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Abstract

In recent years, a considerable number of studies has been carried out to analyse the behaviour of
laminated glass plates under blast loading by the use of the finite element method. This has proven
to be quite challenging, as the response of the laminated glass is complex. The fracture strength
of the glass layers govern much of the total response; however, a limited effort is often made to
selecting this value in the analyses. The current work aims to identify the probabilistic fracture
strength of the glass alone as a function of its geometry, boundary conditions and loading situation
by the use of a newly proposed strength prediction model. It should be noted that the current study
focuses on the initiation of fracture in glass plates, and no effort has been put into the description
of crack propagation. To facilitate the validation of the model, three different experimental test
series were carried out on annealed float glass. This included quasi-static four point bending tests
on relatively small glass specimens, and quasi-static and blast pressure tests on larger glass plates.
The experimental work demonstrated that the fracture strength of glass exhibits a large scatter
within the same test setup. It also revealed that the fracture strength and its scatter were dependent
on the geometry, and the boundary and loading conditions. The strength prediction model was
able to successfully capture many of the trends observed in the quasi-static tests. Regarding the
blast tests, the model was able to reproduce the experimental results reasonably well.
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1. Introduction

Annealed float glass is widely used in window systems, but is a brittle material that offers little

resistance to the intense blast waves produced by explosions. If the window fails, it breaks into
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Nomenclature

a In-plane flaw orientation
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n Distribution parameter
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u Mean of the normal distribution
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numerous sharp fragments that can potentially cause major damage [1]. Laminated glass has been
found to be effective at mitigating these risks and is now frequently used to increase the protection
level by retaining the fragments on a polymer interlayer upon fracture. The polymer interlayer
also provides additional resistance to the blast loading even after the glass layers have fractured
[2-5]. Lately, much effort has been made to model laminated glass subjected to blast loading by
the use of the Finite Element Method (FEM) [3H6]. This has proven to be challenging, as the
behaviour of laminated glass is quite complex and dependent on many factors. These include the
modelling of the supports, the material properties and failure criteria of both the glass and the
polymer interlayer, and the delamination process between the glass and the polymer.

The identification of the glass plates’ fracture strength is not straight forward, and is therefore
frequently modelled as deterministic using a fixed fracture stress or strain [3, 5)]. This value is
often based on a limited number of experimental tests, or simply adjusted to fit a representative
experiment. It is widely known that the fracture strength of glass plates is probabilistic due to the
presence of micro-structural surface flaws [/]]. Fracture initiation in glass plates normally depends
on the combination of the properties of the flaws and the applied normal stress. Consequently, the
fracture may not occur at the point of maximum applied stress. Additionally, the glass strength
will also be dependent on both the geometry of the plate and the boundary and loading conditions
[8]].

In most commercial Finite Element (FE) codes, the failure modelling is based on a determin-
istic approach. In other words, the given fracture strength applies to the entire glass plate. If this
approach is to be used in a design process of glass, the fracture strength must be carefully chosen.
It would naturally be advantageous to know the likelihood of the fracture strength specified in the
FE model. The current study aims to obtain the probabilistic fracture strength of any glass plate as
a function of its geometry, confinement and loading. This will hopefully make the identification of
the fracture strength in an FE model more attainable. Note that no effort has been made to model
the crack propagation in this work, and the modelling applies only to the initial fracture strength.

Traditionally, the probabilistic strength of brittle materials is described by the Weibull distri-
bution [9], which requires calibration from experimental data. However, Nurhuda et al. [10] found
that experimental tests involving glass plates with different test setups lead to different Weibull pa-
rameters. This suggests that the Weibull parameters are not material constants, but are dependent
on both the dimension and the loading conditions of the glass specimens. Nevertheless, effort has
been made to re-scale these parameters to fit different experiments than the ones from which the
parameters were extracted, as in the work by Przybilla et al. [11]. The method proved suitable
to convert the fracture stress distribution from a four-point to a three-point bending test series.
The potential shortcoming is, however, the need for experimental tests with a sufficiently large

population. Otherwise, an accurate description of the statistical distribution is not possible.
3
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Recently, a strength prediction model of annealed glass plates was proposed by Yankelevsky
[12], which aims to predict the glass strength without the need of material tests. The model is
based on the existence of microscopic surface flaws in glass, and uses Monte Carlo simulations to
determine the fracture strength for glass plates under certain loading conditions. It can also predict
the origin of failure, and captures that this does not necessarily occur at the point of maximum
applied stress. The resulting fracture strength provided by the model showed good correspondence
with experimental four-point bending tests. In a further development of the model [13], both
fracture strength and origin of fracture proved to be well predicted, when compared to a larger
series of four-point bending tests.

The current work proposes a further development of this approach, and includes additional fea-
tures and adjustments to the original model. In addition, experimental tests on annealed float glass
have been carried out to facilitate validation of the strength prediction model. This includes quasi-
static four-point bending tests on relatively small glass specimens, and quasi-static and dynamic
lateral pressure tests on larger glass plates. The dynamic pressure tests involve subjecting the glass
plates to a blast pressure in the SIMLab Shock Tube Facility (SSTF) [14], while the quasi-static
pressure tests employ a slowly increasing water pressure. The experimental work shows that the
fracture strength of glass depends on both size and loading condition, and has a great variation

within the same test setup.

2. Experimental study

2.1. Material

2.1.1. Glass

The glass plates and specimens used in the experimental work are made out of clear soda-lime-
silica glass, which has gone through an annealing process. The mechanical properties of glass are
dominated by brittle behaviour and glass behaves elastically to the point of failure. Due to the
lack of plastic flow in glass, the energy absorption during crack propagation is small compared
to e.g. metals [[15]. Consequently, fracture in glass typically propagates fast with little chance
of crack arrest. The theoretical strength of glass is much larger than its true strength, to which
microscopic surface flaws are responsible. The existence of these microscopic flaws causes the
material to fail normally in tension, and is also the reason for glass’ stochastic fracture strength
[8]. Table [I] presents some commonly employed material parameters for soda-lime-silica glass,
which are used as nominal values in this work. The fracture toughness Kjc relates to the critical
stress intensity factor for mode I loading. The stated value is reported in [16], and is based on the
work by Wiederhorn [15].
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Table 1: Material parameters for soda-lime-silica glass.

Density p Young’s modulus £ Poisson’s ratio v Fracture toughness Kjc

(kg/m?) (MPa) (MPay/m)
2500 [IL7] 70000 [17] 0.2 [L7] 0.75 [16]
2.1.2. Rubber

In the shock tube tests presented later in this study, Neoprene rubber strips with an International
Rubber Hardness Degree (IRHD) of 50+10 were placed on each side of the glass. Both the
hardness and dimensions of the rubber strips were chosen based on test methods described in the
European Standard for testing of security glazing subjected to blast pressure [18]. In order to
recreate the shock tube tests by means of FEM (see Section [4.2), the boundary conditions had to
be modelled with sufficient accuracy. Therefore, a series of compression tests was performed on
the rubber to retrieve material data. Cylindrical specimens with 6 mm diameter and 4 mm height
were tested at three different machine speeds. The tests were carried out in an Instron 5944 testing
machine with a 2 kN load cell. Two cameras with a recording rate of 5 Hz were used to obtain the
longitudinal and transverse deformation by the use of an in-house tracking algorithm in MATLAB.

The results for a selection of compression tests are presented in Figure |1} which shows the true
stress versus logarithmic strain for the three different loading rates. An incompressible material
was assumed. Although the rates achieved in the shock tube tests could be higher than the ones
presented here, a rate-insensitive and linear-elastic behaviour was later assumed for sufficiently
small strains. A linear curve fit yields an initial stiffness of ~ 2 MPa.
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Figure 1: True stress versus logarithmic strain curves for Neoprene rubber at three different machine rates.
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2.2. Quasi-static four-point bending tests

Since fracture in annealed float glass is a stochastic process, quasi-static four-point bending
tests were employed in order to investigate the scatter in material strength. Specimens of three
different sizes were tested, and the nominal dimensions can be found in Table The largest
deviations from the values stated are 0.4 %, 1.0 % and -1.8 % for the length, width and thickness,

respectively. A nominal strain rate of 7 x 107> s~!

was achieved during testing for all specimen
sizes. The specimens were cut with a glass cutter by the manufacturer, and the edges were not
treated. In all of the tests, the most damaged edges, i.e., the scoring edges, were placed upwards

in order to minimize failure at the edges.

Table 2: Nominal dimensions of specimens undergoing four-point bending.

Specimen | Length L  Support span Ly Loading span L; Width w  Thickness &
(mm) (mm) (mm) (mm) (mm)
Large 300 280 140 60 4
Medium 200 180 90 40 4
Small 100 80 40 20 4

Figure [2] shows a schematic of the four-point bending tests. The setup is based on the ASTM
standard C1161-13 [19], which is originally intended for testing of advanced ceramics. An Instron
5985 testing machine with a 5 kN load cell was used to load the specimens to failure, while an
optoNCDT 2310-50 laser was used to measure the centre point displacement of the glass. Both the
support and the loading cylinders were held in place by rubber bands. The cylinders were made
out of high strength steel.

Loading cylinder
LOAD CELL
Ly/4 Test specimen
Support cylinder — 10 mm
\[LOADING MEMBER [\
g W y
gy
O
N N SUPPORT MEMBER f\
L
L

Figure 2: Setup of the four-point bending tests.
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After failure of the specimens, the glass fragments were assembled in order to locate where
failure initiated. The results for the specimens where failure started at the edges were excluded,
as edge effects were not considered in this study. For studies concerning the edge flaws of glass
specimens, we refer to the work of e.g. Lindqvist [20]. Figure [3]shows two assembled specimens
of medium size after failure; the specimen in Figure [3a failed at the edge and the specimen in
Figure at the face. All edge-failed specimens were identified by crack branching from a point
located at the edge, as seen in Figure 3a. A total of 31 specimens of each size were tested, and 20,
21 and 30 tests were recognized as valid for the small, medium and large specimens, respectively.
It was observed that the edge-failed specimens had a lower strength than the rest, with a reduction
in mean failure load of 46.2 %, 33.1 % and 42.3 % for the small, medium and large specimens,

respectively.

(a) (b)
Figure 3: Typical glass specimens after failure in four-point bending tests: (a) failure at the edge, (b) failure at the
face.
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Figure 4: The probability density distribution of the applied load at failure for a) small b) medium and c) large

specimens.

Figure 4| shows histograms of the applied force at failure for the valid bending tests. The ordi-
nate value refers to the probability density, i.e., a normalized occurrence calculated by ¢;/(Nw;),
where ¢; 1s the number of elements in the bin, N is the total number of elements and w; is the width

of the bin. For a more attainable comparison of the fracture strength of the three specimen sizes,
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the maximum tensile stresses at failure, of, were calculated from beam theory as

of = % (1)
where F is the failure load, L is the support span, w is the width and 4 is the thickness of the
specimen. This results in multiplying the resulting failure load with the factor 0.22 mm2, 0.21
mm and 0.19 mm for the large, medium and small specimens, respectively. The extreme and
mean values for the tensile stresses are presented in Table

Table 3: Calculated tensile stresses from beam theory for small, medium and large specimens in the four-point bending
tests (MPa).

Small Medium Large

t.. | 110.8 8639  67.70
Of,.., | 1452 111.2 1034
or.. | 2072 1447 153.8

Naturally, as the number of tests is rather limited, few definite conclusions can be made about
the glass strength from the performed bending tests. However, one trend seems to apply, i.e., an
increase in material strength with a decrease in surface area.

The bending tests also provided information about the stiffness of the tested glass material.

Again from beam theory, Young’s modulus E can be calculated as

11FL3
== o)
640wh
where 0 is the centre point displacement related to the applied load F. A mean value of 69.4 GPa
was found, which is close to the nominal value stated in Table

2.3. Blast loading

An illustration of an idealized reflected pressure-time history for a structure subjected to a blast
wave is shown in Figure [5] The pressure rises abruptly from atmospheric pressure Py to the peak
reflected pressure P max at the arrival time #, over a rise time close to zero. The pressure then
decays to the atmospheric pressure Fy over a duration 74, and further to a negative overpressure Py
and back again to Py over a duration #4.. The first pressure phase is referred to as the positive phase,
and the last as the negative phase. In the blast tests presented in this study, neither of the glass
plates failed during the negative phase. Therefore, the time-window of interest is here limited
to the positive phase of the reflected pressure. The positive phase is typically described by the
modified Friedlander equation stated as [21]

r—t —b(t—t
Pr<t):PO+Pr,max(1_ a>eXP<M>; fh <t <ty+14+ 3)
T+ fa+
8
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where b is the decay coefficient responsible for the curvature from maximum reflected pressure
P: max. Typical expressions used to describe the negative phase of the blast wave can be found in
Aune et al. [22]]. The Friedlander equation will be used to describe the blast loads obtained in this
study.

Positive phase

Negative phase

td+ 14-

Figure 5: Idealized pressure time history for the reflected blast wave from an explosion [21].

2.4. SIMLab shock tube facility

The SIMLab Shock Tube Facility (SSTF) was used to subject annealed glass plates to blast
loading. The SSTF has proven to be a reliable alternative to explosive detonations, and enables
a planar pressure loading to plated specimens. A detailed description of the SSTF and its perfor-
mance can be found in [14]; however, a short description is given herein for completeness.

The purpose of the SSTF is to subject specimens to a pressure history similar to that from
a far-field blast event within a controlled laboratory environment. The SSTF consists of a high-
pressure chamber (called driver section), and a low-pressure chamber (denoted driven section).
The driver and driven sections are separated by one or several diaphragms, which rupture when
their capacity is reached. A high air pressure is built up in the driver section, and when the
diaphragms fail, a series of pressure waves will run down the driven section and eventually take
the form of a characteristic blast wave. When the blast wave reaches the specimen mounted at
the rear end, it is reflected, and the reflected overpressure represents the pressure loading of the
specimen. The intensity of the pressure load increases with both the build-up pressure and the
volume of the driver section. Possible fragments from the specimen after loading and fracture
are confined in a dump tank at the end of the driven section. A sketch of the SSTF and the
general experimental setup is shown in Figure[6] For the experiments presented in this study, the
shortest driver length of 0.27 m was used in order to subject the glass plates to a sufficiently low

pressure. The dump tank at the end of the driven section was closed during the experiments, and

9
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two Phantom v1610 high-speed cameras with a recording rate of 24 kHz were placed outside to
film through the windows of the tank. To estimate the reflected pressure on the tested glass plates,
two piezoelectric pressure sensors were placed 245 mm and 345 mm upstream the plate (see Figure
[6a). By assuming constant velocity of the blast wave between the furthest sensor and the plate,
the reflected pressure could be determined [[14]. The pressure measurements were logged with a
frequency of both 500 kHz and 24 kHz. The latter was done in order to synchronize the cameras
and the pressure measurements.

N
) i Test specimen Q%‘TO
Diaphragms Window section %

DRIVEN ooo:]:§ gm 5 5 - TANK
{ K \ ;

\

Pressure sensor 1 & 2 =it}

027m 16.20 m - ¥,

Figure 6: Test setup in the SIMLab Shock Tube Facility (SSTF) [[14]: (a) sketch of the shock tube seen from above,
(b) the shock tube seen from the driver, (c) high speed cameras on each side of the tank.

A custom-made fastening system was developed for tests on glass plates in the SSTF, as il-
lustrated in Figure [/l The glass plate is clamped between two 25 mm thick aluminium frames,
denoted the inner and outer clamping frame. Neoprene rubber strips with a thickness of 4 mm and
a width of 50 mm are glued to the clamping frames and positioned between the glass plate and
the aluminium. The tested glass has in-plane dimensions of 400 mmx400 mm, while the loaded
area is 300 mmx300 mm. The inner clamping frame is fastened to the end of the shock tube,
while the outer frame is fastened with 12 equidistant M24 bolts through @25 mm holes in both
frames. For the tests on (3.8 mm thick) float glass, 6.6 mm thick steel washers, or stoppers, are

10
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used between the clamping frames in order to minimize the motion of the outer clamping frame
during the tests by properly fasten it, while limiting the clamping pressure on the glass. The steel
stoppers are threaded on the bolts, and have an outer diameter of 43 mm. Additionally, a part of
the inner clamping frame was milled out to facilitate the setup, and is about 5.7 mm deep.

In the European Standard for testing of security glazing subjected to blast pressure [18], it
is stated that a clamping pressure of 1443 N/cm? should be applied. The thickness of the steel
stoppers was chosen on the basis of this pressure, as the thickness governed the contraction of the
rubber, and further the clamping pressure. To obtain this pressure exactly proved, however, to be
challenging due to small variations in the thickness of the glass plates, rubber strips and clamping
frames. Nevertheless, the steel stoppers offered proper tightening of the bolts during the tests
without damaging the glass plate.

M24 bolt Inner
% Vo clamping plate
Rubber strips

Steel stopper

Outer clamping plate

Steel
stopper

Pressure

directionl

Glass plate

Rubber strips
(a) (b)

Figure 7: The custom-made fastening system used in the blast experiments on glass in the SSTF: (a) disassembled

setup showing one out of 12 bolts, stoppers and nuts, (b) assembled section observed from the side.

2.5. DIC measurements

In the shock tube tests, three-dimensional Digital Image Correlation (3D-DIC) was used to
obtain the displacement of the glass plates as well as possible movements of the outer clamping
frame. Checkerboard stickers with dimension 12 mm x 12 mm were glued to the frame, and white
circles with a central black dot, denoted optical targets, were spray-painted on the glass, see Figure
[Bal A point-tracking algorithm available in the in-house DIC code eCorr [23] was employed to
track the optical targets utilizing photos recorded by the high-speed cameras in the tests. Opti-
mally, a speckle pattern would be painted onto the glass to obtain a complete displacement field

11
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from 3D-DIC instead of point-based displacements. However, this would reduce the visibility of

the fracture initiation and propagation in the glass during the tests.

Load surface edge Z15
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Figure 8: Test setup for investigation of the point-tracking procedure: (a) optical targets used for point tracking of the
glass (dimensions given in mm), (b) laser mounted to the end of the shock tube.

An evaluation of the point-tracking procedure was conducted in a preliminary study. A laser
displacement sensor (optoNCDT 2310-50) was fastened to the outer clamping frame, as shown
in Figure 8b] and used to measure the displacement in the middle of the glass plate. The same
measurement was done by the use of point tracking. Additionally, the movement of the clamping
frame was tracked at the checkerboard stickers, also by point tracking. As the laser was mounted to
the clamping frame, the middle point displacement obtained by point tracking was corrected for the
displacement of the frame. Figure [9]compares the two resulting displacements for a test where the
glass did not fracture, and shows that the measurements are in good agreement. Some oscillations
are present in the laser data due to vibrations in the laser mount. The results demonstrate that the
point-tracking procedure yields reliable displacement data.

12
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Figure 9: Evaluation of the point-tracking procedure used to measure the mid-point displacement.

2.6. Blast tests

Twelve blast tests were performed in the SSTF on 400 mmx400 mm float glass plates with
a thickness of 3.8 mm (mean = 3.805 mm, SSD = 0.01lmm). The glass plates and the four-point
bending specimens were delivered by the same glass manufacturer. Note that there is a small dif-
ference in the mean thickness of the four-point bending specimens and the current glass plates.
Table 4] presents maximum reflected overpressure Ppax, time of fracture initiation #f,, maximum
centre displacement before fracture Dpmax, maximum fragment velocity vy,g, impulse of the posi-
tive phase i and position of fracture initiation. Note that for the failed plates, the positive impulse
i+ was calculated only up until the point of fracture. The tests are divided into three classes (A,
B and C), depending on the level of maximum reflected overpressure on the glass. The reflected
overpressure was found by employing the logged pressure in the two sensors placed 245 and 345
mm from the plate, denoted sensor 01 and 02, respectively. The Friedlander equation (Equation
(3)) was fitted to the pressure data for the non-failed plates, see Figure [I0a] and a linear fit up to
the time of failure was used for the failed plates, see Figure Shortly after a glass plate failed
in the tests, there was no longer a surface to reflect the pressure wave, and a Friedlander curve fit
would not be applicable.

The fragment velocities were calculated based on the measured displacements from the point-
tracking procedure. This required that the painted white and black circles were still trackable,

which was not always the case. Therefore, these values are somewhat uncertain.

13



Table 4: Summary of the blast tests on float glass for three classes of loads. Note that t = 0 corresponds to the time of

arrival t, of the blast wave.

Test | Pnax (kPa)  frac (MS)  Diax (Mm)  veye (m/s) iy (kPa-ms)  Fracture initiation
A-01 53.0 1.21 4.52 15.8 59.2 Boundary
A-02 51.6 1.38 5.06 14.7 64.9 Boundary
B-01 63.7 0.88 3.23 24.5 52.5 Face, centre
B-02 64.6 1.25 5.40 18.8 73.2 Boundary
B-03 65.5 1.46 5.64 17.3 86.2 Boundary
B-04 62.5 X 5.44 X 293.9 No fracture
B-05 63.3 1.00 4.29 21.8 58.4 Face, above centre
B-06 62.9 0.92 3.68 19.3 54.1 Boundary
B-07 64.0 1.33 5.77 19.0 76.6 Boundary
B-08 62.9 X 5.96 X 294.2 No fracture
C-01 73.4 1.29 5.89 21.5 86.5 Boundary
C-02 73.2 1.33 6.48 22.3 88.9 Boundary
01 —Sensor 01 707 —— Sensor 01
607 :léfiréiﬁ;r?;er curve fit 60 :ET:::; ((:)jrve fit
é;; sol gso | ° Fracture
g 40 % 40
é’ 30 gm —
g 20 320
10 10
0 0 ‘ ‘
0 4 6 8
Time (ms) Time (ms)
(a) (b)

Figure 10: Pressure measurements in two sensors close to the glass plate, including a representation of the reflected

overpressure: (a) Friedlander curve fit for test B-04, (b) linear curve fit for test A-01.

14
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(d) 4.50 ms (e) 7.58 ms () 11.25 ms

Figure 11: Recorded photos in test A-O1 captured at various points in time (see subcaptions) after ¢,.

In 10 out of 12 tests, the glass plate failed, and for most of the plates, failure initiated at the
boundary. More specifically, it initiated under the rubber strips, see Figure [IT] for an example.
The fracture sequences were similar for all boundary-failed plates, with circumferential crack
formations in the corners, and subsequent propagation from the corners to the face. The latter
is visualized in Figure [ITb-c. For comparison, photos from a test where failure initiated at the
face of the plate is shown in Figure [I2] In these tests, cracks branched from the point of fracture
initiation towards the edges, before circumferential cracks were formed. Note that the accuracy of
the specified times is 1/24 ms due to the photo frequency.

15
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Figure 12: Recorded photos in test B-01 captured at various points in time (see subcaptions) after ,.

2.7. Quasi-static pressure tests

It was also of interest to investigate the capacity of the glass plates exposed to uniform pressure
without the effect of strain rate and inertia. This was done with the use of water pressure, which
was slowly built up in a steel chamber with an opening on one side, see Figure [I3al The test
setup has many similar features as in the SSTF, including the same type and dimensions of the
glass plates, the same loading area, the same dimensions and type of rubber strips, and threading
of steel stoppers on bolts fastening the clamping plate. In this case, as for the SSTF, the steel
stoppers were used to control the clamping pressure. The thickness of the steel stoppers was here
11.7 mm due to the design of the steel chamber. After tightening of the bolts, the weight of the
steel clamping plate (11.1 kg) is transferred to both the stoppers and the bottom rubber strips. The
point-tracking procedure was enabled in the tests by using two AVT Prosilica GC2450 cameras
and the optical targets on the glass, see Figure [[3b] The pressure and camera recordings were
synchronized, and logged with a rate of 15 Hz.

16
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Figure 13: Setup for quasi-static pressure tests: (a) assembly of water pressure chamber, (b) equipment for use of

3D-DIC.

The chamber was filled with water using a hand driven water pump to build up the pressure

235 sufficiently slowly. A total of 11 glass plates were tested, and the resulting pressure-time history

for one of these tests (Q-09) is shown in Figure[I4a] The oscillations in the pressure are due to the

non-continuous filling of water and the fact that the chamber was not completely airtight. A dotted

curve plot presenting the pressure-displacement history for the same test is presented in Figure

[I4b] The displacement corresponds to the upwards movement of the optical target in the middle

2¢0 Of the plate. Selected photos from the test are further shown in Figure T3]

17
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Figure 14: Measurements from quasi-static pressure test Q-09: (a) pressure versus time, (b) pressure versus mid-point
displacement.

(a) 60.60 s (b) 60.67 s (c) 60.87 s

Figure 15: Recorded photos in quasi-static pressure test Q-09 captured at various points in time (see subcaptions).

The capacity of each glass plate in terms of maximum applied pressure and mid-point dis-
placement, denoted Ppax and Dpax, respectively, is listed in Table @ Whether failure initiated at
the face or boundary is also stated in this table. It is clear that the tested glass plates possessed a

large scatter in fracture strength, as the strongest glass plate had more than twice the capacity of
25 the weakest.
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Table 5: Summary of results from the quasi-static pressure tests.

Test | Ppax (kPa) Dpa.x (mm) Fracture initiation
Q-01 96.9 5.19 Boundary

Q-02 66.5 3.64 Face, above centre
Q-03 65.2 3.54 Boundary

Q-04 48.4 2.69 Face, centre

Q-05 52.5 3.03 Boundary

Q-06 62.4 3.70 Face, below centre
Q-07 61.1 3.53 Face, left for centre
Q-08 83.6 4.62 Boundary

Q-09 98.9 5.19 Face, left and above centre
Q-10 83.8 4.67 Boundary

Q-11 62.3 3.72 Face, above centre

3. Modelling

3.1. Strength prediction model

A stochastic model for predicting the fracture strength of glass plates was recently proposed
by Yankelevsky [12]. The strength prediction model presented here is based on this model, where
some additional features and adjustments have been included. As for the model by Yankelevsky,

stress corrosion and subcritical crack growth [24] are not considered in this study.

3.1.1. Background

Failure in glass is largely driven by the propagation of pre-existing microscopic flaws on the
surface. These flaws, also denoted cracks, occur over the entire glass surface and the properties
of each individual flaw will vary. The flaw characteristics on a glass surface will also vary from
plate to plate. The fracture strength will consequently not be equal for every glass plate, and must
therefore be described by a probability function. Moreover, the probability function will depend
on the loading conditions and the size of the glass.

When tensile stresses are applied to the glass, and are normal to the flaws, the flaws will open
and grow when the stresses are greater than a given threshold. Consequently, glass nearly always
fails due to tensile stresses [8]]. Because of this, it is natural to adopt the following failure criterion
for glass [23]]

K1 = Kic 4)

where Kjc is the fracture toughness for mode I loading, i.e., the opening of a crack. K is the stress

intensity factor for mode I loading, and is used to describe the stress state near the crack tip [26].
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It is given by
Ki=Yo\/7a ()

where Y is a geometric factor which depends on the shape of the crack, and o is the remote tensile
stress normal to the crack. For a surface crack, a refers to the depth of the crack, as opposed to
an embedded crack where a is the length. For an elliptic surface crack (see Figure where the

crack is small compared to the plate dimensions, Y can be calculated by the empirical expression
[27]

A = [1.13-0.09(9)] [1+0.1(1 — sing)?]
c
| (6)
an 1.65 .9 a\ 2 5 I
0=1+1464(2) 7, f(9) = [sin*(9) + (2) cos*(9)]

where ¢ is the half-length of the crack, A is the surface correction factor, Q is the flaw shape
parameter and f(¢) is an angular function depending on ¢. The parameter ¢ defines the angle of
a point on the elliptic crack, see Figure [16b]

(a)

Figure 16: (a) Elliptic surface crack in an infinitely large plate subjected to a remote stress 6. The dashed line refers

to the outer edge of the crack placed inside the plate. (b) Section of the plate with denoted crack dimensions. Adapted
from [25].

Note that Equation (4)) expresses local failure, i.e., the onset of unstable crack growth in one
flaw. In the strength prediction model, it is assumed that achieving failure in a single flaw is
sufficient to induce failure in the entire glass plate. Since the chance of crack arrest in glass is very
small, this is a fair assumption.

For a given loading scenario and geometry of a glass plate, the stress state before failure can be
obtained by a finite element analysis. This, together with a small number of selected parameters,
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will be the input of the strength prediction model. Subsequently, the model simulates the flaw
map, i.e., the distribution of surface flaws including their size, shape, location and orientation.
Then, a Monte Carlo simulation is run, varying the flaw map, to establish the statistical strength
probability. In the following, the various parts of the flaw map are discussed.

3.1.2. Flaw shape

In order to calculate the stress intensity factor Ky at each flaw on the glass surface, the shape
of the flaws is required. In the strength prediction model, all flaws are idealized as elliptic, al-
though in reality many may be irregularly shaped. It is further assumed that all cracks have a
length-depth-ratio a/c = 1. The latter is supported by the work of Levengood [28]], which studied
the relationship between the fracture strength, the depth of the mirrored regimﬂ and the depth of
the critical flaw in 80 glass specimens. Based on Levengood’s results, we obtained the following
averaged relationship: o¢\/a = 0.577 MPa+/m, where of is the normal stress at failure. The max-
imum geometric factor Y calculated from Equations (6] for flaws with a/c = 1, is equal to 0.729.

The resulting critical stress intensity factor Kjc is thus
Kic =Yorvan =0.729-0.577 - /7 = 0.746 MPay/m
which is identical to the value given in Table

3.1.3. Flaw length and density

Yankelevsky [[12]] assumed that the maximum flaw length typically lies between 100 and 300
um for standard soda lime glass, and considered 200 um to be representative. To justify this
assumption, the work by Wereszczak et al. [29] was highlighted. This work includes classification
of both the density of the surface flaws and the maximum flaw for two soda lime glasses cut by two
different procedures. The results are summarized in Table[6] and indicate that both the density and
the maximum flaw length depend on the cutting procedure and whether measurements are done
on the tin or the air side?|

'The mirrored region is a smooth semi-circular area which forms during glass breakage normal to the applied
stress and around the fracture induced surface flaw.

ZWindow glasses of today typically have a tin side and an air side, because one side faces a tin bath through the
floating process.
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Table 6: Flaw characteristics identified for glass in the work by Wereszczak et al. [29].

Cutting procedure | Side Density (flaws/cm?) Maximum flaw length (um)
Air 2.60 133
Scored and bent ]
Tin 2.37 162
. Air 1.18 105
Water jet )
Tin 1.36 195

The tin side of the glasses exhibited somewhat larger flaws than the air side, however, the
number of flaws did not favour any of the sides. Moreover, the density of flaws was noticeably
larger for the scored and bent plate. Whether this holds in general is uncertain.

It is assumed in the strength model that the flaws are distributed evenly over the glass surface.
By using the maximum flaw and density presented in Table [} and by assuming a uniform posi-
tioning, the distance between the flaws is much larger than the dimension of single flaws. This in
turn leads to a flaw map with non-interacting cracks [235].

3.1.4. Flaw size distribution

In the work presented by Levengood [28]], it was observed that specimens failing for small
stresses were the least occurring. This indicates that glass plates exhibit a larger amount of small
flaws than large ones. A possible way to describe this tendency, is to employ the distribution
function [12]]

N; —

N~ () (7)
where N is the total number of flaws on a glass surface, a; is the depth of a given flaw, N; is the
number of flaws that have depths larger or equal to a;, and 1) is a distribution parameter.

The majority of glass used for windows are cut from so-called jumbo plates with nominal
lengths of 4500, 5100 or 6000 mm, and widths equal to 3210 mm [30]. It is assumed that there
exists only one flaw of maximum size in each of the surfaces of the jumbo plates. Ny thus becomes

the total number of flaws on a jumbo plate surface, and 7 is given by the following expression

Amax

ln(N0>

n = (8)

The fracture stresses recorded by Levengood ranged from 57.71 to 351.67 MPa. By employing
the relationship o¢/a = 0.577 MPay/m, this corresponds to flaw depths from 2.69 to 99.67 um. In
Figure the flaw depth density defined by Equation (/) is compared to the experimental results
from [28]. Ny is set to 80 and amax to 99.67 um in accordance with Levengood’s tests. Although
the test results are not directly comparable with the flaw depth distribution in the jumbo plates, the
resemblance of the two curves indicates that the assumed distribution function is reasonable.
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Figure 17: Flaw size distribution governed by Equation (7)) versus tests by Levengood [28]].

It should be noted that for simple problems, it would be possible to calculate the statistical
strength probability directly from the flaw size distribution in Equation [/| However, when the
applied stresses in the glass vary in position and time, this is not straightforward. Therefore, we
apply a procedure where the statistical strength is instead found by iterative calculations (in a

Monte Carlo simulation). Each iteration corresponds to one glass plate.

3.1.5. Flaw orientation

It is fair to assume that the surface flaws do not favour any orientation. Consequently, every
individual flaw is given an in-plane orientation pseudo-randomly at an angle o between 0 and
7 with respect to the x-axis. The remote stresses directed normal to a flaw, denoted ©,, must

therefore be calculated accordingly. o, is equal to

O. (0 Oy — O,
Op = x; Y = 5 cos(2a) + Tyysin(2ar) 9)

where oy and o, are the in-plane normal stresses in the x and y direction, respectively, and 7y, is

the in-plane shear stress.

3.2. Implementation of the strength prediction model

The following explains the procedure of implementing the strength prediction model, including
the preparatory work necessary to apply it. The model itself was implemented in the programming
language Python, and the stress state in the glass plates was retrieved by employing the FE software
Abaqus [31]].

3.2.1. Input
The simulation process starts by defining the dimensions of the glass plate as well as the bound-
ary and loading conditions. An FE analysis is in turn performed (without any failure criterion) to
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obtain the stresses in all elements on the glass surface at a sufficient number of evenly spaced time
intervals. If shell elements are used, the stresses are taken from the outer integration points, placed
at the surface. The failure load and deflection of the glass are usually of interest, and the applied
load and relevant displacements must therefore also be obtained by the FE analysis at the specified
time intervals. Further, the said output from the FE analysis is used as input in the strength predic-
tion model. Additionally, some parameters must be provided, and the following list summarizes

these:
* Fracture toughness Kjc
* Flaw shape a/c
* Maximum flaw depth amax
* Flaw density pgaw
* Size of the jumbo plate Ajumpo
* Number of plates to analyse

The size of the elements used for the glass plate is based on the flaw density and chosen such
that each element will contain one flaw. For instance, if the flaw density is chosen as 1/cm?, the
element size will be 10 mmx 10 mm. If this element size leads to an overly coarse mesh, the
glass plate can be modelled with smaller elements and a clustering technique is used. That is, the
same flaw is assigned to a group, or cluster, of neighbouring elements. The clustering procedure
is performed in such a way that the chosen flaw density is still preserved. Note that the stresses

are still obtained from each element, individually.

3.2.2. Procedure and output

Firstly, a hypothetical jumbo plate of a specified size is assigned Ny number of flaws with vary-
ing depths and orientations on both surfaces. Ny is equal to the specified flaw density multiplied
by the area of the jumbo plate. The flaw depths on each surface of the jumbo plate are calculated
based on Equations (7) and (8)) as

o _ In(V) - B N
al—amax<1 111(N())>, Nl—Rl(NO 1)+17 Ry U([07 1]) (10)

where R refers to a random variable uniformly distributed on [0, 1]. The flaw orientations are
further given by
o =Ry, R, ~U([0,1]) (11)
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where R, is another random variable uniformly distributed on [0, 1].

Next, each surface element (or cluster of elements) in the glass plate from the FE model is
assigned a flaw from the jumbo plate. This would correspond to the plate being cut out from the
jumbo plate at a random location. The stresses normal to the flaws in each of the elements are then
calculated from Equation (9). The stress intensities Ky are further found by Equation (3), where
the normal stresses in the elements are treated as remote stresses on the flaws. This is done for
every interval until the first element has reached the failure criterion given by Equation (@). The
time and stress intensity factor in the failed element corresponding to this interval are denoted .
and Ki(t.), respectively. As Kj(z.) is most likely slightly larger than the fracture toughness Kic,
an interpolation of relevant parameters between 7. and the previous time 7. is carried out based
on the values of the stress intensities, i.e., Ki(f.) and Ky(z..;). Next, the glass plate is assigned
new flaws, which are taken from the same jumbo plate, and the above procedure is repeated. A
visualization of assigned flaw depths and orientations for two glass surfaces from the same jumbo

plate are visualized in Figure[I8] Here, the surface area is 400 mmx400 mm, and the flaw density

is set to 1 flaw/cm?.

Figure 18: Two randomly selected surfaces with assigned (a) flaw depth and (b) flaw orientation. The corresponding

legend is shown on the right hand side of each subfigure.

The above procedure is carried out until all flaws in the jumbo plate have been allocated, and a
new one is constructed. The number of different jumbo plates used is dependent on the specified
number of plates to analyse. Yankelevsky [12] stated that a total number of at least 5000 plates is
required to give a converged and reliable result.

A number of different output parameters are available from the strength prediction model, and
the most relevant are listed below. In addition to these, the failure percentage can be found for
each studied case. The values of the following parameters are registered for every simulated plate:

e Coordinates of the failed element

e Normal stress at failure
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* Displacement at failure
* Applied load at failure

¢ Time at failure

The above procedure is only valid for static problems, as the failure criterion given by Equation
@) and (5)) may not hold for dynamic loading conditions. In the case of glass specimens exposed
to rapid loading, the following condition presented in [32] is adopted

1 t

- / Ki(7)d7 > Kic (12)

TJt—1
Here, 7 is denoted the incubation time, or the microstructural fracture time, and is in this case
interpreted as the minimum time required to initiate crack growth. Additionally, the criterion is
employed to avoid that spurious peaks of stress result in failure of the glass. In order to introduce
the aforementioned dynamic fracture criterion in the strength prediction model, it is discretized.
Hence, to achieve failure in an element, the averaged value of the stress intensity Ky over a period
greater than 7 must be larger than or equal to the fracture toughness Kjc. This criterion naturally
requires the determination of the incubation 7. Unfortunately, the authors have not succeeded in
finding any records of this parameter for soda-lime glass in the literature. However, as a compari-
son, a values of 9 us has been found for Homalite-100 [32].

4. Numerical study

4.1. Quasi-static four-point bending tests

In the following, the strength prediction model is employed in an attempt to find the strength
distribution of the four-point bending tests presented in Section [2.2] The bending tests were first
recreated in an Abaqus simulation, such that the stress state history could be used as input in
the strength prediction model. Shell elements were employed for the glass specimens, while the
loading and support cylinders were modelled as analytical rigid surfaces. The dimensions of the
glass corresponded to the nominal values given in Table 2| while the element size was set to 1.25
mm, 2.5 mm and 5 mm for the small, medium and large specimens, respectively. Simpson’s
integration rule was employed with the use of 5 integration points over the thickness. The glass
was modelled as linear-elastic with material parameters given in Table|l| The input parameters for

the strength prediction model itself are presented in Table
Table 7: Input parameters for the strength prediction model

Kic ajc  amax Phlaw Ajumbo Number of plates
0.75MPay/m 1 100 um 2 flaws/cm?  3210x6000 mm? 5,000
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Figure [I9) shows the histograms of the applied load at failure determined by the strength pre-
diction model for the three specimen sizes. For comparison, the forces obtained in the laboratory
tests are also included in the figure. Note that the ordinate, denoted probability density, refers to
an occurrence, which is normalized to the model and test results individually. As can be seen, the

failure loads from the tests are all within the capacity given by the strength prediction model.
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Figure 19: The probability density distribution of forces at failure determined by the strength prediction model and
laboratory tests for (a) small, (b) medium and (c) large specimens in four-point bending.

The normal stresses at failure determined by the strength prediction model are presented in
Figure [20] To facilitate an easier interpretation and comparison of the results, fitted normal prob-
ability density functions are included. The corresponding parameters are presented in the same
figure, where 1 and s are the mean and standard deviation of the normal distribution. As the nor-
mal distribution was found to give a better fit than e.g. the Weibull distribution, this was chosen
in this study. However, both distributions highlighted the same trends of the strength prediction
model. That is, a decreased surface area results in an increased mean and scatter of the fracture

strength.
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Figure 20: The probability density distribution of normal stresses at failure determined by the strength prediction
model for (a) small, (b) medium and (c) large specimens in four-point bending. A normal distribution function has

also been fitted to the results.
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4.2. Shock tube tests

As for the four-point bending tests, FE simulations of the shock tube experiments were first
run in order to obtain the stress state throughout the tests. This was in turn used as input in the
strength prediction model. The following subsection describes the FE model of the test setup built

in Abaqus.

4.2.1. FE model

The FE model of the test setup was based on several simplifications. Firstly, only the glass
plate and rubber strips were modelled, see Figure The clamping frames and steel stoppers
were indirectly included in the model by restricting movement of the outer rubber surfaces in all
directions. This is a fair assumption as the rubber strips were glued to the clamping frames and
the movement of the clamping frames was close to zero during the tests. Secondly, to account
for the clamping pressure in the test set up, the rubber was translated 0.005 mm towards the
glass before loading. Thirdly, the rubber was modelled by a linear-elastic material model with a
Young’s modulus of 2 MPa and a Poisson’s ratio of 0.46. Lastly, owing to the assumed linear-
elastic behaviour of the rubber, only one (fully integrated) solid element was appropriate in the
thickness direction. In order to properly describe the motion of the rubber along the frame, the
elements had a cubic shape. The glass was modelled with 5 mm x 5 mm shell elements, using
the Simpson’s integration rule with five integration points over the thickness. The material was
chosen as linear-elastic with parameters in Table[I] It should be made clear that Young’s modulus
for glass is relatively insensitive to strain rate, as found by e.g. Zhang et al. [33], which makes
it appropriate to use the static value. Note also that only a quarter of the plate could have been
modelled due to symmetry. However, this was not done as each element was to be assigned an

individual flaw.
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Figure 21: The FE model of the test setup in the SSTF: (a) illustrating the mesh sizes, (b) illustrating points tracked
in the FE model and the experiments, including symmetry lines.

Three different loading scenarios were simulated; specifically the pressure histories obtained in
a0 test A-O1, B-04 and C-01. To ensure that the FE models provided the correct behaviour, displace-
ments in points corresponding to nine optical targets were compared to the DIC measurements.
The nine points are shown in Figure [21b] and are limited to three points in the FE model due to
ideal symmetry of the deflection. The points are referred to as PO, P1 and P2. The displacements
over time in tests A-O1, B-04 and C-01 and the corresponding FE simulations are shown in Figure

425 m
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Figure 22: Displacements from DIC and Abaqus simulations in points PO-P2 for tests (a) A-0O1, (b) B-04, (¢) C-01.

The dashed and solid lines refer to the FE model and the experimental tests, respectively.
As can be seen, only test B-04 did not fracture at some point, and could therefore be compared
throughout the entire course of displacement. The simulation fits well with the experimental test,
however, there are some discrepancies after maximum displacement. As fracture will occur in the
glass before this point, this is irrelevant in the use of the strength prediction model. Simulations of
test A-O1 and C-01 also seem to match well before fracture. Consequently, the stress states from
these simulations are used as input in the strength prediction model.

4.2.2. Strength prediction
The input parameters of the strength prediction model used for the shock tube tests were the
same as for the four-point bending tests, with the exception of one additional parameter, the in-
cubation time 7. This value was merely chosen to be 10 ps. It proved, however, that the strength
prediction model was not sensitive for a moderate change in 7.
In the four-point bending and quasi-static pressure tests, the load was gradually increased
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such that the ultimate capacity of the tested glass plates could be found. This was not the case
for the shock tube tests, and the predicted and measured fracture strength could therefore not be
directly compared. Instead, other properties were studied, such as the location and time of fracture
initiation, and failure percentage.

Figure [234] illustrates the predicted fracture locations for test A-01. The glass plates experi-
enced tensile stresses on both sides, and the results distinguish therefore between failure on the
front and back side of the plate. The back refers, in this study, to the side directly exposed to the
pressure load. Figure 23b]and illustrate the recurrence of the fracture locations by means of
coordinate values in a histogram. The ordinate refers to the number of fictitious glass plates tested.
As shown, most plates failed at the front and centre of the plate and the positioning is in addition
symmetric. Compared to the actual shock tube tests, the location of front failures agreed well, as it
occurred within the area proposed by the strength prediction model. Whether the position of back
failure is in agreement with the tests was difficult to determine as the failure initiation occurred

under the rubber strips.
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Figure 23: Location of fracture initiation determined by the strength prediction model for test A-01 visualized as: (a)
a surface map, (b) a histogram of occurrence on the X-axis, (c) a histogram of occurrence on the Y -axis. The origin is

set at the plate’s centre.

The failure percentages provided by the strength prediction model for tests A-O1, B-04 and
C-01 are presented in the first part of Table 8] As a comparison, the failure percentage for the
actual tests of class A, B and C were 100 % (2/2), 75 % (6/8) and 100 % (2/2), respectively. The

31



460

465

470

475

percentage of plates that failed at the back side is also stated, which in the actual tests proved to
be 100 % (2/2), 50 % (4/8) and 100 % (2/2). Thus, the location of failure provided by the strength
prediction model was not in particularly good agreement with the test results. However, it should
be noted that to draw any definite conclusions, a much larger number of experimental tests must be
carried out. Nevertheless, there are various possible reasons for the discrepancy, such as the glass
being in direct contact with sharp edges of the clamping plate during the test. However, it may
also be due to dynamic effects that are not sufficiently accounted for in the model. The strength of
glass is generally increased when exposed to high strain rates [33)134]], and the use of the criterion
in Equation may not be suitable to correctly capture this trend. A rather limited study was
thus conducted to investigate the effect of an increased fracture toughness, Kjc. The input of Kjc
was set to 0.8 MPay/m, and the resulting failure percentage for test A-01 and B-04 was decreased
to 77.7 and 99.2 %, respectively, while the failure percentage for C-01 was unchanged. The
failure percentages corresponding to the back of the plates were moderately increased for all tests,
specifically 22.2 %, 9.50 % and 4.13 % for A-01, B-04 and C-01, respectively. Note that the

fracture toughness should in reality depend on the strain rate rather than being kept constant.

Table 8: Failure percentages and time of fracture initiation #g,. determined by the strength prediction model for tests
A-01, B-04 and C-01.

Failure percentage Time of fracture initiation ffqc
Test | Total (%) Back side (%) | Front side (ms) Back side (ms)
A-01 94.2 19.8 0.88-1.92 0.95-1.73
B-04 99.8 4.62 0.82-1.71 0.85-1.54
C-01 100 3.71 0.76-1.41 0.75-1.33

Time of fracture is directly comparable in this case, and the range of predicted times for test
A-01, B-04 and C-01 is shown in the last part of Table [§] The results are divided into back and
front fracture initiation. For all tests in class A, B and C, the experimental time of fracture lies
within or is equal to the predicted extreme values, see Table ] An increase in fracture toughness,
Kic, to 0.8 MPay/m resulted in a somewhat increased time of fracture. However, the experimental
values still remained within the predicted time ranges. The predicted normal stresses at failure
for tests A-01, B-04 and C-01 are further shown in Figure 24] and are divided into front and back
failures. Here, it is clearly seen that for plates exposed to a lower peak reflected pressure P, max, a

larger number of the plates failed at the back side.
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Figure 24: The distribution of normal stresses at failure determined by the strength prediction model for tests (a) A-O1,
(b) B-04, (c) C-01.

480 Figure 25| further includes a normal probability density function fitted to the results for test
C-01. The parameters of the fitting are also presented in the figure. Compared to the four-point
bending tests, both the scatter and fracture stress are decreased, which was expected due to the

rather large increase in surface area.
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Figure 25: The probability density distribution of normal stresses at failure determined by the strength prediction
model for test C-01. A normal distribution function has also been fitted to the results.

4.3. Quasi-static pressure tests

485 Finally, the strength prediction model is employed to find the strength distribution of the quasi-
static pressure tests presented in Section 2.7} As for the previous tests, an Abaqus model of the
test setup was first established. The model was the same as for the shock tube tests, except that
the load was applied smoothly over a much longer period of time. Additionally, the weight of the
clamping plate was applied to the glass edges as a uniform pressure.
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To ensure that the Abaqus model provided the correct behaviour, the pressure-displacement
histories from the simulation and test Q-09 were compared. The displacements were taken from
three points corresponding to PO, P1 and P2 in Figure 21b] Figure 26]presents the resulting curves,
where the dotted lines refer to the test, and the solid lines to the Abaqus simulation. As the curves
are relatively coincident, we assume that the Abaqus simulation manages to describe the stress
state in the plates up to fracture. Consequently, the stress state from the simulation was used as
input for the strength prediction model. The input parameters were the same as for the four-point
bending tests.

100
80+
60 |

40 1

Pressure (kPa)

20+

Displacement (mm)

Figure 26: Pressure versus displacement curves from DIC measurements and Abaqus simulations in points PO-P2 for
test Q-09.

Figure [27] shows the location of the fracture initiation determined by the strength prediction
model. The results are similar to those from the shock tube tests; however, the percentage of
failure at the back side is larger for the current tests. Here, 34.3 % failed at the back, while for
the C-01 shock tube test, this value was 3.71 %. As for the shock tube tests, the locations of all
front failures for the quasi-static pressure tests occurred within the area estimated by the strength
prediction model.
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Figure 27: Location of fracture initiation determined by the strength prediction model for the quasi-static pressure
tests visualized as: (a) a surface map, (b) a histogram of occurrence on the X-axis, (c) a histogram of occurrence on
the Y-axis. The origin is set at the plate’s centre.

The applied pressures at failure determined by the strength prediction model, together with the
pressures obtained in the tests, are presented in Figure 28] as a histogram. Note that the ordinate,
denoted probability density, refers to an occurrence, which is normalized to the model and test
results individually. The two tests Q-04 and Q-05 ended up on the outside of the model prediction.
A possible reason for this could be that the prescribed initial flaws are smaller than the ones
occurring in the tested glass plates. However, it may also imply that there are some effects that are
not properly taken into account in the strength prediction model, such as subcritical crack growth.
As the quasi-static tests took up to a minute to finish, it is possible that the initial flaws grew stably
during the loading, and a smaller flaw size was required to induce failure.
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Figure 28: The probability density distribution of applied pressures at failure determined by the strength prediction
model and laboratory tests for the quasi-static pressure tests.

A histogram of the resulting normal stresses at failure is presented in Figure[29a] and is divided
into occurrences on the front and the back side of the glass plates. Failure at the largest value of
515 normal stresses occurred in this case at the back side of the plate, while the smallest took place
at the front. A histogram combining both sides, together with a fitted normal probability density
function can be viewed in Figure [29b] The parameters of the fitting are also presented. It should
be mentioned that the probability density was almost identical when excluding the weight of the
steel clamping plate. Compared to the shock tube tests, both the scatter and the fracture strength

s20 are slightly smaller.
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Figure 29: The distribution of normal stresses at failure determined by the strength prediction model for the quasi-
static pressure tests (a) divided in front and back failure, (b) including a fitted normal probability density function with
corresponding parameters.
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5. Discussion and concluding remarks

In this work, a further development of the strength prediction model proposed by Yankelevsky
[12] has been presented. The model seeks to determine the fracture strength of glass without the
need of experimental tests, and is based on the presence of microscopic surface flaws. These flaws
are known to govern the fracture strength of glass, and lead to a highly probabilistic behaviour.

In an attempt to validate the strength prediction model, three different types of experiments on
annealed float glass were conducted. These included quasi-static four-point bending tests on spec-
imens of various size, and quasi-static and dynamic pressure tests on larger plates. As expected,
the fracture strength varied within the same test setup, and was dependent on both the size of the
glass plate and the loading condition.

The strength prediction model was able to successfully capture the trends observed in the
quasi-static four-point bending tests. In the experiments, the mean strength seemed to increase
with a decreasing specimen size; a trend the model also displayed. Additionally, the experimental
fracture load was within the limits determined by the model. In the case of the quasi-static pressure
tests, the fracture load obtained in the experiments was partly achieved by the strength prediction
model. Specifically, the tests resulted in a slightly lower fracture strength than predicted by the
model. This may be explained by an inaccurate value of the maximum flaw size. However, it may
also be due to subcritical crack growth in the experiments, i.e., stable crack growth before failure.
In fact, the quasi-static pressure tests lasted over twice as long as the longest-lasting bending tests.
Consequently, this effect would be larger for the pressure tests.

Perhaps the largest source of error in the model arises in the modelling of the dynamic tests.
The failure percentage determined by the model did not particularly coincide with the ones ob-
tained in the experimental tests. It should, however, be noted that the number of experimental tests
was limited. Nonetheless, the time and position of fracture initiation were captured by the strength
prediction model. In order to consider dynamic effects, an incubation time, 7, was introduced.
Since it was shown that the results were rather insensitive to the incubation time, a value of 10
us was merely chosen. The strain rate effects on the glass’ fracture strength may need to be in-
cluded by different means, e.g. by including a fracture toughness dependent on strain rate. It was
found that an increase in fracture toughness resulted in both increased fracture capacity and time
to fracture.

The proposed model is simple, with few input parameters and cannot be expected to capture
all effects arising in physical tests. It seems that the current model gives conservative solutions
to the dynamic tests, whereas for the longer-lasting quasi-static tests, non-conservative solutions
are obtained. Additionally, the chosen input parameters will need to be further investigated. This

particularly applies to the flaw size and distribution. However, the model seems to have potential

37



560

565

570

575

580

585

590

as it manages to display many of the trends found in the experiments. The model can therefore
contribute to a greater understanding and a more predictive modelling of the stochastic behaviour
of glass plates under quasi-static and dynamic loading. In addition, the time it takes to perform the
analyses of the strength prediction model is only a fraction of the time it takes to perform actual
tests. This makes the model even more appealing to the user.

In a further work by the authors, the strength prediction model will be coupled with a finite
element solver, so that numerical simulations of both failure and crack propagation in window

glasses exposed to dynamic loading can be predicted.
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