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Abstract

Cardiac ultrasound, or echocardiography, is considered to be the quickest and most
cost effective imaging modality for assessment of cardiac function. The modality is
unique in that it allows for real-time imaging of the heart, using portable equipment.
The latest generation of echocardiography scanners are capable of acquiring dense
image volumes in either real time, or over a few heart beats. Methods for analyzing
these images, however, are lagging behind, with all existing methods for segmentation
of 3D ultrasound data considered too computationally intensive to operate at acqui-
sition rate. Availability of methods for analysis of 3D ultrasound in real-time could
open up possibilities for very quick and simple measurement of cardiac function, po-
tentially conducted during image acquisition. Results from automatic methods would
also lessen the amount of inter- or intra-examiner differences introduced during the
analysis, which in turn could lead to more reproducible results. The left ventricle of
the heart has traditionally been the chamber of most interest within the field cardiac
image analysis. This thesis has therefore focused on the left ventricle, and investi-
gated ways to measure different aspects of the chamber, such as chamber volumes,
myocardial strain and myocardial mass, by means of state estimation techniques.

The main goal of this thesis has been to explore the possibilities of using state es-
timation methods for segmentation and tracking of structures in volumetric data
with deformable models. The ability of using non-iterative estimators, such as the
Kalman filter, for fitting deformable models to image structures would radically re-
duce the computationally effort required for performing a 3D segmentation, and open
up for real-time usage. An existing Kalman tracking framework have therefore been
extended to operate in volumetric data. The framework has been successfully demon-
strated to fit ellipsoids, spline surfaces, active-shape surfaces and subdivision surfaces
to image data. Furthermore, theory for the simultaneous tracking of several models
have been developed. Finally, methods for combining edge-detection measurements
with speckle-tracking measurements have been shown, with the potential advantages
of material tracking with the lack of drift in edge detection.

The framework has been demonstrated to successfully conduct high quality segmen-
tation and tracking of the left ventricle, while operating in real-time without user
intervention. Processing times are in the range of milliseconds per frame on standard
computer hardware, which is orders of magnitude faster than the state-of-the-art
methods. Applications of the framework on 3D echocardiograms has been inves-
tigated to prove the feasibility of the framework for automatic analysis of various
aspects of cardiac function, such as view alignment, measurement of chamber vol-
umes, myocardial muscle volume and regional myocardial strain. The results for view
alignment are considered state of the art, and the results for volume measurements
are close to the results of similar studies with semi-automatic tools.
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This thesis consists of three parts: First, an introductory part that contains motiva-
tion and aims of the thesis, together with discussions and conclusions to summarize
and tie the papers together. Secondly, background theory on cardiac function, state
estimation, as well as model-based image analysis, which together serves as back-
ground material and context for the papers to make the thesis self-contained. Finally,
the publications that constitutes the individual contributions of the thesis.



Chapter 1

Background and motivation

In Europe, cardiovascular diseases is the cause of over 4.3 million deaths each year, or
48% of all deaths [1]. This makes cardiovascular diseases the main cause of death and
most prominent threat to public health in Europe, even when compared to cancer.
The widespread occurrence of cardiovascular diseases makes rapid and reproducible
methods for evaluation of cardiac function an important objective. Cardiac ultra-
sound, or echocardiography, is considered to be the quickest and most cost effective
imaging modality for assessment of cardiovascular diseases. The modality is unique
in that it allows for real-time imaging of the heart, using portable equipment.

Over the last few years, cardiac ultrasound has moved from 2D to 3D, and the latest
generation of echocardiography scanners are capable of acquiring dense image volumes
in either real time, or over a few heart beats. Methods for analyzing these images,
however, are lagging behind. At the beginning of my PhD period, all known existing
methods for segmentation of 3D ultrasound data were considered too computationally
intensive to operate at acquisition rate. Parts of the reason for this gap between
imaging data rate and processing speed is related to the fact that most approaches
for cardiac image analysis are based on deformable geometric models that are fitted to
the image using iterative optimization methods, that gradually converge to a good fit.
While such methods are known to produce good results, they are also computationally
intensive, due to the need for many refinement iterations for each image frame.

An alternative, although less commonly pursued approach to optimization methods
is to use state estimation methods [2]. With state estimation, the fitting problem is
modeled as the estimation of a limited set of parameters related to the geometric model
being fitted. It is then possible to use a class of computationally efficient algorithms
that can compute an optimal fitting of the model to the image data in a least squares
sense in a single iteration [3, 4, 5]. At the start of my PhD, prior art only existed
on the application of state estimation methods for fitting deformable models to 2D
image data, whereas the application within volumetric 3D data appeared unexplored.

Availability of methods for analysis of 3D ultrasound in real-time could open up
possibilities for very quick and simple measurement of cardiac function, potentially
conducted during image acquisition. Furthermore, any real-time method must be

7
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robust enough to operate with little or no user interaction, since the examiner will
be busy scanning the patient. Results from automatic methods would also lessen the
amount of inter- or intra-examiner differences introduced during the analysis, which
in turn could lead to more reproducible results.



Chapter 2

Aims of study

The main goal of this thesis has been to explore the possibilities of using state esti-
mation methods for segmentation and tracking of structures in volumetric data with
deformable models. The ability of using non-iterative estimators, such as the Kalman
filter, for fitting deformable models to image structures would radically reduce the
computationally effort required for performing a 3D segmentation, and open up for
real-time usage. Ultrasound is currently the only medical imaging modality capable
of acquiring dense image volumes in real-time, so 3D echocardiography has served
as the main modality of interest. The left ventricle of the heart has traditionally
been the chamber of most interest within the field cardiac image analysis. This thesis
has therefore focused on the left ventricle, and investigated ways to measure different
aspects of the chamber, such as chamber volumes, myocardial strain and myocardial
mass, by means of state estimation.

This goal is motivated by a more long-term vision of automatic cardiac diagnosis
in ultrasound recordings. Successful tracking of high quality will hopefully enable
fully automatic extraction of clinical parameters from the recordings, which can then
be used to detect a range of different cardiac diseases. The development of real-
time methods places additional constraints on the performance, compared to offline
methods. There is little time available for user interaction when operating during
image acquisition, so effort must be made to ensure a high degree of robustness, in
addition to efficiency and accuracy.

Application of state estimation algorithms for real-time sequential frame-by-frame
segmentation of echocardiography constitutes a novel approach, with only a handful
known prior publications [6, 7, 8, 9]. Prior art is limited to 2D echocardiography,
with 3D extension only listed as an “interesting challenge” in discussion of future work
[8, 9]. Furthermore, no thorough theory for the connection to deformable models, with
separation of local shape parameters from global pose parameters, could be found in
the literature.

To summarize, the primary goals of this thesis have been to:

• Extend the video tracking framework of Blake & al. [3] to volumetric data, and

9
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generalize the framework to support a range of different deformable models and
image measurement sources.

• Demonstrate that the framework is capable of conducting high quality 3D seg-
mentation and tracking of the left ventricle in real-time, with the robustness
required for fully automatic behavior.

• Use the framework to measure fully automatic and in real-time different aspects
of left ventricular function, such as chamber volumes, myocardial strain, as well
as myocardial mass.

Emphasis has been placed on ensuring that the developed methods and algorithms
are general, so they can be applicable to most imaging modalities capable of gener-
ating 2D or volumetric images. 3D echocardiography has still remained the primary
application, since this is the only modality capable of acquiring dense image volumes
in real time.

To demonstrate the applicability of the developed tracking framework, it has been
prioritized to publish papers that cover a range of different extensions and applications
to the framework. Focus have primarily been on technical feasibility, which means that
the experiments has been conducted rigorously, but not excessively. More thorough
validation of clinical usefulness has been left for future studies.



Chapter 3

Summary of presented work

List of presented works, together with their respective contribution:

A A Framework for Real-Time Left Ventricular Tracking in 3D+T Echocardiography,
Using Nonlinear Deformable Contours and Kalman Filter Based Tracking, IEEE
Computers in Cardiology 2006:
This paper extends the Kalman-filter based video tracking framework of Blake
et al. [3, 5] to volumetric 3D data, using a truncated ellipsoid as crude model
of the left ventricle.

B Real-time Tracking of the Left Ventricle in 3D Echocardiography Using a State
Estimation Approach, Medical Image Computing and Computer Assisted Inter-
vention 2007:
This paper extends the tracking framework to support deformable spline sur-
faces. It also introduces methodology for clear separation of global pose param-
eters from local shape parameters in the processing chain.

C Real-Time Active Shape Models for Segmentation of 3D Cardiac Ultrasound, Con-
ference on Computer Analysis of Images and Patterns 2007:
This paper extends the tracking framework to support statistical shape models
[10], where shape deformations are restricted to a linear subspace of the full
deformation space to achieve physiologically realistic shapes with a compact
parametrization.

D Real-time 3D Segmentation of the Left Ventricle Using Deformable Subdivision
Surfaces, IEEE Conference on Computer Vision and Pattern Recognition 2008:
This paper extends the tracking framework to support deformable subdivision
surfaces [11], which generalize spline surfaces to arbitrary topology. Also, this
is the first known publication of segmentation with subdivision surfaces directly
evaluated without recursive refinement.

E Real-time Left Ventricular Speckle-Tracking in 3D Echocardiography With De-
formable Subdivision Surfaces, MICCAI workshop on Analysis of Medical Im-
ages 2008:

11
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This paper extends the tracking framework with 3D block matching instead
of edge-detection to update both the shape and parametric density of mod-
els with the objective of tracking tissue deformation and detect regional strain
differences.

F Combining Edge Detection With Speckle-Tracking for Cardiac Strain Assessment
in 3D echocardiography, IEEE Ultrasonics symposium 2008:
This paper extends the tracking framework to combine edge-detection with
block-matching measurements to update the models in a integrated manner that
compensates for the inherent drift problem associated with sequential block-
matching.

G Automatic coupled segmentation of endo- and epicardial borders in 3D echocardio-
graphy, IEEE Ultrasonics symposium 2008:
This paper provides an extension of tracking framework to simultaneous track-
ing of multiple models, arranged in a hierarchy of transformations. The concept
is applied to simultaneous tracking of the endocardium and the epicardium of
the left ventricle, using a coupled thick-wall model.

H Automatic Alignment of Standard Views in 3D Echocardiograms Using Real-time
Tracking, SPIE Medical Imaging conference 2009:
This paper describes an application of tracking framework for extraction of
standardized views of the heart, based on landmarks from connected models
corresponding to specific cardiac structures.



Chapter 4

Discussion

The Kalman filter [12] was first developed by R. E. Kalman in 1960 as a state-space
solution to the minimal mean-square filtering problem. The filter gives a non-iterative
least squares linear algebra solution to the discrete filtering problem, that allows for
efficient computer implementation. Engineers quickly discovered the relevance of
the filter as a practical solution to various estimation problems within navigation.
Gradually, navigation computers used for everything from airplanes, missiles and
spacecrafts, to handheld GPS devices and RADAR tracking systems were equipped
with Kalman filters to estimate position and velocity [2]. Later, engineers outside the
field of navigation discovered that the filters unique ability to combine a kinematic
model with incomplete measurements from different sources also made it well-suited
for other applications, such as robotic navigation and video tracking [3].

At the beginning of my PhD in 2004, a special issue of Proceedings of the IEEE was
published on the topic “Sequential state estimation: From Kalman filters to particle
filters” [13] that focused on the limitations of Kalman filters, like the assumption of
Gaussian distributions that are inherently unable of handling multimodal distribu-
tions, divergent behavior when facing strong non-linearities and so on. By reading
this issue, one gets the impression that Kalman filters are more or less abandoned in
favor of more computationally intensive methods that are either based on stochas-
tic Monte-carlo particle filter algorithms [14] or more the deterministic multi-sample
unscented or sigma-point filtering approaches [15].

Still, I felt that the clear computationally advantages of using a Kalman filter, com-
pared to both iterative and multi-sample approaches, could outweigh the limitations
in certain applications. The emergence of real-time 3D imaging in ultrasound had
opened up a gap between the imaging rate and processing performance of current
segmentation algorithms, which were unable to analyze the acquired images in real-
time. I therefore started extending the Kalman-tracking framework of Blake et al.
[3, 5] to handle 3D data, as well as generalizing it to handle several types of deformable
models and image inputs. Nobody had much faith in this approach at first, but my
colleagues and later industry partners gradually started taking an interest when I
managed to generate some crude results that proved the feasibility of the approach.

13
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4.1 Theoretical contributions

First and most importantly, the contour tracking framework of Blake et al. [3, 5]
have been extended to operate in 3D data with deformable surface models [16]. This
includes generalizing the formulas for mapping normal displacement measurements
against model parameters with a Kalman filter in a manner that is invariant to the
dimensionality of the dataset, so that the same algorithm can be used for tracking
in both 2D and 3D image data. Also, it includes decoupling of the parametrization
of the model from the overall framework [17], so that different types of deformable
models can be plugged into the same tracking framework, without any changes to the
way the measurement and filtering process operate.

To demonstrate the applicability and flexibility of the framework, theory on how to
support a range of different models, including ellipsoid surfaces [16], spline surfaces
[17], subdivision surfaces [18] and statistical shape models [19] have been developed.
Subdivision surfaces are a class of surface types that combines the inherent smoothness
and compact parametrization of spline surfaces with the unconstrained topology and
ease of modeling of flat polygon surfaces. The subdivision paper is also believed to be
the first application of direct non-recursive evaluation of subdivision surfaces using
Stam’s method [20] within image segmentation.

In addition, a clear separation between global pose transformation and local shape
deformations of the models has been developed in a manner that supports a wide
range of possible parametrization. Furthermore, the framework have been extended
to support a full hierarchy of coupled deformable models [21]. This provides a simple
and intuitive way of combining different models by defining transforms that map the
coordinate system between different models. Following this approach, it is simple to
constrain models to move relative to each other, in a manner similar to scene-graphs
in computer graphics [22].

Finally, support for direct tracking of material points by means of speckle-tracking
measurements has been incorporated. Such measurements generate full 3D displace-
ment measurements, and are therefore conceptually different from normal displace-
ment measurements. A clear advantage of tracking material points compared to
edge-detection, is that the measurements can be used to update the parametric den-
sity of the model, and not only to adjust the shape. The ability of the framework to
detect regional differences in strain in a simulation of an infarcted heart ventricle was
demonstrated in [23], by using 3D speckle-tracking to update a subdivision surface.
Furthermore, in [24] the approach was extended to also incorporate edge-detection
measurement, by means of a two-step update process in the Kalman filter that com-
bines edge-detection for efficient shape fitting with speckle-tracking for tracking of
the residual deformations. This combination compensates for the inherent problem
of drift associated with sequential tracking of material points from frame to frame,
and allows for both faster and more accurate tracking with smaller search windows.
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4.2 Software implementation

During the initial phase of my PhD period, a search for existing segmentation software
to use as basis for my work was conducted. Unfortunately, little or no software
for computationally efficient segmentation with suport for non-cartesian data were
discovered. I therefore decided to write my own library, named the Real-time Contour
Tracking Library (RCTL).

This library has been developed continuously throughout my PhD, and has been used
for all experiments to test various aspects of the tracking framework. The library
has not only been designed to be computationally efficient, but also modular and
extensible, so that it is suitable for a range of different applications. Specifically,
emphasis has been placed on the following aspects in the design of the library:

• Independence of imaging geometry and modality:

– Direct support image data in cartesian and polar coordinates, as well as
sparse slice-based data, without initial conversion to cartesian coordinates.

– Support for ultrasound data in 2D, multi-plane and volumetric configu-
rations. Support for cardiac MR in sparse slice configurations consisting
of both longitudinal and short-axis slices. Support for dense CT volume
data.

• Modular design:

– Support for a range of different edge detection criterias, feature tracking
criterias, different types of deformable models, as well as transforms for
model orientation.

– Support for several estimation algorithms, including the extended Kalman
filter, iterated Kalman filter, and distributed Kalman filtering approaches.

– Support for simultaneous tracking of multiple coupled models, arranged in
a hierarchical "scene graph"-like structure.

• Computationally efficiency:

– Efficient vectorized and parallelized C++ code, with minimum sacrifice of
readability.

– Segmentations that consumes approximately 5-10 ms processing time per
model per frame on a standard dual-core processor.

Originally, the “RCTL” library was intended to be a publicly available open-source
project, and it was registered on the SourceForge project hosting webpage for some
time. Later, when I started co-operating closely with GE, the library had to be with-
drawn from SourceForge. This had some obvious disadvantages for the availability
of the software to the research community. But still, I believe that my research will
have an impact on cardiac image analysis in the time to come.
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4.3 Alternative approaches

The recent emergence of general-purpose programmable graphics processing units
(GPU) and widespread adoption of multi-core processors has led to a lot of focus
on adopting existing algorithms to exploit the computational power and parallelism
offered by these chips. GPU’s features computational powers that far surpasses what
is available in current processors. An approach for real-time segmentation could
therefore be to accelerate current optimization algorithms by adapting them to run
on a GPU, and solving the real-time segmentation problem brute force [25].

Many recently published methods are based on machine learning approaches, where
the problem is solved by iteratively exploring a state space with a classifier that
has been automatically trained, based on a collection of annotated examples. This
reportedly leads to good results [26, 27], but the resulting classifier if more like a
black-box that is not parametrized by physical units. Tuning or extension of the
classifiers might therefore not necessarily be very intuitive, as compared to the more
analytic approaches pursued in this thesis.

More recently, iterative refinement methods have been reported to achieve real time
processing speeds, with a processing time of 33 ms per frame in 3D echocardiograms
[28]. Still, this is approximately 10 times longer than the methods presented in this
thesis, and the reported average mesh distance to a reference segmentations was 4.0
mm, whereas this thesis reports average errors of 2.2 mm [18].

An attractive property of Kalman filter-based estimators is its ability to be parametrized
by physical units and spatial uncertainty. Measurement noise values, which are used
to weight the influence of measurements, are specified as a variance in squared meters,
which is a physical unit that has an intuitive meaning. This means that measurement
noise values can be determined from image statistics, or by comparing edge detection
criterias against a manual tracing and computing the standard deviation of the error.
Similarly, the trace of covariance matrix for the state estimate gives a measure of
the variance of each estimated parameter. These uncertainties can furthermore be
propagated back to the deformable model, to compute the spatial uncertainty of each
point on the surface of the deformable model. An example application of this could
be to to color-code surface regions of high uncertainty, that might e.g. be caused by
low edge evidence.

4.4 Applications

The proposed tracking framework has been designed to be general enough to enable
a wide range of configurations and support several applications. Within 3D echocar-
diography, the most obvious applications include:

Automatic view alignment

Orientation and navigation in volumetric images can be a time-consuming task that
has traditionally been conducted manually as an initialization step for analysis. With
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fully automatic segmentation, it is possible to automate this step, and generate stan-
dardized image views based on landmarks from the fitted models, as was presented
in [29]. This includes both intersection slices through the volume, as well as cropping
and orientation of volume renderings. This application has the advantage that it does
not rely on 100% accurate segmentation, as long as the models are positioned and
oriented approximately correctly. Real-time segmentation also enables dynamic views
that are updated continuously to follow tissue movement. The reported agreements
to manual alignment for the state-estimation approach is also favorable when com-
paring to prior art based on iterative optimization [30] and machine learning [31],
with similar or better agreement for most metrices of long-axis and circumferential
rotation error.

Chamber volume measurements

The heart’s main function is to pump blood and maintain circulation of oxygenated
blood throughout the body. Analysis of the pumping function is therefore of upmost
importance. Blood volume measurements can be calculated by computing the volume
of the surface models fitted to the endocardial boundary. These volumes can be
traced over time, used for assessment of global heart function, and to derive clinically
important parameters, such as end-systolic and end-diastolic volume, stroke volume,
cardiac output and ejection fraction. Simultaneous volume measurement in several
chambers can also be used for timing assessment, and detection of dyssynchrony.
Several papers on left ventricular volume measurements based on different classes of
deformable models are included in this thesis [16, 17, 18, 19]. Usage of subdivision
surfaces reported the best agreement, with an agreement of 3.6 ± 21.4 ml for EDV,
9.0± 17.4 ml for ESV and −5.9± 11.1 % for EF. These results are almost as good as
results from similar studies with semi-automatic tools [32].

Myocardial mass measurement

Enlarged myocardial muscle mass is closely related to some diseases such as hypertro-
phy [33]. Measurement of myocardial mass requires detection of both endocardium
and epicardium simultaneously, which can be difficult since parts of the epicardium of-
ten have poor visibility. One can, however, couple the two models and utilize volume
conservation to constrain the segmentation and enable measurement of myocardial
mass, based on fitting the surfaces in a a sequence of frames. Multiplication of the
myocardial volume with the density will then give a measure of myocardial mass.
This concept was introduced in [21], which reported an average underestimation of
myocardial volume of 10.7 ml (8.0%) with all 5 cases within the 68% confidence inter-
val of the reference segmentations. The reported myocardial volume measurements
are furthermore within the interval of previous studies conducted with semi-automatic
tools [34, 35].
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Myocardial strain measurement

Methods for analysis of global heart function are excellent for assessing if something
is wrong with the heart. More localized pin-pointing of the source of reduced function
does, however, require methods that are capable of analyzing function on a regional
scale. One such example is the detection of infarcted areas within myocardium [36].
One can track material points within the myocardium by means of speckle-tracking
techniques, and use the displacement vectors to update a model which captures both
shape and regional contraction. The parametric density of the model can then be
used to infer regional strain differences throughout the heart cycle. This combination
of the Kalman tracking framework with speckle-tracking was introduced in [23, 24],
and good qualitative agreement for regional strain was reported against ultrasound
simulations of an infarcted heart. Strain measurements in in-vivo data did, however,
turn out to be a more challenging task than originally anticipated, since 3D echo
has significantly lower spatiotemporal resolution than 2D echo. Limited faith in the
feasibility of getting results of any clinical value therefore led to no results from in-
vivo data being published. Later validations of a commercial 3D strain tool have also
reported very low correlation for segmental strain values, when compared to strain
from 2D echo [37].

4.5 Future extensions

The methods presented in this thesis have potential for further development. Several
possibilities are open for extending the framework into both new processing modes,
as well as new applications still remains. Some of the most interesting areas of im-
provement include:

Edge detection

The endocardial edge is covered in a trabeculated structure that is partially filled with
blood. This trabeculation is filled with blood during the diastole, whereas blood is
squeezed out during systole. To most correctly measure blood volumes, it is therefore
common convention to include the trabeculated area in end-diastole, and exclude it
from the volume in end-systole [38]. The current edge detection criteria has problems
adapting to this convention, and tends to consistently detect the outermost edge of the
trabeculation at both end-diastole and end-systole, which leads to an underestimation
of the ejection fraction. This problem can hopefully be improved by the usage of more
advanced, possibly cardiac phase-dependent edge criterias that compensate for this
effect. Utilization of different edge criterias for each cardiac segment migh also have
potential to further improve the edge detection accuracy.

Distributed and multi-model tracking

Simultaneous endo- and epicardial detection should only be considered as a starting
point. The ability to combine several models in a tracking hierarchy can also poten-
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tially be used for simultaneous detection of all four cardiac chambers in a manner
where the models assist the search range of each one another. This could be useful
for detecting dilated chambers, as well as dyssynchrony in the contraction pattern
between the chambers. Multi-model tracking also yields an interesting problem of
distribute filtering, since the models are independent with the exception of the shared
transform nodes in the tracking hierarchy. The linear algebra calculations in the
Kalman filter scales rather poorly with the number of parameters in the state vec-
tor, since matrix multiplications requires a cubic number of calculations relative to
the state vector. Any decoupling of the partially independent tracking problem into
smaller sub-problems could therefore help improve the computational efficiency when
dealing with larger multi-model setups.

Strain measurement

Tracking of material points within the myocardium for strain measurement in 3D
echocardiography have received a lot of interest the past few years, since it would
open up for rapid and comprehensive evaluation of regional heart function from a sin-
gle dataset. Several approaches for material tracking in 3D echocardiography, based
on block-matching, optical flow and elastic registration, have recently been published,
and most approaches report promising results from simulations. A commercial tool
for 3D strain assessment have also been released recently [39]. The current generation
of 3D ultrasound scanners do, however, place limitations on the spatio-temporal image
quality obtainable that makes reliable tracking a difficult problem. Further investi-
gation and improvements will therefore be required in order to make block-matching
within the proposes tracking framework successful in in-vivo data.

Bidirectional and smoothing estimators

Another opportunity for improvements would be to track bidirectionally, meaning
both forwards and backwards in time simultaneously, at the expense of not being
capable of operating in real-time anymore. This would allow for more accurate seg-
mentation and tracking by incorporating image information from both previous and
future images when fitting the models in each frame [40]. The inherent problem of
drift faced in sequential block-matching would also be alleviated with bidirectional
tracking, since periodicity could be more strictly enforced.

Other imaging modalities

There is nothing with the tracking framework that limits its applicability to ultra-
sound. Other imaging modalities, such as nuclear Magnetic Resonance Imaging (MRI)
and Computed x-ray Tomography (CT) generate beautiful images of the heart with
more uniform intensity levels and less noise compared to ultrasound. The problem of
model fitting with edge-detection in these modalities should therefore be simpler, com-
pared to ultrasound. Still, the temporal resolution of the modalities are significantly
lower, and acquisition time much longer than for ultrasound. Algorithms capable
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of operating in real-time might therefore not be that important. Still, the inherent
robustness of the framework, the long convergence radius, as well as the applicability
to a range of different types of deformable models might be attractive properties also
in other modalities.

4.6 Conclusions

I have successfully extended the video tracking framework of Blake & al. [3] to vol-
umetric data, and demonstrated the use of the framework to fit ellipsoids, spline
surfaces, active-shape surfaces and subdivision surfaces to echocardiographic data.
Furthermore, I have developed theories for the simultaneous tracking of several mod-
els. Finally, I have shown how to combine edge-detection measurements with speckle-
tracking measurements to update the models in a manner that combines the advan-
tages of material tracking with the lack of drift in edge detection.

The framework has been demonstrated to successfully conduct high quality segmen-
tation and tracking of the left ventricle, while operating in real-time without user
intervention. Processing times are in the range of milliseconds per frame on standard
computer hardware, which is orders of magnitude faster than the state-of-the-art
methods.

Applications of the framework on 3D echocardiograms has been investigated to prove
the feasibility of the framework for automatic analysis of various aspects of cardiac
function, such as view alignment, measurement of chamber volumes, myocardial mus-
cle volume and regional myocardial strain. The results for view alignment are consid-
ered state of the art, and the results for volume measurements are close to the results
of similar studies with semi-automatic tools.
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Chapter 6

Cardiac function

The heart is a small muscular organ, whose main purpose is to pump blood through
the body. It consists of four chambers, the right atrium, the right ventricle, the left
atrium and the left ventricle. The atriums on each side of the heart is connected to
their adjacent ventricles through valves, which opens for blood-stream in only one
direction. Blood circulation is divided between the two sides of the heart: Deoxy-
genated blood from the body is pumped through the right side of the heart, towards
the lungs, and fresh oxygenated blood from the lungs is pumped through the left
side of the heart, towards the rest of the body. Figure 6.1 shows an overview of the
anatomy of the cardiac chambers, and the direction of the blood flow throughout the
heart.

Blood is pumped through the heart in rhythmic strokes, divided into two stages.
The first stage, systole, happens as the ventricles contract, leading to a decrease in
chamber volume, which in turn pumps blood out of the heart. This is followed by
the diastole, where the ventricles relax to expand, while at the same time the atriums
contract, pumping new blood into the heart.

6.1 Global function

Examinations of heart function usually starts with an evaluation of overall heart
function, refereed to as global function. Such evaluation focuses on the size and
pumping ability of the heart. For the left ventricle, two commonly used clinical
parameters often used for diagnosis are stroke volume and ejection fraction. Stroke
volume (SV) is the difference between the end diastolic volume (EDV) and the end
systolic volume (ESV), and measures how much blood the heart pumps in each stroke.
Ejection fraction (EF) is the ratio between the stroke volume and the end diastolic
volume, and measures the percentage of the ventricle being emptied in each stroke:

SV = EDV − ESV
EF =

SV

EDV
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Figure 6.1: Longitudinal view of the heart that shows all chambers and valves. The
tip of the heart at the bottom of the figure is referred to as the apex, whereas the the
area around the valve are referred to as base. Figure courtesy of Eric Piercing.

Ejection fraction is generally considered as a good indicators of global heart function,
since many cardiac diseases lead to hearts that does not contract as efficiently [41].

6.2 Regional function

To get more localized information about cardiac function, one can also analyze the
contraction pattern locally across the heart muscle, which is referred to as my-
ocardium. Historically, this has often been done through wall motion assessment,
where experienced cardiologists look at ultrasound images of the myocardium while
it contracts. Myocardial contraction leads to a combination of wall-thickening and
radial displacement of the myocardium towards the blood pool, which can be assessed
visually, and used to score the degree of contraction in different areas across the heart
wall. This approach is, however, highly qualitative, and the results will depend on
the training of the operator conducting the examination.

Over the last years, quantitative methods for evaluation of regional function have
appeared. These methods estimate the deformation and contraction across the heart,
based on following the speckle pattern inside the myocardium, or by measuring the
velocity along the ultrasound beams. Local myocardial contraction is measured in
strain (ε) [36, 42], which is a measure of fractional contraction of local myocardial
dimensions (l) relative to associated dimensions at rest (l0):
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ε =
l − l0
l0
.

The most common class of cardiac diseases are the ones associated with blockage
of the coronary arteries that supply the myocardium with blood, such as ischemia
and myocardial infarction. These diseases manifest themselves through reduced or
ceased contractility in the affected regions of the myocardium. Regional assessment
of myocardial strain can be used to identify regions that are affected by the disease
and to which extent, whereas ejection fraction alone will only indicate that something
is wrong with the contraction pattern, but not provide any localization information.

The heart has historically been imaged in 2D along the longitudinal apex-base di-
rection, and the circumferential short-axis direction. This has led to a common con-
vention of decomposing cardiac strain into longitudinal, circumferential and radial
components, due to the limitations of the imaging techniques. With 3D imaging,
we are no longer restricted to evaluating 2D projections of the strain, but can more
directly measure all 6 component of the the full 3D strain tensor [33]. This tensor can
be difficult to interpret directly, but by projecting the measured strain onto a surface
model it is possible to compute the amount of contraction locally that contributes to
the cardiac contraction, namely the area strain [43].

Most existing methods for evaluating regional function in 2D images suffer from two
limitations: First, the images have to be properly aligned to either the longitudinal or
circumferential axis of the heart, so that measurements can be related to the anatomic
areas of the heart. This can be resolved by either carefully guiding the acquisition, or
by extracting aligned views from an acquired 3D image volume of the heart. Secondly,
the contraction of the heart causes out-of-plane movement of the myocardium through
the image slice, so that different parts of the heart muscle is imaged at different phases
in the cardiac cycle. This is especially a problem in the basal part of the heart, which
moves considerably during the cardiac cycle.

6.3 Remodeling

Cardiac remodeling refers to changes in size, shape and muscle mass of the heart,
caused by cardiac injury, altered blood pressure, or other factors [44]. Remodeling can
affect the cardiac chamber differently, depending on disease type. Increased diastolic
filling pressure in the left ventricle will e.g. affect the size of the left atria more than
the ventricular size [45]. Remodeling can also be a temporal phenomenon, such as in
cases of acute pressure increases in the right side of the heart [46]. The septum muscle
between the ventricles will then shift sideways towards the left ventricle, causing a
simultaneous dilation of the right ventricle and reduction of the left ventricular size.

Dyssynchrony in the contraction of the heart, caused by failures in the electrical ac-
tivation of the heart muscle, will also lead to remodeling over time [47]. The shape of
the ventricles will then change to become more spherical, and the amount of myocar-
dial muscle mass will increase to compensate for the reduced pumping efficiency. In
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such cases, it can be useful to study the shape of the ventricles, by means of sphericity
analysis [48], and to measure the thickness of the myocardium to derive a measure of
the total amount of myocardium muscle mass.



Chapter 7

Medical ultrasound

Medical ultrasound is a diagnostic imaging modality used to visualize the interior of
the body. It is based on transmitting focused, high frequency ultrasound pulses from
a transducer through the body, and then processing the backscatter echo received
by the transducer. The pulse frequencies used are typically in the range of 1.5 -
10MHz, depending on the depth of the organ being imaged. Different organs, blood
and tissue exhibit different acoustical properties, which in turn yields different echo
responses that can be used to create images. When ultrasound is used to image the
heart it is referred to as echocardiography. Imaging is achieved by transmitting and
receiving ultrasound beams steered in different directions, so that they together form
a plane or image volume. The resulting volume can then be visualized on a display.
Unlike other medical imaging modalities like Magnetic Resonance Imaging (MRI)
and X-ray Computed Tomography (CT), there are no radiation or strong magnetic
fields involved, only sound waves. Ultrasound is therefore considered to be the safest
and least harmful imaging modality used for medical diagnosis [49]. For this reason,
ultrasound is the only modality routinely used for fetal imaging.

7.1 Image formation

Cardiac ultrasound images are commonly acquired using phased array ultrasound
transducers, which are hand-held probes consisting of a 2D matrix or 1D array of
piezoelectric elements that convert electric energy to acoustic pressure waves during
transmission, and acoustic pressure back to electric signals during receival. When
transmitting pulses, electrical pulses are applied to the transducer elements, causing
the piezoelectric structures to vibrate and generate pressure waves. Upon receival,
acoustical vibrations induce electrical signals across the crystals that is sampled and
used for image formation.

Echoes are continuously generated as the transmitted pulse propagate through tissue,
depending on differences in acoustic impedance in the images tissue, and the frac-
tion of the echo that propagates in the direction back to the transducer is utilized
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for imaging. The time between pulse transmission and the received echoes increase
linearly with the distance from the transducer to the origin of the origin on the echo
due to increasing propagation distances. By assuming a constant wave propagation
speed c, the delay time t can be converted into radial distance r :

r(t) =
1
2
c t ,

where the division by two originates from the fact that sound waves have to travel
both down into the body and be reflected back up again, before being received, leading
to an effective doubling of propagation distance.

The relation between propagation speed c of ultrasound beams through tissue with
density ρ and compressibility κ is c = 1/√ρκ. For soft human tissue, c is approx-
imately 1540 m/s. When neglecting absorption, the transmitted ultrasound waves
propagate through tissue approximately follows the scalar wave equation [50]:

∂2p(r, t)
∂t2

= c2∇2p(r, t) ,

where p(r, t) is the acoustic pressure at spatial position p on time t. For a constant c,
impulses from a point source yields a sphere wave propagating without generating any
reflected echo signal. Localized perturbations in tissue density and compressibility,
however, interacts with the wave propagation in such a way that some of the wave will
be scattered and reflected back as echoes to enabling imaging. Structures that are
relatively large compared to the wavelength, such as muscle fibers generate specular
reflections, much like a mirror, where the amount of reflected echo depends on the
angle of incident. Smaller sources of disturbance, with size smaller than the wave-
length generate more omnidirectional scattering, that does not depend on angle. In
addition to being scattered, the ultrasound signal is also absorbed while propagating
through tissue. This absorption is highly frequency dependent, and increases rapidly
with frequency and propagation distance. The total attenuation from absorption and
scattering is usually assumed to be approximately 0.5 dB/cmMHz.

Image volumes are constructed by sequentially transmitting beams that are steered in
different directions to cover a desired image sector. The response of each transducer
element is not focused in any particular direction, but focusing of the ensemble of
transmitted beams from all elements can still be accomplished by individually delaying
the pulse emitted from each element. A coherent wavefront focused at a particular
point are generated by gradually adding delays on the transducer elements depending
on the distance between the elements and the focal point such that the elements
farthest away from the focal point are excited first, as shown in figure 7.1. The
combination of all pulses emitted from each element will then form a narrow focused
beam steered in one direction that converge at a certain focal point. This procedure
is performed during transmission to generate steered beams with a fixed focus at the
approximate center depth of the object being imaged. On receive, the procedure is
reversed to listen to echoes originating from the same direction. The focal depth is
also continuously updated by means of dynamic focusing during receival to match the
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(a) (b)

Figure 7.1: Illustration of ultrasound beamforming with phased array transducer.
Signals from the transducer elements (top) are individually delayed based on their
distance from the focal point. (a) illustrates 3D focusing within an imaging sector
(outlined). (b) illustrates how pulses from transducer elements are individually de-
layed to form a wavefront which converges into a focused pulse at a desired focal
point.

current depth of the propagating beam, as shown in figure 7.1 (a) for a matrix array
transducer.

Ultrasound images are characterized by highly anisotropic resolution, with much
higher resolution in beam direction compared to the lateral direction. The resolution
in the beam propagation direction, often referred to as radial direction, is primarily
determined by the wavelength λ of the ultrasound beam and the fractional bandwidth
B of the imaging system

RESrad =
λ

2 B
.

The division by two due to the fact that that the pulses has to propagate back and
forth, which effectively doubles the radial resolution compared to one-way imaging
systems. In the lateral directions, the resolution in focus is determined by the the
ratio between the transducer diameter D and the imaging depth |r|. The lateral
resolution is commonly assumed to be [51]:

RESlat =
λ|r|
D
,

based on computing the distance to the first zero in the two-way intensity response
when assuming a rectangular transducer aperture with uniform apodization.

These are, however, theoretical limitations that assumes very short pulses and ultra-
sound beams that are spaced close enough to avoid undersampling of the image. In
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practice, the radial resolution degrades with the length of the transmitted pulse and
the lateral resolution can be lower if optimal spatial resolution is sacrificed for higher
framerate.

7.2 3D imaging challenges

A major challenge faced in 3D echocardiography is the limited propagation velocity
of sound in tissue. With a propagation speed of 1540 m/s, it takes approximately
200 μs for a single beam to propagate 15 cm down through the heart and back again.
For cardiac imaging, it is desirably with framerates in excess of 25 fps to image the
heart’s dynamics with sufficient temporal resolution. This leaves only time for a little
more than 200 transmitted beams per frame. Volume imaging of reasonable quality
requires thousands of beams to picture the heart with sufficient detail, which leaves
a gap between the number of of image beams required and the number of transmit
beams available. Two recent innovations in ultrasound imaging have helped alleviate
this problem:

First, modern ultrasound scanners therefore uses a technique referred to as paral-
lel beamforming to generate several imaging beams per transmitted beam. Parallel
beamforming works by transmitting broader beams to illuminate a slightly wider por-
tion of the imaging sector at a time. Several receive beamformers are then used in
parallel to simultaneously listen for backscatter echo in slightly different directions
within the illuminated area of the imaging sector. This leads to increased imaging
rate, which in turn can greatly increase the temporal resolution.

Secondly, gated subvolume imaging is used to acquire only a part of the entire heart
volume, a subvolume, in each cardiac cycle. The remaining subvolumes are retrieved
from previous heartbeats, based on electrocardiography (ECG) gating, so that they
together form a complete volume that appears to come from a single heart beat. This
is possible because the cardiac cycle is a cyclic process that repeats itself over and over
with little variation between beats. After a full volume is acquired, the subvolumes
can be replaced in an alternating fashion to update the volume, one subvolume per
heartbeat.

Together, parallel beamforming and subvolume imaging can be used to enable real-
time 3D echocardiography imaging with both high spatial resolution and sufficient
framerate for cardiac imaging.

7.3 Acquisition coordinate system

Due to the directional focusing of phased array transducers, ultrasound images are
acquired in polar coordinates. This coordinate system is parametrized by lateral az-
imuth and elevation angles, corresponding to rotations relative to the probe, as well
as range (radial) coordinates for distances from the transducer. The nature of the
phased-array beamforming used in ultrasound, where focused beams are transmitted
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and received in directions of interest, therefore leads to image data in polar coordi-
nates.

Conversion from polar to Cartesian coordinates, known as scanconversion, are re-
quired before displaying images on computers. It is also not uncommon to do scan-
conversion prior to image analysis, since many analysis tools work exclusively with
cartesian data. Scanconversion does, however, have the disadvantage that it in-
evitable leads to some conversion loss, especially in the uppermost areas of the image,
where the spatial resolution of ultrasound is highest. The amount of image data also
grows significantly, since the pyramidal sector-shape of the ultrasound volume must
be padded to form a rectangular volume block.



Chapter 8

State modeling and
estimation

A state space model is a mathematical model of a process, where the process’ state
x is represented by a numerical vector of finite dimensionality. State space models
usually consists of two separate models: The first is a kinematic process model, which
describes how the state propagates in time based on external influences, such as input
and sources of uncertainty, referred to as noise. The second model is the measurement
model, which describe how a vector of numerical measurements z are taken from the
process, typically simulating noisy and indirect measurements of an unknown state.

8.1 General state space models

The most general form of state-space models is the nonlinear model. This model is
here described using two functions, f and h:

xk+1 = f(xk,uk,wk)
zk = h(xk,vk)

which govern state propagation and measurements, respectively. u is process input,
and w and v are stochastic state and measurement noise vectors, respectively while
k is the discrete time.
State-space models are remarkably usable for modeling almost all sorts of processes
within a range of different fields. f and h are usually based upon a set of discretized
differential equations, governing the dynamics of and observations from the process.

8.2 Linear state space models

A linear state-space model is a model where the functions f and h are linear in both
state and input. The functions can then be expressed by using the matrices F, B and
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Figure 8.1: A general state-space model. z−1 is the unit delay function known from
the Z-transform in digital signal processing.

H, reducing state propagation calculations to linear algebra. Overall this results in
the following linear state-space model:

xk+1 = Fkxk +Bkuk +wk
zk = Hkxk + vk
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Figure 8.2: A linear state-space model

This linear model is easier both to calculate and analyze, enabling modelers to in-
vestigate properties such as controllability, observability and frequency response [52].
Linear state models are either based on inherently linear processes, or simply a lin-
earized version of a nonlinear process by means of a first order Taylor approximation.

8.3 Sequential Bayesian estimation

State estimation concerns the problem of estimating the probability density function
(pdf ) for the state of a process which is not directly observable. This typically involves
both predicting the next state based on the current, and updating/correcting this
prediction based on noisy measurements taken from the process.

The most general form for state estimation is known as sequential Bayesian estimation
[14]. This is the optimal way of predicting a state pdf for any process, given a system
and a measurement model. In this section we will discuss this estimator, which
recursively calculates a new estimate for each time step, based on the estimate for
the previous time step and new measurements.
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Sequential Bayesian estimation works by simulating the process, while at the same
time adjusting it to account for new measurements z, taken from the real process.
The calculations are performed recursively in a two step procedure. First, the next
state is predicted, by extrapolating the current state onto next time step using state
propagation belief p(xk|xk−1) obtained from function f . Secondly, this prediction
is corrected using measurement likelihood p(zk|xk) obtained from function h, taking
new measurements into account.
The Chapman-Kolmogorov equation is used to calculate a prior pdf for state xk,
based on measurements up to time k − 1:

p(xk|zk−1) =
ˆ
p(xk|xk−1)p(xk−1|zk−1) dxk−1

Bayes rule is then used to calculate the updated pdf for state xk, after taking mea-
surements up to time k into account:

p(xk|zk) = p(zk|xk)p(xk|zk−1)´
p(zk|xk)p(xk|zk−1) dxk

p(x |z  ) zk

updatepredict

kk-1

p(x |z )k k

Figure 8.3: Sequential Bayesian estimator loop.

Unfortunately, this general method does not scale very well in practice, mainly due
to the large state space for multidimensional state vectors. Calculating the prior
probability of each point in this state space involves a multidimensional integral, which
quickly becomes intractable as the state space grows. Computers are also limited to
calculation of the pdf in discrete point in state space, requiring a discretization of the
state space. This technique is therefore mainly considered as a theoretic foundation
for state estimation in general. Bayesian estimation by means of computers is only
possible if either the state space can be discretized efficiently, or if certain limitations
apply for the model.

8.4 Kalman filter

The problem of state estimation can be made tractable if we put certain constrains
on the system models, by requiring both f and h to be linear functions, and the noise
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terms w and v to be uncorrelated, white Gaussian processes with zero mean value.
Put in mathematical notation, we then have the following constraints:

f(xk,uk,wk) = Fkxk +Bkuk +wk
h(xk,vk) = Hxk + vk

wk ∼ N (0,Qk) vk ∼ N (0,Rk)
E(wiwTj ) = Qiδi−j E(vivTj ) = Riδi−j

E(wkvTk ) = 0

where Q and R are covariance matrices, describing the second-order properties of
the state- and measurement noise, that restricts the allowable rate of change. The
constraints described above reduce the state model to:

xk+1 = Fkxk +Bkuk +wk
zk = Hkxk + vk

where F, B and H are matrices, possible time dependent.

As the model is linear and input is Gaussian, we know that the state and output will
also be Gaussian [53]. The state and output pdf will therefore always be normally
distributed, where mean and covariance are sufficient statistics. This implies that it
is not necessary to calculate a full state pdf any more, a mean vector x̂ and covariance
matrix P̂ for the state will suffice.

x zPk|k-1

updatepredict

x k|k P

kk|k-1

k|k

Figure 8.4: Kalman filter loop

The sequential Bayesian estimation problem is then reduced to the Kalman filter [12],
where f and h are replaced by the matrices F, B and H. The Kalman filter is, just as
the Bayesian estimator, decomposed into two steps: predict and update. The actual
calculations required are:

Predict next state at time k, before measurements are taken:

x̄k = Fkx̂k−1 +Bkuk
P̄k = FkP̂k−1FTk +Qk
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Update state at time k, based on measurements taken:

Kk = P̄kHTk (HkP̄kHTk +Rk)−1

x̂k = x̄k +Kk(zk −Hkx̄k)
P̂k = (I−KkHk)P̄k

where K is the Kalman gain matrix, used in the update observer, and P̂ is the
covariance matrix for the state estimate, containing information about the accuracy
of the estimate. More details and background for this filter can be found in [54].
The Kalman filter allows for efficient computer implementations, due to the fact that
it is mostly linear, except for a matrix inversion. It can also be proved that the
Kalman filter is an optimal estimator of process state in a minimum mean square
error (MMSE) sense, meaning it minimizes the expected quadratic error.

8.5 Extended Kalman filter

Most processes in real life are unfortunately not linear, and therefore needs to be
linearized before they can be estimated by means of a Kalman filter. The extended
Kalman filter (EKF) [54] solves this problem by calculating the Jacobian1 of f and h
around the estimated state, which in turn yields a trajectory of the model function
centered on this state.

x

y y=f(x)

Figure 8.5: Illustration of how the Extended Kalman filter linearizes a nonlinear func-
tion around the mean of a Gaussian distribution, and thereafter propagates the mean
and covariance through this linearized model

1The Jacobian is the matrix of all partial derivatives of a vector with regards to the state vector.
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Fk = Jxf(x,u,w) =
∂f(x,u,w)
∂x

∣∣∣∣
x̂k,uk,0

Hk = Jxh(x,v) =
∂h(x,v)
∂x

∣∣∣∣
x̄k,0

The extended Kalman filter works almost like a regular Kalman filter, except for F
and H, which vary in time based on the estimated state x̂. The actual calculations
required are:

Predict next state, before measurements are taken:

x̄k = f(x̂k−1,uk, 0)
P̄k = FkP̂k−1FTk +Qk

Update state, after measurements are taken:

Kk = P̄kHTk (HkP̄kHTk +Rk)−1

x̂k = x̄k +Kk(zk − h(x̄k, 0))
P̂k = (I−KkHk)P̄k

where K is the Kalman gain matrix, used in the update observer, and P is the
covariance matrix for the state estimate, containing information about the accuracy
of the estimate.

8.6 Information filter

There exists an alternative formulation of the discrete Kalman filter, namely the
information filter. This form, which is algebraically equivalent to the standard form,
is often advantageous in situations where the number of measurements exceed the
state dimension, since it avoids the problem of inverting matrices of the size of the
measurement covariance. Instead, it requires inversion of matrices with dimensions
equal to the state dimension. The information filter also enables efficient processing
when many independent measurements are taken at each time step [55].

Just like the standard Kalman filter, this variant starts by predicting the state at the
next time step. The equations are equal to those above:

x̄k = Fkx̂k−1 +Bkuk
P̄k = FkP̂k−1FTk +Qk

The measurement update equations, however, are quite different. They are expressed
on a summing form, where prior knowledge from the prediction is added to the knowl-
edge from the measurements:

P̂−1k = P̄−1k +HTkR−1k Hk
P̂−1k x̂k = P̄−1k x̄k +HTkR−1k zk
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Inversion of the resulting sums are required to acquire the updated state estimate and
covariance:

P̂k = (P̄−1k +HTkR−1k Hk)−1

x̂k = P̂k(P̄−1k x̄k +HTkR−1k zk)

By expanding the last equation above and comparing it to the original Kalman equa-
tions we discover an alternative form of the Kalman gain, namely:

Kk = P̂kHTkR−1k

This form collects everything related to the measurements intoHTR−1H andHTR−1z,
which are referred to as the information matrix, and information vector, respectively.

8.7 Multiple independent measurements

One often encounters situations where several independent scalar measurements are
taken at each time step. The information filter formulation of the Kalman filter can
often be computationally more efficient in such situations, as will be shown below.

The calculation of information-matrices and -vectors for independent measurements
yield equations involving inversion of the diagonal measurement covariance matrix.
The structure of the equations can then be exploited to convert it into efficient sum-
mations:

HTR−1z =

⎡
⎣ | | |
h1 · · · hN
| | |

⎤
⎦
⎡
⎣r
−1
1 0 0
0 · · · 0
0 0 r−1N

⎤
⎦
⎡
⎣ z1.
zN

⎤
⎦

=
∑
i

hir−1i zi

HTR−1H =

⎡
⎣ | | |
h1 · · · hN
| | |

⎤
⎦
⎡
⎣r
−1
1 0 0
0 · · · 0
0 0 r−1N

⎤
⎦
⎡
⎣− hT1 −
− · · · −
− hTN −

⎤
⎦

=
∑
i

hir−1i hTi

This formulation replaces the expensive measurement covariance matrix inversion
with simple scalar divisions. It also involves fewer multiplications. The principal
advantage of this formulation, is that it makes it conceptually simple to fuse infor-
mation from multiple independent scalar measurements together, simply be summing
information-matrices and -vectors together.

This form of measurement processing is an alternative to sequential processing of
scalar measurements [56] which avoids the need for recursively updating the estimate
covariance for each new measurement.
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8.8 Measurement likelihood

Measurements are modeled as stochastic processes, affected by multivariate Gaussian
noise. The probability density distribution for singe measurements hence becomes a
scalar Gaussian probability density function centered around the predicted position,
with a variance equal to the measurement noise.

zi ∼ N (z̄, s) = N (hTi xi, hTi P̄hi + r)

This leads to the following measurement likelihood function:

p(zi|xi) = 1

(2π)1/2
∣∣hTi P̄hi + r∣∣1/2

exp
(
−1
2
(zi − hixi)T (hTi P̄hi + r)−1(zi − hixi)

)

Knowledge of the likelihood associated with the measurements can be used to filter
out improbable measurements, which can help improve tracking robustness.

The de facto way of performing this is by using the measurement innovation and
error covariance to calculate the Normalized Innovation Squared (NIS) as defined by
Bar-Shalom et al. in [2]. With scalar measurements, the NIS becomes:

NISi ∝ vTi (hTi P̄hi + r)−1vi

We clearly see that NIS grows proportional to the square of the innovations. Large
measurement innovations will therefore typically lead to large NIS values, which can
be rejected by simple thresholding.

8.9 Iterated Kalman filter

Nonlinear measurement models can, when coupled with state prediction errors, lead
to large estimate errors. To limit this effect, it is possible to modify the measurement
update step to iteratively compute an approximate maximum aposteriori (MAP) es-
timate instead of the regular conditional mean estimate [2].

The approach is to iterative maximize the conditional pdf of x̂ with the Newton-
Raphson algorithm. This leads to a second order Taylor-expansion of log-likelihood
of the covariance, that is minimized iteratively. Altogether, this results in a three
step algorithm as follows:

Relinearize the measurement matrix for each iteration, based on the current estimate:

Hi ≡ ∂h(x̂
i)

∂x
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Compute a updated state estimate for each iteration with a modified formula:

x̂0 = x̄
x̂i+1 = x̂i + P̂iHi TR−1

(
z− h(x̂i))− P̂iP̄−1(x̂i − x̄)

x̂ = x̂N

Compute a updated covariance matrix for each iteration with the regular formula:

P̂i = P̄− P̄Hi T (HiP̄Hi T +R−1
)−1HiP̄

P̂ = P̂N

This process can either be conducted a fixed number of iterations, or until some
convergence criteria is met.

The iterative Kalman filter provides a mean for iterative refinement of the estimate,
by iteratively taking new measurements relative to the previous estimate. This can be
useful if the measurement model contains strong non-linearities, or if the measurement
values are truncated in some way. Relevant examples of measurement truncation
within image analysis are the application of finite search windows for edge-detection
and block matching. The benefits of iterative refinement does, however, come at the
cost of increased computational complexity, since both the measurements and the
Kalman update step has to be conducted over again for each iteration.

8.10 Kalman smoother

All regular Kalman filter variants incorporate all available information up until time
k when computing an estimate for time k. No information about the future, whether
available or not, is not exploited. This property makes the Kalman filter suited for
real-time applications, where data is continuously processed, but the filter might be
a sub-optimal choice in situations of post-processing data acquired in advance.

The Kalman smoother [2] solves the problem of estimating the state at time k, based
on all available information, both before and after. This form of estimation is not
a part of sequential state estimation in a strict sense, but is still included since it is
closely related to the ordinary Kalman filter, and can be useful in several situations.

It turns out that a smoothed Kalman estimate can be computed by combining the
estimates from a forward and a backwards running Kalman filter operating from time
1 to N [40]. Denoting x̂k+, P̂k+ for the forward running estimate, and x̂k−, P̂k−
for the backwards running estimate at time step k, they can be combined into a
smoothing estimate that incorporates all available knowledge as follows:

x̂k|N = ˆPk|N
(
P̂−1k−x̂k− + P̂−1k+x̂k+

)

ˆPk|N =
(
P̂−1k− + P̂−1k+

)−1
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The backwards running filter should start with infinite covariance at the terminal
time. This leads to to an unchanged estimate for the last time, while all previous
estimates are corrected to account for measurements from the future.

The Kalman smoother can be used to enforce cyclic behavior by wrapping the end of
the data series back to the beginning. It can also be used to counteract the inherent
inertia of the estimates from Kalman filters due to temporal regularization that only
pulls the estimates back in time, but not forward.



Chapter 9

Model-based image
segmentation

This chapter is intended to give a brief overview and categorization of common
approaches for image segmentation that are relevant within medical imaging. The
overview is limited to approaches based on deformable models in 3D, and focuses on
the most commonly reported approaches. For more in-depth reviews, consult some of
the excellent reviews available on model-based image analysis in general [33, 57, 58],
and the ones that are more geared towards echocardiography in specific [59, 60].

Image segmentation deals with the process of analyzing and interpreting images, with
the aim of separating the image into the different parts or structures it consists of,
referred to as segments. Within medical imaging, segments typically correspond to
specific parts of the body, such as organs, or other anatomic structures. It is very
common, although not strictly necessary in all cases, to utilize prior knowledge about
the structure of interest to guide the segmentation process, such as e.g. position,
shape, texture and motion.

Most segmentation techniques that rely on prior knowledge for image segmentation
can conceptually be decomposed into three main modules, namely deformable model,
fitting algorithm and image measurements, as is shown in Fig. 9.1. These modules
handles different parts of the processing, and their content can very widely between
the different approaches. The remaining parts of this chapter will walk through the
aspects of these modules.

9.1 Deformable models

Deformable models act as prior knowledge for the shape and geometry of the structure
being searched for. They come in many varieties, but typically incorporate some
information about the shape, size, means of deformation, and possibly texture or
boundary contrast. This information is utilized by the fitting algorithm to both guide
the search for the structure in the image, as well as regularizing the result.

43
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Figure 9.1: Relationship between the main modules involved in image segmentation
with deformable models. The fitting algorithm in the center utilizes input from the
image measurement sources to update various aspects of the deformable model.
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Figure 9.2: Categorization of some common types of deformable models.
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Fig. 9.2 shows an overview over some of the most common types of deformable models,
in a manner similar to the categorization in [57]. As shown, most types of deformable
models can be categorized as belonging in one of two main groups, namely implicit
or explicit, based on their parametrization.

Explicit models

Explicit models are models where a direct mapping from parametric model locations
to spatial surface coordinates exists, depending on model parameters. Examples of
explicit models include polygonal and higher order surfaces, such as subdivision and
radial basis-function surfaces. Explicit models can be further decomposed based on
their area of support and interpolation scheme.

Polygon and simplex meshes, spline surfaces and subdivision surfaces are character-
ized by finite support of their basis functions. This means that surface points are
only dependent on parameters corresponding to nodes in a local neighborhood of the
point, with the size of the neighborhood dependent on the interpolation degree. The
effect of any change in a surface parameter will then be constrained to only affects a
localized region of the model. The locality of the region depends on the interpolation
degree, with linear polygonal surfaces having the narrowest area of support.

Radial basis-function surface thin-plate splines [61] and superquadrics [62], however,
are examples of infinite support surfaces, where surface points are dependent on the
location of every single node that parametrize the model. Any change to a surface
parameter will then have a global effect on the entire model to some extent.

Finite support is often considered a desirable property, since it leads to more intuitive
parametrization that corresponds to the different regions of the model. The sparse re-
lationship between surface points and parametrization can also be utilized to improve
the computationally efficiency of the fitting process in many situations.

Implicit surfaces

Implicit surfaces, however, do not have a direct mapping between shape and parametriza-
tion. Examples of implicit models include level set surfaces [63], as well as various
clustering and thresholding approaches, such as for instance watershed segmentation
[64]. The lack of direct mapping between shape and parametrization has the ad-
vantage that it allows for a wider range of shapes and topologies to be represented,
compared to explicit surfaces. This includes graceful handling of large deformation,
adoption to complex geometry, handling of convoluted and self-intersecting surfaces
and changes in topology over time, all of which can pose problems for explicit surfaces.

It is, however, more difficult to incorporate prior shape knowledge into implicit sur-
faces, compared to explicit surfaces, due to the lack of direct mapping between shape
and parametrization. Adoption of implicit surfaces can also be slow, since implicit
method often require processing of the entire image volume, whereas explicit models
can be adapted by sparsely evaluating the image data in proximity of the model. One
notable exception to processing of the entire image volume is narrow-band level sets
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[65], where the computations are restricted to a thin band of image data near the
surface.

Notable differences

Implicit surfaces usually focus on features of the object interior, such as color or tex-
ture, whereas explicit models are usually more geared against features of the object
boundary, such as gradients and edges. Object are usually surrounded by clear edges
in images, that makes them stand out from their surroundings. Detection of edges
therefore provides a strategy for object detection in images, which make them de-
tectable. Most fitting algorithms for explicit models therefore utilizes edge-detection
algorithms to search for edges present in proximity to the contour. This is often done
by searching for edges in the normal direction of a predicted contour at regularly
spaced intervals. The resulting distance between contour and edge is referred to as
normal displacement [3], and can be used to update the model.

An important advantage of explicit models compared to implicit models is reduced
computational complexity, because only the object boundary needs to be examined,
and not the entire interior. This does, however, require objects with clearly present
edges, that can be used to detect the object. Together, this results in what is primarily
an edge-detection problem, instead of a region detection problem.

9.2 Deformation schemes

There are several different ways of allowing explicit models to deform. Some of the
most common ways include the following:

• Free-form deformations, where all parameters in the model are allowed to wary
freely without any constrains. A common example of free-form deformation
models previously applied to cardiac segmentation are polygon or simplex-
meshes [66, 67]. Other examples include spline or subdivision surfaces where the
coordinates of the control point grid for a spline surface are used as parameters.

• Linear subspace deformations, where the valid range of deformations fall within
a linear subspace of the allowable deformation space with free-form deforma-
tions. Active-shape models (ASM) is probably the most common type of linear
subspace deformations [10]. For ASM’s, the deformation subspace is chosen
to be the eigenvectors of the most dominant eigenvalues, based on computing
the spatial inter-point covariance between a set of reference shapes. There are
also simpler approaches to determining the deformation subspace, such as by
restricting nodes to only deform in the surface-normal direction. An other ex-
ample of linear subspace models are active appearance models (AAM) [68, 69],
that combine subspace deformations of polygonal models with matching of a
gray level texture subspace, corresponding to the object boundary.
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• More general subspace deformation, extend subspace deformations to nonlinear
manifolds [70]. This class of deformations does not suffer from the limitations
of linear functions, and can therefore better adapt to big deformations and
deformations involving rotations.

• Subspace-constrained methods, is an intermediate class where the model is reg-
ularized towards the deformation subspace instead of being strictly enforced to
the subspace [9]. This class of methods has the advantage that the predeter-
mined subspace does not need to encompass all types of deformations that can
be encountered. Segmentation can therefore still succeed when encountering
new types of heart diseases that were not present during method tuning.

9.3 Temporal properties

Analysis of image sequences over time usually do not process each frame indepen-
dently. Instead, it is common to exploit similarities between successive image frames
to guide the search and regularize the analysis process. Some of the most common
aspects of temporal modeling includes:

• Initialization of the analysis of each image frame. This can for instance be based
on the result from the previous frame.

• It is common to model temporal smoothness to achieve smooth deformations
over time and prevent unrealistic behavior such as shaking between frames.
Newtonian model with mass and damping parameters is a common way of in-
troducing temporal smoothness [71]. Temporal properties can also be modeled
as a forth dimension in the deformation pattern for subspace deformation, as is
common for active appearance models [72].

• For analysis of periodic deformations, such as the heart cycle, on can also ex-
ploit the cyclicity to assume that the net deformation after a full cycle is zero.
In addition, one can also assume a repeating deformation pattern for cardiac
segmentation, so that the phase of the cardiac cycle can be used to predict
deformation.

9.4 Fitting algorithm

There are many different types of fitting algorithms in use. The choice of fitting
algorithm depends on a combination of the model representation, the problem at hand,
the computational resources available, as well as convention and personal preference.
Most algorithms can be categorized to belong in either of the following groups:
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Iterative refinement

These methods are by large the most common group of methods, and encompass
a wide group of approaches. They are typically based on iterative minimization of
energy function that relates to the quality of the fitting. Some of the most common
approaches in this group include:

• Force-based refinement schemes for marginal update of each model parameter
until force equilibrium is reached [73]. The simplex mesh scheme [67] is a typical
example of a force-based scheme.

• Gradient descent and similar methods, like the deformable snake update scheme
[73], and in part also the active shape scheme [10]. These methods are based on
computing the local gradient of the energy function, and walk in the direction
of the gradient vector to update model parameters.

• Marginal-space refinement methods is a class of methods where only parts of
the state space is explored on each refinement iteration [26].

• Expectation-maximization algorithm [74], where the update iteration are divided
between a expectation prediction stage and a maximization fitting stage .

• Iterated Kalman filter updates, that combine Kalman fitting with iterative re-
finement to reduce the effect of non-linearities and measurement truncation [2].

Direct fitting

This group of methods are capable of fitting models to measurements directly, either
through analytic solutions or least squares approximations. Some common approaches
of this include:

• Analytic fitting methods for simple geometric shapes, such as superquadrics [62].

• Optimal fitting of a deformable contour with dynamic programming [75]. This
approach is, however, mostly relevant for 2D contours, since it does not extend
easily into 3D surfaces.

• Least squares fitting of spline surfaces.

• Kalman filter variants, such as the extended Kalman filter [5] and related infor-
mation fusion approaches [9].

Sampling-based schemes

Most direct fitting and iterative refinement methods will converge to the nearest local
minimum. More global optimal results can be accomplished by using more general
class of Bayesian estimation methods referred to as sampling-bases schemes. Such
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schemes use sequential Monte Carlo methods [14, 76] to stochastically search for a
global minimum in a more general multi-modal parameter probability distributions.

The condensation algorithm by Isard and Blake [77] uses a statistical sampling-based
scheme, known as Sampling Importance Resampling (SIR), to track deformable con-
tours in video streams. This algorithm uses edge measurements to weight the like-
lihood of each contour sample, and then randomly perturbating the most promising
samples to explore the state space. The advantage of this approach is that it is ca-
pable of tracking of several objects in a cluttered environments, where objects might
disappear and overlap. It also capable of handling several candidates for the most
likely edge in each edge profile due to its multi-modal nature. The downside of SIR
approaches is that they are very computationally intensive, due to the requirement
for propagating a large number of parallel samples in order to ensure good results.

A limitation of the basic sampling schemes is that they do not exploit any gradient
or Jacobian information to selectively steer the samples in the direction of high likeli-
hood, as is done in Kalman filtering. This can, however, be achieved by combining the
sampling scheme with a Kalman filter to compute a sample prediction distribution,
and to correct the samples based on image measurements [78].

An alternative to stochastic sampling is to use the unscented Kalman filter [15]. This
filter replaces the Jacobian calculations in the Kalman filter with a limited set of
deterministically chosen samples that are used to propagate the mean and covariance
of the state estimate. This results in better behavior for highly non-linear systems,
due to the elimination of linearized Jacobian matrices.

9.5 Image measurements

Many different types of input measurements can be used to update the models. Most
of them can, however, be categorized into the following categories:

Edge and pattern detection

Edge detection refers to the process of detecting edges in the image, that correspond-
ing to the surface of the model. This is usually accomplished by some sort of search for
strong gradients in the image, which results in measurements in absolute coordinates.
Edge detection does therefore not suffer from drift over time. It should be noted that
edge measurements are usually unable of measuring displacements along the model
surface, and does therefore not necessarily follow material points when applied over
a sequence of frames.

Pattern or texture detection is a process similar to edge detection. The difference is
that that instead of detecting positions of high gradient, it detects edges by matching
them against predefined edge patterns by means of texture matching.
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Feature tracking

Feature tracking refers to the process of tracking the movement of image features
between successive frames. This is often accomplished by means of block matching
[79], optical flow tracking [80, 81], or elastic registration [82], and gives measurements
of relative coordinates between image frames. Feature tracking measurements does
therefore suffer from drift due to cumulative buildup of error over time, which must
be counteracted by either combining them with absolute measurements, or by some
sort of temporal regularization. The advantage of feature tracking is that it follows
material points, and therefore can be used for regional strain measurement, in addition
to tracking of shape.

Attractors

Most fitting algorithms will eventually fail at some point. It is therefore common
to allow for manual adjustment to the model, based on user input to place surface
attractors to correct the model. This correction can either occur interactively during
the fitting procedure, or be incorporated as a validation and correction step after
model fitting has first been performed. Attractors might not strictly be regarded as
a type of image measurement, but they can still be treated as such by the fitting
algorithm, since they connect surface points to spatial image coordinates. Attractors
are typically considered as a strong model constraint associated with a low spatial
uncertainty, since the user will want the model to intersect his input points.

9.6 The role of regularization

Regularization plays a different role in the different modules of an image segmentation
framework. The roles act complimentary, and can together aid the segmentation
process by improving both accuracy and robustness.

Input images are usually assumed to form a smooth intensity field, except in areas
between objects, where abrupt changes are expected. Direct smoothing of the fields
or image measurements should therefore be conducted with caution. Instead, outlier
rejection should be employed to eliminate anomalies from the measurement field.
Outliers are measurement anomalies that does not follow the regular noise statistics.
They can therefore severely degrade the result if not eliminated from the processing
chain at an early stage as possible.

Usage of geometric models often impose inherent smoothness constraints. The field
of image measurements are effectively smoothed when projected into to the model.
This smoothing is, however, limited to the surface, and possible interior, of the model.
Not smoothing needs to be applied across the model surface, where no assumption of
continuity is assumed.

Temporal properties are used to regularize towards smooth behavior over time. They
can also enforce cyclicity in cases where this is relevant, such as the heart cycle.
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Subspace deformations can be used to regularize shape deformations towards physio-
logical plausible shapes, thereby avoiding or lessening the chance of unrealistic results.
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A Framework for Real-Time Left Ventricular
Tracking in 3D+T Echocardiography, Using Nonlinear

Deformable Contours and Kalman Filter Based Tracking

F Orderud

Norwegian University of Science and Technology (NTNU), Norway

Abstract

This paper presents a new framework for automatic real-time left ventricular (LV) tracking in 3D+T echocardiogra-
phy. The framework enables usage of existing biomechanical deformation models for the heart, with nonlinear modes of
deformation, combined with edge models for the endocardial boundary.

Tracking is performed in a sequential state estimation fashion, using an extended Kalman filter to recursively predict
and update contour deformations in real-time. Contours are detected using normal-displacement measurements from points
on the predicted contour, and are processed efficiently using an information-filter formulation of the Kalman filter.

Promising results are shown for LV-tracking using a truncated ellipsoid contour model, with deformation parameters
for translation, orientation, scaling and bending in all three dimensions. The tracking framework automatically detects LV
position initially, even in situations where it is partially outside the volume. It also successfully tracks the dominant motion
and shape changes throughout the heart cycle in real-time. A collection of 21 3D echocardiography recordings of good
quality demonstrates that the framework is capable of automatically identifying and tracking the left ventricle in 90% of
the recordings without any user input.

1. Introduction

There is a clinical need for real-time monitoring of cardiac function during invasive procedures
and intensive care. Real-time tracking of the left ventricle (LV) would hence be beneficial in such
situations. The last few years, 3D echocardiography has been introduced. However, no method for
real-time tracking or segmentation of such data is currently available.

Most tracking approaches in 2D echocardiography have been based on traditional deformable mod-
els as introduced by Kass [1], which facilitate free-form deformation. However, these methods tend to
be too slow for real-time applications and also have to be initialized close to the LV boundaries. The
problem can, however, be made tractable by restricting the allowable deformations to certain prede-
fined modes. This both regularizes the problem to make tracking more robust, and allows for real-time
implementations based on sequential state estimation.

This state estimation approach was first presented by Blake et al. in [2], [3] and [4], which used a
Kalman filter to track B-spline models deformed by linear transforms within a model subspace referred
to as shape space. Later, the framework was applied for real-time left ventricular tracking in long-axis
2D-echocardiography by Jacob et al. in [5], [6] and [7]. All these papers were using a B-spline
representation, deformed by a trained linear principal component analysis (PCA) deformation model.
The papers also discuss the possibility of extending the framework to 3D echocardiography, which
is what has been done in this paper. The proposed framework also allows for nonlinear modes of
deformations.



2. Methods

Contour model

The tracking framework is based on a contour deformation model. This model is a function D(...)
that transforms points on a contour template p0 into deformed points p using a state vector x as
parameter:

p = D(p0,x)

This parameterization puts very few restrictions on the allowable deformation, so virtually “any” defor-
mation model can be used, including biomechanical models. One must, however, be able to derive all
partial derivatives of the position as a function of the deformation parameters. Deformation of contour
normals also requires calculation of the spatial derivatives [8]. This approach differs from the linear
shape space deformations used by Blake and Jacob [2],[3],[4],[5], [6] and [7], where all deformations
had to be linear in the state vector.

Pursuing the approach by Park et al. [9] we use a truncated ellipsoid as contour template in this
paper, and allow for the following deformation parameters:
• Translation (tx, ty, tz).
• Scaling (sx, sy, sz).
• Rotation/orientation (rx, ry).
• Bending/curving (cx, cy).
In total, these parameters form the state vector below.

x =
[
tx ty tz sx sy sz rx ry cx cy

]T
Kinematic model

To enable modeling of motion in addition to position, the state vector is augmented to contain the
last two successive state estimates [3]. The kinematic model for the predicted state x̄ at timestep k + 1
then becomes:

x̄k+1 = A1x̂k + A2x̂k−1 + B0wk

Tuning of kinematic properties like damping, regularization and prediction uncertainty for all defor-
mation parameters can now be accomplished by adjusting the coefficients in matrices A1, A2 and
B0.

Edge measurements

Edge measurements are used to guide the contour towards the object being tracked. This is per-
formed by measuring the distance between contour points and measured edges in normal direction,
called normal displacement [4], for points along a predicted contour inferred from the measurement
model.

The normal displacement between a predicted contour point p with associated normal vector n and
a measured edge point pobs is:

v = nT(pobs − p)
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Figure 1. Normal displacement measurements along normal vectors of a predicted contour.

This inner-product form is dimensionally invariant, thus function just as good for measurements in
3D-data as 2D. The associated measurement noise r can either be constant for all edges, or dependent
on edge-strength or other measure of uncertainty.

Edge model

The high levels of noise and speckle in ultrasound recordings makes edge detection difficult. Ro-
bust edge detectors that minimize the chance of detecting spurious edges in noisy areas are therefore
desired.

An edge-model that exhibits robust characteristics is the step model [10]. This model assumes edges
to form a transition in image intensity, for one plateau to another, and calculates the edge position that
minimizes the sum of squared errors between the model and the data.
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Figure 2. Overview over the contour deformation and edge measurement process. The figure shows
how points on the initial contour p0, n0 are first deformed using a predicted state x̄, yielding a de-
formed contour p, n and measurement vector h. Edges are then measured relative to the predicted
contour, resulting in normal displacements v with associated measurement error variances r.

Measurement linearization

Normal displacement measurements can be used as measurement model in a Kalman filter model
for the tracking problem. This is possible by linearizing the nonlinear deformation model around the
predicted deformation state and using an extended Kalman filter [11] implementation. Altogether, this
results in a measurement vector h that is based on the state-space Jacobian of the measurement model,
meaning all partial derivatives of contour position with regard to all state dimensions, evaluated at the
predicted state.

The linearized measurement vector then becomes the normal vector projection of the Jacobian ma-



trix:

hT ≡ nT∂D(p0,x)
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Figure 3. Overall framework structure.

Measurement processing

Assumption of independent measurements allows measurements to be summed together efficiently
in information space [11], since independent measurements lead to diagonal measurement covariance
matrices. All measurement information can then be summed into an information vector and matrix of
dimensions invariant to the number of measurements:

HTR−1v =
∑

i hir
−1
i vi

HTR−1H =
∑

i hir
−1
i hT

i

This is the same form as was used in [4].

Measurement update equations

Contour tracking forms a special problem structure, since the number of measurement typically
far exceed the number of state dimensions. Ordinary Kalman gain calculation will then be compu-
tationally intractable, since they involve inverting matrices with dimensions equal to the number of
measurements. An alternative approach, presented by Blake and Isard in [4], avoids this problem by
altering the measurement update step in the Kalman filter. This is accomplished by utilizing that the
Kalman gain Kk ≡ P̂kH

TR−1, and reformulating to account for measurements on information filter
[11] form. The updated state estimate x̂ for timestep k then becomes:

x̂k = x̄k + Kkvk

x̂k = x̄k + P̂k(H
TR−1vk)

Measurement innovations are here efficiently summed into a measurement vector with dimension equal
to the state dimension.

The error covariance update equations can similarly be performed in information space to avoid
inverting large matrices:

P̂−1
k = P̄−1

k + HTR−1H

This form only requires inversion of matrices with dimensions equal to the state dimension.



3. Results

A collection of 21 apical 3D-echocardiography recordings served as independent validation of the
method. The same configuration were used for all recordings, with an initial LV contour automatically
placed at a depth of approximately 80mm in the first frame as shown in figure 4. The tracking was then
run for a couple of heartbeats to give the contour enough time to lock on to the LV.

The experiments were performed using an LV-contour consisting of 426 contour points. Edge de-
tection was performed in the normal direction of each of these points, using 20 samples spaced 1mm
apart. Real-time tracking in 25fps 3D echocardiography datasets yielded a modest CPU load of ap-
proximately 18%1.

The results are summarized in table 1. One can see that the tracking was performed with subjectively
good or adequate quality in 90% of the 21 recordings present in the dataset. Figure 5 and 6 shows
examples of good tracking in an ordinary recording, and a recording with apex outside the volume.
Figure 4 shows the initial contour used in all recordings, as well as the contour after tracking for a
couple of heartbeats.

Quality Count Description

Good 16 Tracking performed well.

Adequate 3 Tracking with reduced accuracy.

Fair 1 Tracking with low accuracy.

Poor 1 Unable to automatically track

Table 1. Overall performance of the automatic tracking. Subjectively scored by the author.

Figure 4. Azimuth view of the initial contour (left), and tracking results after the contour has locked
on the LV after a couple of heartbeats (right).

4. Discussion and conclusions

A novel framework for real-time contour tracking in 3D echocardiography using sequential state
estimation has been proposed. The framework builds upon previous work by Blake et al. [4], and
enables tracking of of deformable contours with nonlinear modes of deformation. The feasibility of
the framework has been demonstrated by automatic tracking in several recordings using a truncated

1The tracking were then performed using a C++ implementation on a 3GHz Intel Pentium 4 processor. Visualization were disabled for
CPU benchmarking.



Figure 5. Azimuth and elevation view of a recording with good tracking.

Figure 6. Azimuth and elevation view of tracking when LV is partially outside the volume.

ellipsoid model. The tracking framework was found to automatically detect LV position initially, even
in situations where the LV is partially outside the acquired volume.

It can be argued that the evaluation procedure performed is too subjective and should have been
performed by a medical clinician. However, the principal objective was not to get an accurate seg-
mentation of the LV suitable for clinical diagnosis, but merely to demonstrate the ability to track the
dominant motion and shape changes throughout the heart cycle. Further research will focus on per-
fecting the method, and striving towards tracking that is both robust and accurate.

Traditional free-form deformation models are not capable of operating in real-time in volumetric
data. The proposed framework instead sacrifices accuracy for the capability of automatic real-time
tracking within a limited shape space. This limited shape space also serves to regularize the problem,
thus making tracking more robust.

The general deformation formulation also places few restrictions on the modes of deformations
allowed. It is therefore believed that the truncated ellipsoid model can be replaced with a more realistic
biomechanical model for the LV. This is likely to yield better model fitting to the data, and hence
improve tracking accuracy.
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Abstract. In this paper we present a framework for real-time track-
ing of deformable contours in volumetric datasets. The framework sup-
ports composite deformation models, controlled by parameters for con-
tour shape in addition to global pose. Tracking is performed in a se-
quential state estimation fashion, using an extended Kalman filter, with
measurement processing in information space to effectively predict and
update contour deformations in real-time. A deformable B-spline surface
coupled with a global pose transform is used to model shape changes of
the left ventricle of the heart.

Successful tracking of global motion and local shape changes without user
intervention is demonstrated on a dataset consisting of 21 3D echocar-
diography recordings. Real-time tracking using the proposed approach
requires a modest CPU load of 13% on a modern computer. The seg-
mented volumes compare to a semi-automatic segmentation tool with
95% limits of agreement in the interval 4.1 ± 24.6 ml (r = 0.92).

1 Introduction

The emergence of volumetric image acquisition within the field of medical imag-
ing has attracted a lot of scientific interest over the last years. In a recent survey,
Noble et al . [1] presented a review of the most significant attempts for automatic
segmentation within the field of ultrasonics. However, all of these attempts are
limited to being used as postprocessing tools, due to extensive processing re-
quirements, even though volumetric acquisition may be performed in real-time
with the latest generation of 3D ultrasound technology. Availability of technol-
ogy for real-time tracking and segmentation in volumetric datasets would open
up possibilities for instant feedback and diagnosis during data acquisition. Au-
tomatic tracking of the main chamber of the heart, the left ventricle (LV), would
here serve as an excellent application.
Orderud [2] recently presented a tracking approach that allows for real-time

tracking of rigid bodies in volumetric datasets. The approach treats the tracking
problem as a state estimation problem, and uses an extended Kalman filter to



recursively track global pose parameters using a combination of state predic-
tions and measurement updates. Experimental validation of LV tracking in 3D
echocardiography, using a simple truncated ellipsoid model, was performed to
demonstrate the feasibility of the approach.
This state estimation approach is based on prior work by Blake et al . [3, 4],

who used a Kalman filter to track B-spline contours deformed by linear trans-
forms within a model subspace referred to as shape space. Later, the same ap-
proach was applied to real-time LV tracking in 2D echocardiography by Jacob
et al . [5–7]. All these papers did, however, lack a separation between global pose
and local shape. They were also restricted to linear deformations, such as prin-
cipal component analysis deformation models, and to tracking in 2D datasets.
This paper extends [2] to support contours with composite deformation mod-

els, consisting of both local shape changes and global pose. We also propose to
use a 3D B-spline surface model to circumvent the limitations of rigid ellipsoidal
models for LV tracking. This model is coupled with a global pose transform, and
successful LV tracking in 3D echocardiography is demonstrated.
This model somewhat resembles the deformable superquadrics model [8], and

a 3D active shape model [9], but is spline-based, and allows for free-form shape
deformations [10] by letting the control points move independently perpendicular
to the surface.

2 Deformable Contour

The tracking framework is based upon a contour deformation model T, which
is decomposed into local deformations and global transformations. Local shape
deformations are used to alter contour shape, by deforming points on a shape
template p0 into intermediate contour shape points pl, using a local shape de-
formation model Tl with local state vector xl as parameters:

pl = Tl(p0,xl) . (1)

The intermediate contour shape points pl are subsequently transformed into
final contour points p, using a global pose transformation model Tg with global
state vector xg as parameters:

p = Tg(pl,xg) . (2)

A composite deformation model T is then constructed by combining local
and global deformations of shape template points into a joint model, as shown
in Fig. 1. This yields a composite state vector x ≡ [

xTg , x
T
l

]T
consisting of

Ng global and Nl local deformation parameters. Calculation and propagation of
associated contour normals n through T must also be performed, since they are
required to specify the search direction for the later edge-detection.
This separation between local and global deformations is intended to ease

modeling, since changes in shape are often parameterized differently compared
to deformations associated with global position, size and orientation. It also
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Fig. 1. Overview over the contour deformation and transformation process: The shape
template p0,n0 is first deformed locally into pl,nl, followed by a global transformation
into the final contour p,n.

puts very few restrictions on the allowable deformations, so a wide range of
parameterized deformation models can be used, including nonlinear models, as
opposed to previous shape space models that are limited to linear deformations.

3 Tracking Framework

The proposed tracking framework follows the processing chain of the Kalman
filter, starting by predicting contour state using a motion model (section 3.1).
The shape template is subsequently deformed to form a predicted contour, and
associated normal vectors and state-space Jacobi matrices are computed (section
3.2). Edge detection is then performed locally along the normal vectors. Finally,
all measurement information is assimilated in information space [11], and com-
bined with the predicted contour to compute an updated contour state estimate
(section 3.3). Figure 2 shows an overview over these steps.
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Fig. 2. (a) Overview of the tracking scheme. (b) Illustration of how points on the shape
template p0, n0 are first deformed using a predicted state x̄, yielding a deformed
contour p, n and measurement vector h. Edges are then measured relative to the
predicted contour, resulting in normal displacements v with associated measurement
error variances r. The edge measurements are finally assimilated into an information
vector and matrix for efficient processing.



3.1 Motion Model

Modeling of motion, in addition to position, is accomplished in the prediction
stage of Kalman filter by augmenting the state vector to contain the last two
successive state estimates. Amotion model which predicts the state x̄ at timestep
k + 1, is then expressed as:

x̄k+1 − x0 = A1(x̂k − x0) +A2(x̂k−1 − x0) , (3)

where x̂k is the estimated state from timestep k. Tuning of properties like damp-
ing and regularization towards the mean state x0 for all deformation parameters
can then be accomplished by adjusting the coefficients in matrices A1 and A2.
Prediction uncertainty can similarly be adjusted by manipulating the process
noise covariance matrix B0 used in the associated covariance update equation.
The latter will then restrict the change rate of parameter values.

3.2 Edge Measurements

Processing of edge measurements using an extended Kalman filter [12] requires
state-space Jacobi matrices to relate changes in contour point positions to changes
in contour state. Separate Jacobi matrices for each contour point must therefore
be calculated. The choice of composite deformations leads to state-space Jacobi
matrices consisting of two separate parts, namely of global and local derivatives:

∂T(p0,x)i
∂x

≡
[
∂Tg(pl,xg)i

∂xg
,

∑
n∈x,y,z

∂Tg(pl,xg)i
∂pl,n

∂Tl(p0,xl)n
∂xl

]
. (4)

The global Jacobian becomes a 3×Ng matrix, while the Jacobian for the local
shape deformations becomes the product of a 3 × 3 matrix by a 3 ×Nl matrix
using the chain rule for multivariate calculus.
Edge detection is performed by measuring the distance between points pi on

a predicted contour inferred from the motion model, and edges pobs,i detected
by searching in normal direction ni of the contour surface. This type of edge
detection is referred to as normal displacement [4], and is calculated as follows:

vi = nTi (pobs,i − pi) . (5)

Each normal displacement measurement is coupled with a measurement noise
value ri that specifies the uncertainty associated with the edge, which may either
be constant for all edges, or dependent on edge strength, or other measure of
uncertainty.
Linearized measurement models [12], which are required in the Kalman filter

for each edge measurement, are constructed by transforming the state-space
Jacobi matrices the same way as the edge measurements, namely by projecting
them onto the normal vector:

hTi = nTi
∂T(p0,x)i

∂x
. (6)

This yields a separate measurement vector hi for each normal displacement
measurement, to relate normal displacements to changes in contour state.



3.3 Measurement Assimilation and State Update

Contour tracking forms a special problem structure, since the number of mea-
surements far exceeds the number of state dimensions. Ordinary Kalman gain
calculations then becomes intractable, since they involve inverting matrices of
dimensions equal to the number of measurements. An alternative approach is
to assimilate measurements in information space prior to the state update step.
This enables very efficient processing if we assume that measurements are inde-
pendent. All measurement information can then be summed into an information
vector and matrix of dimensions invariant to the number of measurements:

HTR−1v =
∑

i hir
−1
i vi (7)

HTR−1H =
∑

i hir
−1
i hTi . (8)

Measurements in information filter form require some alterations to the state
update step in the Kalman filter. This can be accomplished by using the infor-
mation filter formula [11] for the updated state estimate x̂ at timestep k:

x̂k = x̄k + P̂kHTR−1vk . (9)

The updated error covariance matrix P̂ can similarly be calculated in informa-
tion space to avoid inverting matrices with dimensions larger than the state
dimension:

P̂−1k = P̄−1k +HTR−1H . (10)

4 Experiments

We used a quadratic B-spline surface consisting of 24 control points arranged
in a prolate spheroid grid as a LV model. Shape deformations were enabled by
allowing the control points to move perpendicularly to the surface. This was
combined with a global model for translation and scaling in three dimensions, as
well as rotation around two of the axes. In total, this resulted in a deformation
model consisting of 32 parameters. Edge detection was performed in the normal
direction of approximately 450 contour points distributed evenly over the surface,
using 30 samples spaced 1 mm apart. A simple edge detector based upon the
transition criterion with variable height [13] is used to determine the position
of the strongest edge along each normal. This detector assumes edges to form a
transition in image intensity, from a dark cavity to a bright myocardium, and
calculates the edge position that minimizes the sum of squared errors between
a transition model and the data. Weak and outlier edges were automatically
rejected to improve robustness.

4.1 Results

A collection of 21 apical 3D echocardiography recordings of adult patients, of
which half were diagnosed with heart diseases, were used to validate the method.



The recordings were acquired with a Vivid 7 scanner (GE Vingmed Ultrasound,
Norway), using sub-volume stitching to form a contiguous wide-angle recording
of the LV. The exact same tracking configuration was used for all recordings,
with an initial LV contour placed at a predefined position in the first frame. The
tracking were then run for a couple of heartbeats to give the contour enough
time to lock on to the LV. Tracking accuracy was evaluated by comparing the
segmentations with the results from a custom-made semiautomatic segmentation
tool (GE Vingmed Ultrasound), that facilitates manual editing. The reference
segmentations were validated and, if needed, edited by an expert operator.
Figure 3 shows the overall volume correspondence throughout the cardiac

cycle, for all frames in all of the 21 recordings. Bland-Altman analysis of the
volume points in Fig. 3(a) yields a 4.1 ml bias, with 95% limits of agreement in
the interval 4.1±24.6 ml, and a strong correlation (r = 0.92). The average point
to surface distance between the contour and the reference surfaces was 2.7 mm.
The volume curves were usually very similar in shape compared to the refer-

ence method. However, some per-recording bias was seen. This is illustrated in
Fig. 3(b), where each volume curve is more or less parallel to the identity line,
but have different offset. If we subtract the ’per-recording’ bias from each volume
curve, the limits of agreement is improved to ±11.0 ml, indicating that much of
the disagreement stems from the varying bias from recording to recording.
Figure 4 shows the intersection between the segmented contour and several

slices throughout the volume in one of the recordings, as well as a plot of the
volume of the segmented contour throughout the cardiac cycle.
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Fig. 3. Bland-Altman plot for the overall correspondence between automatically real-
time segmented volumes and the reference (a), along with the mean volume difference
(solid) and 95% limits of agreement (dashed). Associated volume correlation plot (b),
where segmented volume curves from each recording is compared to the reference and
shown as separate lines, along with the identity line (dashed).



Fig. 4. Example of successful real-time tracking, showing intersections between the
segmented contour and several slices through the volume, as well as a plot of the
volume of the segmented contour for one cardiac cycle.

The CPU load required to maintain real-time segmentation at 25 frames per
second (fps) was approximately 13% when visualization was disabled4.

5 Discussion and Conclusion

A novel framework for real-time tracking of deformable contours in volumetric
datasets using a state estimation approach has been proposed. It extends prior
work [2] by enabling tracking of contours with both local and global modes of de-
formation, both of which may be nonlinear. Compared to traditional deformable
model based segmentation methods, the non-iterative Kalman filter algorithm
leads to outstanding computational performance.
The feasibility of real-time LV tracking in 3D echocardiography has been

demonstrated by successful tracking and segmentation in 21 recordings using a
quadratic B-spline model coupled to a global pose transform. This represents
a significant improvement over [2], that solely tracked chamber position, orien-
tation and size, using an ellipsoid model, and were thus inherently unable of
segmenting shape changes of the LV. The framework is well suited for rapid
analysis of LV volumes and global function, since it operates without user inter-
action. Other applications, like patient monitoring, and automatic initialization
of other methods are also possible.
Tracking accuracy is primarily limited by the difficulty of edge detection in

echocardiography recordings, which suffers from inherently poor image quality.
4 The experiments were performed using a C++ implementation on a 2.16 GHz Intel

Core 2 duo processor.



It is in fact difficult, even for experts, to accurately determine the endocardial
border in such recordings. Replacement of the simplistic transition criterion with
a more advanced edge-detector, specifically designed for the ultrasound modal-
ity, is therefore believed to give better tracking accuracy.

Acknowledgment: The authors would like to thank Brage Amundsen at the
Norwegian University of Science and Technology for providing the 3D echocar-
diography datasets.
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Abstract. We present a fully automatic real-time algorithm for robust
and accurate left ventricular segmentation in three-dimensional (3D) car-
diac ultrasound. Segmentation is performed in a sequential state esti-
mation fashion using an extended Kalman filter to recursively predict
and update the parameters of a 3D Active Shape Model (ASM) in real-
time. The ASM was trained by tracing the left ventricle in 31 patients,
and provided a compact and physiological realistic shape space. The
feasibility of the proposed algorithm was evaluated in 21 patients, and
compared to manually verified segmentations from a custom-made semi-
automatic segmentation algorithm. Successful segmentation was achieved
in all cases. The limits of agreement (mean±1.96SD) for the point-to-
surface distance were 2.2±1.1 mm. For volumes, the correlation coeffi-
cient was 0.95 and the limits of agreement were 3.4±20 ml. Real-time
segmentation of 25 frames per second was achieved with a CPU load of
22%.

1 Introduction

Left ventricular (LV) volumes and ejection fraction (EF) are among the most
important parameters in diagnosis and prognosis of heart diseases. Recently, real-
time three-dimensional (3D) echocardiography was introduced. Segmentation of
the LV in 3D echocardiographic data has become feasible, but due to poor image
quality, commercially available tools are based upon a semi-automatic approach
[1,2]. Furthermore, most reported methods are using iterative and computation-
ally expensive fitting schemes. These factors make real-time segmentation in 3D
cardiac ultrasound challenging.
Prior work by Blake et al. [3,4] and Jacob et al. [5,6], have shown that a

state estimation approach is well suited for real-time segmentation in 2D im-
agery. They used a Kalman filter, which requires only a single iteration, to track
the parameters of a trained deformable model based on principal component
analysis (PCA), also known as Active Shape Models (ASMs) [7]. ASMs can be
trained on manually traced LV contours, resulting in a sub-space of physiologi-
cally probable shapes, effectively exploiting expert knowledge of the LV anatomy



and function. For segmentation of 3D cardiac data, Van Assen et al. [8] intro-
duced the 3D ASM. However, there are to our knowledge no reports of real-time
implementations of 3D ASMs.
Based on the work in [3,4,5,6], real-time LV segmentation of 3D cardiac

ultrasound was recently introduced by Orderud [9]. He used an extended Kalman
filter for robust tracking of a rigid ellipsoid LV model. Later this framework has
been extended to use a flexible spline-based LV model coupled with a global
pose transform to improve local segmentation accuracy [10]. However, expert
knowledge of LV anatomy could not be modeled directly.
To utilize expert knowledge of LV anatomy during segmentation, we propose

to use a 3D ASM for real-time segmentation of 3D echocardiograms, by extending
the framework described in Orderud [9]. The 3D ASM, trained on LV shapes
traced by an expert, gives a compact deformable model which is restricted to
physiologically realistic shapes. This model is fitted to the target data in real-
time using a Kalman filter. The feasibility of the algorithm is demonstrated
in 21 patients, where we achieve real-time segmentation of the LV shape, and
instantaneous measurements of LV volumes and EF.

2 Shape Model

A set of 496 triangulated LV training meshes were obtained from 31 patients
using a custom-made segmentation tool (GE Vingmed Ultrasound, Norway).
The training tool provides manual editing capabilities. When necessary, the user
hence did manual editing of the segmentation to make it equivalent to manual
tracing.
Building the ASM requires pair-wise point correspondence between shapes

from different patients [7,8]. We developed a reparametrization algorithm for
converting triangulated LV training shapes into quadrilateral meshes. This al-
gorithm produced meshes with 15 longitudinal and 20 circumferential segments,
with vertices approximately identifying unique anatomical positions. The meshes
were aligned separately to remove trivial pose variations, such as scaling, trans-
lation and rotation.
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Fig. 1. A point p(x) on the ASM is generated by first applying a local transformation
Tl described by the ASM state vector xl on the mean shape, followed by a global pose
transformation Tg to obtain a shape in real-world coordinates.



From the aligned training set, the mean vertex position qi was computed,
and PCA was applied on the vertex distribution to obtain the Nx most dominant
eigenvectors. In normalized coordinates, the ASM can be written on the form

qi(xl) = qi +Ai xl , (1)

where the position of a vertex qi is expressed as a linear combination of the
associated subspace of the Nx most dominating eigenvectors combined into the
3 × Nx deformation matrix Ai. Here, xl is the local state vector of the ASM.
The expression for the ASM can be optimized assuming that the deformation
at vertex qi is primarily directed along the corresponding surface normal ni of
the average mesh. This is done by projecting the deformation matrix Ai onto
the surface normal, giving an Nx-dimensional vector of projected deformation
modes A⊥i = nTi Ai. The optimized expression for the ASM can now be written
on the form

qi(xl) = qi + ni (A⊥i xl) , (2)

reducing the number of multiplications by a factor of three.
Due to the quadrilateral mesh structure of the ASM, a continuous surface

is obtained using a linear tensor product spline interpolant. An arbitrary point
on the ASM in normalized coordinates can be expressed as pl(xl) = Tl|(u,v)
where (u, v) represents the parametric position on the surface, and the local
transformation Tl includes the deformation and interpolation applied to the
mean mesh. By coupling this model with a global pose transformation Tg with
parameters xg including translation, rotation, and scaling, we obtain a surface

p(x) = Tg(pl(xl),xg) (3)

in real-world coordinates, with a composite state vector xT ≡ [
xTg , x

T
l

]
. An

illustration showing the steps required to generate the ASM is shown in Fig. 1.
In our experiments we used 20 eigenvectors, describing 98% of the total variation
within the training set.

3 Tracking Algorithm

The tracking algorithm extends prior work by Orderud [9,10], to enable usage of
3D ASMs in the Kalman filter for real-time segmentation. This is accomplished
by using the ASM shape parameters xl directly, in addition to the global pose
parameters xg, in the Kalman filter state vector.

3.1 Motion Model

Modeling of motion in addition to position can be accomplished in the prediction
stage of the Kalman filter by augmenting the state vector to contain the last two



successive state estimates. A motion model which predicts the state x̄ at timestep
k + 1, is then expressed as

x̄k+1 − x0 = A1(x̂k − x0) +A2(x̂k−1 − x0) , (4)

where x̂k is the estimated state from timestep k. Tuning of properties, like damp-
ing and regularization towards the mean state x0 for all deformation parameters,
can then be accomplished by adjusting the coefficients in matrices A1 and A2.
Prediction uncertainty can similarly be adjusted by manipulating the process
noise covariance matrix B0 used in the associated covariance update equation.
The latter will then restrict the change rate of parameter values.

3.2 Measurement Processing

Edge-detection is based on normal displacement measurements vi [4], which are
calculated by measuring the radial distance between detected edge-points pobs,i
and the contour surface pi along selected search normals ni. These displacements
are coupled with associated measurement noise ri to weight the importance of
each edge, based on a measure of edge confidence. Measurement vectors are
calculated by taking the normal projection of the composite state-space Jacobian
for the contour points

hTi = nTi

[
∂Tg(pl,xg)i

∂xg

∂Tg(pl,xg)i
∂xl

]
, (5)

which is the concatenation of a global and a local state-space Jacobi matrix.
The global Jacobian is trivially the state-space derivative of the global pose
transformation, while the local Jacobian has to be derived, using the chain-rule
for multivariate calculus, to propagate surface points on the spline through mesh
vertices, and finally to the ASM shape parameters:

∂Tg(pl,xg)
∂xl

=
∑

n∈x,y,z

∂Tg(pl,xg)
∂pl,n

∑
j∈1..Nq

(
∂Tl(xl)n

∂qj
· n̄k

)
A⊥j . (6)

Here, ∂Tg(pl,xg)/∂pl is the spatial derivative of the global transformation, and
∂Tl(xl)/∂qj is the spatial mesh vertex derivative of the spline interpolant.

3.3 Measurement Assimilation and State Update

All measurements are assimilated in information space prior to the state update
step. Assumption of independent measurements leads to very efficient processing,
allowing summation of all measurement information into an information vector
and matrix of dimensions invariant to the number of measurements:

HTR−1v =
∑

i hir
−1
i vi (7)

HTR−1H =
∑

i hir
−1
i hTi . (8)



The updated state estimate x̂ at timestep k can then by computed by using
the information filter formula for measurement update [11], and the updated
error covariance matrix P̂ is calculated directly in information space:

x̂k = x̄k + P̂kHTR−1v (9)

P̂−1k = P̄−1k +HTR−1H . (10)

Using this form, we avoid inversion of matrices with dimensions larger than the
state dimension.

4 Evaluation

4.1 Data Material

For evaluation of the proposed algorithm, apical 3D echocardiograms of one
cardiac cycle from 21 adult patients (11 diagnosed with heart disease) were
recorded using a Vivid 7 scanner (GE Vingmed Ultrasound, Norway) with a
3D transducer (3V). In all patients, meshes corresponding to the endocardial
boundary were determined using a custom-made semi-automatic segmentation
tool (GE Vingmed Ultrasound, Norway). The segmentations were, if needed,
manually adjusted by an expert to serve as independent references equivalent to
manual tracing.

4.2 Experimental Setup and Analysis

Edge measurements were done perpendicular to the mesh surface within a dis-
tance of ±1.5 cm to the surface at approximately 450 locations, using a simple
edge model based on the transition criterion [12]. The ASM was initialized to
the mean shape, and positioned in the middle of the volume in the first frame.
Segmentation was performed on the evaluation set by running the algorithm for
a couple of heartbeats, to give the ASM enough time to lock on to the LV.
The accuracy of the ASM was assessed using the mean of absolute point-to-

mesh distances between the ASM and the reference, averaged over one cardiac
cycle. Volume differences (bias) between the ASM and the reference were calcu-
lated for each frame. End-diastolic volume (EDV), end-systolic volume (ESV),
and EF ((EDV− ESV)/EDV·100%) were compared to the manually verified ref-
erence (two-tailed t-test assuming zero difference), with 95% limits of agreement
(1.96 standard deviations (SD)). EDV and ESV were computed as the maximum
and minimum volume within the cardiac cycle respectively.

5 Results

We observed that common challenges with 3D cardiac ultrasound, such as drop-
outs, shadows, and speckle noise were handled remarkably well, and segmentation
was successful in all of the 21 patients. Some examples are shown in Fig. 2(b-d).
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Fig. 2. LV volumes obtained by the ASM (VASM) in all 21 patients is compared to the
reference (Vref) and shown with the identity line (dashed) in (a). In (b-d), the end-
diastolic segmentation (yellow) in three patients is compared to the reference (red) and
shown along with the volume curve for one cardiac cycle.

The limits of agreement (mean±1.96SD) for the point-to-surface distance
were 2.2±1.1 mm, indicating good overall agreement between the ASM and the
reference. From Tab. 1, column 2, we see that the limits of agreement for volumes

Table 1. Segmentation results showing ASM versus reference.

Volume [ml] EDV [ml] ESV [ml] EF [%]

Difference (mean±1.96SD) 3.4∗±20 -5.9∗±21 6.2∗±19 -7.7∗±12
Correlation coeff. (r) 0.95 0.91 0.91 0.74

* Significantly different from 0, p<0.05.



were 3.4±20 ml, with a strong correlation (r=0.95). The volume correspondence
between the ASM and the reference is shown in Fig. 2(a).
We also found a strong EDV correlation (r=0.91), with a bias and 95% limits

of agreement of -5.9±21 ml (Tab. 1, column 3). The correlation in ESV was 0.91,
with limits of agreement of 6.2±19 ml, (Tab. 1, column 4), while the correlation
in EF was 0.74, with limits of agreement of -7.7±12% (Tab. 1, column 5).
The CPU load required to maintain real-time segmentation at 25 frames per

second (fps) was approximately 22% on a 2.16 GHz Intel Core 2 Duo processor.

6 Discussion

We have presented a fully automatic real-time algorithm for robust and accurate
LV segmentation in 3D cardiac ultrasound. This was achieved by combining a
3D ASM with a Kalman filter based tracking algorithm. The feasibility of the
algorithm was demonstrated in 21 patients.
Computational performance was excellent with a CPU load of 22% at 25

fps. Compared to traditional ASM update schemes, the Kalman filter gives good
segmentation in a single iteration, allowing real-time implementations.
Contours detected by the ASM showed good overall agreement with the ref-

erence shapes, both with respect to point-to-mesh distances and volumes. There
was a significant bias in estimated EDV, ESV, and EF, but with relatively nar-
row 95% limits of agreement. We speculate if the bias is primarily caused by
the simple edge detector used, and better results are expected using a more ad-
vanced edge detector. Robustness was high in the evaluation set, with successful
segmentation in all patients.
Since no user-interaction is required, the algorithm provides rapid analysis

of LV function, and it can potentially provide higher reproducibility than semi-
automatic methods. Adding means of manual corrections when segmentation
fails will be subject for further studies.
The algorithm was evaluated on a population with varying image quality,

but for evaluation of clinical applicability, the algorithm must be tested on a
larger population. Also, an inherent challenge when using ASMs for clinical ap-
plications, is that care must be taken when assembling the training set to ensure
inclusion of a sufficiently wide range of pathologies.
Traditional applications where our algorithm fits well includes rapid analy-

sis of LV volumes, EF, and regional function. With real-time segmentation, we
expect new applications to emerge, such as patient monitoring, and automated
operator guidance.

7 Conclusion

We have developed a fully automatic algorithm for real-time segmentation of the
left ventricle in 3D cardiac ultrasound. Initial evaluation in 21 patients is very
promising, suggesting that this method is applicable in a clinical setting.
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Abstract

In this paper, we extend a computationally efficient framework for real-time 3D tracking and seg-
mentation to support deformable subdivision surfaces. Segmentation is performed in a sequential state-
estimation fashion, using an extended Kalman filter to estimate shape and pose parameters for the sub-
division surface. As an example, we have integrated Doo-Sabin subdivision surfaces into the framework.
Furthermore, we provide a method for evaluating basis functions for Doo-Sabin surfaces at arbitrary
parameter values. These basis functions are precomputed during initialization, and later used during
segmentation to quickly evaluate surface points used for edge detection.

Fully automatic tracking and segmentation of the left ventricle is demonstrated in a dataset of 21
3D echocardiography recordings. Successful segmentation was achieved in all cases, with limits of
agreement (mean±1.96SD) for point to surface distance of 2.2±0.8 mm compared to manually verified
segmentations. Real-time segmentation at a rate of 25 frames per second consumed a CPU load of 8%.

1. Introduction
The emergence of volumetric image acquisition within the field of medical imaging has attracted a

lot of scientific interest over the last years. In a recent survey, Noble et al. [1] presented a review of

the most significant attempts for 3D segmentation within the field of ultrasonics. However, all of these

attempts are limited to being used as post processing tools, due to extensive processing requirements,

even though volumetric acquisition may be performed in real-time with the latest generation of 3D

ultrasound technology. Availability of technology for real-time tracking and segmentation in volumetric

data sets would open up possibilities for instant feedback and diagnosis during data acquisition.

Orderud et al. has recently presented a framework for real-time tracking and segmentation in volu-

metric data [2]. This framework treats the tracking problem as a state estimation problem, and uses an

extended Kalman filter to recursively track global pose and local shape parameters using a combination

of state predictions and measurement updates. In [2], a deformable spline model was used to track left

ventricular (LV) shape segmentation 3D echocardiography. Later, in [3] the framework was combined

with a trained active shape model with predefined deformation modes to improve segmentation accuracy.

1



This state estimation approach is based on prior work by Blake et al. [4] in 2D, who used a Kalman

filter to track B-spline contours deformed by linear transforms within a model subspace referred to as

shape space. Later, the same approach was applied to real-time LV tracking in 2D echocardiography

by Jacob et al. [5]. Similar efforts have later been published by Comaniciu er al. [6], who focused on

the information fusion problem encountered in state-space tracking. A state-based approach for cardiac

deformation analysis has also recently been published by Liu & Shi in [7].

Usage of spline models for shape segmentation does, however, imply some inherent topological re-

strictions, since the control vertices of a spline surface are restricted to form a regular quadrilateral

structure. The LV model in [2] were for instance based on a cylindrical topology, with a hole at both

the apex and base that required ad-hoc steps to form a closed surface. Polygonal models coupled with

subspace deformation [3] does not suffer from any of these topological restrictions, but instead requires

much higher mesh resolution in order to form smooth surfaces, which implies higher computational

complexity and a more complex surface description.

1.1. Contributions

In this paper, we extend the Kalman tracking framework from [2] to support a wider class of smooth

deformable surfaces known as subdivision surfaces [8, 9], that generalize spline surfaces to support

meshes of arbitrary topology. This allows for more flexible modeling of arbitrary mesh structures, with-

out the inherent topological restrictions associated with spline surfaces. We focus on a specific type of

subdivision surfaces known as Doo-Sabin surfaces, which have some properties that make them suitable

for low resolution cardiac modeling. Details for exact evaluation of surface points, as well as partial

derivatives, for Doo-Sabin subdivision surfaces is also presented, to provide a means of evaluating basis

functions for arbitrary surface points required for the edge detection process.

A low resolution Doo-Sabin subdivision model is then used to model the left ventricle of the heart.

This model has adjustable control vertices to allow alteration of the shape, and is coupled with a global

pose transform to position and orient it within the volume. Successful real-time LV segmentation in 3D

echocardiography is finally demonstrated using the proposed subdivision model in conjunction to the

Kalman filter based tracking framework.

1.2. Nomenclature

Scalars are expressed in italic, vectors in boldface and matrices in uppercase boldface. Control vertices

are denoted ’q’, displacement directions ’d’, surface points ’p’ and surface normal vectors ’n’. State

vectors are denoted ’x’. Discrete time is denoted with subscript ’k’ for the Kalman filter, and control

vertex or surface point indices are denoted with subscript ’i’.

2. Evaluation of Doo-Sabin Surfaces
Doo-Sabin surfaces [8] is a type of subdivision surface that generalize bi-quadric B-spline surfaces

to arbitrary topology. Following the same approach as Stam for Catmull-Clark surfaces [10], we define

Doo-Sabin subdivision as a matrix operation. Each surface patch can be subdivided into four new sub-

patches by multiplying the Nq × 3 control vertex matrix Q0 with the (Nq + 7)×Nq subdivision matrix

S, as is shown in Fig. 1. The content of this matrix originates from the regular Doo-Sabin subdivision

rules, which are outlined in appendix A. Control vertices for the region of support for each sub-patch

k ∈ {0, 1, 2, 3} of choice can then be extracted from the subdivided control vertices using a picking



matrix Pk, such that Qn+1,k = PkSQn.

Regardless of the topology of Qn, all sub-patches Qn+1,k will at most consist of a single irregular face

in addition to three quadrilaterals. Successive subdivision operations on Qn+1,k will then yield a single

irregular patch, while the three others becomes regular bi-quadric spline patches that can be evaluated

directly. By assuming, without loss of generality, that the irregular face in Qn+1 is located top-left, then

the picking matrix Pk gives an regular 3× 3 bi-quadric control vertex mesh when k �= 0, and a irregular

mesh consisting of Nq control vertices when k = 0. This relation can be exploited by performing

repeated subdivisions n times until the desired surface point is no longer within an extraordinary patch

(k �= 0). Denoting S0 = P0S, we can express this as Qn,k = PkSS
n−1
0 Q0.

The number of subdivision steps n required depends on the logarithm of (u,v), while the sub-patch to

pick after the final subdivision is determined using the following criterions:

n = �− log2 (max{u, v})� (1)

k =

⎧⎪⎨
⎪⎩

1 if 2nu > 1/2 and 2nv < 1/2

2 if 2nu > 1/2 and 2nv > 1/2

3 if 2nu < 1/2 and 2nv > 1/2

(2)

Direct evaluation of surface points can then be performed for any patch location (u, v) except (0, 0), by

subdividing sufficient number of times, until the new subdivided patch below (u, v) no longer contains

a extraordinary face, and treating the resulting sub-patch as a ordinary bi-quadric spline surface. For

locations near (0, 0), an approximate surface evaluation can be obtained by perturbating (u, v) slightly

to prevent n from growing beyond a predefined upper limit. Basis functions with regards to the original

non-subdivided control vertices can similarly be computed using the same approach:

b(u, v)|Ωn
k

=
(
PkSS

n−1
0

)T
b̃(tk,n(u, v)) , (3)

where Ωn
k is the subdivision mapping function described above, that determines the number of subdi-

vision steps required based on (u, v) [10]. b̃ is the regular bi-quadric B-spline basis functions defined

in appendix B, and tk,n is a domain mapping function used to map the parametric interval (u,v) to the

parametric interval within the desired sub-patch:

tk,n(u, v) =

⎧⎪⎨
⎪⎩

(2n+1u− 1, 2n+1v ) if k = 1

(2n+1u− 1, 2n+1v − 1) if k = 2

(2n+1u, 2n+1v − 1) if k = 3

(4)

Partial derivatives of the basis functions, bu and bv, are similarly computed by replacing b̃(u, v) with

the respective derivatives of the B-spline basis functions in the formula. Surface positions can then be

evaluated as an inner product between the control vertices and the basis functions

p(u, v) = QT
0 b(u, v) . (5)

Note that this approach is not dependent on diagonalization of the subdivision matrix, as in [10].

Instead, repeated matrix multiplication performed n times will result in exactly the same result. The

associated increase in computational complexity associated with this repeated multiplication will not be

a burden if evaluation of basis functions is performed only once, and later re-used to compute surface

points regardless of movement of the associated control vertices.
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Figure 1. Illustration of the Doo-Sabin subdivision process. The control vertices Qn that define the initial surface

patch (upper left) are subdivided into new control vertices Qn+1 (upper right) by multiplying Qn with the sub-

division matrix S. Application of the picking matrix Pk on Qn+1further divides the subdivided mesh into four

sub-patches that together span the same surface area as the original patch.

3. Deformable Subdivision Model
This section explains how deformable subdivision models, such as the LV model shown in in Fig 2,

can be incorporated into the Kalman tracking framework. The subdivision models consists of control

vertices qi for i ∈ {1 . . . Nq} with associated displacement direction vectors di that defines the direction

in which the control vertices are allowed to move. Displacement directions are typically based on surface

normals, since movement of control vertices in this direction results in the greatest change of shape. In

addition to the control vertices, the topological relationships between the control vertices have to be

defined in a list C(c). This list maps surface patches c ∈ {1 . . . Nc} to enumerated lists of control vertex

indices that define the region of support for each surface patch.

We denote the local deformations Tl(xl) to our deformable model as the deformations obtainable

by moving the control vertices of the subdivision model. These local deformations are combine with a

global transform Tg(xg,pl) to position, scale and orient the model within the image volume where the

tracking takes place.

After creation of the model, a set of surface points have to be defined, which are to be used for edge

detection measurements. This set consists of parametric coordinates (including patch number) for each

of the points (u, v, c)l, and are typically distributed evenly across the model surface to ensure ro-

bust segmentation. By restricting the distribution of these edge profiles to fixed parametric coordinates

throughout the tracking, then basis functions for each edge profile can be precomputed during initializa-

tion. These basis functions are independent of the position of the control vertices, and can therefore be

re-used during tracking to efficiently generate surface points regardless of local shape deformations.

3.1. Calculation of Surface Points

The Kalman filter framework requires the creation of a set of surface points pl with associated normal

vectors nl and Jacobi matrices Jl, based on a predicted state vector x̄l. The creation of these objects can



(a)

Figure 2. Orthogonal views of the initial undeformed subdivision surface (left), as well as the same model de-

formed to fit the LV after tracking in some frames (right). The model consists of 24 surface patches, that each are

outlined by a bold black border and subdivided into a 5 x 5 quadrilateral grid for visualization. The encapsulating

wire-frame mesh illustrates the control vertices (circles) that define the surface.

be performed efficiently following the steps below:

1. Update position of control vertices qi based on the state vector: qi = q̄i + xidi, where q̄i is the

mean position of the control vertex and xi is the parameter corresponding to this control vertex

in the state vector for each control vertex. di is the displacement direction for control vertex

qi. The full state vector for the model then becomes the concatenation of the state parameters

for all control vertices xl = [x1, x2, . . . , xNl
]T . One can here chose to force certain vertices to

remain stationary during tracking without altering the overall approach. This would both reduce

the deformation space, as well as the number of parameters to estimate.

2. Calculate surface points pl as a sums of control vertices weighted with their respective basis

functions within the surface patch of each surface point: pl =
∑

i∈C(cl)
biqi.

3. Calculate surface normals nl as the cross product between the partial derivatives of the basis

functions with regards to parametric values u and v within the surface patch of each surface point:

nl =
∑

i∈C(cl)
(bu)iqi ×

∑
i∈C(cl)

(bv)iqi.

4. Calculate Jacobian matrices for the local deformations Jl by concatenating the displacement vec-

tors multiplied with their respective basis functions: Jl =
[
bi1di1 , bi2di2 , . . .

]
i∈C(cl)

. The

Jacobian matrix will here be padded with zeros for columns corresponding to control vertices

outside the region of support for the surface patch of each surface point.

Precomputation of basis functions enables the operations above to be performed very quickly, which is

crucial for enabling real-time implementations.

3.2. Global Transform

The composite object deformation T(x) = Tg(Tl(xl), xg) is obtained by combining the local de-

formations of the subdivision model with a global transform to create a joint model. This leads to a
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Figure 3. Overview over the processing chain in the Kalman filter based tracking framework. All five steps are

performed only once for each new frame.

composite state vector x = [xT
g , xT

l ]T consisting of Ng global and Nl local deformation parameters.

This separation between local and global deformations is intended to ease modeling, since changes in

shape are often parametrized differently compared to deformations associated with global position, size

and orientation.

We denote pl, nl and Jl for the surface points created from the subdivision surface with local defor-

mations Tl(xl). These points are subsequently transformed by means of a global pose transform Tg,

that translates, rotates and scales the model to align it correctly within the image volume. Surface points

are trivially transformed using Tg, whereas normal vectors must be transformed by multiplying with the

normalized inverse spatial derivative of Tg to remain surface normals after the global transform [11]:

pg = Tg(pl,xg) (6)

ng =

∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣
(

∂Tg(pl,xg)

∂pl

)−T

nl (7)

The Jacobian matrices for the composite deformations then becomes the concatenation of both global

and local state-space derivatives. The local part is created by multiplying the 3 × 3 spatial Jacobian

matrix for the global transform with the 3 × Nl local Jacobian matrix for the deformable model, as

follows from the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg

,
∂Tg(pl,xg)

∂pl

Jl

]
. (8)

4. Kalman Tracking Framework
The tracking framework is decomposed into the 5 separate steps shown in Fig. 3.

4.1. State Prediction

Incorporation of temporal constraints is accomplished in the prediction stage of the Kalman filter by

augmenting the state vector to contain the last two successive state estimates. A motion model which

predicts state x̄ at time step k + 1, with focus on deviation from a mean state x0, can then be expressed

as:

x̄k+1 − x0 = A1 (x̂k − x0) + A2 (x̂k−1 − x0) , (9)

where x̂k is the estimated state from time step k. Tuning of properties like damping and regularization

towards the mean state x0 for all deformation parameters can then be accomplished by adjusting the



coefficients in matrices A1 and A2. Prediction uncertainty can similarly be adjusted by manipulating

the process noise covariance matrix B0 that is used in the associated covariance update equation for

P̄k+1. The latter will then restrict the rate of which parameter values are allowed to vary.

4.2. Evaluation of Deformable Model

Creation of surface points p, normals n and Jacobian matrices J, based on the predicted state x̄k. This

is performed as described in section 3.

4.3. Edge Measurements

Edge measurements are used to guide the model toward the object being tracked. This is done by

measuring the distance between points on a predicted model inferred from the motion model, and edges

found by searching in normal direction of the model surface. This type of edge detection is refereed to as

normal displacement [4], and is calculated as the normal projection of the distance between a predicted

edge point p with associated normal vector n and a measured edge point pobs:

v = nT (pobs − p) . (10)

Each normal displacement measurement is coupled with a measurement noise r value that specifies the

uncertainty associated with the edge. This value is typically dependent on edge strength or other measure

of uncertainty. This choice of normal displacement measurements with associated measurements noise

enables usage of a wide range of possible edge detectors. The only requirement for the edge detector is

that it must identify the most promising edge candidate for each search profile, and assign an uncertainty

value to this candidate.

Linearized measurement models [12], which are required in the Kalman filter for each edge mea-

surement, are constructed by transforming the state-space Jacobi matrices the same way as the edge

measurements, namely taking the normal vector projection of them:

hT = nTJ . (11)

This yields a separate measurement vector h for each normal displacement measurement, that relates

the normal displacements to changes in the state vector.

4.4. Measurement Assimilation

State-space segmentation forms a special problem structure, since the number of measurements typi-

cally far exceeds the number of state dimensions. Ordinary Kalman gain calculation will then be com-

putationally intractable, since they involve inverting matrices with dimensions equal to the number of

measurements.

An alternative approach is to assimilate measurements in information space [12] prior to the state

update step. This enables very efficient processing if we assume that the measurements are uncorrelated,

since uncorrelated measurements lead to a diagonal measurement covariance matrix R. All measure-

ment information can then be summed into an information vector and matrix of dimensions invariant to

the number of measurements:

HTR−1v =
∑

i hir
−1
i vi (12)

HTR−1H =
∑

i hir
−1
i hT

i . (13)



Distance [mm] EDV [ml] ESV [ml] EF [%]

2.2± 0.8 3.6± 21.4 9.0± 17.4 −5.9± 11.1
Table 1. Bland-Altman analysis of the segmentation results compared to the reference segmentation. Results are

expressed as mean difference ±1.96SD.

4.5. Measurement Update

Measurements in information filter form require some alterations to the state update step in the Kalman

filter. This can be accomplished by utilizing that the Kalman gain Kk = P̂kH
TR−1, and reformulating

the equations to account for measurements in information space. The updated state estimate x̂ for time

step k then becomes:

x̂k = x̄k + P̂kH
TR−1vk . (14)

The updated error covariance matrix P̂ can similarly be calculated in information space to avoid inverting

unnecessary large matrices:

P̂−1
k = P̄−1

k + HTR−1H . (15)

This form only requires inversion of matrices with dimensions equal to the state dimension.

5. Results
The proposed tracking framework were evaluated by performing fully automatic tracking in 21 uns-

elected 3D echocardiography recordings of the heart, recorded with a Vivid 7 ultrasound scanner (GE

Vingmed Ultrasound, Norway) using a matrix array transducer (3V). Exactly the same initialization

were used in all of the recordings, and the resulting segmentations were compared to semi-automatic

segmentation using a custom made segmentation tool (GE Vingmed Ultrasound, Norway). The refer-

ence segmentations were conducted by an expert, and whenever needed manually adjusted to serve as a

validated reference comparable to manual tracing.

A manually constructed Doo-Sabin model consisting of 24 surface patches, as shown in Fig 2, were

used as basis for the LV segmentation. This deformable model were combined with a global pose trans-

form that featured parameters for translation, rotation and isotropic scaling of the model to position and

orient it within the image volume. 384 edge profiles distributed evenly over the surface were used used

for edge detection. Each of these profiles consisted of 30 image samples spaced 1 mm apart. Edge de-

tection was then performed in each profile, based on a transition criterion [2], with edge weighting based

on the transition height. These edge measurements were combined with a outlier removal step which

discarded edges with normal displacement value differencing significantly for that of its neighbors.

Figure 4 and table 1 shows the results from the comparison with the reference segmentation, using

Bland-Altman analysis of the average point to surface distance between the meshes, difference in end

diastolic volumes (EDV), end systolic volumes (ESV) as well as differences in the computed ejection

fraction (EF)1. Fig. 5 shows orthogonal intersection slices of the segmentations at end diastole and end

systole from four of the recordings to illustrate the typical segmentation quality obtained.

1Ejection fraction is the ratio of LV contraction. It is commonly used for assessment of global ventricular function, and is

computed as (EDV-ESV)/EDV.



Figure 4. Volume correlation plot for the proposed segmentation against the reference method at end-diastole

(EDV) and end-systole (ESV) in each of the 21 recording.

Compared to previous efforts on real-time Kalman segmentation [2, 3], this indicates slightly more

accurate segmentations with smaller distances between the meshes and less bias in the ejection fraction

numbers. The tracking and segmentation was performed using a C++ implementation on a 2.16 GHz

Intel Core 2 duo processor, were real-time segmentation at a rate of 25 frames per second consumed

approximately 8% CPU power.

The tracking converged in 2-4 frames after initialization in most of the recordings. A typical con-

vergence for one of the recordings is shown in Fig. 6. A single recording did, however, require a half

heartbeat to converge, because to the basal edge profiles were not long enough to reach the base of the

heart before the heart was maximally contracted at end systole.

6. Discussion
In this paper, we have extended prior work [2, 3] to enable fully automatic and real-time LV tracking

and segmentation in dense volumetric data using deformable subdivision surfaces.

6.1. Subdivision Model

Usage of subdivision models for segmentation has some desirable properties that makes them suit-

able for modeling of cardiac structures, in that they combine the inherent smoothness and continuity of

surface derivatives of spline surfaces with the support of arbitrary topology from flat polygonal meshes.

This enables more flexible modeling, since control vertices of the surface models are no longer restricted



Figure 5. Example segmentation results from four of the recordings (rows). Orthogonal intersection slices through

each volume shows the segmentation result at end-diastole (left) and end systole (right). The red intersection lines

show the proposed Kalman segmentation, and the yellow lines the reference segmentation.

to the quadrilateral structure known from spline surfaces. Subdivision models that form closed surfaces

and surfaces with complex geometries can therefore be constructed in a simple and intuitive fashion.

The inherent smoothness also makes it possible to represent cardiac geometries using low resolution



Figure 6. Intersection slices through the volume showing the convergence rate for the tracking. The initial mesh

before tracking is started is shown top-left (red for proposed and yellow for reference), followed by deformed

meshes after tracking in the first 6 frames. A plot of the average surface to surface distance between the deformed

meshes and the reference segmentation for each frame is shown bottom-right.

models, consisting of few control vertices, as shown in this paper. This makes for more robust segmen-

tation compared to high resolution models, since fewer shape parameters have to be estimated during

tracking. Papillary muscles and trabecular structures, that are known to disrupt segmentation [1], are also

handled robustly, since the low-resolution model are unable to represent the local sharp discontinuities

in shape these structures represents.

Doo-Sabin is chosen in favor of the more common Catmull-Clark surfaces, that generalize bi-cubic

B-spline surfaces, because bi-quadric surfaces has a narrower region of support compared to bi-cubic

surfaces. This makes them more suitable for segmentation with low resolution models, where the range

of support for each surface patch should be restricted to a local area, and not be so large that it covers a

significant portion of the entire model. The proposed segmentation approach is, however, not restricted

to Doo-Sabin surfaces in particular, so other subdivision schemes, such as Catmull-Clark and Loop could

also be used without altering the overall approach. The only requirement is that the subdivision process

can be expressed as a linear operation on matrix form.

Usage of subdivision models for cardiac tracking have also been presented in [13], but this paper

focuses on image registration using iterative gradient descent algorithms, and not on segmentation per

se. It therefore depends on manual surface initialization, and is thus not suitable for fully automatic



behavior.

6.2. Segmentation Results

The results shown in table 1 indicate that usage of subdivision surfaces leads to improved segmenta-

tion accuracy compared to spline and active-shape models [2, 3], even though fewer edge profiles were

used for edge detection. This is believed to be caused by the subdivision model is more capable of

capturing the shape and deformation pattern of the LV.

The segmented ventricles showed good overall agreement with the reference segmentations, both

with respect to to point to surface distances and for the computed volumes. Segmentation accuracy is

primarily limited by the difficulty of edge detection in echocardiography recordings, which suffers from

inherently poor image quality. It is difficulty, even for experts, to accurately determine the endocardial

border in such recordings. Perfect agreement with reference segmentations might therefore never be

achieved. The simple transition criteria used in this paper is chosen primarily because it behaves robustly

and has a long radius of convergence. More advanced criterias might very well yield more accurate

segmentation in areas of weak and unclear edges, but state of the art edge detection is not the main focus

of this paper.

Tracking convergence seems to primarily be limited by the length of the edge profiles. There is, how-

ever, an inherent trade-off between convergence speed, and edge detection robustness/outlier frequency

here, since longer edge profiles might lead to the detection of more outlier edges that might disrupt the

tracking. When disregarding the first few frames during tracking, the Kalman tracker seemed to respond

fast enough to capture changes in pose and shape between successive frames, even though it only used a

single refinement iteration per frame.

Precalculation of basis functions for the subdivision model during initialization also lead to a more

computationally efficient implementation compared to [2, 3], even when compensating for the reduction

in the number of edge profiles used.

6.3. Kalman Filter Approach

Most segmentation approaches used in medical imaging, such as active shape segmentation and sim-

plex mesh segmentation [1], are based on modeling of forces acting upon a deformable model with

semi-realistic physical properties. Segmentation is then performed by using iterative optimization al-

gorithms to determine an equilibrium state between internal shape forces and external image forces.

Segmentation typically requires hundreds of iterations to converge using this approach, which makes

real-time 3D segmentation using this approach computationally intractable.

State-estimation based tracking instead uses a non-iterative algorithm, based on a Bayesian least

squares solution of the linearized tracking problem, namely the extended Kalman filter. The model

is segmented by computing a solution to a system of equations to fit the model to the detected edges,

while at the same time regularizing the fitting by incorporating a kinematic model to restrict the rate of

change for shape and pose parameters. This leads to outstanding computational performance compared

to iterative algorithms, and enables real-time tracking and segmentation in volumetric datasets. Usage

of extended Kalman filters for segmentation does, however, imply the making of some assumptions with

regards to Gaussian distributions and linearity:

Firstly, the framework assumes that the normal displacement values are independent and follow a

Gaussian distribution. This, however, only accounts for the normal displacement values only, and not

to the shape of the underlying edge profiles or details in the edge detector, in which are not assumed



to follow any given distribution in the Kalman filter. Secondly, the extended Kalman filter assumes all

deformations to be linear. Except for global rotation, which is inherently non-linear, every other mode of

deformation is linear. This includes global translation, scaling and the local shape deformations, which

due to the tensor product formulation of the polynomial basis functions are linear in the position of the

control vertices. There is very little change in global rotation of the heart between successive frames, so

the linearization approximation penalty is believed to be small.

7. Conclusion
In this paper, we have proposed a Kalman filter based framework for fully automatic real-time track-

ing and segmentation in volumetric data, using deformable subdivision surfaces. Usage of subdivision

surfaces enables simple modeling of closed surfaces, and surfaces with complex topology, without any

of the limitations associated with spline surfaces. In addition, a method for exact evaluation of surface

points at arbitrary parameter values for Doo-Sabin surfaces is provided, to enable efficient precalculation

of basis functions used to extract edge profiles.

The results indicate that usage of subdivision surfaces leads to improved segmentation accuracy com-

pared to spline and active-shape models [2, 3]. Precalculation of basis functions also significantly re-

duces the computational complexity. The combination of subdivision models with a Kalman filter tracker

thus enables 3D segmentation that is both robust and capable of operating in real-time.

A. Doo-Sabin Subdivision Matrix
The subdivision weights used for faces consisting of n vertices are used as defined by Doo & Sabin

[8]:

αj
n =

δj,0

4
+

3 + 2 cos(2πj/n)

4n
, (16)

where δi,j is the Kronecker delta function which is one for i = j and zero elsewhere. Subdivision of

the control vertices within a single face can then be expressed as a linear operation using a subdivision

matrix Sn:

Sn =

⎡
⎢⎢⎢⎢⎣

α0
n α1

n α2
n . . . α−1

n

α−1
n α0

n α1
n . . . α−2

n

α−2
n α−1

n α0
n . . . α−3

n

. . . . . . . . . . . . . . .
α1

n α2
n α3

n . . . α0
n

⎤
⎥⎥⎥⎥⎦ . (17)

Subdivision of whole patches is accomplished by combining Sn for all four faces in a patch into a

composite subdivision matrix S. The structure of this matrix depends on the topology and control vertex

enumeration scheme employed, but construction should be straightforward.

B. Basis functions for Quadratic B-splines
The 9 tensor product quadratic B-spline functions can be expressed as a product of two separable basis

polymonials for the parametric value u and v (i = 0, . . . , 8):

b̃i(u, v) = Pi%3(u) Pi/3(v) , (18)



where “%” and “/” denotes the division remainder and division operators respectively. Pi(t) are the basis

polynomials for quadratic B-splines with uniform knot vectors:

2P0(t) = 1− 2t + t2 (19)

2P1(t) = 1 + 2t− 2t2 (20)

2P2(t) = t2 (21)
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Abstract. In this paper, we extend a computationally efficient frame-
work for real-time tracking of deformable subdivision surfaces in 3D
echocardiography with speckle-tracking measurements to track material
points. Tracking is performed in a sequential state-estimation fashion,
using an extended Kalman filter to update the subdivision surface based
on displacement vectors from 3D block-matching in the left ventricular
wall. Fully automatic tracking is demonstrated in two simulations of an
infarcted ventricle, as well as in a set of 21 in-vivo 3D echocardiograms.
Credible tracking results were achieved in all cases, with an average drift
ratio of 12.08 ± 2.09% (2.7 ± 1.0mm). The infarcted regions were also
correctly identified in both of the simulations. Due to the high compu-
tational efficiency of the method, it is capable of operating in real-time.

1 Introduction

With the introduction of 3D echocardiography, rapid and low-cost acquisition
of volumetric images of the left ventricle (LV) has become feasible. Tools for
assessment of global function, based on semi-automatic shape segmentation of
the endocardial boundary, have appeared over the last few years [1]. However,
in order to evaluate regional function of the LV, methods that also estimate
myocardial deformation by tracking material points are required.
The distinctive speckle pattern found in ultrasound images has often been

considered an undesirable image artifact, since it reduces the apparent image
quality. However, this pattern have the fortunate property that it, despite being
gradually decorrelated, moves in the same manner as the underlying tissue being
imaged [2]. This property can be exploited to track the LV myocardial defor-
mation field by means of speckle-tracking techniques. Existing approaches for
2D and 3D speckle-tracking include: Horn-Schunck optical flow speckle-tracking
[3], band-pass Gabor filtering prior to block-matching [4], tracking single speckle
points with motion coherence regularization of the velocity field [5] and elastic
volume registration using B-splines coupled with a mutual-information metric
[6]. To our knowledge, none of these approaches have been demonstrated to
achieve real-time processing times when applied to volumetric data.



This paper describes a fully automatic, real-time method for LV tracking of
material points in 3D echocardiography. It extends the subdivision model based
Kalman-filter method of [7], with speckle-tracking to capture the full myocardial
deformation pattern, and not only shape changes. A combination of integer voxel
displacement estimation using block matching, coupled with optical flow correc-
tion of the best match, is used to achieve sub-voxel displacement estimation.

2 Methods

The tracking framework is based on a deformable subdivision surface, consisting
of control vertices qi for i ∈ {1 . . . Nq} that are allowed to move to alter the
shape and parameter-space density of the surface. Unlike in [7], where shape
segmentation was the objective, we allow the control vertices to move freely in
any direction, and not just in the surface-normal direction. In addition to the
control vertices, the topological relationships between the control vertices have to
be defined in a list C(c), that maps surface patches c ∈ {1 . . . Nc} to enumerated
lists of control vertex indices that define the control vertices influencing each
surface patch.
We denote the local deformations Tl(xl) to our deformable model as the

deformations obtainable by moving the control vertices of the subdivision model.
These local deformations are combined with a global transform Tg(xg,pl) to
position, scale and orient the model. This leads to a composite state vector
x = [xTg , x

T
l ]

T consisting of Ng global and Nl local deformation parameters.
A manually constructed Doo-Sabin subdivision surface [8] consisting of 20

control vertices is used to represent the LV. A distribution of approximately 450
surface points, spread evenly across the surface as in [7], are used as shown in
Fig. 1(a). These points are used as a basis for both edge-detection and speckle-
tracking measurements, and consists of parametric coordinates (including patch
number) for each of the surface points.
The tracking framework is decomposed into the 5 separate steps shown in Fig.

1(b). Most of the steps are similar to [7], with the exception of the measurement
step, where edge-detection is replaced with 3D speckle-tracking to update the
model. Edge-detection is instead used solely to automatically initialize the model
to the endocardial boundary, prior to speckle-tracking. This initialization leads
to shape deformations, by moving control vertices inwards and outwards in the
direction perpendicular to the surface, but does not impose any deformations
along the surface to alter the parameter-space density, as speckle-tracking does.
The Kalman prediction step and Kalman update steps are identical as in [7],

and therefore not covered in this paper. Instead this paper focuses on what is
new, namely evaluation of the deformable model, speckle-tracking measurements
and assimilation of 3D displacement vectors:

2.1 Evaluation of Deformable Model

Calculation of Local Surface Points: The Kalman filter framework requires
the creation of a set of surface points pl and Jacobi matrices Jl, based on a pre-
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Fig. 1. (a) The Doo-Sabin subdivision surface used for tracking, which consists of 20
control vertices shown in the encapsulating wire-frame mesh. The speckle-tracking dis-
tribution is illustrated with black dots on the surface. (b) Overview over the processing
chain for each new frame in the Kalman filter tracking framework.

dicted state vector x̄l. The creation of these objects can be performed efficiently
following the steps below:

1. Update position of control vertices qi based on the state vector: qi =
q̄i + x(3i)vx + x(3i+1)vy + x(3i+2)vz, where q̄i is the initial position of the
control vertex, vx, vy, vz are unit vectors along the x, y and z axis repec-
tively, and x(3i), x(3i+1), x(3i+2) are the parameters in the state vector cor-
responding to this control vertex. The full state vector for the model then
becomes the concatenation of the state parameters for all control vertices
xl =

[
x0, x1, . . . , x(3Nq−1)

]T .
2. Calculate surface points pl as a sum of control vertices weighted with their
respective basis functions within the surface patch of each surface point:
pl =

∑
i∈C(cl)

biqi.
3. Calculate Jacobian matrices for the local deformations Jl by concatenat-
ing the unit vectors multiplied with their respective basis functions: Jl =[
bi1vx, bi1vy, bi1vz, bi2vx, . . .

]
i∈C(cl). The Jacobian matrix will here be

padded with zeros for columns corresponding to control vertices outside the
region of support for the surface patch of each surface point.

Basis functions for these points can be precomputed during initialization if we
restrict the parametric coordinate distribution of the surface points to be con-
stant throughout the tracking. This allows the above operations to be performed
very quickly, which is crucial for enabling real-time implementations.

Global Transform: We denote pl and Jl for the surface points created from
the subdivision surface with local deformations Tl(xl). These points are subse-
quently transformed by means of a global pose transform Tg, that translates,
rotates and scales the model to align it correctly within the image volume:

pg = Tg(pl,xg) . (1)



The Jacobian matrices for the composite deformations then becomes the con-
catenation of both global and local state-space derivatives. The local part is
created by multiplying the 3 × 3 spatial Jacobian matrix for the global trans-
form with the 3×Nl local Jacobian matrix for the deformable model, as follows
from the chain-rule of multivariate calculus:

Jg =
[
∂Tg(pl,xg)

∂xg
,

∂Tg(pl,xg)
∂pl

Jl

]
. (2)

2.2 Speckle-tracking Measurements

Speckle-tracking measurements are performed 1mm outside the endocardial sur-
face, in order to track deformations inside the myocardium. There, 3D displace-
ment vectors v = [vx, vy, vz]

T for local motion are inferred by matching pre-
dicted surface points p in the current frame to associated surface point from
the updated model in the previous frame. The measurements are computed by
first performing 3D block-matching using a sum of absolute differences (SAD)
metric to determine integer displacements. This is followed by translative Lucas-
Kanade optical flow estimation [9] on the best integer voxel match to correct for
sub-sample displacements, as was done for 2D tracking in [10].
Implementation of this matching can be done efficiently on modern processors

by using vector instructions and multi-core parallelization of the SAD operations.
Furthermore, preprocessing of the data is avoided by doing the tracking directly
on the ”raw” grayscale ultrasound data acquired in spherical coordinates. Track-
ing is performed in data decimated in the beam propagation direction by a factor
of four to reduce window sizes, since ultrasound image resolution is significantly
higher in this direction compared to the two lateral directions. A kernel size of
4x4x4 voxels is used, while the search window has an adaptive size, based on im-
age depth, to make its cartesian dimensions approximately constant regardless
of image depth.
Associated measurement noise values r , for the spatial uncertainty of the

displacement measurement, are computed based on the ratio between the best
and average SAD matching value for each point. After computing the measure-
ments, simple outlier rejection is performed, based on the measurement noise
values and a comparison with neighboring displacement vectors in a local search
area. Parameters were adjusted by trial and error.

2.3 Measurement Assimilation

The measurements can be efficiently assimilated in information space if we as-
sume that they are uncorrelated [11], since uncorrelated measurements lead to a
diagonal measurement covariance matrix R. All measurement information can
then be summed into an information vector and matrix of dimensions invariant
to the number of measurements:

HTR−1v =
∑

iH
T
i vir

−1
i (3)

HTR−1H =
∑

iH
T
i Hir−1i . (4)



Usage of unit vectors in x, y and z-direction for displacing control vertices enables
direct usage of the Jacobian matrices as measurement matrices in the Kalman
filter, since HT = [vx, vy, vz]TJ = J. A covariance matrix for the measurement
can also be used instead of scalar measurement noise values if one desires to
capture any non-isotropy in the spatial uncertainty of the displacement, but this
is not done in this paper.

3 Experimental Validation & Results

In order to show the feasibility of the method and validate its performance, the
method was applied to both simulated and in-vivo data sets:

3.1 Data Description

Two volumetric ultrasound datasets was generated for the experiment, based on
a finite element simulation of a left ventricle with an anterio-apical infarction.
The first simulation used an ellipsoidal shape for the myocardium, while the
second used the average shape of five canine ventricles. The motion and defor-
mation of the ventricle was determined by modeling internal systolic contraction
forces and external forces from the cavity pressure, and the infarcted area was
modeled by abolishing contractile forces in the anterio-apical region, as in [12]. A
k-space ultrasound simulator, described in [13], was then used to create realistic
3D ultrasound simulations based on scatter positions extracted from the finite
element model.
In addition to the simulations, a collection of 21 apical 3D echocardiography

recordings of adult patients, of which half were diagnosed with heart diseases,
were used for in-vivo validation of the method. These recordings were acquired
with a Vivid 7 scanner (GE Vingmed Ultrasound, Norway) using a matrix array
transducer (3V). The exact same configuration was used to initialize tracking in
all in-vivo recordings.

3.2 Simulated Data Results

After tracking, the subdivision surfaces were re-meshed into a grid-structured
mesh in a manner that preserves material points. Area strain ε = (a − a0)/a0
values were then computed locally across the surface by comparing the area
of each quadrilateral during tracking with associated end-diastolic (ED) areas.
These strain values represents variations in the parameter-space density of the
subdivision surface, which should correspond to the total muscle contraction
locally in a manner that combines the effect of longitudinal and circumferential
strain.
Figure 2(b) shows end-systolic (ES) area strain values across the tracked

surface, together with ground truth strain values from both simulations. The
infarcted regions exhibit small contraction or stretching, and therefore show up
as blue and green, while healthy myocardium is contracting, and therefore shows



up as red. One can clearly see that the infarcted regions are correctly identified
in the tracked meshes, although the strain values in the infarcted regions are un-
derestimated compared to the ground truth, especially in the second simulation
which has a more complex geometry.

(a) (b) (c)

Fig. 2. Results from tracking in the simulated data, showing (a) intersection slices
through the simulations, as well as front & back views of color-coded area strain meshes
at ES from (b) the tracked strain meshes and (c) ground truth values. Results from the
infarcted ellipsoid (simulation ’A’) are shown in the top row, and from the infarcted
dog-heart (simulation ’B’) in the bottom row.

3.3 In-vivo Results

For the in-vivo data, no ground truth was available, so tracking was instead
evaluated by computing the average ratio between the drift of surface points
after tracking an entire cardiac cycle, and the walked path distance for the same
point.
Tracking in the 21 in-vivo recordings yielded an average drift ratio of 12.08±

2.09%, which in absolute values corresponds to 2.7 ± 1.0mm. As a comparison,
the drift ratio in the simulated recordings were 8.58% and 10.59%, with absolute
drift values of 0.58 and 0.70mm. Fig. 3 shows orthogonal intersection slices of
the tracking results at ED and ES in two of the recordings.
Tracking in both the simulated and in-vivo recordings consumed approxi-

mately 37ms of processing time per frame on a 2.2GHz Intel Core 2 duo proces-
sor. This makes the method capable of operating in real-time, given a typical
frame-rate of 25fps.



Fig. 3. Orthogonal image slices of the tracked mesh in two of the in-vivo recordings
(patient ’A’ and ’B’), at both ED and ES. The slices show the initialized mesh in
red (only at ED), and tracked meshes in yellow (both at ED and ES). The difference
between the tracked and initialized mesh at ED constitutes the drift after tracking in
an entire cardiac cycle.

4 Discussion

We have presented a new approach for LV tracking of material points in 3D
echocardiography, using a Kalman filter to fit a deformable subdivision model
to 3D speckle-tracking measurements. The method is automatically initialized
using endocardial edge-detection, and is capable of operating in real-time due to
its strong computational efficiency. Usage of this method might therefore enable
rapid analysis of regional myocardial function.
Automatic myocardial speckle-tracking was feasible in all tested recordings,

both simulated and in-vivo. Based on visual assesment of the tracking and com-
puted drift values, the tracking was found to behave robustly. The obvious dis-
crepancy between absolute drift and drift ratio in the simulations is believed to
stem from the fact that apex moves very little in the simulations, which leads
to high drift ratios in the apical region, even though the absolute drift is quite
small. Furthermore, the method was able to identify the infarcted regions in two
different ultrasound simulations of a left ventricle, although the strain in the
infarcted areas appeared underestimated compared to ground truth.
Tracking accuracy is dependent on the resolution of the subdivision surface

used. Low-resolution surfaces, like the one used in this paper, will exhibit high
robustness, due to the inherent regularization of having fewer parameters to
estimate. This does, however, come at the expense of stronger spatial smoothing
across the surface, compared to more high-resolution surfaces. This might be
some of the reason for the underestimated infarcted strain. Usage of a higher
resolution model, consisting of more control vertices, might therefore enable more
accurate tracking with less spatial smearing of the deformation field. Usage of



more surface points for block-matching might also increase tracking accuracy at
the expense of computational efficiency.
With feasibility of the method demonstrated, the next step will be to compare

its accuracy to alternative approaches in a more quantitative way. Approaches to
improve its accuracy should also be investigated. Currently, tracking is performed
sequentially, from one frame to the next. This can, however, be extended with
bidirectional tracking, using both a forward and backward Kalman-filter to im-
prove tracking accuracy and reduce drift. Speckle-tracking measurements might
also be combined more directly with edge-detection to reduce the surface-normal
component of the inherent drift associated with sequential block-matching.
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Abstract

In this paper, we extend a computationally efficient framework for tracking of deformable subdivision surfaces

in 3D echocardiography with speckle-tracking measurements to track material points. Tracking is performed in a

sequential state-estimation fashion, using an extended Kalman filter to update a subdivision surface in a two-step

process: Edge-detection is first performed to update the model for changes in shape and position, followed by a

second update based on displacement vectors from speckle-tracking with 3D block-matching. The latter speckle-

tracking update will only have to correct for residual deformations after edge-detection. This both leads to increased

accuracy and computational efficiency compared to usage of speckle-tracking alone.

Automatic tracking is demonstrated in a 3D echocardiography simulation of an infarcted ventricle. The

combination of edge-detection and speckle-tracking consistently improved tracking accuracy (RMS 0.483, 0.433,
0.511 mm in X,Y,Z) compared to speckle-tracking alone (RMS 0.663, 0.439, 0.613 mm). It also improved the

qualitative agreement for color-coded strain meshes to ground truth, and more clearly identified the infarcted region.

I. INTRODUCTION

The introduction of 3D echocardiography has enabled rapid and low-cost acquisition of volumetric
images of the left ventricle (LV). Tools for assessment of global function, based on semi-automatic shape
segmentation of the endocardial boundary, have appeared over the last few years [6]. However, in order
to evaluate regional function associated with coronary artery disease, methods that also estimate the
myocardial deformation field by tracking material points in 3D are required.

The distinctive speckle pattern found in ultrasound images has often been considered an undesirable
image artifact, since it reduces the apparent image quality. However, this pattern have the fortunate property
that it, despite being gradually decorrelated, moves in the same manner as the underlying tissue being
imaged [2]. This property can be exploited to track the LV myocardial deformation field by means of
speckle-tracking techniques. Several approaches for speckle-tracking in 3D ultrasound data have been
proposed over the last years. Most prominent are the approaches based on optical flow speckle-tracking
[7], block-matching, and more recently on elastic volume registration [4]. Most of these approaches are,
however, computationally intensive and require manual initialization or endocardial tracing.

This paper describes a extension of a model-based state-estimation framework from [8], [9] with support
for combined edge-detection with speckle-tracking. Edge-detection is first used to correct for shape and
position changes, followed by a speckle-tracking step to correct for residual deformations. Together,
this results in a fully automatic method for rapid assessment of cardiac strain in 3D echocardiography.
Experimental validation in a simulation of an infarcted ventricle demonstrates the improved accuracy
obtainable with the approach, compared to using speckle-tracking alone.
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Figure 1: Overview over the processing steps in the Kalman tracking framework.

II. METHODS

The tracking framework is centered around a deformable subdivision surface, which is parametrized by
a set of control vertices qi for i ∈ {1 . . . Nq} that are allowed to move to alter the shape and parameter-
space density of the surface. Unlike in [8], where shape segmentation was the objective, we allow the
control vertices to move freely in any direction, and not just in the surface-normal direction.

We denote the local deformations Tl(xl) as the deformations obtained by moving the control vertices
of the subdivision model. These local deformations are combined with a global transform Tg(xg,pl) to
position, scale and orient the model. This leads to a composite state vector x = [xT

g , xT
l ]T consisting of

Ng global and Nl local deformation parameters.
A manually constructed Doo-Sabin subdivision surface [3] consisting of 20 control vertices is used to

represent the LV. A distribution of approximately 500 surface points, spread evenly across the surface, is
defined to be used for both edge-detection and speckle-tracking measurements in the tracking framework.

The tracking framework consists of three separate stages, namely temporal prediction, edge-detection
update and speckle-tracking update. The latter two can be decomposed into 4 steps each, which results in
a total of 9 separate processing steps, as can be seen in Fig. 1. The prediction and edge update steps are
similar to [8], and will adapt the model to align it to the endocardial boundary. The second measurement
stage then uses speckle-tracking to acquire 3D displacement measurements, and update the model for
any residual deformations after the edge-detection. This combined approach is motivated by the inherent
problem of drift, due to cumulative buildup of tracking error, associated with speckle-tracking based on
sequential block-matching. The proposed approach limits this problem by using edge-detection to ensure
that the model remains aligned to the endocardial border at all times during tracking.

The temporal prediction and both state update steps are identical as in [8], and therefore not covered
in this paper. Instead, this paper focuses on what is new, namely evaluation of the deformable model,
speckle-tracking measurements and the assimilation of 3D displacement vectors:

A. Evaluation of Deformable Model
1) Calculation of Local Surface Points: The Kalman filter framework requires the creation of a set

of surface points pl and Jacobi matrices Jl, based on a predicted state vector x̄l. The creation of these
objects can be performed efficiently following the steps below:

1) Update position of control vertices qi based on the state vector: qi = q̄i + x(3i)vx + x(3i+1)vy +
x(3i+2)vz, where q̄i is the initial position of the control vertex, vx, vy, vz are unit vectors along the
x, y and z axis respectively, and x(3i), x(3i+1), x(3i+2) are the parameters in the state vector corre-
sponding to this control vertex. The local state vector for the model then becomes the concatenation

of the state parameters for all control vertices xl =
[
x0, x1, . . . , x(3Nq−1)

]T
.
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2) Calculate surface points pl as a sum of control vertices weighted with their respective basis functions
within the surface patch of each surface point: pl =

∑
i∈C(cl)

biqi.
3) Calculate Jacobian matrices for the local deformations Jl by concatenating the unit vectors multi-

plied with their respective basis functions: Jl =
[
bi1vx, bi1vy, bi1vz, bi2vx, . . .

]
i∈C(cl)

. The

Jacobian matrix will here be padded with zeros for columns corresponding to control vertices outside
the region of support for the surface patch of each surface point.

Basis functions and Jacobians for these points can be precomputed during initialization, as described in
[8], since the parametric coordinate distribution remain fixed during tracking.

2) Global Transform: We denote pl and Jl as the surface points and Jacobian created from the
subdivision surface with local deformations Tl(xl). These points are subsequently transformed by means
of a global pose transform Tg, that translates, rotates and scales the model to align it correctly within the
image volume:

pg = Tg(pl,xg) . (1)

The Jacobian matrices for the composite deformations then becomes the concatenation of both global and
local state-space derivatives. The local part is created by multiplying the 3× 3 spatial Jacobian matrix for
the global transform with the 3×Nl local Jacobian matrix for the deformable model, as follows from the
chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg

,
∂Tg(pl,xg)

∂pl

Jl

]
. (2)

B. Edge or Speckle-tracking Measurements
Either edge-detection or speckle-tracking is here performed to compute 3D displacement vectors v =

[vx, vy, vz]
T

relative to the predicted surface points p, as well as associated measurement noise values
r .

Endocardial edge-detection is performed in search-profiles perpendicular to the surface, as described
in [8]. The position of the detected edges are then shifted 1 mm to align the model slightly inside the
myocardium where speckle pattern is present.

Speckle-tracking is performed by matching search windows centered around the predicted surface points
after the edge update to a smaller kernel window extracted from surface points in previous frame after
all update steps were performed. The displacement vectors are computed by first performing 3D block-
matching using a sum of absolute differences (SAD) metric to determine integer displacements. This is
followed by translative Lucas-Kanade optical flow estimation on the best integer voxel match to correct for
sub-sample displacements. The SAD matching operation was implemented using SIMD vector instructions
and multi-core parallelization to run efficiently. Tracking is performed directly on the "raw" grayscale data
acquired in spherical coordinates. More details on the speckle-tracking implementation and parameter
configuration can be found in [9]. Measurement noise values was computed based on the ratio between
the best and average SAD matching value for each point.

Simple outlier rejection was performed for both edge-detection an speckle-tracking, based on the
measurement noise values and a comparison with neighboring displacement vectors in a local search
area. Parameters were adjusted by trial and error.

C. Measurement Assimilation
The measurements can be efficiently assimilated in information space if we assume that they are

uncorrelated [1], since uncorrelated measurements lead to a diagonal measurement covariance matrix R.
All measurement information can then be summed into an information vector and matrix of dimensions
invariant to the number of measurements:

HTR−1v =
∑

i H
T
i vir

−1
i (3)

HTR−1H =
∑

i H
T
i Hir

−1
i . (4)
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(a) (b)

Figure 2: Example screenshots showing typical frame-to-frame displacement vectors from edge-detection
(a) and speckle-tracking (b).

(a) (b)

Figure 3: The topology of the subdivision model (a), as well as a rendering of the same model fitted to
the endocarduim during tracking (b).

Usage of unit vectors in x, y and z-direction for displacing control vertices enables direct usage of the
Jacobian matrices as measurement matrices in the Kalman filter, since HT = [vx, vy, vz]

TJ = J. A
covariance matrix for the measurement can also be used instead of scalar measurement noise values if
one desires to capture any non-isotropy in the spatial uncertainty of the displacement, but this is not done
in this paper.

III. RESULTS

In order to evaluate the feasibility and performance of the method, both the proposed method, as well
as the speckle-tracking method of [9] was applied to a 3D ultrasound simulation of an infarcted ventricle.
The simulation served as ground truth on which to compare both methods against.

The 3D ultrasound simulation was based on a finite element simulation of a left ventricle with an
anterio-apical infarction [10]. Material points from the finite element simulation were fed as scatter points
into a k-space ultrasound simulator [5] to create 3D ultrasound images with a realistic speckle pattern.
Tracking was initialized automatically by using edge-detection to align the model to the endocardial
boundary. After initialization, the model was moved 1 mm inside the myocardium, and edge-detection
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(a)

(b)

Figure 4: Scatter plot for estimated displacement vectors relative to ground-truth for tracking using speckle-
tracking alone (a), and for edge-detection combined with speckle-tracking (b).

Speckle-tracking alone Edge-detection & speckle-tracking

X axis 0.663 mm (30.3%) 0.483 mm (22.1%)

Y axis 0.439 mm (60.2%) 0.433 mm (60.1%)

Z axis 0.613 mm (26.4%) 0.511 mm (22.3%)

Table I: Root-mean-square (RMS) errors in ED to ES displacement vectors on the tracked mesh, compared
to ground truth. The relative errors are computed relative to the RMS of ground-thruth displacement
vectors.

was combined with speckle-tracking to track the speckle pattern from frame to frame, as can be seen in
fig. 2.

Figure 4 shows scatter plots of the correlation of displacement vectors from end diastole (ED) to end
systole (ES) on the tracked surface. The displacements are divided into their X, Y and Z components1,
and compared to ground truth values from the simulation. Both absolute and relative root-mean-square
(RMS) error analysis on the scatter plots was conducted as shown in table I. The analysis shows improved
agreement for the combined approach, with the scatter points closer to the unit line than with speckle-
tracking alone. This improvement was mainly caused by less underestimation of large displacements.

After tracking, the subdivision surface were re-meshed into a quadrilateral mesh, and color-coded based
on area strain (ε = (a − a0)/a0), which is a measure of relative area change in each quadrilateral that
combines the effect of longitudinal and circumferential strain. Figure 5 shows ES area strain values across
the tracked surface using speckle-tracking alone, combined edge-detection and speckle-tracking, as well

1The X axis corresponds to the azimuth axis of the probe, the Y axis image depth and the Z axis the elevation axis of the probe.
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Figure 5: Front and back views of color-coded area strain meshes at ES based on speckle-tracking alone
(left), edge-detection and speckle-tracking (center), as well as the ground truth (right).

as ground truth strain values. The infarcted regions are correctly identified by both methods, although
speckle-tracking alone leads to underestimated and smeared out strain values compared to the combined
approach. A slight misfit between the shape of the model and the ground truth, caused by the smooth
subdivision model’s inability to represent the sharp apex shape, was also observed.

Usage of the tracking sequence consumed approximately 68 ms of processing time per frame on a 2.2
GHz Intel Core 2 duo processor. Speckle-tracking alone required larger search windows to compensate
for the lack of edge-detection updates, and therefore consumed 130 ms processing time per frame.

IV. DISCUSSION AND CONCLUSIONS

We have presented a new approach for model-based LV tracking based on [8] that combines edge-
detection with speckle-tracking measurements to track material points over time in 3D echocardiography.
The proposed method automatically initializes the model to the endocardium using edge-detection, and
then uses a combination of speckle-tracking with edge-detection to track material deformations over time.
Usage of this method might therefore enable rapid analysis of regional myocardial function.

The robustness of the Kalman filter framework enables fully automatic behavior without manual
initialization, as shown in previous papers. The non-iterative formulation also makes the approach com-
putationally efficient, although not as fast as [9]. This increase in running-time is caused by the extra
edge-detection step, as well as usage of more surface points for speckle-tracking. Larger search windows
was also used in the speckle-tracking alone approach to improve tracking accuracy at the expense of
computational efficiency.

Results from the simulated infarcted heart clearly show that the combination of speckle-tracking with
edge-detection leads to improved tracking accuracy over speckle-tracking alone. The agreement between
ES displacement vectors and ground truth improves consistently with the proposed method, and the
problem with underestimated strain values from [9] is no longer present. Instead, the center of the infarction
exhibits magnified strain. The authors are not sure about the reason for this magnification, but suspects
that it might be related to how the Kalman filter compensates for the interpolative effect of the subdivision
surface in the model update step.
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The combination of speckle-tracking with edge-detection offers several advantages compared to using
speckle-tracking alone. Usage of edge-detection will correct for shape changes as well as gross global
deformations, such as the movement of the basal plane, prior to the speckle-tracking step. This helps reduce
the surface-normal component of the inherent drift associated with sequential block-matching over time,
making tracking more robust. It also enables smaller search windows to be used, since speckle-tracking is
only used to correct for residual deformations, after edge-detection is performed. Smaller search windows
both increases computational efficiency, and offers more robust tracking due to fewer local minimums in
the block-matching.

With feasibility of the method demonstrated, the next step will be to test it in more simulations, as well
as in in-vivo data. The latter will pose additional challenges, due to the noisy nature of echocardiography,
as well as the range of artifacts degrading image quality. Approaches to further reduce drift and improve
accuracy should therefore be investigated. Currently, tracking is performed sequentially, from one frame
to the next. This can be extended with bidirectional tracking, using both a forward and backward Kalman
filter to improve tracking accuracy and reduce drift.
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Automatic Coupled Segmentation of Endo- and
Epicardial Borders in 3D Echocardiography

Fredrik Orderud∗, Gabriel Kiss∗ and Hans G. Torp∗
∗Norwegian University of Science and Technology (NTNU)

Abstract

In this paper, we present an extension of a computationally efficient Kalman filter based tracking framework

to allow simultaneous tracking of several deformable models in volumetric data. The models are coupled through

shared transform nodes in a hierarchical structure to enforce common position, orientation and scaling, but are

allowed to alter shape independently. Automatic tracking of the endo- and epicardial border using two Doo-Sabin

subdivision surfaces in 3D echocardiography serves as exemplary application.

Fully automatic endo- and epicardial surface is demonstrated in a simulation and 5 in-vivo recordings of high

image quality. The estimated myocardial volumes is overestimated by 4.2 ml (7.0%) compared to ground truth in

the simulation, wheras the volumes in the in-vivo recordings are on average underestimated by 10.7 ml (8.0%)

compared to independent reference segmentations.

I. INTRODUCTION

Left ventricular (LV) mass and volume has been proven to be an important precursor for a variety of
conditions such as cardiomyopathy, hypertension, valvular disease [8], as well as a predictor of prognosis.

The emergence of 3D ultrasound has enabled real-time volumetric imaging of the heart. Several methods
for 3D segmentation have been proposed, most intended for the detection of the endocardium for volume
measurement. However, simultaneous detection of endo- and epicardium also allows for estimation of
myocardial volume, and automatic wall thickening analysis.

The feasibility of measuring LV thickness in 3D echocardiography was proven by Hubka et al. [5],
which employ manually traced contours, on data to reconstruct smooth subdivision surface of the endo-
and epicardium separately. Walimbe et. al [11] presented a fully automatic method, which uses deformable
models coupled with an iterative mesh refinement scheme that incorporates a-priori knowledge of endo- and
epicardial surfaces. Results on MRI data have been presented in [6][1]. More recently, [10], [9] validated
myocardial volumes from semi-automatic endo- and epicardial segmentation against MRI. However to
our knowledge, most of these approach require extensive user interaction to achieve sufficient accuracy.
They are also computationally intensive, which prevents them from operating in real-time.

In this paper, we extend previous work on 3D endocardial segmentation [7] with support for simul-
taneous tracking of several deformable models, arranged in a hierarchy of geometric transforms. Two
subdivision surfaces are used to represent the endo- and epicardium, and tracking is evaluated in a
simulated phantom image, as well as in five 3D echocardiography recordings of high quality. The obtained
myocardial volumes are compared against the ground-truth and volumes from a commercial segmentation
tool.

II. METHODS

Simultaneous multi-model tracking poses additional challenges, compared to single-model tracking.
This especially applies to the relative position and shape of the models, which has to be constrained to
prevent intersections and other form of unrealistic results. In this paper, we employ a hierarchical approach

The authors want to thank Brage Amundsen (NTNU) for acquiring the in-vivo recordings, and Olivier Gérard (GE Vingmed Ultrasound)
for conducting the reference volume measurements.
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Figure 1: Flowchart over the 5 processing stages in the Kalman tracking framework.

to multi-model tracking, that constrains the position, size and orientation of the models relative to each
other in a simple and intuitive way.

Deformable models are arranged in a hierarchical structure, much like the scene-graphs known from
computer graphics[3]. The models becomes leaf nodes in this hierarchy, which are connected by geometric
transforms as internal nodes. Geometric transforms are typically used for positioning, scaling and orienta-
tion, and the models beneath each transform automatically shares these properties. Geometric transforms
may also be arranged beneath other transforms recursively, to form multi-level hierarchical structures. Fig.
2(a) shows an example of the simple tracking hierarchy used in this paper, that consists of an endocardium
and an epicardium model, coupled together by a global pose transform, as well as a scale transform to
enlarge the epicardium model relative to the endocardium model.

Both model and transform nodes will typically have parameters that affects either shape or pose. For
tracking in a state-estimation framework, these parameters have to be concatenated into a composite
state vector. For doing so, we follow a depth-first traversal convention to construct the state vector. This
convention works recursively from the root transform, by first appending the transform parameters with
parameters from each child model, and then appending recursively with concatenated parameters from
each child transform. The example hierarchy in Fig. 2(a) will e.g. result in a state vector on the following

form x =
[
xT

g xT
a xT

s xT
b

]T
.

Tracking is performed by following approximately the same 5-step procedure as in [7], but model
construction and edge measurements will have to be performed independently for each model as shown
in Fig. 1.

A. Deformable Subdivision Models
Both the endocardial and epicardial surface are modeled as smooth subdivision surfaces. In this paper,

we use two Doo-Sabin [4] subdivision surface of identical topology, as shown in fig. 2. Both models
are parametrized by 20 control vertices qi, that are allowed to move inwards and outwards along a
displacement vector di approximately equal to the surface normal to alter the shape. Fig. 2(a) shows the
initial shape and topology for the subdivision models. In building the tracking hierarchy, the epicardial
model is connected to a fixed scaling transform to enlarge it relative to the endocardial model. Both
models as then connected to a global transform with 7 parameters for position, scaling and rotation. In
total, this yields 47 parameters to be estimated based on edge measurements during tracking.

Edge-detection is performed relative to fixed parametric coordinates on the models. The distribution of
these parametric coordinates (including patch number) (u, v, c)l are typically distributed evenly across the
model surface as shown in Fig. 2(b), and remains fixed during tracking. This enables efficient precalculation
of their basis functions during initialization as described in [7]. These basis functions are independent of
the position of the control vertices, and can therefore be re-used during tracking to efficiently generate
surface points regardless of shape deformations.
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Figure 2: (a) The tracking hierarchy, which consists of two subdivision models (Ma and Mb), connected
by a scale transform and a global transform (Ts and Tg). (b-c) Renderings of the subdivision model used
for both endo- and epicardium: (b) shows the individual surface patches, enclosed in a wireframe grid of
control vertices, while (c) shows the distribution of search profiles used for edge-detection.

B. Evaluation of Surface Points
The Kalman filter framework requires creation of a set of surface points pl with associated normal

vectors nl and Jacobi matrices Jl, based on a predicted state vector x̄l. The creation of these objects can
be performed efficiently following the steps outlined below:

1) Update position of control vertices qi based on the state vector: qi = q̄i + xidi, where q̄i is the
mean position of the control vertex and xi is the parameter corresponding to this control vertex in
the state vector for each control vertex. di is the displacement direction for control vertex qi. The
local state vector for the model is the concatenation of the state parameters for all control vertices
xl = [x1, x2, . . . , xNl

]T . One can here chose to force certain vertices to remain stationary during
tracking without altering the overall approach. This would both reduce the deformation space, as
well as the number of parameters to estimate.

2) Calculate surface points pl as a sums of control vertices weighted with their respective basis functions
within the surface patch of each surface point: pl =

∑
i∈C(cl)

biqi.
3) Calculate surface normals nl as the cross product between the partial derivatives of the basis functions

with regards to parametric values u and v within the surface patch of each surface point: nl =∑
i∈C(cl)

(bu)iqi ×
∑

i∈C(cl)
(bv)iqi.

4) Calculate Jacobian matrices for the local deformations Jl by concatenating the displacement vectors
multiplied with their respective basis functions: Jl =

[
bi1di1 , bi2di2 , . . .

]
i∈C(cl)

. The Jacobian

matrix will here be padded with zeros for columns corresponding to control vertices outside the
region of support for the surface patch of each surface point.

Precomputation of basis functions enables the operations above to be performed very quickly, which is
crucial for enabling real-time implementations.

C. Surface Point Transformation
Surface points originating from child models or transforms are transformed by means of a geometric

transform Tg to position, orient and scale the models.
We denote pl, nl and Jl for the surface points created from the subdivision surface with local defor-

mations Tl(xl). These points are subsequently transformed by means of a transform Tg, that translates,
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rotates and scales the model to align it correctly within the image volume. Surface points are trivially
transformed using Tg, whereas normal vectors must be transformed by multiplying with the normalized
inverse spatial derivative of Tg to remain surface normals after the global transform [2]:

pg = Tg(pl,xg) (1)

ng =

∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣
(

∂Tg(pl,xg)

∂pl

)−T

nl (2)

The Jacobian matrices for the composite deformations then becomes the concatenation of both global and
local state-space derivatives. The local part is created by multiplying the 3× 3 spatial Jacobian matrix for
the global transform with the 3×Nl local Jacobian matrix for the deformable model, as follows from the
chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg

, 0,
∂Tg(pl,xg)

∂pl

Jl, 0

]
. (3)

The zero padding of the Jacobian matrices depends of the relative position of the model’s param-
eters in the tracking hierarchy. The Jacobians for the models in Fig. 2(a) therefore becomes Ja =[
Jg Ja 0 0

]T
and Jb =

[
Jg 0 Js Jb

]T
.

D. Kalman Tracking Framework
The overall tracking framework is based on the framework introduced in [7], with most steps very

similar and therefore only briefly presented in this paper. The primary difference is that steps 2 through
4 are performed independently for each model in the tracking hierarchy as shown in Fig. 1, instead of
only for a single model. The 5 steps can be summarized as:

1) Temporal prediction of the composite state vector x̄k+1 = f (x̂k, x0) based on the updated state
from previous frame and a prediction function f, with associated increase in the covariance matrix.
The temporal function is typically a linear autoregressive model.

2) Evaluation of tracking points p, normal vectors n and Jacobian matrices J for all models in the
tracking hierarchy, based on the predicted state x̄k as described in sections II-B and II-C.

3) Detection of normal displacement measurements v, measurement noise r and measurement vectors
h = nTJ, based on edge detection in the image volume, relative to surface points from the predicted
models.

4) Assimilate measurement results from each model by summing the results in information space:
HTR−1v =

∑
i hir

−1
i vi, H

TR−1H =
∑

i hir
−1
i hT

i .
5) Compute an updated state estimate, based on the prediction and measurement information: x̂k =

x̄k + P̂kH
TR−1vk, P̂−1

k = P̄−1
k + HTR−1H.

The net result of this approach is that edge measurement performed on each model will primarily affect
local shape parameters, as well as parameters for each transform above the model in the hierarchy. Changes
in parameters to unconnected nodes or non-descendant nodes in the hierarchy, such as e.g. sibling models,
will not be observable due to the sparse nature of the Jacobian matrices.

III. RESULTS

Tracking was validated in one 3D echocardiography simulation of an infarcted ventricle, as well as
in 5 in-vivo recordings of high image quality (Vivid 7, GE Vingmed Ultrasound, Norway). Myocardial
volume was computed for all frames in each recording, based on the volume difference between the
two models. Semiautomatic segmentation of the endo- an epicardium was performed by an experienced
independent operator in both end diastole (ED) and end systole (ES) for the in-vivo recordings using a
modified version of the AutoLVQ tool (GE Vingmed Ultrasound, Norway). The average of the ED and
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Recording Estimated volume Reference volume

1 95.1 ± 7.9 ml 102.5 ± 0.7 ml

2 136.0 ± 9.9 ml 167.5 ± 24.7 ml

3 114.2 ± 5.1 ml 108.5 ± 0.7 ml

4 134.9 ± 7.0 ml 149.5 ± 9.2 ml

5 135.7 ± 5.4 ml 141.5 ± 9.2 ml

simulation 64.2 ± 1.7 ml 60.0 ml

Table I: The center column shows estimated myocardial volume (mean ± STD) for each recording, based
on endo- and epicardial tracking in one cardiac cycle. The right column shows the reference volumes
(mean ± STD), based on manual tracing in ED and ES.

ES myocardial volume served as reference for the experiment. The simulation had a known myocardial
volume, that was used as reference.

Tracking was fully automatic, with the exact same initialization in all of the recordings, and consumed
an average of 9.5 ms processing time per frame on a 2.2 GHz Intel core 2 duo processor. This enables
it able to operate in real-time, potentially during image acquisition.

Fig. 3 shows screenshots of tracking in the simulation, one of the in-vivo recordings, as well as a
normalized myocardial volume-plot for each of the in-vivo recordings. For the simulated data, the proposed
method overestimated the myocardial volume on average with 4.2 ml (7.0%) compared to the simulation,
with a mean computed myocardial volume 64.2 ± 1.7 ml. On the in-vivo data the proposed method
underestimated the myocardial volume on average with 10.7 ml (8.0%), with a mean myocardial volume
of 123.2 ± 18.2 ml when averaging across all recordings, whereas the average volume from the references
was 133.9 ml. Table I shows the individual results within each recording. The 68% confidence interval
(mean ± STD) for all in-vivo volumes lie within the corresponding 68% confidence intervals from the
reference tool.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented an extension of an existing tracking framework to support simultaneous
segmentation and tracking of several deformable models by means of hierarchical modeling. Coupled endo-
and epicardial segmentation in 3D echocardiography served as exemplary application. Results from fully
automatic tracking in one simulation as well as 5 recordings of high image quality demonstrates the
feasibility of the approach for myocardial volume estimation. Results from the simulation showed low
volume bias, while the in-vivo results are within the interval of myocardial masses reported by Takeuchi
and Pouleur [10], [9].

3D echo recordings of less than optimal image quality often suffers from areas of drop-out and other
forms of image degradation that makes accurate edge-detection of especially the epicardium difficult.
These difficulties can at least partly be alleviated by incorporating surface attractors, that are manually
placed by the user. Such attractors can be implemented as virtual edge measurements towards specific
spatial positions, indicated by the user in e.g. ED and ES, and would then assist the segmentation in areas
of missing or degraded image data.

Currently, the shape of each model are updated independently. The global transform is the only param-
eters shared between the models. This independence makes it difficult to impose efficient regularization
of inter-model thickness or to prevent intersection between the models. An alternative would be to extend
the surface models with inherent thickness parameters, instead of using two coupled models. This could
enable more robust and well behaved tracking in recordings of lower image quality.

Multi-model tracking leads to long state-vectors and covariance matrices, since parameters from all
models are concatenated together. Matrix operations in the Kalman filter generally scale in O(N3) for
N states, which leads to poor computational efficiency when many models are combined. Possibilities
for decomposing the Kalman filter into several smaller filters, with responsibility for smaller parts of the
hierarchy should therefore be investigated.
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(a)

(b)

(c)

Figure 3: Screenshots of tracking in the simulation (a), as well as one of the in-vivo recordings (b). The
screenshots shows several slices through the volume, with intersection lines for the endo- and epicardium
models, as well as a volume plot for each model. (c) Shows the computed myocardial volume in normalized
time (from ED to ED) for each in-vivo recording.
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Fredrik Orderuda, Hans Torpa and Stein Inge Rabbenb
aNorwegian University of Science and Technology (NTNU), Trondheim,

Norway;
bGE Vingmed Ultrasound, Oslo, Norway

ABSTRACT
In this paper, we present an automatic approach for alignment of standard apical and short-axis
slices, and correcting them for out-of-plane motion in 3D echocardiography. This is enabled
by using real-time Kalman tracking to perform automatic left ventricle segmentation using a
coupled deformable model, consisting of a left ventricle model, as well as structures for the right
ventricle and left ventricle outflow tract. Landmark points from the segmented model are then
used to generate standard apical and short-axis slices. The slices are automatically updated after
tracking in each frame to correct for out-of-plane motion caused by longitudinal shortening of
the left ventricle.
Results from a dataset of 35 recordings demonstrate the potential for automating apical slice

initialization and dynamic short-axis slices. Apical 4-chamber, 2-chamber and long-axis slices
are generated based on an assumption of fixed angle between the slices, and short-axis slices
are generated so that they follow the same myocardial tissue over the entire cardiac cycle. The
error compared to manual annotation was 8.4 ± 3.5 mm for apex, 3.6 ± 1.8 mm for mitral valve
and 8.4 ± 7.4◦ for apical 4-chamber view. The high computational efficiency and automatic
behavior of the method enables it to operate in real-time, potentially during image acquisition.

1. INTRODUCTION
Numerous tools for quantitative analysis of 3D echocardiograms have appeared over the last
years, especially for left ventricular assessment. But despite all this innovation, visual wall-
motion analysis still remains one of the most important clinical procedures in assessment of
cardiac function. Traditionally, assessment of cardiac segments were time consuming, since
several apical and parasternal 2D recordings had to be acquired independently, and examined
successively to assess regional cardiac function.
With 3D echocardiography, arbitrary image slices can be extracted from acquired volumes.

3D echocardiography scanners incorporate tools to align and extract non-foreshortened apical 4-
chamber (A4C), 2-chamber (A2C) and long-axis slices (LAX), as well as several short-axis slices.
All cardiac segments can then be visualized simultaneously, based on a single 3D recording with
sector wide enough to cover the entire ventricle.1

Existing tools require manual alignment of the left ventricular long-axis, which increases the
examination time. More seriously, the resulting slices remain at fixed spatial positions within



the image volume throughout the cardiac cycle. This means that the myocardial tissue being
displayed differs during the cardiac cycle. This is especially a problem for basal short-axis slices,
where the longitudinal shortening may be up to 1.2 cm during the cardiac cycle. The resulting
out-of-plane motion can give rise to artificial wall thickening unrelated to cardiac contraction,
and basal slices can end up in the atria at systole.
Several approaches for automatic identification of the left ventricular orientation have pre-

viously been published. Veronesi have published an optical-flow approach for measurement of
the long-axis,2 and Stralen have published a similar paper,3 based on a combination of Hough-
transform with dynamic programming. In addition, some approaches that also identify apical
view orientation in addition to the long-axis have also been published. Lu has presented a
database-driven approach for the detection of standard view planes,4 and Leung have presented
an approach for registration of stress echocardiography that also identify left ventricular orien-
tation.5 All of these studies did, however, report computational costs in the order of minutes
per cardiac cycle, which makes them unsuitable for real-time operation. The results published
by Veronesi2 were also limited to analyzing the length of the long-axis, whereas Stralen also
compared the long-axis angle.3 None of the latter papers reported any position error for apex
or base. Instead, they reported aggregate results based on comparison in every frame in each
recording in the dataset, which makes comparison difficult.
In this paper, we present a method for automatically generating anatomically corrected

short-axis slices, as well as automatically aligned standard apical views. The short-axis slices
are evenly spaced between the apex and base of a fitted deformable model, whereas the apical
view are aligned based on the orientation of the model, with a fixed angle between the slices. The
slices are also automatically corrected for out-of-plane motion to ensure that the same myocardial
tissue is imaged throughout the cardiac cycle. Due to the high computational efficiency, the
method is able to operate in real-time, potentially during image acquisition.

2. METHODS
Automatic alignment of standard views are achieved by fitting several coupled deformable mod-
els to cardiac structures using a computationally efficient tracking framework previously de-
scribed.6,7 This framework used an extended Kalman filter8 to perform temporal predictions,
and assimilate edge-detection measurements from each model to compute a Bayesian least
squares fitting of the models in a non-iterative fashion. Landmarks are then extracted from
the fitted models, and subsequently used as basis for the extraction of aligned standard views.

2.1 Coupled deformable models
Automatic alignment of cardiac views requires information about both the ventricular long-axis,
as well as the circumferential orientation of the heart. Usage of a left ventricle (LV) model alone
is not believed to suffice, since circumferential information extracted from such a model would
have to be based solely on the asymmetrical properties of the shape, which can vary greatly
between subjects and depending on pathology. An alternative approach is to use coupled models
to simultaneously track several cardiac structures. This allows for more reliable assessment of
orientation, by computing the angle between the LV model and the different structures.
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(b)
Figure 1: (a) Tracking hierarchy for the deformable models, showing the global transform Tg, LV
model Mlv, RV-sail Mrv, hinge transform Th, as well as the LV outlet tract Tot. (b) Flowchart
over the Kalman tracking framework.

To ensure clear and unambiguous detection of both the long-axis and circumferential orienta-
tion, we therefore combine a LV model with a sail-like structure for the inferior right ventricular
wall (RV), as well as a tube-like structure for the left ventricular outflow tract (OT). A de-
formable Doo-Sabin subdivision surface9 is used as LV model, as described in.6 For the RV,
the inferior RV wall is selected since this is the part of the right ventricle that is usually most
visible, whereas the anterior wall often suffers from drop-out. All models share a global trans-
form (G) for translation, rotation and scaling. The OT model is also addition connected to a
hinge transform (H), which allows the model to rotate to adapt to inter-subject differences in
anatomy for the outlet tract.
Fig. 1(a) illustrates how the models are arranged in relationship to one another in a tracking

hierarchy, whereas Fig. 2(b) illustrates the relative geometric configuration between the models
after fitting in a typical recording.
A state-space representation of the tracking hierarchy can be constructed by concatenating

the parameters from all transforms and models into a state vector, as described in.7 The RV sail
and OT cylinder does not have any shape parameters and are only affected by their associated
transforms, so the concatenated state vector therefore becomes x =

[
xTg xTlv xTh

]T
.

2.2 Tracking framework
The overall tracking framework for coupled models is based on the framework introduced in,6,7

with most steps very similar and therefore only briefly presented in this paper. The primary
difference is that steps 2 through 4 are performed independently for each model in the track-
ing hierarchy as shown in Fig. 1(b), instead of only for a single model. The 5 steps can be
summarized as:

1. Temporal prediction of the composite state vector x̄k+1 = f (x̂k, x0) based on the updated
state from previous frame and a prediction function f, with associated increase in the
covariance matrix. The temporal function is typically a linear auto-regressive model.

2. Evaluation of surface points p, normal vectors n and Jacobian matrices J for all models
in the tracking hierarchy, based on the predicted state x̄k as described in.6



3. Detection of normal displacement measurements v, measurement noise r and measurement
vectors h = nTJ, based on edge detection in the image volume, relative to surface points
from the predicted models.

4. Assimilate measurement results from each model by summing the results in information
space: HTR−1v = ∑i hir−1

i vi, HTR−1H = ∑i hir−1
i hTi .

5. Compute an updated state estimate, based on the prediction and measurement informa-
tion: x̂k = x̄k + P̂kHTR−1vk, P̂−1

k = P̄−1
k +HTR−1H.

Tracking can be performed fully automatic, and initialized by placing a model with average shape
in the center of the image sector. Edge-detection measurement are performed in each frame to
detect the endocardial wall in search normals distributed evenly across the surface. Parameters
for the shape of the model is combined with parameters for global translation, rotation and
scaling to form a state-space representation of the segmentation problem.

2.3 Model-based alignment
Landmark points from the fitted models are used to generate standard apical and short-axis
slices. The slices are automatically updated after tracking in each frame to correct for out-of-
plane motion caused by longitudinal shortening of the left ventricle.
During tracking, landmark points from apex and base of the LV model are extracted from

the segmented model after fitting in each frame. The angles between the LV model, the RV
sail and OT cylinder is also computed to infer circumferential orientation of the heart. This
orientation is then used to automatically generate standard apical 4-chamber, 2-chamber and
long-axis views centered through the apex-base long-axis vector as seen in figure 2(a). The views
are aligned circumferentially oriented based on an assumption of a 60 degree angle between the
slices. In addition, evenly distributed short-axis slices orthogonal to the apex-base long-axis are
generated, as seen in figure 2(b). The position of these slices is updated after tracking in each
frame to correct the slices for out-of-plane motion caused by longitudinal shortening of the left
ventricle.

3. RESULTS
The real-time tracking framework was used to perform left ventricular segmentation in a collec-
tion of 35 3D echocardiography recordings, preselected so that over 70% of the myocardium was
visible (38% exclusion rate). Furthermore, they were all acquired with the convention that the
azimuth view shown on the screen during volume acquisition should approximately resemble a
A4C view to limit the inter-recording variability in probe orientation.
Tracking was implemented to process the acquired spherical grayscale data directly, and

consumed approximately 7 ms processing time per frame (2.16GHz Intel core 2 duo processor).
This makes the framework capable of operating in real-time. Automatically generated views
and landmarks from the fitted models in all 35 recordings were compared to landmarks from
manual image annotation at end-diastole conducted by an independent operator.



(a) Apical alignment (b) Short-axis alignment
Figure 2: Example illustrations of automatic model-based alignment: (a) Extraction of standard
apical views based landmarks from the coupled LV-models. (b) Extraction of short-axis slices,
based on the long-axis of the LV model.

3.1 Alignment examples
Landmarks from apex and base was then retrieved from the fitted models in all frames to align
the short-axis slices. Figure 3 compares the results of using fixed short-axis slices with dynamic
slices that compensate for out-of-plane motion between end-diastole (ED) and end-systole (ES)
in an example recording. Notice the distinctive difference in the basal slices, which when not
corrected images the atria during systole. For mid-wall slices, the same part of the papillary
muscles appear to be tracked in the dynamic slices. This is contrasted by the fixed mid-wall
slices, where the papillary muscles move in and out of the slice.
Figure 4 shows an example of automatically extracted standard 4-chamber, 2-chamber and

long-axis apical views, based on landmarks from the fitted models. The figure also shows
detected long-axis and circumferential orientation (yellow), compared to the long-axis and ori-
entation from manual image annotation (white).

3.2 Alignment errors
Figure 1 and 2 shows the results of quantitative comparison of the automatically extracted views
and landmark points to the manually annotated reference. Position errors are given in absolute
Cartesian distances, and angle errors are given as absolute rotation angle diffences for a plane
through the long-axis. Bias values are also reported for the average signed angle errors, and say
something about consistent deviation in one direction.

4. DISCUSSION
A novel approach for automating and improving the generation of standard apical and anatomic
short-axis slices from 3D echocardiograms has been presented. Usage of the approach is believed



(a) Mid-wall slices

(b) Basal slices
Figure 3: Example uncorrected and corrected short-axis slices from the mid-wall (a) and base
(b) of the left ventricle. Notice how the papillary muscles (arrows) appear more similar in the
corrected mid-wall slices, and how the mitral valve (red arrow) is followed in the corrected basal
slices.

Apex Base/Mitral valve
Position error 8.4 ± 3.5 mm 3.6 ± 1.8 mm

Table 1: Position errors for the apex and base compared to manual landmarks. Values are
expressed as mean absolute distance ± SD in millimeters.

A4C A2C LAX
Rotation error 8.4 ± 7.4◦ 8.0 ± 7.6◦ 11.8 ± 8.5◦

Bias 0.3◦ 1.1◦ -7.9◦
Table 2: Rotation errors for the standard apical views compared to views inferred from manual
landmarks. Values are expressed as mean absolute error ± SD in degrees. Bias is the average
signed angle error.



(a)

(b)
Figure 4: Two examples of extraction of standard 4CH, 2CH and LAX apical views, based on
landmarks from the fitted model. Projected landmark lines from apex to base are superimposed
on the apical views, and slice-direction lines are shown in the short-axis view. Yellow lines are
from the proposed method, whereas reference lines are show in white.



Alignment error Apex Mitral valve A4C A2C LAX
Proposed 8.4 ± 3.5 mm 3.6 ± 1.8 mm 8.4 ± 7.4◦ 8.0 ± 7.6◦ 11.8 ± 8.5◦
Lu 20084 4.5 ± 3.5 mm 3.6 ± 3.1 mm 13.2 ± 12.5◦ 15.2 ± 13.0◦ 14.5 ± 13.2◦
Leung 20085 7.6 ± 4.8 mm 4.5 ± 2.9 mm 6.3 ± 4.6◦ N/A N/A
Table 3: Comparison of results to known prior art on detection of standard views.

to both automate positioning of standard apical and short-axis slices, as well as reducing the
problem of out-of-plane motion experienced in short-axis slices.
Results from a dataset of 35 recordings demonstrates the feasibility of this approach, both for

aligning apical and short-axis slices. For short-axis alignment, slices from an example recording
clearly shows the advantage of correcting the short-axis slices for out-of-plane motion in imaging
the same myocardial tissue throughout the cycle. This effectively prevents basal short-axis
slices from dropping down into the atria during systole, and papillary muscles appear more
similar from frame to frame in corrected mid-wall slices. Example slices from two example
recordings also shows how alignment of apical A4C, A2C and LAX can be performed based
on an assumption of fixed angle between the slices, with comparison to manually annotated
landmarks. Furthermore, a previous study6 has shown that the Kalman tracking approach
successfully tracked and segmented the left ventricle in 21 out of tested 21 3D echocardiograms.
Hence, high robustness has previously been demonstrated.
Based on the results in table 1, one can see that basal/mitral valve detection is more accurate

than apex detection. This corresponds well with the fact that manual apex identification is
considered more difficult than manual mitral valve identification. As for rotations, table 2
shows that the assumption of 60 degree angle between the apical slices does not seem to hold
for the LAX slice, which has much higher angle bias than the other apical slices. Adjusting the
angle of the LAX slice relative to the other slices would reduce the alignment error, and should
therefore be considered.
Compared to the results reported by Lu,4 the rotation errors for the apical views in this

paper are smaller. The error for the basal landmark is similar, while the error for the apical
error is larger compared to.4 It should be noted that Lu used a much larger dataset (N=326)
and undisclosed exclusion criteria, which makes a fair comparison difficult. Compared to the
results reported by Leung5 (N=20), the apex and base position errors are smaller, whereas
Leung report better A4C angle agreement. It should be noted that the aim of Leung’s paper
was volume registration of stress 3d echocardiography, instead of detection of standard views,
which might have influenced the results. Table 3 provides a comparison to the results to Lu and
Leung.
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