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1 Abstract
Thrust allocation is the part in a dynamic positioning system that is responsible
for giving set-points to the different actuators on a vessel in order to track a
desired generalized force, which is the set of surge, sway and yaw demanded
by the control system. While thrust allocation generally is solved by means
of non-linear solvers, additional logical and operational constraints cannot be
taken directly into account in the standard non-linear formulation. The goal
of this thesis was to explore the possibilities of using Mixed Integer Linear
Programming (MILP) for thrust allocation and finding a good trade off between
model accuracy and problem complexity.

This thesis shows that mixed integer programming, both MILP and Mixed
Integer Quadratic Programming (MIQP) are powerful tools in optimization, and
by using piecewise linear approximations of non-linear functions anything can
be included in the formulation. However, using piecewise linear approximations
tend to greatly increase the complexity of the problem, because the approxima-
tion often must consist of many lines to be accurate enough and to counteract
the effect that the solver will tend to choose solutions in the vertices of the
approximation. Using logical constraints is a powerful tool for introducing for-
bidden sectors, and could also be used as a state variable for e.g. whether an
actuator is in forward or reverse mode.

In this thesis actuators has been modelled using MILP formulations, and
an LP, a QP, several MILP and a MIQP formulation of the thrust allocation
problem has been presented. The thesis suggests a method to include forbidden
sectors in the feasible thrust region of an azimuth thruster using big-M tech-
nique, only introducing 2 equations and 2 variables to the problem formulation.
This method can also be used to model the thrust region of a propeller-rudder
pair. Power minimization has been included in the MILP formulation by approx-
imation the thrust-power relationship using a piecewise linear approximation.
Asymmetry in tunnel thrusters has also been added to the problem formulation.
Simulations are done in MATLAB on a model of a ship to demonstrate the differ-
ences in response between the formulations. It is suggested that if the functions
in the cost function can be approximated as quadratic functions, MIQP should
be used, because approximating them by use of piecewise linear approximations
increases the complexity to the extent that the MIQP formulation is quicker to
solve.
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2 Sammendrag
Thrust allokering, eller kontrolltildeling er den delen av et dynamisk posisjoner-
ings system som er ansvarlig for å gi settpunkter til de forskjellige aktuatorene
p̊a et skip, slik at skipet kan følge en gitt generalisert kraft best̊aende av surge
sway og yaw, gitt av kontrollsystemet. Kontrolltildeligsproblemet løses generelt
ved bruk av ulineære løsere, men logiske og operasjonelle begrensninger kan
ikke inkluderes direkte i en standard ulineær problemformulering. Målet med
denne masteroppgaven var å utforske mulighetene bruk av Mixed Integer Lin-
ear Programming (MILP) gir i forhold til å finne et godt kompromiss mellom
nøyaktighet og kompleksitet av kontrolltilldelingsproblemet.

I denne oppgaven vises det at b̊ade MILP og Mixed Integer Quadratic Pro-
gramming (MIQP) er kraftige verktøy innen optimalisering, og at de aller fleste
ulineære funksjoner kan inkluderes i problemformuleringen ved hjelp av stykke-
vis lineære tilnærminger. En ulempe med stykkevis lineære tilnærminger er at
de øker kompleksiteten til problemet kraftig, fordi tilnærmingen ofte m̊a best̊a av
veldig mange linjer skal de bli gode nok tilnærminger av det ulineære uttrykket.
En annen ulempe er at løsningen har en tendens til å ende opp i hjørnene mellom
to linjer i tilnærmingen, hvilket m̊a motvirkes med å bruke flere linjer i tilnær-
mingen. Logiske begrensninger er et godt verktøy i forbindelse med forbudte
sektorer, og kan ogs̊a bukes som tilstandsvariable, for eksempel for å bestemme
om en propell skal g̊a fremover eller i revers.

I denne oppgaven har aktuatorer blitt modellert ved hjelp av MILP teknikker,
og b̊ade en LP, en QP, en MIQP og flere MILP formuleringer av kontrolltildel-
ingsproblemet blir presentert. Rapporten foresl̊ar en metode for å inkludere
forbudte sektorer i det gyldige omr̊adet til en azimuth thruster ved bruk av
big-M metoden. Dette tilfører kun 2 ligninger og to variable til problemfor-
muleringen. Denne metoden kan ogs̊a brukes til å modellere en propell med
ror. Ved å inkludere forholdet mellom thrust og kraft som en stykkevis lineær
tilnærming kan kraft minimeres in MILP formuleringen. Asymmetriske tunnel
thrustere er modellert og inkludert i problemformuleringen. Det er gjort simu-
leringer i MATLAB p̊a en modell av et skip for å vise forskjellene i respons
ved bruk av forskjellige formuleringer og hvordan den endres n̊ar det inkluderes
mere kompleksitet. Det foresl̊as i denne oppgaven at dersom funksjonene i kost-
funksjonen kan tilnærmes som kvadratiske funksjoner bør MIQP bukes fremfor
MILP. Det er fordi bruken av stykkevis lineære funksjoner i kostfunksjonen øker
kompleksiteten av problemet s̊apass mye at MIQP problemet er raskere å løse
enn MILP problemet.
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4 Introduction
The purpose of thrust allocation is to give the different actuators on the vessel a
set-point in order to track a desired generalized force, which is the set of surge,
sway and yaw demanded by the control system. In order to calculate these set-
points, an accurate model of the vessel and its actuators are needed. This model
will consists of numerous logical and behavioural limitations that the actuators
may have.

The goal of this thesis is to create a MILP formulation of the problem in
order to include logical constraints. This will introduce some errors associated
with linearisation of non-linear behaviour, so a good trade off between accuracy
and complexity must be found.

Thrust allocation depends on what the purpose of the allocation is. Thrust
allocation is an optimization problem, and thus the formulation will depend on
what you want to accomplish with the allocation. You may want to minimize
power consumption, ware-and-tare by changing thrust as little as possible, error
between demanded force and allocated force, etc. The resulting formulation
will differ depending on the purpose. This thesis will focus on a formulation
minimizing thrust and power.

Modelling actuators is a big part of the problem, and these models will
remain the same regardless of what you choose to minimize in the thrust al-
location optimization problem. The focus in this report is how to exploit the
MILP framework in order to create accurate models of the actuators. Tunnel
thrusters, azimuth thrusters and propeller-rudder pairs are considered, with a
main focus on the azimuth thrusters and including forbidden sectors.

MILP is not the general way of solving the thrust allocation problem, be-
cause MILP solvers are highly complex, but there has been made significant
advances in MILP solvers in recent years, combined with the advances in com-
puter technologies, which together allows for reasonably fast solving of MILP
problems of high complexity.

This report will first more thoroughly present the dynamic positioning (DP)
problem in section 5 before section 6 concentrates on the thrust allocation part.
Section 7 presents different constraints, and how they are included in the prob-
lem by linearising them and using the MILP framework. In section 8 the final
formulations are presented mathematically before the implementation is ex-
plained in section 9. Finally, simulations and the results from the simulations
are presented in section 10 following a discussion and a conclusion section. Sug-
gestions for future work are presented in the conclusion. Abbreviations are
explained when they are first used.
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5 Dynamic Positioning
A vessel at sea is affected by several external forces like wind, waves and cur-
rents, as well as the forces generated by the vessels propulsion system. These
forces act on the vessel and affects its position and heading. These changes are
then measured using sensors like gyroscopes and accelerometers, as well as GPS
measurements. A DP system is a computer controlled system that automati-
cally maintains a vessels heading and position using its own propulsion system
[Balchen et al., 1980]. Parts of this section and its sub sections are based on the
authors project thesis.

A DP system contains a mathematical model of the vessel, including the
position and force image of the vessels thrusters, and wind and current drag
coefficients relative to the angle of attack of the current and wind, as well as the
vessels speed. A DP system will use this information combined with the sensor
data and a desired position and heading, to calculate a set of generalized forces,
surge sway and yaw, for the vessel in order to put the vessel at a desired position
with a desired heading [Balchen et al., 1976]. This allows a ship to maintain its
position and heading at sea where mooring is not possible, or anchoring is not
feasible due to sea depths, or structures, e.g. pipelines, on the seabed.

The consequences of failures in a DP system depend on the tasks performed
during a DP operation. Hence, the required safety level in a DP system will
vary [Ruth, 2008]. Therefore, the International Maritime Organization (IMO)
has established different safety levels for DP systems, depending on the level of
accuracy, called DP-classes [International Maritime Organization, 1994]: Class
1: ”loss of position may occur in the event of single fault”. Class 2: ”loss of
position is not to occur in the event of a single failure in any active component
or system”. Class 3: loss of position is not to occur in the event of a single failure
in any component or system, including ”All components in anyone watertight
compartment, from fire or flooding”. A risk analysis of the operation to be
performed by the vessel should therefore be performed when choosing a DP
class for the vessel.

5.1 Propulsion and thruster system
A vessels propulsion system consists of a set of actuators that can exert forces
on the vessel. These actuators usually use a rotating propeller to generate
thrust, but there are also some jet propulsion devices. The angle of the force is
controlled either by a rudder or by rotating the propeller itself. The amount of
thrust can be controlled by adjusting the RPM on the propeller, or the angle
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on the propeller blades. Since there are several different thrusters and propeller
systems available, the most basic types will be discussed briefly in the following
sub sections, explaining their key features.

5.1.1 Main propellers and rudders

The main propellers main task is to generate thrust in the vessels longitudinal
direction. The main propellers and rudders are mainly used in transit from one
place to another, producing high speed, but can also be included in DP opera-
tions. The main propellers are usually not rotatable, so the angle of the thrust is
controlled with rudders. One challenge with using the main propulsion system
in DP operations, is the non-convexity that arises in the available thrust region,
because the rudders can only be used to change the direction of the thrust,
when the propellers exert thrust in their direction. Hence, when backing, the
rudders will not work the same way as when going forwards. A main propeller
with rudder is illustrated in figure 1.

Figure 1: Illustration photo of a main propeller with rudder, courtesy of Becker
Marine Systems and Kongsberg Maritime

5.1.2 Azimuth thrusters

Azimuth thrusters are rotatable thrusters that can provide thrust in all direc-
tions in the surge/sway-plane. Azimuth thrusters are usually only used for fine
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manoeuvring of the vessel and can be kept inside a closed compartment in the
hull of the vessel when not in use. Azimuth thrusters are usually constructed
with a duct around the propeller, as shown in figure 2, in order to reduce cavi-
tation and increase the efficiency in one direction, and is therefore usually not
used in reverse. Although the azimuth thruster can rotate 360 degrees, some
angles may be unwanted angles to operate on. There are usually more than
one azimuth thruster on a vessel, and forbidden/spill-zones are used to prevent
thruster-thruster interactions, which can reduce efficiency. Forbidden zones, or
sectors, can also be used to prevent the thrusters from blowing at the skeg, or
in other unwanted angles. A challenge with forbidden sectors is that it leads
to a non-convex thrust region, which means that a linear program or quadratic
program can not be formulated as a single problem, but must be split into sev-
eral convex sub-problems, or formulated as a mixed integer program, as will be
done in this report. Forbidden sectors will be expanded on later in this report.

Figure 2: Illustration photo of an azimuth thruster, courtesy of Thrustmas-
ter.net

5.1.3 Tunnel thrusters

Tunnel thrusters are usually placed at the bow or stern of the vessel in order to
generate the most momentum possible. They generate transverse thrust and are
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primarily used for steering purposes and not for propulsion purposes. Tunnel
thrusters usually have rotatable propeller blades, in order to switch quickly
from forward to reverse thrust and vice versa. Larger vessels may have multiple
tunnel thrusters placed next to each other in order, as shown in figure 3, in
order to generate more thrust. Some tunnel thrusters may be constructed such

Figure 3: Illustration photo of a tunnel thruster, courtesy of Brunvoll AS

that they are optimized for thrust in one direction, thus being asynchronous in
their thrust response. Asymmetric tunnel thrusters will be expanded on and
modelled later in this report.

5.2 Control system

The feedback control system provides the necessary commands in order to track
the desired position and heading. It consists of an estimator, typically a Kalman-
filter [Balchen et al., 1976], which uses a mathematical model of the vessel to
estimate non-measured states and disturbances, like current forces. The control
system then uses the sensor inputs, operator inputs and estimator estimates
and calculates a 3-dimensional control output vector to keep the vessels desired
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position and heading.

τc =

FsurgeFsway
Myaw


The thruster allocation problem is an optimization problem that takes this 3-
dimensional control output vector from the controller and calculates a set-point
for each individual thruster

u =


u1
u2
...
un


where

ui =
(
ui,surge
ui,sway

)
ui is a vector that contains the control input in surge and sway for thruster i.
ui can also be calculated into polar coordinates with a total control input

ui =
√
u2
i,surge + u2

i,sway

for each thruster, and an angle

αi = arctan

(
ui,sway
ui,surge

)
for each thruster. u can be calculated to an RPM and/or pitch for the propeller
blades of the thruster, and the angle α is the input rudder angle or azimuth
angle for the thruster.

Allocating thrust to the different thrusters based on the control output from
the DP system is an optimization problem because most vessels are over ac-
tuated, hence there may be infinitely many thruster configurations that could
produce the desired force. Using an optimization algorithm to solve this prob-
lem creates a lot of opportunities. You can minimize with respect to fuel con-
sumption, force, use of thrusters, change in thrust, turn rate, time for better
manoeuvrability, wear and tear etc. We can also consider forbidden zones as
means of improving fuel consumption, wear and tear etc.
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5.3 Thrust allocation in a DP system
The main objective of a thruster allocation algorithm, is to compute control
inputs for all thrusters, τ , so that they jointly produce the DP commanded forces
and moments, τc, at all time. As mentioned in section 5.2, this is an optimization
problem, since there could be more than one solution to this problem, or no
exact solution at all. In the case of no feasible solution, the thruster allocation
algorithm should find a solution that minimizes the error ε = tauc−τ , between
its solution and the commanded input. Some kind of priority is usually involved,
so that the error of some thrusters are penalized more than others. When the
vessel is over actuated, so that no unique solution exists, other objectives and
constraints can be introduced. Some examples are listed below.

• minimize change in thrust ∆u

• minimize change in azimuth angle ∆α

• minimize fuel or power -consumption

• Avoid forbidden zones or spill zones in order to only use thrusters at their
optimal operation angles

• introduce constraints to minimize wear and tare on thrusters and trans-
missions.

The thrust allocation problem is generally solved by means of non-linear solvers,
but additional logical and operational constraints cannot be taken directly into
account in the standard non-linear formulation. Typical constraints arising by
operational limitations are for instance forbidden sectors. Solving the problem
in a non-linear way may be necessary for achieving the desired performance,
since linearising introduces some errors. Modelling the problem with piecewise
linear functions leads to thruster allocation problem formulations that can be
solved using Mixed Integer Linear Programming (MILP). The motivation for
doing so, is when you have non-convex constraint sets which can be represented
as the union of a small number of polyhedral sets [Johansen and Fossen, 2013].
By introducing forbidden zones, you will get a non-convex set of constraints.
When also modelling the effector as piecewise linear and having piecewise linear
cost function, MILP could be a good solution [Johansen and Fossen, 2013]. This
report will focus on finding a good trade off between actuator model accuracy
and optimization problem complexity using MILP.
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6 Thrust Allocation
The ultimate goal of the thrust allocation optimization problem is, as mentioned
in section 5.3, to ensure that the control forces and moments denoted τc calcu-
lated by the DP-controller is equal to the generalized forces τ calculated by the
thrust allocation algorithm. τ is calculated through some function f(u) where
u is a vector of each thrusters force in surge and sway. A common choice for
f(u) is

f(u) = Bu

where B is a 3× 2n matrix that relates u to forces and moments on the vessel.
However, in this thesis a thrust configuration, given in [Fossen, 2011]

τc = T (α)Ku (1)

will be used.
Here T (α) is the thruster configuration matrix, describing the location and

angle of each thruster and K is a diagonal force coefficient matrix describing the
amount of thrust given by an input u for a given thruster. In the work done in
conjunction with this thesis, K has been chosen such that the input u is given
in the interval u ∈ [0, 1].

This thruster configuration matrix is dependent on the azimuth angles α and
is hence non-linear. In order to avoid this, the rotatable thrusters can be treated
as two forces. The force Fi produced by thruster number i, then becomes the
two forces

Fsurge,i = Ficos(αi)
= Kiuicos(αi)

Fsway,i = Fisin(αi)
= Kiuisin(αi)

where
Fi =

√
F 2
surge,i + F 2

sway,i

Equation (1) then becomes the extended thrust configuration [Fossen, 2011]

τc = TeKeue (2)
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where e denotes extended. The control inputs can then be derived from the
extended control elements by mapping the pairs (usurge,i, usway,i) according to

ui =
√
u2
surge,i + u2

sway,i αi = atan2(usway,i, usurge,i)

where atan2 is the four-quadrant inverse tangent MATLAB function. This
function returns values in the closed interval [−π, π] which may have to be
taken into account in the implementation. In the thrust allocation algorithm
implemented in conjunction with this thesis, thrust in cartesian coordinates has
been used.

6.1 Optimization formulations
Choosing a formulation of the problem is critical for an optimization problem.
You want a formulation that describes the problem accurately enough, but also
a formulation that can be solved within a reasonably short time. For thrust
allocation, if the model is not accurate enough, wrong inputs will be found
for the thrusters, and the vessel will not respond as was intended. However a
problem that is accurate but takes too long to solve is no good either, because
by the time the problem is solved, the position and heading of the vessel may
have changed, and thus the solution would no longer be a viable solution. Some
optimization techniques will now be presented briefly.

6.1.1 Linear Programming

Linear programs (LP) have a linear objective function and linear constraints,
which may include both equalities and inequalities. The feasible set is a poly-
tope, a convex, connected set with flat, polygonal faces. The contours of the
objective function are planar [Nocedal and Wright, 2006]. The standard form
of a linear program is

min cTx, s.t. Ax = b, x ≥ 0 (3)

where c and x are vectors in Rn, b is a vector in Rm and A is a m×n matrix. The
solution of a linear program can be a single vertex, which is a unique solution.
The solution can also be a line, a face or even the entire feasible set, depending
on the problem. The benefit of linear programs is that there are very efficient
algorithms for solving them [Nocedal and Wright, 2006].
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6.1.2 Quadratic Programming

A quadratic program (QP) has linear constraints, as a linear program, but has
a quadratic objective function. A general quadratic program can be stated as

min
x

q(x) = 1
2x

TGx+ xT c

s.t. aTi x = bi, i ∈ E
aTi x ≥ bi, i ∈ I

where G is a symmetric n× n matrix, E and I are finite sets of indices, and c,
x and {ai} ∈ E ∪ I are vectors in Rn [Nocedal and Wright, 2006]. If the QP is
convex it is often similar in difficulty to a linear program. The difference between
QP and LP is the objective function. Here the decision variable(s) are minimized
quadratically and not linearly. This results in QP being less aggressive around
zero than LP, and more aggressive for larger values, as can be seen from figure
4. This can have an influence when minimizing error, but more importantly, as
will be shown later in this report, when minimizing a resource. If two resources
equally influence the total system, a QP solution will divide equally between
the two, while an LP may not. Taking minimizing thrust as an example, if two
thrusters equally contribute to the vessels total force and the solution should
be 1 in total, a QP will divide that equally between the two thrusters, while an
LP may result in using all on one thruster, since i.e. 1 + 0 = 0.5 + 0.5 results in
the same value when minimizing an LP, while 12 + 02 > 0.52 + 0.52 for a QP, so
a QP solver will choose 0.5 for both thrusters while an LP may not. This will
be shown and discussed further later in this thesis.

6.1.3 Mixed Integer Linear Programming

A Mixed Integer Linear Program (MILP) is an optimization method that com-
bines continuous and discrete variables. A general MILP formulation can be
stated as

min
x,y

xT c+ dT y

s.t. Ax+By ≥ b
(x, y) ∈ Rn+ × Zp+

where A is an m×n matrix, B is an m×p matrix, b is an m-dimensional vector, c
is an n-dimensional vector, d is a p-dimensional vector, Rn+ is the n-dimensional
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space of all non-negative real numbers and Zp+ is the p-dimensional space of all
non-negative integers. The set of feasible solutions, X, are defined as

X = (x, y) ∈ Rn+ × Zp+ : Ax+By ≥ b

Integer values can be introduced so that a non-linear function can be approx-
imated as a piecewise linear function, for creating either-or constraints, con-
ditional constraints etc. A MILP equally to an LP minimizes a linear objec-
tive function, and thus faces the same challenges. A MILP problem is gen-
erally solved using a linear-programming based branch-and-bound algorithm
[GUROBI, 2015].
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6.1.4 Mixed Integer Quadratic Programming

A Mixed Integer Quadratic Program (MIQP) is similar to a MILP, but with a
quadratic objective function. Some solvers also allow quadratic cost functions
[GUROBI, 2015] but this report will only consider MIQP with linear constraints.
A MIQP minimizing thrust will be presented and simulated for comparison with
the full MILP formulation.

6.2 Slack variables
As previously stated, the ultimate goal of thruster allocation is to ensure τc = τ ,
and hence

τc = TeKeue. (4)

Now ue has to be chosen such that it fulfils equation (4). It could be reasonable
to choose a least square solution of (4), ‖τc − TeKeue‖2

2 and choose a ue that
minimizes this equation, but this could give many, or even no solution at all
because of physical limitations on the thrusters, thus, an optimization problem
must be formulated to choose the best one. Subscript e will from now on not
be used for simpler notation.

min
s
sTQs (5a)

s.t.

τc = TKu+ s (5b)
umin ≤ u ≤ umax (5c)

∆umin ≤ ∆u ≤ ∆umax (5d)
αmin ≤ α ≤ αmax (5e)

∆αmin ≤ ∆α ≤ ∆αmax (5f)

This is a typical QP formulation of the thrust allocation problem. Here, s is the
decision variable and Q is a square, symmetric and positive definite weighting
matrix. s is the slack variable, and the goal is to minimize s. We see that if
s = 0, τc = TKu = τ , which is the ultimate goal. The reason for introducing
slack variables is the physical constraints on the thrusters, which in this case is
given by equations (5c) - (5f). By introducing s, some deviations from τc = τ
are allowed in the relaxed constraint (5b) for situations where this is just not
possible. With (5b) the optimization problem still has a feasible solution for
the situations were τc = τ is not possible.
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While the constraint (5b) is linear, the constraints (5c) - (5f) are not, because
they describe physical limitations on the thrusters that are not linear. For
instance, for a given thruster ui, the constraint (5c) becomes

ui,min ≤
√
u2
ix + u2

iy ≤ ui,max

and the angle limitation becomes

αi,min ≤ arctan
(
uiy
uix

)
≤ αi,max

which are both clearly non-linear with respect to the decision variables. How-
ever; they can be linearised, which was done in the authors project thesis.

In this thesis, the constraints 5d and 5f will not be included in the opti-
mization problem. The thrust allocation developed in this thesis will find a new
set-point for each thruster, and assume that the controller for each thruster will
make sure the constraints 5d and 5f are satisfied. This can also be included in
the thrust allocation problem by remembering the previous thrust. Constraints
5d and 5f can then be written as

∆umin ≤ ui − ui−1 ≤ ∆umax
∆αmin ≤ αi − αi−1 ≤ ∆αmax

Since part of the objective with this thesis is to find a trade off between model
accuracy and formulation complexity, the time needed to solve the allocation
problem is one of the parameters considered. Since these constraints only add
two constraints to the problem formulation, the additional time the solver needs
are negligible compared to the time needed to solve the whole problem, and thus
these constraints are not included.

6.3 Minimizing thrust
Minimizing slack variables yields a feasible solution, but you will have no control
over the amount of thrust allocated to each thruster. Hence, the solution given
by minimizing slack may yield a very suboptimal solution with respect to fuel
consumption. The common way of solving this issue, is to include a term with
u in the minimization formulation in order to penalize the use of thrust.

The term used to penalize thrust is

uTPu (6)
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where P is a square, symmetric and positive definite weighting matrix, similar
to Q in the sTQs term presented in the previous section. How much the thrust
is penalized depends on the terms in P. Generally, uTPu is used together with
the sTQu term, were the weights in Q� P to make sure that the main priority
is obtaining the DP-order τc [Rindarøy, 2013].

Minimizing thrust is reasonable in order to reduce wear and tare, and to
prevent the thrusters from going on full throttle all the time. However, it is
not equivalent to minimizing power or fuel consumption. Power has a non-
linear relationship with thrust. Hence, minimizing thrust is not equivalent to
minimizing power or fuel consumption. This will be expanded on in the following
sub sections.

6.4 Minimizing power
As mentioned in the previous sub section, minimizing thrust is not equivalent
to minimizing fuel or power consumption, but minimizing thrust will probably
reduce power consumption for the vessel, since less thrust will be used. The
relationship between thrust and power consumed by a given thruster is

pTi
= |Ti|3/2 (7)

where
Ti =

√
u2
i,surge + u2

i,sway

and pTi is the power consumed by thruster number i. This term must be
included in the objective function for each thruster. Hence, an objective function
for minimizing slack and power consumption would have the following form

J = sTQs+
n∑
i=1

pTi

equation 7 is clearly not linear, and has to be linearised in order to be able
to use a linear solver. [Ruth, 2008] presents a quadratic approximation of this
term as

pTi ≈ p
Q
Ti

= T 2
i√

|Ti,prev|

which can be used for formulating a QP formulation, since Ti =
√
u2
i,surge + u2

i,sway.
[Rindarøy, 2013] implemented this in his master thesis using the term

uTHu
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in the objective function where

H =



1
γ1
√
T1,prev

0 0 · · · 0

0 1
γ1
√
T1,prev

0
...

...
...

...
. . .

...
...

0 · · · · · · 1
γn

√
Tn,prev

0
0 · · · · · · 0 1

γn

√
Tn,prev


where γi is a weighting factor introduced by [Rindarøy, 2013], allowing for dif-
ferent penalization for different thrusters further explained in [Rindarøy, 2013].
Note that each term appears twice on the diagonal, since

ui =
(
ui,surge
ui,sway

)
In this thesis, power minimization will be included in a MILP formulation using
special ordered set of type 2 (SOS2) variables. SOS2 variables is a vector of
variables where at most two of the variables are non-zero, and the non-zero
variables must be consecutive in their ordering [Löfberg, 2015c]. SOS2 variables
will be used to add the thrust-power relationship as a piecewise linear function.
By using piecewise linear approximation of the thrust-power relationship, any
non-linear relationship can be included in the optimization problem. The power
will be approximated as

pTi = |Ti|3/2 (8)

with an associated weighting vector, R, resulting in the following linear objective
function

min
s,pTi

Qs+RpTi
(9)

6.4.1 Power constraints

In order to make sure thrusters do not consume more power than what is avail-
able, we can put a constraint on power. For electric thrusters driven by power
generators, you want to make sure the accumulated power consumed by all the
thrusters does not exceed the capacity of the generators [Veksler et al., 2012].
This must be put as a constraint

pTi = |Ti|3/2 ≤ pmax
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where Ti is the thrust as explained above, and pmax is the power generators
maximum capacity. This has not been implemented in the simulations done in
conjunction with this report, because the power supply on the model ship is
able to provide the thrusters with enough power even when they all run on full
throttle. This is trivial to implement and has no significant impact on the total
complexity of the problem.

6.5 Minimizing fuel consumption
Minimizing fuel consumption as supposed to minimizing power is a problem
involving much more than the power used by the different thrusters. A typical
vessel has one or more power generators providing power not only to the propul-
sion and thruster system, but to the rest of the vessel as well [Rindarøy, 2013].
Minimizing fuel instead of power therefore heavily rely on other consumers
than the thrust and propulsion system. Other consumers may include hotel
loads, drilling units, cranes, pumps, heave compensation systems and many
more [Veksler et al., 2012]. If you only have electrically driven thrusters and
propellers and one electrical board, minimizing fuel and power will probably
yield the same result. However, if you have diesel driven propellers or thrusters,
or more than one electrical board, minimizing fuel instead of power may ben-
efit the fuel consumption. In this thesis, minimizing fuel consumption will not
be implemented, but a thrust to fuel relationship could be implemented as a
piecewise linear function using special ordered set of two (SOS2) variables.

16



7 Modelling constraints
In this section the modelling of the different actuators are presented. The big-
M technique used to include forbidden sectors are also explained in detail, as
understanding big-M is a key part of the modelling of forbidden sectors done in
this thesis.

7.1 Polygon Approximation
The Polygon Approximation is a method for approximating a circular area as
an N-sided polygon made out of a set of N linear inequalities. Parts of this
section is taken from the authors project thesis.

The thrust produced by an azimuth thruster is given by

T ≤
√
u2
surge + u2

sway (10)

This thrust, T, is bounded by some physical limitation in the thruster, such
that T ≤ Tmax, which draws a circular area in the surge-sway plane. Equation
10 is clearly non-linear, but can be linearised using the Polygon Approximation.
With the Polygon Approximation, we wish to approximate the circle with an
N-sided polygon fitted inside the circle.

7.1.1 Polygon Approximation error

Given a circle with radius Tmax = R > 0, the polygon approximation fits a
N-sided polygon within this circle, as shown in figure 5. Fitting another circle
inside the polygon will give the maximum approximation error. The inner circle
will have a radius

r = Rcos
( π
N

)
(11)

Hence, the maximum approximation error, ε, is given by the difference between
the two radii R and r,

ε = R− r = R
(

1− cos
( π
N

))
(12)

Thus, the maximum approximation error depends on the maximum thrust,
Tmax = R and the number of sides, N , of the polygon. The minimum number
of sides for a given maximum thrust and allowed error is therefore given by

N ≥

⌈
π

arccos
(
1− ε

R

)⌉ (13)
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Figure 5: The thrust approximated by an N-sided polygon. Here, N = 8.

R > 0. As given by 12, the more sides used to approximate the circle, the
more accurate it will be. However, the complexity of the problem regarding
the number of equations the solver has to check also grows accordingly. Hence,
a good trade of between model accuracy and complexity of the optimization
problem must be found.

7.1.2 Calculating the polygon

Each side of the polygon will be given as a linear inequality constraint in the
optimization problem. Letting i be one side of the polygon, r will be perpendic-
ular to i and intersect in the middle of i. θ is the angle that one side, i, spans
over, hence, i and r will intersect at θ/2. The slope of r, ∆r is given by

∆r = sin(θ/2)
cos(θ/2) (14)

and the slope of i, ∆i is therefore

∆i = − 1
∆r = − cos(θ/2)

sin(θ/2) (15)
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since i and r are perpendicular. The point where i and r intersect, p = (x1, x2)
is given by

x1 = rcos(θ/2)
x2 = rsin(θ/2)

Given the equation for a straight line, we get

x2 = ax1 + b (16)

where a is the slope, ∆i, and b is the intersection point with the y-axis, in our
case, usurge-axis. By inserting p = (x1, x2) and a = ∆i into 16, we get

rsin(θ/2) = − cos(θ/2)
sin(θ/2) · rcos(θ/2) + b (17)

and thus
b = rcos(θ/2) + cos2(θ/2)

sin(θ/2) (18)

Inserting this back into 17, yields the equation for one of the N sides in the
polygon

x2 = − cos(θ/2)
sin(θ/2) · x1 + rsin(θ/2) + cos2(θ/2)

sin(θ/2) (19)

multiplying with sin(θ/2) and rearranging yields

x2sin(θ/2) + x1cos(θ/2) = r
(
sin2(θ/2) + cos2(θ/2)

)︸ ︷︷ ︸
= 1

and thus, the equation for one of the N sides in the polygon is

r = x2sin(θ/2) + x1cos(θ/2) (20)

Generalizing equation 20 with usurge = x1, usway and angle θk, the approx-
imated polygon thrust region becomes the following set of linear inequalities
[Wit, 2009]

[cos(θk), sin(θk)]
(
usurge
usway

)
≤ r (21)

for every
θk = π

N
+ k

2π
N
, k = 0, ..., N − 1
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So, for a set of n azimuth thrusters, the linear inequality constraints can be put
as

Cu ≤ r

where

C =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 0 Cn



Ci =


sin(θ0) cos(θ0)
sin(θ1) cos(θ1)

...
...

sin(θN−1) cos(θN−1)



r =


r1
r2
...
rn



ri =


r
r
...
r



u =


u1
u2
...
un


ui =

(
ui,surge
ui,sway

)
The matrix Ci holds the N linear equations describing the approximated polygon
that constrains the thrust produced by thruster number i. The vector ri contains
the maximum value thrust, specified by r for thruster number i. Hence, for each
i, Ciui ≤ ri is equation (21).
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7.2 Forbidden sectors

Although an azimuth thruster is able to rotate 360◦, it may not be desirable to
operate on all angles. For instance, we do not want to flush other thrusters or
disturb equipment mounted on the vessel near the thruster. These unwanted
operation areas are called forbidden sectors. A way to formulate forbidden
sector is that the azimuth angle, α, is only allowed to take certain values, for
instance

α ∈
[
0, 3π

4

)
∪
(

5π
4 , 2π

]
(22)

where the forbidden zone is α ∈
[ 3π

4 ,
5π
4
]
.

7.2.1 Formulating forbidden zones

The formulation given in 22 is one way to formulate a forbidden sector, but
we need a linear formulation. The linearisation also has to be convex, or a
combination of convex sets. In this thesis, this problem is solved by doing a
big-M reformulation. In this section, the big-M reformulation technique is first
explained, and then used in order to exclude forbidden sectors from the feasible
set for a thruster in the thrust allocation problem.

Big-M reformulation
Big-M reformulations are used to convert a logic or non-convex constraint to a
set of constraints describing the same feasible set, using auxiliary binary vari-
ables and additional constraints [Löfberg, 2015a]. A common approach to big-M
modelling, is to add very big constraints in order to make sure the big-M model
includes everything it should. This will work, but will give very bad and essen-
tially useless models. The big-M reformulations will feature terrible numerical
behaviour, and the relaxations of the big-M model that are used in the mixed in-
teger solver will be very weak, leading to excessive branching and thus increased
computation time [Löfberg, 2015a].

As mentioned, a problem with the big-M model is when the big-M constant
is chosen to large, and hence creating an unreasonable large feasible set. The
consequence is, besides poor numerics, the weakness of the relaxed mixed integer
model. To illustrate the problem, take the 4 polytopic regions shown in figure
6. These are 4 random polytopic regions, constraining a variable x, given by
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Figure 6: A plot of 4 polytopic regions constraining a variable x

the equations

A1 · x ≤ b1
A2 · x ≤ b2
A3 · x ≤ b3
A4 · x ≤ b4
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The big-M model for this case is given by

F = sum(d) = 1
F = [F,A1 · x− b1 ≤M1 · (1− d(1))]
F = [F,A2 · x− b2 ≤M2 · (1− d(2))]
F = [F,A3 · x− b3 ≤M3 · (1− d(3))]
F = [F,A4 · x− b4 ≤M4 · (1− d(4))]

where d is an array of 4 binomial variables, and M1,M2,M3,M4 are the big-
M constants. F is the big-M model. Choosing a to large value for the big-M
constants, for instance 50, will lead to a poor model, shown in figure 7. This is

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

x1

x 2

Figure 7: The relaxed mixed integer model using M = 50

clearly not a good approximation of the true feasible set. A better big-M model
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is obtained by using reasonable and thought through big-M constants. A good
big-M constant is based on insight in the original model. In this case it is hard
to choose a good big-M constant, since the data is randomly generated, but
by using the hull command [Löfberg, 2015b], figure 8 shows the optimal big-M
model for this case.
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Figure 8: The relaxed mixed integer model of an optimal big-M model, using
the convex hull of the original constraints

The goal in creating a big-M model is to create a model whose relaxation is
as close as possible to the convex hull of the original constraints. The convex
hull of a set of points, vectors or sets, x = x1, x2, ..., xn is the smallest convex
set containing all the points, vertices or sets [Nocedal and Wright, 2006]. Using
predefined commands, such as hull in YALMIP, will introduce more variables
and constraints. This may often yield a good model, but the best approach is

24



defining the model yourself, so that you can control all variables and constraints.
This, however, demands a good knowledge of what you are modelling.

Big-M reformulation for a forbidden sector
In this thesis, big-M is used to exclude forbidden sectors from the thrusters
feasible set. In addition to the polygon approximation, two linear constraints
is added excluding the forbidden sector from the feasible set. This results in
two halves partially overlapping on the opposite side of the forbidden sector, as
shown in figure 9. these lines are given by the following equations
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Figure 9: Plot of a forbidden sector constructed of two half circles
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A =
[
cos
(
αstart + π

2
)
, sin

(
αstart + π

2
)]
· u ≤ 0

B = −
[
cos
(
αend + π

2
)
, sin

(
αend + π

2
)]
· u ≤ 0

where u is the thrust
u =

(
usurge
usway

)
and αstart and αend are the angles at which the forbidden sector starts and ends,
given counter clockwise from the positive usurge axis. This is implemented in
MATLAB with the following code.

A = [ [ cos ( a lphaStar t + pi /2) , s i n ( a lphaStar t + pi / 2 ) ]∗u <= 0 ] ;
B = − [ [ cos ( alphaEnd + pi /2) , s i n ( alphaEnd + pi / 2 ) ]∗u <= 0 ] ;
A = [A, polygonApproximation ] ;
B = [B, polygonApproximation ] ;

where polygonApproximation is the set of constraints constructing the polygon
approximation as explained in section 7.1. The implementation of this technique
will be expanded on in later sections.

As these two half circles creates a non-convex set, it has to be reformulated
in order to be used in a mixed integer linear program. These two half circles
are in this thesis combined using a big-M formulation. Two binary variables are
introduced to switch between the two half circles, and a big-M constant is added
to shift the non-active constraint so that includes the active half circle. This is
done for each forbidden sector, hence introducing 2 variables and 2 constraints
per forbidden sector. The relaxed set will always be the polygon approximation
using this technique. That will, for many configurations of forbidden sectors,
not make the minimum relaxed set, but very close to it, and you keep control
of all constraints and variables creating the constraint set.

The lines creating the forbidden sector are shifted, as explained above, by
introducing the following term.

A =
[
cos
(
αstart + π

2
)
, sin

(
αstart + π

2
)]
· u ≤ 0 +M(b(1)− 1)

B = −
[
cos
(
αend + π

2
)
, sin

(
αend + π

2
)]
· u ≤ 0 +M(b(2)− 1)

where b is a vector of two binary variables, and M is the big-M constant. This
big-M constant must be chosen large enough that it includes what should be
feasible, but not more than that. As [Löfberg, 2015a] explains it, it should
rather be named the ”sufficiently-large-small-M” rather than big-M. We want
the big-M constant to be sufficiently large so that it includes the other half circle.
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The smallest big-M we can choose is M = umax, where umax is the radius of
the feasible thrust circle. Hence, the equations for the two lines becomes

A =
[
cos
(
αstart + π

2
)
, sin

(
αstart + π

2
)]
· u ≤ 0 + umax(b(1)− 1)

B = −
[
cos
(
αend + π

2
)
, sin

(
αend + π

2
)]
· u ≤ 0 + umax(b(2)− 1)

Combined with the equations making the polygon approximation, we now have
a set of constraints for a thruster with one or more forbidden sectors. Explained
in logics, a point is feasible if it lies in the polygon approximation, and in A or
B. For more forbidden sectors, 2 more constraints and variables are added for
each forbidden sector. For n forbidden sector the constraint set becomes

Constraints = Cu ≤ r &
n∑
i=1

(Ai|Bi) (23)

where Cu ≤ r is the polygon approximation, and Ai and Bi are the two halves
for forbidden sector number i for n forbidden sectors.

This method will, as mentioned, not make the minimum relaxed set possible
for all configurations of forbidden sectors, but will only introduce two variables
and to constraints per forbidden sector in addition to the polygon approximation
constraints. Using the hull command would probably introduce more constraints
and variables [Löfberg, 2015b], and thus mitigating the advantage of a smaller
relaxed set.

7.3 Asynchronous tunnel thruster
Some tunnel thrusters may be asynchronous, meaning they can produce more
force in one direction than the other. This is due to mechanical design of the
thruster, usually to optimize thrust in one direction. This results in

|B · u−| ≤ |B · u+| (24)

where u− is negative thrust, u+ is positive thrust and B is the matrix that
relates u to forces and moments on the vessel from equation 6. The matrix B
consists of T and K, as explained in section 6, where T describes the location
and angle of each thruster and K describes the amount of thrust given by an
input u for a given thruster. As an approximation, the asynchronous tunnel
thruster in this thesis is implemented so that the tunnel thruster has a percent
wise effect in one direction compared to the other,

|B · u−| = a|B · u+| (25)
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where a is an asynchronous-constant a ∈ [0 1] where a = 0 means the tunnel
thruster can not go in reverse and a = 1 means the tunnel thruster is syn-
chronous.
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8 Problem formulations
In this section the final formulations to be implemented will be presented.

8.1 LP formulation
The final LP formulation to be implemented is

min
u+,u−,s+,s−

[
Q, Q, P, P

] 
s+

s−

u+

u−

 (26a)

s.t.

[
B, B, I, I

] 
u+

−u−

s+

−s−

 = τc (26b)

u+ ≥ 0 (26c)
u+ ≤ umax (26d)
u− ≤ 0 (26e)

−u− ≤ umax (26f)
s+ ≥ 0 (26g)
s− ≤ 0 (26h)

where Q and P are weighting row-vectors. Constraints 26c - 26f are implemented
as written above for tunnel thrusters, and using the polygon approximation for
azimuth thrusters. Constraints 26g and 26h are also implemented as written
above. u+ and u− are for azimuth thrusters also divided into u+

surge and u−
surge

for both surge and sway, so that

uabs =
[
u+
surge − u−

surge

u+
sway − u−

sway

]
u = =

[
u+
surge + u−

surge

u+
sway + u−

sway

]
for all azimuth thrusters.
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8.2 QP formulation

The final QP formulation is similar to the LP formulation, but without having
to divide all variables into a positive and negative part.

min
u,s

sTQs+ uTPu (27a)

s.t.[
B, I

] [u
s

]
= τc (27b)

umin ≤ u ≤ umax (27c)

where Q and P are square, symmetric and positive definite weighting matrices.
Constraint 27c are implemented as written for the tunnel thruster, and using
the polygon approximation for the azimuth thrusters.

8.3 MILP formulation

The MILP formulation is equal to the LP formulation, but with additional
logical constraints including forbidden sectors to the problem, with |B−| ≤ |B+|
for the tunnel thruster, making it asynchronous, and with a piecewise-linear
function approximating the power consumption which is minimized instead of
the thrust. The forbidden sectors are added as

aTi uj ≤ 0 + uj,max(1− bi) (28a)
bTi uj ≤ 0 + uj,maxbi (28b)

where 28a creates the line where forbidden sector i for azimuth thruster j starts,
and 28b creates the line where forbidden sector i for azimuth thruster j ends.
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The final formulation becomes

min
u+,u−,s+,s−

[
Q, Q, R, R

] 
s+

s−

p+

p−

 (29a)

s.t.

[
B, B, I, I

] 
u+

−u−

s+

−s−

 = τc (29b)

u+ ≥ 0 (29c)
u+ ≤ umax (29d)
u− ≤ 0 (29e)

−u− ≤ umax (29f)
s+ ≥ 0 (29g)
s− ≤ 0 (29h)

aTi uj ≤ 0 + uj,max(1− bi) (29i)
bTi uj ≤ 0 + uj,maxbi (29j)

p+ =
n∑
i=1

λ+
i p

+
i (29k)

p− =
n∑
i=1

λ−
i p

−
i (29l)

n∑
i=1

λ+
i = 1 (29m)

n∑
i=1

λ−
i = 1 (29n)

0 ≤ λ+
i ≤ 1 (29o)

0 ≤ λ−
i ≤ 1 (29p)

where p+ is the power consumed by positive thrusts, and p− is the power
consumed by negative thrusts, positive and negative in the surge-sway plane. pi
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are the power related to λi in the piecewise linear function. The SOS2 variables
λi has the property that only two adjacent variables can be non-zero.

8.4 MIQP formulation
The MIQP formulation is equal to the MILP formulation, but with quadratic
cost function

min
u,s

sTQs+ uTPu (30a)

For the MIQP simulations, thrust is minimized instead of power. This is because
a piecewise linear approximation introduces a lot of additional equations and
variables, and there is a quadratic approximation of power by [Rindarøy, 2013]
which would be more efficient to implement. This approximation is not imple-
mented in this thesis, please see [Rindarøy, 2013] for more information about
this approximation.

The final formulation is

min
u,s

sTQs+ uTPu (31a)

s.t.[
B, I

] [u
s

]
= τc (31b)

umin ≤ u ≤ umax (31c)
aTi uj ≤ 0 + uj,max(1− bi) (31d)
bTi uJ ≤ 0 + uj,maxbi (31e)

(31f)
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9 Implementation

9.1 CyberShip Enterprise 1
The model ship C/S Enterprise 1 is used for model-scale experiments in the
NTNU model basin Marine Cybernetics Laboratory. The thruster configura-
tion, shown in figure 10 [Skjetne and Øivind K. Kjerstad, 2013], consists of two
aft Voith Schneider thrusters having circular thrust regions, and a bow tunnel
thruster producing thrust in the transversal direction
[Skjetne and Øivind K. Kjerstad, 2013].

Figure 10: A figure of the thruster configuration on CyberShip Enterprise 1
(CSE1)

The linear effector model is

τ = Tf, f = Ku,⇒ τ = TKu = Bu (32)

τNτX
τY

 =

−ly1 lx1 −ly2 lx2 lx3
1 0 1 0 0
0 1 0 1 1



fx1
fy1
fx2
fy2
fy3



fx1
fy1
fx2
fy2
fy3

 =


fM1 0 0 0 0

0 fM1 0 0 0
0 0 fM2 0 0
0 0 0 fM2 0
0 0 0 0 fM3



ux1
uy1
ux2
uy2
uy3
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where fi are the individual thruster forces within maximum values fMi. In
this thesis, as in [Skjetne and Øivind K. Kjerstad, 2013], the controls are scaled
through the gains in K such that |ui| = 1 ⇒ |fi| = |fMi|. Here, yb = usway
and xb = usurge The thrust allocation algorithm made in conjunction with this
thesis is not implemented on the model ship, only simulated in MATLAB using

l1 =
[
−0.425
−0.055

]
l2 =

[
−0.425
0.055

]
l3 =

[
0.425
0.000

]
fiM = 2.5

and, as mentioned, |ui| ∈ [0, 1].

9.2 Polygon Approximation
The polygon approximation from section 7.1 is implemented as a function of N
and umax where N is the number of linear constraints the circle is approximated
of.
k = [ 0 :N−1] ;
the ta s = [ p i /N + k∗(2∗ pi /N ) ] ;
f o r i = 1 : l ength ( the ta s ) % length ( the ta s ) = N

Ck( i , 1 ) = s i n ( the ta s ( i ) ) ;
Ck( i , 2 ) = cos ( the ta s ( i ) ) ;
r ( i , 1 ) = u max∗ cos ( the ta s ( 1 ) ) ;

end
The function returns a N × 2 matrix Ck and a N × 1 vector r and the resulting
constraint set becomes Cku ≤ r. In this thesis the approximation is done using
N = 16 which results in an approximation error of

ε = R− r = R
(

1− cos
( π
N

))
= 1

(
1− cos

( π
16

))
≈ 0.0192

hence at most 1.92% error. The resulting constraint set is shown in figure 11.
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Figure 11: Plot of the polygon approximation using N = 16 and |umax| = 1

9.3 Explicit constraints on thrust
YALMIP demands explicit constraints on thrust and all other decision variables
when formulating a mixed integer problem. Explicit meaning constraints that is
not hidden in functions and logic. For an azimuth thruster in a linear problem,
the explicit constraints becomes

u1 surge pos = sdpvar ( 1 , 1 ) ;
u1 surge neg = sdpvar ( 1 , 1 ) ;
u1 sway pos = sdpvar ( 1 , 1 ) ;
u1 sway neg = sdpvar ( 1 , 1 ) ;
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Const ra in t s u1 = [ u1 surge pos >= 0 , u1 surge pos <= u1 max ] ;
Const ra in t s u1 = [ Constra ints u1 , u1 surge neg <= 0 ] ;
Const ra in t s u1 = [ Constra ints u1 , −u1 surge neg <= u1 max ] ;
Const ra in t s u1 = [ Constra ints u1 , u1 sway pos >= 0 ] ;
Const ra in t s u1 = [ Constra ints u1 , u1 sway pos <= u1 max ] ;
Const ra in t s u1 = [ Constra ints u1 , u1 sway neg <= 0 ] ;
Const ra in t s u1 = [ Constra ints u1 , −u1 sway neg <= u1 max ] ;

u1 abs = [ u1 surge pos − u1 surge neg ; . . .
u1 sway pos − u1 sway neg ] ;
u1 = [ u1 surge pos + u1 surge neg ; . . .
u1 sway pos + u1 sway neg ] ;

for each azimuth thruster. u1 abs is used for minimization and u1 is used in the
objective function. For a quadratic formulation there is no need for dividing the
decision variable into a positive and a negative part, since the squared thrust is
minimized, so the explicit constraints becomes

u1 = sdpvar (2 , 1 ) ; % [ u surge ; u sway ]

Const ra in t s u1 = [ u1 (1 ) <= u1 max , −u1 (1 ) <= u1 max ] ;
Const ra in t s u1 = [ Constra ints u1 , u1 (2 ) <= u1 max ] ;
Const ra in t s u1 = [ Constra ints u1 , −u1 (2 ) <= u1 max ] ;

These constraints creates a square which encloses the polygon approximation,
and thus has no effect on the feasible set, but is necessary due to the nature of
YALMIP.

9.4 Forbidden sectors
The implementation of forbidden sectors was briefly explained in section 7.2.1,
where it was mentioned that a forbidden sector is added with the following code

A = [ [ cos ( a lphaStar t + pi /2) , s i n ( a lphaStar t + pi / 2 ) ]∗u <= 0 ] ;
B = − [ [ cos ( alphaEnd + pi /2) , s i n ( alphaEnd + pi / 2 ) ]∗u <= 0 ] ;
A = [A, polygonApproximation ] ;
B = [B, polygonApproximation ] ;

For ease of modelling, a function for making the constraint set of a thruster
was made. This function calls the function making the polygon approximation,
and then adds forbidden sectors to it, if any. The function takes two vectors of
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angles, alphaStart and alphaEnd, which are the start and end angle of forbidden
sectors. The code above is thus expanded to

Const ra in t s = [ ] ;
f o r i = 1 : l ength ( a lphaStar t )

A = [ [ cos ( a lphaStar t ( i ) + pi / 2 ) , . . .
s i n ( a lphaStar t ( i ) + pi / 2 ) ]∗u <= 0 ] ;

B = − [ [ cos ( alphaEnd ( i ) + pi / 2 ) , . . .
s i n ( alphaEnd ( i ) + pi /2 ) ]∗u <= 0 ] ;

A = [A, polygonApproximation ] ;
B = [B, polygonApproximation ] ;
Const ra in t s = [ Constra ints , A, B ] ;

end

The function can add an arbitrary amount of forbidden sectors. Figure 12 shows
the plot of a thrusters feasible set with 3 forbidden sectors from π/8 to 7π/8,
7π/8 to 17π/18 and from 11π/8 to 13π/8.
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Figure 12: A plot of a thrusters feasible area with 3 forbidden sectors

The lines creating the forbidden sectors are made feasible for two reasons.
One, in order to make zero thrust a feasibility, and two, in order to be able to
reuse the same function when making the feasible set of a main propeller-rudder
pair.

9.5 Main propeller and rudder
The feasible region of a main propeller with a rudder consists of a cone in the
direction of the rudder, and a straight line in the opposite direction for going
in reverse where the rudder has no effect. The function made for creating the
feasible set of an azimuth thruster with forbidden sectors was implemented so
that the start and en angles of a forbidden sector was made feasible, which
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they have to in order to make zero thrust a feasibility. This also makes it
easy to create the feasible region of a main propeller-rudder pair. The feasible
region is made by introducing two forbidden sectors. Two forbidden sectors
are introduced from reverse to the maximum deflection of the rudder in both
directions. The resulting plot for a Main propeller-rudder pair where the rudder
can move π/4 radians in both directions are shown in figure 13.
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Figure 13: A plot of the feasible set of a main propeller-rudder pair, where the
rudder can move 45◦ in both directions

It is assumed that the resulting maximum thrust is independent of the rudder
angle, which is probably an oversimplification of the truth. The maximum
thrust will probably decay with increasing deflection angle on the rudder. This
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can easily be implemented, but has not been done in this thesis. Simulations
using propeller-rudder pairs has been performed, switching out the azimuth
thrusters on C/S Enterprise 1 with propeller-rudder pairs, but plots from these
simulations will not be presented in this report in order to reduce the amount
of plots, and because this configuration and use of actuators is probably not
realistic.

9.6 Tunnel thruster
The constraints for a tunnel thruster is simply

u tunne l pos = sdpvar ( 1 , 1 ) ;
u tunne l neg = sdpvar ( 1 , 1 ) ;

Const ra in t s = [ u tunne l pos >= 0 ] ;
Const ra in t s = [ Constra ints , u tunne l pos <= u3 max ] ;
Const ra in t s = [ Constra ints , u tunne l neg <= 0 ] ;
Const ra in t s = [ Constra ints , −u tunne l neg <= u3 max ] ;

u3 = u tunne l pos + u tunne l neg ;
u3 abs = u tunne l pos − u tunne l neg ;

for a linear problem and

u tunne l = sdpvar ( 1 , 1 ) ;

Const ra in t s = [ u tunne l <= u3 max ] ;
Const ra in t s = [ Constra ints , −u tunne l <= u3 max ] ;

for a quadratic problem. This models a symmetric tunnel thruster which can
produce equal thrust in both directions. For an asynchronous tunnel thruster,
|Bu−| <= |Bu+|, so also the quadratic model must have a positive and a
negative part. The asymmetry is introduced by

u3 = u tunne l pos + a s y m e t r i c t u n n e l c o n s t ∗ u tunne l neg ;
u3 abs = u tunne l pos − a s y m e t r i c t u n n e l c o n s t ∗ u tunne l neg ;

where asymetric tunnel const is the a in equation 25. Now the thrust of the
tunnel thruster can take values from -1 to 1, but the resulting thrust acting on
the vessel will only range from -a to 1. Other asynchronous relationships being
more non-linear could also be implemented using a piecewise linear function
approximating the relationship.
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9.7 Piecewise linear approximation of power

For repetition, the relationship between thrust and power is

pTi = |Ti|3/2 (33)

where Ti is thrust and pTi
is power for thruster number i. In a MILP formu-

lation, the decision variable for an azimuth thruster is already split into usurge
and usway which again are split into a positive and a negative part. All these de-
cision variables must be related to power with a piecewise linear approximation.
This results in 4n new constraint equations and decision variables per azimuth
thruster or propeller-rudder pairs, and 2n new constraint equations and decision
variables for tunnel thrusters, where n is the number of lines used in the ap-
proximation. Although a lot of the equations are removed by the presolver, this
is adding a lot of complexity to the problem. Figure 14 shows 3 examples of the
piecewise-linear approximation using 3, 5, and 10 lines in the approximation.
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The number of lines used in the approximation will be discussed and ex-
panded on later in this report. Piecewise-linear approximation of power has
only been implemented in the MILP formulation, not in the MIQP. This is be-
cause e.g. [Rindarøy, 2013] has included a quadratic approximation of power,
which will be much more efficient to solve, because it does not introduce more
variables and equations to the problem, which a piecewise-linear approximation
does. It is important to note that the main objective here is to see if including
a thrust-power relationship as a piecewise linear makes the problem to complex
to solve within a reasonable time or not, and not the accuracy of the relation-
ship. This relationship will depend greatly on the thruster, and will have to
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be approximated for the specific vessel and thruster. Power consumption also
depend on how much the thruster is moved between each iteration, which is not
considered in this thesis. The relationship chosen to be approximated in this
report is from [Rindarøy, 2013].
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10 Simulations and results
In this section, several simulations and their results will be presented and com-
mented on. The simulations are done in MATLAB using the YALMIP modelling
language and with a CPLEX solver integrated with MATLAB and YALMIP.
The simulations will be of increasing complexity, gradually adding on more con-
straints to the problem. For the first simulation, a lot of plots will be presented,
while for the consecutive simulations, a subset of these plots will be presented
in order to reduce the amount of plots. Additional plots can be found i the
appendix. The simulation is a simple thrust allocation for every possible input
from a DP system or joystick. The demanded force, τc has been iterated from
fmin to fmax with 1.0 increments for τX , τY and τN and a set-point thrust
allocation has been performed.

f o r tau X = −f1 max : 1 : f1 max
f o r tau Y = −f2 max : 1 : f2 max

f o r tau N = −f3 max : 1 : f3 max
runAl loca t i on ( ) ;

end
end

end

Not all of these demanded forces are feasible to achieve due to the configura-
tion of thrusters on the ship. The results of the simulations will be presented
consecutively, sacrificing some layout norms, in an attempt not to confuse the
reader with which results belong to which simulation.

10.1 Linear Program

The linear program is the basis of the mixed integer linear program, and will
also work as a reference for the additional logic added in the MILP formulation
to see how it affects the solution. The linear program is modelled by adding
polygon approximation constraints limiting the two azimuth thrusters, and a
limit on the tunnel thruster. The weights in this simulation has been chosen to
Q = [1000, 1000, 1000, 1000, 1000] and P = [1, 1, 1, 1, 1].

First, all allocated thrusts has been plotted in their feasible area, to see that
the constraints are held, and how the thrusts are distributed. As shown in figure
15, the distribution of thrust between azimuth thruster 1 and 2 does not look
right.
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Because azimuth thruster 1 and 2 lies in the same distance from the center of
mass on the vessel, they contribute the same force per thrust to the vessel. Since
the LP solver tries to minimize a linear thrust, it will start by using azimuth
thruster 1 until it reaches its maximum. It will then add the rest of the total
thrust needed to azimuth thruster 2 in order to achieve enough total thrust. The
more power efficient way would be to distribute the total thrust evenly between
the two thrusters. This happens because there is no information in the LP
formulation saying that two thrusters at half speed is more power efficient than
running one at full speed. This is one of the reasons a thrust-power relationship
is important to add in a linear formulation. The plot of the thrust given by the
tunnel thruster is not presented in this report, as it is simply arrows distributed
on a line from −1 to 1, but can, for the particularly interested, be found in
appendix A.

Figure 16, 17 and 18 shows the demanded τc compared to the τ calculated
from the allocated thrusts for τX , τY and τN . As the figures shows, the vessel
is saturated for some combinations of demanded force, which is expected. Al-
though τX , τY and τN separately can range from −2.5 to 2.5, it depends on the
the combination of demanded forces. For instance, τc = [2.5, 0, 0]T is possible
to achieve, while τc = [2.5, 2.5, 2.5]T is not. We also see that τX only has minor
numerical errors, while τY and τN has larger errors. This is as expected, because
τX is directly affected by the tunnel thruster, while τY is not. Furthermore, we
see from the model equations 32 that thrust from the different thrusters has
more impact on τX than τN , which explains why τN has more errors than τX ,
but less than τY because τN is affected some by the tunnel thruster, while τY
is not affected by the tunnel thruster at all.

The time needed to solve this formulation is negligible, i.e. ≈ 0.02s.
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Figure 15: Plots of the allocated thrust from an LP formulation for the two
azimuth thrusters when iterating over all possible demanded τc with a 1.0 in-
crement
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Figure 16: Calculated τX for the allocated thrust when simulating an LP for-
mulation for all possible demanded τc with 1.0 increments
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Figure 17: Calculated τY for the allocated thrust when simulating an LP for-
mulation for all possible demanded τc with 1.0 increments
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Figure 18: Calculated τN for the allocated thrust when simulating an LP for-
mulation for all possible demanded τc with 1.0 increments
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10.2 Quadratic Program
The Quadratic program is equal to the linear program, except that we do
not have to separate the positive and negative part, because the squared de-
cision variable is minimized. The weights in the cost function in the simu-
lation has been chosen to Q = diag([10000, 10000, 10000, 10000, 10000]) and
P = diag([1, 1, 1, 1, 1]). The constants in the weighting matrix Q is larger than
in the LP formulation, this is because a QP tends to be less aggressive around
small errors than an LP, so this is done to compensate for that. Large errors
are more penalized in a QP than an LP, so this will enhance that effect.

When the squared thrust is minimized, the solver will divide thrust evenly
between azimuth thruster 1 and 2 as explained in section 6.1. This can be seen
in figure 19.

This is a more intuitive distribution of thrust between the two thrusters.
We see that the thrust is centralised in two slightly tilted squares. These are
tilted because of the position of the thrusters relative to the vessels centre of
mass. In addition, there are two fans of thrust for both thrusters which are
thrust used to produce more torque on the vessel (τN ). Although power is not
included in this formulation, the solver gets information that thrust is expensive
with square growth, and thus chooses to divide thrust as evenly as possible
between the thrusters. As a result, the solution will consume less power than
the LP solution. Since power is still not included in the formulation, the solution
gives no information about the amount of power used. Therefore, one can not
constrain the total amount of power consumed.

The errors are also more evenly distributed, since the error now is penalised
cubed. τY still has the largest errors due to the configuration of the thrusters,
but the errors on τX and τN are more even. This is because the QP will strongly
punish large errors, and be less aggressive on small errors, so instead of a correct
τX and large errors on τY and τN as the LP solution gave, we now get smaller
errors on all forces. For comparison, a plot of τX and τY are shown in figure 20
and 21, while plot for τN can be found in appendix A together with the plot of
the tunnel thrusters allocated thrust. The time needed to solve this formulation
is negligible, i.e. ≈ 0.02s.
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Figure 19: Plots of the allocated thrust from a QP formulation for the two
azimuth thrusters when iterating over all possible demanded τc with a 1.0 in-
crement
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Figure 20: Calculated τX for the allocated thrust when simulating a QP formu-
lation for all possible demanded τc with 1.0 increments
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Figure 21: Calculated τY for the allocated thrust when simulating a QP formu-
lation for all possible demanded τc with 1.0 increments
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10.3 Mixed Integer Linear Program
In this section, several simulations will be presented, gradually adding on more
complexity. The first simulation will be equal to the LP formulation, only adding
on a forbidden sector on each azimuth thruster prohibiting flushing. Second,
the tunnel thruster will be made asynchronous before finally the thrust-power
relationship is added as a piecewise linear approximation and power is minimized
instead of thrust.

10.3.1 Synchronous tunnel thruster

When adding a forbidden sector, we see on figure 22 that no allocated thrusts lie
in this sector, as was the intention. On the boarder of the forbidden sector there
is an accumulation of allocated thrusts, which could be a problem regarding
switching over the forbidden sector. The introduction of forbidden sectors has
almost no impact on the resulting force, so it is clear that other solutions exist
outside the forbidden sectors. As shown in figure 23 an error is introduced in τX
when demanding τc = [2.5, 1.5,−0.5]T . This error occurs because the solution
in the LP formulation had max thrust in forbidden sectors for both azimuth
thruster 1 and 2, which is no longer feasible. This will be further discussed in
the discussion section. The time needed to solve this formulation is negligible,
i.e. ≈ 0.02s.
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(a) Allocated thrust from a MILP formulation for az-
imuth thruster 1 with a forbidden sector
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Figure 22: Plots of the allocated thrust from a MILP formulation for the two
azimuth thrusters when iterating over all possible demanded τc with a 1.0 in-
crement
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Figure 23: Calculated τX for the allocated thrust when simulating a MILP
formulation, including forbidden sectors on the azimuth thrusters prohibiting
flushing, for all possible demanded τc with 1.0 increments
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10.3.2 Asynchronous tunnel thruster

The simulation with an asynchronous tunnel thruster was done such that the
tunnel thruster had 70% efficiency in reverse, i.e. negative thrust. This does,
as expected, introduce a larger error for negative τN and negative τY , because
negative tunnel thruster thrust strongly influence these forces. This is shown for
τY in figure 24. If the vessel is equipped with an asynchronous tunnel thruster,
but the tunnel thruster is not modelled as asynchronous in the thrust alloca-
tion formulation, this would cause some serious issues, as the thrust allocation
problem would think it allocates proper thrust to keep the vessels heading and
position, while the vessel would not able to produce it. The time needed to

0 50 100 150 200 250
−4

−2

0

2

sample

fo
rc

e

τY error

τY error

0 50 100 150 200 250
−4

−2

0

2

4

sample

fo
rc

e

τY

allocated control
demanded control

Figure 24: Calculated τY for the allocated thrust when simulating a MILP
formulation, including forbidden sectors on the azimuth thrusters prohibiting
flushing, for all possible demanded τc with 1.0 increments

solve this formulation is negligible, i.e. ≈ 0.02s.
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10.3.3 Power approximation

Finally, the relationship between thrust and power was added to the problem as
a piecewise linear approximation, and power was minimized instead of thrust.
In the simulation shown, the thrust-power relationship is approximated using
1000 lines per decision variable. This may sound a a lot, but the solver will
choose the vertices in the approximation to get the most thrust per power,
so in reality the decision variable is made discrete by this approximation, and
approximation with many lines is necessary to counteract this effect. About half
of the equations are cut by the pre-solver, which reduces some of the complexity,
but this is still adding a lot of complexity to the problem.

The resulting allocated thrust is now more evenly distributed between the
thrusters than without the power minimization, as shown in figure 25a.

The resulting forces, shown for τY in figure 26, are equal to what they were
without power approximation, which was expected. Even though the thrust is
better distributed between the thrusters, the errors are still penalized linearly.

The solver spends 0.38s solving the problem at an average, but some worst
case scenarios takes more than 0.86s to solve. The resulting solving time is
shown in figure 27. The time needed to solve the problem depends on the
computer the thrust allocation is run on, and what other processes runs on it.
It also varies from time to time, depending on scheduling and other variations,
so this time can be reduced drastically. It is included here to show that it takes
more time compared to the previous formulations.
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Figure 25: Plots of the allocated thrust from a MILP formulation minimizing
power for the two azimuth thrusters when iterating over all possible demanded
τc with a 1.0 increment
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Figure 26: Calculated τY for the allocated thrust when simulating a MILP
formulation minimizing power, including forbidden sectors on the azimuth
thrusters prohibiting flushing, for all possible demanded τc with 1.0 increments
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Figure 27: A plot of the time needed to solve the thrust allocation problem with
the complete MILP formulation
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10.4 Mixed Integer Quadratic Program
In addition to the MILP formulation, a MIQP formulation was implemented
and simulated. The formulation is the same as the MILP formulation without
the power minimization, and switching out the cost function with a quadratic.
The distribution of the allocated thrust from the MIQP formulation for the two
azimuth thrusters are shown in figure 28.

In this formulation, thrust is minimized and not power, but since the squared
thrust is minimized, the distribution of allocated thrust is similar to the MILP
formulation with power minimization.

As we saw on the LP and QP formulations, the errors was more evenly dis-
tributed between the forces with the QP formulation than the LP formulation,
because error is penalized squared in the QP formulation. This is also the case
with MIQP compared to MILP. Some errors are introduced in τX as shown in
figure 29, while the errors in τY and τN are smaller in magnitude. The plots of
τY and τN can be found in appendix A.

The MIQP formulation takes less time to solve than the MILP formulation.
Although a MIQP solver typically is slower than a MILP solver, the complexity
of the MILP formulation is so much greater, due to the piecewise linear approxi-
mation of power, that it still takes longer than the MIQP to solve. A plot of the
time spent to solve the allocation problem for the MIQP formulation is shown
in figure 30 where the mean time was 0.2s and the worst case takes 0.37s. Thus,
even the worst case for the MIQP formulation is slightly faster than the MILP
formulation.
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Figure 28: Plots of the allocated thrust from a MIQP formulation for the two
azimuth thrusters when iterating over all possible demanded τc with a 1.0 in-
crement
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Figure 29: Calculated τX for the allocated thrust when simulating a MIQP
formulation minimizing thrust, including forbidden sectors on the azimuth
thrusters prohibiting flushing, for all possible demanded τc with 1.0 increments
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the MIQP formulation
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11 Discussion
In this section, the results from the simulations will be discussed and pros and
cons for the different formulations will be assessed, in order to suggest what
techniques works best for the problem. The modelling of the actuators will also
be discussed in regards to their benefits and limitations.

11.1 Modelling

MILP is a powerful tool for modelling an actuator. Being able to represent a
non-convex set as the union of several smaller convex sets, enables us to include
forbidden sectors to the thrusters feasible set. This, combined with using piece-
wise linear approximations, provides the opportunity to model most anything.
The downside of MILP is that it requires linear constraints. Linearisation of
non-linear equations introduces some approximation errors. In order to min-
imize the error, more lines must be used in the approximation, which again
increases the complexity of the problem. The number of lines needed for an
accurate enough approximation of a non-linear expression highly depends on
the expression. For modelling the thrust image of a thruster, not that many
lines was needed to get a good enough approximation, but for the thrust-power
relationship, many lines was needed. When using a piecewise linear approxi-
mation in the cost function, the solver will tend to choose the vertices in this
approximation as solutions, essentially making the decision variables discrete.
Many lines in the approximation is needed to counteract this effect.

11.2 Simulations

The LP formulation is clearly not an accurate enough description of the thrust
allocation problem. The solutions given by this formulation will run azimuth
thruster 1 at full speed most of the time, while azimuth thruster 2 is only
used when azimuth thruster 1 is saturated. This is because thrust from these
thrusters contribute equally to the vessels force because of their positioning on
the vessel, and since thrust is penalized linearly, only one of them are used until
it is saturated. The errors are unevenly distributed between the generalized
forces when they are weighted equally. In the simulation presented in this
report, τX is tracked correctly, sacrificing accuracy in τY and τN . If this is good
or bad is hard to say and dependent on the situation, but often one would prefer
small errors in all forces compared to huge errors in some. This effect will also
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occur for other types of errors where equally distributed errors may be more
important.

When formulating the problem as a QP, the thrust and errors are penalized
squared. The result is a more evenly distributed thrust between the thrusters
as shown in figure 19 for the two azimuth thrusters. This will probably result
in a more power efficient thrust allocation, although power is not explicitly
minimized. The errors are also evenly distributed in a QP solution, which may
be a desired property to have in a thrust allocation algorithm.

In order to include forbidden sectors, logical constraints must be added to the
formulation, making it a mixed integer program. The first MILP formulation
had forbidden sectors prohibiting flushing between the azimuth thrusters. The
resulting distribution of thrust is uneven, equal to the LP formulation, except
that no allocated thrust lies in the forbidden sectors. By including forbidden
sectors prohibiting flushing, you avoid allocating thrust in areas that will affect
the vessel differently than expected due to flushing. A challenge with this dis-
tribution of allocated thrust is switching back and forth over a forbidden sector.
A way to deal with this problem would be to add switching over a forbidden
sector into the problem formulation and minimize it.

Secondly, the response of the tunnel thruster was made asynchronous. Many
tunnel thruster has asynchronous response, as they are constructed optimally
for thrust in one direction. When an asynchronous tunnel thruster is mounted
on the ship, it is crucial that also the model is asynchronous. The resulting
errors is as expected larger in the direction the tunnel thruster has less effect,
which it should be if the tunnel thruster is asynchronous. This effect could
also be added to other thrusters, e.g. azimuth thrusters. Switching an azimuth
thruster to reverse in stead of turning it 180◦ would be faster, and may be
desired considering response time and wear and tare, even though you would
have to use more power to achieve the same force in reverse compared to forward
motion.

Finally, the relationship between thrust and power was added as a piecewise
linear approximation in order to minimize power in stead of thrust. This results
in a more accurate model of the problem, resulting in a better distribution of
thrust between the thrusters. However, the errors are still unevenly distributed
between the forces, because these are still linearly penalized. Again, if this is
good or bad depends on the situation, and if one force is more important to track
than the others, that error can be penalized more in the weighting vector. The
errors in this report are a result of saturation of thrust due to the configuration
of thrusters on the vessel, but this uneven distribution of error will also occur
for other types of errors.
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By having access to the power consummation, a limit can be put on the total
power consumed, in order to not exceed the maximum output from the power
generators. This has not been implemented in the thesis, but is trivial to do once
power is included as a parameter in the problem. This has not been implemented
because the thrusters on CSE1 is electrically driven and have access to more
power than they can consume and hence, the limit of the total power used
is the same as using each thruster at full speed, which is already included as a
constraint. This would be relevant for a vessel with a power generator generating
power for all the thrusters and propulsion systems on the vessel, not being
capable to produce as much power as the thrusters and propulsion system are
capable to consume. This would add one constraint to the problem, which is a
negligible increase in the complexity of the problem.

In addition to the MILP formulation, a MIQP formulation was simulated,
not including the power approximation. This formulation results in a distribu-
tion of allocated thrust similar to the MILP formulation, and the errors are more
evenly distributed than the response of the MILP formulation. This formula-
tion is also less complex compared to the MILP formulation, and even though
a MIQP formulations typically takes longer to solve than a MILP formulation,
the difference in complexity is so great that the MILP takes longer to solve than
the MIQP.
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12 Conclusion
The purpose of this thesis was to explore the possibilities of Mixed Integer
Linear Programming (MILP) and, by using MILP, finding a good trade off
between actuator model and problem formulation complexity. Thrust allocation
is generally solved with non-linear solvers, which can not directly include logical
and operational constraints in the formulation, which is the purpose of using
MILP instead.

In this thesis it has been shown that MILP formulation can be used to include
logical constraints like forbidden sectors in the problem formulation. By using
a piecewise linear approximation on the thrust-power relationship, minimizing
power in stead of thrust has been made possible, which also makes it possible to
constrain the total amount of power used by the thrusters. By using piecewise
linear approximations, any non-linearity can be included in a MILP framework.
The downside of MILP is some approximation errors introduced when linearis-
ing non-linear constraints. When using piecewise linear approximations, the
downside is an increased complexity because for many functions, many lines
must be used to create an accurate enough approximation. This is especially
important for piecewise linear approximations in the cost function, because the
solver will choose vertices on the approximation as solutions, essentially making
the decision variable discrete.

I would recommend using MIQP over MILP whenever the equations in the
cost function can be approximated as quadratic. This is because approxima-
tion them as piecewise linear causes the solver to yield discrete solutions, only
choosing the vertices in the approximation, which has to be counteracted by
using many lines in the approximation. Using many lines in the approximation
will increases the complexity of the problem greatly, making the MIQP problem
more efficient to solve.
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12.1 Future work
In this thesis, an accurate model of a specific vessel is not created and the
thrust allocation algorithm is not implemented on an actual vessel. This should
be done, together with a traditional non-linear thrust allocation algorithm, in
order to compare the two techniques. More constraints can also be included in
the formulation, e.g.

• Enable azimuth thrusters to go in reverse with asynchronous response

• Include the dynamic constraints on change in thrust, in order to minimize
it

• Minimize switching over a forbidden sector

• Instead of completely forbidding a sector, allow operation in the sector,
but at reduced efficiency

• Enable the possibility of switching thrusters on and off

• Adjust the model for propeller-rudder pairs such that the effect of the
thrust decays for increasing deflection angle on the rudder

• Use a piecewise linear cost function in the MILP formulation to get a more
even distribution of errors, similar to how the thrust-power relationship
was included
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13 Appendix
13.1 Appendix A - Additional plots
Additional plots from the simulations.

13.1.1 LP
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Figure 31: Plot of the allocated thrust for the tunnel thruster in an LP formu-
lation
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13.1.2 QP
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Figure 32: Plot of the allocated thrust for the tunnel thruster in a QP formula-
tion
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Figure 33: Calculated τN for the allocated thrust from a QP formulation when
simulating for all possible demanded τc with 1.0 increments

13.1.3 MILP synchronous tunnel thruster
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Figure 34: Plot of the allocated thrust for the tunnel thruster in a MILP for-
mulation

13.1.4 MILP asynchronous tunnel thruster
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Figure 35: Calculated τY for the allocated thrust from a MILP formulation
when simulating for all possible demanded τc with 1.0 increments

13.1.5 MILP power minimization

13.1.6 MIQP
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Figure 36: Calculated τN for the allocated thrust from a MILP formulation
when simulating for all possible demanded τc with 1.0 increments
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(a) Allocated thrust from a MILP formulation for
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Figure 37: Plots of the allocated thrust from a MILP formulation for the two
azimuth thrusters when iterating over all possible demanded τc with a 1.0 in-
crement
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Figure 38: Plot of the allocated thrust for the tunnel thruster in a MILP for-
mulation
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Figure 39: Calculated τX for the allocated thrust from a MILP formulation
when simulating for all possible demanded τc with 1.0 increments
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Figure 40: Calculated τN for the allocated thrust from a MILP formulation
when simulating for all possible demanded τc with 1.0 increments
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Figure 41: Plot of the allocated thrust for the tunnel thruster in a MILP for-
mulation minimizing power
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Figure 42: Calculated τN for the allocated thrust from a MILP formulation
minimizing power when simulating for all possible demanded τc with 1.0 incre-
ments
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Figure 43: Calculated τN for the allocated thrust from a MILP formulation
minimizing power when simulating for all possible demanded τc with 1.0 incre-
ments
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Figure 44: Plot of the allocated thrust for the tunnel thruster in a MIQP for-
mulation minimizing thrust
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Figure 45: Calculated τY for the allocated thrust from a MIQP formulation
minimizing thrust when simulating for all possible demanded τc with 1.0 incre-
ments
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Figure 46: Calculated τN for the allocated thrust from a MIQP formulation
minimizing thrust when simulating for all possible demanded τc with 1.0 incre-
ments
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