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Gibbs-like phenomenon inherent in a
lumped element model of a rod

Sigve Hovda

Abstract
The underlying assumption of a lumped element model is that a spatially distributed physical system can be approximated
by a topology of discrete entities. The impact of this assumption is illustrated by a model of a finitely long elastic rod with
uniform cross section. The model involves a cascade of masses and springs, where the boundary itself is driven by a step
function. Previous authors have found closed-form solutions to related problems using the Laplace transform, while in
this article we obtain closed-form solutions by eigenvalue decomposition. This means that the extension to a rod with
non-uniform cross section is further illuminated. The closed-form solution is compared to a closed-form solution of a
distributed parameter model. Both solutions involve a sum of a forward and a backward moving wave that travels with
the speed of sound. In the case of the distributed parameter model, these waves are perfect square waves, while in the
case of the lumped element model, these waves are imperfect square waves that are subjected to ‘‘Gibbs-like’’ ringing.
Properties of this phenomenon are described. It is also shown that this phenomenon disappears, when using a continu-
ous step function and a model with sufficiently many elements.
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Introduction

Axial vibrations in a uniform rod is a canonical exam-
ple that is described in a variety of mechanical and
mathematical textbooks. Depending on the application,
both distributed parameter models and mass-spring
models are popular.

Distributed parameter models involve solving a par-
tial differential equation with boundary and initial con-
ditions. In Benaroya,1 a closed-form solution for a
distributed parameter model is given for a rod that is
fixed on one side and free to move on the other side.
This is the physical problem that is discussed in this
article. The only extension is that the rod is initially dis-
turbed by a step input.

A mass-spring model is a type of lumped element
model that involves solving a system of ordinary differ-
ential equations. It is commonly used in describing
vibrations in mechanical systems.2 The simple

mathematical description allows substantial interpreta-
tion and application of control theory, as discussed in
Benaroya.1 Moreover, the mathematical descriptions
are the same for a variety of analogous systems as well.
This means that if progress is made on solving one
problem, the actual impact is carried over to all other
analogous systems. Some examples of analogous sys-
tems are described in Chapter 12 in Siddiqui and
Singh.3 In particular, it is shown that a system
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involving beam torsion and an electrical system is ana-
logous to the problem described in this article.

Several papers exist on modeling an elastic horizon-
tal rod as a cascade of masses and springs. An impor-
tant contribution is Bavinck et al.,4 where closed-form
solutions exist in the case when the velocity of the first
left mass is subjected to a pulse response. The solution
involves first finding the solution for a semi-infinite
rod, which is a rod that has a starting point, but goes
on forever. This becomes a linear system of second-
order ordinary differential equations. The solution
involves taking the Laplace transform to get rid of the
derivatives. After resolving recurrence relations, the
inverse Laplace transformation results in expressions
that involve Bessel functions. Modeling a finite rod is
done by superposing the solutions of two semi-infinite
rods that are oppositely directed. Equations for free
and fixed boundaries are dependent on whether the
solutions are added or subtracted. The article also
shows that the solutions are dependent on whether the
mass or the spring comes first at the boundaries.

The model in this article is similar to the model in
Bavinck et al.,4 when the rod is finitely long, starting
with a spring on the left side that is fixed to a wall and
ending with a mass on right side that is free to move.
The differences between Bavinck et al.4 and this article
are related to the boundary on the left side. In this arti-
cle, the left boundary itself is driven by a step function,
while in Bavinck et al.,4 the left boundary is completely
fixed and the velocity of the first mass is given a pulse
load. It is possible that we could use the solution strat-
egy of Bavinck et al.,4 to solve the problem in this arti-
cle, but it is clearly not straightforward as such a
derivation involves different recurrence relations that
need to be solved and converted into Chebyshev poly-
nomials before the inverse Laplace transform can be
done.

Another closely related paper is Dieterman et al.,5

which compares a distributed parameter model of a
semi-infinite rod with the models described in Bavinck
et al.4 The main focus is on harmonic and transient
behavior, but also the topic of step response is touched
on. It is shown that a Gibbs-like pattern appears and
this complies with the results in this article.

The last paper that is close to the current contribu-
tion is Bavinck and Dieterman,6 which contains a
model for the movement of a train, where the locomo-
tive is able to have different mass than the wagons. The
papers Bavinck et al.,4 Dieterman et al.,5 and Bavinck
and Dieterman6 are linked together as they use the
Laplace transform to find the solutions. This has the
advantage of mathematical simplicity, when the masses
and the springs are essentially the same, except on the
boundaries. However, it seems difficult to generalize
these ways to yield any configuration of stiffnesses and
masses.

In this article, we have therefore chosen a different
route to solving the problem which involves eigenvalue
decomposition. We have found closed-form solutions
when the masses and springs are equal, but the solu-
tions are easily expandable by numerical eigenvalue
decompositions.

The mathematical description leads to a system of
linear ordinary differential equations that is given on a
matrix form. These equations are coupled, but they can
be decoupled by an eigenvalue decomposition.

In Smith and Smith,2 a closed-form solution is found
when the number of elements is limited to two, while
the extension to n elements is described in Demmel.7 In
Demmel,7 various numerical algorithms for finding
eigenvalues and eigenvectors are given. Finally, the
solution is interpreted in terms of eigenmodes. An
eigenmode is a natural vibration mode, where all parts
move sinusoidally with the same frequency.

There are two artifacts of the mass-spring model
compared to the distributed parameter model. One arti-
fact is related to the numerical algorithm of finding the
eigenvalue decomposition, which is described in
Demmel.7 The other artifact is related to the approxi-
mation that the mass of the beam is distributed on a
finite number of distinct points along the rod.

This article differs from the approach in Demmel,7

as it applies the closed-form expressions for the eigenva-
lues and eigenvectors that was found in Yueh.8 This
allows the solution to be fully closed-form. We show
algebraically that the solution is a sum of a forward
and a backward moving waves. This is analogous to the
solution of the one-dimensional (1D) wave equation.
Moreover, this extension allows us to prove that the
‘‘masses distributed on distinct points’’ approximation
is dominating the numerical error in most applications.
This artifact has much in common with the Gibbs phe-
nomenon, which is described next.

Using a Fourier expansion, we can represent a
square wave with amplitude and cycle frequency equal
to one by

fsq(t)=
4
p

P‘
k = 1

sin (2p(2k�1)t)
2k�1 ð1Þ

Therefore, fsq(t) is a weighed sum of odd-integer har-
monic frequencies. Computing any partial sum of this
expansion leads to an imperfect square wave that con-
tains a ringing artifact that is known as the Gibbs
phenomenon.

In Hewitt and Hewitt,9 the Gibbs phenomenon is dis-
cussed in detail, but we give brief summary here. In
Figure 1, the partial sum of the first n= 60 terms is
shown. It is well known that as n goes to infinity, the fre-
quency of the ringing increases, while the energy of the
ringing goes to zero and the approximation approaches
the square wave for any t. It is peculiar that the level of
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overshoot and undershoot converges to a fixed value,
which is (

Ð 1

0
sinc(x)dx� 1=2)a= 0:089490a, where a is

twice the amplitude. Mathematically, this makes sense,
since the point of overshooting and undershooting
moves as a function of n.

This article is laid out as follows: The first section
contains both a distributed parameter model and a
lumped element model of an elastic rod that is subjected
to a step input source. In the second section, the imper-
fect square wave that is obtained in the lumped element
model is discussed in more detail. In the third section,
the impact of using a continuous step function is out-
lined. It is suggested that for any steepness, it is possible
to choose enough elements to remove the ringing.

Sequential mass-spring model of a rod

We consider a horizontal rod of relaxed length L, mass
M , and stiffness K that is sliding frictionless on a table.
We model the rod as a set of n blocks that are con-
nected by n spring elements (Figure 2). All blocks have
mass m=M=n and all springs have relaxed length h

and spring constant k =Kn. The blocks have zero
length, so h= L=n. The springs are free to rotate with
respect to the blocks, which means that the springs can-
not take up angular momentum. A 1D coordinate sys-
tem is introduced, where positive x-axis is to the right.
The left side of the rod has the coordinate Q and this is
also the position of left side of the first spring. The ori-
gin of the coordinate system is chosen so that Q(0)= 0.

In the case when all springs are not in compression
or in tension and Q(0)= 0, the center of block i is ih.
This is the situation that is illustrated in Figure 2. The
distance between ih and Qi(t) is qi(t), that is
Qi(t)= ih+ qi(t). The physical state of the rod is there-
fore uniquely defined by Q(t) and the generalized coor-
dinates qi(t)s. In other words, the state space of the
system is n-dimensional.

Newton’s second law on each element is given by

0=m€q1 + k(q1 � Q)� k(q2 � q1)
0=m€qi + k(qi � qi�1)� k(qi+ 1 � qi), for 2� i� n� 1

0=m€qn + k(qn � qn�1)

ð2Þ

There are two ways to proceed on solving this sys-
tem: the distributed parameter model and the lumped
element model.

The distributed parameter model

We write the middle equation in equation (2) as

€qi =
KL2

M

(qi�1 � 2qi + qi+ 1)

h2

and let n go to infinity. This means that h goes to zero
and we obtain the 1D wave equation

∂2q

∂t2
= c2 ∂

2q

∂x2

where q(x, t) is the continuous function of movement
and c is the wave propagation speed. This is seen
because K =EA=L, M = rAL, and c=

ffiffiffiffiffiffiffiffi
E=r

p
, where E

is Young’s modulus and r is mass density of the rod.
In this article, we study the behavior when we apply

a unit step input at the left boundary and zero initial
conditions. At the left boundary, we have q(0, t)= 1,
while at the right boundary we have always zero
momentum, that is, ∂q(x, t)=∂x= 0. The initial condi-
tions are q(x, 0)= 0 and ∂q(x, t)=∂tjt = 0 = 0. Note that
this could also be modeled by setting q(0, t)= 0 and
applying a step function as a driving force. However,
we chose this path since we can apply the derivation in
on page 510 in Benaroya.1 In Benaroya,1 the equations
are developed for q(0, t)= 0 and arbitrary initial condi-
tions. We solved this by calling u(x, t)= q(x, t)� 1,
finding the solution and substituting back again

q(x, t)= 1+
X‘

j= 1

sin
(2j� 1)p

2L
x

� �

3 Aj cos
(2j� 1)p

2L
ct

� �
+Bj sin

(2j� 1)p

2L
ct

� �� �

Using ∂q(x, t)=∂tjt = 0 = 0, we see that all Bjs are zero.
Moreover, q(x, 0)= 0 implies that Aj must be equal to
�4=(p(2j� 1)). Therefore

Figure 1. The Gibbs phenomenon. The square wave is
approximated by the partial sum of the first 60 terms in
equation (1).

Figure 2. The model of the rod contains n= 9 blocks and
n= 9 springs. The figure shows the initial position, where
Q(0)= 0 and all springs are neither tensioned nor compressed.
The generalized coordinate qi is defined as the movement away
from ih.
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q(x, t)= 1� 4
p

P‘
j= 1

1
2j�1

sin (2j�1)p
2L

x
� �

3 cos (2j�1)p
2L

ct
� �

and using that sin (a) cos (b)= ( sin (a+b)+
sin (a� b))=2, we obtain

q(x, t)= f ((x+ ct)=4L)+ f ((x�ct)=4L)
2

, where f (u)= 1� fsq(u)

ð3Þ

Clearly, q(x, t) is a sum of two square waves with fre-
quency c=(4L) that moves in opposite directions. The
sum of these square waves at three locations is
described in Figure 3. The time period of these waves is
independent of x and equal to 4L=c. At the end point
x= L, the point moves to two after the sound wave has
propagated down to this point. It stays there till the
sound has propagated to the other end and back again.
At this time, the point jumps back to zero again. The
end point is just a square wave with phase shift equal
to one-fourth of the wave period. By equation (3), we
see that q(L, t)= f ((L+ ct)=(4L)).

At the point x= L=3, the point moves to one after
the wave has reached this point. It stays at this location,
till the sound wave has gone to the right end point and
back again. The point moves to two. The wave is now
going in the opposite direction and the x= L=3 point is
not moving before the wave has reached the left side
and back again. At this point, the point moves to one
again. This is why we get this stair-like behavior that is
seen in Figure 3. A similar discussion can be given for
the time behavior at x= 2L=3. It is worth noting that if
we approximate the fsq by a partial sum of the Fourier
expansion, we would obtain the Gibbs phenomenon on
all the ‘‘corners’’ in Figure 3.

The lumped element model

We take a step back and see that equation (2) is a sys-
tem of n coupled second-order ordinary differential
equations. This can be written on matrix form by

M€q+Kq= f(t) ð4Þ

where M is equal to mI and K is a tridiagonal matrix of
the form

k

2 �1 0 . . . 0 0 0

�1 2 �1 . . . 0 0 0

0 �1 2 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 2 �1 0

0 0 0 . . . �1 2 �1

0 0 0 . . . 0 �1 1

2
666666664

3
777777775

The first element of f(t) is equal to kQ(t), while the
others are zero. In this context, f1(t) is referred to as the
driving force of the system, even though the actual force
that is applied is f1(t)� kq1.

If K was a diagonal matrix, then all equations would
be decoupled and they could be solved separately. In
fact, the equations would be harmonic oscillators,
where properties are well known. Fortunately, there is
a trick for decoupling equation (4), which is described
in detail in Tisseur and Meerbergen.10 Since both M

and K are real symmetric and positive definite (i.e.
vTMv.0 and vTKv.0 for any non-zero and real col-
umn vector v), then (M,K) is a real definite pair.

When (M,K) is a real definite pair, then solving the
generalized eigenvalue problem

Mv= lKv

gives a diagonal matrix D of eigenvalues and a matrix
of eigenvectors V. The important property that moti-
vates this approach is that VTMV= I and VTKV=D,
where I is the identity matrix.

If we now make another linear coordinate transfor-
mation q=Vx and also multiply equation (2) by VT ,
we obtain

€x+Dx=VT f(t)

If we let vi =
ffiffiffiffiffiffi
Dii

p
and the first element of the ith

eigenvector is V1i, then

€xi +v2
i xi =V1ikQ(t) ð5Þ

These equations can be solved for any driving force
using a superposition of a homogeneous solution and a
particular solution. The homogeneous equation of
equation (5) is equivalent to setting Q(t)= 0, which is

xi(t) =Ai sin (vit +Bi)

where the parameters Ai and Bi are determined from
initial conditions. It is now clear that the natural fre-
quency of the system is vi.

The usual way of finding particular solutions is by
trying a more general form than Q(t) which includes a
number of constants and fitting it to equation (5). A
more general way is to first change the second-orderFigure 3. q(x, t) at three different locations in the rod.
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differential equation into a system of two first-order
differential equations and then use integrating factors
to find a more general term Adams.11 We rewrite equa-
tion (5) as

_y
i
=Aiyi + b

i
(t), where y

i
=

xi(t)

_xi(t)

� �
,

Ai =
0 1

�v2
i 0

� �
, and bi(t)=

0

V1ikQ(t)

� �

We seek a particular solution of the form
yi, p = exp (tAi)zi(t). Consequently, we have that

_yi, p = exp (tAi)Aizi(t)+ exp (tAi) _zi(t)

=Aiyi, p + exp (tAi)_zi(t)

where we are using the fact that
exp (tAi)Ai =Ai exp (tAi). This means that

exp (tAi) _zi(t)= bi(t) and

zi(t)=

ðt

0

exp (� uAi)bi(u)du+ ci

and the particular solution is therefore

yi, p =
Ðt
0

exp ((t � u)Ai)bi(u)du+ exp (tAi)ci ð6Þ

where ci is found from the initial conditions of the prob-
lem. The exponential matrix exp (tAi) is of the form

exp(tAi)= si, 0(t)I+ si, 1Ai where

si, 0(t)=
a exp (bt)� b exp (at)

a� b
= cos (vit)

si, 1(t)=
exp (at)� exp (bt)

a� b
=

sin (vit)

vi

by the Cayley–Hamilton theorem Gantmacher.12 Here,
a= ivi and b= � ivi are the roots of the characteris-
tic polynomial of Ai. Hence

exp(tAi)=
cos (vit)

sin (vi t)
vi

�vi sin (vit) cos (vit)

� �

and because we only need to look at the first element of
yi, p in equation (6), then

xi, p(t)=

V1ik

vi

ðt

0

sin (vi(t � u))Q(u)du+ ci, 1 cos (vit)+ ci, 2 sin (vit)

ð7Þ

where ci, 1 and ci, 2 are the components of ci. We realize
that the last two terms have the same form as the homo-
geneous solution. This means that if we redefine Ai and
Bi, the full solution is

xi(t)=
V1ik
vi

Ðt
0

sin (vi(t � u))Q(u)du+Ai sin (vit+Bi)

and qj(t)=Q(t)�tSj(t)+
Pn

i= 1

VjiAi sin (vit +Bi)

where Sj(t)= k
Pn

i= 1

VjiV1i

vi
sin (vit)

h i

ð8Þ

and �t is the convolution sign with respect to time.

Analytical expressions for V and D

The normal approach for finding the V and D is to
compute them numerically. However, in Theorem 1 in
Yueh,8 the eigenvalues and the eigenvectors are found
analytically. That is

v2
i =

k

m
2+ 2 cos

2(n+ 1� i)p

2n+ 1

� �� �
and

Vij =
1

f
ffiffiffiffi
m
p sin

(2j� 1)ip

2n+ 1

� �
, where f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1
p

2

It is worth noting that the expression for the eigen-
vectors in Theorem 1 in Yueh8 is a misprint. The eigen-
vectors that are given in Theorem 2 in Yueh8 are the
correct ones. We have found the normalizing factor f,
by summarizing the squared elements of the first
eigenvector.

The stiffness k is equal to EAn=L and the mass m is
equal to rAL=n, so thereforeffiffiffiffiffiffiffiffiffi

k=m
p

=(n=L)
ffiffiffiffiffiffiffiffi
E=r

p
= cn=L. We can therefore see

that

vi =
2cn
L
cos (n+ 1�i)p

2n+ 1

� �
= 2cn

L
sin (ui), where ui =

(i�(1=2))p
2n+ 1

and that

Vij =
1

f
ffiffiffi
m
p sin (2iuj)

From the analytical expressions for the eigenvectors
and eigenvalues, we see that

kVjiV1i

vi
= 2cn

L

	 

sin (2jui) sin (2ui)
(2n+ 1) sin (ui)

= 2cn
L

	 

2

(2n+ 1) sin (2jui) cos (ui)

This means that we can express Sj(t) as a difference
between a backward and a forward moving waves as

Hovda 5



Sj(t)=
s(j,�t, (c=4L))�s(j, t, (c=4L))

2
, where

s(j, u, a)= 16an
2n+ 1

Pn
i= 1

cos (ui) cos (2jui + 8an sin (ui)u)

ð9Þ

Therefore

qj(t)=
gf (j, t, (c=4L))+ gb(j, t, (c=4L))

2
+

Pn
i= 1

VjiAi sin (vit +Bi), where

gf (j, t, a)= � s(j, t, a)�tQ(t) and
gb(j, t, a)= s(j, � t, a)�tQ(t)

ð10Þ

This means that if we disregard the effects that are
induced by the initial conditions, qj(t) can be repre-
sented by a sum of a forward and a backward moving
wave.

Step response

In order to understand how the rod is affected by sud-
den changes, the step response is investigated. In partic-
ular, we investigate a system which is initiated by a
steady state where q= _q= x= _x= 0. With these ini-
tial conditions, all Ais in equations (8) and (10) are
equal to zero. At time zero, Q is moved to 1, that is

Q(t)=
0 for t\0

1 for t � 0

�

The full solution involves computing gf and gb from
equation (10) as

gf (j, t, a)=
2

2n+ 1

Xn

i= 1

cos (2jui)

tan (ui)
�

2

2n+ 1

Xn

i= 1

sin (2jui + 8an sin (ui)t)

tan (ui)
and

gb(j, t, a)=
2

2n+ 1

Xn

i= 1

cos (2jui)

tan (ui)
�

2

2n+ 1

Xn

i= 1

sin (2jui � 8an sin (ui)t)

tan (ui)

The first terms in the expressions are basically
Riemann sums and they can be approximated by

2

2n+ 1

Xn

i= 1

cos (2jui)

tan (ui)
=

2

p

ðp=2

0

cos (2ju)

tan u
du

We have found it difficult to solve this integral for
any j although it seems that the integral is equal to one.
We have proven this by taking another route to com-
pute gf and gb.

In the other route, we compute Q(t)�tSj(t) from equa-
tion (8) directly. This means that the full solution is

qj(t)=
Pn

i= 1

kVjiV1i

v2
i

(1� cos (vit))

for t larger than zero. By noting the fact that K�1 =
VTD�1V, we see that

Pn
i= 1

VjiV1i

v2
i

=(K�1)j1 = k�1. The
inverse of K can be found in Hovda.13 Therefore

qj(t)= 1�
Xn

i= 1

kVjiV1i

v2
i

cos (vit) ð11Þ

From the analytical expressions for the eigenvectors
and eigenvalues, we see that

kVjiV1i

v2
i

=
2 sin (2jui)

(2n+ 1) tan (ui)

and the step response is therefore

qj(t)= 1� 2

2n+ 1

Xn

i= 1

sin (2jui) cos (2cn=L) sin (ui)tð Þ
tan (ui)

Therefore, the forward and the backward moving
waves are

qj(t)=
g(j, (ct=4L))+ g(j, � (ct=4L))

2
, where

g(j, u)= 1� 2

2n+ 1

Xn

i= 1

sin (2jui + 8n sin (ui)u)

tan (ui)

ð12Þ

In the next section, we will describe g(j, u) in more
detail.

The Gibbs-like phenomenon

An overview of the behavior of the expressions in equa-
tion (12) is illustrated in Figures 4–6. Figure 4 shows
one period of g(j, t) for various j when n= 60. For large

Figure 4. One period of g(j, t) for various j is shown when
n= 60. The waves are almost identical and j=4n represents the
‘‘phase shift’’ of the wave. The quotes are used because the
waves are not perfectly periodic. Similar to the Gibbs
phenomenon, the wave includes overshoots and undershoots
followed by ringing. However, the Gibbs phenomenon involves
an undershoot before the upward step and also an overshoot
before the downward step. This effect is not seen in this figure.
Moreover, for the same n, the ringing has a lower frequency
than the ringing in the Gibbs phenomenon (Figure 1).
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n, g(j, t) is an estimate of the square wave with period
one and phase shift j=(4n). This means that equation
(12) is analogous to equation (3). The composition of
two oppositely directed waves is illustrated in Figure
5(a), while the analogous Fourier expansion is plotted
in Figure 5(b).

In Figure 6, we see that after several periods g(n, t)
becomes more and more distorted. Clearly, g(j, t) seems
to have a ‘‘period’’ of approximately one although it is
clear that it is not periodic by the mathematical defini-
tion. This can also be understood from equation (12). If
we neglect the constant, we see that g(j, u) is a weighted
sum of sine waves with different frequencies and phase
shifts. Since u1 ’ sin u1 for large n, we recognize that
the sine wave with the lowest frequency is in the scale
of 2n=(2n+ 1).

It is clearly of interest to investigate what happens to
g(n, t) for very large n. The most elegant way to proceed

is to look at limn!‘ g(n, t), but unfortunately this has
proven to be hard. The terms inside the summation are
inherently dependent on n and it is not possible, at least
to our understanding, to get out of this dependence. We
are therefore restricted from using the plethora of con-
vergence tests that are available for series.

Another approach is to manipulate sum into a
Riemann sum, which is a numerical approximation of
an integral. The uis goes from approximately 0 to p=2

and ui � ui�1 is p=(2n+ 1). This is encouraging, but the
n dependence inside the sine wave seems difficult to deal
with. Based on this discussion, we leave the attempts of
finding analytical expressions for this limit as an open
problem.

In the rest of this section, we will describe numeri-
cally what is the value at the step, the overshoots and

Figure 5. (a) One ‘‘period’’ of qn=2(t), where n= 60. The
staircase pattern from Figure 3 is easily recognized. For
comparison, q(L=2, t) is plotted in (b), where fsq(t) is
approximated by a partial Fourier expansion with n= 60.

Figure 6. Ten ‘‘periods’’ of g(n, t), with n equal to 60. It is clear
the wave is not fully periodic and that the wave is getting
distorted with time.

Figure 7. The figure shows g at the (a) upward and (b)
downward steps as a function of the logarithm of n. When n is
small, the curves deviate for different js, but when n goes to
infinity, the value at the upward step tends to 2/3 and the value
at the downward step tends to 4/3.
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undershoots and the frequency of the ringing. Finally,
we will also comment on what happens if we are com-
puting the eigenvalue decomposition numerically.

The value at the step

In Hewitt and Hewitt,9 it is shown that the value at the
step of the partial Fourier expansion of the square
wave is exactly on the midway between the top and
bottom amplitudes as n goes to infinity. We investigate
our wave by plotting the value of g as a function of n

at the upward and downward steps in Figure 7(a) and
(b), respectively. We identify the upward step at
1=2� j=(4n) and the downward step as 1� j=(4n). The
figures indicate that the value at the step converges to
fixed values. For instance, the value of g(1, 1=4) is
equal to 0.6615 and g(1, 3=4) is equal to 1.3415, when n

is 107. This indicates that the value at the upward and
downward step converges to one-third and two-thirds,
respectively, of the jump itself. The fact that this con-
verges for very large n, strengthens the conception of
j=(4n) as a ‘‘phase shift.’’

The level of the overshoot

In order to compute the overshoot, we need to find the
first maximum after the step. There is a challenge with
using standard numerical methods for finding the over-
shoot as we need to make initial guesses that are close
enough to the local maximum. This is a problem since
the frequency of oscillations increases for increasing n.

Our first approach was to use the time at the step as
the initial guess and the overshoot was easily detected
for small n, but this method became unstable as n

increased. We found a practical solution, as we realized
that the time from the step to the maximum overshoot
tovershoot is on the order of anb. By making some rough
estimates for a and b, we found small intervals where it
was easy to find the maximum values for larger n as
well. Finally, we refined the estimates of a and b and
ended up with this rule of thumb

tovershoot = 0:3194n�0:6727 ð13Þ

On a log scale, this is a straight line which is plotted
together with the estimates in Figure 8(a). The actual
overshoot is plotted for various n in Figure 8(b). The
two last estimates are equal to 0.5486, which indicates
that the actual overshoot is 27.43% of the actual step.
The exact same level is seen in the undershoot right
after the downward step.

The frequency of the ringing

In order to discuss the frequency of the ringing, we
have decided to plot g(n, t) on the domain
½1=4, 1=4+ 10 � tovershoot�. This is shown in Figure 9.

These results indicate that there is an underlying time
scale proportional to n�0:6727 which describes the ring-
ing. It follows that the energy of the ringing goes to
zero as n goes to infinity, even though the overshoot
level remains constant. This is analogous to the Gibbs
phenomenon.

In Figure 10, we see that the overshoot level seems
fairly constant from period to period.

Numerical eigenvalue decomposition

We have two ways to compute qj(t). The analytical
approach that is given by equation (12) or we can use
numerically computed eigenvalues and eigenvectors in
equation (11). We call this estimate q0j(t). In

Figure 8. (a) The time after the upward step for overshoot on
a log scale for various n. The line shows the rule of thumb,
which is estimated from the two last measurements. Although
the estimates do not follow the line for small n, it is clear that
the estimates converge to a straight line as n increases. (b) The
actual overshoot which seems to converge to 0.5486. This is
equivalent to 27.43% of the actual step.

8 Advances in Mechanical Engineering



Figure 11(a), we have plotted the difference of qn(t) and
q0n(t) as a function of time. The error is small, but seems
to increase with time. This can be interpreted from
equation (12), which is a sum of sine functions. Time is
a parameter that is proportional to the frequency of the
sine functions. Therefore, when t increases, the sine
wave is oscillating with a higher and higher frequency
and this becomes more and more difficult to handle
numerically.

In Figure 11(b), the difference between qn(1:25) and
q0n(1:25) is computed for different n. The time equal to
1.25 is chosen because this is related to the upward step
on the second period. The difference increases with n,
which can be understood by the impact of n on the fre-
quency of the sine wave. However, note that this differ-
ence is still small compared to the ringing effects that
are illustrated in this article.

Figure 9. This figure shows g(n, t) as a function of time on the interval ½1=4, 1=4+ 10 � tovershoot� for various n. Notice that the plots
are similar when the time scales are manipulated in this way. The plots seem to differ less as n increases. This indicates that the
energy in the artifact goes to zero as n goes to infinity. It is also worth noting that the frequency of the ringing (wave top to wave
top) seems to slowly increase.

Figure 10. The overshoot in different ‘‘periods’’ for n= 6.
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Regularized step function

We are now interested in seeing how the solution is
affected using a regularized step function of the form

Q(t)= 1
2
+ 1

p
arctan (Bt) ð14Þ

where B is a parameter that defines the steepness of the
step. This function is shown in Figure 12 for B= 100

and B= 1000. We choose the period a to be one and
compute gf (n, t, 1) by equation (10). We still consider a
system which is initiated by a steady state where
q= _q= x= _x= 0, that is, all Ais in equation (10) are
equal to zero. The convolution is computed numeri-
cally and gf (n, t, 1) is shown in Figures 13 and 14 for
various n. In Figure 13, we use B= 100, while in
Figure 14 we use B= 1000.

The method of reducing the Gibbs phenomenon,
using a high n in combination with a regularized step

function, is somewhat analogous to reducing or elimi-
nating the Gibbs phenomenon using a limited number
of Fourier coefficients Barkhudaryan et al.14

Conclusion

The mass-spring model is compared to the distributed
parameter model on a homogeneous rod, where the left
side is subject to a step response, while the right side is
free to move. It has been shown that the solution is a
sum of a forward and a backward moving wave. In the
limiting case when the number of elements goes to infi-
nity, the solutions are likely the same.

However, for a finite number of elements in the
mass-spring model, a Gibbs-like phenomenon is
observed. The result is an imperfect square wave that is
getting more and more distorted with time. At each
upward step and at each downward step, the wave
seems to overshoot and undershoot to a fixed amount.
Different from the Gibbs phenomenon, there is no
undershoot before the upward step and no overshoot

Figure 11. (a) Difference between qn(t) and q0n(t) as a function
of time and (b) difference between qn(1:25) and q0n(1:25) as a
function of n on a log scale.

Figure 12. Step functions with various steepness parameters
B. The bottom plot is zoomed in on the top part of the step.
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Figure 13. This figure shows gf (n, t, 1), where the step function has steepness B= 100, for various n. The effect of ringing is
increasing with time, but seems to disappear with larger n. It is also worth noting that this wave looks like a square wave with
rounded corners.

Figure 14. This figure shows gf (n, t, 1), where the step function has steepness B= 1000, for various n. The effect of ringing is
increasing with time, but seems to disappear with larger n. Compared to the case of B= 100 in Figure 13, the wave is more ‘‘square’’
and a larger n is required to get rid of the ringing.
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before the downward step. From a practical point of
view, it is promising that using a continuous step func-
tion and enough elements in the model, the overshoots,
undershoots, and ringing seem to disappear.
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