
Resilient Filesystem

Henry Georges

Information Security

Supervisor: Stefan Axelsson, IIK
Co-supervisor: Rune Nordvik, Politihøgskolen

Department of Information Security and Communication Technology

Submission date: May 2018

Norwegian University of Science and Technology

ReFS

Henry Georges

22-05-2018

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Computer Science and Media Technology
Norwegian University of Science and Technology, 2018

Supervisor 1: Professor Stefan Axelsson, NTNU
Supervisor 2: Assistant Professor Rune Nordvik, PHS

ReFS

Acknowledgement

I would like to thank my supervisor, Assistant Professor Rune Nordvik, for his
patience and engagement.

H.G.

i

ReFS

Abstract

MICROSOFT developed a new file system, REFS. This Resilient FileSystem is in-
tended to replace NTFS, hence the importance and usage of REFS should in-
crease over the next few years. Although we have been able to use REFS since
the presence of WINDOWS SERVER 2012 and WINDOWS 8, there is almost no
documentation on this file system available, especially not from MICROSOFT.

The aim of this master thesis is: to examine the structure of REFS; to enhance the
knowledge about this file system and how it works; to examine how MICROSOFT
designed the file system to improve data-integrity.

Because of the missing documentation and the lack of support of REFS by the
main forensic tools, reverse engineering was the method of choice and utilized
for the examination of prepared REFS partitions.

The results of this master thesis will help other forensicators to verify the results
provided by other, usually commercial, tools, or, in the case that the tools do not
provide the needed functions, to do these jobs manually.

This master thesis will describe the experimental setup and the way of reverse
engineering. Furthermore it will provide the results in a detailed way, supple-
mented by tables for a quick access to the results. To round of the master thesis,
it will also provide a self coded python tool, which can be used for analyzing a
REFS a partition, at least with REFS version number v1.2. This code was used
within the analysis as a proof of concept for the results.

Thereby my python tool, described in pull-outs within this master thesis, is the
only open source tool, which is able to handle REFS. Because of comparing my
results with the output of ENCASE, the only commercial tool I found, which was
able to handle REFS, I was able to find faulty outputs from ENCASE, what is also
a proof, that this work is necessary.

ii

ReFS

Contents

Acknowledgement . i
Abstract . ii
Contents . iii
List of Figures . v
List of Tables . vii
Listings . viii
1 Introduction . 1

1.1 Target Group . 2
1.2 The Significance of Open Source Knowledge in Forensics 2
1.3 ReFS - Reverse Engineering of a File System 3
1.4 Overall Problem . 7
1.5 Research Questions . 9
1.6 Limitations . 12
1.7 Master Thesis Outline . 14

2 Background . 16
2.1 Literature Research . 16

2.1.1 Building the next generation file system for Windows: ReFS 16
2.1.2 The Microsoft ReFS On-Disk Layout 18
2.1.3 Verifying the properties of ReFS 18
2.1.4 Open Source Digital Forensic Tools 20
2.1.5 Specialization Project . 23

2.2 File System . 24
2.3 B-Tree . 25
2.4 Encase . 27
2.5 File System Recognition Structure 27
2.6 Reverse Engineering . 28

3 Methodology . 29
3.1 Research Design . 29
3.2 Testing Environment . 30
3.3 Proof of Concept . 31

4 Results . 33
4.1 VBR . 33
4.2 $Tree_Control and System Files 34

4.2.1 Objects . 35
4.2.2 Allocation . 36
4.2.3 Attributes . 41

iii

ReFS

4.3 EntryBlock . 41
4.3.1 Starting Area . 41
4.3.2 Record Area . 44

5 Discussion . 47
6 Conclusions . 50

6.1 Research Questions . 50
6.2 Future Work . 52

Bibliography . 54
A Appendix . 58

A.1 Preparation . 58
A.1.1 HDD . 58
A.1.2 Preparation Machine . 58
A.1.3 Examination Machine . 59
A.1.4 Other Hardware / Software 59

A.2 Detailed Results . 60
A.2.1 VBR . 60
A.2.2 $Tree_Control . 61
A.2.3 Second Node . 63
A.2.4 FNA . 66
A.2.5 $Recycle.bin . 74

A.3 Coding . 79
A.3.1 Basics . 79
A.3.2 Vbr . 80
A.3.3 Tree-Control . 82
A.3.4 Analysis of the extracted information 90

A.4 Templates . 94
A.4.1 VBR . 94
A.4.2 $Tree_Control . 94
A.4.3 $Object_Tree . 95
A.4.4 $Allocator_Lrg, $Allocator_Med, $Allocator_Sml 96
A.4.5 $Object . 96
A.4.6 EntryBlock . 97
A.4.7 Directory Metadata Record (0x10000000) 98
A.4.8 FileNameAttribute File (0x30000100) 98
A.4.9 FileNameAttribute Folder (0x30000200) 99
A.4.10 MetaDataAttribute . 99
A.4.11 DataRunAttribute . 100
A.4.12 Child Attribute (0x20000080) 101

iv

ReFS

List of Figures

1 Structure of the Master Thesis . 15
2 Graphic construction of REFS . 16
3 Graphic abstraction of B-TREE-structure 17
4 Schematic representation of a B-TREE[1] 25
5 Hex-dump from a VBR . 33
6 Schematic layout of a REFS partition 34
7 $TREE_CONTROL . 34
8 Dump from record area of the $OBJECT_TREE 35
9 Dump from the record area of the $OBJECT 36
10 Dump from the record area of the $ALLOCATOR_LRG 36
11 How does allocation work . 39
12 Interaction between the $ALLOCATOR files 41
13 Starting of an ENTRYBLOCK . 42
14 Visualization for the usage of extents 43
15 Record Area of an ENTRYBLOCK 44
16 Timestamps . 45
17 Flags-scheme, no flags . 46
18 Flags-scheme, hidden flag . 46
19 Flags-scheme, ead only flag . 46
20 Flags-scheme, archive flag . 46
21 VBR . 60
22 $TREE_CONTROL . 61
23 ENTRYBLOCK 0x19E, second node 63
24 ENTRYBLOCK 0x19D, second node 63
25 ENTRYBLOCK 0x19C, second node 64
26 FNA of sys.info . 64
27 Output from the $fsuti l . 65
28 ENTRYBLOCK-DESCRIPTOR 0x19C 65
29 ENTRYBLOCK-DESCRIPTOR 0x19D 65
30 ENTRYBLOCK-DESCRIPTOR 0x19E 66
31 ENTRYBLOCK-DESCRIPTOR 0x19F 66
32 FILENAME-attribute HUGE-FILE, part 1 66
33 FILENAME-attribute,HUGE-FILE, part 2 68
34 FILENAME-attribute HUGE-FILE, part 3 70
35 FileNameAttribute - Folder, screenshot ENCASE 74
36 FileNameAttribute - Folder, dump from ENTRYBLOCK 0x190 . . . 74

v

ReFS

37 NODE 0X703, deleted file . 75
38 $RECYCLE.BIN, records 4 and 5 76
39 $RECYCLE.BIN, Record 5, DATARUN-ATTRIBUTE 76
40 $RECYCLE.BIN, filename of deleted file 77
41 $RECYCLE.BIN, record 7 . 77
42 $RECYCLE.BIN, record 6 . 78
43 $RECYCLE.BIN, record 6 DATARUN-ATTRIBUTE 78
44 $RECYCLE.BIN, original records of deleted file 78
45 Screenshot from the Main Menu of my tool 80
46 Screenshot from the Fsstat of my tool 90
47 Screenshot from the visualized directory structure 91
48 Screenshot from the list of current files 91
49 Screenshot from file details . 92
50 Screenshot from the $RECYCLE.BIN 92
51 Screenshot from file details (deleted files) 93

vi

ReFS

List of Tables

1 REFS capacitive parameters [2] 20
2 Breakdown of the $ALLOCATOR_LRG 37
3 Flags . 46
4 VBR . 60
5 Breakdown 2nd extent $TREE_CONTROL 62
6 Breakdown of the ENTRYBLOCK-Descriptor 66
7 Breakdown for FILENAME-attribute 67
8 Breakdown for METADATA-attribute 68
9 Breakdown of DATA-RUN- of the FNA 71
10 APPENDIX: VBR . 94
11 APPENDIX: $TREE_CONTROL - breakdown 94
12 APPENDIX: $OBJECT_TREE . 95
13 APPENDIX: $ALLOCATOR-Files . 96
14 APPENDIX: $OBJECT . 96
15 APPENDIX: ENTRYBLOCK-Descriptor & Header 97
16 APPENDIX: DIRECTORY METADATA RECORD 98
17 APPENDIX: FILENAMEATTRIBUTE -File 98
18 APPENDIX: FILENAMEATTRIBUTE -Folder 99
19 APPENDIX: METADATAATTRIBUTE 99
20 APPENDIX: DATARUNATTRIBUTE 100
21 APPENDIX: CHILD ATTRIBUTE . 101

vii

ReFS

Listings

A.1 Imported modules . 79
A.2 Function for analyzing the VBR 80
A.3 Function for analyzing the $TREE_CONTROL 82
A.4 Function for analyzing the basic information of an ENTRYBLOCK . 82
A.5 Function for analyzing the NODE DESCRIPTOR 83
A.6 Function for analyzing the NODE HEADER 83
A.7 Function for parsing the $TREE_CONTROL 83
A.8 Function for analyzing the node 0x500 84
A.9 Function for analyzing the directory metadata, part 1 85
A.10 Function for analyzing the directory metadata, part 2 85
A.11 Function for analyzing the FNA, part 1 86
A.12 Function for analyzing the FNA, part 2 86
A.13 Function for analyzing the $Allocator-Files 87
A.14 Function for adding unallocated bytes 88
A.15 Function for bitwise operation on every byte 88
A.16 Function for parsing the $Object 89

viii

ReFS

1 Introduction

At the time of writing this thesis, nearly everyone in the industrialized world
owns at least one electronic device such as a personal computer, laptop or smart-
phone [3] [4]. These devices run one of the three major operating-system plat-
forms: MICROSOFT, MACOS, LINUX. Each system has to be divided into a variety
of versions, including the mobile derivates of the operating systems [5].

For forensic purposes there is a need to be familiar with these operating systems,
at least with the most commonly used, to be able to examine the seized devices
/ data in a forensically sound manner. On the one hand, this examination should
include finding electronic evidence in the used space of the file system, the al-
located area. On the other hand it should find deleted and manipulated files,
restore the original data, verify which users have touched the file, and when the
file was touched.

Even if this does not sound as difficult when using forensic software like X-WAYS,
ENCASE, FTK etc, if you have to prove the findings of the named tools, you will
need to have more than a basic knowledge of the file systems you will examine.
This knowledge becomes more important in the case of a file system, which does
not belong to the mainly used file systems and which is not fully supported by
the forensic tools. In this previously named case, there is only a few open source
knowledge available, results and findings can not be cross checked using other
tools.

Concluding from the facts written before, proving the results of the forensic tools
become more difficult, the less the documentation of the file system and its han-
dling by the forensic tool is available.

Undisputedly, MICROSOFT is the most used operating system on personal com-
puters and laptops and there are also derivates with identical file systems for
mobile devices like the SURFACE-Tablets [5]. NTFS has been in use since 1992
and since WINXP it is the standard file system for MICROSOFTs operating sys-
tems, and therefore NTFS should be the most used file system, but it is becoming
more and more outdated [5] . Newer file systems with enhanced journaling and
data integrity are called for [6].

REFS is intended to be MICROSOFTs new file system: useable and ready for the
next decade [7] . The target group should not only be the private user. Profes-
sional users and server-systems like "StorageSpaces" [8] are also targeted [8].
Hence, for forensic purposes it is essential to become familiar with this new file

1

ReFS

system. This is challenging because of a lack of documentation on REFS, due
to the fact, that REFS is still in a testing period. Nevertheless, using WINDOWS-
SERVER 2012 or WIN 8 / 10 you can already format drives with REFS. Using
REFS as bootable partitions is not possible at this time [9] [7] [10] [11].

1.1 Target Group

This master thesis will provide detailed information about the file system layout
of REFS. These information presuppose a basic understanding of file systems
and some crafts in reading hexdumps. It is addressed to experts in computer sci-
ences and engineering, as well as forensic examiners. Because of my professional
background this master thesis is also supposed to support law enforcement au-
thorities investigating crimes.

1.2 The Significance of Open Source Knowledge in Forensics

REFS is intended to be MICROSOFTs new file system. At the time of writing this
master thesis, Network Attached Storages (NAS) running MICROSOFT SERVER are
purchasable. If this NAS is seized from a law enforcement authority, for example
because of a search warrant for child abuse material, this device, in a first step,
has to be acquired. If this acquisition is done on a physical layer, all bytes from
the NAS are copied, the data of the copy should be identical to the original data.
But what is the benefit, if the NAS uses a proprietary or unknown file system, so
that the analyzing software can not interpret the data, or interpret the data in a
wrong way, simulating to the analyzing officer, that there are no relevant data?

Even if there is a trustworthy forensic software, is it trustworthy on all aspects of
forensic work?

A common technique used to verify that a tool is not introducing data is to validate
the results with a second tool.[12]

There is a reason for the principle of DUAL TOOL VERIFICATION in computer
forensics, because there is no software able to handle everything in the forensics
everyday life in a perfect manner. But how can you know, which tool is working
sufficient, without knowing how to do the work manually? Of course, informa-
tion technology (hardware and software) is intended to make the work easier
and more efficient, but can we relinquish the knowledge doing the work manu-
ally?

The long-term solution is to have a comprehensive test methodology to decrease the
total number of flaws so that the chances of a malicious person exploiting them are
decreased. Having access to a tool’s source code will improve the quality of the test-
ing process because bugs can be identified through a code review and by designing
tests based on the design and flow of the software. Experienced and unbiased experts

2

ReFS

should conduct these tests and all details should be published. [12]

At the end, the analyzing officers (no matter if they are educated in computer
forensics or not) have to present the results to the court, and if needed, have to
explain, how they gained these results. It seems obvious, that only referring to
the output of a software is an insufficient way.

The problem appearing at this point is, that commercial software does not ex-
plain its way of processing the data, because that belongs to the business secrets
of the developer. The other possibility might be studying the documentation of
the file system’s developer team. But in case of REFS, MICROSOFT has not pub-
lished all documentation.

At a minimum, closed source tools should publish design specifications so that third
parties, such as National Institute of Standards and Technology (NIST) Computer
Forensic Tool Testing (CFTT), can more effectively test the tool’s procedures.[12]

The last theoretical possibility for the forensicator is doing a reverse engineering
of the file system on his own. Understandably, that is not always practicable, con-
sidering the time approach of some hundred hours. And, at the end, the findings
might not be validated, hence they will be assailable.

According to this, everyone is invited to check my results, and, in the best case,
validate them and provide these results as open source knowledge. This will eas-
ier the work of all forensicators, because there will grow a referable knowledge
base and the results of each become reliable.

1.3 ReFS - Reverse Engineering of a File System

Because of missing documentation and open source knowledge regarding REFS,
I decided to reverse engineer (see section 2.6) MICROSOFTs new file system (see
section 2.2). The only fact I knew, when starting this research, was that REFS
uses B-TREEs (see section 2.3). I found some help using ENCASE, because ENCASE
named some structures of the file system. Because ENCASE does not document
how it gains its results I decided to start from the scratch, not considering the
findings from ENCASE.

A first step, analyzing a file system should always be looking at the Volume Boot
Record (VBR). This was already a part of my specialization project [13], and, as
I have described in the cited work, there was some basic work done on the VBR
by Andrew Head [10].

The next step was to find repeating structures. Hence I started searching for 64
kiB structures, because this was the cluster size found in the VBR (see figure 21),
also provided by the $fsutil - command in the WINDOWS command line. So I have

3

ReFS

evaluated a few hundred 64 kiB Clusters to find and to understand the structure.
In this context evaluating means, that I compared the structures I have found,
trying to interpret the values as offsets, following these offsets, where they lead
me. At this very starting point of reverse engineering, the process might be de-
scribed as a search for traces on binary (and / or hexadecimal) level, the method
of choice, at least for me, was try and error.

The first structure I have found, which I have already described in my special-
ization project [13], was the ENTRYBLOCK. At this point another problem raised:
the structure of the ENTRYBLOCK with 16 kiB deviates from the cluster size, pro-
vided by the VBR and $fsutil.

The next step was looking for the root node, because this should be the first
structure in a B-TREE, which has to be analyzed, because that is the the starting
point, containing information to the whole structure of the B-TREE. I found such
a structure and compared it with the system files, provided by ENCASE, here the
root node was named $TREE_CONTROL, but I could not find an explanation, why
it was named this way.

The $TREE_CONTROL contains the cluster offsets to several other system files,
some handling information to the objects, other containing information to allo-
cation and to attributes. I compared the system files I had found following the
cluster offsets with the system files provided by ENCASE. And again, because of
the missing documentation from ENCASE, the naming from these system files
was not explained.

A practice I used during the whole examination process was searching the differ-
ent structures also in other partitions formatted with REFS and comparing them.
This was especially useful while analyzing the system files. This way I was able
to assign the directories to the system file $OBJECT and the directory structure
to the system file $OBJECT_TREE. Another finding based on this method was the
handling of extents by REFS, which I would not have been confronted with, if I
have used only my first research setup, containing two files.

Analyzing the way of allocation, I compared REFS with other file systems, like
EXFAT and NTFS. I determined three different allocation structures, that coin-
cides with a statement from MICROSOFTs development team [7] (three alloca-
tion structures deviating in the granularity of mapped areas are used) and the
allocation files found in ENCASE.

The last system file, named $ATTRIBUTES by ENCASE, I tried to assign some find-
ings to, by changing some of the flags using the WINDOWS context menu. While I
changed the flags for "read-only", "hidden" and "archive", the content of the $AT-
TRIBUTES remains unchanged, the meaning of this special file has to be revealed
in a further work.

4

ReFS

Finally I could locate the changes, based on the previously mentioned manipula-
tions of the flags, in the metadata within the FILENAMEATTRIBUTE, a well-known
structure from NTFS. Besides the flags I could also determine the timestamps
("created", "modified", "metadata modified" and "last access"), the data-runs and
other interesting structures within this attribute.

Being successful finding the FILENAMEATTRIBUTE I tried to discover also other at-
tributes, known from NTFS (like STANDARD INFORMATION ATTRIBUTE, ATTRIBUTE
LIST, VOLUME INFORMATION etc), but this was not as successful as expected.

To analyze, how REFS handle data, which is a main function of a file system,
I used partitions with a different amount of files copied to. That becomes more
relevant, as I made some efforts to the ENTRYBLOCK and asking myself, how the
file system handles directories with a big amount of files copied to it. This ques-
tion was triggered as I discovered, that a record for a file in an ENTRYBLOCK
has an average size of approximately 1000 bytes. Remembering the size of an
ENTRYBLOCK (16 kiB), the capacity of an ENTRYBLOCK is limited. So I prepared
a partition with nearly 30 pictures and analyzed it. The result was discovering
the extents. The ENTRYBLOCK is filled up with file records, if it is filled, the file
records are copied to another ENTRYBLOCK. The latter gets related in the orig-
inal ENTRYBLOCK by creating a record, containing the ENTRYBLOCK number of
the newly created extent.

Another object, forensicators are always interested in, is the $RECYCLE.BIN. The
$RECYCLE.BIN is named here as a synonym for the handling of files and data,
marked as deleted by the file system. Accordingly I prepared a partition with
some deleted files in it. In the root directory I found a record for the $RECY-
CLE.BIN, and in a subdirectory of the user, who was deleting these files, I dis-
covered the records for the deleted files. These records get named different to
the original files, some records started with a "$I" and some records started with
a "$R" (one CHILDATTRIBUTE and one FILENAMEATTRIBUTE per type). Similar
files, named "$I" and "$R" could be observed by the NTFS file system. REFS uses
the different types of files for different purposes. The "$I" file provides the meta-
data for the created file-record within the $Recycle.bin. It also contains a data-
run; this data-run contains the original filename and parent folder. The original
record in the parents node was, in the case of my examined device, still existent,
but the pointer to the record had been deleted. The $R record seems to be a copy
of the original records, hence this record contains the offset to the data-run.

An important step while reverse engineering is cross checking the results. A first
cross checking was done, while I compared the results won on one testing parti-
tion against the results, won on another partition. This checking was done man-
ually, and, in my eyes, this checking might always be influenced by the examiner.
Hence the decision for an automated analysis was made. I coded a python tool,

5

ReFS

containing all the findings to REFS. This tool was used to analyze several par-
titions, comparing the results with the predetermined circumstances of creating
these partitions.

Even if this is mentioned several times within this master thesis, it is mentioned
again at this point. A reverse engineering depends on the knowledge and the
skills of the examiner. It is also limited in its reliability, because there is a vast
amount of theoretical possibilities for interpreting the found data in another way.
I tried to reduce this amount of theoretical possibilities while checking my find-
ings on several partitions, created only for this certain purpose. However, I am
conscious about, that the results of my research have to been proven by others
to gain reliability.

6

ReFS

1.4 Overall Problem

The overall problem I was confronted with within my research is named and
described several times in this master thesis, at this very special point it is named
again, detailed and explained.

• Documentation : Even if some of the features are explained and com-
mented by MICROSOFT’s tech team and / or development team, this is not
sufficient for forensic issues. The functionality of the file system is not ex-
plained. It is not comprehensible, how files and data are treated by the file
system while storing, accessing or deleting them. REFS is like a black box,
there is an input of data, and there is an output of data, but what happens
in the meantime? Are there metadata stored to the data, providing useful
information for forensic issues? Are these information as reliable, a court
can sentence an accused person only based on these information?

• Support : While doing my research, I tried to analyze the prepared devices
with several tools, commercial and non-commercial ones. In the absence
of a license of FTK, I opened a REFS - image in FTK-Imager. The hypoth-
esis here was, if FTK-Imager is able to parse a REFS -image, FTK could
be utilized also. I downloaded the latest version of FTK-Imager (version
4.2.0) and mounted a REFS image. Even if FTK-Imager does not provided
an error message, it was not able to parse the image, no information to
the contained data were provided. In order to be able to exclude that FTK
can handle a REFS -image, I contacted the support team of FTK, asking for
a test license or the needed information. Until writing this master thesis,
neither the license nor the requested information were provided by Ac-
cessData, the manufacturer of FTK. Reading the user guide for the actual
version FTK 6.1 [14], REFS will be found as a supported file system.

X-WAYS does not support REFS, and, as I was told by an employee of X-
WAYS, it is not intended, that X-WAYS will support REFS in the near future.

In contrast to the both tools tool named before, ENCASE does support REFS,
this tool is able to find the system files and ENCASE has an own nomencla-
ture for these files.

Beside the named commercial tools, there are some non-commercial tools,
first to be named the SLEUTHKIT with its graphical user interface AUTOPSY.
The REFS images could not be interpreted by SLEUTHKIT. I also tried other
non-commercial tools, like hex editors, for example IBORED. Of course,
these tools were able to display the hex code, but the included templates
were not applicable to REFS.

7

ReFS

• Verification : It is obvious, that, with the given requirements of missing
documentation and missing support, the results achieved by me during this
research can not be verified easily. For a first verification I used ENCASE, in
consciousness, that I already discovered weaknesses of the tool in handling
REFS. In a second step I have analyzed the hex code and have compared
the findings from different images. As the last step for verification in the
scope of my master thesis I have utilized a self-coded tool. This tool was
designed as a proof of concept, to test, if my findings led me to the right
conclusions. Furthermore, this tool is an easy way to share my results with
the open source community.

Beside the named problems, I was also confronted with several other problems.
Vicariously for the several problems I will name, that I found no literature deal-
ing with the procedure of reverse engineering a complete file system. So I had to
find my own way by testing different methodical approaches, like experiment-
ing, excluding and of course the scientific approach, defining hypothesis, testing,
refusing or strenghten them.

Last but not least, there is a common problem in forensics. Publishing open
source, sensitive or private data might be leaked. One solution might be publish-
ing only technical information, which only can be avoided, while reconstructing
the original electronic traces and substitute the sensitive information by artificial
ones. Though this might result in a unrealistic research environment.

Certainly the artificial conditions can be utilized as an advantage: the research
environment can be adapted to special research questions. Explained in a dif-
ferent way, I have created different testing environments the same way I have
splitted the research questions. This way several research results could be dis-
covered more easily, or explaining it by using a well known metaphor: I reduced
the haystack to find my needles.

But the results have to be evaluated considering the artificial nature of the re-
search environment and, in a last step, have to be proven on realistic cases. These
differences between the artificial and the realistic research environment are also
made as a central theme while assessing the reliability of a forensic tool [12].
Summarized, the named work problematizes an almost infinite number of neces-
sary tests with artificial testing environments to prove the reliability of a forensic
tool for covering all possible constellations of a realistic case.

8

ReFS

1.5 Research Questions

Before doing a file system reverse engineering, several questions have to be an-
swered, especially to the target direction. Although it is possible to use reverse
engineering for a single forensic investigation, answering only a limited amount
of questions, this will lead to at least three problems.

First is the cost vs. usage calculation. Assuming, that answering only some spe-
cific questions might require approximately two hundred or three hundred hours,
a single forensic investigator is busy for months. The second reason is, that no
one is able to evaluate or to understand, how reliable the results are, won in such
a procedure. The third reason is, that the results are not useable for another in-
vestigation with a different initial situation.

Generalized formulation of the questions will exhaust significant more time, but
the results might be used several times. So the cost vs. usage calculation will be
pushed to growing efficiency, even a second usage of the results might result in
a positive cost vs. usage calculation.

Generalized results are suitable for presenting them to a larger public, the results
might be proven by others and might become reliable.

Hence the target direction of my master thesis was obvious to me. The research
has to answer general questions, providing a basis for further research of other
researchers and the daily work of forensic examiners.

Finding adequate and generalized questions, two main topics have to be consid-
ered, the technical and the legal part. Topics of the legal part might question, if
a single research is reliable enough to withstand in a legal process at court, or
if there are other possible interpretations of the facts found within this research.
Topics for the technical part might question, if it is possible to extract data from a
REFS partition and if the results are exactly enough to use them in an automated
process.

Both topics are worth having a complete research on their own, but this will be
beyond the scope of one single master thesis. On the other hand side there is a
possibility to combine both topics in a single research, which led me to a ques-
tion:

Is it possible to verify the results from the commercial tools,
which support REFS?

During my research it became obvious, that this question could be specified,
hence, as I described in the OVERALL PROBLEM (see 1.4), only one of the major
commercial tools supports REFS. At the end, the main research question for me

9

ReFS

was:

Main Question:) Is it possible to verify the results for a REFS -image,
provided by ENCASE?

In my eyes, this questions the technical topic as well as the legal one. The tech-
nical topic will be a prerequisite for answering the legal one. If the results of my
research are congruent to the results provided by ENCASE, this will be an indica-
tor for the reliability of my results, and the results provided by ENCASE.

While my research follows a practical approach, due to the reverse engineering,
my first aim was to get behind the structures of REFS. According to this, the first
research question was:

Q1:) Does REFS has a VBR like other file systems, eg. NTFS and EXFAT?

The VBR might be a place, where an offset to the root node can be provided.
Hence two possible conceivable hypothesis’ related to the question Q1 are:

The VBR provides the offset to the main structure of the file system.
or

The main structure has a fixed position within the file system.

Following the practical approach of my research, the next research question
should be related to main structure, the root node:

Q2.) Which kind of information does the root node contain?

Thinkable hypothesis’ for the research question Q2 are:

The root node contains offsets to nodes,
matching the system files provided by ENCASE.

and
All the system files provided by ENCASE have their own child node.

The next structure, needed to be analyzed, is the ENTRYBLOCK. The structure
itself was already found and described in a previous work [13], but in this master
thesis I planned a deeper analysis of the data within the ENTRYBLOCK.

Q3.) Which kind of information are stored in the ENTRYBLOCK?
How are the information organized within a single ENTRYBLOCK?

For this research question I prepared the following hypothesis’:

The structures within the ENTRYBLOCK are comparable to the attributes,

10

ReFS

known from NTFS.
and

Files and folders have the same records, they are treated the same way.

Parallel to answering the research questions above, I coded a tool. The main
question here was:

Q4.) Does the self coded tool prove the findings?
Are the results only by accident or does the tool
provide results repetitive, on different partitions

with different content?

My results are presented in this master thesis, an additional report is provided
in the appendix. This should enable other forensic investigators to prove my re-
sults, which make them reliable.

11

ReFS

1.6 Limitations

In my eyes, there exist different types of limitations. Some of them will be ex-
plained in the following:

personal limitations: My masters thesis is the work of only one student. This
will cause some limitations in the scope of the research. First of all, the time
used for the research is limited to 900 hours. Even if I was well supported by my
first supervisor Assistant Professor Rune Nordvik, himself very used to file system
analysis and hex dump evaluations, I had a limited view on reverse engineering,
but I never missed the focus on using the results as a forensic investigator. Other
assumable focuses might be e.g. data integrity and encryption of data, these top-
ics were neglected by this master thesis.

This forensic focus is also manifested in my python tool, this tool can be used for
extracting files from a REFS partition, including the path and the related times-
tamps; different versions of the same file or retracting information to encryption
of a file were not considered.

In the same manner I was limited in focussing, I was also limited in my solutions.
I had to compare the results found in the research with my knowledge gained
within this master program. I have used my knowledge about attributes from
NTFS, about B-TREES from HFS+ and the basic skills to analyze a file system.
But doing this research as a part of a bigger team, other file systems might also
have be compared with, e.g EXT4 or BTRFS.

technical limitations: Even if I tried to prove my results several times, these
proofs were done with nearly equal initial situations. I used only four different
partitions, created on the same hard disk, using the same machine. So I have
to ask myself, if there might be different results starting at different initial sit-
uations, e.g. different setups of the creating machine, different types of devices
containing the partitions (HDD, SSD).

theoretical limitations: A main topic in this master thesis is the missing docu-
mentation from MICROSOFT. No matters, how much research is done on REFS,
there will always be a high probability, that there are undiscovered features and
properties hidden in the code.This lack of transparency will start with the source
code and is continued in the version management, while new functions are only
mentioned superficially, if they are mentioned at all.

Without wanting to anticipate, the latter can be underlined with an example,
occurred during my research. A modified setup of the preparation machine was
pushing me into some trouble. It took me several hours to recognize that my
preparation machine installed a WINDOWS system update, also modifying the
drivers for REFS. This resulted in a REFS version upgrade from version 1.2 to
3.2, which made my tool failing in analyzing REFS partitions. This upgrade was

12

ReFS

not documented, neither were the differences in the functions and properties of
REFS.

A conclusion from the incident described before and all the limitations named in
this section is, that my research is limited on the file system version 1.2, other
versions has to be reverse engineered as well to generalize the results of my re-
search. Also my results might be evaluated from the point of view, that these
results were drawn from the basis of my knowledge and my way approximating
a problem.

13

ReFS

1.7 Master Thesis Outline

• Chapter 1: The introduction provides general information to this mas-
ter thesis, my intention of reverse engineering a file system, the problems
which have occurred and the limitations I was confronted with.

• Chapter 2: Some background information, necessary to understand the
master thesis, are provided. I have implemented a literature research, col-
lecting the knowledge from external sources to different topics treated in
this master thesis. The terminology of file system, B-TREE and reverse en-
gineering is explained.

• Chapter 3: The research design is introduced and the research setup is
described. I have also explained my proof of concept.

• Chapter 4: The results are presented in a textual way, accompanied by
some visualizations. I have relinquished to provide breakdown templates at
this point for reasons of clarity. The templates are provided in the appendix
instead, together with detailed results. This chapter should create a general
understanding for the findings.

• Chapter 5: Different results are discussed in this chapter. Have the expec-
tations, resulting from the research questions, been fulfilled?

• Chapter 6: In this chapter the results are compared against the research
questions and necessary conclusions are drawn. As one part of this chapter
some future work, which seems to be recommended, is described.

• Appendix :

◦ Technical and detailed setup is described.
◦ Detailed results for the following findings are provided.

· VBR
· $TREE_CONTROL
· ENTRYBLOCK
· FNA
· SecondNode
· $RECYCLE.BIN

◦ The most important and most complete templates for a file system
analysis of a REFS partition are provided.

14

ReFS

Figure 1: Structure of the Master Thesis

15

ReFS

2 Background

2.1 Literature Research

Preparing this master thesis I did some further literature research, utilizing the
resources of the world wide web. Below I listed some findings concerning the
system files and the structures of REFS.

2.1.1 Building the next generation file system for Windows: ReFS [7]

Structure of ReFS
Steven Sinofsky, the previous head of MICROSOFTs development department
published an article in 2012 dealing with some information relating to the struc-
ture of REFS. He claimed, that they had not invented REFS from scratch but
had built it on parts selected from NTFS. For example they reused the code for
implementing WINDOWS file systems semantics, which: implements the file sys-
tem interface (read, write, open, close, change notification, etc.); maintains in-
memory file and volume state; enforces security and maintains memory caching
and synchronization for file data. The intention behind this was to make REFS
highly compatible with NTFS. MICROSOFTs development department invented a
newly architected engine that implements on-disk structures, such as the Mas-
ter File Table (MFT: ongoing data stream of 1024 byte records, containing the
information to a file or record, 2.2), to represent files and directories. [7] In his
article Sinofsky visualized the structure with the graphic shown below:

Figure 2: schematic visualization of the the components used in REFS [7]

Usage of B-Trees
To realize reliability and scalability they (development team of MICROSOFT) used
B-TREES exclusively. Sinofsky claimed, that they used B-TREES as the single com-
mon on-disk structure to represent all information on the disk. Because the trees

16

ReFS

on the disk can be extremely large and multi-level, the file system ensures ex-
treme scalability. The advantage of using only B-TREES is, as he claimed in his
article, that code is reduced [7]. The information is stored in enumerable key-
value sets in tables; most of the tables have unique id’s, called object-id, for
reference. These tables are indexed in a special object table. Below is a graphic,
showing how the file system abstractions are constructed using B-TREES; the
graphic is provided in the article itself.

Figure 3: abstract visualization of the B-TREE-structure of the file system

As it is shown in the diagram above, directories are represented as tables, us-
ing B-TREE directories that are efficiently scalable. Files are also implemented as
tables, embedded within a row of the parent directory; itself a table. This is visu-
alized as File-Metadata in the graphic above. The row within the File-Metadata
table represents the various file attributes. The file data extent locations are rep-
resented by an embedded stream table, which is a table of offset mappings.
Other global structures within the file system, such as ACLs (Access Control
Lists), are represented as tables rooted within the object table.

Disk Allocation
All disk space allocation is managed by a hierarchical allocator, which represents
free space by tables of free space ranges. For scalability, there are three such
tables - the large, medium and small allocators. These differ in the granularity
of space they manage: for example, a medium allocator manages medium-sized
chunks allocated from the large allocator.

17

ReFS

Checksums & Integrity Streams
To realize the goal of detecting and correcting data corruption, all REFS meta-
data are checksummed at the level of B-tree page; the checksums are stored
independently from the page itself.
Additionally, an option was implemented to also checksum the file content, called
"integrity stream". When it is enabled, REFS writes the file changes to a location
different from the original one. The checksum write is automatically done with
the data write ("allocate on write" - technique). The checksums mentioned above
are 64-bit checksums.

2.1.2 The Microsoft ReFS On-Disk Layout [11]

On his website, Ballenthin, a reverse engineer, blogged some findings to REFS.
Besides some basic knowledge about GPT and some findings, already stated and
explained in my previous work, [13] he gives some findings about the structure
of REFS.

VBR
Ballenthin’s findings relating to the Volume Boot Record, VBR, are rudimentary
and outdated, according to my findings, as explained in my previous work.

File System Metadata
In his blog, Ballenthin confirms my previous findings, that metadata are found
spread over the whole partition on the volume. These metadata-blocks were
called ENTRYBLOCKs in my previous work [13]. He also confirms the size of
these blocks with 0x4000 bytes, dec 16384, which differs from details given by
MICROSOFT[15] itself or by Head[10].

FileContents
Ballenthin gives a small amount of information about REFS’ handling of small
files. He stated that small files are not stored resident within the metadata block,
as is the case in NTFS. This was proven in my previous work, using a small
file (105 bytes). Ballenthin further stated, that small files might be stored at
offset mod 0x10000, dec 65536. The last value is the corresponding value to
64 KiB, which is the total amount of bytes per cluster claimed by MICROSOFT.
If this finding were to be proven, the forensic investigator possibly has to make
differences in offset-calculation for meta-data and file content.

2.1.3 Verifying properties of ReFS [2]

This work is intended to verify the announced properties of REFS. In the in-
troduction it is claimed that REFS is based on the most used file system, NTFS.
REFS adapted a large, simplified part of NTFS; some lesser used functions were

18

ReFS

eliminated. Although it is only available on Windows Server, it is also planned
for end user operating systems.

Basic parameters - Integrity
The file system, itself, recognizes a data integrity problem and manages to repair
it without any user interference. Metadata integrity is ensured by checksums;
updated metadata are stored on different locations to prevent data loss while
writing data. Configuring Storage Spaces in mirroring mode, an optional func-
tion for data integrity can be chosen This function will automatically restore data
from a backup copy, provided by the Storage Spaces. The optional function can
also be configured manually, using the command line.

REFS also offers the option of an intelligent scanner, called scrubber, which scans
the volume, the allocated data and metadata in regular intervals to verify the
correctness of control calculations.

Storage Spaces
Horalek et al describe how easily Storage Spaces can be configured, expanded
and repaired. Storage Spaces are created on a software layer, with different in-
tegrity options: without control options, mirroring and parity.

Basic parameters - Availability
To improve data availability, REFS, in a case of data corruption, which can not be
repaired automatically, isolates the faulty locations, and the corresponding file
record is removed, so that the faulty file vanishes. This action prevents effects on
other files, while offering the option of repairing to the administrator.

Complications during implementation
REFS can not be used for formatting removable or bootable devices. The cluster
size can not be changed during formatting; the only available size is 64 KiB.

19

ReFS

SUPPORTED FUNCTION UNSUPPORTED FUNCTION

Bitlocker encryption Secondary stress
Access control list (ACL) Object identifier

Journaling File name shortening
Change reporting File compression
Symbolic link to Hardlinks

files and directories
Volume connection to Sparse files

a directory
Additional information File level encryption

about the directory
Volume copy File details

Straightforward Disk quotas
file identifier
File locking

Table 1: REFS capacitive parameters [2]

REFS disk structure
Horalek et al provide some rudimentary information about the disk structure.
Some basic offsets for the VOLUME BOOT RECORD are provided; just like the
offset to the backup VBR, which is located in the last sector. Furthermore, Horalek
et al provide the sector offset 4425 for the VOLUME NAME and the sector offset
4352 for the UPCASE TABLE.

Summary
Horalek et al refer to general information provided by MICROSOFT. Information,
concerning the structure of REFS, seems not to be solid, hence there is no in-
formation concerning their methodological approach for retrieving such data.
Furthermore, the provided data seems to be invalid, according to my own find-
ings.

The findings of Horalek et al concerning the reading and writing speed of REFS
compared with NTFS might be a first approach, but is not relevant for this work.

2.1.4 Open Source Digital Forensic Tools [12]

This paper of Brian Carrier focuses on the problem, how reliable a closed source
forensic tool can be. He splitted his considerations into the three major topics
acquisition, analysis and presentation.

Acquisition
The results of acquisitions can easily be compared between open source and
closed source tools, and can be tested with a prepared testing environment. Be-

20

ReFS

cause of this, the acquisition phase is not the main problem, being discussed by
Brian Carrier.

Analysis
Brian Carrier describes in his paper, that the acquired data are searched for the
three different types of evidence:

• Inculpatory Evidence
• Exculpatory Evidence
• Evidence of Tampering

The analysis phase is characterized by the examination of the files and contents
and recovering of deleted data. It is fundamental important, that analyzing tools
show all data that exists in an image. Because of the enormous bandwidth of pos-
sible data, it is nearly impossible to design comparable tests for all possibilities.
In contrast to the analysis, the presentation is entirely based on policy and law,
which differs according to the investigation setting (corporate, federal, military).

Admissibility
Evidence must be relevant and reliable, to be admissible in an US court. There-
fore, the scientific evidence, where also the output from forensic tools is sub-
sumed to, has to be checked before in a pre-trial "Daubert Hearing". This "Daubert
Hearing" identifies four general categories:

• Can and has the procedure been tested?
• Is there a known error rate of the procedure?
• Has the procedure been published and subject to peer review?
• Is the procedure generally accepted in the relevant scientific community?

For each of this categories a specific guideline is used, which is not described in
detail here. In this summary only one fact will be mentioned: According to the
paper of Brian Carrier, the proper way to test forensic tools is by using an open
method. Requirements must be created for each tool type and corresponding
tests must be designed that enforce the requirements.

Brian Carrier names the both two arguments used as pro and contra in the dis-
cussion, if forensic tools should be open source.

• Contra : People with malicious intent can find flaws in the source code and
exploit them without publishing the details.

• Pro : Having access to a tool’s source code will improve the quality of the
testing process because bugs can be identified through a code review and
by designing tests based on the design and flow of the software.

Even if there is a basic understanding for the companies need for protecting their
code, they should, as a compromise, publish their design specifications, so that

21

ReFS

third parties can more effecitvely test the tool’s procedures. He underlines, that,
if the extraction tool is open source, the results from the presentation tool can be
proven The presentation tool, many new features in file system digital forensic
analysis tools are based on the presentation part, remains closed source, so there
is the possibility to differ from the other vendors.

Summary
The example of the US court shows explicitly, how important the reliability of
a tool is. Brian Carrier argues, that this reliability might be easier to achieve, if
open source tools are used, that the usage of an open source is not a vulnerability,
the open source character is, according to experience, used for improving the
tool. Open source tools can be code reviewed, this helps to fix bugs in general,
without the need for testing every functionality.

22

ReFS

2.1.5 Specialization Project [13]

During my studies I undertook a specialization project on the same topic. At
this time, it was hard to find some documentation about REFS. Some of the
sources I have found have already been cited in the specialization project. At this
point, I only want to refer to Andrew Head [10], because his work was the most
comprehensive one that I found. His work was the starting point of the named
specialization project, hence I tried to prove his research in an initial step. In
a following step, I did my own research and could show some basic structures.
Furthermore, I provided some basic break-down tables for the basic structures
that I had found. In chapter seven of the specialization project, I named topics
on which further work should be done. These named topics also include themes
like: handling of deleted files; B-TREES and Storage Spaces, which are treated
within this master thesis.

23

ReFS

2.2 File System

In computing, a file system or filesystem is used to control how data is stored and
retrieved. Without a file system, information placed in a storage medium would be
one large body of data with no way to tell where one piece of information stops and
the next begins. By separating the data into pieces and giving each piece a name, the
information is easily isolated and identified. Taking its name from the way paper-
based information systems are named, each group of data is called a "file". The
structure and logic rules used to manage the groups of information and their names
is called a "file system". [16].

The file system is the link between the operating system and the data stored on
the designated devices, e.g. HDD, SSD, CD. While naming the stored files with
their plain text names in the application layer, the file system assign these plain
text names the physical location on the disc.

A simplified example might be a book. You will find every chapter by searching
the book page by page, but the more pages, the more ineffective this method is.
Searching the chapter by looking it up in the table of content will work much
faster.

The main task of the file system is to provide the information needed to store
data or access the data stored on the storage devices. Beside the information to
the location of data on the storage devices, other information like timestamps
and permissions are stored as metadata by the file system. The kind of related
data information stored by a file system are dependent from the file system, e.g.
Mac based file systems (OS X) store a lot of information for manipulating pic-
tures and documents as metadata, so these changes can be retracted [17].

Different file systems use different methods for storing the data and organizing
the process of storage. One method of organizing these data is the MASTER FILE
TABLE (MFT), used in MICROSOFTs NEW TECHNOLOGY FILE SYSTEM (NTFS). The
MFT is a file, which stores the information to the stored data in 1024 byte blocks,
these are lined up in a row. Because this is a linear setup, the search process
might consists of a multitude of steps. An example for a non linear setup is the
B-TREE, explained in the next section, which utilizes a logarithmic approach of
searching (example: 2.3). These methods causes different access times, differ-
ences in reliability and data protection. A good example for the differences in
data protection is, that protective file systems, while modifying data, write the
new data to a new space. If the writing process is erroneous, an undamaged copy
is existent.

24

ReFS

2.3 B-Tree

In computer science, a B-tree is a self-balancing tree data structure that keeps data
sorted and allows searches, sequential access, insertions, and deletions in logarith-
mic time. The B-tree is a generalization of a binary search tree in that a node can
have more than two child nodes (Comer 1979, p. 123). Unlike self-balancing binary
search trees, the B-tree is optimized for systems that read and write large blocks of
data. B-trees are a good example of a data structure for external memory. It is com-
monly used in databases and file systems.[18]

The increasing need of memory, based on growing datasets [19], requires adapted
methods of storing and organizing these data. Modern file systems, like APFS
[20] and BTRFS [21], take account of these requirements. Both utilize struc-
tures used in databases, the B-TREES.

Figure 4: Schematic representation of a B-TREE[1]

Following, some of the advantageous characteristics of a B-TREE are explained.

• A B-TREE consists of the root node at the top and the leaf nodes at the
bottom. Between these, there might be branch nodes.

• The amount of steps from the root node to a leaf node is defined and
consistent to every leaf node. This is defined as the height of the B-TREE,
because of this unified height some translates B-TREE as balanced tree.

• Every node contains a defined amount of keys (k), between k and 2 × k,
except the root node, this contains one up to 2× k keys.

• Comparing a special key with the other keys at the same level, keys with a
lower value have to be on one side, higher values on the other side, that is
achieved by an increasing sort order.

• Example [18] : A fully filled node with the height of four (h = 4) and the
maximum amount of child nodes of 1024 (t = 1024) has the maximum
amount of 10244 − 1 = (210)4 − 1 = 240 − 1 keys stored. Because a search
operation needs a maximum of h + 1 steps, a B-TREE with the parameters
given above needs a maximum of five steps to find a key. In contrast to the

25

ReFS

linear search in a MFT, this might be described as a logarithmic search.

The last example shows clearly the advantages of a B-TREE, compared with older
file systems, handling large amount of data. While a file system based on a MFT
needs a maximum of 240 − 1 steps, staying at the explained example, the B-
TREE based file system needs only a maximum of five steps. This results in a
better performance. Even if the MFT based file system stores the MFT in cache to
guarantee shorter access times, it results in a lower performance, because of the
higher use of storage, hence the B-TREE based file system loads only the needed
branches in cache.

26

ReFS

2.4 Encase

ENCASE is a commercial forensic tool from "Opentext" (formerly "Guidance Soft-
ware"), which belongs to most accepted ones [22]. It unites functionalities for
acquisition and examination. While acquisition is not in the focus here, ENCASE
provides the functions for viewing the data in a tree-structure, in a binary view
and in a disc view. The latter is an option, not provided by the german competitor
X-WAYS (the standard tool at my local police department), which offers an easy
and comfortable way to jump between the clusters. I used this view for a first
superficial analysis of clusters, furthermore I dumped clusters for deeper analysis
displayed by this view. This disk view itself discovered a failure from ENCASE. It
revealed, that structures, named as several single system files by ENCASE, were
contained in the same single cluster, which makes them a single file. Beside this
failure in nomenclature, ENCASE was the only tool, available to me, which was
able to reveal a first structure, the system files, in REFS.

2.5 File System Recognition Structure

The goal of file system recognition is to allow the Windows operating system to have
an additional option for a valid but unrecognized file system other than "RAW".
[23], [24]

The FILESYSTEM RECOGNITION was introduced on WINDOWS 7 [23] and should
enable a WINDOWS operating system to recognize an unknown file system as a
valid file system, instead of an unpartitioned device. This is realized by using the
FILESYSTEM RECOGNITION STRUCTURE, a checksum, calculated across the whole
VBR.

27

ReFS

2.6 Reverse Engineering

Reverse engineering, also called back engineering, is the processes of extracting
knowledge or design information from a product and reproducing it or reproducing
anything based on the extracted information. The process often involves disassem-
bling something (a mechanical device, electronic component, computer program, or
biological, chemical, or organic matter) and analyzing its components and work-
ings in detail. [25]

Reverse Engineering is a process, which can be used, e.g. for researching a prod-
uct, like software or malware. There might be different reasons why a research
on a product has to be done. In case of a malware, the reverse engineering might
give some traces to the offenders, in case of a software the proper work might
be checked 2.1.4.

Both, the malware and the commercial tool have in common, that there is usually
no documentation. Of course, there might be other possibilities than a reverse
engineering, like comparing the output of the tool or the communication of a
malware. But this would not explain, why the observed things have happened.
The best understanding of the malware or the tool will be reached by reviewing
the source code. Sometimes it is not possible, because the programmer has ob-
fuscated parts of the code, or it is simply not allowed by the copyright law. Hence
another approach have to be chosen.

An appropriate way for analyzing a file system might be modifying single parts
and comparing the differences in the changed bits and bytes on the storage de-
vices. Starting with central issues, specific questions will arise. Examining these,
the experimental layout has to be modified several times. Solving these single
questions is like fitting in a puzzle piece, the whole becomes clearer.

While reverse engineering, there is the present danger of drawing premature
conclusions. To prevent this, the single results, no matter how unimportant they
might be, have to be cross checked. Every result has to be questioned, otherwise
this will lead to a concatenation of errors, inherently conclusive, but, because it
is based on an error at the beginning, the result will not be reliable.

To achieve reliability, a gapless documentation is elementary. Even if there are
logical mistakes, the documentation will make these errors comprehensible for
the reader, which will act like an external review.

Summarizing my experiences from my research on REFS, a reverse engineer-
ing is a very interesting, but also a difficult and sometimes frustrating process.
In the end, if it is successful, it is worthwhile and will lead to a plenty of new
information.

28

ReFS

3 Methodology

3.1 Research Design

Following the classical methodological design, I have to summarize, that I have
used a qualitative design, uniting also elements of the naive inductivist [26] and
exploratory approach. But is it the right way, pressing a very technical research
in these theoretic schemes? Might there be a more practical scheme, defining the
design of my research? Does the reader get a feeling of the work, done in this
research, by reading the phrases of qualitative design or exploratory approach?

Perhaps, the better way is to reduce all the thoughts of what I have done in this
master thesis to only two words: REVERSE ENGINEERING. These two words de-
scribe the technical work, which had to be done, and the reader of this master
thesis is able to imagine the procedures and the work flow within this research,
especially after reading the introduction 1.3 and the background 2.6.

But what does REVERSE ENGINEERING mean, at least in my research? Using sim-
ple words, I compared two different states of a REFS - partition. As it is described
in the TESTING ENVIRONMENT 3.2, I prepared an empty REFS - partition and a
REFS -partition with two files. Even if this setup might not give important im-
pulses for the analysis of the VBR, but I expected this setup to give significant
hints for analyzing the system files and the ENTRYBLOCKS. First findings can be
verified by preparing other REFS partitions, adapted to the special needs. This
would seem advisable analyzing flags and extents. In the first case a special
partition could be prepared, containing several files, in the first attempt with un-
changed, normal flags. In a second attempt, different flags can be changed for
varying files, both dumps can be compared and should deliver some results. In
the latter case a dump of a partition with a folder, filled with only one or two files
can be compared against a dump of the same folder, filled with a big amount of
files.

Another important part of my research is comparing the findings provided by
ENCASE with the corresponding hex-dumps. This should grant findings, e.g. if
every system file, provided by ENCASE, has its own record, which will imply, it
is an independently file. The corresponding record should also contain the name
of the system file, otherwise the naming of ENCASE will not be verified.

Another important point in my research is flexibility. Doing a REVERSE ENGI-
NEERING of a nearly undocumented file system will cause the examiner to react
to the findings in the hex-dump, adapting the testing environment to the current
circumstances.

29

ReFS

3.2 Testing Environment

In this section the testing environment is described, with the focus on compre-
hensibility. The detailed description, for everybody who is interested in, for ex-
ample to reproduce and check my results, is provided in the appendix.

During the whole research I used two different machines, one for creating, ma-
nipulating and dumping the REFS partitions, the other for analyzing the dumps.
This setup was choosen, because of several reasons.

1. The requirements for the different machines are quite different. While the
preparation machine should have a fast data throughput and some possi-
bilities to connect external drives, the examination machine needs to have
more calculating power and a big display.

2. To avoid contamination of the created partitions, the preparation machine
has to have a easy way to setup a write-blocker, also to avoid mounting, if
this is not intended. As an example I will mention the research at the topic
"timestamps", here it is elementary, that there is no unauthorized access
to the drive. Ideally this machine should not have been used before and
should not be used for other tasks during the research.

3. It turned out to be useful to block the internet connection of the prepa-
ration machine, because the WINDOWS system updates have modified the
REFS driver. Because of that, the used REFS version changed at the end of
the research.

4. The examination machine needs to have an internet connection due to the
simple fact, that I only have access to an ENCASE network dongle, pro-
vided by the NORWEGIAN POLICE UNIVERSITY COLLEGE via a virtual private
network (VPN) within their intranet.

5. The need of calculating power is based on the compute-intensive tools,
which were used during the research, mostly several of these tools were
used at the same time, for comparison reasons.

I decided to use a Lenovo Ideapad with an INTEL i5 and 8 GB RAM, running
a Linuxmint, as the preparation machine. I virtualized a WIN 10 for creating
and modifying the REFS partitions. Furthermore the Ideapad was set up as a
forensic machine, so auto-mount etc was disabled. In connection with tools like
"ewfacquire" [27] this seemed to be a good preparation machine to me.

As the examination machine I used a MacBook Air, connected to an external
24" display, with an Intel i7 and 8 GB RAM, also virtualizing a WIN 10. On this
machine several tools were used, for example iBored and WxHexEditor (both
on Mac OS) for displaying the hexcode; x-Ways Forensics and Encase as forensic
tools (both on Windows). If there was a need to acquire disks at the examination
machine, I used a software write-blocker (DiskArbitrator) and a hardware write-
blocker simultaneously, to avoid contamination. Some examinations were done

30

ReFS

on a Linux host on the MacBook Air, a tool used here was sleuthkit.

After deciding about the machines, I had to decide about the disk setup. I used
one disk for the basic research, this disk was partitioned into 4 partitions of
different size, from a very small size of 4.9 GiB up to the big size of 97.7 GiB.
Two partitions were equally sized with 73.2 GiB. The reason for the different
sizes was to get information about the disk layout and if the disk size influences
the disk layout.

Last thing to decide about were the tools to be used. I decided to use X-WAYS
FORENSICS and ENCASE as the forensic tools. X-WAYS because I am used to it as
part of my daily work. X-WAYS is based on a hex editor, so it is ideally suited for
analyzing hex dumps. ENCASE got in my focus at the end of my specialization
project [13], finding the system files. Another advantage of ENCASE is, in my
eyes, the disk view modus. Using this, the navigation on the partition was easier
for me. Another tool, heavily used, is wxHexEditor. This tool was used to dye the
hexdumps for visualization purposes.

3.3 Proof of Concept

A problem, occurring while preparing the master thesis, was defining how the
results might be proven. Because of a lack of comparable work I was convinced,
that an appropriate way might be coding a tool. This tool could be used for an-
alyzing the devices, prepared before. Hence the results provided by the tool can
be compared against the target state, they are definable, because the devices got
prepared by myself, and the results can be proven by a manual examination, an-
alyzing the hex dump.

During the MISEB-study, I programmed tools using: BASH on Linux and MacOs
-systems; the powershell on Windows-based systems and the python program-
ming language. The advantage of the latter is that it is platform independent; it
can also use a broad base of forensic tools. Hence the decision was easily made
in favor of python as the programming language.

After finishing the code, with all the functions that I thought they were neces-
sary, the code contained approximately 1500 lines. Because there are a lot of
lines concerning output formatting or, within the scope of this master thesis,
uninteresting code, I decided to include only the code, which was important to
handle a REFS partition. These code snippets can be found in the appendix. The
complete code can be requested from the supervisors of this master thesis and,
of course, from me, at least until completion this master thesis. Afterwards it is
planned to publish the source code, for example via git-hub.

As it was foreseeable, coding the tool led me to a plenty of new findings, details
I have not worried about before. In the end, my tool was able to find all the files
and details, I considered while preparing the devices. It is working on all the de-

31

ReFS

vices, I have prepared in the scope of this master thesis, but I can not state, that
it is working on every REFS partition. Again, everybody is invited to continue
working on the code to improve the performance and the results.

32

ReFS

4 Results

In this chapter the results of my research are presented. The main emphasis lies
on presenting a general overview. Detailed results, like templates for the break-
down of hex dumps, are provided in the appendix in sections, equally named
like the sections in the results chapter.

4.1 VBR

As it was mentioned in the B-TREEs section 2.3, the starting point for analyzing
a B-TREE - based file system should be the root node, containing information to
the structure within the B-TREE.

There are at least two ways for finding the root node, the first is using the data
from the VBR. A hex-dump from a typical VBR of a REFS partition is provided
below.

Figure 5: Hex-dump from a VBR

In this section only the dark green colored value (0x00009C0000000000) is
needed, for the complete breakdown see A.2.1. This value has to be read as
little Endian (0x9C0000) and provides the offset to the BACKUP VBR, which is
a safety copy of the VBR. This value deviates from the size of the partition, so
there is some unaddressed space at the end of the partition. The size of the unad-
dressed space varies and seems to depend on the size of the partition [13]. The
BACKUP VBR is located in the last sector of the addressed space. Furthermore, in
the third last cluster of the addressed space the offsets to the $TREE_CONTROL
(which seems to be the root node, providing the offsets to the system files) are
provided.

An interesting and new structure can be seen at relative offset 0x10, colored in
light blue, the structure identifier. Together with the checksum, found at relative
offset 0x16, colored in red, it constitutes the FILESYSTEM RECOGNITION STRUC-
TURE (2.5).

33

ReFS

Figure 6: Schematic layout of a REFS partition with focus on the VBR and the location of the offsets to the
$TREE_CONTROL

4.2 $Tree_Control and System Files

Another possibility to find the $TREE_CONTROL is jumping to the ENTRYBLOCK
(see 4.3) 0x1E. On all partitions I have analyzed, there were data in this special
structure, containing the offsets to the $TREE_CONTROL. Following these offsets,
the $TREE_CONTROL will be found, a screenshot is provided below.

Figure 7: $TREE_CONTROL

The detailed breakdown is provided in A.2.2. At offset 0x58 the amount of
records is given, offset 0x5C provides the offset to the first record, in the ex-
ample above there are 0x06 records starting at offset 0x98.

The $TREE_CONTROL points to system files (nodes) that can be categorised into:

• Objects

34

ReFS

• Allocations (large, medium, small)
• Attributes

4.2.1 Objects

$Object_Tree
The ENTRYBLOCK offset to the $OBJECT_TREE is found at offset 0x98 of the
$TREE_CONTROL (see figure 7), 0x175 (LE). The record area of the $OBJECT_TREE
is provided in figure 8.

The first record in figure 7, starting at offset 0x98 and colored in blue, provides
the ENTRYBLOCK offsets (number of 16 kiB structures starting from the begin-
ning of the partition) for the system file, called $OBJECT_TREE by ENCASE.

Figure 8: Dump from record area of the $OBJECT_TREE

In the dump four records are displayed, every record provides the node ID (col-
ored in ocher) and, colored in purple, the ENTRYBLOCK - offset (see 4.3), they
are located in. In contrast to the branched structure of a tree, this is a very plain
structure, listing only the objects. In context of the B-TREE-structure, the $OB-
JECT_TREE is the top node, containing all the offsets to the directories as its child
nodes. The $OBJECT_TREE does not provide any information to the relations be-
tween the single objects. Hence, in my eyes this file should be better named as
$OBJECT.

$Object
The last record in figure 7, starting at offset 0x110 and colored in green, provides
the offset to a file, named $OBJECT by ENCASE, a screenshot is provided below.

35

ReFS

Figure 9: Dump from the record area of the $OBJECT

This dump also displays four records. Every record provides a parent ID and a
child ID, this way it shows the dependencies between objects. Analyzing par-
titions with a plenty of objects, this file provides the information necessary to
rebuild the directory structure. Visualizing the directory structure, a tree struc-
ture will arise. In my eyes this file should be named $OBJECT_TREE.

4.2.2 Allocation

MICROSOFT claimed, that they have used three different allocator files, deviating
in the granularity of mapped areas [7], but they have not named these files. The
names used below are provided by ENCASE.

$Allocator_Lrg
The $ALLOCATOR_LRG allocates 64 MiB clusters, so it is used for storing large
amounts of data with less fragmentation. Below a screenshot from a $ALLOCA-
TOR_LRG is provided.

Figure 10: Dump from the record area of the $ALLOCATOR_LRG

36

ReFS

PART OFFSET rel. Offset LENGTH DESCRIPTION

0x68 0x00 0x20 length of Header
0x6C 0x04 0x04 offset to next free record

Node 0x70 0x08 0x04 free space in the node
Header 0x74 0x0C 0x04

0x78 0x10 0x04 offset to first pointer
0x7C 0x14 0x04 amount of pointers in this node
0x80 0x18 0x08 offset to end of node

0x00 0x10 Record Header
0x00 0x04 Length of the structure
0x10 0x08 Starting ENTRYBLOCK

described in this record
0x18 0x08 Number of ENTRYBLOCKs

described in this record
Record 0x20 0x08 ????

(rel. offset) 0x28 0x08 ????
0x30 0x08 ????
0x38 0x08 ????
0x40 0x04 Offset to bitmap,

starting after the Header
0x44 0x04 Length of the Allocation Table
0x48 0x20 Allocation Table

Table 2: Breakdown of the $ALLOCATOR_LRG

The dump shows the node header (see 4.3) and the first three records of the $AL-
LOCATOR_LRG. In the node header, at offset 0x7C, the amount of records within
the allocator file is provided, here the value is 0x1D, decimal 29. Colored in dark
yellow, the starting offset for the allocation map is provided. So the first record,
colored in light blue, describes the first part of the partition, because the starting
offset is zero, offset 0x98. Colored in purple, the amount of ENTRYBLOCKS is pro-
vided, in case of the first record this value is 0x100000 (LE), decimal 1048576.
Colored in brown the amount of bytes, used for the allocation table, is provided.
Using this knowledge, the second record, colored in dark blue and starting at off-
set 0xF0, has to describe another part of the partition, containing some data. The
last record, colored in green and starting at offset 0x158, describes the end of
the partition. According to the purple colored value at offset 0x170 this record
does not describes the full amount of ENTRYBLOCKs. In the allocation table of
the last record, the value 0x10 is displayed, this might be explained because of
the allocation of the BACKUP VBR and some system files at the end of the parti-
tion. Using the values, provided by the $ALLOCATOR_LRG, some calculations to

37

ReFS

the allocated data can be done. The value at record offset 0x18 (colored pur-
ple) provides the amount of allocated ENTRYBLOCKS, in the first two records this
value is 0x100000 (read as little Endian), decimal 1048576. The size of an EN-
TRYBLOCK is 16 kiB (see 4.3). Multiplying the amount of ENTRYBLOCKs with its
size, one record allocates 16 GiB of data.

ALLOCATEDDATA / RECORD = amount ENTRYBLOCKs x size ENTRYBLOCK

ALLOCATEDDATA / RECORD = 1.048.576 x 16 kiB = 1.048.576 x 16.384 B

ALLOCATEDDATA / RECORD = 17.179.869.184 B = 16 GiB

If a record allocates 16 GiB of data, and therefor using 0x20, decimal 32, alloca-
tion bytes (see brown colored value at record offset 0x44, read as little Endian),
a single allocation byte maps 512 MiB, a single allocation bit maps 64 MiB.

MAPPEDDATA / BYTE = ALLOCATEDDATA / RECORD ÷ size ALLOCATIONTABLE

MAPPEDDATA / BYTE = 16 Gib ÷ 32 = 0, 5 GiB = 512 MiB

MAPPEDDATA / BIT = MAPPEDDATA / BYTE ÷ 8

MAPPEDDATA / BIT = 512 MiB ÷ 8 = 64 MiB

Also the maximum size of the partition can be calculated by multiplying the AL-
LOCATEDDATA / RECORD by the amounts of records. The latter value was already
mentioned at the beginning of this section, here it is 0x1D, decimal 29.

MAX. PARTITION SIZE = ALLOCATEDDATA / RECORD x amount records

MAX. PARTITION SIZE = 16 GiB x 29 = 464 GiB

The calculation above only provides the maximum partition size, because at least
the last record does not allocates the full amount of 1.048.576 ENTRYBLOCKs, in-
stead it allocates only 0xFD000, decimal 1.036.288 ENTRYBLOCKS (record offset
0x18 of the green record, colored in purple).

But how does the allocation work? To explain it on an example, I will use the red
surrounded value in figure 10 (first record, record offset 0x51), here it is 0x3E.
Because it is the tenth allocation byte, the first ENTRYBLOCK allocated by this
allocation byte is ENTRYBLOCK 294.912.

STARTING ENTRYBLOCK =
amount ENTRYBLOCKS

size ALLOCATION TABLE
x (ALLOCATION / BYTE − 1)

STARTING ENTRYBLOCK =
1048576

32
x (10 − 1)

STARTING ENTRYBLOCK = 294.912

38

ReFS

To make it more decriptive, there are 9 allocation bytes before, each allocating
512 MiB, so there are 4,5 GiB of allocated data before the data, I want to show
my example on.

The allocation byte 0x3E (which is provided in figure 10 in the light blue record)
has to be broken into its nibbles, and they have to be written in their binary
notation. To get the continuous flow, the bits have to be reordered (the notation
is given in Little Endian, so it has to be read starting with the smallest value,
which is located on the right side).

Figure 11: How does allocation work

According to the figure above, the first 64 MiB cluster (on the left side after
reordering the bytes) is marked unallocated (colored in green), the five next
64 MiB clusters are marked as allocated (colored in red), the both last 64 MiB
clusters (on the right side after reordering the bytes) are marked unallocated
(colored in green). There is to mention, that allocated means, there have to be
some data in the cluster, not necessarily the full amount of 64 MiB. In contrast to
that, unallocated means that there is absolutely no data in the cluster, so it can
be used for allocation by the $ALLOCATOR_LRG, while free space in the allocated
clusters can be allocated using the other allocation files.

$Allocator_Med
The $ALLOCATOR_MED system file is used for allocation of 64 kiB clusters, which
is the cluster size for data streams in REFS (see section 4.3). So it is used to avoid
cluster slack because of the big cluster size of the $ALLOCATOR_LRG. Because the
structure and the functionality equals the $ALLOCATOR_LRG 4.2.2, it will not be
explained here in a detailed way.

39

ReFS

$Allocator_Sml
The last allocation file is the $ALLOCATOR_SML, which is used for allocating 16
kiB clusters, which is the cluster size for the system files in REFS (see section
4.3). It minimizes the cluster slack because of the bigger sizes of the allocated
areas of the $ALLOCATOR_LRG and $ALLOCATOR_MED. Again, for a detailed ex-
planation see section 4.2.2.

Interaction between the Allocator Files
If there is need to find free space for data on a partition formatted with REFS,
the first view should be in the $ALLOCATOR_LRG. This is the most efficient way,
especially if a great amount of data has to be allocated. This is intended to pre-
vent fragmentation of data, which should increases the performance of the file
system.

If the data which should be allocated use less than 64 MiB, the $ALLOCATOR_MED
has to be used. Even if a special area of the partition is marked as allocated in
the $ALLOCATR_LRG, there might be space for smaller data.

Because data streams were stored in 64 kiB clusters and metadata were stored
in 16 kiB clusters, the allocation of the latter utilizes the $ALLOCATOR_SML.
Like it was described before, even if a special area on the disk is marked as
allocated within the $ALLOCATOR_LRG and $ALLOCATOR_MED, there might be
enough place for the metadata.

40

ReFS

Figure 12: Interaction between the $ALLOCATOR files

The link between the $ALLOCATOR files is illustrated in figure 12. It should vi-
sualize, that a cluster can be marked as allocated (colored as red) in the $AL-
LOCATOR_LRG even if there is only a 16 kiB cluster used for allocating metadata
(colored in red on the right side of the illustration). With other words, there are
1023 clusters marked unallocated (colored in green) in the $ALLOCATOR_MED
and can be used for storing data. This was already observed during my research
on the empty file system, because there were several clusters marked as allocated
in the $ALLOCATOR_LRG.

4.2.3 Attributes

The $ATTRIBUTE_LIST was not part of my master thesis, so there have to be done
some future work on it.

4.3 EntryBlock

4.3.1 Starting Area

MICROSOFT claimed, that they have used 64 kiB structures, which equals the
value, provided and calculated by the VBR A.2.1. But that is, as I experienced
during my research, not the whole truth. MICROSOFT uses 64 kiB structures for

41

ReFS

storing data streams, while using 16 kiB structures for storing system files and
metadata. This 16 kiB structures were named by me as ENTRYBLOCKS, to avoid
confusion. Below, a typical structure of an ENTRYBLOCK is provided.

Figure 13: Starting of an ENTRYBLOCK

The first 0x30 bytes, colored in red, describe the ENTRYBLOCK, so I named this
structure ENTRYBLOCK DESCRIPTOR, starting with the ENTRYBLOCK number (col-
ored in brown, offset 0x00). The ENTRYBLOCK number is an increasing number
across the whole partition, even if an ENTRYBLOCK is unused or used for storing
data streams. The next value (colored in red, offset 0x18) provides the node ID.

Colored in yellow, this structure is named by me as NODE DESCRIPTOR, because
it describes the node structure. The size of this structure can vary, I have rec-
ognized sizes between 8 bytes to 232 bytes, while the first value (offset 0x30,
4 bytes, read as little Endian), here 0xE8, provides the length of the structure.
The value colored in green (offset 0x48), here 0x05, provides the amount of the
extents of this special node.

Extents (1.3) are used by the file system, if an ENTRYBLOCK runs out of space.
This is illustrated exemplary in figure 14. The amount of records within an EN-
TRYBLOCK is limited, because of the size of 16 kiB of an ENTRYBLOCK. In the
case, the ENTRYBLOCK contains the metadata for a folder and there are added a
plenty of files (e.g. pictures from the last holiday in a dedicated folder, named
like the location of the holidays), the capacity of an ENTRYBLOCK easily can be
exceeded. On the left side of figure 14 an ENTRYBLOCK with six existing records
is illustrated. Another seven records have to been added, which exceeds the ca-
pacity of the illustrated ENTRYBLOCK

42

ReFS

Hence, the original ENTRYBLOCK will no longer stores any records, it will only
stores the offsets to the new ENTRYBLOCKs, which store all the records. With
other words, the original ENTRYBLOCK becomes a parent node, the metadata are
stored in its new child nodes.

Figure 14: Visualization for the usage of extents

Coming back to the breakdown of the ENTRYBLOCK and figure 13, this node
only contains the offset to the extents. Colored in blue, offset 0x50, the amount
of records in this node (with its extents) is provided. Here the value is 0x56,
decimal 86, which is simultaneously the reason for the extents, because an EN-
TRYBLOCK is running out of space containing 86 records with an approximately
record size of 1000 bytes.

Colored in green, this structure is named by me as NODE HEADER, based on the
nomenclature of nodes in B-TREES. Important values are the size of the structure
(relative offset 0x00), the offset to the next free record (relative offset 0x04),

43

ReFS

the amount of free space in this node (relative offset 0x08), the offset to the
pointers (relative offset 0x10), the amount of pointers (relative offset 0x14) and
the offset to the end of the node (relative offset 0x18). As it was mentioned in
connection with the extents, this node contains five records, the NODE HEADER
provides the offset to the pointers, pointing to these five records. It is requisite to
use these pointers, because the records are not necessarily ordered continuous
in the node, sometimes I could observe invalid records between the valid ones.
The offsets provided by the NODE HEADER are offsets relative to the start of the
NODE HEADER.

4.3.2 Record Area

Below a screenshot of a part of the record area of the node 0x600 is provided. In
all partitions I have analyzed, the node 0x600 was the root directory.

Figure 15: Record Area of an ENTRYBLOCK

Light green is the child attribute, 0x60 bytes in size, the size is provided by the
value at (relative) offset 0x00. Colored purple is the attribute identifier for the
child attribute (relative offset 0x10), colored yellow are the parent ID (relative
offset 0x18) and the child ID (relative offset 0x20). Another value provided by
the child attribute is the length of the filename, colored in red (2 bytes, read as
little Endian, 0x0026), the file name starts right behind this value and is given
in unicode (colored in orange).

Unicode is a computing industry standard for the consistent encoding, representa-
tion, and handling of text expressed in most of the world’s writing systems. [28]

The filename has a length of 0x26 bytes. Every character is defined using 2 bytes.
Hence the filename consists of 0x13, decimal 19 characters. This means it starts
with 0x7600 (not reversed) at offset 0x34.

The blue area is the filename attribute, with a size of 0x450 (value provided at

44

ReFS

relative offset 0x00), with the attribute identifier colored in grey (relative offset
0x10).

Because I have started analyzing the records for the HUGE_FILE.DMG and the
VERY_SMALL_FILE.TXT I found the attribute identifier 0x030000100 first. In the
further analyzes I also found the attribute identifier 0x30000200. Examining the
differences in the records with the differing attribute identifier it gets obvious,
that files owned the attibute identifier 0x30000100 and folders the identifier
0x30000200. According to this finding I set up a new working hypothesis:

Files own the attribute identifier 0x30000100 and
folders own the attribute identifier 0x30000200.

In order to check, if this hypothesis is true, I prepared a new partition and copied
several files in different folders and subfolders to it. According to the analysis
of this partition I can state, that the hypothesis could be strengthened. I also
checked other partitions, created at a later time, I could not find any deviations
from this hypothesis. This finding was also implemented into my code. Analyzing
several partitions with this code, this hypothesis could be strengthened. At the
end I can state, that every examination of one of the several REFS partitions has
strengthened this hypothesis.

Other values provided are the timestamps for "created" (colored in brown),
"modified" (colored in light blue), "metadata modified" (colored in pink) and "last
accessed" (colored in olive-green), starting at relative offset 0x68. The times-
tamps are given in WINDOWS filetime, counting hundred nanosecond intervals,
starting at 1st of January 1601 [29]. Converting the timestamps into human
readable format, the created and the last accessed time is 2017-03-26 12:36:43
Sun UTC and the modified and metadata modified time is 2017-03-25 21:10:35
Sat UTC. Below a screenshot from the file explorer is provided.

Figure 16: Screenshot from a file explorer, providing the timestamps for the very_small_file.txt (timestamps
are provided in CET - 25.03.2017 - and CEST - 26.03.2017)

Furthermore, the FNA contains the flags. 0x20 (colored in turquois, relative offset

45

ReFS

0x88) is the archive flag. Examining this value at 0xE8 (relative offset 0x88 of
the record) from different files on a binary level, the scheme behind is obvious.

Figure 17: FLAGS-scheme, no flags,
value=0

Figure 18: FLAGS-scheme, hidden flag,
value=2

Figure 19: FLAGS-scheme, read-only flag,
value=1

Figure 20: FLAGS-scheme, archive flag,
value=20

VALUE DESCRIPTION

0x00 no flags
0x01 read only
0x02 hidden
0x20 archive

Table 3: Flags

Of course, a file can own various flags, so the values for the different flags can be
cumulated. These found flags correspond to the flags already known from NTFS
[30].

At offset 0xE9 (relative offset 0x89), colored in white, the value 0x80 is provided,
which is a value I discovered at the end of my master thesis, handling storage
spaces and resiliency. It is not proven up to now, but it is probably a flag for
checksums. Colored in yellow, the parent ID 0x600 (relative offset 0x90) and the
child ID 0x04 (relative offset 0x98) are displayed. Hence this file is a child of
the root directory. Not displayed here are the data runs of the files, which are
included in the FNA.

46

ReFS

5 Discussion

In this chapter I will discuss the hypothesis’ named in the research question
section 1.5. The hypothesis’ will be discussed in the same order, as they are
named.

Hypothesis1: The VBR provides the offset to
the main structure of the file system.

Examining NTFS and EXFAT volumes, the VBR provides the offset to the main
structure directly by naming the offset to the MASTERFILETABLE respectively to
the FILEALLOCATIONTABLE[30]. Accordingly I tested the opposite hypothesis to
H1, which is as follows:

The VBR does not provide the offset to the main structure of the file system

As I described in the VBR section 4.1, the VBR provides the offset to the end of the
addressed space of the partition. The last sectors of the addressed space contain
the BACKUP VBR and the offset to the $TREE_CONTROL. Interpreted strictly, the
VBR does not contain the offset to the main structure, it only contains the offset
to the pointers to the main structure. The VBR only can be used as a detour for
finding the root node. Hence the opposite hypothesis has been strengthened, the
H1 has been rejected.

Hypothesis2: The main structure has a fixed
position within the file system.

opposite H2: The main structure does not have a fixed
position within the file system.

In every partition I have examined I have found the offset to the $TREE_CONTROL
in the ENTRYBLOCK 0x1E, decimal 30. This structure contains two pointers to the
$TREE_CONTROL, the actual and the previous one, which is also caused by the
copy-on-write feature of REFS (If some of the content has to be changed, a new
copy with the modified content will be created. Hence the last working version
will be stored and can be used in case of a writing error of the new version.)
Accordingly it is not practicable to assign the $TREE_CONTROL a fixed position
on the partition, REFS solved this by providing the offsets to the main structure,

47

ReFS

the $TREE_CONTROL, on a fixed position.
For forensic purposes this fixed position of the pointers has some advantages.
Even if the VBR is deleted, probably as an attempt of a suspect to prevent law
enforcement authorities from finding evidences, the content of the file system
can be restored using the pointers to the root node. And because of the second
location of the pointers at the end of the partition, there is another protection in
case of one of the locations of the pointers is also deleted.
Considering the copy-on-write feature, I reject the opposite hypothesis, the hy-
pothesis H2 has been strengthened, even if only the offsets to the $TREE_CONTROL
are provided on a fixed position, not the $TREE_CONTROL itself.

Hypothesis3: The root node contains offsets to nodes,
matching the system files provided by ENCASE.

opposite H3: The root node does not contain offsets to nodes,
matching the system files provided by ENCASE.

The root node, named $TREE_CONTROL by ENCASE, contains the ENTRYBLOCK
offsets to six system files, at least on the partitions I have examined. All these six
system files ($OBJECT, $OBJECT_TREE, $ALLOCATOR_LRG, $ALLOCATOR_MED,
$ALLOCATOR_SML, $ATTRIBUTE_LIST) are also provided by ENCASE. Hence the
opposite H3 has to be rejected, the hypothesis H3 has been strengthened.

Hypothesis4: All the system files provided by ENCASE
have their own child node.

opposite H4: Not every system file provided by ENCASE
has its own child node.

Beside the six system files named above (Hypothesis3), ENCASE provides seven
further system files ($BOOT, $SDS DATA, $SECURITY DESCRIPTOR STREAM, $UP-
CASE, $VOLUME DIRECT IO FILE, $VOLUMEINFO, $VOLUME LABEL), see [13].
These system files are contained in single ENTRYBLOCKS, all the offsets to the
ENTRYBLOCKS could not be discovered until now. At this point of my research I
have to reject the opposite H4, the hypothesis H4 has been strengthened.

Hypothesis5: The structures within the ENTRYBLOCKs
are comparable to the attributes, known from NTFS.
opposite H5: The structures within the ENTRYBLOCKs

are not comparable to the attributes, known from NTFS.

As it is described in the results chapter 4.3, I discovered two attributes, the CHILD
ATTRIBUTE and the FILENAME ATTRIBUTE. While the CHILD ATTRIBUTE provides

48

ReFS

the file name of the child object, the FILENAME ATTRIBUTE provides timestamps,
the data runs and the flags. Compared to the attributes used in NTFS, REFS
seems to concatenate several attributes to the attribute, I named FILENAME AT-
TRIBUTE. At the time of writing this master thesis not all of the attributes known
from NTFS could be identified, some further work has to be done here.

Summing up, REFS also uses attributes, which can be identified by their attribute
identifier. Some of the attributes known from NTFS could be identified as a part
of the FNA, used by REFS, hence the opposite H5 has to be rejected, the hypoth-
esis H5 has been strengthened.

Hypothesis6: Files and folders have the same records,
they are treated the same way.

opposite H6: Files and folders do not have the same records,
they are not treated the same way.

In the volumes I have analyzed, a file owned two records, the CHILD ATTRIBUTE
and the FILENAME ATTRIBUTE, while folders only owned the FILENAME ATTRIBUTE.
The FNA of folders also missed the data run, the parent ID and the child ID, it
only provides the timestamps and the offset to the metadata for the folder. Hence
the opposite H6 has been strengthened, the hypothesis H6 have to be rejected,
because files and folders own different records and are treated in a different way.

While examining the records for files, I found the attribute identifier 0x30000100.
Accordingly the working hypothesis here was:

Hypothesis H7: Files and folders have the same attribute identifier 0x30000100.
opposite H7: Files and folders have different attribute identifiers.

As it is described in the results chapter 4.3.2 I prepared a special partition, con-
taining a plenty of files and folders. Analyzing this prepared partition, I discov-
ered that every file in this partition had the attribute identifier 0x30000100, but
folders had the attribute identifier 0x30000200. This finding has strengthened
the opposite H7, the working hypothesis H7 was rejected. Because of this result,
the value 0x30000100 has to be the attribute identifier for files, while the value
0x30000200 has to be the attribute identifier for folders.

49

ReFS

6 Conclusions

In the introduction chapter a lot of problems were made a subject of discussion,
first of all the missing documentation for the file system REFS and the related
requirement of reverse engineering the file system for forensic needs. I named
different objectives and formulated the research questions. After providing the
results of my master thesis, this chapter should be used for summing up, if I
reached these objectives.

In the results chapter I have provided my results to the principles of data treating
and data storing by the file system REFS. Beyond the scope of the master thesis,
I also provided several templates for a detailed analysis of REFS in the appendix.
These results contain information to such important structures like the VBR, the
system files and the structure I named ENTRYBLOCK. On the other hand side, a
lot of functions (e.g. checksums and data integrity) of the file system could not
be examined, mostly because of a lack of time and the missing documentation
for the file system.

Nevertheless, the provided information should enable the reader to comprehend
the very basic structure of MICROSOFT’s new file system. My research is a neces-
sary first step to compensate the missing documentation, and while this first step
was done, other steps has to follow.

6.1 Research Questions

research question Q1: Does REFS has a VBR like other file systems, eg. NTFS?

As it is shown in the results chapter, REFS utilizes a VOLUMEBOOTRECORD, some
details, e.g. to the sector and cluster size, are provided. The VBR also contains
the FILESYSTEM RECOGNITION STRUCTURE (FSRS), which enables an operating
system to accept also an unknown file system, and the checksum of the VBR.
Compared to other file systems, REFS is currently not intended to be bootable,
hence the VBR does not contain boot code and utilizes only 64 bytes.

research question Q2: Which kind of information does the root node con-
tain?

The root node provides the offsets to six system files, these system files contain
valuable information to the objects contained in the file system and the used
space. Evaluating the contained information, the basic structure of the REFS
partition is disclosed and a starting point for a manual analysis of the file system

50

ReFS

is gained.

research question Q3: Which kind of information are stored in the ENTRY-
BLOCK? How are the information organized within a single ENTRYBLOCK?

The ENTRYBLOCK contains the metadata. At the beginning, information to the
ENTRYBLOCK itself are provided, e.g. to the parent node, possible extents, the
offset to the pointer area and the amount of pointers. The record area contains
records, these provide information to the files and folders stored on the parti-
tion. While a record for a folder only contains reduced data, a record for a file
contains data, organized similar to the attributes known from NTFS.

research question Q4: Does the self coded tool prove the findings? Are the
results only by accident or does the tool provide results repetitive, on dif-
ferent partitions with different content?

In the context of the limited results of my research (I only have analyzed a lim-
ited number of specially prepared partitions), my tool fulfills exactly, what it
is expected to. It has analyzed all the prepared REFS partitions automatically,
among them partitions with a variety of files, modified flags, providing a variety
of metadata information to files and folders. This tool can also be used to extract
data from a REFS partition, even if they are marked as deleted.

Evaluating the results of my master thesis, there is one fact to be mentioned.
MICROSOFT released a new file system version for REFS. This new version at-
tracted my attention, because my self coded tool, working properly up to this
point, failed. A short analysis made it obviously, that a change in the structure of
REFS causes the failure. At this point, I already run out of time, so my tool could
not be adapted to the new properties. A conclusion of this discovery is, that my
tool only can be used on REFS version 1.2. How time consuming the necessary
modification will be, can not be predicted precisely.

main research question: Is it possible to verify the results for a REFS -image,
provided by ENCASE?

I have started my reverse engineering of REFS already in my specialization
project [13], here I was able to gain some information to the ENTRYBLOCK. Af-
ter starting to use ENCASE I was able to get some structure into the discovered
information. My starting point here were the system files, provided and named
by ENCASE.

Verifying the provided results has to be parted into two parts, according to my
point of view. The first part, the pure data, the hex-code, could be verified easily.
I compared the hex-code provided by ENCASE several times with hex-code, pro-
vided by X-WAYS, IBORED ([31]) and the dd-command from the terminal. I could
not determine any discrepancy all the time. In my eyes, this is a very important
finding, because it means, that ENCASE does not modify the data.

51

ReFS

The second part, the analysis and interpretation of the data, has to be looked at
more detailed. On the one hand side several disagreements between the sparse
information from MICROSOFT and the implementation of REFS by MICROSOFT
itself and ENCASE were revealed, partly comprehensible, partly not.

• ENCASE provides more system files than correlating ENTRYBLOCKS can be
found in a REFS partition, see also [13].

• ENCASE’s nomenclature of the system files could not be retraced within the
file system.

• ENCASE provides a cluster size of 16 kiB (the clusters are visualized as
16kiB clusters in disk view), although a cluster size of 64 kiB is the default
setting for REFS. Furthermore, also the calculated value for the cluster size,
based on the values of the VBR, is 64 kiB.

On the other hand side, the information to the stored data, compared to the in-
formation provided by my own tool, were correct.

Summing up, I verified the results of the analysis’ of REFS images, provided by
ENCASE. According to my results, the data were not tampered and the interpre-
tation was correct. Only the visualization of the data, this contains as well the
nomenclature as displaying the data in 16 kiB clusters, mismatches my results.
At the time of writing, it is not clear, if these disagreements have an influence on
the reliability of the file system analysis done by ENCASE, even if an update of
the used tool might fix these problems.

6.2 Future Work

To stay within the scope of this master thesis, some further examination of sev-
eral topics got postponed. Below are some points, further work seems to be im-
portant to be done on:

• The nomenclature of the found structures has to be revised to achieve a
meaningful and easily understandable nomenclature.

• Do my results fit to the new versions of REFS? What has been changed? In
a further work the new file system versions of REFS has to be compared
with my results to prove the changes within the newer versions.

• In my research, the data integrity feature of REFS was not examined.
Hence the system files $SDS DATA and $SECURITY DESCRIPTOR STREAM
were not analyzed up to now. Another system file, the $ATTRIBUTE_LIST
was not analyzed. A further work should complete the analysis of the sys-
tem files.

52

ReFS

• Besides the flags for archive, hidden and read-only, I also expect flags for
the user rights and the permissions. These were not discovered up to now,
so there have to be done further work on this.

• As it is described several times, my research does not claim to be complete.
I cross checked my results using partitions with different sizes and with
different content. Theoretically, there might be constellations, which do
not match my results. Further works should use other partitions, to cover a
wider range of possible constellations, which enlarges the reliability of the
results.

53

ReFS

Bibliography

[1] B-trees. URL: http://btechsmartclass.com/DS/U5_T3.html (Visited
04.03.2018).

[2] Horalek, Sobeslav, & Cimler. 2015. Verifying properties of resilient file
system.

[3] Limited, D. T. T. 10 2017. Global mobile consumer sur-
vey. URL: https://www2.deloitte.com/content/dam/Deloitte/
global/Documents/Technology-Media-Telecommunications/
gx-global-mobile-consumer-survey-2nd-edition.pdf (Visited 2017-
10-09).

[4] Kemp, S. 10 2017. Welcome to digital in 2017.
URL: https://www.slideshare.net/wearesocialsg/
digital-in-2017-global-overview?ref=https://wearesocial.com/
uk/blog/2017/01/digital-in-2017-global-overview (Visited 2017-10-
09).

[5] gs.statcounter.com. 08 2017. Usage operating systems. URL:
https://de.statista.com/statistik/daten/studie/157902/umfrage/
marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
(Visited 2017-10-09).

[6] Prabhakaran, V., Arpaci-Dusseau, A., & Arpaci-Dusseau, R. Analysis and
evolution of journaling file systems. URL: https://www.usenix.org/
legacy/publications/library/proceedings/usenix05/tech/general/
full_papers/prabhakaran/prabhakaran_html/main.html (Visited
06.04.2018).

[7] Sinofsky, S. Building the next generation file system for windows: Refs
(online). URL: https://blogs.msdn.microsoft.com/b8/2012/01/16/
building-the-next-generation-file-system-for-windows-refs/ (Vis-
ited 23.07.2017).

[8] Microsoft. Understanding microsoft storage spaces. URL:
http://www.serversdirect.com/file%20library/libraries/_8_
understanding_FINAL.pdf.

54

http://btechsmartclass.com/DS/U5_T3.html
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-global-mobile-consumer-survey-2nd-edition.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-global-mobile-consumer-survey-2nd-edition.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-global-mobile-consumer-survey-2nd-edition.pdf
https://www.slideshare.net/wearesocialsg/digital-in-2017-global-overview?ref=https://wearesocial.com/uk/blog/2017/01/digital-in-2017-global-overview
https://www.slideshare.net/wearesocialsg/digital-in-2017-global-overview?ref=https://wearesocial.com/uk/blog/2017/01/digital-in-2017-global-overview
https://www.slideshare.net/wearesocialsg/digital-in-2017-global-overview?ref=https://wearesocial.com/uk/blog/2017/01/digital-in-2017-global-overview
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran/prabhakaran_html/main.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran/prabhakaran_html/main.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran/prabhakaran_html/main.html
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
http://www.serversdirect.com/file%20library/libraries/_8_understanding_FINAL.pdf
http://www.serversdirect.com/file%20library/libraries/_8_understanding_FINAL.pdf

ReFS

[9] Resilient file system (refs) overview. URL: https://docs.microsoft.com/
en-us/windows-server/storage/refs/refs-overview.

[10] Head, A. Forensic investigation of microsoft’s resilient file system (refs)
(online). 04 2015. URL: http://www.resilientfilesystem.co.uk.

[11] Ballenthin, W. The microsoft refs on-disk layout (online). URL: http:
//www.williballenthin.com/forensics/refs/disk/index.html (Visited
24.07.2017).

[12] Carrier, B. Open source digital forensics tools. URL: http:
//www.digital-evidence.org/papers/opensrc_legal.pdf (Visited
10.02.2018).

[13] Georges, H. Refs - a re-research,specialization course (imt4883 report). 06
2017.

[14] Userguide ftk 6.1. URL: https://support.accessdata.com/hc/en-us/
articles/204056525-FTK-User-Guide.

[15] Microsoft. 11 2013. Resilient filesystem overview. URL: https://technet.
microsoft.com/en-us/library/hh831724(v=ws.11).aspx (Visited 2017-
03-18).

[16] File system. URL: https://en.wikipedia.org/wiki/File_system (Visited
08.02.2018).

[17] McConnell, M. A beginner’s guide to mac file versioning. URL:
https://www.makeuseof.com/tag/guide-mac-file-versioning/ (Vis-
ited 06.04.2018).

[18] Wikipedia. B-tree. URL: https://en.wikipedia.org/wiki/B-tree (Vis-
ited 03.03.2018).

[19] Council, I. D. Data age 2025. URL: https://www.
seagate.com/files/www-content/our-story/trends/files/
Seagate-WP-DataAge2025-March-2017.pdf (Visited 04.03.2018).

[20] Apple file system. URL: https://en.wikipedia.org/wiki/Apple_File_
System (Visited 06.04.2018).

[21] Btrfs. URL: https://en.wikipedia.org/wiki/Btrfs (Visited
06.04.2018).

[22] Hamm, J. Extended fat file system. URL: https://paradigmsolutions.
files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf (Visited
06.03.2018).

55

https://docs.microsoft.com/en-us/windows-server/storage/refs/refs-overview
https://docs.microsoft.com/en-us/windows-server/storage/refs/refs-overview
http://www.resilientfilesystem.co.uk
http://www.williballenthin.com/forensics/refs/disk/index.html
http://www.williballenthin.com/forensics/refs/disk/index.html
http://www.digital-evidence.org/papers/opensrc_legal.pdf
http://www.digital-evidence.org/papers/opensrc_legal.pdf
https://support.accessdata.com/hc/en-us/articles/204056525-FTK-User-Guide
https://support.accessdata.com/hc/en-us/articles/204056525-FTK-User-Guide
https://technet.microsoft.com/en-us/library/hh831724(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831724(v=ws.11).aspx
https://en.wikipedia.org/wiki/File_system
https://www.makeuseof.com/tag/guide-mac-file-versioning/
https://en.wikipedia.org/wiki/B-tree
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://en.wikipedia.org/wiki/Apple_File_System
https://en.wikipedia.org/wiki/Apple_File_System
https://en.wikipedia.org/wiki/Btrfs
https://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf
https://paradigmsolutions.files.wordpress.com/2009/12/exfat-excerpt-1-4.pdf

ReFS

[23] Microsoft. Filesystem recognition. URL: https://msdn.microsoft.com/
en-us/library/windows/desktop/dd442652(v=vs.85).aspx.

[24] Microsoft. 2017. Computing a filesystem recognition checksum.
URL: https://msdn.microsoft.com/en-us/library/windows/desktop/
dd442649(v=vs.85).aspx.

[25] URL: https://en.wikipedia.org/wiki/Reverse_engineering (Visited
07.02.2018).

[26] Nola, R. 2005. Philosophy, science, education and culture.

[27] (online)URL: https://linux.die.net/man/1/ewfacquire.

[28] Wikipedia - unicode. URL: https://en.wikipedia.org/wiki/Unicode.

[29] Windows filetime. URL: https://en.wikipedia.org/wiki/System_time
(Visited 14.02.2018).

[30] Elrick, D. 2014. Forensic Examination of Windows Supported File Systems.
First edition.

[31] Tempelmann, T. ibored-app. URL: http://apps.tempel.org/iBored/
index.php.

[32] (online)10 2017. URL: https://www.sleuthkit.org/sleuthkit/docs.
php (Visited 2017-10-09).

[33] (online)URL: https://github.com/aburgh/Disk-Arbitrator (Visited
2017-10-09).

[34] Microsoft. Computing a filesystem recognition checksum (online).
2017. URL: https://msdn.microsoft.com/en-us/library/windows/
desktop/dd442649(v=vs.85).aspx.

[35] Security identifier. URL: https://en.wikipedia.org/wiki/Security_
Identifier.

[36] Carvey, H. A. 2014. Windows Forensic Toolkit: Advanced Analysis Techniques
for Windows 8. Syngress.

[37] Python argparse-package. URL: https://docs.python.org/2/library/
argparse.html.

[38] Python os-package. URL: https://docs.python.org/2/library/os.html.

56

https://msdn.microsoft.com/en-us/library/windows/desktop/dd442652(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd442652(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd442649(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd442649(v=vs.85).aspx
https://en.wikipedia.org/wiki/Reverse_engineering
https://linux.die.net/man/1/ewfacquire
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/System_time
http://apps.tempel.org/iBored/index.php
http://apps.tempel.org/iBored/index.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://github.com/aburgh/Disk-Arbitrator
https://msdn.microsoft.com/en-us/library/windows/desktop/dd442649(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd442649(v=vs.85).aspx
https://en.wikipedia.org/wiki/Security_Identifier
https://en.wikipedia.org/wiki/Security_Identifier
https://docs.python.org/2/library/argparse.html
https://docs.python.org/2/library/argparse.html
https://docs.python.org/2/library/os.html

ReFS

[39] Python datetime-package. URL: https://docs.python.org/2/library/
datetime.html.

[40] Python time-package. URL: https://docs.python.org/2/library/time.
html.

[41] Python struct-package. URL: https://docs.python.org/2/library/
struct.html.

57

https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/struct.html
https://docs.python.org/2/library/struct.html

ReFS

A Appendix

A.1 Preparation

In this section the preparation of the hard disk drive (HDD) and the examination
machine is described.

A.1.1 HDD

physical
• HDD WD 320 GB ; Model: WD3200AAKS-00UU3A0
• HDD Seagate 750 GB, Model: Barracuda 7200.12

logical
• 4 partitions were created on the HDD WD 320 GB, using the preparation

machine
• In WINDOWS the command line (with escalated privileges) with the com-

mand "diskpart" was used for creating the images. This tool was also used
to set the second partition as bootable.

• First partition: 204800000 sectors with 104.857.600.000 bytes, 97,7 GiB
• Second partition: 10240000 sectors with 5.242.880.000 bytes, 4,9 GiB
• Third partition: 153600000 sectors with 78.643.200.000 bytes, 73,2 GiB
• Fourth partition: equals the third partition
• Unallocated space: 49,1 GiB
• For control, if formatting succeeded, the fsutil command was used
•

$ fsutil fsinfo refsinfo < drivename >

According to the output, the REFS version 1.2 was used.
• In another attempt, I used another HDD (Seagate Barracuda) and listed

the possible options for formatting REFS, using the $ filesystems -option
of diskpart. The purpose was to change the cluster-size. According to the
output, the default cluster-size for REFS is 64KiB, and this is also the only
possible option. Trying to change the cluster-size to 32kiB or 128kiB re-
sulted in an error message.

A.1.2 Preparation Machine

Host
• Lenovo IdeaPad Z500, 8GB RAM, 320 GB HDD, i5 3230M (4x2.6 GHz),

Linuxmint 18.1, Mate 64-bit
• Virtualization tool: VirtualBox 5.1.22 (r115126)

58

ReFS

Guest
• Win10 educational (OS-Version: 10.0.14393), 2 cores, 4 GB Ram

A.1.3 Examination Machine

Host
• MacBook Air, 13-inch, mid 2013, 8 GB Ram, 512 GB SSD, i7, MacOsX

10.12.3
• Imaging tool FTK-Imager 2.9 for Mac (GUI version 1.0)
• Virtualization tool: Parallels (v12.1.3)
• Hex-Viewer iBored (v1.1.19)
• FileMerge (Mac-On-Board)
• WxHexEditor Mac (v.023-beta)

Guest
1. • Win10 educational, 2 cores, 4 GB Ram, installed on a 128 GB Jetdrive

Light SD
• Examining tool: x-ways forensics 18.7 - 7
• Encase, v. 7.11.01.05
• WxHexEditor (NCFI-version)

2. • Linuxmint 18.1, Mate 64-bit, 1 core, 4GB Ram,
• Imaging tool - ewfacquire [27]
• Forensic tool - sleuthkit [32]

A.1.4 Other Hardware / Software

• Sharkoon Drivelink Combo USB-Sata adapter with integrated write-adapter.
This was tested for correct function prior to use.

• DiskArbitrator: software write-blocker, was also tested for correct function
prior to use)

The partitions were created without mounting the drive. After creating and for-
matting, partition 2 (4,9 GB) was defined as the active partition.
After creating the 4 partitions, I connected the disk via the Sharkoon Driv-
elink Combo (activated write-blocker) and activated DiskArbitrator (read-only
modus) [33]. Using FTK-Imager I made an image of the whole disk, titled "emp-
tyrefs.E01". Because of enabled compression (level 9) the image size is 586,7
MB.

59

ReFS

A.2 Detailed Results

A.2.1 VBR

In the scope of this master thesis I have not analyzed the VOLUMEBOOTRECORD
(VBR), this was already done in my specialization project ([13]). But for the sake
of completeness, my findings for the VBR are provided below.

Figure 21: VBR from the second partition, colors named in the table below, Table 4

Offset Length Description Colour
0x00 3 Jump Instruction light green
0x03 8 FileSystemName light purple
0x07 5 Reserved space, containing all zeros olive
0x10 4 Structure Identifier light blue
0x14 2 Number of bytes in the VBR yellow
0x16 2 Checksum for the FSRS red
0x18 8 Offset to BACKUPVBR dark green
0x20 4 Bytes per Sector light red
0x24 4 Sectors per Cluster blue
0x28 1 Filesystem Major Version darker grey
0x29 1 Filesystem Minor Version lighter grey
0x2A 2 unknown
0x2C 4 unknown
0x30 8 unknown
0x38 8 Volume Serial Number (LE) purple

Table 4: BreakDown of the VBR(see Figure ??)

0x00: This is the jump instructor for the bootcode, here all zero (see also [10]).
0x03: The next eight bytes give the name of the filesystem (see also [10]).
0x07: In the analyzed partitions these five bytes remained always zero (see also
[10]).
0x10: The next four bytes are a structure, named FILESYSTEMRECOGNITION-
STRUCTURE by Microsoft. This structure should enable operating systems to rec-
ognize the structure, thus being able to determine that the file system in use
(REFS) is a valid file system - [10].

60

ReFS

0x14: This two-byte value gives the number of bytes in the VBR.
0x16: At this point, the checksum calculator (for Code see Figure ??) from Mi-
crosofts Development Center has to be mentioned [34], because on one hand
side it verifies, that this value is a checksum, at the other hand side it provides
the possibility to integrate the FSRS in your own code. Analyzing the code, it
shows, that the checksum is computed for the length of the structure, value is
given in offset 0x14, except the checksum itself.
0x18: Read as little endian, this value gives the offset in sectors to the BACK-
UPVBR. Remembering the partition size, given by the $ mmls, it is obvious, that
the BACKUPVBR isn’t the last sector of the partition, so using this value, you can
also calculate the size of the area behind the BACKUPVBR, which seems to be not
addressable for the filesystem.

SIZE NOTADDRESSABLE AREA = TOTALSECTORSOFPARTITION − VALUEFROMOFFSET 0X18

0x20: Four bytes, read as little endian, provide the value for the bytes per sec-
tors. In the hexdump-examples in the "Appendix-Section" this value is 0x0002,
read as little endian 0x200, decimal 512.
0x24: Four bytes, read as little endian, provide the value for the sectors per clus-
ter. In the hexdump-examples in the "Appendix-Section" this value is 0x80000000,
read as little endian 0x80, decimal 128. This is the standard cluster size for REFS
(see also [10])
0x28 & 0x29: These two bytes provide the filesystem version number, splitted
into a major and a minor value.
0x38: This is the serial number of the volume, read as little endian.

A.2.2 $Tree_Control

Figure 22: Third ENTRYBLOCK of $TREE_CONTROL of the second partition

61

ReFS

OFFSET LENGTH VALUE (LE) DESCRIPTION

0x00 0x08 0x0C9A ENTRYBLOCK-number
0x38 0x04 0x80 Offset to own reference
0x3C 0x04 0x18 Length of own reference
0x58 0x04 0x06 Amount of pointers in the extent
0x5C 0x18 6 pointers, 4 bytes each
0x5C 0x04 0x98 1st pointer
0x98 0x18 1st record
0x98 0x04 0x0175 ENTRYBLOCK-number, this record refers to
0xB0 0x18 2nd record
0xB0 0x04 0x28 ENTRYBLOCK-number, this record refers to
0xC8 0x18 3rd record
0xC8 0x04 0x3F ENTRYBLOCK-number, this record refers to
0xE0 0x18 4th record
0xE0 0x04 0x40 ENTRYBLOCK-number, this record refers to
0xF8 0x18 5th record
0xF8 0x04 0x017C ENTRYBLOCK-number, this record refers to

0x110 0x18 6th record
0x110 0x04 0x017A ENTRYBLOCK-number, this record refers to

Table 5: possible Breakdown of the second extent of the TREE_CONTROL

0x00: The ENTRYBLOCK-number, this value was found in the $TREE_CONTROL
at offset 0xA0.
0x38: This value gives the offset to a record, which is a reference of the record to
itself, hence the provided ENTRYBLOCK-number equals the ENTRYBLOCK, which
is examined.
0x3C: This value 0x18, read as little Endian, corresponds to the length of the
record, which is starting at offset 0x80. Furthermore, it is the length also of the
other records, within this extent.
0x58: This value 0x06, read as little Endian, corresponds to the amount of
records found in this extent.
0x5C: This value 0x98, read as little Endian, corresponds to the offset to the first
record in this extent, counted from the beginning of the extent. According to the
amount of pointers, given at offset 0x58, 6 pointers can be found here.
0x98: This value 0x175, read as little Endian, gives the ENTRYBLOCK-number,
the record refers to. The first four bytes from the other records have to be read
in the same way.

The third extent contains partly deviating values in the first 0x98 bytes. The val-
ues at offset 0x3C, 0x58 and 0x5C are the same as in the second extent; the
breakdown for these values seems to be suitable. The records, starting at offset
0x98, are identical to these in the second extent (see Figure ??).

62

ReFS

A.2.3 Second Node

In the case of the ENTRYBLOCK 0x19E, I also examined a second node in the
ENTRYBLOCK, located at offset 0x3698.

Figure 23: ENTRYBLOCK 0x19E, second node, partition 2

At offset 0x3700, colored pink, I found a value, that reminded me of the EN-
TRYBLOCK, I had just examined, so or So I decided to use ENCASE to get to the
ENTRYBLOCK 0x19C but on the way I also had a look at ENTRYBLOCK 0x19D
(screenshot below).

Figure 24: ENTRYBLOCK 0x19D, second node, partition 2

The value at offset 0x3700, the assumed value for the related node, as well as
the value at offset 0x3734 remains the same, while the value at offset 0x3738
has decreased. Next, I examined the ENTRYBLOCK 0x19C (screenshot below).

63

ReFS

Figure 25: ENTRYBLOCK 0x19C, second node, partition 2

As observed in the previous example, the value for the related node, as well as
the value at offset 0x3734 stays the same, the value at 0x3738 has decreased.
Looking for increasing values, I had a look at the ENTRYBLOCK 0x19F and 0x1A0.
While the value at offset 0x3738 increased to 0x08 in the ENTRYBLOCK 0x19F,
the ENTRYBLOCK 0x1A0 contained the INDEXERVOLUMEGUID, 76 bytes, and noth-
ing else. To summarize, I found that the ENTRYBLOCKs 0x19C to 0x19F all relate
to the ENTRYBLOCK 0x19C at offset 0x3700; a constant value 0x08 at offset
0x3734 and a value increasing from 0x01 to 0x08 as a power off 2 at offset
0x3738. This constant value 0x08 and the increasing value are also given in the
METADATAATTRIBUTE, (see figure below), colored in orange and dark green (off-
set 0x08 and 0x06).

Figure 26: Starting bytes FNA of Sys.info record

So at this point, I propose the hypothesis that, through the second node, the
ENTRYBLOCKs become related to the ENTRYBLOCK with the most actual data; an
internal counter gives the amount of maximum copies and the number of this
special copy. This hypothesis will be checked at a later point in this section.

When comparing the content of the four named ENTRYBLOCKS, focussing on

64

ReFS

the timestamps in the METADATAATTRIBUTE of the folder SYSTEMVOLUMEINFOR-
MATION, all ENTRYBLOCKS have the sameCREATED-timestamp. While the ENTRY-
BLOCKs 0x19C, 0x19D and 0x19F have complete identical timestamps for MODI-
FIED, METADATA MODIFIED and LASTACCESSED, deviating less than a second from
the CREATED, the ENTRYBLOCK 0x19E gives a completely different timestamp for
MODIFIED, METADATA MODIFIED and LASTACCESSED (as can be seen in the fig-
ure below), so it can be assumed that this ENTRYBLOCK contains the most actual
data.

Figure 27: Output from the $fsutil command from the WINDOWS CLI

I searched, therefore, for a value, that pointed to the most actual data. Such a
value has to be located in the ENTRYBLOCK-Descriptor, together with a reference
to the related node. Below are the screenshots from the four ENTRYBLOCKs.

Figure 28: ENTRYBLOCK-DESCRIPTOR 0x19C, partition 2

Figure 29: ENTRYBLOCK-DESCRIPTOR 0x19D, partition 2

65

ReFS

Figure 30: ENTRYBLOCK-DESCRIPTOR 0x19E, partition 2

Figure 31: ENTRYBLOCK-DESCRIPTOR 0x19F, partition 2

OFFSET LENGTH DESCRIPTION

0x00 0x08 ENTRYBLOCK-Number
0x08 0x08 Counter
0x18 0x08 Node ID

Table 6: Breakdown of the ENTRYBLOCK-Descriptor

Comparing the screenshots, the value at offset 0x08 attracts attention. It is ob-
vious that the ENTRYBLOCK 0x19E has the highest value at this offset, so the
hypothesis at this time is that the ENTRYBLOCK with the highest value is the
most actual one. This might also lead to the conclusion that checking the EN-
TRYBLOCKS with decreasing values at offset 0x08 might gives an overview to the
changes on the system. Up to now, to hypothesis, proposed in the middle of this
section, is approved.

The last thing to be found was the connection between the SYSTEMVOLUME-
INFORMATION-record in ENTRYBLOCK 0x190 (Figure 36), and the ENTRYBLOCKs
0x19C to 0x19F. The value is given in the FNA, right behind the filename, at off-
set 0x48 and also at offset 0x0A as well as the NODE ID from the corresponding
node.

A.2.4 FNA

FNA for Files

Figure 32: $FILENAME -attribute part 1, ENTRYBLOCK 0x190, record for HUGE-FILE, partition 2

66

ReFS

The screenshot above displays the first 0x30 bytes of a record. The record con-
tains several structures. Obviously the filename is given at the beginning, headed
by a value 0x30000100, which is similar to the FNA from NTFS (a breakdown is
shown below).

OFFSET LENGTH VALUE (LE) DESCRIPTION

0x00 0x04 0x440 Length of the whole record
0x04 0x02 0x10 Length of header
0x06 0x02 0x1E Length of filename,

including attribute identifier
0x0A 0x02 0x30 Offset to next structure
0x0C 0x04 0x410 Remaining data in the record
0x10 0x04 0x30000100 Attribute-Type identifier
0x14 various Filename

Table 7: Breakdown for FILENAME-attribute

0x00 : This value, read as little endian, gives the length of the whole record. In
the example above the value is 0x440, dec 1088.
0x04: This value gives the length of the header, or in other words, the offset to
the attribute identifier.
0x06 : This value gives the length of the filename, including the attribute iden-
tifier.
0x0A : This value gives the offset to the next structure; in this example the value
is 0x30. During the examination, values of up to 0x48 were found.
0x0C : This value, read as little endian, gives the length of the remaining data
in this record, starting right after this attribute.
0x10 : This value identifies whether if it is a file or a directory; the latter was
found to have the value 0x30000200. Except for the included value for files or
directories, this value reminds me of the ATTRIBUTETYPE-Identifier, known from
NTFS.
0x14 : Here the filename is given; the length of the attribute is obviously corre-
lated to the length of the filename.

The next structure starts after the filename, according to the value at offset 0x0A.
The first value is the length of the structure.

67

ReFS

Figure 33: FILENAME-attribute, part 2, ENTRYBLOCK 0x190, record for HUGE-FILE, partition 2

This structure that I have referred to as "inside record", contains at least two
important pieces of information which are the timestamps and the sizes of the
related data.

OFFSET LENGTH VALUE (LE) DESCRIPTION

0x00 0x04 0x08 Length of the inside record
0x04 0x02 0x28 Possible offset to first timestamp
0x28 0x08 1D2A62D950D4972 1st timestamp
0x30 0x08 1D2A62D950F2D2C 2nd timestamp
0x38 0x08 1D2A62D950F2D2C 3rd timestamp
0x40 0x08 1D2A62D950D4972 4th timestamp
0x48 0x04 0x20 Archive flag
0x50 0x04 0x600 Node ID of parent directory
0x60 0x08 Unknown value
0x68 0x08 0x112E0AE00 Logical file-size
0x70 0x08 0x112E10000 Physical file-size

Table 8: Breakdown for METADATA-attribute

0x00 : This value, read as little endian, gives the length of the attribute. All
examined File-Records had an equal sized length of this METADATA-attribute of
0xA8 bytes, dec 168.
0x04 : This value might give the offset to the first value within the attribute.
0x28 : These eight bytes, read as little endian, is a windows file-time timestamp,
counting 100-nanoseconds intervals from January 1st, 1601 (UTC). Here the
value is 0x1D2A62D950D4972, dec 131350053851580786, which is 2017-03-
26 14:36:25 Sun CEST, which is the time the file was copied from my working
machine to the REFS-volumes.
0x30 : Also eight byte value, to be read as little endian, gives another windows
file-time timestamp; in this example the hex-value is 0x1D2A62D950F2D2C, dec
131350053851704620.
0x38 : Same as the second timestamp at offset 0x30.

68

ReFS

0x40 : Same as the first timestamp at offset 0x30
0x48 : The next bytes are the flags for the file. I observed flags for "read only",
"hidden" and "archive"; the latter has the value 0x20, which is shown in the
screenshot above (for further details see ??).
0x50 : This value gives the node ID of the parent folder.
0x68 : This value, 8 bytes of length and read as little endian, gives the logi-
cal size of the file. Here the value is 0x112E0AE00, dec. 4611681792, which is
nearly 4.611 GB.
0x70 : This value, 8 bytes of length and read as little endian, gives the physical
size of the file, which is the size the file occupies on the disk. The value here is
0x112E10000, dec 4611702784, which is 20.992 bytes bigger than the logical
file-size.

After the first inside record, another header could be seen (see screenshot be-
low).

69

ReFS

Figure 34: FILENAME-attribute, part 3, ENTRYBLOCK 0x190, record for HUGE-FILE, partition2

This attribute seems to be complex. There is a header, marked green in the
screenshot above, that refers to the pointer at offset 0x274 and to the structure
end at offset 0x278. The yellow marked structure also seems to be a header, that
refers to the end of the structure at offset 0x180. After the following 0x88 bytes
of data, marked in blue, another header appears, which refers to the pointer at
offset 0xD0 and to the end of the structure at offset 0xD8, which is the same
offset that the yellow marked header refers to. Below is a possible breakdown
for the whole structure:

70

ReFS

OFFSET LENGTH VALUE (LE) DESCRIPTION

0x00 0x20 Header for the whole structure
0x00 0x04 0x20 Length of the header
0x04 0x04 0x1A0 Offset to next free record
0x08 0x04 0xD4 Free space in the node
0x10 0x04 0x274 Offset to the pointer
0x14 0x04 0x01 Amount of pointers
0x18 0x04 0x278 End of the structure
0x20 0x20 Next header structure
0x20 0x04 0x180 Length of the structure
0x30 0x04 0x160 Amount of data within the structure,

except header
0x38 0x04 Unknown
0x40 0x88 Record
0x40 0x04 0x88 Length of the record
0x74 0x08 0x112E10000 Physical size of the file
0x7C 0x08 0x112E0AE00 Logical size of the file
0xC8 0x20 Next header structure
0xC8 0x04 0x20 Length of the header
0xCC 0x04 0x80 Offset to next free record
0xD0 0x04 0x50 Free space in the node
0xD8 0x04 0xD0 Offset to pointers
0xDC 0x04 0x02 Amount of pointers
0xE0 0x04 0xD8 Offset to end of the structure
0xE8 0x30 1st data-run
0xE8 0x04 0x30 Length of the data-run
0x100 0x08 0x8000 Amount of clusters in this data-run
0x108 0x08 0x1000 Starting cluster of this data-run
0x118 0x30 2nd data-run
0x118 0x04 0x30 Length of the data-run
0x130 0x08 0x3CB84 Amount of clusters in this data-run
0x138 0x08 0xA000 Starting cluster of this data-run
0x198 0x04 0x20 1st pointer of data-run structure
0x19C 0x04 0x50 2nd pointer of data-run structure
0x274 0x04 0x20 Pointer of the whole structure

Table 9: Breakdown of DATA-RUN- of the FNA

0x00 : A typical header structure with a length of 0x20 bytes; the length is usu-
ally given at the first four bytes.
0x04 : The value, 4 bytes, read as little endian, give the offset to the next free

71

ReFS

record.
0x08 : This value, four bytes, read as little endian, gives the amount of free space
in the node.
0x10 : This value, four bytes, read as little endian, gives the offset to the pointer,
at the end of the whole structure.
0x14 : This value, four bytes, read as little endian, gives the amount of pointers
of the whole structure.
0x18 : This value, four bytes, read as little endian, gives the offset to the end of
the structure.
0x20 : Another header, but with a differing structure. The first four bytes give
the length of the whole structure.
0x30 : This value, four bytes, read as little endian, gives the amount of data,
excluding the data of the header.
0x38 : At this time, it is only a guess, but this might be an ATTRIBUTE-TYPE -
identifier. In comparison with the known identifiers known from NTFS, the iden-
tifier 0x80000000 is for the DATA-RUN-attribute.
0x40 : The following structure that has a length of 0x88 bytes, taken from the
first four bytes, contains a few values, which have already been identified.
0x74 : The next 8 bytes, read as little endian, match the physical size of the file.
0x7C : This value, read as little endian, matches the logical size of the file.
0xC8 : At this offset another header with the known structure begins. It starts
with the length of the header, which is given at offset 0xC8.
0xCC : This value, four bytes, read as little endian, gives the offset to the next
free record.
0xD0 : This value, four bytes, read as little endian, gives the amount of free bytes
in the node.
0xD8 : This value, four bytes, read as little endian, gives the offset to the point-
ers of the structure.
0xDC : This value, four bytes, read as little endian, gives the amount of pointers
in the value.
0xE0 : This value gives the offset to the end of the structure, is four bytes long
and has to be read as little endian.
0xE8 : At this offset, the first data-run starts. The length of the data-run is given
within the first four bytes.
0x100 : At this offset, the amount of clusters handled by this data-run, is given.
It is an eight byte value, read as little endian.
0x108 : This offset names the start-cluster of the first data-run. This value has a
length of eight bytes, read as little endian.
0x118 : According to the pointers, at this offset the second data-run begins. The
length of this data-run is given within the first four bytes.
0x130 : Just as in the first data-run, at this offset the amount of clusters in this
data-run is given. This value has eight bytes, read as little endian.

72

ReFS

0x138 : This value, eight bytes of length, read as little endian, gives the starting
cluster.
0x198 : These four bytes are the first pointer of the data-run.
0x19C : Second pointer of the data-run.
0x274 : Pointer of the whole structure.

Using the table above, the data-runs can be calculated.

1. Data-run:

offset to file = value offset 0x108 ∗ ClusterSize in bytes

offset to file = 0x1000 ∗ 0x4000 = 0x4000000 = 67.108.864

DataSize = value offset 0x100 ∗ ClusterSize in bytes

DataSize = 0x8000 ∗ 0x4000 = 0x20000000 = 536.870.912

2. Data-run

offset to file = value offset 0x138 ∗ ClusterSize in bytes

offset to file = 0xA000 ∗ 0x4000 = 0x28000000 = 671.088.640

DataSize = value offset 0x130 ∗ ClusterSize in bytes

DataSize = 0x3CB84 ∗ 0x4000 = 0xF2E10000 = 4.074.831.872

Filesize

FileSize = bytes first DataSize + bytes second DataSize

FileSize = 0x20000000 + 0xF2E10000 = 0x112E10000

FileSize = 536.870.912 + 4.074.831.872 = 4.611.702.784

The calculated file-size corresponds to the value at offset 0x74 of this record; just
as the value at offset 0x70 of the first inside record of the FILENAME-attribute.

FNA for Folders
The dump of the ENTRYBLOCK, numbered 0x190 from the second partition, also
contains a record concerning a structure, which ENCASE identifies as a folder.

73

ReFS

Figure 35: FileNameAttribute - Folder, screenshot ENCASE

The dump gives some interesting information.

Figure 36: FileNameAttribute - Folder, dump from ENTRYBLOCK 0x190

At offset 0x10, decimal 16, the attribute identifier names 0x30000200, which is
reminiscent of the attribute identifier for FNA in NTFS, 0x30000000. In NTFS the
FNA contains the file (folder) name and a set of timestamps [30]. The screen-
shot, above, suggests that the properties from the FNA of NTFS might be adapted
to REFS, at least for folders. Besides the folder name and a set of timestamps,
the FNA for folders also contains the node ID of the folder. This has to be used
for looking up the ENTRYBLOCK, which describes this special node in the $OB-
JECT_TABLE. The complete breakdown of the FNA for folders is in the appendix
(see template 18).

A.2.5 $Recycle.bin

As it has already been shown in chapter ??, there is a node for the $RECYCLE.BIN,
but because of a nearly unused filesystem, it is nearly empty. It contains a folder

74

ReFS

which has been named according to the User Security Identifier (SID, immutable
and unique identifier for a user, group or other security principal [35]). This
folder is empty, except for the DESKTOP.INI (see Figure ??). To explore the $RE-
CYCLE.BIN, I remounted the HDD with the four partitions and copied some files
and folders to the partitions; one of the files I deleted. I made a new dump from
the device and analyzed the nodes 0x702 and 0x703.
The Node 0x702 still contains only the folder for the User SID; the timestamps of
the FNA are unchanged. The record for the User SID folder received a new META-
DATA MODIFIED-timestamp that contains the time when the file was deleted.
The Node 0x703 now contains seven records, as can be seen in the screenshot
below, which is four records more than before the file was deleted.

Figure 37: ENTRYBLOCK DESCRIPTOR of Node 0x703, after deleting a file

A screenshot from the first new entries; record four and five is shown below.

75

ReFS

Figure 38: Record four and five of the $RECYCLE.BIN

As can be seen, the original filename of the deleted file, (allocator-med-part2-
record4.png), was replaced by $I0A3V7Q.png. Both records are pointing to the
parent node (offset 0x18 of record 4 and offset 0x80 of record 5), node 0x703,
which gives this record the child ID of two (offset 0x20 of record 4 and offset
0x88 of record 5). The timestamps in the METADATA-ATTRIBUTE at the beginning
of record 5 give the 01.08.2017 08:27:11 UTC, which is the time when I deleted
the file. The logical file-size is given as 0x7E, decimal 126; the physical with 64
KiB, 4 clusters. The DATARUN-ATTRIBUTE gives one DATARUN, 4 clusters in size,
starting at cluster 0x80 (screenshot below).

Figure 39: DATARUN-ATTRIBUTE of record 5 of the $RECYCLE.BIN

Moving to the cluster 0x80, decimal 128, byte-offset 2.097.152 of the partition,
the data is given (shown in the screenshot below).

76

ReFS

Figure 40: $RECYCLE.BIN, real filename of deleted file in cluster 0x80

The rest of the four clusters (64 KiB) are empty. The value at offset 0x0 might
be the child ID of the record in the $RECYCLE.BIN. The next value, offset 0x08
gives the size of the original file, 0x532B, decimal 21291 bytes. At offset 0x10
the time of deleting the file is given. Starting at offset 0x20, the filename and the
name of the parent is given, as is usual in unicode. After the filename, there are
two more zero bytes, not colored in the dump. The meaning of these two bytes
is explained at a later point.
Up to this point, the $I-record gives some information about the original file, for
example the filename and the timestamp for deleting the file, but the data for
the original DATARUN is not given, so or so take a look at the following records.
The first obvious thing is that the order has changed. Below is a screenshot of
the last record.

Figure 41: Record 7 of the $RECYCLE.BIN

This dump gives some interesting information. Offset 0x18 gives the original
parent node ID; offset 0x20 the original child ID. The filename is nearly the same
as in record 4 and 5, $R0A3V7Q.png, but with the different start value $R. In
record 6, two different timestamps are given; the CREATED,METADATA MODIFIED
and LAST ACCESSED give the time when the file was deleted. The MODIFIED
gives the 17.07.2017 12:27:51 UTC, which is the time when the file originally
was created. The next two values are the original parent ID and child ID, already
seen in record 7. Offset 0x98 gives the original file-size; offset 0xA0 the physical
file-size.

77

ReFS

Figure 42: Record 6 of the RECYCLE.BIN

The DATARUN-ATTRIBUTE gives the starting cluster 0x40 and a cluster amount of
4.

Figure 43: DATARUN - ATTRIBUTE of record 6 in the $RECYCLE.BIN

The data of the file allocator-med-part2-record4.png is located at cluster offset
0x40, byte-offset 1.048.576 of the partition.
As a last step, a screenshot of the original record in node 0x704 is shown below.

Figure 44: original records of the deleted file in Node 0x704

78

ReFS

This dump is identical to the records of the $R - record in the $RECYCLE.BIN.

A similar filesystem behavior was observable in NTFS. Deleting a file here will
lead to the creation of two new files, starting with $I and $R, and a cryptical
filename at the end [36].

A.3 Coding

A.3.1 Basics

Some of the code lines will break the lines of this master thesis, so line breaks
were added. These lines begin with a "~" in the following listings.

I am aware that there is potential for improving the code. I have not optimized
the code, because this is not a master thesis about coding a python tool, but
this code is a proof of concept; my findings can be used to analyze a REFS-
partition. During coding, I adapted the code several times, because the require-
ments changed while creating new partitions. Of course, I could not simulate all
possible scenarios of what can happen to files and folders in a filesystem, but I
tried to depict the common ones. Because of that, there might be REFS - parti-
tions this code does not work for.

First I would like to reference the modules I used:
1 #Import needed modules/packages
2 import struct
3 import datetime
4 import time
5 import sys
6 import argparse
7 import os
8 import platform
9 from operator import itemgetter , attrgetter , methodcaller

Listing A.1: Imported modules

Besides the modules, which are used regularly for coding, such as ARGPARSE
(gives arguments to the code via the command line) [37], OS (enables func-
tionality for operating system interfaces) [38], DATETIME [39] and TIME [40]
(gives some functions for time calculation) I would like to comment on the mod-
ule STRUCT [41]. This module contains a lot of functions that work with data
streams; especially to extract values from little endian formatted streams (exam-
ples will be shown later).

The tool is started via commandline, using the command

$ python refs.py

,without any arguments, which gives the output

79

ReFS

Figure 45: Screenshot from the Main Menu of my tool

A.3.2 Vbr

The code for analyzing the MBR is not implemented here, because it is not REFS
- specific, in contrast to the code for analyzing the VBR. The VBR of my first par-
tition is given in figure ??, so the following code can be checked against it. Based
on the following code, I shall explain the used code explicitly; later listings will
be shortened.

1 def analyze_vbr(_filename ,offset_partition):
2 """ Analyzes the VolumeBootRecord """
3 vbr ={}
4 list =()
5 f=open(_filename , "rh")
6 #applying the breakdown -table for the VBR
7 f.seek(int(offset_partition)+3)
8 FileSystemName=struct.unpack_from("Q", f.read (8))[0]
9 #checking , if Fs is a ReFS , otherwise end

10 if str(FileSystemName) == "1397122386":
11 FileSystemName="ReFS"
12 else:
13 print_log("FileSystem is not ReFS")
14 exit (0)
15 f.seek(offset_partition +20)
16 bytes_vbr=struct.unpack_from("H", f.read (2))[0]
17 #reading the checksum from the VBR
18 check=struct.unpack_from("H", f.read (2))[0]
19 #calculating the checksum , using the code delivered by Microsoft , adapted to python
20 f.seek(offset_partition)
21 calc_check=f.read (64)
22 list=struct.unpack_from("B"*64, calc_check)
23 count =0
24 checksum =0
25 for i in list:
26 if count == 22 or count == 23:
27 count +=1
28 continue
29 if (checksum & 1) == 1:
30 checksum =0 x8000+int(checksum >>1)+i
31 count +=1
32 else:
33 checksum =0+int(checksum >>1)+i
34 count +=1
35 #comparing the checksums
36 if check == checksum:
37 verified=True
38 else:
39 verified=False
40 f.seek(offset_partition +24)

80

ReFS

41 backupvbr=struct.unpack_from("Q", f.read (8))[0]
42 f.seek(offset_partition +32)
43 bytespersector=struct.unpack_from("I", f.read (4))[0]
44 sectorpercluster=struct.unpack_from("I", f.read (4))[0]
45 MajorVersion=struct.unpack_from("B", f.read (1))[0]
46 MinorVersion=struct.unpack_from("B", f.read (1))[0]
47 f.seek(offset_partition +56)
48 volume_id=struct.unpack_from("Q", f.read (8))[0]
49 vbr={’Backup VBR’:backupvbr ,’Volume ID’:hex(volume_id),’Verified ’:verified ,’Checksum in VBR’
50 ~ :hex(check),’Calculated Checksum ’:hex(checksum),’Bytes per Sector ’:bytespersector ,’Bytes per Vbr’
51 ~ :bytes_vbr ,’File System ’:FileSystemName ,’Major Version ’:MajorVersion ,’Minor Version ’:MinorVersion ,
52 ~ ’Sectors per Cluster ’:sectorpercluster ,}
53 f.close()
54 return vbr

Listing A.2: Function for analyzing the VBR

As can be seen within the first line, I utilized the code as a function, which I
tried to maintain throughout the whole program as far as possible. This func-
tion receives two values, delivered through the MBR - analysis, by calling it, the
filename of the dump and the partition-offset. To store, the extracted data I ini-
tialized the VBR - variable as a dictionary. Furthermore, the LIST - variable is
initialized as a tuple; this will be needed for the checksum calculation. Line 5
shows the opening of the data stream as read only and hexadecimal, using the
variable F. The first three bytes in a REFS partition are not used at this time, so
they are skipped (line 7). The following 8 bytes contain the FILESYSTEMNAME,
which is extracted using the STRUCT - package [41]. Using the character "Q",
an unsigned 8 byte integer is defined. Because of a missing ">" it is defined as
LITTLE ENDIAN. Of course, in the dump the FILESYSTEMNAME is given in BIG
ENDIAN. Nevertheless I decided to extract this value as LITTLE ENDIAN because
of the following two reasons:

• All values are stored in LITTLE ENDIAN, so treating strings as LITTLE ENDIAN
as well might simplify coding.

• After extracting this string, the hex-values will be transformed into a dec-
imal and will be compared against a control-value. Reading it as LITTLE
ENDIAN will shorten the calculated value; in the case of strings with less
than 8 characters.

After extracting the string for the FILESYSTEMNAME, its decimal correspondence
is compared against the decimal correspondence for the string REFS. In the case
of accordance, the tool will continue, otherwise it will end with a corresponding
message (lines 10 - 14). Lines 15 and 16 will jump to the offset for the byte-size
of the VBR and will extract the value; the next line will extract the checksum,
deposited in the VBR. Lines 20 to 34 are the python adaption of the c+ -code,
delivered by microsoft [24], which is compared against the deposited checksum
in lines 36 to 39. Lines 40 to 48 will extract further information from the VBR
(see breakdown table 10). Line 49 fills a dictionary called VBR with the extracted
data; the dictionary is returned, after closing the data stream.

The content of the dictionary VBR is piped into another function (code is not

81

ReFS

displayed here), which will take over the reporting function. In my tool I decided
to create an output on the commandline; another output is produced as a report
file in HTML - format.

A.3.3 Tree-Control

The first data, needed to be parsed, is the ENTRYBLOCK containing the $TREE_CONTROL.
As it has been described already multiple times within this master thesis, the
$TREE_CONTROL is located in the third last ENTRYBLOCK of the partition ??. One
finding during coding the tool was, that there is another copy of the $TREE_CONTROL
in ENTRYBLOCK 0x1E, decimal 30 (see section ??).

1 def tree_control(_offset_part ,_number_tree):
2 offset_object_tree=_offset_part + _number_tree *16384
3 f.seek(offset_object_tree +88)
4 amount_record=struct.unpack_from("I", f.read (4))[0]
5 offset_record=struct.unpack_from("I", f.read (4))[0]
6 f.seek(offset_object_tree+offset_record)
7 i=0
8 node =[]
9 for i in range(amount_record):

10 offset_entry_block=struct.unpack_from("H", f.read (2))[0]
11 node.append(offset_entry_block)
12 f.read (22)
13 i+=1
14 return node

Listing A.3: Function for analyzing the $TREE_CONTROL

This function is called with the offset of the partition and the ENTRYBLOCK -
number of the $TREE_CONTROL. These values are used to calculate the byte-
offset of the $TREE_CONTROL (line 2). Line 4 extracts the amount of records in
the $TREE_CONTROL, while line 5 extracts the offset to the first record of the
$TREE_CONTROL. The ENTRYBLOCK - numbers for the single objects, contained
in the $TREE_CONTROL are extracted and appended to a list-variable, called
"node".

Before looking at the code for parsing the single records of the $TREE_CONTROL,
another code snippet is needed. The following code is needed in this form and
functionality many times within my tool, because it returns the pointer of an
ENTRYBLOCK. The code is displayed and explained here and will be referenced
next time it is needed.

1 def tree_control_nodes(_offset_part ,_node):
2 offset_node=_offset_part+_node *16384
3 (length_node_descriptor ,amount_records)= node_descriptor(offset_node)
4 pointers=node_pointers(offset_node +48+ length_node_descriptor ,amount_records ,_node)
5 return pointers ,length_node_descriptor

Listing A.4: Function for analyzing the basic information of an ENTRYBLOCK

The function above is called with the values for the partition offset and the EN-
TRYBLOCK - number. After calculating the byte offset for the ENTRYBLOCK, two
other functions are called; the first for extracting the information of the NODE
DESCRIPTOR; the latter for extracting the information, amount and offset for the
pointers from the NODE HEADER.

82

ReFS

1 def node_descriptor(_offset):
2 f.seek(_offset +48)
3 length=struct.unpack_from("H", f.read (2))[0]
4 f.seek(_offset +80)
5 amount=struct.unpack_from("H", f.read (2))[0]
6 return length ,amount

Listing A.5: Function for analyzing the NODE DESCRIPTOR

The function is called with the byte-offset to the ENTRYBLOCK. Because of the fix
value of 0x30 bytes, decimal 48, for the size of the ENTRYBLOCK DESCRIPTOR,
this function might not work on every ENTRYBLOCK, but otherwise there were
only a few ENTRYBLOCKS with a deviating size (e.g. $UPCASE TABLE), so these
deviating blocks are analyzed in a customized form. This function extracts the
values for the amount of records in the node and the length of the descriptor as
a tuple.

1 def node_pointers(_offset ,_amount_records ,_node):
2 f.seek(_offset +16)
3 first_pointer=struct.unpack_from("I", f.read (4))[0]
4 amount=struct.unpack_from("I", f.read (4))[0]
5 if _amount_records != -1:
6 check_pointers_records(amount ,_amount_records ,_node)
7 f.seek(_offset+first_pointer)
8 j=0
9 pointers =[]

10 for j in range(amount):
11 offset_record=struct.unpack_from("I", f.read (4))[0]
12 pointers.append(offset_record)
13 j+=1
14 return pointers

Listing A.6: Function for analyzing the NODE HEADER

This function is called with the same values as the function above A.5. Addi-
tionally it needs the number of the records in the node. At this point, it should
be noted that the value "_offset" in this function differs from the value in the
function above, because calling this function, the offset and the length for the
NODE DESCRIPTOR are cumulated already while calling the function (see listing
A.4 line 4). The function extracts the amount of pointers and the offset to the
first pointer, line 3 to 4. Line 5 to 6 checks whether the number of records equals
the number of pointers. Afterwards, the pointers are extracted and appended to
a list-variable called "pointers", which is returned to the calling code.

1 #Calling the single entries of the records_tree_control for further examination
2 for i in range(len(records_tree_control)):
3 #Looking up the pointers and the length of the nodedescriptor
4 (pointers ,length_node_descriptor)= tree_control_nodes(offset , records_tree_control[i])
5 #$Object_Tree
6 if i == 0:
7 #Parsing the $Object_Tree , returning the Node_ID , the Cluster -Offset and an unknown value
8 object_records=object_record_parser(offset+records_tree_control[i]*16384+48+
9 ~ length_node_descriptor ,pointers)

10 for k in object_records:
11 f.seek(offset+k[’Cluster Offset ’]*16384+24)
12 node_id=struct.unpack_from("I", f.read (4))[0]
13 #Parsing the Node_ID 0x500 - $System
14 if hex(node_id) == "0x500":
15 parsed_nodes[’Node ’+str(hex(node_id))]= node_500_parser(offset+
16 ~ k[’Cluster Offset ’]*16384)

83

ReFS

17 #Parsing the Node_ID 0x600 - Root -Directory
18 else:
19 f.seek(offset+k[’Cluster Offset ’]*16384+72)
20 test_extent=struct.unpack_from("B",f.read (1))[0]
21 if test_extent == 0 :
22 parsed_nodes[’Node ’+str(hex(node_id))]= node_parser(offset+
23 ~ k[’Cluster Offset ’]*16384)
24 else:
25 parsed_nodes=node_extents(offset , offset+k[’Cluster Offset ’]
26 ~ *16384 , node_id , parsed_nodes)
27 if i == 1:
28 free_space_lrg=allocator_parser(offset+records_tree_control[i]*16384+48+
29 ~ length_node_descriptor ,pointers ,4096 ,32)
30 if i == 2:
31 free_space_med=allocator_parser(offset+records_tree_control[i]*16384+48+
32 ~ length_node_descriptor ,pointers ,4 ,128)
33 if i == 3:
34 free_space_sml=allocator_parser(offset+records_tree_control[i]*16384+48+
35 ~ length_node_descriptor ,pointers ,1 ,128)
36 if i == 5:
37 dir_structure=directory_structure(offset+records_tree_control[i]*16384+48+
38 ~ length_node_descriptor ,pointers)
39 f.close()
40 return partition_size ,parsed_nodes ,free_space_lrg ,free_space_med ,free_space_sml ,dir_structure

Listing A.7: Function for parsing the $TREE_CONTROL

This is a part of the code that joins the functions named above. This code-
snippet has the task to parse the single records of the $TREE_CONTROL. The
$TREE_CONTROLs I observed, while writing this master thesis, all had the same
order of $System-Files, so I used the observed order to simplify the code.

$Object_Tree
The first record always contained the offset to the $System-File, called $OB-
JECT_TREE by ENCASE. Iterating over the records of the $TREE_CONTROL, start-
ing in line 2, special code is called for the single records. Starting in line 6,
the $OBJECT_TREE IS PARSED. Therefore a snippet of code (not displayed here)
parses the records of the $OBJECT_TREE, extracting the node IDs and the cor-
responding ENTRYBLOCKS. According to the node IDs, special code-snippets for
the different $System-Files are called, starting with a parsing code for the node
0x500, containing metadata information to the filesystem, like the volume label,
the offset to the UPCASE TABLE, timestamps for creating and last mounting of
the filesystem. The extracted information is stored in a dictionary, named accord-
ingly to the node ID. This dictionary is added to the dictionary "parsed_nodes",
which was initialized to store all information to the parsed nodes.

1 def node_500_parser(_offset):
2 node_500 ={}
3 (length_node_descriptor ,amount_records)= node_descriptor(_offset)
4 pointers=node_pointers(_offset +48+ length_node_descriptor ,-1,0)
5 for j in pointers:
6 offset_record=_offset +48+ length_node_descriptor+j
7 f.seek(offset_record +16)
8 counter_node_id=struct.unpack_from("I", f.read (4))[0]
9 if hex(counter_node_id) == "0x510":

10 f.seek(offset_record +10)
11 start_name=struct.unpack_from("H", f.read (2))[0]
12 length_name=struct.unpack_from("H", f.read (2))[0]
13 f.seek(offset_record+start_name)
14 label_volume=struct.unpack("B"*length_name , f.read(length_name))
15 volume_label=""
16 i=0
17 for k in label_volume:

84

ReFS

18 if not i%2:
19 volume_label +=chr(k)
20 i+=1
21 node_500[’Volume Label’]= volume_label
22 if hex(counter_node_id) == "0x520":
23 f.seek(offset_record +168)
24 node_500[’Created ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
25 f.seek(offset_record +184)
26 node_500[’Accessed ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
27 if hex(counter_node_id) == "0x530":
28 f.seek(offset_record +224)
29 node_500[’Upcase Table’]= struct.unpack_from("I",f.read (4))[0]
30 return node_500

Listing A.8: Function for analyzing the node 0x500

In the partitions I analyzed, the node 0x500 contained different records with a
differing structure, so those records received different code-snippets, according
to a hex-value found within the records (0x510, 0x520 etc..). The volume label
is given in unicode. In order to display it as a readable string, only every second
character is stored to the variable volume_label, line 17 to 20. In the case, the
second byte in unicode is used, my code has to be adapted.

The next records of the $OBJECT_TREE are constructed in the same way, so only
one function is needed. This function contains approximately 200 lines of code,
so it is only partially shown here.The code is divided into several blocks, accord-
ing to the different attribute identifier.

1 if hex(attribute_identifier) == "0x10000000":
2 f.seek(_offset +48+ length_node_descriptor+pointers[j])
3 record_length=struct.unpack_from("I",f.read (4))[0]
4 f.read (2)
5 record_inside_amount=struct.unpack_from("H",f.read (2))[0]
6 f.read (2)
7 record_header_length=struct.unpack_from("H",f.read (2))[0]
8 inside_offset=_offset +48+ length_node_descriptor+pointers[j]+24
9 #Parsing the records inside the first record

10 for m in range(record_inside_amount):
11 f.seek(inside_offset)
12 record_inside_length=struct.unpack_from("I",f.read (4))[0]
13 #Parsing the timestamps
14 if m == 0:
15 offset_to_timestamp=struct.unpack_from("H",f.read (2))[0]
16 f.seek(inside_offset+offset_to_timestamp)
17 nodes[’Created ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
18 nodes[’Modified ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
19 nodes[’Metadata Modified ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
20 nodes[’Last Accessed ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
21 f.read (8)
22 int_node_id=struct.unpack_from("I",f.read (4))[0]

Listing A.9: Function for analyzing the directory metadata, part 1

The first parsed record is the directory metadata record, having the attribute
identifier 0x10000000. This record contains different records itself, so there is
another iteration inside. The first inside-record contains the four known times-
tamps for the directory. The meaning of the second and third inside record could
not be revealed up to the point of writing, so they have been skipped here. The
fourth inside-record contains different values, according to the kind of node it
belongs to. In the case it is contained in the node 0x600 or node 0x520, the same
information is extracted; only the kind of node is named differently, either ROOT
DIRECTORY, or FOLDER.

85

ReFS

1 if hex(int_node_id) == "0x600":
2 f.seek(inside_offset +16)
3 pointer_to_name_end=struct.unpack_from("H",f.read (2))[0]
4 f.seek(inside_offset+ 24)
5 length_name=struct.unpack_from("H",f.read (2))[0]
6 pointer_to_name_start=pointer_to_name_end - length_name
7 f.seek(inside_offset + 16+ pointer_to_name_start)
8 name=struct.unpack_from("B"*length_name , f.read(length_name))
9 dir_label=""

10 i=0
11 for k in name:
12 if not i%2:
13 dir_label +=chr(k)
14 i+=1
15 nodes[’Dir Label’]= dir_label
16 nodes[’Node Typ: ’]="Root Directory"
17 nodes[’Attribute ’]= attribute_identifier
18 nodes[’Node ID’]= int_node_id
19 node[’Node: ’+str(count)]= nodes

Listing A.10: Function for analyzing the directory metadata, part 2

If the inside-record is contained in another node, the node type is also FOLDER,
but, additional to the named information above, four alternate timestamps are
provided and extracted.

Other records are categorized according to the attribute identifier contained. For
both folder and files, a filename attribute identifier was discovered. Both record-
types start with the same construction the code-snippet is shown on the example
of the FNA for files.

1 #Distinguishing Files from Folders
2 if hex(attribute_identifier) == "0x30000100":
3 file_name=""
4 i=0
5 for k in name:
6 if not i%2:
7 file_name +=chr(k)
8 i+=1
9 f.seek(_offset +48+ length_node_descriptor+pointers[j]+ second_structure)

10 meta_data_record_length=struct.unpack_from("I",f.read (4))[0]
11 meta_data_offset_timestamp=struct.unpack_from("H",f.read (2))[0]
12 f.seek(_offset +48+ length_node_descriptor+pointers[j]+ second_structure+meta_data_offset_timestamp)
13 nodes[’Attribute ’]= attribute_identifier
14 nodes[’File Name’]= file_name
15 nodes[’Created ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
16 nodes[’Modified ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
17 nodes[’Metadata Modified ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])
18 nodes[’Last Accessed ’]= getFiletime(struct.unpack_from("Q",f.read (8))[0])

Listing A.11: Function for analyzing the FNA, part 1

The code snippet above is nearly the same for both type of FNA; differences are
in the order of the contained information. The FNA for files contains additional
information to the child id; the logical and physical file-size etc. The parsing code
for this information is not significant, so it is not displayed here. Another piece
of information, given in the FNA for files, is the data-run. The data-run, itself,
contains two records; the second contains the offsets and cluster length for the
single data-runs.

1 second_datarun_offset_pointers=node_pointers(offset_first_datarun+data_run_first_subrecord_length ,-1,0)
2 z=1
3 datarun =[]
4 for x in second_datarun_offset_pointers:
5 offset_data_run=offset_first_datarun+data_run_first_subrecord_length+x
6 f.seek(offset_data_run)
7 length_data_run=struct.unpack_from("I",f.read (4))[0]
8 f.read (20)

86

ReFS

9 amount_clusters=struct.unpack_from("Q",f.read (8))[0]
10 start_cluster=struct.unpack_from("Q",f.read (8))[0]
11 run ={}
12 run[’DataRun ’]=z
13 run[’Amount Clusters ’]= amount_clusters
14 run[’Size Run’]= amount_clusters *16384
15 run[’Start Cluster ’]= start_cluster
16 datarun.append(run)
17 z+=1
18 nodes[’DataRun ’]= datarun

Listing A.12: Function for analyzing the FNA, part 2

The single data-runs are numbered (appended to the list-variable data-run),
which itself is added to the directory nodes. The last type of record, while pars-
ing the ENTRYBLOCKS, is the CHILDRECORD, which has the attribute identifier
0x20000080. This record contains information to the parent node and the child
ID; coding does not reveal specificities, so the code is not displayed here.

Allocator-Files
The next three records are the the $Allocator-Files. The structure of the three
types of $Allocator-files is the same, even if they allocate different block sizes, so
the same code-snippet can be used for them.

1 def allocator_parser(_offset ,pointers ,blocks_per_bit ,max_bytes):
2 k=0
3 j=0
4 free_cluster =0
5 for k in pointers:
6 table =[]
7 start_record=_offset+pointers[j]
8 f.seek(start_record +16)
9 starting_block=struct.unpack_from("Q", f.read (8))[0]

10 amount_blocks=struct.unpack_from("Q", f.read (8))[0]
11 f.seek(start_record +64)
12 offset_start_table=struct.unpack_from("I", f.read (4))[0]
13 length_table=struct.unpack_from("I", f.read (4))[0]
14 for m in range(length_table):
15 var=struct.unpack_from("B", f.read (1))[0]
16 table.append(var)
17 real_length_table=amount_blocks/blocks_per_bit /8
18 if real_length_table != max_bytes:
19 free_cluster += calc_free_space(real_length_table ,8,table)
20 free_cluster += calc_free_space (1, amount_blocks/blocks_per_bit %8,table)
21 else:
22 free_cluster += calc_free_space(len(table),8,table)
23 allocator_record ={’Record No’:j,’Allocation Table’:table ,’Starting Block’:starting_block ,
24 ~ ’Amount Blocks ’:amount_blocks ,’Offset Start Table ’:offset_start_table ,
25 ~ ’Length Table ’:length_table}
26 allocator_records.append(allocator_record)
27 j+=1
28 free_space=free_cluster*blocks_per_bit *16384
29 return free_space

Listing A.13: Function for analyzing the $Allocator-Files

The function is called with the offset for: the $Allocator-file; the pointers; the
number of blocks, which are allocated per bit and the maximum amount of bytes
per allocation table (see also the calling code A.7). The starting block and the
amount of blocks in each record are extracted in lines 9 and 10; the offset to
the start of the table and the length of the table are extracted in lines 12 and
13. The bytes of the allocator table are extracted individually and added to the
list variable "table". Because the size of a filesystem normally does not equal a

87

ReFS

multiple of 16 GiB (512 MiB allocated per byte in $Allocator_Lrg multiplied by
32, the maximum bytes in $Allocator_Lrg-table), the allocation tables are not
fully filled. Firstly, the number of bytes used in the allocator table is calculated.
Therefore the number of blocks is divided by the number of blocks per bit and
by 8 (line 17). Because dividend and divisors are all integers, the result is also
an integer. If the result equals the maximum number of bytes, the allocation
table is filled completely; the else loop is called (line 22). Otherwise, the free
_space_calc function is called for the integer value of included bytes; afterwards
the same function is called for the remainder value.

1 def calc_free_space(length ,last_byte ,table):
2 free=0
3 for n in range(length):
4 for o in range(last_byte):
5 vars=testBit(table[n],o)
6 if vars == 0:
7 free +=1
8 return free

Listing A.14: Function for adding unallocated bytes

The function is called with the integer value for the amount of bytes or the value
one, in the case of calculating the remainder-byte; the value 8 for the integer
calculation, because here every byte contains eight allocations. In the case of the
remainder byte the remainder is transmitted as well as the allocation table. For
every byte the test_bit function is called either eight times, in case of an integer
byte, or as often as the remainder defines.

1 def testBit(integer ,offset):
2 mask=1 << offset
3 return (integer & mask)

Listing A.15: Function for bitwise operation on every byte

This function takes the allocation byte and returns, according to the state of the
calling loop, the corresponding bit, so the calling function calls every returned
zero-bit because this identifies an unallocated byte (line 6 and 7 of listing A.14).
The amount of zero bits is returned to listing A.13. According to the type of the
allocation table (large, medium, small), the amount of free bits is multiplied by
the amount of blocks_per_bit; the value this function is called with (line28 of
listing A.13).

$Attribute_List
This record of the $TREE_CONTROL is not parsed in my tool, because I could not
discover the meaning of this record, until the time of writing this master thesis.

$Object
Last record in the $TREE_CONTROL is the record called $Object by ENCASE;
rightly it should be named $OBJECT_TREE (see section ??).

88

ReFS

1 def directory_structure(_offset ,pointers):
2 dir_structure =[]
3 j=0
4 for k in pointers:
5 f.seek(_offset+k+24)
6 node_id=struct.unpack_from("I", f.read (4))[0]
7 f.seek(_offset+k+40)
8 child_id=struct.unpack_from("I", f.read (4))[0]
9 if len(dir_structure) == 0:

10 j+=1
11 node_name="Node"+str(j)
12 node ={}
13 node[node_name]= node_id
14 node["Child"]=[]
15 if child_id != 0:
16 node["Child"]. append(child_id)
17 dir_structure.append(node)
18 else:
19 control =0
20 for i in range(len(dir_structure)):
21 node_name="Node"+str(i)
22 cache=dir_structure[i]
23 if node_id in cache.values ():
24 cache["Child"]. append(child_id)
25 control +=1
26 if control == 0:
27 j+=1
28 node_name="Node"+str(j)
29 node ={}
30 node[node_name]= node_id
31 node["Child"]=[]
32 if child_id != 0:
33 node["Child"]. append(child_id)
34 dir_structure.append(node)
35 return dir_structure

Listing A.16: Function for parsing the $Object

This function parses every node of the $OBJECT for the value of the node ID at
offset 018, decimal 24, and the value for the child ID at offset 0x28, decimal
40, up to line 8. The directory structure should be stored in a corresponding
variable, defined as a list. For the first parsed node, a check whether if the node
already exists in the variable is not needed, so a dictionary variable node is ini-
tialized; the node ID is added; the child ID is appended to a list variable child,
which is added to the node variable. The whole node dictionary is appended to
the dir_structure variable (lines 9 to 17).
Beginning with the second record of the $OBJECT, it is neccessary to check
whether if there is already an entry for the parent node within the dir_structure
variable. If the node ID is already listed, the child ID is appended to the child list
(lines 20 to 25), otherwise a new node is initialized and the child ID is appended
to a new child-list. The directory structure is not visualized automatically; the
user has to choose a special option in the main menu.

Summary $Tree_Control
At this point, all necessary information from the records of the $TREE_CONTROL
are extracted and stored in the variable parsed_nodes. The rest of the tool will re-
fer to this variable. Furthermore, the code will hand over the variable parsed_nodes
to the output-function (already described in the last lines of subsection VBR
(A.3.2)), which gives the user the filesystem information.

89

ReFS

Figure 46: Screenshot from the Fsstat of my tool

A.3.4 Analysis of the extracted information

Below, some screenshots of the output from my tool are provided, starting with
the visualized output from the $OBJECT, which is requested by choosing option
3 in the mainmenu.

90

ReFS

Figure 47: Screenshot from the visualized directory structure

The next option in the mainmenu is the fls-option, known from sleuthkit, which
provides a list of the current files in the filesystem.

Figure 48: Screenshot from the list of current files

When creating this overview, I realized that a child ID could be assigned several
times, at least in different nodes, so or so I had to create a more specific id, a
combination of the parent ID and the child id, named internal id. This internal ID
is needed for the file details, therefore the internal ID is split into its components;
afterwards the information can be drawn out of the node-dictionary, created by
parsing the single nodes.

91

ReFS

Figure 49: Screenshot from file details

The last piece information shown in the screenshot is the DataRuns. This infor-
mation is used for extracting the files to a path, which is to be specified after
entering a "y" to the question at the bottom.

The last option in the mainmenu concerns the $Recycle.bin.

Figure 50: Screenshot from the $RECYCLE.BIN

According to the code for the current files, the files from the $RECYCLE.BIN also
get individualized by an internal ID; here I used the node ID from the $RECY-
CLE.BIN-node, not from the original parent folder. Recalling the information for
a single file from the $RECYCLE.BIN, the internal ID is split into its components,
but, as described in the $RECYCLE.BIN-section ??, for every deleted file a $R and
a $I record exists; one containing the information for the record within the $RE-
CYCLE.BIN-node; the other one for the record in the original node. On the one
hand, the tool has to extract the information from all the named sources. On the
other hand, this information has to be presented in a meaningful manner.

92

ReFS

Figure 51: Screenshot from file details (deleted files)

After displaying the information for the deleted files, the user is asked to extract
the file again, by which all the functions of my tool are described.

93

ReFS

A.4 Templates

A.4.1 VBR

PART OFFSET LENGTH DESCRIPTION

0x00 0x03 Jump Instruction
0x03 0x08 FileSystemName
0x07 0x05 Reserved space, containing all zeros
0x10 0x04 Structure Identifier
0x14 0x02 Number of bytes in the VBR

0x16 0x02 Checksum for the FSRS

0x18 0x08 Offset to BACKUPVBR

VBR 0x20 0x04 Bytes per Sector
0x24 0x04 Sectors per Cluster
0x28 0x01 Filesystem Major Version
0x29 0x01 Filesystem Minor Version
0x2A 0x02 unknown
0x2C 0x04 unknown
0x30 0x08 unknown
0x38 0x08 Volume Serial Number (LE)

Table 10: VBR

A.4.2 $Tree_Control

PART OFFSET LENGTH DESCRIPTION

0x00 0x30 ENTRYBLOCKDescriptor
0x00 0x08 ENTRYBLOCK-number

Tree 0x20 0x04 unknown
Control 0x30 0x10 unknown
Node 0x50 0x04 Offset to first pointer to extents

0x54 0x04 amount of extents
0x58 0x04 Offset to record
0x5C 0x04 Length of the record
0x00 0x08 ENTRYBLOCK-number
0x3C 0x04 Length of record

Extent 0x58 0x04 Amount of records in the extent
Followed by the pointers

(rel. offset) 0x5C 0x04 Pointer to the first record
0x98 0x18 1st record

Table 11: Breakdown-table for the $TREE_CONTROL

94

ReFS

A.4.3 $Object_Tree

PART OFFSET LENGTH DESCRIPTION

EntryBlock 0x00 0x08 ENTRY-BLOCK-Number
Descriptor 0x00 0x30 Entry-Block-Descriptor

0x30 0xF0 Node-Descriptor
Node 0x30 0x04 Length of NODE-DESCRIPTOR

Descriptor 0x50 0x04 amount of records in the node
0x120 0x20 length of Header
0x124 0x04 offset to next free record

Node 0x128 0x04 free space in the node
Header 0x12C 0x04

0x130 0x04 offset to first pointer
0x134 0x04 amount of pointers in this node
0x138 0x08 offset to end of node
0x00 0x04 length of record

Record 0x18 0x04 Node ID
(rel. offset) 0x20 0x04 EntryBlock - number (cluster offset)

0x30 0x04 / 0x08? unknown (Identifier??)

Table 12: $OBJECT_TREE

95

ReFS

A.4.4 $Allocator_Lrg, $Allocator_Med, $Allocator_Sml

PART OFFSET LENGTH DESCRIPTION

EntryBlock 0x00 0x08 ENTRY-BLOCK-Number
Descriptor 0x00 0x30 Entry-Block-Descriptor

0x30 0x38 Node-Descriptor
Node 0x30 0x04 Length of NODE-DESCRIPTOR

Descriptor 0x50 0x04 amount of records in the node
0x68 0x20 length of Header
0x6C 0x04 offset to next free record

Node 0x70 0x04 free space in the node
Header 0x74 0x04

0x78 0x04 offset to first pointer
0x7C 0x04 amount of pointers in this node
0x80 0x08 offset to end of node
0x00 0x10 File-Signature????
0x10 0x08 Starting ENTRYBLOCK described in this record
0x18 0x08 Number of ENTRYBLOCKs described in this record

Record 0x20 0x08 ????
(rel. offset) 0x28 0x08 ????

0x30 0x08 ????
0x38 0x08 ????
0x40 0x04 Length of Header, beginning after the signature
0x44 0x04 Length of the Allocation Table
0x48 0x80 Allocation Table

Table 13: $ALLOCATOR_LRG,$ALLOCATOR_MED, $ALLOCATOR_SML

A.4.5 $Object

PART OFFSET LENGTH DESCRIPTION

0x30 ENTRYBLOCK - Descriptor
NODE DESCRIPTOR

0x20 NODE HEADER

0x00 0x02 length of record
$OBJECT 0x18 0x02 parent node id

(rel. offset) 0x28 0x02 child node id

Table 14: $OBJECT

96

ReFS

A.4.6 EntryBlock

PART OFFSET LENGTH DESCRITPION

0x00 0x08 ENTRY-BLOCK-Number
EntryBlock 0x00 0x30 Entry-Block-Descriptor
Descriptor 0x08 0x08 counter for copies of the ENTRYBLOCK

0x18 0x08 Node ID
0x00 0x38 / 0xE8 Node-Descriptor

Node 0x00 0x04 Length of NODE-DESCRIPTOR

Descriptor 0x18 0x02 amount of extents
(rel. offset) 0x20 0x04 amount of records in the node

0x00 0x20 length of Header
Node 0x04 0x04 offset to next free record

Header 0x08 0x04 free space in the node
(rel. offset) 0x0C 0x04

0x10 0x04 offset to first pointer
0x14 0x04 amount of pointers in this node
0x18 0x08 offset to end of node

Table 15: ENTRYBLOCK (Descriptor, Node-Descriptor and Node-Header)

97

ReFS

A.4.7 Directory Metadata Record (0x10000000)

PART OFFSET LENGTH DESCRIPTION

RECORD 0x00 0x04 length of the record
HEADER 0x0A 0x02 offset to first record

0x10 0x04 attribute identifier
0x00 0x04 Length of the attribute

META 0x04 0x02 offset to first timestamp
DATA 0x28 0x08 first timestamp
ATTR. 0x30 0x08 second timestamp

0x38 0x08 third timestamp
0x40 0x08 fourth timestamp
0x50 0x04 Node ID

INSIDE 0x04 0x02 length of header
RECORD 0x10 0x02 offset to first pointer
HEADER 0x12 0x02 amount of pointers

1. INSIDE RECORD 0x20 0x04 length of unknown structure
2. INSIDE RECORD 0x00 0x04 length of second record

(rel. Offset) 0x10 0x02 pointer to end of name
0x18 0x02 length of name

Table 16: $OBJECT

A.4.8 FileNameAttribute File (0x30000100)

PART OFFSET LENGTH DESCRIPTION

0x00 0x04 Length of the whole record
0x0A 0x02 Length of the filename-attribute

FNA 0x0C 0x04 remaining data in the record
0x10 0x04 Attribute-Type identifier
0x14 varies filename

Table 17: FILENAMEATTRIBUTE -File

98

ReFS

A.4.9 FileNameAttribute Folder (0x30000200)

PART OFFSET LENGTH DESCRIPTION

0x00 0x04 Length of the whole record
0x0A 0x02 offset to end of name
0x0C 0x04 remaining data in the record
0x10 0x04 Attribute-Type identifier

FNA 0x14 varies foldername
value offset 0x0A 0x08 Node ID

value offset 0x0A + 0x10 0x08 CREATED

value offset 0x0A + 0x18 0x08 MODIFIED

value offset 0x0A + 0x20 0x08 METADATA MODIFIED

value offset 0x0A + 0x28 0x08 LAST ACCESSED

Flags for Files, 0x00 - no flags,
0x01 - read only, 0x02 - hidden,

0x20 - archive

Table 18: FILENAMEATTRIBUTE -Folder

A.4.10 MetaDataAttribute

PART OFFSET LENGTH DESCRIPTION

0x00 0x04 Length of the attribute
0x04 0x02 possible offset to first value in the attribute??
0x28 0x08 first timestamp
0x30 0x08 second timestamp

META 0x38 0x08 third timestamp
DATA 0x40 0x08 fourth timestamp
ATTR. 0x48 0x01 Flags for Files, 0x00 - no flags,

0x01 - read only, 0x02 - hidden, 0x20 - archive
0x50 0x04 Parent Node ID
0x58 0x04 Child ID
0x60 0x08 unknown value
0x68 0x08 logical filesize
0x70 0x08 physical filesize

Table 19: METADATAATTRIBUTE

99

ReFS

A.4.11 DataRunAttribute

PART OFFSET LENGTH DESCRIPTION

0x00 0x20 Header for the whole structure
0x00 0x04 Length of the header
0x04 0x04 offset to next free record

Header 0x08 0x04 free space in the node
0x10 0x04 offset to the pointer
0x14 0x04 amount of pointers
0x18 0x04 end of the structure
0x20 0x20 next header structure
0x20 0x04 length of the structure

Header 0x30 0x04 amount of data within the structure, except header
0x38 0x04 Attribute-Type identifier??
0x40 0x88 record
0x40 0x04 length of the record

Record 0x74 0x08 physical size of the file
0x7C 0x08 logical size of the file
0xC8 0x20 next header structure
0xC8 0x04 length of the header
0xCC 0x04 offset to next free record
0xD0 0x04 free space in the node
0xD8 0x04 offset to pointers
0xDC 0x04 amount of pointers

DATARUN 0xE0 0x04 offset to end of the structure
ATTR. 0xE8 0x30 first datarun

0xE8 0x04 length of the datarun
0x100 0x08 amount of clusters in this datarun
0x108 0x08 starting cluster of this datarun
0x118 0x30 second datarun
0x118 0x04 length of the datarun
0x130 0x08 amount of clusters in this datarun
0x138 0x08 starting cluster of this datarun
0x198 0x04 first pointer of datarun structure
0x19C 0x04 second pointer of datarun structure
0x274 0x04 pointer of the whole structure

Table 20: DATARUNATTRIBUTE

100

ReFS

A.4.12 Child Attribute (0x20000080)

PART OFFSET LENGTH DESCRIPTION

0x00 0x04 Length of the whole record
0x04 0x02 offset to attribute identifier
0x06 0x02 remaining bytes in header
0x0A 0x02 length of header

CHILD 0x0C 0x02 remaining bytes in record
ATTR. 0x10 0x04 attribute identifier (0x20000080)

0x18 0x04 Parent ID
0x20 0x08 Child ID
0x30 0x02 always 0x000C ?!
0x32 0x02 length of name
0x34 filename, written in unicode

Table 21: CHILD ATTRIBUTE

101

	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Target Group
	The Significance of Open Source Knowledge in Forensics
	ReFS - Reverse Engineering of a File System
	Overall Problem
	Research Questions
	Limitations
	Master Thesis Outline

	Background
	Literature Research
	Building the next generation file system for Windows: ReFS
	The Microsoft ReFS On-Disk Layout
	Verifying the properties of ReFS
	Open Source Digital Forensic Tools
	Specialization Project

	File System
	B-Tree
	Encase
	File System Recognition Structure
	Reverse Engineering

	Methodology
	Research Design
	Testing Environment
	Proof of Concept

	Results
	VBR
	$Tree_Control and System Files
	Objects
	Allocation
	Attributes

	EntryBlock
	Starting Area
	Record Area

	Discussion
	Conclusions
	Research Questions
	Future Work

	Bibliography
	Appendix
	Preparation
	HDD
	Preparation Machine
	Examination Machine
	Other Hardware / Software

	Detailed Results
	VBR
	$Tree_Control
	Second Node
	FNA
	$Recycle.bin

	Coding
	Basics
	Vbr
	Tree-Control
	Analysis of the extracted information

	Templates
	VBR
	$Tree_Control
	$Object_Tree
	$Allocator_Lrg, $Allocator_Med, $Allocator_Sml
	$Object
	EntryBlock
	Directory Metadata Record (0x10000000)
	FileNameAttribute File (0x30000100)
	FileNameAttribute Folder (0x30000200)
	MetaDataAttribute
	DataRunAttribute
	Child Attribute (0x20000080)

