003), that sulfonic acids are more potent to bind to plasma proteins than carboxylates.
Circulating protein levels are namely thought to reflect the total protein reserves in an animal
(Dawson and Bortolotti, 1997) and circulating protein concentrations in this study were on
average higher in female glaucous gulls than in males (p=0.18) (Table 4A). Therefore, the
higher hepatic 2 PFSA levels in females may result from a higher circulating protein level.
However, neither the difference in protein levels, nor the difference in 2PFSA levels between
the sexes was significant. Further, the circulating protein concentrations in this study must be
treated with great caution since some blood samples were diluted in the field. Hence, the
suggestion that PFSAs are more potent to bind PFCAs (Jones et al., 2003) cannot be stated by
the present study. The different levels of PFSA in males and females can also be a result of
differences in elimination between sexes. All PFCAs were higher in males than females, but

not significantly.
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Melnes et al. (2017) reported significantly lower concentrations of PFDoDA, PFTrDA, and
PFTeDA in females than males, whereas PFOA concentrations were significantly higher in
females than males. Melnes et al. ascribe these opposite concentrations patterns to differences
in maternal transfer between PFSAs and PFCAs. However, no big differences in PFAS levels
between males and females were detected in the present study, which is also what was
expected since the birds were collected before the breeding season, and females had not yet

laid their eggs.

In summary, hepatic PFAS concentrations were in accordance with what is previously
reported in glaucous gulls. In line with previous findings, PFOS dominated the PFAS profile.

Lastly, there were no major differences between sexes regarding PFAS levels or profiles.

4.1.2 Mercury

In the present study, Hg concentrations in liver (3.26 + 1.22 ug/g dw) were slightly higher
than reported in glaucous gull liver from Kongsfjorden, Svalbard (Jaeger et al., 2009) ( 1.17 +
0.16 ng/g ww) and glaucous gull eggs in the Canadian Arctic (Braune et al., 2016) (2.8 ng/g
dw). However, comparison is challenging since the present results are presented in dry weight
(dw) and not wet weight (ww). Since wet weight samples also contain the weight of the
moisture in the wet tissue, dw concentrations would correspond to a higher wet weight
concentration. Hence, the present Hg concentrations are probably lower than the reported Hg

concentrations reported by Jeeger et al.

Males in the present study had significantly higher concentrations of Hg in feathers than
females, reflecting the maternal transfer of Hg (mainly in the form of MeHg) to eggs (Wolfe
etal., 1998, Ackerman et al., 2016). There were no significant differences in liver and plasma

concentrations of Hg between sexes.

Hg showed dissimilar concentrations in plasma, feather, and liver (Figure 8A, 9, and 10). This
is probably because the concentrations represent different exposure periods in the three
tissues. While plasma levels represent the present exposure at the time when the birds were
euthanized, the liver concentrations most probable reflect the exposure during the last month
(Martin et al., 2003). Feather concentrations, on the other hand, reflect the concentrations the

bird was exposed to during the last molt (Svendsen et al., 2018), which for glaucous gulls is

37



from the breeding season (April-May) until August/September (Lavenskiold, 1964). Feather
concentrations of contaminants may not be correlated to the plasma concentrations (Svendsen
et al., 2018). Since feather does not represent the present exposure levels, Hgfeather and

Se:Hgreather are not included in the discussion about thyroid related responses.

As the PCA plots indicate, Hg levels in the liver are the most correlated to PFAS
concentrations, which were also analysed in the liver, and thereby represent the same
exposure period (n=15: Hgiiver and 2 PFSA: p=0.022, rp=0.586. Hgiiver and 2.PFCA: p=0.022,
rr=0.586. See Appendix X for all correlations).

Out of feathers, liver, and plasma, a Se:Hg ratio which was < 1 was only evident in feathers
from male glaucous gulls. Hence, Hg concentrations were on average higher than the Se
concentrations in feathers from males. This could represent an actual excess of Hg over Se in
the males when the feathers were grown, but also give information about uptake mechanisms
of different elements into feathers. However, evaluation of the components of feathers was
not within the scope of this study.

In summary, Hg levels in plasma and liver of female gulls did not seem to be affected by
maternal transfer, while feather concentrations were significantly higher in males than
females. Hg levels in feathers are excluded from the remaining discussion. There was a molar

surplus of Se compared to Hg in all three tissue types (plasma, liver, and feather) for n=15.

4.2 Thyroid hormones and thyroid stimulating hormone

Circulating TH levels in glaucous gulls in the present study (Table 4) were similar to those
reported in glaucous gulls by Melnes et al. (2017) and Verreault et al. (2007) (Table 8). The
TH concentrations are also comparable to those reported in kittiwakes (Ask, 2015, Ngst et al.,
2012) and fulmars (Ngst et al., 2012) (Table 8). However, due to the dilution of an unknown
number of blood samples, the reported concentrations in this study should be considered with
great caution. The TH:protein ratios were calculated to correct for this mistake. The author
did not succeed to find avian protein corrected TH levels in the literature for comparison.
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Table 8. Overview of TT3, TT4, FT3, and FT4 concentrations reported in plasma from Artic birds
from Svalbard. All birds were collected in Kongsfjorden, Svalbard, except for those in the present
study, which were collected in Sassendalen and Adventfjorden, Svalbard. Concentrations reported by
Ask (2015) were converted from ng/mL to nmol/L using the online unit converter calculator
unitslab.com. LH: Larus hyperboreus. RT: Rissa tridactyla. FG: Fulmaris glacialis.

Study (Author, year) Species Males Females Males + females
n Mean + SD Range n Mean + SD Range n Mean + SD  Range
Present study LH TT3 (nmol/L) 7 3.30+1.50 0.66-475 (8 3.24+174 1.89-7.32 15 3.27+157 0.66-7.32
TT4 (nmol/L) 7 28.51+5.60 18.43-34.15(8  35.34+1431 17.12-57.57 15 32.15+11.33 17.12-57.57
FT3 (pmol/L) 7 8.43+4.41 1.00-13.10 (8 6.99+4.34 2.26 - 16.63 15 7.66+4.28 1.00-16.62
FT4 (pmol/L) 7 14.16 £ 2.44 10.61-17.74|8  17.14+8.90 7.56 - 33.54 15 15.75+6.67 7.56-33.53
Melnes et al 2017  LH TT3 (nmol/L) 15  2.21+1.02 1.72-438 (24 2.38x0.97 0.82-4.59 - -
TT4 (nmol/L) 15  24.52 +11.53 13.16-43.71 |24 30.69 +9.59 10.62 - 50.90
FT3 (pmol/L) 15 3.23+1.83 0.80-6.12 (24 297%1.61 0.55-6.57
FT4 (pmol/L) 15  30.32+41.35 4.94-133.15(24 22.64 +9.37  6.26-41.47
Ask 2015 RT TT3 (nmol/L) 8 4.27 +1.10 269-7.05 |5 454166 2.47-4.92
TT4 (nmol/L) 9 46.90 + 14.42 23.95-90.17 |5 47.86+19.18 14.43-60.10 - -
Ngst et al 2012 RT TT3 (nmol/L) - - - - 13 4.27+037 233-6.8
TT4 (nmol/L) - - - - 13 223+113 3.05-40.3
FT3 (pmol/L) - - - - 13 7.45+014 3.74-118
FT4 (pmol/L) - - - - 13  269+2.66 3.92-49.5
Ngst et al 2012 FG TT3 (nmol/L) - - - - 15 551%111 1.5-864
TT4 (nmol/L) - - - - 15 955%37.6 36.3-181
FT3 (pmol/L) - - - - 15 6.65+0.77 0.4-12.3
FT4 (pmol/L) - - - - 15 60.1+3.18 11.3-124
Verreault et al 2007 LH TT3 (nmol/L) 11  4.02+0.41 1.80-6.60 |12 2.69+0.31 0.90 - 5.10 - -
TT4 (nmol/L) 11 22.4+1.67 15.1- 36.6 12 22.7+1.37 13.9-31.0
FT3 (pmol/L) 11  4.71+0.57 230-7.90 (12 2.96%0.42 0.80- 6.70
FT4 (pmol/L) 11 243 +2.16 16.0-44.2 |12 253%1.55 16.7 - 34.3

In this study mean + SD for circulating TSH concentration was 0.17 £+ 0.53 ulU/ml. There are
very few studies available on avian TSH levels due to the lack of a bird-specific antibody. In
an experimental study by Pandey and Mohanty (2017), TSH was analysed in pesticide
exposed wild birds (red munia, Amandava amandava) and control birds. They used an ELISA
kit developed for human serum (SmarTest Diagnostics, Israel), and TSH concentrations were
reported in ulU/ml, as in the present study. TSH levels in controls were between 10 — 15
pulU/ml, while most exposure groups had decreased TSH levels (5-10 pulU/ml) (Pandey and
Mohanty, 2017).

In a study by Troisi et al. (2016), TSH levels in stranded, oil contaminated guillemots (Uria
aalge) were found to be 0.13 + 0.02 ng/ml. In this study, they used an immunoassay Kit was
used based on an antibody raised against mammalian TSH from IBL International (Troisi et
al., 2016). The concentrations in the present study and that of Troisi were reported in different
units, and conversion between the two (ulU/ml and ng/ml) is not straight forward (Donadio-
Andreéi et al., 2017). Therefore, comparison between TSH levels in these two studies is
challenging. However, homology of TSH antibody binding domains are highly conserved in
vertebrate species. There is 70.4 — 69.6 % homology in the amino acid sequences in avian and
mammalian TSH-beta (Gregory and Porter, 1997), which is the TSH sub unit that is unique to
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TSH. Therefore, if the EIA kit used in the present study succeeded in catching, albeit not the
absolute values, but at least the variation of TSH concentrations in the glaucous gulls, the

correlation analysis with TSH is valid.

Altogether, TH concentrations in the present study were similar to previous reported levels.
TH:protein ratios for comparison were not found in the literature, nor avian TSH levels or
TSH:protein ratios. Yet, the TSH concentrations measured, as well as the TSH:protein ratios,

are considered sufficient for correlation purposes.

4.3 Relationships between contaminant levels and hormone levels

4.3.1 PFASs and thyroid response

PFTeDA and linear PFOS were negatively correlated to circulating TSH:protein ratios (Table
6, Figure 8). Interestingly, these were not significantly correlated to circulating TH levels,
which could be expected since TSH and THSs are theoretically closely related. Rather, PFNA,
PFDA, PFUNDA, and PFDoDA were all positively correlated to TT3 and FT3 levels (except
PFNA, which was correlated only to TT3) (Table 6, Figure 8). As long-chained PFCAs,
PFTeDA, PFDA, PFUNDA, and PFDoDA are strongly proteinophilic (Kelly et al., 2009).
PFOS is also recognized as highly proteinophilic and binds mainly to albumin (Jones et al.,
2003). These compounds therefore have the chemical properties necessary to potentially
displace T4, which by far dominates the TH fraction in plasma, from their main transport
protein. This could lead to less T4 available to the target tissues, i.e. less substrate for
deiodinase enzymes at the target tissue, and hence decreased availability of T3 to the thyroid
receptors (Ucan-Marin et al., 2009). This could stimulate to TSH release, and hence T4
release from the thyroid gland, as an attempt to restore T3 in target tissues. However, this
explanation does not support the negative correlation between PFTeDA and PFOS and
TSH:protein, nor the positive relationship between PFNA, PFDA, PFUNDA, and PFDoDA
and circulating T3 levels. This could indicate that thyroid disruption by PFASs occurs at
another level of the HPT axis than the transport level. However, the effect on the T3 and THS
levels could also be an effect of exposure to unstable precursor PFASs that are already
metabolized by the glaucous gulls, or effects caused by thyroid disruptive OCs (Melnes et al.,
2017).
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Modelling studies have shown that PFSAs with medium chain length can be optimal for
transthyretin (TTR) binding (Ren et al., 2016). In a study by Weiss et al. (2009), competitive
binding of PFASs with T4 on human TTR was investigated. PFHXS had the highest binding
potency, closely followed by PFOS, with binding potencies 12.5 times lower than T4. TTRis,
however, not as important as albumin for the transportation of THs in birds. PFOS levels in
this study were orders of magnitude less than the vitro-based effect threshold for displacement
of corticosteroid from globulins in bald eagle (Halieetus leucocephalus) (257 ug/ml) (Jones et
al., 2003). Although displacement thresholds for globulin may not directly represent
displacement thresholds for aloumin, the current PFOS levels (26 ng/g ww) should not be
expected to cause measurable effects on TH binding to transport proteins. Nevertheless, the
present positive correlations between PFASs and THs are supported by recent findings of
Melnes et al. (2017) and Ngst et al. (2012), who found positive associations between PFOS
and FT3 and TT3 in female glaucous gulls, and PFHpS, PFOS, PFNA and TT4 in northern
fulmar and Kittiwakes, respectively. Altogether, the present findings indicate that PFASs have

a positive relationship to circulating TT3 and FT3 levels in glaucous gulls.

However, when interpreting these results, it is important to keep in mind that OC
contaminants were not analysed in the present study. As this group of contaminants are also
known to have thyroid disruptive effects, reducing circulating T3 in birds, it is highly
probable that they also contribute to the present thyroid economy (Melnes et al., 2017).

Altogether, PFTeDA and linear PFOS seem to decrease TSH levels, whereas several PFCAs
seem to increase T3 levels. The mechanisms behind this disruption are not clear in the
present study, but TH displacement by PFASs from albumin may be a contributing factor.

4.3.2 Mercury and thyroid response

Hg concentrations were not correlated to TSH:protein ratio in glaucous gulls. However,
Se:Hg ratio in liver (p=0.028, rs=0.564) was positively correlated to TSH:protein ratios
(Table 6). The Se:Hgiiver ratio was >1, indicating that the more Se per Hg, the higher the levels
of circulating TSH. Or contrary; the less Se per Hg, the lower the levels of circulating TSH.
This can be interpreted as a result of the feedback mechanism of the HPT axis; when Se:Hg in
the liver is >1, deiodinase enzymes in the liver are undisturbed by Hg, and convert T4 to T3.
This lowers the circulating T4 levels, which, through the feedback mechanism of the HPT

axis, stimulates an increase in TSH release to restore the T4 levels. This explanation is also in
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line with the negative relationship, albeit not significant, between Hgiiver and TSH:protein
(p=0.052, rs=-0.511), which underlines the toxic effect of Hg on deiodinase (Mulder et al.,
2012), and hence lower TSH levels (Table 6). The positive relationship between the Se:Hgjiiver
ratios and circulating TSH:protein ratios is also supported by the O-PLS model, in which
Se:Hgiiver is one of the X-variables that contributes positively to the significant model
explaining TSH:protein (Figure 11). The linear relationship (R?=0.58) between Se:Hgiiver and

TSH:protein is also visualized in Figure 12.

However, this explanation is contrary to the findings of Rosene et al. (2010), which indicated
that inhibition of deiodinase enzyme 5°D Il increases TSH levels in mice. 5D Il is, however,
is only found in the brain of chicks and herring gulls (McNabb, 2007), and it is assumed that
it is deiodinase enzyme 5°D1, which is present in the liver, that plays the major role in
supplying most of the T3 for circulation in birds (McNabb, 2007). It may be that inhibition of
5°D1 affects TSH levels in a different manner than inhibition of 5D II. However, the author
did not succeed in finding literature on the inhibitory effects of 5°DI on TSH levels in birds.
There was no significant correlation between TSH:protein and Se:Hg ratios in the plasma, but
as 5°D 1 is present in the liver, and not the plasma, Se:Hg ratio in plasma may not be a

relevant measure.

Altogether, although several factors must be taken into account, Hg seem to have a negative

effect on circulating TSH levels in the present study.

4.4 Follicle count and histology

4.4.1 Follicle count

No significant differences were found between follicle counts in Class A (normal thyroid
tissue), Class B (moderate histological changes), and Class C (pronounced histological
changes) thyroid glands (20.12 + 4.1; 25.2 + 6.5; 21.9 follicles in the 326 x 244 um fields,
respectively) (Appendix H). Follicle count was not significantly correlated to PFAS levels
(Table 6). Follicle count was, however, positively correlated to Hgpiasma (p=0.007, rr=0.686,
n=15). Hg accumulates in thyroid glands in mammals (Nylander and Weiner, 1991), and fish
studies have indicated that Hg inhibits iodine uptake to the thyroids, damages thyroid follicles
and thereby decreases T4 synthesis (Kirubagaran and Joy, 1994). In the present study, the

significant positive correlations between Hg levels in plasma and follicle count might
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therefore be due to initial damage of thyroid follicles caused by Hg, followed by regeneration
and maturation of new follicles. Since new follicles are smaller than mature follicles, the

follicle count also increased, hence the positive correlations.

Follicle count was not significantly correlated to TSH:protein (Table 6). A measure of follicle
size, rather than count, would probably be a more sensitive measure of TSH effects on thyroid
gland morphology. Follicle size is known to decrease under sustained TSH secretion because
of increased endocytosis of the colloid (Ness et al., 1993). A rapid assessment of the
appearance of the glands revealed that small follicle size did not necessarily imply a high
follicle count, since proliferation of the epithelial cells, rather than multiple small follicles,
took up much of the area. A measure of follicle size would probably better reflect the TSH
responses than what was achieved in the present study. A more comprehensive study of the
thyroid histopathology could also include thyroid weigh, thyroid volume, density of colloid-
filled follicles, cell height and nucleus size of epithelial cells, and a cell height to nucleus size
ratio (Pandey and Mohanty, 2017).

Altogether, Hg might have a damaging effect on the thyroid glands, possibly resulting in
generation of new follicles. Follicle size would, however, probably be a better measure of the
state of the thyroid gland.

4.4.2 Thyroid gland histology

Neither PFAS concentration, Hg concentration, nor Se:Hg ratio were significantly different
between histology classes. This is probably because the classification methodology of thyroid
glands was subjective, and there are subtle differences in the degrees of histological damages.
The main purpose of classification was, however, not for correlation purposes, but to present
the state of thyroid glands in contaminated glaucous gulls. Quantitative measures of histology
are preferable to reveal possible underlying mechanisms of contaminated-induced thyroid

disruption.

In mammalian studies, alterations in thyroid histology is regularly used as indicators of
altered thyroid function (McNabb, 2007). In birds, this approach has been less common.
Sonne et al. (2010) studied blood OC concentrations and thyroid gland histology in 10 adult
female glaucous gulls from Bjgrngya, Svalbard, but could not attribute the histological
changes observed to the OC concentrations. Morphological changes in thyroid glands were
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also seen in OC-contaminated glaucous gulls from Grumantbyen, Svalbard, but there were no
differences in hepatic OC-concentrations in individuals with (n=5) and without (n=5) lesions
in the thyroids (Sonne et al., 2013). An experimental study on Japanese quail (Coturnix
japonica) did, however, show proliferations in the thyroid follicular cells and a large variation
in follicle size in the thyroid glands of one quail exposed to a mixture of two organohalogen
flame retardants (Jacobsen et al., 2017). Furthermore, in a field study from Japan, they found
that great cormorants (Phalacrocorax carbo) from a dioxin- and furan contaminated site in
Tokyo Bay (n= 18) had a higher occurrence of increased density of small follicles and
increased number of epithelial cells in the thyroids than great cormorants from a reference site
(n=11) (Saita et al., 2004). McNabb & Fox (2003) reported decreased follicular size in free-

ranging herring gulls living in OHC-contaminated areas in the Great Lakes, Canada.

The presence of epithelial cell proliferation in nine of 14 glaucous gulls, including one with
nodular hyperplasia, indicates that PFAS- and Hg exposure may be a co-factor in the
development of thyroid gland alterations in glaucous gulls. However, natural variation, age
(Sonne et al., 2013), and food availability cannot be ruled out as additional explanatory
variables, and further research with larger sample sizes and more sensitive measures of

thyroid gland alterations are required.

4.5 Thyroid response: Comparison between males and females

Melnes et al. (2017) reported a significant positive relationship between PFOS and FT3 in
female glaucous gulls (p=0.008, re= 0.525), which was not evident in males. The correlation
between PFOS and FT3 in females was not significant in the present study (females: p=0.233,
re=0.476); however, the correlation between > PFSA and FT3 was significant (p=0.041,
re=0.728) (Table 6, Figure 10). In females, and not males, there was also a significant
correlation between TT4 and PFDoDA (p=0.040, rp=0.730).

It was suggested by Melnes et al. (2017) that the sex differences revealed in her study
regarding the “lack of associations” between T3 and PFOS in males could be ascribed to BCI,
which might have confounded the PFAS levels in males. Since BCI and plasma protein levels
could be interconnected, Melnes et al. suggested that whether BCI was confounding or not

would be clarified if the protein concentrations were known (Melnes et al., 2017). In the
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present study, protein normalized TH concentrations were applied, and yet, relationships
between individual PFASs and THs were not significant in male glaucous gulls (Table 6).
Protein levels in plasma therefore do not seem to confound the relationships between PFASs
and THs. Hence, there are probably other sex dependent mechanisms that cause the difference

in TH responses between sexes.

4.6 Considerations

Since the PFAS and Hg concentrations measured in this study represent chronic exposure, the
hormone levels in the glaucous gulls may already be tuned into a state of homeostasis that
compensates for the potential disruption by contaminants. The relationships seen between
hormone levels and contaminants therefore probably indicate only parts of the underlying
mechanisms of disruption, which are hidden by the maintenance of constant circulating TH
levels controlled by the HPT axis. Thyroid disruption could may also occur at other levels of

the HPT axis than those discussed here.

45



5 CONCLUSION

In the present study, high levels of persistent PFASs and Hg were quantified in liver from
glaucous gulls captured in Sassendalen and Adventfjorden, Svalbard, spring 2017. Hg was
also quantified in feather and plasma. The Se:Hg ratio revealed that there was more Se than
Hg available in all three tissue types. The predominant PFAS analysed was PFOS. The
contaminant concentrations demonstrate that glaucous gulls, as Arctic top predators, are still

highly exposed to anthropogenic emissions of PFASs and Hg.

Relationships between contaminants and TSH levels indicate that Hg and certain PFASs have
a negative effect on circulating TSH levels in glaucous gulls, though the mechanisms need to
be further investigated. The hypothesized positive correlations between PFASs and THs were
confirmed for certain PFCAs and T3, however the expected significant relationship between
THs and TSH was not confirmed. The hypothesized correlations between Hg and THs were
not significant. Sex differences in thyroid response suggest that females might be more
subjected to thyroid disruption by PFASs than males. Histological alterations were reported in
nine of fourteen glaucous gulls, but the potential contaminant induced mechanisms underlying
these histological changes could not be revealed in the present study. However, there are
indications in the present study that Hg may play a role in the development of thyroid gland
pathology. Altogether, this study adds to the weight of evidence that PFASs and Hg have
adverse effects on the thyroid hormone homeostasis in glaucous gulls in Svalbard. Future
studies should include experimental studies in order to confirm or disprove the mechanisms of

disruption proposed here.
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APPENDIX A: Individual biometric measures

Table A9 Biological measurements, capture site, sex, and body condition index (BCI) of the individual
male (n=7, M) and female (n=8, F) glaucous gulls (Larus hyperboreus) captured in Sassendalen and
Adventfjorden, Svalbard, in April and May 2017.

ID Collection site Sex Body mass (g) Head (mm) Tarsus (mm) Wing (mm) Liver (g) BCl

LHO1 |Sassendalen F 1340 145.48 75.96 44.5 3430 -1.4014
LHO2 |Sassendalen M 1685 148.93 75.48 46.1 33.30 -1.3783
LHO3 Sassendalen M 1750 154.26 75.90 47.2 n/a -0.3977
LHO4 |Sassendalen F 1687 132.25 75.86 43.1 39.80  0.9237
LHO5 |Sassendalen F 1450 130.92 75.60 44.8 38.15  -0.3081
LHO6 |Sassendalen F 1550 135.08 79.90 45.2 41.40 0.9034
LHO7 |Sassen/Fredheim F 1425 134.54 77.44 435 3835  -1.2565
LHO8 [Adventfjorden M 1875 143.46 78.20 46.3 46.65 -0.0642
LHO9 |Adventfjorden F 1589 132.05 73.74 449 55.45  1.0429
LH10 |Adventfjorden F 1450 130.57 72.25 44.8 3495  -0.2805
LH11 |Adventfjorden M 1950 145.53 79.32 46.9 42.80 0.7918
LH12 |Adventfjorden F 1500 128.93 76.54 45.2 35.70 0.3765
LH13 [Adventfjorden M 1820 145.11 78.25 45.7 42.65 -0.2591
LH14 |Adventfjorden M 1920 141.60 78.15 45.7 33.35  0.3904
LH15 |Adventfjorden M 1875 151.61 84.55 46.2 39.75 0.9171

APPENDIX B: Washing procedure for feathers

Feathers were washed prior to elemental analysis according to the following procedure
developed by researcher Tomasz Maciej Ciesielski and master student Ingvild Kroglund
Buran at NTNU:

Feathers were washed in five main steps, each separated by two water flushes:
1. Acetone 5 minutes
2. Water 5 minutes
3. Acetone 5 minutes
4. 2% viv HNOs 5 minutes
5

Water 5 minutes

APPENDIX C: Recovery standards

Table A10 Mass labelled internal standards (13C labelled PFAS analytes). Recovery is given as % of
recovery standards added.

|13CPFHXS 13CPFOS 13CFOSA 13CPFHXA  13CPFHpA 13CPFOA 13CPFNA 13CPFDA 13CPFUnDA 13CPFDoDA 13CPFTeDA

Mean 69 67 51 76 86 96 122 101 101 94 92
sb 20 14 16 21 24 29 33 30 25 20 14
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APPENDIX E: Individual Hg and Se concentrations, and Se:Hg ratios

Table A12. Individual Hg and Se concentrations (ug/g dw) and molar Hg:Se ratio detected in plasma,

feather, and liver of male (n

8, F) glaucous gulls (Larus hyperboreus) captured
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APPENDIX F: Class wise contaminant levels

Table A13. Class wise mean, SD, median, and range of hepatic PFAS concentrations, and Hg, and Se
concentrations, and Se:Hg ratio in plasma, feather, and liver in Class A (normal thyroid tissue, n=5),
Class B (moderate histological changes, n=8), and Class C (pronounced histological changes, n=1) of
glaucous gulls (Larus hyperboreus) captured in Sassendalen and Adventfjorden, Svalbard, in April

and May 2017.

Class A Class B Class C

Compound N Mean + SD Median Range N Mean + SD Median Range N  Concentration
PFHXS (ng/g) 5 0.25+0.14 0.25 0.08 - 0.45 8 0.24 +1.78 0.20 0.03-0.58 1 0.18
PFHpS (ng/g) 5 0.15 + 0.04 0.14 0.10-0.19 8 0.09+0.04 0.08 0.05-0.17 1 0.07
PFOSIin (ng/g) 5 32.79+13.46 32.51 14.44 - 48.25 8 18.60+5.96 19.78 9.24 - 28.12 1 15.71
SPFOS (ng/g) 5 36.06 + 14.5 35.74 16.45 - 52.73 8 20.73£6.34 22.09 11.84-30.81 |1 17.21
PFNA (ng/g) 5 2.65+1.58 2.46 0.96 - 5.02 8 2.11+0.74 2.52 0.91-2.77 1 1.66
PFDA (ng/g) 5 2.15+1.05 2.09 0.70 - 3.48 8 1.61 £ 0.69 1.61 0.59-2.71 1 1.26
PFUNDA (ng/g) 5 430+ 1.65 4.93 1.54 - 5.56 8 3.52+1.45 3.78 1.49-5.88 1 2.98
PFDoDA(ng/g) 5 0.69 £ 0.20 0.77 0.37-0.86 8 0.65+0.23 0.67 0.22-0.98 1 0.52
PFTrDA (ng/g) 5 1.65+0.45 1.77 0.86 - 2.03 8 1.78 £ 0.58 1.93 0.71-2.50 1 1.45
PFTeDA (ng/g) 5 0.32+£0.04 0.35 0.31-041 8 0.32+0.13 0.29 0.12-0.54 1 0.27
SPFSA (ng/g) 5 36.49 + 1453 36.11 16.86 - 53.33 8 21.09+6.33 2252 12.56-31.30 |1 17.61
SPFCA (ng/g) 5 11.80 £ 4.67 12.31 4.74 - 16.87 8 9.99 +3.29 9.62 5.73-15.32 1 8.02
SPFAS (ng/g) 5 4829+19.16 4841  2160-7020 |8  31.08+9.05 30.65 18.29-46.61 |1 2563
Hg plasma (ug/g) 5 0.01 +0.00 0.01 0.01-0.02 8 0.01 £ 0.00 0.01 0.01-0.02 1 0.01
Hg feathers (ug/g) 5 3.02+1.71 2.58 1.06 - 5.15 8 3.72+2.23 3.61 0.85-6.57 1 3.06
Hg liver (nug/g) 5 3.42+£0.79 3.48 2.48 - 4.59 8 3.05+1.31 2.85 1.08 - 5.55 1 2.12
Se plasma (pg/g) 5  0.30+0.06 0.29 0.24-0.39 8 033+0.10 035 0.18 - 0.47 1 022
Se feathers (ug/g) 5 1.07 £ 0.18 1.00 0.90-1.30 8 1.05 +£0.39 0.91 0.75-1.95 1 0.96
Se liver (ug/g) 5 5.63 +0.95 5.30 4.86 -7.27 8 5.83+1.88 6.12 3.01- 8.36 1 2.78
Se:Hg ratio plasma 5 77.33+40.68 71.25 45.32-145.84 (8 65.93 £ 28.82 54.20 37.99-112.87 |1 50.12
Se:Hg ratio feather 5 1.15+0.63 0.92 0.64 - 2.17 8 1.01 £ 0.67 0.76 0.40 - 2.45 1 0.80
Se:Hg ratio liver 5 4.45 +1.75 3.87 3.09-7.44 8 5.75+ 2.96 5.15 1.71-11.35 1 3.35

APPENDIX G: Individual TH, TSH, and protein concentrations, TH:protein and

TSH:protein ratios
Table A14. Individual levels of FT4 (pmol/L), FT3 (pmol/L), TT4 (nmol/L), TT3 (nmol/L), TSH

(ulU/ml), and protein (mg/ml), as well as FT4:protein (hnmol/mg), FT3:protein (nmol/mg),

TT4:protein (umol/mg), TT3:protein (umol/L), and TSH:protein (mIU:mg) ratios in plasma of male
(n=7, M) and female (n=8, F) glaucous gulls (Larus hyperboreus) captured in Sassendalen and
Adventfjorden, Svalbard, in April and May, 2017.

1D FT4 TT4 FT3 TT3 TSH Protein FT4:protein TT4:protein FT3:protein TT3:protein TSH:protein
LHO1 23.47 46.82 5.70 2.24 0.02 23.80 0.99 1.97 0.24 0.09 0.67
LHO2 14.60 25.01 4.21 2.36 0.02  22.80 0.64 1.10 0.18 0.10 0.77
LHO3 10.61 32.56 11.30 4.56 0.04 32.30 0.33 1.01 0.35 0.14 1.35
LHO4 14.88 44.72 16.62 7.32 0.01  30.00 0.50 1.49 0.55 0.24 0.18
LHO5 33.54 57.57 8.84 3.75 0.02 24.30 1.38 2.37 0.36 0.15 0.91
LHO6 7.56 21.04 4.41 2.70 0.01 27.90 0.27 0.75 0.16 0.10 0.39
LHO7 19.14 40.79 6.90 2.69 0.01 36.00 0.53 1.13 0.19 0.07 0.38
LHO8 12.80 29.94 13.05 4.53 0.02 27.10 0.47 1.10 0.48 0.17 0.72
LHO9 9.60 17.12 4.90 2.90 206 29.90 0.32 0.57 0.16 0.10 69.00
LH10 20.50 30.84 6.32 241 0.02 30.10 0.68 1.02 0.21 0.08 0.66
LH11 13.70 34.15 1.00 0.66 0.01 13.00 1.05 2.63 0.08 0.05 0.69
LH12 8.42 23.80 2.26 1.89 0.01  20.70 0.41 1.15 0.11 0.09 0.43
LH13 17.74 32.99 8.25 2.74 0.01 25.80 0.69 1.28 0.32 0.11 0.45
LH14 12.95 18.43 9.12 3.51 0.31 22.60 0.57 0.82 0.40 0.16 13.92
LH15 16.70 26.48 12.09 4.75 0.01  24.40 0.68 1.09 0.50 0.19 0.23
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APPENDIX H: Class wise TH, TSH, and protein concentrations, TH:protein ratios,

TSH:protein ratios, and follicle count

Table A15 Class wise mean, SD, median, and range of FT4 (pmol/L), FT3 (pmol/L), TT4 (nmol/L), TT3

(nmol/L), TSH (ulU/ml), and protein (mg/ml), as well as FT4:protein (nmol/mg), FT3:protein

(nmol/mg), TT4:protein (umol/mg), TT3:protein (umol/L), and TSH:protein (mIU:mg) ratios, as well

as follicle count in Class A (normal thyroid tissue, n

and Class C (pronounced histological changes, n

:8),

5), Class B (moderate histological changes, n

1) of glaucous gulls (Larus hyperboreus) captured in

Sassendalen and Adventfjorden, Svalbard, in April and May 2017.
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APPENDIX I: Score plot (PCA), sampling area
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Figure A13. Principal component score plot showing where the 15 glaucous gulls (Larus hyperboreus)
were captured (Sassendalen (green), Fredheim in Sassendalen (red), and Adventfjorden (blue)),
Svalbard, in April and May 2017. Component 1 explains 35.3 % of the variation in the data set;
component 2 explains 16.4 % of the variation in the data set.
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APPENDIX J: Shapiro-Wilk’s test of normality
Table A16. Biometric, PFAS, Hg, Se, Hg:Se, TH, and follicle count variables in n=15, male, and

female glaucous gulls (Larus hyperboreus) as tested for normality using Shapiro-Wilk’s normality

test. Significance level is set at p<0.05. Ho: Data are normally distributed, H1: Data are normally

distributed.

Tests of Normality

Shapiro-Wilk Females
Statistic df Sig. Statistic df Sig.

BCl 0,87 13 0,052 0,92 6 0,505 0,859 7 0,149
BM 0,922 13 0,264 0,892 6 0,327 0,961 7 0,827
Head 0,896 13 0,118 0,959 6 0,813 0,742 7 0,01
Tarsus 0,947 13 0,549 0,841 6 0,132 0,969 7 0,888
Wing 0,961 13 0,77 0,91 6 0,434 0,852 7 0,129
Liver 0,891 13 0,101 0,893 6 0,335 0,777 7 0,024
HSI 0,927 13 0,311 0,989 6 0,986 0,765 7 0,018
Follicle count mean 0,915 13 0,217 0,928 6 0,565 0,934 7 0,588
Log_follicle_count 0,943 13 0,501 0,937 6 0,636

PFHxS 0,944 13 0,513 0,942 6 0,672 0,851 7 0,125
PFHpS 0,942 13 0,484 0,969 6 0,889 0,91 7 0,396
PFOSlin 0,922 13 0,267 0,929 6 0,573 0,907 7 0,378
SPFOS 0,909 13 0,176 0,933 6 0,603 0,889 7 0,267
PFNA 0,896 13 0,119 0,938 6 0,645 0,883 7 0,24
PFDA 0,961 13 0,764 0,9 6 0,372 0,897 7 0,316
PFUNDA 0,938 13 0,428 0,943 6 0,686 0,917 7 0,448
PFDoDA 0,982 13 0,988 0,96 6 0,817 0,927 7 0,524
PFTrDA 0,963 13 0,799 0,981 6 0,957 0,918 7 0,452
PFTeDA 0,969 13 0,878 0,916 6 0,476 0,966 7 0,867
YPFSA 0,907 13 0,165 0,936 6 0,626 0,881 7 0,231
SPFCA 0,957 13 0,709 0,925 6 0,54 0,946 7 0,69
LogPFHxS 0,935 13 0,397 0,916 6 0,475 0,939 7 0,632
LogPFHpS 0,96 13 0,76 0,968 6 0,879 0,873 7 0,196
LogPFOSlin 0,986 13 0,997 0,981 6 0,955 0,991 7 0,994
LogSum PFOS 0,976 13 0,955 0,977 6 0,933 0,976 7 0,935
LogPFNA 0,947 13 0,553 0,914 6 0,462 0,961 7 0,829
LogPFDA 0,965 13 0,824 0,906 6 0,411 0,967 7 0,875
LogPFUNDA 0,917 13 0,228 0,926 6 0,55 0,919 7 0,461
LogPFDoDA 0,888 13 0,091 0,966 6 0,868 0,863 7 0,161
LogPFTrDA 0,884 13 0,08 0,976 6 0,931 0,868 7 0,178
LogPFTeDA 0,911 13 0,188 0,934 6 0,611 0,906 7 0,368
Log>PFSA 0,972 13 0,919 0,972 6 0,907 0,969 7 0,894
Log>PFCA 0,961 13 0,771 0,922 6 0,519 0,976 7 0,941
FT4:protein 0,914 13 0,21 0,858 6 0,184 0,903 7 0,35
TT4:protein 0,874 13 0,058 0,704 6 0,007 0,946 7 0,693
FT3:protein 0,93 13 0,345 0,919 6 0,497 0,796 7 0,037
TT3:protein 0,919 13 0,241 0,958 6 0,801 0,752 7 0,013
TSH:protein 0,399 13 0 0,532 6 0 0,462 7 0
LogFT4:protein 0,97 13 0,892 0,926 6 0,552 0,969 7 0,893
LogTT4:protein 0,954 13 0,666 0,812 6 0,075 0,976 7 0,94
LogFT3:protein 0,944 13 0,516 0,847 6 0,15 0,882 7 0,236
LogTT3:protein 0,968 13 0,866 0,897 6 0,357 0,838 7 0,096
LogTSH:protein 0,736 13 0,001 0,784 6 0,042 0,71 7 0,005
Hg_plasma 0,95 13 0,605 0,971 6 0,9 0,914 7 0,422
Hg_feathers 0,946 13 0,535 0,962 6 0,838 0,956 7 0,782
Hg_liver 0,964 13 0,817 0,835 6 0,118 0,897 7 0,315
LogHg_plasma 0,965 13 0,83 0,962 6 0,838 0,918 7 0,456
LogHg_feathers 0,955 13 0,668 0,865 6 0,209 0,956 7 0,786
LogHg_liver 0,906 13 0,161 0,854 6 0,17 0,828 7 0,076
SeHg_plasma 0,855 13 0,033 0,878 6 0,26 0,81 7 0,051
SeHg_feather 0,872 13 0,056 0,819 6 0,087 0,916 7 0,441
SeHg_liver 0,912 13 0,196 0,954 6 0,773 0,781 7 0,026
LogSeHg_plasma 0,923 13 0,273 0,91 6 0,439 0,858 7 0,145
LogSeHg_feather 0,948 13 0,564 0,928 6 0,568 0,946 7 0,694
LogSeHg_liver 0,975 13 0,944 0,935 6 0,619 0,865 7 0,167
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APPENDIX L: Histology

Class A

LH1, female
200x, HE stain
326 x 244 pm
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Class A

LH2, male
200x, HE stain
326 x 244 pm
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Class A

LH4, female
200x, HE stain
326 x 244 pm
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Class A

-

LH10, female
200x, HE stain
326 x 244 pm
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Class A

\¥ '
- A

LH13, male
200x, HE stain
326 x 244 pm



Class B

LH3, male

200x, HE stain
326 x 244 pm




Class B

LH5, female
200x, HE stain
326 x 244 um
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Class B

LH7, female
200x, HE stain
326 x 244 pm
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Class B

LH8, male
200x, HE stain
326 x 244 pm



Class B

LH9, female
200x, HE stain
326 x 244 pm
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Class B

LH11, male
200x, HE stain
326 x 244 pm



LH14, male
200x, HE stain
326 x 244 pm
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Class B

LH15, male
200x, HE stain
326 x 244 pm
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Class C

LH6, female
200x, HE stain
326 x 244 pm
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