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Preface

This is a master’s thesis written during the spring semester of 2018 to complete a master’s degree in
information security. It documents a project that was conducted after being suggested as a research
topic by Professor Patrick Bours, who also supervised the project.

The thesis dives into rather technical details surrounding keystroke dynamics. Experts in bio-
metrics are the target audience in mind. However, I have attempted to write it in a way that is
understandable and easy to follow for others who might also be interested. This means that bio-
metric terms and concepts are explained, but not to an extent that would bore the target audience.
Therefore, I hope that the reader will enjoy the work presented here, regardless of their background.
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Abstract

If a user leaves their computer without locking it, any nearby person can simply walk over and
take control over the machine as if they were the genuine user. If the imposter also has malicious
intentions, the genuine user could face serious consequences such as identity theft or blackmailing.
Keystroke dynamics enables the system to repeatedly authenticate the user in the background by
recognizing their personal typing pattern. Seen from another perspective, the system can lock the
imposter out based on detecting unfamiliar typing patterns.

The aim of this project was to combine two such authentication mechanism, namely continuous
and periodic authentication. Continuous authentication (CA) systems react to every single keystroke
action performed by the user, though such systems base their decisions on very limited amounts of
information derived from a couple of keystrokes at a time. Periodic authentication (PA) systems
base their decisions on statistics from samples containing a large number of keystrokes, however,
they only perform checks after that large number of keystrokes has been collected. This gives the
imposter a certain period of freedom before being locked out. By integrating a PA system into a CA
system, we eliminated the disadvantages of both authentication mechanisms while still benefiting
from their advantages, in addition to improving the CA system’s imposter detection performance by
over 18%. Alternatively, the combination of the systems could give the genuine user an increase in
the average number of keystrokes before being wrongfully locked out by over 8%.

iii



Combining Periodic and Continuous Authentication using Keystroke Dynamics

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Topic covered by the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Justification, motivation and benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Continuous authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Periodic authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Statistical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Machine learning approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 CA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Feature extraction and references . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Trust model and decision module . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 PA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Feature extraction and references . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Decision Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Combined system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Decision level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Score level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



Combining Periodic and Continuous Authentication using Keystroke Dynamics

4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 CA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Single and no occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Outlier removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Reference cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Personal and system level parameters . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 PA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Reference cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 R- and A-distance weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Decision level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Score level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Overview of the best results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Computational impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A PA testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 Reference cutoff impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B Testing data from decision level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.1 Other PA tolerance levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C Testing data from score level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.1 Block size 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.2 Block size 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.3 Block size 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

v



Combining Periodic and Continuous Authentication using Keystroke Dynamics

List of Figures

1 Generalized diagram of the CA system’s structure. . . . . . . . . . . . . . . . . . . . . 15
2 Examples of how the score would affect the trust level using different parameters for

Equation (3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Generalized diagram of the PA system’s structure. . . . . . . . . . . . . . . . . . . . . 19
4 Decision level fusion of the CA and PA subsystems. . . . . . . . . . . . . . . . . . . . 24
5 Score level fusion of the CA and PA subsystems. . . . . . . . . . . . . . . . . . . . . . 26
6 Plot of the sigmoid function used to achieve the results in Table 7. . . . . . . . . . . . 28
7 Detection error tradeoff curves showing the detection performance of weighing R-

and A-distances by 20-80% respectively as well as using equal weights. . . . . . . . 33
8 DET curves showing the performance for different block sizes. . . . . . . . . . . . . . 34
9 Examples of decision level fusion with block size = 250. UP = 1,DOWN = 0.6. . . . . 37
10 Example of score level fusion with block size = 250, where User 3 was tested as

an imposter vs User 1’s reference. DTM parameters for SigPA were as follows: A =

personal + 0.5 tolerance, B = 0.1, C = 50.001. . . . . . . . . . . . . . . . . . . . . . . 42

vi



Combining Periodic and Continuous Authentication using Keystroke Dynamics

List of Tables

1 Summary of relevant periodic and continuous systems. Datasets marked with an
ampersand (*) in the database (DB) column are available publicly or by request.
This table is an extension of an earlier version in the author’s IMT4215 Specialization
Project report [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Fictional example of dataset structure where a user wrote the word "Data". . . . . . . 13
3 The structure of the references used in our system, where σ is the standard deviation

of recorded durations/latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 The structure of the probes and references used in our PA system. . . . . . . . . . . . 19
5 Calculation of the relative distance between digraphs shared between a probe and

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Similarities between digraphs from Table 5 using a threshold of 1.25. . . . . . . . . . 22
7 CA results achieved by adjusting Single Occurrence (SO) and No Occurrences (NO)

parameters. DTM parameters were A = 1.85, B = 0.28, C = 1 and Tlockout = 90. . . . 29
8 CA results achieved with outlier removal using the following DTM parameters: A =

1.3, B = 0.28 and C = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9 CA results achieved with personal thresholds for reward/penalty. DTM parameters:

A = personal, B = 0.28, C = 1, and Tlockout = 50. . . . . . . . . . . . . . . . . . . . . 31
10 Excerpt of PA results showing the performance impact of using a reference cutoff. A

block size of 500 keystrokes was used. A complete version on this table is found in
Appendix A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 Excerpt of PA results achieved with different block sizes and tolerance levels. . . . . . 35
12 Differences in performance when adjusting DOWN parameter for different UP values.

Block size was 500 and PA tolerance was 0.33. . . . . . . . . . . . . . . . . . . . . . . 39
13 Performance results for block size = 250, PA tolerance = 0.4 and UP = 1.001. . . . . 40
14 Performance results for block size = 100, PA tolerance = 0.26 and UP = 1.001. . . . 41
15 Selected portions of score level fusion results with block size 500, sorted by the width

of SigPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
16 Selected excepts of score level fusion results with block size 250, sorted by the width

of SigPA. Extended table is found in Appendix C.2. . . . . . . . . . . . . . . . . . . . . 44
17 Selected excepts of score level fusion results with block size 100, sorted by the width

of SigPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
18 Detailed performance results of the CA configuration used in the combined system. . 45
19 CA results achieved by adjusting Single Occurrence (SO) and No Occurrences (NO)

parameters. DTM parameters were A = 1.85, B = 0.28, C = 1 and Tlockout = 90. . . . 46

vii



Combining Periodic and Continuous Authentication using Keystroke Dynamics

20 Complete version of Table 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
21 Other PA tolerance levels with block size 500 . . . . . . . . . . . . . . . . . . . . . . 55
22 Other PA tolerance levels with block size 250 . . . . . . . . . . . . . . . . . . . . . . 55
23 PA tolerance level 0.4 with block size 100. PA subsystem’s ANGA was 1539 and ANIA

was 173. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
24 Complete version of Table 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
25 Complete version of Table 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
26 Complete version of Table 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



Combining Periodic and Continuous Authentication using Keystroke Dynamics

1 Introduction

1.1 Topic covered by the project

When a person attempts to access certain resources or systems, they may need to verify that they are
in fact authorized to do so, often through an authentication mechanism. Authentication is the act of
verifying that the current user matches the identity they are claiming ownership of. After claiming
an identity, for example by providing a username, the current user may support their claim by
presenting something only the true owner of the identity is supposed to know or have. This could
for example be a password or a token such as a key card. The user may also give a representation
of what they are, which bring us to the topic of biometrics.

Biometric systems measure human characteristics to determine the identity of users. While bio-
logical biometrics is now widely embedded in our everyday lives such as fingerprint scanning and
lately face recognition in our smart phones, we can also be identified by the way we behave, i.e. by
means of behavioral biometrics. Voice and signature recognition are examples of behavioral biomet-
rics, however the topic of this project revolves around keystroke dynamics which involves measuring
a user’s typing patterns on a keyboard. Every individual has their own way of typing on computer
keyboards, and this can be taken advantage of by authenticating users by measuring for example
the pressure or timings of keypresses, of which the latter will be our focus. Examples of such timings
can be the time of when keys are pressed or released.

Authentication can be used both for giving access (static authentication) and removing access
(dynamic authentication). When a user claims an identity and writes the correct password, the
biometric system can compare the typing pattern in the written password to the way the true
owner of the identity writes the same password. If the patterns match, the user will be given access.
This is an example of static authentication using fixed-text keystroke dynamics.

Keystroke dynamics can also be used for dynamic authentication. Even after a user is logged into
a given system using static authentication, they can continue being authenticated by a background
process after the initial log-in, removing their access if they are believed to be an imposter. Dynamic
authentication based on keystroke dynamics can be done by two different methods: periodic or
continuous authentication. With periodic authentication (PA), the system collects keystroke timing
information over a period of time, and retroactively analyzes the collected data. It will then analyze
the statistical properties derived from the data, decide if they fit the properties of the genuine user
and remove access if they do not fit. Systems with continuous authentication (CA) will check if the
user is genuine after each keystroke action they perform.

Authors of PA systems generally refer to their systems as continuous authentication, however we
will in this project refer to them as periodic authentication. The reason for this is that the word
"continuous" implies checks being performed after every action, while PA systems require a greater

1
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number of actions before the check is initiated. The distinction between CA and PA was described
by Dowland et al. in 2002 [2], and Bours [3] described a similar but more specific distinction in his
CA study in 2012.

A great benefit to CA is that the system can make a decision every time the user presses a
key, whereas impostors have time to perform a certain amount of potentially harmful keystroke
actions in-between identity verifications in PA systems. On the other hand, CA systems can not
take advantage of statistical analysis like PA systems can. Therefore, we would like to investigate if
extending an existing CA system with a PA system can remove the inherent disadvantages of both
types of systems as well as significantly improve the performance of the CA system.

1.2 Keywords

Behavioral biometrics; keystroke dynamics; continuous authentication; periodic authentication;
distance-based classification; machine learning

1.3 Problem description

While many systems and applications rely on static authentication, such as log-in processes, most
systems do not perform further authentication to ensure that the current user has not changed since
logging in. Physically leaving an unlocked computer unattended is not an uncommon practice in
many work environments, which opens up for free and unauthorized access by anyone willing to
seize the opportunity. The longer the genuine user is absent, the more time unauthorized users have
to access information or cause damage to any part of the system. Restricting the amount of actions
intruders can perform is therefore needed in order to reduce the damage potential.

To the best of our knowledge, there has been no research conducted on combining CA and PA
for keystroke dynamics. Because of this, the drawbacks of both types of systems are present in
literature. As stated earlier, a disadvantage to PA systems is that there is a window of time where
an imposter can use the system before the next authentication process is performed. Most of the
existing PA systems need several hundreds to over one thousand keystrokes for every periodic
authentication. This leaves the imposter with too much freedom before their access is removed.

The main problem with CA systems is that they need to base their decisions on a very small
amount of information about the current user’s typing pattern. Every action is continuously classi-
fied as an imposter action or a genuine action. That means that CA systems are not able to rely on
statistics from the current user’s typing pattern.

CA and PA systems share another common problem, being that they can make errors. More
specifically, they may wrongfully believe that the genuine user is an imposter, or they may mistake
an imposter for being the genuine user. In real-time implementations of such systems, the first case
would lead to access being removed from the genuine user, which would be a source of irritation
or frustration. The second case would give an imposter time to perform more keystrokes before
(hopefully) having their access removed at a later point.

Both systems take a certain amount of time to detect imposters. While PA systems generally need
a fixed amount of recorded keystrokes before analyzing them, CA systems remove access when they

2
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no longer trust the genuineness of the user. Every keystroke increases or decreases the CA system’s
trust level, and the more similar the current user’s typing pattern is to that of the genuine user,
the longer they are allowed to remain logged in. Therefore, an important problem to solve is to
decrease the number of keystrokes imposters are allowed to perform before having their access
removed, while also allowing genuine users to perform as many keystrokes as possible before being
wrongfully locked out.

1.4 Justification, motivation and benefits

This project was conducted for its potential to increase the viability of free-text keystroke dynamics
in industries and sectors where a higher level of information security is needed or desired, such as
the health sector or other critical infrastructures. This does not exclude other work environments
or even private computers, as any owner of a system where security is essential could benefit from
imposters being automatically detected and locked out by typing on the keyboard. As improving
the CA system’s detection performance would lead to imposters being detected more quickly while
genuine users are locked out less frequently, it would result in a higher level of security and a better
user experience.

1.5 Research questions

The main objective of this project was to answer the following research question:

• Can incorporating periodic authentication methods into a continuous authentication system us-
ing keystroke dynamics improve the original system’s imposter detection performance?

In order to answer this research question, a couple of sub-questions were also considered. They are
addressed throughout the different chapters of this thesis. The sub-questions were as follows:

1. What is the impact on computational performance when incorporating a PA system into the CA
system? Continuous and periodic authentication systems are meant to operate transparently in
the background. Therefore, we wanted every authentication process to be performed quickly
in order to avoid slowing down the user’s machine.

2. How can the decision of the PA system be used by the CA system? If the PA system believes the
current user is an imposter, it can either remove access immediately or cause the CA system
to place less trust in the user.

1.6 Contributions

In this project, we have developed a CA system and extended it with a PA system, improving its
detection performance. Two architectures for combining the systems are proposed. We also provide
performance analyses of both individual systems, as well as both of the proposed architectures. The
computational impact of combining the system is also addressed. The end result was a system that
can react after every keystroke action while also utilizing statistics derived from larger keystroke
samples in order to make more accurate decisions. The developed software will be delivered for
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continued research on this topic.
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2 Related work

This chapter aims to describe the literature relevant to the project. In order to discuss the available
literature, a few concepts from the field of biometrics must first be explained. In order to compare
the current user’s characteristics to those of the genuine user, a reference and a probe is needed.
In the context of continuous or periodic authentication and keystroke dynamics, the reference is a
stored template of the genuine user’s typing behavior recorded during the enrollment phase. This
is the period where the biometric system learns the genuine user’s characteristics. The probe is a
template of the current user’s behavior, based on the keystrokes recorded during the user session.
Both of these templates are generated by extracting features from the recorded keystrokes.

As mentioned in Section 1.1, we will be focusing on the timing information of key actions. The
available timing feature from a single keystroke is its duration, which is a measurement of how
long the key is held down. Consecutive keystrokes are called n-graphs, where n is the number
of keystrokes. Single keystrokes can similarly be referred to as monographs. Features can also be
extracted from these by measuring the latency from the press/release of one key to another. Using
digraphs (or 2-graphs) as an example, the available latencies are as follows [4]:

• Press-Press(PP): The time elapsed from pressing down the first key to pressing the second key.
• Release-Release(RR): The time between releasing the first key and releasing the second key.
• Release-Press(RP): The time between releasing the first key and pressing the second key.
• Press-Release(PR): The time from pressing the first key and releasing the second key.

In the following chapters, the term duration will refer to the timing of a monograph, while latency
will be a general reference to timings of consecutive keystrokes, unless further specified by using
the above acronyms such as "PR-latency".

We would also like to address the use of the term authentication. According to the vocabulary
specified in the ISO/IEC 2382-37 standard [5], using this term as a synonym for biometric verifi-
cation is deprecated, and the term biometric recognition is preferred. However, the biometric recog-
nition term has not been widely adopted in the literature on keystroke dynamics, and continuous
authentication is still largely used. Therefore, we have chosen to also use the term authentication
in the context of verifying a claimed identity through biometric comparison. Other than that, we
intend to closely follow the standardized vocabulary.

With these concepts now explained, the related literature can be presented. The CA system
design we have based our system on is first summarized in Section 2.1 in order to allow for further
discussions on what PA techniques may result in a good fit for our project. Relevant PA systems are
then discussed in Section 2.2 with focus on classification methods, before a quick overview of other
important aspects of the literature is given in Section 2.3.
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2.1 Continuous authentication

The design we have based our CA system on was a part of the doctoral thesis of Mondal [4], where
a trust model was used to lock imposters out. Similarly to Bours’ CA study [3], Mondal’s trust model
worked by comparing monographs and digraphs to the genuine user’s reference and having the
result impact the current trust level by means of a penalty-and-reward system.

After the initial static authentication, the user’s trust level was set to 100, being the highest
achievable level. Probe typing patterns deviating from the reference would cause penalties in the
form of lowering the trust level, while probe patterns complying with the reference would cause
rewards to be given in the form of increasing the trust of the user’s genuineness. A lockout threshold
was set to a value below 100, and should the current user’s trust level fall below said threshold, they
would be locked out. Ideal results would have had genuine users’ trust levels never dropping below
the threshold, while all imposters’ levels would drop below the threshold after a small amount of
actions performed.

An important part of the trust model was to determine how big a reward or penalty should
be given per action performed. For CA based on keystroke dynamics alone, Mondal [4] presented
and used an implementation of a trust model referred to as Dynamic Trust Model (DTM). The size
of the reward or penalty was determined by a single continuous function based on a comparison
score computed by comparing the probe to the reference. The larger the difference between the
comparison score and comparison threshold (not to be confused with the lockout threshold), the
larger the penalty or reward became. For example, an action with a comparison score just below
the comparison threshold would only result in a small decrease in trust level.

For keystroke action classification, Mondal followed a machine learning approach and two sta-
tistical approaches. The first statistical approach (SA-1) calculated the classification score to be
used in the DTM by using Scaled Euclidean Distance (SED) for monographs and a combination of
SED and Correlation Distance for digraphs. The second statistical approach (SA-2) used the same
distance metrics, but converted the distances into the classification score using fuzzy logic. It is also
worth mentioning that Bours used Scaled Manhattan Distance in his CA research [3]. In Mondal’s
[4] machine learning approach, an Artificial Neural Network, a Counter-Propagation Artificial Neural
Network and a Support Vector Machine were combined in a Multi-Classifier Fusion architecture.

The overall best machine learning results were achieved by training the classifier with data
from the genuine user and from a set of imposter users, which in the original study [4] was called
Verification Process 3 (VP-3). Testing was done with data from the genuine user which was not used
for training and with data from the remaining imposters not involved in training. This scenario is
applicable in many cases, including the use on personal computers, as it shows the performance
when imposters are not other users of the same system. The performance was measured in terms
of Average Number of Imposter Actions (ANIA) and Average Number of Genuine Actions (ANGA), as
well as number of imposters going undetected. The ANIA rate represents the number of keystroke
actions needed on average before imposters are detected, while the ANGA rate tells how many
keystroke actions genuine users can perform on average before they are mistaken for being an
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imposter.
VP-3 achieved an ANGA rating of 16057 and an ANIA rating of 499, with 1.3% of imposters not

being detected. When compared to the best statistical approach (SA-1) having an ANGA rating of
14096 and ANIA rating of 686 with 0.9% of imposters not detected, one could argue that the VP-3
machine learning approach performed better due to imposters being rejected faster on average, and
the genuine user being rejected less often. However, SA-1 catches a larger percentage of imposters
than what VP-3 does, which certainly is an important result.

Mondal’s dataset consisted of mouse and keystroke data collected from 53 participants who were
either students or university staff. The data was collected in a completely unconstrained manner
by having the participants install a tool for logging keystrokes and mouse events on their own
computers. They were not given any specific task, ensuring that the collected data represented the
participants’ natural behavior. Mondal reported that the dataset had an average of 47600 keystroke
events per participant. At the start of our project, the dataset had grown in size to 57 users.

This dataset was also used for testing our CA and PA combination, although the recorded mouse
activity was not utilized as mouse dynamics was beyond the scope of the project. In his approach,
Mondal used 35% of a user’s recorded keystrokes for training, up to a maximum of 20000. This
was a sufficient amount of data seen in relation to the sizes of references used in state-of-the-art PA
studies. Furthermore, 10% was used for adjusting the parameters of the algorithms, and the rest
was used for testing.

2.2 Periodic authentication

There is a significant amount of available literature on PA systems. Discussing it all is beyond the
scope of this report. The focus will therefore mostly be on research achieving viable results using
free-text authentication and having potential for being incorporated into the CA system. This section
will present the various options available to us from literature regarding methods used for PA. When
developing the PA system, we used a custom combination of properties from existing research, as
opposed to using an entire PA system as it is described by its original authors.

Periodic identification systems are also included in this section. These systems attempt to rec-
ognize who the user is without them claiming an identity first. While generally having more com-
putationally expensive matching algorithms than authentication systems, they may still have other
relevant properties such as feature comparison methods which can also be used for authentication.

The authors of the literature discussed in this section usually refer to their own solutions as CA,
however we will refer to them as PA if they are not truly continuous, due to the reason stated in
Section 1.1. An extensive and detailed literature study of PA systems [1] was delivered in IMT4215
Specialization Project in December 2017. This section further builds upon the knowledge collected
in said study.

2.2.1 Statistical approaches

To the best of our knowledge, incorporating a PA system into a CA system has not been done
before. We could therefore not know the answers to our research question and subquestions before
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performing our own analysis of the CA/PA combination. We could however look at what promising
results had been achieved earlier, and how they were achieved. This gave us indicators for how we
could assemble a reasonable combination of CA and PA.

One of the most cited articles on PA systems was written by Gunetti and Picardi [6] and pub-
lished in 2005. They introduced the R- and A-distances, which were relative and absolute distances
used for comparison, and they used 2-, 3- and 4-graph latencies in their distance calculations. Their
solution is interesting due to how it accounts for variation in genuine users’ typing behavior. If a
genuine user for some reason types slower than usual, for instance due to cold fingers, their typing
pattern is likely to stay relatively similar to the regular pattern, only at a slower speed. The relative
distance accounts for this when comparing a probe to a reference, and is used in combination with
the absolute distances of speed between the samples. Both the R- and A-distances are explained in
detail in Section 3.3.

They achieved a False Match Rate (FMR) of 0.005% and False Non-Match Rate (FNMR) of
4.833%, meaning imposters were undetected in 0.005% of authentication processes, while genuine
users were wrongfully believed to be imposters in 4.833% of all cases. This was using a block size
of 700-900 keystrokes, meaning 700-900 recorded keystrokes were used to form each probe. Block
sizes this large give imposters a fairly large window of unauthorized access, and for the CA/PA
combination, we wanted a block size similar to our CA system’s ANIA rate, or smaller. This is more
easily expressed by converting the FMR and FNMR rates into respective ANIA and ANGA rates by
means of the formulas presented in [7], where Bours and Mondal first introduced the ANIA and
ANGA rates. A middleground block size of 800 keystrokes will be used for simplicity’s sake:

ANIA =
block size
(1− FMR)

=
800

(1− 0.00005)
≈ 800 (2.1)

ANGA =
block size

FNMR
=

800

0.04833
≈ 16553 (2.2)

Genuine users are rarely rejected with this ANGA rate, which is also the case in Mondal’s [4] CA
system. The ANIA rate is higher than that of the Mondal’s CA system which was 499, however it is
difficult to compare systems using completely different datasets. For our PA system, we wanted a
lower ANIA rate than 800 so that it would in more cases have a chance to make a decision before
the CA system had already removed access from the current user. This way we could make more
use of both authentication systems.

Apart from detection performance, we must also take computational performance into account
to discuss research sub-question 1. Gunetti and Picardi’s [6] system used 140 seconds per authenti-
cation, which was a clear issue. Granted, this was on a Pentium 4 processor, and more modern CPUs
should provide significantly better performance. The reason for the suffering computational perfor-
mance was a sub-optimal classification algorithm which compared a probe sample to the references
of every single user in the system, which in their experiment was 40 users. This is useful for periodic
identification, where the system attempts to recognize who the user is without them claiming an
identity first. We avoided using such an algorithm in our project in order to keep processing costs at
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a minimum. Simply modifying the algorithm to not consider all users per verification process could
have been an option for increasing the speed, however we could not predict the impact that would
have had on the detection performance.

Several other researchers have also used Gunetti and Picardi’s R- and/or A-distances [8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. Of these, especially Ferreira and Santos [10] stand out as they attempted
to tackle both the block size and computational performance problems of Gunetti and Picardi’s [6]
study. They used a block size of 250 keystrokes, achieving an Equal Error Rate (EER) of 1.4%,
meaning the FMR and FNMR are equal at that percentage. They also mentioned that a specific
setting gave a result of 0.5% FMR and 2.7% FNMR, which corresponds to an ANIA of 251 and an
ANGA of 9259. With such a low ANIA, we saw this system as a good candidate to use as inspiration
for our own PA system to be incorporated into our CA system. The mentioned ANGA was also in an
acceptable range which generally would not lead to very many false rejections per day.

As opposed to Gunetti and Picardi’s solution, Ferreria and Santos’ system [10] only compared
probes to the reference of the claimed identity, ensuring fast computation. The size of the reference
used was 11250 keystrokes, which is comparable to Mondal’s [4] training sets, as mentioned in
section 2.1. Their method involved extracting monograph durations and digraph RP-times. Further-
more they also used PP-latencies of 2-, 3-, and 4-graphs, similarly to Gunetti and Picardi [6].

An interesting aspect of their system was to identify the 10% most consistent n-graphs with
regards to extracted features. In other words, these were the n-graphs which the user would type in
a similar manner most of the time. Then, during an authentication process, the system would place
more strict expectations onto these n-graphs when they were typed by the current user. All in all,
this PA system consisted of several properties and mechanisms which could potentially be useful
for our project, as it provided solutions to the block size and computational performance issues in
Gunetti and Picardi’s [6] system. They also performed their experiments on data collected in an
unconstrained manner, which matches the setting used in Mondal’s [4] dataset. This increased the
possibility of achieving a high performance in our implementation. However, our focus was not on
achieving optimal or state-of-the-art performance for our CA or PA systems, but rather on improving
the CA system’s performance. Therefore, not all properties of Ferreira and Santos’ [10] system were
seen as necessary for our own PA system.

Other statistical methods than the R- and A-distances have also been used in literature. Re-
garding PA systems, examples include Euclidean distance [18, 19, 20, 21], Kolmogorov-Smirnov
Test [17, 22], multivariate testing [17], Chi-square test [23], Manhattan distance [18, 20, 24]
and Scaled Manhattan distance [20]. Some studies have applied several classifiers [4, 11, 17, 18,
20, 24]. For instance, Kaneko et al. [18] applied Euclidean distance, Manhattan distance, a pro-
posed custom distance and Gaussian probability density function. Reported results showed that
Euclidean distance performed best, however the experiment setting was writing a fixed Japanese
text of around 200 keystrokes. It is hard to know whether the results would be similar for the
dataset used in our project, due to the large differences in data collection methods.
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2.2.2 Machine learning approaches

Machine learning has also been utilized in recent years, with some of the research presenting
promising results. An interesting example of this is Ahmed and Traore’s [25] work from 2007,
where neural networks combined with a key mapping technique were used in order to predict
digraphs missing from a user’s reference. This meant that a much smaller amount of different di-
graphs needed to be recorded in the enrollment phase. If the current user typed a digraph which
was never recorded for the reference, it could still be compared to the approximated values of the
missing digraph, based on the genuine user’s actual recorded digraphs. They achieved an FMR of
0.0152% and FNMR of 4.82% with a block size of 500 keystrokes and by considering monograph
durations and digraph RP-latency. This can be converted to an ANIA of 500 and ANGA of 10373.

In addition to neural networks being used in literature [4, 20, 25], other machine learning
methods have also been used both in CA and PA systems, such as k-means clustering [26, 27],
kernel ridge regression [28], decision trees [29], random forest [30], support vector machine [4]
and k-nearest neighbor [11, 17, 21, 31, 32].

2.3 Overview

The previous sections described the methods used in literature as well as highlighting some par-
ticularly interesting studies. Since we were not restricted to using the entire systems as they were
described by their authors, it was beneficial to look at a general overview of the literature, and to
compare certain properties of the studies.

2.3.1 Data collection

The approaches used for experimental data collection is interesting for the project, as some are
more similar to Mondal’s [4] unconstrained collection approach than others. There are several
other studies with unconstrained data collection [3, 10, 12, 15, 23, 25, 33, 34, 35], whereas some
studies constrained the participants to typing freely into a textbox such as in a webform [6, 8, 9,
16, 17, 27, 36]. Other studies had the participants perform specific tasks [19, 22, 28, 31], such as
writing a long fictional text. Participants wrote static text in [11, 13], and manually copied various
texts in [16, 26, 29]. While the focus of our project was on keystrokes from physical keyboards, it is
worth mentioning that keystroke dynamics using soft or touch keyboards also has been researched,
such as is Kang and Cho’s publication from 2015 [17].

With regards to participants included in experiments, 15 researches had 30 or more participants
[6, 10, 12, 14, 16, 17, 19, 22, 24, 25, 26, 28, 31, 32, 34]. One of these had 2000 participants
[28]. Since the dataset we used [4] contains data from 57 users, the variance in inter-user behavior
should be more than high enough to be comparable to other studies.

2.3.2 Feature extraction

Looking at how feature extraction is performed was also of value, in order to see viable approaches
we could use. The related studies extracted various latencies from n-graphs, however some also
considered monograph durations [3, 10, 13, 15, 19, 21, 23, 24, 25, 26, 31, 32, 33, 37], which
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Mondal’s [4] CA system also does. When considering consecutive keystrokes, some studies [3, 8, 9,
16, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 35, 36, 37] restricted themselves to considering
digraphs only. This was also done by Mondal [4]. One study [28] used only trigraphs, while the rest
used several types of n-graphs. Locklear et al. [24] used cognition-centric features in addition to
keystroke timings, and six studies [21, 29, 31, 32, 35, 37] included other statistical features such as
the rate of certain key presses, words per minute and/or rate of typing errors. Of these, one of the
studies [32] presented an extension of an existing system [21] where the new system also utilized
stylometry.

Block size in periodic systems is also relevant to look at, as a small block size was wanted for
the CA/PA combination. Ten studies used a block size of 500 keystrokes or less [10, 11, 14, 15,
20, 22, 23, 25, 30, 33, 36]. Studies achieving good performance using such a small amount of
keystrokes were important to consider when we were to implement the PA part of the project.
However, more factors must also be taken into consideration when evaluating the performance of
CA and PA studies. For example, one of the studies [23] tested the performance of their system using
test data that was already included in the users’ references, which artificially skews the results in
a positive direction. Another example is one of the studies with a small block size using static text
instead of free-text [11]. Therefore, this chapter is concluded with Table 1, where an overview of
the properties of the related studies can be found.
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Paper Block size Users Task Method Performance Features DB

[6] 700-900 40 Webform R- and A-distances
FMR 0.005%
FNMR 4.833%

2-, 3- and
4-graph latency Own*

[14] 50 - 150 50 E-mail R-distances
FMR 2.02%
FNMR 1.84% n-graph latency Own

[10] 250 60 Unconstrained R- and A-distances EER 1.4%
Duration, Digraph RP,
PP for {2-4}-graphs Own

[15] 150 10 Unconstrained R- and A-distances
FMR ∼2%
FNMR ∼2%

Duration, Digraph RP,
PP for {2-4}-graphs Own

[8] 700-900 21 Webform Modified R-distance
FMR 0.08%
FNMR 18.8% Digraph latency [6]

[9] 700-900 21 Webform Weighted R-distance
FMR 0.07%
FNMR 15.2% Digraph latency [6]

[25] 500 53 Unconstrained Neural Network (NN)
FMR 0.0152%
FNMR 4.82%
EER 2.13%

Duration,
digraph latency Own

[11] 36 19 Webform, static text
R- and A-distances,
k-Nearest Neighbor

FMR 0.045%
FNMR 0.005% n-graph latency Own

[28] 900 words 2000 Pre-defined tasks
Kernel Ridge Regression,
truncated RBF kernel EER 1.39% Trigraph latency [38]

[26] 1000 150 Copytask K-means clustering EER 0.44%
Duration,
digraph latencies Own

[27] 700-900 14 Webform K-means clustering Accuracy 100% Digraph latency [6]

[33] Minimum 2 22 Unconstrained Bhattacharyya distance Accuracy 70-100%
Duration,
digraph latency Own

[19] Unknown 31 Pre-defined tasks
Euclidean distance,
weighted probability Accuracy 23%

Duration,
digraph latency Own

[12]
1 min
sliding window 56 Unconstrained R- and A-distances

FMR 1%
FNMR 11.5% n-graph latency Own*

[3] Continuous 25 Unconstrained Scaled Manhattan distance ANIA 182
Duration,
digraph latency Own

[4] Continuous 53 Unconstrained
Scaled Euclidean Distance,
Correlation distance, NN,
Support Vector Machine

ANIA 499
ANGA 16057

Duration,
digraph latencies Own

[31] 775 on average 119 Pre-defined tasks k-Nearest Neighbor EER 3.7%
Duration,
digraph latencies,
statistical features

Own

[22] 300 35 Pre-defined tasks Kolmogorov-smirnov test EER 0.09% Digraph latency Own

[23] 150 26 Unconstrained Chi-square test FNMR 5%
Duration,
digraph latency Own

[13] 600 10 Webform, static text R- and A-distances
FMR 4.09%
FNMR 5.17%

Duration;
2-, 3-, 4- and
5-graph latency

Own

[17] 100-1000 35 Textbox 12 different classifiers EER 5.64-14.53% Digraph latency Own

[34] Continuous 35 Unconstrained Unknown distance
ANIA 6390
ANGA 68755

Digraph, trigraph and
word latency Own

[36] 110 15 Textbox Markov chain EER 12.7% Digraph latency Own
[20] 110 15 Textbox NN and 5 distances EER 22.9% Digraph latency [36]

[24]
Time based
blocks of
diff. lengths.

486 Pre-defined tasks
Manhattan distance,
Fisher score EER 4.55-13.37%

Duration, digraph
latency, cognition-
centric features

Own

[35] Minimum 500 10 E-mail Custom one-class classifier
FMR 4.13%
FNMR 12.39%

Statistical features
incl. digraph latencies Own

[16] ∼850-1800 50
Textbox; copytask
and free text

R and Similarity
measures EER 10-15% Digraph latency Own

[32] ∼3000-6000 30
Electronic
university exam k-Nearest Neighbor EER 0.55-1.4%

Digraph latencies,
stylometry. Own

[30] 250 21 Webform Clustering, random forest
FMR 3.47%
FNMR 0% Digraph latency [6]

[29] 1000 30 Textbox; copytask Decision trees
FMR 1.1%
FNMR 28% Statistical features Own

[37]
Sliding window
of length 500 55 Pre-defined tasks

Partially Observable
Hidden Markov Model ANIA 55.18

Duration,
digraph latencies,
statistical features

[39]

Table 1: Summary of relevant periodic and continuous systems. Datasets marked with an ampersand
(*) in the database (DB) column are available publicly or by request. This table is an extension of
an earlier version in the author’s IMT4215 Specialization Project report [1].
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3 System design

This chapter describes the individual systems we have developed, as well as the architecture of
the combined system. The dataset we have used for testing system performances is described in
Section 3.1, while Sections 3.2 to 3.4 present the system architectures.

3.1 Dataset

Regarding separating every user’s data for training, validation and testing, we followed the same
approach as Mondal [4]. This means that up to 35% of the keystrokes were used for training, 10%
were used for calculating certain user specific parameters, and the rest was used for testing. 20000
keystrokes were used as a cutoff for the training set. Therefore, if a user’s dataset contained a large
amount of keystrokes, the leftover keystrokes initially meant for training were used for testing
instead. We have tested the performance of the individual systems with and without the cutoff, and
the results can be seen in Section 4.1.3.

Table 2 shows an example of the dataset structure. Each row contains the keycode and duration
of a pressed key, as well as the keycode of the next key and the RP-latency to that key. In the
example, the RP latency of the digraph "da" is a negative value, which is not uncommon. This
means that the user was still holding down the "d"-key for 45 milliseconds after pressing the "a"-
key. We can also see that the next key pressed after writing the word "data" is the space key, however
we cannot see its duration as the example does not include the next row.

Key Duration Next key RP-latency
d 176 a -45
a 120 t 16
t 221 a 80
a 137 |space| 102

Table 2: Fictional example of dataset structure where a user wrote the word "Data".

Using the values in the dataset, we can achieve any and all of the four latencies described in
Chapter 2 by means of summing durations and/or latencies. Following are the latencies for the
digraph "Da".

• PP: 176 ms duration + (-45) ms RP-latency = 131 ms
• PR: 176 ms duration + (-45) ms RP-latency + 120 ms duration = 251 ms
• RP: = -45 ms
• RR: -45 ms RP-latency + 120 ms duration = 75 ms
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These latencies, along with the monograph durations, could then be stored in the reference or used
for validation/testing, depending on the example’s location in the user dataset.

An issue we had to consider was to decide which combinations of keys were to be considered
as actual digraphs. The user may have periodically stopped typing, for example when reading,
watching a video or temporarily leaving the computer. In such cases, the last key they pressed
before stopping would be unlikely to have a meaningful relation to the first key they pressed when
they resumed. Even if there were a meaningful relation, pausing in the middle of a word would
probably be uncharacteristic behavior. Therefore, we chose to only regard consecutive keystrokes
as digraphs if their RP-latencies were less than 1500 ms.

Another consideration was that the amount of unique digraphs greatly outnumbers the amount
of unique monographs. Naturally, this means that user datasets tend to contain a large number
of different digraphs, though each digraphs generally have a small amount of occurrences. With a
small amount of occurrences, we can assume that the timing values of digraphs are more prone
to represent a behavior that is not truly representative of the user. With larger user datasets, more
occurrences can in general be registered per digraph. Therefore, a decision was made to exclude
datasets consisting of less than 10000 keystrokes, in order to ensure more accurate measurements
of the system’s true performance. 11 users were excluded, leaving us with 46 users whose keystroke
data was used for analysis. The average number of recorded keystrokes from the remaining users
was 43338.

Lastly, some of the users’ datasets occasionally showed very high monograph durations, which
were consistently lasting several minutes. While activities such as gaming can cause high durations,
the consistent nature of the values seemed unnatural, and may have been caused by a recording
error during enrollment. These values were removed from the datasets.

3.2 CA system

The developed CA system is based on the system architecture proposed by Mondal [4], though our
implementations are not identical. For instance, the classifiers are different. We also use dissimilarity
scores instead of similarity scores. Still, the general architecture remains similar, and is depicted in
Figure 1. Features are extracted from the raw keystroke data in the dataset. The training portion
of the dataset is used to build the user’s reference. The users’ testing data is compared againsttheir
own and other users’ references by the Keystroke Comparison Module. From these comparisons,
comparison scores are produced, and are used as input for the Dynamic Trust Model (DTM), as
described in Section 2.1. Another optional input for the DTM is a set of personal parameters, which
can be calculated using the genuine user’s validation data. Based on the new trust level produced
by the DTM, the Decision Module decides whether the current user should be allowed to continue
or be locked out. The following subsections describe the CA system’s architecture, as well as our
implementation.
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Keystroke Dataset

Training data

Testing data

Validation data

Keystroke feature extraction

Reference data

User reference

Keystroke Comparison Module Dynamic Trust Model Decision Module

 
 

Log for analysis

New trust level 

Continue / remove access 

Score 

Personal parameters

Figure 1: Generalized diagram of the CA system’s structure.

3.2.1 Feature extraction and references

Six features are utilized in the CA system, namely keycodes, monograph durations as well as PP, PR,
RP and RR latencies from digraphs. While certain systems in literature exclude monographs in their
analysis, we found it necessary to consider them in our system. If monographs were ignored, an
attacker could wait for 1500 ms between keystrokes in order to avoid typing digraphs. This would
result in the system having little to no features available for comparison, even if the user typed a
full block of monographs. Including monographs features helps mitigate this security issue.

Monograph Digraph
- Keycode - Keycode
- Hit count - Hit count
- DurationMean,σ - PPMean,σ

- PRMean,σ

- RPMean,σ

- RRMean,σ

Table 3: The structure of the references used in our system, where σ is the standard deviation of
recorded durations/latencies.

Table 3 shows how these features are used in the reference. For every mono- or digraph occurring
during enrollment, the system only stores the mean and standard deviation of their recorded timing
values, as well as their keycode and hit count. The hit count keeps track of how many times each
mono- or digraph occurred in enrollment. All features are extracted as described in Section 3.1.

As human behavior is prone to inconsistencies, removing outlier values can give more accurate
representations of how a user typically behaves. In PA systems, it is possible to remove outlier
timing values from probe blocks, as each n-graph can have multiple recorded occurrences. This
is generally not the case for CA systems, as the trust level must be adjusted after every recorded
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keystroke. However, it is possible to remove outliers while constructing the CA reference. We chose
to do so since our classifier relies on standard deviation, which causes it to be negatively affected
by outliers. For every feature in the reference, values more than 1.5 interquartile ranges (IQR)
below the lower quartile or above the upper quartile were considered as outliers and removed. This
was done within the scope of one feature. In other words, if a key were pressed only once and its
duration were an outlier compared to other keys in the reference, it would still not be removed.
However, if the key had several occurrences, and therefore several durations, outlier durations
would be removed if present. The system was also tested without removing outliers, and the results
are discussed in Section 4.1.2.

3.2.2 Comparison

When processing a keystroke during testing, its extracted features are handled by the Keystroke
Comparison Module which compares them to the genuine user’s reference using a distance measure.
The comparison is performed by computing the dissimilarity score sc between the probe timing
features p and the mean duration µ of the corresponding features from the same keycode in the
reference. This is calculated using the following formula:

sc =
1

n

n∑
i=1

|pi − µi|
σi

where i is a specific feature, n is the amount of available timing features and σ is the standard
deviation of the reference features. Our implementation makes a distinction between monographs
and digraphs in the sense that they produce two separate scores. In practice, this causes n to either
be 1 (monograph duration) or 4 (digraph latencies). For digraphs, this means that the score is the
mean of the distances computed for the PP, PR, RP and RR latencies.

The formula is a variant of the Scaled Manhattan Distance, as described by Killourhy and Maxion
[40]. They compared the performance of 14 different classifiers on static text keystroke dynamics,
where Scaled Manhattan Distance achieved the best Equal Error Rate. This distance metric shows
the dissimilarity between the probe and reference, and is used directly as the score input to the
trust model.

3.2.3 Trust model and decision module

The trust model used in our system is a variant of the one presented by Mondal [4]. We have made
certain changes to make it fit our system, and eliminated one parameter which was not used in
our analysis. Algorithm 1 shows our implementation of the trust model. Perhaps the most notable
change is the fact that the sigmoid function is inverted horizontally, as seen in Figure 2. This was a
necessary feature due to having a dissimilarity score as input.

As mentioned in Section 3.2.2, monograph scores and digraph scores are separated. In practice,
this means that the 2nd monograph of a valid digraph produces two scores. One score represents the
monograph, while the other represents the digraph. Therefore, a digraph produces three scores in
total: 2 monograph scores + 1 digraph score. This brought in the question of how to handle digraph
actions at the lockout threshold. For example, let the current trust level Trusti−1 = 90.3 and lockout
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Algorithm 1 Algorithm for the Trust Model
Data:
sci ← Dissimilarity score for ith action
A← Threshold for reward or penalty
B ←Width of sigmoid function
C ← Maximum reward and penalty
Trusti−1 ← Trust level after (i− 1)th action
Result:
Trusti → Trust level after ith action
begin

∆T (sci) = min{−C + (
C × 2

1 + exp( sci−AB )
), C} (3.1)

Trusti = min{max{Trusti−1 + ∆T (sci), 0}, 100} (3.2)

end
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Figure 2: Examples of how the score would affect the trust level using different parameters for
Equation (3.1).
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threshold Tlockout = 90. It is then possible that the next monograph score causes Trusti = 89.6.
However, if the system locks the user out at that point, it disregards the fact that the monograph
may be the 2nd component of a digraph. This issue is highlighted when the digraph score would
have raised the trust level back to a value above Tlockout, for example Trusti = 90.2. Therefore,
when observing digraph actions, the Decision Module locks the user out only if Trusti < Tlockout

after considering both the monograph and digraph scores of the keystroke.
As seen in Figure 1, the DTM can accept personal (user specific) parameters for the sigmoid

function. In our analysis, we have tested the system both using global parameters as well as per-
sonalizing the threshold for reward or penalty, which is the "A" parameter in Algorithm 1. To adjust
this threshold, the genuine user’s validation set is used to find their average dissimilarity score
against their own reference, before adding a tolerance level to that average score. Outlier values are
removed from the list of scores calculated from all the keystrokes in the validation set. This ensures
that the average of the remaining values is more accurate compared to the user’s regular behavior.
This lets the system account for the fact that some users type more consistently than others. If a
genuine user types less consistently, thus achieving higher dissimilarity scores from their valida-
tion set, their threshold will be higher in order to avoid being locked out too often. Consequently,
imposters have a slightly higher chance of going undetected in such cases. We see this as a fair
tradeoff, as acceptability is very important for a biometric system to be viable, and being locked out
on a regular basis is an annoyance to the genuine user.

The tolerance level is a system level parameter. With higher tolerance levels, users are allowed
to deviate more from the genuine user’s expected behavior without being locked out. Lowering the
tolerance level would cause the system to be more strict.

3.3 PA system

The foundation of our PA system is based on that of Ferreira and Santos [10]. Some of their features,
such as "progressive learning" has been excluded from our implementation. When three consecutive
probe blocks were accepted, their system would update the user’s reference, infusing said probes
into it in order to keep the reference up to date with the genuine user’s most recent behavior. The
reason for not including this feature is threefold:

• The dataset we used for analysis was collected over the course of about one week per user.
The user’s typical behavior is not expected to be significantly changed that quickly, eliminating
the need for an adaptive reference.

• Even if this would slightly improve performance, our goal is not to necessarily create high
performing CA or PA systems. Instead, it is to observe the effect of combining them regardless
of what their individual performances are.

• Updating the user’s reference several times when testing system performance would severely
impact processing time for full test runs. This would in turn impact the amount of different
parameter sets we would be able to test in the project’s analysis phase. Therefore, we chose
to prioritize testing as many sets of parameters as possible over including this feature. In a
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real-time system, the extra computational work would be trivial due to larger time periods
between each update.

Keystroke Dataset

Block of test data

Keystroke feature extraction

Score Keystroke Comparison Module

Continue / remove access

Decision Module

 
 

Log for analysis

Training data Validation data

Reference data

User reference

Personal threshold

Personal parameters

Figure 3: Generalized diagram of the PA system’s structure.

The PA system is displayed in Figure 3. Its structure is similar to that of the CA system, though the
PA system has no Trust Module. Also, a block of keystroke features is fed as input to the Keystroke
Comparison Module, as opposed to one keystroke at a time in the CA system. The following sub-
sections further describe the different components of the PA system.

3.3.1 Feature extraction and references

We have used the same reference for our PA system as described in Section 3.2.1, however, a
different set of features is considered. Ferreira and Santos [10] consider monograph durations,
digraph PP and RP latencies, as well as PP latencies for trigraphs and tetragraphs (4-graphs). In
order to soften computational impact, trigraphs and tetragraphs were excluded from our system.
This left us with the features listed in Table 4. Probes are formed using the same structure, and
since the PA system has significantly more data to base its decision on than the CA system, outlier
values can be removed from the probe as well as the reference. Outlier removal is performed using
IQR, as in the CA system.

Monograph Digraph
- Keycode - Keycode
- Hit count - Hit count
- DurationMean - PPMean

- RPMean

Table 4: The structure of the probes and references used in our PA system.
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3.3.2 Comparison

The Comparison Module uses the R- and A-distances presented by Gunetti and Picardi [6], which
have been adopted by several other authors, including Ferreira and Santos [10]. These two dis-
tances are calculated for every sample, and are summed to produce a final distance. Following is a
description of how these distances are produced in our system.

R-distance

After the current user has typed an amount of keystrokes equal to the block size used by the sys-
tem, the features in Table 4 are extracted from the block sample to form a probe. The Keystroke
Comparison Module then finds all n-graphs that are shared between the probe and the genuine
user’s reference. The shared n-graphs are separated into one set for monographs and one set for
digraphs which are processed individually. To calculate the R (relative) distance of a probe, the
shared monographs and digraphs are extracted into probe and reference feature vectors sorted by
durations and latencies, respectively. For every feature vector (monograph durations, digraph PP
and digraph RP), the position of each n-graph in the probe is compared to the same n-graph’s posi-
tion in the reference vector. This results in a position distance being produced for each n-graph. The
R-distance is then calculated by summing the position distances of all n-graphs per feature vector,
and normalizing the result. The normalization allows us to compare and combine R-distances calcu-
lated from feature vectors of different lengths. This is useful as the number of shared digraphs may
be different from the number of shared monographs. The normalization is performed by dividing
the summed position distances by the maximum possible disorder in an array of the same length as
the respective feature vector.

io  138

ad  202 

dr  220 

ne 237 

ou 297 

ad  178

ou  196 

dr  213 

io 221 

ne 244 

d=1

d=3

d=0

d=3

d=1

Probe Reference

Keycode PP Keycode PP

Table 5: Calculation of the relative distance between digraphs shared between a probe and refer-
ence.

An example of R-distance calculation for PP latencies is shown in Table 5. The example is based
on that of the R- and A-distances’ original authors [6]. Five of the digraphs from the probe were
found in the reference, and so the shared digraphs are sorted by their latencies. The digraphs’
summed position distances is 1 + 3 + 0 + 3 + 1 = 8. With there being five digraphs shared between
the probe and reference, the maximum order of the feature vector is (52 − 1)/2 = 12. Thus, the R-
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distance is 8/12 = 0.66. In our PA system, the same procedure would be performed for monograph
durations and RP latencies as well.

When an R-distance is produced for each of our three probe feature vectors, the distances are
combined. This is done by means of weighed summation. The more durations/latencies are avail-
able in a feature vector, the higher weight it is given. This ensures that the feature which has more
data to base its R-distance on, and thus is likely to be more accurate, is prioritized.

Equation (3.3) shows the weighted summation where Rn, Rm and Rp are R-distances of du-
rations, PP latencies and RP latencies, respectively. Furthermore, X = max(N,M,P ) where N is
the number of recorded durations, while M and P are the respective number of recorded PP and
RP latencies divided by 2. This division is performed to avoid an unfair weighing of digraphs, as
digraphs produce two timing features.

Rtotal = Rn ×
N

X
+Rm ×

M

X
+Rp ×

P

X
(3.3)

Where we have based our weighting on total number of durations/latencies per feature vector,
the original authors use the number of shared n-graphs. The reason for changing this, is that our
dataset contains a large variety of behaviors, as the data was collected in an unconstrained en-
vironment. A consequence is that some participants were for example playing games during data
collection. When playing these games, very few unique keys were pressed, though they were pressed
rapidly over long periods of time. This resulted in a high number of occurrences for a single unique
digraph.

In the case where a block would consist mostly of only one character being pressed repeti-
tively, which is a realistic situation with our dataset, only a few unique monographs other than
the repeated key could heavily shift the weight in favor of monographs if the user waited a couple
of seconds before pressing those other keys. This would happen due to the system not recogniz-
ing consecutive keypresses with more than 1500 ms RP-latency as digraphs. Therefore, pressing
those other keys would only increase the number of unique monographs and not unique digraphs.
A weighting like this could be detrimental, as a great amount of valuable information from the
recorded digraphs of the repeated key would have only a small impact on the result.

On the other hand, a consequence of our weighting scheme is that monographs will always be
prioritized over digraphs. With a block size of 100 keystrokes, the amount of available monographs
would be 100, while there would be at most 100 − 1 = 99 digraphs. Prioritizing monograph dura-
tions is supported by Pinto et al. [15], who found that using the following weights produced the
overall best results: 42% for monograph durations, 24% for digraph RP, 16% digraph PP, 10% tri-
graph PP and 8% tetragraph PP latencies. However, their study was performed on a limited dataset
of 10 participants where most of them were software developers.

A-distance

As the R-distance only accounts for relative speeds as mentioned in Section 2.2.1, the A-distance
considers the absolute timing values, and measures the distances between these. When combining
the R- and A-distances, we achieve a classifier which both considers typing rhythm using the R-
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distance, as well as raw typing speed.
When calculating the A-distance between a probe and a reference, we reuse the feature vectors

from the R-distance calculation, however the fact that they are sorted by duration/latency is irrel-
evant. To calculate the A-distance, the system first has to decide which n-graph durations/latencies
from the probe are to be considered as similar to those in the reference. When comparing for in-
stance monographs, the system would regard durations as similar if the longer duration divided
by the shorter duration is between 1 and a specific threshold. Using standard deviation instead
of a fixed threshold would be a viable option, but the fixed threshold allows comparison between
monographs with only one occurrence.

Gunetti and Picardi [6] used 1.25 as the threshold for similarity, after testing different thresholds
on a subset of their users. While another threshold may be optimal for our dataset, we have also
decided to use 1.25 for our system, as achieving an optimal PA or CA performance was not the
purpose of this project. The A-distance between a probe and reference for a duration or latency X
of an n-graph is defined as follows:

AX = 1− number of similar X-graphs
number of shared X-graphs

Following the earlier example, Table 6 shows how digraphs from Table 5 are deemed as similar
using a threshold of 1.25. Three out of five digraphs are similar, and so the A-distance becomes
APP = 1 − 3/5 = 0.4. Finally, this A-distance would be combined with the A-distances of the
monograph durations and the digraph RP-latencies in the same fashion as the R-distance. The R-
and A-distances would then be summed to produce the final dissimilarity score of the probe, which
would be sent to the decision module. In our example using only PP-latencies, the final distance
would be DistR,A = 0.66 + 0.4 = 1.06.

Digraph Probe Ref. Calculation
io 138 221 221/138 = 1.60
ad 202 178 202/178 = 1.13 (similar)
dr 220 213 220/213 = 1.03 (similar)
ne 237 244 244/237 = 1.03 (similar)
ou 297 196 297/196 = 1.52

Table 6: Similarities between digraphs from Table 5 using a threshold of 1.25.

3.3.3 Decision Module

While Gunetti and Picardi [6] compared the score to the references of all users in the system,
Ferreira and Santos [10] proposed a far less expensive method with regards to computational per-
formance. We have adopted this method for our Decision Module, which bases its decisions on a
lockout threshold. If the dissimilarity score is higher than said threshold, the user is locked out. The
threshold is personally adjusted for every genuine user. Similarly to the threshold for penalty or re-
ward in our CA system, the PA system’s lockout threshold is calculated by using the user’s validation
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set to find their average dissimilarity score against their own reference and adding a tolerance level
to the average score. Adjusting the tolerance level allowed us to find a suitable balance between
FMR and FNMR. This is further discussed in Section 4.2.

Our approach to finding the user’s average score is slightly different to that of Ferreira and Santos
[10], as they performed a leave-one-out cross-validation (LOOCV). Their structure for references
consisted of several 750-length block samples, which easily allowed them to take out a single sample
and test its score against the rest of the user’s reference. Since our reference structure is not divided
into such samples, utilizing the user’s validation set for finding their average score was a natural
choice.

3.4 Combined system

When merging the CA and PA systems, they can be regarded as subsystems of the combined system.
As our CA subsystem evaluates every user’s behavior and adjusts the trust level accordingly, the PA
subsystem waits until enough keystrokes are recorded to fill a block of a specified size. If the trust
level is brought below the CA subsystem’s lockout threshold before the PA system’s block sample
is filled, the user is still locked out as if there is no PA subsystem involved. When the user logs
back in, the process starts over and the PA subsystem begins waiting for a new block to be filled,
starting from the first key pressed after log-in. When testing the performance of our systems, this
was simulated by resetting the trust level to its maximum after having dipped below the lockout
threshold. If the amount of recorded keystrokes evaluated reaches the PA subsystem’s block size
without being locked out by the CA subsystem, periodic verification is initiated. The PA subsystem
then processes the block of keystrokes as described in Section 3.3. When having constructed a probe
from the block sample and evaluated it, the result influences current trust level. This means that
the PA system can not directly lock out the user on its own, but rather does so indirectly by lowering
the trust level, which in turn can cause a lockout.

Two different designs were implemented for the combination of our subsystems. The difference
between these two designs is the fusion level, or in other words, the way the PA subsystem influences
the CA subsystem. Not to be confused with multi-modal biometrics and fusion levels associated
with such systems, our CA/PA combination is either fused at the decision level or the score level.
Sections 3.4.1 and 3.4.2 describe these fusion levels.

3.4.1 Decision level fusion

In multi-modal biometric systems, decision level fusion generally means that the boolean (Match
or Non-Match) output of a comparison of a specific mode is combined with that of another mode
using logical operators. A mode in this context is a combination of a biometric characteristic type,
sensor type and processing method [5]. Our combined system is not multi-modal, as both systems
are using the same characteristic type and are capturing samples using the keyboard, which can be
interpreted as the system’s sensor. Instead, our system can be regarded as multi-algorithmic.

A diagram of the decision level fusion of the subsystems can be found in Figure 4. When the
PA subsystem processes a probe, it passes its decision on to the CA subsystem’s Trust Model. De-

23



Combining Periodic and Continuous Authentication using Keystroke Dynamics

Dataset

Testing data

Keystroke feature extraction

Validation data

Keystroke feature extraction

Keystroke Comparison Module

Dynamic Trust Model

Comparison score

Decision Module

User
reference

Training data

Keystroke Comparison Module

Testing data

Comparison score

Decision ModuleMatch/Non-Match

Periodic authenticationContinuous authentication

 
 

Log for analysisContinue / remove access

Trust level

Personal
threshold

Validation data

User
reference

Training data

Personal
parameters

Figure 4: Decision level fusion of the CA and PA subsystems.

pending on whether the PA subsystem’s decision is "Match" or "Non-Match", the trust level is raised
or lowered by a certain amount. Different values for these changes to the trust level are tested in
Chapter 4. The new trust level is fed to the CA subsystem’s Decision Module which decides to either
let the user continue or lock them out.

3.4.2 Score level fusion

Instead of using the decision of the PA subsystem to influence the trust level, another option is to
directly use its comparison score, as seen in Figure 5. This gives the advantage of making smaller
changes to the trust level when the classification score is close to the PA subsystem’s lockout thresh-
old. An alternative way to look at this is that the PA subsystem’s influence on the trust level is
weakened when it is less confident in the genuineness of the current user. This is achieved by creat-
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ing a separate sigmoid function SigPA in the Dynamic Trust Model which takes the PA subsystem’s
comparison score as one of its inputs. If a probe gets a significantly high dissimilarity score, it may
be desirable to let the PA subsystem bring the trust level below the CA subsystem’s lockout thresh-
old, even if the current trust is at the maximum level. This can be achieved by configuring the height
of the sigmoid function to allow such large influences.

For example, let the CA system’s lockout threshold Tlockout = 40. The maximum allowed trust
level is 100, and so the range of allowed trust levels Trange is 100 − 40 = 60. We can then set the
height of the sigmoid to be slightly higher than Trange, for example 60.001, such as in the third
image of Figure 2. The PA subsystem can then influence the CA system to lock the user out even
if the current trust level is 100, as 100 − 60.001 = 39.999. For that to happen, the PA classification
score has be sufficiently higher than the PA subsystem’s own lockout threshold, meaning that the
recorded behavior largely deviates from that in the reference.
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Figure 5: Score level fusion of the CA and PA subsystems.
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4 Analysis

We have tested the performance of both individual systems as well as the combined system with
several different parameters and settings. This chapter describes these tests, their results and how
they affected further analysis. The results are discussed continuously throughout the sections. Dur-
ing testing, we set up every user as a genuine user and ran all other users’ test sets against the
genuine user’s reference, simulating zero-effort attacks. In zero-effort attacks, imposters are not ac-
tively trying to spoof or imitate the behavior of the genuine user, but rather type in their own speed
and rhythm. This describes a scenario where for instance the imposter is unaware of the CA/PA
system running in the background of the genuine user’s computer.

For every user in our dataset, there is one genuine user (them self) and 45 imposters. As our
dataset contains 46 genuine users, this gives us 46 × 45 = 2070 imposter runs every time we test
the system’s performance. We have chosen to categorize and present certain test results similarly to
Mondal’s [4] result presentations. Using Table 7 as an example, users are then separated into the
following four groups.

+/+ : The genuine user was never locked out, and all imposters were locked out at some point,
which is the best case scenario.

+/- : The genuine user was never locked out, however at least one imposter was never locked out.

-/+ : The genuine user was locked out at least once, but so were all imposters.

-/- : This is the worst case scenario. The genuine user was locked out at least once, and at least one
imposter was never locked out.

We chose to do full test runs for every system configuration, meaning that all 46 users were
included, and the full test sets of all imposters were used. If the intention of this project was to
propose biometric systems with certain performances using given sets of parameters, doing full test
runs like this would lead to overfitting. However, our aim was to observe how different ways of
combining CA and PA systems affected performance. To observe this, full test runs were needed
per configuration. Replicating our systems with the exact same parameters for another dataset
is therefore likely to give different results, though one can expect to see similar effects on base
performances when adjusting parameters in the same way as we have done.

Section 4.1 describes how we tested the CA system and found the configuration to be used in
the combined system. The testing of the PA system is described in Section 4.2. The results for the
decision level fusion are discussed in Section 4.3, while score level fusion results are presented in
Section 4.4. An overview of the best results is given in Section 4.5, before the chapter is concluded
with a discussion on computational impact in Section 4.6.
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4.1 CA system

The performance analysis of our stand-alone CA system is presented in this section. This includes
certain edge-case issues we had to account for, as well as the general performance using various
parameters.

4.1.1 Single and no occurrences

Adjusting the fixed score for n-graph features having only a single occurrence (SO) in the reference
had minimal impact on detection performance. This was expected, as these are relatively rare. For
that reason, it is natural that features from probe actions either have none or several occurrences in
the reference more often than only a single occurrence. We observed that adjusting the fixed score
for n-graphs missing in the reference had significant impact on the ANIA and ANGA ratings.

For example, when using the sigmoid function seen in Figure 6, we tested adjusting the fixed
score for single and no occurrences (NO). The results of these tests can be found in Table 7. The
CA system becomes more strict as the SO and NO scores are increased, as this means that the
trust levels are affected more negatively. However, it has a larger impact on ANIA than ANGA.
This was expected, as the genuine user does not type these n-graphs regularly, but an imposter
still migh. Furthermore, we also tested the impact of lowering the SO score while keeping the NO
score near maximum. The result of this test can be seen in the last section of Table 7. Compared to
the section above, it seems that the NO score has a much larger impact. We can also see that the
performance was negatively affected by using a low SO score, as 4 more imposters went undetected,
and one user was moved from the -/+ category to the -/- category. Therefore, it seems that having
harsh punishments for n-graphs not present or with only a single occurrence in the reference leads
to better overall detection performance. We continued testing the system using SO = 3.0 and
NO = 3.3.
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Figure 6: Plot of the sigmoid function used to achieve the results in Table 7.
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Category #Users ANGA ANIA #Imp. ND

SO 2.0
NO 2.3

+/+ 6 139010 529 0
+/- 2 759945 4749 12
-/+ 24 4408 932 0
-/- 14 5110 3107 33
Summary 46 8973 1707 45

SO 2.3
NO 2.6

+/+ 5 13475 283 0
+/- 1 139525 5252 7
-/+ 35 3022 712 0
-/- 5 4071 2090 7
Summary 46 7240 914 14

SO 2.6
NO 2.9

+/+ 3 9372 251 0
+/- 1 139525 4335 5
-/+ 38 3041 596 0
-/- 4 3400 1499 6
Summary 46 6452 734 11

SO 3.0
NO 3.3

+/+ 3 9372 234 0
+/- 1 139525 4014 4
-/+ 38 2671 548 0
-/- 4 3396 1389 6
Summary 46 6146 676 10

SO 2.3
NO 3.3

+/+ 3 9372 249 0
+/- 1 139525 4747 7
-/+ 37 3064 556 0
-/- 5 3577 1646 7
Summary 46 6497 746 14

Table 7: CA results achieved by adjusting Single Occurrence (SO) and No Occurrences (NO) param-
eters. DTM parameters were A = 1.85, B = 0.28, C = 1 and Tlockout = 90.

4.1.2 Outlier removal

In Section 3.2.1, we mentioned that we tested the CA system with and without outlier values in
the reference. When testing the system with these outliers removed, we observed a severe drop in
both ANGA and ANIA ratings. This essentially means that the system became more strict, rapidly
locking out both imposters and genuine users. The reason for this lies in how our classifier (SMD) is
scaled using standard deviation, which accounts for the dispersion of timing values. The dispersion
decreases when removing outliers, and a consequence is that the system expects keystroke features
with less distance to the reference than before outlier removal. Therefore, we had to make adjust-
ments to the DTM’s system level parameters to account for this change in expected user behavior.

The results in Table 7 were achieved without outlier removal. The parameters which gave an
ANGA of 6146 and ANIA of 676 gave an ANGA of 1255 and ANIA of 218 when outliers were
removed during reference construction. We attempted to lower Tlockout from 90 to 80 to make the
system less strict, though this resulted in the ANIA rating increasing rapidly compared to the ANGA
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rating. Specifically, it resulted in 4429 ANGA and 787 ANIA. In other words, imposters gained too
much of an advantage compared to the genuine user to justify this method for making the system
more liberal.

Lowering the DTM’s "A" parameter to 1.3 gave better results, which can be found in Table 8a.
These are comparable to the best result from Table 7, being the 6146 ANGA and 676 ANIA. Specif-
ically the fourth row in Table 8a shows a result with 694 ANIA, only 18 actions more than the 676
ANIA without outlier removal. Despite the small difference in ANIA ratings, the result with outlier
removal gave a significantly higher ANGA rating, as the genuine user could on average perform
8436 − 6146 = 2290 more keypresses before being locked out. With such positive results, we kept
the outlier removal mechanism when combining the CA system with the PA system.

Tlockout ANGA ANIA #Imp. ND
80 1615 174 2
70 3437 335 6
60 5385 504 12
50 8436 694 26
40 10846 882 31
30 12208 1103 50
20 12981 1325 62
10 13183 1503 69

(a) Without reference cutoff.

Tlockout ANGA ANIA #Imp. ND
80 1569 159 2
70 3283 299 5
60 5297 450 10
50 8362 625 21
40 10622 798 25
30 11871 1009 44
20 12422 1180 52
10 12727 1350 61

(b) With reference cutoff.

Table 8: CA results achieved with outlier removal using the following DTM parameters: A =
1.3, B = 0.28 and C = 1.

4.1.3 Reference cutoff

When the individual CA and PA systems were implemented, a decision had to be made regarding
the amount of keystroke data to be used in reference building. As mentioned in Section 3.1, we use
35% of the user’s keystrokes recorded during data collection. We tested the impact of limiting this
amount to a maximum of 20000 keystrokes for users with exceptionally large datasets, so that the
remaining training data could be used for testing instead. Another motivating factor is that it leads
to slightly less variance in reference quality between users.

The results in Table 8 shows the impact of applying the reference cutoff. We observed that both
the ANGA and ANIA ratings as well as the number of undetected imposters generally were lowered
as a consequence. The difference was still minimal, and we concluded that it was reasonable to
continue further analysis with the reference cutoff.

4.1.4 Personal and system level parameters

As our PA system has an element of personalization in its lockout threshold, we faced the issue of
personalizing the CA system as well before combining the systems. The incentive to do so was that
incorporating a personalized PA system into a CA system which only uses global parameters might
be viewed as an unfair method for improving performance. Therefore, we also built a version of

30



Combining Periodic and Continuous Authentication using Keystroke Dynamics

our CA system which uses customized thresholds for rewards/penalties for each user. Section 3.2.3
describes how the thresholds are calculated by using mean scores and tolerance levels. The SO and
NO parameters were then locked at 5, to ensure that users were punished for typing rarely or never
before seen n-graphs, even with these customized thresholds.

Adjusting the tolerance level led to the results presented in Table 9, where using a tolerance
level of 0.5 led to the most reasonable performance. It was achieved with Tlockout = 50, and can
be compared to the result in Table 8b where also Tlockout = 50. Whereas the ANIA dropped by an
insignificant amount, the ANGA dropped from 8362 to 8087. Though this was a negative change,
the number of undetected imposters also dropped from 21 to 18, which slightly weighs up for the
loss of ANGA rating. Overall, these settings gave a satisfying performance and were used as the
base when incorporating the PA system.

Toler. ANGA ANIA #Imp. ND
0 268 69 0
0.1 770 93 0
0.2 2107 143 3
0.3 3951 218 3
0.4 5671 381 5
0.5 8087 623 18
0.6 10461 986 36

Table 9: CA results achieved with personal thresholds for reward/penalty. DTM parameters:
A = personal, B = 0.28, C = 1, and Tlockout = 50.

4.2 PA system

4.2.1 Reference cutoff

The PA system’s performance was tested with and without the reference cutoff, similarly to the CA
tests discussed in Section 4.1.3. Table 10 shows the cutoff’s impact on performance. As in the case
of the CA system, the impact is negligible. Adjusting the tolerance level allowed us to balance the
relation between FNMR and FMR, as mentioned in Section 3.3.3. In other words, this parameter
decided the system’s strictness.

The users’ datasets had to be separated into references, validation sets and tests sets in an
identical manner for the CA and PA systems. This was needed due to the combined system using
the exact same keystroke data for both the CA and PA subsystems during testing. If the reference
cutoff was used in only one of the subsystems, the test sets would contain different keystrokes, as
the cutoff causes data from the reference portion of the dataset to be moved into the test portion.
The advantages given by the cutoff described in Section 4.1.3 also hold for the PA system. Seeing
as the impact of the cutoff was small for both systems, the cutoff was used in further analysis. This
included testing of the combined system.
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Toler. FNMR FMR #Imp. ND
0.02 47.51 4.68 2
0.06 37.75 5.93 4
0.10 30.25 7.47 4
0.14 22.97 9.23 7
0.18 17.77 11.48 9
0.22 13.40 14.07 13
0.26 9.44 17.11 17
0.30 6.91 20.52 22
0.35 4.70 25.37 37
0.40 2.85 30.80 54
0.45 1.80 36.67 87
0.50 1.29 42.61 121

(a) Without reference cutoff.

Toler. FNMR FMR #Imp. ND
0.02 48.08 4.68 2
0.06 38.54 5.94 4
0.10 30.04 7.50 4
0.14 22.59 9.37 7
0.18 17.36 11.70 9
0.22 12.89 14.28 12
0.26 9.29 17.42 18
0.30 6.44 20.91 21
0.35 3.85 25.88 36
0.40 2.26 31.47 53
0.45 1.51 37.45 88
0.50 1.13 43.55 126

(b) With reference cutoff.

Table 10: Excerpt of PA results showing the performance impact of using a reference cutoff. A block
size of 500 keystrokes was used. A complete version on this table is found in Appendix A.1.

4.2.2 R- and A-distance weights

Pinto et al. [15] studied how adjusting the weights of the R-and A-distances when combining them
affected detection performance. They found that 20%-80% weights for R- and A-distances was
the best configuration for increasing the gap between average genuine and imposter scores while
still considering the R-measure. We tested our PA system using the same configuration to see how
it affected its performance. The result is illustrated as Detection error tradeoff (DET) curves in
Figure 7. The curves show that summing the R-and A-distances with equal weights outperforms the
80-20 weighting scheme for our PA system, as all FNMRs give lower tradeoffs for FMR with the
equal weights scheme.

While we did not analyze the underlying reasons, it is worth pointing out that Pinto et al. used
five different timing features where our system only uses three. We also used a smaller block size of
500 keystrokes compared to their 750 keystrokes, and as mentioned in Section 3.3.2, their dataset
was limited. All of these factors could play a role in why we had less success with their weighting
scheme. As we were not looking for the optimal PA solution, we did not test to see if other weights
were better. Equal weights were chosen for further analysis due to the superior performance.

4.2.3 Block size

Different block sizes were tested for the PA system. These were 500, 250 and 100 keystrokes.
As a dissimilarity score is produced per block, the system has more information to base every
dissimilarity score on when the block size is large. This generally leads to more accurate decisions
per block, and is reflected in the DET curves in Figure 8. There is a clear difference in detection
accuracy between the block lengths that were tested, with 500 outperforming both of the other
block sizes, and size 100 achieving the worst performance in terms of detection accuracy.

This does not necessarily imply that using a block size of 500 gives a better PA system. When
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Figure 7: Detection error tradeoff curves showing the detection performance of weighing R- and
A-distances by 20-80% respectively as well as using equal weights.

the PA system waits for 500 keystrokes to be collected before processing probes, the imposter has a
large window of access to the computer before they are locked out. An example of an unfortunate
scenario could be an imposter taking control over an unattended computer after the genuine user
had either logged in or been successfully authenticated by the PA system without pressing any keys
thereafter. In both of these cases, the imposter would have free reign over the computer until they
had typed 500 keystrokes, or until the genuine user returned to the workstation.

At first glance, this may seem like the worst-case scenario. However, the imposter could also
take control over the computer in the middle of a block, for example after 300 genuine keystrokes.
Ideally, they would be detected and locked out when the block was filled up, i.e. after only 500 −
300 = 200 imposter keystrokes. However, their window of opportunity could also become larger
than 500. The reason for this is that the genuine keystrokes making up the first 300 keystrokes of
the block may outweigh the 200 imposter keystrokes, causing the probe to be accepted as genuine,
i.e. a match. The PA system would then continue collecting keystrokes for the next block without
locking the imposter out. Their effective window of opportunity would then be 200 + 500 = 700,
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Figure 8: DET curves showing the performance for different block sizes.

giving them increased time to perform potentially harmful actions.
Situations like these highlight fundamental issues with PA systems and why such large block

sizes can be problematic. There is a tradeoff between higher detection performance and lower
block sizes, which is why we tested the system with several block sizes. All of these block sizes
could then be used for testing the combined system later on.

The ANGA and ANIA rates of the PA system are calculated based on FNMR and FMR rates and
are presented in Table 11, where the performance of the block sizes can be further compared. An
immediate observation is that small blocks sizes give lower ANIA rates than larger block sizes when
similar ANGA rates are compared. For example, when comparing results with approximately 2000
ANGA, the respective ANIA rates for block sizes 500, 250 and 100 are around 552, 313 and 192. If
we were to judge the performance solely based on ANGA and ANIA rates, it would seem that small
block sizes are better. However, the smaller block sizes tend to have significantly more undetected
imposters. Also, with higher ANGA rates, the smaller block sizes cause the system to often need
more than one block to catch imposters. While this is not necessarily a large issue in a stand-alone
PA system with such small block sizes, problems can arise when combined with the CA system. If
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Toler. ANGA ANIA #Imp. ND
0.35 12989 675 36
0.33 10670 656 31
0.3 7760 632 21
0.26 5383 605 18
0.22 3880 583 12
0.18 2880 566 9
0.14 2213 552 7
0.1 1664 541 4
0.06 1298 532 4

(a) Block size 500.

Toler. ANGA ANIA #Imp. ND
0.5 12634 476 52
0.45 8957 426 31
0.43 7845 409 27
0.4 6124 386 19
0.35 4302 354 16
0.3 2920 329 11
0.26 2198 313 8
0.22 1665 300 6
0.18 1252 290 2

(b) Block size 250.
Toler. ANGA ANIA #Imp. ND
0.7 8288 395 98
0.65 6531 335 66
0.6 5028 286 38
0.55 3779 247 30
0.45 2112 192 12
0.35 1136 157 3
0.26 672 137 1
0.18 433 125 0
0.1 289 117 0

(c) Block size 100.

Table 11: Excerpt of PA results achieved with different block sizes and tolerance levels.

the PA system can influence the trust level to be increased, then the blocks that produce a false
match before the imposter is detected will boost the trust level. This can negate the CA system’s
own progress in detecting the imposter. For instance, if the imposter’s current trust level is 60, and
Tlockout = 50, a falsely matched block could increase the current trust level back to for example 90.
This would give the imposter a larger window of opportunity than if the PA system was not involved
in the first place, as the CA system probably would have brought the trust level below Tlockout a few
moments later. Smaller block sizes are therefore not necessarily the better option for the combined
system.

4.3 Decision level fusion

This section presents results achieved by combining continuous and periodic authentication at the
decision level. The fusion scheme is based on the allowed range of trust Trange as described in Sec-
tion 3.4.2. As the CA configuration chosen for the combined system had Tlockout = 50, the allowed
range of trust was Trange = 100 − 50 = 50. When testing the decision level fusion, the binary deci-
sion of the PA subsystem would therefore increase or decrease the trust level by a specific amount
between 0-50.

In order to control how much to increase or decrease the trust level, two parameters were used.
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They were ’UP’ and ’DOWN’, each representing how large a portion of Trange to increase or decrease
the current trust level by, respectively. For instance, with UP = 0.3 and DOWN = 0.6, probe blocks
producing a match would increase the trust level by 0.3 × 50 = 15. Probes producing a non-match
would decrease the trust level by 0.6× 50 = 30. Such a configuration would punish imposters more
than it would reward the genuine user.

The UP and DOWN values were set as system level parameters, i.e. they were the same for all
users per test. Optimizing these values for each user using genetic algorithms or other optimization
techniques is another option. Such algorithms are however computationally expensive and time
consuming, and were not used for this project.

An example of a setting that we tested was UP = 1 and DOWN = 0.6. Figure 9a shows an excerpt
of testing this setting with User 1 as a genuine user, meaning that their test set was used against
their own reference. In the beginning, the user seemed to be typing in an unusual manner compared
to their reference causing the CA subsystem to rapidly decrease the trust level. After 108 keystrokes,
the trust level went below Tlockout, marking the undesired event of locking out the genuine user. The
block size was 250 in this case, and since the CA subsystem locked out the user before the block
was filled up, the PA subsystem did not get a chance to prevent the lockout.

The trust level was brought back up to 100 after the lockout, which simulated the user logging
back in and continuing typing. The PA subsystem started collecting keystroke data for a new block
from that point onward. After keystroke number 300, the trust level started sinking again, down
to 75 at keystroke number 358. At that point, a block of 250 keystrokes had been filled up since
the lockout at keystroke number 108. This triggered the PA system to process the block probe,
which resulted in a match. Here we can observe the advantage of combining the systems, as the
PA match caused the trust level to be increased by 1 × 50 = 50, capped at the maximum value of
100. Such positive adjustments have the potential to give the genuine more time before potentially
being wrongfully locked out. In this specific example, we can see that another block was filled up,
processed and matched after the following 250 keystrokes, however the trust level was at that point
already at 100.

Figure 9b shows a portion of a test run where an imposter was locked out four times over the
course of around 1250 keystrokes. At keystroke number 231, the trust level dipped to 50.2 before
increasing slightly again, barely keeping the imposter logged in. However, at keystroke number
250, the PA subsystem kicked in and reduced the trust level by 0.6× 50 = 30, bringing it far below
Tlockout. As this meant that the imposter was locked out, the trust level was then brought back to
100, and the test run continued.

Keystroke number 500 shows another example of the cooperation between the two subsystems.
The PA subsystem brought the trust level down by 30, which was not quite enough to bring it
below the threshold. The CA subsystem was however able lock the user out a few keystrokes later
due to the assistance it received just before. Later on, the CA subsystem locked the imposter out
at keystroke number 749, just one keystroke before the PA subsystem would have kicked in. After
that, the CA subsystem was unable to cause another lockout on its own. However, at keystroke
number 999, the PA subsystem brought the trust level down to 70, and later on brought it below
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(b) User 2 as imposter vs User 1’s reference.

Figure 9: Examples of decision level fusion with block size = 250. UP = 1,DOWN = 0.6.

37



Combining Periodic and Continuous Authentication using Keystroke Dynamics

the threshold at keystroke 1249. Especially the last two PA influences show how using the statistical
information available in block probes can be beneficial to utilize in a combined CA/PA system.

4.3.1 Results

Before looking at how the incorporation of the PA system had an influence on the original CA sys-
tem’s performance, we will discuss some observations regarding the impact of the decision level
fusion’s parameters. The first observation to mention is that adjusting the DOWN parameter gener-
ally had a larger impact on detection performance than the UP parameter. An example of this can be
seen in Tables 12a and 12b, as the performance difference between them was negligible even with
a considerable difference in UP values. However, adjusting the DOWN parameter from 0 to 1.001
caused a difference of over 2500 ANGA and over 340 ANIA. The reason for testing DOWN = 1.001
was the same as explained in Section 3.4.2; it allowed the PA subsystem’s influence to cause a direct
lockout even when the current trust level was at its maximum. As seen in the tables, the extra 0.001
in DOWN value showed its effect by causing a drop in both ANGA and ANIA. However, the ANGA
showed a drop of 6366− 6018 = 348 in Table 12b, while the ANIA only dropped by 306− 298 = 8.
This indicates that letting the PA subsystem lock out users who are currently at trust level 100 has
large consequences for genuine users compared to the benefit of locking out imposters faster. This
makes sense, as a user at trust level 100 is more likely to be the genuine user than an imposter.
When these genuine users are wrongfully brought from trust level 100 to below Tlockout, the CA
subsystem is given no chance to correct the PA subsystem’s mistake. Since imposters spend more
time below trust level 100, reducing their trust level by 1 × Trange will often bring them far below
Tlockout which could be considered an "overkill". Therefore, the extra 0.001 punishment is less likely
to make a difference for them than for genuine users. This ties into our research sub-question 2, as it
seems that having the PA subsystem adjust the trust level is generally better than guaranteeing that
a non-match results in an instant lockout. In spite of this, we continued testing DOWN = 1.001 to
see if similar behavior was shown for other settings as well.

The reason for testing UP = 1.001 instead of 1 is simply that we originally tested the system
using equal values for UP and DOWN, and DOWN = 1.001 was needed for the reason mentioned
above. The extra 0.001 for the UP parameter makes no difference in practice, and was only used for
convenience. What does however make a difference for the UP parameter is giving it a low value,
usually below 0.4. At such low values, the tests showed an exception to the general behavior being
that adjustment of UP makes little to no difference. This can be seen in Table 12c, where UP = 0.2.
When comparing these results to the other two tables, we can see that it gave lower ANGA ratings
for similar ANIA ratings. In other words, using such a low UP gave a worse performance across the
board.

A likely explanation is that some genuine users have benefited largely by being ‘saved’ by the PA
system at certain times, when their trust level was low. With smaller UP values, the PA subsystem
had less power in preventing the CA subsystem from wrongfully locking them out, and so the small
boost in trust level may not have been enough to keep them logged in for much longer. Therefore,
most of the following results presented in this section were achieved using a high UP value.
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DOWN ANGA ANIA #Imp. ND
0 8547 644 19(0.9%)
0.2 8545 605 18(0.9%)
0.4 8263 564 15(0.7%)
0.6 8089 508 11(0.5%)
0.8 7676 445 8(0.4%)
1 6278 307 3(0.1%)
1.001 6019 299 3(0.1%)

(a) UP = 1.001

DOWN ANGA ANIA #Imp. ND
0 8543 642 19(0.9%)
0.2 8541 603 18(0.9%)
0.4 8261 563 15(0.7%)
0.6 8088 507 11(0.5%)
0.8 7676 444 8(0.4%)
1 6366 306 3(0.1%)
1.001 6018 298 3(0.1%)

(b) UP = 0.4

DOWN ANGA ANIA #Imp. ND
0 8134 638 19(0.9%)
0.2 8132 599 18(0.9%)
0.4 7850 558 15(0.7%)
0.6 7676 503 11(0.5%)
0.8 7264 441 8(0.4%)
1 5869 304 3(0.1%)
1.001 5612 296 3(0.1%)

(c) UP = 0.2

Table 12: Differences in performance when adjusting DOWN parameter for different UP values.
Block size was 500 and PA tolerance was 0.33.

In this analysis, we will mainly focus on two types of performance improvement introduced by
the combination, both regarding ANGA and ANIA ratings. Recall that the specific settings used for
the CA subsystem resulted in 8087 ANGA and 623 ANIA. Our focus areas are then as follows:

ANGA improvements: For settings giving around 623 ANIA, we are interested in ANGA ratings
above 8087.

ANIA improvements: Where the ANGA ratings are around 8087, we are looking for ANIA ratings
below 623.

Some other results of interest will also be discussed, such as how far up the combination was able
to boost the ANGA beyond the original system while accepting the compromise of a higher ANIA.

Block size 500

After having described the general effects of the UP and DOWN parameters, we can discuss how
the original CA system’s performance was affected by incorporating the PA system, which was the
main goal of the analysis phase. The first block size tested was 500 keystrokes. From the PA results
in Table 11a, we chose to use a tolerance level of 0.33, as it gave an ANGA of 10670 and ANIA of
656. Having such a high ANGA while still having an ANIA comparable to the CA system’s ANIA of
623 seemed beneficial for the combined system, and was the reason for choosing this PA setting.
The underlying FNMR and FMR rates which were used for calculating the ANGA and ANIA were
4.69% and 23.8%, respectively.
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Looking back at Table 12a, we can see that the mentioned PA configuration was indeed able
to positively affect the CA system’s performance. With DOWN = 0.2, the results were a higher
ANGA for a slightly lower ANIA. Specifically, the genuine users were able to type 8545−8087 = 458

more keystrokes on average before being locked out, which is an increase of 5.66%. The ANIA was
impacted more heavily, as seen where DOWN = 0.6. With an almost identical ANGA to that of the
original CA system, the ANIA was lowered by 623−508 = 115 which is an improvement of 18.46%.
This means that imposters were caught significantly quicker on average with the combined system,
supporting our main research question. Also, the number of imposters that were never detected
was reduced from 18 to 11. This setting gave the best result for decreasing ANIA that we were able
to find in this project.

Lastly, we can point out that for this block size, the ANGA saturated around 8545. Increasing it
any further beyond that point only resulted in a worse ANIA. However, by sacrificing 8087−6278 =

1809 ANGA, the ANIA dropped by 50.72% down to 307, as seen where DOWN = 1. With that
setting, only 3 out of 2070 imposters were undetected.

Block size 250

We were interested in seeing if smaller block sizes also could improve performance, as it would
allow the PA system to engage more often, possibly detecting imposters more effectively. Table 13
shows test results using 250 keystrokes as block size. The PA tolerance used was 0.4, and as seen
in Table 11b, it gave 6124 ANGA and 386 ANIA, calculated from an FNMR of 4.08% and FMR of
35.24%. As mentioned in Section 4.2.3, using a PA configuration with an ANIA rating too far from
the block size could end up falsely matching imposter blocks too regularly, boosting their trust level
and essentially preventing them from being detected by the CA system. This was the reason for not
choosing a more liberal setting for this block size.

DOWN ANGA ANIA #Imp. ND
0 8944 706 25(1.2%)
0.1 8944 663 22(1.1%)
0.2 8602 630 20(1%)
0.4 8025 569 16(0.8%)
0.6 7380 499 12(0.6%)
0.8 7062 432 12(0.6%)
1 5604 284 3(0.1%)
1.001 5239 273 2(0.1%)

Table 13: Performance results for block size = 250, PA tolerance = 0.4 and UP = 1.001.

Block size 250 seems to be less successful in improving the CA system’s ANIA rating compared
to block size 500. In the fourth row of Table 13, we see that even though the ANGA was lower
than the 8089 ANGA in Table 12a, it had a higher ANIA. Still, an interesting observation is that
the lower block size was able to boost the ANGA to 8602 with only 630 − 623 = 7 higher ANIA
than the original CA system, which is also slightly higher than what was achieved with block size
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500. Furthermore, it was able to bring the ANGA up to 8944 when accepting an ANIA increase of
663− 623 = 40.

Block size 100

For the smallest block size, we used a PA tolerance of 0.26. This had quite low performance ratings,
namely 672 ANGA and 137 ANIA, as seen in Table 11c. Again, we saw this as necessary in in order
to avoid boosting imposter trust levels too often. The results can be found in Table 14, where we
see some similar effects as with block size 250. For reducing ANIA without sacrificing ANGA, this
block length was the worst performer of the three block sizes. This is evident by looking at the result
where DOWN = 25. By comparing this result to block size 250 in Table 13 where DOWN = 0.4, we
see a lower ANGA together with a higher ANIA with block size 100.

DOWN ANGA ANIA #Imp. ND
0.1 8992 748 31(1.5%)
0.2 8737 636 23(1.1%)
0.25 7919 581 18(0.9%)
0.4 6815 438 9(0.4%)
0.6 5135 301 5(0.2%)
0.8 3686 224 3(0.1%)
1 973 134 0(0%)
1.001 769 126 0(0%)

Table 14: Performance results for block size = 100, PA tolerance = 0.26 and UP = 1.001.

Similarly to block size 250, we also see an ability to boost ANGA for the compromise of higher
ANIA. We also see that it was able to bring both ANGA and ANIA ratings far down. This is however
likely due to the low PA tolerance of 0.26, which is a fairly strict setting causing probe blocks from
both imposters and genuine users to be relatively likely to result in a non-match. Specifically, the
underlying FNMR was 14.87% and FMR was 27.02%. The result was therefore a highly sensitive
DOWN parameter, giving a large range between the most liberal and most strict setting.

Other tolerance levels

Lastly, it should be pointed out that different tolerance levels for each block size was tested to
see what effect adjusting it up or down had. In general, this resulted in worse performance, and
the previously discussed tolerance levels produced the best results. The results from using other
tolerance levels can be found in Appendix B.1.

4.4 Score level fusion

As with the decision level fusion, the score level fusion is also based on Trange. During testing, we
gave the DTM’s sigmoid function for PA influence, SigPA, a height that allowed a change of trust
between 0 and 50.001. Figure 10 shows how the score level fusion allows the PA influence to have
varying degrees of impact depending on the dissimilarity scores calculated from probe blocks. The
first of the three times the PA system kicked in, it caused a lockout by lowering the trust by 39
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levels. It kicked in again at keystroke number 333, lowering the trust by 35, meaning that block
was slightly more similar to the reference than the first. While it did not cause a direct lockout,
it assisted the CA system enough for it to lock the user out at at keystroke number 535. Lastly,
we see the PA system being less decisive in its dissimilarity score, causing a drop of only 7 levels.
Because the trust level was already close to Tlockout, it still managed to nudge the trust level down
just enough to cause a lockout slightly before the CA subsystem would have done so itself.
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Figure 10: Example of score level fusion with block size = 250, where User 3 was tested as an im-
poster vs User 1’s reference. DTM parameters for SigPA were as follows:A = personal+0.5 tolerance,
B = 0.1, C = 50.001.

4.4.1 Results

The performance was tested by adjusting the width of SigPA, as well as the PA tolerance. The tol-
erance was added to the user’s mean score from the validation set, similarly to the decision level
fusion, however in this case it controlled the threshold for reward and penalty. Increasing the tol-
erance essentially shifted SigPA towards the right. Following are the results achieved by adjusting
these parameters for different block sizes.

Block size 500

We were able to find settings improving the ANIA rating of the original CA system also with this
fusion scheme. Table 15 shows the performance using different SigPA widths with blocks size 500.
There are more results available Appendix C.1, however Table 15 is focused on results where either
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the ANGA or ANIA is comparable to the original CA system. Similarly to decision level fusion, the
ANGA was boosted to around 8500 when the ANIA was around the same as the CA system, being
623. The best widths for boosting the ANGA seemed to be 0.25 and 0.3 for our specific combination
and dataset, giving 8520 and 8540 ANGA while having a lower ANIA than the CA system, as well
as one less undetected imposter.

Width Tolerance ANGA ANIA #Imp. ND

0.05
0.55 8097 539 13(0.6%)
0.7 8550 631 18(0.9%)

0.1
0.5 8094 560 13(0.6%)
0.6 8497 611 15(0.7%)

0.25
0.3 7892 527 11(0.5%)
0.5 8540 614 17(0.8%)

0.3
0.262 8158 533 11(0.5%)
0.5 8520 613 17(0.8%)

0.45
0.2 7914 552 14(0.7%)
0.5 8500 621 18(0.9%)

0.65
0.3 8085 587 16(0.8%)
0.5 8432 629 18(0.9%)

Table 15: Selected portions of score level fusion results with block size 500, sorted by the width of
SigPA.

Width 0.3 also seems to be the best performer for decreasing ANIA, as it was lowered to 533
while having a higher ANGA than the CA system’s 8087. The number of undetected imposters was
also seven less. In order to be able to compare the result to the decision level fusion with block size
500, we attempted to lower the tolerance in hopes of bringing the ANGA down to a rating closer to
8087. This resulted in a 7943 ANGA and 530 ANIA, which was worse than the decision level fusion.

Block size 250

We observed that a larger width for SigPA was needed with block size 250. This was clear, as widths
0.05 and 0.3 decreased the original CA system’s performance apart from having one less undetected
imposter, as seen in Table 16. Both of these widths had lower ANGAs and higher ANIAs, meaning
genuine users were locked out faster, while imposters had larger windows of opportunity. At larger
widths, we saw more reasonable results. A possible cause could be the fact that smaller block sizes
result in less accurate PA comparisons, as was shown in Figure 8. With larger sigmoid widths, com-
parison scores will on average cause smaller changes to the trust level. In other words, comparison
scores are given more "wiggle room" before the influence on the trust level becomes very large,
which prevents inaccurate scores to cause too much damage. While less accurate, the smaller block
sizes also cause PA comparison scores to be produced more rapidly. Therefore, reducing the impact
that each of these scores have on the trust level by increasing the width seems logical, and we
believe this to be a likely explanation.

Table 16 shows that the best result for decreasing ANIA using this block size was achieved with
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Width Tolerance ANGA ANIA #Imp. ND
0.05 0.7 8047 652 17(0.8%)
0.3 0.7 7912 629 17(0.8%)

0.5
0.35 7906 572 15(0.7%)
0.45 8745 623 21(1%)

0.7
0.2 7946 538 14(0.7%)
0.5 8705 640 22(1.1%)

Table 16: Selected excepts of score level fusion results with block size 250, sorted by the width of
SigPA. Extended table is found in Appendix C.2.

width = 0.7, and tolerance = 0.2. It gave an ANGA of 7946 and ANIA of 538, which was not as
effective as the best ANIA decreasing result with block size 500. On the other hand, we saw positive
results for increasing ANGA using block size 250. With width = 0.5, and tolerance = 0.45, it gave
an ANGA of 8745 while having the same ANIA as the original system. This was the best ANGA
improvement observed in the project’s analysis phase, being an 8.14% increase.

Just as with decision level fusion, we see that smaller block sizes are better at improving ANGA,
while larger block sizes are better at decreasing ANIA. Before the analysis, we expected other-
wise. Specifically, we expected large block sizes to be better for reducing ANIA and shorter block
lengths to be better for increasing ANGA. Because the CA subsystem has the ability to rapidly drop
imposters’ trust levels and locking them out after a small amount of keystrokes. Therefore, we ex-
pected large block sizes to cause the PA subsystem to kick in too seldom to significantly increase
imposter detection rates, since blocks are reset every time the CA subsystem causes a lockout on its
own. More research is needed to conclude on why larger block sizes seem better for lowering ANIA
ratings.

Block size 100

We performed limited testing of block size 100 with score level fusion. However, we did test a
number of different sigmoid widths, and the results in Table 17 show that for ANGA values close to
that of the CA system, it showed worse ANIA ratings for all widths. We were unable to find a setting
with this block size which improved the CA system’s performance. It is possible that increasing the
width of SigPA is not enough to reduce the impact of inaccurate comparisons. This issue could be
interesting to investigate further. Reducing the height of the sigmoid function to forcibly restrict the
PA system from causing too large changes to the trust level could yield different results.

4.5 Overview of the best results

We conclude the analysis of detection performance by presenting an overview the best results for in-
creasing ANGA and decreasing ANIA, both of which have been discussed in Sections 4.3.1 and 4.4.1.
Here, we can see how the users fell into different categories before and after combining the systems.
Table 18 shows the detailed results of the original CA system. When comparing it to the best result
for increasing ANGA, in the upper half of Table 19, we see that the distribution of users in different
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Width Tolerance ANGA ANIA #Imp. ND
0.05 0.8 8043 935 35(1.7%)
0.15 0.6 8010 771 30(1.4%)
0.25 0.4 6990 576 22(1.1%)
0.3 0.5 7927 715 29(1.4%)
0.5 0.4 7866 649 25(1.2%)
0.7 0.4 8015 652 23(1.1%)
0.9 0.4 8063 656 21(1%)
1.2 0.4 7981 656 22(1.1%)

Table 17: Selected excepts of score level fusion results with block size 100, sorted by the width of
SigPA.

categories is very similar. One user was moved from -/+ to +/+, which was a small but positive
change. This means that the combined system cause one more user to never be locked out. While
the total number of imposters not detected went up by 0.1%, the genuine user was on average able
to type 658 characters more, an increase of 8.14%.

In the lower half of Table 19, we see that the best result for decreasing ANIA showed some more
changes on user categories. This setting also had one more user in the best category compared to
the CA system. There were also six less users who had at least one undetected imposter, as seen in
the decreases of users in the +/- and -/- categories. The total number of imposters who were not
detected was therefore decreased, down by 7. This, in addition to imposters on average being able
to type 623− 508 = 115 less characters before being locked out, was overall a positive result.

Category #Users ANGA ANIA #Imp. ND
+/+ 6 17409 269 0
+/- 1 12256 485 1
-/+ 30 6682 390 0
-/- 9 6091 1650 17
Summary 46 8087 623 18(0.9%)

Table 18: Detailed performance results of the CA configuration used in the combined system.

4.6 Computational impact

Regarding research sub-question 1, we realize that computation speeds are highly dependent on
a number of factors such as processing power, programming language, choice of classifier and
number of considered features. Still, we can mention that our CA system performs a comparison
of a single keystroke in 0.2 milliseconds on average. For our PA system, the average computing
time for processing blocks of 500, 250 and 100 keystrokes was 75.2, 46 and 25.7 milliseconds,
respectively. These times were collected by finding the user with the largest reference in terms
of unique mono- and digraphs, and running their validation set against their own reference. The
systems were developed in MATLAB 2017, and were run on an Intel Core i7, on a single thread
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Category #Users ANGA ANIA #Imp. ND

Score level
Block size 250

+/+ 7 21735 336
+/- 1 12256 483 1
-/+ 29 6130 328
-/- 9 6678 1815 20
Summary 46 8745 623 21(1%)

Decision level
Block size 500

+/+ 7 21979 308
+/- 0
-/+ 35 5328 353
-/- 4 7945 2214 11
Summary 46 8089 508 11(0.5%)

Table 19: CA results achieved by adjusting Single Occurrence (SO) and No Occurrences (NO) pa-
rameters. DTM parameters were A = 1.85, B = 0.28, C = 1 and Tlockout = 90.

at 2.4 GHz frequency. While the speeds were reasonable, they could be further improved by for
example using more a low-level programming language, not to mention multi-threading.

What is most interesting to discuss is the computational impact of combining the systems. The
most important factor here is the PA subsystem’s block size. In an example where the combined
system has to process 100,000 keystrokes and the block size is 100, a crude way to calculate the
number of times the PA system could kick in is simply 100, 000/100 = 1000, which is the maximum.
For block size 250 and 500, it could kick in at most 400 and 200 times, respectively. However, what
must also be considered is the fact that the likelihood of the CA subsystem locking out the user
before a block is filled up increases with larger block sizes. When that happens, the PA subsystem
resets and waits until enough keystrokes are recorded to fill a new block. This further reduces
computational costs when using large block sizes.

It is also important to discuss the difference between the tests we have performed and a real-
time system. During testing, we ran both the CA and PA subsystems on the same thread. This was
to avoid having the CA subsystem continuing to adjust the trust level while the PA subsystem was
still processing a block probe. If that were to happen, our results could have been less accurate. An
example could be the CA subsystem increasing an imposter’s trust level before the PA subsystem
had finished processing a block, and that increase of trust preventing the PA subsystem’s influence
from locking the user out. Situations like these could therefore alter the performance readings.
This would not matter in a deployed real-time system as the objective would simply be to lock out
imposters, and not to measure performance. Therefore, the PA subsystem could process a block par-
allel to the CA system processing keystrokes with multithreading, further reducing computational
impact.
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5 Conclusion

Throughout the work of this thesis, we have investigated the possibility of combining continuous
and periodic authentication in biometric systems using keystroke dynamics. Our approach was to
develop a CA system and a PA system, both with foundations based on designs from literature,
and having them cooperate to detect imposters. The CA system, which evaluated the user’s typing
behavior after every keystroke, had the ability to lock out imposters after only a few keystrokes
and worked as the base system. The PA system would wait until enough keystrokes were recorded
to fill a block of a certain length, so that it could utilize statistical data for evaluating the typing
behavior. It would then feed information to the CA system, influencing its trust in the current user’s
genuineness.

Two system architectures were proposed, both showing promising results. The main difference
between them lied in the information that was passed from the PA system to the CA system. The
first architecture was a decision level fusion scheme, and had the PA system make independent
decisions, producing a Match or Non-Match result per probe block. This decision was then used to
change the trust level by a fixed amount. The second architecture was a score level fusion scheme,
where the PA system did not attempt to make any decision on whether or not the current user was
genuine, but rather just sent a comparison score to the CA system. That score was then used to
influence the trust level in a more dynamic manner than the first architecture.

Using an existing dataset of 46 users where keystroke data was recorded in the background in
an uncontrolled environment, testing was performed using three different block lengths for the PA
subsystem. Results showed that incorporating the PA system into the CA system allowed for quite
large adjustments to the general strictness of the system. For settings giving the same ANIA rating
as the original CA system, the best result for increasing ANGA was found with the score level fusion
scheme at 250 keystroke block length. It gave an 8.14% improvement in the amount of keystrokes
a user could type on average before being wrongfully locked out. When configuring the combined
system to have a similar ANGA rating to the CA system, the decision level fusion scheme with
block length 500 gave the best result for decreasing ANIA. It was able to cut down the average
number of keystrokes that imposters could type by 18.46%. We find that these results support our
main research question regarding whether the performance of a CA system can be improved by
incorporating a PA system.

5.1 Future Work

There are a number of areas we would like to see further researched, both to resolve limitations
of our own work, as well as taking this topic into new directions. Firstly, since we wanted to see
how different parameters to our systems impacted performance, we had to manually test a large
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number of configurations, using the full dataset for each test. We prioritized seeing these effects
over attempting to find the optimal settings. As there is an unfathomable amount of possible com-
binations of parameters, especially for the score level fusion, we were unable to test them all. The
tests we performed indicated that the two fusion schemes were able to give quite similar improve-
ments to performance. Therefore, we were unable to conclude which of the two architectures were
the best overall. It would therefore be interesting to test the systems where they are customized
automatically for each user by utilizing an optimization algorithm. We would also like to see if
combining CA and PA systems with state-of-the-art detection performances would differ largely
from our results.

Another issue is that we have only tested zero-effort attacks, which is a common limitation
throughout most of the literature on CA/PA using keystroke dynamics. It is unclear how our results
would be affected if imposters were actively trying to mimic the typing behavior of genuine users. It
would be interesting to test our individual systems as well as the combined system using a dataset
where such attacks are available. Also, running tests where genuine user and imposter data is mixed
could also give a more realistic attack scenario. We could then simulate the genuine user leaving
their workstation in the middle of a block, and an imposter taking control from that point. This
would make it harder for the PA subsystem to detect the imposter.

There are a few variations to the PA subsystem we would like to explore. One of them is using a
sliding window when analyzing blocks, where it would not wait until an entire new block had been
filled since the last time it kicked in. For example, with a block size of 500, after having influenced
the trust level once, it could kick in again after 150 keystrokes. Then, the new block would be
the last 350 keystrokes from the previous block plus the new 150 keystrokes. The other variation
could be to have the PA system kick in whenever the CA subsystem brings the trust level below
the threshold, to see if it agrees before a final decision is made. These two variations could also
be combined. It is however worth mentioning that these solutions would increase computational
impact as they would cause the PA system to kick in at higher rates.

Lastly, we would like to test our proposed architectures with systems using other biometric
characteristics where continuous and periodic authentication is applicable. An example could be
extending an existing CA system for mouse dynamics [41] with a PA system, or even a combination
of mouse and keystroke dynamics [42]. Gait or voice recognition could also be viable options to
explore.
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[14] Messerman, A., Mustafić, T., Camtepe, S. A., & Albayrak, S. Oct 2011. Continuous and
non-intrusive identity verification in real-time environments based on free-text keystroke dy-
namics. In 2011 International Joint Conference on Biometrics (IJCB), 1–8. doi:10.1109/IJCB.
2011.6117552.

[15] Pinto, P., Patrão, B., & Santos, H. Free Typed Text Using Keystroke Dynamics for Continuous
Authentication, 33–45. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. URL: https:
//doi.org/10.1007/978-3-662-44885-4_3, doi:10.1007/978-3-662-44885-4_3.

[16] Rahman, K. A., Balagani, K. S., & Phoha, V. V. June 2011. Making impostor pass rates
meaningless: A case of snoop-forge-replay attack on continuous cyber-behavioral verification
with keystrokes. In CVPR 2011 WORKSHOPS, 31–38. doi:10.1109/CVPRW.2011.5981729.

[17] Kang, P. & Cho, S. 2015. Keystroke dynamics-based user authentication using long and
free text strings from various input devices. Information Sciences, 308(Supplement C), 72
– 93. URL: http://www.sciencedirect.com/science/article/pii/S0020025514009062,
doi:https://doi.org/10.1016/j.ins.2014.08.070.

[18] Kaneko, Y., Kinpara, Y., & Shiomi, Y. July 2011. A hamming distance-like filtering in keystroke
dynamics. In 2011 Ninth Annual International Conference on Privacy, Security and Trust, 93–
95. doi:10.1109/PST.2011.5971969.

[19] Monrose, F. & Rubin, A. 1997. Authentication via keystroke dynamics. In Proceedings of
the 4th ACM Conference on Computer and Communications Security, CCS ’97, 48–56, New
York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/266420.266434, doi:10.1145/
266420.266434.

[20] Harun, N., Woo, W. L., & Dlay, S. S. May 2010. Performance of keystroke biometrics au-
thentication system using artificial neural network (ann) and distance classifier method. In
Computer and Communication Engineering (ICCCE), 2010 International Conference on, 1–6.
doi:10.1109/ICCCE.2010.5556852.

50

http://dx.doi.org/10.1109/ICC.2008.301
http://dx.doi.org/10.1109/ISBA.2017.7947695
https://doi.org/10.1007/978-3-642-20320-6_68
https://doi.org/10.1007/978-3-642-20320-6_68
http://dx.doi.org/10.1007/978-3-642-20320-6_68
http://dx.doi.org/10.1109/IJCB.2011.6117552
http://dx.doi.org/10.1109/IJCB.2011.6117552
https://doi.org/10.1007/978-3-662-44885-4_3
https://doi.org/10.1007/978-3-662-44885-4_3
http://dx.doi.org/10.1007/978-3-662-44885-4_3
http://dx.doi.org/10.1109/CVPRW.2011.5981729
http://www.sciencedirect.com/science/article/pii/S0020025514009062
http://dx.doi.org/https://doi.org/10.1016/j.ins.2014.08.070
http://dx.doi.org/10.1109/PST.2011.5971969
http://doi.acm.org/10.1145/266420.266434
http://dx.doi.org/10.1145/266420.266434
http://dx.doi.org/10.1145/266420.266434
http://dx.doi.org/10.1109/ICCCE.2010.5556852


Combining Periodic and Continuous Authentication using Keystroke Dynamics

[21] Tappert, C. C., Cha, S.-H., Villani, M., & Zack, R. S. January 2010. A keystroke biometric
systemfor long-text input. Int. J. Inf. Sec. Priv., 4(1), 32–60. URL: http://dx.doi.org/10.
4018/jisp.2010010103, doi:10.4018/jisp.2010010103.

[22] Park, S., Park, J., & Cho, S. June 2010. User authentication based on keystroke analysis of
long free texts with a reduced number of features. In 2010 Second International Conference
on Communication Systems, Networks and Applications, volume 1, 433–435. doi:10.1109/
ICCSNA.2010.5588979.

[23] Ganzhorn, D., Lu, D., Ordal, P., Norwood, J., & Fong, W. Sep 2005. Continuous identity
verification through keyboard biometrics. Journal of Undergraduate Research, 1. URL: http:
//hdl.handle.net/1802/4667.

[24] Locklear, H., Govindarajan, S., Sitová, Z., Goodkind, A., Brizan, D. G., Rosenberg, A., Phoha,
V. V., Gasti, P., & Balagani, K. S. Sept 2014. Continuous authentication with cognition-centric
text production and revision features. In IEEE International Joint Conference on Biometrics,
1–8. doi:10.1109/BTAS.2014.6996227.

[25] Ahmed, A. A. & Traore, I. April 2014. Biometric recognition based on free-text keystroke
dynamics. IEEE Transactions on Cybernetics, 44(4), 458–472. doi:10.1109/TCYB.2013.
2257745.

[26] Kim, J., Kim, H., & Kang, P. 2017. Keystroke dynamics-based user authentication us-
ing freely typed text based on user-adaptive feature extraction and novelty detection.
Applied Soft Computing. URL: http://www.sciencedirect.com/science/article/pii/
S1568494617305847, doi:https://doi.org/10.1016/j.asoc.2017.09.045.

[27] Solami, E. A., Boyd, C., Clark, A., & Ahmed, I. Sept 2011. User-representative feature selection
for keystroke dynamics. In 2011 5th International Conference on Network and System Security,
229–233. doi:10.1109/ICNSS.2011.6060005.

[28] Wu, P. Y., Fang, C. C., Chang, J. M., & Kung, S. Y. Nov 2017. Cost-effective kernel ridge re-
gression implementation for keystroke-based active authentication system. IEEE Transactions
on Cybernetics, 47(11), 3916–3927. doi:10.1109/TCYB.2016.2590472.

[29] Alsultan, A., Warwick, K., & Wei, H. 2017. Non-conventional keystroke dy-
namics for user authentication. Pattern Recognition Letters, 89, 53 – 59. URL:
http://www.sciencedirect.com/science/article/pii/S0167865517300429, doi:https:
//doi.org/10.1016/j.patrec.2017.02.010.

[30] Shimshon, T., Moskovitch, R., Rokach, L., & Elovici, Y. Dec 2010. Continuous verification
using keystroke dynamics. In 2010 International Conference on Computational Intelligence and
Security, 411–415. doi:10.1109/CIS.2010.95.

51

http://dx.doi.org/10.4018/jisp.2010010103
http://dx.doi.org/10.4018/jisp.2010010103
http://dx.doi.org/10.4018/jisp.2010010103
http://dx.doi.org/10.1109/ICCSNA.2010.5588979
http://dx.doi.org/10.1109/ICCSNA.2010.5588979
http://hdl.handle.net/1802/4667
http://hdl.handle.net/1802/4667
http://dx.doi.org/10.1109/BTAS.2014.6996227
http://dx.doi.org/10.1109/TCYB.2013.2257745
http://dx.doi.org/10.1109/TCYB.2013.2257745
http://www.sciencedirect.com/science/article/pii/S1568494617305847
http://www.sciencedirect.com/science/article/pii/S1568494617305847
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.09.045
http://dx.doi.org/10.1109/ICNSS.2011.6060005
http://dx.doi.org/10.1109/TCYB.2016.2590472
http://www.sciencedirect.com/science/article/pii/S0167865517300429
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.02.010
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.02.010
http://dx.doi.org/10.1109/CIS.2010.95


Combining Periodic and Continuous Authentication using Keystroke Dynamics

[31] Monaco, J. V., Bakelman, N., Cha, S. H., & Tappert, C. C. Aug 2013. Recent advances in
the development of a long-text-input keystroke biometric authentication system for arbitrary
text input. In 2013 European Intelligence and Security Informatics Conference, 60–66. doi:
10.1109/EISIC.2013.16.

[32] Stewart, J. C., Monaco, J. V., Cha, S. H., & Tappert, C. C. Oct 2011. An investigation of
keystroke and stylometry traits for authenticating online test takers. In 2011 International
Joint Conference on Biometrics (IJCB), 1–7. doi:10.1109/IJCB.2011.6117480.

[33] Janakiraman, R. & Sim, T. Keystroke Dynamics in a General Setting, 584–593.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. URL: https://doi.org/10.1007/
978-3-540-74549-5_62, doi:10.1007/978-3-540-74549-5_62.

[34] Dowland, P. S. & Furnell, S. M. 2004. A long-term trial of keystroke profiling using digraph,
trigraph and keyword latencies. In Security and Protection in Information Processing Systems,
Deswarte, Y., Cuppens, F., Jajodia, S., & Wang, L., eds, 275–289, Boston, MA. Springer US.

[35] Hempstalk, K. Continuous typist verification using machine learning. PhD thesis, The University
of Waikato, Hamilton, New Zealand, 2009. Available online (BIBSYS): https://hdl.handle.
net/10289/3282.

[36] Filho, J. R. M. & Freire, E. O. 2006. On the equalization of keystroke timing
histograms. Pattern Recognition Letters, 27(13), 1440 – 1446. URL: http://www.
sciencedirect.com/science/article/pii/S0167865506000602, doi:https://doi.org/
10.1016/j.patrec.2006.01.010.

[37] Monaco, J. V. & Tappert, C. C. 2018. The partially observable hidden markov model
and its application to keystroke dynamics. Pattern Recognition, 76, 449 – 462. URL:
http://www.sciencedirect.com/science/article/pii/S0031320317304752, doi:https:
//doi.org/10.1016/j.patcog.2017.11.021.

[38] Chang, J. M., Fang, C. C., Ho, K. H., Kelly, N., Wu, P. Y., Ding, Y., Chu, C., Gilbert, S., Kamal,
A. E., & Kung, S. Y. July 2013. Capturing cognitive fingerprints from keystroke dynamics. IT
Professional, 15(4), 24–28. doi:10.1109/MITP.2013.52.

[39] Villani, M., Tappert, C., Ngo, G., Simone, J., Fort, H. S., & Cha, S.-H. June 2006. Keystroke
biometric recognition studies on long-text input under ideal and application-oriented condi-
tions. In 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06),
39–39. doi:10.1109/CVPRW.2006.115.

[40] Killourhy, K. S. & Maxion, R. A. June 2009. Comparing anomaly-detection algorithms for
keystroke dynamics. In 2009 IEEE/IFIP International Conference on Dependable Systems Net-
works, 125–134. doi:10.1109/DSN.2009.5270346.

52

http://dx.doi.org/10.1109/EISIC.2013.16
http://dx.doi.org/10.1109/EISIC.2013.16
http://dx.doi.org/10.1109/IJCB.2011.6117480
https://doi.org/10.1007/978-3-540-74549-5_62
https://doi.org/10.1007/978-3-540-74549-5_62
http://dx.doi.org/10.1007/978-3-540-74549-5_62
https://hdl.handle.net/10289/3282
https://hdl.handle.net/10289/3282
http://www.sciencedirect.com/science/article/pii/S0167865506000602
http://www.sciencedirect.com/science/article/pii/S0167865506000602
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2006.01.010
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2006.01.010
http://www.sciencedirect.com/science/article/pii/S0031320317304752
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.11.021
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.11.021
http://dx.doi.org/10.1109/MITP.2013.52
http://dx.doi.org/10.1109/CVPRW.2006.115
http://dx.doi.org/10.1109/DSN.2009.5270346


Combining Periodic and Continuous Authentication using Keystroke Dynamics

[41] Mondal, S. & Bours, P. Sept 2013. Continuous authentication using mouse dynamics. In 2013
International Conference of the BIOSIG Special Interest Group (BIOSIG), 1–12.

[42] Mondal, S. & Bours, P. 2017. A study on continuous authentication using a com-
bination of keystroke and mouse biometrics. Neurocomputing, 230, 1 – 22. URL:
http://www.sciencedirect.com/science/article/pii/S0925231216314321, doi:https:
//doi.org/10.1016/j.neucom.2016.11.031.

53

http://www.sciencedirect.com/science/article/pii/S0925231216314321
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.11.031
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.11.031


Combining Periodic and Continuous Authentication using Keystroke Dynamics

A PA testing data

Following are results from testing the PA system which were not represented in the main thesis.

A.1 Reference cutoff impact

In Table 10, we only showed a excerpt of the results from testing the impact of using a reference
cutoff with block size 500. Here we present the complete version of said table.

Toler. FNMR FMR #Imp. ND
0.001 51.98 4.20 2(0.1%)
0.003 51.43 4.24 2(0.1%)
0.005 51.15 4.30 2(0.1%)
0.008 50.32 4.36 2(0.1%)
0.02 47.51 4.68 2(0.1%)
0.04 43.05 5.29 3(0.1%)
0.06 37.75 5.93 4(0.2%)
0.08 33.47 6.66 4(0.2%)
0.1 30.25 7.47 4(0.2%)
0.12 26.47 8.30 5(0.2%)
0.14 22.97 9.23 7(0.3%)
0.16 19.66 10.31 8(0.4%)
0.18 17.77 11.48 9(0.4%)
0.2 15.65 12.71 11(0.5%)
0.22 13.40 14.07 13(0.6%)
0.24 11.46 15.53 14(0.7%)
0.26 9.44 17.11 17(0.8%)
0.28 8.06 18.77 20(1%)
0.3 6.91 20.52 22(1.1%)
0.33 5.48 23.34 32(1.5%)
0.35 4.70 25.37 37(1.8%)
0.38 3.64 28.60 45(2.2%)
0.4 2.85 30.80 54(2.6%)
0.43 2.07 34.24 76(3.7%)
0.45 1.80 36.67 87(4.2%)
0.48 1.34 40.23 108(5.2%)
0.5 1.29 42.61 121(5.8%)

(a) Without reference cutoff.

Toler. FNMR FMR #Imp. ND
0.001 53.01 4.21 2(0.1%)
0.003 52.38 4.26 2(0.1%)
0.005 52.18 4.31 2(0.1%)
0.008 51.38 4.38 2(0.1%)
0.02 48.08 4.68 2(0.1%)
0.04 43.35 5.28 3(0.1%)
0.06 38.54 5.94 4(0.2%)
0.08 33.64 6.68 4(0.2%)
0.1 30.04 7.50 4(0.2%)
0.12 25.77 8.36 5(0.2%)
0.14 22.59 9.37 7(0.3%)
0.16 19.79 10.51 8(0.4%)
0.18 17.36 11.70 9(0.4%)
0.2 15.19 12.94 10(0.5%)
0.22 12.89 14.28 12(0.6%)
0.24 11.05 15.81 14(0.7%)
0.26 9.29 17.42 18(0.9%)
0.28 7.57 19.13 20(1%)
0.3 6.44 20.91 21(1%)
0.33 4.69 23.80 31(1.5%)
0.35 3.85 25.88 36(1.7%)
0.38 2.76 29.20 45(2.2%)
0.4 2.26 31.47 53(2.6%)
0.43 1.67 34.98 73(3.5%)
0.45 1.51 37.45 88(4.3%)
0.48 1.21 41.09 111(5.4%)
0.5 1.13 43.55 126(6.1%)

(b) With reference cutoff.

Table 20: Complete version of Table 10.
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B Testing data from decision level fusion

B.1 Other PA tolerance levels

Different PA tolerance levels were tested for the different block lengths when testing the decision
level fusion. Below are the resulting performance ratings when using tolerance levels other than
those covered in Section 4.3.1.

DOWN ANGA ANIA #Imp. ND
0.1 8550 648 20(1%)
0.2 8550 628 20(1%)
0.4 8436 590 17(0.8%)
0.6 8325 535 13(0.6%)
0.7 8057 510 10(0.5%)
0.8 7976 481 10(0.5%)
1 7690 354 3(0.1%)
1.001 7543 345 3(0.1%)

(a) PA tolerance = 0.4, UP = 1.001. PA subsys-
tem’s ANGA was 22130 and ANIA was 730.

DOWN ANGA ANIA #Imp. ND
0.1 8460 611 18(0.9%)
0.2 8458 591 18(0.9%)
0.4 7932 543 14(0.7%)
0.6 7432 474 8(0.4%)
0.8 7009 392 5(0.2%)
1 4211 265 2(0.1%)
1.001 2936 256 2(0.1%)

(b) PA tolerance = 0.22, UP = 1.001. PA subsys-
tem’s ANGA was 3880 and ANIA was 583.

Table 21: Other PA tolerance levels with block size 500

DOWN ANGA ANIA #Imp. ND
0.2 8812 655 22(1.1%)
0.4 8293 606 18(0.9%)
0.6 7544 555 15(0.7%)
0.8 7263 486 13(0.6%)
1.001 6560 348 4(0.2%)

(a) PA tolerance = 0.5, UP = 0.4. PA subsystem’s
ANGA was 12634 and ANIA was 476.

DOWN ANGA ANIA #Imp. ND
0.1 8388 594 18(0.9%)
0.2 7963 548 15(0.7%)
0.4 6859 459 8(0.4%)
0.6 6385 369 5(0.2%)
0.8 4933 291 4(0.2%)
1 1152 173 1(0%)
1.001 872 167 1(0%)

(b) PA tolerance = 0.14, UP = 1.001. PA subsys-
tem’s ANGA was 993 and ANIA was 282.

Table 22: Other PA tolerance levels with block size 250
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DOWN ANGA ANIA #Imp. ND
0.1 9554 886 41(2%)
0.2 9128 782 33(1.6%)
0.4 7568 609 23(1.1%)
0.6 7174 447 13(0.6%)
0.8 5335 320 6(0.3%)
1 3030 197 1(0%)
1.001 2151 189 0(0%)

Table 23: PA tolerance level 0.4 with block size 100. PA subsystem’s ANGA was 1539 and ANIA was
173.
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C Testing data from score level fusion

Here, we show all results from testing the score level fusion. The results are categorized by block
sizes, and the following tables are extensions of the tables displayed in Section 4.4.1.

C.1 Block size 500

Table 24: Complete version of Table 15.

Width Toler. ANGA ANIA #Imp. ND
0.05 0.4 7936 449 9(0.4%)

0.5 8026 510 12(0.6%)
0.55 8097 539 13(0.6%)
0.6 8212 572 13(0.6%)
0.7 8550 631 18(0.9%)
0.8 8550 670 22(1.1%)

0.1 0 5424 285 3(0.1%)
0.1 6186 333 4(0.2%)
0.2 7446 394 7(0.3%)
0.3 7746 440 9(0.4%)
0.4 7996 494 11(0.5%)
0.5 8094 560 13(0.6%)
0.6 8497 611 15(0.7%)
0.7 8550 660 22(1.1%)
0.8 8550 678 22(1.1%)

0.15 0 6188 340 4(0.2%)
0.1 6805 385 5(0.2%)
0.2 7558 434 8(0.4%)
0.3 7949 478 10(0.5%)
0.4 8014 527 11(0.5%)
0.5 8087 590 15(0.7%)
0.6 8548 637 20(1%)
0.7 8550 667 22(1.1%)
0.8 8550 683 22(1.1%)

0.2 0 6376 380 5(0.2%)
0.1 6963 421 6(0.3%)
0.2 7665 468 10(0.5%)
0.3 7919 509 11(0.5%)
0.4 8067 550 11(0.5%)
0.5 8487 614 19(0.9%)

Continued on next page
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Table 24 – continued from previous page
Width Toler. ANGA ANIA #Imp. ND

0.6 8544 645 20(1%)
0.7 8550 670 22(1.1%)
0.8 8550 684 23(1.1%)

0.25 0 6667 419 6(0.3%)
0.1 7258 449 8(0.4%)
0.2 7355 496 11(0.5%)
0.3 7892 527 11(0.5%)
0.4 8352 575 14(0.7%)
0.5 8540 614 17(0.8%)
0.6 8544 652 20(1%)
0.7 8544 673 22(1.1%)
0.8 8554 682 23(1.1%)

0.3 0 6763 443 8(0.4%)
0.1 7178 472 9(0.4%)
0.2 7410 512 11(0.5%)
0.25 7943 529 11(0.5%)
0.265 8158 534 11(0.5%)
0.28 8160 540 11(0.5%)
0.3 8160 546 12(0.6%)
0.4 8447 583 16(0.8%)
0.5 8520 613 17(0.8%)
0.6 8544 655 21(1%)
0.7 8544 670 21(1%)
0.8 8548 682 23(1.1%)

0.35 0 7005 461 8(0.4%)
0.1 7279 498 10(0.5%)
0.2 7860 528 11(0.5%)
0.3 8214 558 14(0.7%)
0.4 8497 588 16(0.8%)
0.5 8520 618 17(0.8%)
0.6 8540 656 21(1%)
0.7 8544 672 22(1.1%)
0.8 8548 681 23(1.1%)

0.4 0 7268 482 9(0.4%)
0.1 7582 512 10(0.5%)
0.2 7882 544 13(0.6%)
0.3 8214 566 15(0.7%)
0.4 8429 596 16(0.8%)
0.5 8500 620 17(0.8%)
0.6 8520 655 21(1%)
0.7 8547 673 22(1.1%)
0.8 8547 681 23(1.1%)

0.45 0 7273 500 10(0.5%)
Continued on next page
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Table 24 – continued from previous page
Width Toler. ANGA ANIA #Imp. ND

0.1 7584 522 11(0.5%)
0.2 7914 552 14(0.7%)
0.3 8382 575 16(0.8%)
0.4 8428 597 16(0.8%)
0.5 8500 621 18(0.9%)
0.6 8520 646 19(0.9%)
0.7 8547 672 22(1.1%)
0.8 8547 680 23(1.1%)

0.65 0.3 8085 587 16(0.8%)
0.4 8399 609 17(0.8%)
0.5 8432 629 18(0.9%)
0.7 8504 654 20(1%)
0.9 8547 683 23(1.1%)

C.2 Block size 250

Table 25: Complete version of Table 16.

Width Toler. ANGA ANIA #Imp. ND
0.05 0.6 7973 568 14(0.7%)

0.7 8047 652 17(0.8%)
0.1 0 4040 212 2(0.1%)

0.2 6351 309 4(0.2%)
0.4 7195 458 10(0.5%)
0.5 7654 547 15(0.7%)
0.6 8042 635 17(0.8%)

0.3 0.4 7618 565 14(0.7%)
0.5 7912 629 19(0.9%)
0.6 8268 675 22(1.1%)

0.5 0.1 6864 472 10(0.5%)
0.2 7536 510 12(0.6%)
0.3 7633 544 13(0.6%)
0.35 7906 572 15(0.7%)
0.4 8693 601 19(0.9%)
0.45 8745 623 21(1%)
0.5 8892 642 22(1.1%)

0.7 0.2 7946 538 14(0.7%)
0.4 8402 605 19(0.9%)
0.5 8705 640 22(1.1%)
0.6 8851 672 24(1.2%)

Continued on next page
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Table 25 – continued from previous page
Width Toler. ANGA ANIA #Imp. ND
0.9 0.2 7978 558 15(0.7%)

0.3 8377 579 16(0.8%)
0.4 8392 604 17(0.8%)
0.5 8402 641 22(1.1%)

C.3 Block size 100

Table 26: Complete version of Table 17.

Width Toler. ANGA ANIA #Imp. ND
0.05 0 560 104 0(0%)

0.4 5160 299 4(0.2%)
0.6 6755 582 16(0.8%)
0.8 8043 935 35(1.7%)

0.15 0 2138 155 2(0.1%)
0.1 3458 194 2(0.1%)
0.2 5071 254 4(0.2%)
0.3 5854 350 10(0.5%)
0.4 6770 470 16(0.8%)
0.5 7290 625 23(1.1%)
0.6 8010 771 30(1.4%)

0.25 0.4 6990 576 22(1.1%)
0.6 8323 830 31(1.5%)

0.3 0.5 7927 715 29(1.4%)
0.7 8607 976 43(2.1%)

0.5 0.4 7866 649 25(1.2%)
0.5 8212 741 30(1.4%)

0.7 0.4 8015 652 23(1.1%)
0.9 0.4 8063 656 21(1%)
1.2 0.4 7981 656 22(1.1%)
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