@NTNU

Norwegian University of
Science and Technology

Deep Learning Applied to Automatic
Anomaly Detection in Capsule Video
Endoscopy

Johnny Offerdal

Applied Computer Science

Submission date: June 2018

Supervisor: Rune Hjelsvold, IDI
Co-supervisor: ~ Ahmed Mohammed, IDI

Norwegian University of Science and Technology
Department of Computer Science

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Preface

This is a Master’s thesis in Applied Computer Science at NTNU Gjgvik, carried out
during the spring semester in 2018. The idea to the project came up during an
discussion with one of the project’s supervisors, Mohammed Ahmed Kedir. Readers
of this thesis should be familiar with computer science but most concepts discussed
are explained in the thesis.

01-06-2018

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Acknowledgment

I would like to thank the following persons for their great help during Mohammed
Ahmed Kedir and Rune Hjelsvold for supervision and interesting discussion through-
out this project. I would also like to @istein Hovde for his contributions and ex-
plainations of diseases in the gastrointestinal tract.

J.O.

iii

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Abstract

Introduction: Regularly screening of the gastrointestinal tract for polyps is the an
important measure for preventing colorectal cancer. Screening large population’s
gastrointestinal tract is with todays common methods too time consuming and ex-
pensive to accomplish. In this thesis explore the possibilities of using capsule video
endoscopy (CVE) in combination with state of the art convolutional neural network
(CNN) to create a computer aided diagnosis-system for automatic classification of
diseases in the gastrointestinal tract.

Methods: First we create a dataset using images extracted from real CVE exami-
nations of 19 patients. We use tensorflow framework to train and evaluate different
state of the art CNNs compare with each other. We also propose a new CNN con-
sisting of two state of the art CNNs in a parallel architecture. We also develop a
Graphical User Interface (GUI) aimed at medical doctors for classifying VCE data.

Results: The dataset created contains 3267 labeled images with highlighted le-
sion annotation. We achieve Fypcro-Score, precision, recall and accuracy at 0.547,
0.553, 0.548 and 0.682 respectively on the best performing CNN. The GUI proto-
type is a simple application which classifies images based on predictions done by
the trained network.

Discussion: The dataset have some balance issues as the largest class, normal
images contains more than thousand samples, and five of the diseases contains less
than hundred. The CNNs show promising preliminary results suggesting that it’s a
feasible approach. The GUI prototype suffers from severe performance issues and
is only able classify about two images per second.

Conclusion: In this thesis we have shown that using CNN in combination with
CVE is a a feasible approach. The results are promising but more research is re-
quired. The big challenge in image classification continues to be having a large and
reliable dataset.

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Contents

Preface e i
Acknowledgment iii
Abstract e \s
Contents o it e e e e e e e vii
Listof Figures e ix
Listof Tables e xi
1 Introduction i 1
1.1 Background & motivation 1
1.2 Problem statement v vttt e 2
1.3 Main contributions L o e 2
1.4 Outline e 2

2 Background e 5
2.1 Traditional screening methods 5
2.1.1 Capsule Video Endoscopy oo 6

2.1.2 Computer Aided Diagnosis (CAD) 6

2.2 MachineLearning. i it 6
2.3 Convolutional Neural Networks 7
2.3.1 Well known CNN architectures 7

2.4 RelatedWork 8

3 Creatingthedataset. 9
3.1 Methods e 9
3.2 Results o o e 10
3.3 Discussion e e e e e 11

4 Experiments 13
4.1 Methods o v i i e e e 13
4.1.1 Setup 13

4.1.2 Experiments 1-4 13

4.1.3 Experiment 5 - Proposed network, 14

4.1.4 Experiment 6 14

4.1.5 Evaluation. 16

4.2 ResultS. o o v i e e 16
4.2.1 Experimentl 16

4.2.2 Experiment2 16

vii

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

4.2.3 Experiment3 e

4.2.4 Experiment4

4.2.5 Experiment 5 - Proposed network

4.2.6 Experiment6

4.3 DiSCUSSION . .« v v v v vt e e e e e e e e e e

5 GUIPrototype e
5.1 Methods e
5.1.1 Tools & libraries

5.2 Implementation e
53 Results o e
5.4 Discussiont e e e e e e

6 Conclusion
6.1 Future Work. e
Bibliography
A Evaluationscripts
B Training e e e e
B.1 train _image classifierpy
B.2 Training script for proposed architecture

C Proposednetwork
Main code for CveClassifier
E Helperscripts ittt

o

viii

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

O 00 N O U1 AW N

T T S
N O WO N RO

List of Figures

The Gl tract withlabels 1
A ColonosCcope i . e e e e e e e 5
A Capsule Endoscopeo 6
Example of an .annotation file., 10
imgAnnotation toolinuse. oo 11
Data distribution in the dataset. 12
Confusion matrix for experiment 1 17
Confusion matrix for experiment2 17
Confusion matrix for experiment3 18
Correctly predicted images., 18
Incorrect predictions done by the network. 19
Confusion matrix for experiment4 19
Confusion matrix for experiment5 19
Confusion matrix for experiment 6 20
Use case diagram for the prototype 24
Sequence diagram for the prototype. 24
Screen dump of the applicationinuse. 26

ix

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

List of Tables
Showing training parameters for experiment 1-4 15
Summary of the results from the experiments 21

Xi

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

1 Introduction

1.1 Background & motivation

There are several types of diseases that can affect the human gastrointestinal (GI)
tract(see figure 1). This includes three types of cancer, colorectal cancer, stomach
cancer and esophagus cancer. Other diseases located in the GI tract include inflam-
matory bowel dieases (IBD) like chron’s disease and ulcerative colitis[1] among
others.

Colorectal cancer is the fourth most common cancer diagnosed in the USA, and
is expected to cause over 50.000 deaths in USA alone, in 2018 according American
Cancer Society[2]. These cancers often develop in lesions called polyps, growths
inside the large bowel (colon) and the small bowl. Early detection of polyps in
the gastrointestinal (GI) tract is crucial in preventing the disease to develop and
spread, as well as provide more options regarding treatments[3].

Todays screening methods like endoscopy and colonoscopy are not compatible
with population wide screening regimes because of the time consumption and the
increased cost for health care. Therefore new technology has to be applied for time
efficiency and cost reduction.

Figure 1: The GI tract with labels’

Image gathered from: https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_

https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

1.2 Problem statement

Capsule video endoscopy (CVE) is still rarely used, and one of the reason for that
is the expenses in terms of the system itself and the time consumption related to
analyzing the data. A full video from the capsule may be as long as 8 hours, which a
medical doctor will have to examine. This is not just a tiresome task for the medical
doctor but also many hours the doctor could have spent consulting other patients.
Having a system that can greatly reduce the time spent on analyzing CVE exami-
nation might be a step in the right direction for population wide gastrointestinal
screening.
The main goals of this thesis is therefore:

e Create a dataset containing

e Explore the possibility for a new architecture for convolutional neural net-

works.

Create Graphical User Interface (GUI) for disease classification.

e Compare state of the art convolutional neural networks against each other
for sake of lesion classification.

1.3 Main contributions

In this thesis, we shown that convolutional neural networks can be used in the
case of automatic lesion classification in capsule endoscopy videos. The preliminary
results are promising and suggests that there is large potential in this technology
for automatic lesion classification. The system shows low error-rate for normal vs
lesion which is important factor within the medical area.

The main contribution of this thesis is the comparisons of different state of
the art convolutional neural networks on the task of lesion classification, and the
graphical user interface aimed at medical doctors. Hopefully this will trigger more
interest in the area so that we in the future patients will have better and quicker
screening options available as well as reduced health care costs.

1.4 Outline
The rest this thesis is structures as follows:

e Chapter 2 - Background: The background covers today’s screening methods,
brief history of machine learning techniques, introduction to convolutional
neural networks and related works.

e Chapter 3 - Creating the dataset: In this chapter we present the methods
used for creating the dataset, we present the results and show some examples
from the dataset. We then discuss the process and the findings.

diagram-en.svg

https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg
https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

e Chapter 4 - Experiments: In this chapter we present the methods we used
in the experiments, we present the results from training and evaluation. We
then discuss the findings.

e Chapter 5 - GUI Prototype: In this chapter we present the methods we used
to develop the prototype, we present a use case and provide a sequence dia-
gram explaining the how the application work. Further we show the design
and results of the development and at last we discuss the development pro-
cess and results.

e Chapter 6 - Conclusion: In this chapter we summarize our findings in the
thesis and present potential future works.

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

2 Background

2.1 Traditional screening methods

The most common method used to examine the digestive tract is the use of a flex-
ible wired endoscope, where a small camera is inserted either trough the mouth,
called endoscopy or through the rectum, called colonoscopy (shown in figure 2).
These are very common procedures, and according to Gastrointestinal Endoscopy
Associates (GIEA), the procedure only lasts about 30 minutes [4]. However these
procedures are limited, where the endoscopy are able to examine the esopha-
gus, stomach, duodenum and a colonoscopy only examines the colon and terminal
illeum, the small intestines (illeum) are not examined. These procedures may also
be uncomfortable for the patients and some will require drugs, to be sedated or to
numb the back of the throat. Particularly patients having problems with gagging
will feel pain and uncomfortable during an endoscopy.

SUHIIGHT

GHIT

Figure 2: An example of a colonoscope’

A less invaisive method for examining the colon is CT colonography also called
virtual colonoscopy. This method uses x-ray images to examine for polyps in the
colon. The problem with CT colonography is that it’s only effective in detecting
larger polyps with size greater than 1 cm. This procedure also exposes the patient
for radiation, which induces the patient for a slight risk of cancer.

lImage gathered from: https://commons.wikimedia.org/wiki/File:Colonoscope.jpg

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

2.1.1 Capsule Video Endoscopy

Capsule video endoscopy (CVE) or wireless capsule endoscopy (WCE) is a tiny
camera shaped as a vitamin pill (shown in figure 3). It contains one or two cameras,
LED flash, a battery and a wireless transmitter that transfers video to a receiver,
which often is placed on the patient’s body. The patients swallow this capsule, and
it will record video at a rate of 2-6 frames per second depending on the velocity of
capsule, through the whole digestive tract. This of course also includes the small
intestines which is missed by the traditional screening method.

Figure 3: An example of a capsule endoscope?

2.1.2 Computer Aided Diagnosis (CAD)

Computer aided diagnosis (CAD) are software that can assist medical professionals
in diagnosing the patient by interpreting medical images. There are multiple ex-
amples of CAD systems in use at hospitals, including mammography (breast cancer
screening)[5], colon cancer[6], and for coronary artery disease[7] among others.
The goal of CADs is to assist the medical doctor to diagnose the patient more
quickly than manually examining the medical images, to reduce cost and securing
the correct diagnosis.

2.2 Machine Learning

Machine learning was defined back in 1959 by Arthur Samuel [8], where he cre-
ated a program which learned checkers by playing against itself. Over time the
game learned patterns which would lead to wins and patterns which would lead to
losses and after only hours of training it would actually play checkers better than
Arthur Samuel himself. A more formal definition was made by Tom Mitchell in

2Image gathered from: https://commons.wikimedia.org/wiki/File:CapsuleEndoscope.jpg

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

1998 [?]: "A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E."

There are two main categories of machine learning, supervised learning and
unsupervised learning. In supervised learning, we have a input x and an output Y
and use an algorithm to map the function from input to output. This method of
learning requires a large set of labeled data the algorithm can use to learn.

The goal is to generalize such that when the function receives new data it will
output the correct prediction. Supervised learning can further be broken down to
classification problems and regression problems.

In unsupervised learning, there is just a input X with no corresponding correct
output, the network itself then have to learn the underlying structure in the data.

Deep learning is a machine learning approach that in recent times grown great
popularity in the artificial intelligence community even though deep learning was
introduced to the machine learning community by Rina Dechter back in 1986
[9]. The introduction of powerful hardware and especially the usage of multi-core
Graphical Processor Units (GPUs) really kicked off the community. Deep learning
include architectures like deep neural networks, deep belief networks among oth-
ers, have in recent years applied to a wide range tasks like computer vision and
natural language processing to mention a few. The most common neural network
for computer vision and image classification tasks are convolutional neural net-
works, which will be our focus in this thesis.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) or deep CNNs are artificial neural networks
primarily used in image recognition and classification tasks. The architecture is
inspired by how the neurons in the human brain works. Each neuron in the CNN
will eiter activate or deactivate when looking at some object. Each layer will focus
on different features, e.g will the first layers focus on lines and edges, while we
progress towards the last layers the focus will change to e.g. colours. Putting all
the neurons together and the network is able to recognize even small details in an
image.

2.3.1 Well known CNN architectures

Inception and Inception ResNets [10] is one of the most famous CNNs available,
and is developed by the Google brain team working on artificial intelligence. The
first version of inception was called GoogLeNet, later years they have released up-
dated models every now and then. The latest model released Inception v4 and In-
ception ResNet v2. These are currently among the top performers in the ImageNet

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

challenge.
AlexNet [11] was presented by Alex Krizhevsky et al. in 2012 with results on
spectactular results on the ImageNet® dataset.

2.4 Related Work

There is a much research going on in this field but most of the studies seem to be
investigating polyp detection only. Yuan et al. [12] did a study on capsule video
endoscopy published 2017 on using deep learning for polyp, bubble and turbid
detection. They used a deep learning technique called stacked sparse autoencoder
with image manifold contraint (SSAEIM). Their results are state of the art with an
overall recognition at 98%. The dataset they use is unfortunatly not available to
the public because of privacy issues.

In 2017 Li et al. [13] conducted a study using capsule video endoscopy clas-
sifying between normal and haemorrhage. Their dataset consisted of 40.000 nor-
mal images and about 1.300 haemorrhage images. They implemented rotation and
luminance change, blurring and poisson noise in their image augmentation tech-
nique. They achieved an F-score of 98.87%.

3ImageNet is a dataset containing 1000 classes, and is used in computer vision challenges

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

3 Creating the dataset

In deep learning is having a good dataset essential to get good results when training
a network. This means having large amount of images so that the network is able
to learn the repeating patterns. In this chapter we present the method, the results
and discuss the process and the outcome of the creation of the dataset used in this
thesis.

3.1 Methods

Sykehuset Innlandet provided 36 anonymised PillCam reports in Rapid Reader [14]
format, with several lesions highlighted. These reports were reviewed, and inter-
esting parts were extracted into video sequences a few seconds before and after the
highlighted lesion. These video sequences were then split into single PNG image
files, for each lesion per patient.

The images were further annotated with a open source tool called imgAnnota-
tion available at github!. In discussions with my supervisor Ahmed Kedir and his
supervisor at Sykehuset Innlandet @istein Hovde we came up with what informa-
tion that would benefit this thesis, and further work in the field. When annotating
images we were looking for the following lesions:

e Polyps

e Pseudopolyps
e Granularity

e Erosions

e Ulceration

e Diverticulosis
e Erythema

e Haemmorhoids
e Oedema

e Haemorrhage

All lesions observed where then labeled with bounding boxes around the region
of interest. Images with no observed lesions was labeled as 'normal’. Additionally
we stored the following relevant information about the images:

e Bile: Binary 1/0

limgAnnotation tool available at https://github.com/alexklaeser/imgAnnotation

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Bubble: Binary 1/0

Cleanse level: Graded 1-3 (1 is best cleanse)
e Informative: Binary 1/0

e Debris: Binary 1/0

This information was saved as a .annotation (see example in figure 4) file cre-
ated by the imgAnnotation application. We used this information to further filter
our data. Images with the worst cleanse (3) and didn’t contain any lesions, are not
included in the final dataset as it is not useful to see only debris or bubbles for the
medical doctor.

#HA##AH##HAH#HE NEW FILE ##AH#H#AH#AH#HH
file: /home/johnny/imgAnnotation-master/imgAnnotation-master/....
debris: 1

object: 2

bbox: 70,393,321,142
erosions: 1
erythema: 1

object: 3

bbox: 97,32,302,87
erosions: 1
erythema: 1

#H##H##H#H#SE NEW FILE #HHAH#H#H#AH#H#HHS

file: /home/johnny/imgAnnotation-master/imgAnnotation-master/....
debris: 1

good_cleanse: 0

informative: O

Figure 4: Example of an .annotation file.

A python script was created to automate the process of extracting the relevant
images based on these criteria, the script can be reviewed in appendix E.The im-
ages were then converted into TFRecords, with 90% / 10% split in training and
validation respectively, using the scripts in appendix E.

3.2 Results

We labeled images from 19 of 36 available patients with different diseases, gath-
ering in total 3267 images. The distribution of images in the dataset can be seen
in figure 6. The resulting dataset is quite skewed, where the normal class contains

10

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

ImageAnnotation - P25.annotation x

Database Edit Help

Images in Data Base:
File/Directory -
P25E2_0018.png
P25E2-0019.png
P25E2-0020.png
P25E2_0021png
P25E2_0022.png
P25E2_0023.png
P25E2.0024.png
P25E2-0025.png
P25E2.0027.png
P25E2_0028.png |
P25E2_0029.png
P25E2_0030.png
PIRFY A0Y mnn
Add File Delete Files
Zoom (in%): 100 |2
Object properties Image properties ®
<ID> granularity erosions ulceration property value

2 146 0 1 2 good_cleanse |1
3147 0 1 3 debris
4 informative |1

Add Property New Object | | Delete Objects Add Property

Figure 5: imgAnnotation tool in use

more than thousand samples and four of the lesion classes contains less than hun-
dred samples.
In figure 6 it’s hard to see but the haemmorhoids class contains only 11 samples.

3.3 Discussion

The task of creating the dataset was very time consuming, especially since we dont
have any expertise nor in-depth knowledge of what to look for in these images. We
were very dependant on using the rapid reader reports created by specialists from
Sykehuset Innlandet and follow the marked lesions forward and backwards in time
when annotating images.

The outcome of the dataset is not great, there are large imbalances between
classes and the total size is small, but because of time constraint concerning the
thesis we had to say stop at some point, to finish in time.

It’s important to note that only a small fraction of the dataset had been vali-
dated by a specialist. This was done with a specialist from Sykehuset Innlandet, in
collaboration with us. The dataset may contain human errors and should be treated
as that. Hopefully this dataset can be extended and validated and in the future be
released to the public so that more researcher can work on solving the problems at
hand.

The dataset is not released to the public because of privacy issues but might be
released in the future.

11

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Number of samples vs. Lesion

1800 B Number of samples
1600
1400
1200
1000
800
600
400
200

Mumber of samples

Figure 6: Data distribution in the dataset.

12

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

4 Experiments

In this chapter we present the methods used in the experiments and the results
from each experiment and in the end we discuss the process and results. All files
used are publicly except dataset available at https://github. com/johnnyof/cve-classifice

4.1 Methods

In this section we present the hardware and software configurations used to con-
duct the experiments as well as individual differences between the experiments.
The experiments 1-4 was conducted in a very similar manner but the proposed
architecture have some design changes relative to the others.

4.1.1 Setup

All experiments were conducted on a computer provided by NTNU Gjgvik. The
hardware configuration was as follows:

e Processor: Intel Xeon CPU E5-1620 v4 @3.5GHz x 8
e RAM: 32GB
e GPU: nVidia TITAN x (Pascal)

The system was running ubuntu 16.04 LTS, Python version 3.5.2 and Tensorflow
GPU version 1.6 (released February 28th) installed natively using pip3. In addition
are jupyter (version 1.0.0 tested), numpy (version 1.14.2 tested), scikit-learn (ver-
sion 0.19.1 tested) and protobuf (version 3.5.2 tested) required for running train-
ing and evaluation code. The TensorFlow slim framework is the basis of all the work
done in this part, some code is used out-of-the-box, while some code is modified to
fit the use for this thesis.

All scripts used in the following experiments must be placed in the root folder

of tensorflow slim unless otherwise is specified.

4.1.2 Experiments 1-4

Training

These experiments follow the same procedure for training using out-of-the-box
script for training the networks (see appendix B train_image_classifier.py). We train
the networks using the dataset discussed in chapter 3. A complete list of parameters
for each of the experiments are shown in table 1. All experiments use the same data
augmentation technique provided by tf slim’s inception preprocessing script. This
include random rotations, color distortions, scaling and cropping.

13

https://github.com/johnnyof/cve-classification

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Experiment 1 was fine-tuning the inception_resnet v2 [10]. We trained the net-
work for 100k steps, with batch size of 32 using the adam optimizer. In this experi-
ment only the Logits and AuxLogits layers were trained. The weights were initialized
with weigths from a ImageNet checkpoint.

In experiment 2 we trained alexnet_v2 [11] from scratch using batch size of 32
for 100k steps with the adam optimizer. The initial weights were created using the
xavier_initializer function in tf.

For experiment 3 we trained the inception_resnet v2 from scratch using the
same parameters as in experiment 1 except for increased training steps with 50k
to 150k and the initial weights now was done with xavier_initializer.

Experiment 4 replicated experiment 3 in every way except that we instead
trained inception_v4 [10].

4.1.3 Experiment 5 - Proposed network

In this experiment we create a new architecture, a combination of two state of
the art CNNs in a parallel structure. We used Inception v3 [15] in combination
with Inception ResNet V2, section C shows an overview of how the architecture is
constructed. In the code below the construction of the network is shown. We first
feed the images to cnnl(Inception ResNet v2) and cnn2(Inception v3) then we
extract the features from the layers Mixed 7a and Mixed_7c from cnnl and cnn2
respectively. We then concatenate the output tensors at axis 3. Further we flatten
the output before we add a dropout layer and fully connected layer. We trained the
network from scratch for 100k steps, with batch size 16 with the adam optimizer
with an initial learning rate of 0.001. The training was done using the jupyter
notebook shown in appendix B.2

def jonet (images):

netl, end_pointsl = cnnl(images)
netl = end_pointsl[’Mixed_7a’]
net2, end_points2 = cnn2(images)

net2 = end_points2[’Mixed_7c’]
net = tf.concat ((netl, net2), 3)

net = slim.flatten(net)
net = slim.dropout(net, 0.8, is_training=True)
net = slim.fully_connected(net, 11, activation_fn=None)

return net

4.1.4 Experiment 6

To have more data to evaluate our proposed method we did a experiment using
most of the same code but we removed one of the networks but keep the last layers,
corresponding to flatten, dropout and the fully connected layer as demonstrated in
the code below. Other than that the experiment was conducted in the same manner

14

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

-1 JuswnIadxa 10J sia1oweted 3ururen) 3uimoys :T 9[qel,

66T 66T ¥2T 66T 9z1s a8ew uren
1000°0 10000 1000°0 1000°0 91e1 3uTuIes] puy
10°0 100 10°0 10°0 aYel uruIes] [eNIu]
wepe wepe wepe wepe wzundo
000°0ST 000°0ST 000°00T 000°001 sdo1s jo Ioqumnu xeur
uondaour uondaour uondaour uondaour swreu guissadoxdaid
43 43 43 43 ozIs ydleq
SoA SoA SoA ou [031eIdS WO paurel
A uondadur | ga jousar uondoour TA 19UXI[E A Jousa1 uondaour SWEeU [opoul

+ Juawiadxy

€ JuswLIRdxy

7 yuowradxyg

1 Juswndxy

JuswiLIRdXy / sioloweied

15

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

as experiment 5.

def jonet (images):

net, end_pointsl = cnnl(images)
net = end_pointsl[’Mixed_7a’]
#net2, end_points2 = cnn2(images)

#net2 = end_points2[’Mixed_T7c’]
#net = tf.concat((netl, net2), 3)

net = slim.flatten(net)
net = slim.dropout(net, 0.8, is_training=True)
net = slim.fully_connected(net, 11, activation_fn=None)

return net

4.1.5 Evaluation

The evaluation was done using the evaluation part of the dataset, it’s important to

note that those images was never included in the training of the networks. The eval-

uation dataset contains as discussed 400 images. To evaluate our models we use the

metrics precision, recall, F1yaeo and accuracy !. In addition we provide a confusion

matrix. The metrics computed by the scikit-learn library sklearn.metrics.precision_recall_fscore_support,
except for accuracy which is calculated by the tensorflow module tf metrics.accuracy.

The evaluation was done using the evaluation scripts provided in appendix A, be-

cause the general evaluation script provided in tf slim did not provide sufficient

evaluation metrics.

4.2 Results

In this section we present the results from each of the experiments, described in
the methods section and present the confusion matrix for them.

4.2.1 Experiment 1

The first experiment on Inception ResNet v2 using transfer learning and fine-tuning
the last layers achieved Flypacro, precision, recall and accuracy scores at 0.19, 0.22,
0.20 and 0.59 respectively. The results was suprisingly considering transfer learn-
ing are often used in cases when the dataset is not containg large amount of data.
Figure 7 shows the confusion matrix for evaluation of the experiment.

4.2.2 Experiment 2

In the second experiment we trained Alexnet v2 from scratch, performed worst
than the first experiment of fine tuning. With F1pjacro-score of 0.157, it’s the worst
performing network in our case and on our dataset. The confusion matrix is shown
in figure 8. The other evaluation metrics was precision at 0.14, recall at 0.19 and

IMetrics derived from sklearn class http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.precision_recall_fscore_support.html

16

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

diverticulosis [[@ © © 1 @ ® 1 © © 0 6]
erosions [@ 16 2 12 e %] 6 [0} [} e 0]
erythema [@ 17 5 14 e %] 1 [0} [} e 0]
graunulari‘ty [@ 8 18 54 0] 0] 8 0] 0 0] 1]
haemmorhods [@ © © @& & & 1 © © © @]
harmorrhage [@ 1 1 4 @ ©® 6 @ © © 0]
normal [@ ¢} 0 12 ¢} 0 160 [0} [} ¢} 0]
oedema [@] [} 1] 2] 9 [} [}] 0]
polyp [@ @ @ 3 © © 16 © © 0 6]
pseudopolyps [@ 2] 2] 2] 2] Q 3 4] 2] 2] 0]
ulceration [@8 2 © 5 o o 18 © o @ 2]]

8 z £ 2 = .

E u g E 2 -F: _ o 8_ i=l

£ 2 £ 3 E 8 T E o B B

z 8 ® 8 § 5 5 % 3§ ¥ &

Figure 7: Confusion matrix for experiment 1

accuracy at 0.57

diverticulosis [[& ©®© © @& ©& 8 2 © 8 8 @]
srosions [8 & © 33 ©& 8 2 © 8 8 8]
erythema [@ 5 0 30 2]] 1 [} [0} 2] 0]
graunularity [© 3 © &7 © © 12 @ © e @]
haemmorhoids [8 © © @ ©& 8 © © 8 8 8]
harmorrhage [@ 2 © 4 © © 9 © © 0 0]
normal [@ [0} [} 3 0] 0 155 [0} [0} 0] 0]
oedema [@ 1 @8 & & ® 9 © & e @8]
polyp [8 @ © © ® © 23 8 0 O 0]
pseudopolyps [@ @ ©® © ©@ © 5 © © 0 @]
ulceration [®8 2 ® 9 @ © 15 © © & @6]]
" b= "
E @ 1:.:“ 12— iun % =
2 & E 8 g 5 5 ¢ g 2
e g 2 3 g 2 E §E o T
2 & & = 3§ 5§ 5 § & ¥ 2
=] (1] (1} [=Te] = = = [=] (=% (=% =

Figure 8: Confusion matrix for experiment 2

4.2.3 Experiment 3
The third experiment provided the best results on when considering the most re-
liable metric, the Flpacro-score. The Flyao-Score was at 0.548, the precision at
0.553, the recall at 0.548 and accuracy at 0.6825. The confusion matrix is pro-
vided in 9.

We also extract some of the predictions done by the network on the validation
set, in figure 10 we show correctly predicted images and in figure 11 we show

17

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

diverticulosis [[2 ©® ©® © © © © © 8 e @]
erosions [@ 5 9 15 © 1 2 3 8 @ 3]
erythema [@ 15 9 8 © ©@ 1 © 8 e 2]
graunularity [@ 11 19 47 © © 6 8 1 4 @]
haemmorhoids [@ ©® ® ©®© © © © ©& 8 6 @]
harmorrhage [@ 1 ©® 2 ©® 8 @ © © @ 3]
normal [@ @ ® 1 © ©162 1 1 @ 1]
oedema [@ 1 ® @ © @ @ 4 @ @ 5]
polyp [@ @ @ © ® © 3 © 17 © 0]
pseudopolyps [@ ©® ® 1 © © 1 @ @& @& @]
ulceration [@ @ ® @ © 4 2 © 0 6 19]]
= v
'§ - 2 Eﬂ = -
2 w £ 5 58 £ _ o 2 =5
£ g £ 2 E 2 EE s 3 OE
g 8 T = § 5 5 T & ¥ 2
= o1} a =1t} = = = [s] [=% [=% =

Figure 9: Confusion matrix for experiment 3

incorrect predictions.

Truth: [granularity], Prediction [granularity]

Ground Truth: [normall, Prediction [normal]l Ground Trutl

h: [ulceration], Prediction [ulceration] Ground
03:57:2 -

24

FlllGam #GOLONZ PillGam ?COLON1

Figure 10: Correctly predicted images

4.2.4 Experiment 4

The Inception v4 model provided the best accuracy of the tested networks at 0.697.
In the other metrics it performed significantly worse than Inception ResNet v2 in
experiment 3. The Flpacro, precision and recall was 0.43, 0.49, and 0.40 respec-
tively. Confusion matrix for this experiment is shown in figure 14.

4.2.5 Experiment 5 - Proposed network

Our proposed network using a dual parallel architecture did not provide better
results than Inception ResNet v2 alone, in experiment 3. How ever the Flyacro,
precision and recalll is quite close at 0.528, 0.531 and 0.5399 respectively. The
accuracy in this experiment came in at 0.617. The confusion matrix is shown in
figure 13

18

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Ground Truth: [granularity], Prediction [erythema] Ground Truth: [erosions], Prediction [granularity] Ground Truth:

[granularity], Prediction [erosions]
06:40:46 [09 -

Figure 11: Incorrect predictions done by the network.

diverticulosis [# 8 © ® © ©® 3 0 © 8 0]
erosions [@ 11 17 18 @ ® 2 1 © © 1]
erythema [@ 13 19 5 @ 1 2 @ ©® 0 8]
graunulant‘f_ [@ 7 15 55 ® ©®© 5 @ @& 1 1]
haemmorhoid | 9 § @ © © © 1 © © 0 0]
harmorrhage [g 1 © 1 © 4 2 2 © 8 0]
normal [@ &8 © 1 © ®©164 © 1 1 1]
oedema [@8 & ® ® ©® ©® 6 1 8 8 1]
palyp [8 & © ©» © ©® 11 @ 8 0 0]
peudopolyps [9§ © © © © 1 1 6 2 1]
ulceration [@ &6 © 1 © © 4 @ o o 15]]
- 'LEﬂ 7] wm
g .,z 2 F s s
2 g 85 8% 5 2 B2
£ g = = £ £ £ @ 2 5 S
: 5 = = g § 5 §% 5 g 32
h=]) w =%} = = = (=] 8_ a =
Figure 12: Confusion matrix for experiment 4
di\reﬂiculosis [2 ® & O 8 0 1 & © 6 o]
erosions [&8 3 14 13 @ © 1 2 @& 6 0]
erythema [@21 4 13 @ 3 © © 8 0 0]
graunularity [g 18 18 45 © © 4 © 1 4 0]
haemmorhoid [9 @ ® © 1 © © © 0 6 0]
harmorthage [9 1 ® 1 @ 8 © © © 6 1]
normal [1 & ®» 5 @ 3151 1 5 1 o]
oedema [® 4 8 1 ®&8 ® 1 4 © 0 0]
polyp [@ &8 » &8 @ & 1 © 12 0 8]
pseudopolyps [g p ® 2 @ © 2 © 6 @8 0]
ulceration [8 1 » @& @ 3 4 2 8 0 1711
3
i = a a
g . T £ 5 g s
T 2 E5S EE o5 o¢ & 2
t 2 £ = E £ £ @ o T &
: £ ¢ 2 8§ 5 58 § g & ¢
h=]) Tl =T} = = = o 8_ a =

Figure 13: Confusion matrix for experiment 5

19

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

4.2.6 Experiment 6

This experiment was conducted to verify potential flaws or mistakes in the pro-
posed network. This network performance slightly better than the proposed ne-
towork but slightly worse than experiment 3. Flyacro, precision, recall and accuracy
is calculated at 0.53, 0.51, 0.56. and 0.635 respectively.

diverticulosis

erodions ([1 o © @ © © © 0 6 0 0]
erythema [@ 3 12 18 © © 1 2 & © 1]
gwunularty | @ 15 0 16 @ 4 0 0 0 o o
ey [® 16 16 44 8 1 2 0 1 4 o]
hamorhage | @ @ 0 @ 1 06 0 @ 0 0o o
i [@ @ 2 @ © 6 ©® 0 @8 0 4]
o [1 3 @ 4 © ©158 1 1 © 3]
| [@ 3 @ @ © © ©® 3 @8 © 2]
p”‘; | [@ @ © @ ©® © 3 8 18 © 1]
Ef‘ceeurai'ipo?'ps [@ 8 @ 1 ©® © 2 8 @ 1 0]
[@ 1 @ ® © 2 1 2 @ © 19]]
= wy
'é > £ Eﬂ = -
T 2 £ 5 8 £ _ o g £
£ 5 £ 3 E 8§ EE o 8 B
2 & = g 2 5 5 T £ & L
= [:1} 1) [=1r] = = = [=] [=% o =

Figure 14: Confusion matrix for experiment 6

Summary

All the results are summarised in table 2.

4.3 Discussion

Some of the results are quite surprising, experiments 1 and 2 performed a lot worse
than expected. On one hand transfer learning and fine tuning is said to be a effi-
cient way of training networks when the dataset is small [] and the other is that
when the dataset is small using deeper networks does not improve performance
significantly []. Our results suggests that deeper networks do improve performance
significantly and that training ResNets from scratch do perform better than other
models even if the dataset is small. This is also backed up by Kornblith et al. [16].

Investigating the confusion matrix from the experiments we see the there are in
most cases very few predictions that images with lesions is predicted to be normal.
In our best performing model, the there are 15 wrong predictions, where a lesion
is predicted as normal. This calculates to an error rate equal to 1 — (15/400) =
0.0375. This is the most important variable in our case, and it’s very important
in the field of medical imaging that the risk of classifying a disease condition as
normal condition is minimal. Another important note on the confusion matrix’ is

20

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

syuawLIadxa 1) W0 SINSAI 33 Jo ATRWWNS :Z S[qe],

S€9°0 S419°0 §469°0 S¢89°0 LS0 §26S°0 £oemooy
§995°0 66€S°0 850t°0 08¥5°0 LEO6T0 S¥02°0 IR |
80TS0 CIES0 1E6¥°0 T1€SS0 €EVYT0 L82C0 uorspald
00€S°0 842S0 ¥CEY0 64¥S°0 89ST°0 00610 ORI

9 JuswiLIadxy

G Juowradxy

4 JuowiLIadxy

¢ Juowradxy

¢ yuswiradxy

1 Juowradxy

JuswiLtadxy / OLISIA

21

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

that generally most of the prediction errors occur on the same lesions, erosions,
erythema and granularity. One of the reasons for this might be that on the images
in the dataset there is possibly multiple diseases in one image, but that specific
image is only mapped to one specific lesion. Another case is that some of the lesions
look very similar, even trained specialists have problems with certain lesions, and
different specialists may label diseases differently. Studying figure 11, there is hard
to differ one from each the other and it’s not easy to make a prediction ourselves.
It’s also important to note that in a real scenario, when analyzing roughly
60.000 it is very likly that the same lesion will appear on multiple images, fur-
ther increasing the chance for detecting it. This will positively affect the system.

22

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

5 GUI Prototype

In this chapter we present the methods, results and discussion from the develop-
ment of the GUI prototype. The prototype is publicly available at https://github.
com/ johnnyof/cve-gui. The main code can be seen in appendix D.

5.1 Methods

5.1.1 Tools & libraries

The Graphical User Interface (GUI) prototype was written in Python 3! and de-
signed with Qt Designer 4.8, a free "what you see is what you get (WYSIWYG)"
tool for PyQt 4 2. The following libraries are required for the application to func-
tion properly:

e system

e 0S

e time

e tensorflow 1.4
o shutil

e numpy

e PyQt4

We include in the simplest for a use case diagram (seen in figure 15) where a
medical doctor interacts with the application. The medical doctor has in total five
button to interact with. Three of them open the file explorer dialog, this include
the functions for finding the relevant images (e.g. a folder with relevant images),
selecting a folder to store the classfication results (e.g. destination where images
are copied to while classifying), selecting the model/graph to use for prediction/in-
ference.

The process of the how the prototype works is explained in the sequence dia-
gram in figure 16. The actor, the medical doctor selects the input images, output
destination and the model to use for predictions, and clicks the classify button. The
application then loads the selected graph into memory, and start looping through
the images and for each image gives a prediction of what it sees. The top result are
chosen, and the file is copied to the corresponding folder in the output destination
folder.

Ipython 3 available at https://www.python.org/download,/releases/3.0/
2Qt available at https://www.qt.io/

23

https://github.com/johnnyof/cve-gui
https://github.com/johnnyof/cve-gui

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Select images

dizpatch

Select folder
dispatch:

Select output destination

digpatch Application

Select output destination

Select model Select modeligraph

dispatch

digpatch Make predictions

digpatch
TensorFlow Backend

Figure 15: Use case diagram for the prototype

Medical doctor Gul Tensorflow back end

Select input images, output folder and graphr

Display paths

Start classfication

Load araoh
Graph loaded———————————#*

MNew image

predicted class

report progress

/ Moveimageto

predicted class name
folder

Figure 16: Sequence diagram for the prototype.

24

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

5.2 Implementation

The model we selected for implementation was the Inception ResNet v2 because
thats the one which performed best in our previous experiments. To be able to use
the model in external application we had to freeze the graph weights in protobuf
file (.pb). To do this we used the freeze _graph.py script provided in tf slim. The
model can then be imported to external applications by loading the graph in a
tf.session inside the application.

The model file is not hardcoded into the application so that it’s easy to update
change the model with a newer and better model subsequently. How ever the label
file, containing the name of the lesions is hardcoded. This means that if new lesions
or the order or the lesions change in the model, this has to be changed as well.
Either by replacing the labels.txt file in the graph folder, or changing the path to
the new labels file in the source code. This is only one line of code with the a file
path.

5.3 Results

The outcome of the prototype development, is a very simple GUI with that should
be very easy to use, with just the intructions provided when launching the applica-
tion. In figure 17 the application is shown in progress of classifying images.

In the right top corner there is a text windows that constantly reports the
progress back to the user. In the bottom there is a progressbar. The top left cor-
ner the functions explained in the implementation part, for selecting folders and
the model.

The application is only able to process about two images per second in the
current state, on the software/hardware configuration explained in detail in the
experiments section.

5.4 Discussion

The prototype is a very simple proof of concept how it could be working. The per-
formance of the application is quite bad with only about two frames per second.
The reason for this is not clear, it might be the implementation of the tensorflow
code. One idea to fix this is to use batches here as well. Currently it’s just looping
through the source folder picking one image at a time. Another reason can be that
it’s reading every image from disk one by one, which is slow, but it doesn’t explain
the terrible speed of course. One idea to fix this problem is to automate the process
of converting images to tf records, which is the preferable file format by tensorflow.

25

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Capsule Video Endoscopy Classifier

Select files For classification
/home/johnny/workspace/cve-guif/images
Select output Folder

/home/johnny/workspace/cve-gui/output

Select inference model / graph

/home/johnny/workspace/cve-gui/graphs/frozei

Reset

Browse

Browse

Browse

Classify

Starting classification thread... =
Prediction on image: P2E19_0042.png

10:ulceration => 0.9966689

Prediction on image: P2E19_0028.png

10:ulceration => 0.9103324

Prediction on image: P2E1_0040.png

7:oedema => 0.8338069 g
Prediction on image: P2E1_0036.png

7:oedema => 0.79665434

Prediction onimage: P1E1_0003.png

O:diverticulosis => 0.9009487

Prediction on image: P7E3_0044.png E
8:polyp => 0.9999368

Prediction on image: P7E3_0050.png

8:polyp => 0.99946374

Prediction onimage: P2E19_0032.png

10:ulceration => 0.99988306 v

Figure 17: Screen dump of the application in use.

26

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

6 Conclusion

In this thesis demonstrated one possible approach for creating datasets for image
classification tasks, we have then used this dataset to train and evaluate multiple
CNNs. The dataset also contains information about disease location and could es-
sentially also be used for object detection tasks in the future. The annotation of
medical images proved to be hard for an untrained non-expert and this task should
ideally be done by experts. This will ensure that the labeled data is correct and be
more credible.

The results from the multiple experiments conducted in this thesis suggests
that Inception ResNet v2 trained from scratch performs significantly better than
transfer learning and AlexNet v2. Inception ResNet v2 also performs slightly better
than Inception v4 and our proposed method of dual parallel CNNs, on our dataset.
The overall results are promising and there is reason to believe that the use of CNN
is a very viable path towards lesion detection and classification in GI tract. There
is reason to believe that a larger and more reliable dataset is required to further
increase performance of the networks.

A GUI prototype aimed for medical doctor was also developed by implementing
the trained model for image classification. The prototype is merely a proof of con-
cept and is suffering from severe performance issues, only able to compute about
two predictions per second.

The biggest challenge continues to be a large database of labeled capsule video
endoscopy images and/or videos to make further progress in this field.

6.1 Future Work

For future work there would be interesting to further optimize the network ar-
chitecture proposed in this thesis. There would be interesting trying with other
networks than those proposed, extract the features in a different layer, optimize
the layers coming after concatenation or having one network use weights from e.g.
imagenet.

For the GUI there is likely to be multiple ways of improving the performance
with regards to prediction speed. One way is to use batches and not single images,
another could be to automate the conversion to tf records which is the prefered file
format for tensorflow.

The most important work for the future is still labeling more images, ideally
done by experts in the field.

27

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

[1]

[2]

[3]

(4]

[5]

(6]

[7]

(8]

Bibliography

Fakhoury, M., Negrulj, R., Mooranian, A., & Al-Salami, H. Jun 2014. Inflam-
matory bowel disease: clinical aspects and treatments. J Inflamm Res, 7, 113—
120. jir-7-113[PII]. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4106026/, doi:10.2147/JIR.S65979.

Society, A. C. Key statistics for colorectal cancer. Accessed 5. May
2018. URL: https://www.cancer.org/cancer/colon-rectal-cancer/
about/key-statistics.html.

Society, A. C. Key statistics for colorectal cancer. Accessed 5. May
2018. URL: https://www.cancer.org/cancer/colon-rectal-cancer/

detection-diagnosis-staging.html.

Associates, G. E. Colonoscopy. 21. May 2018. URL: https://www.giendo.

net/our-procedures/colonoscopy.html.

Jalalian, A., Mashohor, S. B. T., Mahmud, H. R., Saripan, M. I. B., Ramli,
A. R. B., & Karasfi, B. May 2013. Computer-aided detection/diagnosis of
breast cancer in mammography and ultrasound: a review. Clinical Imaging,
37(3),420-426. URL: http://dx.doi.org/10.1016/j.clinimag.2012.09.
024, doi:10.1016/j.clinimag.2012.09.024.

Perumpillichira, J. J., Yoshida, H., & Sahani, D. V. Aug 2005. Computer-
aided detection for virtual colonoscopy. Cancer Imaging, 5(1), 11-16.
16154812[pmid]. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1665218/, doi:10.1102/1470-7330.2005.0016.

Faust, O., Acharya, U. R., Sudarshan, V. K., Tan, R. S., Yeong, C. H., Molinari,
F., & Ng, K. H. Jan 2017. Computer aided diagnosis of coronary artery
disease, myocardial infarction and carotid atherosclerosis using ultrasound
images: A review. Physica Medica: European Journal of Medical Physics, 33,
1-15. URL: http://dx.doi.org/10.1016/j.ejmp.2016.12.005, doi:10.
1016/j.ejmp.2016.12.005.

Samuel, A. L. Some Studies in Machine Learning Using the Game of Checkers. I,
335-365. Springer New York, New York, NY, 1988. URL: https://doi.org/
10.1007/978-1-4613-8716-9_14, doi:10.1007/978-1-4613-8716-9_14.

29

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106026/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106026/
http://dx.doi.org/10.2147/JIR.S65979
https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html
https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging.html
https://www.giendo.net/our-procedures/colonoscopy.html
https://www.giendo.net/our-procedures/colonoscopy.html
http://dx.doi.org/10.1016/j.clinimag.2012.09.024
http://dx.doi.org/10.1016/j.clinimag.2012.09.024
http://dx.doi.org/10.1016/j.clinimag.2012.09.024
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665218/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665218/
http://dx.doi.org/10.1102/1470-7330.2005.0016
http://dx.doi.org/10.1016/j.ejmp.2016.12.005
http://dx.doi.org/10.1016/j.ejmp.2016.12.005
http://dx.doi.org/10.1016/j.ejmp.2016.12.005
https://doi.org/10.1007/978-1-4613-8716-9_14
https://doi.org/10.1007/978-1-4613-8716-9_14
http://dx.doi.org/10.1007/978-1-4613-8716-9_14

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

[9] Dechter, R. 01 1986. Learning while searching in constraint-satisfaction-
problems. 178-185.

[10] Szegedy, C., Ioffe, S., & Vanhoucke, V. 2016. Inception-v4, inception-resnet
and the impact of residual connections on learning. CoRR, abs/1602.07261.
URL: http://arxiv.org/abs/1602.07261, arXiv:1602.07261.

[11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems 25, Pereira, F.,
Burges, C. J. C., Bottou, L., & Weinberger, K. Q., eds, 1097-1105.
Curran Associates, Inc. URL: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

[12] Yixuan, Y. & Q.-H.,, M. M. Deep learning for polyp recognition in
wireless capsule endoscopy images. Medical Physics, 44(4), 1379-
1389. URL: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/
mp.12147, arXiv:https://aapm.onlinelibrary.wiley.com/doi/pdf/10.
1002/mp. 12147, doi:10.1002/mp.12147.

[13] Li, P, Li, Z., Gao, F., Wan, L., & Yu, J. July 2017. Convolutional neural net-
works for intestinal hemorrhage detection in wireless capsule endoscopy im-
ages. In 2017 IEEE International Conference on Multimedia and Expo (ICME),
1518-1523. doi:10.1109/ICME.2017.8019415.

[14] Medtronic. Rapid reader v8.3 software update | medtronic. Accessed
16. January 2018. URL: http://www.medtronic.com/covidien/
en-us/support/gastrointestinal-product-software-upgrades/

rapid-reader-v8-3-software.html.

[15] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. 2015. Rethinking
the inception architecture for computer vision. CoRR, abs/1512.00567. URL:
http://arxiv.org/abs/1512.00567, arXiv:1512.00567.

[16] Kornblith, S., Shlens, J., & Le, Q. V. May 2018. Do Better ImageNet Models
Transfer Better? ArXiv e-prints. arXiv:1805.08974.

30

http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12147
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12147
http://arxiv.org/abs/https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.12147
http://arxiv.org/abs/https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.12147
http://dx.doi.org/10.1002/mp.12147
http://dx.doi.org/10.1109/ICME.2017.8019415
http://www.medtronic.com/covidien/en-us/support/gastrointestinal-product-software-upgrades/rapid-reader-v8-3-software.html
http://www.medtronic.com/covidien/en-us/support/gastrointestinal-product-software-upgrades/rapid-reader-v8-3-software.html
http://www.medtronic.com/covidien/en-us/support/gastrointestinal-product-software-upgrades/rapid-reader-v8-3-software.html
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1805.08974

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

A Evaluation scripts

31

eval_jonet

May 31, 2018

In []: from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import matplotlib

Jmatplotlib inline

import matplotlib.pyplot as plt

import math

import numpy as np

import tensorflow as tf

import time

import re

from sklearn.metrics import precision_recall_fscore_support as score
from datasets import dataset_utils

from datasets import cve_diseases

from nets import inception_resnet_v2

from nets import alexnet

from nets import nets_factory

from preprocessing import inception_preprocessing
Mazn slim library

from tensorflow.contrib import slim

In []: modell = "inception_resnet_v2"
model2 = "inception_v3"

dataset_name = '"cve_diseases"

dataset_split_name = "validation"

dataset_dir = "tmp/"

batch_size = 100

max_number_of_steps = 100000

train_dir = "./tmp/cve_diseases-models/modell-ds2"

cnnl = nets_factory.get_network_fn(
modell,
num_classes=None,
weight_decay=0.00004,
is_training=False)

cnn2 = nets_factory.get_network_fn(
model2,
num_classes=None,
weight_decay=0.00004,
is_training=False)

In []: def jonet(images):

netl, end_pointsl = cnnl(images)
netl = end_pointsi['Mixed_7a']

net2, end_points2 = cnn2(images)

net2 = end_points2['Mixed_7c']

net = tf.concat((netl, net2), 3)

net = slim.flatten(net)

net = slim.dropout(net, 0.8, is_training=False)

net = slim.fully_connected(net, 11, activation_fn=None)
return net

In []: def load_batch(dataset, batch_size=8, height=299, width=299, is_training=False):
data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset)
image_raw, label = data_provider.get(['image', 'label'])

Preprocess image for usage by Inception.
image = inception_preprocessing.preprocess_image(image_raw, height, width, is_traini

Preprocess the image for display purposes.

image_raw = tf.expand_dims(image_raw, 0)

image_raw = tf.image.resize_images(image_raw, [height, width])
image_raw = tf.squeeze(image_raw)

Batch it up.

images, images_raw, labels = tf.train.batch(
[image, image_raw, labell],
batch_size=batch_size,
num_threads=1,
capacity=2 * batch_size)

return images, images_raw, labels

In []:
image_size = 299
batch_size = 400
imgs = 10

with tf.Graph().as_default():

tf.logging.set_verbosity(tf.logging. INFO)

dataset = cve_diseases.get_split('validation', dataset_dir)
images, images_raw, labels = load_batch(dataset, batch_size)

Create the model, use the default arg scope to configure the batch norm parameters
logits = jonet(images)

probabilities = tf.nn.softmax(logits)

con_mat = tf.confusion_matrix(
labels=labels,
predictions=tf.argmax(probabilities, 1))

predictions = tf.argmax(probabilities, 1)
accuracy = tf.metrics.accuracy(labels, predictions)

checkpoint_path = tf.train.latest_checkpoint(train_dir)

init_fn = slim.assign_from_checkpoint_fn(
checkpoint_path,
slim.get_variables_to_restore())
print (tf.argmax(labels))
with tf.Session() as sess:
with slim.queues.QueueRunners(sess):
sess.run(tf.initialize_local_variables())
init_fn(sess)
accuracy, np_predictions, np_probabilities, np_images_raw, np_labels, con_ms

plt.imshow(con_mat, interpolation='nearest', cmap=plt.cm.viridis);
plt.title("Confusion Matrix")
plt.colorbar()

plt.clim(0,30)
plt.xticks(rotation=0)
plt.yticks(rotation=0)
plt.tight_layout()
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()

print(con_mat)

precision, recall, f1, _ = score(np_labels, np_predictions, average='macro')

print('precision: {}'.format(precision))

print('recall: {}'.format(recall))
print('fscore: {}'.format(f1))
print('accuracy: {}'.format(accuracy))

for i in range(imgs):
image = np_images_raw[i, :, :, :]
true_label = np_labels[i]
predicted_label = np.argmax(np_probabilities[i, :])
predicted_name = dataset.labels_to_names[predicted_labell]
true_name = dataset.labels_to_names[true_label]

plt.figure()

plt.imshow(image.astype(np.uint8))

plt.title('Ground Truth: [%s], Prediction [%s]' 7 (true_name, predicted._
plt.axis('off"')

plt.show()

eval_jonet_single

May 31, 2018

In []: from __future__ import absolute_import

from __future__ import division
from __future__ import print_function

import matplotlib

Jmatplotlib inline

import matplotlib.pyplot as plt

import math

import numpy as np

import tensorflow as tf

import time

import re

from sklearn.metrics import precision_recall_fscore_support as score
from datasets import dataset_utils

from datasets import cve_diseases

from nets import inception_resnet_v2

from nets import alexnet

from nets import nets_factory

from preprocessing import inception_preprocessing
Mazn slim library

from tensorflow.contrib import slim

In []: modell = "inception_resnet_v2"
model2 = "inception_v3"

dataset_name = '"cve_diseases"

dataset_split_name = "validation"

dataset_dir = "tmp/"

batch_size = 100

max_number_of_steps = 100000

train_dir = "./tmp/cve_diseases-models/model2-ds2"

cnnl = nets_factory.get_network_fn(
modell,
num_classes=None,
weight_decay=0.00004,
is_training=False)

In []:

In []:

In []:

cnn2 = nets_factory.get_network_fn(
model2,
num_classes=None,
weight_decay=0.00004,
is_training=False)

def jonet(images):

net, end_pointsl = cnnl(images)
#netl = end_pointsl['Mized_7a']

#net2, end_points2 = cnn2(images)

#net2 = end_points2['Mized_7c']

#net = tf.concat((neti, net2), 3)

net = slim.flatten(net)

net = slim.dropout(net, 0.8, is_training=False)

net = slim.fully_connected(net, 11, activation_fn=None)
return net

def load_batch(dataset, batch_size=8, height=299, width=299, is_training=False):
data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset)
image_raw, label = data_provider.get(['image', 'label'])

Preprocess image for usage by Inception.
image = inception_preprocessing.preprocess_image(image_raw, height, width, is_traini

Preprocess the image for display purposes.

image_raw = tf.expand_dims(image_raw, 0)

image_raw = tf.image.resize_images(image_raw, [height, width])
image_raw = tf.squeeze(image_raw)

Batch it up.

images, images_raw, labels = tf.train.batch(
[image, image_raw, labell],
batch_size=batch_size,
num_threads=1,
capacity=2 * batch_size)

return images, images_raw, labels

image_size = 299
batch_size = 400
imgs = 10

with tf.Graph().as_default():

tf.logging.set_verbosity(tf.logging. INFO)

dataset = cve_diseases.get_split('validation', dataset_dir)
images, images_raw, labels = load_batch(dataset, batch_size)

Create the model, use the default arg scope to configure the batch norm parameters
logits = jonet(images)

probabilities = tf.nn.softmax(logits)

con_mat = tf.confusion_matrix(
labels=labels,
predictions=tf.argmax(probabilities, 1))

predictions = tf.argmax(probabilities, 1)
accuracy = tf.metrics.accuracy(labels, predictions)

checkpoint_path = tf.train.latest_checkpoint(train_dir)

init_fn = slim.assign_from_checkpoint_fn(
checkpoint_path,
slim.get_variables_to_restore())
print (tf.argmax(labels))
with tf.Session() as sess:
with slim.queues.QueueRunners(sess):
sess.run(tf.initialize_local_variables())
init_fn(sess)
accuracy, np_predictions, np_probabilities, np_images_raw, np_labels, con_ms

plt.imshow(con_mat, interpolation='nearest', cmap=plt.cm.viridis);
plt.title("Confusion Matrix")
plt.colorbar()

plt.clim(0,30)
plt.xticks(rotation=0)
plt.yticks(rotation=0)
plt.tight_layout()
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()

print(con_mat)

precision, recall, f1, _ = score(np_labels, np_predictions, average='macro')

print('precision: {}'.format(precision))

print('recall: {}'.format(recall))
print('fscore: {}'.format(f1))
print('accuracy: {}'.format(accuracy))

for i in range(imgs):
image = np_images_raw[i, :, :, :]
true_label = np_labels[i]
predicted_label = np.argmax(np_probabilities[i, :])
predicted_name = dataset.labels_to_names[predicted_labell]
true_name = dataset.labels_to_names[true_label]

plt.figure()

plt.imshow(image.astype(np.uint8))

plt.title('Ground Truth: [%s], Prediction [%s]' 7 (true_name, predicted._
plt.axis('off"')

plt.show()

eval_inception_resnet

May 31, 2018

In []: from __future__ import absolute_import
from __future__ import division

from __future__ import print_function
import matplotlib

Jmatplotlib inline

import matplotlib.pyplot as plt

import math

import numpy as np

import temnsorflow as tf

import time

import re

from sklearn.metrics import precision_recall_fscore_support as score

from datasets import dataset_utils
from datasets import cve_diseases
from nets import inception_resnet_v2
from nets import inception_v4

from nets import nets_factory

from preprocessing import inception_preprocessing
Mazn slim library

from tensorflow.contrib import slim

In []: modell="inception_resnet_v2"
dataset_name = "cve_diseases"
dataset_split_name = "validation"
dataset_dir = "tmp/"

train_dir = "./tmp/cve_diseases-models/model3_ds2-finetune"

cnnl = nets_factory.get_network_fn(
modell,
num_classes=11,
weight_decay=0.00004,
is_training=False)

In []:

In []: def load_batch(dataset, batch_size=8, height=299, width=299, is_training=False):
data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset)
image_raw, label = data_provider.get(['image', 'label'])

Preprocess image for usage by Inception.
image = inception_preprocessing.preprocess_image(image_raw, height, width, is_traini

Preprocess the image for display purposes.

image_raw = tf.expand_dims(image_raw, 0)

image_raw = tf.image.resize_images(image_raw, [height, width])
image_raw = tf.squeeze(image_raw)

Batch it up.

images, images_raw, labels = tf.train.batch(
[image, image_raw, labell],
batch_size=batch_size,
num_threads=1,
capacity=2 * batch_size)

return images, images_raw, labels

In []:
image_size = 299
batch_size = 400
imgs = 10

with tf.Graph().as_default():
tf.logging.set_verbosity(tf.logging. INFO)

dataset = cve_diseases.get_split('validation', dataset_dir)
images, images_raw, labels = load_batch(dataset, batch_size)

Create the model, use the default arg scope to configure the batch norm parameters
logits, _ = cnnl(images)
probabilities = tf.nn.softmax(logits)
con_mat = tf.confusion_matrix(
labels=labels,

predictions=tf.argmax(probabilities, 1))

predictions = tf.argmax(probabilities, 1)
accuracy = tf.metrics.accuracy(labels, predictions)

checkpoint_path = tf.train.latest_checkpoint(train_dir)
init_fn = slim.assign_from_checkpoint_fn(

checkpoint_path,
slim.get_variables_to_restore())

with tf.Session() as sess:
with slim.queues.QueueRunners(sess):
sess.run(tf.initialize_local_variables())
init_fn(sess)
accuracy, np_predictions, np_probabilities, np_images_raw, np_labels, con_ms

plt.imshow(con_mat, interpolation='nearest', cmap=plt.cm.viridis);
plt.title("Confusion Matrix")

plt.colorbar()

plt.clim(0,30)

plt.xticks(rotation=0)

plt.yticks(rotation=0)

plt.tight_layout()

plt.ylabel("True label")

plt.xlabel("Predicted label")

plt.show()

print(con_mat)

precision, recall, f1, _ = score(np_labels, np_predictions, average='macro')

print('precision: {}'.format(precision))

print('recall: {}'.format(recall))

print('fscore: {}'.format(f1))

print('accuracy: {}'.format(accuracy))

for i in range(imgs):

image = np_images_raw[i, :, :, :]

true_label = np_labels[i]

predicted_label = np.argmax(np_probabilities[i, :])
predicted_name = dataset.labels_to_names[predicted_label]
true_name = dataset.labels_to_names[true_label]

plt.
plt.
plt.
plt.
plt.

figure()

imshow(image.astype(np.uint8))

title('Ground Truth: [/s], Prediction [/s]' 7 (true_name, predicted.
axis('off')

show ()

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

B Training

B.1 train_image classifier.py

Copyright 2016 The TensorFlow Authors. All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License
You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, soft
distributed under the License is distributed on an "AS IS" BASI
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
See the License for the specific language governing permissions
limitations under the License.
 ===
"""Generic training script that trains a model using a given data
from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import tensorflow as tf

from datasets import dataset_factory

from deployment import model_deploy

from nets import nets_factory

from preprocessing import preprocessing_factory

slim = tf.contrib.slim

tf.app.flags.DEFINE_string/(

‘master’, ’’, ’The_address_of_ ,the, TensorFlow ymaster to_use.’)

tf.app.flags.DEFINE_string/(

’>train_dir’, ’/tmp/tfmodel/’,
’Directorywherecheckpoints and event logs are written,to.’)

43

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

tf.

tf.

tf.

tf

tf

tf.

tf.

tf.

tf.

tf.

app.flags .DEFINE_integer (’num_clones’, 1,
’Numberuofumodeluclonesutoudeploy.’)

app.flags.DEFINE_boolean(’clone_on_cpu’, False,
’>Use CPUsto,deployclones.’)

app.flags.DEFINE_integer(’worker_replicas’, 1, ’Numberof,worker rep!

.app.flags.DEFINE_integer(

’num_ps_tasks’, O,
>Theynumber of yparameter servers. If the,value is 0, ,then,the param
>arehandled locally by the worker. ’)

.app.flags.DEFINE_integer(

’num_readers’, 4,
>Theynumber of parallel readers that read data,from the ,dataset.’)

app.flags.DEFINE_integer (
’num_preprocessing_threads’, 4,
>The number of ,threads used_ ,to,create the_ batches.?)

app.flags.DEFINE_integer (
>log_every_n_steps’, 2,
’Theufrequencyuwithuwhichulogsuareuprint.’)

app.flags.DEFINE_integer (
’save_summaries_secs’, 600,
’Theufrequencyuwithuwhichusummariesuareusaved,uinuseconds.’)

app.flags.DEFINE_integer (
’save_interval_secs’, 600,
>Thefrequencyywithwhich the_ model issaved,_ in,seconds.’)

app.flags.DEFINE_integer (
>task’, 0, ’Taskyidjof_ theyreplica,running,the training.’)

HUHHHHHBHAHARAHHHHBHRH
Optimization Flags
HAHHHHHHHAHAH AR SR HHHHH

tf.

tf.

app.flags.DEFINE_float (
’weight_decay’, 0.00004, ’The_ weight_ decayon, the model weights.?’)

app.flags.DEFINE_string(
’optimizer’, ’rmsprop’,

44

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

tf

tf.

tf.

tf.

tf.

tf.

tf.

tf

tf

tf

tf.

tf.

’Theynameyof ,the optimizer, one of "adadelta", "adagrad", "ad
>"ftrl", "momentum", "sgd" or,"rmsprop".”’)

.app.flags.DEFINE_float(

’adadelta_rho’, 0.95,
>Thedecayyrate for adadelta.’)

app.flags.DEFINE_float (
’adagrad_initial_accumulator_value’, 0.1,
’>’Starting,value for,the AdaGrad accumulators.’)

app.flags.DEFINE_float (
’adam_betal’, 0.9,
’Theuexponentialudecayurateuforutheulstumomentuestimates.’)

app.flags.DEFINE_float (
’adam_beta2’, 0.999,
’TheuexponentialudecayurateuforutheuQndumomentuestimates.’)

app.flags.DEFINE_float (’opt_epsilon’, 1.0, ’Epsilon,term for,t

app.flags.DEFINE_float(’ftrl_learning_rate_power’, -0.5,
’Theulearningurateupower.’)

app.flags.DEFINE_float (
ftrl_initial_accumulator_value’, 0.1,
’>’Startingvaluefor,the FTRL accumulators.’)

.app.flags.DEFINE_float (

>ftrl_11’, 0.0, ’The FTRL_11 ,regularizationstrength.’)

.app.flags.DEFINE_float (

>ftrl_12°, 0.0, ’They FTRL_,12,regularizationstrength.’)

.app.flags.DEFINE_float (

momentum’, 0.9,
>Theymomentum,for the MomentumOptimizer ,and RMSPropOptimizer.

app.flags.DEFINE_float (’rmsprop_momentum’, 0.9, ’Momentum.’)

app.flags.DEFINE_float (’rmsprop_decay’, 0.9, ’Decayyterm for_R

HABBHHHHHAAHHHRRBHHHHRH
Learning Rate Flags
HUBBHHHFHAHHHBRBRARAHSH

45

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

tf.

tf

tf.

tf

tf

tf.

tf

tf.

tf

app.flags.DEFINE_string(
’learning_rate_decay_type’,
’exponential’,
>Specifies howthelearning rateyisdecayed. 0ne of "fixed", " expon
>Lor,"polynomial"’)

.app.flags.DEFINE_float(’learning_rate’, 0.01, ’Initial,learning,rate

app.flags.DEFINE_float(
’end_learning_rate’, 0.0001,
>Theyminimal endlearning ratejused byyaypolynomial decayylearning,;:

.app.flags.DEFINE_float(

>label_smoothing’, 0.0, ’The_ amount of ,label ;smoothing.’)

.app.flags.DEFINE_float(

’learning_rate_decay_factor’, 0.94, ’Learning,rate decay factor.’)

app.flags.DEFINE_float (
’num_epochs_per_decay’, 2.0,
>Number of epochs after which learning rate decays.’)

.app.flags.DEFINE_bool(

’sync_replicas’, False,
>Whetheror not,to,synchronize the_ replicas,during, training.’)

app.flags.DEFINE_integer (
’replicas_to_aggregate’, 1,
’TheuNumberuofugradientsutoucollectUbeforeuupdatinguparams.’)

.app.flags.DEFINE _float(

’moving_average_decay’, None,
>The decaytoyuse for the ymoving average.’
’IfuleftuasuNone,uthenumovinguaveragesuareunotuused.’)

HHHHHHHHHAHHAHHRRBRAHAHS
Dataset Flags
HHHHHHHHHAFHAHHR BB R HHHHS

tf.

tf.

app.flags.DEFINE_string(
’dataset_name’, ’imagenet’, ’The_name of the ,dataset to,load.’)

app.flags.DEFINE_string(
’dataset_split_name’, ’train’, ’The_ name of the train/test split.’)

46

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

tf.

tf.

tf.

tf

tf.

tf.

tf.

app.flags.DEFINE_string(
’dataset_dir’, None, ’Theydirectory where the dataset filesa

app.flags.DEFINE_integer (
’labels_offset’, O,
>Anoffset for,thelabelsin, the dataset . This flag is,primar
’evaluate the VGG and_ ResNet architectures which_ donot_ use a
>class,for,the ImageNet dataset.’)

app.flags.DEFINE_string/(
’model_name’, ’inception_v3’, ’Theyname of the architecture t

.app.flags.DEFINE_string(

’preprocessing_name’, None, ’The_name of the preprocessingto
>asy, ‘None ¢, then,the model_name flag_ is used.’)

app.flags.DEFINE_integer (
’batch_size’, 32, ’Theynumber of samples ineach batch.’)

app.flags.DEFINE_integer (
’train_image_size’, None, ’Traingimage size’)

app.flags .DEFINE_integer (’max_number_of_steps’, None,
’The maximum number of ,training,;steps

HAHBHAHHHHAHHHHBRRHHS
Fine-Tuning Flags
HUHBHAHHHHHHHHBRBHRAHRHS

tf.

tf.

tf.

tf.

app.flags.DEFINE_string(
’checkpoint_path’, None,
>Theypathytoaycheckpoint from which,to,fine-tune.’)

app.flags.DEFINE_string(
>checkpoint_exclude_scopes’, None,
’Comma -separatedlistof ;scopes0of ;variables to,excludewheny
>fromya,checkpoint.?)

app.flags.DEFINE_string(
’trainable_scopes’, None,
’Comma -separatedlistof ;scopesytoyfilter the set of ,variable

’Byydefault , None_, would, traing all the variables.’)

app.flags.DEFINE_boolean (

47

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

’ignore_missing_vars’, False,
’Whenurestoringuaucheckpointuwoulduignoreumissinguvariables.’)

FLAGS = tf.app.flags.FLAGS

def _configure_learning_rate(num_samples_per_epoch, global_step):
"""Configures the learning rate.

Args:
num_samples_per_epoch: The number of samples in each epoch of train:
global_step: The global_step tensor.

Returns:
A ‘Tensor ‘ representing the learning rate.

Raises:
ValueError: if
decay_steps = int(num_samples_per_epoch / FLAGS.batch_size *
FLAGS .num_epochs_per_decay)
if FLAGS.sync_replicas:
decay_steps /= FLAGS.replicas_to_aggregate

if FLAGS.learning_rate_decay_type == ’exponential’:
return tf.train.exponential_decay (FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS.learning_rate_decay_factor,
staircase=True,
name=’exponential_decay_learning_:

elif FLAGS.learning_rate_decay_type == ’fixed’:
return tf.constant (FLAGS.learning rate, name=’fixed_learning_rate’)
elif FLAGS.learning_rate_decay_type == ’polynomial’:

return tf.train.polynomial_decay (FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS .end_learning_rate,
power=1.0,
cycle=False,
name=’polynomial_decay_learning_ra:
else:
raise ValueError(’learning_rate_decay_type,[/s], wasynot recognized’
FLAGS.learning_rate_decay_type)

48

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

def _configure_optimizer (learning_rate):
"""Configures the optimizer used for training.

Args:
learning_rate: A scalar or ‘Tensor‘ learning rate.

Returns:
An instance of an optimizer.

Raises:
ValueError: if FLAGS.optimizer is not recognized.
if FLAGS.optimizer == ’adadelta’:
optimizer = tf.train.AdadeltaOptimizer (
learning_rate,
rho=FLAGS.adadelta_rho,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == ’adagrad’:
optimizer = tf.train.AdagradOptimizer (
learning_rate,
initial_accumulator_value=FLAGS.adagrad_initial_accumulat
elif FLAGS.optimizer == ’adam’:
optimizer = tf.train.AdamOptimizer (
learning_rate,
betal=FLAGS.adam_betal,
beta2=FLAGS.adam_beta2,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == ’ftrl’:
optimizer = tf.train.FtrlOptimizer (
learning_rate,
learning_rate_power=FLAGS.ftrl_learning_rate_power,
initial_accumulator_value=FLAGS.ftrl_initial_accumulator_
11 _regularization_strength=FLAGS.ftrl_11,
12_regularization_strength=FLAGS.ftrl_12)
elif FLAGS.optimizer == ’momentum’:
optimizer = tf.train.MomentumOptimizer (
learning_rate,
momentum=FLAGS .momentum,
name=’Momentum’)
elif FLAGS.optimizer == ’rmsprop’:
optimizer = tf.train.RMSPropOptimizer (
learning_rate,
decay=FLAGS .rmsprop_decay,
momentum=FLAGS .rmsprop_momentum,

49

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

epsilon=FLAGS.opt_epsilon)

elif FLAGS.optimizer == ’sgd’:
optimizer = tf.train.GradientDescentOptimizer (learning_rate)
else:
raise ValueError (’Optimizer [%s]_ was not, recognized’, FLAGS.optimize

return optimizer

def _get_init_fn():
"""Returns a function run by the chief worker to warm-start the train:

Note that the init_fn is only run when initializing the model during
first global step.

Returns:

An init function run by the supervisor.
nmmnn
if FLAGS.checkpoint_path is None:

return None

Warn the user if a checkpoint exists in the train_dir. Then we’ll b«
ignoring the checkpoint anyway.
if tf.train.latest_checkpoint (FLAGS.train_dir):
tf.logging.info(
’Ignoring,,--checkpoint_path becausea, checkpoint jalreadyexists,
% FLAGS.train_dir)
return None

exclusions = []
if FLAGS.checkpoint_exclude_scopes:
exclusions = [scope.strip()

for scope in FLAGS.checkpoint_exclude_scopes.split(’,

TODO(sguada) variables.filter_variables ()

variables_to_restore = []
for var in slim.get_model_variables ():
excluded = False

for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)

if tf.gfile.IsDirectory (FLAGS.checkpoint_path):

50

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

checkpoint_path tf.train.latest_checkpoint (FLAGS.checkpoint
else:

checkpoint_path

FLAGS .checkpoint_path
tf.logging.info(’Fine-tuning, from,%s’ % checkpoint_path)

return slim.assign_from_checkpoint_£fn(
checkpoint_path,
variables_to_restore,
ignore_missing_vars=FLAGS.ignore_missing_vars)

def _get_variables_to_train():
"""Returns a list of variables to train.

Returns:

A list of variables to train by the optimizer.
if FLAGS.trainable_scopes is None:

return tf.trainable_variables ()

else:
scopes = [scope.strip() for scope in FLAGS.trainable_scopes.s
variables_to_train = []

for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLE
variables_to_train.extend(variables)

return variables_to_train

def main(_):
if not FLAGS.dataset_dir:
raise ValueError (’Youpmust,supplyy,the datasetdirectory withy

tf.logging.set_verbosity (tf.logging.INFO)
with tf.Graph().as_default ():
HUHHHHHHHHSSSR SRR H RS
Config model_deploy
HHHHHHHHHHAHAH AR BB R HHHHS
deploy_config = model_deploy.DeploymentConfig(
num_clones=FLAGS .num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS. task,
num_replicas=FLAGS.worker_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)

51

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Create global_step
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step ()

HHudHHHHEH S USRS S SRS HY
Select the dataset
HHSHAHHSEHAEHHSHAEHSSHEHY
dataset = dataset_factory.get_dataset(
FLAGS .dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir

HHHH USRS RS HH SRS HH S HSH
Select the network
HHHSHSHHSEHS SSRGS HEH

network_fn = nets_factory.get_network_=£fn(
FLAGS .model_name,
num_classes=(dataset . .num_classes - FLAGS.labels_offset),

weight_decay=FLAGS.weight_decay,
is_training=True)

HUHHHHHHHAASHAAAHHHHR BB RHHHHHSSSHHHHH
Select the preprocessing function
HUHHHHHHHHAHFAAAA SRR BB R R R HHAA S A SR RH
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)

HAHHHH AR AR HHHHHHHHAFHHH B R A FH A BB RS S S HH B R AR A H SR BB H SRR B R HH
Create a dataset provider that loads data from the dataset
HAHHHHHHAHHHHH BB AR HHHH B R ARG HH R BB R RS GRS BB RS S S SR BB RS H SRR B R RS
with tf.device(deploy_config.inputs_device ()):
provider = slim.dataset_data_provider.DatasetDataProvider (
dataset,
num_readers=FLAGS.num_readers,
common_queue_capacity=20 * FLAGS.batch_size,
common_queue_min=10 * FLAGS.batch_size)

[image, label] = provider.get([’image’, ’label’])

label -= FLAGS.labels_offset

train_image_size = FLAGS.train_image_size or network_fn.default_ir
image = image_preprocessing_fn(image, train_image_size, train_imaj

images, labels = tf.train.batch(

52

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

[image, labell],

batch_size=FLAGS.batch_size,
num_threads=FLAGS .num_preprocessing_threads,
capacity=5 * FLAGS.batch_size)

labels = slim.one_hot_encoding(
labels, dataset.num_classes - FLAGS.labels_offset)
batch_queue = slim.prefetch_queue.prefetch_queue (

[images, labels], capacity=2 * deploy_config.num_clones

HEHAHHRAR AR BHSHBHSHS

Define the model

HHEHHAHHAHAH B HAHHHHH

def clone_fn(batch_queue):
"""Allows data parallelism by creating multiple clones of n
images, labels = batch_queue.dequeue ()
logits, end_points = network_fn(images)

HU#H#HHHAHAAAAH AR BB R R B RS AAAH
Specify the loss function
HHHHHAHHHAAAAHHHBHBRAHAHAAAHH
if ’AuxLogits’ in end_points:
slim.losses.softmax_cross_entropy (
end_points[’AuxLogits’], labels,
label_smoothing=FLAGS.label_smoothing, weights=0.4,
scope=’aux_loss’)
slim.losses.softmax_cross_entropy (
logits, labels, label_smoothing=FLAGS.label_smoothing,
return end_points

Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

clones = model_deploy.create_clones(deploy_config, clone_fn,
first_clone_scope = deploy_config.clone_scope (0)

Gather update_ops from the first clone. These contain, for
the updates for the batch_norm variables created by network
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first

Add summaries for end_points.
end_points = clones[0].outputs
for end_point in end_points:
x = end_points[end_point]
summaries.add (tf.summary.histogram(’activations/’ + end_poi
summaries.add (tf.summary.scalar (’sparsity/’ + end_point,
tf.nn.zero_fraction(x)))

53

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope
summaries.add (tf.summary.scalar(’losses/%s’ % loss.op.name, loss)]

Add summaries for variables.
for variable in slim.get_model_variables():
summaries.add (tf.summary.histogram(variable.op.name, variable))

HAHBHHHHBHAH RS H AR BB RA RS SRR R BHAH
Configure the moving averages
HA#HHHHAHHHARAFH AR B R AR AR AHHHHHBHHH
if FLAGS.moving_average_decay:
moving_average_variables = slim.get_model_variables ()
variable_averages = tf.train.ExponentialMovingAverage (
FLAGS .moving_average_decay, global_step)
else:
moving_average_variables, variable_averages = None, None

HHAHAHASHAHAHAHHBHAHAH AR HBHAH AR HSHAHAHBHH
Configure the optimization procedure.
HHEAHAHAHBAHARAHBHH AR AR AR BH R AR AR BB HAHHHH
with tf.device(deploy_config.optimizer_device ()):

learning_rate = _configure_learning_rate(dataset.num_samples, glo
optimizer = _configure_optimizer (learning_rate)
summaries.add (tf.summary.scalar(’learning_rate’, learning_rate))

if FLAGS.sync_replicas:
If sync_replicas is enabled, the averaging will be done in the
queue runner.
optimizer = tf.train.SyncReplicasOptimizer (
opt=optimizer,
replicas_to_aggregate=FLAGS.replicas_to_aggregate,
total_num_replicas=FLAGS.worker_replicas,
variable_averages=variable_averages,
variables_to_average=moving_average_variables)
elif FLAGS .moving_average_decay:
Update ops executed locally by trainer.
update_ops.append(variable_averages.apply(moving_average_variables:

Variables to train.
variables_to_train = _get_variables_to_train ()

and returns a train_tensor and summary_op
total_loss, clones_gradients = model_deploy.optimize_clones(

54

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

clones,
optimizer,
var_list=variables_to_train)
Add total_loss to summary.
summaries.add (tf.summary.scalar(’total_loss’, total_loss))

Create gradient updates.

grad_updates = optimizer.apply_gradients(clones_gradients,
global_step=global_s

update_ops.append (grad_updates)

update_op = tf.group(xupdate_ops)
with tf.control_dependencies ([update_op]):
train_tensor = tf.identity(total_loss, name=’train_op’)

Add the summaries from the first clone. These contain the s

created by model_fn and either optimize_clones () or _gather

summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))

Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name=’summary_

HAEHHHHH B R HAH SRR BB RS H S
Kicks off the training.
HAHHHHHHHHAAHH AR BB R R A AAHHHH
slim.learning.train(
train_tensor,
logdir=FLAGS.train_dir,
master=FLAGS .master,
is_chief=(FLAGS.task == 0),
init_fn=_get_init_£fn (),
summary_op=summary_op,
number_of_steps=FLAGS .max_number_of_steps,
log_every_n_steps=FLAGS.log_every_n_steps,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs,
sync_optimizer=optimizer if FLAGS.sync_replicas else None

if name == ?__main__":

tf.app.run()

B.2 Training script for proposed architecture

55

train

May 31, 2018

IMPORTS

In []: from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from datasets import cve_diseases

from nets import inception_resnet_v2

from nets import alexnet

from nets import nets_factory

from preprocessing import inception_preprocessing

slim = tf.contrib.slim

CONFIGURE VARIABLES
In []: modell = "inception_resnet_v2"
model2 = "inception_v3"
dataset_name = '"cve_diseases"
dataset_split_name = "train"

dataset_dir = "tmp/"

batch_size = 16

max_number_of_steps = 100000

train_dir = "./tmp/cve_diseases-models/model2-ds2/"

cnnl = nets_factory.get_network_fn(
modell,
num_classes=None,
weight_decay=0.00004,
is_training=True)

cnn2 = nets_factory.get_network_fn(
model2,
num_classes=None,
weight_decay=0.00004,
is_training=True)

DEFINE FUNCTIONS

In []: def

In []: def

MAIN

jonet (images) :

netl, end_pointsl = cnnl(images)
netl = end_pointsi['Mixed_7a']

net2, end_points2 = cnn2(images)

net2 = end_points2['Mixed_7c']

net = tf.concat((netl, net2), 3)

net = slim.flatten(net)

net slim.dropout(net, 0.8, is_training=True)

net = slim.fully_connected(net, 11, activation_fn=None)
return net

load_batch(dataset, batch_size=8, height=299, width=299, is_training=False):
data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset)

image, label = data_provider.get(['image', 'label'])

image = inception_preprocessing.preprocess_image (
image,
height,
width,
is_training)
one_hot_labels = slim.one_hot_encoding(label, dataset.num_classes)

images, labels = tf.train.batch(
[image, one_hot_labels],
batch_size=batch_size,
allow_smaller_final_batch=True)

return images, labels

In []: #Select dataset
dataset = cve_diseases.get_split('train', dataset_dir)

#Load batch
images, labels = load_batch(

dataset,
batch_size,
is_training=True)

run the image through the model

logits = jonet(images)

get the cross-entropy loss

loss = slim.losses.softmax_cross_entropy(logits, labels)
total_loss = slim.losses.get_total_loss()

#O0ptimizer
optimizer = tf.train.AdamOptimizer (0.00001)

predictions = tf.argmax(logits, 1)
targets = tf.argmax(labels, 1)

correct_prediction = tf.equal(predictions, targets)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#Wirite summary
tf.summary.scalar('losses/total_loss', total_loss)
tf.summary.scalar('Accuracy', accuracy)

summary_op = tf.summary.merge_all()

create train op

train_op = slim.learning.create_train_op(
total_loss,
optimizer,
summarize_gradients=True)

run training

slim.learning.train(
train_op,
logdir=train_dir,
number_of_steps=max_number_of_steps,
summary_op=summary_op,
save_summaries_secs=30,
save_interval_secs=30,
log_every_n_steps=100)

Helper funcs for endpoint in end_pointsl: print("Endpoint: %s - Shape: %s" % (endpoint,
end_pointsl[endpoint].get_shape())) print("#HHHHHH#H##H#HHHHHEFFAFAAAH###E#) for endpoint in
end_points2: print("Endpoint: %s - Shape: %s" % (endpoint , end_points2[endpoint].get_shape()))

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

C Proposed network

59

Input: 299x299px

/

Concat
Fatten Flatten
Dropout
Fully connected

Softmax

11-class predictions

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

import
import
import
import
import
import

sys,
time

D Main code for CveClassifier

os

tensorflow as tf

funcs

shutil
numpy as np
from PyQt4 import QtCore,

QtGui

from cveGui import Ui_MainWindow

class Window (QtGui.QMainWindow,

def

self
self

self.
self.

self

self.

self

init__(self,
super (Window,

.setupUi (self)

parent=None) :
self).__init__(parent)

.progressBar.setValue (0)
appendPlainText ("########## INSTRUCTION

plainTextEdit.
plainTextEdit.
.plainTextEdit.
plainTextEdit.
.plainTextEdit.

appendPlainText ("1.
appendPlainText ("2.
appendPlainText ("3.
appendPlainText ("4.

#Define button click actions
.pushButton_3.clicked.connect(self.browselmg)
.pushButton_4.clicked.connect (self.selectOutputFolder

self
self

self.
self.
self.

#Methods related to button clicks
def classifyImages (self):

imgFolder =
outFolder =
graph =

self.label_3.text ()
self.label_5.text ()
self.label_6.text ()

61

Ui_MainWindow):

uSelect the folder
uSelect the folder
uSelect theyinferen
uClick,\"Classify\"

pushButton_5.clicked.connect (self.selectGraph)
pushButton.clicked.connect(self.classifyImages)
pushButton_2.clicked.connect (self.reset)

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

if not imgFolder:

self.plainTextEdit.appendPlainText("Imageufolderumustubeuse

if not outFolder:

self .plainTextEdit.appendPlainText ("Outputfolder must be, s

if imgFolder and outFolder and graph:

self .plainTextEdit.appendPlainText ("Starting,classification,

self .progressBar.setMaximum(len(os.listdir (imgFolder)))

self .progressBar.setValue (0)

self.cThread = classifyThread(
self.label_3.text (),
self.label_5.text (),
self.label_6.text ())

self.connect(self.cThread, QtCore.SIGNAL("finished()"), sel:
self .connect (self.cThread, QtCore.SIGNAL("classified (QString
self.connect(self.cThread, QtCore.SIGNAL("progress()"), sel:

self.cThread.start ()

def selectOutputFolder (self):

name = str(QtGui.QFileDialog.getExistingDirectory(self, ’Selec

self.label_b5.setText (name)

text = "Outputyfolder setyto: " + self.label_5.text ()

self .plainTextEdit.appendPlainText (text)
def browselImg(self):

name = str(QtGui.QFileDialog.getExistingDirectory(self, ’0Openjf.

file = open(name, ’r?’)
self.label_3.setText (name)

text = "Image_ folder setyto: " + self.label_3.text()

self .plainTextEdit.appendPlainText (text)
def selectGraph(self):
name = QtGui.QFileDialog.getOpenFileName (self,
file open (name, ’r’)
self.label_6.setText (file.name)

’Openyfile?)

text = "Inference,graph selected: " + self.label_6.text ()

self .plainTextEdit.appendPlainText (text)
def reset(self):
self.label_3.clear ()
self.label_5.clear ()
self.label_6.clear ()
def log(self, text):
self .plainTextEdit.appendPlainText (text)
def add(self):

self .progressBar.setValue (self.progressBar.value ()+1)

62

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

#Signals

def

done (self):
QtGui.QMessageBox.information(self, "Complete!", "Domneycl
self .plainTextEdit.appendPlainText (’Classification comple

#Threading
class classifyThread (QtCore.QThread):

def

def

def

__init__(self, imgf, outf, g):
QtCore.QThread.__init__(self)
self.imgf = imgf

self.outf outf

self.g = g

__del__(self):
self.wait ()

run (self):
graph = funcs.load_graph(self.g)

input_name = "prefix/input"
output_name = "prefix/InceptionResnetV2/Logits/Prediction
input_op = graph.get_operation_by_name (input_name)
output_op = graph.get_operation_by_name (output_name)
for file in os.listdir (self.imgf):

file_name = self.imgf + "/" + file

t = funcs.read_image_file(

file_name,
input_height=299,
input_width=299,
input_mean=0,
input_std=255)
with tf.Session(graph=graph) as sess:

results = sess.run(output_op.outputs[0], {
input_op.outputs [0]: t
b
results = np.squeeze(results)

top_k = results.argsort()[-1:]1[::-1]
label_file = "./graphs/labels.txt"
labels = funcs.load_labels(label_file)

text = "Predictiongyonimage: " + file
self.emit (QtCore.SIGNAL(’classified(QString)’), text)

63

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

for i in top_k:

disease = labels[i]

_, disease = disease.split(":")

if not os.path.exists(self.outf + "/" + disease):
os.makedirs(self.outf + "/" + disease)

shutil.copy2(file_name, self.outf + "/" + disease)

text = labels[i] + ",=>_," + str(results[i])

self.emit (QtCore.SIGNAL(’classified(QString)’), text)

self .emit (QtCore.SIGNAL (’progress ()?’))

app = QtGui.QApplication(sys.argv)
w = Window ()

w.show ()

sys.exit (app.exec_())

64

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

E Helper scripts

Copydata

#Copies labeled data from imgAnnotation tool to

’destination’ folder based on disease names in the

’diseases’ 1list

Configure source and destination for your needs.

#

import sys

import os

import shutil

Hu###A#HA##HH#H##AS Configure parameters########AAAAHAHAHRRHHHH#HAS
#Source for annotation databases(Absoulute path):

source = "/home/johnny/imgAnnotation-master/imgAnnotation-master/

#Destination for output files :#######HHHLHHHHHBHHHAHHHHHBHBHSHSHH
destination = "/home/johnny/Database/"

#Check for these diseases :#H##HAHAHAHHSHAHAEHAHHHHSHAHAHHSHAHEHEHHH
diseases = ["diverticulosis", "polyp", "uc", "chrons", "haemorrha
"erosions", "angioectasia", "ulceration", "oedema", "erythema", "
"aphta", "granularity", "haemmorhoids", "pseudopolyps"]

#Include following patients :##H###HAHHHAHHAHAHAHHHAHHBAAHARHHAHHEH
patients - ["Pl", IIP2II’ ||P3||, "P4", IIPSII’ "P7", npgn, "Pll", "p13
"Pl?", IIP19II, "P21", "P23", "P25"]

#Folder for non-disease image default: normal ####H#H#A#HARHHARHHAHR
normal = ’normal’
HAHHHHBHAHAHHH BB R AR BHHH BB RS S SRR B R ARG HH BB RS SHH BB R B AR HH B BB AR R RS
Helper vars
path = False
cleanselevel = False
informative = False
fil = False
copied = False
HARAAAAHHHHHHHAHAAAHS

#Loop through patient files

for patient in patients:
with open(source + patient + ’.annotation’) as f: #0pen cor

65

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

for line in f: #Read line by 1.
if line.startswith("file:"):
fil, path = line.split ()
if line.startswith("good_cleanse:"):
if len(line.split()) > 1:
fil, cleanselevel = line.split()
if line.startswith("informative:"):
if len(line.split()) > 1:
fil, informative = line.split ()
if any(line.startswith(disease) for disease in diseases):
disease, fil = line.split(’:7)
if not os.path.exists(destination + disease):
os.makedirs (destination + disease)
if os.path.exists(path):
shutil.copy2(path, destination + disease)
copied = True
if line.startswith ("##########") !
if not copied:
if path and int(cleanselevel) < 3 and int(cleansele:
if not os.path.exists(destination + normal):
os.makedirs(destination + normal)
if os.path.exists(path):
shutil.copy2(path, destination + normal)

path = False

cleanselevel = False
informative = False
copied = False

Convert data

HoH HFHHFHHHHHEHHFH

H

Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or impli
See the License for the specific language governing permissions and
limitations under the License.

r"""Convertsyayparticular dataset.

66

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Usage:

¢¢¢shell

$upython ,convert_data.pyu\
LUuLuL--dataset_name=cve_diseases \

Luuu--dataset_dir=tmp/cve_diseases
¢ ¢ ¢

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from datasets import convert_cve_diseases

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string/(
’dataset_name’,
None,
’Theyname_ of the dataset to,convert, one_of "cifar10",_ "flowe

tf.app.flags.DEFINE_string/(
dataset_dir’,
None,
’Theydirectoryywhere the output TFRecords and temporary files

def main(_):
if not FLAGS.dataset_name:
raise ValueError (’You_must,supplyy,the_ datasetname with --dat
if not FLAGS.dataset_dir:
raise ValueError (’You_must_ supply,the datasetdirectory_ withy

if FLAGS.dataset_name == ’cve_diseases’:
convert_cve_diseases.run(FLAGS.dataset_dir)
else:
raise ValueError (
’dataset_namey [%s] was_ not,recognized.’ % FLAGS.dataset_n

if __name__ == ’__main__"’:
tf.app.run()

67

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

Copyright 2016 The TensorFlow Authors. All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or impli
See the License for the specific language governing permissions and

limitations under the License.

===:

"""Provides data for the flowers dataset.

The dataset scripts used to create the dataset can be found at:
tensorflow/models/research/slim/datasets/download_and_convert_flowers.p:

from __future_

import absolute_import
from __future__ import division
from __future__ import print_function

import os
import tensorflow as tf

from datasets import dataset_utils

slim = tf.contrib.slim

_FILE_PATTERN = ’cve_diseases_}%s_x*.tfrecord’
SPLITS_TO_SIZES = {’train’: 2940, ’validation’: 327}
_NUM_CLASSES = 11

_ITEMS_TO_DESCRIPTIONS = {

’image’: ’Acolor,imageyof,varying,size.’,
>label’: ’Aysingleyinteger between ;0 and 4’,

68

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

def get_split(split_name, dataset_dir, file_pattern=None, reader=
"""Gets a dataset tuple with instructions for reading flowers.

Args:
split_name: A train/validation split name.
dataset_dir: The base directory of the dataset sources.
file_pattern: The file pattern to use when matching the datas
It is assumed that the pattern contains a ’Y%s’ string so th
name can be inserted.
reader: The TensorFlow reader type.

Returns:
A ‘Dataset ¢ namedtuple.

Raises:

ValueError: if ‘split_name
nnn
if split_name not in SPLITS_TO_SIZES:

raise ValueError (’splitynamey’%s, wasynotyrecognized.’ % split_

¢ is not a valid train/validation s

if not file_pattern:
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(dataset_dir, file_pattern % split_n

Allowing None in the signature so that dataset_factory can us
if reader is None:
reader = tf.TFRecordReader

keys_to_features = {
’image/encoded’: tf.FixedLenFeature((), tf.string, default_
>image/format’: tf.FixedLenFeature((), tf.string, default_v
’image/class/label’: tf.FixedLenFeature (
[, tf.int64, default_value=tf.zeros([], dtype=tf.int64

items_to_handlers = {
>image’: slim.tfexample_decoder.Image(),
>label’: slim.tfexample_decoder.Tensor (’image/class/label’)

decoder = slim.tfexample_decoder.TFExampleDecoder (
keys_to_features, items_to_handlers)

labels_to_names = None

69

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

if dataset_utils.has_labels(dataset_dir):
labels_to_names = dataset_utils.read_label_file(dataset_dir)

return slim.dataset.Dataset (
data_sources=file_pattern,
reader=reader,
decoder=decoder,
num_samples=SPLITS_TO_SIZES[split_name],
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
num_classes=_NUM_CLASSES,
labels_to_names=labels_to_names)

Copyright 2016 The TensorFlow Authors. All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implic
See the License for the specific language governing permissions and

limitations under the License.

===:
r"""Converts labeled ,CVE ;images to ;TFRecords of ,TF-Example protos.

nnn

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import math
import os

import random
import sys

import tensorflow as tf

70

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

from datasets import dataset_utils

The number of images in the validation set.
_NUM_VALIDATION = 1224

Seed for repeatability.
_RANDOM_SEED = 0

The number of shards per dataset split.
_NUM_SHARDS = 2

class ImageReader (object):
"""Helper class that provides TensorFlow image coding utilities

def __init__(self):
Initializes function that decodes RGB JPEG data.
self . _decode_jpeg_data = tf.placeholder (dtype=tf.string)
self. _decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_da

def read_image_dims(self, sess, image_data):
image = self.decode_jpeg(sess, image_data)

return image.shape[0], image.shape[1]

def decode_jpeg(self, sess, image_data):

image = sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_dat

assert len(image.shape) == 3

assert image.shape[2] == 3

return image

def _get_filenames_and_classes(dataset_dir):
"""Returns a list of filenames and inferred class names.

Args:
dataset_dir: A directory containing a set of subdirectories r
class names. Each subdirectory should contain PNG or JPG en

Returns:
A 1list of image file paths, relative to ‘dataset_dir ¢ and the

subdirectories, representing class names.
nnn

rootdir = os.path.join(dataset_dir, ’cve_diseases’)

71

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

directories = []

class_names = []

for filename in os.listdir(rootdir):
path = os.path.join(rootdir, filename)

if os.path.isdir(path):
directories.append(path)
class_names.append(filename)

photo_filenames = []
for directory in directories:
for filename in os.listdir(directory):
path = os.path.join(directory, filename)
photo_filenames.append (path)

return photo_filenames, sorted(class_names)

def _get_dataset_filename(dataset_dir, split_name, shard_id):
output_filename = ’cve_diseases_%s_%05d-of-%05d.tfrecord’ % (
split_name, shard_id, _NUM_SHARDS)
return os.path.join(dataset_dir, output_filename)

def _convert_dataset(split_name, filenames, class_names_to_ids, dataset.
"""Converts the given filenames to a TFRecord dataset.

Args:
split_name: The name of the dataset, either ’train’ or ’validation’
filenames: A list of absolute paths to png or jpg images.
class_names_to_ids: A dictionary from class names (strings) to ids

(integers).
dataset_dir: The directory where the converted datasets are stored.

nmn

assert split_name in [’train’, ’validation’]

num_per_shard = int(math.ceil(len(filenames) / float (_NUM_SHARDS)))

with tf.Graph().as_default ():
image_reader = ImageReader ()

with tf.Session(’’) as sess:
for shard_id in range (_NUM_SHARDS):

output_filename = _get_dataset_filename (
dataset_dir, split_name, shard_id)

72

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

with tf.python_io.TFRecordWriter (output_filename) as tfre
start_ndx = shard_id * num_per_shard
end_ndx = min((shard_id+1) * num_per_shard, len(filenam
for i in range(start_ndx, end_ndx):
sys.stdout.write(’\r>>,Converting, image%d/%d,shard %
i+1, len(filenames), shard_id))
sys.stdout.flush ()

Read the filename:
image_data = tf.gfile.FastGFile(filenames[i], ’rb’).r

height, width = image_reader.read_image_dims(sess, im
class_name = os.path.basename (os.path.dirname(filenam
class_id = class_names_to_ids[class_name]

example = dataset_utils.image_to_tfexample(

image_data, b’jpg’, height, width, class_id)
tfrecord_writer.write (example.SerializeToString())

sys.stdout.write(’\n’)
sys.stdout.flush ()

def _clean_up_temporary_files(dataset_dir):
"""Removes temporary files used to create the dataset.

Args:
dataset_dir: The directory where the temporary files are stor
filename _DATA_URL.split(’/?)[-1]
filepath os.path.join(dataset_dir, filename)
tf.gfile.Remove (filepath)

tmp_dir = os.path.join(dataset_dir, ’cve_diseases’)
tf.gfile.DeleteRecursively (tmp_dir)

def _dataset_exists(dataset_dir):
for split_name in [’train’, ’validation’]:
for shard_id in range (_NUM_SHARDS):
output_filename = _get_dataset_filename (
dataset_dir, split_name, shard_id)
if not tf.gfile.Exists(output_filename):
return False

73

Deep Learning Applied to Automatic Anomaly Detection in Capsule Video Endoscopy

return True

def run(dataset_dir):
"""Runs the download and conversion operation.

Args:

dataset_dir: The dataset directory where the dataset is stored.
nnn
if not tf.gfile.Exists(dataset_dir):

tf.gfile.MakeDirs (dataset_dir)

if _dataset_exists(dataset_dir):
print(’DatasetUfilesualreadyuexist.UExitinguwithouture—creatinguthm
return

dataset_utils.download_and_uncompress_tarball (_DATA_URL, dataset_dir
photo_filenames, class_names = _get_filenames_and_classes(dataset_dir:
class_names_to_ids = dict(zip(class_names, range(len(class_names))))

Divide into train and test:

random.seed (_RANDOM_SEED)

random. shuffle (photo_filenames)

training_filenames = photo_filenames[_NUM_VALIDATION:]
validation_filenames = photo_filenames[: _NUM_VALIDATION]

First, convert the training and validation sets.

_convert_dataset(’train’, training_filenames, class_names_to_ids,
dataset_dir)

_convert_dataset (’validation’, validation_filenames, class_names_to_ic
dataset_dir)

Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names

dataset_utils.write_label_file(labels_to_class_names, dataset_dir)

_clean_up_temporary_files(dataset_dir)
print (’\nFinished_ converting, the cve_diseases_ dataset!’)

74

	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background & motivation
	Problem statement
	Main contributions
	Outline

	Background
	Traditional screening methods
	Capsule Video Endoscopy
	Computer Aided Diagnosis (CAD)

	Machine Learning
	Convolutional Neural Networks
	Well known CNN architectures

	Related Work

	Creating the dataset
	Methods
	Results
	Discussion

	Experiments
	Methods
	Setup
	Experiments 1-4
	Experiment 5 - Proposed network
	Experiment 6
	Evaluation

	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5 - Proposed network
	Experiment 6

	Discussion

	GUI Prototype
	Methods
	Tools & libraries

	Implementation
	Results
	Discussion

	Conclusion
	Future Work

	Bibliography
	Evaluation scripts
	Training
	train_image_classifier.py
	Training script for proposed architecture

	Proposed network
	Main code for CveClassifier
	Helper scripts

