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Abstract

Technological advancements in ultracold atom experiments has over the last decades trig-
gered an increased interest in physically intuitive Hamiltonians used to explore fundamental
interactions in strongly correlated systems. Motivated by this we study a Bose-Hubbard
tight binding model, describing bosonic atoms in a triangular lattice potential with two in-
ternal pseudo-spin degrees of freedom coupled by spin-orbit coupling. In the strong coupling
regime we derive an effective spin Hamiltonian with a Heisenberg-, Dzyaloshinskii-Moriya-
and an off-diagonal compass-coupling, providing us with a platform to investigate several
quantum magnetic models of interest. Using large scale Monte Carlo annealing simulations,
we explore the ground state magnetic textures for different magnitudes of spin-orbit cou-
pling and inter- relative to intra-component scattering. Combining the Monte Carlo results
with a variational approach, we construct a zero-temperature phase diagram consisting of
ferromagnetic, stripe, spiral and vortex ordering. We also use the Monte Carlo algorithm
to investigate the effects of thermal excitations in the systems, by sampling the helicity
modulus using two different methods. Results from the fully isotropic Heisenberg model
shows that these two methods give qualitatively similar results, but the approach fails when
trying to generalise the model to include a Dzyaloshinskii-Moriya interaction. Furthermore,
we confirm the well established quasi-long-range ordering in the XY-model on the triangular
lattice, and find a weaker, pseudo-critical, behaviour in the Heisenberg model.

i





Sammendrag

Teknologiske fremskritt i ultrakalde atom-eksperimenter har over de siste 20 årene økt inter-
essen for fysisk intuitive Hamilton-funksjoner som kan brukes til å undersøke fundamentale
vekselvirkninger i sterkt korrelerte systemer. Motivert av dette, ser vi på en Bose-Hubbard
modell for bosoniske atomer i et triangulært gitter-potensiale med to interne pseudo-spinn
frihetsgrader som vekselvirker via spinn-bane kobling. I det sterkt koblede regimet ut-
leder vi en effektiv spinn Hamilton-funksjon der spinnene vekselvirker via en Heisenberg,
Dzyaloshinskii-Moriya og ikke-diagonal kompass-interaksjon. Dette gir en generell modell
der vi kan se på flere interessant kvante-magnetiske modeller. Ved hjelp av Monte Carlo simu-
leringer ser vi på magnetiske grunntilstands-teksturer for ulike styrker av spinn-bane kobling
og spredningstyrke for partikler med likt og ulikt spinn. Ved å kombinere resultatene fra
Monte Carlo med en variasjons-metode kommer vi frem til et null-temperatur fasediagram
med ferromagnetiske, spiral, stripe og virvel-faser. Vi bruker også Monte Carlo simuleringer
til å undersøke hvordan disse fasene blir påvirket av termiske fluktuasjoner. Dette blir gjort
ved å måle spinnstivhet på to ulike måter. Simuleringer for en fullstendig isotrop Heisenberg-
modell viser at de to metodene gir kvalitativt like resultater, men fremgangsmåten vår
fungerer ikke når vi generaliserer spin-modellen til å inkludere Dzyaloshinskii-Moriya vek-
selvirkninger. I XY-modellen bekrefter vi at det finnes kvasi-langtrekkende ordning på det
triangulære gitteret, noe som allerede er vel etablert. Videre finner vi en svakere ordning
for Heisenberg-modellen, karakterisert som pseudo-kritisk oppførsel.
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Chapter 1

Introduction

The understanding of strongly correlated quantum systems has become imperative to the
technological advancement of material- and electronics- engineering, with applications in
superconductivity[1, 2, 3], spintronics[4, 5, 6] and topological materials[7]. In recent years
ultracold atom experiments have become a frontier quantum simulator, because they pro-
vide fundamental insight into complex many-body problems that even today’s most powerful
supercomputers cannot solve[8]. By cooling atoms down to nanokelvin temperatures, ex-
perimentalists can create highly tunable systems[9], ideal to investigate fundamental and
novel quantum phenomena. Motivated by this technological advancement, we investigate
the Mott insulator phase of a Bose-Hubbard model describing strongly correlated bosons in
a triangular optical lattice.
The first experimental realisation of ultracold atoms was achieved in 1995 for Rubidium,

Sodium and Lithium[10, 11, 12], confirming theoretical predictions of the quantum gas
phase of matter, later called a Bose-Einstein condensate[13, 14]. Since then a lot of work
has been done in this rapidly expanding field with increasingly sophisticated cooling and
measurement techniques[15, 16, 17][18, 19]. Among these advancements is the ability to
produce overlapping condensates in different hyperfine states[20]. These internal states can
represent pseudo-spin degrees freedom, used to investigate the spin dynamics of bosonic or
fermionic quantum gasses.
Electrons in solids typically move in a periodic potential from the crystalline structure of

the material. In ultracold atom experiments, such potentials can be generated by superim-
posing two or more lasers to create an optical lattice interacting with the condensate[21].
Furthermore, the AC Stark effect makes it possible to realise the optical lattice setup for
a gas of electrically neutral atoms[22]. In the absence of long range Coulomb repulsion,
two-particle scattering is governed by short range effective contact interactions that can be
tuned using Feshbach resonances[23]. Consequently, the mobility of the atoms relative to
each other and in the lattice can be tuned separately, making these setups ideal to investigate
fundamental interactions that are typically obscured in real solids.
The focal point of this thesis is investigating one such interaction, namely spin-orbit

coupling (SOC). In atomic physics, SOC is introduced as a correction to the non-relativistic
approximation of the Dirac equation and contributes to fine structure in the atomic energy
spectra[24]. It also introduces spin splitting in the energy bands of electrons in crystalline
solids[25]. In its simplest form, SOC arises as a linear coupling between the spin and
momentum of a charged particle moving in an external electric field. There are several
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Chapter 1 Introduction

forms of the SOC-interaction depending on the dimensionality of the system and the external
field[26, 27, 28]. One such form arising from a uniform electric field is Rashba SOC, used
to explain the exotic spin Hall effect[29].

SOC experienced by electrons in solids is generated by electric field strengths far beyond
what is available or convenient in experiments[30]. Moreover, it is desirable to use neutral
atoms in experiments due to the tunability of their interactions. This situation is remedied
by the creation of synthetic SOC, which couples the hyperfine states of the atoms by optical
Raman transitions[31]. In a condensate with two hyperfine states such as the popular isotope
87Rb, the result is a pseudo-spin 1/2 system where the spin-states are coupled by a highly
tunable SOC-interaction[32].
The high tunability of cold atom experiments has triggered an interest in physically in-

tuitive Hamiltonians, such as the Bose-Hubbard model. Originally developed to capture
the dynamics of electrons in narrow conduction bands[33], its bosonic version has been ex-
tensively researched because it contains a quantum mechanical superfluid-insulator phase
transition[34]. The Mott insulator phase, realised in the atomic limit at integer on-site
occupation, is an incompressible phase with correlated number-fluctuations induced from
particle-hole pair excitations in the lattice[35, p.12-13]. Furthermore, the Mott insulator
can be described by an effective spin Hamiltonian, providing us with a platform to simulate
quantum magnetic models of interest. The Bose-Hubbard model has also been generalised to
spinfull bosons with SOC in a square lattice potential[36], and in [37] it was shown that SOC
results in an exotic Dzyaloshinskii-Moriya (DM) interaction in the spin Hamiltonian. Giving
rise to skyrmion structures and magnetic domain walls protected by topology[38, 39], this
interaction has been researched in relation to information storage in magnetic materials[40].
One question that arises from this is what happens when geometric frustration is intro-

duced into such magnetic systems. This is a topic that has been researched extensively in
relation to spin-liquids, where geometric frustration can lead to groundstates completely ab-
sent of ordering, giving rise to novel phenomena[41]. In this thesis we derive an effective spin
Hamiltonian from a Bose Hubbard model with SOC similar to [37], but on the triangular
lattice. Furthermore, we employ extensive classical Monte Carlo simulations to uncover the
ground state phase diagram with a plethora of magnetic textures. Finally, we consider the
effects of thermal excitations on the ground-states by measuring the helicity modulus, and
try to generalise known methods from literature[42, 43] to include SOC.
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1.1 Notation and convention

1.1 Notation and convention
In this section we introduce conventions and notation used throughout the thesis. All
quantities are given in natural units with

~ = kB = c = 1. (1.1)

Triangular lattice
We consider a triangular lattice setup with lattice constant set to unity, a = 1. Translation
in the lattice is described by the vectors along the bonds between sites

εa1 =
1

2
x̂ +

√
3

2
ŷ, εa2 = x̂, εa3 = εa2 − εa1 . (1.2)

Two sites, i and j, are nearest neighbours if rj = ri ± εa ≡ ri±a, where a ∈ {a1, a2, a3}
denotes the direction. In the effective spin Hamiltonian derived in chapter 3, we sum over the
three forward directions given by eq. (1.2) by convention. The reciprocal of the triangular
lattice is also a triangular lattice, with primitive lattice vectors

b1 =
4π√

3
ŷ, b2 = 2πx̂− 2π√

3
ŷ, (1.3)

where the Brillouin zone of a lattice site in reciprocal space consist of all the points closer
to that site than any other.

Pauli matrices
The Pauli matrices are given on the standard form σ = (σx, σy, σz), with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.4)

and implicitly act on the spin-1/2 degrees of freedom of particle operators. In addition we
use the associated Pauli matrices, defined as

σ+ = σx + iσy, σ− = σx − iσy (1.5)
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Chapter 2

Ultracold atoms

In this chapter we review the experimental realisation of ultracold atoms, and the theoret-
ical description of a quantum gas. Furthermore, we combine these concepts to show how
ultracold atomic gasses can be used to study spin-orbit (SO) coupled bosons in a triangular
lattice potential.

2.1 Quantum gas
A gas of atoms has several associated length scales. The characteristic length of interactions
is denoted Re, while the mean inter-particle distance can be written in terms of the density
as n−1/3. Finally, the wave-like nature of particles are characterised by the thermal de
Broglie wavelength

ΛT =

√
2π

mT
∝ k−1

T , (2.1)

where kT is the thermal wavevector. A gas is characterised as dilute when the inter-atomic
distance is much larger than the interaction-radius

nRe � 1. (2.2)

To achieve an ultracold atomic gas, it is important to keep it sufficiently dilute because in
a dense gas three-body interactions will lead to formation of molecules. The ultracold gas
limit is achieved when the thermal de Broglie wavelength is much larger than the interaction-
radius

ΛT � Re → kTRe � 1. (2.3)

In this limit, most of the inter-particle scattering occurs from inelastic s-wave collisions[44].
When the de Broglie wavelength is much smaller than the mean particle separation, par-

ticles behave classically. In the opposite limit, when the temperature is made sufficiently
low or the density sufficiently high, the macroscopic properties crucially depend on the
microscopic degrees of freedom of the gas. The quantum gas limit is given by

nΛ3
T ≥ 1, (2.4)

where the wavefunctions of particles start overlapping. In this regime the dynamics of
the particles are determined by quantum mechanics, and there is a fundamental difference
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between bosonic and fermionic particles. For an ideal gas of bosonic particles, the ultracold
quantum phase is characterised by a macroscopic occupation of the lowest particle energy
state which has later been named a Bose-Einstein condensate[14, 13].

2.1.1 Experimental cooling methods

In experiments, atomic gases are cooled down to temperatures where their quantum nature
becomes important. This happens at densities of 1014 − 1015cm−1 and temperatures of
order 100nK[45, p.5]. To achieve such extreme temperature regimes, different experimen-
tal methods are used. Laser cooling relies on the Doppler effect; particles moving in one
directions are slowed down by velocity-dependant photon absorption, so that the overall
kinetic energy of the gas is decreased[46]. Variations of this method are commonly used in
experiments[47, 48, 49, 50]. Other cooling methods rely on evaporative effects. By placing
the atom gas in a magnetic[51] or optical[52, 53] trapping potential, the barriers of the po-
tential may be step-wise decreased allowing the most energetic atoms to escape. For atomic
species that are difficult to cool down by optical means, sympathetic cooling is used. In
this method, the species is thermalised with another, more easily cooled species which is
subsequently removed after achieving ultracold temperatures. For example, Potassium has
been sympathetically cooled together with 87Rb[54]. The implementation of these methods
and their effectiveness typically depend on the details of the atomic species, and in most
experiments a combination of laser and evaporative cooling is used.
Because electrons in real solids move in a periodic potential from the crystalline structure,

it is desirable to replicate this in ultracold atom experiments. This is achieved by placing
the ultracold gas in an optical lattice potential, explained in detail in section 2.4. The
optical lattice setup has been experimentally realised for both bosons and fermions[55, 56].
Measurements in ultracold atom experiments are done using absorptive imaging to take
time-of-flight images of the gas cloud[57]. Although there exist other methods, this is the
most common today because it can be used to measure both density profiles and average
velocity. This method was also famously used in the first observation of a Bose-Einstein
condensate[10].

2.2 Hyperfine states

Hydrogenic alkali atoms with one electron in the outer shell are qualitatively described by
the non-relativistic Hamiltionian

H =
p2

2m
− Ze2

4πε0

1

r
. (2.5)

The resulting eigenstates are degenerate in the angular momentum of the electron, and do
not describe the complete picture. Degeneracy of the energy levels is partly lifted by the
introduction of the fine structure[58]. Taking into account relativistic corrections to eq. (2.5),
a more detailed spectrum with less degeneracy emerges. Even smaller corrections to the
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2.3 Spin orbit coupling

simple one-electron picture are introduced by the Lamb shift from radioactive corrections,
the Zeeman effect from external magnetic fields and the Stark effect from electric fields[59].
At the pinnacle of these corrections lie the hyperfine structure. First observed by A.

Michelson in 1891, these energy shifts are typically much smaller than those from the fine
structure[24, p.232]. The hyperfine structure arises from considering the angular momentum
of the nucleus. Although we do not know exactly what happens inside, it consists of nucleons
with intrinsic spin along with the possibility of orbital motion. The sum of these constitute
the nuclear spin, I, where I2 has eigenvalues I(I + 1) given by the nuclear spin quantum
number. By considering the nucleus as a point dipole giving rise to a vector potential, we
obtain a perturbation term from interactions with the outer shell electron. The energy shifts
from perturbation theory give rise to the hyperfine energy corrections to the atomic energy
spectrum. These are labelled by the total angular momentum of the atom

F = I + J, (2.6)

where J = S + L is the spin and orbital angular momentum of the electron. The possible
values of the quantum number F depend on the other quantum numbers through standard
addition of spin algebra

F = |I − J |, |I − J |+ 1, ..., I + J − 1, I + J. (2.7)

To illustrate how these hyperfine states can be used to represented pseudo-spin internal
degrees of freedom, we consider the isotope 87Rb. The lowest orbital 52S1/2 has L = 0 so
that J = 1/2. Furthermore the nuclear spin is I = 3/2[60] , giving rise to two possible
internal states F = 1, 2. These are further split by an external magnetic field into states
labelled by the magnetic quantum number mF = −F, ...,+F . In section 2.3.1 we show how
these these states may be coupled to represent spin-1/2 degrees of freedom.

2.3 Spin orbit coupling

The SO interaction is in general a coupling between the spin and momentum of charged
particles. It was originally proposed to explain the fine structure of the atomic energy
spectrum[61, 62]. In solids it results in spin-splitting of the momentum-dependant energy
bands of particles, arising from a broken inversion symmetry in the crystal lattice[63].
The linear form of SOC is obtained by considering a charged particle moving in an electric

potential. In the reference frame of the particle, the electric field gives rise an effective
magnetic field that couples to the magnetic moment of the particle, µ through the Zeeman
interaction

HZ = −µ ·Beff . (2.8)

The effective magnetic field is given by the Lorentz transformation

Beff = −v ×E, (2.9)
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where v is the velocity of the particle and E = −∇V is the electric field. Combining these
expressions, gives the Pauli SO interaction on the form given in [25]

HSO = λSOσ · p× (∇V ), (2.10)

where λSO determines the strength of interaction. For an electron in spherical motion
around the nuclei, the Coulomb field points in the radial direction. With electron angular
momentum L = r× p and spin S = σ/2, the SO interaction can be written

HSO = λ′SO(r)S · L. (2.11)

This is a linear coupling between the spin and orbital angular momentum of the particle,
explaining the name spin-orbit coupling.
In this thesis we consider a two-dimensional system, and are consequently interested in

the SOC terms that couple to the px- and py-components. Writing out all the terms in
eq. (2.10) and discarding the terms with pz gives a generic expression on the form

HSO = αpxσy + βpyσx. (2.12)

Setting α = β gives a Dresselhaus-type coupling[27], and α = −β gives Rashba SOC[26].
Schemes for generating three dimensional SOC have also been realised through the fully
isotropic Weyl-coupling[28]. We will consider only the case of Rashba coupling given on the
form

HSO = κR(pyσx − pxσy), (2.13)

where the strength of the interaction is determined by the Rashba coupling parameter κR.

2.3.1 Synthetic spin-orbit coupling
In solids, spin-orbit interactions are generated by strong electric fields that depend heavily
on the details of the material. Because such fields are inconveniently large in experiments,
synthetic SOC is used to simulate the effect for neutral atoms. Letting the internal F-
states discussed previously represent spin-degrees of freedom, synthetic SOC is introduced
by coupling different states using Raman lasers.
A Raman process is the absorption of a single photon from one laser beam followed by

stimulated re-emission into a second, counter-propagating beam[64]. The photons have re-
coil momentum pR = λ−1, so conservation of momentum dictates that the atom acquires
the difference of the these two recoil momenta in the process. If the momentum differ-
ence is close to the energy difference of two hyperfine states, this stimulates a resonant
transition between these. The laser frequencies in the atomic reference frame are velocity
dependant through Doppler shifts, so the transitions can be tuned away from resonance
in a velocity-dependant way[30]. Effectively the coupling between the two internal states
becomes velocity-dependant, providing a coupling similar to SOC. Such a coupling was
experimentally realised for a general 2-dimensional SO interaction in the form of a non-
abelian gauge field in 2016[32, 65], enabling the study of Rashba SOC discussed in the
previous section.
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Figure 2.1: Triangular lattice potential from eq. (2.19) with V0 = −1.5 and q = 4π/3.

2.4 Optical lattice potential
To understand how we can trap neutral atoms with a radiation field, we look at the interac-
tions between these. In the dipole approximation, interactions between an electric field and
a neutral particle is given by [45]

H = −d · E, (2.14)

where d is the dipole moment of the particle, induced by the electric field E. This interaction
causes a shift in the energy levels of the atoms, similar to the Stark-effect. To second order in
the electric field, the energy shift of the ground state can be written as an effective potential
acting on the ground state

Vg(r) = −1

2
α′(ω)〈E(r, t)2〉. (2.15)

Here, α′(ω) is the real part of the polarisability of the atom, which depends on the frequency
of the electric field, along with the matrix elements in the second order perturbation expan-
sion. Typically, the radiation frequency is chosen close to that of an atomic resonance, so
that only one matrix element contributes to the polarisability.
We may now generate a spatially varying potential by superimposing several electric fields

with equal frequency. In the general case, a superposition of electric fields can be written

Etot(r, t) =
∑
i

E0i cos(qi · r− ωt+ δi). (2.16)

Squared and time-averaged, this becomes

〈E2〉 =
1

2

∑
i

E2
0i +

∑
i<j

Ei0 · Ej0 cos[(qi − qj) · r + δi − δj ]. (2.17)

By choosing the electric field to be polarised along the z-axis, we can create a two-dimensional
lattice potential in the xy-plane, with spatially periodic minima given by the wavevectors qi
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and the phases δi. The triangular lattice may be generated by superimposing three electric
fields of equal phase and with wave-vectors

q1 = (1, 0, 0) q, q2 =
(
−1/2,

√
3/2, 0

)
q, q3 =

(
−1/2,−

√
3/2, 0

)
q. (2.18)

From eq. (2.17) and eq. (2.15), we obtain the effective lattice potential

V (x, y) =
V0

2

[
2 cos (3qx/2) cos

(√
3qy/2

)
+ cos

(√
3qy
)]

(2.19)

which produces a triangular lattice shown in fig. 2.1. A triangular optical lattice potential
has been realised experimentally[66].

2.5 Inter-atomic potential

In ultracold atom ensembles, particle separations are typically larger than the length scales
associated with interactions between atoms (eq. (2.2)). As a consequence, the two-body
interactions dominate and three- and higher-body interactions may to a good approximation
be neglected1.
We describe the two-body interaction with a potential U(r). At small particle separations,

the potential is strongly repulsive due to overlapping electron clouds. For larger separations,
the main contribution arises from dipole-dipole interactions. Because we consider alkali
atoms that are polarised in the optical lattice there is no covalent bonding, giving a relatively
weak van der Waals attraction on the form −1/r6.
Scattering of particles with small total energy is dominated by the s-wave contribution

to the total cross-section, and can be described by the scattering length, a[67, p. 279-284].
Consequently, for the purpose of calculating low-energy properties, the true inter-atomic
potential may be replaced by an effective interaction potential proportional to the scattering
length

Ueff(r) = U0δ(r), U0 =
4πa

m
. (2.20)

In detail, the effective potential can be obtained by integrating out short wavelength de-
grees of freedom, leaving the interactions between long wavelength degrees of freedom as an
effective contact potential[45, p. 122-125].

2.5.1 Feshbach resonances and internal states

In cold atom experiments, Feshbach resonances are used to tune the strength of the two-
body interaction[68][69]. When the total energy of an open scattering channel is close to a
bound state in a closed channel, the incident atoms can scatter into the intermediate bound

1This is a requisite to having an ultracold quantum gas, rather than a consequence because three body
processes lead to molecule formation.
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2.6 Quantum mechanical formalism

state. The two particles in the bound state subsequently decay into the open channel. This
is a second-order process that gives a contribution to the scattering length on the form [45]

a ∝ C

E − Eres
, (2.21)

where E is the total energy of the particles in the open channel, and Eres the energy of the
bound state. When E ' Eres, this is the dominating contribution giving rise to a repulsive
interaction when the total energy of the open channel is greater than that of the bound
state. The hyperfine states couple to external magnetic fields, making it possible to tune
the effective interactions through the energy of the bound state[23].
The final note on inter-atomic interactions concerns the internal states. Inelastic scattering

typically results in a release of energy allowing atoms to escape from the trapping potential
[23], and consequently only elastic scattering processing are considered. For elastic processes,
the effective interaction potential is generalised to a component-dependant potential U0 →
Uσσ′ , according to [70]. Due to high tunability, the component-dependent potential can take
several forms, but for simplicity, we shall later consider a potential on the form

Uσσ′ = U0

(
1 λ
λ 1

)
, (2.22)

where the effective potential only depends on whether the two atoms are in different internal
states.

2.6 Quantum mechanical formalism

In this section we show how a general many-particle Hamiltonian can be recast as a lattice
model in the tight binding limit. For simplicity we start with spinless particles without
SOC, but this is readily generalised in chapter 3. The theory in this section is taken from
[71, 72]
Consider a system of N identical bosonic particles of mass m with positions ri and mo-

menta pi. A general many particle Hamiltonian in first quantisation reads

H =

N∑
i=1

[
p2
i

2m
+ V (ri)

]
+

1

2

∑
i 6=j

U(ri − rj), (2.23)

where V (r) is some background potential and the particles interact via the potential U(r).
This can be expressed in second quantisation by introducing creation and annihilation op-
erators

• ψ†(k) creates a particle of quasimomentum k.

• ψ(k) removes a particle of quasimomentum k.

11



Chapter 2 Ultracold atoms

These follow the bosonic commutation relation [ψ(k), ψ†(k′)] = δk,k′ , which symmetrises
the full many-particle wavefunction under the interchange of two particles. Furthermore,
the number operator

n̂(k) = ψ†(k)ψ(k), (2.24)

counts the number of particles with quasimomentum k. If the system can be diagonalised
exactly, the Hamiltonian in eq. (2.23) can now be written

H =
∑
k

εkn̂ (2.25)

where εk is the energy of a particle with quasimomentum k.
In general, when the system is not readily diagonalised, the second quantised form of the

Hamiltonian in eq. (2.23) is

H =

∫
drψ†(r)

[
−∇

2

2m
+ V (r)

]
ψ(r) +

1

2

∫
drdr′U(r− r′)ψ†(r)ψ(r)ψ†(r′)ψ(r′) (2.26)

The position-dependant particle operators in this representation are related to the momenta-
dependant operators through the Fourier transform. This is generalised to spinfull particles
by adding an index σ representing the spin degrees of freedom to the creation and annihi-
lation operators:

ψ†(r)→ ψ†σ(r), (2.27)
ψ(r)→ ψσ(r). (2.28)

The spin-states have to be summed over in the second quantised form of the Hamiltonian.
Furthermore, the commutation relations are now generalised to[

ψσ(r), ψ†σ′(r
′)
]

= δσσ′δ(r− r′) (2.29)

2.6.1 Tight binding model
Bloch’s theorem states that any solution to the Schrödinger equation for particles in a
periodic potential (i.e. a lattice potential) must be on the form

φn,p(r) = un,p(r)eip·r, n = 1, 2, 3, ... (2.30)

where un,p(r) has the same periodicity as the potential, and p is the lattice momentum with
values inside the Brilloine zone of the reciprocal lattice. The functions un,p(r) are typically
hard to obtain, even numerically, but when the periodic potential is sufficiently strong we
may recast the lattice problem in a tight binding model. The central assumption of the tight
binding model is that each potential minimum can be approximated by a harmonic oscillator
potential. Each particle is thus localised at a lattice site in a state given approximately by
the lowest energy eigenfunction of the harmonic potential. Furthermore, there is a small
but finite tunnelling rate between adjacent sites from overlapping wavefunctions.
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To describe this behaviour the Wannier functions are introduced:

Wn,i(r) = Wn(r− ri) =

∫
p∈BZ

dp

(2π)2
φn,p(r)e−iri·p. (2.31)

Using the properties of the Bloch functions in eq. (2.30), it follows that the Wannier functions
have three defining properties

I) They are centered around the potential minimas of the lattice.

II) They fall off exponentially.

III) They form an orthonormal set.

Using the third property, the field operators introduced in the second quantised form of the
many particle Hamiltonian may be expanded in the Wannier basis

ψ†σ(r) =
∑
n,i

W ∗n,i(r)b†iσ. (2.32)

The operator b†iσ creates a particle in the n’th Wannier band at lattice site i. Furthermore,
the external potential is assumed to be indifferent to the internal spin-states, so there is no
spin-index in the Wannier function.

2.7 Energy scales

There are several energy scales associated with the various interactions introduced in this
chapter, which warrants a discussion of their relative strengths. With the assumption that
the particles are cold with low thermal energy, their energy is associated with the recoil
energy ER = kL/2m, where kL is the wavevector of the optical lattice laser. The strength
of the lattice potential is associated with the depth, V0. In the deep lattice limit, V0 � ER,
particles are tightly confined to quasi-bound states in one potential well around a lattice site
with oscillatory energy ω0 = 2ER(V0/ER)1/2[73].
The strength of the interactions between particles depend on the scattering parameter U0

introduced in section 2.5, which can be tuned with Feshbach resonances. Furthermore, the
effective on-site interaction strength2, u, in the lattice model depends on the depth of the
lattice and the recoil energy as[73]

u ∝ kLaER

(
V0

ER

)3/4

, (2.33)

where a is the s-wave scattering length. By increasing the lattice depth, the interaction
strength is increased relative to the kinetic energy of the particles. For the deep lattice

2This will be properly introduced in section 3.1.1.
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Chapter 2 Ultracold atoms

harmonic approximation to be valid, we still require that u � ω0 which is fulfilled when
kLa� 1.

SOC is associated with the hyperfine states, and is more finely resolved than the energy
scales considered in the previous paragraph. As long as the Raman lasers are detuned
far from a resonance to another F -state, they have little or no effect on the quasi-bound
harmonic oscillator states on the lattice sites.
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Chapter 3

The Bose-Hubbard Hamiltonian
In this chapter, we go through the derivation the Bose-Hubbard Hamiltonian with SOC in
a triangular lattice potential. Furthermore, we derive an effective spin Hamiltonian valid in
the Mott insulator regime.

3.1 System Hamiltonian
Combining the considerations made in the previous chapter, we may now write down a
general Hamiltonian for N identical bosonic particles. The second quantisation form –
introduced in section 2.6 – of the non-interacting Hamiltonian reads:

Hni =
∑
σσ′

∫
drψ†σ(r)

[
−∇

2

2m
+ V (r) + κR(pyσx − pxσy)

]
ψσ′(r). (3.1)

The external potential includes the triangular lattice potential introduced in section 2.4 along
with a slowly varying trapping potential that we take to be constant for the entire system.
SOC is introduced on the Rashba form discussed in section 2.3. Furthermore, we consider
particles in two internal states labelled by σ ∈ {↑, ↓}. Experimentally this corresponds to a
two-component condensate, and we will refer to the internal states as components, species
or spin. Mathematically, we may write the field operators as spinors

ψ(r) =

(
ψ↑(r)
ψ↓(r)

)
, (3.2)

where states with opposite spin are only coupled by the Pauli matrices in the SOC-term.
Interactions between particles are introduced by the term

Hint =
1

2

∑
σσ′

∫
dr dr′Uσσ′(r− r′)ψ†σ(r)ψσ(r)ψ†σ′(r

′)ψσ′(r
′), (3.3)

for the generalised component-dependant interaction potential Uσσ′(r) defined in eq. (2.22).

3.1.1 Wannier functions
In the deep lattice limit, we may expand field operators in the Wannier basis introduced
in section 2.6.1. In the deep lattice limit, V0 � ER, the quasi-bound lattice site states are
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Chapter 3 The Bose-Hubbard Hamiltonian

approximated by the Gaussian groundstate of a harmonic oscillator. Thus, we only include
the lowest Wannier band which is written

Wi(r) '
(mω0

π

)1/4

exp

(
−mω0(r− ri)

2

2

)
, (3.4)

where ω0 is the oscillatory energy given in section 2.7.
Consider first the kinetic and external potential term in the non-interacting Hamiltonian.

Inserting the Wannier expansion we find

HK+V =
∑
σσ′

∑
ij

∫
drW ∗i (r)b†iσ

[
−∇

2

2m
+ V (r)

]
Wj(r)bjσ′ . (3.5)

Both the kinetic term and the external potential are independent of the internal state, so
only terms with σ = σ′ contribute. Furthermore, terms with i = j re-normalise the chemical
potential. Finally, using the exponential decay of the Wannier functions, only terms where
i and j are nearest neighbours contribute. For these terms we introduce the spin-conserving
hopping amplitude

t ≡ ti,i+a =

∫
drW ∗i (r)

[
−∇

2

2m
+ V (r)

]
Wi+a(r) (3.6)

where a ∈ {a1, a2, a3} denotes the three directions in the lattice introduced in section 1.1.
Inserting the harmonic approximation for the Wannier functions, this amplitude is always
real. Furthermore, both the external potential and the kinetic energy are symmetric in every
direction on the lattice, so the spin-conserving hopping amplitude is independent of a. The
contribution from the kinetic energy and external potential can now be written

HK+V =
∑
σ

∑
i,a

t
(
b†i,σbi+a,σ + h.c.

)
, (3.7)

where the Hermitian conjugate corresponds to tunnelling in the opposite direction i→ i+a,
so that in total the sum goes over hopping between all nearest neighbours in the lattice.
The SO-interaction couples states of opposite spin through the Pauli matrices. Writing

the spin-dependant part of the bosonic operators as spinors, we find in bra-ket notation

〈↑ |σx| ↑〉 = 〈↓ |σx| ↓〉 = 〈↑ |σy| ↑〉 = 〈↓ |σy| ↓〉 = 0. (3.8)

Only the off-diagonal terms give non-zero contributions

〈↑ |σx| ↓〉 = 〈↓ |σx| ↑〉 = 1 (3.9)
〈↑ |σy| ↓〉 = −i (3.10)
〈↓ |σy| ↑〉 = (〈↑ |σy| ↓〉)∗ = i (3.11)

Denoting the expectation value of Pauli matrices between spin-states as (σ)
σ,σ′

, the SOC-
term can be written in terms of the Wannier expansion as

HSO =
∑
σσ′

∑
ij

∫
drW ∗i (r)b†iσκR

[
(σx)σ,σ

′
py − (σy)σ,σ

′
px

]
Wj(r)bjσ′ . (3.12)
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3.1 System Hamiltonian

Summing only over nearest neighbour terms, we introduce the amplitude for hopping with
spin-flip,

sσ,−σi,i+a = κR

[
(σx)σ,−σ

∫
drW ∗i (r)pyWi+a(r)− (σy)σ,−σ

∫
drW ∗i (r)pxW

∗
i+a(r)

]
(3.13)

where only off diagonal terms with σ′ = −σ are non-zero. When a particle is tunnelling
between two sites, its momenta is given by the lattice direction ε̂a. Thus for µ̂ ∈ {x̂, ŷ}, we
can write

pµ = p · µ̂ = p(ε̂a · µ̂)→ −i∇(ε̂a · µ̂). (3.14)

With this relation, the spin-flip hopping amplitude can be written

sσ,−σi,i+a = −iκ
[
x̂ · ε̂a(σy)σ,−σ − ŷ · ε̂a(σx)σ,−σ

]
, (3.15)

where we have introduced the effective Rashba coupling parameter

κ = κR

∫
drW ∗i (r)∇Wi+a(r). (3.16)

This is real and independent of the lattice direction, so the spatial asymmetry of SOC is
entirely captured by the Pauli matrix elements and projection of the momentum along lattice
bonds in the spin-flip hopping amplitude (eq. (3.15)). The SOC part of the Hamiltonian
can now be expressed in the Wannier representation as

HSO =
∑
σ

∑
i,a

b†i,σs
σ,−σ
i,i+abi+a,−σ + h.c. (3.17)

Finally we consider the interacting Hamiltonian. Inserting the Wannier expansion along
with the component-dependant interaction potential (eq. (2.20) and eq. (2.22)) in the second
quantised expression for the interaction gives

Hint =
1

2

∑
σσ′

∑
ijkl

∫
dr dr′Uσσ′δ(r− r′)W ∗i (r)Wj(r)W ∗k (r′)Wl(r

′)b†i,σbj,σb
†
k,σ′bl,σ′

=
1

2

∑
σσ′

∑
i

uσσ′b†i,σbi,σb
†
i,σ′bi,σ′ .

(3.18)

Due to the small overlap between Wannier functions at neighbouring sites, only terms with
i = j = k = l have been included in the sum, and we have introduced the effective on-site
interaction parameter

uσσ′ = Uσσ′

∫
dr|W (r)|2. (3.19)

In the harmonic approximation, this gives the expression (eq. (2.33)) used to discuss the
relative strength of interactions.
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Chapter 3 The Bose-Hubbard Hamiltonian

3.2 The Bose-Hubbard Model

Recombining the terms discussed above, eqs. (3.7), (3.17) and (3.18), we arrive at the tight-
binding Hamiltonian for interacting bosons in a triangular lattice potential with spin-orbit
coupling

H =
∑
i,a

∑
σ

(
−tb†i,σbi+a,σ + b†i,σs

σ,−σ
i,i+abi+a,−σ + h.c.

)
+

1

2

∑
i

∑
σσ′

uσσ′b†i,σbi,σb
†
i,σ′bi,σ′ −

∑
i

∑
σ

µσni,σ,
(3.20)

where a component-dependant chemical potential µσ has been introduced for completeness.
This model is generally known as the Bose-Hubbard Hamiltonian, a model that has been
thoroughly investigated. In this section we will review the physical interpretation of the
terms and some of the previous work done on the model.
Writing out the sum over σ ∈ {↑, ↓} in the first term of the Bose-Hubbard Hamiltonian

reveals a matrix structure

H =
∑
〈ij〉

(
b†i,↑ b†i,↓

)( −t s↑,↓ij,a
s↓,↑ij,a −t

)(
bj,↑
bj,↓

)
+

1

2

∑
i,σσ′

uσσ′ni,σ(ni,σ′−δσσ′)−
∑
i,σ

µσni,σ. (3.21)

Diagonal terms are coupled by −t and describe spin-conserving hopping, while the off-
diagonal terms describe hopping with spin-flip with amplitude sσ,−σij,a . The spin-conserving
hopping amplitude is independent of the lattice direction due to the spherical symmetry of
the kinetic plus external potential term. Hopping with spin-flip on the other hand, comes
from the spin-orbit coupling which is anisotropic in real space. Because the momentum
is reversed when i ↔ j, the non spin-conserving hopping amplitude picks up a relative
minus-sign. We also require the Hamiltonian to be Hermitian. These requirements give the
symmetry relations,

sσ,−σij,a = −
(
s−σ,σij,a

)∗
, (3.22)

sσ,−σij,a = −sσ,−σji,a , (3.23)

sσ,−σij,a =
(
s−σ,σji,a

)∗
, (3.24)

which can be verified by writing out the terms in eq. (3.15) explicitly. Hermicity also dictates
that t is real, which is the case in the harmonic approximation.

3.2.1 Superfluid and Mott insulator regime

The Bose-Hubbard Hamiltonian has become a popular model because it has a purely quan-
tum mechanical phase transition, which was measured experimentally in 2002[74]. The two
phases can be understood in terms of the relative magnitude between hopping terms and
the on-site interaction. For large hopping amplitudes the kinetic energy of particles is large
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compared to the on-site interaction strength, giving rise to a delocalised superfluid phase.
In the limit of no on-site interaction, the superfluid ground state can be expressed as

|ΨSF〉 ∝
(∑

i

b†i

)N
|0〉, (3.25)

where |0〉 is an empty lattice and N is the total number of particles. This corresponds to an
ideal Bose-Einstein condensate, where particles are described by the zero-momentum Bloch
state. For a multi-component condensate with several spin-states, interactions between the
different components give rise to currents in the lattice. This is described by the drag of one
component on the other[75].
At small hopping amplitudes the particles are strongly confined to the lattice sites with

small tunnelling rates between them. This will later be referred to as the strong coupling
regime. When the average on-site occupation number is an integer this gives rise to the
localised Mott insulator phase. This phase is defined by incompressiblity

∂〈n̂i〉
∂µ

= 0, (3.26)

which is a direct consequence of the finite excitation gap associated with with removing or
adding a particle. In the limit of zero hopping amplitude, the Mott insulator ground state
is given by

|ΨMI〉 ∝
∏
i

(b†i )
ni |0〉. (3.27)

Additional particles added to the system can move almost freely on top of the Mott insulator
background, forming a condensate. Thus adding particles immediately leads to a superfluid
state, showing that the Mott insulator only occurs at constant particle numbers.
Excitations in the Mott insulator are associated with hopping processes, and excited

states are characterised by the simultaneous creation of an extra particle and a hole. This
introduces correlated number-fluctuations in the system, which leads to non-vanishing on-
site fluctuations

σi =

〈√
(n̂i − 〈n̂i〉)2

〉
. (3.28)

In two-dimensional systems these fluctuations can take significant values, even for very small
hopping amplitudes[35].
With a multi-component condensate, the Mott insulator ground state becomes massively

degenerate. Since the energy difference between hyperfine states is small, any distribution
between the different components with integer on-site occupation constitute a Mott insula-
tor. This gives rise to an interesting excitation spectra, determined by the on-site interaction
strength between different components and the strength of SOC relative to spin-conserving
hopping amplitudes. In the next section we consider energy corrections from such excitations
using an effective spin Hamiltonian.

19



Chapter 3 The Bose-Hubbard Hamiltonian

3.3 Strong coupling regime
In the strong coupling regime at half filling, the ground state is the Mott insulator with
one boson of either spin at each site. Since the hopping amplitudes are small compared
to the on-site interaction, hopping terms can be written as a perturbation1. We write the
unperturbed Hamiltonian

H0 =
1

2

∑
i,σσ′

uσσ′niσ(niσ′ − δσσ′), (3.29)

and the perturbation as a sum of three hopping terms.

H ′ =

3∑
a=1

Ha
hop =

3∑
a=1

∑
〈ij〉a

∑
σσ′

Tσ,σ
′

ij,a b
†
i,σbj,σ′

 , (3.30)

where the sum over 〈ij〉a denotes summations over nearest neighbours connected by a vertex
with direction a. The matrix elements Tσ,σ

′

ij,a are given in eq. (3.21), describing on- and off-
diagonal hopping along that vertex.
The first-order energy shift from perturbation theory is

∆E1 = 〈Ψ0|H ′|Ψ0〉, (3.31)

where |Ψ0〉 is the Mott insulating ground state. Acting on the ground state with H ′ moves
particles to neighbouring sites, creating a state that is orthogonal to the ground-state. Con-
sequently, the fist order contribution is zero, and second order perturbation theory is needed.
Labelling the excited states of the Mott insulator |n〉 with energy En, the second-order

energy shift is

∆E2 =
∑
n

〈Ψ0|H ′|n〉〈n|H ′|Ψ0〉
E0 − En

=
∑
n

1

E0 − En

 3∑
a,b=1

〈Ψ0|Ha
hop|n〉〈n|Hb

hop|Ψ0〉

 (3.32)

As discussed earlier, acting on the ground state with the perturbation creates a site with
double boson occupancy next to an empty site in the lattice. Hence, the excited states
have one doubly occupied site with two bosons of either equal or opposite spin. The energy
difference from the ground state is the two-particle interaction energy from the effective
interaction potential given by eq. (2.22)

1Most of the derivation done in this section is similar to work done on the same model on a square lattice
in [76]. We go through most of the derivation in the same notation, but refer to that text for some of
the lengthy calculations.
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3.3 Strong coupling regime

• Same spin occupancy: E0 − En = −uσσ = −u.

• Opposite spin occupancy: E0 − En = −uσ,−σ = −λu.

We now divide the space of excited states into two subspaces; the same species subspace,
{|ns〉}, containing states with same spin double site occupancy and the different species
subspace, {|nd〉}, with opposite spin double occupancy. The second order energy correction
then takes the form

∆E2 =

3∑
a,b=1

(
− 1

u

∑
ns

〈Ψ0|Ha
hop|ns〉〈ns|Hb

hop|Ψ0〉 −
1

λu

∑
nd

〈Ψ0|Ha
hop|nd〉〈nd|Hb

hop|Ψ0〉
)

(3.33)
To investigate the effect of the second order perturbation on the Mott insulator ground state,
the energy correction is written in terms of an effective Hamiltonian

∆E2 = 〈Ψ0|Heff |Ψ0〉. (3.34)

The effective Hamiltonian is quadratic in the hopping terms, but only some hopping pro-
cesses give a non-zero contribution to the energy correction. Considering the effect of Hhop

(eq. (3.30)) on the ground state, only states with same spin occupancy contribute to the
first term in eq. (3.33), and similarly states with opposite spin occupancy contribute to the
second term. Mathematically, this can be expressed by the projection operators Ps and Pd,
which project states onto the same and different species subspace respectively. In terms
of these projection operators, the effective Hamiltonian (eq. (3.34)) can be split into two
contributions, one from each subspace

Heff = Hs
eff +Hd

eff =
∑
a,b=1

(
− 1

u
Ha

hopPsHb
hop −

1

λu
Ha

hopPdHb
hop

)
(3.35)

Inserting the expression from eq. (3.30), and letting r ∈ {s, d}, the contribution from each
subspace can be written out as

Hr
eff =

3∑
a,b=1

− 1

ur

∑
〈ij〉a

∑
〈kl〉b

∑
αβνρ

Tα,βij,aT
ν,ρ
kl,bb

†
i,αbj,βPrb

†
k,νbl,ρ

 , (3.36)

with us = u and ud = λu.
The effective Hamiltonian is evaluated in the ground state, so for any nonzero contribution

Heff |Ψ0〉 must be a state with one particle per site. That occurs when i = l and j = k,
which is only possible for terms with a = b. Writing out the matrix structure of Tα,βij,a , and
inserting these constraints on the summation over lattice sites gives

Hr
eff =

3∑
a=1

[
− 1

ur

∑
〈ij〉a

∑
αβνρ

(
−δαβt+ δα,−βs

α,β
ij,a

) (
−δνρt+ δν,−ρs

ν,ρ
ji,a

)
b†i,αbj,βPrb

†
j,νbi,ρ

]
.

(3.37)
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Finally, we consider the effect of the projection operator(s) on the different spin-states.
In eq. (3.37), the term b†j,νbi,ρ creates a boson of spin ν at site j. The same species subspace
projection operator allows this if there is already a boson of spin ν at site j, and similarly
the different species subspace projection operator allows this if the boson at site j has spin
−ν. Mathematically, this can be expressed as

b†i,αbj,βPsb
†
j,νbi,ρ = b†i,αbj,βb

†
j,νbi,ρ(1− nj,−ν) = b†i,αbi,ρ(δβν + b†j,νbj,β)nj,ν , (3.38)

b†i,αbj,βPdb
†
j,νbi,ρ = b†i,αbj,βb

†
j,νbi,ρ(1− nj,ν) = b†i,αbi,ρ(δβν + b†j,νbj,β)nj,−ν , (3.39)

where the bosonic commutation relations have been used in the second equality.

3.3.1 Effective spin Hamiltonian
In this section we consider the summation over the spin degrees of freedom, and show how
the effective Hamiltonian can be represented by the 2x2 Pauli matrices. The two internal
states at each lattice site can be represented by spinors

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
1
0

)
. (3.40)

We now compare the effect of the boson operators in eq. (3.38) and eq. (3.39) on the pseudo-
spin Hilbert space, with the effect of Pauli matrices on the the spinors. For example:

b†i,↑bi,↑| ↑〉i = | ↑〉i, b†i,↑bi,↑| ↓〉i = 0| ↓〉i, (3.41)

so that in the matrix representation

b†i,↑bi,↑ ⇒
(

1 0
0 0

)
i

=
1

2
(1 + σzi ). (3.42)

In this notation, σzi is the Pauli matrix acting on the pseudo-spin space of the particle at
site i. Similar considerations for the other terms give the relations

b†i,↑bi,↑ ⇒
1

2
(1 + σzi ), b†i,↓bi,↓ ⇒

1

2
(1− σzi ), (3.43)

b†i,↑bi,↓ ⇒
1

2
σ+
i , b†i,↓bi,↑ ⇒

1

2
σ−i .

The operators acting on site j have an extra number operator at the end. This must have
the same spin as the left adjacent annihilation operator to give a contribution, otherwise
the effect is the same:

b†j,↑bj,↑nj,↑ ⇒
1

2
(1 + σzj ), b†j,↓bj,↓nj,↓ ⇒

1

2
(1− σzj ), (3.44)

b†j,↑bj,↑nj,↓ ⇒ 0, b†j,↓bj,↓nj,↑ ⇒ 0,

b†j,↑bj,↓nj,↓ ⇒
1

2
σ+
j , b†j,↓bj,↑nj,↑ ⇒

1

2
σ−j ,

b†j,↑bj,↓nj,↑ ⇒ 0, b†j,↓bj,↑nj,↓ ⇒ 0.
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3.3 Strong coupling regime

The terms in eq. (3.37) can now be labelled according to hopping process and written out
explicitly using the 2x2 matrix representation. There are three different hopping processes:

I) Two hoppings without spin-flip: α = β, ν = ρ.

II) Two hoppings with spin-flip: α = −β, ν = −ρ.

III) One hopping with and one without spin-flip: α = −β, ν = ρ or α = β, ν = −ρ.

In total we end up with six terms for each lattice direction a, three for each of the two
subspaces. The calculation of each term is done in detail in [76], and with sa ≡ s↑,↓ij,a the
expressions from the two subspaces is:

Hs
eff = − 2

u

∑
i,a

[ (
t2 − |sa|2

)
σzi σ

z
i+a − t<{sa}ŷ · σi × σi+a (3.45)

− t={sa}x̂ · σi × σi+a + t2 + |sa|2
]
,

Hd
eff = − 1

λu

∑
i,a

[
t2
(
σxi σ

x
i+a + σyi σ

y
i+a − σzi σzi+a

)
+ |sa|2σzi σzi+a (3.46)

−<{s2
a}
(
σxi σ

x
i+a − σyi σyi+a

)
+ ={s2

a}
(
σxi σ

y
i+a + σyi σ

x
i+a

)
+ t2 + |sa|2

]
.

The coefficients in these expressions can be expressed by the effective Rashba coupling
parameter κ and the spin-conserving hopping amplitude t. To find the dependence on κ, we
insert the spin-flip hopping amplitude given in eq. (3.15)

sa1 = −1

2
κ+ i

√
3

2
κ, (sa1)2 = −1

2
κ2 − i

√
3

2
κ2, (3.47)

sa2 = −κ, (sa2)2 = κ2, (3.48)

sa3 = −1

2
κ− i

√
3

2
κ, (sa3)2 = −1

2
κ2 + i

√
3

2
κ2. (3.49)

We may now replace the Pauli matrices by spin operators Si = σi/2, so that the effective
Hamiltonian derived from second order perturbation theory is expressed as an effective spin
Hamiltonian

Heff =
∑
i,a

 ∑
l=x,y,z

J laS
l
iS
l
i+a +Ka(Sxi S

y
i+a + Syi S

x
i+a) + Da · (Si × Si+a)

 . (3.50)

Coefficients are given in table 3.1 in units of 4t20/λu, which we will use as the unit of energy
in the remainder of the thesis. We have adopted a parametrisation used in [76][37]

t = t0 cosα, κ = t0 sinα. (3.51)
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Chapter 3 The Bose-Hubbard Hamiltonian

Table 3.1: Coefficients of the effective spin Hamiltonian in units of 4t20/λu

Jx1 = − 1
4 (3 + cos 2α) Jx2 = − cos 2α Jx3 = − 1

4 (3 + cos 2α)

Jy1 = − 1
4 (1 + 3 cos 2α) Jy2 = −1 Jy3 = − 1

4 (1 + 3 cos 2α)

Jz1 = −(2λ− 1) cos 2α Jz2 = −(2λ− 1) cos 2α Jz3 = −(2λ− 1) cos 2α

D1 = −λ sin 2α
(
−
√

3
2 x̂ + 1

2 ŷ
)

D2 = −λ sin 2α ŷ D3 = −λ sin 2α
(√

3
2 x̂ + 1

2 ŷ
)

K1 =
√

3
4 (1− cos 2α) K2 = 0 K3 = −

√
3

4 (1− cos 2α)

In this representation we can effectively tune the strength of the spin-orbit coupling through
the ratio κ/t = tanα. The relative magnitude between inter- and intra-component scattering
can be tuned through the parameter λ. Furthermore, we consider the spins as classical with
unity length, |Si| = 1, in the remainder of the thesis.

3.3.2 Classification of the terms in the effective spin Hamiltonian

The effective spin Hamiltonian, eq. (3.50), consists of three distinct terms that couple the
spins in fundamentally different ways. In this section we consider their physical origin,
symmetries and what magnetic textures they give rise to. This serves as a starting point
when we explore the zero-temperature phase diagram in {α, λ}-parameter space in chapter 5.
The first term describes a Heisenberg interaction. This originates from exchange inter-

actions only, either two hoppings with spin-flip or two hoppings without. In the absence
of SOC, the Heisenberg interaction becomes purely ferromagnetic with easy plane- or easy
axis- anisotropy depending on the relative magnitude between inter- and intra-component
interaction strengths. When these are equal, λ = 1, the Heisenberg interaction becomes fully
isotropic in spin-space. With non-zero SOC, the Heisenberg coefficients become anisotropic
in real space and as the SOC strength increases, some of the Heisenberg coefficients become
anti-ferromagnetic as a result of double spin-flip hopping processes.
The second term describes a more exotic coupling, which the author has not seen in

any other spin models. In this thesis we will simply refer to it as the "K-coupling". It
originates purely from exchange interactions with double spin-flip, and prefers neighbouring
spins to be perpendicular in the xy-plane. To explain the origin of the K-coupling further, we
consider the lattice symmetry of the effective spin Hamiltonian. The kinetic energy ∝ p2 is
rotationally invariant. Furthermore, the external potential generates the triangular lattice
potential and is invariant under rotations of π/3 in the xy-plane. Finally, the spin-orbit
coupling is conceptually generated by a uniform electric field in the z-direction and must
have rotational invariance in the xy-plane. Effectively, the energy of any lattice configuration
is invariant under a rotation of the entire lattice by π/3 in the xy-plane about any point.

24



3.3 Strong coupling regime

Denoting rotations in the xy-plane by Rxy(φ) we find:

EH({Si}) 6= EH(Rxy(π/3){Si}), (3.52)
EK({Si}) 6= EK(Rxy(π/3){Si}), (3.53)
EH+K({Si}) = EH+K(Rxy(π/3){Si}). (3.54)

The energy of the Heisenberg- or K-term alone is not invariant, while the combination of the
two is. Thus the K-term effectively restores a lattice symmetry broken by the Heisenberg-
term. This symmetry does not extend to spin-space, where the Heisenberg- and K-terms
are highly anisotropic for α 6= 0.
The third term in the effective spin Hamiltonian is a Dzyaloshinskii-Moriya (DM) inter-

action. It was originally proposed by Igor Dzyaloshinskii as an explanation of weak ferro-
magnetic behaviour in anti-ferromagnets[77], and later shown by Toru Moriya to originate
from spin-orbit coupling in solids[78]. This arises from processes with one spin-flip hopping
and one hopping without spin-flip, because all the DM coefficients are ∝ sin 2α = 2tκ. In
the context of spin-systems the DM interaction prefers to cant neighbouring spins so that
they are perpendicular, aligning their cross product with the DM-vector Da. This gives rise
to spiral spin-ordering, commonly seen in chiral magnets with DM-interaction[79, 80]. We
also note that the DM-coefficients have large magnitude for α ' π/4.
Because the DM-interaction arises from spin-orbit coupling we anticipate that the energy

invariant under lattice rotations

EDM({Si}) = EDM(Rxy(π/3){Si}), (3.55)

which can be verified explicitly. Furthermore, the cross-product between neighbouring spins
depends only on the angle between them. From this we obtain a symmetry in spin-space
where the DM-term is invariant under spin-rotations in the plane perpendicular to the
DM-vector.

3.3.3 K-coupling as an off-diagonal compass coupling

The effective spin Hamiltonian (eq. (3.50)) can alternatively be written on the form

Heff =
∑
i,a

JSi · Si+a + Da · (Si × Si+a) +
∑
k,l

Ski Γkla S
l
i+a

 (3.56)

where k, l ∈ {x, y, z}. Here the first term is a fully isotropic Heisenberg interaction with J =
− cos 2α = −(t2 − κ2), generated by spin-conserving hoppings and double spin-flip hopping
processes. The second term describes the DM interaction similarly to before. The final
term describes a spin-anisotropic interaction of a compass-model type[81], with coefficients
given in table 3.2. Compass models have been researched lately in relation to Kitaev’s
honeycomb-model of a spin-liquid, arising from geometric frustration, although in that model
the interaction is on the form Ski ΓkS

k
i+k[82]. All the compass coefficients in the xy-plane
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Chapter 3 The Bose-Hubbard Hamiltonian

Table 3.2: Non-zero compass coefficients of the second effective spin Hamiltonian in units
of 4t20/λu

Γxx1 = − 3
4 (1− cos 2α) Γxx2 = 0 Γxx3 = − 3

4 (1− cos 2α)

Γyy1 = − 1
4 (1− cos 2α) Γyy2 = −(1− cos 2α) Γyy3 = − 1

4 (1− cos 2α)

Γzz1 = −2(λ− 1) cos 2α Γzz2 = −2(λ− 1) cos 2α Γzz3 = −2(λ− 1) cos 2α

Γxy1 = Γyx1 =
√

3
4 (1− cos 2α) Γxy1 = Γyx1 = 0 Γxy1 = Γyx1 = −

√
3

4 (1− cos 2α)

are ∝ (1 − cos 2α) = 2κ2, so in-plane anisotropy here arises from SOC. Similarly the out-
of-plane anisotropy is ∝ λ(t2 − κ2) and arises from the spin-anisotropy of the two-particle
interaction.
In this notation, the spatial symmetry of the spin-anisotropic compass term can be visu-

alised in an intuitive way. We define ε̂a⊥ as the clockwise perpendicular unit-vector to each
lattice direction ε̂a, shown in fig. 3.1. These are parallel to the DM-vectors. The compass
interaction can now be written∑

i,a

∑
k,l

Ski Γkla S
l
i+a =

∑
i,a

Γ(Si · ε̂a⊥)(Si+a · ε̂a⊥) + ΓzzSzi S
z
i+a, (3.57)

with Γ = −(1 + cos 2α) and Γzz given in table 3.2. Since Rxy(π/3)ε̂a1⊥ = ε̂a2⊥ etc, this
term clearly has the xy-plane lattice symmetry.

All of the calculations were done in terms of the K-coupling version of the spin Hamiltonian
(eq. (3.50)), but we have chosen to include this form because it shows how the K-coupling
is merely an off-diagonal spin-anisotropic term for exchange hopping processes with mixed
momentum components.

i

ε̂a2⊥

ε̂a1⊥

ε̂a3⊥

ε̂a1

ε̂a2

ε̂a3

Figure 3.1: Visualisation of the rotational symmetry of the anisotrop compass coupling.
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3.3 Strong coupling regime

3.3.4 Fourier transform
When analysing the zero temperature ground states in chapter 5, incommensurate phases
are simpler to analyse in Fourier space. To that end we derive the Fourier transform of the
effective spin Hamiltionian eq. (3.50). With spins transforming as

Sq =
1√
N

∑
i

Sie
iqri , Si =

1√
N

∑
q

Sqe
−iqri , (3.58)

we end up with the Fourier transformed Hamiltionian

H =
∑
q,a

[ ∑
l=x,y,z

J laS
l
qS

l
−q cos(q · εa) +Ka(SxqS

y
−q + SyqS

x
−q) cos(q · εa)

+ iDa · (Sq × S−q) sin(q · εa)

]
.

(3.59)

The complete derivation is given in chapter A.
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Chapter 4

Monte Carlo

Monte Carlo is a popular numerical method used commonly in many-particle physics prob-
lems. In this chapter we go through the underlying theoretical framework and some impor-
tant concepts within Monte Carlo simulations[83], and show how we may apply these to our
spin-model. As a starting point we review some basic statistical mechanics in the canonical
ensemble[84].

4.1 Statistical mechanics

Statistical mechanics is based on the idea that any macroscopic quantity of a given system
can be extracted from only microscopic degrees of freedom. Consider a general many-
particle system described by a HamiltonianH[Ψ], in a given configuration Ψ, specified by the
microscopic degrees of freedom. The probability of finding the system in this configuration
is

p[Ψ] =
1

Z e
−βH[Ψ], (4.1)

where β = 1/T is the inverse temperature. This gives the canonical probability distribution
of the system. The normalisation factor is called the partition function and is calculated by
integrating over the Boltzmann weight of all possible configurations

Z =

∫
DΨe−βH[Ψ]. (4.2)

Formally this is written as a functional integral over the configuration space because Ψ is
generally a function of microscopic variables in the system. The partition function is related
to the Helmholtz free energy by

F = − 1

β
lnZ, (4.3)

Using the partition function and the canonical probability distribution, we may calculate
the expectation value of physical quantities. Denoting the value of some observable for a
given configuration by O[Ψ], the expectation value is

〈O〉 =

∫
DΨp[Ψ]O[Ψ] =

1

Z

∫
DΨOe−βH . (4.4)
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Chapter 4 Monte Carlo

This expectation value is called the thermal average for a temperature specified by β. For
most common observables, simpler expressions for the thermal average can be derived di-
rectly from eq. (4.4). For example, when there is no explicit temperature-dependence in the
Hamiltonian, the internal energy is simply the thermal average of said Hamiltonian

U = 〈H〉 =
1

Z

∫
DΨHe−βH = − 1

Z
∂Z
∂β

= − ∂

∂β
lnZ, (4.5)

given entirely by Z.
Since most thermal averages can be directly calculated from the partition function this

becomes a central quantity in statistical mechanics. The only problem is that the partition
function is intrinsically difficult to compute in most cases because the space of possible
configurations can be very large.

4.2 General Monte Carlo methods

The concept of Monte Carlo algorithms is very general and can be applied to problems
in various fields. As an introductory example, consider the integral of some complicated
function f(x) that must be approximated numerically. In a simple Monte Carlo algorithm
we could estimate the area under the graph by spreading N points randomly inside a square
of size h(b − a) fully encapsulating the graph. The value of the integral would then be
approximated by the fraction of points, NA/N , that end up below the graph

A =

∫ b

a

dxf(x) ' NA
N

(b− a)h. (4.6)

In the same manner we might attempt to measure observables of our spin Hamiltonian by
simply picking out a large but finite number of random spin-configurations and calculate the
thermal average in these configurations using eq. (4.4) with a discrete sum. In both cases the
answer will become more accurate as we use more sampling points, but the problem arises
when most of the points have little or no contribution to the correct answer. For example,
the integral might have its main contribution from a very small interval in x, so that most
of the sampling points are a waste of computational time.

4.2.1 Importance sampling and Markov chains

To avoid sampling from configurations with low probability, the concept of importance sam-
pling is introduced. The general idea is to derive a scheme that only samples points with
high statistical weight, making the convergence towards the exact result faster.
In statistical mechanics, the configurations are distributed according to the canonical

probability distribution introduced in eq. (4.1). Drawing configurations from it directly is
not possible, but it can be used to obtain the transition probabilities between configurations.
To that we consider a general stochastic process with steps t1, t2, t3... for a system with a
finite number of configurations {Ψn}, and denote the configuration at step t by Xt. Now,
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4.2 General Monte Carlo methods

consider the conditional probability that Xt = Ψn. If this probability only depends on the
previous configuration in the chain, Xt−1, it is called a Markov process and the conditional
probability can be interpreted as a transition probability:

Wnm = W (Ψn → Ψm) = P (Xt = Ψm|Xt−1 = Ψn). (4.7)

Because Wnm is a probability it must satisfy

Wnm ≥ 0,
∑
m

Wnm = 1. (4.8)

From this we can construct the total probability of finding the system in configuration
Ψm at step t in the chain, in the form of a recursive relation

P (Xt = Ψm) = WnmP (Xt−1 = Ψn). (4.9)

We now introduce the master equation for Markov chains. If t is considered as a continuous
time variable rather than a discrete one, the rate of change in the probability that the system
is in configuration m at time t can be written

d

dt
P (Xt = Ψm) =

∑
n

WnmP (Xt = Ψn)−
∑
n

WmnP (Xt = Ψm), (4.10)

which is the probability of moving into configuration m minus the probability of moving
out of that configuration. The true probability of state m occurring at time t is given by
the canonical distribution (eq. (4.1)), which is stationary in thermal equilibrium. Thus we
require that our Markov chain probabilities are are also stationary

d

dt
P (Xt = Ψm) = 0. (4.11)

Inserting this into eq. (4.10) and requiring that it is satisfied term by term in the sum over
n, we obtain the detailed balance relation:

WnmP (Xt = Ψm) = WmnP (Xt = Ψn) (4.12)

4.2.2 Ergodicity and local energy minimas
The principle of ergodicity dictates that all configurations of the system should be reachable
from any starting configuration in the Markov chain. In a complex system, configuration
space is usually large and we might have several local minimas located far from the global
minima. If the Monte Carlo algorithm ”gets stuck” in a local minima it leads to improper
sampling that does not capture the proper dynamics of the system.
Ergodicity is closely related to phase transitions with symmetry breaking. Consider for

example an easy axis ferromagnet. At high temperatures the spins fluctuate, whereas the
zero temperature configuration is one with all spins up or down. For a non-ergodic algorithm
starting from a random high temperature configuration, we might end up with domains
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Figure 4.1: Ground state configuration of an easy axis ferromagnet, without (a) and with
(b) a domain wall.

where all the spins point up and other domains with spins pointing down separated by
domain walls. Since the domain walls have an associated energy cost compared to the
uniform groundstate configuration, this is a local minima.
In general the question of ergodicity has a complex dependence on the symmetries of

the system under consideration, and consequently there is not one ”master Monte Carlo
algorithm” that works well for all systems. In the next section we present the Metropolis-
Hastings algorithm which has a neat mechanism for enforcing ergodicity, but we still need
to consider the possibility of domain walls when interpreting results.

4.3 The Metropolis-Hastings algorithm
Introduced by Hastings[85] based on earlier work by Metropolis[86], this is a general algo-
rithm that enforces the two crucial requirements of detailed balance and ergodicity. In the
Metropolis-Hastings algorithm, the transition probabilities are written

Wnm = Qnmαnm, (4.13)

where Qnm is the probability of selecting configuration m from n, and αnm is the probability
of accepting the change. The acceptance probability is chosen to be the ratio between
the probabilities of the two configurations, given by the canonical probability distribution.
Furthermore, if the probability of the new configuration is higher than old the change is
always accepted, so the acceptance probability is written

αnm = min

(
1,
p[Ψm]

p[Ψn]

)
= min

(
1, e−β(Em−En)

)
(4.14)

The selection probabilities, Qnm, must be symmetric so that the transition probabilities
defined in eq. (4.13) meet the detailed balance condition. Since the acceptance probability
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4.3 The Metropolis-Hastings algorithm

of going to a state with higher energy is always non-zero, the requirement of ergodicity is
also met.
We are now in a position to write down the Metropolis-Hastings importance sampling

Monte Carlo scheme applied to spins on a lattice:

I) Start from an initial state Ψn.

II) Choose a site i on the lattice and change the spin on that site to generate a new
state Ψm.

III) Calculate the energy difference ∆E = Em − En between the old state and the
proposed new state.

IV) Accept the change if log r ≤ −β∆E, where r ∈ [0, 1] is a random number.

V) Start from II picking a new site.

The process of selecting a site attempting to change the spin (step II - IV) will be referred
to as a Monte Carlo step. A Monte Carlo sweep consists of one step for each site in the
lattice, and we typically use between 103 and 106 Monte Carlo sweeps for each temperature
in the simulations.

4.3.1 Generating new configurations

With a general scheme in place, a method for generating new configurations from the old
one is needed. This method needs to fulfil the symmetry requirement on Qij and ensure
ergodicity. We consider classical spins with constant length, |Si| = 1, described by the
azimuthal and polar angles

Si =

sin θi cosφi
sin θi sinφi

cos θi

 φi ∈ [0, 2π), θi ∈ [0, π]. (4.15)

To generate a new configuration, we tilt the spin at site i by some set angle θR in a
direction drawn at random. Formally, this is done by defining a new coordinate system
where Si coincides with the z-axis. In this coordinate system the proposed new spin can be
written

SR =

sin θR cosφR
sin θR sinφR

cos θR

 , φR = rand[0, 2π). (4.16)

The new spin in the standard coordinate system, S′i, is now obtained through the rotation
matrices, where the relation between the two coordinate systems is given by the angles of
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Chapter 4 Monte Carlo

the spin Si. Letting Re(Ω) denote rotations of an angle Ω about the axis ê, the proposed
new spin in the original coordinate system is given by

S′i = Rz(φi)Ry(θi)SR

=

cos θi cosφi − sinφi sin θi cosφi
cos θi sinφi cosφi sin θi sinφi
− sin θi 0 cosφi

SR.
(4.17)

This rotarion is visualised in fig. 4.2. It can easily be verified that when θR = 0 the spin is
unchanged, S′i = Si. Furthermore the spin is equally likely to change in any direction, so
the selection probability is symmetric and any configuration can be reached from successive
Monte Carlo sweeps.

x

y

z

φi

θi

SR

S′i

θR

φR

Si

θR
φR

Figure 4.2: Shows the generation of new configurations

In general the update scheme can be chosen quite liberally, as long as it fulfils the re-
quirements of ergodicity and symmetry. A good update scheme is one that finds the most
probable configurations, so that we minimise the number of unsuccessful update attempts.
In nearest neighbour models a local update scheme – such as the one we use – works well
because the energy difference between successive configurations in the chain is small. One
big pitfall here is choosing the set angle θR too small, so that the algorithm has no way of
escaping from a local minima. In addition very small updates can lead to highly correlated
configurations in our Markov chain.
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4.3 The Metropolis-Hastings algorithm

4.3.2 Thermalisation

In simulations we typically start from a completely random configuration. Depending on the
temperature in the system, this configuration might have high or low probability. From the
canonical probability distribution eq. (4.1), we see that for high temperatures (low β) the
dependence of the the probability on the energy is suppressed and all states have relatively
equal probability. As the temperature is decreased, low energy configurations become more
probable.
Thermalisation is the process of allowing the system to reach a configuration near thermal

equilibrium through successive Monte Carlo sweeps. The number of sweeps required to
reach thermal equilibrium depend on the temperature of the system, and in fig. 4.3 we see a
thermalisation process for the Heisenberg model for three different temperatures. For high
temperatures, the thermalisation process is faster because more configurations have equal
probability, while for lower temperatures its slightly slower.
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Figure 4.3: Thermalisation from a random configuration at three different temperatures
for the Heisenberg model in a 64x64 lattice.

In simulations we want to capture the dynamics of the system in thermal equilibrium,
drawing only configurations that are "physical" in the sense that they would occur in a real
system at that temperature. Thus, for each temperature we make a number of thermalisa-
tion sweeps before observables are measured. From fig. 4.3 we can see that ∼ 200 sweeps
are enough to properly thermalise this particular system. The number of thermalisation
sweeps needed might be higher for more complicated models or lower temperatures, but
by monitoring the internal energy we can check that the system is properly thermalised in
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simulations.

4.3.3 Monte Carlo annealing

An important part of this thesis is exploring the ground state magnetic textures of the
effective spin Hamiltonian derived in chapter 3. At zero temperature (β →∞), a system in
thermal equilibrium is the ground state. Starting from a random configuration, the system
must then be thermalised for some very high value of β to obtain the ground state. The
pitfall here is that at zero temperature only updates with lower energy are accepted in the
Metropolis Hastings algorithm. Starting from a random configuration, there is therefore no
guarantee that the thermalised system is not a local minima.
Annealing is a scheme where – starting from a high temperature random configuration –

the system is eased into the ground state by step-wise thermalisation at incrementally lower
temperatures. This decreases the chance of ending up in a local minima, but there is still no
guarantee. Furthermore, annealing does not fully prevent the occurrence of domain walls,
which are especially prominent in ground state textures with high anisotropy. Consequently,
several annealing simulations are done to ensure that we obtain the true ground state.
In all of the simulations periodic boundary conditions are used. These are implemented

by the torus topology, shown in fig. 4.4. With periodic boundary conditions and finite size
effects, the ground states we obtain will always appear fully ordered if such order exists.
Whether this ordering occurs in an infinitely large systems is another question, discussed
more in section 4.5 and chapter 6.
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Figure 4.4: 4x4 triangular lattice with periodic boundary conditions.
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4.4 Observables

4.4 Observables

In the annealing process, not many observables are needed. To confirm that the annealing
process goes smoothly we measure the internal energy, given by the thermal average of the
effective spin Hamiltonian (eq. (3.50)). In addition we sample the magnetic structure factor
of the fully annealed zero temperature state. When considering thermal effects and ordering,
we sample the helicity modulus.

4.4.1 Magnetic structure factor

The correlation between spins at sites i and j is given by the spin-spin correlation function

G(i, j) = 〈Si · Sj〉 = G(δ), (4.18)

where δ = ri−rj . Inserting the Fourier transform introduced in eq. (3.59) gives the magnetic
structure factor

G(q) =
1

N

∑
δ

eiq·δG(δ). (4.19)

This shows the ordering of magnetic ground state phases in a simple way. Often, compli-
cated magnetic ordering in real space is characterised by simple delta function-like maximas
in the magnetic structure factor for some vector q. For example the XY- and Z-ferromagnets
are characterised by a maxima at the centre of the Brilloine zone q = 0, while stripe and
spiral phases are characterised by two symmetric maximas ±q0. There also exist more
complex phases characterised by several several distinct points in Fourier space. The mag-
netic structure factor is in other words directly related to the periodicity and symmetries of
the magnetic ordering, and consequently it can be used to characterised the ground state
textures obtained by Monte Carlo methods. This is especially useful when the results are
obscured in real space by the presence of domain walls.
In annealing simulations, the structure factor is only sampled for the final configuration.

Since we assume that the global minima has been reached, there are no fluctuations in the
system and consequently the thermal average in eq. (4.18) becomes an exact expression.
Furthermore, the sampling is done starting from all lattice sites but we only sum up until
|δ| = L/2 to save computational time. The final result is then the average of the structure
factor obtained from each site.

4.4.2 Helicity modulus

In this section we consider two ways of measuring the helicity modulus (spin stiffness) for the
Heisenberg and XY-model. Since the XY-model is a special case of the Heisenberg model,
we will begin by considering a general form of the Heisenberg Hamiltonian

H =
∑
i,a

(
JxaS

x
i S

x
i+a + JyaS

a
i S

y
i+a + JzaS

z
i S

z
i+a

)
. (4.20)
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where negative/positive coupling constants correspond to a ferromagnetic/anti-ferromagnetic
spin model.
The helicity modulus measures the response of the spins to an imposed twist δµ along a

direction µ̂ in the system. It is defined as the second order derivative of the Helmholtz free
energy with respect to an infinitesimal twist

Υµ =
∂2F [δµ]

∂δ2
µ

∣∣∣∣
δµ=0

. (4.21)

Physically, this corresponds to twisting the spins at one boundary of the system by an angle
δµ about some axis, while keeping the spins at the opposite boundary fixed. Inserting the
expressions for the free energy, eq. (4.3), and the partition function, eq. (4.2), gives the
expression

Υµ =

[
β

〈
∂H

∂δµ

〉2

+

〈
∂2H

∂δ2
µ

〉
− β

〈(
∂H

∂δµ

)2〉] ∣∣∣∣∣
δµ=0

. (4.22)

The first term is current-like and should always have expectation value zero in the Mott-
insulator. Thus we will simply set it to zero in all coming expressions, but numerically it is
used to check the validity of results.

Twist about three perpendicular axes

We impose a twist where each spin is rotated about one of the three major axes (xyz).
The twist is imposed along the direction µ̂ ∈ {x̂, ŷ}, so that the spins at one boundary
are twisted an angle Φ compared to the ones at the opposite boundary. This method has
previously been used in [87] and for a similar model in [42]. We use the notation introduced
in [42].
To introduce this twist, we consider the polar angle φαi of each spin about an axis α̂ ∈
{x̂, ŷ, ẑ}. For nearest neighbouring spins on the lattice, we impose the twist shown in fig. 4.5a
by letting

φαi − φαi+a → φαi − φαi+a + ∆φαi,i+a,

φαi + φαi+a → φαi + φαi+a + ∆φαi,i+a,

∆φαi,i+a =
Φα

Lµ
|ε̂a · µ̂|.

(4.23)

We denote the length of the system along the direction of the twist by Lµ since this is
different for the x- and y-direction with an equal amount of spins in both directions on
the triangular lattice. Taking α, β, γ to be in cyclic order, the Heisenberg Hamiltonian
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(eq. (4.20)) can be written on the form

H =
∑
i,a

(
Jβa S

β
i S

β
i+a + JγaS

γ
i S

γ
i+a + Jαi S

α
i S

α
i+a

)
(4.24)

=
∑
i,a

sin θαi sin θαi+a

{
1

2

[
Jβa + Jγa

]
cos(φαi − φαi+a) +

1

2

[
Jβa − Jγa

]
cos(φαi + φαi+a)

}
+ Jαa cos θαi cos θαi+a,

where θαi is the azimuthal angle in the coordinate system specified by α. Inserting the
expression for the twist in eq. (4.23) and differentiating with respect to Φα, gives

Υα
µ =− 1

L2
µ

〈∑
i,a

(
Jβa S

β
i S

β
i+a + JγaS

γ
i S

γ
i+a

)
|ε̂a · µ̂|2

〉

− β

L2
µ

〈[∑
i,a

(
Jβa S

γ
i S

β
i+a − JγaSβi Sγi+a

)
|ε̂a · µ̂|

]2
〉
.

(4.25)
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Ωi,i+a∆Ωi,i+a

(b)

Figure 4.5: Shows the imposed twist around a fixed axis (a), and on the planar angle
between the spins (b).

Directly twisting the angle between spins

Instead of twisting the spins about a set axis we now impose a twist where nearest neighbour
spins are directly twisted apart, used previously in [43]. We denote the planar angle between
two neighbouring spins by Ωi,i+a and introduce a twist along a direction in the lattice given
by

Ωi,i+a → Ωi,i+a + ∆Ωi,i+a, ∆Ωi,i+a =
ω

Lµ
|ε̂a · µ̂|, (4.26)
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so that the total twist between two boundaries is ω. If the Heisenberg Hamiltonian is
assumed to be fully isotropic, it can be written on the form

H =
∑
i,a

J cos(Ωi,i+a). (4.27)

Inserting the twist defined in eq. (4.26) and differentiating with respect to ω, gives

ΥΩ
µ = − 1

L2
µ

〈∑
i,a

J cos(Ωi,i+a)|ε̂a · µ̂|2
〉
− β

L2
µ

〈[∑
i,a

J sin(Ωi,i+a)|ε̂a · µ̂|
]2
〉

(4.28)

XY-model
In the XY-model spins are confined to the xy-plane, so each spin is described by the polar
angle φ with θ fixed at π/4. With isotropic interactions in the xy-plane, it can be written

HXY =
∑
i,a

J(Sxi S
x
i+a + Syi S

y
i+a) =

∑
i,a

J cos(φi − φi+a) (4.29)

In the axis twisting method, we only have to consider a twist about the z-axis. For the
direct twisting method, the planar angle between neighbouring spins is simply the polar
angle difference between the two φi,i+a = φi − φi+a. With these identifications we find the
helicity modulus for the XY-model

Υφ
µ = − 1

L2
µ

〈∑
i,a

J cos(φi,i+a)|ε̂a · µ̂|2
〉
− β

L2
µ

〈[∑
i,a

J sin(φi,i+a)|ε̂a · µ̂|
]2
〉
, (4.30)

where both expressions for the helicity modulus of the Heisenberg model, eq. (4.25) and
eq. (4.28), reduce to the same expression.

4.4.3 Helicity modulus with spin-orbit coupling
So far, only ferromagnetic models have been considered. In this section we propose a method
to measure the helicity modulus for a spin-model with a DM interaction1. We consider a
toy model Hamiltonian

H =
∑
i,a

JSi · Si+a + Da · (Si × Si+a), (4.31)

where some general DM interaction is given by the vector Da. The cross product between
neighbouring spins can be written in terms of the planar angle introduced in the previous
section.

Si × Si+a = n̂ sin(Ωi,i+a). (4.32)
1In the end the results obtained from this method where bad, but it is still included in the thesis because
the writer spent considerable time attempting to get this to work.

40



4.5 Quasi-long-range order in lower dimensions

Denoting the angle between the DM-vector and the cross product by Φi,i+a, the Hamiltonian
can be written

H =
∑
i,a

J cos(Ωi,i+a) + |Da| cos(Φi,i+a) sin(Ωi,i+a), (4.33)

with angles shown explicitly in fig. 4.6. We now impose a twist by the direct twisting method
defined in eq. (4.26). Inserting the twist and differentiating w.r.t. ω, we find

ΥΩ
µ =− 1

L2
µ

〈∑
i,a

[J cos(Ωi,i+a) + |Da| cos(Φi,i+a) sin(Ωi,i+a)] |ε̂a · µ̂|2
〉

− β

L2
µ

〈∑
i,a

{
[−J sin(Ωi,i+a) + |Da| cos(Φi,i+a) cos(Ωi,i+a)] |ε̂a · µ̂|

}2

〉 (4.34)
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Da
Φi,i+a

Figure 4.6: Angles used to write out the DM-interaction.

4.5 Quasi-long-range order in lower dimensions
It has been proven rigorously by Mermin and Wagner that there is no long range order
in one- or two- dimensional systems with a continuous symmetry[88]. One consequence
of this is that the Heisenberg and XY-model discussed in section 4.4.2 never have a finite
net magnetisation unlike their three-dimensional counterparts, even at zero temperature.
Hohenberg later extended this argument to superconductivity and superfluidity, showing
that the expectation value of the superfluid order parameter in a two-dimensional Bose
liquid is zero[89]. This begs the question of whether there is a phase transition in lower
dimensional magnetic systems.
The work of Berezinskii, Kosterlitz and Thouless later showed that the two-dimensional

XY-model exhibits a topological phase transition[90, 91]. This phase transition is charac-
terised by quasi-long-range order (QLRO) in the low temperature phase, where the corre-
lation function exhibits an algebraic decay to zero as opposed to the exponential decay in
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the high temperature phase. This can be compared to true long range order seen in three-
dimensional systems where the correlation function decays to some constant value in the
low-temperature ordered phase. Long range order in two-dimensional systems is destroyed
by topological defects, manifested as vortices in superfluids and dislocations in crystals[92].
In the the XY-model, the phase transition is driven by proliferation of vortex-antivortex
pairs. Mean-field arguments show that below the transition temperature vortices are con-
fined in pairs. Above the transition temperature free vortices as energetically favoured, al-
lowing the unbinding of vortex-antivortex pairs. These considerations give an upper bound
on the critical temperature

TBKT ≤ πJ. (4.35)

This is the temperature at which free vortices are no longer energetically allowed in the
mean field picture, but more detailed numerical simulations shows that the true critical
temperature is lower[93].
Because there is no long range order, the magnetisation can not be used as an order pa-

rameter in two-dimensional systems. The order parameter is instead the helicity modulus,
defined in section 4.4.2, which is equivalent to the superfluid density. At the critical temper-
ature, the phase transition is characterised by a discontinuous jump in the helicity modulus
of universal magnitude[94]

Υ(TBKT) =
2TBKT

π
. (4.36)

We compare this magnitude to our numerical results in chapter 6.
In a truly long range ordered system, phases are characterised by delta-like peaks in the

magnetic structure factor for one or several wavevectors, discussed in section 4.4.1. With
QLRO, these peaks instead exhibit an exponential decay due to deviations from perfect
ordering over long distances. In our numerical simulations on finite lattices, this will always
be the case independent of whether we have long range order, QLRO, or no long range
order at all. Consequently, when we derive the ground state phase diagram in chapter 5 we
will refer to phases as ordered, but generally this is only true in a finite system. In chapter 6
we will consider whether there is actually QLRO in the systems.
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Chapter 5

Classical zero temperature phase
diagram

In this chapter we present the results from Monte Carlo annealing. We look at the mag-
netic texture and structure factor of each distinct phase, and get an indication of where in
parameter space they are located. Following this we use a variational approach to locate
the boundaries between phases more accurately, which leads to a classical zero temperature
phase diagram.

5.1 Monte Carlo annealing results
All the annealing simulations are done on a 30× 30 lattice. We run simulations for a large
part of parameter space (α, λ) ∈ [0, π/2]× [0.5, 2.0], with 20 discrete steps in the α-direction
and 31 in the λ-direction. The annealing process is done in four steps starting from a random
configuration with β = 0:

I) 100 increments of 0.05 with θR = π/16

II) 24 increments of 0.5 with θR = π/16

III) 16 increments of 5 with θR = π/16

IV) Two final runs with β = 106 for θR = π/16 and finally θR = π/32

Small increments are used at low inverse temperature because the phases typically order for
β ∈ (0.5, 2.0), and this is the region where we have to be careful. For each temperature,
4000 thermalisation sweeps are used.
In the next sections we present the magnetic textures obtained for different parts of

parameter space. For each phase we show the magnetic texture and structure factor, which
is typically representable for a larger region of parameter space around that point.

Ferromagnetic order
For α = 0, we obtain 3 different ferromagnetic ground state textures. The xy-ferromagnet
(XYfm) phase shown in fig. 5.1a has all spins aligned in the xy-plane and appears for λ < 1.
For λ > 1 we obtain a z-ferromagnet (Zfm) phase shown in fig. 5.2a with all spins aligned
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Chapter 5 Classical zero temperature phase diagram

in the z-direction. Between these two, at λ = 1, we obtain the fully isotropic Heisenberg
ferromagnet shown in fig. 5.3a with spins aligned in some arbitrary direction. The fully
isotropic phase is only present for λ = 1, showing that a slight anisotropy is enough to
tilt the spins into the easy plane/along the easy axis. This is consistent with the simple
considerations made in section 3.3.2. All three phases are characterised by a simple maxima
in the magnetic structure factor at the middle of the Brilloine zone, corresponding to nearest
neighbour ordering of periodicity one in the lattice.
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Figure 5.1: XYfm ordering for α = 0 and λ = 1.0.
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Figure 5.2: Zfm ordering for α = 0 and λ = 1.75
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Figure 5.3: Isotropic ferromagnetic ordering for α = 0 and λ = 1.0.

Spiral order
For intermediate values of α ' π/4, we find a variety of co-planar spiral ordering. The
spiral phases are labelled by their periodicity along the three different directions in the
lattice, and the plane in which they spiral. For example, the spiral-Y (SpY) 4x1x4 phase
shown in fig. 5.4a spirals in the yz-plane with periodicity one along the a2 direction and
periodicity four in the other two directions. Similarly, the spiral-X (SpX) phase spirals
in the the xz-plane. In addition to simple periodic spirals, we find incommensurate spiral
ordering with periodicities that do not fit on the lattice, shown in fig. 5.5a.
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Figure 5.4: SpY 4x1x4 ordering for α = 0.32π and λ = 0.5.
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Figure 5.5: Incommensurate SpY ordering for α = 0.19π and λ = 1.0.
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Figure 5.6: SpY 3x1x3 ordering for α = 0.37π and λ = 0.85.

The co-planer spiral phases have one Fourier component given by two symmetric q-vectors
along the spiralling direction, shown by the magnetic structure factor of the SpY 4x1x4 phase
in fig. 5.4b. The position of the maxima along the y-axis is related to the periodicity of the
spiral, where large periodicities correspond maximas close to the centre of the Brillouin
zone. We stated in section 3.3.2 that all the phases are invariant under real space rotations
of π/3 in the xy-plane. This symmetry extends to Fourier space, so any spiral phase with
magnetic structure factor maxima that can be aligned with the qy-axis by rotations of π/3
will be characterised as a SpY phase. For example the spiral phase of period three shown
in fig. 5.6a is equivalent to the SpY 3x1x3 phase.
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Figure 5.7: Incommensurate SpX ordering for α = 0.24π and λ = 2.0
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Figure 5.8: Coexistence of spiral ordering in multiple directions for α = 0.16π and
λ = 1.9.

We mostly observe SpY ordering in the annealing results, but for high values of λ → 2
we also find spiralling in the xz-plane, shown in fig. 5.7a. These are mostly incommensurate
and obscured by domain walls, but there is still a clear tendency of SpX ordering in the
regime where the intra-component scattering amplitude is large. Close to the Z- and XY-
ferromagnetic regimes, we also observe phases with spiralling in multiple directions, shown
in fig. 5.8a. In real space this phase looks chaotic, but the magnetic structure factor in
fig. 5.8b shows that this phase consist of spiralling order of the same periodicity in almost
every direction. In section 5.2 we show that this happens because the SpX and SpY phases
have the same energy in this parameter regime.
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Antiferromagnetic stripe order

For α ' π/2 and λ < 1.0, we find a co-linear stripe-Y (StrY) 2x1x2 phase with antiferro-
magnetic ordering, shown in fig. 5.9a. It is very similar to the SpY ordering discussed in the
previous section, with antiferromagnetism along two lattice directions and ferromagnetism
along the third. Furthermore, the magnetic structure factor maxima lies at the edge of
the Brilloine zone, corresponding to a periodicity of two in the real space lattice along that
direction.
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Figure 5.9: StrY 2x1x2 ordering for α = π/2 and λ = 0.5.

Vortex phase

For α ' π/2 and λ ' 2 we find a Vortex (VX) phase, shown in fig. 5.10a. This phase consists
of vortices with one spin pointing in the z-direction surrounded by spins pointing towards
it while slightly canted in the z-direction opposite to the centre spin. The VX phase is a
triple q-state, characterised by a maxima at each vertex on the edge of the Brilloine zone
shown in fig. 5.10b.

q2 =
2π

3
x̂ +

2π√
3
ŷ, q2 =

4π

3
x̂, q3 = q2 − q1. (5.1)

This corresponds to second nearest neighbour ordering along every lattice bond. We observe
both negative vortices with all spins pointing inwards such as the one in fig. 5.10a, but also
positive vortices with all spins pointing outward shown in fig. 5.11a. This is slightly peculiar,
particularly since there are no results with both positive and negative vortices in the same
lattice. The variational calculation done in section 5.2 will show explicitly that phases with
negative and positive vortices are equivalent, and furthermore that the vortex phase has a
continuous symmetry.
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Figure 5.10: Negative VX ordering for α = π/2 and λ = 1.9.
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Figure 5.11: Positive VX ordering for α = π/2 and λ = 1.8.

Complex spiral ordering
Close to the VX phase we find spiral phases of higher complexity than the simple spirals
with ferromagnetism along one lattice direction. The SpY 6x3x6 phase, shown in fig. 5.12a,
is located between the stripe and VX phase for α ' π/2 and λ ' 1.3. The magnetic
structure factor, shown in fig. 5.12b, has two large maximas along the spiralling direction at
the edge of the Brilloine zone, along with weak maximas at the vertices. This corresponds
to coexistence between VX and stripe ordering in the form of a spiral phase. As λ increases,
the maximas at the vertices become stronger as the SpY 6x3x6 turns into the VX phase.
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Figure 5.12: SpY 6x3x6 ordering for α = π/2 and λ = 1.3.
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Figure 5.13: SpX 4x2x4 ordering for α = 0, 39π and λ = 1.95.

For λ ' 2.0, between the simple spiral order and the VX phase, we find a SpX 4x2x4
phase shown in fig. 5.13a. In all the annealing results obtained, this phase had several domain
walls occurring because of strong antiferromagnetism in the z-direction. In fig. 5.13b, we
see that the magnetic structure factor has several strong maxima. The marked ones along
the x-direction correspond to the SpX ordering indicated in the real space figure, while the
other maximas correspond to the equivalent rotated phase. These are separated by a domain
wall.
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5.2 Variational phase energies
In this section we compute the energy per spin for variational states based on the Monte
Carlo annealing results. This is done by proposing ansatzes for each of the phases introduced
in the previous section. The energy of the ansatz phases are computed with the effective
spin Hamiltonian, eq. (3.50), and minimised analytically or numerically.

Ferromagnetic order
The easy plane XYfm phase has all spins aligned in the xy-plane, so the ansatz for this
phase is Si = (cosφ, sinφ, 0). With all spins aligned there is no contribution from the DM
term, and the energy becomes

EXYfm =
∑
a

Jxa cos2 φ+ Jya sin2 φ+ 2Ka cosφ sinφ)

= −3

2
(1 + cos 2α),

(5.2)

where the cross-term cancels because K1 = −K3. As expected, the phase is continuously
degenerate with energy independent of the angle φ.
The easy axis Zfm has all spins aligned in the z-direction, so the ansatz is simply Si = ẑ.

There is only one non-zero term in the effective spin Hamiltonian so the energy is given by

EZfm =
∑
a

Jza = −3(2λ− 1) cos 2α. (5.3)

Comparing the energies of the XYfm and Zfm shows that they are equal when α = 0 and
λ = 1.0, where the effective spin Hamiltonian reduces to the isotropic Heisenberg model.

Commensurate spiral-Y order
We consider commensurate spiral order in the yz-plane. The annealing results revealed a
host of different periodicities, so consequently we consider spirals of periodicity up to six.
We start by considering the SpY 3x1x3 phase. The ansatz used is shown in figure fig. 5.14a,
with one spin fixed along the y-axis and the two other spins given by a variational angle ξ

S1 = (0,− cos ξ, sin ξ), S2 = (0, 1, 0), S3 = (0,− cos ξ,− sin ξ). (5.4)

The energy of this phase is obtained by summing over the three lattice sites indicated in
fig. 5.14b with nearest neighbours given by the periodicity of the phase. We obtain

ESpY3x1x3 = −1

3

{
1

4
(5 + 3 cos 2α) cos 2ξ − (1 + 3 cos 2α) cos ξ

+ λ
√

3 sin 2α sin 2ξ + 2λ
√

3 sin 2α sin ξ − 1

4
(9 + 3 cos 2α)

}
,

(5.5)

which has to be minimised numerically with respect to the variational angle.
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Figure 5.14: Ansatz for the SpY 3x1x3 phase (a), and periodicity of the phase on the
lattice (b).

For SpY 4x1x4, we consider an ansatz with four spins drawn an angle ξ away from the
z-axis as shown in fig. 5.15a.

S1 = (0, sin ξ, cos ξ), S2 = (0, sin ξ,− cos ξ), (5.6)
S3 = (0,− sin ξ, cos ξ), S4 = (0,− sin ξ, cos ξ).

Inserting this ansatz into the effective spin Hamiltonian and summing over the four different
configurations, we obtain

ESpY4x1x4 = −
{

1

2
[1 + (2λ− 1) cos 2α] +

1

2
[(2λ− 1) cos 2α− 1] cos 2ξ +

√
3λ sin 2α sin 2ξ

}
.

(5.7)
The minima of an expression of the form C1 cosx + C2 sinx can be found analytically as√
C2

1 + C2
2 . Inserting this relation we find the variation energy to be

ESpY4x1x4 = −
{√

1

4
[(2λ− 1) cos 2α− 1]

2
+ 3λ2 sin2 2α+

1

2
[1 + (2λ− 1) cos 2α]

}
, (5.8)

where the variational angle is given by

ξ =
1

2
arctan

(
−2
√

3λ sin 2α

(2λ− 1) cos 2α− 1

)
. (5.9)

For the SpY 5x1x5 phase we propose a similar ansatz to the period 3 spiral, shown in
fig. 5.15b. The ansatz spins are written

S1 = (0, 1, 0), S2 = (0, sin ξ1,− cos ξ1), S3 = (0,− sin ξ2,− cos ξ2),

S4 = (0,− sin ξ2, cos ξ2), S5 = (0, sin ξ1, cos ξ1).
(5.10)
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Figure 5.15: Ansatz for the SpY 4x1x4 phase (a), 5x1x5 (b) and 6x1x6 (c).

From these we obtain the variational energy

ESpY5x1x5 =
1

5

{
4Jy1 sin ξ1 + (Jz1 − Jy2 ) cos 2ξ1 − 4Dx

1 cos ξ1 − 4Jy1 sin ξ1 sin ξ2

+ 4Jz1 cos ξ1 cos ξ2 − 4Dx
1 sin ξ1 cos ξ2 − 4Dx

1 cos ξ1 sin ξ2

− (Jy1 + Jy2 ) cos 2ξ2 − 2Dx
1 sin 2ξ2 + (3Jy2 + Jz1 + Jy1 )

}
,

(5.11)

written in terms of the coupling constants (table 3.1) to somewhat shorten the expression.
This has to be minimised numerically with respect to the two variational angles.
The final simple commensurate spiral order we consider is the SpY6x1x6. We use an

ansatz similar to the period four spiral, shown in fig. 5.15c, with the spins written

S1 = (0, 1, 0), S2 = (0, sin ξ,− cos ξ), (5.12)
S3 = (0,− sin ξ,− cos ξ), S4 = (0,−1, 0),

S5 = (0,− sin ξ, cos ξ), S6 = (0, sin ξ, cos ξ).

Inserting these into the Hamiltonian gives the variational energy

ESpY6x1x6 = −1

6

{[
4(2λ− 1) cos 2α− 3

2
(1− cos 2α)

]
cos 2ξ + 4

√
3λ sin 2α cos ξ

+ 2
√

3λ sin 2α sin 2ξ + 2(1 + 3 cos 2α) sin ξ

+ 4(2λ− 1) cos 2α+
1

2
(7− 3 cos 2α)

} (5.13)

which again has to be minimised numerically.

Incommensurate spiral order

In this section we consider incommensurate spiral phases in Fourier space. We use the Fourier
transformed Hamiltonian, eq. (3.59), and assume that there is one contributing wavevector
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q0 with two non-zero contributions Sq0 and S−q0 . The Fourier modes must satisfy Parseval’s
theorem ∑

q

|Sq|2 =
∑
i

(Si)
2. (5.14)

Furthermore, we require that Parseval’s theorem is satisfied by each component∑
q

|Saq |2 =
∑
i

(Sai )2. (5.15)

In the single mode approximation, using Sq0 = (S−q0)∗, Parseval’s theorem can be written

|Sq0 |2 =
N

2
(5.16)

The real space spins satisfy the relation Si · Si = S2 = 1. Writing this out in terms of the
Fourier transform and using Parseval’s theorem gives

<{Sq0 · Sq0e−2iq0·ri} = 0. (5.17)

When q0 is incommensurate, the exponential takes different values for each site, so this can
only be satisfied for all sites if Sq0 · Sq0 = 0.
The ansatz for the incommensurate spiral phases can now be written in terms of a single

variational mode

Sq0 =

√
N

2

(
γxe

iφx , γye
iφy , γze

iφz
)
, (5.18)

with constraints on the variational parameters given by Parseval’s theorem and the constant
spin length condition. In the incommensurate SpY phase, all spins lie in the yz-plane. The
component dependant Parseval theorem ,eq. (5.15), then implies that γx = 0. Furthermore,
global phase freedom allows us to set φz = 0. Using Parseval’s theorem and the constant
spin length condition, the SpY Fourier component ansatz takes the form

Sq0 =
N

2

(
0,

1√
2
eiπ/2,

1√
2

)
(5.19)

Inserting this along with a variational wavevector q0 = (0, q0) into the Fourier transformed
Hamiltonian, eq. (3.59), gives

EICSpY = −
{√[

1

4
+

(
2λ− 1

4

)
cos 2α

]2

+ 3λ2 sin2 2α+
1

2
[1 + (2λ− 1) cos 2α]

}
. (5.20)

where the magnitude of the wavevector is found analytically to be

q0 =
2√
3

arctan

{ √
3λ sin 2α

(1 + 3 cos 2α)/4 + (2λ− 1) cos 2α

}
. (5.21)
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We also consider an incommensurate SpX phase, with spins in the xz-plane. Similarly to
the SpY phase, we set γy = 0 and φz = 0, so the Fourier component becomes

Sq0 =
N

2

(
1√
2
eiπ/2, 0,

1√
2

)
(5.22)

With q0 = (q0, 0), the variational energy becomes

EICSpX = −
{[

1

4
(3 + cos 2α) + (2λ− 1) cos 2α

]
cos(q0/2) + λ sin 2α sin(q0/2)

+ λ cos 2α cos q0 + λ sin 2α sin q0

}
,

(5.23)

which is minimised numerically with respect to the wavevector magnitude.

Complex spiral order
In addition to the simple spiral phases with ferromagnetism along one lattice direction, we
obtained two spiral phases of higher complexity in the annealing results. Our ansatz for the
SpiralY 6x3x6 phase is shown in fig. 5.16a, with the spins written as

S1 = (0,− sin ξ1, cos ξ1), S2 = (0, sin ξ2, cos ξ2), (5.24)
S3 = (0,− sin ξ3, cos ξ3), S4 = (0,− sin ξ1, cos ξ1),

S5 = (0,− sin ξ2, cos ξ2), S6 = (0, sin ξ3, cos ξ3).

Inserting these into the spin Hamiltonian and summing over the sites indicated by red dots
in fig. 5.16b gives the variational energy

ESpY6x3x6 = −1

3

{
[1− (1 + 3 cos 2α)]

∑
i<j

sin ξi sin ξj + 3(2λ− 1) cos 2α
∑
i<j

cos ξi cos ξj

}
,

(5.25)
which is minimised numerically with respect to the three variational angles.
Similarly we consider the SpX 4x2x4 phase, with an ansatz like to the SpY 4x1x4 phase

in fig. 5.15a, but with spins in the xz plane and a different periodicity

S1 = (sin ξ, 0, cos ξ), S2 = (sin ξ, 0,− cos ξ), (5.26)
S3 = (− sin ξ, 0,− cos ξ), S4 = (− sin ξ, 0, cos ξ).

Summing over the four configurations shown in fig. 5.16c, we obtain the energy

ESpX4x2x4 = cos 2α sin2 ξ + (2λ− 1) cos 2α cos2 ξ − 2λ sin 2α cos ξ sin ξ, (5.27)

which again has to be minimised numerically. We observe that for α > π/4, all three terms
have negative signs as expected.
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Figure 5.16: Ansatz for the SpY 6x3x6 phase (a), lattice periodicity for the SpX 6x3x6
phase (b) and SpY 4x2x4 phase (c).

Stripe order

The StrY 2x1x2 phase is obtained by considering the ansatz

S1 = ŷ, S2 = −ŷ, (5.28)

with periodicity like the simple spiral phases. Only the Heisenberg y-coupling contributes
to the variational energy and we simply obtain

EStrY =
∑
i=1,2

∑
a

JyaS
y
i S

y
i+a = −1

2
+

3

2
cos 2α (5.29)

The second term becomes negative for α > π/4, giving an overall negative energy.

Vortex order

The VX phase is built from the periodic repetitions of the pattern shown in fig. 5.17a.
Surrounding the middle up/down spin are six spins given by the same angle γ indicated
in the figure, with an out-of-plane component given by the angle ξ of opposite sign as the
middle spin.

S0 = [0, 0,−1],

S1 = [sin ξ cos γ,− sin ξ sin γ, cos ξ],

S2 = [sin ξ cos(π/3 + γ), sin ξ sin(π/3 + γ), cos ξ],

S3 = [− sin ξ cos(π/3− γ),− sin ξ sin(π/3− γ), cos ξ],

S4 = [sin ξ cos(π/3− γ),− sin ξ sin(π/3− γ), cos ξ],

S5 = [− sin ξ cos(π/3 + γ), sin ξ sin(π/3 + γ), cos ξ],

S6 = [− sin ξ cos γ,− sin ξ sin γ, cos ξ].

(5.30)
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Figure 5.17: Ansatz for the VX phase (a), and schematic representation of the periodicity
(b).

The energy is calculated by summing over the spins indicated by the grey area in fig. 5.17b.
This calculation is simplified by realising that many of the links between spins are equivalent.
For example the blue link 6→ 1 can be rotated 2π/3 clockwise to obtain the blue link 3→ 2.
In total we find six distinct links, indicated by the colour in the figure. Inserting the ansatz
spins and adding up the contribution from different links, we obtain the energy

EVX = −2Jz1 cos ξ +
1

4
(Jx2 − Jy2 + 2Jz1 ) cos 2ξ +

1

4
(−Jx2 + Jy2 + 2Jz1 ) (5.31)

Remarkably, the energy is independent of the angle γ, suggesting that the canted spins can
rotate freely as long as they all have the same angle. This VX phase is thus continuously
degenerate, unlike any other phase in its vicinity in parameter space.
To find the energy minima, we have to minimise an expression on the form A cosx +

B cos 2x. Since Sz0 was set to be negative in the ansatz, we are looking for a positive,
non-zero solution. This is given by

cosx = − A

4B
, (5.32)

from which we obtain

cos 2x =
1

8

A2

B2
− 1. (5.33)

Inserting these relations into eq. (5.31) gives the minimised energy of the VX phase

EVX = 2
(2λ− 1)2 cos2 2α

(4λ− 1) cos 2α− 1
+

1

2
(cos 2α− 1) . (5.34)

When α → π/2 and λ > 1, the overall sign is negative. The variational angle can be
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expressed on the form

ξ = arccos

(
2Jz1

2Jz1 + Jx1 − Jy2

)
= arccos

(
2Jz1

2Jz1 + (1− cos 2α)

)
, (5.35)

which is always positive when Jz1 is positive.
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5.3 Ground state phase diagram

We may now compare the minimised variational phase energies for different values of α and
λ. Figure 5.18 shows the lowest variational energies along with numerical results from Monte
Carlo annealing for four values of λ.
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Figure 5.18: Comparison between variational energies for λ = 0.5 (a), 1.0 (b), 1.3 (c), 1.8
(d). Numerical results from Monte Carlo annealing plotted with dots.

In general the variational energies agree very well with the energies obtained from Monte
Carlo annealing. In fig. 5.18c and fig. 5.18d there are slight deviations for the Zfm and
SpY 6x3x6 phases, explained by domain walls in the numerical results. For some of the
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phases, we have only plotted parts of the energy curves. This is because they reduce to
other periodicities in the parts not plotted. For example, the SpY 5x1x5 phase reduces
to the XY ferromagnet by setting β1 = π/2 and β2 = 3π/2 in the the ansatz (eq. (5.10)).
Furthermore we observe that the spiral phases lie very close in energy, especially for large
values of the intra-component scattering parameter. In particular, the two incommensurate
spiral phases – the brown and pink lines in fig. 5.18 – have the same energy for α < π/4. As
α increases, the SpY ordering has lowest energy for low values of λ, while at higher values
the SpX phase wins.
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Figure 5.19: Phase diagram obtained from variational energies. The complete overview of
every ansatz used is given in section 5.2. The dashed line indicates where the
ICSpX phase has less energy than the ICSpY phase.

Comparisons between variational energies are summarised in the classical ground state
phase diagram shown in fig. 5.19, obtained by plotting the lowest variational energy at
each point in parameter space. Because there are so many competing phases in the spi-
ralling regime, we can not claim more than a qualitative description in this region. The
ferromagnetic-, vortex-, complex spiral- and stripe- phases on the other hand stand out, so
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we expect these to more accurately describe the true groundstate.

5.3.1 Comparison with Monte Carlo results

The phase diagram can be understood in terms of the magnetic structure factor. Figure 5.20
shows the magnetic structure factor of various points in parameter space from the Monte
Carlo results. Comparing this to the phase diagram, we see obvious similarities.

Figure 5.20: Magnetic structure factor for various points in parameter space from Monte
Carlo results. Axes are scaled, to better highlight regions of interest.

For low alpha we see one maxima at q = 0, characterising either the easy-plane ferro-
magnet for λ < 1 or the easy-axis ferromagnet for λ > 1. To the right of these phases
we see spiralling with long periodicities in multiple directions, characterised by a ring of
maximas around the centre of the Brilloine zone. This is consistent with the fact that the
two variational incommensurate spiral phases have the same energy in this regime, inducing
coexistence of spiralling in several directions in the Monte Carlo results. For intermediate
values of α ' π/4, we see the simple spiralling phases. The periodicity of the spiral phases
decreases as α is increased, characterised by maximas closer to the edge of the Brilloine
zone. For low values of λ spiralling mainly occurs in the yz-plane, while for higher values we
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also find SpX-ordering, in qualitative agreement with the variational phase diagram. To the
very right, for α ' π/2, we find the StrY-, SpY 6x3x6- and VX-phases characterised by
maximas at the Brilloine zone edges. The (semi)-continuous development of the magnetic
structure factor – from one maxima at the centre to several maximas at the edges of the
Brilloine zone with increasing α – qualitatively explains why we observe SpX ordering for
high values of λ, as this turns into the VX phase with maximas at the vertices.

5.3.2 Comparison with literature
To the writer’s knowledge no previous work has been done on this exact model, and conse-
quently its hard to verify our results by direct comparison. In this section we argue why the
different phases occur based on the relative strength between interactions in the effective
spin Hamiltonian (eq. (3.50)) and comparisons with slightly similar models.
As a starting point we may compare our results with work done on the same Bose-

Hubbard Hamiltonian on the square lattice by Cole et. al.[37]. Ferromagnetic phases are
indifferent to the underlying lattice, and consequently we see that they are almost identical
to results obtained on the square lattice. The square lattice model also supports two types
of spiral order; one along the lattice bonds that we can compare with SpX-ordering, and
one directly between the lattice bonds which can be compared to SpY-ordering. In the
square lattice, spiralling between the bonds occur for low λ, consistent with our findings.
The two spiralling orders can be understood as a competition between the DM-interaction
and the ferromagnetic y-component of the Heisenberg interaction. At high λ, when DM
dominates, spiralling occurs in the plane perpendicular to the DM-vectors. For lower λ, the
ferromagnetic y-component drags the spiralling order into the yz-plane. In [95] it is shown
that DM- and antiferromagnetic Heisenberg-coupling gives rise to spiral order perpendicular
to the DM-vector, even in the presence of an external magnetic field1.
In a purely antiferromagnetic XY-model, geometric frustration leads to the 120◦ Néel

ordering[96]. The StrY ordering, found in our results, is very different from this; while
we have antiferromagnetic interactions along the a1- and a3-directions, the Heisenberg y-
coupling remains ferromagnetic along the a2-bond. In this region of parameter space on the
square lattice, Cole et. al. finds an in-plane vortex phase that is shown to be continuously
degenerate in [76]. For a specific orientation, this vortex phase reduces to a stripe phase
similar to the one we find, so on the triangular lattice the stripe phase can be interpreted
as a result of symmetry breaking from geometric frustration.
Some aspects of the vortex phase can be understood in terms of strong z-antiferromagnetism.

In the limit of λ → ∞ and α = π/2, the antiferromagnetic z-couplings dominate and our
spin Hamiltonian essentially reduces to the antiferromagnetic Ising model. This has a mas-
sively degenerate groundstate where each elemental triangle has two spins up and one down
(or equivalently one up and two down)[97]. From the analytic expression for the variational
angle ξ, we find that limλ→∞ ξ

∣∣
α=π/2

= arccos(1) = 0, so that the VX phase reduces to the
antiferromagnetic Ising model.

1The focus of this article is a high-field skyrmion phase, but in a low field they obtain spiral order.
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Thermal excitations

In this chapter we consider the effects of thermal excitations on the ordering of magnetic
phases by sampling the helicity modulus using Monte Carlo. The original idea was to use the
more common twist-about-axis method (eq. (4.25)) to show that the direct twisting method
(eq. (4.28)) works and then use this to measure the helicity modulus with a DM-interaction
from SOC. In the end the direct twisting method did not work with DM, discussed in
section 6.3, but we still show that the two twisting methods give qualitatively equal results
in the Heisenberg model and discuss these. As an introduction we present results for the
famous XY-model, known to exhibit a vortex-driven phase transition.

6.1 Ordering in the XY-model

To see how ordering in the XY-model is influenced by thermal fluctuations, we run Monte
Carlo simulations in the interval β ∈ [0, 2] with 100 discrete steps. We set λ = 0.5 and
α = 0, in the effective spin Hamiltonian, eq. (3.50), to obtain the XY-model given in
eq. (4.29). Furthermore, we initialise the spins with random orientations in the xy-plane
and set φR = ±π/4, θR = π/16 (eq. (4.16)), so that spins only fluctuate in-plane. For
each inverse temperature we use 104 initial thermalisation sweeps1 followed by 5 ·105 Monte
Carlo sweeps where the helicity modulus and internal energy is measured every 500’th sweep
using the expressions in eq. (4.30) and eq. (4.29). We run one simulation for lattices of size
32× 32, 44× 44, 54× 54 and 64× 64.
The result from this simulation is shown in fig. 6.1, where we have plotted the average from

twisting along µ̂ = x̂, ŷ in the lattice. Energy per spin for the same inverse temperatures
are shown in the bottom right corner. We can see that the energies are the same for each
lattice size, and that they tend towards −3 which is the energy of the XYfm groundstate
(eq. (5.2)). Around β = 0.5, we see the effects of critical slowing down. As the system starts
to order, large clusters of highly correlated spins are formed. The Monte Carlo algorithm
struggles with breaking these up, making it difficult to sample large parts of parameter space.
This leads to the statistical errors indicated by deviations from the continuous curve that we
would expect. To remedy this, multiple runs could have been done to get a better statistical
foundation, but here we are merely interested in showing qualitatively that measuring the
helicity modulus using the analytic expression eq. (4.30) works. Furthermore, for β ≥ 0.7

1This is really overkill, but does not cost much computational time on the whole.
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Figure 6.1: Helicity modulus, averaged over the x- and y- direction, of the XY-model
plotted as a function of inverse temperature. Energy for the same temperatures
in the right corner box. Zoomed area highlights where the curves cross at the
critical temperature.

the results give smooth curves where larger lattice sizes give larger values for the helicity
modulus, seemingly converging to some finite value in the limit of an infinitely large system.
The critical temperature is given by a negative dip in the fourth order modulus, corre-

sponding to a discontinuous jump in the helicity modulus[98]. Because we are only interested
in a qualitative agreement, we measure the critical temperature at the point where the helic-
ity modulus curves intersect, which gives Tc = β−1

c ' 1.61. This is motivated by the fact the
the helicity modulus should have a jump of universal magnitude, independent of the lattice
size. Furthermore, in [98] the intersection point and fourth order dip are only separated by
∆β = 0.01 so using the intersection point gives a qualitatively good description.
To our knowledge, only results from an anti-ferromagnetic Heisenberg model exists on

the triangular lattice, investigated in relation to nematic and chiral order in frustrated spin
systems[99, 100]. We can however compare our result to ones obtained for a ferromagnetic
XY-model on the square lattice giving a critical temperature Tc = 0.893 for J = 1[93].
The critical temperature is lower on the square lattice because each site is connected by
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fewer bonds. Furthermore, it is about 2/3 of what we find on the triangular lattice, which
is the ratio between bonds to each lattice site in the respective lattices. In addition to
this, we have plotted the helicity modulus given by the magnitude of the universal jump
in eq. (4.36) predicted by Nelson and Kosterlitz. In terms of the inverse temperature, the
helicity modulus should have the value 2/(πβc) at the critical temperature, which agrees well
with our results. All together we believe that this is compelling evidence that our method
works on the triangular lattice, and turn to the slightly more complicated Heisenberg model.

6.2 Ordering in the Heisenberg model

The numerical simulations for the Heisenberg model are similar to the one on the XY-model
with slight tweaks. We use the same temperature-regime β ∈ [0, 2], but with 50 discrete
steps. In turn we have used 103 thermalisation sweeps and 106 Monte Carlo sweeps, mea-
suring observables every 100’th sweep. The helicity modulus is a lot harder to sample in
the Heisenberg model than the XY-model because configuration space is much larger with
3D spins. Consequently, by trial and error, we set θR = π/8 to reach more configurations.
Furthermore, we ran 8 independent runs for each lattice size to get a better statistical foun-
dation. The helicity modulus was sampled using both the axes-twisting method (eq. (4.25))
and the direct twisting method (eq. (4.28)) in the same run. Error bars are given by the
standard error of the eight data points for each temperature from independent runs.
Results for the axis twisting method are shown in fig. 6.2. We show the average of the

quantities measured from twisting about the x, y- and z- axis along the two directions in the
lattice. We can see that the ordering2 happens for a higher inverse temperature than for the
XY-model, which is reasonable as there are more fluctuations with 3D spins. In contrast to
the XY-model, larger lattice sizes give lower values for the helicity modulus in the ordered
phase, discussed further in section 6.2.1. This can be compared to results obtained by K.
Mon[43] on the square lattice, where the same trend is shown. Furthermore, they measure
the helicity modulus to be 0.59 in a 64x64 lattice3 at β = 2.5. Assuming the trend shown in
fig. 6.2 continues, the corresponding value on the triangular lattice is around 1.0, explained
by the fact that there are more bonds than on the square lattice.
We may now compare results from the axis twisting method with those obtained from the

direct twisting method, shown in fig. 6.3. Firstly, we can see that this method of measuring
is more prone to statistical errors. Because the two methods are sampled for the same data,
we conclude that the multiple axis twisting methods give better results because considering
all three axes compensates for our inability to sample enough configurations. For low values
of β, the direct twisting method gives slightly negative values. The best explanation for this
is that in the unordered state the direct twisting method does not correspond to a physical
twist through the system, but locally twisting spins apart around some arbitrary axis. As
the spins align in the ordered phase these local axes will also align, giving a physical twist like
in the axis twisting method. Apart from that, there is an overall good qualitative agreement

2"Ordering" is used in lack of a better word, since in a finite small system the Heisenberg model will in
fact order.

3In this article only one temperature was considered
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Figure 6.2: Helicity modulus for the Heisenberg model sampled using the axis twisting
method, averaged over the x, y and z axis. Curve shows the average of mea-
surements for twists along the x- and y- directions.

between the two curves with transitions at the same temperature, β ' 1. Furthermore, in
the direct twisting method we can also see that the helicity modulus is larger for smaller
lattice sizes, and the magnitude is of the same order.

6.2.1 Pseudo-critical behaviour

Originally, measuring the helicity modulus for the Heisenberg model was intended as a way
of verifying that the two methods gave similar results. When checking for known results
in the literature however, it became clear that whether there is QLRO in the Heisenberg
model is still an unanswered question of some controversy. The main reason to deny the
existence of QLRO in the Heisenberg model is that rotation symmetries of the spins form
a non-Abelian group that does not support formation of stable topological defects[101]. In
contrast, the XY-model has a corresponding Abelian symmetry supporting defects that we
now know to be vortex-pairs. The evidence against QLRO in the Heisenberg model is
summarised by J. Kosterlitz in his Nobel Lecture in 2017[102], where he points to numeri-
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Figure 6.3: Helicity modulus for the Heisenberg model sampled using the direct twisting
method. Curve shows the average of measurements for twists along the x- and
y- directions.

cal work by Moore[103], normalisation theory by Polyakov[104] and finally experiments on
superfluids[105, 106]. Conversely, numerical work in [106] indicates QLRO in the Heisen-
berg model, while a perturbation expansion used to deny the existence of QLRO is called
into question in [107].

The most recent contribution to this discussion we were able to find is an article by Tomita
in 2014[108], where finite-size scaling analysis is used to predict pseudo-critical behaviour
in the Heisenberg model. Pseudo-critical behaviour is characterised by extremely large,
yet finite correlation lengths which can be erroneously recognised as infinite by conventional
finite size scaling methods because the distinction is very fine. Our results seem to align well
with the considerations of Tomita. Around β = 1.0 there is some size-dependant pseudo-
critical temperature below which the correlation length takes very large but ultimately finite
values, characterised by the size-dependant decline of the helicity modulus compared to the
increase in the XY-model.
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Chapter 6 Thermal excitations

6.3 Ordering with spin-orbit coupling

Finally, we present the results obtained from measuring the helicity modulus with SOC in
the form of a DM interaction using the direct twisting method introduced in eq. (4.34). As
shown in fig. 6.4, inclusion of a DM interaction introduces an unphysical divergence into
negative values. A negative helicity modulus would correspond to a local energy maxima,
which cannot be true as we found ordered groundstates in the presence of non-zero SOC in
chapter 5. Furthermore, in this result we have only introduced a very weak DM-coupling
with J = −1, λ = 0.2 and the DM-vectors given by

D1 = λ

(√
3

2
x̂− 1

2
ŷ

)
, D2 = −λŷ, D3 = λ

(
−
√

3

2
x̂− 1

2
ŷ

)
, (6.1)

in eq. (4.31). Increasing λ leads to greater divergence into negative values. It is worth noting
that fig. 6.4 shows one of many failed tests to produce results that made sense, and that
we considered other parameter regimes and choices for the DM-vector. We must therefore
conclude that this method for measuring the helicity modulus does not work4.
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Figure 6.4: Helicity modulus the Heisenberg model with a DM interaction. Unphysical
negative values indicate that this result cannot be correct.

4Close, but no cigar.
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To see what goes wrong, we recall that the helicity modulus is given by

Υµ =

[
β

〈
∂H

∂δµ

〉2

+

〈
∂2H

∂δ2
µ

〉
− β

〈(
∂H

∂δµ

)2〉] ∣∣∣∣∣
δµ=0

. (6.2)

In the pure Heisenberg model, the first term is proportional to − sin(Ωi,i+a) which is zero
in the ordered phase as it should. Including a DM-interaction however, introduces a non-
vanishing term proportional to cos(Ωi,i+a) causing the first term in the helicity modulus to
take non-zero values. This also makes the third term finite in the ordered phase, causing
the negative divergence. Furthermore, there is an ambiguity in how we define the angle
Φa introduced as the angle between the DM-vector and the cross product of neighbouring
spins. When neighbouring spins align, the cross product is zero and Φa is no longer defined,
indicating that the direct twisting method should not work with DM coupling. In retrospect,
these are considerations that could have been made before doing numerical simulations.
Finally, we note that this method has not – to our knowledge, and for good reason – been
used to measure the helicity modulus with SOC previously.
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Chapter 7

Summary

In this thesis we have investigated a strongly correlated two-component bosonic system
of ultracold atoms with spin-orbit coupling. Starting from a review of the fundamental
interactions in such systems, we have shown how ultracold atom experiments are used to
investigate spin degrees of freedom coupled by a spin-orbit interaction. Furthermore, we have
pointed to literature where such experiments have been realised, leading to groundbreaking
discoveries of novel phenomena. Starting from a general quantum mechanical description,
the Bose-Hubbard tight binding model was derived for spin-orbit coupled bosons with two
pseudo-spin degrees of freedom in a triangular lattice potential. We have also reviewed
literature on this model, famous for exhibiting a pure quantum phase transition between a
strongly coupled Mott insulator and a delocalised superfluid phase.
In the Mott insulator regime, we derived an effective spin Hamiltonian that has not

been considered in literature previously. Comparisons with previous work done on the
square lattice, showed that mixed momentum components along the diagonal vertices in
the triangular lattice gave rise to an exotic off-diagonal compass coupling, not considered
in many previous models. In addition the spin Hamiltonian included a Heisenberg coupling
and a Dzyaloshinskii-Moriya interaction, where the latter results exclusively from spin-orbit
coupling.
The spin model was studied through extensive Monte Carlo simulations. After a review

of the literature on Monte Carlo methods, we showed how the Metropolis Hastings algo-
rithm can be employed in a system of three-dimensional spins. This was done using a fully
isotropic selection probability to ensure the crucial requirements of detailed balance and
ergodicity. Monte Carlo annealing was used to obtain magnetic groundstate textures for
different magnitudes of spin-orbit coupling and inter- relative to intra-component scatter-
ing. These results revealed a plethora of magnetic ground states, most of which have been
considered in previous works along with a novel vortex phase with a continuous symme-
try. The energies of these phases were compared using a variational approach with ansatzes
based on the Monte Carlo results, resulting in a zero temperature groundstate phase dia-
gram. This was compared to the Monte Carlo results, were we claim a good qualitative
agreement although the boundaries between phases can not be taken as exact.
Finally, we considered the effects of thermal excitations. Due to the absence of long

range order in two-dimensional systems, this was done by sampling the helicity modulus.
Based on literature, we found two analytic expressions for measuring the helicity modulus
of the Heisenberg model. Both these reduced to the same expression for the XY-model,
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Chapter 7 Summary

which we used as an introductory testing ground of our method. Results for the XY-model
were compared to numerical work done on the square lattice along with the predictions
of Kosterlitz, Thouless and Nelson, where we found a good agreement in both cases. The
results from simulations on the Heisenberg model showed that the two methods used gave
qualitatively similar results. Encouraged by this, we tried to generalise the direct twisting
method to include spin-orbit coupling in the form of a Dzyaloshinksii-Moryia interaction,
but this proved fruitless. Results from the Heisenberg model also sparked interest in a
controversy of whether the Heisenberg Hamiltonian has a topological phase transition like
the XY-model. In our results we found a size-dependant decline in the helicity modulus of
the Heisenberg-model, indicating a weaker ordering than the XY-model with pseudo-critical
behaviour only occurring in finite systems.
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Appendix A

Fourier transform derivation

We consider the three terms of the Hamiltonian separately. The sum over a and l in eq. (3.50) is
taken to be implicit during the derivation for brevity. The identity

1

N

∑
i

ei(q−q
′)·ri = δq,q′ , (A.1)

is used frequently along with symmetry properties of the transform around q = 0. Inserting the
Fourier transform given by eq. (3.58), we consider each term separately.

A–1



Appendix A Fourier transform derivation

• Heisenberg term:

HH =
∑
i

J laS
l
iS
l
i+a =

1

N

∑
i,qq′

J laS
l
qe
−iq·riSlq′e−iq

′(ri+εa)
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∑
qq′

J laS
l
qS

l
q′e−iq

′·εaδq,−q′ =
∑
q
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−qe
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qS
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−q(cos(q · εa) + i sin(q · εa))

=
∑
q

J laS
l
qS

l
−q cos(q · εa).

(A.2)

The last line follows from the asymmetry of the sine function around q = 0.

• Dzyaloshinskii-Moriya term:

HDM =
∑
i

Da · (Si × Si+a)

=
1

N

∑
i,qq′

D · (Sqe
−iq·ri × Sq′e−iq

′·(ri+εa))

=
∑
q

Da · (Sq × S−q)(cos(q · εa) + i sin(q · εa))

=
∑
q

iDa · (Sq × S−q) sin(q · εa)

(A.3)

The last line follows from the asymmetry of the cross-product and the sine function. Using
Sq
∗ = S−q we find

Sq × S−q = −(S−q × Sq) = −(Sq
∗ × S−q

∗) = −(Sq × S−q)∗, (A.4)

showing that the cross product is purely imaginary. Thus HDM gives real energies.

• K term

HK =
∑
i

Ka(Sxi S
y
i+a + Syi S

x
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1

N
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(A.5)
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