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Abstract

Various models for the equation of state (EoS) for a neutron star have been considered using the
relativistic mean-field approximation. Firstly, we derive Einstein’s field equation and apply it to a
spherically symmetric mass-distribution, giving us a mass-radius relation for the stars in each model.
Using the path-integral approach, the EoS for an ideal cold neutron gas is derived. Then we introduce the
o—w model where the strong force is mimicked by the exchange of scalar and vector mesons. Furthermore,
scalar self-interactions are included for the o-field, as well as an isospin force carried by the p-meson.
Leptons are also added to enforce global charge neutrality. Lastly, the existence of hyperons in neutron
stars is discussed. It is found that, though energetically unavoidable, including hyperons decreases
the theoretical limit for neutron star masses below the most massive neutron star measured. Possible
resolutions to this issue involves repulsive hyperon-hyperon interactions or a phase transition to quark
matter.
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Samandrag

Det er gjort betrakningar av diverse modellar for tilstandslikninga til ei ngytronstjerne i den relativistiske
middelfelt approksimasjonen. Fgrst vert Einstein si feltlikning utleia, deretter vert den anvendt pa ei
sfeerisk-symmetrisk massefordeling. Dette gjev oss eit masse-radius forehald for stjernene i kvar modell.
Vidare introduserar me o—w-modellen, der den sterke kjernekrafta er sett pa som ei utveksling av
skalar- og vektor-mesonar. Deretter vert skalare sjglv-interaksjonar inkludert for o-feltet, samstundes
som at p-mesonet og leptonar vert lagt til hgvesvis for a representere ei isospinkraft og for a sikre global
ladningsngytralitet. Til slutt folger diskusjon av eksistensen av hyperonar i ngytronstjerner. Det er
observert at til tross for at hyperonar er energimessig umogleg a unnga i ngytronstjerner, sa senker dei
den gvre teoretiske massegrensa under den stgrste massa malt eksperimentelt til no. Moglege 1gysingar
pa dette problemet involverar frastoytande hyperon-hyperon interaksjonar eller ein faseovergang til
kvarkmaterie.
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Chapter

Introduction

Looking up at the night sky one cannot help but notice the vast number of shining dots, twinkling across
the horizon. These lights are only a minuscule fraction of the real number of stellar objects governing
our universe. Although they appear to us as tiny grains of sand, almost all of them originate from large
balls of burning gas, which we call stars. Most of these stars, about 90 percent, are kept in hydro-static
equilibrium by the balance of gravity and the exerted energy from hydrogen fusing to helium. These
are the main-sequence stars, the class to which our own sun belongs.

When a main-sequence star burns its hydrogen, a layer of helium starts to build up inside the core.
This process is driven by the star’s own gravity. If the star has a mass of approximately 10 or more solar
masses, the temperature gradient inside the core will be so large that it mixes the elements uniformly
inside the core. For this reason, the hydrogen fusion process will continue throughout the core until
there is no hydrogen left there.

As the fusion process continues, the helium core becomes more massive. It then shrinks in size due
to the increased gravitational pressure. This increases the temperature, eventually causing helium to
fuse to carbon in the center.

Once the core has exhausted the hydrogen, the hydrogen burning continues in a shell around the
helium-and-carbon core. As the core becomes more massive, the gravitational forces on the core and its
surrounding shell increase, leading to a greater rate of fusion. The outer layers then expand, causing
the star to become less dense near the surface, as well as giving it an increased radius.

When the star runs out of helium, the core can no longer sustain the gravitational pressure, and
so it collapses. It does so until it reaches temperatures where carbon can burn and produce mainly
neon, sodium, magnesium and oxygen. The process of burning up nuclear fuel and then collapsing until
temperatures reach the threshold for heavier elements, continues inside the core until it becomes pure
nickel. Fusion of nickel or heavier elements does not generate any energy, and no star can be sustained
by burning such elements — no matter how massive it is.

The fusion in the outer layers is still puffing up the star. As the radius increases, the temperature
decreases, making the star glow redder than it used to when it was on the main sequence. Close to the
very end of its life, the star has become so large and red that we call it a red supergiant.

Finally, when the star is completely out of nuclear fuel, the core collapses again. However, since
the star cannot extract energy from nickel fusion, it keeps collapsing until the degeneracy pressure in
the core becomes too large. The core then bounces, creating a shock-wave that moves through the
outer layers. Some of this energy is then used to fuse heavier elements, which is the reason we can find
elements such as uranium or plutonium here on Earth. The rest of the energy is used to throw most of
the mass of the star away. The luminosity from such an event, known as a supernova, can be as bright
as all of the stars in a whole galaxy combined.

After the supernova there are two possible end states for the star. If the star had a mass of more
than 30 solar masses, the remaining core would have collapsed beyond return and a black hole would be



formed. Less massive stars leave a dense core of completely degenerate matter. This is what we know
as a neutron star.

The name arose from an idea proposed by Landau in 1931 about a star shaped as a giant nucleus [1].
As the name suggests, a neutron star was originally thought of as a compact object consisting mainly of
neutrons. The idea was that the star was so dense that it squeezes the protons and electrons together
to form neutron matter. However, later it has become evident that they also contain other particles
such as protons and electrons due to the beta decay. There are also models including even more exotic
particles know as hyperons [2, 3], as well as models that proposes a phase transitions to quark matter
inside the core [2, 4].

Even though the complete neutron star composition is not described yet, we know one thing for sure:
They are extreme objects. Neutron stars have on average a mass of about 1.5 solar masses, and a radius
of the order of 10 kilometres. This means that the density inside the core is so large that a teaspoon
neutron star matter would have a mass comparable to a reasonable sized mountain. To be fair, it does
not really make sens to talk about a teaspoon of neutron star. Even if you due to some miracle were
able to pull out a hand full, things would not end well. Once no longer inside the star, there is nothing
holding the matter together, meaning that it would become a gas in an instant. It would rip you apart.
And that is without considering the intense radiation you would experience due to the beta decay of
the free neutrons.

Neutron stars are not only dense, they also have strong magnetic fields. A red super giant has a
radius about a few hundred to a thousand times the sun’s, which means that the surface area decreases
by a factor of about ~ 10° when it collapses to a neutron star. Due to flux conservation the magnetic field
increases by the same factor, resulting in some of them having field strengths as high as 10'° ~ 10'® gauss
[5].1 To compare, the field strength of a refrigerator magnet is about 50 gauss. By the same token, due
to conservation of angular momentum, some neutron stars can rotate with periods of a few hundreds
of a second [6, p. 277]. If a neutron star has a companion, it may be accelerated even further reaching
millisecond periods.? Comparing this to the 86 000 seconds it takes for the Earth to complete a full
rotation, we understand that living on a neutron star might make you dizzy.

Being such extreme objects, neutron stars are ideal when probing models for high-density matter.
They have properties we are not even close to reproduce in the lab, making high precision measurements
of neutron stars a high priority in physics today. The purpose of this master’s thesis is to go through
the steps of some of the well-known models for dense matter using the framework of the relativistic
mean-field approximation, to see their strengths and find out where they fail.

In 1939 Tolman, Oppenheimer and Volkoff used general relativity to construct an equilibrium equa-
tion for a static, spherically symmetric mass distribution. This equation, later known as the Tolman-
Oppenheimer-Volkoff (TOV) equation, gives a relation between the change in pressure as a function of
the distribution’s mass, radius and energy density. The TOV-equation revealed that there must be a
maximum mass for such a mass distribution, no matter how the pressure and energy density are related.
This means that we can use the limiting mass to falsify our model: We should not predict a maximum
mass smaller than the most massive neutron star measured, which today is approximately two solar
masses [7]. Even better, it turns out that the mass-radius relation is uniquely determined by the EoS;
in addition, Lindblom showed in 1992 that given a set of widely spread measurements, the mass-radius
relation can be obtained to good accuracy [8]. This means that in the future, with better measurements
and given that neutron stars span a large enough range of masses, we can find the EoS numerically
and use it as a test for the models we propose. This highly motivates the pursuit of a neutron star
mass-radius relation when searching for a realistic model for dense matter.

In some way, it is beautiful how the neutron stars we observe today are the result of the same events
that created the building blocks of our solar system. Looking up at the night sky we see the true creators
of our world. As Carl Sagan famously said: ”We are made of star-stuff”.

IThe neutron stars with the most intense magnetic fields are called magnetars.
2The fastest rotation neutron stars are called pulsars.



Chapter

Einstein’s field equation

When Albert Einstein completed his work on general relativity in 1915, he had spent several years to
develop the field equations using the principple of equivalence. Later the same year, in 1915, David
Hilbert showed that Einstein’s field equation also could be derived using Hamilton’s principle on a
suitable Lagrangian. In this and the following section we will follow in Hilbert’s footsteps and find
Einstein’s equation from the Einstein-Hilbert (EH) action using two different methods. Firstly, we
assume that the Christoffel symbols are on the form given by (C.1) and find Einstein’s equation by
extremizing the EH-action while varying it with respect to the metric tensor. Secondly, we relax one
more constraint, treating the Christoffel symbols and the metric tensor as independent variables. This
will result in an additional equation giving the form of the Christoffel symbols. The latter method is
often referred to as the Palatini approach after Attilio Palatini.!

2.1 Variation with respect of the metric tensor

Einstein’s field equation can be derived from the Einstein-Hilbert action [10]

1
SeEn = /d4$ |:167TG9MVR;W “r‘gM] —det(gm/)v (2.1)

where g"¥ is the metric tensor, G is Newton’s gravitational constant, R, is the Ricci tensor defined by
C.3 and %) is the matter Lagrangian. By convention, one often writes x = 87 G, and defines the Ricci
scalar as R = g"”R,,,,. In this chapter I will also denote the determinant of a tensor A, as simply |A|.
The action then simplifies to

Spn = /d4x [;R + fM] V—lgl. (2.2)

By Hamilton’s principle, we find the equations of motion by setting the variation of the action dSgy to
zero. Hence,

Ca (e |Vl SR oL ROVl L (L) ¢
6SEHO/d(E[ 2K (59#1/5 +2KJ 69!},1/ 59 + 69“” 59

:/d4z LR ROVl | HLuvlol) | s e (2.3)
259 2 /gl |/ Talbg

IPalatini variation, often known as Palatini formalism, was actually invented by Einstein. The name occurred as some
physicists started to mix up the approach with the related Palatini identity [9].
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The choice of §g"” is arbitrary, so the variation does not depend on it. Then the expression inside the
brackets becomes zero and we find that

1 [ 6R R §(v/~lyl) 1 3(Zuv/-lgl) (2.4)

N —+ =
e L V—lgl 09"

We now examine these terms assuming that the Christopher symbols are on the form given by (C.1):

1 «@
Fﬁy = 59/\ (gau,u + Gva,u — g;u/,oz) . (25)

Here we have used the comma notation to represent derivatives:

Guv,p = apg,uu- (26)

Without loss of generality, we may choose our coordinate system so that there exists some point P for
which spacetime is locally flat. This means that we can set the Christoffel symbols 1",’),/ equal to zero at
P. For this to be true for & = A\, we must have that the expression inside the parenthesis is zero, and
thus

uv,a = 07 (27)
for all u,v and « at P. Moreover, the last two terms in the Ricci tensor (C.3)
_ A A
Ry =17, ,—10,,+ I‘Z/\I‘W -7, (2.8)
vanish so that we obtain
0R = g""dR,, + R 69" . (2.9)

We assume that the metric tensor g"” is symmetric. Then, by definition, the Chistoffel symbols are
symmetric in the lower indices due to (2.5). If we then define a variational four-vector

or = g ol — gMeol)y, (2.10)

we can use (2.7) and (2.8) to obtain

g"oR,, =g (5Fp —or? )

wv,p wp,v
=g (5‘,,5ffw — 8V§Fﬁp)

=0, (9""01},) — 0y (9"01,)

=0, (9" 01,) = 0, (9"°oT},)

=0, (9" 0T}, — g""oT7,)

=0,07". (2.11)

Furthermore, (2.7) gives
v/ ~lgl =0, (2.12)

and thus

P — v—|9‘ P = 1 “lalsre
0,0 8p<ﬁ§ >\/Tg|ap(\/ lglo ) (2.13)

This derivative is a four divergence where the factor (—|g|)~2 is needed to make it Lorenz invariant.
Such a term has no physical meaning since we can always add a four divergence to the Lagrangian
without changing the equations of motion. We can therefore neglect it and set it to zero. Thus we have
determined that the first term in equation (2.4) yields

OR



To obtain the second term on the left-hand side of (2.4) we start by using the chain rule to find

0v/~lgl = -

2v/=1dl

For a matrix A (t), the differential of the determinant is given by [11, p.169-171]

1
—lgl. (2.15)

SIA ()| = tr{adj [A(t)}éA(t)}, (2.16)
which gives
dlg| = tr[adj (guv) 6gup] = tr[lglg""0gup] = |9|9"" 09 - (217)
Using the identity [12]
99" 69, = —1919,, 09", (2.18)

combined with (2.15) results in

5y/— 1
il 9l _ —ZguwR. (2.19)
V—lgl 09" 2

Finally, the numerator on the right side of (2.4) is
§(Lav/~lgl) = vV —9l6Ln + ZLadv/~lg]
1
= V=gl %a + 2 (= 5V slgundg™ ). (2:20)

which gives

1 0(Luv—lgl)  o2um 1

= — gL (2.21)

/—|g] dgHv - dgmv 2

Einstein’s equation (2.4) then becomes

1 1 PLur
—R v VR = -
2k M 45 9m dghv

1
+ §$Mg,w (2.22)

To clean this up a bit, we multiply both sides with 2k,

1 0Ly
RNV — §gl“’R =K <_26gl“’ + gMpr) 5 (223)
and recognize that from (C.5) the expression inside the brackets is the definition of the stress-energy
tensor 7},,. The resulting equation of motion is then

1
R, — §gm,R =K. (2.24)
It is worth noting that the left side of this equation is a function of the system’s energy and momen-
tum, while the right side is determined by the curvature of space. A physical interpretation of this is
that the energy of the system instructs spacetime how to curve, while the shape of spacetime determines
how the energy flows.

2.2 Variation using the Palatini approach

In this section, we would like to find Einstein’s equation while relaxing another constraint. As mentioned,
we will now assume that the Christoffel symbols are independent on the metric, and show that this
gives the same equations as before. However, this approach will result in two equations instead of one:
Einstein’s equation and one giving the form of the Christoffel symbols.

5



Even though the form of the Christoffel symbols is unknown, we will assume that they are symmetric
in their lower indices, which is one of the basic assumptions of general relativity. If one had not assumed
this, the remaining extra degree of freedom could have been resolved in a few different ways. One
possibility is to add a coupling between spin and the gravitational field. This is known as the Einstein-
Cartan theory of gravity, and proposes that fermionic and bosonic matter interferes differently with
the gravitational field. This theory is so far neither supported, or falsified, but some suggests that it
is necessary to account for dark matter [13]. Another possible solution is ” Teleparallelism”, where one
lets the curvature vanish while the torsion is nonzero.2 This provides a whole new set of equations,
which are dynamically equivalent to general relativity [14]. However, it turns out that there still are
some slight differences [15]. There are also plenty of other methods, but we will stick to the good old
general relativity.

In the Palatini formalism, the EH-action is still the same, except that we now let the Ricci scalar R
be dependent on the unknown Christoffel symbols I':

Sgn = /d4x [;R(F) + .,%M] V—lgl. (2.25)

Since R is only explicitly dependent on I', and the Christoffel symbols are assumed independent on the
metric, we have that

ORu

S (2.26)

Thus, varying the EH-action with respect to the metric tensor still gives Einstein’s equation (2.24).
To find the form of the Christoffel symbols, we vary the action with respect to I" and find that

1
dSEn = /d4;v2—g“”\/—|g\(5RW, (2.27)
K
since £\ is independent on I'. From (2.8) we have that

0R,, =oT0, —oT% , +T% 679, +T9,6T% —T%, 809 —TI9 6T%,. (2.28)

Note that
/d4x {g“l’\/—|g\3p5fﬁy - g”l’\/7|g\ay5rﬁp}
:/d4:c {—@) ( —|g|g’“’) ory, + 8l,< —|g|g“”)5fzp} + (boundary terms), (2.29)

where the last step is achieved through a partial integration. By Hamilton’s principle, the action integral
has by definition no variation at the boundaries, and hence the boundary terms are zero. The variation
of the EH-action can then be written as

1 1
e = [ d'a| - <=0, (V) 0 + A0, (VTala™) o1,
vV =lgl —lgl
+ g (15,07, + 4,07, — 7,675, - rgyar;p)] Vlgl. (2.30)
The indices are just dummy variables, so we can interchange them:

1 1
356 = [ d%{—a e +[a Talg) + gere ]6”
V=gl o ) V/~ld] ! ) o

+9" T, =97, — g’“’TZU} v =lgloT7,. (2.31)

2Torsion does here refer to the anti-symmetric part of the stress-energy tensor.
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As before, the variation 6I" is arbitrary, so the expression inside the brackets must be zero. Then we
write

Ag" + B/‘)“’ =0, (2.32)
where we have defined
v v o oV o v 1 v 14
AZL :g# Fpo’ - g ng - gl—L Fpo' - mg# ap _|g‘ - gf;) ’ (233)
v 1 « 174
B —<m9“787m+ g +g ﬂr55> 8. (2.34)

Using our assumption that the Christoffel symbols are symmetric in the lower indices, we find that AZ”
must be symmetric in the upper indices. Then B” must also be symmetric in the upper indices since
we can move it to the right-hand side of equation (2.32). The only possible non-zero elements of B4”
are the ones where p = v. If we then define the tensor

1
90,/ gl + ¢ + g%, (2.35)

el

or =

we see that when u # v, we have
BLY =CH = ByF =0. (No summation implied) (2.36)

Thus C* =0 for all y, and hence B/” must vanish for all u, v and p.
We proceed by contracting A2 with p and v:

1
0= _Wguugﬂyap V _|g‘ - guug,l:)l’ + guugﬂyrzo - guuggyrﬁp - QWQMIFZU
4 v
= —ﬁﬁpv —lgl = guwgly” + 47, — 6,15, — 6,1,
4
= ————=0,V—l9|l — gy’ +2I'7,. (2.37)

V/=lgl

Interchanging variation with differentiation in (2.15), we see that

2
9wd'y = ———=0,\/~gl, (2.38)
5 P m P

g1
1
I =———8,v/—|g|. (2.39)
VAT

Substituting this result back in (2.32), and remembering that B4" is zero, we finally arrive at
0= —g"T3, — gt + ¢ 15, - g7*T%, - g T,
=— (gf;” + gaufgp + g’wfzg) . (2.40)

Under the condition that the Christoffel symbols are symmetric in the lower indices, this equation has
the unique solution [16, p.61-62]

and obtain

1
FZV = 590(1 (gauﬂ/ + Gvo,n — guu,a> , (2.41)

which we recognize as the form we assumed in the previous section.

2.3 Summary

In this chapter we have derived the equations of motion for general relativity using two approaches: One
where we assumed the form of the Christoffel symbols, and one where we only assumed that they are
symmetric in their lower indices. Both approaches yielded the same result, but the latter, also called
the Palatini approach, relies on fewer assumptions.






Chapter

The Tolman-Oppenheimer-Volkov equation

After deriving Einstein’s equation, we now want to apply it. As a starting point, we look for an equation
describing the pressure inside a star assuming that the star may be modelled by a static, spherically
symmetric, perfect mass distribution. By perfect, we here mean that there is no sheer stress or heat
transfer within the volume of interest.

3.1 The general spherically symmetric metric
The most general static, spherically symmetric metric in spherical coordinates is diagonal and given by

ds? = goodt® + g11dr? + go2d6? + ga3de?
= A(r)dt® — B(r)dr® — r*C(r) [d6? + sin® 0d¢?] , (3.1)

where A, B and C' are functions of r only. Substituting R = r1/C(r), we see that

1 R
dR = 2mrdr ++/C(r)dr =dr (20(7’) + \/C(r)) , (3.2)

which inserted into the line element (3.1) gives

2

-2
ds? =A(r)dt* — B(r) (20%) + \/C(r)) dR?* — C(r) C]?r) (d6? + sin® 0d¢*)

=a(R)dt* — B(R)dR? — R? (d6” + sin® 6d¢) , (3.3)

where we have defined the functions

R
aR)=A| — |, 3.4
(R) < C(T)) (3.4)
B(R) = B(r) <2CR(T) + \/O(’/‘)) . (3.5)

In the following, we rename the variable R to r.
As a boundary condition we impose that the metric must be flat far away from the source. This
means that

lim a(r) = lim B(r) =1. (3.6)

r—00 r—00



Also, o and 8 cannot change signs since this violates the signature (+, —, —, —) of the metric. Then we
can without loss of generality write the functions a and 8 as exponential functions:
a(r) = >, (3.7)
B(r) =), (3.8)

where a(r) and b(r) are functions of 7 only. It is also worth to note that since g"” is the inverse of g,
and since the metric is diagonal, we have that

1
gt = —. (3.9)

Guv

3.2 The stress-energy tensor and the Ricci scalar
The star is assumed static, so at any point the four-velocity is given by

det <dx0 dz! dz? dx?’)

w— are drr A A
w= dr ' dr’ dr’ dr

1
= _— = —a .]_
ar ( ,0,0,0) (¢7,0,0,0), (3.10)

v/ 4900

since the three-velocity is zero. For a perfect mass-distribution the stress-energy tensor is [17, p. 70]
TH = —=P(r)g"” + [P(r) + e(r)]utu", (3.11)

where €(r) is the energy density and P(r) is the pressure. By assumption there is no sheer stress or
heat-conduction and hence the stress-energy tensor is diagonal. Using this, and the fact that

T} = gpyTH" = —=P(r)oy + [P(r) + €(r)lgypu"u’, (3.12)

one obtains
TO = —P(r) + [P(r) + e(r)]e* e %™ = €(r), (3.13)
T} = —P(r). (3.14)

Before we go back to Einstein’s equation, we need the expressions for the Christoffel symbols. There
are 64 Christoffel symbols in total. Since the symbols are symmetric in the lower indices, only 40 of
them are independent. Because we assumed that the star is static, taking derivatives of the metric with
respect to time gives zero. Looking at the expression for the Christoffel symbols (2.5), we also notice
that only the terms that contain diagonal elements of the metric tensor are non-zero. In fact, after a
closer inspection, there are only 9 nonzero independent Christoffel symbols:

F81 = /a
Yy =ae @ 1l =y, T, =—re? Tl =—re’sin?6,
1
rz, = -, I'2, = —sinfcos, (3.15)
r
3. 1 3 _ cos®
By B sing’

Here we have denoted derivatives with respect to r by ’ and skipped writing the r-dependence such that
Ory(r) = y'. Going back to Einstein’s equation

1 1

TLV:7 RLV—i ;uR s 3.16
/ H( | 29/ ) ( )
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we see that since T}, is diagonal, so is R,,. From (2.8) the diagonal elements of the Ricci tensor is
straightforward to compute:

2
Roo = €@ |a” 4 (a')? — ot + =d'| (3.17)
T
2
Ry =a't —a" — (a/)Q + 7b/7 (3_18)
.
Rog=e¢ 2 [r (V) —d/)—1]+1, (3.19)
Raz = {e 2 [r (b — /) — 1] + 1} sin? § = sin? O Ry, (3.20)

Then the Ricci scalar becomes

R =¢""R,, = 9" Roo + g"'R11 + g**Ros + g*° R33
~ Roo Ri1 | 2Rs
T e2a(r) T g2b(r) r2

5 1
— 27 | + (@) — ¥ + (o' = ¥) + — (1- e%)] : (3.21)

Now we start evaluating the energy-stress tensor. Firstly, we look at Einstein’s equation (3.16) for
Tooi

_ 0 _ .2a _ 2(a7b)1 27blii _a2b
Too = gooly = e e(r) = e il el (1—e*)|. (3:22)

This can be rewritten as

e(ryrr? =e 2 (2r —1) +1=2re 2 —e72 1. (3.23)
Note that
% (rle™®—1]) = —2¥/re 2 +e72" -1, (3.24)
which inserted into (3.23) gives
- % (re™® —1]) = e(r)rr®. (3.25)

Finally, integrating both sides from zero to r gives the unknown function e?¥:

—r (71 + efzb) = QG/ 4e(r)ridr
0

r(-1+ e_%) = —2GM(r)
2 _q 2GM(r)

e
,
2GM(r)] !
where we have used that the mass of a sphere with energy density e(r) and radius R is!
R
M(R) = / 4re(r)ridr. (3.27)
0

LOne might be more familiar with the relation M(R) = fOR 47tp(r)r2dr where p is the mass density. However, in units
where ¢ = 1, we have € = pc? = p.

11



3.3 Finding the TOV equation

Going back to Einstein’s equation and computing the 11 component gives

1
T11 = gllTll = —eQb[—P(’I‘)} = m (27‘&’ — €2b + 1) . (328)

By rearranging the terms and solve for o’ we use (3.26) to find

1 b b
a = > (Pm“ze2 +e? — 1)
1 2GM(r)]~"
= — (Prr® + 2GM(r)) {1 — G(r)]
2r r

_ ArP(r)Gr® + M(r)G

3.29
r[r—2GM(r)] ( )
By definition, the stress-energy tensor has no divergence [18, p. 218]. In other words
v 1 =v,1,=V,T!=0, (3.30)
where V,, denotes the covariant derivative such that for a tensor A4, we have
VA = 0, AMY + ngA”“ + I‘ZUA’“’, (3.31)
VO'A/LV = 8014;/,1/ - FZO-A[)V - ngAupa (332)
V,AL =0, AL + ngAg — I‘ijAf,f. (3.33)
Since the fluid is static and spherically symmetric, we have that
0P = 0gP = 0P = 0re = 0, (3.34)
which implies that
VMTl“ =0. (3.35)
Using that T} is diagonal, this gives
0 =0,T} + FZPT{) — F’fquﬁ‘
=0, T} + (L, + Tyy + 15y +T5,) 1) =TTy — Ty T = 05,15 — T3, T3
=—0P(r)—d [P(r) + ¢(r)] (3.36)
Inserting the expression for a’ (3.29), we obtain
dP(r) [4mP(r)r® 4+ M(r)]
=—-G|[P
dr [P(r) +€(r)] rr—2GM(r)]
Ge(r)M(r) P(r) 4 P(r)r? 2GM(r)] !
= — 1 1 1-— . 3.37
r2 + e(r) + M(r) r ( )

This equation is often referred to as the Tolman-Oppenheimer-Volkov (TOV) equation after R. C.
Tolman, J. R. Oppenheimer and G. M Volkoff, due to the papers their original papers from 1939
[19][20].
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3.4 The physics of the TOV equation

We will now briefly discuss the physics of the TOV equation. For this purpose, we will in this section,
and this section only, go back to units where ¢ # 1:

dP(r) _ Ge(r)M(r) [1+ P(r)] [H 47rp(r)r3] [1 QGM(r)}l.

dr R e(r) 2M(r) cAr

In the non-relativistic limit, the first two brackets goes as 1 +v?2/c? [21] and are therefore corrections to
Newtonian gravity from special relativity. Noting that the last bracket is exactly the second diagonal
element of the metric tensor, g'!, it is clear that this is a correction from general relativity. Flat
space-time is hence described by the limit

(3.38)

2M(r)G

LZ) < 1. (3.39)
rc
In the limit when (3.39) is satisfied and

P(r)
1 3.40
e(r) <5b ( )

47 P(r)r3
_— 1 41
O (3.41)

equation (3.38) simplifies to
dP(r) Ge(r)M(r)
= — 3.42
dr c2rz (342)
which we recognize as Newton’s equation for hydrostatic equilibrium. Note also that the expression
(3.38) has a singularity when

_ 2GM(r)

T R (3.43)

c

If » becomes smaller than this quantity, the metric component g7 changes sign, and the space-time
interval becomes spacelike. The limit (3.43) is often referred to as the Schwarzschild radius, and is a
boundary from within information cannot escape. This means that a star at least must have a radius

so that
o 2GM(R)

2 )

R (3.44)

c
otherwise it would not shine; it would be a black hole.

3.5 Solving the TOV equation with constant density

We have three state variables describing the star: The pressure P(r) given by the TOV equation, the
mass of the star M(r) given by (3.27) and the energy density €(r). To be able to solve the system, we
now need a third equation giving us an expression for e(r). Later, we will derive some possible EoS
using a few different assumptions regarding the insides of the star, but for now we will assume that the
star just has a constant density. This means in physical terms that the star consists of an incompressible
fluid, which obviously is a big simplification for a ball of gas. Since the elasticity module of a rigid body
is infinite, this also means that the speed of sound inside the star is infinite, which is inconsistent with
special relativity. However, it is instructive to see where this leads, and find out how the result differs
from Newtonian physics.
With constant density, the mass of the star is

M(r) = %7‘(67’3. (3.45)

13



Equation (3.37) then becomes

[4mP(r)r® + M(r)]
rr—2M(r)G]

=—G[P(r) +¢€

dP(r) B P
BPO 1P +d 3 C1-ExGar (3.46)

Denoting the central pressure at » = 0 for P, and integrating both sides from r = 0 to r we obtain

! dP(r) 4 rdr
/pc BP) +elPi) +d 37 /0 1 SneGr2’ (3.47)

Performing the integral yields

Sl ) oo

[3P(r) +e€][P.+¢ - §7r 2
3P, + €][P(r) +¢ \/7 (3.48)

By definition, the star has a pressure equal to zero at the surface. Hence, denoting the surface radius
R so that P(R) = 0 we obtain
P.+ ¢ 8
=4/1— -mGeR?. 3.49
3P.+e V  37° (3.49)
Inserted into (3.48), this gives

3P(r) + e\/ 8 \/ 8
_— 1 —_ = 2 = 1 —_ = 2
P T e 37TG€R 37TG€7’

P(r) (3\/1 - 271'GeR2 - \/1 - §7TG67”2> =e (\/1 - %rGerQ - \/1 - §7TG€R2> . (3.50)

Using that the total mass of the sphere is given by

M = %weR?’, (3.51)

we finally arrive at the pressure:

. \/1 — %wGerQ - \/1 - %ﬂ'GGRQ
3\/1 - %ﬂ'GGRQ - \/1 - %TI'GET‘Z

\/1_2]\%637‘7‘2 _\/I_Q%G
= . (3.52)
3\/1 _ zz\éc _ \/1 _ QJ\ggrz

From (3.43) we have that the star’s Schwarzschild radius is given by the expression

P(r)

8TeR3G
Py = 26M(R) = == (3.53)
A star cannot have a Schwarzschild radius, and hence for a star with constant density, we always have
8rGeR3
R> T 36 . (3.54)
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Solving for R we find

3
R<\lg—a0 (3.55)

which is a purely relativistic result. This is also clear from (3.52) since the pressure diverges for r = R
when R = 2GM(R). Note that it is also possible to formulate this in terms of the star’s mass. Cubing
(3.55) and multiplying both sides with 4me/3 gives

4dmeR3 4me 3 3/2 3
M(R) = =3 <3<8G7re> =\ Sarcie (3:56)

To see that this result is connected to relativity, we now look at the Newtonian case for the pressure:

dP(r) eM(r)G 4me?Gr

(3.57)

dr 72 )

Integrating both sides from the central pressure P, to the pressure P somewhere inside the star gives

/Pdp/:_47TG62 /T'r'/dr/
P, 3 0

2 2,2
P-P = # (3.58)

Doing the same, except letting the limit go from the central pressure to the pressure at the star’s surface,
which by our boundary condition is zero, yields

0 2 R
/ ap = 4rGe / r'dr’
3 0

c

2 2 p2
p, = 2GR (3.59)
3
Substituted into (3.58) results in
2rGeé?
P(r) = ”3 (R —1?). (3.60)

This expression has no singularities that sets any limits to the star’s size or mass, as oppose the expression
given by general relativity.

From (3.55) we have a upper limit for the star’s radius and mass. But, we can in addition find an
even narrower constraint from the pressure obtained in (3.52). To find this limit, we go back to equation
(3.49) to see that

P.+e€
3P. + ¢
2MG £ 41 9
R !
1 < +1
—=—1|1- . 3.61
R 2G (3’? + 1> (3:61)
Since both € and P, are positive, the maximal ratio between the star’s mass and its radius is given when
P.=0:
M 1 1 1 1 4
R 2G < 32) 2G ( 9) 9G (3.62)
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P(r)iPo

—1.0 —— R=2.30MG
—— R=2.20MG
—— R=2.25MG

-15 ! : ! :
0.0 0.2 0.4 0.6 0.8 10 r/R

Figure 3.1: Solutions to the TOV equation for a spherically symmetric non-rotating mass distribution with
constant density plotted for a few values of the star’s radius R. P, is some normalization constant chosen so
that P(0) =1 for the case R = 2.3MG.

Figure 3.1 shows the plot of the pressure for some possible values of R. We observe that as soon as
the star’s radius goes beyond the limit R = (9/4)MG = 2.25M G the pressure becomes discontinuous,
which is unphysical for a star in equilibrium.
We can also rewrite (3.61) in terms of R or M only. Firstly we find the upper limit for R by inserting
the star’s mass in (3.61):
4dmeR3 _ 4dmeR? 4

SR = <5 (3.63)

1
. .64
R<\/3G7T€ (3.64)

Cubing this equation and multiplying both sides with 4me/3 gives the upper limit for the mass:

3
4me 1 2 16
M<Z( ) =/ . .
<73 (3G7re) 2437 G3e (3.65)

It is fairly intriguing that such a simplified picture as a constant density star actually gives a finite
limiting mass. Let us now assume that we have measured a neutron with mass 1.4 solar masses and
radius 15km. This would give us an average density of order ~ 1017 kg/m®. This will then result in
a maximum mass of ~ 10 solar masses, which astonishingly is of the same order of magnitude as the
accepted result today, which is about 2-3 solar masses.

In the Newtonian limit, equation (3.52) must become (3.60) for it to be valid. In this limit, space-time
is flat, and thus we have from (3.39) that

Then

M < R. (3.66)
Expanding (3.52) to first order in M/R using that

1
\/1—33%1—535, for <1, (3.67)
gives
MGr? MG 2 2
P(T)Ne(l— "~ )_(I_T) =€ S ke =e “re 1 (3.68)
JErsREEalEs e
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The term

2R
3.69
MG’ ( )
is much larger than the other two terms in the denominator, so we write
2
1-% MeG 212G
~ R2 _ 2 _ .2\ _ 2 _ .2

which is the same as the result for Newton’s equations, as one would expect. Figure 3.2 shows how
Newtons equation is a good approximation to the solution of the TOV equation as soon as the ratio
M/R becomes small enough. It is also worth noting that the TOV equation always predicts a higher
pressure than Newtonian theory. This is because curved space-time predicts higher gravitational forces
on a mass, and hence the hydrostatical pressure must be bigger to withstand the forces when the star
is in equilibrium.

3.6 Summary
In this chapter we derived the structure equations for a spherically symmetric, non-rotating mass distri-
bution. It was found that in contrast to Newton’s equilibrium equation, this equation yields a maximum

mass for a given equation of state. It was also found that the TOV equation had a singularity when the
star has a radius of R = 2G M, known as the Swarzchild radius.
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Figure 3.2: Solutions to the structure equations for a spherically symmetric non-rotating mass distribution
with constant density using Einstein gravity (TOV) and Newtonian gravity (Newton) plotted for a few values
of the star’s radius R. Py is some normalization constant chosen so that P(0) = 1 in the case when R = 2.3MG
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Chapter

Thermodynamics of fermions

In quantum mechanics we are often interested in finding the probability that a given initial state ¢
transitions to some final state f. In this chapter, we will develop Feynman’s path integral formalism
to calculate these probabilities. Throughout this thesis, possible equations of state for neutron stars
consisting mainly of Fermionic matter will be discussed. We will therefore for most consider Fermions
when we set sails for this chapter’s main goal; finding the mother of all quantities in thermodynamics,
namely the partition function.

4.1 The path-integral formalism for a non-relativistic particle
in one dimension

In quantum mechanics, the probability of a system starting out in state |i) at time ¢;, to end up in state
|f) at time ¢y, is given by
wps = {f eI ORB) [y (4.1)
This amplitude is often referred to as the propagator, as it propagates the particle from one state to
another with probability given by its magnitude. For a non-relativistic free particle traveling in one
dimension the Hamiltonian is given by
9

H(p, i) = f—m + V(). (4.2)

Here, V denotes the potential energy, while p and & are the momentum and position operators respec-
tively, with eigenvalues and eigenstates defined so that

plp) =plp).
ZTlz) =x|x). (4.3)

The state |p) is assumed to form a complete orthogonal set over momentum space, while |z) is assumed
to form a complete orthogonal set over position space. In mathematical terms, this means that they by
definition satisfy

/ |z) (x| = / Ip) (p (Completeness relation) (4.4)
(wila;) = 0(z; — xj), (pilpj) = 0(pi — pj), (Orthogonality relation) (4.5)

where [ is the unity operator. Let us now say that we have measured a non-relativistic particle to be
in a state |x;) at time ¢;. Then the probability of that particle being in state |z ;) at time ¢y is

wpi = (x| o its—t) H(p,) |2;) . (4.6)
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If we then split the time interval in M pieces by inserting M — 1 complete sets of |z), and define

ty —1t;
=2 = 4.7

we obtain
M—-1 . . R
Wi = / 1T dzj | Gple ™ HP™ jap ) (wnra| e HOD zy o) o (e " HOD ) (4.8)
j=1

If we now let M — oo, we see that this integral goes over all possible paths the particle can take between
the initial and final state. This method is often referred to as the Feynman path integral approach or
Feynman formalism, after Richard P. Feynman.

To investigate further, we insert additional M complete sets of |p) to find

M-—1 M
wri :/ ( 11 df”]‘) (H de) (@plpar) (pal e HOD |y o)
j=1 k=1

< (zar—1lpar—1) (Prr—1| e HPR gy o) o (@ fpy) (pr] e H PP |zp) (4.9)

where we have defined x¢ = zps and z; = 9. We see that we may write this expression more compactly
by introducing

Aj = (zlp;) (py| e HED 13,4y, (4.10)

wri = / ( 1:[ dCCj) (H dp}gAk>. (4.11)
j=1 k=1

To calculate this expression, we now use that € is small and the relation [22]

so that

o ieH(p.8) _ N[e—ieﬁ(ﬁ@)] + O(e?), (4.12)

where N is the normal order operator. Then
(pr| MO o) = (py| e HBm) |3} = (py fay) e IeH Pros), (4.13)
in the limit € — 0 since the normal ordering allows the momentum and position operators to act on the

momentum and position eigenstates, respectively. By definition, Euclidean space and momentum space
are connected by a Fourier transform

1
(wjlpe) = =P, (4.14)

Using the above results, we find

Aj = (zjlp;) (psl e HP) |25 _y)
= <.’13J|p]> <pj|$j,1> e_iEH(Pj,:cj,l)

1 7i|:p.(w.7171;.)+H(p. $.71)]
—_ KA J MR . 4]_
5.¢ (4.15)

Inserting the system’s Hamiltonian (4.2) this becomes

1 . [r »;
Aj = %ele[T(rjfﬂﬁj—l)*m*‘/(%—l)}. (4.16)
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Integrating over the momentum p; gives us a standard Gaussian integral with solution

/dijj = %eie[ﬁ (w5 =j-1)*=V(ws-1)] (4.17)

Letting M — oo we then find the transition probability

M1 m % : M m 2
W= / < H dxj) (27rie) elezk:l[zez )
j=1
M-1 Mo
B } mo\E i fif de[3(42) -V
_ / ( ]1;[1 dxj> (ME) e , (4.18)

where we have used the definition of the derivative

L X —Ti_1 dx;
iy 27t = B

as well as the fact that the exponent is a Riemann sum. Now we define the total measure Dz (t) so that

(1) e2)"

Observing that the exponent of (4.18) is in fact the Lagrangian for a non-relativistic free particle, we
can define the action

L/Wﬂfpx@y (4.20)

it

by tr m (dz\?
ﬂﬂMz/’&MﬂmZ/‘&2<&)—V@) (4.21)
tq ti
Then the propagator can compactly be written as
Tfity .
Wi = / Da(t) eSle®], (4.22)
iyt

4.2 The path-integral formalism for a relativistic particle

We now want to extend the path integral-formalism to a relativistic Fermion in three spatial dimensions.
To do so, we have to abandon the assumption that the system can be completely described by the wave
function of the particle. We rather impose that the solutions are given by a composition of fields and
move over to the realms of quantum field theory. For more about why quantum mechanics fails, and
why quantum field theory is the solution, see for instance [23].

In particle physics, we assume that spacetime is flat. We can do this as gravity is incredible week
in relation to the other fundamental forces on small scales. We therefore use the Minkowski spacetime
metric (1,—1,—1,—1).

How to generalize the results obtained in the previous section to quantum field theory is thoroughly
considered in [24, p. 275-292]. To summarize, our procedure for finding the probability of a Fermion
transitioning from an initial state |¢;) at time ¢;, to some finial state |1)f) at time ¢, is closely related
to the approach used before: The transition amplitude is still given by

wpi = (gl 7T ) (4.23)

However, we need to do some slight changes. For one, we substitute the Lagrangian L with the La-
grangian density .. Secondly, we replace the position operator &(t) with a field operator ¢ (x,t), and
the momentum operator p(¢) with the conjugate momenta operator #(x,t) defined as
0L (1,7
#a t) = IZW ) (4.24)
9(0o¢)
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The field ’(ZJ and conjugate momenta 7 have eigenstates given by

D(z,0)[v) = ¥(z) [¥), (4.25)
#(x,0) |r) = n(x) |7) , (4.26)

and are assumed to form complete orthogonal sets so that

/dz/) [) (¥| = /dﬂ’ |y (7] =1, (Completeness) (4.27)
(Yalthp) = H5 VYa(x) = Yp(x)], (malms) = H6 [ma(x) — ()] . (Orthogonality) (4.28)

x

Fermions must also follow the anti-commutation relations

{a@,0),01(y,0)} = dasd(@—y), (4.29)
{al@, ) bs(y. 1)} = {dh(2,0), 9}w,0)} =0, (4.30)
where 1, denotes the o component of the four dimensional spinor . It can be shown [25, p. 28] that

this relation implies that ¢ is anti-periodic, which means that if the system returns to its initial state
after some time tper, then

Y(x,0) = —Y(@, tper)- (4.31)

Let us now assume that we have a system in a state v; at t; = 0. The probability that the system
is in state 1 at time ¢y is then

wpi = (wy| e HOD ) (4.32)
As before, we split the Hamiltonian in M products by introducing

Ly
M M

(4.33)

and inserting complete sets of v and 7:
M—1 M o o
wpi = / ( II dwj) (H dm) (Wglmar) (marl e HOD s 1) - () (| e HEA) |y
j=1 k=1

M
:/ (Hd¢jd”f> (rlmar) (marl e HED fopgq) - -
j=1

() (| e AR [y TT lws (®) — dar (). (4.34)

Letting M go to infinity, we have from (4.12)
(mjl e HOR ) = (mjlupy) e ieHWam), (4.35)

which combined with the overlap between the field ¥ and the conjugate momenta 7,

1 g8 ,
(Wjlme) = Eelfd T (4.36)
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gives

—ieH (7,1 1 i B3z —ieH (7,0,
(W) (g e HED ;) = Wor JEwms (slgpy ) e H o)

1

— oS Pami(v—_n)—ieH (mj,1;5-1)
27
= ieie[% J P w1 (v —tpj—1)—H(mj5-1)]
27
_ L ieraam =)= (5 0)]
27
(4.37)
Hence,
U dggdmy, | ey J & [y BN (s )|
Wi = / H 5 o€ 2i=1 J < 357 5(1/}]” —ar)
k=1 T
P(x,ty) t
- N ! D(/)Dﬂ'eifof dtfdsm [W%fﬁ(w,ﬂ)}é(d}f _ wM)
Pp(,0)
w(matf) . ptr 3
=N DyDret Jo” JE2LWM 540 — appy)
P(,0)
(i) )
=N Dy Dre* V™ §(h s — har), (4.38)
P(x,0)

where we have defined
M M Mo
Dy =]Jdy;, Dr=[Jdr, N=][ [lolwsr@) —vm@)=0d0ws—vu), (439
j=1 Jj=1 Jj=1 z

and used that the systems Lagrangian density and Hamiltonian density are connected through a Leg-
endre transform
dy

L(,m) = m(@,t) 5 — H (W, m). (4.40)

When M — oo, the delta function in equation (4.39) is of no significance. Therefore, we just leave it
out of the calculations from here on.
4.3 Finding the partition function for a medium

Before we can move on and find the thermodynamic properties of Fermionic matter, we need some
statistical physics. Quantities such as pressure, free energy, density and chemical potential can all be
found using the system’s partition function. For a system with constant number of particles, one uses
the canonical partition function, which is a sum over all possible energy configurations the system can

have [26, p. 55]
Z =Y e PP (4.41)
In the above expression, we have defined 8 as the inverse temperature

1
b= (4.42)

For a system with Hamiltonian H, the partition function can be written in a basis of number eigenstates

|i) as a trace
Z = ZG_BE" = Z (i e PH |i) = Tr {e_ﬂH] (4.43)
- ,

7
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The number eigenstates are assumed to form a complete set, so that

Dl =1, (4.44)

=0

and hence we can write the partition function in terms of the spinor eigenstates instead:

2= (il ) =3 [ aw i) e i) =3 [ aw e ) o) = [ v et ).

(4.45)
Note that from (4.38) we have
. W (x,6) _ —4p(,0) o
(ple P ) = N DDyl ™ = N DrDipel Jo dtS e Z(em) (4.46)
P (x,0) W (x,0)

where we in the last step used the anti-periodc form (4.31) of Fermionic fields. This means that if we
perform a 7/2 counter clockwise turn in the complex plane by the substitution ¢ = -ir, or in other
words, transforming the calculations from Minkowski space to Euclidean space, we find

Z= / dp (] =1 |y5)

—(x,0)
- N / dy DDyl If 4 [ @2 [~ 2.
P(x,0)

—(x,0)
=N DrDype Jo a7 [ &x Lo(w.m)

(x,0)
7#’(‘”70)
=N DrDype” ™) (4.47)
"[’(‘1”0)

where we have defined Lg and Sg as the Lagrangian density and action in Euclidean space, respectively.
The extra minus sign in the exponential comes from the fact that we transformed the Minkowski metric
(1, —=1—1—1) to the negative of the Euclidean metric (1,1, 1,1). We conclude that the partition function
is connected to the transition amplitudes wy; by a Wick rotation. Also, the thermodynamics of a system
is not changed if we multiply the partition function by a constant. Hence, we can just forget it and
write
=9 (x,0)
Z = / Dy DretS (V). (4.48)
¥(,0)
Let us now consider a system with varying number of particles. We then use the grand canonical
partition function

Z=Tr [e*ﬁ(ﬁ*w)} , (4.49)

where p is the chemical potential and N is the number operator. In field theory, particles may decay,
annihilate, etc. and so the particle number is not always a conserved quantity. We then more generally
insert the charge operator Qz with corresponding chemical potential p; for each conserved charge Q;
the system has, so that

Z="Tr [e*ﬁ’(H*ﬂiQi)] . (4.50)

A conserved charge is a quantity that is conserved due to a continuous symmetry in the system’s
Lagrangian'. This could in some cases be the number of particles, but it could also be the electric
charge, isospin, colour charge, and so on. The chemical potential y; is defined so that it corresponds to
the energy needed to add one more charge @; to the system. This explains the minus sign convention

1See Noether’s theorem in Appendix E.
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in front of p;: If p; is positive, we need energy to add a charge @; to the system. From (4.50) we find
that the easiest way to define the Hamiltonian density is

H = Ay — i, (4.51)
where 7 is the zero-density Hamiltonian of the system and p; is the i-th charge density operator.
Written in terms of the action Sg, the result is still on the same form as before,

—1(,0)

Z = / DrDype™ 5™ (4.52)
¥ (,0)

except that the action now contains an extra term p;g;.

4.4 Calculating the partition function

We are now finally ready to calculate the partition function for the Fermionic field. Without interactions,
this field is described by the Dirac Lagrangian

L = 9 Dyt — mibp = T (i — m) (453)

where we have introduced the gamma matrices v* given by (C.9), and used the bar notation for Fermions
1 =491, as well as the Feynman slash notation Oy, = @. This Lagrangian is invariant under a global
phase-transformation ¢ — 1)’ = 19e™'%, which we see by insertion:

L = L =et® (i&—m) e i zi(ia—m)w =Z. (4.54)
Then, by Noether’s theorem, we find from (E.7) the conserved current

0L 0L _
= 1) —
7= 500" T 9 0,0)"

0L . 07 . -
O (G0, — mive) (—i O (G0, — miw) (it
= 30,0) (17" 0utp — mapep) (—ih) + A0n0) (1" 0 — mapp) (i)
= iyH (—ig))
— Py, (4.55)

This corresponds to conservation of particle number. The system then has a corresponding conserved
charge @ given by (E.8):

Q= /d3xj0 = /d%%% = /d%ww, (4.56)

which in this case means probability conservation. Introducing the conserved charge, we re-define the
Hamiltonian density as

H = Ay — abtip. (4.57)
Because of (4.40), we find that this is the same as writing
L= Lo+ 'y, (4.58)
where B
Lo = (i —m) . (4.59)

It should be mentioned that including a chemical potential in the Lagrangian breaks Lorentz invari-
ance. We can see this from a physical prospective: Since the chemical potential tells us how much work
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we need to do to insert another particle, having zero chemical potential means that the particle is in a
vacuum. In a vacuum, all directions and speeds are equivalent, since we are free to choose whatever rest
frame we want. When the chemical potential is non-zero, the particle moves in a medium, which means
its position and velocity is measured relatively to this medium. Now different speeds and positions
are not equivalent anymore. Unless the medium is uniform, we would also have different properties at
different places in the medium.

Having introduced a chemical potential term, the Lagrangian density in Euclidean space becomes

— 0
Ly = —¢E<WO. +iy-V —m+u>¢E
—ior

0 O
:¢E< +’7E V+m-— M)l/)

= G (P +m — 1) e, (4.60)

where 74 denotes the Dirac matrices defined by (C.10), and we have used that (7°)? = (72)? = 1. We
have also written the Dirac spinors in Euclidean space as ¥y, and defined

P = 0,72 (4.61)

in the last step. Throughout this chapter we will skip the E subscript, as all calculations will take place
in Euclidean space. To proceed, we expand the field ¥ in frequency momentum space as a Fourier series

W, t) = m S St pelentee) (4.62)

n=—oo p

with coefficients

1 .
Ynp = ﬁ/o dt/de P(x, t)e i @nttPe) (4.63)

where w,, are the Matsubara frequencies defined by (D.1) and V is the three-volume of the system. The
action then becomes

/dT/d3 [ < 5. TV V+m— m)w}
:B—V/O dr/d3x

X Z Z Z Z in’pe—i(wn'r-‘rpm) (,yOaaT +- V+m— M’)/O) ,L/)m)p,ei(me-‘rp/m)

n=—ocom=—oco0 p p’

1 i ’
e / 3 G (m b1-8 )l
n,m,p,p’
1
—V Z 17 Wi 41y - p" +m — py )wm,p/ﬁVé(wn —wy)d(p—p')
- Z QZ [W wn iy Pt m— ] . (4.64)

Now we can calculate the partition function:
— /Dﬂ'Dwe_ Z"’p '(Z)n,p['Yo(iwn_ﬂ)"l‘i'Y'p"l‘m]'Ll)n,p. (465)
The conjugate momenta of this theory is given by

m(x,t) = 02

8(0ot) 8(82:&) [0 (@ +m) ¥+ pyly] =il (4.66)
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and we obtain

Z — /Dl’(/JTD'(/Je_ En,p "Zn,p['Yo(iwn_ﬂ)"!‘i'Y'p"Fm]'(l)n.p
- / Digp DipeXnp Whp[—(@ntin) =7 v-ptin"mlvn . (4.67)

The expression sandwiched between the spinors in the exponential is a matrix, and hence we have an
Gaussian integral over the Grassmann variables ¢ and ix)". Then we can use that for a matrix D, [25,
p. 27]

/ DigyT Dype¥ P = / DigyI DipeZnp WhpP¥nr — detD. (4.68)

If we call the eigenvalues of the matrix d;, we find that

Indet D = In (Hd) =IneXimd = ne™nD — Trin p. (4.69)

We can use this, as well as the relation?
(o-p)* =p", (4.70)
to obtain

InZ = Indet |—(w, +ip) — 7y - p+i"m ]

[—(
S NN B G T A R
("

(wn +1p) im] ic-p )

= Indet ioc-p —[(wn +ip) +im]

= Indet|(w, +iy2)> +m* + (- p)*|
= Indet|(wn +i)® +m? + p?]
_ 1n[(wn Fip)? + Ef,} ’
= Trln [(wn +ip)? + EZ} ’

2
= Z In [(wn +ip)® + ETQ,} (4.71)
n,p
where we have defined Ef, = p? + m?2. It is important to stress that we by convention assume that
numbers are multiplied with a suiting identity matrix so that our expressions make sense. For example,
we have

wpt+o-p=wyls+0o-p, (4.72)

where I,, denotes the n x n identity matrix.

4.5 Finding the grand potential

Now that we have the partition function for the Fermionic field, we can calculate some of the thermo-
dynamic quantities. In this section, we consider the grand potential defined by

QG =U-TS - /.tiQi, (473)

2This follows from the commutation relations of the Pauli matrices (C.7).
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where U is the systems internal energy, T is the temperature and S is the entropy. We note that the
first two terms represent the internal energy minus the energy we can get from the environment. The
last part gives the energy needed to add new charges @ to the system. In the following, we will look at

the grand potential per volume

Qg
Q= 4.74

To calculate this quantity, we first note that the grand canonical partition function is in addition to
(4.41), also defined by the relation

Z =e PV = VP (4.75)
where P is the pressure. The grand potential density, and then also the pressure, is given by
1 1 2 o]?

Since n vary over all positive and negative integers, we may write [25, p. 29]

0=y S [ s 3] [ ]

-5 > n[ (ol 4+ 2o (= + B}~ )
{5 0] o 5 0o 48 )] o~ 0]
=g S+ (5o [+ (v

- *ﬂiv n,p (i [w? + (Bp — %] +1n [w2 + (B, + 7] }. (4.77)

Using the identity [27]

1 1 1 —Be
ﬁzn:ln[wi+62]:§e+gln[1+e B], (4.78)
we find that
2 1 1 1 1
Q=-2 {2 {EI, - u} + Bln {1 + e5<EP“>} +5 [Ep - u] - Bln [1 + eﬂ<Ep+“>} }
p

2
N E +T[ln 14+e AEH) 4 n (14 ¢ P Ee—1) ]} (4.79)
25 {1 ) (1. 00)

In the continuum limit, we may replace the sum over momenta with an integral

3
o [ L 50

and we arrive at the grand potential

3
0= _2/(;1’)’3{151, + T{ln (1 + e*ﬁ%*#)) +1In (1 n e*f’“ﬂ“vﬂ‘)) } } (4.81)
I8

We recognize the fist term as four times the contribution from the zero-point energy. The factor four
comes from the fact that a spin i-particle has two spin states, combined with the contribution from
particles and ant-particles. This term is infinite, and we will discuss how to handle this later in chapter
7. The last two terms are contributions from anti-particles and particles respectively.
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4.6 The pressure and energy density at zero temperature

The general expression obtained for the grand potential (4.81) can be solved by writing the integrand
as an infinite series and integrate term by term. However, at zero temperature assuming p > 0, the
equation simplifies as

In [1 n e*ﬂ@ﬁ“)} —0, (4.82)
at T =1/ = 0. If we now forget about the zero-point energy?, the pressure becomes
d®p
P=2 [ S Tm[14ePE0). 4,
/ ST+ (4.83)

Here we skipped writing the subscript p for simplicity. The integral is spherically symmetric, so inte-
grating over the angles gives a factor 4r:

P= / dprTln{l + e PE- “) / dprTln{l + e PE- “)} (4.84)

Integrating by parts, we find

: Oo z S i : /OO a 1 (4.85)
32 Jo m 1+e BB ~ 372 PR -5 1 1° :
One of the possible representations of the Heaviside step function is
1 1, f >
r—oo e~ T(T—Y) + 1 0, forz<y

Hence, at zero temperature we may write

Lo pt S oy piomspt
37r2/ dp 9(u E)= 32/ dpEQ(M— p+m)—ﬁ/0 dpE. (4.87)

Changing integration variable from p to E yields

P:371T2/ dE (E? —m?)3/2. (4.88)

This integral can be computed through a series of substitutions and partial integrations with the result

i E [E\/EQ Y (2E2 - 5m2) + 3m? ln(\/EQ “m? 4 E)} '

3m2 8

1 /12 — m?2
= |2 —m2 (2,ﬁ . 5m2> I A Y (A (4.89)
2472 m
Now we want to find the charge density p = Q/V. Using equation (4.50), we note that
0z 0
= _ = —B(E;—pQ) — —B(E;—pQ)
aﬂ—aﬂ;e " —Qﬂ;e ") = QpBZ, (4.90)
which we can rewrite as
Q 19z 19 10 P
InZ=——(BVP)=— 4.91
PV = 8vZou ~ Bvau v 9, VD) I (4.91)

3We will handle this term in chapter 7.
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where we in the next to last step used equation (4.76). Now we can go back to (4.84) and find the
charge density

_ol1 Ood 271 [1 4 e—AE-m] | 1 ood 21 4.92
P= o\ ), p n[ +e } =z ) Y e (4.92)

At T = 0 we can again use (4.86) to obtain the result

1
= — dpp? = 2 _;m2)3/2, 4.93
r=2z pp” = g5 (W —m?) (4.93)
Lastly, we find the energy density € by using (4.73):
U
e:V:ﬂp—kQ:up—P. (4.94)

Inserting expressions for charge density and pressure we find

1 /12 02
e= (- m?)¥? - — | /12— m2(2u® — 5m?) + 3mtIn VK mT A
372 2472 m

. (4.95)

1 /12 — m2
[/J /12 — m2(6p°% — 3m?) + 3m* 1n(“m+'u>
m

= 242

It is more convenient to write these expressions in terms of the Fermi momentum p, = vV E, — m2 =
v/ p? — m?2, which is the momentum-eigenstate with highest momentum eigenvalue occupied by particles
at zero temperature. Here we use that the Fermi energy Fy is equal to the chemical potential y at zero
temperature. Then we obtain the following relations:

2 2
V2 +m2(2p2 — 3m?p;) + 3m? IH(W>] ) (4.96)

2472 m

1 /12 2
€= 53 /P2 + m2(6p2 + 3m>pe) — 3m* ln(w)] ) (4.97)
/I m
3
Dy
= . 4.98
P=33 (4.98)

Using the series expansions

2 4 6
Vim0 1), (1.99)

8m3 mp
and ; . -
pet VPR e P 3@ Py
(2T VTN _ P Dr of =), 4.100
n( m m  6m3 * 40m? O ( )

we find that in the non-relativistic limit p, < m the pressure is to leading order in pp given by

1 p: p pe PP, 3
P & rro F 9 3 _ 2 4 £F F F
M 2472 [(m T om T Bmd Pe = 3mepr |+ 3m m 6m? | d0md

2

1 p> 3pt  pl mpd  9pd
_ 9 3 — 3p.. 3 e _20r _ Pr 43 3, _ ¥ F
247r2[pfm P T T T am T T T T dom
5
DPr
4.101
1572m ( )
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From (4.98) we find the Fermi momentum

pr = v/ 3m2p, (4.102)

which inserted into (4.101) results in

P = %. (4.103)
In the same manner, the energy density in the pp < m limit is to the fifth order in py
Exr ﬁ :(m + % - 8]:253) (610? + 3m2pF> —3m* (ZFL - 6]7953 + 4?(;17055)1
=2417TQ:Gmp§+3m3pF+?ﬁg+?’Tgpg—ﬁ—gj—3m3pF+m§§ = fgi]
~ ﬁ :Smpﬁ + 152:;;)1
= pm + % (4.104)

where the first term represents the energy density from the rest mass of the conserved charge Q [26, p.
153]. To leading order, we combine (4.101) and (4.104) to form the relation

€xn = P = ;”?(1579771)3/51?5}{5. (4.105)

In the same manner we find that in the ultra-relativistic limit p, > m

N 1 4 2 9 4 2py - P (37T2p)4/3
and
2p Py _ (3n%p)*/3
N 4 2. 9 4 AN _
€ur & By 6p; + 3m mp; — 3m hl( o= >‘| R 47_:_2 = a2 (4.107)
which gives
€vr = 3Puz. (4'108)

We have now found a simple model for the EoS of a cold spherically symmetric neutron star. Unfortu-
nately, we cannot measure the pressure inside a neutron star and so we are not able to check whether or
not this model is good. However, by using the EoS to solve the equilibrium equations (3.37) and (3.42)
we can predict what radiuses and masses stars with such an EoS would have a stable equilibrium. These
are quantities we can measure, at least to some extent, and we are in particular interested in finding a
maximum mass, which is what we are going to do in the next section.

4.7 Numerical solution to the structure equations

The solutions to the structure equations presented here are produced by the Python script given in
Appendix G.1, where a simple fourth-order Runge-Kutta routine with constant step size is used. In
the calculations, we parameterise the mass and radius as functions of the central pressure P.. Some of
the Figures presented use central pressures over a range of 8 orders of magnitude, which is the reason
why we solve for exponentially increasing central pressures. This is to make sure that there are roughly
equally many data points everywhere in the plot. All calculations in this section are done in units where

h+#c#1.
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This section uses three main code parts: One for the non-relativistic case, one for the ultra-relativistic
case, and one for arbitrary relativity. There is also some code that calculates dP/de, which will be of
importance in the stability analysis later.

For the non-relativistic case, the code runs a loop over a range of central pressures where it uses a
constant time step Runge-Kutta routine at each iteration to solve (3.38) and (3.42). The Runge-Kutta
solver starts with the initial condition » = 0 and M(r = 0) = 0 and increases the radius until the
pressure becomes negative. The point where P(r) changes sign gives the star’s radius and mass with
the given central pressure. Because of some stability issues, for a few central pressures, P(r) never
reaches zero. This is a purely numerical feature, and is solved by escaping the loop if the mass is equal
at two iterations.

We will later find that in the ultra-relativistic limit the pressure never becomes negative (or zero),
and thus the radius becomes infinite. This is not a stability issue; it happens for all central pressures
and choice of step length. Therefore, this program only solves up to some given 7 in the Runge-Kutta
solver, and plots the behavior for a given central pressure.

The program for arbitrary relativity is similar to the one for the non-relativistic case. However, since
there is no explicit connection between the pressure P and the energy density €, we must use a root
solver to express the Fermi momentum pg for a given pressure. The Fermi momentum is then inserted
into the energy density so that dP/dr can be calculated in each step in the Runge-Kutta solver.

When doing computations on a computer, it is always favorable to work with numbers that are
roughly of the same size. If not, numerically stability can become a problem. Therefore we introduce a
scaling factor €y with units energy density so that

€ = €9F, (4.109)
P = ¢P, (4.110)

where € and P are dimensionless numbers. Note that since ¢j is a scaling factor, it is a free parameter
we can choose. In the same manner, it is also convenient to write the mass

M = MM, (4.111)

where Mg ~ 1.988 - 103° kg denotes the solar mass. In units where ¢ # A # 1 the structure equations
becomes

dM  Aweger?
—_= 4.112
dT ]\4®C2 ’ ( )
dPy.. GMyMe
_ 4113
dr c2rz ( )
= — = = —- 1
dProy _ _GM@Me 14 PTf)V 14 471'60P10V7‘3 1 2GMqoM ’ (4.114)
dr c?r? Mg Mc? rc?

where Py, and P.qy are the dimensionless pressure solution of the Newtonian— and the TOV-structure
equation respectively.

4.7.1 The non-relativistic case

In the non-relativistic case, we previously found the relation between the energy density and the pressure

2
mc
exn = 5 g7 (15mm’h®) PRI = K P, (4.115)

where we have defined the constant

m02

K = 5 (15mm* i)/, (4.116)
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Thus we may write
Exn = Kaneg " P, (4.117)

For our simple model, we assume that the star consists only of neutrons, which means that the mass m
is the neutron mass m = 1.675 - 10~27kg. Inserted values gives the constant Ky,

Ky = 8.225-10%° kg?/"km=2/% s74/5, (4.118)

If we now introduce the constants

GM, — _

Ry = c2®’ Ko = Kuney 2!, (4.119)
— 47T6()ENR
= K = —
« RO NR» B M@C2 )

and substitute the non-relativistic EoS (4.115) into the structure equations (4.112)-(4.114), we find

dM 9 =3/5
M _ g2 p3/ 4.120
o Br ( )
dP e, RoMe
- _ 4.121
dr rz ( )
P MP?/® p2/5 Pr? 2R, M1 H
dProv _ @ 1 B0 g BBy 2R MY (4.122)
dr r2 K KM r

On a side note we recognize from equation (3.43) that Ry is half the sun’s Schwarzschild radius. Now
we just have to determine the constants. Firstly, we find that

Ry = 1.477km. (4.123)

Secondly, we rearange the expression for a so that

(e T 4124
0= ROKNR ’ ( )

For numerical stability we want the numerical values of the constants «, 8 and K g to be of about the
same magnitude in the unit system chosen. We see that if we choose

a = 1km, (4.125)
then
€0 = 1.6266 - 10%° kg/km s?, (4.126)
which leads to
Kyr = 0.6770 kg /km s?, (4.127)
and
B =0.7744km 3, (4.128)

Using these parameters, we obtain the mass-radius relation shown in Figure 4.1. Just as we saw for
the constant density EoS in the previous chapter, Newtonian gravity still has no upper mass limit. For
Einstein gravity however, there is a peak at 0.96 solar masses with radius 7.91 km. The central pressures
considered range from 107% < P. < 10* with increasing central pressures along the curve starting out
at infinite radius. We also note that as the central pressure decreases, the two graphs gets closer and
closer, telling us that relativistic effects vanish for small central pressures. This is as expected, since
lower central pressures gives smaller Fermi energies, and thus are less relativistic.
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Figure 4.1: Mass-radius relation for a non-relativistic, cold ideal Fermi-gas using the structure equations for
Newtonian gravity (Newton) and Einstein gravity (TOV). Moving along the red curve from infinite radius, the
green cross marks the point where the speed of sound surpasses the speed of light. This is discussed in detail in
section 4.7.4

4.7.2 The ultra-relativistic case

In the ultra-relativistic case we have the relation

e=3P (4.129)
The structure equations then becomes
dM  12megPr? = 5
— = ———— =P 4.130
= Mo BPr?, (4.130)
dP MP
e —3]%372, (Newtonian) (4.131)
dpP 4R MP BPr3 2Ry M1
—_— = 1 — 1——- TOV 4.132
dr r2 [ * 3IM r ’ ( ) ( )
where we have defined 19
TEQ
= . 4.1
Mo (4.133)
If we now choose the value of this constant to be
B =1km™ 3, (4.134)
we find the scaling factor
_ Moc?p _ 48 2
=" = 4.740 - 10*° kg/km s*. (4.135)
m

Trying to run the program used in the non-relativistic case, one soon finds that the maximum number of
iterations nM ax in the Runge Kutta routine is reached even for very small values of P.. In fact, the star’s
radius becomes infinite for all central pressures as the pressure only approaches zero asymptotically. The
problem here is that we have assumed that the neutrons are ultra relativistic throughout the star, which
is a self contradicting statement. Since the pressure by definition is zero at the surface, equation (4.96)
yields that the Fermi energy should be zero. This means that when integrating from the center of the
star and out, the neutrons at some point becomes non-relativistic. Thus it is clear that no such star
could exist.
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Figure 4.2: Accumulated mass M as a function of distance from the center r for a star consisting of a relativistic
ideal gas of neutrons with central pressure P. = 0.1. The plots show the numerical and the analytic solution to
the TOV equation as well as the solution to the Newtonian structure equation.

Figure 4.2 and 4.3 shows the behaviour of the mass and the pressure as functions of the distance from
the star’s center respectively. We note that the pressure decreases faster with relativistic corrections
and that the mass increases much slower using the TOV-equation than the Newtonian equation, as
expected, since we already have seen that relativity increases the strength of gravity.

It should be mentioned that in the ultra-relativistic case it is also possible to find an analytic solution
to the TOV equation. We see this by making the anzats

P(r) = Kr", (4.136)
where K is some constant and n is an integer. If we now insert this expression into (4.130) we find

1
M(r) = ——BKr"*?, 4.137
(r) = 5 BT (1.137)
While integrating (4.130) to obtain (4.137), we have assumed that n # —3. This is reasonable as we see
from (4.132) that the pressure never falls of faster than r=2. Inserting (4.137) into (4.132) then yields

@ B e _4R0,3KT”+3KT” 14 BKr™r3(n + 3) B M -1
dr B r2(n + 3) 33Kt s
2,.2n+3 nt21-1
__ARBK7r 6+n L 2Ry BKT . (2138)
r? 3(3+mn) n+3

This should hold for all r, so we have to choose n so that the r-dependence vanishes. We see that for
n = —2 we obtain

—2K 16 Ry K2 -1
e [1 - zRoﬁK} , (4.139)
which solved for K gives
3

K= . 4.140
148 R, ( )

The analytic solution then becomes

4

p__ 3 __c (4.141)

148Ror2  56eqmGre’

This solution does not only predict infinite mass and radius as seen in the numerical solutions, but
also requires a divergent central pressure. For that reason I find this solution to be even worse than
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Figure 4.3: Dimensionless pressure P as a function of distance from the center r for a ultra-relativistic ideal
gas of neutrons. The central pressure is P = 0.1 for the solution to the TOV equation and the Newtonian
structure equation, while it is infinite for the analytic solution due to reasons discussed in the text.

the numerical ones. Even so, for large r, Figure 4.2 and 4.3 shows that the analytic and numerical
solution for the mass and pressure follow each other to some degree. This has to do with the fact that
the TOV-equation predicts P oc 1/7? for large r. Anyway, one might argue that it does not really make
any sense to identify which of these solutions that is the best, as they all build on the same faulty
assumption that the star is throughout ultra-relativistic.

4.7.3 Solutions for arbitrary relativity

In the general case, we must solve the problem using the original equations (4.96) and (4.97) for the
pressure and energy density. To do so, we start our integration at the center with P = P, and use an
builtin root finder to retrieve the Fermi momentum from the equation

P — P(py) = 0. (4.142)

Calculating the Fermi momentum at each step gives us the energy density € which in turn is inserted
in the Runge-Kutta routine.
As before, we want to make the variables dimensionless. We therefore introduce the new constants

2 Ey
Ey = mc?, = Boe (4.143)
and define A
TEQ
= — 4.144
8= i (4144)
so that the structure equations yields
dM —
—— = pBPr? 4.145
dr pET, ( )
dP oM P Pr3 2R M1
AP _ _ReM ) PN, BPrHT 2R . (4.146)
dr r2 T
Then we define the dimensionless Fermi momentum
o
Pe = —Ocp a3 (4.147)
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Figure 4.4: Mass-radius relation for a star consisting of an ideal gas of neutrons for arbitrary relativity.
Dimensionless central pressures are chosen between 107¢ and 10* with increasing central pressures along the
curve starting out at infinite radius.

to find the dimensionless pressure and energy density

5 Y p= —3 = = p
P=L [\/pg 1 (QpF - 3pF) +3In (pF +VP2 + 1)} : (4.148)
= 2412 [\/}?% 1 (6;55’ + 3@) - 31n(]5F VPRt 1)} . (4.149)

If we for instance now choose

v = 1kg/kms?, (4.150)
we find the scaling factor
€0 = 1.625 - 10" kg /km s2. (4.151)
and can compute the last constant
B =1.1426km >, (4.152)

Using the program in the Appendix G.1, we obtain the curve given by Figure 4.4. Our computation
predicts a maximum mass of 0.71 solar masses with radius 9.16km. To compare, Oppenheimer and
Volkoff’s original result from 1939 obtained without the use of a computer was M = 0.71My and
R = 9.5km [19].

It is also interesting to plot the non-relativistic and arbitrary relativistic solutions together to see
some connections. From Figure 4.5 we find that the solutions to the non-relativistic and arbitrary
relativistic TOV-equation are within an relative error of 1% at around R = 23km. This corresponds
to a central pressure of about P, ~ 107°. The solution to Newton’s equation needs an even smaller
central pressure before we can recon that it is a good approximation.

Looking closer, we see that the masses, up to the maximum mass (we will later later see that beyond
this limit the solutions are unstable), in general are larger the less relativity we account for. This is as
mentioned in the previous chapter due to the fact that relativity works to amplify gravity, and hence
prevents the stars from growing big.

4.7.4 Stability analysis

The mass-radius relations obtained shows the equilibrium configurations for pure neutron stars. How-
ever, we do not yet know if a star on the M(R) curve is stable or not. For one, a stable star must
satisfy

dpP
— >0 4.153
= >0, (1153)
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Figure 4.5: All mass-radius relations obtained earlier collected in a sample plot. For more details, see Figure
4.1 and 4.4.

everywhere. This becomes clear if we imagine a region where this was not true. If we increase the
pressure, the energy density in this region, and hence also the gravitational pressure, decreases. There
is nothing that stops an everlasting expansion since the pressure increases more and more as the star
becomes less dense. In the same manner, if we increase the energy density, the pressure decreases while
the gravitational forces becomes stronger, leading to the collapse of that region. The condition (4.153)
is often called the "microscopic stability” condition [28, p. 258]. Causality also demands that the speed
of sound never exceeds the speed of light. The speed of sound v in a medium is given by the relativistic
Euler-equation

dpP

2 2
= 4.154
2= (4154

and so our stability criterion becomes

dpP
0<—<1. (4.155)

de

In the non-relativistic case we use (4.115) to obtain

aP _ §1?§§’/ 3g2/3 = §E§§/ 5 p2/5, (4.156)
de 3 3
We see that since P is strictly positive, we only need to handle the causality restriction. The pressure
is always largest at the center, so we may rewrite (4.155) as
P<P < (2)5/21?%2 ~0.0113. (4.157)
The mass and radius of a star with this central pressure is indicated with a green cross in Figure 4.1and
4.5. There cannot be any stable stars further along the direction of increasing central pressure on the
curve (the stars in the ”spiral” are unstable).

For arbitrary relativity, we must find dP/de numerically. The program used for this is shown in
Appendix G.1. We find that when the exact expressions for P and € are used, there is no problem with
causality for any Fermi energy. As calculated before, we see from Figure 4.6 that the non-relativistic
limit has a steep relation between the energy density and the pressure. We also see the ultra-relativistic
limit where the derivative approaches %

Let us now consider a star on the curve in Figure 4.4 where

dM
dF.

<0. (4.158)
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Figure 4.6: The derivative of the pressure with respect to the energy density as function of the dimensionless
Fermi momentum for a star with central pressure Pc = 0.1.

If we compress such a star by a small amount, the central pressure P, increases while the mass remains
constant. To get back to stable equilibrium the mass must decrease, which in turn means that the
gravitational pressure is higher than the degeneracy pressure. Thus, the star collapses. If in some
other scenario the star expands, the pressure decreases, while the mass is constant. Equilibrium is then
achieved by increasing the mass, meaning that the gravitational forces are smaller than the degeneracy
pressure. The star explodes. We conclude that a stable star cannot satisfy (4.158).

On the other hand, in the opposite case where

ﬂ >0, (4.159)
dP,

a small compression still increases the pressure, but the mass must increase to return to equilibrium.
The degeneracy pressure is larger than the gravitational pull, and the star will return to equilibrium.
The opposite happens when the star expands. Thus a stable star satisfies (4.159).

In the non-relativistic case, this means that only stars to the right of the global maximum in Figure
4.1 can exist. For arbitrary relativity, we still have some regions in the spiral satisfying (4.159) that
could be stable. However, if we perturb the surface of the star and look at the eigenmodes of the
oscillations, we could find a so called Sturm-Liouville eigenvalue problem where stability is equivalent
with the system only having real eigenvalues [29]. From this, it is possible to derive a few rules of thumb,
assuming that there does not occur a phase-transition inside the star: [30]

e A star is stable if all of its eigenmodes are stable.
e Exactly one eigenmode changes stability where the curve M(R) has an extremum.

e If the M(R) curve has a (counter)clockwise direction at an extremum, the eigenmode that changes
stability becomes (un)stable.

From this we find that only the stars on the M(R) curve that are to the right of the global maximum
in Figure 4.4 are stable.
4.8 Summary

In this chapter we have developed equations for the pressure and energy density for an ideal Fermi
gas. We then solved these equations in the zero-temperature limit, before combining them with the
structure equations to predict the mass-radius relation. As a result, we obtained a maximum mass of
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0.71M ¢, which is consistent with the first calculations done by Oppenheimer and Volkoff in 1939. We
keep in mind that even though the EoS found is fairly simple, this result still is of the same order of
magnitude as the most massive neutron star measured today which is the pulsar PSR J0348+4-0432 with
its approximately two solar masses [7].
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Chapter

The o—w model

So far, we have considered a neutron star consisting of an ideal, cold Fermi gas of neutrons. As a natural
next step, we would like to include interactions between the particles. One should keep in mind that
a realistic model of a neutron star would not only include neutrons. For one, we expect the presence
of protons and electrons in the gas. This becomes clear if we consider a free neutron. Free neutrons
are unstable with a half life of about ten minutes and will eventually go through beta decay to produce
a proton and an electron. However, even if a neutron star mostly consisted of free neutrons, it could
still be stable. This is an artifact of the Pauli principle: The electrons produced in beta decay become
degenerate, and after enough electrons are created, the energy needed to emit an electron through beta
decay is so high that it is not energetically favourable. Hence, the number of protons and electrons
must be small compared to the number of neutrons.

Neutrons and protons are baryons, which means that they are particles built up of three quarks.
These particles interact through the strong force which is mediated by gluons, described by the theory
of quantum chromodynamics (QCD). We will not discuss QCD in this master thesis, but instead we
consider a somewhat simpler model, known as the o-w model. In this framework, first used by Teller
[31], Duerr [32] and Walecka [33], we assume that the strong force is mediated by two mesons, with
spin zero and one, respectively.! This is in field theory represented by a scalar field ¢ and a vector
field w,. Note that this means that the theory should break down at distances where the mesons no
longer behave as point particles, which is at around the femtometre scale, where the quarks manifest
themselves [25, p. 221]. Also, we assume that the neutron and the proton both are two different states
of one particle which we will call the nucleon. These two particle states are connected through a rotation
in isospin space. Further we approximate by assuming that the star consists of static, uniform matter
in its ground state, and replace the meson fields by their ground state expectation values [6, p. 168].
This approximation is known as the relativistic mean-field approximation (RMF).

In this chapter we use the o-w model to obtain an equation of state for the nucleons in a neutron
star. This equation will then be used to find an upper limit for the maximum mass, and we will compare
these results to the ones obtained earlier.

5.1 The free Lagrangian
The first step in any field theory description is to construct a suitable Lagrangian for the system. Before

we add the interactions, we want to find the total free Lagrangian for the particles considered. Being a
massive spin-less field, o is described without interactions by the Klein-Gordon Lagrangian

& = %(aﬂg)(a#a) - %mga? (5.1)

IMesons are particles consisting of one quark and one anti-quark
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Using the Euler-Lagrange equations (E.6), we obtain the equation of motion

0.2 0. )

o

where we have defined the d’Alembertian
O0=9,0", (5.3)

and used the relation

E

0,0)(0%c) =00+ 0 Ui n*o,0) = oo +n""o Ui 0,0) =0"o 4+ 0"0dl, =20"0. (5.4
H H 0. H P)

no (" no

S5

For the massive spin-one field w,,, we must have three degrees of freedom, one for each spin state.
This means that there should be three independent plane-wave solutions to the equation of motion.
Additionally, each of the spin states should alone satisfy the Klein-Gordon equation. We see that if we
define

Wy = Opwy — Oywy, (5.5)

and then choose the Proca Lagrangian
1 1
Ly = —Zwu,,w’“’ + imi

1
= —— (Opw, 0"w” — 0pw, 0" wh — Oyw, 0"w” + 0,w,0"wh) + imiwuw“

m
wuw

[ENA S

1
= —— (0w, 0*W” — 0w, 0" W) + imiwuw", (5.6)

[\

the equation of motion becomes

0L 0L

1
= —mZuMt + 29, (20w — 207w
Jor, a“a(auwy) mg,w +28ﬂ( 0w 0"w")
= miw“ + 0,0"w” — 0,,0"w"

=(m2 +0)w” —9"9,w"

=0. (5.7)

Contracting this equation with 9, we obtain
(m2 +0) 0w’ — 0,09yt = m20,w" + 00w’ — 0w =m20,w =0, (5.8)

which implies that the field is divergenceless
Ot = 0"w, =0, (5.9)

since it is assumed to be massive. Then it follows that each component of the w-field satisfies the Klein-
Gordon equation as we required. Further, equation (5.9) imposes one constraint on the four components
of the field, and so there are only three independent plane-wave solutions for w,. The free Lagrangian
proposed in (5.6) is satisfactory, and we proceed.
For the neutron and the proton, which are spin }-particles, we already have the free Lagrangian
from (4.53):
Lp =+ 5= wnﬁa —my) P + wp(ia — My )Pp. (5.10)

Assuming that the neutron and the proton masses are the same, and defining an eight-component spinor
consisting of both the neutron and proton eigenstates

= @p) , (5.11)
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we may write

Zop = Y(id — m)p. (5.12)
Note that this is in some manner an abuse of notation. When we write for instance «*, what we really
mean is
7 0
-

Lo~ ( ’ 7#) 7 (5.13)

where I,, denotes the n x n identity matrix. Adding it all together, we arrive at the free Lagrangian

1 L o5 o 1 v L o v T

Lrree = 5(8H0')(8#0') —5Me0" — waw“ + imwwuw’ + (i — m)ap. (5.14)

5.2 The full Lagrangian

Now that we have the free Lagrangian, we add the interaction terms. In this model we neglect the
mesonic interactions. Then the only remaining interactions are between each of the meson fields and
the Dirac field ¢. Since the Lagrangian should be a Lorentz scalar, the scalar o-field must be coupled
to another scalar. The only possible choice is the baryon scalar density 11 so that

Ly = Fgo0U, (5.15)

where g, is some coupling constant. In the same manner, the w, vector field must be contracted in
some way, and the only Lorentz invariant choice is to couple it to the baryon four-current ¥y*1 so that

Loy = Tgowu PV 1) (5.16)
We will later find the signs of the interaction terms? by demanding that the expectation values of the

meson fields are positive numbers. We can now complete the Lagrangian with the result

1 1 1 1 —_ _ _
L = 5(0NU)(8“U) — 5m§02 — iwww‘” + gmiwuw“ + (i@ — m)y £ gyohy) £ GowupyHp.  (5.17)

5.3 The energy spectrum

Now that we have constructed a suitable Lagrangian, we are interested in the equations of motion.
Again, using the Euler-Lagrange equations, we obtain for the scalar fields:
o-field: (O+m2)o = g9, (5.18)
w-field: (O +m2)w, — 0,0 w, = Fgu Pyt (5.19)

Remembering that j# = @y is a conserved current due to Noether’s theorem, which means that
Oug* = 0, we can in the same way as in (5.8) contract the last equation with 0% to find that with
interactions, the condition

oMw, =0, (5.20)

still holds. Lastly, the equation of motion for the nucleon field is given by
(i(? - m)'l/) + g,00 £ gwww”il) = [VM(ia,u =+ gwwu) - (m + goU)]w =0. (5'21)

Now we can use the RMF approximation to solve the equations (5.18), (5.19) and (5.21). We start out
by splitting each field ¢ in a classical part (¢) and a quantum part ¢ so that

Wy = @y + (W), o=256+ (o), =1+ @) (5.22)

20f course, we could just choose the plus or the minus sign, if we do not assume that the coupling constants are positive
numbers.
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In the case of the nucleon field, the vacuum expectation value is zero. We can see this by a symmetry
argument. If we for instance consider the mass term for the fermion field, the transformation ¢ — (¢)+
would result in

mPPrp — m* () (1) + m? () + mPPp () + mPPp. (5.23)

The two terms in the middle are clearly not Lorentz invariant, thus (1) and (1)) must be zero. For this
reason we just denote ¢ = 1.

In the RMF approximation we assume that the fluctuations in the meson fields vanish. Also assuming
rotational symmetry at each point, the ground state expectation values (o) and (w) must be independent
of the space-time coordinate x,,. By the same argument, the spatial components of the mean w-field
must be zero and so the equations of motion becomes

ofield (04 m2)(o) = m2(0) = 4,50 = +g,(F0), (5.24)
wfield  (O+mg){wo) = mg{wo) = Fgu¥r0¥ = Fgu (Y09), (5.25)
-field {'y“ (10, £ gu(wo)) — (mF ga<a>)} 1 =0. (5.26)

Here we replaced the 11 and 1)yt with their ground state expectation values, since they both are equal
to expressions only constituent of ground state expectation values. From (5.24) and (5.25) it is clear
that the sign of the interaction term (5.15) must be positive, and the sign of (5.16) must be negative
to obtain a positive expectation value for the meson fields. Looking at (5.26), we see that expression
inside the brackets is independent of x,. Then we may Fourier transform the whole expression using

P (k) =/d4w¢(svu)e‘”“'”, (5.27)
to find

0= /d4x [’Y“ (iau - 9w<wu>) - (m — ga<0>)}1/)(:c#)e’ik"3

d'z [’Y“ (ku = gulwp)) = (m — gﬂa))]vﬁ(x#)e_ik";

[VM (k= 9o (wp)) = (m = ga<0>)] /d4:v Py )e T
- {’W (k‘u - gw<wu>) - (m — ga.<0'>):|r(/}(ku). (5.28)

If we now define the new field momenta

K, =Fky — golwu) = ku — gw{wo), (5.29)
and the effective mass
m*=m — g,(0), (5.30)
we obtain
(K —m*)yp =0. (5.31)

We recognize this as the Dirac equation in the momentum representation of a fermion field with mass
m*. Hence we may treat the nucleon field as a free Fermion field with shifted mass and momenta.

Now we can find the energy spectrum of the o-w model. Multiplying both sides of (5.31) with
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(K + m*) we find

(K +m*) (K —m*)y = [KK WJ
['Y/LK 2]
= [K KAy = (m*)?]y
= [Ku K, (20" —4"") — (m*)?]y

{2K, K" - [KK— (m*)?] = 2(m*)* }v
2[Ku K" — (m* )]
0,

(5.32)

where we have used the anti-commutation relation (C.8) for the y*-matrices. Remembering that K, K*
is just a scalar, we find

K, K" — (m*)? = K - K* — (m*)? =0, (5.33)

and the energy eigenvalue for the nucleons becomes

= Ko = /K + (m*)? = \/K? + (m — g, (0))". (5.34)

In the limit when the coupling constants g, and g,, go to zero, we obtain the free field dispersion relation
as we should. We also note that if g, (o) — m, the effective mass of the field becomes zero.

5.4 The partition function
Before we can find the EoS of the o—w model, we need the partition function. Remembering that the

transition amplitude and the partition function are connected by a Wick rotation, we transform the
Lagrangian to Euclidean space:?

<z =1(5 0)(0"0) + %m?ﬂQ — iwuuw‘” - %miwuw‘ + (@ +m — goo + guwoy° — iguwiy' )Y
1 1
(a o)? + 2m2 -4 [(auwy)z’ — 20w By + (aywu)ﬂ

2+ (P +m— go0 + guwoyo — iguwivi) Y. (5.35)

M\»—t

In the last step we have used that in Euclidean space the covariant and contravariant version of a tensor
are the same.* Including a chemical potential for the nucleons

L = L — 'y, (5.36)

the action becomes

S = /05 dT/d?’x {;(&0)2 + %m?;JQ _ ﬂ(aﬂwﬁ —2(0,w,) (Byw,) + (&Mu)z]

1 _ .
- gmiaﬁ + (P +m — goo + guwoyo — pY0 — lgwwm)i/ﬂ}- (5.37)

3Unless otherwise specified, we assume Euclidean space and corresponding v-matrices throughout the chapter without
bothering to denote the subscript E.

4Note that we are a bit naughty when we write (0,0)(0,0) = (9,0)2. We still assume summation over all spacetime
indices p.
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s=so [ar [ [(52) 7+ (£2) o+ (32) 0+ (22),7]
3l dT/ w [ @ (5 7+ )
+o(im) ¥+ () )+ (),
(i) U)o+ () o+ P ()
+&($)Oa;+au($)oa’+w(5zw,) W+ (w 5w> w} o) (5.38)

where we evaluate the ground state expectation values of the terms with a subscript zero. Inserting the
expressions for the functional derivatives and Sy up to second order in the expansion, we find

Qx

(4

B8 _
= [ar [ @ |t - Gmd el + (o) = g0 )5  (m2 () - 00 (07 01)
+ (04 m2)5 — 3, (04 m2)@, + (m2(0) — go () — m2 (wo) + gu (V1)) 5@,

+ (P +m* —u*vo)w], (5.39)
where we have introduced the effective chemical potential

1= p— gu{wo). (5.40)

Using the equations of motion (5.24) and (5.25), the coefficients in front of the terms linear in & and @,
as well as the one in front of the cross term @, vanish. Then we may write

B
S :/ dT/d3x Bm3<a>2 - %mi(w()}z +6(0+m2)e — 0 (O+m2)@, +¢(F+m* — p*y)|.
0
(5.41)

Since we have assumed that the matter is static, we have that the integral over the mean fields (o) and
(wp) only yields a factor of SV. To solve the remaining part of the integral, we expand the nucleon fields
in frequency momentum space using (4.62) and (4.63), while neglecting the fluctuations in the meson
fields:

S :/3V[1m2 ()2 — L2 <w0>2]

2
0 - /
+ BV dT / & nz; zk:, Yh e TR (E +77 -V +yom* — M*>wm,k'€1(w’"'T+k @)
1 1 . * *
=5V{§m§<0>2 - gmi@;@}?} + Zﬂflk [l(wn + 77 - k) +yom* —p }me,kh (5.42)
n,k

Here we note some of the simplicity of the mean-field approximation. All terms in the Lagrangian that
contain only meson fields, just contribute a factor SV times the mean of the Lagrangian to the action.
Since we assume that the meson fields are classical, we do not integrate over them in the partition
function. From (4.52), we then find

7 — o= Br(mZ (o) —mi (wo) /DH/)TD?/)G e U o (Y Oy Ry O = Y e (5.43)
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This integral was solved in section 4.4-4.5 with the result

7 — o= B ()2 —m? (wo)?) I1 [(wn +ipt)’ o+ EQ} (5.44)
n,p
BV 2/ \2 2 2 <ox\2 2
InZ= 7(—m0<a> + m (wo) ) +Zln [(wn +ip*) + E }
n,p
3

= S (— o mien)?) + 48V [ G (B T e AP 4 T e ]
(5.45)

where FE is given by (5.34). Note that in the second term, we have added an extra factor of two compared
to the non-interacting Fermi gas expression (4.81). This is because the nucleon has two additional states
compared to the Fermi gas we previously encountered: It can either be a proton or a neutron. We also
see that in absﬁence of the meson fields, the logarithm of the partition function is equal to (4.81), except

for a factor —TV, as it should.

5.5 A small digression: Including an isospin chemical potential

We have assumed that we have a particle, the nucleon, with two possible isospin states: The neutron
and the proton. The reason why we can do this, is because the free Dirac Lagrangian actually has an
extra symmetry in addition to the global phase shift® ¢ — 9/ = el®1): It also has an isospin symmetry
under the transformation ¢ — ¢/ = e~1*7/24). Here 7; denotes the Pauli matrices® given by (C.6).
Since 6y = —%iaﬂi@/}, the conserved current is

, 9 . 1. o —. 1. - 1-
g = _78(8H111)¢<1a + m)wilaﬂ'ﬂﬁ + 8(8“;)1#(1(? + m)wilaﬂ'ﬂﬁ = 5¢’Y“%‘ﬂ¢- (5.46)

If we let the rotation be infinitesimal, we obtain the conserved vector current

L 1o
gt = ST (5.47)

The Pauli matrices do not commute, and thus it does only make sense to talk about one component of
the conserved current. By convention, we choose to measure isospin along the third component. Since
the Pauli matrices act in isospin space, the corresponding conserved charge is given by

o= [dait =5 [rirno=g [ee@ (5 5)(F) -3 [ einvi).

(5.48)
Again we stress that when we write 7;, what we really mean is

I
T @I = (6‘ _014> : (5.49)

Since 9l and 1/)};1/1p are the baryon densities for neutrons and protons respectively, we know that
the difference in number of protons and neutrons must be constant for this model. From this it is
now possible to introduce a new chemical potential u, for the third component of the conserved isospin
current. By writing

1
L= 2L = Sty (5.50)

51t is important to keep in mind that we assume that the neutron and proton masses are the same. This is not entirely
true as mn = 939.56MeV and mp = 938.27MeV
61t is usually convention to denote the Pauli matrices by 7¢ when talking about isospin, and ¢* otherwise.
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the partition function is from equation (4.71) and (5.45) given by
1
InZ = A+ Indet| — w, —ip* — 517'3/11 — Oy k+ i’yom*], (5.51)

where we have denoted
L,

A= m/( — 5ma(0) + %m5<wo>). (5.52)

In this notation, numbers are assumed to be multiplied with an identity matrix to match the dimensions
of the matrices. For instance, we write

wn + 70y k= w,Is + % - k. (5.53)

The fourth term in the determinant on the right hand side of (5.51) is equivalent to

— Oy k= O 0 0 (5.54)

To simplify our expressions, we introduce the variables

* 1 * 1
a=ptom  b=pT—om

c=uwy, +ia d=w, +1ib (5.55)
and use (4.70) to obtain

[—c+im*] io -k 0 0
io -k [—c—im*] 0 0
0 0 [fdJrim*} io -k
0 0 io -k [—d—im*]
[62 4 (m*)Q + k2] 0
0 [d2 + (m*)2 +k2]

InZ = A+ Indet

:A—|—1ndet(
_A+1n{[CQ+(m*)2+l~c2ﬁd2+(m*>2+k2r}
:A—|—Tr{1n [c2+(m*)2+k2]2+ In {d2+(m*)2+k2}2}

= A+ [(wn i) + B2+ [(wn +i6)” + B2 (5.56)
n.k n.k

where E? = (m*)? + k2. Both terms are of the same form as (4.77), with the result

an:A+Zln {wfl+(Efa)2} +Zln {wfl+(E+a)2}

n,k n,k

+> w2+ (B- 1) + Y In[wd + (B+0)2]. (5.57)
n,k n.k
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Using the identity (4.78) in the continuum limit, we then obtain

v /] @n)p3

T [m(l + e*/“E*“)) + 111(1 + e*5<E+“>) + 1n(1 + e*ﬁ“f*b)) + 1n(1 + eB<E+b>)} }

T1nZ=A+l/ dk {(E—a)+(E_b)+(E+a)+(E+b)

:A+2/d$k 2E+Tln[1+e_B(E_a)] +T1n[1+e—5<E+a>]
V] @2n)3

+Th [1 + e*W*b)} +Th [1 n e*ﬂmﬂ } (5.58)

We see that we have the same contribution to the vacuum energy, as we still have 8 possible states:
Neutron/proton, spin up/spin down and particle/anti-particle. However, we now get two extra terms
that take into account the forces due to the difference in number of protons and neutrons. Note also
that in the case when p; — 0, we find that ¢ — p* and b — p*, so that we recover (5.45), as we should.

When introducing the chemical potentials, we could have as an alternative approach, defined the
chemical potential for the proton and the neutron density, y, and pn, as oppose to the baryon density
and the difference in proton and neutron densities, p and u,. This would give us the partition function

InZ =Indet| — w, —ip + gu(wo) — v - k+iy"m*], (5.59)

o= (’8” l?n) . (5.60)

where we have defined the matrix

Then we obtain

2 [ &% ~B(E-u) ~B(E+u)
mz == [ &% 2E+T1n[1+e “P}JrTln[lJre I

V] (2n)3
+Thn {1 + e*ME*“D} +Thn [1 + e*5<E+ﬂi>} } (5.61)
with
/1': = Mp — gw<w0>7 ,ug = Hn — 9w<w0>~ (5'62)

Again we see that in the limit when pu% = py = p*, (5.45) is obtained. For simplicity, we will as a
first approximation assume that we have isospin symmetric matter. In other words we set u;, = 0 (or
oy = iy, ), and save this subject for later.

5.6 The equation of state

Having found the partition function, we are now ready to calculate the EoS for the o-w model. Firstly,
the pressure is from (4.76) given by

1 1
P=-Q=—InZ=—-m2(c)*+

_ 1
BV 2

277%% (wo)? + Pra- (5.63)

Here we have denoted the pressure for a free Fermi gas with chemical potential p* and mass m* as
&k ~B(E-p") ~B(E+a")
Prc = f 5 2E+T1n[1+e " }—l—Tln{l—i—e z } , (5.64)
7r

where f is the degeneracy factor. Having assumed that the proton and neutron are two states of the
same particle, the choice f = 4 seems reasonable (neutron, anti-neutron, proton, anti-proton). However,
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since neutron stars mainly consist of neutrons, a model where the proton states are suppressed, might
be a more realistic approach. We will in the following do all calculations for both cases f = 2 (neutron
matter) and f = 4 (nuclear matter) to see their differences and similarities.
From (5.64) we can find the mean fields (o) and (wp). In equilibrium, the system will have minimized
its energy. Then it follows that (o) and (wp) must minimize the pressure. Thus,
opP oP 0
om*  ou*

(5.65)

which gives

or 9 (1 5 19 0Py 0{o) 0 (1 o 0P mfﬁ 0P
om* am*(2m0<"> >+ om*  om* 5(0)(2m0<0> ) o~ go O T g =0 (5:66)
or 0 (1 , 9 0Pc  O{wo) O 1, 9 O0Psq __mii 0Prq
o opr <2mw<w0> ) opr O Awo) (Qmw(w0> )+ o gu {wo) + o 0,
(5.67)
where we have used the relations
w1 B -1
o) _ (Om _ [9(m = go(0)) — g = _i’ (5.68)
om* (o) d(o) 9o
BN B -1
9{wo) = ( O ) = [WQW] =—g;' = _i. (5.69)
oy d{wo) d(wo) oo
Solving for the mean meson-fields, we find
_ _ 90 0P
(o) = m2 O (5.70)
9 OPq

7

Still ignoring the zero-point energy in the free Fermi gas expression’, we find

3
et [ ok i e VT 1 (V)]
m*

2m)3 Om*
e ST ) _ e 8 (VIR )
_|_
1+efﬁ(\/k2+(m*)2*u*) 1+e*6(\/m+u*)

_fT k?
‘w/d’“m

__IT k*m* 1 1
=53 dk E | BB 11 + BET) 11 (5.72)
and
0P fT ﬁe_ﬁ(E—”*) —ﬁe—ﬁ(E-HL*)
o~ 2m? /dk {1 T AEm T —l—e—ﬁ(E-w*)]
_ 1 1
o2 a BE-1) 11 eBE+) 4 1] (5.73)
In the zero-temperature limit, these expressions simplify to
aPFG f m*k2
= —— dk E — u*
om* 272 E O( ©r)
f kg m* k2

"y MR e
_fm lkp k2 4+ (m*)? — (m*)an( VR £ 577171*)2 + kF)

2 , (5.74)

7As mentioned before, we will take care of this in chapter 7.
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and
OPrc f
ou*  2m?
Here we have denoted the Fermi momentum k, = /(u*)2 — (m*)2. We can then write the expectations
of the meson fields as

kp
dkO(E — u*) f/ dkk? = k3 (5.75)

1= 25 o (VTR @79
(wo) = % ff:ﬂ k. (5.77)

From equation (4.91), we have the baryon density
P _ 0Prc _ 9Prc (5.78)

- o Op ou*

Further, from the action (5.42) we see that taking derivatives of the partition function with respect to
m* brings down a factor of —8V 1) from the exponential, and thus

_ 1 97 1 dnZ 0P

o= ) = e = BV o~ ome (579

Thus, we may write the mean meson-fields in a simpler manner as

(o) = %ps, (5.80)
(wo) = 2 p. (5.81)

Going back to equation (5.63), and using the free Fermi gas pressure expression obtained in (4.96), we
find the pressure in the zero-temperature limit

1/ g2 1/ g2
P2(:;>p§+2<i )p + Pics (5.82)

g w

with

4872

P = 1 { k§+(m*)2[2k§f3(m*)2k4 +3(m*)4ln[kp+\/ljijw]}- (5.83)

Further, the energy density is given by (4.94), with the result
1/ g2 1
e=pp—P=p"p+gu{wo)p—P=p"p+ 9 P -P=(2 )24 9 P>+ €, (5.84)
m2, 2 2\ m2

where we have introduced the energy density of an ideal cold Fermi gas with mass m* and chemical
potential p*

€r = f{ KE 4+ ()2 [0k + 3 (m") | =3 <m*>41n[kF * V’Z*T)Q] } (5.85)

4872

It is important to note that we in equation (5.84) still have to use the "real” chemical potential u, not
w*, when we calculate the energy density. From these results, we see that in the limit where there are
no interactions, the expressions for the pressure and energy density become the same as the ones for a
free cold Fermi gas.
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In the non-relativistic case k; < m, which is the same as low densities, we have

* k2 *\2 kF
(pS)NR: {1777:2 VE2 + (m*)? kp—(m*)21n<v F+(7:7; )2+ )
~ fm* * k? _ *\ 2 ﬁ _ k?
 4r2? (m + 2m* ke = (m7) m* 6 (m*)3
/
= ki =» (5.86)

We then see that in this limit, the effective mass and chemical potential become

95 92
Mg &M — 5 p ~ M, W =1 — =5pR [ (5.87)

o mg,

In the previous chapter, we found the low-density limits for Py, and €. Using that p ~ k3, we then
find

1 1 kD k2
Py = —~ (ga_gw)p?+(pm)m:_ (gv_gw>p2+ f ~ (5.88)

m2  m? 2\m2 m?2 30m2m  3072m’
1(gs | 95 1/g2 @2\ a2, [ .3 kD o5 Ik
6“”‘22(* 7 )0 ) =3z oz ) T EE Y G 5 o
(5.89)

Note that in the non-relativistic limit, the pressure and energy density are both independent of the
coupling constants. Comparing this to the results obtained in section 4.6, we find that the gas behaves
as a free Fermi gas in the non-relativistic limit. This is because, at low densities, the particles are so
far apart that they hardly effect each other.

In the high-density limit m < kg, we expand around ky = oo to find the scalar density

fm*
(ps)or ~ T k? (5.90)
From this, the high-density limit for the effective mass is
2 *
9o \ fm
Solving for m},, we obtain
m
mi = ———— (5.92)
UR 1 + o 7{07;,12 k2

Note that this means that the effective mass goes to zero for high densities. Furthermore, inserting
(5.92) into (5.90), we find that for m < kg, we have (ps)yr ~ 1. To the fourth power in kg, the pressure
then becomes

Viga\ o fhe _ f* (45 fE
Pu=5(=% 5= =k R 5.93
=g (m5>p T oam T Tt 2 )t 24 (5-93)
In the same manner, the energy density is
1/ g2 2 [k f? gz 6 fhs
m=— 2 = 2k a 5.94
Ty (mg)p T8 T2t \m2 ) T s (5:94)
From equation (4.154), we then find that the speed of sound in this limit is
f2 fkd
8PUR _ 8PUR 8kjp 1274 <m2 )k5 + 67rg —1 472 (5 95>
Oeur Ok, aeUR, gjr4 (m2 >k5 + J;frg f(%)kg + 672
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Hence, the speed of sound approaches the speed of light as the density increases. This is a factor of v/3
larger than the maximum speed of sound in a free cold Fermi gas which we found earlier to be % The
speed of sound is in general higher in an interacting gas, as the EoS becomes more stiff than in a free
one. Also, we note that the speed of sound never surpasses the speed of light, which is consistent with
special relativity.

5.6.1 The electron

We have assumed that the protons that are present in the case of nuclear matter come from the beta
decay of the neutrons. We should therefore expect that there are equally many electrons as protons.®
In other words, they must have the same density

p(f —2)

pe=pp="0"2 (5.96)

However, in equilibrium, both processes
n—p+e+ve and p+e+ v, —n, (5.97)

where n, p, e and v denotes the neutron, the proton, the electron and the neutrino, respectively, should
be equally likely. Forgetting about the neutrino as it has a negligible mass compared to the other
particles, this means that we can write

fin = fp + He- (5.98)
But since we have assumed isospin-symmetric matter, and that the neutron and proton masses are the
same, this would mean that the chemical potential for the electron vanishes

te =0, (5.99)

which would force us to set the electron density to zero. This means that as long as we are in isospin-
symmetric matter, we cannot treat the beta decay in a consistent way. In the next chapter we will
include an asymmetry in the proton and neutron densities that fixes this issue, but for now we just
leave it as a remark that there still are simple features of matter that this model does not handle well.

5.7 Numerical solutions to the problem

We have found an expression for the EoS, and want to find the solutions of the TOV-equation. However,
there are some minor issues we need to handle before we can proceed and calculate the mass-radius
relation for this model.

5.7.1 Determining the coupling constants

Firstly, we need to determine the coupling constants. The coupling constants represent two free pa-
rameters of our model, and thus we must choose them so that they reproduce experimental result. We
define nuclear matter as a system of equally many neutrons and protons that only interact through the
nuclear forces. For infinite nuclear matter, that is, nuclear matter without boundaries, one observes that
the radius of a nuclei scales approximately as A'/3 where A is the number of nuclei. Since the neutron
and proton masses are approximately the same, the total mass of the system increases proportional to
A. This means that the nucleon density becomes a constant, which we will call the saturation density.
The value we will use for the saturation density in this thesis is po = 0.153fm® [34].

Another property that we should incorporate in the model, is the binding energy. The negative of
the binding energy is defined as the minimum energy needed to separate all the constituents of a system
into free parts. In mathematical terms, the binding energy per nucleon is then defined as

B=S-m. (5.100)
p

8This is only true if beta decay is the only source of particles different from neutrons.
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By definition, the saturation density is the density that minimizes the binding energy. Experimentally,
one finds that the binding energy at the saturation density is By = —16.3 MeV [34]. Thus, we must
choose the coupling constants so that they satisfy

Bo= 2 —m=—16.3MeV, (5.101)
Po
dB Po%‘ —,, €0
Ll Ml 0 (5.102)
dp lp=po Po

where the subscript 0 emphasizes that the values are at saturation.

In the code given by Appendix G.2, the function ”couplingConstans” returns the coupling constants
that satisfy the conditions (5.101) and (5.102) best. To use the program, we first need to choose a range
we expect g, and g, to be within. In the calculations, we have looked at values between 0 and 200
for both g, and g,. The function then divides the domains for the couplings in N intervals with equal
distance. For each of the N? sets of couplings, the program creates the variables

86(#’07 9o, gw)

derivativeEpsilon, = 3 and testBindingEnergy = B(po, 9o, 9 )- (5.103)
I
The coupling constants that minimizes the function
bestFit — \/(po derivativeEpsilon 1)2 N (testBind;ngEnergy B 1)2’ (5.104)
€0 0

is the best fit for the conditions (5.101) and (5.102). To increase accuracy, we run the function ”cou-
plings”. This function calls ” couplingConstants” multiple times, decreasing the interval we look for g,
and g, by a factor of 10 each time. For instance, starting with the assumption g, and g, in [0,200], if
”couplingConstants” returns g, = 10 and g,, = 20, the function runs ”couplingConstants” again looking
for g, in [0, 20] and g,, in [10, 30]. The intervals are still divided in N pieces, and thus increased accuracy
is achieved faster than if one just increased N. When calculating the couplings, the value N = 1000 is
used, and the function ”couplings” is set to decrease the intervals 4 times.
The values obtained for the couplings are

9o =10.94, g, = 13.59, (5.105)

which is consistent with Kapusta and Gale [25, p. 224]. In the calculations we have in the same manner
as Kapusta and Gale assumed the particle masses m,, = 783 MeV and m, = 550 MeV. It should be noted
that there is a large uncertainty in the mass of the o-meson. In the o-w model, the o-meson is meant to
represent an exchange of two pions, and corresponds to a resonance in 7-7 scattering. According to [25,
p. 224] this resonance is between 500 — 600 MeV and so we must choose a value somewhere in-between
to obtain a definite result. However, our choices of the meson masses in this model does not actually
matter. This is because we could have expressed the energy density and pressure as a function of the

variables
x= (g“) y = (g">. (5.106)
mey Mg

By doing so, the equations becomes consistent no matter what value m, has, because the coupling g,
would always adjust so that y becomes a constant to ensure that (5.101) and (5.102) holds.
5.7.2 The pressure

Having found the coupling constants, we are ready to calculate the pressure and energy density. In a
similar manner as before, we introduce the dimensionless quantities®

= P o w = k -
P:747 6:%7 ma:mia mw:mia kb‘:i7 mr = = . (5.107)
m m m m m m

9Remember that we, in contrast to the previous chapter, now use natural units. The scaling factor is the same; in
h3P

units where i # ¢ # 0 we have for instance P = prog e B
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Figure 5.1: Dimensionless pressure as a function of the dimensionless energy density in the o-w model. The
letters A-E are placed as references to make it easier to compare with other plots.

Figure 5.1 shows a plot of the dimensionless pressure as a function of the dimensionless energy density.
We observe that the EoS has a region where

dpP

% 0. 5.108
a < (5.108)

This region, that is the curve DB, is not stable according to our stability analysis in the section 4.7.4.
This suggests that there is something wrong with our model. We know that the pressure must be
continuous as a function of energy density, otherwise matter would flow from high pressure to low
pressure until the pressure eventually becomes continuous. A stable solution must therefore connect the
region before A and the region after E in a continuous way.

One possible explanation is that the matter undergoes a phase transition. To investigate this further,
we look at a more familiar example, the Van der Waals gas. For a constant temperature below some
critical temperature T, the Van der Waals equation of state has the qualitative form given by Figure
5.2. Assuming first that there is no phase transition, we move along the path ABCDE. The total work
done by this process is given by

Vi
W = dV P(V), (5.109)
Va

since the temperature is constant. On the other hand, if a phase transition occurs, we will have a
coexistence of two phases, which in the Van der Waals case is the coexistence of vapour and liquid. In
the region with coexisting phases, the pressure stays constant. We can see this by imagining a liquid in
contact with vapour through an interface. A liquid is in general much less compressible than vapour.
If we then decrease the volume, the pressure will increase in the vapour while the pressure in the liquid
remains approximately the same. The pressure difference will then force vapour molecules to liquefy
until equilibrium is achieved. On the other hand, if we increase the volume, the vapor pressure decreases,
and liquid molecules vaporizes until the pressure again is in equilibrium.

In the density regions where there is a coexistence between two phases, we insert a horizontal line
segment between A and E. The work done during the phase transition must be the same as the work done
along the non-transitioning path, otherwise the cycle ABCDEA would not be possible without changing
the temperature. The work done along constant volume is zero. Thus, if a phase transition really occurs,
we can choose a critical pressure P, so that the areas ABC and CDE are the same, and then substitute
the curve ABCDE with a horizontal line AE. This procedure is called the Maxwell construction after J.
C. Maxwell who first proposed it in 1875 [35]. For more about the Maxwell constrction and the phase
transition in the Van der Waals gas, see for example [36].
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Figure 5.2: Sketch of an isotherm of the Van der Waals equation of state below the critical temperature. The
height of the horizontal line segment ACE is chosen so that the area ABC is equal to the area CDE.

The question now arises whether we can apply the Maxwell construction to the o-w EoS. If we
imagine keeping the energy constant, we can plot the pressure as a function of volume by inverting the
energy density. In other words, we write

V== (5.110)

o | )

so that .
P(V) = Cﬁ(g), (5.111)

where C' is some constant. Figure 5.3 shows the pressure as a function of the inverse energy density.
This plot then represents the pressure as function of volume, up to some constant. We see that the
pressure for small energy densities, and thus for large volumes, tends to zero. This means that the
maximal area we can obtain under the curve ABC is given when the critical pressure is zero. Under
closer inspection, we find by integrating that the maximal area under ABC is smaller than the area
under CDE for both f =2 and f = 4. The Maxwell construction is thus not possible, and a coexistence
of liquid and vapor cannot solve the stability issues.

It should be mentioned that Walecka in his original paper [33] performs the Maxwell construction
in the case f = 2. He can do this because he uses different coupling constants due to the fact that
the binding energy for infinite nuclear matter at that time was measured to be —15.7MeV, and not
—16.3 MeV as we have used here.

Having ruled out the possibility of a phase transition, we need another way to solve this issue. One
possible answer might be that the model is just to simple to account for all the physics involved. When
we determined the coupling constants, we fitted them to the observed values for the binding energy and
saturation density. Only having two coupling constants at our disposal, we cannot expect to be able to
fit all empirically known properties of nuclear matter. Especially, the compressibility, which is defined
as the relative change in volume due to a change in the pressure, deviates badly from the observed value,
which is somewhere in the range K = 200 — 300 MeV [37, 38, 39, 40] at saturation. In particular, one
finds that for the o-w model

2
K =23 (f) = 563 MeV, (5.112)

"dkE\p
at saturation. Later we will add more particles in this model to obtain extra degrees of freedom so that
we become able to fix more properties of nuclear matter, and hopefully obtain a more accurate result.
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Figure 5.3: Dimensionless pressure as a function of the inverse dimensionless energy density in the o-w model.

Letters A-E are placed so that they correspond to previous Figures, except that the area under ABC is not
equal to the area under CDE for reasons explained in the text.
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Figure 5.4: Binding energy as a function of nucleon density for neutron matter (f = 2) and nuclear matter
(f =4). Right panel is zoomed in on the in the minimum binding energy for neutron matter. Green line shows
zero for reference.

However, for now, we will try to make sensible results from this simpler model.

Looking at Figure 5.4 we see that the binding energy has a negative minimum for both neutron
and nuclear matter.!® This means that there is some density where the neutron matter is bound. The
pressure should then be zero at the density where the binding energy is at a minimum, that is, at the
surface of the star [6, p. 194]. This then corresponds to letting the pressure vanish for all densities
below this value. In other words, we should set the pressure to be zero once the saturation density is
reached. However, it turns out that there is no evidence for bound matter in neutron stars today [6, p.
194-195]. Therefore, we will try other approaches to circumvent this problem.

Assuming that neutron matter is not bound, we can get rid of the ill-behaved part of the pressure
in other ways. For one, we can approximate by assuming that at low energies, the interactions between
the particles cease to exist. If that is the case, we can substitute the bad region with the free Fermi gas
expression. Demanding that the pressure is continuous as a function of the energy density, we patch
together the two solutions at the point where they coincide. This EoS is plotted in Figure 5.5. For
future reference, we will call this solution the ”Fermi-o-w FEoS”. Using this approximation, we should
expect that the model predicts higher masses than the original one, since the pressure in the ill-behaved
region always is lower than the pressure in the free Fermi gas.

Another way to settle this issue, is to alter the coupling constants. Having only two coupling
constants, we cannot fit more than two experimental values to the EoS. There are, at least, four empirical
values we wish to fit: The saturation density, the binding energy, the compressibility and the so called
Landau mass defined by m, = E = /(m*)? + k2 [25, p. 232]. It is then clear that the equation of
state will differ, depending on which experiment we choose. This is of course not satisfactory in the
search for a realistic, or at least consistent, model. However, we should remember that all calculations
are done in the mean-field approximation. For small densities, that is in the non-relativistic limit, the
average potential ”felt” by a particle is given by

(V)= p/d3rV (5.113)
Since p ~ k2 and the average kinetic energy goes as ~ k2, we must have that
/d?’rv >0, (5.114)

otherwise the average energy would not be bounded from below, creating an unstable vacuum. This
means that the average potential energy increases monotonically as a function of p. Now we see that we

100f course, we already knew this about nuclear matter.
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Figure 5.5: Dimensionless pressure as a function of dimensionless Fermi momentum. The red/blue line has
patched the free Fermi gas expression in the low density region together with the o-w EoS for higher densities.
The yellow/green line represents pressure in the original o-w model.

have made an error in the assumptions earlier: The coupling constants in the mean field approximation
should be chosen to satisfy the properties of (V'), not V. We can then think of g, and g, as effective
couplings that we chose in a way to mimic all the many-body interactions that we have not taken
account for. One way of doing this is proposed by Machleidt, Holinde and Elstor in [41], where they
fitted nucleon-nucleon phase shifts up to 300 MeV in a boson exchange model, using the m, p, w and o
mesons. They then found the coupling constants

9o =10.75, g, =15.85. (5.115)

Looking at Figure 5.6 we see that by using these fine-tuned couplings, all stability issues vanishes. We
will call the model with these new couplings for the "New Couplings o-w EoS”. One should note, that
the pressure is much higher in the low density region using the new couplings than the ones fitted for
saturation density and binding energy. It is in any sense unreasonable to expect such a simple model to
be accurate, and since the EoS is very sensitive to which experiments we choose to probe the couplings,
we should already start looking for a better model.

5.7.3 The mass-radius relation

With the three equations of state obtained in the previous section (Figure 5.1, Figure 5.5 and Figure
5.6), a similar program to the one used in chapter 4 can be implemented to find the mass-radius
relations. The result is seen in Figure 5.7. From the Figure, it is clear that fine-tuned couplings results
in a significantly larger mass than the modified hybrid between the free Fermi gas and the o-w EoS.
Further we note that even though different in shape, the limiting mass predicted for the bound matter
and the Fermi o—w EoS, is practically the same. This is reasonable, since these two equations of state
differ in the low energy region, while they coincide for larger energies. We also see that for equal central
pressures, the radius of the f = 2 stars are in general larger than the ones with f = 4.

It is hard to tell if these results are good or not. As mentioned, the o-w model is a simple model with
only two coupling constants, making it impossible to fit all empirically known values for nuclear matter.
The maximum mass is calculated to be (for neutron matter) Myax = 2.99.M for the combined free
Fermi gas and o-w EoS, while it yielded Mpax = 3.63Mg for the fine-tuned couplings. We note that
this is substantially larger than the results obtained for the free Fermi gas. Adding this toy model for
the strong force has thus increased the upper mass limit.

11Remember that in this case we set the pressure to be zero for all densities below the saturation density.
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Figure 5.6: Dimensionless pressure as a function of the dimensionless energy density. The red/blue line has
couplings fitted to the nucleon-nucleon phase shifts according to [41], while the yellow/green line has couplings
chosen to match saturation density and binding energy of nuclear matter.

We cannot falsify this model, in the sense that there has not been measured neutron stars with
masses larger than this, but it is fair to assume that it is not accurate, due to the fact that we see a
major difference in the limiting mass regarding which properties of nuclear matter we use to fix our
coupling constants.

5.8 Summary

In this chapter we have explored the o-w model and the resulting EoS. We have used the mean-field
approximation and assumed that the neutron and the proton are two different states of the same
particle. Introducing a toy model for the strong force involving two mesons, we then found that the
model predicted a maximum mass of about 3.6 solar masses. The Lagrangian we used was fairly simple
and included only two interactions, making it impossible to fit all known properties of nuclear matter.
The mass-radius relations is found highly dependent on the empirical values chosen to probe the coupling
constants. We thus concluded that a more careful treatment is required.
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Figure 5.7: Mass-radius relations for the three equations of state discussed in the text. Dotted lines represent
unstable solutions.
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Chapter

Improving the o—w model

Having introduced the o—w model, we now have laid the foundation for a more realistic description of
the equation of state for a neutron star. We are in particular interested in increasing the number of
degrees of freedom, so that we can fit more of the observed properties of nuclear matter. As mentioned,
the empirical values that we want to fix are the binding energy, the saturation density, the Landau
mass and the compressibility. In addition, we want to consider a system where there is a difference
in the neutron and proton densities. This will result in a change in the energy, which again gives
rise to a symmetry-restoring force. We call this force the isospin force, and we will assume that it is
mediated by a charged vector meson p!'. This allows us to fix yet another experimental value, namely
the symmetry-energy coefficient as.

We are still working in the relativistic mean-field approximation, but we will add more interactions
and particles. In particular, we will include cubic and quartic self-interactions for the o-meson, as well
as an interaction term between the p-meson and the conserved isospin current. We will also see that
it is required that any macroscopic object must be globally charge neutral. To enforce this, we include
electrons and muons.

6.1 o self-interactions

We want find a way to fix the Landau mass and the compression modulus. Here we follow the procedure
first proposed by Boguta and Bodmer [42]. This involves adding cubic and quartic self-interaction terms
for the scalar meson o to the Lagrangian

1 1
gaself = gbm(gao-)g + 16(900)4- (61>

Here b and c are constants, while m is just a number with dimension mass, so that b becomes dimen-
sionless. It is convention to set m to be the nucleon mass 939 MeV, but we could of course have chosen
a completely arbitrary number since the product bm is constant.

The new terms in the Lagrangian do only affect the equation of motion for the o-field. We thus
focus on the part of the Lagrangian containing only o-terms

1 1 7L 1
Ly = 5(9,0)(0"0) — 5m0” + goo i)+ 3bm(950)" + Je(970)*. (6.2)

Keep in mind that we have not said anything about the sign of the new terms; b and ¢ can be both
positive or negative. However, we should hope that the sign of ¢ is negative to make sure that the
energy is bounded from below, otherwise we would encounter an unstable vacuum.

Using the Euler-Lagrange equations, we find

0%,
oo

_ 0%,
= —m20 + g + bmgio? + cgio® = aum =9,(0"0) =0, (6.3)
w
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which can be rewritten as a
Johtp = (D + m?, — bmggcr — cgiaz)a. (6.4)

The mean field (o) is independent of the space-time coordinate z*. Thus we find that in the mean-field
approximation, this equation becomes

9o = (mj — bmgg (o) — cgo(0)*) (o). (6.5)

Since the right-hand side is only dependent on ground state expectation values, so must also the left-hand
side. Thus we can rewrite this as

9o{00) = gops = (mg — bngg (o) — cg()?) (o). (6.6)

Note that since the terms we have added to the Lagrangian so far only contains the o-field, the expression
for the scalar density ps is still given by (5.74) and (5.79). This also means that the energy spectrum
and the effective mass have the same expressions as in the o—w model,

E =k + (m*)?, (6.7)

m* =m — g, (o), (6.8)

we just have to remember that (o) is given by (6.6). As we saw in the previous chapter, the terms
containing solely meson fields contribute a factor SV times the mean of the Lagrangian. This means
that the self-interacting terms add an extra factor exp{ - BV[%bm(gga)?’ + %0(900)4]} to the partition
function so that

7 = ¢ B [3omias (o) +1eloo(o))] 5 (6.9)

Here Z,.,, is the partition function for the o—w model given by (5.43). Taking the logarithm of Z, we
find that the only difference in the pressure and the energy density due to the included self-interaction
terms in the Lagrangian, is exactly these terms. We have thus found that

3 1

P=P,,+ %bm(g(,((f)) + Zc(gg<a>)4, (6.10)
€= €puy — %bm(gg(a»?’ - ic(g(,(U))‘L, (6.11)

where P,_, and €,_, are given by (5.82) and (5.84) respectively.
It is not obvious from equation (6.6) that the scalar density ps is the same as before. This we can
now easily check. Demanding that the star is in equilibrium, we have!

opr 0

= [Pg_w + ébm(g(,(a))g + ic(ga@‘»ﬂ

0= om*  Om*

OP, 2
_ 9Prc | mg{o)
om* 9o

—bm(go(0))” = e(g0())".

Inserted into (6.6), we then find

which is consistent with (5.79).

6.2 The isospin force

We are now ready to allow the proton and neutron densities to vary. This will result in a change in the
binding energy, and this energy shift we will call the symmetry-energy [43]. The symmetry energy gives
rise to a force which we will call the isospin force. This force manifest it self as an interaction term in

INote that when taking derivatives of the term bm(g(7 ((7))3 with respect to m*, we look at the product bm as a
constant.
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the Lagrangian which must involve the conserved isospin current j! from (5.47). Since we require that
the Lagrangian is a scalar, the current j must couple to a charged vector meson. By this we mean a
vector meson with three isospin states. This is analogues to the nucleon which is a particle with two
isospin states. Here we use the p!'-meson, which represents an isospin triplet p* = (p!', p5, p%) [6, p.
183].

Each component of the triplet behaves as a vector boson, and thus the free Lagrangian is on the
same form as it was for the w-meson (5.6). We therefore write

1 L1
oiﬂpfree = _Zpi;u/p? + §miﬂiupf’ (614)

where we have defined
Pipy = OupPiv — al/pi,uu (615)

It turns out that this Lagrangian is invariant under the infinitesimal transformation? [6, p. 158]
Pip — P;# = Pip — ﬁijkAjpkm (6-16)

where €, is the 3-dimensional Levi-Civita-tensor defined by (C.11). We can show this by insertion:

1 -
/;ffee = 4 _aﬂ (in - eijkAj,Ok,,) -0y (piu - GilmAleu)} {a# (plz/ - 5inoAan) -0 (pit — Giquppg)}
1
+ §m/2; (pin — €ieNjprg) (0F — €mMiphy,)
1 -
= 71 _(aﬂpi” - ani#) - (eijkAjaquu - EilmAlaupmp):| {(5‘“;);’ — 8”/#) — (emoAna”pZ — Eiqupﬁypg)]

1 -
+5m; [Pwﬂf = €itmA1pinfly, — € prupl — O(A)

Lr v v v
= _Z _Pmuﬂf - (appiu - avpi,u) (EinoAnaMpo - 6iqupa pg)
— (0"py — 0" pl!) (€ijijOuprv — €itmMNiOypmy) + O(A?)
1 -
+3m [pwp? — €itmNipipply, + exjiljprupl + O(A?)
1 v v v v v
= *Z |:puu/p¢ - EinoAnﬁppiuaupo + einoAnaupi,ua#po + Eiqupa,upiya Pf; - €iqupaz/Pw8 Pf;
- eijkAjaup;'ja/_tpku + 6ijkAj81’pfla/_tpkl/ - 6ilmAlau,oll‘/aupmu + 5ilmAlangaupmu]
1 '
+ 5mppinp + O(A%)
1 v v v v v
= _Z [piuup? — EinoAnaupiuaupo + EinoAnﬁupiua#po + equAI)altpil/a PZL - eiquPaniﬂa pf;
+ ekjiAjaup;/aupku - ekjiAjangaupku - emliAlaup;‘jaypm,u + emliAlangaupmv]
1
+ 5mppinp; + O(A%)
1 1% 1 1L 2
= _Zpiuupi + §piupi + O(A )
= %) tee + O(A?). (6.17)

Since the transformation is infinitesimal, the second order term in A vanishes, and we obtain the original
Lagrangian.

2Just to be clear, the sign of the transformation is arbitrary. The Lagrangian is of course also invariant if we write
Piy = Pip + €ijkNjPrp
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The transformation p;, — p;u has the variation
0pin == _ €ijkPhp (6.18)
J

and the corresponding conserved isospin current

0%, p free

b I
Ji - 8(auphy)( 6’”]/)]1’)
1 (03 (e}
= ZGhijpjum {(%pm — 35pka) (3 pf — 8Bpk)}

= iﬁhijpju | (310% = 058 (99 = 0%07) + (0™ — 00" (Duprs — Dpprer) | On
= iehuﬂju [(5”,0% = ppy) = (9"ply — 0" ppy) + (8" — 0" pfy) — (8" pfy — 5”10%)}
= Ghijpjupzu
= €ijnPjvPl - (6.19)
Note that if one prefers, it is possible to write this in vector notation as
Jh=p, x p'. (6.20)

Using (6.19) and (5.47) we obtain the total conserved isospin current
- b " 1 s v
I =G + 00 = 0Tl + €gpjury” (6:21)

However, when we couple p;,, to this current, we obtain a term in the Lagrangian that contains deriva-
tives of p!’. Since derivatives contributes to conserved currents through Noether’s theorem, introducing
an interaction term® —g,p;,I!" will also give a contribution to the conserved isospin current. Thus we
must make the substitution

/ I=9ppralf)
g my gy NTIpPR TR
Ii - (Iz ) - Il + a(auphy) ( ehljp]l’)

(0% ph —0%01)
= Iz'u + Gp€hij€kimPiv P18 Pka (,r]al»bnﬁl/ _ nﬁunau)éhm

= Ii“ + gpﬁhijﬂju(lethPf - lehﬂgpf)

=I"+ nghiiju( — €nkpRp] — thlplzjﬂil)

" 0
=1I"+ gPGhijEklijuPlﬁpkaW
wPhy

1- v v
= UV T+ €ijpivpl” + 29p€ingniiiv i Pl (6.22)
Again, it is possible to write this in vector notation as
/ 1 v v
(1) = 3" re+p, x " +29,(p" x ) x py, (6.23)

where we have defined T = (11, 72, 73).
Consider now the free Lagrangian for the p-meson

1 1
Zp free = *meupéw + §mipmpf~ (624)

3We remind the reader that the sign of the interaction term is completely arbitrary. The sign of the coupling constant
gp will change depending on our choice, so that the overall sign of the interaction term always is the same.
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We then see that if we write the charged p-fields in terms of the isospin ladder operators? ply and pt
that is

py = %(pi +04), (6.25)
ph = %(pi —4), (6.26)

the Lagrangian becomes

171 v v v 1 v v v v
gpfree = 1 [2 (P*,uupli + 2P+;wpli + P+;wpi ) + imi (pf;wpli - 2p+;wp;i + P+;wpi ) + PB;WPM :|

1,1 1
+ 515 | 5 (PP + 20 4pt + prupy) + 5 (p-ubl = 2400 + prpphl) + psup“}

1 ) ) !
= = (P + PP+ p3pp™) + 5L (PP + Pt + pau”)

1 1
= 3ol )+ Sl (' (627

where we have defined (p}')" = (p”, p, p§). The Lagrangian is thus of the same form as (6.24), which
means that it describes the same physics. The isospin ladder-operators py increase or lower the third
component of the isospin for a particle. For instance, if we let p_ work on a neutron, which has total
isospin 1/2 with a third component yielding 1/2, then the third component changes to —1/2 and the
particle becomes a proton
p—thn = Y. (6.28)

In other words, if p+ is working on a nucleon field, the numbers of neutrons and protons will change.
However, in the mean-field approximation, we assume that the system is in its ground state. Thus we
expect that the proton and neutron densities are constants, and therefore we must have that (o) = 0.
The only way this is possible, is if the expectation value of both fields pj and p4 vanish.

We can now find the equation of motion for the p-field. Since only (p§) is non-zero, we have that the
last term in the conserved isospin current (6.22) vanishes, because we obtain a cross product between
pt and pY, and they are obviously parallel. The equation of motion for the p-field is then

o /1 1 1 _ 1 - o
3F (§m§p3ap§“ = 5 P30pPs” = 590P3a Y TSV — gpesikpiopi” ) = mpply = 59,07 51) + derivatives = 0.
K2
(6.29)

Introducing the mean-field approximation, all derivatives vanish and the equation of motion for the
p-field becomes

1 =
mip(ph) = 59507 759 = 0. (6.30)

Since these two terms must be equal, we have that the current gpz}y“mw is given only by ground state
expectation values. Hence the current must also be a ground state expectation value, so we write

m2 () = %gp@v“fgiﬁ). (6.31)

Having assumed that there is rotational symmetry at each point in space, there should be no preferred

direction for the expectation value of the current (¢y*r31)). Thus, all spatial components must be zero.
We may then simplify even further
z(pn_Pp)a fori:sa,uzoa

<p“> _ <pg> = ggnz,% <7ZVO7'3¢> = 2gn€g <¢TT3¢> = anzp (6.32)
‘ 0, otherwise,

40ne may ask why we can write operators in terms of fields. The answer is that in field theory, the fields are actually
field operators, but we just call them fields because we are lazy.
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where p, and p, denotes the neutron and the proton density, respectively.
Now that we have the ground state expectation values for the meson fields, we can compute the
equation of motion for the nucleon field

0 =2 [0 — ) + g (0B — 1o o) T2 — 30 3]

o
= (i) — m) ¥ + go (o)t — g (w0)7*P — gp(pso) ;; (%%Omﬁ)
= [’YO (180 = gulwo) — %gp<P3o>Tg) +1i7°9; — (m — gg(a>)]1/). (6.33)

In the same manner as in (5.28), we Fourier transform this expression to obtain

1 7 7
[70 (ko — gw(wo) — §gp<p30>7—3) + ks — (m - gdd))} P (k"). (6.34)
If we define the momenta .
K¥ =k — go(w") — 59p</’§>7'37 (6.35)
and the effective mass
m*=m — g,(o), (6.36)

we find
(K - m*>1/) —0. (6.37)

The nucleon field can thus be represented by a free field with the same effective mass as in the o—w
model, but with a shifted field-momenta. The energy spectrum is still the same as before

E(k) = Ko(k) = \/k* + (m*)2. (6.38)

6.3 Charge neutrality

The last property that we want to incorporate in this model is the fact that any macroscopic object
in equilibrium must be globally, electrically charge neutral. This is because in equilibrium, the energy
is minimized. The lowest possible energy contribution from the Coulomb forces is then when the total
charge of the object is zero. This does not mean that each point inside the object must be charge
neutral. There are possible configurations which are globally charge neutral, but still have finite charge
distributions, that are energetically favourable. Some examples are the atom or a molecule. Both have
a vanishing net charge, but if we examine them closer we find regions of positive and negative charges.
As we have mentioned before, free neutrons are unstable and decay through the process °

n—p+e+ U, (6.39)

where n, p, e and v, denote the neutron, the proton, the electron and the electron-neutrino respectively.
It is then natural to introduce the electrons e to ensure global charge neutrality. However, at high
densities we also expect that there is a presence of leptons with higher mass. We therefore also include
the negative charged p, since their main decay mode is

= e+ U+, (6.40)

Neutrinos have a negligible mass compared to all other particles in this model. We will therefore as
an approximation assume that they do not contribute much to the energy density, and forget them.

5All decay modes can be found in the ”Particle Physics Booklet” from the Particle Data Group.
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To ensure our system is charge neutral, we then imagine a charged background field of electrons and
muons. That is, we neglect their interactions, and assume that they are free fields

ﬁeptons = Z QZZ (15 - m) ;. (641)

i=e,p

Since both p~ and e~ have the opposite sign of the proton, global charge neutrality yields that the
electron and the muon density add up to the proton density

Pe T Pu = Pp- (6.42)

Be aware that whenever p is written with only one subscript without boldface, then p; refers to a density
for a field of type i and not the p-field.
Since the star is static, we must also have S-stability. By that we mean that the decay (6.39) is
equally likely as the inverse process
p+e+rU.—n. (6.43)

Demanding S-stability is then the same as writing
Hn = fp T+ fe- (6.44)
Furthermore, we expect that muon decay is in chemical equilibrium. That is, the processes
P e+ Ue 4 vy, (6.45)

are both equally likely. However, since the muon has a (much) larger mass than the electron, the inverse
muon decay is impossible unless
k2 >m?2 —m?. (6.46)

e

This means that muons do not appear at low densities. Then we write
ty = 1O (k2 — m2 +md), (6.47)

where O(z) is the Heaviside step function.
Now we have all the constraints needed to develop a consistent equation of state. We proceed in the
following by calculating the partition function.

6.4 The partition function and the equation of state

We have in this chapter included self-interactions for the o-meson, as well as the isospin force mediated
by the p-meson. We have also added a charge neutrality condition by introducing free electrons and
muons. It is now time to put it all together and find the partition function.

The total Lagrangian for this system is in Euclidean space given by®

£ = gbaryon + ﬁeptona (648)
with
1 2 14 L, I o9 1 545 1 55
gbaryon :i (8#0') + waj + szu + imao— - §mwwy - §mppi# (649)
1 3 1 4 - 1
- gbm(gaa) — Zc(gaa) + (@ +m — goo + guwuyo + igppmﬂ"m)?l% (6.50)
oiﬂlepton = Z ’l;l (@ + mz)'(/}z (651)

i=e,u

6 As before, once introduced, we assume Euclidean space and corresponding «-matrices throughout the chapter without
denoting the subscript E.
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Then we add the chemical potentials so that

jbaryon — fbaryon - wT/“/J7 (652)
ﬁepton — oﬁepton - 1/JT1/JMe - ’(/}T'(/JMM (653)

where we have defined the py-matrix as
Hn 0
. 6.54
( 0 Mp> ( )

Firstly, we calculate the nucleon part of the partition function. By expanding the action around the
expectation values of the fields just as we did in (5.38)-(5.43) we obtain

Zbaryon = Znucleoanesona (655)

with
Znucleon = /'DinDw eZn,ki"bL,kI:fwn7’70"/-k+i’}/0m*7i(/lzfgw<w0>)+%igp<p30>7'3} wn,k’ (6.56)
Zinoson = BV [—%'Hli(o)z_;’_%?ni (w0>2+%mi(p30)2+bm(gg(o))3+c(ga(U>)4]- (6.57)

According to (4.68), the logarithm of the nucleon part can be rewritten as

Sigplonins]. (659)

In Zpyeleon = In det [ —wp =y kA 1"mt =i — gu(wo)) + 5

We have calculated similar determinants earlier, and the steps are almost identical. If we define the
variables

= o~ gulin) — 5Gpls0) 5= 1ty — gulicn) + 50000, (6.59)
Cy = {1 + e—ﬁ(Eifix’i)}, Dy — [1 + e—5<Ei#E>}, (6.60)
we find that
N Zoueloon = 2V / Ok (2E4+ T Cy +TInC_ +Tin D, +TlnD_). (6.61)
7 | @y

Assuming that p, and p;, are positive, and ignoring the zero-point energy, the partition function becomes

K2+ (m*)2) + O [ — k2+(m*)2]}, (6.62)

In Znuclcon =

BV/ W{ [

in the zero-temperature limit. Performing the integral (6.62), we obtain

I Zusctoon = 3 ¥ { K2 + (mi)2 |2k — 3(m7)% k] +3(m:>4ln{’ﬁ”‘+ VA ¥ (mﬂ}, (6.63)

) 2472 i
i=n,p

where k; represents the Fermi energy for a field of type i so that
ki =/ (17)? = (m])>. (6.64)

Lastly, we are left with the lepton part which is just the partition function for a free fermion field. The
partition function will then have the same form as (6.63) if we substitute the effective nucleon mass
with the lepton mass:

I Ziepton = Y _ 247T2{./ +(m i)2[2kf’—3(mi) k] + 3(m;)"In {k * VkQ (m:) ” (6.65)

i=e,p
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where k; satisfies

k; = 2 _m2, 6.66
7 l’(‘z 7

It is somewhat intriguing that the partition function for the interacting nucleon field has the exact
same form as the partition function for the free fermion field. This shows the simplicity of the mean-field
approximation, as it removes the derivatives of the meson fields.

Note that the relations (6.64) and (6.66) can be rewritten as
1 2 2 1 /1.2 2
Hn = gw<w0> + §gp<p30> + kn + (m*) , Hp = gw<w0> - §Qp<p30> + kp + (m*) ,
pe = \/ k2 + m2, f =/ kZ +m2. (6.67)
Combined with (6.44), this gives
pn = pip = Gp(pso) + VR + (m*)? = [R5+ (m*)? = pe = /K2 + mg (6.68)
Rearranging we can then express the Fermi momentum for the neutron as
2
K2 = [gp(ps0) = \J2 + (m*)? = &2+ m2| " — (") (6.69)

Combining (6.57),(6.63) and (6.65), we find the expressions for the pressure and the energy density

1 1 1 1 1
P=- §mf2r<0>2 + §mf)<w0>2 + §mz<ﬂso>2 + gbm(ga<0>)3 + 4C(ga<0>)4
1 2 2013 *N\27.. oy | ki + k?"‘(m?)Q
+i:§e E W{ K2+ (mi)2[2k7 = 3(m7)2hi] + 3(my) In| ==Y o . (6.70)

e =gmE(o) + gmd{n)? + gm3ow)” — 2hm(ge(0)” — gelan (o)’

2 2
1 ki ++/k? + (m})?
2 2 3 *\27. | _ *\4 ¢ 4 i
+ i:ngp » 512 {\/ki + (m}) {Gki + 3(m7) kz} 3(my) ln[ - ) (6.71)

where m} denotes the effective mass for a field of type i.” Looking at the energy density, we hope that
the sign of ¢ is negative. Otherwise, the energy would not be bounded from below. Had our theory been
fundamental, this would be catastrophic, but it is not. This model handles hadrons as point particles,
and does thus not account for the effects that occur at densities so high that the quarks manifest
themselves. However, should ¢ be positive, we must still check that the pressure and energy density
are well behaved in the sense that the energy density is strictly increasing as a function of the Fermi
momenta and that they are both continuous, within the region of interest. In the case of a neutron star,
this means densities up to 10 times the saturation density for nuclear matter [6, p. 182].

"The effective mass of a free field is of course the mass of the field it self. For example is mk = Me.
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6.5 Numerical solutions

We have so far written a large set of equations concerning the EoS. To make things clearer, we list the
most important ones

mz{0) = gops + bmgs(a)? + cg(0)°, (6.72)
m o [VEE P 4k
ps = izzn:p W{ k2 + (m*)2k; — (m*) ln{ — ; (6.73)
m* =m— g, (o), (6.74)
Jw
(wo) = miip’ (6.75)
P = Pn + Pp, (676)
g
(p30) = ﬁ (Pn = Pp), (6.77)
K
pi = 352’ (6.78)
Pp = Pe + Pus (6.79)
kg = (mg+ k2 —m2)O(m?2 + k2 —m2), (6.80)
2
ki = {9p<ﬂ30> - \/W —VEkZ+ mg} — (m*)2. (6.81)

We want to express the pressure and energy density in terms of one variable, which we will choose to
be the Fermi momentum for the electron k.. In particular, we want to write the variables

(@), (wo), (pso), ki, m~, (6.82)

as a function of ke. If we combine (6.72)-(6.74), we obtain

2 * /1.2 *)2 .
m—m* = I m2{kﬂ/kf + (m*)Q(m*)zln[ bt 5:; Ul +bm(mm*)2+c(mm*)3}.

2
m 2T
7 i=n,p

(6.83)
We can use this equation to determine the effective mass m* for a set of Fermi-momenta &, and k,. The
result can then be inserted in (6.74) to determine (o). Further, we can rewrite equations (6.78)—(6.81)
in such a way that that the Fermi-momenta k,,, k, and k,, only depend on the Fermi-momentum of the
electron

k= (k2 +mZ —my,)0(md + k2 —m3), (6.84)

kS = k2 4 (k2 + m? — m2)*20 (m? + k2 —m?2), (6.85)
> 2

kn = {gp<pso> - \/[k3 (k2 +m2 = m2) PO (m2 + k2 —m2)] " + (m*)? - m} — (m*)2.

(6.86)

The equations for k, and m* can now be solved with a built in root finder in Python® for any electron
Fermi-momentum. This closes our system, and the only thing that is left before we can study the
mass-radius relation for this model, is to determine the coupling constants.

6.5.1 Determining the coupling constants

Surprisingly, it turns out that it is actually possible to determine the coupling constants analytically
as shown in [6, p. 178-181]. However, this calculation is long and tedious, and even though analytic

80r any other programming language of your desire.
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Figure 6.1: Dimensionless pressure as a function of dimensionless energy density for the improved c—w model.
expressions for the couplings can be useful due to their energy dependence, it will for our use suffice

with a numerical treatment. The empirical values we wish to fit our couplings against will be the same
as used in [25, p. 232], namely the saturation density

po = 0.153fm >, (6.87)
the binding energy
Bo=< —m=—-16.3MeV, (6.88)
Po
the Landau mass
my = 4/ (mf)? + (ke)i = 0.83m, (6.89)
and the compressibility
12
Ko = (k)2~—<| =250 MeV. (6.90)
dk“z P P=Po

In addition, we use the symmetry-energy coefficient from [6, p. 187]

2 3 2
a5 = (9P> eo (ko = 32.5MeV. (6.91)
Mp ) 1275 6y/(ke)§ + (m)?

In all expressions (ky)o denotes the Fermi momentum for nucleons in isospin symmetric matter at
saturation density.

Firstly, g, is given by rearranging (6.91). For the four other couplings, we use the function ”cou-
plingConstants” in Appendix G.3. This function takes as input a range of possible guesses for the
coupling constants, some parameter IV, and the empirical values for the nuclear matter properties we
wish to fit. The program runs four loops with N iterations that go through the range of possible guesses
for each of the couplings ¢,, g., b and c. For each iteration, the program uses a built in root-finding
routine from scipy that solves the four equations (6.87)—(6.90), using the current coupling guesses. If
the root-finding routine fails to converge, it tries a new set of couplings. When the routine converges,
the function calls "runAllChecks”. This function calculates the numbers (6.87)—(6.90), and compares
them to the experimental ones. We do this because there were some stability issues with the root-finding
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Figure 6.2: Dimensionless pressure P as a function of dimensionless energy density € for the o-w model in
chapter 5.8 and the improved version. Figure on the right zooms in on the low density region of the figure on
the left. The coupling constants are fitted to bulk properties of nuclear matter given in the text.

routine so that it sometimes converged towards wrong values. However, when the routine fails, it does
so badly, so we just have to check that the values are not way off to be sure that we got the right
numbers. The program used here checks if the values matches within about 5%, and if they do, the loop
terminates and the coupling constants are returned. The built in root-finding routine improves the run
time of the program compared to the method used to obtain the couplings in the o—w model, where a
more brute force trial and error method was used. As a result, even though we have four loops instead
of two, the program is much faster.

The experimental values used in this thesis are similar to the ones used in [44]. It is then reasonable
that our couplings will not differ much. Thus we choose our guesses so that they are close to those used
there. In these calculations we have used N = 10, and the guesses for the couplings are given by table
6.1. The coupling constants obtained from this are

9o Jw b c
Guess | [0,20] [0,20] [-0.01,0.01] [0.01,0.01]

Table 6.1: The coupling constants are assumed to be within these intervals

9o =8.711,  g,=8646, g,=8610, b=-7.950-10"2  ¢=—6.947-10"%  (6.92)

As we see, both b and ¢ are negative, and so we do not need to worry about an unstable vacuum.

6.5.2 The equation of state and the mass-radius relation

Now that we have the coupling constants, we are able to plot the equation of state. In Figure 6.1 we
see the dimensionless pressure as a function of dimensionless energy density. In this case, there are no
unstable regions as we saw for the c—w model. We also observe that by comparing with the c—w model
(Figure 6.2), the EoS is less ”stiff” in this improved model. That is, the pressure increases slower as a
function of the energy density. Then we should expect a smaller mass and radius. As shown by Figure
6.3 the maximum mass for this model is 2.03Mg with a radius R = 10.8 km.

6.5.3 Population density

Figure 6.4 shows the relative population densities for the particles involved in this model. From the
plot we see that there are clearly more neutrons than other particles. However, we also see that we are
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Figure 6.3: Mass-radius relation for the improved o—w model. Coupling constants are fitted to the bulk
properties of nuclear matter given in the text. Dotted lines indicate unstable solutions.

far from having pure neutron matter, as we have assumed in the previous chapters. At the beginning
there are equally many electrons and protons. When the density is high enough, muons appear and
the symmetry in electron and proton densities breaks to satisfy the overall charge neutrality condition.
This is the reason why we obtain the ”kink” in the neutron density at around p ~ 0.1.

6.6 Summary

We have used the o—w model as a foundation for a more complete model. Two self-interaction terms
have been added in the same manner as Botuga and Bodmer did in [42] to fix the compressibility
and the Landau mass. We have also introduced an isospin asymmetry, which allowed us to match the
symmetry-energy coefficient. From this, we have found that the upper mass limit for neutron stars in
this model is 2.03 solar masses, just above the lower limit set by the pulsar PSR J0348+0432.

75



pilp

100 7
p
1071 4 £
1072 1
1 K
103 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.6
plfm=3]

Figure 6.4: Relative population density p; /p as a function of nucleon density p for the improved o—w model.



Chapter

Renormalization

It is time to settle the issue with the infinite zero-point energy term in the partition function. Infinite
contributions to the pressure and energy density are not as unsettling as they first may seem. Whenever
we measure a quantity in nature, we always have to compare it to something else. To say that an object
is big is ambiguous, but to say that it is has five times the diameter of a proton is useful information.
In the same manner, even though the zero-point energy is infinite, so is also the vacuum energy. Thus,
the effect that we actually observe is the difference between these energies, which we will call the
vacuum-energy shift.’

7.1 Vacuum-energy shift from fermions

The vacuum energy is given by the zero-point energy for all particles present with their original mass.
This means that for the improved o—w model, the vacuum-energy shift is given by

ST <-H2/d”2]

i=e,u,n,p i=e,[,n,p

:22/“{ i

i=n,p

=—4 - k2 *)2 — k2 21, 7.1
[ [V - i ] ()

where we have used that m} = m; for ¢ = e, u, and the fact that neutrons and protons in this thesis are

regarded to have the same mass. We now see that our calculation boils down to evaluating the integral

4’k
I(m) = 4/ oy VR (7.2)
s
This integral is divergent, but we may temporarily move over to d = 3 — 2e dimensions where it is finite,
and then expand it continuously to d = 3. This will allow us to isolate the divergences so that we can
add counterterms to the Lagrangian that cancel them.? In d = 3 — 2¢ dimensions, the integral becomes

d%k ,
I(m) = 4A3*d/ k2 +m2 = 4A371

2n) (;75 SETNE? 4+ m?2. (7.3)

IThis is not entirely true in the case of gravity as the EH-Lagrangian is not invariant under the addition of a constant
to the stress-energy tensor [45].

2Tt might seem ad hoc to include counterterms so that we can get rid of infinities, but in essence what we do is just
redefining the parameters of our model. If the energy is some huge number plus one, we might as well call that energy
one instead of using the large number. The physics is the same.

aoy
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Here, A is some constant with dimension mass that makes sure that I has the right dimensions. The
surface of a sphere in d dimensions is given by [46]

ors
/de = F(%)’ (7.4)

where I'(x) denotes the gamma function defined by (D.3). Then we find that

273 A3~ ¢ 8A3—d
I(m) =422 /dk kIE2 4 m? = di/dk kK2 +m?2. (7.5)

(2m)9r(3) (4m)2T(5)

Substituting k? = um?, which gives dk = Z’—I:du, we obtain

{A3—d 2) 452 A3 dypd+1
I(m) = /du(um ) m*\/um? +m?2 = /duu T Vu+1 (7.6)

(4m)5T(4) 2
Introducing the constants x = % and y = —m the expression can be rewritten as
4A3—d d+1 x—1
I(m) = 7md/duu7+ (7.7)
(4m)50(2) (u+ 1)ty

This we recognize as the beta function (D.5) times some constant. The integral (7.7) is then equivalent
to

4A3’dmd+1 4A37dmd+1 ()T y
I(m) = 2 Bay) = r(( )+( )) (7.8)
(4m)=T(3) (4m)=T(5) L@ +y
Inserting values for = and y gives
[(m) _ AA3—dppd+1 F(%)F( L;) _ _4A3_dmd+11—‘(—%) _ _4A3_dmd+1r(—%) (7.9)
(4m)er(g)  T(-3) (4m)%2mt (4m) % ’
where we have used that I'(—3) = —24/7. Inserting d = 3 — 2¢ yields
am*t m 2
Expanding the gamma function around € = 0 we have [25, p. 71]
1 3
F(—2+6):?€+Z—7+O(6), (7.11)
where we have introduced the Euler-Mascheroni constant defined by
d
v = —ﬁF( x) . ~ 0.5772. (7.12)
Using the power series
a0 = a® + zablna + O(2?), (7.13)
we find that to first order in €
m? 1 3 47 A2
I(m)——&T2 7—&-2—5—1—111( - )] + O(e). (7.14)



Going back to (7.1), we obtain the vacuum-energy shift

) 103 arA?]l w13 AmA2
V= 82 v+ i +In COE 82 v+ i +In - + O(e)

+ (m*)* m[ 4“22} () [“AZ] + (m*)*In [4;/; ] . {4;21 } +0(e)

:8;{ {(m*)‘l _ mﬂ [— v+ % - g + 1n(4;A22)] n Q(m*)ﬂn(:;)} +O(e). (7.15)

Note that we now have isolated the divergence to the terms containing % Remembering that m* =
m — g (o), we find

v :871r{ = 400 (0n ) + 650 (0))? — A (0))* + amto))*] | =+ = 3 1)
(90 ()

+2 {m‘i —4m3(g, (o)) + 6m>(go(0))? — 4m(gs,(0))® + (gg<a>)4] In {1 — ] } + O(e). (7.16)

m

Since this expression and the Lagrangian is of order O((s)?), it will be convenient to expand the last
term using

sz SU3 fE4
In(1 — ) :fxfgfgfzfow), (7.17)
to obtain
(m*)*n [1 <9an;’>>] _ [m4 — 4 (g, (0)) + 6m*(95(0))* — 4m(go (o))" + <gg<a>>4} In [1 - @jjj”]

it = 4P (g0(0)) + 6m2(90 (0))? — 4m(ga(0))* + (ga<a>>4]

o [llol) | (ool (anlo)”, el o)

m 2m? 3m3 4mA

= (g (0)) 4 370 (01)7 — 4205 0))? + S () — 2 {0))’

+6mlgo (o)) + 3 (0(0))* = 5 (a0(0))* + 3(a0 o))" — (g5 (o))"

+(90(0))" + O((0)?)

13

= m(g0(0)) + 250 {0))? — omlas (o)) + 2 (g0 (0)* + O((0)?).

(7.18)
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This means that we can express the vacuum-energy shift as

_ ) s 2 2 _ 3 s, 13 g4
v'—gﬁg{[ 4™ (g, (0)) + 6m? (95 (0))% = 4m(go (0))* + (g0 (o))* [ | =7+ < = 5 + ()
3 2 2 26 3, 25 4 5
— 2o (o) + T2 (00 (0))? — 50 (0)° + o (g5 ())* |+ O((0)?)
! 3 4 42 9 9 6 4mA?
8772{m (gg<a>){— 4y + i 4+4ln< 2 )} +m=(gs{(0))" |6y — - +2- 61n( - )
[ 48 A A2 J 18 ana? .
Fmar (ol v+ 2 5 a4 oty - - 5o m () | b o)
(7.19)
If we now consider the part of the Lagrangian containing the o-field at tree level
_ — 1 1 1
D?U,tree = m¢¢ - go<0>¢¢ - §m§<a>2 + gbm(gg<a>)3 + Zc(go<a>)4a (720)
and inserting the equation of motion for 1)1 given by (6.5), we see that we can write
Lpiree = — —(m2(0) — bmgd(0)? — gt (0)*) +m(0)? — bm(gs(0))* — (g0 (0))*
Yo
_ 1 2 2 1 3 1 4
Sm2(0)? - 2mbls (o)) + Felgo (o))
2
__ mm, 22 1 o 2 2 3 3 4
== T o)+ (bm?GE 4 5mE ) (o) +m(e = T) (o (0)) ~ qelgato)'. (721)

This is a polynomial in (o) containing all orders up to O((c)®). Then we are able to dispose of all the
infinities by adding counterterms to the coupling constants. In other words, we write

o = 9o + 095, m2 — m2 + om2, b— b+ 0b, ¢ — c+ de, (7.22)

where da; are counterterms chosen to cancel the divergences. However, having established that we can
render the energy density finite, we do not need to find the counterterms for the coupling constants.
Instead, we can directly cancel the divergent parts in the energy density by adding the sum Z?:l cilo)t
where the constants ¢; are such that all divergent i-th order terms in (o) vanish. One may argue that
by doing so we do not know which values to assign the coupling constants. However, we can just fit
them according to the properties of nuclear matter after we have added the vacuum shift anyway, and
this is easier. Choosing the on-shell renormalization scheme, that is, we renormalize in such a way that
all particles have the mass we measure in the laboratory, we can choose the counterterms so that they
cancel all divergent and finite remainders of V up to O({(c)®). Thus, the renormalized vacuum shift is
given by the fifth-order contribution from the logarithm (7.18):

_ 1 ad (MY 3 T > 13 3,29 4
m4ﬁ%mwdm) [m@mm+fu%@> Zm(g (o) + T390 ()| 1+ (7.23)
Then we find that the renormalized pressure and energy density is

P,=P-V, e =¢+V, (7.24)

where P and € are the pressure and energy density obtained in the improved o—w model.
Using the equilibrium condition, we note that the vacuum-energy shift also alters the self-consistency
equation for the o-meson:

OP, oP OV, m2 . 2 a3 OV
0= Bt = B B f—ps+g—g(mfm ) —bm(m —m*)* —c¢(m —m*)° — pyd (7.25)
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where we in the last step inserted (6.12). The derivative of the vacuum energy shift is given by

a‘/r 77i 8 *\4 m7* - 3 o * z o *27E o * % 4
B = 47r28m*{(m ) ln(m) { m’(m —m )+2(m m*) 3m(m m) +12(m m”)
1

__ {4(m*)31n(7:;) + (m*)? - {m3 — T ) + 13(m —m*)? = 2~ m*)g} }

472

- 12{4(m*)31n(m*> - [m3 — 3m>m* + 3m(m*)? — (m*)‘”’} — 3m*m* + 3m(m*)?

4 m
2 * *\2 25 3
+ 7m*(m —m*) — 13m(m — m*) +3(m m”)
_ i m o 3 _ 2, % *)2
= 471_2{4( )ln(m>+10m (m m)+{3m 6m-m +3m(m)}
2, % 3 *\2 22 3
+ 6m“m* — 6m> — 13m(m — m”*) +3(m m”)
__ b 4(m*)3ln(m—*) + 10m?*(m — m*) — 6m> — 10m(m — m*)? + 6m(m*)* + 2(771 —m*)?
472 m 3
1 ) 11
:—WQ{( ") 1n<7:;>—|—m (m—m*)—im(m—m*f—i— 5 (m—m )3} (7.26)

We have so far found the change in the vacuum energy due to the o-meson’s interaction with the
baryon current. But having introduced the renormalization procedure, we may just as well account for
more effects that alters the vacuum energy. Next we will look at the effect self-interactions have on the
vacuum energy.

7.2 Vacuum-energy shift from self-interactions

Self-interactions induce a shift in the vacuum energy. We will in this section show this. We begin by
dividing the o-field in a classical part o, and a quantum part ¢ by writing

oc=o0,+7, (7.27)

since it is the only field that we have included self-interactions for. The Lagrangian containing the
o-field in Euclidean space then changes to

%z, Z.,%UO + A + b, (728)

where we have defined

1 1 1
gao = §(au00) + maU gawﬁw - *mb(gaao) — +C 9000>47

2 4 (
L = (00,)(06) + m20o6 — goo¢1h — bmo2s — cgh (006 + 0053),

1 1 3 1 1
Ly = 5(6M0) + 2m —bmgio,6° — 5094 o25% — gmb(gg 5)% — 10(906)4.
For simplicity, we will define the function
1 1
F@) = 3mblgox)” + Jelgom)", (7.29)
which will allow us to simplify these expressions
1 1
gﬂo = 5(8#00) + 2m +00 — gaofﬂ/ﬂb f(Uo) (7.30)
A = (800)(95) + m2oyG — g — G f'(00), (7.31)
1 1 52 1 1
L = 5(6u6)2 + §m2 52 — —f”(ao) —cglo,® — gmb(gg 5)3 — Zc(gg&)‘l_ (7.32)
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We note that %, is just the classical Lagrangian we used to calculate the original equation of state,
and does thus not contribute to the vacuum-energy shift. We proceed by calculating the action integrals
for £ and %. Firstly we have

B8
51:/ dT/d%;zl
0

= /0 ’ dr / B [(aao)(a&) +mZo0G — geGth — 6-f’(o*o)}

_ /O " & / d%&{(Der?,)oO i — f’wo}, (7.33)

where we in the last step have performed one partial integration and ignored the surface term as it by
definition vanishes at the boundary. If we transform equation (6.4) to Euclidean space, we see that this
integral is zero. The only part that contributes to the vacuum-energy shift is then the action

o 5 [1 1 52 1 1
Sy = / dT/d 2| =(0,6)2 + =m26% — — f"(0,) — cgr0o,6° — =mb(9,5)* — —c(g,5)*
. 2 2 2 3 1

A 3 1 1 52 , 1 , 1
= / dT/d x| — =606 + —m262 — — f"(0y) — cgio,5® — ~mb(ge5)® — ~c(go5)*
o 2 2 2 3 4

p 11 1 1 1
= / dT/dBmé — 0O+ -m?2 — Zf"(00) — cgto,6 — =mbg,6 — ~cgic?|s. (7.34)
A 2~ "2 2 3 1

Assuming that the vacuum fluctuations are small, we neglect all O(62) contributions, and expand the
field in its frequency-momentum eigenstates

= GnpelnTRT), (7.35)
n k

so that
1 g 3 ~ —i(wnT+k-x) 1 1 2 1 " ~ i(wnT+k-x)
SQ:BT/ o dr dx;;;;an,ke " —§D+§ma*§f (00) | G e
1
=3 Z Z On.k {WZ + K2+ mg — f”(oo)] T te- (7.36)
n k

The partition function then becomes?

Zy — /D& ok T S G w2+ 4mE — 7 (00) |Gk (7.37)
This is a standard Gaussian integral with the solution

In Zy — —%Trln {w;i + k% +m2 — f”(ao)} - —% >3 [wi Ty (m;)ﬂ, (7.38)
n k

where we have defined
(m})* =m2 — f"(00). (7.39)

(e

Using (4.78) and taking the continuum limit, we obtain

3 1 "
InZ, = —ﬂV/ ;1 ];3 [2 k2 + (m%)? + Tln(l —eF ’““(7”02)} (7.40)
s

3 Actually, we should also integrate over the conjugate momenta m = % = %, but there are no such factors in the
or

action.
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If we now only consider the contribution to the zero-point energy, we see that the vacuum-energy shift
is given by

3
ot - v

From this it is clear why the self-interacting o-particles contribute to the vacuum-energy shift. If we
remove the self-interaction terms in the Lagrangian, then we would have f(og) = 0, and m, = m}, so
that U = 0. Thus, we do not need to do the same procedure with the w-field. From here on we will
now invoke the mean-field approximation, setting o, — (o).

The integral (7.41) was solved in the previous section. We thus know that the renormalized contri-
bution to the vacuum energy shift from U is given by the fifth order contribution from the logarithm

m(m—;). (7.42)

Mo

Expanding (7.42) to fourth order in () we obtain

(m;)‘lln(%) = %111(%)2
2~ 7o 1 - ZX
{mii ~om2 (o)) + [f”(<a>)]2}

1 "o 2 "o 3 "o 4 5
X{_ o)) "Uep]”  [FGon]” [ (o)) +o<<a>°)}

m2 2mi 3mS Am8
1 o 2 9 1 o 3 1 o 3
:;{ _ m(QT //(<O_>) _ [f (<2 >)] _|_ 2[f//(<0,>)] _ [f 3(7;;)] _|_ [f L(Lg»]
oD’ eenl” | 2l o]t [f"<<o>>}4}
m2 dm2 3md 2md

" o 3 /" o 4
—5{ -~ o) + 5 ) - b)) g Ei )] Lo). )

3m2 12mé

Using the definition of f, we find

[F"((o)]” = (2bmg3(0))® + 3(2bmg (0))(3egs (0)?) + O((0)) (7.44)
[F"(o))]" = (2bmgiio))* + O(0)?), (7.45)

which inserted into (7.43) gives

my ad a’b at
105701, = () in (22) - 5§ =m0 + o)~ g - e

Mo

(7.46)

where we have defined the variables a = 2bmg2 () and b = 3cg2(c)?. That the shift in the vacuum

energy is given by the fifth order correction to the logarithms In( %) and ln(%;), is also reported in
[44]. Combining this with the results from the previous section, we find

=€+ Vi +U; P=P-V,-U, (7.47)

and the self-consistency condition becomes

2
* = gi _ *\2 _ox\3 a‘/r . 8U’r
m*=m+ me ps — bm(m —m*)* — ¢(m —m*) P am*]

(7.48)
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Figure 7.1: Mass-radius relation for the renormalized version of the improved o—w model (RHA) versus the
regular mean-field approximation (MFA). The coupling constants are fitted for same properties of nuclear matter
as in chapter 6, except that the compression modulus is set to 300 MeV. Right panel shows the same curves as
the left, but is zoomed in near the maximum mass.

What remains is then to find the derivative of U, which is given by

oU, O{c)oms 0 mr
2 _ fed *\4 o
10 S = am 8(c) Bme [(mo) ln(mgﬂ
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9o me
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3 42b 4
@ tdeb } (7.49)

(o)ym3
where we have used

S = eV = ) = i) _ _f7le), (7.50)

mz — f"({o)) ms

It is important to note that since
F"((0)) = 2bmg; + 6egy (o), (7.51)

we are no longer able to express the EoS in terms of the ratio 2=-. In other words, the mass of the o-field
is now relevant. Since the uncertainty in m, is quite large, we would be in trouble if the renormalized
model differs much from the original model. This we will now investigate further.

7.3 Numerical solutions and summary

Figure 7.1 shows a plot of the original mass-radius relation, and the renromalized one for m, = 500, 550
and 600 MeV. From this it is clear that renormalization does not alter the EoS much, and we also see
that the dependence of m, is small. It should be noted that we have here used the compression modulus
K = 300MeV. This is because it proved hard to find the coupling constants in the renormalized case.
The convergence was much better for some values of the bulk properties of nuclear matter. Thus, to
be able to find the couplings on my laptop within reasonable amount of computation time, I changed
the compression modulus. However, the plot still proves an important point: Renormalization hardly
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matters in this model. Furthermore, renormalization does not strongly depend on the mass of the o-
meson, which is good considering the great uncertainty in this quantity. This result is similar to the
one obtained by [44].

We have in this chapter looked at what happens to the infinite terms in the pressure and energy
density that arose in the previous chapters. We used dimensional regularization to isolate the divergent
terms, and added counterterms to the Lagrangian to absorb the infinities. We then found that the
contribution to the EoS from the shift in the zero-point energy was small, and only affected the mass-
radius relation by a few percent.
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Chapter

Conclusions and outlook

In this master’s thesis we have looked at models describing neutron star matter using the relativistic
mean-field approximation. We started out by deriving Einsten’s field equation for general relativity,
which then was used to find the Tolmann-Oppenheimer-Volkoff equations. This equation describes the
rate of change in pressure as we move along the radius of a spherically symmetric mass-distribution,
given the equation of state. Using the path-integral formalism, we then looked at a model consisting of
an ideal cold neutron gas which resulted in an upper mass limit of 0.7 solar masses in accordance with
[19]. Then we introduced scalar and vector mesons to mimic the long-range attraction and short-range
repulsion of the strong force analogous to the way Walecka and Chin did in [33]. This gave us two
coupling constants between the mesons and the nucleons. These couplings serve as two free parameters
of the model, allowing the fitting of two bulk properties of nuclear matter. However, the EoS was highly
dependent on which properties we chose to fit the couplings, making the model inconsistent. For some
couplings, it even predicts that neutron star matter is bound, which is not compatible with observations
[6, p. 194-195]. This motivated the introduction of scalar self-interactions and an isospin asymmetry
induced by the p-meson as first done by Botuga and Bodmer [42]. This resulted in a limiting mass just
above two solar masses. It was then shown that renormalizing the model had little impact when the
coupling constants were chosen to match the properties of nuclear matter.

8.1 Hyperons and the hyperon puzzle

Even though the improved o—w model provided us with a satisfactory limiting mass, this is not the
complete picture. At densities above 2-3 times the saturation density of nuclear matter, it becomes
energetically favourable for the X~ to replace a neutron and one of the leptons (the e or the p) [44]. As
the energy density increases even further, more massive particles becomes stable and if it is high enough,
the whole baryon octet (n, p, A, ¥=, X° Y% =% and Z~) might be present. The six new baryons are
strange particles that do not have any charm, bottom or top quarks.! The procedure for including these
so called hyperons in the EoS is briefly discussed in Appendix F. To solve the equations, we need some
coupling constants for the meson-hyperon interactions, which we denote gy,p where m = {o,w, p} and
B = {A,X,=}. Determining the hyperon couplings is not as straightforward as it was for the nucleons.
After all, since they are not present until 2-3 times nucleon density, we cannot describe them using the
properties of nuclear matter at saturation. We will now briefly discuss how we can solve this.
We start by defining the ratios

B B B
TwB = gL’ ToB = gLa ZpB = gL (81)
gw go' gp

LA strange particle is constituent of one or more strange quarks. They are not strange in the normal sense of the word.
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Figure 8.1: EoS and mass-radius relation for the improved c—w model with and without hyperons using the
mean-field approximation.

According to [47], experimental data of the binding energy for each of the types of particles A, ¥ and
= exist to some degree. By writing down the expression for the binding energies we find a relation
between z,p and x,p as shown in [6, p. 259-260]. This does not determine the couplings, but at least
it sets some constraints on g, and g,p. The p-coupling can be chosen using symmetry considerations
[48]. However, we will start this discussion by setting

ZTwB = ToB = TpB = 1, for all B. (8.2)

There is no reasoning behind this assumption, but the result obtained will serve to illustrate the effect
hyperons have on the EoS. Figure 8.1 shows a plot of the equation of state for the improved o—w model
with and without hyperons, as well as the mass-radius relation for the two. We see that the hyperon
EoS is softer and yields a lower maximum mass. This is a consequence of the Pauli principle. We
have more types of fermions that can make up the density, which lowers the Fermi momentum for each
species, thereby decreasing the overall pressure. Also, because the leptons have small masses compared
to the baryons, it is expensive energy wise to have lepton densities large enough to maintain the charge
neutrality condition. When the hyperons form, the leptons are no longer the only source of negative
charge. The hyperons then overtake the responsibility as the enforcers of the charge neutrality, and the
relative lepton densities are substantially lowered which we see from Figure 8.2.

The strong softening of the EoS imposes a serious problem. The improved o—w model predicted a
maximum mass just above the most massive neutron star ever measured. Unless the hyperon effects are
negligible, which there is no reason to believe they are, we cannot avoid that the maximum mass falls
below the minimum 2.01 solar masses. However, invoking hyperons in the EoS seems unavoidable since
the energy density in the core of the most massive neutron stars is way above three times the saturation
density. This problem is today popularly known as the hyperon puzzle, and is still a hot topic in nuclear
physics today [3]. We will now briefly discuss some of the possible resolutions to this issue.

1. There is no problem: we can fine tune the coupling constants

The simplest solution is to just fine tune the coupling constants. In an attempt to overcome the hyperon
problem Zhao found in 2017 [47] by using constraints from known properties of hyper nuclei that the
choices

Ton = 0.8,  xon=09319 2,5 =04  zux =0825, 3,z =07,  zuz=0.804, (8.3)

results in a mass compatible with observations. However, to achieve this, he sets the saturation density
and binding energy to be py = 0.145 fm™® and By = —15.95MeV, respectively. These values are
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Figure 8.2: Relative population density p;/p as a function of baryon density p for the improved o—w model
when hyperons are included.
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picked from Glendenning’s article [49] published in 1985. Glendenning has in his later works such as [6]
corrected these values to be pg = 0.153 fm ™2 and By = —16.3MeV like the ones used here. I have not
been able to reproduce a maximum mass above two solar masses with these saturation values, despite
choosing the upper limit for the compression modulus 300 MeV.

Even if one should find it reasonable to set the saturation properties of nuclear matter the way
Zhao did, there are still some issues with this fine tuning approach. As discussed in for instance [6, p.
268-271], it is likely that pions condense in neutron star matter. From (F.6) we find that

M= = He, Hro =0, Hr+ = —He;, (84>

which means that only the 7~ will be present.? Since pions are bosons, they can condense in the ground
state, making them much more energetically cheap than the leptons. The leptons are then no longer
required to withhold the charge neutrality condition and the degeneracy pressure shrinks as the pions
emerge. This lowers the neutron star’s mass, opening for the possibility that the fine tuned couplings
are not enough to satisfy the observed masses. Also, if a pion condensate is present, there is no reason
why there should not be a kaon condensate as well, resulting in a stronger softening of the EoS.

2. Repulsive hyperon-hyperon interactions

Repulsive interactions stiffens the EoS. This is fairly intuitive. In equilibrium, a gas of particles that
all repel one another takes up more space than one where the particles attract each other, resulting in
a higher pressure. If there were some repulsive interactions between the hyperons, this could counter
the softening of the EoS. A repulsive force between the hyperons themselves can be added by including
the two hidden-strangeness mesons o* and ¢ as shown in for instance [50]. Another approach is to use
density dependent couplings such as in [51]. Hopefully, one day high-energy experiments might give a
clue whether or not this is the case.?

3. A phase transition to quark matter occurs

At the extreme densities inside the core of a neutron star, it is possible that the energy is so high that
quarks no longer are confined to mesons and baryons. There would then be a phase transition to an
exotic state known as quark matter [2]. In the relativistic mean-field approximation it is suggested that
the transition from hadronic to quark matter is of first order [52]. This result is also supported using
the framework of QCD [53]. If this is indeed the case, then there must be a coexistence of hadronic
matter and quark matter at some density just as there is a coexistence of liquid and vapour during the
phase transition of the Van der Waals gas as discussed in section 5.7.2.

8.2 Other effects that could be included

Lastly, we remark other effects that may impact the EoS. For one, we have throughout this thesis ignored
the rotation of the neutron star. As mentioned in the introduction, the rotation should be extremely
fast due to the conservation of angular momentum from the collapsing red giant. The rotation will make
the star’s radius smaller at the poles, and larger at the equator. Then our assumption of rotational
symmetry at each point breaks down, since we now only have an axial symmetry. This should show up in
the EoS as the pressure gradient will be dependent on the polar angle. Perhaps even more interestingly
is how gravity changes as we include rotation. In such a picture, the TOV equation is no longer valid,
and we would have to develop new equilibrium equations.

As we also mentioned in the introduction, neutron stars can have large magnetic fields. In general,
the magnetic field does not align with the rotation axis [54]. This means that a complete description of

2This is only true while assuming beta equilibrium.
3It is well established that the coupling constants are not really constants at all. The question is if the density
dependence of the couplings is large enough to make any difference on the energy scales we are working on.
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neutron stars considering both rotation and a magnetic field, cannot make use of any spatial symmetry
whatsoever, except perhaps a mirroring about the equatorial plane.
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Appendix

Notation and conventions

Units

Unless otherwise specified, natural units are used. Hence Boltzmann constant kg, the reduced Planck
constant i and the speed of light ¢ are set to unity:

kp=h=c=1. (A.1)

Einsteins summation convention

In each term where two indices are repeated, summation is implied over all possible indices:

a'by =Y a'b;, pelon]. (A.2)
=0

Greek indices are implied to be in the range [0, 3] while Latin indices are in the range [1, 3].

Differentiation

Differentiation of a function: Differentiation of a function f with respect to some variable a is
written as

of
= =9,f. A3
S o (4.3
Should the function only be dependent of a variable r, Newton’s notation may be used:
f'(r)=0-f(r) (A.4)

Differentiation of a tensor: Differentiation of a tensor 1), can be written with the comma con-
vention:

0Ty = Thvo (A.5)
Tensor notation
Trace: The trace of a tensor TH" is denoted either with equal lower and upper index, or with no index
at all

T[T =T/ =T. (A.6)
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The context should make it clear whether T is the trace of a tensor or a scalar.

Determinant: The determinant of a tensor A4, is denoted

det(A,,) = |A]. (A7)

Metric tensor

The sign convention used for the metric tensor g,,,, is (+, —, —, —). It is assumed that the metric tensor
is symmetric and that the determinant |g| is invariant under coordinate transformations. In this thesis
the metric in flat space is mostly denoted by 7,,.

Matrices and numbers

If a number w is summed with a matrix A, the number is assumed to be the identity matrix of same
dimensions as A times w. For example, if A is a 4 X 4-matrix, when we write

w+ A, (A.8)

what we really mean is
Iyw+ A, (A.9)

where I, is the 4 x 4-identity matrix.

Feynman slash notation

When writing the contraction of a four-vector A, with the gamma matrices v*, the Feynman slash
notation is used:

YA, = A (A.10)
Bar notation for spinors

For a spinor ¢ we define the bar notation -
¥ =" (A11)
where the dagger means complex transpose and ~° is given by (C.9)-(C.10).
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Appendix

Grassmann variables

Anti-commuting numbers, also called Grassman numbers [24, p. 299], have some special properties that
will be derived here. For a Grassman number 6, we have by definition that the anti-commutator with
itself vanishes:

0=1{0,0} =00+ 00 = 20°. (B.1)

If we now want to make a function out of 6, the most general differentiable form would be
f(0) =a+ b0, (B.2)

where a and b are constants, because all the higher order terms of the function’s Taylor expansion would
vanish.
Further, we would like to define some sort of integration over the Grassman variables. The integral

/ do£(9), (B.3)

should be invariant under a shift of integration variable [24, p. 299]. Invariance during the shift 6 — v+6
gives

/ d0(a + b) = / a0 [(a + bv) + b0, (B.4)

which changes the constant term, but leaves the first order term untouched. The only way this can
happen is if the integral is a constant, which we chose to be b:

/de(a +b6) = b. (B.5)

/daa:/dazo,

/d99 =1 (B.6)

It then follows that
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Appendix

Tensor definitions

Riemann tensor

The Riemann tensor defines how the curvature behaves on a manifold and is given by

R, =T0,, =T ,+T0T) —T0T) (C.1)

ouv vo,u no,v noo

where I',, are the Christoffel symbols.

Christoffel symbols

Assuming that the metric is torsion free, the Christoffel symbols are uniquely defined as

1 loa
Ffw = igp (ga,u,u + Gov,u — g,uu,a) . (CQ)

The Ricci tensor

The Ricci tensor is a special case of the Riemann tensor and is defined as

R, =R =T/ T/ 4+T°T9 —T%T9 (C.3)

wpv,p hv,p P,V po pv Vo put

The Ricci scalar

The Ricci scalar is a number associated with how much the volume of a geodesic ball in the Riemann
manifold deviates from a ball in the Euclidean space. It is defined as

R=g"R,,. (C.4)

The stress-energy tensor

The stress-energy tensor describes the density and flux of energy and momentum in space-time and is
by definition

04
T;w =k <$Mg,uu - M) ’

25 (C.5)

where A is the matter Lagrangian, while K = 87G and G is Newton’s gravitational constant.
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Pauli matrices

The Pauli matrices are a set of 2 X 2 hermitian and unitary matrices o; defined by

S ) N O R (R o)

These matrices satisfy the anti-commutation relation
{O'i,O'j} = 5@‘[2, (C?)

where I5 is the 2 x 2 identity matrix.

Gamma matrices

The ~y-matrices v* are defined so that they satisfy the anti-commutation relation

{47} = 20", (C.8)

where n*¥ is the metric tensor for flat space. In Minkowski space, we have in the Dirac basis

0 __ IQ 0 i 0 O’i
Y <0 _IQ>7 Y <_O.i 0> (09)

In Euclidean space it is often convention to use

0

=" 1=-1 (C.10)

where I5 denotes the 2 x 2 identity matrix.

Levi-Civita-symbol

The Levi-Civita-symbol is defined as a tensor €._;, ;, that is anti-symmetric in all of its indices. This
means that the tensor changes sign each time we switch two indices, so that

(C.11)

€ i i = —€

lpeaalg ceilgelpt

Should any of the indices be equal, then the symbol is zero.
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Appendix

Other definitions

Matsubara frequencies

The Matsubara frequencies are assumed in the fourer expansion of bosonic(fermionic) fields so that they
become periodic(antiperiodic), and is defined by

o = {27mT bosons, (D.1)

(2n + 1)7T fermions,

where n is an integer between —oo and oo.

Gamma function

The gamma function is defined as a generalization of the factorial function. It is defined by the two
properties
) =1, al(z) =T(z + 1), (D.2)

and can be expressed as the integral
I'(x) :/ dz 2" te 2. (D.3)
0

Beta function

The beta function is defined by the property

Blz,y) = T@+y) (D.4)
and can be expressed as the integral
o0 Z(L‘—l
Blx,y) = /0 dz T (D.5)
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Appendix

Useful theorems

The Euler-Lagrange equation

The Euler-Lagrange equation is derived in most textbooks on classical mechanics and field theory, for
instance [16, p. 119-124]. Here we only give a brief overview. Hamilton’s principle states that if a
system does a transition from a state at t = ¢y to another state at t = ¢1, the system would take the

path that extremizes the action
ty

S= [ dLig.d, (E1)
to
where L is the systems Lagrangian and ¢ and ¢ is some coordinate and its time derivative, respectively.
This is the same as saying that the variation should be zero

"o (OLladl . OLlg.d)
0=46S= dt< "= 6q + 2 &j). E.2
to dq dq (E2)
By definition, there is no variation at the boundaries, and so an integration by parts on the second term
gives
"o (9Llg,d] d 9Llg,q] ) " (0Llg,d]  d 9Llg,q]
0= dt| ——=d6q — ——=96 :/ dt< = — - )5 , E.3
/to < dq 1~ q ok} 1 t dq dt 9q e (E.3)
where we have used that 4
0¢ = —dq. E.4
q= 304 (E.4)

The variation dq is arbitrary and hence we arrive at the Euler-Lagrange equation

dLlg,d)  d OLlg,d)
0q dt  9q

= 0. (E.5)
In the same manner, one finds that for a field ¢(z) with Lagrangian density Z[¢(x), 0,¢(z)], the
Euler-Lagrange equation becomes [6, p. 151]

0L, 0%
0p(z) " 0(0ud(x))

=0. (E.6)

Noether’s theorem

Noether’s theorem is derived in most textbooks on quantum field theory, for instance [24]. The theorem
states that for every continuous symmetry the Lagrangian of a system has, there is a corresponding
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conserved current. If the Lagrangian density £(¢,) is invariant under the transformation ¢, — ¢, +0¢,

then the conserved current is given by

oL
L
7= 50

szfmﬂ

we see that by integrating the conservation equation

If we define the charge

ouj" =10,

over three-space, results in

d d
_ d3 o d3 -0 a) - /d3 -0 / . dS.
0 / x Ouj / T (dtj +V J) X T + Sj

(E.7)

(E.8)

(E.9)

(E.10)

Assuming that j goes to zero sufficiently fast enough as @ goes to infinity so that the surface integral

vanish, we find that the charge @ is conserved.
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Appendix

Including hyperons in the improved o-w
model

We will here develop the equation of state as well as the the constraints that follow from including
hyperons in the improved c—w model. The steps involved are completely analogous to ones we did in
chapter 6. Therefore we will here settle with a brief overview of the derivation.

In order to account for the effects of the hyperons, we generalize the Lagrangian (6.48) by writing

_ _ _ 1 _
Z = Z {¢B (i@ — mB)YB + goBOYRYB — guBW. VY B — §ngpm¢BW“Ti¢B + MB%W]
B

1 1
- meU + fmi

1 .
9 2 7mipiupw‘+bm(go ) +C 9o O Z w 1(3 mz+ﬂz >wz (Fl)

I
Wy W +2

i=e,

Here B runs over all the particles in the baryon octet. The partition function in the mean-field approx-
imation changes accordingly to

golo))*

»MH

1 1 1
B—Van =— §m(2,<0>2 + 5m3<w0>2 + §m,2;<P30> + bm(!]a( )+

+ZQ41 { B2+ ()2 285 — 3(m7)°] +3 4111{’“1 WV}}, F2)

i=B

where 1 vary over all lepton species and m* is the effective mass of the particle of species i.
Before we continue, we remark that 75 gives us the third component of the isospin projection for the
baryon involved. As an example, we saw that for the nucleons

(p30) = IZW T3 = 7( —pp) = %(Pnf?)n + pplsp), (F.3)
mp b

where I3p is the isospin projection (% for the neutron and —% for the proton) for particle species B, along
its third component. If we as an approximation set my- = myo = ms+ = my and m=zo = mz- = Mz,
we find an isospin symmetry! that allows us to write

9pB
(ps0) =Y #ISBPB- (F.4)
B P

IThis is the exact same thing we did for the neutron and the proton. For instance we picture that the ¥ particle has
a total isospin one with three isospin states: ¥~ (I3 = 1), X° (I3 = 0) and 1 (I3 = —1).
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By the same reasoning as in section 6.4, the effective chemical potential for each baryon is then

iy = 1 — gun(wo) — gynlan{pa) = /K3 + (miy)2. (.5)
Still assuming beta equilibrium, the general expression for the chemical potential is given by? [55]

pB = bBfin — qBfle- (F.6)
Here, gg is the charge of the baryon, and bg is the baryon number defined by
1 _
b = 5 (nq + ), (F.7)
where ng and 7, denotes the number of quarks and anti quarks inside the baryon, respectively. We
immediately see that the formula (F.6) is consistent with the chemical potential used for the proton in

(6.44) by inserting plus one for both baryon number and proton charge.
All baryons concerned have plus one as their baryon number. Inserting (F.6) into (F.5) then yields

Pn — qBHe — gu{wo) — gplsB{(p30) = /K + (m})? (F.8)
which determines the Fermi momentum for each baryon

ki = (in — gBite — 9B (wo) — gpnlsn{p30))? — (mi)*. (F.9)
Of course, this equation is only valid when it is energetically favourable for the baryon B to be stable,

which means that we only consider real solutions for kg.
The expectation value of the w-field is dependent on the baryon density, so it has to be modified

(wo) = gwapl} (F.10)

Furthermore, we should add the scalar densities for each baryon to the self-consistency equation so that

om0} = 22 bl (o) + ooV + - 3 grmpn (F.11)

ag

where pgp is given by

* \/k27*2 k
psBzjﬂ[km/kaﬂmgv—(mﬁ)%n( st )+ ho)

*
mpg

. (F.12)

Now that all the equations of motion are established, we close our system by imposing the global
charge neutrality constraint, which gives us

> gsps+ > ap =0, (F.13)
B 1

where g and p; are the lepton charges and densities respectively.
We are now ready to compute the EoS. The pressure and energy density will in the mean-field
approximation have the same form as we saw in the case of the improved o—w model, except that we

2This result holds for mesons as well.
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must sum over all the hyperons as well:

1 1 1 1 1 4
P=- §m<27<0'>2 + 5mi<wo>2 + Qmi<p30>2 + gbm(ga<a>)3 + ZC(QG<U>)
1 2 *)2 3 *\27. *\4 ki + \/W
+i:2:B 24772{ ki =+ (m7) [21‘71‘ 3(m7) kz} +3(mj)"In mr , (F.14)
1 1 1 1 3 1 4
€ :§m3<0>2 + §mi<w0>2 + 5mi<p30>2 _ gbm(g0<a>) - ZC(‘%(U»
1 2 *\2 3 *\27, *\4 ki + \/W
+ :Z 51 { K2 + ()2 |6k + 3(m7)%ki | — 3(m7)In = . (F15)

These are the equations required to compute the mass-radius relation for a given set of coupling constants
goB and g,p. A program for this purpose is given in Appendix G.3.
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Appendix

Code

G.1 Chapter 3 and 4

import numpy as np

import matplotlib.pyplot as plt
import time

from numba import jit

from scipy import optimize as op
import math

JLLL L)) ) g g g g g g ) g g g g g ) g g g ) ) ) ) )] Ll

T 1 11 11 1111 T 1T 11 111 1 1 11 11 11 11 1111 T 1T 1T 1 T AT A 1T 1T 1 11 1 1 1 1 11 17 11 11 11 11 11 11 11 11 11 1111

FHHH Just press play to create all plots in thesis! FHHH
HHE HHH#

LU ) ) ) ) ) TN IR IR IRTaT] LU g g g ) ) ) g )]
T 11117 T AT 1T T 1 11 11 1 11 11 1111 T AT T T T AT AT 1T 1T 11 1 1 AT AT AT 1T 11 1 1 11 11 1T 17 11 11 71 11 11 17 17 17
ITTTNTNTan NIRRT NIRRT IR IR NN NIRRT NI N NN TR TR NI NI R IR TR TR IR TN NIRRT NI TN IR TR TN
Tt 111111 T T 1 T A A AT AT 1 1 1 1 4 1 17 11 11 71 1 11 11 11 11 11 11 1 11 11 11 11 11 11 1111 111111 11 11

t0 = time.clock () #Timing the program

LU L) g g g g f) g g g g )

T AT AT 1T 1 1 117 1 11 1 11 AT 1T 17 11 11 11 11 17 11 11 11 11 11 11 11 1111

FHHH Defining functions FHHH

RN I N R TNINTR NIN R IRIRININ R RTNTNINTNINTI N TN NIRRT
TTT T 1T 11 1 T AT 1T 1 11 1 11 1 17 11 11 11 11 17 11 11 11 11 11 11 11 11 11 17

LU L) g g g g g g g g ) )

T AT AT T T T A 1 1T 11 1 T AT 1T 1 1 1 11 11 17 11 11 11 11 11 11 11 1111
ITTRTETN. NIRRT TR IR N NIRRT NIRRT
711

L L
T A

Caiaia HHH
FHHH Non—relativistic case FHHH

TR TN TR NN IR TN R NIRRT TN TR TR NIN TR
T T T A A AT 1T 11 11 1T 17 11 11 11 11 17 11 11 11 11 41 11 11 1111 111117

42

#Pressure for constant density using TOV#

NIRRT R NIRRT N N TN R TR NI R IR TR TN TN IR T NI TR TN TN TN

T AT 1 111 1111 17 11 11 11 1111 11 11 11 1 41 41 11 11 11 11 11 11 11 17 11 11 111111 11 11

def PconstTOV (r ,M,R):
meml = np.sqrt (1. —2xMsr**2/Rxx3)
mem2 = np.sqrt (1. —2xM/R)
return 3*M/(4*math. pi*Rx*+%3) % (meml-mem2) /(3 *mem2—mem]1)
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15 #Pressure for constant density using newton#

7 @jit
1s def PconstDensNewton (r ,M,R):
19 return 3xMx+2/(8+math. pi*R*%6) % (Rkx2—r *%2)

U ) ey
1 7 17 17 777 77777 17 17 177 777177 17 17 1777 77777 17 7T
2 #Plot the figures regarding constant density in chapter 3#

Jph
17

3
54 def plotConstPressure():

58 N = 1000

56 M= 1.

57 plt.figure ()

58 ax = plt.gcal()

59 ax.xaxis.set_label_coords (1.08, —0.02)
60 ax.yaxis.set_label_coords (—0.05, 1.05)
61 ax.set_xlabel (’$r/R$’,fontsize = 14)
62 ax.set_ylabel (’$P(r)/P_0$’, rotation="horizontal’, fontsize = 14)
63 plt .ylim(—1.5,1.5)

64 plt . xlim (0,1)

65 R = 2.3xM

66 r = np.linspace (0,R,N)

67 P = PconstTOV (r ,M,R)

68 P0 = P[0]

69 print (PO)

70 plt.plot (r/R,P/PO, g’ ,label = *$R=2.30MG$’)
71 plt.plot(r/R,np.zeros(len(P)), k—")

72 R = 2.2«M

73 r = np.linspace (0,R,N)

74 P = PconstTOV (r ,M,R)

5 for i in range(l,len(P)):
76 if (np.sign(P[i—1])!=np.sign(P[i])):
77 index = i

78 plt.plot(r[0:index]/R,P[0:index]/P0O, b’ ,label = *$R=2.20MG$")
79 plt.plot (r[index:len (P)]/R,P[index:len(P)]/P0, ’b")

80 R = 2.25«M

81 r = np.linspace (0,R,N)
82 P = PconstTOV (r ,M,R)
83 plt.plot (r/R,P/P0, 'r’,label = '$SR=2.25MGS$")
84

85

86 plt .legend ()

87

88 plt . figure ()

89 R = 2.3xM

90 r = np.linspace (0,R,N)
91 P = PconstTOV (r ,M,R)
92 plt.xlim (0,1)

93 ax = plt.gcal()

94 ax.xaxis.set_label_coords (1.08, —0.02)

95 ax.yaxis.set_label_coords(—0.05, 1.05)

96 ax.text (0.2,0.4%10%*(—1), $R=2.3MG$’ ,fontsize=14)

97 plt . ticklabel_format (style="sci’, axis=’x’, scilimits=(0,0))

98 ax.set_xlabel (’$r/R$’,fontsize = 14)

99 ax.set_ylabel (’$P(r)/P_0$’, rotation="horizontal’, fontsize = 14)
100 plt.plot (r/R,P/PO, 'r’,label = "TOV’)

101 P = PconstDensNewton (r ,M,R)

102 plt.plot (r/R,P/P0O, 'b’ ,label = ’Newton’)
103 plt.legend ()

104

105 R = 10«M

106 r = np.linspace (0,R,N)

107

108 plt.figure ()

109 plt.xlim (0,1)
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ax = plt.gca()

ax.xaxis.set_label_coords (1.08, —0.02)
ax.yaxis.set_label_coords (—0.05, 1.05)

ax.text (0.2,0.4%10%%(—5) ,’$R=10MG$’ , fontsize =14)
plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))
ax.set_xlabel (’$r/R$’,fontsize = 14)

ax.set_ylabel (’$P(r)/P_0$’, rotation="horizontal’, fontsize = 14)
P = PconstTOV (r ,M,R)

plt.plot (r/R,P/P0O, 'r’,label = "TOV’)

P = PconstDensNewton (r ,M,R)

plt.plot (r/R,P/P0O, 'b’ ,label = ’Newton’)

plt.legend ()

R = 100xM
r = np.linspace (0,R,N)

plt . figure ()

plt.xlim (0,1)

ax = plt.gcal()

ax.xaxis.set_label_coords (1.08, —0.02)
ax.yaxis.set_label_coords(—0.05, 1.05)

ax.text (0.2,0.4%x10x*(—9), $R=100MG$’ , fontsize=14)

plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))
ax.set_xlabel (’$r/R$’,fontsize = 14)
ax.set_ylabel (’$P(r)/P_0$’, rotation="horizontal’, fontsize = 14)
P = PconstTOV (r ,M,R)
plt.plot (r/R,P/PO, 'r’,label = "TOV’)
P = PconstDensNewton (r ,M,R)
plt.plot (r/R,P/P0O, 'b’ ,label = ’Newton’)
plt.legend ()
R = 1000«M
r = np.linspace (0,R,N)
plt.figure ()
plt.xlim (0,1)
ax = plt.gcal()
ax.xaxis.set_label_coords (1.08, —0.02)
ax.yaxis.set_label_coords (—0.05, 1.05)
ax.text (0.2,0.4%10**(—13) , $R=1000MG$’ ,fontsize=14)
plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))
ax.set_xlabel (’$r/R$’,fontsize = 14)
ax.set_ylabel (’$P(r)/P_0$’, rotation="horizontal’, fontsize = 14)
P = PconstTOV (r ,M,R)
plt.plot (r/R,P/PO, 'r’,label = "TOV’)
P = PconstDensNewton (r ,M,R)
plt.plot(r/R,P/PO, b’ ,label = 'Newton’)
plt.legend ()
#The derivative of the mass with respect to r in the non—relativistic limit#

””,/,/ll”/,/u ””/’ll ///”I /’/’” /’/’II”,/,/” ”,/,/ll”//” /”/’l / /’/’I / ,/,/” /’/’/II”,/,/” ”,/’/ll //’/”I /,/,/’l / / ’/’I ”,/,/” ”,/,/ll”/,/”
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@jit
def dMdrNonRel(r ,P):
if (P<0):
return 0.
return betaNonRelsr**2xPxx*(3/5)
IrInInInIan NIRRT J 1] INININININ] NIRRT INININININ] /1 ] IININIRINN IININIRINN IININININ 1) ] JLJL Sy ) )
17777 7777 1T 777777 T 777777 7777 11777777 1T 777777 TTT7TT777T T T 7777 1777777 7T 17T
#Derivative of the pressure with respect to r for the non—relativistic case#
#(TOV—equation) #
L/ NIRRT INININ] JLJL 1) 1) NIRRT J 1)) IINIRINT; IINININTNN] NIRRT 1L L)1) IINIRINT} IINININTNN] J ) ) )
7777 T T7IT T 17T 77T T 777777 T 77777 TI777T 1777777 T T7IT T 77777 T 7 T T 777 77
Qjit
def dPdrTOVNonRel(r ,P,M) :
if (P<0):
return 0.
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return —alpha*Px*(3/5)#r#x(—2)*(1+Pxx(2/5)xKxx(—1)) *(
(MtbetaNonRelsr #3+PxKskk(—1) ) % (1 —2xRO«Mkr s+ (—1) ) *x(—1))

LU ) ) ) g g ) g g ) ) ) ) )] LU LU ) g g ) ) g )] /]
Tt T 171111 T 171117 TTIT T AT T T T T 1T 1T 1T 1T 17 11 11 11 AT AT 1T 17 11 11 11 11 11 17 17 17 11 71 11 11 11 17 17 17 11 11 11 11 11 1T 17 17 11 11 11 11 111117

#Derivative of the mass with respect to r for the non—relativistic case#
#(TOV—equation)

111 L1 L1 Ll NIRRT L] L)l L)1 NIRRT L)1 NIRRT

L L A A A L i R R R
@jit
def dPdrNewtonNonRel(r ,P,M):
if (P<0):
return 0.
return —alpha*Px*(3/5) M1 xx(—2)

#Creates the coefficients for the Runge Kutta routine in the#

#non—relativistic case using the TOV—equation #
Qjit
def kTOVNonRel(r,P M) :

kP1 = dPdrTOVNonRel(r ,P,M)

kM1 = dMdrNonRel(r ,P)

kP2 = dPdrTOVNonRel(r+h/2 ,P+h/2+kP1 Mth/2+kM1)
kM2 = dMdrNonRel(r+h /2 ,P+h/2xkP1)

kP3 = dPdrTOVNonRel(r+h/2,P+h/2+kP2 Mth/2+kM2)
kM3 = dMdrNonRel(r+h /2 ,P+h/2xkP2)

kP4 = dPdrTOVNonRel(r+h,P+h+kP3 ,MthxkM3)

kM4 = dMdrNonRel (r+h ,P+hxkP3)

return kP1,kP2,kP3,kP4,kMI,kM2,kM3,kM4

#Creates the coefficients for the Runge Kutta routine in the#
#non—relativistic case using Newton’s equation sie

@jit
def kNewNonRel (r,P M) :
kP1 = dPdrNewtonNonRel(r ,P M)
kM1 = dMdrNonRel(r ,P)
kP2 = dPdrNewtonNonRel (r+h/2,P+h/2+kP1 ,Mth/2+kM1)
kM2 = dMdrNonRel(r+h /2 ,P+h/2xkP1)
kP3 = dPdrNewtonNonRel(r+h/2 ,P+h/2xkP1 ,Mth /2xkM2)
kM3 = dMdrNonRel(r+h /2 ,P+h/2xkP2)
kP4 = dPdrNewtonNonRel(r+h,P+hxkP3 ,MthxkM3)
kM4 = dMdrNonRel (r+h ,P+hxkP3)
return kP1,kP2,kP3,kP4,kMI,kM2, kM3, kM4

NIRRT NIRRT IR IR IR IR IR RN IR INY L L) TR TNTRTN NIRRT
Tttt it Tttt i i1t 11t T 1T 11 1 1 1 11 1 11 11 1 1 1141 11 11 11 11 11111111 11 11 il

#Function that calculates the mass and radi of a star with#

#given central pressure in the non—relativistic case si
#Also returns a flag indicating true if #
#maximum iterations is reached #
Qjit
def resultsNonRel(Pc,h,nMax) :

PTOV = Pc

PNew = Pc

MIOV = 0.

MNew = 0.

rTOV = 0.

rNew = 0.

flagNew = False
flagTOV = False
for i in range(nMax):
MemoryMTOV = MTIOV
MemoryMNew = MNew
if (flagTOV = False):
rTOV=TOV+h
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297
298
299
300
301
302
303
304

305

(kPTOV1,kPTOV2,kPTOV3, kPTOV4, kMTOV1, kMTOV2, KMTOV3, kMTOV4) = kTOVNonRel (rTOV,
PTOV,MIOV)

PIOV = PTOV + h/6x(KPTOVI1+2+kPTOV2+2+kPTOV3+kPTOV4)

MIOV = MIOV + h /6% (KMTOV1+2+kMTOV2-+2+kMTOV3kMTOVA)

if (flagNew =— False):
rNew = rNew-h
(kPNewl,kPNew2, kPNew3 ,kPNew4 ,kMNewl, kMNew2, kMNew3,kMNew4) = kNewNonRel (rNew,
PNew , MNew)

PNew = PNew + h/6x(kPNewl+2xkPNew2+2xkPNew3+kPNew4 )
MNew MNew + h /6% (kMNewl+2xkMNew2+2xkMNew3+kMNew4 )

if (np. float ((np.real (PTOV) )<=0 or MIOV=—MemoryMTOV) and flagTOV = False):
flagTOV = True

if (np. float ((np.real (PNew))<=0 or MemoryMNew == MNew) and flagNew =— False):
flagNew = True

if (flagNew = True and flagTOV = True):
break

if (flagNew = False):

print (?Maximum number of iterations reached”)

print (” for Newton—equation with Pc = %.8f \n”%Pc)
if (flagTOV = False):

print (”Maximum number of iterations reached”)

print (” for TOV—equation with Pc = %.8f \n”%Pc)
return rTOV,MTOV, rNew ,MNew, flagTOV , flagNew

7777 7 /l/ T e ”/l”/l T . IIIIIHIHII IH T //l e : /“/,/”/ 1T . T 7777 /, T /”l HH T . IIII,IIHI 17
#Returns vectors containing the radii and mass for central pressures within#
#the range given in the non—relatiistic case #
Qjit
def paramterisingNonRel (PcMin,PcMax,N,h,nMax) :

Pc = PcMin

const = (PcMax/PcMin) **(np. float (1) /N)

RTOV = np. zeros (N)

RNew = np.zeros (N)

MIOV = np.zeros (N)

MNew = np. zeros (N)

for i in range(N):
RTOV[i] ,MIOV[i] ,RNew[i] ,MNew|[i],flagTOV, flagNew = resultsNonRel (Pc,h,nMax)
if (flagTOV = False or flagNew = False or Pc > PcMax or Pc > PcMax) :

RTOV = RTOV[0: i

]
MTIOV = MIOV|[0:1i]
RNew = RNew [0: i |
MNew = MNew [0: i ]
N=1i
break

Pc = Pcx*xconst
return RTOV,MTOV, RNew, MNew, N

s #Writes all the non—relativistic mass—radii data to a file#

def writeResultsToFileNonRel (PcMin,PcMax,N,h,nMax, filename ) :

RTOV,MTOV, RNew,MNew,N = paramterisingNonRel (PcMin, PcMax,N, h,nMax)

f = open(filename , ’'w’)

f.write(str (N)+’\n’)

for i in range(N):

a = str (RTOV[i])

b = str MIOV[i])
G str (RNew[i])
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306 d = str(MNew[i])
S07 f.write(aJr” 77+b+77 77+C+n 77+d Jr”\l’l”)

308 f.close ()

309 return

310

311 JLLS J) J ) g g gy f ) g g ) g g g g ) ) f) g gy g g g g g ) g g g g g g ) g g g g ) g g g g g g g g gy g g g g g ) g ) ) ) g g g ) ) ) L) S )
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312 #Reads the data from file and returns four vectors containing the sis
313 #mass—radius relation for both the TOV—equation and Newton’s equation #
314 #in the non—relativistic case s

si6 def readResultsFromFileNonRel(filename):
317 f open (filename , 'r’)

318 N = int (f.readline())

319 RTOV = np.zeros (N)

320 MIOV = np. zeros (N)

321 RNew = np.zeros (N)

322 MNew = np.zeros (N)

323 i=0

324 data = f.readlines ()

325 for line in data:

326 numbers = line.split ()

327 RTOV[i] = numbers[0]
328 MIOV[i] = numbers[1]
329 RNew|[i] = numbers[2]
330 MNew | i | numbers [ 3]
331 i = i+1

332 f.close ()
333 return RTOV,MTOV, RNew , MNew
334

335 HHHHHA Y
OO0 AT T 1 11 1 111 11 11 11 1 41 11 11 11 111 1111 11 11 71 111111 11

LU g g ) g g g ) g ) ) ) ) ) L))

341 T i i i i

JLLL ) L) ) g g g g g g g g g L g g g g g g g ) g ) ) g ) ]

344 FHFHAHH A A i i it

345 #The derivative of the mass with respect to r in the ultra—relativistic limit#
NN R RN RN R R R NN R R RN R R R NN NN NN R RN R R R NI R R R I NI INIR IR IN NI I IR IR eIl

346 FHHAHA A A A A i i e i i i it
347 @jit

sas def dMdrUltraRel(r ,P):

349 return betaUltraRelxr*x2xP

LLLL Y L) L g g g g g g g g g ) g g g g L) g g g g g g g g g g ) ) g L) g g )]

351 R IR
352 #Derivative of the pressure with respect to r for the non—relativistic case#

353 #(TOV—equation) #

355 @jit
356 def dPdrTOVUltraRel(r ,P,M):
357 return —4xRO*Psrsx(—2)*(MtbetaUltraRel«Psr*%3/3)%(1—2xRO*Mxrs*(—1))*x(—1)

360 #Derivative of the pressure with respect to r for the non—relativistic case#

e ) o .
361 #Newton’s equation #
R RN NN N N RN RN NN RN NN R R R RN RN RN R R N RN R RN NN NN NIRRT IR I,

362 FHAHA A A T A A T A A A i i i i A i i 11t
363 @jit

364 def dPdrNewtonUltraRel(r ,P,M):

365 return —3*xRO*P+0Mbkr xx(—2)

LLLL Y L) g L) g g g g g g g g ) g g g g g g g g ) L) L)) g ]

367 FHHH A T A A T A A 77

368 #Creates the coefficients for the Runge Kutta routine in the#
360 #ultra—relativistic case using the TOV-equation #
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s72 def kTOVUltraRel(r ,P,M,h):

373 kP1 = dPdrTOVUltraRel(r ,P,M)

374 kM1 = dMdrUltraRel(r,P)

a7 kP2 = dPdrTOVUltraRel (r+h/2 ,P+h/2+kP1 Mth/2+kM1)
376 kM2 = dMdrUltraRel (r+h/2,P+h/2xkP1)

377 kP3 = dPdrTOVUltraRel(r+h/2,P+h/2+kP2 ,Mth /2xkM2)
378 kM3 = dMdrUltraRel (r+h/2,P+h/2xkP2)

379 kP4 = dPdrTOVUltraRel(r+h,P+h+kP3 ,Mth+kM3)

380 kM4 = dMdrUltraRel (r+h,P+h*kP3)

381 return kP1,kP2,kP3,kP4,kM1,kM2, kM3, kM4

384 #Creates the coefficients for the Runge Kutta routine in the#

385 #ultra—relativistic case using the Newton’s equation shs
R iz i e i
387 @jit

sss def kNewUltraRel (r,P,M,h):

389 kP1 = dPdrNewtonUltraRel(r ,P,M)

390 kM1 = dMdrUltraRel(r,P)

391 kP2 = dPdrNewtonUltraRel (r+h/2,P+h/2+kP1 Mth/2+kM1)

392 kM2 = dMdrUltraRel (r+h/2,P+h/2xkP1)

393 kP3 = dPdrNewtonUltraRel (r+h /2 ,P+h/2+xkP2 Mth/2xkM2)

394 kM3 = dMdrUltraRel (r+h/2,P+h/2xkP2)

395 kP4 = dPdrNewtonUltraRel (r+h,P+h+kP3 ,M+hxkM3)

396 kM4 = dMdrUltraRel (r+h,P+h*kP3)

a0 return kP1,kP2,kP3,kP4,kMI,kM2,kM3,kM4

w0 #Function that calculates the mass and pressure at N points#

101 #given a central pressure Pc as function of the radius r. #
102 #Reurns 5 vectors which contains the radius and masses #
103 #obtained using both Newton and TOV—equation +#

105 @jit
206 def resultsUltraRel (R,R0,Pc,h):
107 N = int (R/h)

108 PTOV = np. zeros (N)

409 PTOV[0] = Pc

110 PNew = np.zeros (N)

411 PNew [0] = Pc

112 MIOV = np.zeros (N)

413 MNew = np. zeros (N)

114

115 r = np.linspace (h,R,N)

116 for i in range(1,N):

417 (kPTOV1,kPTOV2,kPTOV3,kPTOV4,

a1s KMTOV1, kMTOV2, kKMTOV3,kMTOV4) = kTOVUltraRel (r [i —1],PTOV[i —1] MIOV[i —1],h)
119

420 PTOV[i] = PTOV[i—1] + h/6%(kPTOV1+2+kPTOV2+2+kPTOV3+kPTOV4)
4 MIOV[i] = MIOV[i—1] + h/6%(KMTOV1+2+kMTOV2+2+kMTOV3+kMTOVA)
122

123 (kPNewl ,kPNew2,kPNew3, kPNew4,

124 kMNew1 ,kMNew2, kMNew3,kMNew4) = kNewUltraRel (r[i —1],PNew[i —1] ,MNew[i —1],h)
125

126 PNew[i] = PNew[i—1] + h/6%(kPNewl+2xkPNew2+2+kPNew3+kPNew4 )
427 MNew[i] = MNew|[i—1] 4+ h/6x*(kMNewl+2xkMNew2+2xkMNew3+kMNew4 )
128 return r ,PTOV,MTOV, PNew, MNew

429

130 /,/ l//, 1] ,l / /l/, / ,/ l///, /L ,l / /l/, / ,/ l///”

131 #Writes all ultra—relativistic data to a file#

HHH H B A
T it 71 71 Tt 11117 71 71 Tt

135 def writeResultsToFileUltraRel (R,Pc,h, filename):

434 r ,PTOV,MTOV, PNew,MNew = resultsUltraRel (R,R0,Pc,h)
135 f = open(filename , ’'w’)

436 f.write(str(len(r))+’\n’)

437 for i in range(len(r)):
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= str(r[i])
= str (PTOV[i])
= str (MIOV[i])
= str(PNew[i])
= str(MNew[i])
f.write(a—i—” P4bt? P ded? P 4dd? 7a+e+n\n11)
f.close ()

® A0 T

return

#Reads all ultra—relativistic data from file and returns it as vectors#

def readResultsFromFileUltraRel (filename):
f = open(filename , 'r’)
N = int(f.readline())
r = np.zeros (N)
PTOV = np.zeros
MIOV = np. zeros
PNew = np.zeros
MNew = np.zeros
i=0
data = f.readlines ()
for line in data:
numbers = line.split ()
r[i] = numbers[0]
PTOV[i] = numbers[1]
MIOV[i] = numbers[2]
PNew|[i] = numbers[3]
MNew|[i] = numbers 4]
i =i+l
f.close ()
return r ,PTOV,MTOV, PNew , MNew

LLLL ) L)) g g g g g g g g g g g g g g g g g g g ) g ) ) ) g )]
LA e R

#Calculates the analytical solution to the pressure for ultra—relativistic#
#ideal neutron gas #

LLIL Y L) g g g g g g ) g g g g g L g g g g g g g g g g ) ) ) )]
L i T i R

@jit

def analyticPressure(r):
const = (14xROxbetaUltraRel/3)*x(—1)
return const*r**(—2)

LU ) ) g g g g g g g ) ) g g g g g g g ) ) ) g ) )
T AT AT AT AT T 11 T 1T I 1 11 11 1 1 1 AT AT AT 1T 11 11 1 1 11 A 1T 17 11 11 1 71 11 11 17 11 11 11 11 11 11 1 1T 1T 17 11 1 11 11 1 17 17 11 11 11 1111 11 11 11 11 11 11

#Calculates the analytical mass solution for the ultra—relativistic#
#ideal neutron gas #

LLLL Y L) g g g g g g g g g ) g g g g g g g g g g ) g g g g g g g
T AT AT 17 11 1171 11 1117 17 11 11 11 11 11 11 11 11 17 11 11 11 11 11 11 17 17 11 11 71 11 1117 17 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 17 17 11 11 11111111 11 11 11 11 11

Q@jit

def analyticMass(r):
const = (14xROxbetaUltraRel/3)*x(—1)
return betaUltraRel*consts*r

LU g g g g g g ) ) g g ) )
T AT AT T T AT AT 11 1 11 1 1 11 11 1 11 11 1 11 11 1 11 17 11 11711117
TR N TR NIRRT N TN TR TR I TN TN TN T NI I TN TAT)
T AT T 1 17 11 11 111 11 11 11 1 41 11 11 11 1111 1117 11 11111117

s HHA
HHHE Arbitrary relativity HHHHE

JLIL L) g g g ) g ) ) g ) g g ) )

T AT AT T T T I 1T 11 11 11 1T 11 11 11 11 41 11 11 11 11 11 11 17 11 1111 1117

NI NI N TN R R NIRRT NI N NN IR N IR R NI N IR IR TR TN TN R NIRRT TN NI NIRRT R TN NI TR IR IR TR TN N NN TN
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#The derivative of the mass M with respect to the radius r#
#for arbitrary relativity #

Q@jit
def dMdr(r, epsilon):
return betaxepsilonr*%2
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506 #The derivative of the pressure P with respect to the radius r#
507 #for arbitrary relativity #

508
500 @jit

510 def dPArTOV (r,P,M, epsilon):

511 return—ROxr*x(—2)*(epsilon+P) *x (Mtbeta*Pkr*%3) *x(1 —2+«RO*Msrxx(—1) ) *xx(—1)

514 #The pressure as function of the fermi energy pF#

516 @jit

517 def pressure(pF):

518 return gammasx(24.xmath. pi**2)**(—1)*(np.sqrt (pF**2+1)*(2xpF**3—3+pF)+3*np. log (pF+np.
sqrt (pF*x241)))

519

520 IrININININInInInn NIRRT IR IR I INInn; NIRRT IR IR I INInn; NIRRT IR IR I I INInn; IININIRINN
52( 7777 T irinrT T 7777 T arinrT T T7T7777T T irinrT T T7T7777 T irinrT
521 #Function that creates the coefficients in the Runge Kutta routine#
=00 IrININININIR IR IININIRINN ININININININININI] IINININTNN INININININIRTRIRN] NIRRT IR IR IR InINInInn; JLJL gy ) )
Q&S TrTIIT T IrIT Ty T IrITITIT T ITITIT T T7TT777T 17777
523 @jit

524 def k(r,P,M, epsilon ,h):

kP1 = dPdrTOV (r ,P,M, epsilon)

kM1 = dMdr(r, epsilon)

kP2 = dPArTOV(r+h/2,P+h/2+kP1 Mth/2xkM1, epsilon)
kM2 = dMdr(r+h/2,epsilon)

kP3 = dPArTOV(r+h/2 ,P+h/2xkP2 Mth/2xkM2, epsilon)
kM3 = dMdr(r+h/2,epsilon)

kP4 = dPdrTOV (r+h /2 ,P+h+kP3 MthxkM3, epsilon )
kM4 = dMdr(r+h, epsilon)

return kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4

53¢

536

537

538 @jit

530 def energyDensity (pF):

540 return gammasx(24.xmath. pi**2)*%(—1)*(np.sqrt (pF**24+1)*(6xpF**3+3+pF)—3*np. log (pF+np.

sqrt (pF*x2+1)))

541

sa2 def f(P):

543 return lambda pF: pressure (pF)—P

544

R R R R A A R R R AR R A R AR AR AR AT
546 #Function that returns 2 vectors containing the mass—radius #
547 #relation and a flag indicating if the maximum number of #
548 #iterations is reached

549 ”/l/l// 77 /’/lrl/l/lll i ”/lll/”r”//l//,//lu 77 /,/,/l//ll/l i ”/l/l/,/,/lrlu //,/I/l/// /I/ ,/,/lrlll/l i ”/l/l/,/,/lrlu //,/,/l///l/l/ ,/, l///lll/”r”/l/l/,/,///lu 77 /,/,/l/l/l/ i ”/lrl/,/,r”
550 def results (Pc,h,nMax,pFMax) :

551 P = Pc

552 M = 0.

553 r = 0.

554 pF = pFMax

555 flag=True

556 for i in range(nMax):

557 Memoryr = r

558 MemoryM = M

559 r = r+h

560 if (np.sign (f(P)(0))!=np.sign(f(P)(pFMax))):
561 pF = op.brentq(f(P),0,pFMax)

562 else:
563 pF=0
564 epsilon = energyDensity (pF)

565 kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4 = k(r,P,M, epsilon ,h)
566 P = P+h/6*(kP1+2*kP2+2*kP3+kP4)
567 M = Mth /6% (kM14-2xkM2+2xkM3+kM4 )

115



568 if (np. float (np.real(P))<=0 or M=MemoryM) :

569 r = Memoryr

570 flag = False

571 break

572 if (flag == True):

573 print (?Maximum number of iterations reached”)
574 print (” for TOV-equation with Pc = %.8f"%Pc)
575 print (?with arbitrary relativity \n”)

576 return r, np.float (np.real(M)), flag

577

580 #Does the same as parametrisingNonRel for arbitrary relativity#

581 /”//”/”/”/,/, /l/ i l///lll/” ”/l/l/,/,/l/lu 7t ,/ /l/lll/l/” ”/l/l/,/,/l/lu 7t ,/ /l/lll/l/” ”/l/l/,/,/lrlu 77 //l/l///l/l i ”/l/l/,/,/lrlu 77 //l/l///l/l i ”/lll/”r”//l//,///lrl/ /l/ ,/, lrl/lll
@jit
583 def paramterising (PcMin,PcMax,N, h,nMax,pFMax) :
584 Pc = PcMin
585 const = (np. float (PcMax) /PcMin) **(np. float (1) /N)
586 R = np.zeros (N)
587 M = np.zeros (N)
588 for i in range(N):
589 R[i],M[i], flag = results (Pc,h,nMax,pFMax)
590 if (flag=True):
591 print (R[i])
592 R =R[0:1]
593 M = MJ[0:1i]
594 N=i
595 break
Pc = Pcx*const

return R,M,N

RN INTN TR TNI NI TN IR TN N RN TAT]
T AT T 11 1 1 1 17 111111 11 11 1111 11 11

600 #Writes data to file#

01
6( T AT AT T T I 1 11 1 1T 1 11 1 11 1T 11 111117

602 def writeResultsToFile (PcMin,PcMax,N,h,nMax,pFMax, filename) :

603 R,M,N = paramterising (PcMin, PcMax,N, h,nMax, pFMax)
604 f = open(filename , 'w’)

605 f.write(str (N)+’\n")

606 for i in range(N):

607 a = str(R[i])

608 b = str(M[i])

609 f.write(at” "+b+” \Il77 )

610 f.close ()

611 return

612

e ) g g ) g ) )
613 T AT 1 1 1t 1 1 1t 11111 11 111111 11 11

614 #Reads data from file#

1
615 T AT 1 T A 1T 11 1 1 1T 11 11 1111 11 111111 11 11

616 def readResultsFromFile (filename):

617 f = open(filename ,’'r’)
618 N = int(f.readline())
619 R= np.zeros (N)
M = np.zeros (N)
i=0
data = f.readlines ()
for line in data:
624 numbers = line.split ()
625 R[i] = numbers[0]
626 M[i] = numbers[1]
627 i = i+1
628 f.close ()
629 return R,M
630
631 ”/l/l// /I/ i l/l/lll/,/,/lrlu 77 ,/,/lrlll/I/,,/”Hl//,/I/l/l///l/I i ”/l/l/,/,/lrlu 77 ,/, l/l/lll/”/lrlu 77 /,/Irl/lllll i ”Hl//,/Irl/l/ /I/I i ”/l/l/,/,/lrlu 77 /,/, l/l/lll/”/”// 77 /’/Irl/lllll ¢ ”/l/l//,/Irl/l/
632 #Reads data from file and creates plots of the mass radius relation#
633 #for arbitrary relativity and the non—relativistic case #
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// /1 // // /f // HA /f /1 /f // = // HAH // /1 /f // =
71 71 71 71 71 7 71 71 71 71 71 71 717 71 71 71 71 7 7

7 7 7t

def createPlots(filename ,filenameNonRel, filenameUltraRel ,PcMax,h,nMax,pFMax) :
plotConstPressure ()

plotdPde (pFMax,N)

plt.figure ()

plt . ylim (0,1.5)

RTOVnonRel, MTOVnonRel, RNewNonRel , MNewNonRel = readResultsFromFileNonRel (
filenameNonRel)

ax = plt.gcal()

ax.xaxis.set_label_coords (1.05, —0.02)

ax.set_xlabel (’$R3$[km] ', fontsize = 14)

ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$M/M_\odot$’, rotation="horizontal’,6 fontsize = 14)

plt . plot (RTOVnonRel, MTOVnonRel, 'r’,label="TOV non—relativistic ’)
a,b,c,d,e, f=resultsNonRel (0.0113,h,nMax)
plt.scatter (a,b, marker="x’,color="green’)
plt . plot (RNewNonRel, MNewNonRel, 'b’ ,label = 'Newton non—relativistic ’)
R,M = readResultsFromFile(filename)
for i in range(len(M)):

ifM[i]==0.0):

M[i] = None

plt.plot (R,M, 'y’ ,label="Arbitrary relativity )
MMax = max (M)
RMax = R[np.argmax (M) ]
print (RMax, np . argmax (M) )
print (?The biggest possible mass is (arbitrary rel) %.3f sun masses with radi %.3fkm
” % (MMax, RMax) )
plt.legend ()
plt . figure ()
ax = plt.gcal()
ax.xaxis.set_label_coords (1.08, —0.0)
ax.set_xlabel (’$r$ [km]’, fontsize = 14)
ax.yaxis.set_label_coords (—0.05, 1.03)
ax.set_ylabel ("$\\bar{P}(r)$’, rotation="horizontal’, fontsize = 14)
RultraRel ,PultraRelTOV , MultraRelTOV , PultraRelNew , MultraRelNew =
readResultsFromFileUltraRel (filenameUltraRel)
PultraRelAnal = analyticPressure (RultraRel)
MultraRelAnal = analyticMass (RultraRel)
plt.ylim (0,max(PultraRelTOV )+max(PultraRelTOV) %0.1)
plt . xlim (0,max(RultraRel))
plt.plot (RultraRel ,PultraRelTOV, 'r’ ,label = "TOV’)
plt . plot (RultraRel , PultraRelNew , 'b’,label = ’Newton’)
plt . plot (RultraRel , PultraRelAnal, g’ ,label = ’Analytic’)
plt.legend ()

plt. figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.08, —0.0)
ax.set_xlabel (’$r$ [km]’, fontsize = 14)
ax.yaxis.set_label_coords(—0.05, 1.03)

plt.ylim (0,8)

plt.xlim (0,15)

ax.set_ylabel (’$M/M_\odot$’, rotation=’horizontal’,h fontsize = 14)
plt . plot (RultraRel , MultraRelTOV, 'r’ ,label = "TOV’)
plt.plot (RultraRel , MultraRelNew, 'b’,label = ’Newton’)
plt . plot (RultraRel , MultraRelAnal, g’ ,label="Analytic’)
plt.legend ()

return

@jit
def dPde(pFMax,N) :
pF = np.linspace (0,pFMax,N+2)
dPde = np.ones (N+2)
for i in range(1,N+1):
dP = pressure (pF[i+1])—pressure (pF[i—1])
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711

de = energyDensity (pF[i+1])—energyDensity (pF[i—1])

dPde[i] = dP/de
return pF[1:N+1],dPde[1:N+1]

@jit

def plotdPde (pFMax,N) :
pF,Pde = dPde(pFMax,N)
plt. figure ()
ax = plt.gcal()
ax.xaxis.set_label_coords (1.05, —0.02)
ax.set_xlabel ("$\\bar{p}-F$’, fontsize = 14)
ay = plt.gcal()
ay.yaxis.set_label_coords(—0.05, 1.0)

ay.set_ylabel (’d$\\bar{P}/$d$\\bar{\epsilon}$’,

14)
plt.plot (pF,Pde)

739
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rotation="horizontal ’,

alpha = 1. #alpha , beta and gamma is given
beta = 1.1426 #by calculations in thesis

betaNonRel = 0.7779
betaUltraRel = 1.

fontsize

gamma = 1.
Pc = 0.1 #Central pressure used in ultra relativistic star
R = 30 #Radius we integrate up to for ultra relativistic star
RO = 1.477 G/ c 2
35 K= 0.67704 #Reffered to as KNR ”bar” in thesis
h = 0.0001 #Step length in the Runge Cutta solver
nMax = int (100/h) #Maximum number of iterations in solver
736 PcMin = 1.%x10%%(—6) #Smallest central pressure we solve for
PcMax = 1.%10%%(4) #Largest central pressure we solve for
: N = 300 #Number of data points in plot
pFMax = 10. #Maximum fermimomentum used in root finding function
filenameNonRel = "massRadiRelationNonRel. txt”
filenameUltraRel = "massRadiRelationUltraRel. txt”
filename = ”"massRadiRelation. txt”

ook W N e

writeResultsToFileNonRel (PcMin, PcMax,N,h,nMax, filenameNonRel)

writeResultsToFileUltraRel (R,Pc,h, filenameUltraRel)

writeResultsToFile (PcMin,PcMax,N, h,nMax,pFMax, filename)
createPlots (filename , filenameNonRel , filenameUltraRel ,PcMax,h,nMax, pFMax)

plt .show ()

print (”\nTime spent:”)
print (time. clock ()—t0)

G.2 Chapter 5

import numpy as np

import matplotlib.pyplot as plt
import scipy.integrate as integrate
import time

from numba import jit
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6 from scipy import optimize as op
7 import math
s from scipy import interpolate

LU ) g g g g g g g ) g g g g ) ) )]
T AT AT AT 1T T T T AT AT 17 11 11 1 1 11 11 11 17 11 11 11 11 11 1T 1T 11 1 11 1 AT 11 17 11 11 71 71 11 11 11 11 11 11 11 11 11 11 11 17 11 11 11 1117

13 FHHF Just press play to create all plots in thesis! FHHHHE

LU g g g g g g ) g g g g ) g g g ) g g g g g g ) ) ) )
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18 #Variable used to time the program
19 t0 = time. clock ()

o1 HHHHHY L Y
<L T AT i 1 i i 1 i i i 1t

22

23 ### Defining functons #H##

24

o5 IR IR IR IR IN NIRRT IN IRl

SO AT AT AT AT AT T 1 1 11 11 11 11 11 11 17 11 11 11 11 11 11 11

26
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28 #Takes in a number in fm and converts it to MeV #

20 #Takes in the exponent. For instance, to convert#

30 #from fm"—3 to MeV' 3, set exponent to —3 #

31

32 def fmToMeV (number , exponent) :

33 if (exponent >0):

34 return (numberxx*(1./exponent)/197.33)xxexponent

35 else:

36 return (numberk*(—1./exponent)*197.33)x*(—exponent)

39 #Takes in a number in MeV and converts it to fm #
10 #Takes in the exponent. For instance, to convert#
11 #rom MeV'3 to fm”~—3, set exponent to 3 ik

Ao Y
T T T 1 1 1 T A1 11 1 1 1 117 11 11 11 411 11 11 11 11 11 1 11 11 11 11 11 1111117117

43 def MeVtoFm(number, exponent) :

44 if (exponent >0):

45 return (number*x*(1./exponent)/197.33)**exponent

16 else :

a7 return (numbers*(—1./exponent)*197.33)x*(—exponent)

48

49 FF

50 #Function that takes in a density and returns the corresponding#

51 #Fermi momentum given a degenracy factor f #

53 @jit
54 def kFfromDensity (density ,f):
55 return (6+math. pi**2xdensity/f)x*(1./3)

LU ) g g g g g g g g g g ) g ) ) g ) )
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58 #Function that takes in a Fermi momentum and returns the#

50 #corresponding density given a degeneracy factor f #

60 A Y
S R R R R AR R

61 @Qjit
62 def density (kF,f):
63 return fxkFx%3./(6+math. pi*%2)

e L g g g g g g g g g g g ) g ) )]
65 FHAHH T i i i i i i i i i i i i 11t

66 #Returns te scalar density for a given Fermi momentum,#
67 #effective mass and degeneracy factor f #

o @jit
70 def scalarDensity (kF,gSigma,mStar, f):
71 x = kF/mStar
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72 return f/4.xmStar*x3+*math. pi*x(—2)*(np.sqrt (x**2+1.)*x—np.arcsinh (x))

o g g ) ) LU g g ) ) g g ) )
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76 #Returns the effective mass for a given Fermi momentum#
77 #and degeneracy factor f

TN IR TR N TN T NI N NI R IR R TR NN R NIRRT NI NI TR IR TR W NN TR R TR TN T N TR N T NI TRV TN}

8 A A T i i i it i i it i it it i1 i1 i 1

70 def effectiveMass (kF,gSigma,f):

80 a = lambda mStar: 1.—gSigmax*2xmSigma**(—2)xscalarDensity (kF,gSigma ,mStar, f)—mStar
81 if (np.sign(a(10%x(—16)))==np.sign(a(1l.))):

82 return 10%*(—16)

83 return op.brentq(a,10%x(—16) ,1.)

84

85 ,I,I”H 77 //lrl/lll/l/,,/”Hl//,//l///l/l/l/” ”Hl//,///lrl/l/l/l i ”/l/l/,/,/l/l/l/ /l/ i ”/lll/,/,/l/l/l/ /l/ ,/, l/l/lll/,/,/lrlu 77 /,/ l/lllll/,/,/lrlu 77 /,/ rl/lllll/,/,/”rr //,//l/l//ll/l/,,r”//l/,/,//lrl/l/l/l/” ”/lrl/,/,

s6 #Takes in a maximum value for the Fermi momenta kFmax, and the length#
87 #N1 requested. Returns one vector containing the Fermi momenta evenly#
ss #spaced between 0 and kFmax and two vectors containing the #
so #corresponding effective masses for degeneracy factor f=2 and f=4 #
90
o1 @jit

92 def massVec(kFMax, gSigma ,N1) :

93 kFvec = np.zeros (N1+1)

94 kFvec = np.linspace (10x*(—16) ,kFMax,N1)

95 mStarVec2 = np.zeros (N1)

926 mStarVec4d = np.zeros (N1)

o7 for i in range(N1):

98 mStarVec2[i] = effectiveMass (kFvec[i],gSigma,2.)
99 mStarVecd [i] = effectiveMass (kFvec[i],gSigma ,4.)
100 return kFvec,[mStarVec2, mStarVec4 ]

101

ITTTRTETNT] INTRTNINTN TINTa
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103 #Takes in a Fermi momenta, effective mass and degeneracy factor#

104 #and returns the pressure
105 NN R RN RN R R R R RN NN R NI IR R NIRRT IR IR I}
05 R I T irIT

106 @jit

107 def pressure (kF,gSigma,gOmega, mStar, ) :

108 x = kF/mStar
a = 0.5xgSigmax**2*mSigma**(—2)*scalarDensity (kF,gSigma ,mStar, f) %2
b 0.5%gOmegax*2+xmOmegax*(—2)*xdensity (kF, ) **2

111 ¢ = fx(48*xmath. pi**2)*x(—1)*mStar*x4
d
r

L) NINIRTNINININ]

A

/]

/
7

= np.sqrt (x**2+1.) % (2+x**3—3%x)+3*np. arcsinh (x)
eturn —a+b+cxd

LU yTeT) / TNTRTNT] TRTRINTNTNTN] /] TRTR IR IR TR IR IR TRTaIe]
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116 #Takes in one vector countaining all the Fermi momenta and 7#
117 #two containing the effective masses for each degenarcy factor , #
118 #as well as the length of the vectors. Returns the corresponding#

119 #pressures for each degenracy factor 7#

INTRTRTRINTN 7

L
7

121 @jit
122 def pressureVec (kFvec,gSigma,gOmega, mStarVec ,N1) :

123 Pvec2 = np.zeros (N1)

124 Pvec4d = np.zeros (N1)

125 mStarVec2 = mStarVec[0]

126 mStarVecd = mStarVec[1]

127 for i in range(N1):

128 Pvec2[i] = pressure(kFvec[i],gSigma,gOmega, mStarVec2[i],2.)
129 Pvecd [i] = pressure(kFvec[i],gSigma,gOmega, mStarVecd[i] ,4.)
130 return [Pvec2,Pvec4]

131

132 /’/’/’/,rl/l I/I = l///III/,/,rl/lHl/,/,/I/lrl/ /I/ ,/,/lrl/” = ”/l/I/,/,/lrlH ”1,1,1,/,//// ,/,/lrlrlrll” ”/l/I/,/,/lrlH 77 /’/Irl/l I/I = l/’/’r’/”r”//’/’/’/’/lu 77 /’/,///lrlll = //lrI/I/,/,/l/lHl//,/Irl

133 #Takes in a Fermi momenta and effective mass and returns the#

134 #energy density for a given degeneracy factor

. LLLL Y L) g g g g g g g g ) g g g g g g g g g ) ) )]
135
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136 @Qjit
137 def energyDensity (kF, gSigma ,gOmega, mStar, f):
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139
140

142
143
144
145
146
147
148

149

x = kF/mStar

a = 0.5xgSigmax**2+mSigma**(—2)*scalarDensity (kF,gSigma ,mStar, f) %2

b 0.5+ gOmega**2+xmOmega**(—2)xdensity (kF, ) x*2

¢ = fx(16+*math. pi**2)**(—1)*mStarx4

d = np.sqrt (x**24+1.) *(2+x**3+x)—np. arcsinh (x)

return atb+cxd
L L L
T I7rIT 1T ITTrITrIrIT 1Ty T T T I eI ITaTur 1T TrIrIraT
#Same as the function pressureVec, except that the vectors returned#

#

#are energy densities
N IINInINInIan Lf L)) NIRRT Lf L)) NIRRT NIRRT IIaIan
T ITT7 T T T arIreaT T IrrTT T rITIrIT T T I eI IraT

@jit
def energyDensityVec (kFvec,gSigma ,gOmega, mStarVec ,N1) :
epsilonVec2 = np.zeros(N1)
epsilonVec4 = np.zeros(N1)
mStarVec2 = mStarVec [0]
mStarVecd = mStarVec[1]
for i in range(N1):

epsilonVec2[i]| = energyDensity (kFvec[i],gSigma,hgOmega, mStarVec2[i],2

epsilonVec4 [i] = energyDensity (kFvec[i],gSigma,gOmega, mStarVec4 | i

return [epsilonVec2 ,epsilonVec4]

LU L) g g g g g g g ) L) g g g g g g g g ) g g ) )
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#Same as the function pressure, except that it returns#
#the pressure for a free Fermi gas #

194
195
196
197
198
199
200
201
202

203

@jit

def fermiGasPressure (kF,mStar,f):
a = f/(48*math. pi**2)
b = np.sqrt (kF**24+mStar**2)

c 2+ kF*%3 —3*mStar**2xkF
return a*(bkxc+3xmStarxx4xnp.log ((kF+b)/mStar))

i TN IR IR TR IRTaT] LU g ) g g ) g g g g g g g ) ) )
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#Same as the function pressureVec, except that it returns#
#the pressure vecotrs for a free Fermi gas #

ITTTNTNTam TN TR IR TR TN IR T N TN R IR T N TN IR TN IR TR TN TR TR NINT] TR TR IR TR NI IR TNTAT)
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@jit

def fermiGasPressureVec (kFvec,N1):
fgPvec2 = fermiGasPressure (kFvec,np.ones(N1) ,2)
fgPvec4d = fermiGasPressure(kFvec,np.ones(N1) ,4)
return fgPvec2 ,fgPvec4

llll//l IIIIHIIIIHIIII//II IR IR R RN IR R RN NIRRT IR IR IR IR IR IR IR IR TNl
LA A i A A A A A L i L i i A A O R
#Same as the function energyDensity , except that it returns#
#the energy density for a free Fermi gas +#

def fermiGasEnergyDensity (kF,mStar, f):
a f/(48+math. pi**2)
b = np.sqrt (kF**24+mStar**2)
¢ = 6xkFxx343xmStar+*2xkF
return a*(bxc—3xmStarxx4xnp.log ((kF+b)/mStar))

P ) NIRRT IR IR IR IN IR ININTN

A 1 s
T 7

TH 1T T I T 11 17 T T T 11 T T 1T 1 1T 1 11 1111

T 17T T
#Same as the function energyDensityVec, except that it returns#
#the energy density vectors for a free Fermi gas

NI RTRTR TN TR I IR LU ) LU g g g g ) g g g g g g ) ) ) )]

@jit

def fermiGasEnergyDensityVec (kFvec,N1):
fgEpsilonVec2 = fermiGasEnergyDensity (kFvec,np.ones(N1) ,2)
fgEpsilonVec4 = fermiGasEnergyDensity (kFvec,np.ones(N1) ,4
return fgEpsilonVec2 ,fgEpsilonVec4

N

LU L) g g ) ) g g ) L ) TN INIRTaT TR NIRRT IR TR TN T NIRRT

TIIT I I 1T 11 11 1 1 AT AT AT 1T 17 11 11 11 11 11 11 17 17 11 T 1T 11 111111 T I 1T 1 1 T AT 1T 1T 17 11 11 11 11 17 1T 1T 17 11 11 71 11 11 11 17 11 11

#Function that takes in pressure vectors for the sigma—omega EoS#

#and the free Fermi gas EoS, and combines them at the point
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204 #where they conside e
505 / JLJL g 1) ] ININININ] / NI /1] NN /1] ININININ] J ) ) )
205 77T TTT7777T TTTT7T7777 17T TIT7777 TTI7TI7T T TrT TTT7777T 17T

206 @jit

207 def combineFermiSigmaOmega (Pvec, fgPvec ,N1):
208 print (N1)

209 index = 0

10 for i in range(N1—1):

i if (Pvec[i]>10%x(—5)):
2 if (np.sign(Pvec[i]—fgPvec[i])!=np.sign (Pvec[i+1]—fgPvec[i+1])):
3 index = i+1
1

1 break

15 PvecCorr = np.zeros (N1)

16 PvecCorr [0:index| = fgPvec[0:index]
17 PvecCorr [index :N1] = Pvec[index:N1]
18 return PvecCorr

L 7 LU )] L] 14l
L

L L] T
71117 7 1117 T 1717 7 T 1111 11117 7

L] LU ] 111 N7
7 T 1111 117

7 T TTT7IT
#Takes in a maximal Fermi momentum and the length of the vector requested siE

1
3 #Returns all vectors needed to calculate the mass—radius relations (and more)#
1

25 @jit

26 def createVectors (kFMax,N1, gSigma ,gOmega) :
27 kFvec ,mStarVec = massVec (kFMax, gSigma ,N1)

28 Pvec = pressureVec (kFvec,gSigma ,gOmega, mStarVec ,N1)

29 epsilonVec = energyDensityVec (kFvec, gSigma ,gOmega, mStarVec ,N1)
30 fgPvec = fermiGasPressureVec (kFvec,NI)

3 PvecCorr2 = combineFermiSigmaOmega (Pvec[0] , fgPvec[0] ,N1)

3

1

2 PvecCorr4 = combineFermiSigmaOmega (Pvec[1],fgPvec[1],N1)
3 PvecCorr = [PvecCorr2,PvecCorr4 ]

34 fgEpsilonVec = fermiGasEnergyDensityVec (kFvec,N1)

6 gSigma = 10.7522

7 gOmega = 15.8533

8 kFvec ,mStarVec = massVec (kFMax, gSigma ,N1)

9 PvecCoupl = pressureVec (kFvec,gSigma ,gOmega, mStarVec ,N1)

0 epsilonVecCoupl = energyDensityVec (kFvec, gSigma ,gOmega, mStarVec ,N1)

return kFvec,Pvec,epsilonVec , fgEpsilonVec , fgPvec,PvecCorr,epsilonVecCoupl , PvecCoupl

L L] L
T 7 T 117

#Takes in two vectors containing the pressure and enery density#
6 #values and creates plots of the EoS 7#

L) T ) L] INTRTRIN]

L
T 17117 1T 7171171 1T 117171

L L
T 117 T 1T 117

s def plotEoS(Pvec,epsilonVec):

9 Pvec2 = Pvec[0]

0 Pvecd = Pvec|[1]

epsilonVec2 = epsilonVec [0]
epsilonVec4 = epsilonVec[1]

plt.figure ()

ax = plt.gcal()

6 ax.xaxis.set_label_coords (1.05, —0.02)

7 ax.set_xlabel (’$\\bar{\epsilon}$’, fontsize = 15)

58 ax.yaxis.set_label_coords(—0.05, 1.03)

59 ax.set_ylabel ("$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’, fontsize = 15)
60 ax.text (—0.00004,—0.4%10%x(—7), ’E’ ,fontsize = 14)

61 ax.text (0.00006,0.7x10xx(—7),’D’ ,fontsize = 14)

62 ax.text (1.7+«10%%(—4),—0.4%x10%%(—7),’C’ ,fontsize = 14)

63 ax.text (0.00058, —1.45%x10xx(—6), B’ fontsize = 14)

64 ax.text (0.00082,—0.4%x10xx(—7),’A’ ,fontsize=14)

65 plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,0))
66 plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))
267 plt.xlim (—0.00005,0.001)

268 plt.ylim(—0.0000015,0.0000007)

269 plt . plot (epsilonVec2 ,Pvec2,’'r’)
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plt . figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.05, —0.02)

ax.set_xlabel (’$\\bar{\epsilon}$’, fontsize = 14)
ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’,fontsize = 15)
ax.text (—6%10xx(—5),—5%x10%x(—7), E’ , fontsize = 14)
ax.text (0.00002,5%10%*x(—7),’D’ ,fontsize = 14)

ax.text (1.5x10%*(—4),—5%10*xx(—7),’C’ ,fontsize = 14)

ax.text (0.001,—1.45%x10xx(—5),’B’ ,fontsize = 14)

ax.text (0.00143,—5x10*x(—7), A’ ,fontsize=14)
plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,
plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0
plt . xlim (—7+10%%(—5) ,0.0016)

plt . ylim(—0.000016,0.00004)

plt.plot (epsilonVec4 ,Pvecd,’'b’)

0))
0))

)
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17
289 #Takes in the "normal” sigma omega EoS and the one where we#

#have altered the couplings. Then plots them together +#
AR R R AR AR AR A AR
def plotEoSDifferentCouplings (PvecCoupl,epsilonVecCoupl ,Pvec, epsilonVec):
PvecCoupl2 = PvecCoupl [0]
PvecCoupld = PvecCoupl[1]
epsilonVecCoupl2 = epsilonVecCoupl [0]
epsilonVecCoupld = epsilonVecCoupl [1]
Pvec2 = Pvec[0]
Pvec4d = Pvec|[1]
epsilonVec2 = epsilonVec [0]
epsilonVec4d = epsilonVec[1]

Jph
17

plt . figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.05, —0.02)

ax.set_xlabel (’$\\bar{\epsilon}$’, fontsize = 15)
ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’, fontsize = 15)
plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,0))
plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))

plt.xlim (0,1.2%10%%(—3))

plt.ylim(—0.25%10%*(—5) ,1.5%10%%(—5))

plt . plot (epsilonVec2 ,Pvec2,’r’,label="original couplings’)

plt . plot (epsilonVecCoupl2 ,PvecCoupl2, 'y’ ,label = ’altered couplings’)
plt.legend ()

plt. figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.05, —0.02)

ax.set_xlabel (’$\\bar{\epsilon}$’, fontsize = 14)
ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’, fontsize = 15)
plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,0))

plt . ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))

plt.xlim (0,1.7%10%%(—3))

plt.ylim (—1.3%x10%x(—5) ,8+10%*(—5))

plt . plot (epsilonVec4 ,Pvec4,’b’,label="original couplings’)

plt.plot (epsilonVecCoupld ,PvecCoupld, 'g’,label = ’altered couplings’)
plt.legend ()

Ly a T T N N N N NN N TN BTN BTN R TR TN TR TRY R
T IT 17 T 777777 1777 17 17 17 T 77777 1777 17 17 17 T
#Plots pressure as a funciton of inverse energy density#
UL UL L
777 17 T 7T TTIT7777 17 17 T T 7777777 17 17 17 T
def plotPV (kFvec,Pvec,epsilonVec):
Pvec2 = Pvec[0]

Pvec4d = Pvec|[1]

=
71

=
71
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epsilonVec2 = epsilonVec [0]
epsilonVec4 = epsilonVec [1]

plt. figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.07, —0.02)

ax.set_xlabel (’log($1/\\bar{\epsilon}$)’, fontsize = 14)
ax.yaxis.set_label_coords(—0.06, 1.03)

ax.set_ylabel (’$\\bar{P}(1/\\bar{\epsilon})$’, rotation="horizontal’, fontsize = 14)
plt.xlim (2,10)

plt.ylim (—0.000002,0.000002)

ax.text (2400,—0.4x10**x(—7),’C’ ,fontsize = 14)

ax.text (1300,—3.5%10**%(—6), B’ ,fontsize = 14)

ax.text (500, —0.75%x10**(—6), A’ fontsize=14)

plt . plot (np.logl0 (1./epsilonVec2) ,Pvec2,’r’)

plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,
0

plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(
ax.text (2.900,—1.%10%x(—7), A’ ,fontsize = 14)

ax.text (3.1700,—15x10**(—7), B’ ,fontsize = 14)

ax.text (3.55,—1.x10%%x(—7),’C’ ,fontsize=14)

ax.text (4,6%x10xx(—8),’D’,fontsize=14)

ax.text (9.8,2%10%*(—8),’E’ ,fontsize=14)

0))
0))

)

plt . figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.07, —0.02)

ax.set_xlabel (’log($1/\\bar{\epsilon}$)’, fontsize = 14)
ax.yaxis.set_label_coords(—0.06, 1.03)

ax.set_ylabel (’$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’, fontsize = 14)
plt.ticklabel_format (style="sci’, axis=’x’, scilimits=(0,0))
plt . ticklabel_format (style="sci’ ,axis=’y’, scilimits=(0,0))
ax.text (2.600,—4x10**x(—7), A’ ,fontsize = 14)

ax.text (2.9500,—12.2x10%x(—6),’B’,fontsize = 14)

ax.text (3.45,—4%10xx(—7),’C’ ,fontsize=14)

ax.text (4.7,2x10xx(—7),’D’ ,fontsize=14)

ax.text (9.8,2%10%*x(—7), E’ ,fontsize=14)

plt.xlim (2,10)

plt . ylim(—1.25%10%%(—5) ,0.000005)
plt.plot(np.logl0(1./epsilonVecd) ,Pvecd,’b’)

)

L L L L L L
7 7

T T
#Plots the combined free Fermi gas and sigma omega EoS#
/

/ L Il / L L

7 7

def plotCorrectedPressure (kFvec,PvecCorr,Pvec):
PvecCorr2 = PvecCorr [0]
PvecCorrd = PvecCorr [1]
Pvec2 = Pvec[0]
Pvec4d = Pvec|[1]

plt. figure ()

ax = plt.gcal()

ax.xaxis.set_label_coords (1.07, —0.02)

ax.set_xlabel ("$\\bar{k} F$’, fontsize = 14)
ax.yaxis.set_label_coords(—0.06, 1.03)

ax.set_ylabel (’$\\bar{P}(\\bar{k}_-F)$’, rotation="horizontal’, fontsize = 14)
plt.plot (kFvec,Pvec2,’y’ ,label = ’$\sigma—\omega$’)

plt . plot (kFvec,PvecCorr2,’r’, ,label = ’corrected’)
plt.legend ()

plt . xlim (0,0.4)

plt . ylim (—0.1%10%x(—4) ,1.5x10%x(—4))

plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))

plt . figure ()

ax = plt.gcal()
ax.xaxis.set_label_coords (1.07, —0.02)
ax.set_xlabel ("$\\bar{k}_F$’, fontsize = 14)
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402 ax.yaxis.set_label_coords (—0.06, 1.03)

103 ax.set_ylabel (’$\\bar{P}(\\bar{k}_F)$’, rotation="horizontal’, fontsize = 14)
404 plt.plot (kFvec,Pvecd, g’ ,label = ’$\sigma—\omega$ )

405 plt . plot (kFvec,PvecCorrd,’b’ ,label = ’corrected’)

406 plt.legend ()

407 plt . xlim (0,0.4)

108 plt . ylim (—0.2%x10xx(—4) ,1.5x10%x(—4))

109 plt.ticklabel_format (style="sci’, axis=’y’, scilimits=(0,0))
410

411

112 #Takes in a pressure P and a vector with pressure values.#

1413 #Returns the index of the vector closest to P #

414 T I7T7 T iraT T T iraT 7T T T IraT 7
115 @jit
416 def findIndex (P,Pvec,N1):

a17 P2 = P[0]

418 P4 = P[1]

419 Pvec2 = Pvec[0]

420 Pvecd = Pvec|[1]

421 index2 = np.zeros(3,int)

422 index4 = np.zeros(3,int)

423 a2 =0

424 a4 = 0

425 tolerance2 = 100

426 tolerance4 = 100

427 for i in range(N1—-1):

428

429 if (abs(Pvec2[i]—Pvec2[i+1])<tolerance2):

430 tolerance2 = abs(Pvec2[i]—Pvec2[i+1])

431

432 if (abs(Pvec4[i]—Pvecd[i+1])<toleranced):

433 tolerance4 = abs(Pvec4[i]—Pvecd[i+1])

434

435 for i in range(N1-1):

436 if ((np.sign (P2—Pvec2[i])!=np.sign(P2—Pvec2[i+1])) or abs(Pvec2[i]—-P2)<tolerance2
):

437 index2[a2] = i+1

438 a2+=1

439 if ((np.sign (P4—Pvec4[i])!=np.sign(P4-—Pvecd[i+1])) or abs(Pvecd[i]—P4)<tolerance4d
E

440 index4 [a4] = i+1

441 ad+=1

442

443 flag2 = True

444 flagd = True

145

446 if (a2<3):

a4t flag2 = False

448

149 if (a4<3):

450 flagd = False

451 return [index2 ,index4],[flag2 ,flag4]

452

453 FHEHAH AT T T 1 i i it 111t T T T 1 1 1 111117 T i 11t i
154 #Returns the area under the curve of the pressure vs invese energy#
455 #density between index start and stop for the energy density i

456 TTNTNTRTaT LU ) LU ) g g g ) g g g ) g ) g g g )
56 ##u T 1T 11111111 T T T T T AT A AT 1T 1 11 1 1 1T AT AT 1T 17 111 71 11 17 17 17 11 11 71 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1117 1

157 def area(epsilonVec ,Pvec,start ,stop):

458 return integrate.simps(1l./epsilonVec[start:stop],Pvec|[start:stop])
459

460

. i InIan i NI i InIann i NI i /]

461 T it it i it i it it 1 i it 1 it 1 1t 11 1117

462

463 HHHE Mass—radii relations FHHH

164 FHHE S

165 FHHHHH )
65 FHF I A A 177
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467 ”/l/l// 77 /,/I/// /I/ ”/l//ll/l/” ”/lrl/,/,rl/lul//,/I/lH 77 ,/,/lrl/lll i l///lll/” ”/l/l/,/,/lrlu 77 /,/I/// /I/ ,/,/lrlllll i ”/lrl/,/,r”//l//,///lu 77 ,/,/lrl/lll i l///lll/” ”/lrl/,/,
168 #The derivative of the mass M with respect to the radius r#
169 #for arbitrary relativity #
471 @jit

172 def dMdr(r, epsilon):

473 return betaxepsilon*r*%x2

176 #The derivative of the pressure P with respect to the radius r#

477 #for arbitrary relativity #
178 IIrININININInInInnn NIRRT IR I INInIen VINIRIRIRININIen VINIRIRIRININIen ININININ NIRRT
‘ T IrTT T i T T T IT Ty T IrTT T IrTT TTT7TT777T

170 @jit
480 def dPArTOV(r ,P,M, epsilon):
481 return—RO*r**(—2.)x(epsilon+P) « (Mtbeta+Pkr*xx3) (1. —2.xROMsrxk(—1) ) *x(—1)

485 #Function that creates the coefficients in the Runge Kutta routine#

N RN N NI NN R N RN N R I N RN NN NIRRT NN NI NN NI N NIRRT NN 1IN IN N I NI IN TR TN
A86  FHHFAITI Tttt i i1t 11t Tt i i1 11t Tt i1 11t Tt

187 @jit
1ss def k(r,P,M, epsilon ,h):

189 kP1 = dPdrTOV (r ,P,M, epsilon)

490 kM1 = dMdr(r, epsilon)

491 kP2 = dPdrTOV (r+h/2,P+h/2xkP1 ,Mth/2xkM1, epsilon)

492 kM2 = dMdr(r+h/2,epsilon)

493 kP3 = dPdrTOV (r+h/2,P+h/2xkP2 ,Mth/2xkM2, epsilon)

494 kM3 = dMdr(r+h/2,epsilon)

495 kP4 = dPdrTOV (r+h /2 ,P+h+kP3 MthxkM3, epsilon )

496 kM4 = dMdr(r+h, epsilon)

497 return kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4

498

499

500

501 /’/’/’/IIIII/I/ i ”/l/I/,/,/lrlH ”1,1,1,/,//// i ”/l/I/,/,/lrlH ”1,1,1,/,//// i ”/l/I/,/,/lrlH ”1,1,1,/,//// i ”/l/I/,/,/lrlH ”1,1,1,/,//// i ”/l/l/,/,/lrlu 77 /’/,rl/l I/I i ”/l/l/,/,/lrlu 77 /’/,rl/l I/I
502 #Function that returns the mass and radius of a star with given#
503 #central pressure Pc for both degeneracy factors. It also 7#
504 #returns two flags to indicate if the routine converged #
505

506 @jit
s07 def results (Pc,h,nMax,EoS2,Eo0S4):

508 P2 = Pc

509 M2 = 0.

510 r2 = 0.

511 flag2=True

512 P4 = Pc

513 M4 = 0.

514 r4 = 0.

515 flag4=True

516 tolerance = 10xx(—7)

517 for i in range(nMax):

518 if (flag2=—True):

519 Memoryr2 = r2

520 MemoryM2 = M2

521 r2 = r2+h

522 epsilon2 = EoS2(P2)

S0 kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4 = k(r2,P2 M2, epsilon2 ,h)

524 P2 = P2+h /6 (kP1+2+kP2+2+kP3+kP4)

525 M2 = M2+h /6 (kMI1+2+kM2+2+kM3+kM4)

526 if (np. float (np.real (P2))<=0. or (((M2-MemoryM2) /(M2+MemoryM2) )s**2<tolerance
*x2 and M2!=0 and MemoryM2!=0)):

527 r2 = Memoryr2

528 flag2 = False

529

530 if (flagd=True):
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1 Memoryrd = r4

2 MemoryM4 = M4

3 r4d = rd4+h

i epsilon4d = EoS4(P4)

535 kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4 = k(r4 ,P4,M4, epsilon4 ,h)
536 P4 = P4+h /6% (kP1+2+xkP2+42xkP3+kP4)

537 M4 = M4th / 6+ (kM1+2xkM2+42xkM3+kM4 )

538 if (np. float (np.real (P4))<=0. or (((M4-MemoryM4) /(M4tMemoryM4))s**2<tolerance
*x2 and M4!=0 and MemoryM4!=0)):

539 r4 = Memoryr4

540 flagd = False

541

542 if ((flag2 = False) and (flagd = False)):

543 break

544

545

546 if (flag2 = True):

547 print (?Maximum number of iterations reached”)

548 print (” for TOV-equation with Pc = %.8f"%Pc)

549 print (?with arbitrary relativity and degenerassy 2\n”)

1 if (flagd = True):
552 print (?Maximum number of iterations reached”)
553 print (” for TOV—equation with Pc = %.8f”%Pc)
1 print (?with arbitrary relativity and degenerassy 4\n”)
5 return r2, np.float (np.real(M2)),rd ,np.float (np.real(M4)),flag2 ,flag4

HHHAH A et S sttt et et et et et et oot o ettt e et LA
7 Tt T 1117 T Tt T 1117 Tt

; ; 44
550 #Parametrises the mass—radus relation from central pressures between#

560 #PcMin and PcMax s
561 rl// r//,///// T //l// Yt //,///,/,l TN /////,/,/,l ”l”/”” L /l/,/”// Ty
562 @jit

563 def paramterising (parameters ,epsilonVec ,Pvec):

564 PcMin = parameters [0]

565 PcMax = parameters [1]

566 N2 = parameters [2]

567 h = parameters [3]

568 nMax = parameters [4]

570 epsilonVec2 = epsilonVec [0]

571 epsilonVec4 = epsilonVec[1]

572 Pvec2 = Pvec[0]

573 Pvec4 = Pvec[1]

574

575 Pc = PcMin

576 N1 = len (Pvec2)

577 if (PcMax>Pvec2 [N1—1]):

578 print (?PcMax changed from ” ,PcMax,” to ”, Pvec2[N1-1])
579 PcMax = Pvec2 [N1-1]

580 if (PcMax>Pvec4 [N1—1]):

581 print (?PcMax changed from ” ,PcMax,” to 7, Pvec4 [N1-1])
582 PcMax = Pvec4 [N1-1]

583 const = (np. float (PcMax) /PcMin) %= (1./N2)

584 R2 = np.zeros (N2,np.double)

585 M2 = np.zeros (N2,np.double)

586 R4 = np.zeros(N2,np.double)

587 M4 = np.zeros (N2,np.double)

588

589 EoS2 = interpolate.interpld (Pvec2,epsilonVec2)

590 EoS4 = interpolate.interpld (Pvecd, epsilonVec4d)

591

592 for i in range(N2):

593 print (i)

594 R2[i] ,M2[i] ,R4[i],M4[i],flag2, flagd = results(Pc,h,nMax,EoS2,E0S4)
595 if ((flag2==True) or (flagd = True)):
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596 print (R2[1i],R4[1i])

597 R2 = R2[0:1i]

598 M2 = M2[0:1i]

599 R4 = R4[0: 1]

600 M4 = M4[0: 1]

601 N=1i

602 break

603 Pc = Pcxconst

604 return R2,M2,R4,M4,N2

:;::(; Hll,l,l /,/” ,/,/” H//l// ,I,””IIIIIIH” ”//,/,// //l/ ”/” i //I/ r,/””///,// H,l, ”//

607 #Writes mass—radius relations to file#

608 /H,//”/r /,/” HIHIH L1 /,/”” //,// /,/” rl/l//l/””// /””H/ IIH”” ,//,/,/ HI,II ”/

600 def writeResultsToFile (parameters ,epsilonVec ,Pvec, filename):
610

611 R2,M2,R4,M4,N2 = paramterising (parameters , epsilonVec ,Pvec)
612

613 f2 = open(filename+’2’, 'w’)

614 f2 . write(str (N2)+’\n’)

615 for i in range(N2):

616 a = str(R2[i])

617 b = str(M2[i])

618 f2 . write (a+” 7 4+b+” \n” )

619 f2 . close ()

620

621 f4 = open(filename+’4’,’w’)

622 f4 . write (str(N2)4+’\n’)

623 for i in range(N2):

624 a = str(R4[1i])

625 b = str(M4[i])

626 f4.write(at+” "4+b+’\n”)

627 f4 . close ()

628

629 return

630

631 /”,l,/” l” //,II //,/” ,/,, A ,//”l S /] /) ”,l,/ ”/ ,”/ //,l,l/ //I/ /,/” /,l,l” Sl /] ]) ”,l,/ ”/” ”/

632 #Writes all mass—radius relations to file#

633

634 def writeAllResultsToFile (parameters ,epsilonVec ,Pvec,PvecCorr,PvecCoupl, filenameVec) :
635 writeResultsToFile (parameters , epsilonVec ,Pvec, filenameVec [0])
636 writeResultsToFile (parameters , epsilonVec ,PvecCorr, filenameVec [1])
637 writeResultsToFile (parameters , epsilonVec ,PvecCoupl, filenameVec [2])
638

639

640

641

642

643 #Reads mass—radius relation from file#

644
615 def readResultsFromFile(filename):

646 f2 = open(filename+’2’,°r ")
647 N2 = int (f2.readline ())

648 R2 = np.zeros (N,np.double)

649 M2 = np.zeros (N,np.double)

650 i=0

651 data = f2.readlines ()

652 for line in data:

653 numbers = line.split ()

654 R2[i] = numbers[0]

655 M2[i] = numbers[1]

656 i =i+l

657 f2 . close ()

658

659 f4 = open(filename+’4’,’1r ")
660 N2 = int (f4.readline())

661 R4 = np.zeros(N,np.double)
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662
663
664
665
666
667
668
669
670
671

672
673

674

1/

/

M4 = np.zeros (N,np.double)
i=0
data = f4.readlines ()
for line in data:
numbers = line.split ()
R4[i] = numbers[0]
M4[i] = numbers[1]
i =i+l
f4 . close ()

return [R2,R4] ,[M2,M4] ,N2

IR L]

L] L TR 1

/
1T TTTTT777T TTITI7T TI777 T
675 #Plots the mass—radius relation

676 #Colour is a vector with length

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

693

694

695
696
697
698
699
700
701
702
703
704
705
706
707
708

709

1

710

111

#curves for f=2 and f=4.

TR
7 7

L L
1T 1111 T 11117 7 7

for a given mass and radius vector.#
2 that decides the colour of the #

def plotMassRadiusRelations (R,M,N, colour , Label):

R2 = R[0]
R4 = R[1]
M2 = M[0]
M4 = M[1]
R2stable = R2[0: list (M2) .index (max(M2))+1]
R2unstable = R2[list (M2).index (max(M2)) :N]
M2stable = M2[0: list (M2) .index (max(M2))+1]
M2unstable = M2[list (M2) .index (max(M2) ) :N]
R4stable = R4[0: list (M4) . index (max(M4) ) +1]
R4unstable = R4[list (M4).index (max(M4)) :N]
M4stable = M4[0: list (M4) .index (max(M4) ) +1]
M4unstable = M4[list (M4) .index (max(M4)) :N]

print ( 'Maximum mass for ’4colour[0]+ "’
list (M2).index (max(M2))], ’km’)
print ( ’Maximum mass for ’+colour[1]+’
list (M4) .index (max(M4))], ’km’)

plt.figure ()
ax = plt.gcal()

ax.xaxis.set_label_coords (1.07,

ax.set_xlabel (’$R$ [km]| ', fontsize =

ax.yaxis.set_label_coords (—0.06,

is’,max(M2), ’solar masses with radius’, R2]

is’ ,max(M4), ’solar masses with radius’, R2]
~0.02)
14)
1.03)

ax.set_ylabel (’$M/M_\odot$’, rotation="horizontal’,6 fontsize = 14)
plt . plot (R2stable , M2stable , colour [0] , label=Label [0])

plt.plot (R2unstable , M2unstable, colour [0]+ — )

plt.plot (R4stable , M4stable , colour [1],label=Label [1])

plt.plot (R4unstable , M4unstable, colour [1]+ '—")

plt.xlim (3,29)
plt.legend ()

L)

L 1 7]

1 TRININININTIN) L 1)
7

17

7
#Function that plots all relevant

7]

7117 117 T 7117

iy J L

7

T 7117 7

mass—radius relations#

. HU

Tt

/
L T 7171 717 7

MU
T 117777 71T

2 def plotAllMassRadiusRelationsFromFile (filenameVec ,colourVec):

L

R,M,N = readResultsFromFile (filenameVec [0])
Rcorr , Mcorr ,N = readResultsFromFile (filenameVec[1])
Rcoupl, Mcoupl ,N = readResultsFromFile (filenameVec[2])

Label = [’f=2’, f=4"]

plotMassRadiusRelations (R,M,N, colourVec [0] , Label)
plotMassRadiusRelations (Rcorr , Mcorr ,N, colourVec [1], Label)
plotMassRadiusRelations (Rcoupl,Mcoupl,N, colourVec [2] , Label)

R2 = R[0]
R4 = R[1]
M2 = M[0]
M4 = M[1]
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Rcorr2 = Rcorr [0]
Rcorrd = Rcorr [1]
Mcorr2 = Mcorr [0]
Mcorr4 = Mcorr [1]
Rcoupl2 = Rcoupl[0]
Rcoupld = Rcoupl[1]
Mcoupl2 = Mcoupl[0]
Mcoupl4d = Mcoupl[1]

R2stable = R2[0: list (M2) .index (max(M2))+1]

R2unstable = R2[list (M2).index (max(M2)):N]

M2stable = M2[0: list (M2) .index (max(M2))+1]

M2unstable = M2[ list (M2) .index (max(M2) ) :N]

Rcorr2stable = Rcorr2[0: list (Mcorr2).index (max(Mcorr2))+1]
Rcorr2unstable = Rcorr2[list (Mcorr2).index (max(Mcorr2) ) :N]
Mcorr2stable = Mcorr2[0: list (Mcorr2) .index (max(Mcorr2))+1]
Mcorr2unstable = Mcorr2[list (Mcorr2) .index (max(Mcorr2)) :N]
Rcoupl2stable = Rcoupl2[0: list (Mcoupl2) .index (max(Mcoupl2))+1]
Rcoupl2unstable = Rcoupl2[list (Mcoupl2).index (max(Mcoupl2)) :N]
Mcoupl2stable = Mcoupl2 [0: list (Mcoupl2) .index (max(Mcoupl2))+1]
Mcoupl2unstable = Mcoupl2[list (Mcoupl2).index (max(Mcoupl2)) :N]
R4stable = R4[0 list (M4) .index (max(M4) ) +1]

R4unstab1e R4[1list (M4) .index (max(M4) ) :N]

M4stable = M4[O: list (M4) .index (max(M4) ) +1]

M4unstable = M4[ list (M4) .index (max(M4) ) :N]

Rcorrdstable = Rcorrd [0: list (Mcorrd) . index (max(Mcorrd) ) +1]
Rcorrd4unstable = Rcorrd [list (Mcorrd) .index (max(Mcorr4)) :N]
Mcorr4stable = Mcorr4 [0: list (Mcorrd) . index (max(Mcorrd) ) +1]
Mcorrdunstable = Mcorr4 [ list (Mcorrd) .index (max(Mcorrd) ) :N]

Rcoupldstable = Rcoupl4 [0: list (Mcoupl4) .index
Rcoupl4unstable = Rcoupld[list (Mcoupld).index
Mcoupl4stable = Mcoupld [0: list (Mcoupld) .index

max (Mcoupld) ) +1]
max (Mcoupl4) ) :N]
max (Mcoupl4) ) +1]

( )) :N]

A~~~

Mcoupl4unstable = Mcoupl4d[list (Mcoupld) .index (max(Mcoupld)):N

colour = colourVec [0]

colourCorr = colourVec|[1]

colourCoupl = colourVec [2]

plt. figure ()

plt.plot (R2stable ,M2stable , colour [0] ,label = ’$\sigma—\omega$, bounded, f=2")
plt.plot (R2unstable , M2unstable, colour [0]+ ’77’)

plt.plot (R4stable , M4stable colour [1],label = ’$\sigma—\omega$, bounded, f=4’)
plt.plot (R4unstable, M4unstable ,colour [1]4+ '—7)

plt.plot (Rcoupl2stable , Mcoupletable colourCoupl [0] ,label = 'New Couplings $\sigma—\
omega$, f=2")

plt . plot (Rcoupl2unstable , Mcoupl2unstable , colourCoupl [0]+ — )

plt . plot (Rcoupl4stable , Mcoupl4stable , colourCoupl[1],label = ’New Couplings $\sigma—)\
omega$, f=4")

plt.plot (Rcoupldunstable , Mcoupl4unstable , colourCoupl [1]+ —

plt.plot (Rcorr2stable , Mcorr2stable ,colourCorr [0] ,label = ’Fermif$\sigmaf\omega$, f=2
")

plt . plot (Rcorr2unstable , Mcorr2unstable , colourCorr [0]4 —7)

plt . plot (Rcorrdstable , Mcorrdstable ,colourCorr [1],label = ’'Fermi—$\sigma—\omega$, =4
")

plt.plot (Rcorr4unstable , Mcorr4unstable , colourCorr [1]4+ '— )

plt.xlim (3,29)

plt.legend ()
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788

789 ax = plt.gcal()

790 ax.xaxis.set_label_coords (1.07, —0.02)

791 ax.set_xlabel (’$R3$[km] ', fontsize = 14)

792 ax.yaxis.set_label_coords(—0.06, 1.03)

793 ax.set_ylabel (’$M/M_\odot$’, rotation="horizontal’,6 fontsize = 14)

794

795

. L)1) L)L) L)) L) L)L) INTNTIN 1 I L1
796 71117 T 11111 T 1111 11117 7 in T 111t T 11111 T 11111 T 1117 T 117

707 #Calculates the coupling constants within an interval divided in N pieces#

L iy L] LUl LUl N7 L1 iy L] LUl LUl LUl
1T 1117 7 7 T 111111 T 1717 1T 111111 T 1117 T 7 UEinini

798

77
700 @jit

s00 def couplingConstants (gSigmaRange ,gOmegaRange ,N) :

801 satDens = fmToMeV (0.153,—3) /939%%3

802 bindingEnergy = —16.3/939

803 gSigma = gSigmaRange [0]

804 gOmega = gOmegaRange [0]

805 f=4

806 hSigma = (gSigmaRange[1l] —gSigmaRange[0]) /(N—1)

807 hOmega = (gOmegaRange[1] —gSigmaRange [0]) /(N—1)

808 kFsat = kFfromDensity (satDens, f)

809 bestFit = 100.

810 bestGsigma = 0.

811 bestGomega = 0.

812 h = 10*%(—10)

813 rhoPluss = density (kFsat+h, f)

814 rhoMinus = density (kFsat—h, f)

815 drho = rhoPluss—rhoMinus

816

817 for i in range(N):

818 for j in range(N):

819 mStar = effectiveMass (kFsat ,gSigma,f)

820 epsilon = energyDensity (kFsat ,gSigma,gOmega, mStar , f)
821 mStarPluss = effectiveMass (kFsat+h, gSigma , f)

822 epsilonPluss = energyDensity (kFsat+h, gSigma ,gOmega, mStarPluss , f)
823 mStarMinus = effectiveMass (kFsat—h, gSigma, f)

824 epsilonMinus = energyDensity (kFsat—h, gSigma ,gOmega, mStarMinus, f)
825

826 testBindingEnergy = epsilon/satDens —1.

827

828 derivativeEpsilon = (epsilonPluss—epsilonMinus) /(drho)
829

830 k = 1.—testBindingEnergy/bindingEnergy

831 1 = 1.—derivativeEpsilon/epsilon*satDens

832 test = np.sqrt (k¥x24+1x%2)

833

834 if (test<bestFit):

835 bestGsigma = gSigma

836 bestGomega = gOmega

837 bestFit = test

838

839 gOmega += hOmega

840

841 gOmega = gOmegaRange [0]

842 gSigma += hSigma

843

844 return bestGsigma ,bestGomega

845

846 ”,”/ ///ll//,””,l //,l ”Il/, LHHH, //,IIHII,””,I JLJJ) ) ”Il/,/ //,l //ll”//,l,,l S /]
sa7 #N decides how many pieces we divide the interval [0,200] in.#
s48 #Returns the obtained coupling constants #
849 FH# Tt ”“”////lr Lt Hl”” Tt IUHIIIHHI Il/, HII,III Tt l/l/””r//r///
550 @jit

s51 def couplings (N):

852 gSigmaRange = [0,200]

853 gOmegaRange = [0,200]
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889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

919

gSigma ,gOmega = couplingConstants (gSigmaRange ,gOmegaRange ,N)

print (gSigma ,gOmega)

gSigmaRange [0] = gSigma—10.
gSigmaRange [1] = gSigma-+10.
gOmegaRange [0] = gOmega—10.
gOmegaRange [1] = gOmega+10.

gSigma ,gOmega = couplingConstants (gSigmaRange ,gOmegaRange ,N)

print (gSigma ,gOmega)

gSigmaRange [0] = gSigma—1.
gSigmaRange [1] = gSigma+1.
gOmegaRange [0] = gOmega—1.
gOmegaRange [1] = gOmega+1.

gSigma ,gOmega = couplingConstants (gSigmaRange ,gOmegaRange ,N)

print (gSigma ,gOmega)

gSigmaRange [0] = gSigma—0.1
gSigmaRange [1] = gSigma—+0.1
gOmegaRange [0] = gOmega—0.1
gOmegaRange [1] = gOmega+0.1

gSigma ,gOmega = couplingConstants (gSigmaRange ,gOmegaRange ,N)

return gSigma ,gOmega

plt.figure ()

kFvecMeV = 939xkFvec

epsilonVecMeV2 = epsilonVec [0]*939xx*4
epsilonVecMeV4 = epsilonVec[1]*x939xx%4
rho2 = density (kFvecMeV,2)

rho4 = density (kFvecMeV ,4)

m = 939xnp.ones(len (kFvec))

B2 = epsilonVecMeV2/rho2-m

B4 = epsilonVecMeV4 /rho4—m

B2[0] = 0
B4[0] = 0
zero = np.zeros (len (kFvec))

rho2 = MeVtoFm(density (kFvecMeV,2) ,3)

rho4 = MeVtoFm(density (kFvecMeV ,4) ,3)

plt.plot (rho4 ,zero, 'g—")

plt . plot (rho2,B2, 'r’,label = "{=2")
=4")

plt.plot (rho4 ,B4,’b’  label = ’f=4"
if (nc='n’):

plt.xlim (0,0.5)

plt. yhm 0,100)
elif (nc

(

(-

z’):

plt. Xhm(O 0.3)
plt.ylim(—1,4)
ax = plt.gcal()
ax.xaxis.set_label_coords (0.9, —0.07)
ax.set_xlabel (’$\\rho$ [fm$"{-3}$]",
ax.yaxis.set_label_coords(—0, 1.04)
ax.set_ylabel (’$B(\\rho)$ [MeV]’, rot
plt.legend ()

L L L L/ L] L] /] L] L]

def plotBindingEnergy (kFvec,epsilonVec ,nc):

fontsize = 14)

ation="horizontal ’,fontsize = 14)

L ] Il L

1117 L 17 77 7 7 7

#Function thdt plots all the figures give

L 1) L/ L] L] L] L] ]

T 17117 7

n in thesu#
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920 def plotEverything (kFvec,Pvec,epsilonVec ,fgEpsilonVec ,fgPvec,PvecCorr, epsilonVecCoupl,
PvecCoupl, filenameVec) :

921 colour = [’r’,’b’]

922 colorCorr = [’y’, g’]

923 colourCoupl = ['m’, 'k’]

924 colourVec = [colour ,colorCorr ,colourCoupl]

925 plotEoS (Pvec, epsilonVec)

926 plotEoSDifferentCouplings (PvecCoupl, epsilonVecCoupl ,Pvec, epsilonVec)
927 plotPV (kFvec,Pvec, epsilonVec)

928 plotCorrectedPressure (kFvec, PvecCorr , Pvec)

929 plotAllMassRadiusRelationsFromFile (filenameVec , colourVec)
930 plotBindingEnergy (kFvec, epsilonVec, 'n’)

931 plotBindingEnergy (kFvec, epsilonVec, 'z ")

932

935
036 #Function that checks if the Maxwell construction is possible for +#

937 #a given EoS. Returns a string containg a message that can be printed#
IrINININIni J )] JLJL g ) ) ] NIRRT IINININTNN IININIRTNN IININIRINN JL gL J) 1) ] INININININIRIRN NIRRT

038
938 T T 111111 T 111111 TITT 71117 T 71117 T 11111717 T 7 T 1177 71111171 T 1111

930 def isMaxwellPossible (epsilonVec ,Pvec,N1):

940 index , flags = findIndex ([0,0],Pvec,N1)

941 text = 77

942 if (flags [0] = False): #Checks if the function is strictly increasing#

943 text+="Maxwell construction not nercecary for f=2. Function is strictly
increasing!\n’

944 if (flags[1] = 0):

945 text+="Maxwell construction not nercecary for f=4. Function is strictly
increasing!\n’

946 index2 = index [0]

947 index4 = index[1]

948 epsilonVec2 = epsilonVec [0]

949 epsilonVec4d = epsilonVec[1]

950 Pvec2 = Pvec[0]

951 Pvecd = Pvec|[1]

952

953 if (flags [0] = True):

954 firstArea2 = area(epsilonVec2 ,Pvec2,index2[0],index2[1])

955 secondArea2 = area(epsilonVec2 ,Pvec2,index2[1],index2[2])

956 if (abs(firstArea2)<abs(secondArea2)):

957 text+=’'Maxwell construction not possible for f=2\n’

958 else:

959 text+=’Maxwell construction possible for f=2\n’

960 if (flags [1] == True):

961 firstAread = area(epsilonVec4 ,Pvecd,index4[0],index4[1])

962 secondAread = area(epsilonVec4 ,Pvecd,index4[1],index4[2])

963 if (abs(firstAread)<abs(secondAread)):

964 text+=’'Maxwell construction not possible for f=4\n’

965 else:

966 text+='Maxwell construction possible for f=4\n’

967 return text

968

969

970

971 ,/l/l/”/l/ ”H ,/ ,/ ,H ”Hl,/rl/l/r/“r/l/“/l/l l/l/”/l/

072 FHHH

073 HHH Progran start ###

IR IR IR TN IR NINTN) NIRRT IR IR
T AT 1T T T I AT 1 1 A 1 1111 11 11 11 7171

975 7
976
977
o78 #Defining constants and parameters

979

os0 mSigma = 0.5857294994675186368 #Mass of sigma divided by nucleon mass
0s1 mOmega = 0.8338658146964856230 #Mass of omega divided by nucleon mass

982
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983
984
985

986

987
988
989
990
991

992

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

1014
1015
1016
1017
1018
1019
1020
1021

1022

1023
1024
1025
1026
1027
1028

1029

RO = 1.47 #Half the suns Swarzchild radius
=1

beta .1426 #Parameter found in thesis

kFMax = #Maximum nucleon Fermi momentum used to calculate EoS

N = 1000 #Number of divisions of the interall we search for the coupling
constants

N1 = 50000 #Number of points used to calculate EoS

N2 = 300 #Number of points used to calculate mass—radius relation

PcMin = 10%%(—10) #Minimum central pressure used in mass—radius relation

PcMax = 10x%%(4) #Maximum central pressure used in mass—radius relation

h = 0.0005 #Step length in km used to calculate the mass—radius relation

nMax = int (100./h) #Maximum number of iterations before we stop the mass

calculations

filename = ’SigmaOmegaMassRadiRelationl’
filenameCorr = ’SigmaOmegaMassRadiRelationCorrl’
filenameCoupl = ’SigmaOmegaMassRadiRelationCoupll’

#Create a vector containing all filenames
filenameVec = [filename ,filenameCorr ,filenameCoupl]

#Create vector containing important parameters
parameters = [PcMin,PcMax,N2,h,nMax,kFMax]|

#Finds the coupling constants
gSigma ,gOmega = couplings (N)

#The progrm that finds the couplings uses a bit of time. If desired, one
#can just remove the comment below and use the obtained values

#gSigma = 10.94

#gOmega = 13.59

#Creates all vectors
kFvec,Pvec, epsilonVec , fgEpsilonVec ,fgPvec ,PvecCorr , epsilonVecCoupl ,PvecCoupl=
createVectors (kFMax,N1, gSigma ,gOmega)

#Writes all mass—radius relations to file
writeAllResultsToFile (parameters , epsilonVec ,Pvec, PvecCorr ,PvecCoupl, filenameVec)

#Print if the maxwell construction is possible
print (isMaxwellPossible (epsilonVec ,Pvec,N1))

#Produce all plots given in thesis
plotEverything (kFvec,Pvec, epsilonVec , fgEpsilonVec ,fgPvec ,PvecCorr , epsilonVecCoupl ,
PvecCoupl, filenameVec)

#Show plots
plt .show ()

#Print the time spent
print (?\nTime spent:”)
print (time. clock ()—t0)

G.3 Chapter 6, 7 and 8

# —*x— coding: utf—8 —x—

import numpy as np

import matplotlib.pyplot as plt
import time

from numba import jit

from scipy import optimize as op
import math

from scipy import interpolate

LU g g g g g g g g g ) ) g g g g g g ) ) ) )
T 1117 T T 1A 1 1 11 11 1111 T AT T T T T AT AT AT 1T 11 T T AT AT AT 1T 11 1 1 A A 1T 17 11 1171 11 1117 11 11
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12 FHHE #HHE
13 HHHE Just press play to create all plots in thesis! FHH
14 FHHE Ciaiaia

LU ) g g g ) g g g g g g g g g g g ) L) )

.
15 FHHAHH I i i i i i i i i i i i i 17

18 #variable used to time the program
19 t0 = time. clock ()

23 HHHH Defining functions FHHE

o5 HHHHHH Y
O T AT i 1 1 1 i it i i1 11 1t

o7 HHHH Y Y
= T AT AT T A AT AT 1 11 1 11 11 11 17 11 11 11 1141 41 17 17 11 1111 11 11 11 17 11 11 71 11 11 11 11 11 11 11 11 11 11 11 17 11 11 11 11 111117

28 #Function that takes inn the hyperon fermi momenta and#

20 #sets the ones that are negative to zero #

30

s1 def isNegative (kFhyperonVec):

32 klambda , ksminus , ksO , ksplus , kximinus , kxi0 = kFhyperonVec [:]
33 if (ksminus <0):

34 ksminus = 0

35 if (klambda<0):
36 klambda = 0
37 if (ks0<0):

38 ksO = 0

39 if (ksplus <0):

40 ksplus = 0
a1 if (kximinus <0):
42 kximinus = 0

43 if (kxi0<0):
44 kxi0 = 0
45 return [klambda,ksminus, ksO,ksplus ,kximinus , kxi0]

LU ) g g ) g g g ) g g g g g g g g g ) ) ) ) ) )

Sl o A O R R

18 #Takes in a number in fm exponent the exponent and returns the#
19 #value in MeV —exponent #

LLLL Y L) g g g g ) g g g g g g g g g g g g g ] g g g ) )]

50 FHHAAH T A A A A T A7

51 def fmToMeV (number, exponent) :

52 if (exponent >0):

53 return (numberx*x*(1./exponent)/197.33)**exponent

54 clge &

55 return (number**(—1./exponent)*197.33)*x(—exponent)
56

57 A
OO FA AT T 1 11 1 111 11 11 11 1 11 11 11 11111111 11

58 #lnverse function of fmToMeV#

50 HHHHH YA
O FATIA AT AT 1 1 11 11 17 11 11 11 11 11 11 11 11 11 11 11 11 11 1117 11

60 def MeVtoFm(number , exponent) :

61 if (exponent >0):

62 return (number#*x*(1./exponent)/197.33)**exponent

63 else:

64 return (numberxx(—1./exponent)*197.33)**x(—exponent)
65

66 A
O T AT AT T T T A I 1 11 1 11 11 11 17 17 11 11 11 11 11 17 11 11 11 11 11 11 17 17 11 11 11 11 11 11 11 11 11111

67 #Takes in Fermi momenta and returns the density#

58 A
R T i (i L i L R

6o def density (kF):
70 return kF*%3/(3%math. pix*=*2)

LU ) ) ) g g g g ) ) g g g ) g g g ) g ) ) ) ) ) ) )]
LA ]

73 #Takes in a particle density and returns the Fermi momenta#

75 def momentaFromDensity (dens) :
76 return (3xmath. pi*x2+xdens) xx(1./3)
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79 #Takes in the Fermi momenta and effective mass for a particle#

s0o #and returns its contribution to the scalar density i
/] ININIRIRININIen ININIRIRININInn ININIRIRININInn ININIRIRININInn Il ] JLJL g ) ) / /1 /]
T

T 1717 T 1T 11 111111 T 1T 11 111111

s2 def scalarDensityFunc (kF,mStar):

T 17117 7 T 1T 11 111111 7 T 1T 117 7

83 if (kF = 0 or mStar = 0):

84 return 0.

85 else:

86 meml = mStar/(2+*math. pi**2)

87 mem2 = np.sqrt (kFx+2+mStarxx2) «kF

88 mem3 = mStarx*2xnp.arcsinh (kF/mStar)
89 return meml* (mem2—mem3)

92 #Returns the total scalar density#
/

0n Il TN IR TR NIRRT I TN NIRRT RN
93 Tt T A 1T 1 1 11 i 11 11 11 11 1111 11 11 11 11 T 111t

04 @jit

95 def scalarDensity (omega,rho,dens, ke ,kMu,kn,kp, mStar,gSigma ,gOmega,gRho,xSigma ,xOmega,
xRho, hyp) :

96 mStarLambda = mLambda—gSigmaxxSigma [0]* sigmaField (mStar,gSigma)

97 mStarS = mS—-gSigmax*xSigma [1]*sigmaField (mStar, gSigma)

98 mStarXi = mXi—gSigmaxxSigma [2]*sigmaField (mStar, gSigma)

99 kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn, mStar,gSigma ,gOmega,gRho,xSigma
xOmega ,xRho, hyp)

100 meml = scalarDensityFunc (kn, mStar)+scalarDensityFunc (kp, mStar)

101 mem2 = xSigma[0]*scalarDensityFunc(kFhyperonVec[0] ,mStarLambda)

102 mem3 = xSigma [1]x(scalarDensityFunc(kFhyperonVec[1] ,mStarS)+scalarDensityFunc (
kFhyperonVec [2] ,mStarS)+scalarDensityFunc (kFhyperonVec[3] ,mStarS))

103 mem4 = xSigma [2]*( scalarDensityFunc (kFhyperonVec[4],mStarXi)+scalarDensityFunc (
kFhyperonVec [5] ,mStarXi))

104 return meml4+mem2+mem3+mem4

105
106
107 #Calculates the Fermi momenta for the proton#

108

100 @jit

110 def kpFunc (ke ,kMu, kFhyperonVec) :

111 if (ke<0):

112 ke=0

113 meml = kFhyperonVec[l]*x3 —kFhyperonVec[3]**3+kFhyperonVec[4]**3
114 if (ke*x3+kMuk+3-+meml1<0):

115 return 0

116 return (ke*xx3+kMux+3+meml) xx(1./3)

117

118

119

120

121

122 def sigmaField (mStar,gSigma):
123 return (m—mStar)/gSigma
124

HLL L
1T T IrTT

126 #Gives a function for the expectation of the omega field to be#

RN NI NIRRT NI NIRRT RN NN IR I TR R TN TTRININ TR IRINT]
7

125 H y y y
<0 T T T 71T T 71T T IrTT TTT7TT777T

L
T 1111

127 #used by root solver function. #

128 ,/”/ T ,I l/ l/ ” IHII,/, # TITI7T7777 ,”/“/” # TITT7T7777 ,”/“/”l 1T //,HIHI ” l/l l/l, ; 1T //,HIHI ” l/l l/l, ; Hl/,/,/”/ T ,I/l/ /l/ . IHI

120 @jit

130 def omegaFieldFunc (omega,rho,dens,ke,kn,mStar,gSigma ,gOmega,gRho,xOmega,hyp) :

131 kMu = kMuFunc(ke)

132 if (ke<0):

133 ke=0

134 kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn, mStar, gSigma ,gOmega,gRho,xSigma,
xOmega ,xRho, hyp)

135 kFhyperonVec = isNegative (kFhyperonVec)

136 kp = kpFunc (ke ,kMu, kFhyperonVec)

137 mem = 0.

138 memt=density (kn)+density (kp)

136



139 ment—=xOmega [0] x density (kFhyperonVec [0])

140 menH—=xOmega [1]* ( density (kFhyperonVec[1])+density (kFhyperonVec[2])+density (
kFhyperonVec [3]))

141 memt=xOmega [2] * ( density (kFhyperonVec[4])+density (kFhyperonVec[5]))

142 return (omega—mem*gOmega*mOmegask*(—2.))

143

141 FHH ,'l/'/ T I'IH,“”/ it ””//‘/‘,/ 'l'/// r"//l'/ i it ””//‘/‘,/

145 #Returns the expectation of the rho field

146 lrl ”/,//rl/” & IIIIIIHH,II,I 77 /”/l IIIIIHH,

147 @jit

125 def rhoField (kn,kp, ksminus, ksplus , kximinus , kxi0 ,gRho,xRho) :

149 return 0.5%gRho*mRhox*(—2.)*(density (kn)—density (kp)+2*xRho[1]+* density (ksminus)—2x%
xRho[1]* density (ksplus)+xRho[2]* density (kximinus)—xRho[2]* density (kxi0))

150

151

152 #Gives function for the expectation of the rho field that#

153 #can be used by root solver #

154 ”l /”//,”/ “”l”///l 77T ,”/ HH ”///l TI777T ,l// HHH ”/,/” TI777T ,l//

155 @jit

156 def rhoFieldFunc (omega,rho,dens,ke,kn,mStar,gSigma ,gOmega,gRho,xSigma ,xOmega,xRho,hyp) :

157 if (ke<0):

158 ke=0

159 kMu = kMuFunc (ke)

160 kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn, mStar, gSigma ,gOmega,gRho,xSigma,
xOmega ,xRho, hyp)

161 kFhyperonVec = isNegative (kFhyperonVec)

162 kp = kpFunc (ke ,kMu, kFhyperonVec)

163 meml = density (kn)—density (kp)

164 mem2 = 2xxRho[1]* density (kFhyperonVec[1])—2+«xRho[1]* density (kFhyperonVec[3])

165 mem3 = xRho[2]* density (kFhyperonVec[4])—xRho[2]* density (kFhyperonVec[5])

166 return (rho —0.5*gRho*mRho**( —2.) * (meml+mem2+mem3) )

160 #Returns the Fermi momenta for the electron#

171 @jit

172 def keFermi(dens,kFvec):

173 kF3 = dens=*3xmath. pix*2

174 meml = kFvec[l]**3+kFvec[2]*x3
175 mem2 = kFvec[4]*x3+2xkFvec[5]**3
176 mem3 = kFvec[6]**3+2xkFvec[8]**3

177 memd = kFvec[9]x%3
178 return (kF3—meml-mem2-mem3—mem4) xx*(1./3)
179

. L
180 T //’/’ 177 17 17 17 17 17 17 17 17 17 17 7T 7T 7T 7 7
181 #Gives function for the electron Fermi momenta that#

182 #can be used by root solver s

183 ”//,” //l //l T IrIrIrIuT 7T 77T ,// ,// ,II ,II ,II HH H

184 @jit

135 def keFunc(dens,omega,rho,ke,kn,mStar,gSigma ,gOmega,gRho,xSigma ,xOmega,xRho,hyp) :

186 if (ke<0):

187 ke=0

188 kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn, mStar,gSigma,gOmega,gRho,xSigma
xOmega ,xRho, hyp)

189 kFhyperonVec = isNegative (kFhyperonVec)

190 kMu = kMuFunc(ke)

191 kF3 = densx*3xmath. pix*2

192 meml = kMu**x3+kn*x*3

193 mem2 = kFhyperonVec[0]*%3

194 mem3 = 2xkFhyperonVec[1l]**x3+kFhyperonVec [2]**3

195 memd = 2xkFhyperonVec[4]*x3+kFhyperonVec [5]*%3

196 if (kF3—meml—mem2-mem3-mem4<0) :

197 return ke

198 return (ke —(kF3—meml-mem2-mem3-mem4) % (1./3))

199

LU ) L L1 11
7
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#Returns the Fermi momenta for the muon#

HIIIIHII L g g g g g ) g g g g ) ) )]
TTTT AT I I 1T 1 1 AT AT AT 11 11 1 11 1T 1T 17 11 11 11 11 17 17 11 11 11 11 11 17 11 11 11171 17

@Jlt
def kMuFunc(ke):
if (kexx24me++2—mMux*2>0) :
return np.sqrt (kesx2+mek+x2—mMux*2)
else:
return 0.

#Gives function for the neutron Fermi momenta that#

#can be used by root solver #
J1/) /] /] /] /] /]
T T T T i T T T e T eI T T aTaa T
Q@jit
def knFunc(omega,rho,dens, ke,kn,mStar, gSigma ,gOmega,gRho,xRho,hyp) :
if (ke<0):
ke=0

kMu = kMuFunc (ke)

kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn,mStar, gSigma ,gOmega,gRho,xSigma ,

xOmega ,xRho, hyp)
kFhyperonVec = isNegative (kFhyperonVec)
kp = kpFunc (ke ,kMu, kFhyperonVec)

mem = —gRho*rho+4np.sqrt (kexx2+me**2)4np.sqrt (kpx+x2+mStar+*2)

if (mem#*2—mStarxx2<=0):
return kn
return (kn—(mem#*2—mStar*2)xx(1./2))

#Gives function for the effective mass for the nucleons that#
#can be used by root solver

@jit

def mStarFunc(omega,rho,dens,ke,kn,mStar,gSigma,gOmega,gRho,b,c,xSigma,xOmega,xRho,hyp) :

if (ke<0):
ke=0
kMu = kMuFunc (ke)
meml = (m—mStar)
mem2 = (gSigmax*2xmSigmas*x(—2))

kFhyperonVec = fermiHyperon (omega,rho,dens, ke, kn, mStar,gSigma,gOmega,gRho,xSigma,

xOmega ,xRho, hyp)
kFhyperonVec = isNegative (kFhyperonVec)
kp = kpFunc (ke ,kMu, kFhyperonVec)

mem3 = scalarDensity (omega,rho,dens, ke ,kMu,kn, kp,mStar, gSigma ,gOmega,gRho,xSigma ,

xOmega ,xRho, hyp)
mem4 = bxmxmeml**2+c*memls**3
i f (mem3+mem4==0):
return meml
return (meml—(mem2x*(mem3+mem4) ) )

S]] /1] /1 /] IHIIII HIIII NIRRT IR / / / /1] /1] INININININIEIi
T TTT777 17T T T 1T T T T IraT 17T 17T
#Returns the chemical potential for the neutron#

i ) 7] INTRINTNIN]]
T 117 AT i i i i i1t

@jit

def munFunc(omega,rho,kn, mStar,gOmega,gRho,xOmega,xRho) :
return np.sqrt (knxx2+mStar**2)+gOmegaxomega+0.5%xgRhoxrho

LU L)) TR IR TRTET LU ] LU ) ) TR IR TRTET TR IR TRTET LU 1)1 TR IR IRTaT
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keFunc and omegaFieldFunc#

#Sets the functions knFunc, mStarFunc, rhoFieldFunc
#together to one vector function to be used in root

)

solver function

def anstarFunc(keOrDens gSigma ,gOmega, gRho ,xOmega,xRho,b,c,nr ,hyp):

if(

— 0

return lambda var:[knFunc(var[0],var[1l],6 keOrDens,var[2]

gSigma ,gRho,xRho,hyp) ,
mStarFunc(var [0] , var [1]
,g0mega, gRho,b, ¢, xSigma ,xOmega,xRho, hyp) ,

138

,keOrDens , var [2]

,var [3]

T 11117

,var [3],var [4

L

] ,g0mega,

,var [4] , gSigma



264

268

269

301

303

304

305

306

307

308

rhoFieldFunc (var [0],var[1],keOrDens, var[2],var[3],var [4],
gSigma ,gOmega, gRho, xSigma ,xOmega,xRho, hyp) ,

keFunc (keOrDens , var [0] ,var [1],var [2],var [3],var[4],gSigma,
gOmega, gRho, xSigma ,xOmega,xRho, hyp) ,

omegaFieldFunc (var [0] ,var[1],keOrDens,var [2],var [3],var[4],
gSigma ,gOmega, gRho,xOmega, hyp) |

elif (nr="n"):
return lambda var:[knFunc(var[0],var[1],0,keOrDens,var[2],var[3],gOmega,gSigma,
gRho,xRho, hyp) ,
mStarFunc(var[0] ,var[1],0,keOrDens,var [2],var [3],gSigma,
gOmega, gRho, b, c,xSigma ,xOmega,xRho, hyp) ,
rhoFieldFunc (var [0] ,var[1],0,keOrDens, var[2],var[3],gSigma,
gOmega, gRho, xSigma ,xOmega ,xRho, hyp) ,
omegaFieldFunc(var [0],var[1],0,keOrDens,var[2],var[3],gSigma
,gO0mega, gRho ,xOmega, hyp) ]|
elif (nr="r"):
kMu = kMuFunc(keOrDens)
kp = kpFunc(keOrDens ,kMu,[0,0,0,0,0,0])
return lambda var:[knFunc(var[0],var[1],0,keOrDens,var[2],var[3],gOmega,gSigma,
gRho,xRho, hyp) ,

renormalizedMstarFunc (keOrDens, var [2] ,kp, var [3] , gSigma,
gOmega, gRho,b,c),

rhoFieldFunc(var[0],var[1],0,keOrDens,var[2],var[3],gSigma,
gOmega, gRho, xSigma ,xOmega ,xRho, hyp) ,

omegaFieldFunc(var [0],var[1],0,keOrDens,var[2], var[3],gSigma
,gO0mega, gRho ,xOmega, hyp) |

#Returns the Fermi momenta for a type of hyperon#

i /u ”u ”u /:: /::

7t
@jit
def

7t 77 71 71 7t T T 11 1 17 11 i i i 7t 7t 7t

fermiHyperonFunc (omega,rho , ke, ,kn,q,I,mStar , mStarB,gOmega, gRho, xSigma ,xOmega,xRho,
index) :
mun = munFunc(omega,rho ,kn,mStar,gOmega, gRho,xOmega,xRho)
mem = (mun—qg*np.sqrt (kex+*24+me*x2)—gOmega*xOmega[index | * omega—gRho*xRho [index |*Ixrho)
*x%2—mStarBxx2
if (mem>0):
return np.sqrt (mem)
else:
return 0

#Returns the Fermi momenta for the hyperons in a vector#

7t

def

7t 7t T at 7t 7t 7t 7t 7t T 7 7t 7t 7t 7t 7t T
fermiHyperon (omega,rho,dens , ke, kn,mStar, gSigma ,gOmega, gRho, xSigma ,xOmega ,xRho, hyp) :
if (hyp=False):

return [0,0,0,0,0,0]

mStarLambda = mLambda—gSigmax*xSigma [0]x sigmaField (mStar, gSigma)
mStarS = mS-gSigmax*xxSigma [1]*sigmaField (mStar,gSigma)
mStarXi = mXi—gSigmaxxSigma [2]*sigmaField (mStar, gSigma)
klambda = fermiHyperonFunc (omega,rho,ke,kn,0,0,mStar, mStarLambda ,gOmega,gRho,xSigma ,
xOmega ,xRho,0)
ksminus = fermiHyperonFunc (omega,rho,ke,kn,—1,1,mStar, mStarS,gOmega,gRho,xSigma,
xOmega ,xRho, 1)
ks0 = fermiHyperonFunc (omega,rho,hke,kn,0,0,mStar, mStarS ,gOmega, gRho,xSigma ,xOmega,
xRho,1)

ksplus = fermiHyperonFunc (omega,rho , ke, kn,1,—1,mStar, mStarS,gOmega,gRho,xSigma,
xOmega ,xRho, 1)
kximinus = fermiHyperonFunc (omega,rho, 6 ke, ,kn,—1,0.5, mStar, mStarXi,gOmega,gRho,xSigma ,
xOmega ,xRho,2)
kxi0 = fermiHyperonFunc (omega,rho, ke,kn,0,—0.5,mStar, mStarXi,gOmega,gRho,xSigma,
xOmega ,xRho,2)

return [klambda,ksminus, ksO,ksplus ,kximinus , kxi0]
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#Returns the omega field#

@jit

def omegaField (kFvec,gOmega,xOmega) :
omega = 0
omegat=density (kFvec[2])+density (kFvec[3])
omega+=xOmega [0] * density (kFvec [4])
omegat+=xOmega [1]* ( density (kFvec[5])+density (kFvec[6])+density (kFvec[7]))
omega+=xOmega [2] * ( density (kFvec [8])+density (kFvec[9]))
return gOmega*mOmegax*( —2.)xomega

i i /] /] /] /] /] / / /] ININTRTAn
J'/ ”/ ”I '/’l /” /” //” T ”I '/’l ”/’ ’/’/’ ”/’
#Returns all Fermi momenta and effective masses#
S e 1] /] /] /] /] i L i L) e 1] 1L
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@jit
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def fermiMomentaAndEffectiveMass (keOrDens, guesses ,gSigma ,gOmega, gRho,xSigma ,xOmega,xRho,

b,c,nr,hyp):
if (hyp=False):

ke = keOrDens

xSigma = [0,0,0]

xRho = [0,0,0]

xOmega = [0,0,0]

solution = op.root (knMstarFunc (ke ,gSigma ,gOmega,gRho,xOmega,xRho,b,c,nr,hyp) ,
guesses)

omega ,rho ,kn, mStar = solution .x

kFhyperonVec = [0,0,0,0,0,0]

else:
dens = keOrDens

solution = op.root (knMstarFunc(dens ,gSigma ,gOmega,gRho,xOmega,xRho,b,c,nr,hyp),

guesses ,options={’factor ’:0.00003})
omega ,rho , ke kn,mStar = solution .x

kFhyperonVec = fermiHyperon (omega,rho ,dens, ke, kn,mStar,gSigma ,gOmega,gRho,xSigma

,xOmega,xRho, hyp)

kMu = kMuFunc (ke)

klambda , ksminus , ksO , ksplus , kximinus , kxi0 = kFhyperonVec [:]

kp = kpFunc (ke ,kMu, kFhyperonVec)

mStarLambda = mLambda—gSigmax*xSigma [0]* sigmaField (mStar, gSigma)
mStarS = mS—gSigmaxxSigma [1]*sigmaField (mStar, gSigma)

mStarXi = mXi—gSigmaxxSigma [2]* sigmaField (mStar,gSigma)

return omega,rho ,ke,kMu,kn,h kp,klambda , ksminus , ksO , ksplus , kximinus , kxi0 ,mStar
mStarLambda , mStarS , mStarXi, solution . success

HAHHH £ 4 4 £ £ A
7 7 T T 7 7

" 4 . 4
#Returns the Fermi momenta for a free Fermi gas#
1] L] / / / /] / / / /L /] I/ L /1L /

17 7 U 7 1117171 7 T 11117111 7 17 7

17
@jit

def freeFermiGasEnergyDensity (kF,mStar) :
i f (kF==0):
return O.
else:

meml = (24smath. pi**2)**(—1)
mem2 = np.sqrt (kF+x2+mStar*2)
mem3 = 6xkFxx343xmStar**2xkF
if (mStar==0):
mem4 = 0.
ellislcl
mem4 = 3xmStar**4*np.arcsinh (kF/mStar)
return meml * (mem2«mem3—mem4 )

il

I
THTT777T 17 7 17 77 177 T 17 17 1777 7 17 17 11777 7
#Returns the pressure for a Free fermi gas#
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111

def

L

freeFermiGasPressure (kF, mStar) :
if (KF==0):
return 0.
elge ¢
meml = (24xmath. pi**2)*x(—1)
mem2 = np.sqrt (kF*x24+mStar*2)
mem3 = 2xkFxx3—-3xmStar**2*kF
if (mStar==0):
mem4 = 0.
else:
mem4 = 3xmStars*4*np.arcsinh (kF/mStar)
return meml * (mem2+mem3+mem4 )

TRTSTRIN] Ly

#Returns the pressure#

@jit
def

pressure (kFvec, mStar , mStarLambda , mStarS , mStarXi , gSigma ,gOmega, gRho, b, c,xRho,nr ,hyp) :
if (kFvec[0]==0 and kFvec[3]==0):
return 0.
elif (nr="1r"):
return renormalizedPressure (kFvec,mStar, gSigma ,gOmega,gRho,b,c)
else:
ke ,kMu, kn , kp, klambda , ksminus , ksO , ksplus , kximinus , kxi0 = kFvec [:]
sigma = sigmaField (mStar,gSigma)
omega = omegaField (kFvec,gOmega,xOmega)
rho = rhoField (kn,kp, ksminus, ksplus , kximinus , kxi0 ,gRho,xRho)

meml = —0.5*mSigmax**2xsigma**2+1./3*bxm*(gSigmas*sigma)xx3+1./4xc*(gSigmasxsigma)
* x4

mem2 = 0.5*mOmega**2xomega*x+2+40.5xmRhox*2xrho**2

mem3 = freeFermiGasPressure (ke ,me)

memd = freeFermiGasPressure (kMu,mMu)

(
mem5 = freeFermiGasPressure (kn, mStar)
mem6 = freeFermiGasPressure (kp, mStar)
mem7 = freeFermiGasPressure (klambda , mStarLambda)
(

mem8 = freeFermiGasPressure (ksminus, mStarS)
mem9 = freeFermiGasPressure (ksO , mStarS)

meml0 = freeFermiGasPressure (ksplus ,mStarS)
memll = freeFermiGasPressure (kximinus , mStarXi)
meml2 = freeFermiGasPressure (kxi0 , mStarXi)

return meml+mem2+mem3+mem4d+mem5+mem6b+mem7+mem8+memHmem10+mem11+mem12

112 #Returns the energy density#

113

114

415

@jit
def

energyDensity (kFvec ,mStar , mStarLambda, mStarS , mStarXi , gSigma ,gOmega,gRho,b,c,xRho,nr,
hyp) :
if (kFvec[0]==0 and kFvec[3]==0):
return 0.
elif (nr="1r"):
return renormalizedEnergyDensity (kFvec,mStar, gSigma ,gOmega,gRho,b,c)
else:
ke ,kMu, kn , kp , klambda , ksminus , ksO , ksplus , kximinus , kxi0 = kFvec [:]
sigma = sigmaField (mStar,gSigma)

omega = omegaField (kFvec,gOmega,xOmega)
rho = rhoField (kn,kp, ksminus, ksplus , kximinus , kxi0 ,gRho,xRho)
meml = 0.5xmSigmaxx2xsigma**2—1./3*bxmx*(gSigmas*sigma)**x3—1./4xc*(gSigmas*sigma)

*%k4
mem2 = 0.5*mOmega**2xomega*x+2+40.5xmRhox*2xrho**2
mem3 = freeFermiGasEnergyDensity (ke ,me)
mem4 = freeFermiGasEnergyDensity (kMu,mMu)
mem5 = freeFermiGasEnergyDensity (kn, mStar)
mem6 = freeFermiGasEnergyDensity (kp, mStar)
mem7 = freeFermiGasEnergyDensity (klambda , mStarLambda)
mem8 = freeFermiGasEnergyDensity (ksminus , mStarS)
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mem9 = freeFermiGasEnergyDensity (ksO, mStarS)

meml0 = freeFermiGasEnergyDensity (ksplus , mStarS)

memll = freeFermiGasEnergyDensity (kximinus , mStarXi)

meml2 = freeFermiGasEnergyDensity (kxi0 , mStarXi)

return meml+mem2+mem3+memd+memS+mem6+mem7+mem8+mem9+mem10+memll+mem12
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#f’’ from chapter 7#

T AR

Q@jit

def fDoubleDer (mStar,gSigma,b,c):
return 2xbsmxgSigmax**3*xsigmaField (mStar,gSigma)+3*c*xgSigmax+4+sigmaField (mStar,
gSigma ) **2

#f 77 from chapter T#
LLLLL I ) TN IR
A 111t

@jit
def fTrippelDer (mStar,gSigma,b,c):
return 2*bxgSigma*+3+6+«cxgSigma**4xsigmaField (mStar, gSigma)

HHHAHAHAHFHAHRHEHE
#U from chapter T#
HHHHAHAHAHFHFHRHEHE
Qjit
def U(mStar, gSigma) :
if (sigmaField (mStar, gSigma) <=0.):
return 0.

meml = —(2xmath. pi)*x(—2)
if (mStar==0.):
mem2 = 0.
else:
mem2 = mStarxx4xnp.log (mStar/m)

mem3 = ms#*3%(m—mStar) —7./2xmx 2% (m—mStar ) «*2
mem4 = 13./3xmx*(m—mStar) «*3 —25./12%(m—mStar) *x4
return memls* (mem2+mem3+mem4 )

#The derivative of U from chapter 7#

@jit
def derU(mStar):
meml = (math. pi)s**(—2)
if (mStar <= 0.):
mem2 = 0.
elge ¢
mem2 = mStarx*3*np.log (mStar/m)
mem3 = mxx2x(m—mStar)
mem4 = —5./2*m* (m—mStar) **2
mem5 = 11./6%(m—mStar)**3
return meml * (mem2+mem3+mem4+memb )

/ T L /]

H A L £
AT it

L
Tt

HHHAHH A
#V from chapter T#
HHHHHHFHFAH A
Qjit
def V(mStar, gSigma,b,c):
meml = fDoubleDer (mStar, gSigma,b,c)
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498 if (mSigmas*2—meml<=0):

199 mem2 = 0.

500 else:

501 mSigmaStar = np.sqrt (mSigma*2—mem]1)

502 mem2 = mSigmaStar**4*np.log (mSigmaStar /mSigma)
503 mem3 = 2xbxmkgSigmax**3*sigmaField (mStar,gSigma)

504 mem4 = 3kcxgSigmaxx4dxsigmaField (mStar,gSigma ) **2

505 return (mem2—0.5%(—mSigmax*2*xmeml+3./2+meml**2— (mem3x*3+3+*mem3**2+mem4) /(3*mSigma
##2)—mem3x+4 /(12+mSigmax*x*4))) /(32*«math. pix*2)

P | 1)
507 T AT T T AT AT I 11 1 1 A A AT 11 11 1 11 11 11 11 11 11 11 11 11 1117

508 #Derivative of V from chapter 7#

510 @jit

511 def derV (mStar,gSigma,b,c):

512 meml = fDoubleDer (mStar, gSigma ,b,c)
513 if (mSigmas*2—meml<0) :

514 mSigmaStar = 0.

515 else:

516 mSigmaStar = np.sqrt (mSigma**2—mem]1)
517 mem2 = f{TrippelDer (mStar, gSigma,b,c)

518 mem3 = 2xbxmkgSigmakx*3

519 mem4d = 3xckxgSigma*x*4

20 mem5 = sigmaField (mStar, gSigma)

521 if (mSigmaStar <= 0.):

522 mem6 = 0.

523 else &

524 mem6 = (4xmSigmaStar**3xnp.log (mSigmaStar/mSigma)+mSigmaStar**3)+*mem2/ (2 gSigmax
mSigmaStar)

525 return —(mem6+0.5/gSigma*(—mSigma*2*mem2+3+mem2smem]— (mem3s * 3 xmembsk 2+ 4xmem3s * 2 x

mem4+memb5**3) /mSigmax*2 —(mem3+**4+memb5x**3) / (3*mSigma*x=x4))) /(32«xmath. pi**2)

s #Same as mStarFunc except that renormalization is accounted for#

530 @jit

531 def renormalizedMstarFunc (ke ,kn,kp, mStar,gSigma ,gOmega,gRho,b,c):

532 kMu = kMuFunc (ke)

533 meml = m—mStar

534 mem2 = gSigmax**2+mSigmax*(—2)

535 mem3 = bxmkmeml %2

536 mem4 = cxmeml**3

537 omega = omegaField ([0,0,kn,kp,0,0,0,0,0,0],gOmega,xOmega)

538 rho = rhoField (kn,kp,0,0,0,0,gRho,xRho)

539 mem5 = scalarDensity (omega,rho,0,ke,kMu,kn,kp, mStar,gSigma ,gOmega,gRho
7[0 )O ’0] 7[0 70 ’0] 7[0 70 ’0] 7Fa‘lse)

540 return 1.—meml/(mem2* (mem3+mem4+mem5—derU (mStar )—derV (mStar, gSigma ,b,c)))

543 #Same as energyDensity except that renormalization is accounted for#

545 @jit

546 def renormalizedEnergyDensity (kFvec,mStar,gSigma ,gOmega,gRho,b,c):

547 meml = energyDensity (kFvec,mStar,0,0,0,gSigma,gOmega,gRho,b,c,[0,0,0], ’n’,False)
548 mem2 = V(mStar, gSigma,b,c)

549 mem4 = U(mStar , gSigma)

0 return meml+mem2+mem4

7] NIRRT L] L] L L4 yu 1) Y7 INTRTRTN]
71117 7 T 111 TT1 71717 1117 7 117 7 T 1T 11 111111 7

3 #Same as pressure except that renormalization is accounted for#

553
- 1)) ) J 1) NI ININININn ININININ] JL 4L g 1) ] S /] ] NI

554 FHHTE T it iat AT IT iat AT IT 7t iRIEiEiais 7t iRiEiEiais 7t AT

555 @it

556 def renormalizedPressure (kFvec,mStar, gSigma ,gOmega,gRho,b,c):

557 meml = pressure (kFvec,mStar,0,0,0,gSigma ,gOmega,gRho,b,c,[0,0,0], 'n’, False)
558 mem2 = V(mStar , gSigma,b,c)

559 mem4 = U(mStar , gSigma )
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560 return meml—mem2-mem4

565 LA ) IR IR RN NI NIRRT TN IR TN IR TRTNIN) TR TN IR TRTNIN)
DO T T AT AT AT 1T 1T 1 11111117 T AT T T T T AT AT T 1T 11 1 T AT A 17 17 11 1 1 11 11 11 11 11 11 11 11 11 11 1T 17 11 11 1171 111117
566

567 FHHH Functions used to calculate the coupling constants #H##

572 #Same as mStarFunc except that it only holds for nuclear matter#
NN RN IR IR NI RN RN NIRRT NI IR IR IR IR TR IR TNl INININININTRTET]

ST3 FHHAF T A T 7 T T
s74 @Qjit

575 def nuclearMatterMassFunc (kF, mStar, gSigma ,gOmega,gRho,b,c,nr , hyp):
576 meml = (m—mStar)

577 mem2 = gSigmax*2smSigmaskx*(—2)

578 omega = omegaField ([0,0,kF,kF,0,0,0,0,0,0],g0mega,xOmega)

579 rho = rhoField (kF,kF,0,0,0,0,gRho,[0,0,0])

580 mem3 = scalarDensity (omega,rho,0,0,0 ,kF,kF, mStar, gSigma ,gOmega, gRho
7[0 70 70] 7[0 70 70] 7[0 70 70] 7hyp)
581 mem4 = bxmismemlx*2+ckmeml**3
582 if (nr="r"):
3 return —meml+mem?2s* (mem3+mem4—derU (mStar )—derV (mStar , gSigma ,b,c))

584 return —meml+mem?2* (mem3+mem4 )

587 #Finds the effective nucleon mass for nuclear matter#
IINININININININn I 1) I 1) NI /| I /] RN NI IR IR IR IR IR IR I IR IR IR IR IR IR NI IR ININ]]

588 T T IraTT 7 7 17T 177 77 77
ss0 def nuclearEffectiveMass (kF,gSigma ,gOmega,gRho,b,c,nr,hyp):
590 if (kF==0):

591 return 1.
592 else:
593 func = lambda mStar: nuclearMatterMassFunc (kF, mStar,gSigma ,gOmega,gRho,b,c, nr,

hyp)
594 if (np.sign (func(0))=mnp.sign (func(1l))):
return 0.

else:
dsad = op.brentq(func,0,1)

598 return dsad
599
600 JLL L) J) )] ) IINININTNN RN IR INIRIRINInn JLJL Sy ) ) NIRRT IR InInInn IINININIRN RN IR I ININ NI
60C T T I I iraT T T IrIrIrT T 77T T T T InrIT T T77777T T IrIreT
601 #Returns the effective mass, energy density and pressure for nuclear matter#
602 #for a given Fermi momenta 7#
I/ NIRRT IR IR IR IR I IN NI NN NIRRT IR TNl ININTNININT NIRRT NIRRT IR I IN NIl NIRRT IINININI;
603 11777 T 77177 Ty T T7T Ty Ty 177

604 @jit

605 def nuclearMatterEoS (kF, gSigma ,gOmega,gRho,b,c,nr , hyp):

606 mStar = nuclearEffectiveMass (kF, gSigma ,gOmega,gRho,b,c,nr,hyp)

607 epsilon = energyDensity ([0,0,kF,kF,0,0,0,0,0,0],mStar,0,0,0,gSigma ,gOmega,gRho,b,c
,[O 70 ’0] 7nr 7hyp)

608 P = pressure ([0,0,kF,kF,0,0,0,0,0,0],mStar,0,0,0,gSigma,gOmega,gRho,b,c,[0,0,0],nr,
hyp)

609 return mStar, epsilon ,P

610

611

612 #Finds the rho coupling given a Fermi momenta and effective mass at saturation#
613 #as well as the symmetry energy coefficient as #
21 A IrInInInIan ININIRIRINININan NIRRT NIRRT IR InInInn NIRRT NIRRT I IININIRINN 1L 1))
614 T I7raT 1T T IrIrIT T 7777 T IrITTT 1T Ir T T aITaT T IrITIrIT

615 @jit
616 def findgRho (kFsat ,mStar,aS):

617 meml = aS—kFsat*x2/(6xnp.sqrt (kFsat**24+mStar*%2))
618 mem2 = 12sxmath. pi**2xkFsat**(—3)

619 gRho = mRhoxnp. sqrt (meml*smem2)

620 return gRho

621
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623 #Function used to calculate the effective mass at saturation#

625 @jit
626 def mStarFuncCouplings (kFsat ,gSigma ,gOmega,gRho,b,c,nr):
627 return nuclearMatterEoS (kFsat ,gSigma,gOmega,gRho,b,c,nr,False) [0]

630 #Returns the binding energy at saturation#

632 @jit

635 def Bfunc(kFsat ,satDens ,gSigma,gOmega,gRho,b,c,nr):

634 epsilon = nuclearMatterEoS (kFsat ,gSigma ,gOmega,gRho,b,c,nr,False) [1]
635 return epsilon/satDens—m

636

637 IR IR IR I I IR NI I I ININIRIei} /1] /1] /1] /1] /1] /1] /1] /1] /1]

TIAT I T 11 1 T A A T 1 11 1 1 11 0 1T 17 11 11 1 11 11 11 11 11 11 11 11 41 11 11 11 11 11 11 1111 17 11 11 71 1111 11 11 11 11 11

63s #Returns the criteria that dB/drho=0 at saturation#

NIRRT IR TR IR TN I NIRRT /] /] /] /] /] /] /] /] /] /]
TIAT I I 1T 1T 1 T A AT T 1 11 1 1 1T A AT 17 11 11 1 11 11 11 11 11 11 11 11 11 17 11 1 11 11 11 11 11 17 11 11 11 11 11 11 11 11 11 11

610 @jit

641 def densFunc(kFsat ,satDens ,dkF,dRho, gSigma ,gOmega,gRho,b,c,nr):

642 epsilon = nuclearMatterEoS (kFsat ,gSigma ,gOmega,gRho,b,c,nr, False) [1]

643 epsilonPlus = nuclearMatterEoS (kFsat+dkF , gSigma ,gOmega,gRho,b,c,nr, False) [1
644 epsilonMinus = nuclearMatterEoS (kFsat—dkF, gSigma ,gOmega,gRho,b,c,nr, False) [
645 return (satDens)*x(—1)x(epsilonPlus—epsilonMinus)**(—1.)+*dRho*xepsilon

]
1]

@jit
def Kfunc(kFsat,satDens ,dkF,dRho, gSigma,gOmega,gRho,b,c,nr):
epsilon = nuclearMatterEoS (kFsat ,gSigma ,gOmega,gRho,b,c,nr, False) [1]
epsilonPlus = nuclearMatterEoS (kFsat+dkF , gSigma ,gOmega,gRho,b,c,nr, False) [1
[

]
1]

654 epsilonMinus = nuclearMatterEoS (kFsat—dkF , gSigma ,gOmega,gRho,b,c,nr, False)
655 epsilonDensPlus = epsilonPlus/(2xdensity (kFsat+dkF))

656 epsilonDens = epsilon/satDens

657 epsilonDensMinus = epsilonMinus /(2xdensity (kFsat—dkF))

658 return kFsat**2x(epsilonDensPlus+epsilonDensMinus —2*«epsilonDens ) *dkFxx(—2)
659

660 ”I”Hll ””/l/l/,/,/l///r// ””/l/l//,/l///lr// ””Hl/,/,/rl/l/ /l/ ””Hl//,/rl/l/ /l/ ””Hll’l’l /lr l/l ””Hlll,l l/l l/’/””u// ,/ lrl/l/l/””/r// ,/ lrl/l/l/”/”/r// ,/ lrl/l/l/,/,/”/r// ”l/l

661 #Function that returns the values of computed binding energy and =

662 #saturation density for a given set of couplings and the empirical value#
663

664 def bindingEnergyAndSaturationDensityCheck (kFvec,satDens,satB,nuclearEpsilonVec ,N):

665 k = kFvec[0]

666 dens = 2xdensity (k[1:N])

667 nuclearEpsilonVec = nuclearEpsilonVec [1:N]

668 N=N-1

669 epsilon = interpolate.interpld (dens,nuclearEpsilonVec)
670 func = lambda den: epsilon(den)/den — m

671 satDensIndex = list (func(dens)).index (min(func(dens)))
672 B = min(func(dens))

673 satDens = MeVtoFm(satDens*939%x%3,3)

674 return satDensIndex ,[MeVtoFm(dens [satDensIndex]*939%%3,3) ,satDens] ,[B%939,satBx939]
675

NS ININININIRIRINININIaT TR IR IR IR INININ) TNTRIRINININIET] INTRTN TN TR N IR TRTAT) TN ININTRTAT
676 T 111111 17 T ittt T 111 1111111 11 T 111111111 11 Tttt L

677 #Function that returns the values of computed effective mass#

67s #for a given set of couplings and the empirical value #
679 i 1

650 def mStarCheck (kFvec,satMstar ,nuclearMstarVec ,satDensIndex ,N):
681 return [np. float (nuclearMstarVec[satDensIndex]), satMstar]
682

i TN IR IR TR TR AT TTNINININIRIAT] TN ININTRIAT] L)1 TTNINININIAT TNTNTNININTRIAT]

683 T 7T 77I7 T T7IT 17T T T7IT T IrIrT T T7I7T T iriT T T7IT 77T 17777
684 #Function that returns the values of computed compression modolus#
685 #for a given set of couplings and the empirical value #

67 def compressionModuloCheck (kFvec,satK,nuclearEpsilonVec ,satDensIndex):

145



688 k = kFvec[0]

689 deltaEpsilon = nuclearEpsilonVec [satDensIndex+1]—nuclearEpsilonVec[satDensIndex —1]
690 deltaEpsilon2 = nuclearEpsilonVec [satDensIndex+1]+nuclearEpsilonVec [satDensIndex —1]
691 deltaK = k[satDensIndex+1]—k[satDensIndex —1]

692 derEpsilon = deltaEpsilon/deltaK

693 derEpsilon2 = (deltaEpsilon2 —2+«nuclearEpsilonVec[satDensIndex]) *(0.5xdeltaK ) xx(—2)
694 satDens = 2xdensity (k[satDensIndex])

695 satkF = k[satDensIndex|

696 satE = nuclearEpsilonVec [satDensIndex]

697 meml = derEpsilon2

698 if (satkF = 0.):

699 K = 0.

700 else:

701 mem2 = 6xderEpsilon/satkF

702 mem3 = 6xsatExsatkF xx(—2)

703 mem4 = 18k«satExsatkF *x(—2)

704 K = satkF #%2x(meml-mem2-mem3+mem4) xsatDens*(—1)

705 return [K%939,satKx939]

706

— nIIeIe L] Sy 1) /L L / / L] ININIeInn /L / 1L /L

707 7 T 77T TI7T7T 77T T 7T 77777
s #Function that returns the values of computed symmetry energy cooff1c1nnt#
709 #for a given set of Coupllngs and the empirical value #

e £ 4 £ .. A A ”.. e AL £ 4 A
710 7 ///// T It Tt T I Tt

711 def symmetryCoefflclentCheck(kaec satAs satDensIndex ,mStar ,gRho) :
712 k = kFvec[0]

713 satkF = k[satDensIndex|

714 if (satkF==0.):

715 S = 0.

716 else:

717 meml = gRho**2xmRhoxx(—2)+satkF x+x3/(12+math.pixx2)
718 mem2 = satkF*%2/(6*(satkF**2+mStar*%2) x*(0.5))

719 S = (meml+mem?2)*939

0 return [S,satAs*939]

. L1 ‘/,/ 1/ / vy ) /// L // yTNTNINY] o] /Y yINTNINTN ) /// )
11117 T 17 17 iR Tt 17 T

def runAllChecks(kaec satDens SatB ,satK ,satMstar ,satAs nuclearMstarVec 5
nuclearEpsilonVec ,gRho) :

26 N = len(nuclearEpsilonVec)

27 satDensIndex ,B,D = bindingEnergyAndSaturationDensityCheck (kFvec,satDens ,satB,

3 #Returns the results from all the four check—functions above#
4

nuclearEpsilonVec ,N)
728 mStar = mStarCheck (kFvec, satMstar ,nuclearMstarVec ,satDensIndex ,N)
729 K = compressionModuloCheck (kFvec,satK ,nuclearEpsilonVec ,satDensIndex)
730 symmetryCoefficientCheck (kFvec,satAs,satDensIndex ,mStar [0] ,gRho)
731 return B,D, mStar ,K

. / ] / L / o] T 1]
o9 T IIH 7 7 it 7 7

734 #Cdl(uldtes the (:()upling constants#

e L / L L // i /
735 117

736 def coupllngConstants(best sa.tDens satMstar ,satB ,satK ,satAs, gSigmaRange ,gOmegaRange ,
bRange,cRange ,N, tolerance ,nr ,hyp) :

737 kFsat = momentaFromDensity (satDens) /2xx%(1./3)

738 dkF = 10xx(—5)

739 if (Nl=1):

740 deltaSigma = (gSigmaRange[l] —gSigmaRange[0]) /(N—1)
741 deltaOmega = (gOmegaRange[1l] —gOmegaRange [0]) /(N—1)
742 deltab = (bRange[l] —bRange[0]) /(N—1)

743 deltac = (cRange[l] —cRange[0]) /(N—1)

744 else:

745 deltaSigma = (gSigmaRange[l] —gSigmaRange[0]) /2

746 deltaOmega = (gOmegaRange[1] —gOmegaRange [0]) /

747 deltab = (bRange[l] —bRange[0]) /2

748 deltac = (cRange[l] —cRange[0]) /2

749 gSigmaGuess gSigmaRange[0] —deltaSigma

750 gOmegaGuess = gOmegaRange[0] —deltaOmega
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bGuess = bRange[0] —deltab

cGuess = cRange[0] —deltac

dRho = 2x(density (kFsat+dkF)—density (kFsat—dkF))

gRho = findgRho (kFsat ,satMstar ,satAs)

func = lambda arg:[(satMstar—mStarFuncCouplings(kFsat,arg[0],arg[1l],gRho,arg[2],arg

[3],0r))
(satB—Bfunc (kFsat ,satDens ,arg[0] ,arg[1] ,gRho,arg[2],arg[3],nr)),
(densFunc (kFsat ,satDens ,dkF,dRho, arg[0] ,arg[1] ,gRho,arg[2],arg

[3] ,nr))
(satK—Kfunc (kFsat ,satDens ,dkF ,dRho, arg [0] ,arg [1] ,gRho,arg[2],arg
3] ,nr))]
bestgSigma = gSigmaGuess+0.5%(gSigmaRange[1] —gSigmaRange [0])
bestgOmega = gOmegaGuess+0.5%(gOmegaRange[1] —gOmegaRange [0])
bestb = bGuess+0.5%(bRange[1] —bRange[0])
bestc = cGuess+0.5%(cRange[l] —cRange[0])
solver = ’hybr’
for i in range(N):
gSigmaGuesst=deltaSigma
for j in range(N):
gOmegaGuesst=deltaOmega
for 1 in range(N):
bGuesst+=deltab
for n in range(N):
print ((N*%4) ,(n+1+«N+j«NxN4-i «N«N«N+1) , best )
cGuesst=deltac
solution = op.root (func,[gSigmaGuess,gOmegaGuess,bGuess, cGuess],
method=solver)
gSigma ,gOmega,b,c = solution .x
if (solution.success = True and (b<0) and (c<0)):
N2 = 100
kFvec,densVec ,mStarVec, epsilonVec ,Pvec,nuclear = createVectors

(1.,0.03,[gSigma, gSigma] ,[gOmega,gOmega] , [gRho,gRho] ,[0,0,0],[0,0,0],[0,0,0],[b,b],[
c,c],N2,nr,hyp)
d,e,f,g = runAllChecks (kFvec,satDens,satB,satK , satMstar ,satAs,
nuclear [0] , nuclear [1] ,gRho)
d

= 1.—-d[0]/d[1]
e =1.—-e[0]/e[1]
f =1.-f[0]/f[1]
g = 1.-g[0]/g[1]
test = np.sqrt (d+x2+ex*24f+*x24g*x2)

if (test<best):
N2 = 5000
kFvec,densVec ,mStarVec, epsilonVec ,Pvec,nuclear =
createVectors (1.,0.03,[gSigma,gSigma] ,[gOmega,gOmega] ,[gRho,gRho
1,10,0,0],[0,0,0],[0,0,0],[b,b],[c,c],N2,nr,hyp)
d,e,f,g = runAllChecks (kFvec,satDens,satB,satK, satMstar,
satAs,nuclear [0] ,nuclear [1],gRho)

d =1.—-d[0]/d[1]
e = 1.—e[0]/e[1]
f =1.—f[0]/f[1]
g = 1.—g[0]/g[1]
test = np.sqrt (dsx24ex*24fx*x24g*xx2)

if (test<best):
best = test
print (best)
if (best<tolerance):
print (” Coupling sucess for” ,nr)
return gSigma ,gOmega,gRho,b,c, best
bestgSigma = gSigma
bestgOmega = gOmega
bestb = b
bestc = ¢
cGuess = cRange[0] —deltac
bGuess = bRange[0] —deltab
gOmegaGuess = gOmegaRange[0] —deltaOmega
print (” Failed to find satisfactory couplings for” ,nr)
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807 print (bestgSigma , bestgOmega ,gRho, bestb , bestc , best)
808 return bestgSigma ,bestgOmega ,gRho, bestb , bestc , best
809

810

811

s12 #Creates coupling constants, then write them to file#
- / / /| / /| / / /1 i v i NI /] ] /
S P e )

s14 def writeCouplingConstantsToFile (satDens,satMstar ,satB,satK,satAs, gSigmaRange,
gOmegaRange , bRange , cRange ,N, iterations , multiplier ,tolerance ,nr,hyp, filename):
815 best = 1000

816 for i in range(iterations —1):

817 gSigmatest ,gOmegatest ,gRhotest , btest ,ctest ,test = couplingConstants (best ,satDens
,satMstar ,satB ,satK ,satAs ,gSigmaRange ,gOmegaRange ,,bRange ,cRange ,N, tolerance ,nr,hyp)

818 if (test<best):

819 best=test

820 gSigma = gSigmatest

821 gOmega = gOmegatest

822 gRho = gRhotest

823 b = btest

824 c = ctest

825 gSigmaRange [1] = gSigma+(gSigmaRange[1] —gSigmaRange [0]) /2xmultiplier

826 gSigmaRange [0] = gSigma—(gSigmaRange[1] —gSigmaRange [0]) /2*xmultiplier

827 gOmegaRange [1] = gOmega+(gOmegaRange[1] —gOmegaRange [0]) /2xmultiplier

828 gOmegaRange [0] = gOmega—(gOmegaRange[1] —gOmegaRange [0]) /2*multiplier

829 bRange[1] = b+(bRange[l] —bRange[0]) /2*xmultiplier

830 bRange [0] = b—(bRange[l] —bRange[0]) /2«xmultiplier

831 cRange [1] = c+(cRange[l] —cRange[0]) /2% multiplier

832 cRange [0] = c—(cRange[l] —cRange[0]) /2*multiplier

833 else:

834 break

835 if (best<tolerance):

836 gSigma = gSigmatest

837 gOmega = gOmegatest

838 gRho = gRhotest

839 b = btest

840 c = ctest

841 if (nr="1r"):

842 filename = filename+’Renormalized’

843 f = open(filename , ’'w’)

844 f.write(str(gSigma)+” "+str (gOmega)+”’ "+str (gRho)+” "+str (b)+” "+str(c)+’\n”
)

845 f.close ()

846 return

847 print (7 Tl ” )

848

849 print (’Falure couplings’)

850 best=test

851 gSigma = gSigmatest

852 gOmega = gOmegatest

853 gRho = gRhotest

854 b = btest

855 c = ctest

856 if(nr="1"):

857 filename = filename+’Renormalized’

858 f = open(filename , 'w’)

859 f.write(str (gSigma)+” 7+str (gOmega)+” "+str (gRho)+” "+str (b)+” 7+str(c)+’\n”)

860 f.close ()

861 return

862 return

863

864

- /] i / INININ] NI i / NN / L gL g ]
865 T ITIrT T 7777 T T TIT7777T T 7777 17T 11777
s66 #Takes a filename and returns the coupling constants in that file#

L INTRTRTN] ynT L INTRTNTY] L L] NN
T 1117 T 17117 71117 T 177 1T 717171 7

7T 17T T T
s6s def readCouplingConstantsFromFile (filename ,mSigma) :
869 numbers = np.zeros (5,np. float)
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870 if (mSigma==550./939) :

871 f = open(filename,’'r’)

872 line = f.readline ()

873 numbers [:] = line.split ()

874 f.close ()

875 f = open(filename+’Renormalized’, ")

876 line = f.readline ()

877 numbersR = np.zeros (5,np. float)

878 numbersR [:] = line.split ()

879 f.close ()

880 return ([numbers[0] ,numbersR [0]] ,[numbers[1] ,numbersR[1]] ,[numbers[2] ,numbersR [2]],
881 [numbers [3] ,numbersR [3]] ,[numbers [4] ,numbersR [4]])

s ”” 1 1 s ”” 1 rma ”” 1 1 ra ”r 1 11
17 T 1T 17 17 T 1T 17 17 17 T 17 17 17 T 1T 17 17

ss5 #Creates all vectors (Fermi momenta, effective masses etc) #
/

HHH // HH A // S // S

886 7t i 71 71 71 71 71 71 7 71 71 71 7 71 71 71 i
ss7 @jit

sss def createVectors (keMax,densMax, gSigma ,gOmega, gRho, xSigma ,xOmega,xRho,b,c,N,nr ,hyp):
889 if (nr="n"’):

890 gSigma = gSigma [0]

891 gOmega = gOmega[0]

892 gRho = gRho[0]

893 b = b[0]

894 c = C[O]

895 else:

896 gSigma = gSigma [1]

807 gOmega = gOmega[1]

898 gRho = gRho[1]

899 b = b[l]

900 c = c[l]

901 if (hyp=True):

902 densVec = np.linspace (0,densMax ,N+1)

903 keVec = np.zeros (N+1)

904 else:

905 keVec = np.linspace (0,keMax,N+1)

906 densVec = np.zeros (N+1)

907

908 kMuVec = np.zeros (N+1)

909 knVec = np.zeros (N+1)

910 kpVec = np.zeros (N+1)

911 klambdaVec = np.zeros (N+1)

912 ksminusVec = np.zeros (N+1)

913 ksOVec = np.zeros (N+1)

914 ksplusVec = np.zeros (N+1)

915 kximinusVec = np.zeros (N+1)

916 kxiOVec = np.zeros (N+1)

917 omegaVec = np.zeros (N+1)

918 rhoVec = np.zeros (N+1)

919 mStarVec = np.ones (N+1)

920 mStarLambdaVec = np.ones (N+1)+mLambda

921 mStarSvec = np.ones (N+1)*mS

922 mStarXiVec = np.ones (N+1)+*mXi

923 Pvec = np.zeros (N+1)

924 epsilonVec = np.zeros (N+1)

925 nuclearEpsilon = np.zeros (N+1)

926 nuclearP = np.zeros (N+1)

927 nuclearMstar = np.ones(N+1)

928 counter = 0

929

930 knVec[0] = (densVec[0]*3*math.pi**2)xx%(1./3)
931 for i in range(1,N+1):

932 if (hyp=True):

933 guesses = [omegaVec[i—1],rhoVec[i—1],keVec[i—1],knVec[i—1],mStarVec[i—1]]
934 omegaVec[i],rhoVec[i],keVec[i],kMuVec[i],knVec[i],kpVec[i], klambdaVec[i],

ksminusVec[i],ksOVec[i],ksplusVec[i],kximinusVec[i], kxiOVec[i],mStarVec[i],
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935

936
937

938

939

940

941

942

943
944
945
946
947
948
949
950

951

966
967
968

969

980
981
982
983
984
985
986
987

988

mStarLambdaVec[i],mStarSvec[i],mStarXiVec[i],sol = fermiMomentaAndEffectiveMass (
densVec|[i], guesses ,gSigma,hgOmega,gRho,xSigma ,xOmega,xRho,b,c,nr, hyp)

kFvec = [keVec[i],kMuVec[i],knVec[i],kpVec|[i],klambdaVec[i], ksminusVec[i],

ksOVec[i],ksplusVec[i],kximinusVec[i], kxiOVec[i]]
else:
guesses = [omegaVec[i—1],thoVec[i—1],knVec[i—1],mStarVec[i—1]]
omegaVec[i],rhoVec[i],keVec[i] ,kMuVec[i],knVec[i],kpVec[i],klambdaVec[i],
ksminusVec[i],ksOVec[i],ksplusVec[i],kximinusVec[i],kxiOVec[i],mStarVec[i],
mStarLambdaVec[i],mStarSvec[i],mStarXiVec[i],sol = fermiMomentaAndEffectiveMass (
keVec[i], guesses , gSigma,gOmega,gRho, xSigma ,xOmega,xRho,b,c,nr,hyp)

kFvec = [keVec[i],kMuVec[i],knVec[i],kpVec[i], klambdaVec[i], ksminusVec[i],

ksOVec[i],ksplusVec[i], kximinusVec[i], kxiOVec[i]]
dens = density (keVec[i]) + density (kMuVec[i]) + density (knVec[i])

dens = dens + density (kpVec[i])+density (klambdaVec[i]) + density (ksminusVec |

i])

[i]) + density (kxiOVec[i])
densVec[i] = dens
if (sol=True):
counter += 1

dens = dens + density (ksOVec[i])+density (ksplusVec[i]) + density (kximinusVec

nucM, nuce ,nucP = nuclearMatterEoS (keVec[i],gSigma,hgOmega,gRho,b,c,nr, hyp)

nuclearMstar [i] = nucM
nuclearEpsilon[i] = nuce
nuclearP [i] = nucP

Pvec[i] = pressure(kFvec,mStarVec[i],mStarLambdaVec|[i],mStarSvec[i],mStarXiVec]|i

], gSigma ,gOmega, gRho,b,c,xRho,nr,hyp)

epsilonVec[i] = energyDensity (kFvec,mStarVec[i],mStarLambdaVec[i],mStarSvec[i],

mStarXiVec[1i],gSigma,bgOmega,gRho,b,c,xRho,nr,hyp)
print (’FermiMomentaAndEffectiveMass converged’ ,counter ,’out of’ ,N, ’times’)

kFvec = [keVec,kMuVec,knVec, kpVec,klambdaVec, ksminusVec ,ksOVec, ksplusVec , kximinusVec

,kxi0Vec]
mStarVec = [mStarVec,mStarLambdaVec, mStarSvec , mStarXiVec|
nuclearVec = [nuclearMstar ,nuclearEpsilon ,nuclearP ]

return kFvec,densVec,mStarVec,epsilonVec ,Pvec,nuclearVec

T T T AT AT T 1T T T 1T AT 17 11 71 11 11 11 11 11 11 11 11 17 11 11 111117

T
5 HHHF Mass—radii relations FHHH

Ciiaia HHH#

P )
7 77 11117 1117 177

#The derivative of the mass M with respect to the radius r#
#for arbitrary relativity

L L] L NIRRTy, L ) L NIRRTy
17 717 i1 T 111 L 1117171 717 117 T 711 L 117

Q@jit
def dMdr(r,epsilon):
return betaxepsilon*r*x2

// 1] yuT INTRTNTY] INTRTNIN] L] L] //// L L)
71117 L T 111111 7 T 111111 7 HIIHII HIIHII 7 71117

#The derivative of the pressure P with respect to the radius r#
o #for arbitrary relativity #

Qjit
def dPdrTOV (r,P,M, epsilon):
return—RO*r**(—2.)x(epsilon+P) «(Mtbeta*Pxr*x3) (1. —2.«ROsMsrsx(—1))*x(—1)

/ ININININ] / / /1] ININININn ll/ / IIIIIHII Sl J) ) / IIIIHII NN
7777 7777 T TrT T I7rTrT TIT T ITTrT
#Fun(tlon that creates the (oeff1( ients in the Runge Klltt(l routlne#

N7 L] / N7 L] 1) IR L] 1) IR INTRTRTN]
HHI T 117 T 1717 T 1T 117 T 1117 T 117 T 1117 177
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989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

1054

@jit
def

k(r,P,M, epsilon ,h):

kP1 = dPdr'TOV (r ,P,M, epsilon)

kM1 = dMdr(r, epsilon)

kP2 = dPdrTOV (r+h/2,P+h/2xkP1 ,Mth/2xkM1, epsilon)
kM2 = dMdr(r+h/2,epsilon)

kP3 = dPdrTOV (r+h /2 ,P+h/2+kP2 ,Mth/2+kM2, epsilon)
kM3 = dMdr(r+h/2,epsilon)

kP4 = dPArTOV(r+h/2 ,P+h+kP3 M{h«kM3, epsilon )
kM4 = dMdr(r+h, epsilon)

return kP1,kP2,kP3,kP4,kM1,kM2,kM3,kM4

#Function that returns 2 vectors containing the mass—radius #

#relation and a flag indicating if the maximum number of #
#iterations is reached =
@jit
def results (Pc,h,nMax,EoS,PvecMin) :
P = Pc
M= 0.
r = 0.
flag=True
for i in range(nMax):
if (flag=True):
Memoryr = r
r = r+h
MemoryM = M
if (P<PvecMin) :
epsilon=0.
print (P)
else:
epsilon = EoS(P)
kP1,kP2,kP3, kP4 kM1, kM2, kM3, kM4 = k(r,P,M, epsilon ,h)
P = P+h/6x(kP142+kP2+2xkP3+kP4)
M = Mih /6 (KM1+2+kM2+2+kM3 kM4
if (np. float (np.real (P))<=0. or M=MemoryM) :
r = Memoryr
flag = False
break
if (flag = True):
print (?Maximum number of iterations reached”)
print (” for TOV-equation with Pc = %.8f"%Pc)
return r, np.float (np.real(M)),flag

#Does the same as parametrisingNonRel for arbitrary relativity#

””’/’I ”,/’/’ll ”/,/” //” ”,/,/ll”,/,/” ///” ”,/,/ll”,/,/” //,/” ”’/’/II/ ,/,/”l ”/,/” ”’/’/II/ ,/,/”l ”/,/” /’/’I ”,/’/’ll ”,/,/”
T 777 T IrreTT 17T T IrrTT 17T T IrIrTT T IrIrTT T IrrTT T
Q@jit
def paramterising (parameters,epsilonVec ,Pvec):

PcMmax = 0.

PcMin = parameters [0]

PcMax = parameters[1]

N1 = int (parameters[2])

h = parameters [3]

nMax = int (parameters [4])

N2 = len (Pvec)

if (PcMax>Pvec [N2—1]):
print (?PcMax changed from ” ,PcMax,” to ”, Pvec[N2-—1])
PcMax = Pvec[N2—1]

PvecMin = min(Pvec)

Pc = PcMin
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1055 const = (np. float (PcMax) /PcMin) s (1./N1)
1056 R = np.zeros(N1,np.double)

1057 M = np.zeros (N1l,np.double)

1058

1059 EoS = interpolate.interpld (Pvec,epsilonVec)

1060 mMax = 0.

1061 for i in range(N1):

1062 print (i)

1063 R[i] ,M[i], flag = results (Pc,h,nMax,EoS, PvecMin)

1064 if M[i]>mMax) :

1065 PcMmax = Pc

1066 if (flag=True):

1067 print (R[i])

1068 R =R[0:1]

1069 M = MJ[0:1i]

1070 N1l =i

1071 break

1072 Pc = Pcx*const

1073 print (” Pressure in the center of maximum mass:” ,PcMmax) #Print the pressure in the
star with largest mass

1074 return R,M,N1

1075

1076 ‘,“// /"/,“l 4 /'/' I 4 ITeTeTy /l/'/ L 'l'/ i) H“// i L]

7 iR
1077 #Writes mass—radius relation to file#
- / /L ImIan i / /L S]] S /] /. Il Il 1)
1078 7111 7 7 17 1177 T T 7

1070 def writeResultsToFile (parameters,epsilonVec ,Pvec, filename ,nr,hyp):

1080 if (nr="1r"):

1081 filename = filename+’ Renormalized’
1082 elif (hyp=True):

1083 filename = filename+’Hyperon’

1084 R2,M2,N = paramterising (parameters ,epsilonVec ,Pvec)
1085

1086 f = open(filename , 'w’)

1087 f.write(str (N)+’\n")

1088 for i in range(N):

1089 a = str(R2[1i])

1090 b = str(M2[i])

1091 f.write(a+” 74+b+7\n”)

1092 f.close ()

1093 return

1094

1095
1006 #Writes all data used in theses to file#
1097
1008 def writeAllThingsToFile (keMax,densMax ,satDens , satMstar ,satB ,satK ,satAs , gSigmaRange,
gOmegaRange ,bRange , cRange , filenameCouplings , filenameEoS , filenameMassRadii ,mSigma,N,

N2):
1099 if (mSigma==550./939):
1100 N3=2
1101 else:
1102 N3=1
1103 for i in range(N3):
1104 if (i==1):
1105 nr = 'n’
1106 else:
1107 nr = 'r’
1108 nr="n’

1109 writeCouplingConstantsToFile (satDens ,satMstar ,satB ,satK ,6 satAs,gSigmaRange,
gOmegaRange , bRange , cRange ,N,10,1./N,0.05 ,nr, False , filenameCouplings)

1110 gSigma ,gOmega,gRho,b,c= readCouplingConstantsFromFile(filenameCouplings ,mSigma)
1111 if (N3==2):
1112 N3=3

1113 for i in range(N3):
1114 if (i==2):
1115 nr = 'n’

1116 hyp = False
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1117 elif (i==0):

)

1118 nr = 'r

1119 hyp = False

1120 else:

1121 nr = ’'n’

1122 hyp = True

1123 writeEoStoFile (keMax ,densMax , gSigma ,gOmega,gRho,b,c,N2, filenameEoS ,nr ,hyp)

1124 kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenameEoS
nr, hyp)

1125 writeResultsToFile (parameters ,epsilonVec ,Pvec, filenameMassRadii ,nr, hyp)

1126

1127

1128 : S /] 7 / 4 f / 4 /, / / / / HH /1 /]

1120 #Reads mass—radius relations from file#

1180 TR AR A

1131 def readResultsFromFile (filename ,nr , hyp):

1132 if(nr="r"):

1133 filename = filename+’Renormalized’

1134 elif (hyp=True):

1135 filename = filename+’Hyperon’

1136 print (filename)

1137 f = open(filename ,’'r’)

1138 N = int (f.readline())

1139 R = np.zeros (N,np.double)
1140 M = np.zeros (N,np.double)

1141 i=20

1142 data = f.readlines ()

1143 for line in data:

1144 numbers = line.split ()
1145 R[i] = numbers[0]

1146 M[i] = numbers[1]

1147 i = 1+1

1148 f.close ()

1149 return R,M,N

IR IR IR TNy, /
117

1152 #Writes the EoS to file#
1155 SRR
11514 def writeEoStoFile (keMax,densMax , gSigma ,gOmega,gRho,b,c,N, filename ,nr ,hyp):
1155 if(nr="r"):
1156 filename=filename+’Renormalized’
1157 elif (hyp=True):
1158 filename=filename+’ Hyperon’
1159 kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear = createVectors (keMax,densMax, gSigma ,
gOmega, gRho, xSigma ,xOmega ,xRho,b,c,N,nr,hyp)
1160 ke = kFvec[0]
1161 kMu = kFvec[1]
1162 kn = kFvec[2]
1163 kp = kFvec[3]
1164 klambda = kFvec[4]
1165 ksminus = kFvec[5]
1166 ksO0 = kFvec[6]
1167 ksplus = kFvec[7]
1168 kximinus = kFvec[8]
1169 kxi0 = kFvec[9]
1170 nucMstar = nuclear [0]
1171 nucEpsilon = nuclear [1]
2 nucP = nuclear [2]
1173 mStar = mStarVec [0]
1174 mStarLambda = mStarVec[1]
1175 mStarS = mStarVec|[2]
1176 mStarXi = mStarVec[3]
1177 f = open(filename , 'w’)
1178 f.write(str (N)+’\n")
1179 for i in range(N):
1180 a = str(ke[i])
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1181 b = str(kMu[i])

1182 ¢ = str(kn[i])

1183 d = str(kp[i])

1184 e = str(klambda[i])

1185 g = str(ksminus[i])

1186 h = str(ks0[i])

1187 j = str(ksplus[i])

1188 k = str(kximinus[i])
1189 1 = str(kxiO[i])

1190 m = str(densVec[i])

1191 n = str(mStar[i])

1192 o = str (mStarLambda[i])
1193 p = str(mStarS[i])

1194 q = str(mStarXi[i])

1195 r = str(epsilonVec|[i])
1196 s = str(Pvec[i])

1197 t = str(nucMstar[i])
1198 u = str(nucEpsilon[i])
1199 v = str(nucP[i])

1200

1201 f. write(a'_i_” 77+b+77 ”+C+” 77+d+77 77+e+77 77+g+77 77+h+77 77+j+77 77+k+77 77+1+77 ”_HIH_” 77)
1202 f.write (nt” "Hot’ T4pt+? THat’ 447 T4s+’ T4t47 T4ut? 4v+7\n”)
1203 f.close ()

1204 return

1205
S

1206

1207 #Reads the EoS from file#
LA

1208 HHHHHH LU L
1200 def readEoSfromFile(filename ,nr,hyp):
1210 if(nr="1"):

1211 filename=filename+’Renormalized’
1212 elif (hyp=True) :

1213 filename = filename+’Hyperon’
1214 f = open(filename ,’'r’)

1215 N = int(f.readline())

1216 ke = np.zeros(N)

1217 kMu = np. zeros (N)

1218 kn = np.zeros (N)

1219 kp = np.zeros (N)

1220 klambda = np.zeros (N)

1221 ksminus = np.zeros (N)

1222 ks0 = np.zeros (N)

1223 ksplus = np.zeros (N)

1224 kximinus = np.zeros (N)

1225 kxi0 = np.zeros (N)

1226 densVec = np.zeros (N)

1227 mStarVec = np.zeros (N)

1228 mStarLambdaVec = np.zeros (N)

1229 mStarSvec = np.zeros (N)

1230 mStarXiVec = np.zeros (N)

1231 epsilonVec = np.zeros (N)

1232 Pvec = np.zeros (N)

1233 nucMstar = np.zeros (N)

1234 nucEpsilon = np.zeros (N)

1235 nucP = np.zeros (N)

1236 i=0

1237 data = f.readlines ()

1238 for line in data:

1239 numbers = line.split ()

1240 ke[i] = numbers[0]

1241 kMu[i] = numbers[1]

1242 kn[i] = numbers[2]

1243 kp[i] = numbers[3]

1244 klambda[i] = numbers [4]

1245 ksminus[i] = numbers[5]

1246 ksO[i] = numbers[6]
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a7 ksplus[i] = numbers[7]

18 kximinus [i] = numbers [8]
49 kxi0O[i] = numbers[9]

50 densVec[i] = numbers[10]

12

12

12

12

1251 mStarVec[i] = numbers[11]

1252 mStarLambdaVec|[i] = numbers[12]
1253 mStarSvec[i] = numbers[13]

1254 mStarXiVec[i] = numbers[14]

1255 epsilonVec[i] = numbers[15]

1256 Pvec[i] = numbers[16]

1257 nucMstar [i] = numbers[17]

1258 nucEpsilon[i] = numbers[18]

1259 nucP[i] = numbers[19]

1260 i = i+1

1261 return [ke,kMu,kn, kp,klambda, ksminus,ks0, ksplus ,kximinus , kxi0],densVec, [ mStarVec,

mStarLambdaVec, mStarSvec ,mStarXiVec] , epsilonVec ,Pvec, [ nucMstar ,nucEpsilon ,nucP] ,N

1L Il L 1)
17 717 7

= /) L 1 L L

)
26: T 7
264 #Plots all mass radius relations#
2

2

266 def plotMassRadiusRelation (filenamesMassRadii):
267 plt.figure ()

y

L

1

1

1

12

1268 ax = plt.gcal()

1269 ax.xaxis.set_label_coords (1.05, —0.02)

1270 ax.yaxis.set_label_coords(—0.05, 1)

1271 ax.set_xlabel (’$R$ [km]| ' ,fontsize = 13)

1272 ax.set_ylabel (’$M/M_\odot$’, rotation="horizontal’, fontsize = 13)

1273 colours = ['b’,’y’,’r’, g’ ,’'m’]

1274 for i in range(3):

1275 mSigma = 500 + 50%1i

1276 if (i==0):

1277 R,M,N = readResultsFromFile (filenamesMassRadii[1], 'n’,False)

1278 maxIndex = list (M).index (max(list (M)))

1279 print (?npmue—matter: Maximum mass is” M[maxIndex],” solar masses with radius”
, R[maxIndex], ”km\n”)

1280 plt.plot (R[0: maxIndex+1] ,M[0: maxIndex+1],colours[0],label = "MFA’)

1281 plt . plot (R[maxIndex:N| ,M[maxIndex:N] , colours [0]+ '—)

1282 R,M,N = readResultsFromFile(filenamesMassRadii[1l], 'n’,True)

1283 maxIndex = list (M) .index (max(list (M)))

1284 print (”hyperon—matter: Maximum mass is” M[maxIndex],” solar masses with
radius”, R[maxIndex], ”km\n”)

1285 plt . plot (R[0: maxIndex+1] M[0: maxIndex+1],colours [4] ,label = 'MFA with
Hyperons ’)

1286 plt . plot (R[maxIndex:N| ,M[maxIndex:N] , colours [4]+ '—)

1287

1288 R,M,N = readResultsFromFile (filenamesMassRadii[i], r’,False)

1289 maxIndex = list (M) .index (max(list (M)))

1290 print (” Renormalized npmue—matter , mSigma =” ,mSigma,” : Maximum mass is” M]
maxIndex],” solar masses with radius”, R[maxIndex], “km\n”)

1291

1202 plt . plot (R[0: maxIndex+1] M[0: maxIndex+1],colours[i+1],label = 'RHA with $m_\
sigma=$ '+str (mSigma) )

1203 plt . plot (R[maxIndex:N] ,M[maxIndex:N], colours [i+1]4+'—")

1294 plt.legend ()

1295
Son L i m L1 L T 1L m L
1296 FHHAHT T A ittt i i it 1 it 11t

/
T
1207 #Plots the equation of state from file#

1298

1200 def plotEoS (filenameEoS):

1300 plt . figure ()

1301 plt . xlim (0,0.02)

1302 plt .ylim (0,0.01)

1303 ax = plt.gca()

1304 ax.xaxis.set_label_coords (1., —0.07)

1305 ax.set_xlabel (’$\\bar{\epsilon}$’, fontsize = 15)
1306 ax.yaxis.set_label_coords(—0.05, 1.03)
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1307

1308

1309

1310

1311

1312

1338

1340

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

1363

ax.set_ylabel (’$\\bar{P}(\\bar{\epsilon})$’, rotation="horizontal’ 6 fontsize = 15)
kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenamesEoS [1],
'n’,False)

plt . plot (epsilonVec ,Pvec, ’b’,label="MFA")

kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenamesEoS[1],
'r’,False)

plt.plot (epsilonVec ,Pvec, 'r’,label="RHA")

kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile(filenamesEoS[1],

'n’,True)
plt.plot (epsilonVec ,Pvec, 'm’,label="MFA with hyperons’)
plt.legend ()

L L L

#Plots the population density from using the file containing the EoS#
/ /

L

def plotPopulationDensity (filenameEoS):

kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenamesEoS [1],
'n’,False)

plt. figure ()

ax = plt.gcal()

plt . xlim (0,1.6)

plt.ylim (0.001,1.01)

ax.text (0.84,0.66, 'n’ ,fontsize=14)

ax.text (0.60,0.19,’p’ ,fontsize=14)

ax.text (0.57,0.105, e’ ,fontsize=14)

ax.text (0.12,0.0066, $\mu$’, fontsize=14)

ax.xaxis.set_label_coords (1., —0.05)

ax.set_xlabel (’$\\rho$ [fm$"{—3}3]’, fontsize = 15)
ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$\\rho_i/\\rho$’, rotation="horizontal’,fontsize = 15)

plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],density (kFvec[0]) [1:N2+1]/densVec [1:
N2+1],°k’,label="e¢")

plt .semilogy (MeVtoFm(densVec*939%%3,3) [1:N2+1],(density (kFvec[1]) [1:N2+1]/densVec[1:
N2+1]),’r’,label="8\mu$ ")

plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[2]) [1:N2+1]/densVec[1:
N2+1]),’b’,label="n")

plt.semilogy (MeVtoFm(densVec*939%%3,3) [1:N2+1],(density (kFvec[3]) [1:N2+41]/densVec[1:
N2+1]),’g’,label="p")

kFvec,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenamesEoS[1],
'n’,True)

plt. figure ()

ax = plt.gcal()

plt.xlim (0,1.6)

plt.ylim (0.001,1.01)

ax.text (0.616,0.55, ' n’ ,fontsize=14)

ax.text (0.596,0.25, ' p’ ,fontsize=14)

ax.text (0.34,0.10, e’ ,fontsize=14)

ax.text (0.10,0.0066, $\mu$’, fontsize=14)
ax.text (0.24,0.0013, ’$\Sigma"—$’ ,fontsize=14)
ax.text (0.36,0.007, $\Lambda$’ ,fontsize=14)
ax.text (0.586,0.0013, $\Xi"—$’, fontsize=14)
ax.text (0.83,0.007, $\Sigma"0$’,fontsize=14)
ax.text(0.92,0.0013, $\Sigma’+$’,fontsize=14)
ax.text (1.14,0.007, ' $\Xi"0%’,fontsize=14)

ax.xaxis.set_label_coords (1., —0.05)

ax.set_xlabel (’$\\rho$ [fm$"{—3}3]’, fontsize = 15)
ax.yaxis.set_label_coords(—0.05, 1.03)

ax.set_ylabel (’$\\rho_i/\\rho$’, rotation="horizontal’,fontsize = 15)

plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],density (kFvec[0]) [1:N2+1]/densVec [1:
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N2+1],’k’,label="e")

1364 plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[1]) [1:N2+1]/densVec[1
N2+1]),’r’,label="8\mu$ ")

1365 plt .semilogy (MthoFm(densVec*939**3 ,3) [1:N2+1],(density (kFvec[2]) [1:N2+1]/densVec[1
N2+1]),’b’,label="n")

1366 plt. semllogy (MthoFm(densVec*939**3 ,3) [1:N2+1],(density (kFvec[3]) [1:N2+1]/densVec[1:
N2+1]), ,label="p")

1367 plt. semilogy (MeVtoFm(densVec*939%%3,3) [1:N2+1],(density (kFvec[4]) [1:N2+1]/densVec[1:
N2+1]),’k—’,label="$\Lambda$ )

1368 plt.semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[5]) [1:N2+1]/densVec[1
N2+1]),’r—’,label="8\Sigma"—$’)

1369 plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[6]) [1:N2+1]/densVec[1
N2+1]),’b—"’,label="8\Sigma"0$’)

1370 plt.semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[7]) [1:N2+1]/densVec[1
N2+1]),’g—’,label="8§\Sigma +$ )

1371 plt.semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[8]) [1:N2+1]/densVec[1
N2+1]),’y—',label="8\Xi"-$")

1372 plt .semilogy (MeVtoFm(densVec*939x%3,3) [1:N2+1],(density (kFvec[9]) [1:N2+1]/densVec[1

N2+1]), ' m—’,label="8\Xi"0%")
1374 // I// I// ,/,/ ,l,/ ,l,/ ,l,l ,l,l “/ ll l,/, ,/ /

1375 #P]ots the blndlng energy#

ynT 4

1376 HHHHHHHHY HHHHH

1377 def plotBlndlngEnergy(kaec epsilonVec ,nuclearEpsilonVec):
1378 dens = density (kFvec[2])+density (kaec [3])

1379 nuclearDens = 2xdensity (kFvec[0])

1380 N = len (epsilonVec)

1381 B = epsilonVec[1:N]/dens [1:N]—m

1382 nuclearB = nuclearEpsilonVec [1:N]/nuclearDens [1:N]—m
1383 plt . figure ()

1384 plt . xlim (0,1.5)

1385 plt.ylim(—50,300)

1386 plt.plot (MeVtoFm(dens [1:N]*x939%x3,3) ,Bx939,°b ")

1387 plt . plot (MeVtoFm(nuclearDens [1:N]*x939%%3,3) ,nuclearB%939,'r ")
1388 return

1389

300 FHHHHHHH U L
1390 T 17777 7777 17 17777 77T / 7 17 17777 T 17 T // 17T I// 7
1301 #Takes in the filenames of all relevant files and plots everythlng#

1392 L 1] /// L] L Ll L] ynT L]
1T 1171171 7 T 111111 117 T 111111 UEinia T 111111

1303 def plotEverythlng(fllenamesEOS filenamesMassRadii) :

1394 kFvec ,densVec,mStarVec, epsilonVec ,Pvec,nuclear ,N2 = readEoSfromFile (filenamesEoS [1],
r’,False)

1395 plotBindingEnergy (kFvec, epsilonVec ,nuclear [1])

1396 plotEoS (filenamesEoS [1])

1397 plotPopulationDensity (filenamesEoS [1])

1398 plotMassRadiusRelation (filenamesMassRadii)

1399

1400

1401 FHHHHHHHHHHHHHHHH

1402 FHHE FHHE

1403 FHH Program start -

1404 FHHH HHH

1405 FHf

1406

1407 #Some spesifications:

1408

1400 #The variable ’hyp’ is bool. If hyp=—=True then calculations include hyperons
1410 #The variable ’'nr’ is string. If nr=='n’ we use MFA, while nr=’r’ uses RHA
1411

IR i iaraiariaiaiaiar

1413 #Parameters#

IR i aaiaiaiiaiaiaiaid

1415

1416 #particle masses

a7 m = 1.

1213 me = 0.51099/939
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o mMu = 105.7/939.

o mSigma = 550./939

1 mOmega = 783./939

> mRho = 775.5/939

s mLambda = 1115./939
. mS = 1192./939

> mXi = 1318./939

7 #Other parameters
s RO = 1.47
o beta = 1.1426

1 #Nuclear matter properties

> landauMass = 0.83

3 satDens = fmToMeV (0.153,—3) /939%%3

32 satMstar = np.sqrt(landauMass*%2—((3/2+*math. pi**2xsatDens) *x(1./3))**2)
5 satB = —16.3/939

36 satK 300./939

37 satAs = 32.5/939

1430 #Variables used when computing massradius relations

1420 PcMin = 4%10%%(—6) #Minimum central pressure

1241 PcMax = 1.2%10%%(0) #Maximum central pressure

1242 N1 = 300 #Number of data points in mass—radius plot
1443 h = 0.001 #Step size in km

1144 nMax = 100/h #Maximum number of iterations

1446 #Collects the mass—radius parameters in one vector
1247 parameters = [PcMin,PcMax,N1,h,nMax]

1448

1440 N = 8#Number of intervalls used to compute the coupling constants
1450

1251 N2 = 50000 #Number of data points used for the EoS

1452 keMax = 0.5 #Maximum electron Fermi momentum

14253 densMax = 0.035 #Maximum baryon density

1255 #Coupling ratios: [xgLambda,xgSigma ,xgXi]
1456 xSigma = [1,1,1]

1157 xOmega = [1,1,1]

1455 xRho = [1,1,1]

1460 #Filenames

1461 filenamesCouplings = [’couplingconstants500’, couplingconstants550 7,
couplingconstants600 ]

1162 filenamesEoS = [’equationOfState500’, equationOfState550’, equationOfState600 ]

1163 filenamesMassRadii = [ ’massRadiusRelation500’, massRadiusRelation5507,"
massRadiusRelation600 ’ ]

)

1464

1465 #The ranges we look for the coupling constants

1166 gSigmaRange = [6,7]

1167 gOmegaRange = [8,9]

1468 bRange = [—0.01,0]

1160 cRange = [—0.01,0]

1470 mSigma = 500./939

1271 writeAllThingsToFile (keMax,densMax ,satDens ,satMstar ,satB ,satK ,satAs , gSigmaRange,
gOmegaRange , bRange ,cRange , filenamesCouplings [0] , filenamesEoS [0] , filenamesMassRadii
[0] ,mSigma ,N,N2)

1472 print (1, ’out of’,3, ’complete! ’)

1473 gSigmaRange = [7,9]

1272 gOmegaRange = [8,9]

1475 bRange = [—0.01,0]

1176 cRange = [—0.01,0]

1477 mSigma = 550./939

1475 writeAllThingsToFile (keMax ,densMax ,satDens ,satMstar ,satB ,satK ,satAs ,gSigmaRange ,
gOmegaRange , bRange ,cRange , filenamesCouplings [1] , filenamesEoS [1] , filenamesMassRadii
[1] ,mSigma ,N,N2)
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1479 print (2, 'out of’,3,’complete! Nearly there...’)

1450 gSigmaRange = [9,10]

1151 gOmegaRange = [8,9]

> bRange = [—0.01,0]

1183 cRange = [—0.01,0]

1454 mSigma = 600./939

1285 writeAllThingsToFile (keMax,densMax ,satDens ,satMstar ,satB ,satK,satAs , gSigmaRange,
gOmegaRange , bRange ,cRange , filenamesCouplings [2] , filenamesEoS [2] , filenamesMassRadii
[2] ,mSigma ,N,N2)

4s6 print (’Done! Just plotting now...’)

155 plotEverything (filenamesEoS , filenamesMassRadii)

1490

1401 plt . show ()

1492

1493

1494

14905 print (”\nTime spent:”)
1106 print (time. clock ()—t0)
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