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Abstract

Nowadays, with the trend of smart manufacturing and development of information and
communication technologies, companies are increasingly applying types of sensors and
information technologies to capture data at all stages of production. Simultaneously,
technologies such as Internet of Things (IoT), Internet of Services (IoS), Artificial
intelligence (Al), and data mining (DM), which are all inherent in Industry 4.0, are being
leveraged with “Big Data” to facilitate a more adaptable and smart maintenance policy.

Predictive maintenance is a type of maintenance policy raised under this background. The
goal of predictive maintenance is to reduce the downtime and the cost of maintenance under
the premise of zero failure manufacturing through utilizing real-time data to forecast
potential faults. The philosophy of predictive maintenance is to perform maintenance only
when necessary, which means maintenance shall only take place after analytical models
forecast certain failures or degradations. Ideally, maintenance schedule can be optimized
to minimize the cost of maintenance and achieve zero failure manufacturing through this
policy. However, it is difficult to realize all the advantages of predictive maintenance

without the foundations of correlation techniques.

This thesis presents a framework driven by deep learning approaches for predictive
maintenance concerning the Industry 4.0 concept. This framework aims to provide an
overall understanding and helpful guidance for researchers and practitioners to implement
predictive maintenance in the Industry 4.0 era. The target of the framework is to minimize
the number of unnecessary maintenance performance, leverage the remaining useful life of
equipment, and reach zero failure manufacturing through intelligent diagnosis and
prognosis. The framework consists of three tiers. The first tier is data acquisition from
multiple sources, which allows all relevant devices and data sources interconnect with each
other. Diagnosis and prognosis is the second tier, which is responsible to deal with all DM
and analysis issues. The third tier is decision support and maintenance implementation. It
is in charge of presenting all the information or knowledge obtained from DM, providing
optimized maintenance scheduling and finally interacting with the physical world
according to the computation results in cyber world.

The outcomes of the thesis can be applied in mechanical and electrical system in industries

of manufacturing.

1






Table of Contents

ACKNOWIEAZEMENTS ..ot et e e et e e e et e e e s s bt e e e e s abaeeesenraeeeennreeens I
Y o1 - ot A SRR PRRROPPPRRR 11
I o] (0o} A 0] o1 =T oY £ PRSPPI \Y
[ o)l H T Y PPN IX
[ o] N =] o] [OOSR X1
N oY a0 1=Ya ol =X (U T PRSP XV
(@ oY oY =T ol B 12 4o o [F Tt o o SRR 1
1.1 Y Lo} AV A o] [ PP PPP O PTPPPT 1
1.2 CONEIIDULIONS ..o et e e et e e e e e e ssbaeeeeans 2
13 List of SCIeNntific articles.....cuuiiiiciiie e 4
1.4 OULHNE OF thESIS ..vveiiiiiiee e e e e sbaeeeeans 5
Chapter 2 LIEratUre FEVIEW ......cc.veieieiieeeeeiieee e ettt e e ettt e e e tae e e esatae e e e sataeeeesseeeeennreeesannreeeaas 7
2.1 [Tl Ao T [¥ T 4 e o USRS 7
2.2 IMPACt OF INAUSTIY 4.0 oo e et e e e e e raeeeenes 8
2.3 Maintenance strategy classification.........cccccoeecieeiiiiiiie e 13
2.3.1  Corrective MAINTENANCE. ...........ceeeeeeeeaieeeeeeee e 14
2.3.2  Preventive MaiNtENANCE .............coeeeeeimieieeeeeee et 15
2.3.3  Predictive MOINEENANCE .........ccc.uveeeeeiiieeeeiiieeeecieieeeseaeesieaeesiaeaeesiaaa e e 16

2.4 Predictive maintenance: State-of-the-art .......ccocceeeviiiiiiniccc e, 18
2.5 Deep learning-based fault identification and prediction ........ccccceeeveiieiinnnenn. 24
2.5.1 Trends in deep 1€arning ...........ccueeeeueeeeeeiiiieeeiiiieeeeiieeeesiea e esiea e seaa e e 25
2.5.2 Application of deep learning in predictive maintenance..................ccc.......... 27
2.5.3 Superiority of deep learning for fault identification and prediction.............. 29

2.6 RY U730 0 =7 34
2] LT 1= T TS 35
Chapter 3 Framework of predictive maintenance in Industry 4.0 concept .........coec........ 51

\Y%



3.1 INTrOAUCTION ..o 51

3.2 Current challenges and potentials of predictive maintenance......................... 51
3.2.1 Challenges of predictive maintenanCe.............cccccecevvveveereeeeeiciiivieeaeessssinnnns 51
3.2.2 From the perspective of maintenance towards Industry 4.0......................... 52

3.3 Structure of the frameWork. ... 54

3.4 Tier 1: Data acquisition from multiple SOUIrCes ......ccvvvevvciieiicciie e 57
341 SONSONS .ttt e e e st a e e e e e natae s 58
3.4.2  Industrial CONEIrol SYSEEMS. ....ccc.vvvveeeiiieeeeieeeeette et e e 59
3.4.3  CloUd dOEADASE ......coceevesieeeieeeeeeee ettt ita e se e ssasenaae s 59
3.4.4 Location & identifiCation .............cceecueeeeecueeeeeiiiiiee e et e s e e 59

3.5 Tier 2: Fault identification and prediction.........cccccccvieeieiie e 60
3.5.1  DOUO PIrEPIOCESS ...uuvvveeeeiveiieieeeieieteieeeeeeseeeseseaessausassssssssssssssssssssssssssssssssssnsnsnnes 61
3.5.2 Data mining for fault diagnosis and prognosis ...............cccceueeevvveeecieeeeennen. 62

3.6 Tier 3: Decision support and maintenance implementation...........cccccccceveeenns 66
3.6.1 Information ViSUQLZAtION............cceeecuveeeesiiiieesiiiiieeescieeesea e sieaeesiiaa e 66
3.6.2 Maintenance scheduling OPHMIZALION .........cceecvevereeeeerieeeisieeeeseeeees 67
3.6.3  INEEIOPEIALION. ...ttt ettt e e et r e e e e e s 68

3.7 SUIM MY ¢ s 68

0] =T =T o 1ol Y PP RPP 69

Chapter 4 Implementation of predictive maintenance in machining centers................... 77

41 INEFOAUCTION ..t s e s e s sabeee s 77

4.2 Fault analysis techniques in machining centers........cccccceeeciveeeccieeeccceee e 79

4.3 Steps to implement predictive maintenance in machining centers.................. 84
4.3.1 Sensor selection and data QCQUISITION ............cccueeeeecvveeeeeiieeeeeiieeeeeiieeeeane, 85
/G N2 D o (o l ] =] 0] (0 ol =21 ¢ [ [ 85
278G G S D Lo 1 o o 2 1 o S 86
4.3.4 Data record and publiCation ................ceeeccuueeeeeiieieeesiiiieesiieeeescieeeesiiea e 86
4.3.5  DECISION SUPDPOIT ...ttt aaassssasasssasssssssssssssssssnsnnes 89
4.3.6  Maintenance implementation ................cccueeeevueeeeeicieiiseesiiieeesiiaeeesiee e 90

4.4 SUITIMIATY ¢t s 90

RETEIENCES ...ttt et ettt e st e bt e e it e e sabe e sabe e s bbeesabeesabe e 91

Chapter 5 Implementation of predictive maintenance for backlash error....................... 97

VI



Chapter 1 Introduction

5.1 (2 = { 4o U T o FR PR 97
5.2 Backlash error in machining CeNTErsS .......ccoviiieiiiiii it 98
5.3 Hierarchical diagnosis and prognosis system (HDPS).......ccccoceeeeiieeeecireeeeennen. 100
5.4 DBN-based fault diagnosis and prognosis.......cccceeeeeciiiiiieeeeeeeecciireee e 101
5.5 Backlash error detection and prediction experiment ........cccccceeecciiveveeeeiiinnns 107
55,1 EXPEIIMENT SET UP ...eeeeeeeeeeeeeieieee ettt ettt e 107
5.5.2  Backlash error interpretation ..............cecccueeeeecveeeseesiiieeesiiieeseiieeessiinseeninns 108
5.5.3  DOtA ACQUISITION.......eeeveeeeeiiiiiieeeeeeee ettt 110
5.5.4  Diagnosis of baCKIQSH €I1Or ............ccuueeeeevueeeeeeiiieeeeeceee e eeieee e 111
5.5.5 Prognosis of backlQsh €rror.............ceeeecveeeeeeieeeeeeeiiiieeeeiieeeeeiveeeeeiieeeeeans 113
55,6 DISCUSSION ..ccoeeaeeieee ettt e 115
5.6 HDPS-BPSO maintenance implementation strategy .......cccccveeeevreeeecvieeeennen. 117
5.6.1  BASIS Of PSO ..ottt e e e a e 117
B5.6.2  BPSO oottt ettt sttt s et e s tae s taenreeens 121
5.6.3 HDPS-BPSO based maintenance scheduling...............ccccccccouueveviveeesceenennne. 122
5.7 SUIMIMIAIY <ttt tae s nbnnnbnnnne 128
0] = =T o Tol Y PP PRSP 128
Chapter 6 Implementation of predictive maintenance in rotary machinery.................. 135
6.1 [[aYa oo U] 4 o] o WO RS 135
6.2 Vibration condition MONItOriNG........coeciiiiiiiiiie e 137
6.3 WWUPD ..ttt ettt ettt e et e et e e et s e st e e e e e e n b e e e ae e et eeenaeeenteeenneeenees 138
6.4 Set up and data ColleCtion .........cocviiiiiiiie e 141
6.5 Deep neural Network With BP..........cccuiiiiiiiiie e 143
6.6 Faults classification and degradation assessment.........ccccccceeeeeiieeeecveeeeenen. 147
6.6.1  NUMEIICAI TESUITE ...ttt ettt esee s 147
6.6.2 Comparison with conventional methods.............cccccoeveecvvvveneeeseciiivenann. 150
6.6.3  DISCUSSION ...ttt ettt 153
6.7 SAE-LSTM anomaly detection.......cueeiieciiiieieiiiee et 155
6.7.1 SAE-based representation learning for multiple features sequence............ 155
6.7.2 LSTM-based anomaly identification with time Series.............cccccecvvvveeunn... 160
6.7.3  Validation and diSCUSSION ...........ccuvevueeesiieniiisiiieesieeee et 165
6.8 SUITIMIAIY ettt s nbnnnnnnes 168



RETEIENCES ... ittt ettt e st e st e e sabe e st e e s ba e enareesabeesaeeenees
Chapter 7 Conclusion and future research......ccccceeeeciiee e

7.1 SUMMary and CONCIUSIONS .....uuvvieeeeiciiiiieee e e e e e e e e e abrareeeeeeeaa
7.2 Suggestion for fUtUre WOIK.........eeee i

VIII



List of Figures

Figure 2.1 Key components in INdUStIY 4.0 .......coocvevieiiiiiiieiieieiecee e 11
Figure 2.2 Maintenance StrAteZY .........ecvueeerurreriuieeiuieerieeeireeesreesreeessseessesessseesssessssseessnes 14
Figure 3.1 Framework of predictive maintenance in Industry 4.0 concept....................... 56
Figure 3.2 Data analysis process for fault diagnosis and prognosis...........cccceeeeveeeevveenen. 61
Figure 4.1 Green MONitoring SYSTEIM ....eerueerueteieeiteertieetieeteeteeteesteesteesieeeneeeeeesseesieesaneeas 77
Figure 4.2 Components of @ machining CeNter............cocceevieiieiiienienieiieeieeeesee e 80
Figure 4.3 Monitoring dashboard ...........c.ccoeiiiiiiiiiiieie e 87
Figure 4.4 Record of tags in RFID readers.........ccccvevcieiviieiieiieiieiecee e 88
Figure 4.5 Information in @ RFID tag.........cccceeeiiiiirieeiieiieiceeeeesee e &9
Figure 5.1 Backlash error in machining CENters ............ccovevieevierieerienienieeieenieeseesneseneens 99
Figure 5.2 System structure of HDPS .........cccooiiiiiiiececeeeeee e 100
Figure 5.3 Structure 0f RBM ......coooiiiiiiiiiiiiccie ettt 102
Figure 5.4 Contrastive divergence training ...........c.cccveeveereeriveecreesreesseesseesseessessesssesssens 105
Figure 5.5 Overall construction of DBN ........ccccooiiiiiiiiiiinienieeie e 106
Figure 5.6 DBN for fault diagnosis and prognosis...........ccceeeeeecueeriiesiienienienie e 106
Figure 5.7 Setup of the measurement SYStemM .........cecueerueerierierieeiieieeiieiee e 108
Figure 5.8 Three blocks of backlash in one sample ...........cccceveiieiieiiiniinieeeee, 109
Figure 5.9 Backlash error with working time and axis position...........c.cceceeveveevienennens 111
Figure 5.10 Training result of DBN .....cccoociiiiiiiiiniiieeeeeeeeeeee e 114
Figure 5.11 Predicted backlash error in week 30th ..........ccccovevvieciiiviiinieiecieeie e, 115
Figure 5.12 Predicted backlash error in week 31st.......cccevveviieciieciieniieiieiesee e 115
Figure 5.13 Birds flocking 0f PSO ........coovviiiiiiiiiiicieceee et 118
Figure 5.14 Flowchart of PSO algorithm ............ccccooieviiiiiinieeiicccceeeeesee e 119



Figure 5.15 HDPS- BPSO mean fitness with iterations ............ccccoeeeeeninienencenenennens 127

Figure 6.1 3-layer structure 0f DWT ......ccooviiiiiiiieiieiieeeee et 139
Figure 6.2 Wavelet packet deCOMPOSILION ......ccveeeiiieriieiiiieii et eiee e 140
Figure 6.3 Bently Nevada rotor Kit........ccoeeeiiiiiiiiiiiieiiecee e 142
Figure 6.4 Weights on flyWheel ..........ooooviiiiiiiiiieec e 143
Figure 6.5 Vibration signals and the wavelet coefficients and energy features .............. 143
Figure 6.6 Architecture 0f DINN........cooiiiiiiiiiiiei et 145
Figure 6.7 Classification result from DNN .........cccoiiiiiiiiiiiiinieeee e 149
Figure 6.8 Degradation assessment 0f DNN ........c.ccccooviiiieniienciieieeeeeee e 150
Figure 6.9 Mean correct classification rates in fault classification ............ccccoeceeverennee. 151
Figure 6.10 Degradation assessment of BPNN ........ccccoceviiiriiinciiecieieieeenee e 151
Figure 6.11 Degradation assessment 0f SVIM ........ccccveviiiiierieniieciieiceeeee e 152
Figure 6.12 Degradation assessment of KINNC...........cccevvievienciierieiieceeeeee e 152
Figure 6.13 Degradation assessment of DBN .........ccccoooiivviiiiinciiicieeieeceee e 152
Figure 6.14 Process of SAE-based representation learning for multiple features sequence
......................................................................................................................................... 155
Figure 6.15 Part of energy-based features after normalization............cccccoeceevernirnieennen. 157
Figure 6.16 Architecture of an autoenCOder ...........ccveeriieriierieiiieiceeecee e 158
Figure 6.17 Features after representation 1€arning ............ccoeceeveveeeiienienienienienie e 160
Figure 6.18 Memory cell in LSTM ....c.ooiiiiiiiiiiiiiiieeeece e 162
Figure 6.19 Numerical result of 5-fold cross validation............cccccceevvievierienienieereennen. 163
Figure 6.20 Construction error With training...........ccceevvevieeieecreeriesreeseeseesveeveeveenens 164
Figure 6.21 Training errors of five feature SEqUENCES.......c.ccvvevevievrierrierienieeee e 165
Figure 6.22 Process of SAE-LSTM approach for anomaly detection............c..cceeeuveeneen. 166



Chapter 1 Introduction

Figure 6.23 Result of anomaly detection through SAE-LSTM........cccccoiviiinininnenennene 167

XI






List of Tables

Table 2.1 Application of feature extraction in predictive maintenance............c.cceceeueenee 19
Table 2.2 Application of Al techniques in predictive maintenance ..............ccceceveeevvennee. 21
Table 2.3 Superiority of deep learning for predictive maintenance ..............cccoceveeevvennee. 30
Table 5.1 Parameters collected from a vertical machining center...........c.ccocceeevveeeneen. 110
Table 5.2 Diagnosis results of BPNN, DBN, and SVMR ........ccocciiiiiiiiiiieeeen 112
Table 5.3 INPULS fOr PrOZNOSIS ...cvvieuiieiieiieitie ettt ettt ettt ettt eieeeaee s 113
Table 5.4 parameters for utilized DNB .........ccocciiiiiiiiiiie e 114
Table 5.5 Prediction results of BPNN, DBN, and SVMR ..........ccccccovviiiiiiiiiieeceieeeen, 116
Table 5.6 Part of data predicted through HDPS (M) ....cc.eovvveviiiiiiiiiiieeeeeeecie s 123
Table 5.7 Work load of the equipment (%0) .....c.cccvevverierienieriecie e 124
Table 5.8 Best maintenance scheduling from HDPS-BPSO ...........cccoovivviviiiniinieen, 128
Table 6.1 Activation functions for DNIN ..........coociiiiiiiiiiiieeeeee e 146
Table 6.2 Data composition of collected samples for fault classification........................ 148
Table 6.3 Numerical results of degradation asseSSmMENt..........ccceecveerieereeneenienieeieeneenn 153
Table 6.4 Part of the energy-based features through DB4 wavelet transform................. 156
Table 6.5 Performance of SAE-LSTM for anomaly detection............cccceeveervenirneennen. 168

XIII






Nomenclature

Al
AEA
ANNs
BP
BPNN
BPSO
CCNN
CI
CNC
CNN
CPNN
CPS
DBN
DM
DNN
DT
DWNN
DWT
EMD
ES
FFT
FLS
GPU
HDPS
HHT
ICT

Artificial Intelligence

Acoustic Emission Analysis
Artificial Neural Networks

Back Propagation

Back Propagation Neural Network
Binary Particle Swarm Optimization
Cascade Correlation Neural Network
Computational Intelligence
Computer Numerical Control
Convolutional Neural Networks
Counter Propagation Neural Networks
Cyber-Physical Systems

Deep Belief Network

Data Mining

Deep Neural Network

Decision Tree

Dynamic Wavelet Neural Network
Discrete Wavelet Transform
Empirical Mode Decomposition
Expert System

Fast Fourier Transform

Fuzzy Logic System

Graphics Processing Unit
Hierarchical Diagnosis and Prognosis System
Hilbert-Huang Transform

Information and Communication Technologies

XV



IoS
loT
KDD
KNNC
KPI
LSTM
MLP
MSE
MSO
NFN
OA
PM
PNN
PSO
RBFNN
RBM
RFID

SAE
SCADA
SOM
STFT
SVM
SVMR
TA

VA

WD
WPD

Internet of Services

Internet of Things

Knowledge Discovery from Data
K-Nearest Neighbours Classification
Key Performance Indicators

Long Short Term Memory
Multi-layer Perception

Mean Squared Error

Maintenance Scheduling Optimization
Neuro-Fuzzy Network

Oil Analysis

Predictive Maintenance

Polynomial Neural Network

Particle Swarm Optimization

Radial Basis Function Neural Networks
Restricted Boltzmann Machines
Radio Frequency Identification
Recurrent Neural Networks

Stacked Autoencoders

Supervisory Control and Data Acquisition
Self-organising Map

Short Time Fourier Transform
Support Vector Machines

Support Vector Machine Regression
Temperature Analysis

Vibration Analysis

Wavelet Decomposition

Wavelet Packet Decomposition

XVI



Chapter 1 Introduction

Chapter 1
Introduction

1.1 Motivation

Nowadays, due to the rapid development of modern manufacturing industry, and
information and communication technologies (ICT), engineering systems are increasingly
becoming complex and integrated, which means unanticipated faults could result in
consequences that range from the simple replacement of a cheap bearing to an accident that
may cost millions in lost production, human sources, or pollution. Therefore, conventional
maintenance strategies, which do not have the ability to completely eradicate faults, may
no longer fulfil the requirement of modern industry. Actually, how to reduce downtime and
cost of maintenance under the premise of zero failure manufacturing is always a critical
issue for a company to be competitive and sustainable.

As an ideal maintenance policy, predictive maintenance collects types of parameters from
equipment, detects changes in the physical condition of equipment, and discovers fault
information, including when, where, and which type of fault that may occur. Through the
fault information, predictive maintenance could arrange appropriate maintenance
performance for maximizing the service life of equipment without increasing the risk of
failure. Prediction for future potential fault allows enough time for maintenance planning
before the fault happens. Ideally, maintenance schedule can be optimized to minimize the

cost of maintenance and achieve zero failure manufacturing.

The key to implement predictive maintenance is ability to assess equipment health and
discover detail information about current or future faults through collected data. Normally,
it can be divided into two stages. One is so-called fault diagnosis, which means detecting,
isolating, and identifying incipient failures or current degradations of certain components
and performance. The other is fault prognosis, whose task is to identify and predict the
impending or potential failures or degradations for the equipment, and subsequent
monitoring and tracking for the growth of these failures. For decades, to construct a
machine learning system for fault diagnosis and prognosis requires elaborate engineering
and considerable domain expertise. Actually, very few research involves accurate
prediction of certain potential failures for equipment, because of the challenge to precisely

1



Chapter 1 Introduction

forecast the temporal progression of potential or impending faults. Actually, foretelling the
future in a wide field of disciplines from engineering science, biology and economics to
geography or sociology has attracted the interest of both researchers and practitioners over
the past few decades, with results that vary from disappointing to promising.

From the author’s perspective, the main obstacles to implement predictive maintenance
could be concluded into three points: (1) Access to obtain necessary and massive industrial
data, which can represent working condition for equipment. (2) Capability to integrate and
leverage industrial big data for fault diagnosis and prognosis (3) Ideal data-driven models,
which can accurately predict the potential or impending faults. Fortunately, with the rapid
development of ICT and artificial intelligence (Al) techniques, along with the trend of
Industry 4.0 and deep learning approaches, predictive maintenance is also on the threshold
of a new era. Therefore, during the three years of PhD work, a framework for predictive
maintenance concerning the Industry 4.0 concept and deep learning-driven approaches is
established. The framework could offer a complete understanding and effective guidance
for researchers and practitioners to implement predictive maintenance in the new situation.
In addition, an overall research about the application of deep learning approaches, which
could ideally get rid of some ‘bottlenecks’ that conventional data-driven methods faced in

predictive maintenance along with detailed case studies are also presented in this thesis.

1.2 Contributions

This thesis was conceived with the objective of pushing forward research on predictive
maintenance in Industry 4.0 concept. The main original contributions of this monograph
are the following:

e A detailed revision of the state-of-the-art, the most relevant developments made in
the field of predictive maintenance. Effort was put into producing a comprehensive
survey and review as a starting point for new researchers into the field, and
providing current researchers or practitioner a broader overview of all the
approaches applied to achieve predictive maintenance with Industry 4.0 concept.

e A systematic research of deep learning based fault identification and prediction.
Several deep learning architectures have been investigated from practical

applications to interpret their superiorities in fault identification and prediction in
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certain domains or with prerequisites, which could provide effective guidance to
select suitable deep learning methods to implement predictive maintenance. Some
novel applications of deep learning-driven fault diagnosis and prognosis
approaches such as DNN-based degradation assessment, DBN-based error
prediction, SAE-based feature reconstruction, and LSTM-based anomaly detection
are also presented along with detailed case studies in the thesis, which demonstrate
the superiorities of deep learning in self-learning, big data analysis, fault
identification, and degradation assessment.

The framework for predictive maintenance concerning the Industry 4.0 is proposed
in the thesis to achieve accurate failure prediction, efficient maintenance
scheduling, extension of data sources and tracking degradation of equipment. As a
result, the efficiency of maintenance implementation could be enhanced. The
framework also provides an overall understanding and helpful guidance for
researchers and practitioners to implement predictive maintenance in the Industry
4.0 era.

An Industrial 4.0 scenario about the implementation of predictive maintenance for
machining centers together with a case study of DBN-based backlash error
prediction are demonstrated in the thesis. In the case study, a novel HDPS-BPSO
maintenance implementation strategy is proposed to achieve predictive
maintenance in practical applications. The numerical result in that case not only
proves the superiority of deep learning methods in knowledge discovery with
strong self-learning ability but also demonstrates the benefit of implementing
predictive maintenance compared with preventive maintenance.

An experiment of fault classification and degradation assessment for rotary
machinery is also presented in the thesis to provide a comprehensive comparison
of different types of data driven models, in which DNN-based degradation
assessment outperforms the other models and proves the advantages of deep
learning. In this case, a novel SAE-LSTM approach is also proposed for anomaly
detection to train data-driven models in an unsupervised learning environment

when the empirical knowledge is missing and all data is collected without labels.
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1.4 Outline of thesis

The thesis is structured in seven chapters. Chapter 1 introduces the motivation and
contribution of this thesis. Chapter 2 presents a review of literature relevant to development
of maintenance policy, predictive maintenance, impact of Industry 4.0, and application of
deep learning. Chapter 3 describes the general structure of proposed framework to
implement predictive maintenance concerning the Industry 4.0 concept and deep learning
approaches. Chapter 4 provides helpful guidelines to select suitable fault analysis
techniques and implement predictive maintenance in machining centers. Chapter 5
introduced a case study of implementing predictive maintenance for backlash error
compensation. Chapter 6 demonstrates an experiment of fault classification, degradation
assessment, and anomaly detection for rotary machinery through deep learning approaches.
Chapter 7 concludes the thesis and proposes the further research.
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Chapter 2
Literature review

2.1 Introduction

The requirements of repair for equipment, even the most rudimentary tools, exist from the
very beginning of human civilization. In that days, human would do maintenance only
when the equipment is “breakdown”, which means it is no longer possible to work. This
kind of maintenance is called as corrective or breakdown maintenance today. It was the
only maintenance strategy until around 1950, some Japanese engineers proposed a new
concept in maintenance, to lubricate and replace certain parts of equipment before it broke
down. The new strategy was called as “Preventive Maintenance”. From then on, plant
managers were encouraged to develop programs for lubricating or replacing parts to protect
the equipment from breakdown. Although it is useful and helps to reduce downtime, it is
an expensive alternative, since many parts were replaced on a time-basis, while they could
have lasted longer.

Simultaneously, with the development of modern manufacturing technology, new
engineering systems are becoming more and more complex and integrated. Various
components and subsystems may work together to accomplish certain missions. When a
fault occurs, it is critical to identify the consequences and causes as rapidly as possible, and
take appropriate maintenance action. Typically, when a system goes down, only a small
fraction of the downtime can be spent to detect the root cause that leads to the fault. An
unexpected failure may result in a devastating accident and financial losses for the
company. Consequently, the ability for early prediction, which can prevent failures from
growing and eventually turning into serious problems, is meaningful and imperative for
industrial scenarios [Henriquez et al., 2014]. Therefore, in recent years, some researchers
proposed a new type of maintenance, predictive maintenance. The idea is to schedule
maintenance according to the available information, which can indicate the current
condition of the equipment, or predict certain degradations. However, it was hard to
achieve this vision because of technological capability and difficulties to acquire and
integrate all essential information in the last few decades. Nowadays, with the trend of the
fourth industrial revolution, we also see the potentials and challenges of predictive
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maintenance in this new era.

This chapter reviews the development of predictive maintenance, impact of Industry 4.0,
and trend of deep learning approaches related to maintenance strategy. Various research,
applications, and methods for faults diagnosis and prognosis are also summarized.

2.2 Impact of Industry 4.0

Industrial production keeps stepping forward since the very beginning. Sometimes, the
changes were so potent and significant that we have to describe them with the term
“Industrial Revolutions”. The term, Industry 4.0, is used to recognize the other three

previous industrial revolutions.

The first industrial revolution is the term used to describe the change from purely manual
work to machine production, which initially affected the cotton-spinning and weaving mills
in England from 1770. The great breakthrough came in 1782 with the steam engine
invented by James Watt. Since then it was feasible to acquire energy supply at any location
and any time, and the manual work was no longer focused as before.

The second industrial revolution was characterized by the principles of rationalization by
Taylor. It is mainly based on the division of labour, precision manufacturing,
standardization, and assembly line work. Henry Ford applied the first conveyor belt in the
production of the T-model and achieved pioneering and great success with it in the
automobile manufacturing at the beginning of the 20" century.

The third industrial revolution focused on the developments of the computer and IT
technology. This revolution led to numerically controlled machines, such as numerical
control machines and industrial robots, which could be modified much faster and more
efficient than conventional mechanical automated machines. Thus, the term of flexible
automation was born and systems could be characterized by high productivity and
flexibility.

Today, we are witnessing the fourth industrial revolution, which also known as Industry
4.0. It combines strengths of optimized industrial manufacturing with internet technologies,
cyber-physical systems (CPS), internet of things (IoT) and internet of services (IoS) [Lasi
et al., 2014], which changes manufacturing process, maintenance management and
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maintenance strategies significantly. Information and communication technologies are
growing together and affecting all areas of life. Devices and systems in our real
environment that are controlled by embedded software are now integrated into the global
communication network, where ‘internet’ is the key term. The real world and the virtual
world are clearly growing together. As a kind of buzzwords today, Industry 4.0 is widely
discussed among practitioners as well as theorists, and facilitates the version of smart
factory [Zamfirescu et al., 2013]. It was introduced at Hanover fair in 2011 in Germany to
present a new trend towards the networking of traditionally industries [K. Wang, 2016].
From then on, there are many similar projects and programs demonstrated to reflect the
concept of Industry 4.0 such as “Intelligent Manufacturing system”, and “Smart

Manufacturing”.

Industry 4.0 is closely related to other technological concepts, such as Machine-to-Machine
(M2M) communication [Gorecky et al., 2014], radio frequency identification (RFID)
technology [K. Wang, 2014], CPS [K. Wang and Wang, 2012], the Internet of Things , the
Internet of Services , cloud computing [ Drath and Horch, 2014], computational intelligence
(CI), data mining and decision-making/supporting system. In an Industry 4.0 factory,
machines are connected as a collaborative community to collect, exchange and analyse data
systematically. It combines strengths of optimized industrial manufacturing with internet
technologies and changes manufacturing process, maintenance strategies and maintenance
management significantly. Therefore, many companies face the challenge to assess the
diversity of developments and concepts summarized the term Industry 4.0 and to develop
their own strategies [Hochschild, 2015]. However, since lack of research of the potential
use of Industry 4.0 and prospect of predictive maintenance, many companies and
organizations are exposed to a dilemma, neither to wait too long with their Industry 4.0
implementation nor to start too early and commit fatal errors [Schmidt et al., 2015].
Therefore, this chapter aims to provide empirical knowledge on the potentials of Industry
4.0 from the perspective of maintenance. It may help academics and practitioners to
identify and prioritize their steps towards predictive maintenance and condition-based

maintenance management under the environment of Industry 4.0.

Based on the literature review, the general definition of Industry 4.0 can be summarized as
that Industry 4.0 is a collective term for technologies and concepts of value chain
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organization [Thuemmler and Bai, 2017]. The core principle of Industry 4.0 is the
application of IoT and smart manufacturing, which makes components and production
machines collect and share data in real time, and take the best advantage of these expensive
resources [Shrouf et al., 2014]. Within the smart factories of Industry 4.0, CPS monitor
physical processes, create a virtual copy of the physical world and hereby make
decentralized decisions. Over the IoT, CPS communicate and cooperate with each other
and humans in real time. Data mining (DM) discover knowledge to support decision-
making process. Through IoS, both internal and cross-organizational services are offered
and utilized by participants of the value chain [K. Wang, 2016].

Industry 4.0 is the superposition of several technological developments related to CPS, 10T,
IoS and DM. CPS refers to a new generation of systems with integrated computational and
physical capabilities that can interact with humans through many new modalities. The key
is the ability to interact with, and expand the capabilities of the physical world through
computation, communication, and control [Baheti and Gill, 2011]. In addition, Industry 4.0
facilitates the development of intelligent and flexible production control systems, which
apply information and communication technologies to make machines have the ability to
intercommunicate and interact. Typically, Industry 4.0 mainly consists of following key

components:

e (Cyber-Physical Systems;
e Internet of Things;
e Big Data & Data Mining;

e Internet of Service.

Figure 2.1 shows the roles of these key components. As an important component of
Industry 4.0, CPS refers to a new generation of systems with integrated computational and
physical capabilities that can interact with humans through many new modalities. The
target is to bring the virtual and physical worlds together to create a truly networked world
in which intelligent objects communicate and interact with each other [MacDougall, 2014].
The key is the ability to interact with, and expand the capabilities of, the physical world
through computation, communication, and control [Baheti and Gill, 2011]. CPS has the
ability to transfer the physical world into the virtual one and can be understood as a basic
unit. The development and application of identification approaches such as radio-frequency
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identification has become the foundation to achieve unique identification of objects. CPS
applies multiple sensors with information and communication technologies to collect,
store, and parse data. CPS deeply embeds cyber capabilities in the physical world, either
on humans, infrastructure or platforms, to transform interactions with the physical world
[Poovendran, 2010]. Therefore, CPS can be considered as the architecture in Industry 4.0

concept.

Industry 4.0 Environment

Service

Architecture

Access

Figure 2.1 Key components in Industry 4.0

IoT is defined as the ubiquitous access to entities on the internet for the extension of the
physical world through a variety of sensing, detection, identification, location tracking and
monitoring equipment [Chaves and Nochta, 2011]. It allows “Things or Objects” interact
with each other and cooperate with their ‘smart’ components to reach common aims. [oT
can be thought as a network where CPS cooperates with each other through unique
addressing schemas. It is the infrastructure that enables the internal connection of all types
of devices through the internet for data sharing and information publication. Therefore, we
can take the best advantage of collected data or information.

DM can be defined as the process of discovering interesting (non-trivial, implicit,
previously unknown and potentially useful) patterns and knowledge from large amounts of
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data [Arslan et al., 2016]. It can also be considered as a result of the natural evolution in
information technology. Actually, the evolution is an essential process, where intelligent
methods are applied to extract data patterns and discover knowledge from data [Sohrabi
and Akbari, 2016]. The data sources may include databases, data warehouses, the Web,
other information repositories, or data that are streamed into system dynamically [Han et
al., 2011]. In one word, data mining is the process of answering questions by searching a
database for rules, relationships and patterns not found by conventional query tools.

IoS pursuits a similar approach with services instead of physical entities. The integration
of these developments promotes the cooperation between the partners alone the entire
system. It enables service vendors to offer their services via the internet. The oS consists
of business models, an infrastructure for services, the services themselves and participants.
Services are offered and combined into value-added services by various suppliers. They
are communicated to users as well as consumers and accessed by them via various

channels.

Industry 4.0 also facilitate the vision and execution of the idea "Smart Factory", in which
CPS monitor physical processes, create the virtual copy to represent the physical world and
make decentralized decisions. Products may not only provide their identity but also record
their properties, history and status via ICT technology. Over cloud computing and
distributed control, CPS communicate and cooperate with each and via the Internet of
Services, both internal and cross-organizational services are offered and utilized to make
machines self-aware and actively prevents potential performance issues [Hermann et al.,
2015].

From the perspective of maintenance, a self-aware and self-maintained machine system can
be considered as a system which can self-assess its own health and degradation, and further
use similar information from other peers for smart maintenance decisions to avoid potential
faults [Lee et al., 2014]. To achieve such intelligence, smart analytics may be used at the
individual machine or fleet levels. For a mechanical system, self-aware means the
capability to assess the current, past or future working condition of a machine, and output
the evaluation result. Such health assessment can be performed through data mining
technologies to analyse the information collected from the given machine and its ambient

environment. In this situation, real-time big data is no longer just a process for storing a
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huge amount of data in a data base or warehouse. DM enables us to analyse and discover
patterns, rules and knowledge from big data collected from multiple sources. Therefore, we
can make the most appropriate decision at the right time and right place according to the
analysis result from real-time data. However, there still remains a gap between achieving
all these visions and systematic research to guide the implementation of these intelligent
maintenance in practical applications. For this reason, a framework to implement predictive
maintenance in the Industry 4.0 era will be proposed in Chapter 3 to provide an overall
understanding and helpful guidance for researchers and practitioners.

2.3 Maintenance strategy classification

According to European standard EN 13306:2010, maintenance is defined as "combination
of all technical, administrative and managerial actions during the life cycle of an item
intended to retain it in, or restore it to, a state in which it can perform the required function"
[CEN/TC319, 2010]. There were basically two types of maintenance strategies: corrective
maintenance and preventive maintenance. They can also be further divided into sub-

categories.

In EN 13306:2010, predictive maintenance is defined as "condition based maintenance
carried out following a forecast derived from repeated analysis or known characteristics
and evaluation of the significant parameters of the degradation of the item". In contrast to
traditional condition based maintenance actions that are based on the available information
of the current condition (called "condition based, non-predictive"), the most important
aspect of predictive maintenance is the use of methods and models for making a forecast
for further condition development and remaining useful life. This means that traditional
condition based maintenance recommends maintenance actions based on the information
collected through condition monitoring and the focus is on the current condition, compared
to establishing a forecast when using predictive maintenance.

In addition, according to EN 13306:2010, preventive maintenance is defined as
"Maintenance carried out at predetermined intervals or according to prescribed criteria and
intended to reduce the probability of failure or the degradation of the functioning of an
item". However, with the development of predictive maintenance, and impact of industry
4.0, it tends to the philosophy “execute at the right time”. Maintenance shall be performed
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after analytical models predict that enough indictors are present to accurately predict such
things as a component’s deterioration or certain failure. Simplified, maintenance take place
only when necessary. It utilizes real-time data allowing operation team to prioritize and
optimize scheduling, which means predictive maintenance may not follow predetermined
intervals or prescribed criteria any longer, but the indictors or failure predicted from
analytical models.

Therefore, new classification of maintenance strategy has been presented [K. Wang et al.,
2015], as shown in Figure 2.2. The new classification separated predictive maintenance
from preventive maintenance. This time corrective maintenance, preventive maintenance,
and predictive maintenance, are three parallel types.

Figure 2.2 Maintenance strategy

2.3.1 Corrective maintenance

Corrective maintenance is a type of maintenance performed to identify and rectify the cause
failures for a failed system. It focuses on the identification of failures from the failure
phenomenon, which may contain one or more symptom failures [Y. Wang et al., 2014].
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Under this strategy, failure is allowed to happen before the maintenance is conducted,
which means it is only suitable in the case that the consequence of failure is slight, and
some issues like whether the equipment fails, or how long the repair may take does not
matter. This type of maintenance can be subdivided into two classes: Deferred and

Immediate.

e In deferred corrective maintenance, maintenance is performed in a planned
manner, which means correction of fault may not be conducted once the
failure occurs but according to the maintenance rules. And this rules may
reduce costs or implementation time.

e Immediate corrective maintenance will starts immediately once the failure or
degradation is detected.

Corrective maintenance is a failure-driven maintenance, which is undertaken after a
breakdown or when obvious failure has been located. The objective of the corrective
maintenance is to restore the machine to a state in which it can perform the required
function as quickly as possible. Unfortunately, as a primitive maintenance, corrective
maintenance do not take account of the loss caused by the unanticipated faults. It is only
suited to noncritical areas under the following preconditions: the consequences of failure
are slight, there is no safety risk, the failure will be identified quickly, and the repair will
be quick. Nevertheless, these preconditions nearly could not be met simultaneously in

modern industrial manufacturing fields [C. Fu et al., 2004].

2.3.2 Preventive maintenance

According to European standard EN 13306:2010, preventive maintenance is defined as
"Maintenance carried out at predetermined intervals or according to prescribed criteria and
intended to reduce the probability of failure or the degradation of the functioning of an
item" [CEN/TC319, 2010]. It is carried out at predetermined interval or according to pre-
described criteria and intend to reduce the probability of failure or the degradation of a
component. This type of maintenance seeks to increase the reliability and availability of
equipment through minimizing the number of failures, and avoiding the requirement of
unplanned corrective maintenance [De Faria et al.,, 2015]. In preventive maintenance,

equipment can be prevented from faults, since maintenance or correction is performed
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before failures occur. However, due to preventive action, the replacement of equipment
parts may occur prematurely. Nevertheless, preventive maintenance also can not eliminate
the occurrence of random catastrophic failure. In addition, with the increase of the quality
and complexity of the product, the cost of the frequent maintenance actions is increasingly
becoming high. The reliability theory has proven that scheduled maintenance is just
suitable for failures that have a clear wear-out characteristic, but unsuitable for random
failure [Yu, 2000]. In addition, preventive maintenance raise the number of unnecessary
maintenance performance, which may largely increase the cost of maintenance and also
cause incidental damage to equipment or components.

Although preventive maintenance may not be the optimum maintenance policy, it still have
several advantages as follows [Sullivan et al., 2010]:

e Cost effective in many capital-intensive processes.

e Flexibility allows for the adjustment of maintenance periodicity.
e Increased component life cycle.

e Energy savings.

e Reduced equipment or process failure.

e Estimated 12% to 18% cost savings over reactive maintenance program.

2.3.3 Predictive maintenance

Predictive maintenance includes activities to carry out the appropriate maintenance tasks
for maximizing the service life of equipment without increasing the risk of failure taking
into account the predicted life of the equipment based on the real states (technical
condition) of equipment. By intelligent analysis of (big) data from condition monitoring
and operation, predictive maintenance can reduce the costs by reducing the number of

unnecessary scheduled time-based maintenance operations.

As an advanced and ideal maintenance policy, predictive maintenance measures parameters
in the condition of equipment in order to carry out the appropriate tasks to optimize the
service life of machine and processes without increasing the risk of failure. The main
function is to collect data with the equipment under operation, discover the information
from collected data, and identify potential faults or degradation through historical analysis
of similar equipment and knowledge acquired over time. The key is the accuracy of the
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prediction for the faults or degradation.

Based on the approaches of measuring the symptom of failures, there are two groups of

predictive maintenance:

e Statistical-based predictive maintenance.
e Condition-based predictive maintenance.

Statistical-based predictive maintenance is a kind of traditional approach. It is based on the
application of statistical or reliability analysis of equipment failure. Under statistical-based
predictive maintenance, the objective is to achieve minimum total cost through fixed
statistically optimal maintenance intervals to replace or overhaul equipment or components
[Mann et al., 1995]. The key of this approach is to apply principles of statistical process to
determine when the maintenance shall be performed in the future. Condition-based
predictive maintenance involves the application of condition monitoring for the equipment,
and predict when, where, which components may have potential failures according to
current condition, historical condition, or condition in the future. This type of maintenance
mainly depends on continuous or periodic monitoring conditions of equipment to detect
the signs of failure and make a maintenance decisions [K. Wang, 2016]. The main
challenges of condition-based predictive maintenance in the last a few decades is the access
to the necessary data and information for condition monitoring and forecast, and the
accuracy of failures or degradation prediction. Fortunately, with the rapid development of
condition-monitoring technology and Al techniques in the last few years, the advancement
of condition-based predictive maintenance is greatly facilitated. Especially in the industry
4.0 concept, industrial equipments are connected as a community and autonomously
exchanging information, which means plentiful industrial data can be obtained

conveniently for condition-based maintenance.

Comparing with corrective and preventive maintenance strategies, predictive maintenance

has following advantages:

e Equipment that requires maintenance is only shut down before imminent
failure.

e Reducing the total time spent maintaining equipment

e Reducing maintenance costs by avoiding catastrophe damage.
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e Generating minimal interference in equipment during the operation.
e Increasing availability and reliability of machines.
e Extending life of equipment and processes.

On the down side, the cost of the equipment for condition monitoring needed for predictive
maintenance is often high. In addition, the technological capability to accurately interpret
condition monitoring data and the ability to acquire and integrate all requisite information
is quite hard to achieve previously. In practice, predictive maintenance has a high upfront
cost for investment, and management does not readily see savings in the future.

2.4 Predictive maintenance: State-of-the-art

As the most popular and modern maintenance policy, predictive maintenance measures
parameters in the condition of equipment carry out the appropriate tasks to optimize the
service life of machines and processes without increasing the risk of failure [Garcia et al.,
2006]. The methodology is derived from the objective phenomenon: when equipment
begins to fail, various types of signs, like fluctuation in temperature, vibration, or noise,
can be detected if sharp eyes, ears, and noses are used to sense the failure precursors
[Hashemian and Bean, 2011]. Nowadays, in the age of rapid technological advancement,
sensors are now advanced enough to play the role of sharp eyes, ears, and noses. Actually,
the sensitivity of advanced sensors may be hundreds of times better than human’s.
However, it does not mean the impetus to predictive maintenance, since we also need to
extract information from these signs, discover the knowledge behind the information, and
acquire the detail about the potential failures, just like human brain. And how to extract
features effectively and appropriately from collected data, identify and classify failures
inerrably, and predict the potential faults or degradation precisely for equipment are always

hot issues in predictive maintenance.

Many effective and useful methods have been presented, researched and applied for feature
extraction or signal analysis in predictive maintenance. These methods can mainly be
divided into three types: time domain, frequency domain, and time-frequency domain. The
essence of time domain method is an analysis of a waveform. From a mathematical
perspective, the waveform of a signal is a chronological sequence of the value of a random
variable [Jahnke, 2015]. In frequency domain analysis, signal is analysed with respect to
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the frequency through certain transformation, which can reveal the distribution of the
frequency and filter the noise of signal conveniently. As we discussed above, the objective
of predictive maintenance is to evaluate the state or condition of the engineering system
through certain signs, to be more specific, the collected signals. The changes of these
signals are usually time based issues. However, in many cases, the most distinguished
information is hidden in the frequency content of signals, so signal processing techniques
in a time-frequency domain is widely used in both diagnosis and prognosis [Jahnke, 2015].
Since feature extraction is a highly subjective problem in nature, the best method normally
depends on the practical problem. Table 2.1 lists some common feature extraction methods
applied for predictive maintenance based on literature review.

Table 2.1 Application of feature extraction in predictive maintenance

Reference Main Data Type Target Method Type
[Zarei et al., Vibration signal Bearing fault Neural Network Time Domain
2014]
[J. Yang et Vibration signal Rolling elements Fractal Dimension Time Domain
al., 2007]
[Abdennadher Electrical signal Electrolytic Z Transformation ~ Frequency
et al., 2010] capacitor Domain
[Liu et al., Energy signal Induction motors Fast Fourier Frequency
2010] Transform Domain
[Taj et al., Maintenance data  Subsystem of a Laplace Frequency
2017] cable plant Transformation Domain
[Mehta et al., Vibration signal Machine tool’s Short Time Time-
2015] spindle Fourier Transform  Frequency
Domain
[Z. Zhang et Vibration signal Blower Wavelet Time-
al., 2013] Transformation Frequency
Domain
[Wu et al., Vibration signal Gear faults Hilbert Huang Time-
2012] Transformation Frequency
Domain
[C. Wang et Vibration Diesel valve trains Wigner Ville Time-
al., 2008] acceleration Distribution Frequency
signal Domain
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After processing signals and extracting the features, the more crucial and challenging thing
is how to identify current failures and predict potential faults. Actually, this is the key to
predictive maintenance. For decades, how to construct an analytical model that can map
extracted features or collected data to the indictors or information, which can accurately
predict component’s deterioration or certain failure, requires elaborate engineering. In
recent years, with the dramatic development of Al techniques, they have been increasingly
applied to machine diagnosis or prognosis, and have shown improved performance over
conventional approaches [Yan, 2014]. In literature review, artificial neural networks
(ANNSs) are one of the most popular Al techniques for machine diagnosis and prognosis.

ANNSs are computational models that mimic the structure of human brains. The purpose is
to make machine learn from data and think like human being. An artificial neural network
consists of simple processing units as neurons connected in a complex layer structure. This
structure enables the model to approximate a complex non-linear function with types of
inputs and outputs. Through adjusting the weights of the processing units, ANNs have the
ability to learn unknown functions [Nourmohammadzadeh and Hartmann, 2015]. Various
types of ANNs were applied and researched for faults diagnosis or prognosis, such as back
propagation neural network (BPNN) [Jafar et al., 2010; Rohani et al., 2011], radial basis
function neural networks (RBFNN) [G. Xiong et al., 2013], counter propagation neural
networks (CPNN) [Phillips et al., 2015], cascade correlation neural network (CCNN)
[Phillips et al., 2015], LVQ [C.-C. Wang and James Too, 2002], self-organising map
(SOM) [Rai and Upadhyay, 2017; C.-C. Wang and James Too, 2002], recurrent neural
networks (RNN) [Yam et al., 2001], dynamic wavelet neural network (DWNN)
[Vachtsevanos and Wang, 2001], polynomial neural network (PNN) [Zou et al., 2017],
neuro-fuzzy network (NFN) [W. Wang, 2007],and dynamic neural network [Abed et al.,
2014]. Another type of popular Al techniques for fault diagnosis and prognosis is expert
system (ES). Different from ANNs, which mainly learn and discover knowledge through
training on observed data with inputs and outputs, ES utilize domain expert knowledge in
a computer program with an automated inference engine to perform reasoning for problem
solving. Based the review made by [Jardine et al., 2006], according to the main reasoning,
the expert systems applied in the area of machinery diagnostics can be divided into three
groups rule-based reasoning [Yoon et al., 1992], case-based reasoning [Ziyan et al., 2003]
and model-based reasoning [Baig and Sayeed, 1998]. Expert system is suitable for
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problems that usually solved by human specialists. However, it is difficult to obtain domain
knowledge and convert it to rules [David and Krivine, 1987], and once built, an expert
system do not have the ability to handle new situations that may not be covered explicitly
in the knowledge bases. Furthermore, when the number of rules increases dramatically, the
situation may cause the “combinatorial explosion”, which is involved in computation
problems [Y. Peng et al., 2010]. Other models like support vector machines (SVM) [Konar
and Chattopadhyay, 2011; Rai and Upadhyay, 2017], fuzzy logic system (FLS) [Sobanski,
2014], decision tree (DT) [Muralidharan and Sugumaran, 2013] , and random forest [B.-S.
Yang, Di, et al., 2008] are also well-know and useful in certain fields. Table 2.2 lists all the
literature reviewed during the research, which includes most of the important and popular
Al techniques successfully and widely applied in fault diagnosis and prognosis in recent

years.
Table 2.2 Application of Al techniques in predictive maintenance
Reference Target Method
[Kim et al., 2012] Prognosis of bearing faults SVM
[Konar and Bearing fault detection in induction motor SVM

Chattopadhyay, 2011]

[Yoon et al., 1992] Fault diagnostics of crude units Rule-based ES
[Baig and Sayeed, Fault diagnosis of twin-spool turbofans Model-based ES
1998]

[Ziyan et al., 2003] Vehicle fault diagnostics Case-based ES
[B.-S. Yang, Di, et al., Diagnosis of induction motors Random forest
2008]

[Muralidharan and Diagnosis of mono-block centrifugal pump DT

Sugumaran, 2013]

[Sobanski, 2014] Diagnosis of voltage inverter FLS
[B.-S. Yang, Oh, et al., Predicting the operating conditions of machine DT & Neuro-fuzzy
2008] System
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[Ghate and Dudul,
2011]

[G. Xiong et al., 2013]

[D. Peng et al., 2014]

[Deuszkiewicz and
Radkowski, 2003]

[Phillips et al., 2015]
[Abed et al., 2014]

[C.-C. Wang and James
Too, 2002]

[Rai and Upadhyay,
2017]

[Yam et al., 2001]

[Vachtsevanos and
Wang, 2001]

[Zou et al., 2017]
[Unal et al., 2014]
[W. Wang, 2007]

[D.-M. Yang et al.,
2002]

[Khomfoi and Tolbert,
2007]

[J.-l. Zhao and Zhao]

[Rohani et al., 2011]
[Huijie et al., 2015]

[Saravanan and
Ramachandran, 2010]

[Mehrjoo et al., 2008]

Fault classification for three-phase induction
motor

Fault diagnosis of large-scale power systems

Diagnosis of turbine generator unit

Condition assessment of power transmission

units
Diagnosis mining trucks

Diagnosis of brushless DC motor

Rotating machine fault detection

Degradation assessment of bearing
Equipment deterioration detection in power
plants

Prognosis of bearing failures

Diagnosis of a transformer
Defects identification for rolling bearings

Prediction of spur gear condition value one
step ahead

Diagnosis of motor bearing

Fault diagnosis for multilevel inverter drive

Fault diagnosis for missile electronic
command system

Predicting repair and maintenance cost
Fault diagnosis in digital circuits

Gear box fault diagnosis

Damage detection of truss bridge joints

CCNN

RBFNN

CPNN

CPNN

CCNN

Dynamic Neural
Network

SOM & LVQ

SOM & SVM

RNN

DWNN

PNN
GA-ANN
NFN

BPNN

BPNN

BPNN

BPNN

BPNN
BPNN

BPNN
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[Din and Marnerides,
2017]

[L. Li and Dai Guilan,
2017]

[L. Wang et al., 2017]

[Jia et al., 2016]

[Galloway et al., 2016]

[Sun et al., 2016]
[C. Luetal., 2017]

[Guo et al., 2016]

[F. Zhou et al., 2017]

[Junbo et al., 2015]
[Huijie et al., 2015]
[K. Li and Wang, 2015]
[Gan and Wang, 2016]

[Tamilselvan and Wang,
2013]

[H. Shao et al., 2015]

[AIThobiani and Ball,
2014]

[Fink and Weidmann,
2013]

[S. Shao et al., 2016]
[Y.Fuetal., 2015]
[M. Ma et al., 2016]

[R. Zhao, Wang, et al.,
2016]

[de Bruin et al., 2017]

Power load mapping

Fault classification for semiconductor
manufacturing process

Identification for failures in wind turbine
gearbox

Processing massive fault data to evaluate the
health condition rotating machinery

Fault classification for turbine’s generator by
mining information from spectrograms

Fault diagnosis in induction motor

Fault diagnosis for components in rotary
machinery

Dimension reduction for intelligent bearing
condition monitoring

Fault classification for machinery equipment in

multimode

Roller bearing fault diagnosis
Fault diagnosis of hydraulic pump
Spacecraft fault diagnosis

Fault location and severity ranking in rolling-
element bearing

Evaluating the health state of aircraft engine
and electric power transformer

Identification of rolling bearing faults

Fault diagnosis of the valves in reciprocating
compressors

Predicting railway operations failures

Fault diagnosis of induction motor
Cutting states monitoring
Bearing degradation assessment

Prediction of tool wear in a high speed CNC
machine

Diagnosis time for railway track circuit

DNN

DNN

DNN

SAE

SAE

SAE
SAE

SAE

SAE

SAE
SAE
SAE
DBN

DBN

DBN
DBN

DBN

DBN
DBN
DBN
LSTM

LSTM
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[Liao and Ahn, 2016] Asset health assessment LSTM

[Yuan et al., 2016] Fault diagnosis and remaining useful life LSTM
estimation for aero engine

[Malhotra et al., 2016] Prognosis for a pulveriser mill from multi- LSTM
sensor time-series data

[Aydin and Engine condition monitoring LSTM

Guldamlasioglu, 2017]

[ElSaid et al., 2016] Predicting excess vibration events in aircraft LSTM
engines

[Janssens et al., 2016] Fault detection for rotating machinery CNN

[Z. Chen et al., 2015] Diagnosis for a two-stage transmission CNN
gearbox

[Babu et al., 2016] RUL estimation from multi-variate time series CNN
sensor signals

[L. Zhang et al., 2016] Road crack detection for transportation CNN
maintenance

[W. Zhang et al., 2018] Bearing fault diagnosis under noisy CNN
environment and different working load

[Ding and He, 2017] Spindle bearing fault diagnosis CNN

[Weimer et al., 2016] Visual defect detection CNN

In summary, according to the aforementioned fields of literature, it is found that most
conventional machine learning models such as BPNN, SVM, RBFNN, and SOM, have the
ability to discover the current faults information and deal with the diagnosis problem when
the data is not massive and features can be appropriately extracted. However, when the
objective is industrial raw data, big data, and the target is to accurately evaluate the
degradation or predict the failures of equipment, one may face challenges or ‘bottlenecks’
to implement predictive maintenance in those situations. In next section, deep learning-
based fault identification and prediction approaches will be introduced along with their

superiorities in the implementation of predictive maintenance to solve those ‘bottlenecks’.

2.5 Deep learning-based fault identification and prediction

The development of modern industry has caused highly increased complexity in both
industrial machinery and production systems, which make it difficult or almost impossible
to identify and predict failure conditions in a timely manner with conventional methods [Y.
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Peng et al., 2010]. Simultaneously, machine learning techniques have facilitated the
advancement in many aspects of modern society, from face recognition [C.-Y. Lu et al.,
2013] to web search [P.-S. Huang et al., 2013], from cancer prognosis [Kourou et al., 2015]
to AlphaGo [Silver et al., 2016], including the application in machinery fault diagnosis and
prognosis. However, it is not easy to apply machine learning techniques in practice for
predictive maintenance directly, since conventional machine learning techniques were
usually limited by their ability to process natural data in their raw form [LeCun et al.,
2015]. In addition, to forecast a potential failure in future is much more challenging than
diagnosis due to the absence of data about working condition in future. Therefore, under
this background, data-driven model with high complexity may be required to evaluate the
development of certain faults or degradations. Of course, it is not so easy to extract such
high-level, abstract features from kinds of features in different domains or raw data directly.
More recently, as a latest research field of machine learning, deep learning has accelerated
its application in fault identification and prediction [Gan and Wang, 2016]. This section
was conceived to detail deep learning-based fault identification and prediction approaches
along with the superiorities of deep learning in predictive maintenance, which could
provide a helpful guidance to select suitable methods during the implementation of

predictive maintenance.

2.5.1 Trends in deep learning

As a type of machine learning, an approach of Al, deep learning techniques focus on the
construction of deep hierarchical models for machine to learn from data. Since the easiest
way to know about deep learning may be the understanding of some historical context, the
following trends of deep learning are identified [Goodfellow et al., 2016]:

e Deep learning has had a long and rich history, but has gone by many names
reflecting different philosophical viewpoints, such as ‘cybernetics’ in the 1940s
to 1960s, and ‘connectionism’ in 1980s to 1990s, and has waxed and waned in
popularity.

e Deep learning has become more useful as the amount of available training data
has increased.

e Deep learning models have grown in size over time as computer hardware and

software infrastructure for deep learning has improved.
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e Deep learning has solved increasingly complicated applications with increasing

accuracy over time.

Al has been an active field of research and part of our imaginations since computers
became available and popular in real life. To be more specific, the term was proposed at
the Dartmouth Conferences in 1956 in the United States by John McCarty and colleagues
[McCarthy et al., 2006]. The idea is to make machines be able to carry out tasks in a way
that we would consider “smart” or intelligent. The development and spread of Al in the last
few decades can be found in the number of centres, labs, and graduate programs in
universities and companies, as well as types of researches and the growing number of
publications in journals, books, and conference proceedings worldwide [Cantu-Ortiz,
2014].

In 1980, the first machine learning workshop was held at Carnegie Mellon University
(CMU). This workshop and the subsequent publication in 1983 of the first volume of
machine learning gave the field a clear identity and a sense of direction, which in turn
stimulated the rapid growth that has continued unabated since then [Michalski and
Kodratoff, 1990]. The most basic is to build computer programs to parse data and make
them have the ability to acquire their own knowledge or make a determination or prediction
about something in the world through input data.

Deep learning hypothesizes that in order to learn high-level representations of data, a
hierarchy of intermediate representations are required [Palm, 2012]. It makes deep learning
be easily explained in contrast to shallow learning, whose archetypical learning model
might be a feedforward neural network with one input, hidden and output layer
respectively. Actually, initial deep learning methods grow from this kind of shallow
learning model, artificial neural network with back-propagation (BP) learning method.
However, researchers started to realize that it was extremely difficult to apply BP-based
training method for deep neural networks with multiple hidden layers in practice by the late
1980s. In 1991, a research made by Hochreiter, which has been considered as a milestone
of explicit deep learning today, formally identified the major cause of the difficulty: Typical
deep neural networks will suffer from the problem of gradients vanishing or exploding.
With standard activation functions, cumulative error signals from back-propagation either
decay or explode exponentially through the number of layers [Hochreiter, 1991]. Since
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then, research about deep learning was motivated by this insight. Over the years, several

popular approaches, which can partially overcome this fundamental issue, were developed
[Schmidhuber, 2015]:

Alleviating the problem through unsupervised pre-training for a hierarchy network.

The basic idea is to train each layer in unsupervised fashion to predict its next input.

This greatly facilitates subsequent supervised credit assignment through BP. One

typical type of deep learning approaches is DBN, which is a stack of RBM.

Long short term memory (LSTM) like networks alleviate the problem through a
special architecture unaffected by it. In a LSTM network employed Constant Error
Carousels as activation and identity functions to discover the importance of events

that happened thousands of discrete time steps ago.

The hardware advances make today’s computers, especially GPU-based computers,
have a million times the computational power of the early 1990s. This allows for

propagating errors a few layers further down within reasonable time, which means

the standard BP training is feasible a few layers deeper than when the gradients

vanishing problem was recognized.

The space of neural network weight matrices can also be searched without relying

on error gradients, thus avoiding the problem of gradients vanishing altogether.

Actually, random weight guessing sometimes works better than more sophisticated
methods [Hochreiter and Schmidhuber, 1996].

Those approaches facilitate the development of deep learning and eventually formulate

types of deep learning architectures, which are widely leveraged in fault diagnosis and

prognosis today. In the following sections, the application of those deep learning

approaches will be introduced along with their superiorities in certain cases or with

prerequisites.

2.5.2 Application of deep learning in predictive maintenance

In practice, it is not easy to apply Al techniques due to the lack of efficient procedures to

obtain training data and specific knowledge, which are required to train the models [Jardine

etal.,2006]. As reported by LeCun [2015], conventional machine-learning techniques were

usually limited by their ability to process natural data in their raw form. For decades, to
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construct a machine learning system required elaborate engineering and considerable
domain expertise to design a feature extraction and selection system that transformed the
raw data into a suitable internal representation or feature vector from which the learning
subsystem, often a classifier, could detect or classify patterns in the input. More recently,
deep learning, as a latest research area of machine learning, has accelerated its application
in fault diagnosis and prognosis [Gan and Wang, 2016]. As a branch of machine learning,
deep learning is a series of algorithms, which can be applied to model, approximate, or map
high-level abstractions in data. The essence of deep learning is about how to compute
hierarchical features or representations from the objective data. The family of deep learning
approaches have been growing increasingly richer, encompassing variety of neural
networks with multiple processing layers, hierarchical probabilistic models, and kinds of
unsupervised or supervised feature learning algorithms [Deng and Yu, 2014]. Schmidhuber
[2015] summarized all relevant work about deep learning in neural networks and
distinguished the shallow and deep learning methods by the depth of their credit assignment
paths. The key advantage of deep learning is that the features are not designed by human
engineers but learned from data itself through a generalized self-learning procedure.
Various deep learning algorithms have been applied successfully in the field of computer
vision [Krizhevsky et al., 2012; Ribeiro et al., 2011; Tompson et al., 2014; S. Zhou et al.,
2010], speech recognition [G. Hinton et al., 2012; Sainath et al., 2013; Seltzer et al., 2013],
and proved the good performance in predicting the activity of potential drug molecules
[Hermann et al., 2015], analysing particle accelerator data [Ciodaro et al., 2012],
reconstructing brain circuits [Helmstaedter et al., 2013], and predicting the effects of
mutations in non-coding DNA on gene expression and disease [H. Y. Xiong et al., 2015].
Currently, various deep learning algorithms, such as deep belief networks (DBN) [Gan and
Wang, 2016; Tamilselvan and Wang, 2013] and deep neural networks [L. Wang et al.,
2017], have been applied successfully in predictive maintenance. Here, part of relevant
research in this area is listed.

Tamilselvan and Wang [2013] presented a multi-sensor health diagnosis method based on
DBN. It employs a hierarchical structure with multiple stacked restricted Boltzmann
machines (RBM) and works through a layer by layer successive learning process. The
method is successfully applied to assess the degradation of aircraft engines and electric
power transformers. By comparison with other classification algorithms, such as SVM,
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SOM, and BPNN, DBN proves a better diagnosis performance for health diagnosis of
complex systems.

Wang et al [2017] proposed a method driven by deep neural network to evaluate the
conditions of wind turbine gearboxes and identify their impending failures. In the
experiment, parallelized stochastic gradient descent is used to accelerate the training
process of deep neural networks. To prevent the overfitting of the deep neural networks
model, a dropout algorithm is also applied into the deep neural networks training process.
According to the comparison with other shallow networks, deep neural networks has the

best performance in failures prediction.

Gan and Wang [2016] have presented a hierarchical diagnosis network by collecting RBM
for fault pattern recognition in rolling element bearings. In the hierarchical network, two
decision layers are designed to identify fault types and evaluate the degradation
respectively. To confirm the effectiveness of the deep neural network, SVM and BPNN
were also employed to present a comprehensive comparison. The experiment results
showed that DBN is highly reliable for precise multi—stage diagnosis and can overcome the
overlapping problem caused by noise and other disturbances.

Jia et al. [2016] proposed an intelligent method based on deep neural network to process
the massive fault data and automatically provide accurate diagnosis results for rotating
machinery. The authors found that, deep neural networks with deep architectures could be
established to mine the useful information from raw data and approximate complex non-
linear functions. The effectiveness of the proposed method is validated using datasets from
rolling element bearings and planetary gearboxes. These datasets contain massive
measured signals involving different health conditions under various operating conditions.
The diagnosis results show that the deep neural network has the ability to mine available
fault characteristics from the raw data, and obtain superior diagnosis accuracy compared

with conventional methods.

2.5.3 Superiority of deep learning for fault identification and prediction

In order to overcome the fundamental problem of gradients vanishing, various types of
deep learning algorithms are proposed and developed in the last few decades. As reported
by Deng [2012], deep learning today refers to a rather wide class of machine learning
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techniques and architectures, with the hallmark of employing many layers of non-linear
information process stages, which are highly hierarchical in nature, to obtain a better
accuracy, performance or deal with issues with high complexity. In this chapter, five deep
learning architectures including deep neural network with back-propagation (DNN),
stacked autoencoders (SAE), DBN, LSTM, and convolutional neural networks (CNN),
which might ideally get rid of some ‘bottlenecks’ that conventional methods faced during
the implementation of predictive maintenance, will be introduced and researched both in
theory and practical applications based on literature review to illuminate the superiorities
of deep learning approaches in certain issues for predictive maintenance. It could offer a
guidance to select suitable deep learning models for practical applications. Table 2.2 listed
all practical applications of deep learning methods for fault diagnosis and prognosis along
with their targets in literature. Table 2.3 listed the superiority of five types of deep learning

algorithms for predictive maintenance.

Table 2.3 Superiority of deep learning for predictive maintenance

Architecture Superiority for predictive maintenance
DNN Degradation mapping, and failures identification, when enough
history data could be obtained, and the complexity of target issue is
relatively high.
SAE Fault characteristics mining, extracting features or hidden

information about failures from the raw input data and subsequently
dividing them into different levels, dimensionality reduction, and
discovering discriminative information about failures when the
input dimensionality is large.

DBN Energy-based models enable DBN to mine information hidden
behind highly coupled inputs, which makes DBN a feasible method
for fault diagnosis and prognosis when the target condition is
beyond the historical data. In addition, it also has the ability to
discover the discriminative information about failures when the
input dimensionality is large.

LSTM By stacking memory cells, information of previous inputs can be
kept in the output to some degree, carried by cell state, which makes
LSTM an outstanding tool to mimic time series.

CNN Strong capacity to discover knowledge behind large data especially
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for image-based data. And due to the ability to learn complex and
robust representation via its convolutional layer, filters in
convolutional layers may extract local patterns in raw data and
further build complex patterns for machine health monitoring
through stacking these convolutional layers.

As an evolutionary version of BPNN, DNN is also widely applied in fault diagnosis and
prognosis to pursue higher accuracy for faults detection, classification, or prediction.
Compared with other conventional machine learning algorithms, the superiority of DNN is
in degradation mapping, and failures identification, when enough history data could be
obtained, and the complexity of target issue is relatively high. Evidence can also be found
in practical applications [Din and Marnerides, 2017; L. Li and Dai Guilan, 2017; L. Wang
et al., 2017]. For example, in [L. Wang et al., 2017], the authors employed DNN to map
the lubricant pressure for wind turbine gearbox and subsequently identify the impending
failures. They also offers evidence that DNN can provide better performance in prediction
compared with other five data-mining algorithms, K-nearest neighbours, Least Absolute
Shrinkage and selection operator, Ridge Regression, SVM, and BPNN. In [L. Li and Dai
Guilan, 2017], a DNN with multiple hidden layers is applied for fault classification in a
semi-conductor manufacturing process. The result in that paper also shows that DNN is
more competitive in the aspect of convergence speed and outperforms other conventional

approaches, such as multilayer perceptron, SVM, and logistic regression.

SAE has been widely and successfully applied to dimensionality reduction in many
research fields [Shin et al., 2013; Zabalza et al., 2016]. Due to the clear hierarchical
relationship between each two layers, SAE has the capacity to implement fault
characteristics mining, extract features or hidden information about failures from the raw
input data, and divide them into different levels. Actually, dimensionality reduction was
one of the most original applications of deep learning, which was also one of the early
motivations for developing autoencoders [G. E. Hinton and Salakhutdinov, 2006]. Models
with smaller spaces could consume less memory, runtime and computation load for the
system. In general, for predictive maintenance, SAE has the superiority to capture the main
variations and discover the discriminative information about failures when the input
dimensionality is large. Some practical applications based on literature review can also
support the theoretical speculation. In [Jia et al., 2016], SAE was widely applied to process
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the massive fault data and evaluate the health condition of the rolling element bearings and
planetary gearboxes in rotating machinery. Galloway [2016] trained a deep neural network
of SAE with spectrograms constructed from raw vibration data directly instead of feature
extraction. The result shows that SAE can learn the response of the tidal turbine under
variable loading conditions and identify faults within the turbine’s generator. According to
the comparison with other feature-based method, such as SVM, decision tree and KNN
classifiers, which are trained after extracting features from vibration data, SAE has even
better performance for faults classification in that case.

DBN, as a type of energy-based models, is constructed through training and stacking
several layers of RBM, which makes the learning process correspond to modifying energy
function so that its shape has desirable properties [Bengio, 2009]. Literatures indicate these
layer-by-layer nonlinear learning networks with fine-tuning procedure could enable DBN
to capture intrinsic characteristics about potential failures from the massive data. In [Gan
and Wang, 2016], the authors applied two layers of DBN to deal with the non-stationary
property of vibration signals for fault location and severity ranking in rolling-element
bearing. The result shows that DBN has the ability to discover the weak links of mechanical
system and provide effective information about failures. The authors in that literature also
provide a comprehensive evidence for the accuracy and efficiency of DBN by utilizing
BPNN and SVM for comparison. The comparison results demonstrate that DBN has a
better performance than BPNN and SVM, especially in fault location and classification.
Tamilselvan and Wang [2013] applied DBN to evaluate the health state of aircraft engine
and electric power transformer, respectively. In the experiment, the diagnosis performances
of the DBN were compared with SVM, BPNN, and SOM. Case study results indicated that
DBN generally results in a better diagnosis performance for health diagnosis in complex
systems, compared to other classification methods. Besides, DBN has proved its
outstanding performance in many fields such as prediction of chaotic time series [ Kuremoto
et al., 2014], traffic flow prediction [W. Huang et al., 2014], financial business prediction
[Ribeiro and Lopes, 2011], short-term prediction of drought [J. Chen et al., 2012], and
retrieval term prediction [Q. Ma et al., 2014]. For example, Kuremoto et al. [2014]
successfully employed DBN to predict the Lorenz chaos well-known with its “butterfly
effect”, which can indicate the sensitive dependence on initial conditions of chaos. In [Q.
Ma et al., 2014], DBN was applied to predict retrieval terms from relevant and surrounding
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words, or descriptive texts. To determine the effectiveness of DBN, the authors tested it
along with baseline methods such as multi-layer perceptron and SVM for comparison. The
experimental results showed that DBN has far higher prediction precisions than the others.
In Chapter 5, a novel application of DBN to predict backlash error in a machining center
when the target condition is beyond historical data will be introduced in detail. That case
study could also prove the theoretical speculation. In general, due to the pre-training
process through unsurprised learning, DBN has the superiority to discover discriminative
information about failures when the input dimensionality is large.

As a type of RNN, LSTM is constructed through stacking memory cells, which can keep
information of previous inputs in the output to some degree. For this reason, LSTM is an
outstanding tool to mimic time series and has been successfully applied in various
applications, such as speech recognition [Graves et al.,, 2013], information retrieval
[Palangi et al., 2016], protein disorder prediction [Hanson et al., 2016], handwriting
recognition, and processing acoustic sequences [Sak and Senior, 2017]. As reported by
Zhao et al. [2016], many machinery data is obtained from sensor data, which is highly in
nature time series. Therefore, in predictive maintenance, LSTM is also a popular and useful
model to discover temporal information from sequential data, especially when the issue is
highly related with time series. For example, Zhao et al. [2016] leveraged LSTM to mine
the information hidden in raw sensory data and successfully predicted the corresponding
tool wear for a high speed CNC machine. The authors also compared LSTM with other
benchmark methods such as linear regression, support vector machine regression (SVMR),
and multi-layer perception (MLP). The results shows that LSTM has the ability to learn
meaningful representations from raw signal and better performance than conventional
methods in the issues with high temporal dependency. In [de Bruin et al., 2017], LSTM has
been applied to identify the fault types and to determine the development of the fault
severity over time for railway track circuit. Malhotra [2016] proposed a LSTM-based
encoder-decoder model to estimate the remaining useful life of a pulveriser mill from multi-
sensor time-series data. The experiment results also show the outstanding performance of
LSTM to reconstruct the time-series corresponding to healthy state.

CNN is a kind of hierarchical multi-layered model with a very strong capacity to discover
knowledge behind large data especially for image-based data since vision is highly
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hierarchically organised. For predictive maintenance, in some scenarios, the information or
signs about failures can also be perceived from data in 2D format, such as time-frequency
spectrum and pictures. As reported by Zhao et al. [2016], due to the ability to learn complex
and robust representation via its convolutional layer, filters in convolutional layers may
extract local patterns in raw data and further build complex patterns for machine health
monitoring through stacking these convolutional layers, which makes CNN an ideal tool
when the target is image-based data.

In Chapter 5, a novel DBN-based error prediction approach will be introduced in a case
study for backlash error prediction in a machining center, which could prove the superiority
of DBN in the situation when target condition is beyond the historical data. In that case, a
comprehensive comparison will also be provided to validate the effectiveness of DBN. The
advantages of DNN, SAE, and LSTM will also be discussed during the experiment in
Chapter 6, in which the effectiveness of DNN-based degradation assessment, SAE-based
feature representation, and LSTM-based anomaly identification with time series will also
be validated.

2.6 Summary

This chapter has introduced the development of predictive maintenance, along with various
techniques and models that could be chosen to implement it. The impact of Industry 4.0,
and trend to leverage deep learning approaches are also explained to the readers for a

general understanding of the background.

In sense, deep learning could be a feasible and effective method to solve certain issues or
challenges during the implementation of predictive maintenance, according to its
application in other field such as computer vision [Krizhevsky et al., 2012; Ribeiro et al.,
2011; Tompson et al., 2014; S. Zhou et al., 2010], speech recognition [G. Hinton et al.,
2012; Sainath et al., 2013; Seltzer et al., 2013], and biological science [H. Y. Xiong et al.,
2015]. Therefore, it is important and imperative to establish a framework for predictive
maintenance concerning the Industry 4.0 concept and deep learning approaches, which can
offer an overall understanding and effective guidance for researchers and practitioners to
implement predictive maintenance in the new situation. This chapter also provides a

systematic review about deep learning approaches applied in fault identification and
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prediction. Five types of deep learning architectures including DNN, SAE, DBN, LSTM
and CNN, which can improve or solve some ‘bottlenecks’ in predictive maintenance are
discussed. The chapter also provides the superiorities of these architectures in certain issues
for predictive maintenance, which could offer an effective guidance for researchers and
practitioners to select appropriate deep learning architectures during the implementation of
predictive maintenance in Industry 4.0 era.
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Framework of predictive maintenance in Industry 4.0 concept

3.1 Introduction

The goal of predictive maintenance is to reduce the downtime and the cost of maintenance
under the premise of zero failure manufacturing through monitoring the working condition
of equipment and predicting the occurrence of failures. Prediction for potential faults
allows maintenance to be planned before the fault happens. Ideally, maintenance schedule
can be optimized to minimize the cost of maintenance and achieve zero failure
manufacturing. However, it is difficult to realize all the advantages of predictive
maintenance without the foundation of correlation techniques such as methods to discover
fault information, access and integration of industrial big data, and cloud-computing for
information sharing. Actually, many manufacturing systems still have not the ability to use
multiple data sources to extract relevant information and manage big data due to the high
demands on data access and data quality [Jay Lee et al., 2014].

This chapter aims to provide empirical knowledge on the potentials of predictive
maintenance in the Industry 4.0 era, and establish a framework for predictive maintenance
concerning the Industry 4.0 concept. It may help academics and practitioners to identify
and prioritize their steps towards predictive maintenance and condition-based maintenance
management under the environment of Industry 4.0. The target of the framework is to
minimize the number of unnecessary maintenance performance and leverage the remaining
useful life of equipment as much as possible under the premise of zero failure

manufacturing.
3.2 Current challenges and potentials of predictive maintenance

3.2.1 Challenges of predictive maintenance

Predictive maintenance measures parameters which can represent the condition of
equipment, and carries out the appropriate tasks to optimize the service life of machines
and processes without increasing the risk of failure [Garcia et al., 2006]. Comparing with

other maintenance strategies, predictive maintenance has following advantages: equipment
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that requires maintenance is shut down only before imminent failure; reducing the total
time spent maintaining equipment; reducing maintenance costs by avoiding catastrophic
damage; increasing availability and reliability of machines; extending life of equipment

and processes. However, predictive maintenance is facing several challenges as following:

e High demands on data access, data quality and data fusion from multiple sources
for data sharing and data publication. Since these sources of data often operate
in a heterogeneous environment, integration between the systems is problematic
[Aljumaili et al., 2015].

e The capability to deal with industrial big data. To leverage big data, industrial
businesses need the ability to support different types of information, the
infrastructure to store massive data sets, and the flexibility to leverage the
information once collected and stored. In other words, enabling historical
analysis of critical trends to enable real-time predictive analysis [J. Liu et al.,
2007].

e The prediction accuracy for predictive maintenance. The inaccurate predictive
information may result in either unnecessary maintenance, such as early
replacement of components, or production downtime because of unexpected
machine failures. Therefore, the accuracy of remaining useful life prediction,
particularly the long-term prediction, which gives sufficient time to prepare for
a maintenance operation, plays an essential role in the full realization of the

potentials of predictive maintenance [J. Liu et al., 2007].

3.2.2 From the perspective of maintenance towards Industry 4.0

Industry 4.0 is the superposition of several technological developments related to CPS, 10T,
IoS and DM. CPS refers to a new generation of systems with integrated computational and
physical capabilities that can interact with humans through many new modalities. The key
is the ability to interact with, and expand the capabilities of, the physical world through
computation, communication, and control [Baheti and Gill, 2011]. IoT is defined as the
ubiquitous access to entities on the internet for the extension of the physical world through
a variety of sensing, detection, identification, location tracking and monitoring equipment
[Chaves and Nochta, 2011]. IoS pursuits a similar approach with services instead of

physical entities. The integration of these developments promotes the cooperation among
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the partners in the entire system. From the perspective of predictive maintenance, Industry
4.0 accelerates and encourages several developments, which will be reviewed and
discussed in this section.

3.2.2.1 Cloud computing environment

Industry 4.0 includes the increasing impact of information and communication
technologies on industrial production processes. As one of the driving forces behind
Industry 4.0, cloud computing has rapidly emerged as an accepted computing paradigm in
many enterprises worldwide due to its flexibility and many other advantages [Bughin et al.,
2010]. It can manage shared data from multiple sources efficiently and flexibly in a self-
service way and provide a unified service delivery platform for the loT applications [L. Li
et al., 2012]. A cloud-based system provides the technological basis for the provision of
data and allows not only creation of community-type services but also building of an open
service platform environment which may have features of interactive, collaborative and
customizable on demand. From the viewpoint of predictive maintenance, cloud computing
environment can efficiently support various smart services and solve several issues such as
the memory capacity of equipment, computing power of processor, data security and data

fusion from multiple sources.

3.2.2.2 Industrial big data environment

Under the Industry 4.0 era, another significant development is the combination of
intelligent analytics and control systems for achieving a new type of manufacturing
management and factory transformation. The trend behand this combination is the
environment of industrial big data. While big data offers a great potential for
revolutionizing all aspects of our society, harvesting of valuable knowledge from big data
is not an ordinary task. The large and rapidly growing body of information hidden in the
unprecedented volumes of non-traditional data requires both the development of advanced
technologies and interdisciplinary teams working in close collaboration [X.-W. Chen and
Lin, 2014]. As the most important trend in the development of ICT, deep learning and DM
from big data are employed widely to leverage the predictive power in fields like search
engines [X.-W. Chen and Lin, 2014], biology [H. Y. Xiong et al., 2015], and astronomy
[Jordan and Mitchell, 2015].
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The application of industrial big data has been demonstrated in different areas of
manufacturing, including production, supply chain, maintenance, quality management, and
energy [O’Donovan et al., 2015]. In the research fields of fault diagnosis and prognosis,
appropriate sensor installations and various signals can be applied to monitor the working
condition of the equipment. In addition, through comparing the current and historical data
with data mining approaches, the degree of potential faults, the reliability of certain
components and other useful information could be harvested.

3.2.2.3 Smart Factory

Industry 4.0 also facilitates the vision and implementation of "Smart Factory", in which
CPS monitor physical processes, create the virtual copies to represent the physical world
and make decentralized decisions. Products may not only provide their identity but also
record their properties, history and status via ICT technologies. Over cloud computing and
distributed control systems, CPS communicate and cooperate with all the available
resources. Via the internet of services, both internal and cross-organizational services are
offered and utilized to make machines self-aware and actively prevent potential

performance issues [Hermann et al., 2015].

From the perspective of maintenance, a smart and self-aware machine system can self-
assess its own health and degradation, and further use the fault information from other peers
for smart maintenance decisions to avoid potential faults [Jay Lee et al., 2014]. To achieve
such intelligence, smart analytics might be used at the individual machine or fleet levels.
For a mechanical system, self-aware means the capability to assess the current, past or
future working condition of a machine, and output the evaluation result. Such health
assessment can be performed through data mining technologies to discover the information

collected from the given machine and its ambient environment.

3.3 Structure of the framework

Based on these considerations, a framework for predictive maintenance concerning the
Industry 4.0 concept is established. Figure 3.1 shows the general structure of the
framework. The target is to minimize the number of unnecessary maintenance
performance, leverage the remaining useful life of equipment, and reach zero failure

manufacturing through fault diagnosis and accurate prediction for failures and degradation.
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The benefits of the framework can be concluded as following;

It provides an overall understanding and helpful guidance for researchers and
practitioners to implement predictive maintenance in the fourth industry
revolution.

It can collect and leverage all available data and information from types of data
resources such as mounted sensors, control systems, or cloud database to
evaluate the working condition.

Intelligent fault diagnosis and prognosis can be made to detect when, where,
which equipment and which component may have impending failures.

Faults and degradation could be accurately predicted and assessed through deep
learning models for maintenance scheduling optimization.

Zero failure performance and subsequent zero defect manufacturing can be
reached since all the potential faults could be predicted and fixed before they
occur.

It can make predictive maintenance decision to prevent occurrence and
development of failures effectively, ensure the safety of equipment, and reduce
the total cost of maintenance by minimizing the number of unnecessary

maintenance performance.
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Figure 3.1 Framework of predictive maintenance in Industry 4.0 concept
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Figure 3.1 illustrates the general structure of the proposed framework, which consists of
three tiers. The first tier is data acquisition from multiple sources, which allows all relevant
devices and data sources interconnect with each other. Fault identification and prediction
is the second tier. It is responsible to discover the fault information from collected data.
The third tier is decision support and maintenance implementation, which is in charge of
presenting information or knowledge obtained from data mining, providing optimized
maintenance scheduling and finally interacting with the physical world according to the
computation results in cyber world. Systems based on this framework can monitor plant
floor assets, link the production and maintenance operations systems, obtain data, collect
feedback from a remote customer site, and integrate it into upper-level enterprise
applications, discovery hidden information about impending failures, and generate
maintenance knowledge. It can also monitor the state of manufacturing processes and
predict the condition of the equipment. Systems based on this framework can make a
maintenance decision to prevent the occurrence and development of failures effectively,
ensure equipment and personal safety, and reduce the economic loss caused by failures. It
can use fault diagnosis, performance assessment of the degrading level, and fault prognosis
models to achieve near-zero-breakdown performance and improve the productivity of a

company. The techniques of the three tiers are elaborated in the following sections.

3.4 Tier 1: Data acquisition from multiple sources

As the first tier in the framework, data acquisition from multiple sources is the physical
foundation of predictive maintenance. It is based on IoT technologies and plays the same
role as [oT in Industry 4.0, the physical access to “things or objects”. The main task of this
tier is selecting suitable sensors, data sources and data collection strategy to extend the
physical world through a variety of sensing, detection, identification and connect the
objects or make them interact with each other. The data acquisition process transforms the
collected data into domains that are of the most information to represent the working
condition of equipment or fusion of several domains. The most important factor in this tier
is the ability of virtualization, which means to monitor the physical processes and create a
virtual copy of the physical world by linking the collected data to virtual or simulation
models. The selection of the suitable data sources is the key of the effectiveness in

condition-based predictive maintenance, and a complete data acquisition system can
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improve the ability of virtualization, subsequent correction and efficiency of diagnosis and
prognosis directly. Four common types of data sources, which can be leveraged to achieve
predictive maintenance in Industry 4.0 concept are listed as following.

3.4.1 Sensors

The rapid advancement in sensor technology has made streaming real-time data easier than
ever. Various sensors, such as micro-sensors, ultrasonic, vibration, and acoustic emission
sensors, can be designed to collect various types of data and generate rich sources of
industrial data. The selection of sensors decides the representation of the machine health
by the collected data, considering both the specifications and cost-effectiveness. Actually,
how to achieve smart sensors is also a significant research field in condition monitoring
[Son et al., 2009]. For condition based maintenance or monitoring, we usually select the
sensors based on the performance in representing the physical characteristics. A variety of
sensor systems or transducers exists and can be applied for effectively monitoring various
process parameters [K. Wang, 2003]. Some popular sensor systems or transducers widely
applied in condition monitoring are listed as follow:

e Mechanical sensor systems to monitor parameters such as acceleration,
displacement, velocity, torque, location, strain, and cutting forces (static and
dynamic).

e Optical transduces such as photo detectors, and lasers.

e Thermal transducers such as thermocouples, and thermography.

e Audible sensors such as ultrasonic sensors, and acoustic emission sensors

e Environment sensors systems such as the spectrometer, PH indicators, and

temperature sensors.

In predictive maintenance, one important factor to select the suitable type of sensors is the
expected preventing time. For example, vibration sensors are widely leveraged for
predicting and detecting early failures in mechanical systems and manufacturing processes,
since the preventing time of vibration sensors may be months. The preventing time for
audible sensors may be several weeks and thermal sensors may be a few days. Another
important factor is based on the physical characteristics. As discussed above, the essence
of condition-based maintenance is to detect the signs of impending failures, and predict the
potential faults or degradation based on these signs. Therefore, to select the signals that can
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represent the physical characteristics of the signs of impending failures is also an important
principal for selection. In most cases, it may depend on the empirical knowledge in relevant

domains.

3.4.2 Industrial control systems

In Industry 4.0 concept, another significant data source is from inherent industrial control
systems like supervisory control and data acquisition (SCADA). Those systems are
normally combined with data acquisition systems through adding the use of coded signals
over communication channels. Information about the status of both local or remote
equipment is usually recorded in these systems [Desai et al., 2014]. Therefore, many
precious and necessary information can be obtained directly from these industrial control
systems to the data warehouse. Actually, a lot of manufacturing factories or enterprises
have been gathering data in kinds of industrial control systems for many years, which
means tremendous historical information may be harvested. This advancement benefits
from the implementation of loT directly.

3.4.3 Cloud database

Another benefit form [oT is the wide application of cloud database. Today’s manufacturing
involves all activities ranging from product design, production, fabrication, testing,
maintenance and all other stages of a product life cycle [B.-H. Li et al., 2011]. An enabling
factor in becoming an agile manufacturer or smart factory has been the development of
manufacturing support technology that allows the marketers, designers and production
personnel to leverage a common cloud database. The database could be used to share data
or information about production capacities and problems, particularly where small initial
problems may have larger downstream effects [Zhang et al., 2014]. Access to the cloud

database means acquirement of all relevant information about those activities.

3.4.4 Location & identification

Information about location and identification may come from various types of devices or
systems, such as geographic information system, mobile devices, RFID or GPS electronic
devices. Among these technologies, RFID is a rapidly developing technology, which relies

on wireless communication for automatic identification of things or objects. It has been
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widely adopted in supply chain management and manufacturing industry for the purpose
of automatic identification and tracking of objects [Nikitin and Kelly, 2014]. A typical
RFID system consists of tags, reader, and antenna. A RFID reader could communicate with
the tags in electromagnetic field. Whenever a tag enters the interrogation region, it can be
detected, located, and identified by the RFID reader [Alarifi et al., 2016]. For predictive
maintenance, both the equipment and its main components can be labelled by RFID tags
for location and identification.

3.5 Tier 2: Fault identification and prediction

The second tier is fault identification and prediction, which can be considered as the core
processor for data mining in the framework. The function is to discover knowledge or
information relevant to faults or degradation from data. All the data collected in the first
tier will be stored in the data warehouse for further data mining in the second tier. However,
during the process of knowledge discovery, if there is too much irrelevant and redundant
information, like noise or unreliable data, then it would be more challenging during the
training phase. Therefore, it is necessary to process data before extracting information from
data (This step may also be called as data preprocess in some literatures). After data
process, diagnosis and prognosis models can be established for fault identification and
prediction. Figure 3.2 shows the process flow of data analysis for fault diagnosis and
prognosis in this tier. The diagnosis and prognosis methods encouraged in this thesis are
based on deep learning approaches, which could ideally solve some challenges during the
implementation of predictive maintenance. In Chapter 2, the superiorities of several deep
learning architectures have been discussed, which could be used as guidelines to select

suitable approaches in this tier.
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Figure 3.2 Data analysis process for fault diagnosis and prognosis

3.5.1 Data preprocess

The major steps involved in data preprocessing includes data cleaning, data fusion, data
reduction, data transformation, and feature extraction. Data cleaning is the process of
detecting and correcting corrupt or inaccurate records from the database by filling in
missing values, smoothing noisy data, identifying or removing outliers, and resolving
inconsistencies. Data fusion is the process of merging data from multiple data stores.
Careful integration can help to reduce and avoid redundancies and inconsistencies in the

resulting data set. In data transformation, the data are transformed or consolidated into
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forms appropriate for knowledge discovery, so that the data mining process may be more
efficient, and the patterns found may be easier to understand.

Data reduction obtains a reduced representation of the data set that is much smaller in
volume, and can produce the same (or almost the same) analytical results. There are many
dimensionality reduction methods. Among them, a straightforward approach is to apply
feature extraction methods to the data set, which extracts features from preprocessed
signals that are characteristic of an incipient failure or fault. Generally, the features can be
extracted from three domains: time domain, frequency domain and time-frequency domain.
In Chapter 2, a brief review of all popular and widely applied feature extraction methods
for fault diagnosis and prognosis based on literatures has been listed in Table 2.1. In
Chapter 6, a novel application of deep learning-based representation learning will also be
introduced and leveraged in an experiment to reduce the size of multiple features sequence
through SAE.

In addition, the development of the storage media and computation ability produces
massive data during the data acquisition process. Although deep learning methods have the
ability to deal with industrial raw data, it may increase the required complexity and
computation load of the data-driven models. Data preprocessing can effectively clean raw
data, reduce dimension of data, and store it back to the warehouse for knowledge discovery.
Massive data can be converted to features or statistical values as the input variables for
diagnosis and prognosis models. Therefore, suitable data preprocess operations could
enhance the signal characteristics and eventually facilitate the efficient extraction of useful

information in both faults diagnosis and prognosis.

3.5.2 Data mining for fault diagnosis and prognosis

Data mining has the capability to discover hidden links, recognize unknown patterns, and
predict future trends by digging through and analysing enormous sets of data [Sumathi and
Sivanandam, 2006]. The functions, or models, of data mining can be categorized according
to the task performed [Siguenza-Guzman et al., 2015], such as clustering, classification,
decision trees, predication, regression, association, etc. Normally, the analysis methods of
data mining can be categorized into two groups: statistics, and Al [Girija, 2006].

A statistical model is a set of mathematical functions, which describe the behaviour of the
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objects in a target class in terms of random variables and their associated probability
distributions [Han et al., 2011]. Due to the fact that statistics has an inherent connection
with data mining during data collection, analysis, interpretation, and presentation, it is
widely leveraged to model data and data classes during the process of data mining.
Examples of statistics includes regression analysis, cluster analysis, and discriminate
analysis, etc. However, since most statistical models are based on probability distributions,
they usually focus on the reliability or probability analysis of equipment failure instead of
precisely fault prediction or degradation assessment, which is important to predictive
maintenance.

The second family root of data mining is Al, which is built upon heuristic algorithm. It
includes several techniques such as genetic algorithm, artificial neural network, FLS. The
main idea is to apply human-thought-like processing to solve problems. It uses techniques
for writing computer code to represent and manipulate knowledge, which exactly fits in the
computer processing in modern business environment [Girija, 2006]. As the most important
approach in Al [Michalski et al., 2013], machine learning investigates how computers can
study and make predictions based on data [Kohavi and Provost, 1998]. Machine learning
is employed in a range of computing tasks to learn to recognize complex patterns and make
appropriate decisions automatically. It usually can be divided into two main types:
predictive or supervised learning, and descriptive or unsupervised learning [Murphy,
2012]. In the predictive or supervised learning process, the goal is to form a mapping from
inputs x to outputs y, given a labeled set of input-output data D = {(x;|y;)}i = 1,2,3...N.
Here D is the training set, and N is the number of training examples. In descriptive or
unsupervised learning, the learning process is unsupervised since there are no class labelled
in the input samples. Here only the inputs will be given, D = {x;} i = 1,2,3 ... N, and the
goal is to find interesting patterns and knowledge from large amounts of data. This is a
much less well-defined problem, since we are not told what kinds of patterns to look for,
and there is no obvious error metric for evaluating the results. Currently, due to the rapid
development of deep learning approaches, it provides alternative methods with outstanding
performance to deal with the issues about fault prediction and degradation assessment,
which were once considered as changeling problems in predictive maintenance. Data
mining benefits from these technologies, but differs from the objective pursued: extracting

patterns, describing trends, or predicting behaviours. It has been applied in a wide range of
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domains, where large amounts of data are available for the identification of unknown or
hidden information [Siguenza-Guzman et al., 2015]. Data mining approaches in the
framework mainly focus on fault detection, identification, prediction, and degradation
assessment for predictive maintenance, which could also be divided into fault diagnosis
and prognosis.

The aim of fault diagnosis in the framework is to detect abnormal condition of equipment
before the failure happens, and identify which type of failures or which component may
have impending failures. Fault diagnosis have been developed and found extensive utility
in a wide range of application domains in recent years. Typically, it can be divided into two
major categories: model based and data-driven [G. J. Vachtsevanos et al., 2006]. Model-
based technique depends on the accuracy of dynamic system model. It takes advantage of
the actual system and model to generate the difference between the two outputs, which is
indicative of an impending fault condition. However, in many manufacturing systems, it is
difficult to establish a high-accuracy dynamic system model directly. On the other hand,
data-driven techniques often only address anticipated fault condition, where a fault model
is a collection of constructs like neural networks and SVM, which must be trained first with
known prototype fault patterns. Normally, if the historical data can be obtained easily, the
data-driven is very useful to identify the fault and evaluate the working condition. When
only part of historical data can be obtained, the hybrid techniques, which combine the data-
driven techniques and model-based techniques, can be used to evaluate current conditions
of manufacturing systems or the products. The semi-supervised learning method also can
be used to evaluate condition and identify fault when only part of historical data is
available. It is also very effective and widely used for fault diagnosis. Since fault diagnosis
is a subjective problem in nature, the most suitable method usually depends on the practical
issue. In Chapter 2, Table 2.2, an overview of all popular Al techniques, which have been
widely applied in fault diagnosis in literature are listed. According to literature review, all
these methods such as BPNN [Jafar et al., 2010; Rohani et al., 2011], RBFNN [G. Xiong
et al., 2013], CPNN [Phillips et al., 2015], CCNN [Phillips et al., 2015], SOM [Rai and
Upadhyay, 2017; C.-C. Wang and James Too, 2002], PNN [Zou et al., 2017], dynamic
neural network [Abed et al., 2014], SVM [Konar and Chattopadhyay, 2011; Rai and
Upadhyay, 2017], DBN [Gan and Wang, 2016; Tamilselvan and Wang, 2013], and deep
neural network (DNN) [Jia et al., 2016; L. Wang et al., 2017], both deep learning or
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conventional machine learning approaches, have proved their superiority or priority in

certain fields.

As to prognosis, the conventional Al techniques applied are mainly based on shallow
learning algorithms, including SVM [Kim et al., 2012; Rai and Upadhyay, 2017], SOM
[Rai and Upadhyay, 2017], DT [Yang et al., 2008], DWNN [G. Vachtsevanos and Wang,
2001], and BPNN [Rohani et al., 2011]. ANN-based machinery prognostics approach was
once the most commonly found data-driven technique for fault prognosis [Heng et al.,
2009]. Shallow and deep learners are distinguished by the depth of their credit assignment
paths, which are chains of possibly learnable, causal links between actions and effects
[Schmidhuber, 2015]. The network learns the unknown function by adjusting its weights
with repetitive observations of inputs and outputs. Numerous studies across various
disciplines have demonstrated the merits of ANNSs, including the abilities to perform faster
than system identification techniques in multivariate prognosis [J Lee, 2007] and perform
at least as good as the best traditional statistical methods, without requiring untenable
distributional assumptions [Joshi and Reeves, 2006].

As reported in [Heng et al., 2009], many data-driven methods such as artificial neural
network are capable in modelling complex phenomenon, but they may require more
complex structures to represent the phenomenon with high complexity. In predictive
maintenance, forecasting potential failures in future is more challenging than detection or
identification of occurred or impending failures since the data which can represent the
working condition in the future is absent. In order to compensate the absence of target
condition, more comprehensive and detailed history data and data-driven model with
higher complexity and generalization are required to track or evaluate the development of
certain faults and degradations. Therefore, issues in prognosis are usually with higher
complexity than in diagnosis. However, if we intentionally increase the complexity of a
typical artificial neural network through raising the number of hidden layers, it will suffer
from the now famous problem of vanishing or exploding gradients, which is a widely
known limitation of conventional ANNs. This is the reason why accurate prediction of
potential faults in future has been a hot issue and challenge in predictive maintenance for
decades. In recent years, as a latest and advanced research field, deep artificial neural

networks have accelerated its application and shown their superiorities in predictive
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maintenance [Gan and Wang, 2016]. Deep learning is making major advances in solving
problems that have resisted the best attempts of the Al community for many years. By
increasing the complexity of data-driven models themselves and some special architectures
such as energy-based activation functions, deep learning enables data-driven models the
ability of self-learning through training data. It has turned out to be very good at discovering
intricate structures in high-dimensional data and is therefore applicable to many domains
of science, business and government [LeCun et al., 2015]. Currently, various deep learning
algorithms, such as deep belief networks [Gan and Wang, 2016; Tamilselvan and Wang,
2013] and deep neural networks [L. Wang et al., 2017], have been applied successfully in
predictive maintenance. A systematic research about several deep learning approaches
applied for predictive maintenance along with their superiorities has been discussed in
Chapter 2. In Chapter 5 and Chapter 6, some novel applications such as DBN-based error
prediction, DNN-based degradation assessment, SAE-based multiple feature sequence
reconstruction, and LSTM-based anomaly detection will also be introduced and detailed
through practical applications.

3.6 Tier 3: Decision support and maintenance implementation

The third tier is decision support and maintenance implementation. The function is to
manipulate the analysis results in data mining tier, transform them into meaningful
information or knowledge for maintenance strategy, share and publish these information
on a common cloud based networking, and eventually provide optimal schedule for
maintenance implementation. In one word, this tier is the infrastructure for services related
to maintenance via Internet. The main functions in this tier are information visualization,

maintenance scheduling optimization, and the interoperation.

3.6.1 Information visualization

As the study of transforming data, information, and knowledge into interactive visual
representations, information visualization is significant to users because it provides mental
models of information [S. Liu et al.,, 2014]. The aim is to aid users in exploring,
understanding, and analyzing data through progressive, iterative visual exploration [Shiravi
et al., 2012]. In recent years, with the development of visualization technology and boom

in big data analytics, more and more experts and scholars have begun to combine
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visualization technology with condition monitoring, fault diagnosis and prognosis
technologies to better solve the shortcomings of traditional methods [Chu et al., 2017]. In
predictive maintenance, applying key performance indicators (KPI) is one of the most
efficient and popular method to illustrate the result of data mining, since there always exist
certain indicators, which can be regarded as the critical ones for equipment or production
process in the practical industrial applications [Yin et al., 2016]. Subsequently, KPI
tracking can be achieved through publishing on a digital dashboard, and give the entire
organization insights into the current condition, performance or certain degradation.

3.6.2 Maintenance scheduling optimization

Maintenance scheduling optimization means deciding which maintenance activities to
perform, and when, such that one or several objectives are optimized [Gustavsson et al.,
2014]. The target is to make maintenance decision based on current available information
to optimize certain objectives such as maintenance cost, and development of potential
failures. In predictive maintenance, the major objectives of maintenance scheduling are
maximizing equipment up-time under zero-failure manufacturing, minimizing time to
repair, and decreasing total maintenance cost according to the prediction or assessment
from data mining. Other objectives and constraints, such as minimizing logistics footprint
and cost of transportation, may also be included in the optimization scheme if dictated by
specific system requirements or logistics network [G. J. Vachtsevanos et al., 2006].

However, in practical industrial applications, attention shall also be paid to the relationship
between production and maintenance, which has been considered as a conflict in
management decision [Berrichi et al., 2010]. Hence, the issue about how to capture the
trade-off among the objective of both production and maintenance shall also be considered
during scheduling, which make it as a type of NP problem. In recent years, to solve complex
scheduling problems for predictive maintenance, heuristic algorithms such as genetic
algorithm [C.-H. Wang and Tsai, 2014], particle swarm optimization [Liao et al., 2011],
genetic simulated annealing algorithm [X. Li et al., 2015], imperialist competitive
algorithm [Zandieh et al., 2017], artificial bee colony algorithm [Dalfard and Mohammadi,
2012], and ant colony algorithm [Saleh et al., 2017]. Although these techniques may not
guarantee global optimal solutions, they are usually not restricted to the size or structure of
the problem, and could provide good solutions for maintenance scheduling optimization
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within reasonable computational time [Doostparast et al., 2014]. Therefore, all these kinds
of methods could be selected and employed in the framework for maintenance scheduling
optimization. In Chapter 5, a novel HDPS-BPSO maintenance scheduling approach will be
proposed and utilized to show the advantage of predictive maintenance compared with

preventive one.

3.6.3 Interoperation

In Industry 4.0 companies, the cyber, the physical and humans are connected over loT and
the IoS. Interoperability enables valuable connections, whether across processes, between
people and information, or among companies. It offers the ability for systems to understand
each other and leverage functionality of others. The word ‘inter-operate’ implies that one
system performs an operation for another system. From the computer technology point of
view, it is the faculty for several heterogeneous computer systems to function jointly and
to give access to their resources in a reciprocal way [D. Chen et al., 2008]. For predictive
maintenance, interoperability refers to the ability to interact in data, services and processes
between enterprise systems. After we acquired the detailed information or knowledge about
the failures based on the result of data analysis in the cyber world, those information or
knowledge shall be employed to interact the physical world, to be more specific, to
implement maintenance and evaluate the influence of degradation or failures and solutions
in equipment level, line level, factory level, and even manufacturing ecosystem. Therefore,
it is important for practitioners to have a consideration about coordination among those
systems such as maintenance operation, manufacturing execution system, enterprise

resource planning, and supply chain management.

3.7 Summary

The framework of predictive maintenance in Industry 4.0 concept is established to monitor
the manufacturing system and process, identify and predict impending or potential failures,
and minimize the number of unnecessary maintenance performance under the premise of
zero failure manufacturing. Based on this framework, approximate maintenance scheduling
could be made through the prediction of impending failures or certain degradation to ensure

zero failure manufacturing and minimize the cost of maintenance.

The framework is constructed based on the architecture of CPS. In the first tier, data
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acquisition from multiple sources, types of data that can represent the conditions in the
physical world is transformed into the cyber world through the implementation of [oT. The
second tier, diagnosis and prognosis, is responsible to discover the information or
knowledge about the failures and degradation through data mining approaches in the cyber
world. The third tier, decision support and maintenance implementation, provides types of
service based on the information or knowledge obtained from data mining. It can also offers
decision support according to the data mining results and eventually interact with the

physical world.
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Chapter 4
Implementation of predictive maintenance in machining centers

4.1 Introduction

In this chapter, an Industry 4.0 scenario of predictive maintenance for machining centers
will be introduced. This research comes from a project named green monitoring and has
been supported by a grant from Norway through the Norwegian Financial Mechanism
2009-2014, in the frame of the Green Industry Innovation Programme Bulgaria. The
scenario demonstrated the guideline and implementation of predictive maintenance in

machining centers.

| GREEN MONITOR
ONLINE MAINTENANCE AND MANUFACTURING SUPPORT

dplCBEEE

gl
\ - d B Yy
B : |L!_,3;s-! Onllneal\:dachme 2477 Manufactures

Manufacturing Monitoring

Monitoring Service and Suppliers

Remote Customer Site Remote Customer Site

Customer Site

Figure 4.1 Green monitoring system

In this study, Norwegian University of Science and Technology (NTNU) cooperated with
InterConsult Bulgaria (ICB) and Kongsberg Terotech (KTT), who provided their assistance
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in the software, empirical knowledge, and data sources for the study. The aim is to decrease
the cost on faults, defects and maintenance during the manufacturing process through
remote condition monitoring and data mining. As shown in Figure 4.1, the data is acquired
from remote customer site and transported to the data mining center for data analysis. After
a series of data mining process, the result and suggestion will return to the customers for
maintenance scheduling.

In recent years, with the increasing demand for machining quality and manufacturing
complication, the complexity and integration of industrial equipment has been raised
dramatically [Deng et al., 2015]. On one hand, an unexpected failure can result in a
devastating accident and financial losses for the company owing to the interaction
behaviours among industrial equipment. On the other hand, early detection and prediction
of a fault can prevent it from growing and eventually turning into critical problems
[Henriquez et al., 2014]. Hence, increasing attention has been paid to condition monitoring,
fault diagnosis and prognosis in modern industry [Zhao, 2014].

Simultaneously, machining centers have grown rapidly in automotive, aerospace, die
making and other industries in recent years [Movahhedy and Mosaddegh, 2006]. As one of
the most significant and active research fields in knowledge discovery in databases (KDD)
over the last few decades, data mining and related techniques have been widely researched

and applied for fault diagnosis and prognosis in machining centers.

It is well known that machine faults can result in consequences that may range from a
simple replacement of a cheap bearing to an accident that will cost millions in lost
production, injuries or pollution [Affonso, 2013]. It may also bother maintenance engineers
to capture the trade-off between improving the system reliability and reducing the total

maintenance cost simultaneously.

Accordingly, significant attention has been paid to condition-based maintenance in
literature during the last few decades, and to predictive maintenance more recently [Van
Horenbeek and Pintelon, 2013]. The goal of predictive maintenance is to reduce the
downtime and cost of maintenance under the premise of zero failure manufacturing through
monitoring the working condition of equipment and predicting when equipment failure
might occur. The prediction of a future potential fault enables the planning of maintenance
before the fault happens [Li et al., 2016].
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Considerable progress has been made in fault interpretation, detection, and prediction for
machining centers based on DM during the last few decades, especially in specific core
components or performance, such as gearbox [C. Wang et al., 2012], thermal error [C.-W.
Wu et al., 2012], and rolling element bearings [Abbasion et al., 2007]. However, most of
these studies only focused on their own parts or concentration. There is still a lack of
systematic research to guide the implementation of predictive maintenance under the
Industry 4.0 era for machining centers. Moreover, it is difficult to realize all the advantages
of predictive maintenance without the foundation of correlation techniques such as big data
analysis and cloud-computing. Many manufacturing systems are still not ready to manage
big data owing to the high demands on the access and quality of data. Furthermore, the
extraction of relevant information from multiple data sources in machining tools still
remains a challenge in many situations [Lee et al., 2014]. Based on these consideration,
this chapter is conceived with the objective of offering effective guidelines to select suitable

fault analysis techniques and implement predictive maintenance in machining centers.

4.2 Fault analysis techniques in machining centers

The term “machining center” can be used to describe any computer numerical control
(CNC) milling and drilling machine that includes an automatic tool changer and a table that
clamps the workpiece in place. According to the orientation of the spindles, they can be
divided into two types: vertical and horizontal. Vertical machining centers generally have
good precision whereas horizontal machining centers favour production. The spindle of a
vertical machining center is vertically oriented. Generally, a vertical machining center
includes several sub-systems that should be monitored. As shown in Figure 4.2, it may
include a server motor system, ball screw system, guide systems, spindle system, tool
magazine, hydraulic system, lubrication system, and cooling system [Duro et al., 2016; Shi
et al., 2015]. All these systems have unique functions, and failures occurring at any one of

them may cause faults in the entire machining center.
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Figure 4.2 Components of a machining center

In order to achieve fault diagnosis and prognosis in machining centers, many contributions
have been made in this area. Normally, research in this field can be divided into seven
groups: geometric measurement analysis, vibration analysis, oil analysis, cutting fluid
analysis, energy consumption analysis, temperature analysis, and acoustic emission
analysis, according to the observed components, monitoring method, or specific purpose
[Bort et al., 2016; Duro et al., 2016; Fan et al., 2015; K. Liu et al., 2016; Shi et al., 2015;
Sparham et al., 2016; Usop et al., 2015]. However, the integration of all these techniques
and information to form comprehensive, high-efficiency, and intelligent maintenance
strategies still remains a challenge till the breakthrough of Industry 4.0, which combines
the strengths of optimized industrial manufacturing with internet technologies and changes
the manufacturing process, maintenance management, and maintenance strategies
significantly. The following sections will give a brief introduction about those research
objectives, which could be selected as targets or measures during the implantation of

predictive maintenance.
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Geometric measurement analysis

Geometrical accuracy present the capability of position for a machining center and affect
the overall machining precision of machining objects directly [Schwenke et al., 2008].
Normally, a machining center may have several geometric measurement systems to
monitor and measure the geometric positions of important transmission parts, or use one
multi-dimensions measuring system to simultaneously measure several degrees of freedom
[Khan and Chen, 2011]. Geometric measurement analysis detects, and predicts machine
wear by monitoring the difference between the measurement systems, e.g. transmission
error can be evaluated according to the change of difference between the measurement
systems of screw and table, then compensations can be made to achieve higher precise. In
addition, a systematic geometric error correction and compensation in machine tools is
important to enhance the manufacturing accuracy [Zhong et al., 2015]. Among this,
backlash compensation has been studied for years and solved in various methods, e.g.
neural network models for backlash compensation in a gear system [Menon and
Krishnamurthy, 1999]. A dynamic fuzzy logic-based adaptive algorithm was researched
for backlash compensation [Suraneni et al., 2005]. Some research about backlash error
prediction was also made to realize predictive maintenance in machining centers [K. Wang
et al., 2015]. Other improved geometric error measuring methods were also researched and

able to identify the machine tool error and make the compensation [Zhang et al., 2013].
Vibration analysis (VA)

Vibration analysis is the most well-known technology for rotating equipment maintenance.
It is the most efficient technology for early prediction and detection of failures in
mechanical equipment [Saimurugan et al., 2011]. Vibration analysis is commonly applied
to such machining center components as shafts, bearings, and gearbox. Applied sensor
technology can be selected by considering the frequency range and operating conditions.
Position transducers, velocity sensors, acceleration, and spectral emission energy sensors
are used for low-, Middle-, high-, and very high- frequency ranges, respectively. In
addition, many new type sensors have been developed for a convenient vibration signal
acquisition [Deraemaceker et al., 2010; Freundlich and Pietrzakowski, 2011; Kageyama et
al., 2005]. Wireless sensors are also involved in these research fields [Aydin et al., 2015;
Bocca et al., 2011]. Additionally, many CI algorithms are used for vibration analysis, e.g.
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SVM [G. Wang et al., 2014], FLS [Kothamasu and Huang, 2007], neural networks [C. Liu
et al., 2009] or hybrid algorithms [Jossa et al., 2000].

Oil analysis (OA)

Machine lubrication systems are a very important portion of manufacturing and production
workshop maintenance. Automatic lubrication systems eliminate the need for frequent
manual lubrication inspection, providing a safer, more frequent, and opportune monitored
approach to machine lubrication. Oil debris monitoring can be used for the early detection
and tracking of damage in bearing and gear components in machine tools. Indeed, 80% of
gear box problems can be attributed to the bearings, which subsequently lead to damage to
the gearing [Dupuis, 2010]. Oil monitoring constitutes an important and essential
component of condition monitoring technologies and has distinguished advantages in
revealing wear, lubrication and friction conditions of tribe-pairs [T. Wu et al., 2013].
Lubrication oil analysis is achieved by selecting proper sensors [Halme et al., 2010] to
process the temperature signals [Sparham et al., 2014], water contamination analysis or
chemical properties analysis [T. Wu et al., 2013].

In most cases, oil is pumped through the component in a close-loop system, and metal
debris from creaked gearbox wheels or bearings is caught by a filer. The amount and type
of metal debris can indicate the health of the component. OA has three main purpose: (1)
to monitor the lubricant; condition and reveal whether the system fluid is healthy and fit
for further service or requires a change; (2) to ensure the oil quality (e.g. contamination by

parts, moisture); (3) to safeguard the components involved (part characterization).
Cutting fluid analysis

The primary functions a cutting fluid include the cooling and lubrication both of the
workpiece and cutting tool’s edge, an improvement of machined surface quality and an
increase in tool life, and further a reduction in spindle power in many machining processes,
which offers considerable savings when this reduction in electrical demand is accrued per
annum [Smith, 2008]. Most common cutting fluid tests include:

. Concentration,

. PH (Alkalinity),
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. Corrosion protection,
. Fluid stability,
. Bacteria count.

Energy consumption analysis

Machining processes consume large amounts of energy. Assessing energy consumption of
machining centers is useful for evaluating the energy efficiency of various machine tools
and increasing interests in green manufacturing [Behrendt et al., 2012]. Therblig-based
energy demand modelling methodology can be used to evaluate energy consumption of
machining processes quantitatively [Lv et al., 2014]. It is also a feasible solution to monitor
the machine tool condition by monitoring the differential electrical power consumption
[Al-Sulaiman et al., 2005]. Power consumption detection can be also applied to machine
spindle motor for fault diagnosis [Refiones et al., 2010].

Temperature analysis (TA)

Temperature Analysis (TA) to the observed component is one of the most common method
to check the requirement of maintenance. TA aids in detecting the presence of any potential
failure related to temperature changes in the equipment. In machine tools, TA is applied on
such components as bearings, cooling fluids, lubricating oil, motors, moving beds, fixtures,
and optical pyrometers.

TA isreliable because every piece of equipment has limited operation temperature and easy
to be executed. However, temperature develops slowly and is not sufficient for early and
precise fault detection. Additionally, the measured temperature can also be influenced by
the surroundings. Therefore, TA is rarely used alone but often as a secondary source of

information. In this case, the primary source could be vibration monitoring.
Acoustic emission analysis

Acoustic Emission (AE) phenomena are based on the release of energy in the form of
transitory elastic waves within a material via a dynamic deformation process. Typically,
sources of AE within a material are creak initiation and propagation, breaking of fibers,
and matrix creaking and fretting between surfaces at de-bonds or de-laminations. Unlike
VA, AE can detect failures characterized by high-frequency vibrations range from 50 k HZ
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to I MHZ. Piezoelectric transducers and optic fiber displacement sensors are often
employed in this approach. The most commonly measured AE parameters for diagnosis are

amplitude, root means square value, energy, kurtosis, crest factor, counts and events.

This method is typically applied for fault detection in components such as gearboxes,
bearings, spindles, tools and ball screw. Its advantages include a large frequency range and
relatively high signal-to-noise ratio. The main limitation of AE is its cost. Furthermore,
only a few types of faults occur in the high-frequency range. Another limitation of AE is
the attenuation of the signal during propagation. Therefore, an AE sensor must be located
as close to its source as possible, which may pose a practical constraint in applying AE to
certain machines.

Some experimental studies have been researched to compare the diagnostic and prognostic
capabilities of AE, VA and spectrometric OA on spur gears. It is observed that based on
the analysis of root means square levels, only the AE techniques was more sensitive in
detecting and monitoring faults than either the vibration or spectrometric OA [Tan et al.,
2007].

4.3 Steps to implement predictive maintenance in machining centers

As discussed above, monitoring systems in machining centers may require DM methods
for fault diagnosis and prognosis according to different monitoring purposes or
components. DM and CI could be applied to discover failures information and optimize the
solutions respectively. Here, the key steps to implement predictive maintenance in
machining centers based on Industry 4.0 concepts is formulated as following to provide

guidelines for researchers and practitioners :

e  Sensor selection and data acquisition
e Data preprocessing

e Data mining

e Data record and publication

e  Decision support

e  Maintenance implementation
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4.3.1 Sensor selection and data acquisition

This is the first step to implement diagnosis and prognosis based on DM in machining
centers. The task in this step is to select a suitable sensor and optimal data collection
strategy to extend the physical world using a variety of sensing, detection, and
identification techniques, and connect the objects or enable them to interact with each other.
The data acquisition process transforms the sensor signals into domains that have the most
information to represent the condition of the equipment or a fusion of several domains.
Various sensors such as micro-sensors, ultrasonic sensors, vibration sensors, and acoustic
emission sensors can be designed to collect different data. The selection of sensors
determines the representation of the machine health by the collected data, considering both
the specifications and cost-effectiveness. Moreover, with the increase in the complexity of
machine systems, the sensor network is considered as a feasible solution for condition
monitoring in machining centers, which may include different kinds of sensors. Sensor
fusion achieves significance under this condition. Therefore, obtaining smart sensors is also
a prominent research field in condition monitoring [Son et al., 2009]. The selection of
suitable sensors and data sources is significant to the effectiveness of condition monitoring,
and a complete data acquisition system could directly improve the correction and efficiency

of diagnosis and prognosis.

4.3.2 Data preprocessing

After the data acquisition, all the collected data will be stored in the data warehouse for
diagnosis and prognosis. However, during the process of knowledge discovery, if there is
too much irrelevant and redundant information, such as noise or unreliable data, the training
phase will be more challenging. Therefore, it is necessary to preprocess the data before the
subsequent step. Generally, the major functions involved in data preprocessing include data
cleaning, data integration, data reduction, and data transformation. The development of
storage media and computation ability results in massive data during the data acquisition
process. Data preprocessing can effectively clean the raw data, reduce the dimension of the
data, and store it back in the warehouse for knowledge discovery. Therefore, massive data
can be converted to features or statistical values as the input variables of the DM process.
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4.3.3 Data mining

DM has the capability to discover hidden links, recognize unknown patterns, and predict
future trends by digging through and analyzing enormous sets of data [Sumathi and
Sivanandam, 2006]. The functions, or models, of DM can be categorized according to the
task performed [Siguenza-Guzman et al., 2015], such as clustering, classification, decision
trees, predication, regression, and association. More detail and systematic knowledge about
the application of data mining in predictive maintenance have been discussed in Chapter 3.

In this step, data mining mainly focus on the detection, identification and prediction for
potential or impending failures. Fault diagnosis and prognosis strategies have been
developed and found extensive utility in a wide range of application domains in recent
years. Model-based technique could take advantage of the actual system and model in
machining centers to generate the difference between the two outputs, which is indicative
of a potential fault condition. When the high-accuracy dynamic system model is
unavailable or difficult to establish, data-driven or hybrid techniques could also be
leveraged to map anticipated fault conditions. Since the historical data could be obtained
easily in a machining center, the data-driven models could be very useful to identify

impending faults and evaluate working conditions for machining centers.

Some common diagnosis and prognosis algorithms are listed in Chapter 2. All these
techniques have been widely applied or already demonstrated their ability to deal with
certain issues. In Chapter 5, a case study about DBN-based backlasher error prediction in
a vertical machining center will be demonstrated and prove the superiority of deep learning
architecture in predictive maintenance. In Chapter 6, DNN will also be leveraged to identify
fault types and recognize fault severity ranking in a rotating equipment along with LSTM-

based anomaly detection.

4.3.4 Data record and publication

After data mining, the information of potential failures could be recorded and published on
online dashboards for remote condition monitoring and information sharing. As shown in
Figure 4.3, the predicted backlash errors in a machining center are published on the
dashboard to share the result of fault prediction. Management systems in different levels

such as enterprise resource planning and manufacturing execution system could reschedule
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their production plan based on the failure information. In addition, local RFID readers can
collect and identify all the RFID tags, which represent the main target components in the
equipment as shown in Figure 4.4. Figure 4.5 shows a sample of Information in a RFID
Tag. Here, Tag ID “0xE20093747411026111005007” can be used for components identity.
Normally, the 512 bits user data are reserved for the customized information, which can be
converted to 64 ASCII characters. In this case, the condition evaluation related information
is written in the user memory of the RFID tag. The information comprises the current
working condition, whether has potential faults in the prediction period, when the potential
faults may happen, evaluation time and date, in the form of “COND=0 POT=I
FAULT=28.05.16 TIME=14:35 DATE=21.05.16". Since the tag memory is written in the
form of hexadecimal, the texts have to be converted to HEX before writing. In this case,
the current working condition of the component, which is a spindle in a machining center,
is normal (COND=0). Potential faults are detected (POT=1), which may happen in
28.05.2016 (FAULT=28.05.16). In addition, the detection is taken at 14:35 on 21.05.2016
(TIME=14:35 DATE=21.05.16).

MONITOR EDIT DASHBOARD ~ EXPORT Dashboard:  BACKLASH

Thursday, Jan 21, 01:13:39
 Backlash.PredictX: 15.1712
o AxisX_Backlash: 15.1686

Figure 4.3 Monitoring dashboard
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Figure 4.4 Record of tags in RFID readers

Combining the result of diagnosis and prognosis with logistics information collected from
RFID tags, customers can figure out when, where, which equipment, and which
components may have faults. The recommended maintenance strategy could be formed in

the decision support system according to the prediction or evaluation result.
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Figure 4.5 Information in a RFID tag

4.3.5 Decision support

The main target in this step is to visualize the result of DM and provide an optimized
maintenance strategy for machining centers according to the result of DM. It can also be
considered as the application of IoS. Generally, a diagram of key performance indicator
(KPI), also called a spider chart, can be used for presenting the situation of equipment. The
conditions of equipment can be defined in several levels from zero to one. For example,
zero indicates no faults and one indicates complete damage of equipment. The KPI may be
formed according to the outputs of the DM. The diagram will enable operators or managers
to evaluate the performance visually, and subsequently, an optimized maintenance

schedule can be provided according to the result of evaluation.

Maintenance planning and scheduling optimization is a kind of nondeterministic

polynomial time (NP) problem and it is always difficult for the decision-makers to capture
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the trade-off. SI algorithms could be a very good technique to solve this kind of problem.
Usually, one may apply genetic algorithm, particle swarm optimization, ant colony
optimization, and bee colony algorithm as decision support methods, and attempt to
determine the optimal dynamic predictive maintenance scheduling. All these methods are
selectable to solve maintenance scheduling optimization problems. Furthermore, this step
may also include the function of failure identification and the evaluation of performance
degradation according to the result of DM. In Chapter 5, a novel HDPS-BPSO maintenance
scheduling approach will be proposed and leveraged in practical application to demonstrate
the advantage of predictive maintenance through the comparison with preventive one.

4.3.6 Maintenance implementation

In this step, maintenance will be implemented after the decision-makers choose the strategy
of maintenance. It can be considered as the purpose of CPS. The physical world is
transferred into the virtual one for communication, computation, analysis, and decision-
making via the previous steps. In this step, we react to the physical world according to the
result of previous steps and implement maintenance to achieve a certain purpose, e.g., to

minimize the cost of maintenance, realize zero-defect manufacturing, or reduce breakdown.

Moreover, this step may also include the function of error correction, compensation, and
feedback control based on the results from the maintenance decision support to continue to
run the machining center and process in a normal condition. Some techniques can also be
used to correct and compensate certain errors, e.g. artificial neural network can be used for
the compensation of geometric errors in computer-controlled machining centers. However,
the error correction and compensation process is mainly dependent on the types of
machines and processes, so this step should also take control devices and the maintenance

management system in consideration.

4.4 Summary

DM plays a very important role for predictive maintenance in machining centers owing to
their complexity and high machining precision. The theoretical contribution of this chapter
could be represented by the collection, classification, and induction of DM approaches
applied for fault identification and prediction in machine centers. This chapter is conceived
with the target of offering effective guidelines to formulate systematic fault diagnosis and

90



Chapter 4 Implementation of predictive maintenance in machining centers

prognosis steps to implement predictive maintenance in machining centers based on DM
result. The guidelines are coincident with the general framework proposed in Chapter 3 but
focuses more on the diagnosis and prognosis stage in machining centers. In next chapter, a
hierarchical diagnosis and prognosis system for backlash error detection and prediction in
machining centers based on deep learning will be introduced in a practical case study along
with a novel HDPS-BPSO maintenance scheduling strategy for predictive maintenance
implementation.
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Chapter 5
Implementation of predictive maintenance for backlash error

This chapter demonstrates a case study of applying DBN for backlash error prediction in a
machining center along with a novel HDPS-BPSO maintenance scheduling strategy for
predictive maintenance implementation. It proves the superiority of the deep learning
model for fault forecast, when important parameters are missing and the target condition is
beyond training data. The case study is partly retrieved from [Z. Li et al., 2017].

5.1 Background

Geometric errors that occur in machining centers are the errors on account of the
inaccuracies built in during assembly and from the components used in the machine. The
errors may be affected by many error sources [Lee and Yang, 2013; Zhu et al., 2012]. These
error sources may cause a series of changes in the geometry of the components and present
in the structural loop, including the spindle shaft, the ball screws, the bearings, the housing,
the guideways and frame, and work-holding fixtures. The errors may not only cause
significant quality and accuracy degradation but also fatal breakdown of machines, which
can lead to serious economic loss [Huang et al., 2015; Jiang and Cripps, 2015; Mourtzis et
al., 2016]. Therefore, it is especially crucial to accurately detect the existence of geometric
errors as early as possible and predict the error in a period of working time [Cheng et al.,
2014; Siguenza-Guzman et al., 2015; Zhong et al., 2015]. Schwenke et al. [2008] reviewed
various technologies to evaluate the geometric errors of machines and their basic
characteristics. As reported in that paper, backlash usually affect uncertainties in the
measured parameters since they are usually not modelled adequately. The uncertainties
may cause correlations or just erroneous estimations. Therefore, many companies choose
the preventive maintenance for backlash error in machining centers, which means the error
would be checked and eliminated from time to time following planned guidelines.
However, this strategy is both costly and time-consuming.

During the last few decades, many researchers have studied methods to monitor, model and
control backlash error for mechanical systems, and many diagnosis approaches have been
proposed [Chen et al., 2016; Fines and Agah, 2008; Huanlao Liu et al., 2010; Prasanga et
al., 2013; Slamani et al., 2012]. Prasanga et al. [2013] proposed a method to compensate
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the backlash error through two parallel thrust wires without any encoder or force sensor at
the end effector. Slamani et al. [2012] evaluated the backlash error of an industrial serial
robot under various conditions using a laser interferometer measurement instrument and
represent the relationship between the backlash error and the robot configuration with a
polynomial model. All these methods require additional measurement equipment or system
along with elaborate engineering and considerable domain expertise.

Nowadays, with the trend of smart manufacturing, companies are increasingly using
sensors and wireless technologies to capture data at all stages of a product’s life [Kusiak,
2017]. For this reason, “Big Data” has attracted not only researchers’ but also
manufacturers’ attention along with the development of data-driven methods from various
perspectives such as product lifecycle management [J. Li et al., 2015], manufacturing [Tao
et al., 2017], and maintenance [Mosallam et al., 2016]. Some machine learning and Al
approaches, such as neural networks, SVM and FLS, also have been applied in backlash
error evaluation or prediction. Chen et al. [2016] compensated the backlash nonlinearity by
a smooth backlash inverse with the help of parameter estimations and fuzzy logic system-
based approximation for an active vibration isolation system. Fines and Agah [2008]
applied artificial neural network for positioning error compensation in a machine tool, and
proved the feasibility to calculate compensation values. Liu et al. [2010] employed back-
propagation neural network to map the backlash error in a vertical machining center and

compared the result with polynomial models.

However, most of these researches only focus on the diagnosis or evaluation of current or
historical backlash error. It still lacks a method with high generalization for backlash error
prediction, especially when the target condition is beyond the historic data. Therefore, the
method leveraged here will focus on the detection of both current and future geometric

error for backlash error compensation and maintenance in machining centers.

5.2 Backlash error in machining centers

In order to perform an error mapping and subsequent compensation for backlash error, an
understanding of the sources and effects of backlash error in machining centers are
necessary. In mechanical engineering, backlash is a kind of nonlinear position dependent-

error caused by the existence of clearance between two mechanical elements. It may occur
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in a rotational mechanical element as well as in a translational mechanical element [Kao et
al., 1996]. Normally, a machining center is equipped with various high-precision sensors
such as gratings, rotary encoders, current sensors, temperature sensors, and linear scales to
guarantee the accuracy through closed or half closed loop control. Many parameters such
as machine temperature, geometric position of ball screw, torque and current, can be
obtained directly from the control system. In machining centers, backlash error can be
acquired through some extra methods, most of which are either time-costly such as laser
interferometer or only yield the maximum value [Huanlao Liu et al., 2010].

In a machining center, backlash error occurs when there exists a gap between the ball screw
and spindle at the kinematic pair. As shown in Figure 5.1, when the direction of motion
reversed, the spindle will not move until the gap is taken up in the opposite direction. The
distance that the ball screw travels before the table will move again is the geometric error
caused by backlash, which is also called as backlash error. In general, all loosely connected

elements in the driving mechanism may influence the backlash error of the system.

Backlash error varies at different axis positions and depends on the moving direction. In
addition, the error affects the contouring accuracy and increases over time due to wear in
the machining center, which means it is almost impossible to establish an accurate physical
model for backlash error prediction. Therefore, it is significant and necessary to apply
machine-learning approaches to monitor, model, and predict backlash error in mechanical

systems to maintain the desired level of accuracy.

—

Spindle

Ball screw

Figure 5.1 Backlash error in machining centers
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5.3 Hierarchical diagnosis and prognosis system (HDPS)

As mentioned above, since it is intractable to establish physical model for backlash error,
and the backlash error varies with different axis positions, most company chooses to check
and eliminate backlash according to the planned guidelines, which is both costly and time-
consuming. Therefore, it still lacks method to predict the backlash error instead of detecting
from time to time. In this section, a novel HDPS is proposed for backlash error detection
and predication in machining centers based on DBN models. The purpose of the system is
to make maintenance decision based on the result of faults diagnosis and prognosis. With
the help of HDPS, the maintenance team can prevent occurrence and development of
failures effectively, ensure the safety of equipment and personnel, and reduce economic
loss caused by failures. It can leverage fault diagnosis, performance assessment of
degrading level, fault prognosis models to reach near-zero-breakdown performance and

improve productivity for a company.
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As shown in Figure 5.2, HDPS can be divided into three layers, which are data acquisition
layer, diagnosis layer and prognosis layer. In data acquisition layer, the data, including all
the information require during the diagnosis and prognosis, is collected from machining
centers. This is the first step to achieve diagnosis and prognosis based on data mining for
machining centers. The first task of this layer is to select and collect suitable parameters
which can represent the current working condition or install additional sensors for this
purpose. Then, the backlash error at current axis position can be calculated form geometric
measurement information through backlash error interpretation method, which will be
introduced in next section. All the measured parameters and obtained backlash error are

stored in the data warehouse.

Since backlash error varies at different axis positions and the measurement is both costly
and time-consuming, it is almost impracticable to collect the backlash error at all positions.
Therefore, in data acquisition layer, only one or several axis positions’ backlash error may
be acquired, and the diagnosis layer is responsible to fill up the others. At first, training
samples require to be selected from the data warehouse and divided into groups for training
and testing the diagnosis model. Several data-driven models like BPNN, SVMR and DBN,
can be applied as diagnosis model here according to the user. Once the diagnosis model is
trained by historical data, it can be used to detect current backlash error in all position and

fill up all missing backlash errors back to the data warehouse.

In prognosis layer, the historical data will be selected from the data warehouse to train the
prognosis model. Then the data can be used to pre-train the RBM in an unsupervised
method. The DBN model can be constructed by stacking these RBM and a final decision
layer, which may adjust the weight of the network according to the target values. Once the
prognosis is trained, it can be applied to predict the backlash error in the future through the
current working condition. In next section, the experiment for backlash error detection and
prediction during our research is introduced in detail to illustrate how the HDPS and deep
learning approach can work for backlash error detection and prediction in machining
centers. The numerical results, which will be detailed in following sections, conform the

effectiveness and feasibility of the proposed method.

5.4 DBN-based fault diagnosis and prognosis
DBN is a deep learning structure to alleviate the problem of gradients vanishing through
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unsupervised pre-training for a hierarchy network, which is first proposed by Hinton in
2006 [G. E. Hinton et al., 2006]. This type of deep neural network is constructed through
training and stacking several layers of RBM in a greedy manner. In stage k, the output of
the previous layer is used as the input to train the k" layer (with respect to an unsupervised
criterion), while the previous layers are kept fixed. Once this stack of RBM is trained, it
can be used to initialize a multi-layer neural network for classification or regression [Erhan
etal., 2010].

5.4.1.1 Restricted Boltzmann machine

Restricted Boltzmann machine is a special type of Markov random field, which consists of
two layers, one with stochastic visible or observable units and the other with stochastic
hidden units [Keyvanrad and Homayounpour, 2014]. RBM can be represented as bipartite
graphs as shown in Figure 5.3, where all visible units v are connected to all hidden units h,
and there are no visible-visible or hidden-hidden connections [D. Yu and Deng, 2011]. w;
represents the interaction term between visible unit v; and hidden unit h;, while vector a and

b are bias terms for hidden units and visible units respectively.

Figure 5.3 Structure of RBM

The energy of the joint configuration with bias in RBM is defined as equation (5.1):
E(w,h;W,a,b) = —v"Wh—-b"v—a"h
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)
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Where W is the concurrent weights between visible and hidden units. I and J represent the
numbers of visible and hidden units. Then the joint probability distribution for all visible
and hidden pairs can be defined as follows:

p(v,; W,a,b) = Z 'e E@hW.ab) (5.2)

Where Z is the partition, which can be obtained by summing all possible pairs of visible

and hidden units as equation (5.3):
7 = e E@h,W.ab) (5.3)
»

Then, the probability assigned from the network for the visible vector v can be obtained by

marginalizing out the hidden vector:

PW,ab) = ) p,hW,ab) = 271 ) e F@RWaD (54)
h h

Due to the specific structure of RBM, there are no direct connection between hidden units.
Therefore, all the visible and hidden units are conditionally independent [G. Hinton, 2010],
and the conditional probabilities can be efficiently calculated as equation (5.5) and (5.6):

1
p(hy = 1[v;W,a,b) = 5<aj +Zviwij> (5.5)

i=1

]
p(v; = 1l W, a, b) = S(bi +Zhjwi,-> (5.6)

j=1

Where S(x) is the logistic sigmoid function S(x) = 1/(1 + e ™)

Then, the RBM model with binary units can be learned through negative log-likelihood
gradients [Gan and Wang, 2016]. The derivative of the log probability of a training vector

can be obtained as follows:
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dlogp(v;W,a,b)

Tw = (Uihj)data - (Uihj)modez (5.7)
ij
dlogp(v;W,a,b)
da = (hj)data - (hj)modez (5-8)
dlogp(v; W,a,b)
ob = (Ui)data - <Ui)model (59)

Where the angle brackets denote the expectations with the distribution specified by the
subscript that follows. Then the learning rule for all parameters can be obtained as follows:

Aw;j = SW((vih}'>data - (vihj>model) (5.10)
Aai}' = Ea (<hj)data - (hj)model) (5.11)
Abij = &, ((Vidaata — (Vidmoder ) (5.12)

Where €, , £, and &, represent learning rate of weight, hidden bias and visible bias,
respectively. According to the previously mentioned RBM property, an unbiased sample
of (. )qataWith the respect to the data distribution can be easily obtained, while attaining
an unbiased sample of (. ),,0qe; 1S Intractable, since it can be done through starting from
any random state of the visible units and performing sequential Gibbs sampling for a long
time [Keyvanrad and Homayounpour, 2014]. Therefore, the Contrastive Divergence (CD)
method [G. E. Hinton, 2002] is applied to approximate the gradient objective function,
where (. )noder 18 replaced by k iterations of Gibbs sampling. During Gibbs sampling, each
iteration updates all hidden units according to equation (5.11), followed by updating of all
visible unites through equation (5.12), as shown in Figure 5.4. Although CD method is not
a perfect gradient computation method, the results has been proved acceptable [Carreira-
Perpinan and Hinton, 2005].
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Figure 5.4 Contrastive divergence training

5.4.1.2 DBN construction for fault diagnosis and prognosis

As mentioned above, a DBN can be constructed through stacking RBM, each of which
contains one visible layer and one hidden layer respectively. The construction process of
DBN is well described in [G. Hinton et al., 2012]. Each RBM is pre-trained with their own
training data by CD training algorithm, and its output serves as the training data for the
next RBM layer. As shown in Figure 5.5, the input layer and the first hidden layer h;
construct the first RBM. Then the states of the binary hidden units of the first trained RBM
is used to train the next hidden layer h,, then hidden layer h; and hidden layer h, form the
second RBM. These layer by layer unsupervised training method can effectively pre-train
the DBN.
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Figure 5.5 Overall construction of DBN

To achieve high classification or regression performance for fault diagnosis and prognosis,
a final decision layer with variables, which represent the desired outputs or labels, is added
to the stacked RBM. The final structure of DBN for fault diagnosis and prognosis in shown
in Figure 5.6, which is composed of several successive RBM layers and a final decision
layer for faults clustering, faulty component’s identity, or evaluation of potential failures.
Once the DBN is initialized, the BP algorithm, which is a supervised learning method and
applied in BPNN, can be employed to adjust the weights.

RBM; | | RBM, RBM,

Q Q Q Faults Clustering
Q Q O Decision Faulty Component’s
eee " La yer Identity
Potential Failures
Q Q O Evaluation

Data ‘

Figure 5.6 DBN for fault diagnosis and prognosis
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Since DBN is based on RBM, which are particular energy-based models, the learning
process would correspond to modifying that energy function so that its shape has desirable
properties [Bengio, 2009]. In a DBN, each RBM is trained to encode in its weight matrix a
probability distribution that predicts the activity of the visible layer through the hidden
layer, which enables DNB the ability of self-learning. By stacking such models, and letting
each layer predict the activity of the layer below, higher RBM learn increasingly abstract
representations of sensory inputs [O'Connor et al., 2013]. A layer-by-layer nonlinear
learning network with fine-tuning procedure enables DBN to capture intrinsic
characteristics about potential failures from the massive data. Furthermore, energy-based
models enable DBN to mine information hidden behind highly coupled inputs, which
makes DBN a feasible method for fault diagnosis and prognosis when the target condition
is beyond the historical data. Other applications of DBN for predictive maintenance are
also listed in Chapter 2, Table 2.2. Next section will introduce and detail a novel application
of DBN-based backlash error prediction in a machining center, when the target condition
is beyond historical data.

5.5 Backlash error detection and prediction experiment

5.5.1 Experiment set up

In order to measure the backlash error in a machining center, at least two geometric
measurements are required: displacement of the ball screw and the linear position of the
spindle. In our experiment, the displacement of the ball screw is measured through a rotary
encoder in the motor. It records the rotation angle and converts the signal into linear
displacement. The position of the spindle is acquired by a calibrated linear scale. Figure
5.7 shows the setup of the measurement system, in which the linear scale records the direct
position of the spindle x;, and rotary encoder measures the displacement of the ball screw
(the indirect position of the spindle x»).
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Figure 5.7 Setup of the measurement system

5.5.2 Backlash error interpretation

According to the definition, the geometric error caused by backlash error can be interpreted
as the difference between the displacements of spindle and ball screw when the direction

is reversed. Simply described as the following equations:

Blp] = [} f(®) dt — [}, f,(6) dt (5.13)
p = x,(¢"), (5.14)
Where:
f1(t) is the velocity of the spindle with time, recorded by linear scale.
f>(t) is the velocity of the ball screw with time, recorded by rotary encoder.
x4 (t) is the direct position of the spindle with time, recorded in linear scale.
p is the position on linear scale, where backlash occurs.
B[p] is the geometric error caused by backlash at position p.
t? is the time when backlash occurs.
t* is the time when backlash disappears (the gap is taken occurs)

However, due to the uncertainty of backlash, it is almost impossible to capture the exact

time when the gap is filled, which means t* in the equation (5.13) is unavailable or with
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low precision. Therefore, during the measurement, we extended the measurement distance
and let backlash occurred three times in one sample to eliminate the measurement error. As
shown in Figure 5.8 three blocks of geometric error, caused by backlash, can be recognized
during one sampling process. The time interval between each sampling units is two
milliseconds.

Backlash error 2
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feed, back, feed, back,
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Position (mm)
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Backlash error 3

I e — R
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Figure 5.8 Three blocks of backlash in one sample

The position of spindle and ball screw can be decomposed into the amount of feed and
return, the initial position, and backlash error, as shown in the following equation:

x1(8) = %, (£°) + [ feed(t) dt + [& back(t) dt + 3 backlash
(5.15)
x,(¢) = %,(t°) + [ feed(t) dt + [ back(t) dt (5.16)
Where:
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x5 (t) is the position of ball screw with time, recorded in rotary encoder.

t° The initial time of the measurement.

t’ The end time of the measurement.

feed(t) The feed rate at t, which is equal to zero if not under feed movement.
back(t) The return rate at t, which is equal to zero if not under return movement.

Since the backlash errors occur in very close positions, we can consider the difference of
the value is approach to zero. Therefore, the backlash error can be calculated according to
equation (5.17):

backlash = [x;(t") — x,(t°)] — [x,(t)—x,(t9)] (5.17)

5.5.3 Data acquisition

To investigate the actual performance of proposed system, the experiment was carried out
on a Pietro Carnaghi AC 16 TM vertical machining center with a collection of 25 weeks’
data, from the 7" week to 31% since the last maintenance. The machining center is placed
in a plant with some manufacturing tasks every day. During the data collection period, data
was collected through a very rigorous testing procedure after daily work to ensure all the
data collected is under a similar condition. The collected parameters are shown in Table
5.1

During the experiment, we divided the moving distance into 24 points with the interval of
20 mm from 1090 to 1550 mm according to the calibrated linear scale. Then, all the
backlash errors with current parameters can be calculated through backlash error
interpretation method, which was introduced in Section 5.5.2. Figure 5.9 shows the
obtained backlash error only with working weeks and axis position (It is more than a 3-
dimension problem, but according to empirical knowledge, it is intuitive to visualize the
backlash error with working weeks and axis position).

Table 5.1 Parameters collected from a vertical machining center

Parameters Meaning

Xq Direct position measured by linear scale
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Xy Displacement recorded by rotary encoder
w Number of weeks since the last maintenance
T; Temperature of the coolant tank
T, Temperature of the machining center
T3 Ambient temperature
TRQ Machining torque
Sampling units during the testing procedure
P Axis position of the spindle

Backlash error (um)
=
/

-
w
Vi

12

35

15 1300

10 1200

Working Time (week) 5 = Axis Position (mm)

Figure 5.9 Backlash error with working time and axis position

5.5.4 Diagnosis of backlash error

As mentioned above, backlash errors in some positions may be missed in data acquisition
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layer. So Diagnosis Layer requires to detect and fill up the current backlash error in all
positions through the collected parameters. The essence of the diagnosis model is to deal
with a nonlinear regression problem, in which all the variables are collected or mapped
under the same working condition. The regression function for the target backlash error
can be simply shown as equation (5.18):

bl’ ~ F(Tlv T2I T3r tr TRQ! prv brv pt) (518)

Where b, is the backlash error at target position, p, represents the backlash error at
reference position, which is obtained and interpreted in data acquisition layer, p; and b,
mean the target position and reference position, respectively.

In Diagnosis Layer, the diagnosis is first trained through the historical data, and responsible
to map the backlash error in all positions through the data collected under current working
condition. During the experiment, a selection of 1152 samples was applied to train the
regression model. We employed three methods including BPNN, SVMR, and DBN as the
regression model, and compared the results as shown in Table 5.2, where Maximum Error
(ME), Mean Squared Error (MSE) and training time of each model are listed.

Table 5.2 Diagnosis results of BPNN, DBN, and SVMR

Model BPNN DBN SVMR
Structure 50 nodes in the 4 layers, 50 Gaussian Kernel
hidden layer nodes in each Function
MSE (um) 0.01148 0.01056 0.00964
ME (pum) 0.2758 0.2807 0.2812
Training time Instantly 30 mins Instantly

The result shows that all three methods have the capacity to deal with the diagnosis problem
when all the relative parameters were obtained. In addition, both BPNN and SVMR can
finish the training process instantly, and DBN is relatively time-consuming.
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5.5.5 Prognosis of backlash error

As mentioned above, Prognosis Layer is responsible to predict future backlash error
according to the historical data and current working condition of the machining center.
Actually, it can also be considered as a regression problem, though all the parameters that
can be used to represent the working condition are missing since we never know the exact
values of these parameters in the future. Therefore, we applied the deep learning approach
to predict the backlash error first, and then tested other methods to compare the

effectiveness. Table 5.3 shows the input variables of the prognosis model.

Table 5.3 Inputs for prognosis

Inputs Meaning
w Number of weeks since the last maintenance
T; Temperature of coolant tank
T, Temperature of machine
T5 Ambient temperature
TRQ Machine torque
P Axis position
backlash,,_1 p_4 Backlash error in
w-1 weeks at P — 1 position
backlashy,_, p_, Backlash error in
w — 2 weeks at P — 2 position

During the experiment, it is supposed that prognosis model is established at week 29" and
employed to predict the backlash error in the future, which means the backlash errors in
week 30™ and 31 are beyond the training data. According to the author’s empirical
knowledge, this problem is common and challenging since in many situations, one may not
have the data under faults. Some machines may run several years without any failures.
However, it may exist potential faults that would occur one day. When they happen, they
may cause terrible disasters in both economy and personal safety. This is the reason why it
is also crucial to evaluate potential failures or degradations beyond the historical data.
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During the experiment, the applied DBN model is constructed through stacking four RBM.
The structure for the utilized DBN is shown in Table 5.4 along with the parameters of each

Restricted Boltzmann Machine.

Table 5.4 parameters for utilized DNB

Parameters RBM1 RBM2 RBM3 RBM4
Type Bernoulli | Bernoulli | Bernoulli | Bernoulli
Number of neurons 50 50 30 30
Learning rate 0.01 0.01 0.01 0.01
Number of epochs 500 500 300 300

During the training process, samples are randomly divided into two groups, 80 percent for
training and 20 percent for testing. The training process has been run for 20 times, and there
are no significant divergence among the results. Figure 5.10 shows one of these results, in
which the best MSE from week 9™ to week 29 is 0.012207 um at the 14075™ epochs.
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Figure 5.10 Training result of DBN

Figure 5.11 and Figure 5.12 compared the actual backlash error and predicted backlash
error in week 30™ and 31° respectively. The MSE of backlash error prediction in week 30™
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and 31* is 0.0102 pm and 0.0142 um with 0.1808 and 0.2275 as ME, respectively. In this
case, the Maximum Permissible Error (MPE) for the backlash error is set as 16pum. In week
29" we can predict that the backlash error in week 315 may exceed the MPE considering
about the mean prediction error, which means the fault could be forecasted two weeks in
advance. Then, subsequent maintenance must be arranged at or before week 30" to prevent
the error from growing up and finally exceeding the MPE.
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Figure 5.11 Predicted backlash error in week 30th
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Figure 5.12 Predicted backlash error in week 31st

5.5.6 Discussion

During the experiment, to confirm the effectiveness of deep learning for backlash error
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prediction, two other widely used regression methods, SVMR and BPNN, are employed
for comparison. The BPNN applied in the experiment consisted of one hidden layer with
50 neurons. The Levenberg-Marquard optimization rule is applied as training algorithm for
the BPNN. For the SVMR, Gaussian Function is applied as the kernel function. As
mentioned above, all the training samples are randomly selected. In order to obtain more
accurate and comprehensive evaluation results, we did this random selection for 20 times.
The prediction results of each algorithm with their average performance over the 20 runs
are summarized in Table 5.5.

Table 5.5 Prediction results of BPNN, DBN, and SVMR

Model BPNN DBN SVMR

Structure 50 nodes in the | 4 layers, 50 * Gaussian
hidden layer 50 *30 * 30 | Kernel Function

training MSE (um) 0.020894 0.012207 0.0102

MSE in week 30th 0.2566 0.0102 1.2335

MSE in week 31st 1.6450 0.0142 2.8029

ME in week 30st 0.9904 0.1808 1.3669

ME in week 31st 1.6338 0.2275 1.8969
Training time Instantly 40 mins instantly

Through observation, DBN performs much better than other two methods with high
accuracy in both MSE and ME for backlash error prediction, which indicates that DBN can
effectively deal with the backlash error prediction issue, when the important parameters are
missing and the objective condition is beyond the training data. To be more specific,
energy-based models enable DBN to mine information hidden behind highly coupled
inputs, which makes DBN a feasible method to predict backlash error in the future through
current condition. However, compared to the other two methods, DBN is a kind of time-
consuming approach. And the training time may increase dramatically with the growth of
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training samples due to the complex structure.

As to BPNN and SVMR, both of them have good performances in fault diagnosis if all the
necessary parameters can be obtained. In addition, compared with DBN, they showed the
advantage in learning speed during the experiment. However, it is also obvious that neither
of them has the ability to predict the backlash error in the future when the objective
condition is beyond the training data. The case study also demonstrated the necessity and
feasibility of applying DBN as the prognosis model for backlash error prediction in the
proposed HDPS.

5.6 HDPS-BPSO maintenance implementation strategy

In order to capture the trade-off between several factors such as maintenance cost,
machining accuracy, and defective percentage, a novel HDPS-BPSO maintenance
implementation strategy driven by HDPS and binary particle swarm optimization (BPSO)
is proposed in this section. After discovering fault information of the equipment, the last
step is to implement predictive maintenance according to the prediction of potential failures
or degradation, which is usually a NP-hardness (non-deterministic polynomial-time
hardness) problem. Here, the implementation strategy can be regarded as a maintenance
scheduling optimization problem. Inspired by particle swarm optimization’s (PSO)
advantages [Rini et al., 2011], a novel HDPS-BPSO maintenance implementation strategy
is proposed to find the optimum solution for predictive maintenance implementation. Since
PSO is easier to implement with a few parameters to tune and is computationally

inexpensive [ Yue-Jiao et al., 2012], it may be a perfect solution in this case.

5.6.1 Basis of PSO

Particle swarm optimization is a computational method to solve the optimization problems,
by iteratively trying to improve candidate solutions with communication within the swarm
and randomly search, which is inspired from movement of organisms in a bird flock [R.
Eberhart and Kennedy, 1995], as shown in Figure 5.13. The current position
X, can be considered as a set of coordinates describing a point in space. If the current
position is better than any that has been found so far, then the coordinates are stored in the
vector p,. The value of the best function result so far is stored in a variable that can be
called pg. The objective, of course, is to keep finding better positions and updating p; and
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pg- New points are chosen by adding v; coordinates to X;, and the algorithm operates by

adjusting v,, which can effectively be seen as a step size.
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Figure 5.13 Birds flocking of PSO

In optimization process, a population of candidate solutions are produced in the form of
particles. These particles move around in the solution space of the problem according to
some simple mathematical formulae over the particle’s positon and velocity. The
movement of each particle is influenced by the best known personal position and also the
best known global position in the searching space, which is updated as the best solution
found so far by the swarm. This update makes the swarm move toward the best solutions
[Q. Yu, 2015]. The flowchart of PSO can be seen in Figure 5.14.
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Figure 5.14 Flowchart of PSO algorithm

In PSO, every particle remembers its own previous best value as well as the neighborhood
best. PSO is also more efficient in maintaining the diversity of the swarm, since all the
particles use some information related to the most successful particle in order to improve
themselves. In addition, PSO is easier to implement and there are only a few parameters to

adjust. The general steps of implementing PSO were shown as follows:

1. Initialize parameters such as maximum number of iterations, population size and initial
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particle velocities v, and positions x; .
2. Loop

3. Evaluate the target optimization fitness according to each particle’s position x;

4. Update the best solution of each particle Ei so far.
5. Update the best solution of all particles E until now.

6. Change the velocity of each particle at #” iteration to (¢ + 1) iteration according to:

w(t+) = 0w+ p,=xi0)) e p, (1) (519

Where w is the inertia weighting, c;and c, are acceleration coefficients and rjand r, are

random numbers distribution on [0, 1].

7. Update the position of each particle according to the following equation:
xi(t+) = x () +vi(t+1) (5.20)

8. If a criterion is met, exit loop. The criterion is usually set to be the maximum iterations,
the number of iterations in which the objective has not been improved, or the fitness is

sufficiently good.

The role of inertia weight w in Equation 5.19 is considered critical for the convergence
behavior of PSO. The inertia weight is employed to control the impact of the previous
history of velocities on the current one. Accordingly, the parameter w regulates the trade-
off between the global (wide-ranging) and local(nearby) exploration abilities of the swarm.
A large inertia weight facilitates global exploration, i.e. searching new areas, while a small
one tends to facilitate local exploration, i.e. fine-tuning the current search area. A suitable
value for the inertia weight w usually provides balance between global and local
exploration abilities and consequently results in reduction of the number of interactions
required to locate the optimum solution. Initially, the inertia weight is set as a constant.
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However, some experiment results indicate that it is better to initially set the inertia to a
large value, in order to promote global exploration of the search space, and gradually
decrease it to get more refined solutions[R. C. Eberhart and Shi, 2000]. Thus, an initial
value is set to maximum one Wy,,, (for example around 1.2) and gradually reducing
towards the minimum one wy,;;,, (for example around 0.6) can be considered as a good
choice. A better method is to use some adaptive approaches, in which the parameters can
be adaptively fine-tuned according to the problems under consideration [Hongbo Liu et al.,
2007; Shi and Eberhart, 2001].

The parameters c;and ¢, in Equation 5.19 are not critical for the convergence of PSO.
However, proper fine-tuning may result in faster convergence and alleviation of local
minima. As default values, usually, ¢; = ¢, =2 are used, but some experiment results
indicate that c; = ¢, =1.49 might provide even better results. According to Equation 5.19,
it is better for local exploration when ¢; > ¢, while global exploration would do better
when ¢; < c¢,. Some research also reports that it might be even better to choose a larger
cognitive parameter, ¢;, than a social parameter, c,, but with ¢; + ¢, < 4 [Clerc and
Kennedy, 2002]. Therefore, the parameter ¢; can be changed from c; i, t0 C1max and the
parameter ¢, can be changed from c,,p,45 t0 Comin regularly in order to make the algorithm
promote global exploration in the beginning and get more refined solutions (local
exploitation) in the end [Zhang, 2014].

5.6.2 BPSO

PSO was originally developed for continuous valued spaces [Khanesar et al., 2007],
however, many practical problems are defined for discrete valued spaces where the domain
of the variables is finite. In 1997, Kennedy and Eberhart proposed a discrete binary version
of PSO for discrete optimization problems [Kennedy and Eberhart, 1997]. In their model,
each particle represents its position in binary values which are 0 or 1. Each particle’s value

can then be changed from one to zero or vice versa.

In BPSO, the particle’s personal best and global best are also updated as in continuous
version. The main difference lies on the moving velocity, which is defined in terms of
changes of probabilities that a bit will be in one state or the other. Therefore, velocity must
be restricted within the range [0,1] through defining a logistic transformation S, usually a
sigmoid function as Equation (5.21).
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1
s (vy(®) = — (5.21)

Where v;;(t) means the j th component of vector 7;(t). Then the new position of the

particle could be updated according to Equation (5.22).

if rand;; < S (vij(t)) then x;j(t + 1) =1 (5.22)

otherwise x;;(t + 1) =0
Where rand;; is a random number selected from a uniform distribution in [0, 1],

x;j(t + 1) represents the j* component of vector x,(t + 1).

However, as reported in [Nezamabadi-pour et al., 2008], increasing the value in the positive
direction in the BPSO will cause larger probability (probability of 1) for the particle
position while raise in the negative direction results in probability of zero. When the
optimization process has nearly reached to the optimum solution, the probability of
changing the position of the particle must be near to zero, while at this point using sigmoid
function, the position will change by taking the value of 1 or 0 with the probability of 0.5,
which would cause the algorithm not to converge well. To avoid this situation, hyperbolic
tangent (Tanh) function, as shown in Equation (5.23), is leveraged as the transformation
function

eavi]-(t) _e—(lvl’]’(t)

S (vij(t)) = |tanh (avij(t))| = W (523)
Where « is the weight vector of the transportation.

5.6.3 HDPS-BPSO based maintenance scheduling

As introduced above, backlash error that will occur in the equipment at all positions and
directions could be predicted through proposed HDPS. Table 5.6 shows part of backlash
errors (wm) in the machining center at x direction predicted through HDPS. During the
scheduling, our target is to minimize the total cost raised by backlash error, including the
maintenance cost, machining accuracy, and defective percentage in the latest 25 weeks.
The specific data about work load of the equipment is shown in Table 5.7 (%).
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Table 5.6 Part of data predicted through HDPS (um)

Position A Position B Position C Position D
Week10 12,35 12,35 12,37 12,35
Weekl1 12,44 12,47 12,51 12,41
Week12 12,64 12,64 12,77 12,74
Week13 12,84 12,80 12,85 12,97
Week14 12,98 12,93 12,98 13,02
Week15 13,22 13,12 13,11 13,19
Week16 13,30 13,36 13,38 13,36
Week17 13,46 13,62 13,71 13,56
Week18 13,77 13,83 13,87 13,92
Week19 13,99 14,13 14,01 14,14
Week20 14,32 14,21 14,20 14,25
Week21 14.42 14.43 14.39 14.46

Week22 14.59 14.56 14.50 14.61
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Table 5.7 Work load of the equipment (%)

Week Load Week Load Week Load
1 91.11 10 93.33 19 86.67
2 97,78 11 82,22 20 84,44
3 95.56 12 77,78 21 80,0
4 88.89 13 84,44 22 88,89
5 82.22 14 88,89 23 80
6 80 15 82,22 24 84,44
7 82,22 16 88,89 25 77,78
8 95.56 17 84,44
9 84,44 18 91.11

The main cost function in this case study includes degradation cost C;, maintenance cost
Cy , and inspection cost C;. Here, the assumptions and definitions in the mathematical

model are given:

Assumption 1: As we discussed in Chapter 3, in practical industrial applications, the
relationship between production and maintenance is usually considered as a conflict in
management decision. Here, we assume the maintenance scheduling compromises the
production scheduling, which means the work load of the equipment will not change with

maintenance decisions.

Assumption 2: The degradation in specific direction and position completely follows the
mapping provided by HDPS.

Assumption 3: Once a maintenance has been performed, the degradations in all directions
and positions are supposed to return back to the initial values (Week 1). Subsequent
degradations keep following HDPS according to the distance from the last maintenance

performance.
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Assumption 4: If a maintenance has been scheduled, it is supposed to be performed at the
beginning of that week.

Assumption 5: Holidays have been excluded from the mathematical model.
Cs: Degradation cost.

Cy: Maintenance cost.

C;: Inspection cost.

W: Number of weeks to be scheduled.

A: Number of axes inspected.

P: Number of axial positions inspected.

Pr: Production profit in unit time.

Dp: Maximum permissible degradation.

Dy : Criterion of normal product.

M: Cost of maintenance performance.

Load;: Working load in week i.

H: Maximum working hours per week.

h: Time of single maintenance performance.

Djjy: Degradation in week i along j axis at position k predicated from HDPS.
D] jk: Degradation in week i along j axis at position k after maintenance scheduling.
a: Weighting factor for degradation cost.

[: Weighting factor for maintenance cost.

d;: Distance from the last maintenance in week i.

x;: Decision variable.

Decision variable x; during optimization is defined as:

if maintenance performanced in week i then x; =1 (5.24)

otherwise x; = 0
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The degradation cost here is caused by the geometrical error from backlash directly. It
could be estimated as following:

C; = Z Z Z Load; + H * p(D}y) (5.25)
iew jeD kep
Djji = Dg;ji
if x;=1 thend; =1
otherwised; =d;_; + 1

Where ¢ ( ) denotes the production cost caused by degradation. It can be calculated
according to Equation (5.26):

0 if Diy <Dy
o(Dij) =4 Uy pr if Dy < D <Dp (5.26)
Pr if Diy > Dp

Here, we consider when the degradation is between the normal and maximum permissible
degradation, the manufacturing profit decrease with a linear manner with degradation. The

maintenance cost here is evaluated according to the number of maintenance performance.
Cy =M * Z X (5.27)
iew
Then, the total cost C;,.can be obtained as:
Crot =axCq+ L *Cy+C (5.28)
With constraint Vx; € W: x; *x h+ Load; * H < H

Because the equipment is inspected in a continuous manner in this model, the value of C;
is fixed. Since some issues such as incidental damage or cost caused by maintenance, and
the loss in reputation of producing imperfect products. ¢ and £ can be leveraged to weight
the effect of degradation and maintenance here, respectively.

The parameters of HDPS-BPSO are set according to the case study as: number of

population size is 100, maximum iteration is 500, weighting coefficients @ and f are both
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setas 1, W is 25 weeks, A is 2 axes, P is 25 positions, Pr is 2,000 NOK /hrs, M is 15,000
NOK, Dp is 16 um, Dy is 12.5 um, H is 45 hours, h is 2 hours. During the test, we
leveraged hyperbolic tangent function as logistic transformation for optimization. The
numerical result of HDPS-BPSO is as following. Figure 5.15 illustrates the mean fitness
during the optimization. The convergence starts around 200" iteration. Table 5.8 shows
the optimum maintenance implementation scheduling according to proposed HDPS-BPSO.
It means the best predictive maintenance solution in this case is to perform maintenance in
week 9 and week 18, in which the total cost including the loss from degradation and
maintenance cost is 33,303 NOK. According to the previous preventive maintenance
strategy, the maintenance is supposed to be performed every 6 weeks. The cost is also
calculated based on the preventive maintenance strategy. When maintenance executed in
week 7, 13 and 19. The total cost is 47,881 NOK. Therefore, through predictive
maintenance, the maintenance cost of single machine center can be reduced by 14,578
NOK in this case.

%x10° Mean of fitness

h,
08" “r \lﬂ\‘{\|/|\w‘w

0.6

04+ P,

0.2 : ' ‘ ‘
0 100 200 300 400 500

Iteration

Figure 5.15 HDPS- BPSO mean fitness with iterations
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Table 5.8 Best maintenance scheduling from HDPS-BPSO

Strategy Criterion Decision Cost
Preventive Time-based Week 7,13,19 47,881 NOK
maintenance
Predictive Cost minimization Week 9, 18 33,303 NOK
maintenance

5.7 Summary

In this chapter, a case study of applying deep learning to predict backlash error for
maintenance implementation scheduling in a machining center is demonstrated. HDPS is
proposed for backlash error detection and prediction based on DBN to deal with the
situation when target condition is beyond the historical data. The case study demonstrated
the performance of HDPS for the backlash error prediction in a vertical machining center.
During diagnosis stage, the missing prior data including the historical data and current
backlash error will be interpreted, while the prognosis stage is responsible for the prediction
of future backlash error based on the prior data provided by the former stage through a deep
neural network. To provide a comprehensive comparison for the effectiveness of HDPS,
two other intelligent algorithms, BPNN and SVMR, are also applied to replace the DBN as
the prognosis model. The result of the comparison proves the superiority to apply deep
learning method for backlash error prediction, when important parameters are missing and
the objective condition is beyond the training data. Moreover, a novel maintenance
implementation strategy HDPS-BPSO is also proposed to illustrate the implementation of
predictive maintenance in practical application. The numerical result also shows the benefit
of implementing the strategy of predictive maintenance compared with that of preventive

maintenance
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Chapter 6
Implementation of predictive maintenance in rotary machinery

Mechanical degradation may cause equipment to break down with serious safety,
environment, and economic impact. Since rotary machinery usually operates under a tough
working environment, which makes it vulnerable to types of faults and increases the
complexity of fault diagnosis. Degradation assessment of components in mechanical
equipment is usually unsatisfied or restricted by its accuracy in most cases. Simultaneously,
the requirement of manufacturing systems with reliable self-assessment has been
increasingly raised with the trend of smart industry. The aim of this chapter is to fill this
gap by providing a deep learning driven method for fault classification and degradation
assessment. An experiment for fault classification and degradation assessment in rotary
machinery through wavelet packet decomposition (WPD) and data-driven models will be
demonstrated in this chapter. During the experiment, WPD is first applied to represent the
coefficient and energy based features from vibration signals. Then several machine-
learning methods, including DNN, DBN, BPNN, SVM, and K-Nearest neighbour
classification are leveraged for fault classification and degradation assessment. The
comparison of numerical results shows the superiority of DNN for degradation assessment
in rotary machinery. In addition, a novel SAE-LSTM approach will also be presented for
anomaly detection through multiple features sequence when the history data is unlabelled,

which is also a common dilemma in practical applications.

6.1 Introduction

As the key equipment in many production fields, rotary machinery covers a very broad
range of industrial equipment and plays a momentous role in manufacturing application. It
is one of the most common classes of mechanical equipment and generally may operate
under a tough working environment, which make it vulnerable to types of faults. These
faults may cause equipment to break down or degrade certain machinery performance like
geriatric location, manufacturing quality and operation safety [Lei et al., 2013].
Considering the complexity of the current industrial applications, degradation assessment
in machinery is a challenging issue nowadays [El Kadiri et al., 2016; Precup et al., 2015].
Studies have shown that the human operator is responsible for 70-90% of the accidents in
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industrial environments [P. Wang and Guo, 2013]. For this reason, computer-based
degradation assessment systems with high complexity is imperative to improve the
accuracy of fault identification, and prevent unanticipated accidents.

Moreover, rotary machinery is often critical to the ability of a production process to
perform as and when required. Failure in such rotary machinery can have serious safety,
environment, and economic impact. The aim of maintenance in rotary machinery usually
lies on preventing the equipment from failures and reduce maintenance costs by decreasing
the number of unnecessary maintenance. When degradation in rotary machinery has
reached a point where it can be heard in form of noise, felt in form of heat, or seen in form
of smoke, failure is about to materialise. Therefore, choosing the suitable inspection
methodology to evaluate the degradation in rotary machinery with long warning time is of
utmost importance. Simultaneously, vibration monitoring is widely leveraged as a main
monitoring method for early detection of degradation in rotating machinery due to the good
performance in representing fault information. However, in most cases, the subsystems in
rotary machineries like bearings and gear transmission systems are not easily accessible,
or hard to inspect visually the failures directly due to restrictions of time consuming
disassembly, huge machine size or environmental limitations [Y. Yang et al., 2015].
Therefore, how to achieve early fault detection, classification and degradation assessment

failures in rotary machinery is always a hot issue in the field of mechanical maintenance.

The research target usually focuses on the root cause of increased vibration levels. When
the root cause, usually degradations on certain parts, is known, the right operation and
maintenance action could be planned. Many intelligent approaches for diagnosis or
prognosis in rotary machine have been proposed and researched in the recent years [Lin
and Chen, 2014; Lu et al., 2017; Z.-Y. Wang et al., 2017]. Lin et al. [2014] applied
crossover characteristics to extract failure features from nonlinear data to detect faults for
rotary machine. Wang et al. [2017] proposed a method to selective ensemble neural
networks for faults classification in rotary machine. Lu et al. [2017] introduced a stacked
denoising autoencoder to estimate the health condition of rotary machinery components.
All these proposed methods have contributed greatly and achieve certain targets in relevant
experiment. However, in most cases, the accuracy of degradation assessment for certain

components or performance in mechanical equipment is still unsatisfied due to the
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increasing complexity of current industrial applications. Therefore, this chapter proposes a
method driven by WPD and DNN for fault classification and degradation assessment in
rotary machinery.

6.2 Vibration condition monitoring

The art of anticipating failure in rotary machinery by means of monitoring vibration is
widely used in industry as almost 80% of common rotating equipment problems relates to
misalignment and imbalance are detectable by vibration monitoring. The measured
vibration levels will change when a rotary machine has a defect. Vibrations caused by the
defects occur at specific vibration frequencies, characteristic of the components, their
operation, assembly and wear. The measured vibration levels could indicate the severity of
the defects [Scheffer and Girdhar, 2004]. This may probably be the reason why vibration
condition monitoring is the most popular method for faults identification and classification
in rotary machinery.

Evaluation criteria for machine vibration is dependent upon a wide range of factors and the
criteria adopted vary significantly for different types of machine. According to ISO
standard 20816, there are three primary vibration quantities: displacement, velocity and
acceleration ["ISO 20816-1," 2016]. However, in most situation, it is hard to give absolute
vibration tolerances for any given machine. There is thus an obvious risk of judging
measured vibration levels, dangerous when they are not, or the opposite - not dangerous
when they are dangerous. Human experience and interpretation of the measured values still
plays an important role in vibration condition monitoring. Therefore, how to apply
machine-learning approaches for decision making with higher accuracy in vibration
condition is always a hot issue.

Typically, electronically measured raw signals are transformed in such a way that levels of
these quantities describe the condition of a given machine. Raw vibration signals are
transformed using analysing techniques such as Fast Fourier Transform (FFT), Short Time
Fourier Transform (STFT), empirical mode decomposition (EMD), and Wigner-Ville
distribution (WVD). All these methods have been widely applied to extract patterns in
either time domain or frequency domain from raw vibration data, which can be
subsequently leveraged for fault identification and classification. However, for degradation

assessment in mechanical equipment, it is significant to represent the vibration data in both

137



Chapter 6 Implementation of predictive maintenance in rotary machinery

time and frequency domains to track and map the changes of degrading. Although FFT
based technologies are useful for fault classification and identification, they are usually not
suitable for non-stationary signals. To analyse data in the time-frequency domain, WVD
and STFT were once the most popular methods for non-stationary signal. However, WVD
suffers from interference terms appearing in decomposition, while STFT cannot provide
ideal time and frequency resolution simultaneously since it applies constant resolution at
all frequencies. In addition, no orthogonal bases exist for SFT that can be leveraged to
implement a both fast and effective STFT algorithm [Okumura, 2011; Vachtsevanos et al.,
2006].

Under this background, nowadays, wavelet transform based technologies such as WPD has
been increasingly applied in many cases due to the great capabilities in both time and
frequency domains. With the help of wavelet transform, the analysis of non-stationary
signals is achievable as well as detecting transient feature components as other methods
were inept to perform since wavelet can concurrently impart time and frequency structures.
For this reason, in this chapter, we leverage WPD to represent the working condition of
mechanical equipment through features in both time and frequency domain from vibration
signals, and subsequently apply extracted information for fault classification and

degradation assessment.

6.3 WPD

WPD is a very useful tool to analyze vibration signals. In numerical analysis, the essence
of WPD is a wavelet transform where the discrete-time signal is parsed through more filters
than the discrete wavelet transform, which can provide a multi-level time-frequency
decomposition of signals [Y. Zhang et al., 2016]. It is extended from the wavelet
decomposition (WD) and includes multiple bases and different basis, which can result in
different classification performance and cover the shortage of fixed time—frequency
decomposition in Discrete Wavelet Transform (DWT) [Xue et al., 2003].

In DWT, the original signal will first pass through two complementary filters and emerges
as approximation coefficients and detail coefficients, which includes the low frequency and
high frequency information about the original signal respectively. The approximation
coefficient will further split into a second-level approximation coefficients and detail
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coefficients. This process may repeat according to the number of decomposition layers.
Figure 6.1 shows the 3-layer structure of signal based on DWT, where approximation

coefficients and detail coefficients are labelled as A and D respectively.

However, WPD decomposes the detail and approximation coefficients simultaneously.
Therefore, WPT can construct a complete wavelet packet tree with the same frequency
bandwidths in each resolution. WPD can lead to a complete wavelet packet tree as shown
in Figure 6.2. A wavelet packet is a function with three parameters, i, j and k, which are the

modulation, scale and translation parameters respectively.
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Figure 6.1 3-layer structure of DWT
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Figure 6.2 Wavelet packet decomposition
According to the space partition shown in Figure 6.2, we label W}i to represent the i th

J .
subspace of wavelet packet at the j th scale, where W}, (t) = Z_Ew”(Z_J t— k), k is the

shift factor and k € Z [Ting et al., 2008]. It satisfies with equation (6.1) and (6.2).

wio(t) = Z ho (k) a)}_l’k (nis odd) (6.1)
K

‘U},lo (t) = Z hq (k) a)}_l’k (nis even) (6.2)
k

Where j,k € Z,n = 0,1,2, ..., 2" — 1, hy(k), hy (k) are low-pass and high-pass filters of
wavelet packet. Then the original signal f(t) can be represented according to j level WPD
as equation (6.3) and (6.4). The wavelet packet component fji (t) can be obtained through
a linear combination of wavelet packet function W]’}{ (t) and wavelet packet coefficients

i
Cj,k‘

2j
@ = Z fi©® (6.3)
i=1
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Different types of wavelet functions may cause different time-frequency structures, in this
chapter, Daubechies 4 (DB4) wavelet function has been chosen due to the good
performance in estimations of the local properties of signals like breakdown points
[Ferreira and Borges, 2003], and the ability to derive a set of conventional and energy based
features from signals [Murugappan et al., 2010]. During the test, WPD is applied to extract
the standard deviations of coefficients and the percentage of energy corresponding to the
approximation and details to represent the working condition.

6.4 Set up and data collection

During the experiment, a Bently Nevada Rotor Kit RK3 is used to simulate the real working
condition of rotary machinery. A sleeve-bearing house is equipped with three
accelerometers of Kistler 8702B100, mounted in X, Y, Z three directions, to measure the
vibration signals from the test rig, as shown in Figure 6.3. The sampling frequency is 4096
HZ and the maximum revolving speed of the rotor kit during the experiment is 4000 rpm.
The bearing block is tightened down to the foundation and can be loosened during the
experiment. Rub generator and mass adjustable load can be modulated to simulate types of
failures. The vibration monitoring refers to a zero position of the test rig. In this position,

signals from the accelerometers are recorded and stored.
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Figure 6.3 Bently Nevada rotor kit

During the experiment, we injected three types of failures, bearing looseness by loosening
bearing housing, main spindle friction by applying rub generator force to the rotor kit axel,
and load imbalance through adding weights, as shown in Figure 6.4, to the flywheel. For
each type of failure, the vibration signals will be measured through use of accelerometers
at different failure degradation and rotating speed by means of proximity sensors and hand
held tachometer for control. Exact measurement of rpm is of utmost importance as vibration
relates to this frequency by whole or half numbers. Figure 6.5 shows the transform from
raw vibration signals to the wavelet coefficient-based and energy-based features.
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Figure 6.5 Vibration signals and the wavelet coefficients and energy features

After extracting the wavelet coefficients and energy features from vibration signals, a
common dilemma when analysing vibration data from mechanical equipment is to
determine the vibration level acceptance criteria. It is also a challenge when using WPD
for fault classification and degradation assessment in mechanical equipment. In order to
solve this challenge, deep neural network with BP will be introduced and applied to analyse
vibration data for fault classification and degradation assessment in next section.

6.5 Deep neural network with BP

Deep neural network with BP is a type of neural networks with multiple hidden layers,

trained through backpropagation procedure. This kind of networks is one of the most
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original deep learning approaches. Although all types of deep learning networks can be
called as “deep neural networks”, here we labelled fully connected deep neural network
with back propagation as DNN to distinguish it from other types of deep learning
architectures. As we discussed above, researchers found it was difficult to train a multilayer
neural network which is constructed through stacking number of hidden layers directly in
practice in the earliest days. However, due to the dramatic advance of current
computational power and development of training algorithms, modern DNN can be
considered as a powerful approach for modelling high complexities.

DNN grows from one of the most widely used neural network model, BPNN, with higher
complexity through increasing the number of hidden layers. BPNN, firstly proposed by
Rumelhart and McCelland in 1985 [Rumelhart et al., 1985], is a multilayer feed-forward
network usually containing three layers, the input layer, the hidden layer and the output
layer. Neurons, which are setup in each layer, are fully connected between different layers.
The number of neurons in the input and output layer equals to the dimension of the inputs
and outputs, respectively. The number of neurons in the hidden layer is adjustable, as well
as the neuron amount. Each connection between neurons represents an activation function
converting the neurons weight to corresponding output. This is the reason why these
neurons are also called as nodes. A BPNN can define a function /" : X — Y to map the
input dataset X to output dataset Y.

DNN can be considered as an evolutionary type of BPNN with multiple hidden layers (at
least three hidden layers) and largely increasing complexity. A DNN, as shown in Figure
6.6, consists of one input layer, numbers of hidden layers, and an output layer, forming the
topology of the net. The input layer matches the feature space, so that there are as many
input neurons as predictors. The output layer is either a classification or regression layer to
match the output space. All layers are composed of neurons, which is also the basic units
of such a model like BPNN. It is also called as deep feedforward networks neural networks,
since it follows the classical feedforward architecture, where each neuron in the previous
layer L is fully connected with all neurons in the subsequent layer L+1 via directed edges,
each representing a certain weight. Also, each non-output layer of the net has a bias unit,
serving as an activation threshold for the neurons in the subsequent layer. As such, each
neuron receives a weighted combination of all the outputs of the neurons in the previous
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layer as input [Krauss et al., 2017]. This type of models is called feedforward because
information flows through the function being evaluated from x, through the intermediate
computations used to define f , and finally to the output y. There are no feedback
connections in which outputs of the model are fed back into itself [I. Goodfellow et al.,
2016]. For a DNN, the number of hidden layers in the network is adjustable, just like the
number of nodes is adjustable in a BPNN.

Input layer Hidden layer 2 Hidden layer 4 Ourput layer
Hidden layer 1 Hidden layer 3 Hidden layer 5

Figure 6.6 Architecture of DNN

In BPNN, neurons with sigmoid activation functions are trained through gradient descent
learning approach, since the structure of BPNN is relatively simple and the complexity of
the model is low. As to DNN, it is almost impossible or extremely hard to train the network
through this method because of the gradients vanishing. As we discussed in Chapter 2,
although the computational power of today’s computers is million times the computational
power of the early 1990s’, which allows for propagating errors a few layers further down
within reasonable time. However, it does not really overcome the problem in a fundamental
way. As reported by Nielsen [2015], when use the learning method of conventional BPNN
to train a DNN, it is discovered that the different layers in the network are learning at vastly
different speeds. In particular, when later layers in the network are learning well, early
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layers often get stuck during training, learning almost nothing at all.

To deal with this fundamental problem, modern DNN replace the sigmoid activation
functions with alternative functions such as Tanh and Maxout and apply advanced training
procedure like momentum-based stochastic gradient descent [Sutskever et al., 2013] and
parallelizing stochastic gradient descent [Recht et al., 2011]. It is typically found in sigmoid
networks that gradients vanish exponentially quickly in earlier layers, which greatly slows
down the learning procedure. In addition, Glorot and Bengio [2010] have provided the
evidence that the use of sigmoid activation functions would cause the activations in the
final hidden layer to saturate near O early in training, substantially slowing down learning.
Several alternative activation functions currently employed for DNN, along with their
formulas, are listed in table 6.1 [Candel et al., 2015]. x; and w;are marked as the input
values of the firing neurons and their weights, respectively. « represents the weighted
combination @ = ),; x;w; + b.

Table 6.1 Activation functions for DNN

Function Formula Range
Tanh et —e™® fla) e [-1,1]
1@ = are=
Maxout f(ay, ay) = max(ay, az) f(a) R
Rectified Linear f(a) = max(0, a) f(a) ER,

The hyperbolic tangent (tanh) function is a typical choice for DNN. This function is defined
as the ratio between the hyperbolic sine and the cosine functions or expanded as the ratio
of the half-difference and half-sum of two exponential functions in the points @ and —«a as
Equation (6.5). The symmetry around 0 allows the training algorithm to converge faster.

fla) =

sinh(a) _ e%*—e™@

cosh(a) T edea

(6.5)

The rectified linear activation function has demonstrated high performance on image
recognition tasks and is a more biologically accurate model of neuron activations [LeCun
etal., 2012]. Maxout is a generalization of the rectified linear activation, where each neuron

picks the largest output of k separate channels. And each channel has its own weights and
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bias values. Maxout activation functions work particularly well with dropout (Drop is a
technique that can be applied to deterministic feedforward architectures that predict an
output given input vector) [I. J. Goodfellow et al., 2013].

Due to the strong capability of self-study, BPNN could overcome the bottle-neck of
knowledge obtain in many situations. Actually, BPNN was one of the most widely used
neural network and a popular approach for failure detection, classification, and faults
prediction in various research fields such as motor bearing diagnosis [D.-M. Yang et al.,
2002], urban water mains [Jafar et al., 2010], and transformer [Sun et al., 2007]. The
process of failure detection or prediction actually is a pattern discriminating fundamentally,
which can be interpreted as a process to map the character space X to faults space Y, The
mapping process for fault diagnosis or prognosis is usually highly non-linear, which could
be simulated by a multilayer back-propagation neural network. DNN as an evolutionary
version of BPNN is also widely applied in fault diagnosis and prognosis to pursue higher
accuracy for faults detection, classification, or prediction. Compared with other
conventional machine learning algorithms, the superiority of DNN is in degradation
mapping, and failures identification, when enough history data could be obtained, and the
complexity of target issue is relatively high. In next section, we also provides an experiment
of fault classification and degradation assessment in rotary machinery, in which DNN
outperforms other data-driven methods and demonstrates its advantages in degradation
mapping. DNN models applied here are constructed through five hidden hyperbolic tangent
layers with 50 * 50 * 32 * 32 * 32 nodes, and trained through parallelizing stochastic
gradient descent.

6.6 Faults classification and degradation assessment

6.6.1 Numerical result

During the experiment, 10216 samples of data have been collected to establish and test the
data-driven models for failure classification and degradation assessment, respectively.
Among those samples, 6817 samples are collected for fault classification and 3399 samples
are applied for degradation assessment, respectively. Table 6.2 illustrates the data
composition of collected samples for fault classification. The samples for training and
testing during the experiment are selected stochastically.
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Table 6.2 Data composition of collected samples for fault classification

1608 samples
collected in normal
working condition

(failure type 0)

1376 samples for training ( stochastic)

232 samples for testing ( stochastic)

1703 samples 1551 samples for training ( stochastic)
collected in failure

6817 samples
collected in
different rotating

speed for fault 1782 samples 1555 samples for training ( stochastic)
collected in failure

type 2: Bearing
looseness

type 1: Friction on

152 samples for testing ( stochastic)
main spindle

classification

227 samples for testing ( stochastic)

1724 samples 1549 samples for training ( stochastic)
collected in failure
type 3: Load

imbalance

175 samples for testing ( stochastic)

The training and testing process have been run 5 times during the experiment with
stochastic selection for training and testing samples. Figure 6.7 shows one of the
classification results from DNN when misjudgement occurred, where the correct
classification rate is 99.87% in this test. Through observation, the proposed method can
ideally classify the failures through coefficients and energy based features for rotating

machinery with tiny fluctuations. There are no significant divergence among the results.
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Figure 6.7 Classification result from DNN

During degradation assessment, DNN is also leveraged to estimate the degradation of
imbalance on spindle. In this stage, 3399 samples are collected under different speed with
changeable weight on the flywheel to simulate the degradation of load imbalance. The
degradation is adjusted by changing weight on the mass adjustable load, which raised from
0.25 to 8 grams (the values has been multiplied by 100 for calculation and visualization).

The weight was used to represent the degradation of load imbalance.

Therefore, the inputs of the data-driven models are the coefficient and energy based
features extracted from WPD, and outputs are the estimated weight on mass adjustable
load, which would cause load imbalance. The training and testing processes have been run
for 5 times with stochastic selection for training and testing samples (About 10 percent of
collected samples are used as testing samples). According to the numerical result, there
are no significant divergence among the results. Figure 6.8 shows part of the assessment
results based on the proposed method. In that test, the number of training and testing

samples are 3089 and 310, respectively.
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Figure 6.8 Degradation assessment of DNN

6.6.2 Comparison with conventional methods

In order to provide a comprehensive comparison of different types of data driven models,
we also applied other popular and widely applied methods such as SVM [Ramesh Babu
and Jagan Mohan, 2017], DBN [Z. Zhang and Zhao, 2017], KNNC [Ha et al., 2017], and
BPNN [Asuhaimi Mohd Zin et al., 2015]. We also run 5 times for those 4 types of data
driven models with stochastic selection for the training and testing process to verify their
performance in our case. Figure 6.9 demonstrates the mean correct classification rates
(MCCR) of all the applied data-driven models together with DNN. During the test, all these
five types of data-driven models can classify the failures through coefficients and energy
based features for mechanical equipment in a great performance and with tiny fluctuations.
Since the performances of all the methods are acceptable during the test, the numerical
results shows that all applied methods have the ability for failure classification based on

the information extracted from vibration signals in the rotating equipment.
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Figure 6.9 Mean correct classification rates in fault classification

As to degradation assessment, the samples for testing and training are fixed this time to
offer a more visualized comparison. The training and testing processes have also been run
for 5 times with fixed training and testing samples (3089 training samples and 310 testing
samples trained in DNN). Figure 6.10 - 6.13, show the assessment results based on those

methods, respectively.
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Figure 6.10 Degradation assessment of BPNN
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According to the assessment results, it can be figured out that DNN shares the best
performance to map the actual degradation of imbalance for the equipment during the
experiment. The assessed degradation through DNN almost completely coincide with the
actual values of weight attached on the flywheel. Although the assessment errors from DBN
and BPNN are much higher than DNN and kept fluctuating during the test, the overall

Sampling Units

Figure 6.13 Degradation assessment of DBN
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assessment results still prove that they have the ability to map the degradation in certain
degree. As to SVM and KNNC, both of them demonstrate their capacity to deal with fault
classification, however, the performances for degradation assessment during the
experiment are unacceptable. To obtain more detail information from the numerical results,
we also run 5 times for those 4 types of data driven models with stochastic selection. The
mean square error (MSE) and largest error (LE) are calculated and recorded to acquire a
comprehensive comparison for the stability and overall performance during the experiment.
As shown in Table 6.3, detail information about the numerical results is listed, including
mean square error (MSE) and largest error (LE) along with the structures of the five data-

driven models applied for degradation assessment.

Table 6.3 Numerical results of degradation assessment

Model Structure MSE(gr;TZ) LE(«";‘;;")
BPNN 50 nodes in the 112,8937 51,2
hidden layer
SVM Gaussian Kernel 1230,3144 145,3
Function
KNNC Standard 307,0388 97,5
Model
DBN 5 layers, 50 * 50 * 66,2543 23,99
32%32%3)
DNN 5 layers, 50 * 50 * 9,6274 15,99
32 *32%32

6.6.3 Discussion

The DNN leveraged during the experiment is constructed with five hidden layers with
hyperbolic tangent function and trained through parallelizing stochastic gradient descent.
The applied DBN model is stacked through stacking five RBM layers with Bernoulli
functions. The structures applied during the experiment are selected according to empirical
knowledge through input dimensions, training time, and complexity of the issue.
Simultaneously, the models of SVM and KNNC are with Gaussian kernel function and
standardize model since they are the most popular and widely applied ones. The numerical
results show that DNN with 5 hidden layers has the best performance for degradation
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assessment with 9,6274 gram?/10* MSE and 15,99 gram/10% LE, which greatly
outperformed others.

During the test, SVM shows good performance in fault classification with 99.85% mean
correct classification rate, but the ability to map the degradation is the worst of the five
tested models. The application of SVM for degradation assessment is also well presented
in [Soualhi et al., 2015]. In that paper, the authors firstly defined three degradation states
represented by three classes according to the degradation of bearing. Then SVM is
leveraged to detect the degradation states of bearings with good performance. The main
target in that paper lies on bearing health monitoring instead of accurately degradation
assessment. According to our experiment, we consider SVM is good at classifying or
recognizing failure patterns from fault information instead of mapping degradation directly.
Similarly, KNNC is also a perfect tool for identification of the degradation mode or level.
As well described in [Baraldi et al., 2016], in which the authors successfully applied KNNC
as a diagnostic approach for the identification and characterization of defeats in automotive
bearings. In that paper, the author also argued that though the performance of KNNC has
been reported to be less satisfactory in some applications than that of other popular data
driven models, the classifiers of KNNC have advances in simplicity and low computational

requirements.

Although not as good as DNN, BPNN and DBN also show the ability to deal with the issues
about degradation assessment. In addition, the performances of DBN and BPNN are not
quite stable according to the MSE during the experiment. As reported in [C. Zhang et al.,
2017], DBN is capable of extracting a hierarchy of features, where features at higher
network levels are usually more relevant to the ultimate task. The authors in that paper
evaluate the performance of DBN on several prognostic benchmarking data sets and prove
its superiority in estimating remaining useful life. In addition, we also investigated the
performance of DBN in Chapter 6, in which DBN proved its superiority when the target is
beyond history data.

Based on these considerations, each data driven methods may have their own advantages
in certain domains or with prerequisite. Actually, this is the reason why it is significant to
sort the superiorities of all widely applied deep learning algorithms for predictive
maintenance in Chapter 2. During the test, DNN proves its perfect ability to identify and
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classify failures for rotating equipment. Simultaneously, the performance of degradation

assessment greatly outperformed the methods proposed in literature.

6.7 SAE-LSTM anomaly detection

In the last section, the superiority of DNN-based degradation assessment has been
demonstrated through numerical result. However, in many practical applications, one may
face the dilemma that the history data is collected and recoded unlabelled, let alone
classified. To solve this challenge, a SAE-LSTM anomaly detection method is proposed in
this section to identify the anomaly condition in an unsurprised learning environment.

6.7.1 SAE-based representation learning for multiple features sequence

When the history data is collected without labels (These labels usually can be used to
represent the working condition in a surprised learning manner), an alternative method is
to track the changes in multiple features sequence with time-series to identify the anomaly.
To prevent the inputs from explosion, SAE-based representation learning is leveraged to
reduce the number of features extracted from raw data, and reconstruct the multiple features

sequence as shown in Figure 6.14.
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Figure 6.14 Process of SAE-based representation learning for multiple features sequence
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6.7.1.1 Feature normalization

During the experiment, vibration signals in both normal and anomalous condition are
collected through 4096HZ sampling frequency. Each sampling units have been divided into
10 parts with the same length for time series-based detection. The coefficient-based and
energy-based features of each parts were extracted through WPD. Table 6.4 shows part of
the energy-based features through DB4 wavelet transform. Eax denotes the percentage of
energy corresponding to the approximation in x direction and Edx means the vector
containing the percentages of energy corresponding to the details at each layer in x

direction.

Table 6.4 Part of the energy-based features through DB4 wavelet transform

No. Eax Edx(1) Edx(2) Edx(3) Edx(4)
1 92,52748 0,49676 0,206692 0,216633 6,552434
2 92,6626 0,484495 0,196127 0,206738 6,450044
3 92,65699 0,512164 0,210155 0,212048 6,408645
4 92,66757 0,462788 0,192835 0,243686 6,433121
5 92,19917 0,510604 0,204128 0,238897 6,847205
6 92,43177 0,49443 0,196106 0,221158 6,656534
7 92,43952 0,488822 0,212711 0,208403 6,650545
8 92,54461 0,458843 0,207961 0,197875 6,590716
9 92,53294 0,480579 0,2039 0,194012 6,588572
10 93,06981 0,440835 0,168283 0,175664 6,145403
11 93,07948 0,470262 0,177757 0,195515 6,076985
12 92,62898 0,512523 0,213712 0,194187 6,450598
13 92,76121 0,487038 0,203332 0,19106 6,357365
14 92,6972 0,482968 0,193362 0,202178 6,424294
15 92,31745 0,513153 0,207133 0,22472 6,737547
16 92,48647 0,498813 0,201542 0,213873 6,599307
17 93,74498 0,421325 0,170193 0,168667 5,49483
18 93,07432 0,438584 0,176644 0,195416 6,115036
19 92,83945 0,486567 0,193284 0,187082 6,29362
20 92,00818 0,551392 0,233748 0,220501 6,986177
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To adjust values measured on different scales to a notionally common scale, unity-based
normalization has been applied to normalize the inputs Fi'jfor SAE-based representation

learning.
Fyj—F™
r o FijTh
Fij - Fimax_Fimin (6.6)
Where F;; denotes the i*" feature in j** samples, F™ and F™% represent the minimum

and maximum values of the i*" feature in database, respectively. Figure 6.15 shows part
of energy-based features after normalization, which will be used as inputs for SAE-based
dimension reduction (Anomaly sampling units are collected when failures are injected, but
the labels will be used in validation only). Visually, after normalization, data collected in
anomaly still keep certain divergence from normal condition, though we cannot catch the
rules directly in this step. It should be noticed that, during the training process, it is
supposed that we only have the data in normal condition. Data in anomaly is only collected
to test and validate the proposed method.
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Figure 6.15 Part of energy-based features after normalization

6.7.1.2 Feature representation with SAE

After feature normalization, sparse autoencoders have been leveraged to construct the deep
neural network for representation learning. SAE is first proposed in 2007 [Bengio et al.,
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2007; Poultney et al., 2007]. It is a special type of deep neural networks created through
stacking multiple autoencoder layers. The architecture of the deep neural network is pre-
trained through single autoencoder layer by layer [Bengio et al., 2013]. The output of SAE
is the data input itself, which is leveraged for learning efficient encoding or dimensionality
reduction for a set of data. More specifically, it is a nonlinear feature extraction method
involving no class labels; hence generative. An autoencoder uses three or more layers in
the neural network, and when the number of hidden layers is greater than one, the
autoencoder is considered to be deep [Deng, 2012].

Encoder Decoder

Figure 6.16 Architecture of an autoencoder

As depicted in Figure 6.16, the input layer and hidden layer construct the encoder network,
which transforms the input data from a high-dimensional space into codes as a low-
dimensional space and the decoder network, which consists of the hidden layers and output
layer, reconstructs the inputs from the corresponding codes. The encoder network is
explicitly defined as an encoding function denoted by fy, which is also called as the
encoder [Bengio et al., 2013]. For each input signal x™ from a dataset {x™}¥ _, we label

h™ as the obtained encode vector:
h™ = fo(x™) (6.7)

The decoder network is defined as a reconstruction function denoted by g4’ , namely the
decoder. It maps h™ from the low-dimensional space back into the high-dimensional
space, producing a reconstruction as Equation (6.8):
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X" = go'(h™) (6.8)

The parameter sets of the encoder and decoder are learned simultaneously on the task of
reconstructing as well as possible the original input, attempting to incur the lowest possible
reconstruction error L(x,X) over the M training examples. L(x,X)is a loss function that

measures the discrepancy between x and X [Bengio et al., 2013].

In summary, the autoencoder training aims to find the parameter sets @ and 8’ minimizing

reconstruction error, which can be depicted as Equation (6.9)

0as(6,6") = - XM _ L(x™, gy (fo (™)) (6.9)

A deep neural network could be constructed by stacking multiple autoencoder layers with
a final classification or regression layer on top. Stacking multiple autoencoder layers
together allows the network to learn higher order features, where each successive layer
represents additional complexity within the input data [Galloway et al., 2016]. Each hidden
layer in SAE is pre-trained through learning multiple nonlinear transformation of the inputs
indecently. With the strong ability of self-learning, SAE could capture the main variations,
discover the discriminative information, and represent the features from the raw data in an
unsupervised manner [Erhan et al., 2010]. For predictive maintenance, representations of
working condition with lower-dimension can improve performance in many situations such
as fault classification and detection, especially when the input data is industrial big and row
data. As discussed in Chapter 2, many practical applications have shown that SAE has the
ability to automatically mine the important information from the frequency spectra
according to the diagnosis issues. With the code vector of the previous trained autoencoder
as input for training the next autoencoder, SAE could recognize the characteristics and
effectively discover the discriminative information of these signals, and subsequently
represent mechanical health conditions. The SAE constructed during the test has three
hidden layers trained through L2 regularization. The original data includes 33 features in
both time and frequency domains. After representation learning, the features are
transformed into a multiple features sequence with time series, as shown in Figure 6.17
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Figure 6.17 Features after representation learning
6.7.2 LSTM-based anomaly identification with time series

6.7.2.1 Architecture of LSTM

As we discussed above, to solve the fundamental problem of gradient vanishing, an
alternative method is to employ special architectures unaffected by it. LSTM is the most
typical model in this type of deep learning architectures, which could avoid the fundamental
problem of gradients vanishing through special architectures. LSTM neural network is a
type of recurrent neural network proposed in 1997 to address the problem of insufficient,
decaying error backflow in RNN training [Hochreiter and Schmidhuber, 1997]. The basic
idea of LSTM is simple: In a LSTM neural network, memory cells are employed as
independent activation functions and identity functions with fixed weights, which are
connected to themselves. Due to fixed weight, errors back-propagated through a memory
cell cannot vanish or explode but stay as they are [Schmidhuber, 2015]. The weight
matrixes in conventional RNNs are also trained via backpropagation through time series
like the training process of normal neural network. Therefore, the gradients vanishing
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problem also happens in RNN while the complexity of the network increases, which means
traditional RNN do not have the ability to discover information or capture dependencies
hidden in long-term time series. In this background, LSTM was proposed to prevent back
propagated errors from gradients vanishing or exploding in RNN to deal with issues about
long-term dependencies. The core idea behind the LSTM architecture is a memory cell,
which can maintain its state over time, and non-linear gating units regulating the
information flow into and out of the cell [Greff et al., 2016]. Compared with traditional
RNN, LSTM neural network leverages memory cells with forget gates instead of traditional
neurons to establish connections between inputs and outputs. These adopted forget gates
can effectively control the utilization of information in the cell states, and enable LSTM
the capability to capture nonlinear dynamics in time series sensory data and learn effective
representation of machine [Zhao et al., 2017]. LSTM applies four special and interacting
neural network layers, layer a, 8,7 , 0 , instead of a single layer as in a standard RNN [Liao
and Ahn, 2016], as shown in Figure 6.18. The first layer a is a sigmoid layer also called as
forget gate layer, which returns a value between 0 and 1 in the previous cell state C;_4 ,
while 0 means no information pass and 1 means all information pass. The equation of the
first layer can be denoted as Equation (6.10).

ay = oWy [he—1, xc] + bg) (6.10)

Where ¢ is the sigmoid function, W is the weight of layer a, [ ] denotes the concatenate
operation, x, is the input x and time t, h, is the output with respect to x;, Wy , Wy
, W, . Wpare the weights and b, , bg , by, b, are the biases of the layer @, 8,7, o, respectively.
The second layer 8 is called as input gate layer, which is applied to decide which value
shall be updated, denoted as Equation (6.11)

Br = o(Wp - [he—q, x] + bg) (6.11)

Next, a tanh layer y updates the values to be stored using:
Ye = tanh(VVy " [ht—ll xt] + b}/) (612)

Where tanh is the hyperbolic tangent function.
Then, we can update the previous state C;_, to the current state C; by Equation (6.13)
Co=ar Ceq + B Ve (6.13)

The final layer is also a sigmoid function layer, which determines what parts of the cell
state will be the output, as denoted by Equation (6.14)
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op = oWy - [he—1, x] + by) (6.14)

Then, the cell state go through tanh function and form the final output as Equation (6.15)
h: = o.tanh(C,) (6.15)
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Figure 6.18 Memory cell in LSTM

By stacking multiple memory cells on top of each other, deep RNN can be created with the
output sequence of one layer forming the input sequence for the next, which enable LSTM
to discover information from a dynamically changing contextual window over the input
sequence history rather than a static one as in the fixed-sized window applied in feed-
forward neural networks [Sak et al., 2014].

6.7.2.2 Application of LSTM in anomaly identification

To deal with issues with high temporal dependency, a RNN is a natural choice due to the
recurrent connections in the network, which allows the network to store memories of past
information. However, standard RNN do not has the ability to learn long-term time
dependencies because of the gradient vanishing problem as we discussed above. And
LSTM can solve this fundamental problem by applying the special memory cells in the
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architecture [de Bruin et al., 2017]. By stacking memory cells, information of previous
inputs x can be kept in the output to some degree, carried by cell state, which makes LSTM
an outstanding tool to mimic time series. This is the reason why we would introduce this
method for anomaly detection. The LSTM network leveraged in this experiment is
constructed in python environment with Keras deep learning library running on top of
TensorFlow library developed by Google. As mentioned above, each sampling units of raw
vibration signals are divided into 10 parts before feature extraction. Therefore, the LSTM
model is constructed to predict the 10" through the previous 9 parts. Each step includes
five features in length. During the experiment, a selection of 500 samples is applied to train
the LSTM neural network with 5-fold cross validation to validate the proposed approach.
Figure 6.19 illustrates the numerical result of 5-fold cross validation, including the mean
square errors of all the features and their average values.

3,5
3
£ 25
- m Average
o
o2 mF1
e mF2
[¢°]
5
o 1,5 WF3
(¥s]
& mF4
(0]
> 1 mF5
0,5
0

Figure 6.19 Numerical result of 5-fold cross validation
The numerical result of 5-fold cross validation shows that the proposed SAE-LSTM
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approach has the ability to predict multiple features sequence in certain degree. In addition,
the stability of the method is also acceptable. Visually, the second run during the process
of cross validation shares the best performance and will be leveraged to verify the
performance of anomaly detection. Figure 6.20 and Figure 6.21 shows construction error
with training epochs and test result of the constructed model during the training process,
respectively. Visually, the mean construction error started to converge at about the 280"
epochs with tiny fluctuation. The training errors of the LSTM neural network at all of the
five feature sequences fluctuates between -0.4 to 0.3. The prediction result is not ideal.
Since the target is to distinguish the anomaly and normal working condition instead of
predicting the multiple features sequence directly. The performance of proposed method
need to be further validated.
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Figure 6.20 Construction error with training
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Figure 6.21 Training errors of five feature sequences

6.7.3 Validation and discussion

During the experiment, the multiple features sequence, which is obtained through SAE-
based representation learning and unity-based normalization, is leveraged as the inputs of
LSTM neural network. Figure 6.22 illustrates the process of proposed SAE-LSTM
approach for anomaly detection. As mentioned above, the raw vibration signals was first
divided into 10 parts. After SAE-based representation learning, the features at first 9 steps
in each feature sequence will be used as inputs to map the features at 10" step during the
training process. Therefore, the LSTM neural network is constructed with 9 LSTM memory
cells to represent the previous 9 steps in multiple features sequence and predict the features
at 10" step. The error between predicted and actual values of the features at 10" step will

be leveraged to determine whether the equipment works in a normal condition.
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Figure 6.22 Process of SAE-LSTM approach for anomaly detection

To validate the performance of proposed SAE-LSTM approach for anomaly detection, a
selection of 200 samples, constructed of 150 samples in normal condition and 50 sample
in anomaly, will be leveraged for testing. Figure 6.23 shows the testing result of anomaly
detection through SAE-LSTM.
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Figure 6.23 Result of anomaly detection through SAE-LSTM

During the test, we applied the largest MSE in each feature obtained through 5-fold cross
validation as the criterion to detect anomaly in the equipment. Since the sensitivity of each
feature to anomaly condition is highly subjective in nature. The criterion applied during the
test is based on the overall performance in all features, which means only when all the
prediction errors in five features are beyond the average values, the condition would be
considered as anomaly. Table 6.5 listed the overall performance of proposed SAE-LSTM
anomaly detection approach and the result of each single feature sequence, respectively.
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Table 6.5 Performance of SAE-LSTM for anomaly detection

Threshold (%) Number of detected anomaly Accuracy (%)
Feature 1 18.0418 65 92.5
Feature 2 17.7565 60 95
Feature 3 17.7676 57 96.5
Feature 4 17.3675 58 96
Feature 5 16.7939 109 71.5
F1&F2&F3&F4&F5 52 99

According to the numerical results, the performance and stability of proposed SAE-LSTM
method for anomaly detection is acceptable. However, it is also obvious that not all the
features trained through representation learning is suitable for anomaly detection. Since
fault diagnosis is a subjective problem in nature, we guess that Feature 5 were trained to
represent original features which is relatively irrelevant or insensitive to anomaly condition
by SAE during the representation learning. In this research, the data-driven model was
trained and validated in a completely unsupervised learning environment, which means the
proposed SAE-LSTM approach could ideally detect anomaly working condition when the
data is collected without labels. In practical applications, if part of the data is collected with
labels, it may help to optimize the detection criterion and further improve the detection

accuracy, which would be a direction for future research.

6.8 Summary

This chapter has introduced an experiment about the application of deep learning
algorithms for fault classification, degradation assessment and anomaly detection in rotary
machinery. In sensing, the art of anticipating failure and degradation in rotary machinery
by means of monitoring vibration is the most efficient and widely applied in industry, since
the measured vibration levels will change according to the defect or degradation of a rotary
machine. Simultaneously, vibrations caused by the defects occur at specific vibration
frequencies, characteristic of the components, their operation, assembly and wear. This is
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the reason why vibration signals are usually transformed into time domain, frequency
domain, or time-frequency domain using analysing techniques such as FFT, STFT, WPD,
or EMD. In this experiment, WPD is leveraged since it can efficiently represent information
from vibration signals in both time and frequency domains. For decades, to construct a fault
detection or degradation assessment system would require elaborate engineering and
empirical knowledge in relevant fields to extract and select suitable features from the raw
data as the perception to represent and interpret the signs of faults. During the experiment,
all the original features represented through WPD are used as inputs without selection.
Several data-driven models are used during the experiment to discover fault information
and test their ability to detect, classify and estimate the degradation of failures. According
to the numerical results, DNN demonstrate its unique superiority in degradation assessment
for rotary machinery when the target condition is fully covered by historical data. A novel
SAE-LSTM approach is also proposed for anomaly detection when all the data is collected
without labels. The proposed approach provide an alternative method to leverage and
integrate features for anomaly detection instead of empirical knowledge.

References

Asuhaimi Mohd Zin, A., Saini, M., Mustafa, M. W., Sultan, A. R., and Rahimuddin. (2015).
New algorithm for detection and fault classification on parallel transmission line
using DWT and BPNN based on Clarke’s transformation. Neurocomputing,
168(Supplement C), 983-993. doi:https://doi.org/10.1016/j.neucom.2015.05.026

Baraldi, P., Cannarile, F., Di Maio, F., and Zio, E. (2016). Hierarchical k-nearest
neighbours classification and binary differential evolution for fault diagnostics of
automotive bearings operating under variable conditions. Engineering
Applications of Artificial Intelligence, 56, 1-13.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8), 1798-1828.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. Paper presented at the Advances in neural information

processing systems.

169



Chapter 6 Implementation of predictive maintenance in rotary machinery

Candel, A., Parmar, V., LeDell, E., and Arora, A. (2015). Deep learning with h20: H20.

de Bruin, T., Verbert, K., and Babuska, R. (2017). Railway track circuit fault diagnosis
using recurrent neural networks. [EEE transactions on neural networks and
learning systems, 28(3), 523-533.

Deng, L. (2012). Three classes of deep learning architectures and their applications: a

tutorial survey. APSIPA transactions on signal and information processing.

El Kadiri, S., Grabot, B., Thoben, K.-D., Hribernik, K., Emmanouilidis, C., von Cieminski,
G., and Kiritsis, D. (2016). Current trends on ICT technologies for enterprise
information systems. Computers in Industry, 79(Supplement C), 14-33.
doi:https://doi.org/10.1016/j.compind.2015.06.008

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb), 625-660.

Ferreira, C. B. R., and Borges, D. b. L. (2003). Analysis of mammogram classification
using a wavelet transform decomposition. Pattern Recognition Letters, 24(7), 973-
982.

Galloway, G. S., Catterson, V. M., Fay, T., Robb, A., and Love, C. (2016). Diagnosis of
tidal turbine vibration data through deep neural networks. /n: Proceedings of the
Third European Conference of the Prognostics and Health Management Society
2016.(PHM Society), 172-180.

Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. Paper presented at the Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep learning: MIT press.

Goodfellow, 1. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
Maxout networks. arXiv preprint arXiv:1302.4389.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J. (2016).
LSTM: A search space odyssey. [EEE transactions on neural networks and
learning systems.

170



Chapter 6 Implementation of predictive maintenance in rotary machinery

Ha, D., Ahmed, U., Pyun, H., Lee, C.-J., Baek, K. H., and Han, C. (2017). Multi-mode
operation of principal component analysis with k-nearest neighbor algorithm to
monitor compressors for liquefied natural gas mixed refrigerant processes.
Computers &  Chemical Engineering, 106(Supplement C), 96-105.
doi:https://doi.org/10.1016/j.compchemeng.2017.05.029

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), 1735-1780. doi:10.1162/neco0.1997.9.8.1735

ISO 20816-1. (2016). Mechanical vibration -- Measurement and evaluation of machine

vibration.

Jafar, R., Shahrour, 1., and Juran, 1. (2010). Application of Artificial Neural Networks
(ANN) to model the failure of urban water mains. Mathematical and Computer
Modelling, 51(9), 1170-1180.

Krauss, C., Do, X. A., and Huck, N. (2017). Deep neural networks, gradient-boosted trees,
random forests: Statistical arbitrage on the S&P 500. European journal of
operational research, 259(2), 689-702.

LeCun, Y. A., Bottou, L., Orr, G. B., and Miiller, K.-R. (2012). Efficient backprop Neural
networks: Tricks of the trade (pp. 9-48): Springer.

Lei, Y., Lin, J., He, Z., and Zuo, M. J. (2013). A review on empirical mode decomposition
in fault diagnosis of rotating machinery. Mechanical Systems and Signal
Processing, 35(1), 108-126.

Liao, L., and Ahn, H.-i. (2016). Combining Deep Learning and Survival Analysis for Asset

Health Management. International journal of prognostics and health management.

Lin, J., and Chen, Q. (2014). A novel method for feature extraction using crossover
characteristics of nonlinear data and its application to fault diagnosis of rotary
machinery. Mechanical Systems and Signal Processing, 48(1), 174-187.

Lu, C., Wang, Z.-Y., Qin, W.-L., and Ma, J. (2017). Fault diagnosis of rotary machinery
components using a stacked denoising autoencoder-based health state
identification. Signal Processing, 130, 377-388.

Murugappan, M., Ramachandran, N., and Sazali, Y. (2010). Classification of human

171



Chapter 6 Implementation of predictive maintenance in rotary machinery

emotion from EEG using discrete wavelet transform. Journal of Biomedical

Science and Engineering, 3(04), 390.
Nielsen, M. A. (2015). Neural networks and deep learning: Determination Press USA.

Okumura, S. (2011). The short time Fourier transform and local signals. Carnegie Mellon

University.

Poultney, C., Chopra, S., and Cun, Y. L. (2007). Efficient learning of sparse
representations with an energy-based model. Paper presented at the Advances in

neural information processing systems.

Precup, R.-E., Angelov, P., Costa, B. S. J., and Sayed-Mouchaweh, M. (2015). An
overview on fault diagnosis and nature-inspired optimal control of industrial
process applications. Computers in Industry, 74(Supplement C), 75-94.
doi:https://doi.org/10.1016/j.compind.2015.03.001

Ramesh Babu, N., and Jagan Mohan, B. (2017). Fault classification in power systems using
EMD and SVM. Adin Shams Engineering Journal, 8(2), 103-111.
doi:https://doi.org/10.1016/j.asej.2015.08.005

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. Paper presented at the Advances in

neural information processing systems.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal

representations by error propagation. Retrieved from

Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. Paper presented at the
Fifteenth Annual Conference of the International Speech Communication
Association.

Scheffer, C., and Girdhar, P. (2004). Practical machinery vibration analysis and predictive

maintenance: Elsevier.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,
61,85-117.

172



Chapter 6 Implementation of predictive maintenance in rotary machinery

Soualhi, A., Medjaher, K., and Zerhouni, N. (2015). Bearing health monitoring based on
Hilbert-Huang transform, support vector machine, and regression. [EEE

transactions on instrumentation and measurement, 64(1), 52-62.

Sun, Y.-j., Zhang, S., Miao, C.-x., and Li, J.-m. (2007). Improved BP neural network for
transformer fault diagnosis. Journal of China University of Mining and Technology,
17(1), 138-142.

Sutskever, 1., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. Paper presented at the International

conference on machine learning.

Ting, W., Guo-zheng, Y., Bang-hua, Y., and Hong, S. (2008). EEG feature extraction based
on wavelet packet decomposition for brain computer interface. Measurement,
41(6), 618-625.

Vachtsevanos, G. J., Lewis, F., Hess, A., and Wu, B. (20006). Intelligent fault diagnosis and

prognosis for engineering systems: Wiley Online Library.

Wang, P., and Guo, C. (2013). Based on the coal mine’s essential safety management
system of safety accident cause analysis. American Journal of Environment,
Energy and Power Research, 1(3), 62-68.

Wang, Z.-Y., Lu, C., and Zhou, B. (2017). Fault diagnosis for rotary machinery with

selective ensemble neural networks. Mechanical Systems and Signal Processing.

Xue, J.-Z., Zhang, H., Zheng, C.-X., and Yan, X.-G. (2003). Wavelet packet transform for
feature extraction of EEG during mental tasks. Paper presented at 2003
international conference on the Machine learning and cybernetics.

Yang, D.-M., Stronach, A., MacConnell, P., and Penman, J. (2002). Third-order spectral
techniques for the diagnosis of motor bearing condition using artificial neural
networks. Mechanical Systems and Signal Processing, 16(2-3), 391-411.

Yang, Y., Dong, X., Peng, Z., Zhang, W., and Meng, G. (2015). Vibration signal analysis
using parameterized time—frequency method for features extraction of varying-
speed rotary machinery. Journal of Sound and Vibration, 335, 350-366.

Zhang, C., Lim, P., Qin, A., and Tan, K. C. (2017). Multiobjective deep belief networks

173



Chapter 6 Implementation of predictive maintenance in rotary machinery

ensemble for remaining useful life estimation in prognostics. /[EEE transactions on

neural networks and learning systems.

Zhang, Y., Liu, B., Ji, X., and Huang, D. (2016). Classification of EEG Signals Based on
Autoregressive Model and Wavelet Packet Decomposition. Neural Processing
Letters, 1-14.

Zhang, Z., and Zhao, J. (2017). A deep belief network based fault diagnosis model for
complex chemical processes. Computers & Chemical Engineering,
107(Supplement O), 395-407.
doi:https://doi.org/10.1016/j.compchemeng.2017.02.041

Zhao, R., Yan, R., Wang, J., and Mao, K. (2017). Learning to monitor machine health with
convolutional bi-directional Istm networks. Sensors, 17(2), 273.

174



Chapter 7 Conclusion and future research

Chapter 7
Conclusion and future research

The work presented in this thesis is generally overviewed in this chapter and some

suggestions for the future research are proposed.

7.1 Summary and conclusions

Industry 4.0 promotes the vision of smart manufacturing in future factories, where
machines are connected as a collaborative community to share information, implement
management and perform maintenance in a more reasonable and systematic way. Under
this environment, predictive maintenance has attracted not only researchers’ but also
manufacturers’ attention along with the development of data-driven methods since it is an
ideal maintenance policy to minimize the cost of maintenance with the premise of zero
failure manufacturing through the utilization of real-time data to forecast potential faults.
However, there still exist some challenges and technology issues to implement predictive
maintenance, which has been discussed in Chapter 3.

This thesis aims to bridge the gap between these fields and construct a framework for
predictive maintenance concerning Industry 4.0 concept and industry big data, to monitor
working condition of equipment, identify impending or potential failures, and minimize the
number of unnecessary maintenance performance under the premise of zero failure
manufacturing. The proposed framework consists of three tiers, namely data acquisition
from multiple sources, fault identification and prediction, and decision support and
maintenance implementation. The proposed framework can provide empirical knowledge
for academics and practitioners to identify and prioritize their steps towards predictive
maintenance and condition-based maintenance management under the environment of
Industry 4.0.

In Chapter 2, a systematic investigation about deep learning approaches applied for fault
identification and prediction are presented. Five types of deep learning approaches, which
can improve or solve some ‘bottlenecks’ for predictive maintenance, are summarized along
with the theoretical speculations about their superiorities for predictive maintenance owing
to the special architectures. The thesis also provides evidence based on practical
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applications from literature and two experiments to interpret the superiorities of deep
learning approaches in certain issues or with prerequisites for fault identification and
prediction, which might offer a guidance to select the most suitable deep learning
architecture for practical applications.

Chapter 4 provides helpful guidelines to formulate the steps for predictive maintenance
with Industry 4.0 concepts in machining centers. The guidelines contain the entire process
of fault analysis and treatment, which includes sensor and data acquisition, data
preprocessing, fault diagnosis and prognosis, performance indicator analysis, and

maintenance schedule optimization.

Chapter 5 demonstrates a case study of applying deep learning approach to predict backlash
error for maintenance implementation scheduling in a machining center. A hierarchical
diagnosis and prognosis system for backlash error detection and prediction based on DBN
is proposed to deal with the situation when target condition is beyond the historical data.
To provide a comprehensive comparison, two other intelligent algorithms, BPNN and
SVMR, are also applied to replace the DBN as the prognosis model. The numerical results
show the superiority to apply deep learning method for backlash error prediction.
Moreover, a novel maintenance implementation strategy HDPS-BPSO is also proposed to
illustrate the implementation of predictive maintenance in practical application. The
numerical result also shows the benefit of implementing predictive maintenance compared

with preventive one.

Chapter 6 introduced an experiment of deep learning algorithms for fault classification and
degradation assessment in rotary machinery. The research focuses on the accuracy of
impending failures identification and evaluation, which is the key to achieve predictive
maintenance in many situations. During the experiment, WPD is leveraged to represent the
information in both time and frequency domains from collected vibration signals. Several
data-driven methods are used to detect, classify and estimate the degradation of failures.
The numerical results demonstrate the superiority of DNN to evaluate the degradation for
rotary machinery, which proves the theatrical speculation raised previously. A novel SAE-
LSTM approach is also proposed for anomaly detection when all the data is collected
without labels. The proposed methods provide alternative general approaches to leverage
and integrate features for fault diagnosis instead of empirical knowledge.
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7.2 Suggestion for future work
The following are proposed for future work:

At present, the structures of applied data-driven models for predictive maintenance are
mainly selected based on empirical knowledge. It will be of interest to deduce a criterion

or formulate certain guidelines to make this process automated.

Deep learning has demonstrated its ability to deal with the original represented information
during the study. To test the performance of deep learning through the raw data directly

may also be included in future work.

In this thesis, the focus mainly lies on the data mining process during the implementation
of predictive maintenance. Research on maintenance management could also be developed
in future work.
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