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Abstract

The path integral single spin partition function in the basis of boson coherent
states, for a general normal ordered two-mode Schwinger boson Hamiltonian, has
been computed. Within the initial phase of the calculational process, by a specific
approach, the Schwinger boson constraint by means of the projection operator has
been implemented. After, the case of the Zeeman Hamiltonian has been taken
on. Using the expression for the partition function obtained for the general case,
the appropriate single spin partition function has been produced. Additionally,
partition functions have been computed for a few specific spin quantum numbers
and then compared with those calculated by the straightforward means, which
brought about great confidence in the projection operator implementation; both
results match perfectly. Finally, the Heisenberg Model has been tackled, and the
appropriate expressions for the partition functions have been computed. Their
validity has not been verified for any specific cases, but the Zeeman Hamiltonian
case dealt with earlier appears to be a strong indicator that these are indeed the
correct expressions. Many open questions remain, however, for future research to
address. All in all, it has been discovered that using the projection operator as
a means to enforce the Schwinger boson constraint, veritably works for a Zeeman
Hamiltonian problem for specific spin quantum numbers.
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Introduction

The path integral formalism of quantization deals with an ensemble of paths, rather
than with wave functions and constitutes an alternative to canonical quantization
in quantizing a classical theory[1]. In this thesis, boson coherent state path integrals
are specifically studied and worked with . The unique mathematical properties of
bosonic coherent states, and the calculational techniques involved in the path inte-
gral procedure, are incisively applied throughout this work.

In the context of studying spin models such as the quantum spin liquid, the Schwinger
boson representation of the spin operators, with the Schwinger boson constraint im-
plemented on the physical space[2], tends to be applied in order to deal with the
highly quantum states which are rotationally symmetric[3]. One approach that
has been used for such an implementation is by means of the Dirac delta function.
As the crux of this thesis, however, the projection operator method is
employed instead, and where that leads to is explored deeply and widely.

In order for logical lucidity to be maintained, this thesis is structured in the fol-
lowing fashion:

e A group of established principles of physics that are of special relevance, are
reviewed in the initial stage.

e The heart of the thesis is embedded in Chapters 3 and 4.

e Tedious calculational details and other trivial matters are relegated to the
Appendix.

This thesis is judged to be able to be read without much struggle by an individual
whose education in physics matches that at the Master’s level and above. The
mathematical rigor certainly does not fulfill the crystalline and rigid standard de-
manded of by a pure mathematician. Nevertheless, a theoretical physicist should
be fairly satisfied by it; such is the author’s conviction. It is hoped that the reader
is shed, by some arbitrary extent, comprehensive light on this novel approach to
enforcing the Schwinger boson number constraint, ultimately.
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Chapter 1

Some Foundational
Principles

1.1 From Stationary Action to Lagrangian Me-
chanics

1.1.1 Hamilton’s Principle

Hamilton’s Principle! is stated as follows:

“The motion of a mechanical system from time ty to time to is such that the line

integral
ta
S = / Ldt
ty

where L =T — V| has a stationary value. Conversely, for this value, the system
traces out its empirical path of motion”.

T and V represent the kinetic energy and the potential energy of the system,
respectively. The quantity S is referred to as the action. But what does it mean by
stationary? Let us say S is stationary. This means that S along its particular
path has the same value to within first-order infinitesimals as that along
all paths that differ from it by infinitesimal displacements. In other words,
Hamilton’s principle proclaims that the motion is such that the variation of S for
fixed ¢; and ¢o vanishes:

to
65:6/ L(le"vQ’naq.h"'7q.n7t)dt:O
ty

1This tends to be loosely referred to as the Principle of Least Action. The material in this
section (From Stationary Action to Lagrangian Mechanics) is based upon the chapter Variational
Principles and Lagrange’s Equations of Herbert Goldstein’s book Classical Mechanics.[4]
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for some particular set of paths(which differ from the stationary path infinitesi-
mally).

1.1.2 The Fundamental Problem of The Calculus of Varia-
tions

The following one-dimensional problem is called The Fundamental Problem of The
Calculus of Variations:

There exists a function f(y,y,x) defined on a path y = y(x) between two val-
ues x1 and w2, where g is the derivative of y with respect to z:

“What is the path y(x) such that

5= / " fyp2)de (1.1)

1

1s stationary?”

In this problem, we take into account only paths which satisfy y(z1) = y1 and
y(z2) = y2. Additionally, we consider the fulfillment of two conditions. These con-
ditions are that .S must have a stationary value for the correct path relative to any
neighboring path, and the variation must be zero relative to some particular
set of neighboring paths. Let us label this particular set by an infinitesimal pa-
rameter «, and characterize them by y(x, «), with y(z,0) depicting the stationary
path.

As an example, one set of varied paths could be?

y(x, a) = y(xa 0) + O”I(ff) (12)

where n(x) vanishes at = x; and z = xs.

For any such family of curves defined by the parameter «, S in (1.1) becomes
a functional:

sial = [ f|otea). o). ds (13)

The stationary condition for this is

dS
a=0

2We assume that both the correct path y(x) and the auxiliary function n(zx) are continuous
and non-singular between x1 and z2, with continuous first and second derivatives in the same
interval.
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Now, by differentiating under the integral sign and then performing partial inte-
gration one gets

s (9 d of\o

da e \O0y dxdy | oo
Therefore, the condition (1.4) becomes equivalent to

= (or dor)(oy B
LE-EE) o

Now, the fundamental lemma of the variational calculus states:

“If

/x M(z)n(z)dz =0

for all arbitrary n(x) continuous through the second derivative, then M (x) must
identically vanish in the interval (xq,z2)”

Thus, it follows that S is stationary only if

af d(of\ _
9 i <8y> =0 (L.7)

dy
— da =
(dO{) =0 ’ 6y

represents the infinitesimal deviation of the varied path from the stationary path
y(x) at the point xz. Analogously, the infinitesimal variation of S about the sta-

tionary path is
as
<da> 70d0¢ =65

Hence, the fact that S is stationary can be written

5S = /%2 laf d afléydx =0 (1.8)

Now, the differential quantity

Oy drdy

which requires that y(z) fulfil the differential equation (1.7).
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1.1.3 Lagrangian Mechanics as An Outcome of Further Gen-
eralization

The fundamental problem of the calculus of variations can be generalized further
to include the following cases:

e f is a function of many independent variables y;, and their derivatives y;
e f is a function of much higher derivatives of y.

e Several x; parameters exist

e Variations exist in which the end points are not held fixed

One non-trivial consequence of the first of the above cases, in connection with
Hamilton’s principle, is the derivation of the equations of motion of Lagrangian
mechanics, an alternative formulation of classical mechanics to the prevailing New-
tonian formulation. Realize that the entirety of Lagrangian mechanics can be
derived from the rather innocent idea of the stationary action.

1.2 Path Integral Quantum Mechanics
1.2.1 The Probability Amplitude

Imagine a particle moving from some initial position (at some time) to some final
position (at some other time). In quantum mechanics, there exists an entity called
the probability amplitude, which is a complex quantity that can be used to calculate
the likelihood that a particle will arrive at some final position from some initial
position. Furthermore, there exists the notion of the propagator, K(b,a), which
contains some very specific information about going from one point a to another
point b. In fact, K(b,a) is the sum, over all of the paths that link the two end
points a and b, of a numerical contribution from each path.3

Contrary to how only the path of stationary action is important in describing
the motion of classical mechanical systems, all paths make a contribution to the
kernel, which describes quantum mechanical motion. Each contribution is equal
in magnitude, but possesses dissimilar phase. The phase of the contribution for a
given path is the action S for that path, in units of the quantum of action, h.

The probability P(b, a) to go from a point =, at time ¢, to the point x; at time ¢,
is

P(bv a) - |K(baa)|2

where K (b, a) is the sum, of the probability amplitudes for each path.

3The material in this section (Path Integral Quantum Mechanics) is based upon the chap-
ter The Quantum-mechanical Law of Motion of Richard P.Feynman and Albert R.Hibb’s book
Quantum Mechanics and Path Integrals.[5]
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Each probability amplitude contribution has a phase proportional to the action

S:

Sla(B)] = Aexp (;swn)

where A is a normalization constant.

Now, let us look at K (b, a) more deeply. What does it really mean to add up
the probability amplitudes for each path?

1.2.2 Summing Over Paths

Consider an ordinary Riemann integral. One could then say that the area A under
a curve is proportional to the sum of all its ordinates. Let us take a subset of all
ordinates such as those spaced at equal intervals of h, and add them up. Then, we
can write the following mathematical relationship:

ANZf(%‘)

where the summation is carried out over the finite set of points x;.

Next, let us define A as the limit of this sum as the subset of points (and thus
the subset of ordinates), gradually approaches infinity. To acquire a limit to this
process, we must specify some normalizing factor which should depend on h. For
the Riemann integral, this factor is just h itself. Hence, the limit exists now:

A= limhﬁo lhz f(xl)]

By a similar reasoning, we can understand the sum over all paths.

First, we choose a subset of all paths by dividing the independent variable time
into steps of width e. Through this, we get a set of values t; spaced an interval e
apart between the values ¢, and t,. At each time t; we select some special point
z;. Now, a path is constructed by connecting all the selected points with straight
lines. Having done that, it is possible to define a sum over all paths constructed in
this manner by taking a multiple integral over all values of x; for i between 1 and
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N — 1, where
Ne=1ty, —t,
€=1i41— 1t
to =tq
INn =1t
To = Zq
TN = Ty

The mathematical relationship we obtain, as a result, is:

K(b,a) N/...//¢[x(t)]dx1dw2...d:EN,1

We do not integrate over xg or zy because these are the fixed end points x, and
xp. We can obtain a sample that resembles the complete set of all possible paths
between a and b more, by making ¢ smaller. However, just as in the case of the
Riemann integral, we cannot directly work on finding the limit of this process be-
cause the limit does not yet exist. As with the former case, we must provide some
normalizing factor which we expect will depend upon e.

There are many ways to define a subset of all the paths between a and b, and
each of them could incorporate different non-stringent, convenient and fairly ef-
fective artifices in order to deal with the mathematical ‘awkwardness’ which could
arise in it. One may say the emergence of these inelegant complications is in some
sense an inevitable outcome of the mathematically flexible and lenient nature of
the calculational details surrounding the idea of summing over paths.

The concept of the sum over all paths, on the other hand, is valid despite the
existence of the aforementioned mathematical ‘awkwardness’. One may casually
write the sum over all paths as

K(b,a) = /ab exp (;S[b, a})Dz(t)

which is called a path integral.

1.3 Creation and Annihilation Operators of Bosons

In describing many-particle states, creation and annihilation operators can be very
helpful. They generate the entire Hilbert space by their action on a single reference
state, and provide a basis for the algebra of operators of the Hilbert space.*

4The material in this section (Creation and Annihilation Operators of Bosons) and the next
(Coherent States) is based upon the chapter Second Quantization and Coherent States of John
W.Negele and Henri Orland’s book Quantum Many-Particle Systems.|6]
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For each single-particle state |A) of the single-particle space H, one defines a
boson or fermion creation operator a; by its action on any symmetrized or anti-
symmetrized state |A;...Ay) of the boson Hilbert space or the fermion Hilbert space

as follows:
al AL AN = A AN) (1.9)

For an orthonormal basis {|u;)}:

al|prepn) = v/ + g o)

where n,, is the occupation number of the state |u) in |u1...un).

Physically, the operator a}: adds a particle in state |u) to the state on which it
operates, and symmetrizes or anti-symmetrizes the new state.

The vacuum state, denoted |0), represents a state with zero particles. aL acting on
the vacuum |0) creates a particle in state |u):

a}[0) = |u) (1.10)

A general state |¢) of the Fock space is a linear combination of states with any
number of particles. Any basis vector |p;....n) may be generated by repeated ac-
tion of the creation operators in the vacuum |0). The symmetry or anti-symmetry
properties of the many-particle states impose commutation or anti-commutation
relations between the creation operators.

For bosons, the creation operators commute:
[a},al] =0 (1.11)

The annihilation operators a) are defined as the adjoints of the creation operators
air\. Their commutation relations are:

[ax,au] =0 (1.12)
When acting on the vacuum:
ax|0) =0 (1.13)
which implies
(0la] = (1.14)

Also, the bosons satisfy the following commutation relation:

[a)\aa:u = 5)\;L (115)
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1.4 Coherent States

One useful basis of the Fock space is the basis of coherent states. Although this
is not an orthonormal basis, it spans the entire Fock space. Just as the position
states |r) are defined as the eigenstates of #, the coherent states are defined as
eigenstates of the annihilation operators:

aa|d) = dald)

1.4.1 Boson Coherent States

A boson coherent state in occupation number representation is:

|p) = Z ¢na1na2...nap-~-‘na1”az---”ap--~> (1.16)

NaqyMag,Nayp

where |nq,Na,--Nq,...) denotes a normalized symmetrized state with n,, particles
in state |a1), na, particles in state |as),... and {|a;)} is an orthonormal basis.

Using the definition of coherent states and the quantum harmonic oscillator, one
obtains the following results:

Na, ! Nay,! Na,!

T Yoy T Yna, o L’ Ny
o= Y Gmaa)™ @ma) G ),

Nay Mag, s Nayp

= exp [Z qﬁaall |0)
The overlap of two coherent states is given by
(¢l¢') = exp lz ws;] (1.17)

A crucial property of the coherent states is their overcompleteness in the Fock
space, that is, the fact that any vector of the Fock space can be expanded in terms
of coherent states. This is expressed by the closure relation:

dpadda _
/H%exp [—Z%%]Ww:l

where 1 is the unit operator in the Fock space.
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The measure is:

dpadde 1
= —|J|dzadya
2711 27Tz'|J| Faly

1

= —(20)dxodyeq
3i (Z)dTady

_ drodys

N T

_ d(Redq)d(Imey)

T

and the integration extends over all values of Re¢g,, and Imdg,,.

14



Chapter 2

Coherent State Path
Integrals

2.1 Propagator In The Basis of Boson Coherent
States For A General Single Mode Hamilto-
nian

The following is the expression for the propagator or the total probability amplitude

of a system, in the basis of boson coherent states, moving from some initial state
|z0) to some final state |zn):

[Uen,20,1) = (v [U@)]20) |

where U(t) = exp (_%H) is the time-evolution operator.
The Hamiltonian is assumed to be for a general single mode:

H=H(a",a) (2.1)
Furthermore, it is assumed to be normal-ordered.

This will now be computed in the path-integral representation. Firstly, the time-
evolution operator is broken apart as follows:

Ulzn, 20, t) = (zn] exp(—itH (a®, a) /h)|z0)
= (zn|fexp(—ieH (a',a) /R)]N|z0); e=1t/N
= (2~ U™ (€)|20)

15
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At this point, a set of coherent states {|z;)} is inserted. This is done by inserting
the coherent state closure relation[7] at each interval of time ¢, as follows:

dzy_1dzn_1

U(zn,20,t) = (zN|U(e)/ 57 exp(—2zN—12N-1)|2N-1)

dzn_odzn_
(a1 |U(e) / NN (i analan )

dzn_3dzn—
<ZN72‘U(€)/%exp<_zN73zl\773|zN73>

(22U (e) / d1dh o o(—ma)ln)

271
(21U (€)|20)

N-1
dzldzZ
/H E zkzk ZN|U )‘ZN_1>
=1 2mi k=1

(zn-1|U(€)|2n—2)(zn—2|U(€)|2n-3)

(22|U(€)|21) (21U (€)[0)

It is known that

Ul —1-— L, a)e (al, a)e
h
ase— 0
Therefore,
N-1 _ N-1
dZZdZ,L _
lime—oU (2N, 20, t) —/H 9 exp(— Y 2r7k)
=1 k=1
tH(Zn,2N_1)€
(znlzn—1)[1 — %]
tH(zN_1,2N_2)€
(el )1 - T ONL N2y

(ma oyt — 120N
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Maintaining € — 0, and reverting 1 — w back to its exponential form:
N-1 N-1
dz;dz; _
lime—oU (2N, 20, t H 5 XP(= ]; 217k)
H(zZn,z
<ZN|ZN71>6XP(—%)
tH(zN_1,2
(ol 1) exp(~ TN =L 2=
iH(Z1, 20)€
(21]20) exp(~ L 206
Now
(ewlen-1) = (Olexp(zna)exp(zy-1ah)|0) (2.2)

The identity

|exp(A) exp(B) = exp(B) exp(4) exp(|4, B) |

is valid if [A,B] commutes with A and B.
Using this identity, the following is obtained:

(znlzn-1) = (O] exp(zN_laT) exp(zya)|0) exp(2n, 2n—1)

= exp(zNzN—1)

Furthermore,

N=1 oo ae N-1
lime—oU (2w, 20, t) 7/ H 2:”1 p(*zzkz_k)
i=1 k=1

’L_H'(ZY\[7 ZN,1)6)

exp(Zyzn_1) exp(— .

iH(zn— LIN—_2)€

exp(zN_12n—2)exp(— (2N ;L N—2) )
iH 2’772 €
exp(&ﬁ)exp(-%)
iH (%1, 7)€

exp(#120) exp(— )
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This result is now examined in two parts|8]:

The first part:

(o B H(sn B (5
exp[fz (ZN,th 1)671 (2N ;L,ZN 2)67'“72 (Z;L,zo)e]
—1
= exp[fe(H(zjv, zn-1)+ H(zN-1,2n-2) + ... + H(Z1,20))]
; Nl
= exp[—ﬁf(z H(Zi41, 21) + H (21, 20))]
k=1

The second part:

N-1
exp[— E Zkzk+§ Z1Zk—1]
k

= exp[(z ZN—1)ZN—1 + (2N—1 — 2N—2)2N—2 + (2N—2 — 2N-3)2N—3 + ... + (22 — Z1) 21 + Z120]

N-1
= exp| (Zp+1 — Zk) 2k + £120)
k=1
Therefore,
N-1 _ .
. dzdzy, )
lime—oU (2N, 20,t) = / l H g ] exp lS}
P 271 h
where

N—1 ] )
. —1€ _ _ _ . —1€ _ _
S = —ih E [h H(Zgs1,21) + (Zhy1 — zk)zk] —ih [h H(z1, 20) + 2120

2.2 Partition Function In The Basis of Boson Co-
herent States For A General Single Mode Hamil-
tonian

Similar to the previous context, consider a system governed by a general single

mode Hamiltonian, which is also normal ordered H (at,a). Inserting two boson
coherent state closure relations in the occupation number representation of the
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partition function:
Z = Trlexp(—SH)]
= (n|exp(~BH)|n)

211

:Z(n|/diﬁl51 exp(—z"lzl)|zl)(zl|exp(—ﬁlfl)/alzadz2 exp(—2a222)|22) (22|n)

d#d d%d .
:/ zlmzl exp(—z‘lzl)/ 22252 exp(—ZQzQ);<n|21><21|exp(—BH)|22><22|n>

211 211

:/dz_ld.)zl exp(—zim)/dz_Qde2 exp(—izzé)Z<Zz|n><n|zl><zl|eXp(_Bﬁ)|ZQ>

n

dzd dzad g
N / 22172'21 eXP(—5121)/ 2227”'22 exp(—2222) (22| ; [n)(n|z1) (1] exp(—BH)|z2)

dzidz dzadz -
— [ B exponin) [ D22 expl(-cm) aaftlan) (s expl 5D )

- / dadz o (—zim) / 02202 o~ zm) sl (21| exp(—BH) 22)

211 211

dzadz dz1dz R
:/ . eXp(_zaz2)<z2|/ 5 exp(—z1z)|z1) (] exp(—fH)|2)

dzadz A
- [ B2 ep-maamlten-5))

dzadz ~
— [ 222 expl- ) al expl - 50 2

Now let z9 = z:

dzdz _ N

2= [ expl-22) el expl 52 (2.3)
i

Observe that the term (z| exp(fﬂﬁ )|z) appears quite similar to the propagator

(zn] exp(fW)Lzoy Therefore, exploiting some of the results derived in the

earlier section seems reasonable. In order to make this work, the following periodic

boundary conditions are first imposed:

z =z
I
S
o

o

wow
I
SR

and % is replaced with AgS.
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Thus:
N-1 -
dzldzl _ _
(z] exp(—f [~AB(H(Z,2n-1) + H(ZN-1,2N-2) + ... + H(1, 2))]
=1
exp[(Z — Zn_1)zn—1+ (EN—1 — ZN—2)2N—2 + ... + (22 — Z1) 21 + Z1 2]
N dz dz =2
— [ TLSE expl-A8(0H o) + H(,2) + 3 o, o)
=1 k=1
N—2
expl&iz + (2 — Zv_1)2N—1 + Z (Zhg1 — Zi) 2]
E=1

Combining this with the other term, the partition function can be written as

—
2= [ 1145 ot

k=1

where

N
S = Z [(2k+1 - Z_k)zk - ABH(2k+1, Zk)]
k=1

2.2.1 Partition Function In The Basis of Boson Coherent
States For The Single Mode Quantum Harmonic Os-
cillator Hamiltonian

Consider now the single mode quantum harmonic oscillator Hamiltonian

H = H(a',a) = hw(ata + %) (2.4)

Then,

N-1 -
dzl dzl

e =
(=] exp(— / i

1=

exp[~AB(H (2, z2n-1) + H(2n—1,2n-2) + ... + H(21,2))]
[

=

exp[(Z — Zn-1)2N—1+ (EN—1 — ZN—2)2ZN—2 *+ ... + (22 — Z1)21 + Z1 7]
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dzzdzl
/ H 211

N—1
1 1
exp[—ABhw(Zzn—1 + + ; e + 2) + Z1z + 5)]
N—2
exp[Z1z + Z (zr41 — Zr)zr + (Z — 2N-1)2N-1]
r=1
N—1
N dzldzl
= exp(—ABRw— 2 / 1_[1 ) exp|—dBhw(Zzn—_1 + ; Zrzr—1) + £12)]
N—2
exp[Z1z + Z (zr41 — Zr)2zr + (Z — 2N-1)2N-1]
r=1
N—1 N
h dz zd Z _
= exp( —B—w / H 0z )explz1z + Z (zp31 — —chwZzzr,l]
r=1
Combining with the other term, the partition function becomes
dzzdzZ —Bhw N _ _ _
H 5 )exp[Z(z,.Hzr — Zrzy — APhwz 312y
r=1
N
dzzdzl _
/H ol ) exp[— Tz::l Zrzr + 2og12r (APRw — 1))]
Modifying the argument of the exponential[9]:
N
- Z(Z_TZT + zr112-(ABRw — 1))
r=1
N
= — Z Zr Arp2p
T.p
where
1 0 00 0 0 —1+ ABhw
-1+ ABhw 1 0 O 0 0 0
A= 0 —1+Aphw 1 0 0 0 0
0 0 0 0 ... 0 —1+Aphw 1

is an N by N matrix.
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Hence, the argument of the exponential may be rewritten as
N
- Z ZrArpzp = —ZAz
D

where
Z = (%1, 22,23, ., ZN—1, ZN)

This implies

Now
—zAz=—2TAz
= luutAUuU 2

=—ztAPz
N
~ D ~
= ZZIATpZP
g4
N
=-> ADzlz
r=1

N
= Z ArDr(er2 + y~r2)
r=1

Note the presence of the following:

Calculating the Jacobian matrix for the new variables 21 and 2:

9z

£ 0
J = [ 4z az]

0 0z

[ 52

22
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Thus, |J] is UUT = 1.

Finally, since

dzdz dxdy
211, s
This also means _
dzdz  dxdy
oM o7
Therefore,
Bhw dz;ds
Z=exp<—7>/<H S ZA,,x +7)
Bhw
= exp(——— A’IQ!‘ Apr
. (,@)
BRI A{?T
exp! ﬂﬁw) 1
= X _——
P det[AD]
Now,

detAP = det|UT AU]
= det[UTU]det[A]
= det[A]

det[A] is calculated using the cofactor expansion of A (all the terms turn out to be
zero, apart from the first and the last term), as well as the fact that the determinant
of any triangular matrix is the product of its diagonal entries.

Hence,
detAP =1+ (—1)N "1 (ABhw — 1)V
=1-(1-ABw)N
phw . N
)
— 1 — exp(—fhw) (N — o0)

=1-(1—

Finally, the following expression for Z is obtained:

exp(—752)

Z= 1 — exp(—phw)

This is indeed the correct result.



Chapter 3

Single Spin Partition
Function In The Basis of
Boson Coherent States For
A General Two-Mode
Schwinger boson
Hamiltonian And The
Schwinger boson Constraint
Implementation

3.1 The Schwinger boson representation of Spin
Operators

Give the two second quantized operators aq and aj(or a$ and aD, the name
Schwinger bosons®. Then, the Schwinger boson representation of spin operators

is written as follows: R X
Sy +iS, = ala, (3.1)

Se —iSy, = ajay (3.2)

IThe material in this section (The Schwinger Boson Representation of Spin Operators) is
based upon the chapter Spin Representations of Assa Auerbach’s book Interacting Electrons and
Quantum Magnetism.[2]

24
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5 1
S, = 5(64% - ai%) (3.3)

and which are subject to the constraint

a;aT + aial =25

It can be stated that the spin magnitude .S defines the physical subspace:

{Int,ny) s np +ny =25} (34)
Using (3.1), (3.2) and (3.3) the following expressions for S, and Sy can easily be
derived: 1 1
b= Ll rala) 8= hala o

3.2 Implementation of the Schwinger Boson con-
straint

3.2.1 The Dirac delta function Implementation

The Dirac delta function can be heuristically characterized as follows:

5(z) = {+oo, ifx=0

0, otherwise

Now, the inverse Fourier transform of 1 is the Dirac Delta Function:

o(z) = /00 exp [i2mz ] dA (3.5)

— 00

The Schwinger boson constraint for two bosons of species “up” and “down”, can
be written as:
a}aT + aI% =25 (3.6)
Now, re-writing the Dirac delta function in terms of the Schwinger boson constraint:
e T T
400, if azar +aja) = 25

§(alar +ala, —29) =
(aTaT A ) 0, otherwise

Similarly,

6(@1% + aicu —28) = / exp [i27r(a$a¢ + aial — 25)A]dA (3.7)

— 00

The integral representation of the Schwinger boson constraint, which is rooted in
the above integral representation of the Dirac delta function, can be written as[2]:

/D)\ exp l— ie Z Xi(T)(ala; — 9) (3.8)

=1,
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Inserting the above for each time step, in the coherent state path integral calcula-
tion, one can derive the expression for the partition function that has the following
form|[2]:

Z:/O;D/\/DQzexp{_/OBdT[ZziaTzi+H+iZ)\,'(T)(zizi—S)]} (3.9)

3.2.2 The Projection Operator Implementation

The ground state projection operator for the quantum harmonic oscillator can be
written as[10]:

|0)(0] =: exp[—a'a] :

where the colons indicate normal ordering.

Now, the projection operator onto the physical space, on which it is imposed the
Schwinger boson constraint, can be written as:

25
P =" |np,ny)(ng,ny
n4+=0
25
= Z |nT’25 - nT><nT’2‘S - nT|
n+=0
28
= Z |n,2S —n)(n,2S —n|

n=0

Now |n,2S — n){n,2S — n| can be re-written as follows:

|Tl, 28 — n> <Tl, 25 — Tl| = m(ab"(abzgfnm’ 0> <07 0‘(&“”(6@)257”
= m(a};)"(ai)zsfn . exp[—aiai — a$aﬂ . (aT)n(al)QS,n
— m(ai)"(ai)%—n . exp[—ﬁi _ ﬁ‘T] . (aT)n<a¢)25_n

Therefore, P can be re-written as:

28 1 t\ns Fr25—n R ~ n 25—n
=2 s S @D @l el — ] (o) (@)

n=0

Now, a single spin partition function in the basis of boson coherent states will be
computed. Since a single spin can be represented by the Schwinger bosons, the
Hamiltonian has the following form:

H= H(“L“%“L%) (3.10)
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Similar to what was done previously, two boson coherent state closure relations are
inserted in the occupation number representation of the partition function, and the
resultant expression is manipulated accordingly. Furthermore, the Schwinger boson
constraint is enforced using the projection operator; this is done by multiplying the
projection operator with the exponential term in the trace expression of Z:

Z =Tr|exp [—Bﬁ(a%,aT,aLai)]P

= Y (nt,ny|exp(—=BH)P|ny,n,)

TL»T nl
dzkdzk _ 2
= S ol [ ] Geew = 3 aallElew(-amr
ng,my k=1, r="1,4
dwkdwk _
/1 exp [~ 3w, fw)lwlng,n,)
k=1,1 r="1
dzkdzk dwkdwk _
/ II = - Y %z / 11 exp[— Y ww,]
k=1, r=7,4 k=1, r=7,4
> (n,ny]2) (2| exp(—BH) Plw) (wlny, ny,)
n4,ny
dede dwkdwk _
~ [T 5ol 2 aa] [ 1] exp[— 3 ]
k=1, r= T¢ k=1,1 r=7,
> (wlng,na, ) (ng, ny|2) (2] exp(—BH) Plw)
n4,ny
dzid dwyd
/ H Zk Zk exp | — zrz,« / H wk wk xp[— Z wrwr]
k=14 r=m,{ k=11 r=m,{
(Wl D Ing,nn,) (ny, ny|2) (] exp(—BH) Plw)
ny,mny
dzkdzk dwkdwk _
~ [T 55 enl- X =al [ 11 exp[— 3 ww,]
k=11 r= Ti k=11 r=m,{

(w|1|z)(= Iexp(—ﬁﬁ)P\w
dz; dz dw, dw
/H i exp | — z,zr/H TRk xp[—zwrwr]
k=1.1 r=t{ k=1.1 =1
<w\2><2|exp(—ﬂfl)le>
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dwrd dz.d
:/ T 2% e[~ 3 @WM/ [1 S5 o[- Y aall
b=T,{ r=14 k=1,1 r=14
(2| exp(—BH)Plw)
:/ H du;kizwkexp[f Z Wy w, | (w|1 exp(—BH)P|w)

k=14 r=t.4

211

:/ H Mexp[— Z w’('wr] <w|exp(—ﬂI:I)P|w)

k=14 r=t1
Letting w = z:
Z = H dZdzy exp [ — Z Zrzr] (2] ex (—BH)P|z) (3.11)
= o p rZr p :
k=1,{ r="11
Now,

(zlexp(=BH)|2) = (2|U(B)l2) = (z|UN (LB)|z)

Inserting the coherent state closure relations and the projection operators for each
time interval as follows:

dzd
Z:/ H %exp[— Z z}zr]
k=11 r="m{
(ZU(ABIPI'U(ABIPI'...U(AB)IPI'U(AB)IP|Z)

where died
. Wi dw
I:/ H 2km' i exp [ — Z w,w, | [w) (w) (3.12)
k=1, r=t,{
ff:/ I 2% ep[- 3 a2l (3.13)
2mi o '

k=14 r=14
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Thus:
/ 11 dzzk:jk - D &l
k=11 r=nt
/ H deN 1dz exp[* Z £ N-1 N 1]< |U(AB)IAP|ZN71>---
k=1,4 =t
/ 11 dzzk::k - > &l
k=1,{ r=i
dz;C dzk — s m,m
T[T 5 o[- X )
I=1 k=14 m=b =t}

(U (AB)IPIN 1) N HU(LB) PN ?)

(22[U(AB)IP|2 ) (' |U(AB)IPz)

/ H dede exp [ — Z Z;ZT]
k=11 r=t,4
N-1 —1

[ o Eig o

=1 k=t m=1 r=1,]
1

=

l
N—1 _ N—
du, T dw? o
ST 55 o[- XX wru)]
F=0 k=t i=0 r=1.l
2U(AB) w1y (wN PN
ANTNUAB) w2 (w2 PN 2

o~ o~

(Z*|U(AB)w') (w' | P|2")
(' |U(AB)|w){(w|P|2)

- I 55 vl - X 5al

=T r=1.4
7 N-1

/H ot %} [ 223 &)

B =T m=1 r=1,|

N-1 dw,fdwk N-1 -
[l o)

f=0 k=11 prr ]

-1

[ U(AB) ) | Pl27)]

(=)

j=
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Note the application of the periodic boundary condition:

2N =20 =g,

and the substitution of w with wy.
From the previous calculations, it is known that:

<Zj+1|U(Aﬁ)|’U)J> — <Zj+1|wj>exp [ ABH( =j+1 w%gi'f'l’wi‘) (314)

Computing (z7+1|w?)?:

(T w?) = exp [ Z Z ] (3.15)
=11

Thus
(U (AB)|w?) = exp [ DO ART }exp{ ABH(zT, w%,21+17w{)} (3.16)
=14
Now, computing (w?|P|z7)3:

25

W|PIE) = 3 sy ()" (]S ()" (25 (0] exp [~ i) 1)
’ (3.17)

Compute (w?| : exp [ — (riy +1iy)] : |27)

<wj|:exp[_(77j?+m)]:‘za w”Z n¢+nl)p:|zj>

35

p=0

GTGT + alcu)p 2 |27)

Compute (w?| : (a;af + aI%)p t]ed)h:

(W] : (a}aﬂf + aiai)p 27) = {w;% + wizﬂ exp [ Z wizf} (3.18)
=14

Thus:

oo

(w”:exp[—(n}—i—ni ) :Z
p=0

o . AP
[u’)%z%—i—wizﬂ exp[ Z w;z;} (3.19)

!
P =1

2The calculational details are in the Appendix.
3The calculational details are in the Appendix
4The calculational details are in the Appendix



CHAPTER 3. SINGLE SPIN PARTITION FUNCTION IN THE BASIS OF BOSON COHERENT
This implies:

(w?|P|27) = Z m(’@;)n(@j)stn(ZjT)n(Zj)stn

1 28
_ .
= G 94 + 03]
Finally:
dzkdzk _
7 = —
/H 211 [ Tzr]
k=14 r=m1
N-1 _ N-1
dz;ldzl m_m
ST S5 e [ 203 aman)]
=1 k= m=1 r=1,]
N-1 _ N-1
i dw
JILIL 250 5 et
21
f=0 k=t =0 r=t,l
N—1

r=T,{

. dzrdzy
_/ 211 [_ ZTZJ
k=1,{ r=T,{
N-1 _ N-1
dztdzt / dwkfdw{: 1 N
/ll_[1 {k:T,i 2mi } o ng[’i 2mi }{(25)!}
1

N—
exp [ ‘ ( (2] wj — 2} 2] —wiw)) — ABH + [25]ln[w;zjT + u’)jzj])

+ ( (Ziw® — w'w') — ABH 4 [28)in[w" 2T + wlzi])]
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where

j=1 r=t,|

N
A= Z [ Z (=Zj 0]

+ 22T+ wlwh) + ABH — [2sun(w}z}+wjzj)]

The logarithmic terms in the action will be eliminated as follows. Firstly, taking

apart exp [ — A] :

exp [— A} = exp

= exp
=1
N

=exp | — Z Al
j=1
N

o[- 3
j=1

—

<.
Il
-

I
—=
3,
195]
@
»
=
|

<.
Il
-

Now let

This implies

. N ;
-y
j=1
A X
-y

::12

<
Il
A
<
Il

Pl

‘:12

=
®

=
g

<.
Il
N

<
Il
—_

— ABH(Z]

)] HB”

Zj+1s ]’ ]-‘rl’

i)~ ABH(z) Zj+1 ]T,gji,Jrl?w]i‘))B]?,S]

A= A~ B

exp(—AY) = exp(—A; + nBy)

Note that
825’
on2s

exp(fA;') _ 9

25

oS exp(—A’ 4 nBj)

= BJZS exp(—A;' +nB;)



CHAPTER 3. SINGLE SPIN PARTITION FUNCTION IN THE BASIS OF BOSON COHEREN'T

Hence,
825

9725 exp(—=Af)|p=0 = sz_s exp(—A7%)

With this, exp

i

— A] can be re-written as:

N 825
exp [— A} = H {W eXP(_A;I”n:o}

j=1
N 25

=11 [8 < exp(— A} +nB;)|, 0}
j=1
N 825 N

=11 o exp {Z — A% +n;B |n,=0)}
j=1 j=1

=T . T —T T - T
( > (Fw) — 22) — wjw) + ;0525 |y=0)
r=t.4

+Mmawﬁﬁuw]

||::2

Q’Q;

g @

D

&

o]
o 1M)=

Thus, the partition function can be re-written as:

dzk dz dw! dw!
eI

=1 k=1l F=1 k N
N 825 N
Ha 25 eXp[Z( (Zjp1wj — 225 — wjwj +1); ln=0)
j=1 i =1 =1l

s ([ ave) JTL I 5] [T IT 55
B ! 25
(29)! ale on; =1 k=ty 2mi el 27
N
exp [ 30 (2 (] - 25 — wjuf + 02 o)
J=1 r=1}

+ ABH(Z, wl 2, wi))]

Relabeling the variables as follows

Uy, U2,y ...y, U2N -1, U2N = 21, W1...;, ZN, WN
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the following expression is obtained:

2= (] (Mg [TILTT 25 o ]

j=1 I=1 k=11

where

N
_ =T I =T T =T T .77” r
G= E l (“2j+1“2j — Ugj_qUgj_1 — UgyUn; + 77]“2j“2j—1|n,-:0)
r=7,4

+ AﬁH(ﬂng, ugj, ﬂéjﬂ, uéj)]

3.3 Single Spin Partition Function In The Basis of
Boson Coherent States For A Zeeman Hamil-
tonian And The Projection Operator Imple-
mentation of the Schwinger boson Constraint

Consider the following Zeeman spin hamiltonian
H=-BS,

In the Schwinger-boson representation,

N Bh
H = —7(4% - aiai)
Thus,
7= ) [ M ge] [T 255
- | 25
(25) i on; =1 ety 2mi
N
exp [Z ( (U 41 us; — Upj_quhj_q — Unjub; + NjUs;U5;_1|n;=0)

-
I
=
5
I

>

-

Bh _
- A57(Ugj+1ugj - u%j-&-luéj))}
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[ } Hazs /H dukduk}
Bh _t 1

29)!
j=1 =1 k=1l
N
_+ 1 _1
exp{E (“23+1U2J Ugj—1U25—1 U2gu2g +773U2JU2J 1|77J—0_AB Ugj41U2j

A Lo 1y Bh_, |
T+ Ug i Ugy — Upy_qUpj_y — UsjUpy + 77j“2j“2g>1|17j:0 + AB—- “2g+1“2g)}

:[(2;).} 825 /H 1 d’ukdwc]

=1 k=1,]
Zfr 11 AB@)_¢T il ul, +nalal ||
exp Ug,jyqUsgj(l Ugj_1Ugj_1 — Ug;Ug; T 1jUg;Uss 1]n;=0
j=1

Ll ol Lo Lol
+u2j+1u2j(1+Aﬂ )*UQJ (U1 — Ug,Usg; +77ju2ju2j—1|77_7‘:0):|

1 825 duk dul _ _
= [(25)} L 9129 /H k] Xp[*"T Su' *“¢Q“¢] Inj=0
' L] =14
where
u" = (ﬂq,ﬂg,ﬂg, "'7ﬂgN—1aﬁ§N)7r =T :Ta\L

uy

up

uT’

wr=| " ==t
UsN_q
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and
1 0 0 0 0 0 0 —1+ApBR
- 1 0 0 0 0 0 0
0 —-1+ApB2 1 0 0 0 0 0
0 0 —1) 1 0 0 0 0
0 0 0 —-1+ABE8F 1 0 0 0
0 0 0 0 —1)3 1 0 0
S=1o 0 0 0 0 —1+ApEE 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 —nN 1
1 0 0 0 0 0 0 -1-Ap8L
- 1 0 0 0 0 0 0
0 —-ABEE 1 0 0 0 0 0
0 0 —1) 1 0 0 0 0
0 0 0 -1-AEr 1 0 0 0
0 0 0 0 —1)3 1 0 0
Q=10 0 0 0 0 —1-ApLh 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 —nN 1
N 2N 1 2N l
1 1N 525 dquuT dat dut
_ at ¢ ¢ at
] (L] [ T eoteat sut 11 [ T35 ertmiuy b
Now,
—at Sut = —uTT SuT
= —u;T UUTSUU '
= —ay" P4t

2N

- altsg
p
2N

=-Y shabtal
r=1

2N

= - Z Sﬁ(ﬁﬁ + QET)

r=1
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Similarly,

2N
—atQut = — Z QZ@?,¢ + ﬂ?i)

r=1

Therefore,

1 825 dul dul 2N, _ _
- [(2 /H T exp(— ZSTE:«(SU%,T‘FZ/%T)) In,=0
r=1

2N l
dat du!
¢ " ~
/ exp(~ ZQM 2L+ 520) lny=o

1 625 2 d! dy Mobia -
- [(2 / EWE exp(— 3 SR+ 24) b0
r=1

2N

dz! dy
/lljll iT iexp ZQM’ r¢+yr¢)) |777—0

] (e 11

[ \/Sﬁ\/Sﬁ ey 2] o
1 qN¢

825
8772-5 Hﬂ-2 S7D D |771—0

J T or=1 rr
2N
9 1 L
25 H DD m=0
afr] - r ST’I‘ rr

1
25 | det(SD)det(QP) Inj=o

=5 1':12

~
Il
-

~
I
5
S

Il
o
|~
=
V|
[}
n

1
25 | det(S)det(Q) Iny=0

<

I
L
=

Il
o
|~
=
SR
[V}
[¥))

~

I
A
=

I
~
|+
=
Sl
g;m

1
{1 — (mn2..nn)(1 — %)N} [1 — (m,n2, nN) (1 + %)N}

N 8725}
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}

NN 928
Z:[(zg)!] [H;;S

)11 G+ i]fvhﬂN] =0

3.3.1 Z For Specific Spin Quantum Numbers
i) S=0

Using the Zeeman partition function result obtained above:

2= |1~ Gmme)[(1 = SN 4+ (14 ]
F )21 22014 @?Vhﬂ =0

=1
Alternatively, using the regular formula for the partition function:

Z = Z exp(BBS;)

5.=0
=1

The results match.

The same procedure is applied for the other spin quantum number cases:

ii) S=1/2
N
0
z=11-2
1o,

B8Bh

) pBh N
+ (mn2..nn) [(1 - W)(l + W)] ] In;=0

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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N
0
-115, v

= () [0 = 5207 + (1 20Y]

+ (e[ = EBy 14 BB

— () [(1= G + (1 Y]
4—2@nn»~nN>k1—-fjﬁ%<1+-fj§U}NknznnN>]|m_o

N Bh Bh
:Ua”2w[“iN)“”gNWWw

ﬁ)—!—exp(—) (N — o0)

Alternatively,
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iii)S = 1
2= (][I 32
L ) [(1= S0 + (14 EED]
S O
- ([l
L () [(1 = 50 4 (1 22T
s (e 20 - 2By 0y BBy
() [(1 = OV 414 22T
= 2 ) [(1 = 5200+ 50| o
~ e (gl ([ - el G 0
+ (e[ = 2B 1 BBV o[- BB 4 (14 BBR ]
- [1 — ) [0 = T (14 O]
TR (UL A —) PR3

1+ BQ?VFL)}N> In,=0
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N

= [ [ o] ((772-.~77N) 0= 280 4+ 2B )

j=2 13

Bh
1—(n,m2..yn) | (1 — %)N

-3
F 04 BN an?[0 - 2B @?fﬂ

e[0TV g

BBh .y
_ )]
+ 2(mmn2--nn) (121N
i Bh Bh N
p L)}

(1= 0+ 358

. [1 ) [ = T2 4 (14 O [ - 2201 @?j)ﬂ

8B 8Bh AN
o+ 5

N
() (o) [0 = 220+ T80

2N 2N
BBh. n BBh . N
1_(771772-'~77N)|:(1—W) +(1+W) }

2(n..n)> [(1 -

-3
+<nm2...mv>2[<1—M)(HﬁBh)}N] [—(
) |m:0

2N 2N
BBh @)}N
HE - <<n2...mv> - 280 4 s 2P

+2(mn2..0n ) (N2.-.1N) {(1 - W)(l toN

[_ () (1= DY (14 S | = 2?0 - G0+ 0]
= [jv} [ﬁ 59772;} (12---118)" “(1 - %)N +(1+ %)N]Q - [a- %)(1 4 %)}N]

_ 2 “(1 B e 2B - 2 é]f\f)]]v]
= [0 -2+ 0] - [0 - 2+ 220"
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_(1_ BBhay BBh, oy _ BBh BBh N
Z=(1— N+ 1+ 5 + (1= 500+ 50
= exp(—fBh) +exp(BBh) + 1 (N — )
Alternatively,
Z= )  exp(BBS.)
S.=—h,0,h
= exp(—fBh) + exp(BBh) + 1
iv)S = 3/2

7 — o [ H (;9;3} [1 — (mna..mn ) + (7717]2~--77N)2<>} - In;=0

j=1 "1

where 8BHh sBH
d=(- N+
Bh BRh N

0=[0- 50+ 55]

{(772...771\/)& - 2(7717]2---7]N)<>(772---77N)}> [n;=0

-2

11y 810 , ,
=V [ H 87773} am\ 2$(n2.mN) [1 — (mn2..nn)d + (Mmn2..0N) O}
j=2 7'l

+2 [1 — (mmn2-.nN ) + (771772-~-77N)2<>] : [(772-~-77N)°?0 - 2(771772-~-77N)<>(772~--77N)} 2)

|77j:0

L A 3 393
ZGTV[H 6777;”} — 12&(n2..0n )"0 + 6(n2..0Nn )& | |n,=0

j=2
6 oy 0

=GN []1;[2 87775’} (n2--1)° < —20& + &3> ln;=0

= 20 + &’

=2l G 5] - G e as S o S e as e
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Bh Bh N Bh Bh
z=-2]0- 220+ 2o [ - 2N a0 B2
+(1- %)‘W +(1+ %)31\’ +3(1 - %)N +3(1+ %)N
—38Bh Bh —BBh Bh
= exp( 35 )+exp(%) + exp( ﬂ2 )+exp(%) (N — )
Alternatively,
Z= ),  exp(BBS.)
S.=="F.5.%
—38Bh 368 3B B
= exp( g )Jrexp(ﬁT) ( 52 ) + ex (BT)



Chapter 4

Partition Function for the
Heisenberg Model In The

Basis of Boson Coherent
States

4.0.1 Two Spins

Consider the Heisenberg Model for a pair of spins S; and S2. The Hamiltonian
can be written as follows:

H=-JS:85;
= —J[S7S5 + 5755 + S7S5]

In the Schwinger-boson representation:

h h
5785 = 5@,1%,1 + GI,1GT71)§(G%2%72 +al yat2)
2

= Z(@J%J“?Q%Q + @171%,1(112%,2 + a1,1aﬂla$,2ai,2 + ai,laTylaI,gaTﬂ)

h h
518§ = Z(a:rm%,l - allaTyl)Z(ﬂzal?? - QIQG%Z)
2
_ T T T T
= _Z(ai,lai,la;Q%E a4y 104,10 5012 — aIJaTJaTmai,Z + a¢,1aT,1a¢,2aT,2)
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h h
5785 = (al 1411 — aI,1a¢,1)§(a¥,2a¢,2 - a1,2a¢,2)

h2
= Z(a;lamabam —alyaraa] pay0 —a] japaal yare + afyap00] Hay )

Thus?,
2
7

—al jaryal yayo —a japal yar +aliay 10l Lay )

5185 = 2a$71a¢’1a172a¢72 + QaIJaT,la%Qa%g + a;ﬂT,la%zaTﬂ

As done before, two boson coherent state closure relations are inserted in the occu-
pation number representation of the partition function, and the resultant expres-
sion is manipulated accordingly. Also, by the same method used previously, the
Schwinger boson constraint is enforced using the projection operator:

Z =Tr|exp [— b’ﬁ(a?l, amhall,%,l,a%z, ar2, aLQ, a%g)]P
= > (nt1,ny.1,n1.2,n 2| exp(—=BH)Plng1,ny 1,14 2,1 2)
ne,1,n),1,11,2,10 ) 2
de de @.0) )
= > (ng,1,n4,1, 0.2, xp[— Y Zz]2)(z|exp(—-BH)P
T4, 1,M,1,M1,2,10 ]2 r=(1,1)
(2,4) dwkdwk (2,4) )
II Y wwe]lw){wlng, ny nge, )
k= (m) r:(l T)
dzkdzk @4 dwkdwk @4 _
H [_ ZTZT H exp [_ Z wrwr]
= = =)
> (41,141, n1.2, 1y 2]2) (2] eXp(—BH)P\wﬂwlnT,l, Ny, M2, My2)
N4 1,1 ,1,104,2,1 2
24) dzkdzk 24) dwkdwk @4 _
H exp [— zrzr H exp [— Z w,wr]
k=(1,1) r=(1,1) r=(1.1)
> <w|n¢,1,n¢,1,nT,z,n¢,2><n¢717n¢,1,n¢,2,n¢,2|z><z| exp(—BH)P|w)

11,1, 1,10,2,70 2

1The calculational details are in the Appendix.
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(2,4) dzedz, (2,4) (2,4) dpdwy, (2,4)
:/ H Wexp[— Z z}zr}/ H Wexp[— Z wrwr]
k=(1,1) r=(1,1) k=(1,1) r=(1,1)
(w] > [, 1511 1,2, 1y 2) (M 1511 T 2,y 2] 2) (2] exp(— BH) Plw)
nTyl,n‘L,l,nT_g,nl,z
(2,4) _ (2,4) (2,4) _ (2,4)
dzidzy, _ dwdwy, _
—[ 11 Seol- Y aal [ II 55 enl- > wwl
k=(1,1) r=(1,1) k=(1,1) r=(1,1)
(w[1]2)(z| exp(—BH) P|w)
(2,4) dzdz, (2,4) (2,4) dwydwy (2,4) R
:/ 11 ami P L 2 ZTZT}/ 11 om0 L= > wew] (wlz){z| exp(—H)
k=(1,1) r=(L,1) k=(1,1) r=(L,1)
Plw)
@b 2.4 @) 2,4)
dwkdwk _ dede _
:/ 11 e exp[— > wrwr]<w|/ 11 > exp[— > Zzl2)(z]
k=(1,1) r=(1,1) k=(1,1) r=(1,1)
exp(—BH)Plw)
2,4) diirvdw (2,4) .
:/ [I “25 e[~ Y ww](wltexp(—4H)Pl)
k=(1,1) r=(1,1)
(2,4) dzdzy, (2,4) .
z/ H Wexp[f Z Zrzr] (2| exp(—BH)P|2)
k=(1,1) r=(1,1)
Now,

(2| exp(—BH)P|z)
= (z|U(B)Pz)
= (z|UN(AB)P|z)

Inserting the coherent state closure relations and the projection operators as fol-
lows:

@4 dzidzy 24
Z:/ H Wexp[f Z z‘,,zr]
k=(1,1) r=(1,1)
(ZU(ABIPI'U(ABIPI'...U(AB)IPI'U(AB)IP|Z)

—~
~

where
(2,4) (2,4)

I o

k=(1,1) r=(1,1)




CHAPTER 4. PARTITION FUNCTION FOR THE HEISENBERG MODEL IN THE BASIS OF I

(2.4) de de 2.4)
jr— / 11 - S 2z (4.2)
~(11) r=(1.1)
1
4.
Z Z nTl QS—TZT )'n¢72!(23—nT,2)! ( 3)

n4, 1_07IT2 0
(al )"0 (a] )?57" 0t (a] 5)"2 (a] )50

aj
~ N N N 25 25—
rexp [ = (g1 + 7)) = (e + 7y 2)] saft e al P al e

Akin to the calculations done previously:

2.4) 2.4)
dzkdzk
/ H 211 B Z
r=(1,1)
(z |U(A5)IP1/U(A5)JPI/ LU(AB)IPI'U(AB)IPZ)
2,0)
e

Zrzy]

24) dzkdzk @ _
/ H ep[— Y 5l
)

(2,¢) 2,

dikN_1d2k7 ZN-1,N- 1 N

/ I =5 —el- Z [(1U(AB)EP|N 1.

k=(1, T) r=(1,1)

2,1
/ H dzkdzk _ ( )2,7_;;.]
N1 (“) ey No1 (2)
dzi'd

JIL[ I o[- X3 =men]

=1 k=(1,1) m=1 r=(1,1)

(=U(AB)IPIN Y N HU(AB) PN 2)

(ZIU(LB)IPIY) (21U (AB)IP]z)
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/ ﬁ) dede [ %“ ]
- ZrZp
=11 r=(1,1)
N-1_ (24 N-1 (2,4)
dz.ldz! o
/H H 2mk} p[_ml(r_%:ﬁzf )
N-1 (2,¢) N-1 (2,4
dwkfdw,f
. exp | — ( Wyl wl)
/fl:lo [k(l,T) 2mi } [ JZZ; r%:,T) }

(U (AB) ™ ) (w1 PN
(THU(AB) N ™2) (w2 [Pl 2

(ZIU(AB)w' ) (w'|Pl2")
(' U (AB)w) (w|P|2)

24) dzndz z4)
=) 1l S5 ewl= > =]
k=(1,1) r=(1,1)
N-1_ (2)) dikldzk N-1 (2,0) o
H H 2mi } p{— (Z cr ZT)}
=1 k am m=1 r=(1,1)
N-1_ (2) di! dw! N-1 (2,))
wd
JILLIT “5teo[- X0 5 wou
f=0 k (1,1 J=0 r=(1,1)
N-1 -
[T [z 10 (a8)w) (| Pl=7)]
=0

The following periodic boundary condition is applied:

ZN:ZO:Z,

and w is substituted with wy.
Now computing (277U (AB)|w?):
) . ; : —j+1 =j+1 sJ+1
<Zj+1|U(AB)|wj> = <Z]+1|w]> exp [ AﬁH(ZT 1 7wT 1s Zi 1 7w¢ 1s Z% 2 ’w% 29 Zi 2 ’wi 2)}
It is known that,

(27T w?) —exp[ Z T w
=(1,1)
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Thus,
_ _ 2,4)
ULAN) =exp [ S ATl |exp | = ABHET w2 wl 5wl 25 w] )]
I=(1,1)

Also, computing <wj|P|Zj>2:

1
JP J
w ‘ ‘Z Z Z QS—’I?,T 1)' nt2: (QS—HT 2)

ny,1=0n4 2=0 1

(wml)”m (wil)% e (@%,2)7%2 (@172)25—71?,2 (Z%,l)m’1 (21,1)25_7”’1 (21];,2)”?’2 (21,2)25_7”’2

(w?] s exp [ — (Apg 4+ 7y1) — (g2 +y2)] < [27)

Now computing®

([ exp [ = (Rg,1 + fg1) = (g2 + Ry2)] £ |27)

(w?] s exp [ = (Apg +fy1) = (g2 +Ry2)] o [27) = (1200 + @y 1200 + Dy 2202 + B 22)2)°

@y
p[ Y ]
1=(1,1)
Thus,
) oo
(W] :exp[— (nf1+nl1) — (nf2+n]2)] : [27) = T CIREIR!
@)
+ Wh,221,2 + W),22,2)" exp [ > wgz{}
I=(1,1)
@4 @y
:exp[ Z wlzl}exp[ Z u’;ljzl]}
=) =)
=1
This implies,
Wi = Y Y 1
ny1! 25’ —np,1)! 142125 — nq2)!

ny 1= =0 n4 2= =0
(wT,l) i (wil)%—nm (@%2)7%2 (wi,Q)QS_nT’z (Z%,l)m’1 (zj 1)23_7”’1 (z’jr 5)""? (Zi 2)25_7”'2

= 1 ! wl 2 +U_Jj 2 2 wl 2 —l—zI}j 2J >
- (25)! (25)! T,1971,1 $4,170,1 T,291,2 1,270,2

2The calculational details are in the Appendix.
3The calculational details are in the Appendix.
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Finally,
@) 2.0)
d
2= [ 11 “ten(- Y 4l
k=) r=(11)
N-1_ (2]) 1.1 N-1 (2,0)
dz,ldzt
JILIT oo X0 )
=1 k=) m=1 r=(1,1)
N-1_(24) ,_f. f N-1 (2,})
dwkdwk} [
JIL I 5 ew [- 303 wiud
7m0 fkma 2 =0 r=(1,1)

N-1 (2,4)
=i+l i+l g zit+1 j sJ+1 sJ+1 7
[QXP[ > A wlj} oxp [‘AﬁH(Z%J VWL LW B W Bl 5 W)
j l

(2,4) (2,4)

= / H dz;;l;k exp[— Z z}zr}
k=(1,1) r=(1,1)
N-1_ (24 1, N-1_ (2d) ,_f, f
dzi'dz dw;, dw 1 1N 1 N
JINL I ST 255 o) s
=1 k=(1,1) f=0k=(1,1)

N-1 (2d)
exp [ Z ( Z (Tl — 2020 — wlwl) — ABH + [2S)in[w] 21 | + W] 12] 4]

i=1 r=(1)
o o (2,4)
+ [28)in[@] 421, + %2172]) + ( 3w — wiwi) — ABH + [28)Infwy 124 1 + 0y 47, 4]
r=(1,1)
+ [2S]ln[wT722T72 —+ IZI}~L72Z~L72]>
Thus,
N 24 N o@D f o f
1 2N dztdz dw; dw
2=[genl UL IL S JTL T 55 ee[ 4]
(295)! H H 2mi H H omi 1P
=1 k=(1,7) f=1 k=(1,1)

where
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N 2,))
1 ii i il G it i+l IR
A:Z[( Z (ZHw zﬁzi—wiwﬁ)—i—AﬁH(z{l 7w%’1,zjl ,wil,z%2 ,sz,zj2 ’w¢2)
i=1 @
— [28)in[wy, 12% W] 2] 4] = [28]in[wy, QZT 2t w¢ 22}, 2])]
(2,4)
i1 i s j+1 +1 i+1 _j+1 4
_Z[( Z (Z T w! — 272 — wlw!) — ABJ{ ( z 1 12 2+2211w%1z%2w12
r=(1,1)
_j+1 _g+1 —j+1 —j+1 SJ+1 =j+1 SJi+1 i+l 3
+ 2] le 15 wT2_ZT1 wm%z w¢2_2¢1 wJ/12'T2 wT2+z¢1 wilzl2 wlz)}
— [2S)infw] 2 | +w) 2] — [2S)in[wd 42!, + wi’zziQ])]

Or,
Ay dz, d2! Al dw! dw!
7= [T IT “rge2e] [IL[IT T “%5e ] exvla
(25) 121 pEio=ty 21 pmie=ry T
where

N 2 B2
1 95+l Si+1, g
A:Z[—ZZ@;MU oo — W 0l) — DRI [ 22 ] 2 el
Jj=1 p= "
+ 277 !

J J+1 sj+1, i+l 9 i+l J zi+1 i+1,.7
{Twl g5 ]y + 2 ] 2 ], — 2] 2 ], — 2] 2 e
2
i1, it
2] 2] )] - ZZS lin| 3 ),z paw
p=1 o=t

4.0.2 M Spins

Now, the general Heisenberg Model for M spins is taken on:

M
H=-) JyS:Sq (r#q)

M 2
_ : t f i i :
=-> Jrqy (203 payray arg + 20y 01,003 (a4 + a3,.01,007,400
7,9

- a%ra’mralqa%q - alral«fa:]r*,qa'rvq + aLTaJnTa’an%fI) (T ?é q)
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By comparison with the previous result:

pg oM dw dw
H H 1 ° } IT[IT IT =252 exol-
p=lo=1,0 f=1 p=lo=tl
where
N M 2
1 i+1 5 —j+1
A= Z[ SN G, - e, @l wd ) AB{ZJTM (22w
J p=lo=1,]
zJ+1 i+l J+1 wl Tt _ zitl si+1 i+l zi+1
+ 2zl 2l el 4+ 2 el 2 ] - 2 ] A ] - 2 ] ],

i+, 3 5i+l
T2 WP wiq

ﬂ_zzsm[zw,,,,wﬂ

o="{




Chapter 5

Conclusion

The path integral single spin partition function in the basis of boson coherent
states, for a general normal ordered two-mode Schwinger boson Hamiltonian, has
been successfully computed. Within the initial phase of the calculational process,
by a specific approach, the Schwinger boson constraint has been implemented by
means of the projection operator. Now, the first expression obtained for the parti-
tion function had logarithmic terms in the action. They have been eliminated by
an impromptu manipulation of the exponential term, which eventually led to a new
expression for the partition function, with the action now devoid of any logarithmic
terms.

After, and most crucially, the case of the Zeeman Hamiltonian has been taken
on. Using the expression for the partition function for the general Hamiltonian,
the appropriate single spin partition function has been produced. In addition, par-
tition functions have been computed for a few specific spin quantum numbers. This
has turned out to generate a great boost of confidence in the projection operator
implementation in enforcing the Schwinger boson constraint; the expressions that
have been obtained match perfectly with those computed by the regular means.

Finally, attention has been lodged in tackling the Heisenberg Model, and the appro-
priate expressions for the partition functions have been computed. Their validity
has not been verified for any specific cases, but the Zeeman Hamiltonian case dealt
with earlier appears to be a strong indicator that these are indeed the correct
expressions. Furthermore, it is worth noting that logarithmic terms appear promi-
nently in the action term here as well.

Many open questions still remain, however, for future research to address. Here
are a few:

e What is the nature of the non-continuum expressions for the partition func-
tions obtained for the different spin quantum numbers for the Zeeman Hamil-
tonian? Why do they exhibit so much complexity as the spin quantum num-
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bers are increased in size? Is there a simple relational formula that could
encapsulate them for all S?

e How do we interpret the logarithmic terms in the action? Is there any special
meaning attached to them?

e Is the expression derived for the Heisenberg Model correct? How could we
verify this?

In conclusion, it is determined that using the projection operator as a means to
enforce the Schwinger boson constraint truly works for a Zeeman Hamiltonian
problem, for specific spin quantum numbers. Furthermore, the promising results
acquired for that problem, is judged to be cause for optimism about the future re-
search and development of the projection operator method of enforcing constraints,
and its related fields.
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Appendix

6.1 Proof of the Coherent State Closure Relation

The boson coherent state closure relation

dpodde -
SIS e l -3 %%] 66l = 1
may be proved as follows:

dodd, . N daadye .
/ [T e l‘ 2 %%] 8}l = / [T= exp l— ) %%] [6)(9|

N
= [T exp [—Zwiwi)

[e3%

_ l / exp<_x2>dxr l / exp<—y2>dy] N M g

N
= (AN ()Y H 16)(@]

= [#)(¢]

| (9]

- E ¢n(,¢1n02...nap~-~¢n(,]na2...nap---

Nay,Mag,Nap

Ny Mg+ My ) Ny Mg -+ Ny - |

= Z Moy e - My ) (M Mg - My -

95
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6.2 The Commutation Relations of The Spin Op-
erators

Using the Schwinger Boson Representation, the commutation relations of the spin
operators are derived as follows:

S, S,y] = 828, — S, S,
= 1% /4i[(a'b + bla)(aTb — bTa) — (a'b — bTa)(aTb + bTa)]
= —1h%i/2(bTaa’ — abbia)
= —h%i/2(b'b + a'bTba — a'bbla)
= nh%i/2(aTa — bTh)
= ihS.

=[Sy, S.] = —ihsS,

(S, 92) = 829 — 5.8,
= h?/4](a'b + bta)(aTa — bTb) — (aTa — bTb)(a’b+ bla)]
= h?/4(—2a"b + 2b"a)
= —ihS,

= [S.,S,] = ihS,
[S,,S.] =S,S. — 5.8,
= 1?/4i[(a'b — bla)(aTa — bTb) — (a'a — bTb)(aTb — bTa)]

= h?/4(—2a"b + 2b'a)
= ihS,

= [S.,8,] = —ihS,

6.3 Continuum Notations

Towards the end of the section Single Boson Probability Amplitude In The Basis
of Coherent States, the two discrete parts:

. N-1
exp _75 Z H Zk+1,2k —i—H(Zl,ZO))}
k=1
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and

N-1
exp| E (Zk+1 — Z1) 2k + £120)
k=1

may be expressed in the continuum notation as follows:

N-1

exp[—%e( Z H(Zkt1,26) + H(21, 20))]
k=1

—>exp[—%/0 H(z(t),z(t))dt]

N-1
exp Z Zk41 — Zk 2K + ZIZO]
k=1
— exp[%(/o (—zh)azdt) +2(0)2(0))]

For the second part, the sum in the argument of the exponential can be rearranged
to give an alternative representation:

exp[%( /O (ih)%zdt) + 2()2(t)] (6.1)

Averaging the arguments in both representations, one gets:

exp[z() ()—;Z h/ in (Z ij)—H(i,Z))dt] (6.2)

After rearranging using partial integration, one gets the following representation
of the probability amplitude:

N-1

) dzdz; i
llmeﬁOU(ZN7207t) = / l H Qkﬂ_zk‘| exp[ﬁs]

k=1

where

S = —ihz(t)2(t) + /0 t [m% ~H(z, z)}dt

Additionally, towards the end of section Single Boson Partition Function In The
Basis of Coherent States, the two parts

N—-2
exp[—AB(H (2, 2n-1) + )+ > H(Zks1,21)]
k=1
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and

N—2

exp[Ziz+ (2 — Zv_1)zn—1 + Z (Zk+1 — Zk) %K)
k=1

combined, may be written in the continuum notation as:

N—2
exp[-AB(H(Z,zn-1) + H(z1,2) + ZH Zkt15 2k)]
k=1

N—-2

explziz + (2= Zv-1)zv-1+ Y (Ber1 — Zk) 2]
k=1

— exp[— /H )dt]
it [ - m%zdt) 20)2(0)

As done previously, the second term above can be rearranged to give an alternative
representation:

) s z
exp[ﬁ(/o (zh)%zdt) + Z(t)z(t)]

Averaging the arguments in both representations:

exp[z(t)z(t)J;Z(O)z(O) n %/O (zh( % B % ) ?H(Z, 2)dt]

and reearranging using partial integration, we get

]

k=1

where

dz

B _
S :/0 lzﬁH(z(t),z(t)) + P dt
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6.4 The Computation of (z/7|w/)

(=71 ) = (0, 0] exp(2*+ a) exp(z]+a ) explurlal) exp(ural)[0, 0)
= (0, ()|exp(zT aT)exp( aT) exp(zl a)) exp(wia1)|0 0)
= exp(z%“w%)(O O\exp(wTaT) exp(zT Yay) exp(zi+1a¢)exp(wlai)\0 0)

1 1 1
(Z%Jr w%)exp( Zt j)(O O\exp(w,rajr) exp(z,r Yay) exp(wial)e p(ziJr a;)|0,0)
= exp(zTHw])exp(ziﬂwi)(O,O\exp(w,ra,r) exp(wiai)exp(z%ﬂaT) p(zi 'ay)[0,0)
= exp(zTHw%) exp zi'Hwi)(O, 0[0,0)
= eXp(zT w )exp(zi wi)

=

I

6.5 The Computation of (w/|P|z/)

<wj‘P‘Zj> = <wj‘ Z m(abn(ab257n : exp [f (ﬁT + ﬁi)} . a?aiS—n|Zj>
n=0 :
= Z m(wﬂ(ab”(abﬁ*" : exp [ (”T + ni)] iS 7L|Zj>
n=0 :
25

=> mmﬂ(w} V(@S exp [ — (g +1i)] = (2])"(25)25 ")

=2 m<w}>"<w}>”—"<z}>"WS "] exp [ (g +1iy)] < [2)
n=0 " :
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6.6 The Computation of
(w?] : (ahT + aiai)p :|27)

, , , P! - ,
(w?] (a;aT + aiai)p 27y = (W] Z W= : (aLaT)p k(aial)k 2 |27)
k! !
P! —k 2 k k
=3 i e e e ) )
k=0 "
p! \p—k (=7 \k -k k
=3 e ] D D)
k=0 "
p! _i\p—t i iNp—k(_j
=3 s @ D )
k=0 "
P p! . , o
= i Y D e [ 3 ]
k=0 r=1,4
= [w%z% +wizﬂ eXp[ Z wizj}
r="m{
6.7 The Computation of S5,
A K2
5152 = Z(ah%lab%z +a apa] ars +al yapal sap0 + al jagaa] Har0)
h2
- Z(a%laLIGLQ%Q - a7T~,1ai,1aL2aT,2 - aI,laﬂlaLW%Z + aLﬂT,laLzaT,Z)
2
+ Z(a?lar,la%am - 64,1%1@1,2%2 - O’I,lai,la’}]tgaﬂ? + ailai,lalz%ﬁ)
h/2

T

—alyaaaf y002 +al apa] yare +af jaria] j000 —af araal pars

(54,1“%1“%2%,2 + ‘471%71“1,2“?72 + aI,laT,lai,zalﬁ + aLlaTJQIQQﬂZ

+ ai,laT,la%zaT,? - GLNTJ“LQ%,? - a1,1a¢,1a¥2aT72 + aLai,laLQaiﬂ)
2

h
= Z(Qai,l%,lalzam +2a] \ag1al sap2 + al agad] Hars

—al yayyal ya0 —al japial yar 0 +alyap1a] Hay )
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6.8 The Computation of (w/|P|z/)

4 1
w? PZ] w]
(w’|P| | Z Z nta! QS—TLTl)'TlTQ(QS_nTZ)

n4+,1=0n4 2=0

(ai,l)"pl (a1’1)2s—n¢,1 (ah)m.z (GLQ)QS_W2

exp [ = (g1 +7y1) = (e + 7))
n4,1 25 nt,1 nT 2 23 ne,2 ]
sy ¢ 1 a, o |27)

1 .
J
Z Z nyq! 2S—n¢1)'nT2(25_nT2) <w‘

ny 1= OTLT 2_0

S— S—
(af )"t (a] )P 70 (af 5) "2 (af )P 72

L exp [ - (ﬁm + 7y ) — (2 + 7y 0)]
S )

1 o )
E E Il(pd VP (gl )25t
ny1: 25 —np1)! np2!(28 — np2)! <w ‘(w%l) (wi,l)

ny 1= OTLT 2_0

(@] 5)"2 (@] 5)*5 72 sexp [ — (g + A1) — (2 + Rya)] -

)

e )"“(Zf,l)zs*"T‘l(Z%,g)”T’Q(Zi2)2S*"T*2lzj>

)

1
Z Z QanTl)'nT2(237n¢2)

ny 1= UnTg 0 T’

(0 1) 0] V2500 ) ] 250 ()0 (2] )25 (3] ) (o] )5

) s s )

(W] cexp [ = (Apg + 7y 1) — (Ara +1y2)] ¢ |27)
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6.9 The Computation of
T T T T i
(W] = (ag yara + ap a1+ ag 000 +a) 5a,0)" 0 [27)
(w’] : (‘4 1% 1+ QI 1041+ a$ 2012 + aLQaL,Z)p |27)

T il k..
j| Z k!(p — k aT 1411+ % 194, )P~ (amam + %,2%,2) :|27)

p! , _ )
K(p— )l (W] : (o} yap1 + af yap1)P*(af yap2 + a] pay0)" 1 ]27)

I
WM@

0

—k—
”Zrl ( %1 11)° T(ai,lal,l)r

I
M@

>
Il
o

k
k! )
> (el yar0)" (] ya,0)72)
= 9'(k—g)!
S S i S e !
= —(w|(af yar,0)P " (a] yaga)"
! l — | _ | 17T 1,17
= El(p — k rl(p — k T) e gl(k —g)!
<a$,2aT,2>k*g<aL2a¢,2> |27)
» _
N Z (p— k: ! Z 7“' (p— k; —7)! Z wj|(wT R CIRETRVY

(IDT 224, 2) - (EQ 22¢ ) ‘Zj>

B Z El(p — k: ! Z rl ! Z U’T 124,1)" = "(wy12y1)"

(’lDTQZTQ) - (1D¢22¢ ) <’LUJ|Z]>

Z K(p — k 1 Z rv ! Z wT LY CIRER

(2, i)
(wTﬂzT,Q)k I(wy,02)2)9 exp [ Z wl Zl
1=(1,1)
P ! A
=2 k!(pp; k)! (1201 +@paz0)P " (@221, +@,02),2)" exp [ > u‘quzj}
k 1=(1,1)

(2,4)

= (Wpa21,1 + W21 + Wr22p,2 + W1,22),2)" exp { > @fzf}
I=(1,1)
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