
Open-Domain Word-Level
Interpretation of Norwegian

Towards a General Encyclopedic
Question-Answering System for Norwegian

Thesis for the degree of Philosophiae Doctor

Trondheim, February 2010

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Computer and Information Science

Martin Thorsen Ranang
Title

Subtitle? Subtitle? Subtitle? Subtitle?
Subtitle? Subtitle? Subtitle? Subtitle?

Thesis for the degree of Philosophiae Doctor

Trondheim, February 2009

Norwegian University of Science and Technology
Faculty of XXXXXXXXXXXXXXXXXXXXXXXX
Department of XXXXXXXXXXXXXXXXXXXXX

Author

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Martin Thorsen Ranang

ISBN 978-82-471-1973-0 (printed ver.)
ISBN 978-82-471-1974-7 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2010:11

Printed by NTNU-trykk

For Johanna

Contents

1 Introduction 1

1.1 Practical Problem 2

1.2 Research Problem 4

1.3 Research Questions 5

1.4 Research Solution 6

1.5 Roadmap 6

1.6 Who Did What? 7

1.6.1 The Publications 8

2 Background and Related Research 9

2.1 Ontologies and Semantic Networks 10

2.1.1 Example Ontologies 11

2.1.2 Applications of Ontologies in Natural Language Processing 11

2.2 Lexical Semantics 16

2.2.1 Synonymy 18

2.2.2 Hypernymy and Hyponymy 18

2.2.3 Troponymy 20

2.2.4 Antonymy and Similarity 20

2.2.5 Compounds and Collocations 22

2.3 Automatic Analysis of Norwegian Compounds 22

2.4 Lexical Semantic Resources for Non-English Languages 24

2.4.1 Conceptual Density 26

2.4.2 Conceptual Distance 27

2.4.3 Other Methods 27

2.4.4 Triangulation 33

2.4.5 Norwegian Semantic Knowledge Bases 34

2.5 Open-Domain Question Answering 34

2.5.1 Deep Analyses versus Wide Coverage 36

2.6 Encyclopedic Question-Answering Systems 37

2.7 Natural Language Processing Systems for Norwegian 37

2.7.1 The Understanding Computer (TUC) 37

v

2.7.2 The LOGON Project 39

3 Handling of Norwegian Compounds 41

3.1 Motivation 41

3.2 Norsk Komputasjonelt Leksikon (NorKompLeks) 41

3.3 Guiding Principles 42

3.4 Algorithms for Automatic Analysis of Compounds 44

3.4.1 The Get-Compounds-Unsorted Algorithm 46

3.4.2 The Prioritize-Analyses Algorithm 52

3.5 Compound-Word Parser 57

3.5.1 Modifications of the Parser 57

3.5.2 The grammar 58

3.6 Results 65

3.7 Analysis and Discussion 67

3.7.1 Comparison with Johannessen and Hauglin’s Compound
Analyzer 67

3.7.2 Efficiency 70

4 Mapping Norwegian to WordNet 71

4.1 Resources 71

4.1.1 Human/Machine-Readable Dictionaries 74

4.1.2 WordNet 76

4.2 The Crux 81

4.3 Handling of Instance Synonyms 82

4.4 Single-sense Words 83

4.5 Exploiting the Synonymy within Synsets 83

4.6 Combining the Basic Principles 88

4.7 Evaluation of the Assumptions 90

4.8 Search Strategies 90

4.8.1 Synonymy and Hypernymy 94

4.8.2 Hyponymy 95

4.8.3 Verb Group 97

4.8.4 Similarity 97

4.9 Mapping Framework 100

4.9.1 Example Mapping of «rotten» 104

4.10 Results 109

4.10.1 Measures 110

4.10.2 The Test Set 111

4.10.3 The Experiment 114

4.10.4 With the Original Dictionaries 115

4.10.5 With the Extended Dictionaries 126

4.10.6 Ordnett 132

vi

4.11 Analysis and Discussion 134

4.11.1 Word-Usage Frequencies 138

4.11.2 Misaligned Coverage 139

4.11.3 Ordnett 140

4.11.4 Comparison with Semantic Mirrors 144

4.11.5 Comparison with Other Approaches 146

5 Open-Domain Natural Language Understanding for Norwegian 149

5.1 Motivation 149

5.2 Scaling up TUC 151

5.3 Semistructured Resources 152

5.4 System Overview 153

5.4.1 Preparations 155

5.4.2 Preprocessing and Lexical Analysis 155

5.4.3 Text Interpretation and LexTUC 156

5.5 Multiple-Pattern Approximate Sequence Matching 157

5.5.1 Sentence-Boundary Detector 160

5.5.2 Named-Entity Recognition 161

5.6 Lexical Analyzer (Multitagger) 162

5.7 Results 163

5.7.1 First Example 163

5.7.2 Second Example 167

5.8 Analysis and Discussion 178

5.8.1 The Scalability of TUClopedia 178

5.8.2 Ordnett’s Suitability 183

5.8.3 WordNet’s Lacking Verb Frames 183

5.8.4 Providing Answers to Queries About Encyclopedia Content 183

6 Analysis and Discussion 187

6.1 Automatic Analysis of Compounds Based on Semantics 187

6.2 Ontology Alignment 191

6.3 Answers to the Research Questions 192

6.4 Contribution 194

6.5 Future Work 195

6.6 Final Words 196

Appendix 197

A Brief Introduction to Graph Theory 199

References 203

vii

Index 221

viii

List of Figures

1.1 Approaches to integrating semantic knowledge sources. 3

2.1 Part of WordNet’s taxonomy. 12

2.2 Hypernymy/hyponymy in the WordNet ontology. 19

2.3 Similarity between adjectives and direct and indirect antonymy. 21

2.4 Illustration of the conceptual density measure. 25

2.5 Situations and criteria for mapping source-language words to
WordNet synonym sets via monosemous English words. 28

2.6 Methods and criteria for mapping source-language words to Word-
Net synonym sets via polysemous English words. 29

2.7 Methods and criteria for mapping source-language words to Word-
Net via polysemous English words, using WordNet’s structural
information. 30

3.1 Two analyses of the compound «musikkspiller» returned by the
parser and evaluated by the compound-word analyzer. 53

3.2 One of the valid analyses of «kontorstøttesystemet» (“office support
the.system”). 54

3.3 The highest prioritized analysis of «flyktningepolitikk» returned by
the compound-word analyzer. 60

3.4 The highest prioritized analysis of «vikingetiden» returned by the
compound-word analyzer. 61

3.5 The highest prioritized analysis of «raskestvoksende» returned by
the compound-word analyzer. 64

4.1 Dictionary entries for the Norwegian words «skatt». 72

4.2 Dictionary entries for the English noun “smoothie”. 76

4.3 Polysemy count for each lexical category in WordNet. 79

4.4 The hypernym-ancestor synsets of the synsets that quest_n_1 and
quest_n_2 belong to. 96

4.5 Hyponyms of projector_n_2 in the WordNet ontology. 98

ix

4.6 The synsets similar to the synset {abnormal_adj_1}. 99

4.7 Expansion of translation directed acyclic graph vertex types. 101

4.8 Example of how a weighted directed acyclic graph is expanded in
the case of a multipart translation. 102

4.9 Example of a generalized subgraph representing a multipart trans-
lation. 103

4.10 The two first steps of the mapping of «rotten». 104

4.11 The third step of the mapping of «rotten». 105

4.12 The DAG after adding the WordNet sense nodes. 106

4.13 The DAG after adding the WordNet synset nodes. 107

4.14 Expansion of the graph by adding nodes representing hyponyms of
the {rat_n_1} node. 109

4.15 The Web interface used by the human expert to define the test
sets. 112

4.16 Summary of precision scores through test runs 1–6. 123

4.17 Summary of recall scores through test runs 1–6. 123

4.18 Summary of F0.5 scores through test runs 1–6. 125

4.19 Summary of precision scores through test runs 7–12. 133

4.20 Summary of recall scores through test runs 7–12. 133

4.21 Summary of F0.5 scores through test runs 7–12. 134

4.22 The change patterns in the results from test runs 1–12. 135

4.23 A small, non-exhaustive segment of the Ordnett resource, showing
mappings from Norwegian to WordNet synonym sets in addition
to both meronymy and hypernymy relations. 136

4.24 Scatter graph of precision and recall scores for each input word
against its usage frequency, with regression lines. 138

4.25 Ordnett mappings from Norwegian to the WordNet synonym set
containing makeup_n_2 and its hyponyms. 142

4.26 Ordnett mappings from Norwegian to the WordNet synonym set
containing hair_n_1 and its substance meronyms. 143

4.27 Ordnett mappings from Norwegian to the WordNet synonym set
containing eat_v_1 and actions it entails. 144

5.1 TUClopedia’s architecture. 154

5.2 Logical formula representing the contents of the A+ article. 166

5.3 Example of an index that maps words to articles they occur in
and an index that map those articles to knowledge extracted from
them. 181

5.4 Example of an index that maps words to knowledge that was
extracted form sentences they occurred in. 182

6.1 Hypernyms of “jazz” found in WordNet. 189

x

6.2 Hypernym of oak_tree_n_1 as defined by WordNet. 189

6.3 Hypernyms of “castle” and part holonyms for some of them. 190

A.1 Undirected graph. 199

A.2 Directed graph. 200

A.3 Directed acyclic graph. 200

A.4 Weighted directed acyclic graph. 200

xi

List of Tables

3.1 The weighting of different lexical categories used by the Get-POS-
Weight-Mapping method. 55

3.2 Test results for the automatic compound-word analyzer applied
to compounds found in newspaper articles. 66

3.3 The ranked analyses returned by the Oslo-Bergen tagger’s com-
pound-word analyzer when analyzing «musikkatalog» (“music cat-
alog”). 69

4.1 Number of keywords and translations (where applicable) in the
lexical resources Norsk komputasjonelt leksikon, Norsk–engelsk stor
ordbok, Engelsk–norsk stor ordbok. 73

4.2 WordNet glosses for the three synsets representing the different
senses of engine. 78

4.3 Unique strings, synsets, and word senses in WordNet. 78

4.4 Relations defined for different lexical categories in WordNet. 80

4.5 Words per lexical category in WordNet that only represent a single
sense each. 83

4.6 Overview of single-sense words, singleton synsets, and singleton
synsets representing single-sense words in WordNet. 91

4.7 Words per lexical category in WordNet that are affected by shared-
synonym ambiguity. 92

4.8 Synsets and descriptions for the five WordNet senses of “rat”. 108

4.9 Number of words and senses considered by the human expert. 114

4.10 Search strategies used for each lexical category in each per-dictio-
nary partition of the experiment. 115

4.11 Coverage results of running Verto with the original dictionaries,
and the Synonym strategy. 116

4.12 Number of times that no mapping could be found due to missing
WordNet entries, with pristine dictionaries. 116

4.13 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and the Synonym strategy. 117

xiii

4.14 Coverage results of running Verto with the original dictionaries
and the Synonym and Hypernym search strategies. 118

4.15 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and the Synonym and Hypernym search strategies. 119

4.16 Coverage results of running Verto with the original dictionaries
and the Synonym and Hyponym search strategies. 119

4.17 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and the Synonym and Hyponym search strategies. 120

4.18 Coverage results of running Verto with the original dictionaries
and the Synonym and Similar search strategies. 120

4.19 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and the Synonym and Similar search strategies. 121

4.20 Coverage results of running Verto with the original dictionaries
and the Synonym and Verb-Group search strategies. 122

4.21 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and the Synonym and Verb-Group search strategies. 122

4.22 Coverage results of running Verto with the original dictionaries
and the Synonym and all of the search strategies. 124

4.23 Precision, recall, and F0.5 results of running Verto with the original
dictionaries and all of the search strategies. 124

4.24 Number of times that no mapping could be found due to missing
WordNet entries, with extended dictionaries. 125

4.25 Coverage results of running Verto with the extended dictionaries
and the Synonym strategy. 126

4.26 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym strategy. 127

4.27 Coverage results of running Verto with the extended dictionaries
and the Synonym and Hypernym search strategies. 128

4.28 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym and Hypernym search strate-
gies. 128

4.29 Coverage results of running Verto with the extended dictionaries
and the Synonym and Hyponym search strategies. 128

4.30 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym and Hyponym search strate-
gies. 129

4.31 Coverage results of running Verto with the extended dictionaries
and the Synonym and Similar search strategies. 129

4.32 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym and Similar search strate-
gies. 130

xiv

4.33 Coverage results of running Verto with the extended dictionaries
and the Synonym and Verb-Group search strategies. 130

4.34 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym and Verb-Group search
strategies. 131

4.35 Coverage results of running Verto with the extended dictionaries
and the Synonym and all of the search strategies. 131

4.36 Precision, recall, and F0.5 results of running Verto with the ex-
tended dictionaries and the Synonym and all of the search strate-
gies. 132

4.37 Verto’s precision, recall, and coverage results for mapping of
nouns. 147

5.1 Glosses for the target WordNet senses of the mappings from the
Norwegian verb «avledet». 165

5.2 WordNet’s generic sentence frames for verbs. 184

6.1 The compound noun categories proposed by Copestake and
Briscoe (2005). 188

xv

List of Algorithms

3.1 Function that returns all valid compound-word analyses sorted
by preference. 44

3.2 Function that returns all valid compound-word analyses. 46

3.3 Function for suggesting chunking, or segmentation, of compound
words. 47

3.4 Function that returns all valid parse trees given parts as input,
filtering out sequences that cannot successfully be parsed as com-
plete words. 47

3.5 Function that returns all valid parse trees given parts as input,
filtering out sequences that cannot successfully be parsed as a
part-of-word. 48

3.6 Function that returns a Boolean value defining whether the se-
quence of words given as the argument is “cruft” or not. 49

3.7 Function for combining parts of a word split in two. 49

3.8 Function that returns all valid compound-word analyses rated by
order of preference. 51

4.1 A simplified presentation of the basic mapping algorithm pre-
sented herein. 88

4.2 A simplified representation of the inverse translation algorithm,
Mirror, referred to by Algorithm 4.1. 89

4.3 An extended version of Algorithm 4.2. 93

4.4 The Synonym-strategy function referred to by Algorithm 4.3. 94

4.5 The Hypernym-strategy function referred to by Algorithm 4.3. 94

5.1 Identify any pattern ∈ P, occurring in the sequence T, while
allowing for gaps designated by a set of ignorable tokens Tignore,
by using a carefully constructed hash index IP. 158

xvii

5.2 Build a hash index, IP, based on the (Tp, idp) tuples that represent
the patterns in P. 159

xviii

Preface

This work is submitted to the Norwegian University of Science and
Technology in partial fulfillment of the requirements for the degree
Philosophiae Doctor. This work has been completed at the Department of
Computer and Information Science at Norwegian University of Science
and Technology, Trondheim. My main advisor has been Associate
Professor Tore Amble, while my co-advisors have been Professor Torbjørn
Nordgård and Professor Björn Gambäck.

Martin Thorsen Ranang

xix

Publications

Some ideas and figures presented herein have appeared previously in
the following publications:

Nordgård, Torbjørn, Martin Thorsen Ranang, and Jostein Ven. 2005. An
approach to automatic text production in electronic medical record
systems. In Proceedings of the 9th International Conference on Knowledge-
Based Intelligent Information and Engineering Systems (KES 2005), ed.
Rajiv Khosla, Robert J. Howlett, and Lakhmi C. Jain, vol. 3683 of
Lecture Notes in Artificial Intelligence, 1187–1194. Melbourne, Australia:
Springer-Verlag, Berlin, Heidelberg.

Sætre, Rune, Martin Thorsen Ranang, Tonje S. Steigedal, Kamilla
Stunes, Kristine Misund, Liv Thommesen, and Astrid Lægreid. 2007.
WebProt: Online mining and annotation of biomedical literature
using Google. In Advanced computational methods for biocomputing
and bioimaging, ed. Tuan D. Pham, Hong Yan, and Denis I. Crane.
Hauppauge, New York, USA: Nova Science Publishers.

Sætre, Rune, Amund Tveit, Martin Thorsen Ranang, Tonje S. Steigedal,
Liv Thommesen, Kamilla Stunes, and Astrid Lægreid. 2005. gProt:
Annotating protein interactions using Google and Gene Ontology. In
Proceedings of the 9th International Conference on Knowledge-Based Intelli-
gent Information and Engineering Systems (KES 2005), ed. Rajiv Khosla,
Robert J. Howlett, and Lakhmi C. Jain, vol. 3683 of Lecture Notes in Ar-
tificial Intelligence, 1195–1203. Melbourne, Australia: Springer-Verlag,
Berlin, Heidelberg.

xxi

Acknowledgments

There are many people I want to thank, that in some way or another
have helped me finish this dissertation.

First of all I would like to thank my advisers, Tore Amble, Torbjørn
Nordgård, and Björn Gambäck for all their patience and advices. I am
also deeply grateful to Mila Dimitrova-Vulchanova and Sindre Bjørnar
Norås for enabling me to perform the tests for evaluating the quality of
the mapping method.

I would also like to thank Kristin Melum Eide for explaining and
discussing parts of the linguistic theory with me. I am also grateful for
the work she and Tore Amble did together, carefully crafting the new
grammar for TUC, based on Norsk referansegrammatikk (Faarlund et al.
1997).

Furthermore, I would like to thank Genevieve Gorrell for asking a
couple of “right questions” at the right time; Tore Bruland for fruitful
discussions and valuable tips; Janne Bondi Johannessen for encouraging
conversations; Helge Dyvik for an interesting and inspiring discussion;
Magnus Lie Hetland for answering my questions about just about any-
thing; Marte Fodstad for being a good friend and giving me great advise
in a pressured situation; and Olav Mørkrid for teaching me the joys of
assembly programming when I was about 11 years old, and thereby
gave me an introduction to the wonderful world of computers and
programming.

The following additional friends and colleagues made my stay in
Trondheim a period of my life I will remember as exciting and enjoyable:
Rolv Inge Seehuus, Per Kristian Lehre, Rune Sætre, and May Elisabeth
Bayegan. Thank you all.

I am forever grateful to Harald Nordgård-Hansen and Martin Kermit
for introducing me to the joys of problem solving and inspiring me to
pursue academical work.

xxiii

Without Jörg Cassens’ patience, many helpful advices, and interesting
late-night discussions, I would probably never have made it. So, thank
you.

I would also like to thank Einar Dehli and Kjetil Moløkken-Østvold at
my current employer, Conceptos IT Development AS, and Trond Heier
at my previous employer, Redpill Linpro AS, for generously providing
time for me to finish this work.

I would like to thank both Silje, my wonderful wife, and Johanna,
my fantastic and inspiring daughter, for their patience and for letting
me finish this work.

Finally, I would like to thank Jo Henning Myhrvang, my parents, my
great cousin Axel Ranang Gustavsen, and the rest of my family for their
repeated encouragements, great support, and patience.

So, once again, to all of you, and anyone I might have forgotten:
thank you! Your support was important to me.

xxiv

Abstract

No large-scale, open-domain semantic resource for Norwegian, with a
rich number of semantic relations currently exists. The existing semantic
resources for Norwegian are either limited in size and/or incompat-
ible with the de facto standard resources used for Natural Language
Processing for English. Both current and future cultural, technological,
economical, and educational consequences caused by the scarcity of
advanced Norwegian language-technological solutions and resources
has been widely acknowledged (Simonsen 2005; Norwegian Language
Council 2005; Norwegian Ministry of Culture and Church Affairs 2008).

This dissertation presents (1) a novel method that consists of a model
and several algorithms for automatically mapping content words from
a non-English source language to (a power set of) WordNet (Miller
1995; Fellbaum 1998c) senses with average precision of up to 92.1 %
and coverage of up to 36.5 %. Because an important feature of the
method is its ability to correctly handle compounds, this dissertation
also presents (2) a practical implementation, including algorithms and
a grammar, of a program for automatically analyzing Norwegian com-
pounds. This work also shows (3) how Verto, an implementation of the
model and algorithms, is used to create Ordnett, a large-scale, open-
domain lexical-semantic resource for Norwegian with a rich number of
semantic relations. Finally, this work argues that the new method and
automatically generated resource makes it possible to build large-scale
open-domain Natural Language Understanding systems, that offer both
wide coverage and deep analyses, for Norwegian texts. This is done
by showing (4) how Ordnett can be used in an open-domain question
answering system that automatically extracts and acquires knowledge
from Norwegian encyclopedic articles and uses the acquired knowledge
to answer questions formulated in natural language by its users. The
open-domain question answering system, named TUClopedia, is based
on The Understanding Computer (Amble 2003) which has previously been
successfully applied to narrow domains.

xxv

—Most, if not all, high-end natural
language processing applications—from the
earliest, machine translation, to the latest,
question answering and text
summarization—stand to benefit from
being able to use text meaning.

Nirenburg and Raskin (2004)

1
Introduction

The languages shared and spoken by a nation’s citizens are woven into
their culture, psychology, education and politics (Lambert 1972; Joseph
2004). An important aspect of protecting and evolving each nation’s
distinctive features in the age of globalization is to stimulate use of
their languages.

At the same time, much of today’s most advanced language tech-
nology is only available for the English language. For example, the
question-answering (QA) system Powerset is able to search, read, and
answer questions about Wikipedia articles, but only in English (Con-
verse et al. 2008).1 Besides, when advanced language technology is also
made available for other, non-English languages, the natural tendency is
to prioritize languages with many speakers, or of great military and/or
economical significance.

Even though the importance of language learning and language tech-
nology for non-English languages in Europe has been recognized (Laver
and Roukens 1996), a tendency of English becoming a lingua franca for
international communication—in particular within institutions of the
European Union (EU)—has been observed (van Els 2001).

Norwegian is an example of a language with relatively few speakers;
Norway has a population of 4,799,252, of which 303,000 are foreign citi-
zens (Statistics Norway 2009). Discussing how to guard the Norwegian
language’s survival and evolution in an age where small languages are
increasingly pressured in the context of global language development,
both Simonsen (2005; p. 269) and the Norwegian Language Council
(2005; pp. 118–137) advised—among other measures—that Norwegian
versions of advanced language technology products must be made
available to stimulate the use of Norwegian.

The Norwegian Council of State later approved a general language-
political proposition by the Norwegian Ministry of Culture and Church

1 Powerset, http://www.powerset.com/. Accessed May 22, 2009.

1

http://www.powerset.com/

Practical Problem

Affairs (2008; pp. 134–137) that emphasizes that the Norwegian lan-
guage and culture will be strengthened by making available advanced
language-technological solutions. The proposition also stressed the im-
portance of establishing a Norwegian Human Language Technology
(HLT) resource collection.2 Creating and making such resources avail-
able has major consequences within several areas, including research,
education, business, and culture. Furthermore, it makes it easier—or
even viable—to develop advanced Norwegian language technology
solutions such as Natural Language Understanding (NLU) systems or
systems like the QA system mentioned above.

As we can see, the relative scarcity of advanced Norwegian language-
technological solutions and resources—compared to the situation for
other, larger languages—has been widely acknowledged.

1.1 Practical Problem

No large-scale general lexical-semantic resources, that both cover a
broad domain of discourse and contain a rich number of semantic
relations, exist for the Norwegian language. One of the consequences is
that no large-scale open-domain NLU system that offers both a wide
coverage and deep analyses for Norwegian texts can be built.

There are mainly two different approaches to developing such a
semantic resource. One is to develop a stand-alone resource, and the
other one is to create a linkage to an existing resource that can be
used as a common resource/representation, or hub. Figure 1.1a on the
facing page shows a situation where one tries to enable interoperability
between each resource ni in a set of resources {n0, . . . , n8} with every
other resource in the set. The amount of work required to manage this
is O(n2). If, on the other hand, a common ontology is used, symbolized
as c in Figure 1.1b, the amount of work is reduced to O(n).

The semantic resource created by the method presented by Dyvik
(2004) distinguishes between senses of words, and contains semantic
relations like synonymy, hypernymy/hyponymy, and the less standard
related word (for senses for which neither of the former relations hold).

First of all, Dyvik’s approach creates a resource without any links, or
interfaces, to other semantic resources. This means, that even though
the semantic-mirrors method is automatic—and can easily generate
similar new semantic resources based on new corpora as input—the
cost of integrating it with n other semantic resources and applications
is likely to be O(n2).

2 The Norwegian Human Language Technology Resource Collection, http://www.
spraakbanken.uib.no/. Accessed May 22, 2009.

2

http://www.spraakbanken.uib.no/
http://www.spraakbanken.uib.no/

Introduction

n0

n1

n2n3

n4

n5

n6 n7

n8

(a) Fully connected mesh topology. Without any common hub, the
effort needed to make n resources interoperable will be T(n) =
n · (n − 1) = O(n2), because for each one of the n resources
mappings must be created to each of the n− 1 other resources.

c n0

n1

n2n3

n4

n5

n6 n7

n8

(b) Star topology. Given a common hub, c, the effort needed to
align n resources will be T(n) = 2n = O(n), because mappings
must be created from each of the n resources to the common re-
source and—depending on the needs of the application—possibly
a mapping from the hub to each resource (hence 2n).

Figure 1.1: Approaches to integrating semantic knowledge sources.

3

Research Problem

Secondly, the number of semantic relations made available with
Dyvik’s approach is rather modest. In comparison, the de facto stan-
dard lexical-semantic resource WordNet (Miller 1995; Fellbaum 1998c)
contains the semantic relations synonymy and antonymy for nouns,
verbs, adjectives, and adverbs; hypernymy/hyponymy for nouns and
verbs; holonymy/meronymy for nouns; entailment, cause to, and verb
group for verbs; and similarity for adjectives. Table 4.4 on page 80

shows an overview of the semantic relationships defined in WordNet.
The resource automatically generated from the method described by

Nygaard (2006) contains synonymy and hypernymy/hyponymy rela-
tions between words. However, it does not distinguish between senses
of words. As also pointed out by Nygaard (2006; pp. 62–66), this may
lead to erroneous interpretations and conclusions. For example, even
if an “organ” is-a-kind-of “musical instrument”, and a “heart” is-a-
kind-of “organ”, a “heart” is not a kind of “musical instrument”. The
reason is that the hypernymy relations are defined for different senses of
those words. Hence, it does not seem meaningful to use the produced
resource even for simple reasoning.

The NLU system The Understanding Computer (TUC) by Amble (2003)
has been successfully applied to several narrow domains that will be
presented in Section 2.7.1 (see, for example, Amble 2000; Bruland 2002;
Sætre 2006). However, these versions of TUC’s semantic network reflect
the narrowness of their domains.

Also, just as for Dyvik’s approach, the resource generated by Ny-
gaard’s approach and the semantic networks used in different versions
of TUC are decoupled from other semantic resources and applications.

1.2 Research Problem

There are four central problems with the existing approaches to de-
veloping lexical semantic resources for Norwegian that the systems
mentioned above suffer from:

1 Per definition, narrow-domain ontologies cannot be used for broad-
domain Natural Language Processing (NLP).

2 Separately developed ontologies are extremely costly to develop, both
with respect to the initial development and to the long-term mainte-
nance. Systems based on shared, or aligned, ontologies can benefit from
collective experiences and improvements.

4

Introduction

3 While several new semantic resources are being designed to be compat-
ible with existing ones, separately developed noncompatible resources
cannot easily benefit from such synergism.

4 It seems that the semantic resources for Norwegian, produced by the
current methods, lack a number of interesting semantic relations.

On the other hand, one should note that there are at least two reasons
for developing ontologies in-house. One reason is that one can tailor
one’s ontology to better suit both the application domain and the
methodologies used in the application. Another reason is that a suitable,
freely available resource might not exist when the need for it arises.

Thus, the research problem is twofold. Firstly, no broad-domain
semantic resource for Norwegian with a rich number of semantic
relations currently exists, and secondly, the existing semantic resources
for Norwegian are either limited in size and/or incompatible with the
de facto standard resources used for NLP for English.

1.3 Research Questions

The research problem discussed above lead to the following research
questions:

Q1 Is it possible to develop a method for automatically building a broad-
domain, general semantic resource for Norwegian that is compatible
with existing freely available, widely used, English semantic resources?

Q2 What restrictions apply to the method? What resources are prerequisite?

Q3 For each of the lexical categories nouns, verbs, adjectives, and adverbs,
how large fraction of the words in each class does the method work
for?

Q4 How well does the method avoid mapping words in the source language
to senses in the target language that carry meanings that are not covered
by the source words?

Q5 Can the method handle (single word) compounds that occur frequently
in Norwegian, but more seldom in English?

Q6 How may the resulting semantic resource be useful for different areas
of NLP research and development?

Q7 Can the method be applied to other languages, and if so, to which
ones?

Section 6.3 summarizes the corresponding answers.

5

Research Solution

1.4 Research Solution

In this dissertation I present (1) a method I have developed that con-
sists of a model and several algorithms for automatically mapping
content words from a non-English source language to (a power set of)
WordNet (Miller 1995; Fellbaum 1998c) senses.

An important feature of the method is its ability to handle (single-
word) compounds. Therefore, I also present (2) a practical implementa-
tion, including algorithms and a grammar, of a program for automati-
cally analyzing Norwegian compounds.

I will also show (3) how Verto, an implementation of the model
and algorithms, is used to create Ordnett, a large-scale, open-domain
lexical-semantic resource for Norwegian with a rich number of semantic
relations.3

Finally, I argue that my method and automatically generated resource
makes it possible to build large-scale open-domain NLU systems, that
offer both wide coverage and deep analyses, for Norwegian texts. I do
this by showing (4) how Ordnett can be used in an open-domain ques-
tion answering (open-domain QA) system that automatically extracts
and acquires knowledge from Norwegian encyclopedic articles and
uses the acquired knowledge to answer questions formulated in natural
language by its users. The system, named TUClopedia, is based on
TUC (Amble 2003) which has previously has been successfully applied
to narrow domains.

1.5 Roadmap

Chapter 2 introduces central concepts, background theory, and research
related to the rest of the dissertation. It starts with an introduction of
topics like ontologies, semantic networks, and lexical semantics. This is
followed by an overview of some well-known lexical semantic resources
for non-English languages.

Because the ability to handle compounds is an important feature
of the method for automatically mapping content words from a non-
English language to WordNet senses, Chapter 3 presents a practical
implementation, including a complementary specification, of an algo-
rithm for automatic analysis and treatment of Norwegian compounds.
At the end of the chapter, the performance of the compound-word
analyzer is evaluated.

3 The mapping framework is named Verto, from the Latin verb verto with several mean-
ings, including “to turn around”, “to translate”, and “to turn out” (Woodhouse 1982), all
describing the nature of the framework.

6

Introduction

The novel method for automatically mapping both simplex and com-
pound content words in a non-English source language to WordNet
senses is presented in Chapter 4. Section 4.2 attempts to convey the
intuition behind the method, while sections 4.3–4.8 provide a more
formal presentation of the model and algorithms behind the method.
Section 4.9 shows how the method is implemented as a framework
named Verto, while the final sections evaluate the implemented method.

The experiments conducted to evaluate Verto are also used to create
a novel lexical-semantic resource named Ordnett. The new lexical-
semantic resource contains mappings from Norwegian words to Word-
Net senses. As an example of a Norwegian, advanced language-techno-
logical application made viable by the resource generated by my
method Chapter 5 presents, TUClopedia, a proof-of-concept proto-
type of a Norwegian open-domain QA system. TUClopedia shows
how Ordnett can be used in a system that automatically extracts and
acquires knowledge from a Norwegian encyclopedia and answer users’
questions, formulated in natural language, based on the acquired knowl-
edge. Thus, TUClopedia constitutes an NLP system that offers both
wide coverage and deep analyses. Section 5.4 presents an overview of
the TUClopedia system, while sections 5.7 and 5.8 present and discuss
some of the experiences made with the system so far. The final sec-
tions also discuss some of the difficulties that must be overcome before
TUClopedia is finished.

Chapter 6 provides further analyses and discussion of the results
from chapters 3–5, especially for topics that span more than what
is covered in each of the previous chapters in isolation. Particularly,
Section 6.3 provides answers to the research questions and discusses
the contributions made by this dissertation. Finally, a discussion of
possible future, related research is given.

1.6 Who Did What?

All the work and research presented in chapters 3 and 4 was done by
the author.

In Chapter 5 contributions were made both by Tore Amble and the
author. Amble has been developing TUC since the early 1990’s. He also
created LexTUC, a generalization of TUC that constitutes important
parts of the TUClopedia system. LexTUC manifests itself as the Parser,
Semantic interpreter, Reasoning engine, and Semantic network compo-
nents of TUClopedia, as shown in the overview in Figure 5.1. The author
implemented the other parts of TUClopedia, including the integration
of LexTUC in the overall system.

7

Who Did What?

The implementation of the algorithms and framework presented in
chapters 3 and 4, and all of TUClopedia—except the parts contributed
by Amble as described above—amounts to 20,982 lines of Python4 code
and 1,695 lines of ANSI C code written by the author. The LexTUC
implementation, by Amble, amounts to 9,253 lines of Prolog code.5

1.6.1 The Publications

This section describes my contributions to the publications listed on
page xxi.

The article by Nordgård, Ranang, and Ven (2005) was on the whole
written by Torbjørn Nordgård. I contributed comments and discussions,
especially about the scaling aspects of the presented approach. I also
formalized the presentation of the cost algorithm (Nordgård et al. 2005;
p. 1191).

For the article by Sætre, Tveit, Ranang, Steigedal, Thommesen, Stunes,
and Lægreid (2005), my contribution was the algorithm for multiple-
pattern approximate sequence matching, and its implementation, the
essential part of Step 4, “Parsing”, of the gProt approach (Sætre et al.
2005; p.1197–1198).

The same algorithm was used by Sætre, Ranang, Steigedal, Stunes,
Misund, Thommesen, and Lægreid (2007), and I explained the workings
of the algorithm in that book chapter (Sætre et al. 2007; pp.197–199).

A slightly improved version of the multiple-pattern approximate
sequence matching algorithm is presented in more detail in Section 5.5
of this dissertation.

4 The Python programming language, http://www.python.org/. Accessed May 22, 2009.
5 The author made a few minute modifications to LexTUC, but they are insignificant

compared to Amble’s contribution.

8

http://www.python.org/

—If I have seen a little further it is by
standing on the shoulders of Giants.

Isaac Newton, in a letter to Robert

Hooke dated 5th of February 1676

2
Background and Related Research

To process and interpret textual input written in a particular language
a Natural Language Understanding (NLU) system must have some
knowledge about both the language and the world that input statements
refer to. A natural division of such knowledge into parts, yields

• lexical knowledge about the different words’ lexical categories1 and mor-
phological features;

• grammatical knowledge about which combinations of words and phrases
constitute grammatical sentences in the language under consideration;
and

• semantic knowledge about how the meaning of words and concepts relate
to the meaning of other words and concepts.

Such resources, containing the above-mentioned kinds of knowledge are
often called lexicons, grammars, and ontologies (or semantic networks),
respectively. It should be noted that sometimes the different kinds of
knowledge overlap.

In their comprehensive work on ontological semantics, Nirenburg
and Raskin (2004; p. 88) note that

It is practically and technologically impossible to operate
with elements of the outside world as the realm of mean-
ing for natural language elements. Therefore, if one wants
to retain the capability of representing and manipulating
meaning, a tangible set of meaning elements must be found
to substitute for the entities in the outside world.

There are several ways of incorporating such knowledge in a com-
puter program. For example, one can design algorithms so that they

1 Lexical categories are often also referred to as part of speech (POS) and word classes.

9

Ontologies and
Semantic
Networks

implicitly manifest an encoding of such knowledge, or one can separate
the knowledge from the algorithms by making it accessible from some
kind of separate body of content, like a database (in a wide sense of
the word).

2.1 Ontologies and Semantic Networks

One way of representing semantic knowledge is through ontologies.
In its original meaning, ontology is a branch of Philosophy concerned
with the study of the nature and relations of things that exist. However,
in Computer Science in general—and in Information Systems and Arti-
ficial Intelligence (AI) in particular—the word ontology has two related
but slightly different meanings; the first refers to a representation vocab-
ulary, while the second refers to a body of knowledge, often described
using a representation vocabulary (Chandrasekaran et al. 1999).

Sowa (2000; p. 492) gives a definition of ontologies that reflects their
use in Computer Science:

The subject of ontology is the study of the categories of things
that exist or may exist in some domain. The product of
such a study, called an ontology, is a catalog of the types of
things that are assumed to exist in a domain of interest D
from the perspective of a person who uses a language L for
the purpose of talking about D. The types in the ontology
represent the predicates, word senses, or concept and relation
types of the language L when used to discuss topics in the
domain D.

Hence, people in Computer Science often talk about an ontology as an
engineering artifact for a particular domain. Examples of such domains
of interest are: bus travel (Amble 2000), Ornithology (Jönsson et al.
2004), and Molecular Biology (Ashburner et al. 2000; Sætre 2006).

The same semantic resources are often referred to as both ontologies
and semantic networks. This might seem a bit imprecise, so a short
clarification would be in order. According to Russel and Norvig (2003;
p. 349) semantic networks “provide graphical aids for visualizing a
knowledge base and efficient algorithms for inferring properties of an
object on the basis of its category membership.” Hence, both properties
of objects and categories—or classes—are described in both ontologies
and semantic networks. Furthermore, Sowa (2000; p. 495) notes that a
knowledge base (KB) is “an informal term for a collection of information
that includes an ontology as one component” (emphasis added by me).

10

Background and
Related Research

2.1.1 Example Ontologies

Some examples of large-scale general ontologies are WordNet2 (Fell-
baum 1998c), CYC (Lenat 1995), and OMEGA (Philpot et al. 2003).
OMEGA is the successor of SENSUS (Knight and Luk 1994), which will
be briefly presented in Section 2.4.

Since WordNet constitutes a central part of the research presented in
this dissertation, it will also receive the most attention below. Different
lexical semantic concepts and the WordNet ontology will be presented
in more detail in sections 2.2 and 4.1.2, respectively.

However, to give an impression of what a real-world ontology looks
like, Figure 2.1 on the following page shows an extremely small portion
of the WordNet ontology. Each concept in the figure is represented as a
set of synonymous senses of English words. Each sense is written in
the format

<word>_<lexical category>_<sense number>, (2.1)

where <word> identifies the word, <lexical category> signifies the
lexical category of the sense. In WordNet, the lexical category can be
either noun (n), verb (v), adjective (adj), or adverb (adv). Finally, the
<sense number> is a number that is used to distinguish between other
senses of the same word in the same lexical category.

The only relations represented in Figure 2.1 are the hyponymy—or
is-a-kind-of—relation (if one follows the edges from bottom to top) and
the synonymy relation. Thus, the figure shows that a cousin_n_1 is a
kind of relative_n_1, and—through the transitivity of the hyponymy
relation—is ultimately a kind of entity_n_1. This way, the hypon-
ymy relation provides a partial ordering and classification of concepts.
Figure 2.1 also shows that, for example, the senses person_n_1 and
individual_n_1 are synonymous.

2.1.2 Applications of Ontologies in Natural Language Processing

The knowledge provided by ontologies can be used by applications in
several sub-fields of Natural Language Processing (NLP). Some of the
NLP applications where ontologies are required—or at least can be put
to great use—will be presented next.

2 Sometimes referred to as Princeton WordNet to differentiate between several kinds of
wordnets. However, herein WordNet will by default refer to the Princeton version.

11

Ontologies and
Semantic
Networks

Figure 2.1: Part of WordNet’s taxonomy. Each edge in the graph
designates a generalization/specialization relationship between two
concepts.

12

Background and
Related Research

Word-Sense Disambiguation

Word-Sense Disambiguation (WSD), or lexical disambiguation, is the
process of deciding which of several different senses of a word is
intended in a given context. The task of disambiguating word senses is
not a goal in itself, but rather an important part of several other NLP
tasks, including parsing, semantic analysis, Information Retrieval (IR),
knowledge acquisition, and Machine Translation (MT).

Resnik (1998) and Stevenson and Wilks (2001) show how semantic
knowledge sources can be used in WSD. For example, the nominal
“seal” is ambiguous between—at least—“aquatic carnivorous mammal”
and “seal of approval”. However, give the sentence

“The seal chased a shoal of fish.”

a WSD system can use semantic information to see that the verb “chase”
specifies a selectional restriction3 that its subject should be animate.

Moldovan and Novischi (2004) show how they use automatic seman-
tic disambiguation of the words in the WordNet glosses to build their
eXtended WordNet from the WordNet 2.0 lexical semantic network.

Text Summarization

Text Summarization is “the process of distilling the most important
information from a source (or sources) to produce an abridged version
for a particular user (or users) or task (or tasks)” (Mani and Maybury
1999). The goal of the text summarization process is typically to pro-
duce summaries that “convey maximal information in minimal space”
(McKeown et al. 1995).

Not all approaches to automatic text summarization make significant
use of lexical-semantic knowledge as found in NLP ontologies. For
example, Extractive Text Summarization aims only to extract the most
noticeable sentences of a text. However, when doing deeper characteri-
zations of texts, like in Abstractive Text Summarization, for example
knowledge about synonymous senses of words can be used to detect
that multiple passages of text discuss the same concept with different
words.

Document Clustering

Document Clustering is the process of—often hierarchically—grouping
together documents that are similar according to a set of predefined

3 Trask (1993) defines selectional restriction as “any of various semantic constraints reflected
in the ability of lexical items to combine in syntactic structures.”

13

Ontologies and
Semantic
Networks

characteristic features. Document clustering can be utilized in several
different areas. For example, document clustering can be used for
improving IR systems by increasing the relevancy of the returned set of
documents (Salton et al. 1975), or large-scale topic discovery in large
text collections (Larsen and Aone 1999; Ayad and Kamel 2002).

A common way of clustering documents involves two phases. In the
first phase each document is mapped to a point in a high-dimensional
space based on a vector representation of the document’s characteristic
features. During the second phase, algorithms automatically organize
the documents into a hierarchy of clusters. However, the vectors used
in this document clustering approach constitute a bag-of-words repre-
sentation (Joachims 1997) of the documents that ignores, for example,
conceptual similarity that exist between different terms that does not
literally co-occur. Hotho et al. (2003) show examples of how the inte-
gration of an ontology improves text clustering results by replacing the
terms in the bag-of-words vector with semantic concepts found in the
ontology. This makes information about, for example, synonymy and
hyponymy available for exploitation by their clustering algorithms.

Information Extraction

Information Extraction (IE) is “the automatic identification of selected
types of entities, relations, or events in free text” (Grishman 2003).

As an example of how lexical semantic information may be used by
an IE system, assume that the system is processing the text fragment

“. . . Diamond sang ‘America’. . . ”

Given this input, the IE system must decide whether to classify the
noun phrase “diamond” as a thing or a person. If such a system has
access to an ontology with semantic knowledge about verb frames, it
can rule out the “thing” classification because the noun phrase is the
subject of the communication verb “sing”, which prefers an animate
subject.

Information Retrieval

IR, which is also known as document retrieval or text retrieval, is the
process of “finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large
collections (usually stored on computers)” (Manning et al. 2008). Since
the advent of document retrieval for the World-Wide Web (WWW), IR
systems are often called search engines.

14

Background and
Related Research

A modern IR system often utilizes both WSD (Voorhees 1993) and
Document Clustering—mentioned above—in addition to several other
task-specific techniques. Therefore, we have already seen how one may
use an ontology to improve the results produced by an IR system.

However, there are additional ways that a search engine can utilize an
ontology. For example, both Voorhees (1998) and Moldovan and Mihal-
cea (2000) show how query expansion can improve the performance4 of
a search engine. Often, the queries a search engine receives from users
consist of one to three words. At the same time, a concept relevant to
the user might be referred to with different but synonymous words in
different documents. Because of this, the search engine might fail to
retrieve many of the relevant documents because the user does not enter
all the relevant synonymous words. To remedy this, query expansion
attempts to increase the number of relevant documents in the result set
by adding semantically similar senses—found in the ontology—to the
user’s query.

Gonzalo et al. (1998) and Verdejo et al. (2000) show how the mul-
tilingual EuroWordNet (Vossen 1998; Peters et al. 1998; Vossen 2004)
can be used to perform cross-language IR for the languages English,
Spanish, and Catalan. An interlingual index that connects each of the
monolingual wordnets for English, Spanish, and Catalan, that are part
of EuroWordNet, makes it possible to find concepts that are equivalent
to those used in the query in complement languages.

Text Interpretation

Text Interpretation, also known as semantic interpretation and NLU,
is the process of extracting and representing the meaning of textual
natural language input (Hobbs et al. 1993). As stated by Jacobs and Rau
(1993) “the end product of text interpretation is to produce some clearly
prescribed structures from the input, with measurable accuracy.”

The resulting meaning-representation structures are used in many
NLP tasks, including knowledge acquisition (Gomez 1994), question-
answering (QA) (Gomez et al. 1994; Hull and Gomez 1999; Amble
2000) and Machine Translation (MT) (Knight and Luk 1994; Mahesh
and Nirenburg 1996). In such systems, the ontology may be used both
during semantic analysis of the textual input and as a central resource
for reasoning about the knowledge derived from the textual input.

4 As noted by Moldovan and Mihalcea (2000), “performance is a standard information-
retrieval system measure of the number of relevant documents retrieved over the total
number of documents retrieved.” This measure is often also called the precision of a
method or system.

15

Lexical Semantics

One of the major differences between IE and knowledge acquisition
is that the result of an IE process is typically geared towards ultimately
being interpreted by a human, often with an intermediary IR system,
while the result of a knowledge acquisition process is typically used by
a computer system able of reasoning. Therefore, IE systems can apply
lighter-weight methods to extract relevant information, while knowl-
edge acquisition systems typically perform more resource-demanding,
deeper semantic analyses. Hence, IE systems are able to process much
larger volumes of text, consuming less resources (manifested in higher
speed), than knowledge acquisition systems.

Multilingual ontologies, where lexicon entries in each language are
mapped to concepts in the ontology, are important resources in many
MT systems because they are used in common language-independent
representations of meaning.

Natural Language Generation

Natural Language Generation (NLG) is “concerned with the construc-
tion of computer systems that can produce understandable texts in
English or other human languages from some underlying non-linguistic
representation of information” (Reiter and Dale 1997).

NLG is typically needed to make information represented in ways
well suited for structured storage and manipulation by computer sys-
tems easy for humans to comprehend. Examples of this can be trans-
formation of information from tabular material, relational databases,
or logical formulas into natural language. For example, in an article by
Nordgård et al. (2005) we presented an approach to automatically pro-
ducing natural language sentences from a set of unstructured semantic
concepts.

Jing and McKeown (1998) show how semantic knowledge bases can
be used in NLG by using WordNet both for selecting appropriate lexical
representations of the semantic input and for choosing the words in
the final surface realization, thereby using the synonymy relation in
WordNet to generate lexical paraphrases.

2.2 Lexical Semantics

This section provides a preliminary introduction to the theory of lex-
ical semantics with focus on topics that are central to the method for
automatically mapping Norwegian content words5 to WordNet senses
that will be presented in Chapter 4.

5 The term content words will be explained below.

16

Background and
Related Research

The word fly means different things in different contexts. For example,
in the sentences “Fly me to the moon” and “There is a fly in my
soup” the word fly has two very different meanings. The first (verb)
meaning is of an action, while the second (noun) describes an insect.
The two meanings of the word represent different lexemes. A lexeme—
also called a lexical item—is an abstract entity that “has a more-or-
less consistent meaning or function but which can vary in form for
grammatical purposes” (Trask 1993). The different forms of a lexeme
are called word forms. Another name for word form is morphosyntactic
word.

For example, the first lexeme above can be expressed by the set of
word forms {fly, flies, flew, flown, flying} that represent different temporal
information about the verb, while the second can be expressed by {fly,
fly’s, flies, flies’} which represent the singular and the plural form of the
noun. When two lexemes share the same word forms like this, they
are called homographs. Homographs may also share the same lexical
category. A word’s lexical category is also often referred to as its word
class or POS.

A base form of a lexeme is usually the form where no inflection has
been applied. For example, both smiling and smiled are inflected forms
of the base form smile. Most dictionaries are organized as alphabetized
lists where the base form of each lexeme it describes is used as a
keyword.

Words belonging to the lexical categories nouns, verbs, adjectives, and
adverbs are often called content words, in contrast to function words or
grammatical words. Probably the most important difference between
content words and function words is that the meaning of content
words can be found in a dictionary6, while a function word carries
little meaning in itself, so a dictionary usually only describes its usage.
The function words belong to lexical categories such as prepositions,
interjections, auxiliary verbs, and determiners.

The word classes nouns, verbs, adjectives, and adverbs constitute
open word classes. The other word classes represent closed word classes.
In contrast to an open word class, a closed word class contains relatively
few words, and new words are very seldom added to it.

Since the method presented herein is based on mapping of content
words, the following sections will not focus on function words. In the
next sections, relevant semantic relations will be introduced. Because
Verto uses WordNet as its semantical resource, the presentation of the
semantic relations will be linked to how they are defined in WordNet.

6 That is, if the dictionary contains definitions.

17

Lexical Semantics

2.2.1 Synonymy

Propositional logic is concerned with the formal properties of state-
ments that are either true or false, called propositions (Gamut 1991b;
pp. 28–64). Generally, such statements are represented by grammatical
declarative sentences.

Cruse (1986; p. 88) gives the following definition of synonymy from
a propositional perspective:

X is a propositional synonym of Y if (i) X and Y are syntacti-
cally identical, and (ii) any grammatical declarative sentence
S containing X has equivalent truth-conditions to another
sentence S′, which is identical to S except that X is replaced
by Y.

For example, if we let S and S′ denote the sentences “The ring he gave
her was made of 24-karat gold” and “The ring he gave her was made
of pure gold” respectively, we see that 24-karat gold and pure gold are
propositional synonyms, according to the definition above.

However, lexemes that are synonyms in one context need not be
synonymous in another context. As Hasselgård et al. (1998; p. 54) write,
“[. . .] it is very difficult to find two lexemes which are completely syn-
onymous. The test would be if they can be used interchangeably in
all contexts” (emphasis added by me). Such synonymy, called abso-
lute synonymy, occurs very seldom in the real world. This notion is
also expressed by Miller (1998; p. 24), “[. . .] by that criterion, natural
languages have few synonyms.”

Therefore, the criterion for lexemes to be synonymous often adopted
in practice is that synonyms must be interchangeable—without chang-
ing the truth-value—in some contexts (Saint-Dizier and Viegas 1995;
p. 18). This definition of synonymy is also used in WordNet (Miller
1998; p. 24).

2.2.2 Hypernymy and Hyponymy

If a lexeme X denotes a superordinate of Y (that is, if X belongs to a
more general category than Y), then X is a hypernym of Y. In the same
situation, Y is said to be a hyponym of X. As mentioned in Section 2.1.1,
the hyponymy relation is also called the is-a-kind-of relation, because
if Y is a hyponym of X, then Y is a kind of X. Both hyponymy and
hypernymy are transitive relations. That means if Z is a kind of Y
and Y is a kind of X, then Z is a kind of X, and the same holds for
hypernymy.

18

Background and
Related Research

Fi
g

u
r

e
2

.2
:H

yp
er

ny
m

y/
hy

po
ny

m
y

in
th

e
W

or
d

N
et

on
to

lo
gy

.T
he

st
ip

pl
ed

lin
es

re
pr

es
en

t
in

st
an

ce
re

la
ti

on
s,

w
hi

le
th

e
so

lid
on

es
re

pr
es

en
t

cl
as

s
re

la
ti

on
s.

19

Lexical Semantics

Hypernymy defines the level of generality of a concept relative to
other concepts. For example, mammal is more general than whale, so
one can safely state that “all whales are mammals”, but the statement
“all mammals are whales” is untrue.

It is possible to distinguish between two kinds of hypernymy and
hyponymy. The first—general—kind is said to be a relation between
classes (or types) of things, while the second—sometimes called in-
stance hypernymy and instance hyponymy—is a relationship between
an instance and a class. When this distinction is made, the instance hy-
ponymy relation is also called is-a. For example, in Figure 2.2, Leonardo
da Vinci is a sculptor, and he is an engineer, because da Vinci is an in-
stance of the classes of engineers and sculptors. However, an engineer is a
kind of person (note that the stippled lines represent instance relations).

The complete network structure defined by the hypernymy and
hyponymy relation constitutes a taxonomy. Since a concept in Word-
Net can have multiple hypernyms—see for example the concept old_-
master_n_1 in Figure 2.2—the full taxonomy of WordNet constitutes a
lattice or heterarchy7 structure.

2.2.3 Troponymy

One can say that troponymy is to verbs what hyponymy is to nouns.
That is, troponyms more precisely describe in what manner a more
general action is performed. As written by Fellbaum (1998b; p. 79), the
“troponym relation between two verbs can be expressed by the formula
To V1 is to V2 in some particular manner“, where V1 and V2 denotes the
verbs. For example, “To smile is to grimace in some particular manner.”

2.2.4 Antonymy and Similarity

Antonymy is a semantic relation between two adjectival lexemes and
denotes that the lexemes represent opposite meanings. Moreover, just as
for the synonymy relation, because this requirement seldom is satisfied
in all contexts, two lexemes X and Y are considered antonyms if they
express opposite meanings in some contexts.

Furthermore, it should be noted that, as Hasselgård et al. (1998;
p. 56) write, “antonymy is a tricky notion.” For example, if asked what
the opposite of close is, most would probably answer distant, and not
far even though near and close in some contexts are synonyms (as in

7 In a hierarchy, each concept in the taxonomy has at most one parent, and zero or more
children. A heterarchy is similar, except that each node may have multiple parents; a
situation that corresponds to multiple inheritance in object-oriented (OO) modeling.

20

Background and
Related Research

implicit

explicit

inherent

underlying
impliedsilenttacitunderstood

unexpressed

unsaid

unstated
unutteredunverbalized unverbalisedunvoiced

unspoken

declared

stated
definitive

unequivocal

express

graphic
hard-core

hardcore

Figure 2.3: Similarity between adjectives and direct and indirect
antonymy. The two direct antonyms are related to each other like
opposed hubs connected by an axle, while the indirect antonyms
are related to each hub like the spokes of a wheel. All the adjectives
along the rim of each wheel are similar in meaning to the adjective
at the hub.

“getting close to something”). Somehow, some pairs of adjectives just
seem to belong together as antonyms; like close/distant and near/far.
Such pairs are called direct antonyms.

On the other hand, some adjectives, like tacit, underlying, and inherent,
do not seem to have any direct antonyms. Nevertheless, all of these three
adjectives share a similar meaning, namely implicit. Likewise, definitive,
graphic, and stated are all similar in meaning to explicit. Furthermore,
implicit and explicit form a direct antonym pair. Hence, the adjectives
that are similar to implicit and the adjectives that are similar to explicit
are said to be indirect antonyms. This way of classifying direct and
indirect antonyms is used to define the similarity relation between
adjectives in WordNet (Fellbaum 1998b; pp. 48–52). Figure 2.3 shows
how these concepts relate to each other in a concrete example.

21

Automatic
Analysis of
Norwegian

Compounds

2.2.5 Compounds and Collocations

A compound is a lexeme that consists of multiple lexemes, whereas a
simplex is a simple word consisting of a single lexeme.

Compounds can be either endocentric or exocentric, but most com-
pounds are endocentric. An endocentric compound consists of a gram-
matical head and a dependent. The head carries the central meaning of
the compound and the dependent modifies the meaning of the head.
The head will also determine the syntactic category for the whole
compound.

Furthermore, as stated by Trask (1993; p. 91), an endocentric com-
pound is “a hyponym of the grammatical head.” For example, steamboat
is a hyponym of boat, where boat serves as the head of the lexeme, while
steam functions as its modifier. In English, the head of a compound is
always the rightmost lexeme.

Compounds need not be nouns. For example, nosedive is both a
verb and an endocentric compound.

The term exocentric compound8 refers to a compound where the
meaning and syntactic category of the whole do not have any direct
connection to the grammatical head. Hence, an exocentric compound is
not composed of a distinct head and dependent. An example exocentric
compound is bluebell (Scilla non-scripta), a kind of plant; not a kind of
neither blue nor bell. Another example would be buttercup (Ranunculus
acris), another kind of plant.

2.3 Automatic Analysis of Norwegian Compounds

A lexicon or dictionary usually covers only a limited set of words of a
language. Usage frequencies often decide which words are covered. No
matter how many words are covered, the lexicon cannot cover words
unknown at the time the lexicon was constructed.

However, in Norwegian new words are formed all the time, and
as stated by Johannessen (2001), “compounding is probably the most
important and widely used word formation process in Norwegian.”
This means that from the moment of publication of a lexicon there is a
risk that it does not cover some new word—probably formed through
compounding. On the other hand, if the dictionary does not cover a
compound, it most probably contains the constituents of the compound.
Therefore, determining the meaning of the compound is usually a
matter of determining the meaning of each of its constituents.

8 Exocentric compounds are also referred to as bahuvrihi compounds.

22

Background and
Related Research

There is surprisingly little research published on the topic of auto-
matic Norwegian compound-word analysis. The only notable research
is presented by Johannessen and Hauglin (1996) and Johannessen (2001).
Their main thesis is that the constituents of most Norwegian com-
pounds are stems, and not independent word forms, sometimes joined
together by -s- or -e- epentheses. These epentheses are sometimes intro-
duced to ease—or to reflect the actual—pronunciation of a compound.
For example, the -s- in «aluminiumsklump» (“aluminum lump”) and the
-e- in «barnemat» (“child’s food/child’s play”) are both epenthetic. How-
ever, correctly identifying the constituent parts of a compound through
automatic analysis, sometimes referred to as compound segmentation,
is not a trivial task, and epentheses often introduce ambiguities that are
difficult to disambiguate.

It should be noted that even though little research on Norwegian
compounds has been published, the problem is of practical interest
to many kinds of software that process Norwegian text. For example,
practically all everyday, off-the-shelf software for word processing that
support spelling correction for Norwegian contain solutions to this
problem.

Furthermore, since the Scandinavian languages Danish, Norwegian,
and Swedish, are similar enough that most Scandinavians are able to
understand each other correctly most of the time, research on automatic
compound-word analysis for Danish and Swedish is also relevant.

For example, Karlsson (1992) presented SWETWOL, an implemen-
tation of a tool for morphological analysis of Swedish text, with an
emphasis on computational analysis of Swedish productive compounds.
SWETWOL uses morphosyntactic information and no semantic infor-
mation during its analyses.

Kokkinakis et al. (2000), reported that they use a heuristic for their
compound segmentation algorithm based on 3-grams and 4-grams that
are complementary to a set of 3-grams and 4-grams that represent charac-
ter sequences that occur in non-compound words. Their segmentation
process involves applying the complementary 3-grams and 4-grams to
identify segmentation locations in compounds through finding charac-
ter sequences that are disallowed in non-compound words. Kokkinakis
et al.’s compound-word analyzer also uses some semantic information
from the Swedish SIMPLE lexicon (Lenci et al. 2000).

Furthermore, Pedersen (2007) presents research on improving IR
search results through combining query expansion through splitting of
compounds with shallow parsing to remove irrelevant results. Unfor-
tunately, she provides no presentation of the algorithms used by the

23

Lexical Semantic
Resources for
Non-English

Languages

compound-word analyzer. However, the performance of the analyzer
will be commented in Section 3.7.

To handle compound words, Verto—the implementation of the meth-
od to be presented in Chapter 4—incorporates a module for automatic
analysis of Norwegian compounds based on morphological structures
of words. The module’s grammar and algorithms are based on the
linguistic principles presented by Johannessen and Hauglin (1996) and
Johannessen (2001), with some adjustments and additions.

2.4 Lexical Semantic Resources for Non-English

Languages

SENSUS, mentioned above, is a large-scale ontology designed to be
used in MT and was created by semi-automatically merging several lex-
ical and semantic resources, including WordNet, the Longman Dictionary
of Contemporary English (LDOCE) (Procter 1978), the Penman Upper
Model (Bateman 1990) and Collins English–Spanish/Spanish–English Dic-
tionary (Collins and Smith 1971). Part of the merge process consisted
of semi-automatically mapping Spanish words to English concepts
in the ontology (Knight 1993; Knight and Luk 1994). Their methods
for mapping Spanish words to English concepts will be described in
Section 2.4.3.

Obviously, Knight and Luk’s approach relates to mine because they
create a mapping from words in a non-English language, Spanish, to
English “ontological entities” in an ontology built by merging WordNet
and LDOCE. However, their approach does not make use of the se-
mantic relations in WordNet in the same way, and they do not perform
inverse translations9, a concept that is crucial to the method I present
herein. The importance of inverse translations to my method will be
described in Section 4.5.

Okumura and Hovy (1994) present work on mapping Japanese words
to English, using the same algorithm as described by Knight and Luk
(1994).

EuroWordNet (Vossen 1998; Alonge et al. 1998) is a multilingual
database containing separate semantic networks, referred to as word-
nets, for several of the European languages. The development was done
as a European Union (EU) project, and the first languages included
were Dutch, Spanish, Italian, English, French, German, Czech, and Es-
tonian. A separate wordnet was developed for each language, and each
wordnet was then connected to an inter-lingual index by identifying

9 Kevin Knight, e-mail message to Martin Thorsen Ranang, July 13, 2006.

24

Background and
Related Research

w1

w2

w3

w4

w

c1

c5

c2

c3

c4

c
6

c7

Figure 2.4: Illustration of the conceptual density measure by Agirre
and Rigau (1996).

equivalent concepts in each wordnet. Later, the same principles that
were used in EuroWordNet have been used to create wordnets for other
languages, such as the Balkan languages (Tufiş et al. 2004).

Semantic Information for Multifunctional Plurilingual Lexica (SIMPLE)
(Lenci et al. 2000) is a semantic resource that has already been devel-
oped for twelve of the European languages; namely, Catalan, Danish,
Dutch, English, Finnish, French, German, Greek, Italian, Portuguese,
Spanish, and Swedish. The SIMPLE project has added semantic infor-
mation to the already present morphological and syntactic description
for a subset of roughly 6,000 words, or approximately 10,000 lemmas,
in the Preparatory Action for Linguistic Resources Organisation for Lan-
guage Engineering (PAROLE)-lexicon. The SIMPLE approach is different
from EuroWordNet in that is based on the Generative Lexicon theory
of Pustejovsky (2001), and the semantic information is represented
through a kind of extended qualia structures. The semantic information
is specified partly as semantic relations and partly as semantic features.
Hence, SIMPLE is not developed mainly as a semantic network. The
network structure that emerges can be seen as a side effect of adding
semantic descriptions for each word.

25

Lexical Semantic
Resources for
Non-English

Languages

2.4.1 Conceptual Density

Rigau and Agirre (1995) present two methods they have explored
for mapping both French and Spanish nominals to WordNet 1.5. In
the first method they present, they combine the French–English and
the English–French parts of a French–English bilingual dictionary to
increase the number of available translations. They then map French
nouns to WordNet while, in the case of polysemous English nouns,
they try to infer the correct sense of the translation based on a measure
they call semantic density, or conceptual density (described in depth
by Agirre and Rigau 1996).

Conceptual density can be used as a measure of relatedness between
words. Rigau and Agirre divide WordNet into subhierarchies, based
on hypernymy/hyponymy relations. The conceptual density of a word
sense and a given context of words is defined by the number of context
words that occur within the same WordNet subhierarchy as the sense
in question, relative to the size of the subhierarchy. The size of the
subhierarchy is defined as the total number of senses it contains. The
context words include dictionary cue words—translated from French
using the bilingual dictionary—and words surrounding the noun in
question if it stems from a multiword translation. Given a translation
from French to an English noun with multiple senses found in WordNet,
Rigau and Agirre’s first method chooses the sense belonging to the
subhierarchy with the highest conceptual density.

For example, Figure 2.4 shows a word, w, with senses w1, w2, w3, w4,
each belonging to a separate subhierarchy of WordNet, and a set of
context words, c1, c2, . . . , c7. Because the subhierarchy that contains w3

has the most such occurrences, relative to the size of the subhierarchy
is, Rigau and Agirre’s first method would return w3 for w. If multiple
senses of a word had belonged to the same subhierarchy, all senses
would be returned.

For testing their second method, Rigau and Agirre (1995) repeated
the act of merging the two halves of a bilingual dictionary, but this time
it was a Spanish–English/English–Spanish dictionary. However, their
second method is less interesting, because it simply accepts all possible
translations, or mappings, without any attempt at disambiguating the
mapping. Thus, if a polysemous English word has several translations
into Spanish, their method would create mappings from each of the
Spanish words to each of the WordNet senses.

26

Background and
Related Research

2.4.2 Conceptual Distance

A measure closely related to conceptual density is the conceptual
distance measure, described by Agirre et al. (1994). The conceptual
distance between two words, w1 and w2, is defined as

dist(w1, w2) = min
c1i∈w1

c2j∈w2

∑
ck∈path(c1i ,c2j)

1

depth(ck)
, (2.2)

where c1i and c2j are WordNet synonym sets (synsets), or concepts,
representing w1 and w2, respectively, and depth(ck) defines a synonym
set (synset)’s specificity according to its depth in the WordNet hierarchy.
In other words, the conceptual distance between w1 and w2 is defined
through the specificity of synsets, ck, along the shortest path that con-
nects c1i and c2j . Concepts deeper in the hierarchy are considered more
specific, and more specific concepts are considered more closely related
to each other.

By applying the formula to a pair of words, one can find the most
closely related synset pair that represents those words. Just like con-
ceptual density, the conceptual distance closeness measure between
related senses can be used to disambiguate mappings of non-English
words to WordNet. For example, one can use some kind of context
words (as described in the previous section) and select the sense that
has the shortest conceptual distance to senses of the context words (see,
for example Rigau 1994; Atserias et al. 1997).

2.4.3 Other Methods

Atserias et al. (1997) present criteria and methods they explored for
automatically creating a multilingual lexical knowledge base, or lexical-
semantic resource, using a Spanish–English/English–Spanish bilingual
dictionary (Vox-Harrap 1992) and a large Spanish monolingual dictio-
nary (Alvar Ezquerra 1987) for mapping Spanish nouns to WordNet 1.5.
They do not state whether their methods are able to handle nonlexi-
calized Spanish compounds, or compounds that are not present in the
dictionary resources.

Atserias et al.’s work was included in the EuroWordNet project
to help (semi-)automatically build the Spanish part of EuroWordNet,
known as Spanish WordNet. Even though Atserias et al.’s research is
concerned with mapping Spanish nouns to WordNet, their criteria and
methods could be considered independently of source language.

Their research provides a wide spectrum of criteria and methods for
using bilingual dictionary resources mapping non-English words to

27

Lexical Semantic
Resources for
Non-English

Languages

wS wE

wE
1

wE
m

(a) Only one possible translation, to a single-
sense English word, wE. The Spanish word,
wS, gets linked to the synset containing the
corresponding sense.

wS

wE
1

. . .

wE
m

(b) One Spanish word, wS, with several
possible translations to single-sense En-
glish words, wE

1
, wE

2
, . . . , wE

m. The Spanish
word gets linked to the synsets containing
each corresponding sense.

wE

wS
1

. . .

wS
n

(c) One monosemous English word, wE,
is the translation target of several Span-
ish words. Each of the Spanish words,
wS

1
, wS

2
, . . . , wS

n, gets linked to the unique
synset.

. . .

wE
1

wE
m

wS
1

. . .

wS
n

(d) More than one Spanish word,
wS

1
, wS

2
, . . . , wS

n, have the same single-sense
English words, wE

1
, wE

2
, . . . , wE

m, as transla-
tion targets. Each Spanish gets linked to
each corresponding target synset.

Figure 2.5: Situations and criteria for mapping source-language
words to WordNet synsets via monosemous English words. Based
on criteria described by Atserias et al. (1997).

28

Background and
Related Research

{s1, s2, . . . , sk, . . . , sp}

wE
1 wE

2

wS

(a) Variant criterion. More than one sense
of a given synset—in this case s1 and sk,
representing the English words, wE

1
and

wE
2

, respectively—have only one transla-
tion each, and those translations target the
same Spanish word, wS. The Spanish word
gets linked to the synset in question.

{s1, s2, . . . , sk, . . . , sp}

wE

wS
1 · · · wS

n

f E

(b) Field identifier criterion. Utilizing field
identifier information provided by the
English–Spanish dictionary. If senses repre-
senting both the English word to be trans-
lated, wE, and the field identifier, f E, occur
in the same synset, then a link is created
for each translation of wE into Spanish,
wS

1
, . . . , wS

n found in the dictionary.

Figure 2.6: Methods and criteria for mapping source-language words
to WordNet synsets via polysemous English words. The figures visual-
ize the criteria described textually by Atserias et al. (1997).

WordNet synsets. Therefore, in figures 2.5 to 2.7 on pages 28–30 I have
illustrated the criteria and methods textually described by Atserias et al.
to more easily convey the ideas of their approach.

Figure 2.5 on the facing page shows how mappings are established
when the Spanish–English bilingual dictionary provides translations
to monosemous, or single-sense, English words. Generally, mappings
are established from Spanish words to the synset that contains the
unique sense representing each monosemous English word involved in
a translation. Mapping of non-English words to WordNet synsets that
represent monosemous English words constitutes the simplest case of
mapping non-English words to WordNet.

If the English words have several possible meanings, deciding which
mappings are warranted becomes less trivial. Figure 2.6 shows methods
and criteria for mapping Spanish words to WordNet synsets when
the English translations suggested by the bilingual dictionaries are
polysemous. Because Figure 2.6a, called the “variant criterion” by
Atserias et al., could resemble some aspects of my method, it will be
analyzed and discussed in Section 4.11.5.

29

Lexical Semantic
Resources for
Non-English

Languages {s1, s2, . . . , sm, . . . , sp}

wE
1 wE

2 . . . wE
m

wS

(a) Intersection criterion. Given a
translation from a Spanish word, wS,
to several possible polysemous En-
glish words, wE

1
, wE

2
, . . . , wE

m, a map-
ping from the Spanish word is cre-
ated if senses of all the English
words share at least one synset.

{. . . , s2, . . . }

{. . . , s1, . . . } {. . . , s3, . . . }

wE
1 wE

3wE
2

wS

(b) Direct hypernym criterion. Given a trans-
lation from a Spanish word, , wS, to multi-
ple polysemous English words, for example
wE

1
, wE

2
, wE

3
, if a sense representing one of the

words is a direct hypernym of senses repre-
senting the other words, a link is created from
the Spanish word to all the hyponym synsets.

{. . . }

{. . . , s1, . . . }
{. . . , s2, . . . }

{. . . , s3, . . . }

wE
1 wE

3
wE

2

wS

(c) Sibling criterion. Given a translation
from a Spanish word, wS, to multiple
polysemous English words, for example
wE

1
, wE

2
, wE

3
, if senses representing each of

the words are siblings, sharing some other
hypernym synset, a link is created from
the Spanish word to all the hyponym
synsets.

{. . . , s4, . . . }

{. . . , s1, . . . }
{. . . , s2, . . . }

{. . . , s3, . . . }

· · · · · · · · ·

wE
1 wE

3
wE

2

wE
4

wS

(d) Distant hypernym criterion. Equal con-
ditions as in Figure 2.7b, except that the
common hypernym, in this case wE

4
, is a

distant, not direct hypernym.

Figure 2.7: Methods and criteria for mapping source-language words
to WordNet via polysemous English words, using WordNet’s struc-
tural information. The figures visualize the criteria described textually
by Atserias et al. (1997).

30

Background and
Related Research

Figure 2.7 on the preceding page shows methods and criteria that use
more of WordNet’s structural information to decide which mappings
are correct when the translations contain polysemous English words.
In addition to the methods and criteria described by figures 2.5 to 2.7,
Atserias et al. use three methods based on the conceptual distance mea-
sure.

Farreres et al. (1998) present work that extends the approach de-
scribed by Atserias et al. (1997) to create Spanish WordNet, part of
the EuroWordNet initiative, and Catalan WordNet. They first apply
the methods described by Atserias et al. to map Spanish and Cata-
lan nouns and verbs to WordNet 1.5. Then, Farreres et al. present a
method they have applied to extend each of those resources by merging
them with accurate taxonomies generated from Spanish and Catalan
monolingual dictionaries.

Farreres et al. (2002) use different statistical analyses to evaluate
the quality and accuracy of the methods presented by Atserias et al.
(1997). By also studying the—sometimes overlapping—contribution
of mappings from each method, Farreres et al. are able to generate
detailed coverage and accuracy statistics, trading coverage for increased
accuracy and vice versa, for Atserias et al.’s approach.

The methods Knight and Luk (1994) use to map Spanish words
to their WordNet-based ontology are variants of the criteria shown
in figures 2.5a (a single unambiguous English translation), 2.6a (the
variant criterion), 2.7c (the sibling criterion), and 2.7d (the distant
hypernym criterion). When their Spanish–English bilingual dictionary
provides translations containing multiple English words, they first try
the variant criterion. If the variant criterion cannot be matched, they first
try the sibling criterion and after that the distant hypernym criterion.
Knight and Luk’s distant hypernym criterion is really a blend of the
sibling and the distant hypernym criteria, because the value of the
common hypernym, wE

4
, in Figure 2.7d does not matter. However, the

farther away, measured by the number of edges in the graph, that the
common hypernym is, the lower confidence level the mapping has.
Because Knight and Luk’s ontology was built by merging LDOCE with
WordNet, they are able to use field codes (such as COM and ZOOL
for meanings related to commerce and zoology, respectively) provided
by the bilingual dictionary (Collins and Smith 1971). They use these
field codes for guiding the disambiguation of mappings when only one
English word is given as a translation of a Spanish word.

Kokkinakis et al. (2000) present methods for (semi)automatically
extending and enriching the coverage of the Swedish SIMPLE lexicon.
They utilize semantic information available from the Swedish SIMPLE

31

Lexical Semantic
Resources for
Non-English

Languages

lexicon10, the Gothenburg Lexical Data Base (GLDB)11, and large corpora.
Their first method is based on first analyzing compound words not
already present in the Swedish SIMPLE lexicon to find their constituent
parts. They then incorporate the compounds in the lexicon with infor-
mation about semantic type, domain, and semantic class inherited from
the head of the compound. Their second method is based on a hypoth-
esis that when several nouns are listed in an enumerative fashion, if all
the known elements are of the same semantic class and co-hyponyms,
or siblings as shown in Figure 2.7c, then the unknown elements of the
enumerative noun phrase are probably also siblings of the same parent
hypernym. Thus, by the transitivity of the hyponymy relation, the new
words can be incorporated into the lexicon while inheriting semantic
information from its hypernym.

Dorr (1997) describes techniques for constructing large-scale dictio-
naries for foreign-language tutoring and interlingual MT systems. Parts
of her work is focused on automatically building dictionaries based on
a structured lexical, language-independent, or interlingual, represen-
tation of verb meaning called lexical conceptual structure (LCS) (Dorr
1992, 1993). The LCS approach is based on Jackendoff’s (1992) theory
on semantic structures.

LCS captures lexical knowledge related to argument structures, the-
matic roles, and selectional restrictions. However, LCS does not capture
deeper kinds of semantics, such as domain and world knowledge. For
example, the LCS

[Event GOLoc

([Thing JOHN],

[Path TOLoc

([Thing JOHN],

[Position ATLoc ([Thing JOHN], [Thing SCHOOL])])],

[Manner JOGGINGLY])],

(2.3)

from Dorr (1997), represents the sentence “John jogged to school.”
The manual, interactive, and corpus-based techniques Dorr (1997)

presents are of little interest to the work presented herein. However, she
also presents a technique for automatically building LCS-based lexicons
for Arabic, Korean, and Spanish, using bilingual dictionaries, LDOCE,

10 The Swedish SIMPLE Lexicon, http://spraakdata.gu.se/simple/swedish.simple.
lexicon.html. Accessed May 22, 2009.

11 The Gothenburg Lexical Data Base, http://spraakbanken.gu.se/gldb/. Accessed May 22,
2009.

32

http://spraakdata.gu.se/simple/swedish.simple.lexicon.html
http://spraakdata.gu.se/simple/swedish.simple.lexicon.html
http://spraakbanken.gu.se/gldb/

Background and
Related Research

and WordNet, which at least should be mentioned. Her method uses
semantic information about synonymy between verbs, from WordNet,
combined with syntactic information from LDOCE, to classify English
verbs from the glosses in the bilingual dictionaries according to Levin’s
(1993) verb classes. Based on the principle that synonymous verbs share
distributional patterns12, Dorr’s method constructs LCS lexicon entries
for new English verbs found in the glosses based on existing semantic
definitions for already classified, synonymous verbs. The non-English
verbs were then mapped to LCS entries on the basis of the English
glosses in the bilingual dictionaries (Dorr et al. 1995; Dorr 1997).

2.4.4 Triangulation

Kay (1997) and Chen et al. (2008) present triangulation, or transitive
translation, a method for improving machine translations. The idea
behind triangulation can be explained through an example. Consider
the task of translating a sentence, for example, from Spanish to En-
glish. Assume that the Spanish sentence, S, due to different kinds of
ambiguities is translated into the English candidate sentences E1, E2,
and E3. Furthermore, assume that S also can be translated into a third
language, for example German, as G1 and G2. Then, if either G1 or G2

can be translated to E3, intuitively there is a good chance that E3 is a
correct translation of S.

The principle behind triangulation does not necessarily have to in-
volve a third language. Instead of a focusing on languages, the same
principle can be applied to different analysis methods for translation
from one language to another. For example, given two completely dif-
ferent ways of analyzing an input sentence that each produce one set
of candidate translated sentences, if these sets are overlapping, then
the sentences that occur in both sets are likely to be correct. As argued
by Chen et al. (2008), if we assume that the non-overlapping translated
sentences are caused by “misleading information, or noise” in the trans-
lation process, “there is no reason to expect the noise in the two systems
to correlate strongly.”

Even though Kay and Chen et al. apply triangulation to sentence-
level translations, the idea can be transferred to word-level translations
too. One can argue that the method I present in Chapter 4 indirectly
makes use of the driving forces behind the triangulation principle.

12 The distributional pattern of a verb, the range of grammatical environments it can occur
in, defines the verb’s argument structures and thereby also its semantics.

33

Open-Domain
Question

Answering

2.4.5 Norwegian Semantic Knowledge Bases

In the fall of 2002, when I began this research, there were no existing
semantic resources like WordNet for Norwegian.

Subsequently, a couple of projects have attempted to automatically
generate lexical semantic resources by different means. Dyvik (2004)
has developed a method that automatically builds a semantic resource
based on the implicit semantic information present in parallel corpora.
Later, Nygaard (2006) developed a Norwegian wordnet by parsing and
analyzing the definitions of words in the (monolingual) Norwegian
machine-readable dictionary Bokmålsordboka (Wangensteen 2005). Both
of these approaches were discussed in Section 1.1, and I will discuss
the results of my work in relation to these projects in sections 4.11.4
and 6.4.

Another Norwegian semantic resource, which is currently being
manually developed, is a Norwegian part of the SIMPLE project (Lenci
et al. 2000). Although the Norwegian SIMPLE resource will provide
much interesting semantic information, its coverage will be rather
restricted, due to its limited size of approximately 10,000 lemmas.

2.5 Open-Domain Question Answering

The field of QA is concerned with enabling computers to automatically
answer questions expressed in natural language. The questions can be
simple or complex, and the answer should be precise according to the
knowledge available to the system. If a complete answer is not readily
available, the system should be able to deduce an appropriate answer
from relevant available knowledge (Green and Raphael 1968).

This is not the same as IR systems—like Web search engines—do,
because IR systems in general only provide the user with a list of docu-
ments that the system deems relevant to the user’s query, based on a
combination of pattern matching and statistical measures. Admittedly,
some search engines incorporate, for example, lexical semantic knowl-
edge in their algorithms, but in general they do not apply any deep
analyses, like text interpretation or knowledge acquisition, to the text.

In contrast to IR systems, that often provide snippets that highlight
relevant passages of the relevant documents in their search results, the
main response from a QA system should ideally be a concise, relevant,
and correct answer. However, for improved usability—and increased
credibility—a QA system might also provide references to the sources
of the knowledge used to generate such an answer.

34

Background and
Related Research

As one can see from the above requirements, a QA system has to
apply sophisticated NLP techniques to analyze the user’s question, to
understand what the user wants, and further to “deduce that a certain
string in a document sentence, or composition of strings from multiple
sentences, is the correct answer to the question” (Grunfeld and Kwok
2006).

Research on natural language QA systems has a long history, dating
back to 1959 (Simmons 1965). Most of the previous attempts on QA
were designed to support only restricted domains, such as SHRDLU by
Winograd (1971), a system that was able to manipulate, and reason
about the state of, objects in its own “Block world” according to com-
mands and questions given in English; Chat-80 by Warren and Pereira
(1982), a knowledge-based system that was able to answer relatively
complex questions posed in English about world geography; a system
by Gambäck and Ljung (1993) based on the Swedish Core Language En-
gine (S-CLE) that could answer questions about Swedish sovereigns;
and BusTUC, to be presented in Section 2.7.1, by Amble (2000).

The last decade there has been growing interest in what is known as
open-domain question answering (open-domain QA), both academi-
cally and commercially (Paşca and Harabagiu 2001; Paşca 2003; Strza-
lkowski and Harabagiu 2006). In contrast to traditional QA systems,
designed for particular domains, open-domain QA systems are not
restricted to any particular domain.

However, lifting the single-domain restriction has several important
consequences. For example, the vocabulary actively used both in source
documents and by the system’s users is probably increased, demanding
larger lexicons. The same situation might hold for the grammar, but as
pointed out by Moldovan and Rus (2001); Moldovan et al. (2003), their
top ten most frequently used grammar rules cover 90 % of their test
cases for WordNet glosses.13 If the system should be able to interpret
the text of the source documents, it will probably also need a larger
world model.

Furthermore, in open-domain QA the volumes of text are usually
much larger than in traditional QA. Therefore, since around the start
of the new millennium there has been a trend (Paşca and Harabagiu
2001; Moldovan et al. 2006) to favor hybrid solutions that combine
techniques from several fields of NLP to build scalable and robust open-
domain QA systems over systems purely based on text interpretation.
For example, in such hybrid solution systems, being able to perform
efficient and reliable named-entity recognition becomes crucial as the

13 Moldovan and Rus therefore call this the 10–90 rule.

35

Open-Domain
Question

Answering

volume of text continues to grow. Likewise, methods from IR can be
used to efficiently find relevant passages of text that might contain
(parts of) the answer to a question. Furthermore, techniques from IE
can be of help during extraction of answers from candidate passages.

However, to adequately answer questions, the QA systems still need
different kinds of world knowledge and the ability to reason with it.
As said by Lenat (2006), demonstrating QA through logical deduction
from rules and facts in the CYC knowledge base:

“So, if you have these pieces of knowledge, finding this
match is trivial. If you don’t have these pieces of knowledge,
finding this match is impossible. It’s not like you can add
another 15,000 servers, or let your algorithm run another
five seconds, and it would find this match. It will never find
this match without these pieces of knowledge.”

2.5.1 Deep Analyses versus Wide Coverage

NLP technologies usually force a trade-off between wide coverage and
depth of analysis. For example, many statistical and machine-learning
approaches to NLP are based on detecting and counting occurrences of
words and phrases, while other NLP approaches are based on the use
of grammars and knowledge about the world to analyze the complete
structure of a phrase, sentence, or passage. The word-occurrence ap-
proaches usually have no idea of each word’s or phrase’s semantics,
but are able to find relevant information by detecting frequent patterns
or using statistically motivated matching rules. Such approaches often
offer a wide coverage at the cost of a shallow analysis leading to higher
levels of recall, while approaches that perform deep analyses typically
offer higher levels of precision at the cost of a narrow coverage. This
trade-off between wide-but-shallow and deep-but-narrow affects all
NLP systems.

Based on the tradeoff between wide coverage and depth of analysis,
it should be no surprise that NLU systems, able to interpret and reason
about textual content through deep analyses, generally are limited
by a narrow coverage. Despite this, one of the goals for research on
open-domain QA is to be able to create systems that precisely answer
questions, stated in natural language, that are not restricted to any
particular domain. This struggle to achieve both deep analyses and wide
coverage makes open-domain QA a particular interesting application
of ontologies.

36

Background and
Related Research

2.6 Encyclopedic Question-Answering Systems

A particular application of open-domain QA is within the domain of
acquiring knowledge from, and answering questions about, the contents
of encyclopedic texts. TUClopedia, described in Chapter 5, is not the
first attempt to create such a system.

For example, earlier research on automatic acquisition of knowledge
from encyclopedic texts includes the MURAX system (Kupiec 1993),
which used only a shallow natural language analysis in order to answer
Trivial Pursuit questions. The SNOWY system, on the other hand, was
able to acquire knowledge from unedited texts from the World Book En-
cyclopedia (1987) within the rather narrow domain of “the dietary habits
of animals, their classifications and habitats” and to answer an ample
set of questions about the contents of the knowledge database (Gomez
1994). Another attempt, reported by Hull and Gomez (1999), targets a
somewhat wider domain through automatically acquiring biographic
knowledge from articles in the World Book Encyclopedia. However, the
domain of biographic knowledge is still not as wide, or open, as the
domain defined through general encyclopedia articles.

Nonetheless, all of the systems just mentioned handle questions
posed in English only. On the other hand, the systems presented by
Gambäck and Ljung (1993) and Jönsson et al. (2004) that are able to an-
swer questions about Swedish sovereigns and Ornithology, respectively,
could perhaps be considered to constitute encyclopedic QA systems for
a Scandinavian language, but only for very narrow domains.

2.7 Natural Language Processing Systems for Norwegian

There are three major natural language processing systems for Norwe-
gian. These are The Understanding Computer (TUC), Norwegian Resource
Grammar (NorSource) and Norsk komputasjonell grammatikk (NorGram).
Below, a short presentation of each will be given with respect to the
semantic resources they use.

2.7.1 The Understanding Computer (TUC)

TUC (Amble 2000; Amble et al. 2002) is a NLU system designed to
be easily adaptable to new applications and domains. The system is
bilingual—it understands both Norwegian and English—but the core
of TUC uses a language-independent logic to represent knowledge. For
each of the two languages, TUC contains a lexicon, morphology rules

37

Natural
Language

Processing
Systems for
Norwegian

and a grammar14. In addition, TUC contains a semantic knowledge
base, and modules for interfacing external sources of information, e.g.
Structured Query Language (SQL) databases.

Earlier TUC-based systems, still subject both to research and devel-
opment, have successfully been applied to several narrow domains.
The systems include BusTUC (Amble 2000), a natural-language based
expert system route advisor for the public bus transport in Trondheim,
Norway (in commercial use15), and GeneTUC (Sætre 2006), an applica-
tion of TUC to the domain of understanding and extracting information
about gene and protein interactions from medical articles. Furthermore,
Bruland (2002) developed a system called ExamTUC that could extract
information from an article about the kings of Norway in order to
automatically grade written answers to examination questions based
on the same article. This was an early attempt at adapting TUC to a
broader domain.

TUC uses a semantic network both to filter out semantically invalid
candidate interpretations when it parses text and for reasoning about
knowledge in order to answer questions posed by users. Hence, TUC
will fail to interpret any sentence that contains concepts not covered
by TUC’s semantic network; that is, concepts not part of the semantic
network’s domain. Besides, when TUC answers a question, the quality
of the answer will depend on both the coverage and the quality of the
semantic network.

Not surprisingly, the scopes of the semantic networks previously
developed for TUC reflect the narrow domains TUC has been applied
to.

TUC’s Grammar

The grammar in TUC uses a Context-Sensitive-Categorial-Attribute-
Logic (ConSensiCAL) grammar formalism. This formalism is an easy-
to-use variant of a generalization of Definite Clause Grammar (DCG)
called Extraposition Grammar (Pereira and Warren 1980).

Where a Context-Free Grammar (CFG) uses a rule skeleton like
A→ γ, stating that a nonterminal A can expand into an arbitrary string
of terminal and nonterminal symbols, a Context-Sensitive Grammar
(CSG) uses a rule skeleton like αAβ → αγβ, where α and β represent
arbitrary strings of terminal and nonterminal symbols, just like γ. Thus,

14 Based on experiences with BusTUC, Amble (2000) states that the grammars are surpris-
ingly similar, but no effort has been made to coalesce them.

15 The commercial version of BusTUC is on-line at http://www.team-trafikk.no/, while
a noncommercial version is available at http://www.idi.ntnu.no/~tagore/bustuc/.

38

http://www.team-trafikk.no/
http://www.idi.ntnu.no/~tagore/bustuc/

Background and
Related Research

the context-sensitive features of the ConSensiCAL formalism mean that
the parser can use information about the context of the nonterminal in
the left-hand side of the rules16.

The categorial part of the formalism enables new syntactic categories
to be derived from the basic categories by the application of one or
more of three operations.

Finally, the attribute-logic part of ConSensiCAL means that the cate-
gories of the grammar can be augmented by attributes that are subject
to logical restrictions.

For further explanation of the ConSensiCAL grammar formalism,
see (Amble 2003). The grammar is basically a grammar for simple
statements, while questions are derived by the use of movements.

TUC’s Parser

During parsing, TUC performs semantic type checking. Therefore, TUC
is able to discard candidate parses as soon as they are recognized as
semantically invalid by this check. Hence, TUC’s parser will only accept
sentences that are syntactically, grammatically, and semantically valid.

Amble (2000; p. 4) states that during disambiguation between can-
didate interpretations TUC applies a heuristics based on the idea that
“the longest possible phrase of a category that is semantically correct is
in most cases the preferred interpretation”; a guideline he notices has
proved “almost irreproachable.”

When TUC has successfully parsed a sentence (simple statement or
question), the sentence is transformed into a TUC Query Language
(TQL) expression, which represents the information in a first-order
event calculus (Kowalski and Sergot 1986). At the core of the construc-
tion of the TQL expressions is the use of verbal complements where
the event functions as a link between the semantic units that comprise
the newly acquired knowledge.

2.7.2 The LOGON Project

The Leksikon, ordsemantikk, grammatikk og oversettelse for norsk (LOGON)
project “aims to deliver high-quality, document-level Norwegian–English
MT based on the combination of a symbolic, semantic-transfer-oriented
backbone and stochastic processes for ambiguity management and
robustness” (Oepen et al. 2004).

The syntactic analysis of the Norwegian input is handled by the
Norwegian Lexical-Functional Grammar (LFG) resource grammar Nor-

16 Actually, the rule skeleton for the ConSensiCAL grammar formalism is αAβ→ γ.

39

Natural
Language

Processing
Systems for
Norwegian

Gram developed by Dyvik (1999). The translation is done by transfer-
ring a Minimal-Recursion Semantics (MRS) representation (Copestake
et al. 2005) of the Norwegian analysis into an English MRS represen-
tation, based on a set of MRS transfer rules. Next, the Head-Driven
Phrase Structure Grammar (HPSG) based English Resource Gram-
mar (Flickinger 2000) from the Linguistic Grammars Online (LinGO)
project is used for generation of natural language output in English.

Another resource grammar for Norwegian is the HPSG-based Nor-
Source (Hellan and Haugereid 2003). The grammar currently handles
most Norwegian grammatical constructions, but contains enough se-
mantic information to generate interesting semantic parses only for
approximately 1,000 words17.

Both NorGram and NorSource are based on grammar formalisms
that are based on unification of feature structures (FSs). These FSs can
contain semantic information, such as which nominals are arguments
to which verbs, but these semantic features do not refer to a world
model, or ontology.

17 Lars Hellan, phone conversation with Martin Thorsen Ranang, 21st of July, 2006.

40

—Compounding is probably the most
important and widely used word formation
process in Norwegian.

Johannessen (2001)

3
Handling of Norwegian Compounds

This chapter presents a practical implementation, including a com-
plementary specification, of an algorithm for automatic analysis and
treatment of Norwegian compound words.

3.1 Motivation

Because Verto—the implementation of the method for automatically
mapping content words in a non-English source language to Word-
Net senses, to be presented in the next chapter—depends heavily on
automatically looking up words in a bilingual dictionary, handling com-
pounds not already covered by the dictionary could greatly increase
the coverage of the method. Furthermore, because of the importance of
compounding as a word formation process, both in Norwegian and at
least some of the other Germanic languages—such as German, Dutch,
Danish, Swedish, and Icelandic—the method should be able to handle
mapping of compounds.

However, since automatically analyzing compounds is a nontrivial
task in itself, this chapter focuses on that topic in isolation, before we
delve into the main method itself in Chapter 4. That way, this chapter
constitutes important building blocks for the method to be presented
in the next chapter.

3.2 Norsk Komputasjonelt Leksikon (NorKompLeks)

The only important externally developed resource in the compound-
word analysis module is a Norwegian lexicon called Norsk komputasjon-
elt leksikon (NorKompLeks) (Nordgård 1998). NorKompLeks contains
information about lexical class, inflection, stems (or base forms), phonol-
ogy, and argument structures for Norwegian words.

41

Guiding
Principles

The compound-word analyzer interfaces NorKompLeks through a li-
brary module. For each keyword looked up through the NorKompLeks

module, the returned information is a list of tuples. The list contains
one element per inflected form that the keyword may represent. Each
tuple consists of a stem, a set of attributes, and a number identifying
the lexeme. For example, the returned information for the word «ansikt»
(“face”) is

NorKompLeks(ansikt) =
〈(ansikt, {(form, ind), (gend, n),

(num, pl), (pos, subst)}, 2067)
(ansikt, {(form, ind), (gend, n),

(num, sg), (pos, subst)}, 2067)〉.

(3.1)

As can be seen from (3.1), the word form «ansikt» can be both the
singular and plural indefinite form of the neuter noun («substantiv»
in Norwegian) with the stem «ansikt». However, the form «ansiktet»
(“face.the”) yields

NorKompLeks(ansiktet) =
〈(ansikt, {(form, def), (gend, n),

(num, sg), (pos, subst)}, 2067)〉,
(3.2)

which shows that it is the singular definite form of the same lexeme.
The only information required by the presented method is the lexical

class and stem of keywords. The other information is ignored.

3.3 Guiding Principles

In the implementation of the automatic compound-word analyzer de-
scribed herein, the following guidelines for automatically analyzing
compound words, quoted from Johannessen and Hauglin (1996), are
incorporated into the algorithms:1

(JH17) Lexical compounding is preferable to compounding
with epenthetic phones.

[with the exceptions]

1 I have changed the labels. Each of the quoted principles are identified by a label (JHn),
where JH refers to the authors, Johannessen and Hauglin, while n refers to the label used
in (Johannessen and Hauglin 1996).

42

Handling of
Norwegian
Compounds

(JH20) Epenthetic -s- is preferred to lexical compound-
ing when the -s- can be ambiguous between ep-
enthetic use and the first letter of a verbal last
member.

(JH25) Epenthetic -s- is preferred to lexical compound-
ing when the first member is itself a compound.

(JH30) If two analyses have the same number of members
and there is no epenthesis involved, choose the one, if
any, that is a noun.

(JH33) If two analyses are equal with respect to epenthesis
and part of speech, and one has a first member that is
itself a compound, then choose that one.

(JH48) Choose the analysis (or analyses) with the fewest
compound members.

While the following principles—also presented in the same paper—are
enforced through the design of the parser’s grammar:

(JH22) Epenthetic -s- can only follow noun stems.

(JH27) Epenthetic -s- cannot follow epenthetic -e- and vice
versa.

(JH35) Epenthetic -e- can only be attached to a stem that is
monosyllabic.

(JH37) Other possible stems can be prior to the stem pre-
ceding the -e-, if they do not form a compound with
that stem.

(JH40) Epenthetic -s- cannot occur after a sibilant or a final
consonant sequence containing a sibilant.

(JH42) Except when the consonant belongs to a compound.

However, the guideline

(JH46) If the first member is unknown, choose the analysis
with the longest last member.

is not used, because the analyzer implemented herein requires that
each of the constituents is either defined through the grammar, like the
epenthetic -e- and -s-, or found in the NorKompLeks lexicon.

As shown above, selecting the correct analysis of how a word is
compounded is a nontrivial task. In Section 6.1 I will discuss how the
resulting resource generated by the method described herein may be
used to improve the compound-word analysis.

43

Algorithms for
Automatic

Analysis of
Compounds

Algorithm 3.1: Function that returns all valid compound-word analyses sorted
by preference.

1: function Get-Compounds-Sorted(word)
2: analyses← Get-Compounds-Unsorted(word)
3: prioritized_analyses← Prioritize-Analyses(analyses)
4: sorted_analyses← Sort(prioritized_analyses)
5: return sorted_analyses

3.4 Algorithms for Automatic Analysis of Compounds

This section will present the algorithms developed for doing the auto-
matic compound-word analysis. In the following algorithm descriptions,
the functions Map

2 and Filter
3 known from functional programming

are assumed available.
The main function of the automatic compound-word-analyzer mod-

ule is Get-Compounds-Sorted, shown in Algorithm 3.1. The algorithm
gives an overview of how the analyzer works. If NorKompLeks cannot
directly look up the keyword, behind the scenes the module will call
Get-Compounds-Sorted with the string that represents the keyword to
be analyzed. The returned value is a list containing theoretically valid
analyses, ordered by their likelihood of being relevant and correct.

2 The Map(f , seq) function takes a function, f , and a sequence, seq = 〈x1, x2, . . .〉, as
arguments. The return value is a new sequence that contains the values of f (x), where
x ∈ seq.

3 The Filter(f , seq) function takes a function, f , and a sequence, seq = 〈x1, x2, . . .〉, as
arguments. The return value is a new sequence that only contains the elements of seq for
which f (x), where x ∈ seq, evaluates to True.

44

Handling of
Norwegian
Compounds

For example, given the Norwegian compound «musikkspiller» (“music
player”)—which is not an entry in NorKompLeks—the output from
the function call begins with

NorKompLeks.Get-Compounds-Sorted(musikkspiller) =
〈〈(musikk,
〈({(pos, subst), (num, sg),

(form, ind), (gend, m)}, musikk, 39595)〉),
(spiller,
〈({(pos, subst), (num, sg),

(form, ind), (gend, m)}, spiller, 56073)〉)〉,

(3.3)

which correctly represents the “music player” interpretation, followed
by

〈(musikk,
〈({(pos, subst), (num, sg),

(form, ind), (gend, m)}, musikk, 39595)〉),
(s, 〈({(pos, joint)}, epenthetic-s,−1)〉),
(piller,
〈({(pos, subst), (num, pl),

(form, ind), (gend, m)}, pille, 44933),
({(pos, subst), (num, pl),

(form, ind), (gend, f)}, pille, 44934),
({(pos, subst), (num, pl),

(form, ind), (gend, m)}, pille, 44934)〉)〉,

(3.4)

45

Algorithms for
Automatic

Analysis of
Compounds

Algorithm 3.2: Function that returns all valid compound-word analyses.

1: function Get-Compounds-Unsorted(word)
2: analyses← 〈〉
3: for parts ∈ Split-Word(word) do
4: trees← Get-Complete-Word-Parses(parts)
5: analyses← analyses +Map(Analyze-Parse, trees)
6: return analyses

which translates to “music pills”, and

〈(musikk,
〈({〈(pos, subst), (num, sg),

(form, ind), (gend, m)〉}, musikk, 39595)〉),
(spiller,
〈({〈(vform, pres), (pos, verb)〉}, spille, 56059)〉)〉,
. . . , 〉

(3.5)

which represents the verbal interpretation “music plays” followed by
less and less probable analyses.

As can be seen from these examples, the format of the output from
Get-Compounds-Sorted is slightly different from the output of the
NorKompLeks module shown in (3.1) and (3.2). The difference is
mainly that the NorKompLeks “stem” is included between the set
of attributes and the NorKompLeks id for the lexeme. The reason for
this is to make it easier to evaluate the suggested compound-word
analyses and that the output format seen in (3.1) and (3.2) can easily be
generated for any of the single cases (3.3), (3.4), or (3.5).

The two most important components of the Get-Compounds-Sorted

method are Get-Compounds-Unsorted and Prioritize-Analyses. Be-
low, each of these functions, and the functions they rely on, will be
described.

3.4.1 The Get-Compounds-Unsorted Algorithm

The Get-Compounds-Unsorted method, shown in Algorithm 3.2, is
responsible for generating a list, named analyses, of the valid compound-
word analyses of word.

46

Handling of
Norwegian
Compounds

Algorithm 3.3: Function for suggesting chunking, or segmentation, of com-
pound words.

1: function Split-Word(word, interpretations← ∅)
2: if word ∈ interpretations then
3: return interpretations[word]
4: interpretations[word]← 〈〉 . Empty list.
5: if |Get-Part-of-Word-Parses((word))| > 0 then
6: interpretations[word]+← 〈(word)〉
7: for all i ∈ [(|word| − 1), 1] do
8: . Generate combinations of word split at position i:
9: for all (first, last) ∈ Combine-Parts(word[: i], word[i :]) do

10: if |Get-Part-of-Word-Parses((last))| = 0 then
11: continue the surrounding loop.
12: for all suggested_start ∈ Split-Word(first, interpretations)

do
13: interpretations[word]+← 〈suggested_start +(last)〉
14: return interpretations[word]

Algorithm 3.4: Function that returns all valid parse trees given parts as input,
filtering out sequences that cannot successfully be parsed as complete words.

1: function Get-Complete-Word-Parses(parts)
2: if Is-Assumed-Cruft(parts) then
3: return 〈〉
4: trees = Parse(parts)
5: return Filter(Is-Complete-Word, trees)

47

Algorithms for
Automatic

Analysis of
Compounds

Algorithm 3.5: Function that returns all valid parse trees given parts as input,
filtering out sequences that cannot successfully be parsed as a part-of-word.

1: function Get-Part-of-Word-Parses(parts)
2: if Is-Assumed-Cruft(parts) then
3: return 〈〉
4: trees = Parse(parts)
5: return Filter(Is-Part-of-Word, trees)

First, Split-Word, shown in Algorithm 3.3 on the preceding page,
returns a list of possible ways to segment word. Second, for each of the
segmentations, Get-Complete-Word-Parses, shown in Algorithm 3.4,
returns a—possibly empty—list of parse trees, each representing a
valid analysis of the compound represented by the segmentation. Third,
each tree is separately analyzed by calling the Analyze-Parse function.
The function takes a single parse tree as an argument and returns
a TreeAnalysis object that—in addition to keeping a reference to the
original parse tree—features a set of methods that can be used to
describe different higher-level characteristics of the parse. The analyses
are added to the analyses list. Finally, the list analyses is returned. In the
following the workings of these algorithms will be explained.

Split-Word is a recursive function that repeatedly calls itself with
different parts of word and checks whether they are possible to parse
as parts of a word by calling Get-Part-of-Word-Parses, shown in
Algorithm 3.5. A central piece of Split-Word is the for-construct on
lines 7–9 that, given the input string word and—for now—ignoring the
call to Combine-Parts, generates the sequence

〈(word[: i], word[i :])|i ∈ [(|word| − 1), 1]〉. (3.6)

Given that word equals "musikkatalog", this sequence expands to

〈("musikkatalo", "g"), ("musikkatal", "og"),
("musikkata", "log"), ("musikkat", "alog"),
("musikka", "talog"), ("musikk", "atalog"),
("musik", "katalog"), ("musi", "kkatalog"),
("mus", "ikkatalog"), ("mu", "sikkatalog"),
("m", "usikkatalog")〉.

(3.7)

48

Handling of
Norwegian
Compounds

Algorithm 3.6: Function that returns a Boolean value defining whether the
sequence of words given as the argument is “cruft” or not.

1: function Is-Assumed-Cruft(parts)

2: return (|parts| > 2) ∧

∑

part∈parts
|part|

|parts| < 3

Algorithm 3.7: Function for combining parts of a word split in two.

1: function Combine-Parts(a, b)
2: if (|a| ≥ 2) ∧ (a[−1] ∈ consonants) ∧ (a[−2] = a[−1]) then
3: return 〈(a, b), (a, a[−1] + b)〉
4: else
5: return 〈(a, b)〉 . The obvious combination.

To avoid duplicate processing, the Split-Word algorithm implements
memoization through the variable interpretations that cache earlier re-
sults. The first time the function is called, with the input word as the
only argument, interpretations assumes ∅ as a default value. However,
in the consecutive recursive calls interpretations is supplied as a second
argument. It should be noted that the use of Combine-Parts, shown
in Algorithm 3.7, ensures that in some cases additional letters can be
added to a segment. How this is done is described below.

Get-Part-of-Word-Parses is a function that basically forwards its
only argument, parts, to the parser described below, in Section 3.5. The
returned parse trees are filtered through Is-Part-of-Word, a function
that checks the root node to see whether the tree represents some-
thing that can be considered part of a word (the alternative would
be a complete word). However, the function also calls the function
Is-Assumed-Cruft, shown in Algorithm 3.6, to filter out word seg-
mentations that are considered noise, or “cruft”. A segmentation is
considered noise if it consists of more than two parts and the average
length of the parts is shorter than a given constant4.

4 Based on experiences during the development of these algorithms, the constant is defined
to be 3.

49

Algorithms for
Automatic

Analysis of
Compounds

A Norwegian spelling rule states that there should never be more
than two contiguous occurrences of the same consonant in any word.
For example, the naïve compounding of «musikk» (“music”) and «katalog»
(“catalog”) through simple concatenation,

(*) «musikkkatalog» (“music catalog”), (3.8)

results in an error. The correct way to compound these words is to
simply ignore the third contiguous consonant occurrence, as in

«musikkatalog» (“music catalog”). (3.9)

This “consonant shortening over compound boundaries” was identi-
fied as a potential problem by Karlsson (1992) too. However, to avoid
overgeneration of analyses in SWETWOL, he chose to simply list the
roughly 360 compounds of that type he had identified.

The Combine-Parts function always returns a sequence containing
its two arguments, a and b, paired together as a tuple, (a, b). However, to
counter the contiguous-consonants rule mentioned above, the function
also checks whether the two last characters of a represent the same
consonants. In that case, the function includes a tuple (a, a[−1] + b),
where the last character of a has been added to the beginning of b, in the
result list. For example, given that the input word was «musikkatalog»,
at some point during the evaluation of Split-Word("musikkatalog"),
the call

Combine-Parts("musikk", "atalog") = 〈("musikk", "atalog"),
("musikk", "katalog")〉

(3.10)

will be made. In this case, the first tuple will not parse as neither a
part of a word, nor as a complete word. Thus, the introduction of the
second tuple actually plays a key role in finding valid analyses of the
compound. For example, the expression in (3.7) that shows the different
first-level segmentations that are considered during the analysis of
«musikkatalog» does not contain ("musikk", "katalog"). However, since
Split-Word utilizes Combine-Parts, the set of considered segmenta-
tions becomes

〈("musikkatalo", "g"), ("musikkatal", "og"),
("musikkata", "log"), ("musikkat", "alog"),
("musikka", "talog"), ("musikk", "atalog"),
("musikk", "katalog"), ("musik", "katalog"),
("musi", "kkatalog"), ("mus", "ikkatalog"),
("mu", "sikkatalog"), ("m", "usikkatalog")〉.

(3.11)

50

Handling of
Norwegian
Compounds

Algorithm 3.8: Function that returns all valid compound-word analyses rated
by order of preference.

1: function Prioritize-Analyses(analyses)
2: prioritizations← 〈〉
3: for analysis ∈ analyses do
4: prioritizations← prioritizations +〈Prioritize(analysis, analyses)〉
5: return prioritizations

6: function Prioritize(analysis, analyses)
7: return (analysis .Get-Number-of-Compounds(),

− analysis .Has-Preferable-Epenthetic-S(),
− analysis .Has-Adjective-Noun-Ambiguity(analyses),
analysis .Get-POS-Weight-Mapping()[−1],
analysis .Has-Suffix-Head(),
− analysis .First-Member-Is-Compound(),
− analysis .Has-Ambiguous-Epenthetic-E(analyses),
analysis .Contains-Inflection-Formatives(),
analysis .Contains-Epentheses(),
− analysis .First-Member-Is-Probably-Compound(analyses),
analysis .Get-Reversed-Negated-Part-Lengths(),
analysis .First-Member-Is-Verbal(),
analysis .Get-POS-Weight-Mapping-Adjusted(),
analysis)

The first step of the for-loop in the Get-Compounds-Unsorted

function is the Get-Complete-Word-Parses function, shown in Algo-
rithm 3.4. The function filters out noisy input and passes on its input
argument to the parser, just like Get-Part-of-Word-Parses. However,
the returned list contains only parse trees of complete (compound) words,
according to the parser’s grammar.

The second step of the for-loop is to create a new list by applying the
function Analyze-Parse to each parse tree in turn. The Analyze-Parse

function basically wraps each parse tree in a TreeAnalysis object by
calling the class’ constructor and returns the newly created object.

51

Algorithms for
Automatic

Analysis of
Compounds

3.4.2 The Prioritize-Analyses Algorithm

After Get-Compounds-Unsorted has returned a list of analyzed valid
parses, the Get-Compounds-Sorted function (Algorithm 3.1) will first
make a prioritized version of the list and then return a sorted version
of it. This section will present how the prioritization is done.

The Prioritize-Analyses function, shown in Algorithm 3.8, takes a
list of TreeAnalysis objects as its input argument. The function returns a
list of prioritized analyses built by calling Prioritize—also shown in
Algorithm 3.8—for each analysis in the input argument.

When comparing two n-tuples, comparisons are made in pairs; first,
the leftmost element from both tuples are compared, next, the second
element from both tuples are compared, and so on. The way tuples are
compared means that they may easily be used for ordering lists; the
lower the value, the higher the priority. The following call to Sort with
a list of tuples shows how this works:

Sort(〈(3,−2, "ab"), (1, 3, "b"), (3,−2, "a"), (−1, 8, "c")〉) =
〈(−1, 8, "c"), (1, 3, "b"), (3,−2, "a"), (3,−2, "ab")〉.

(3.12)

The Prioritize function returns a tuple where all but the last element
are numeric elements. The different high-level characterizing methods
of the TreeAnalysis objects are called to provide the numeric values in
the tuple. As can be seen from the function, some of the method’s
return values are negated. This is done to turn positive values into
higher priorities.

Every ith element of the prioritization tuple makes a difference only
among the other analyses that have been characterized identically at
each position up to (i− 1). The nontrivial part is deciding the order of
the calls to the analysis-characterizing methods.

Next, each of the methods used in Prioritize to characterize each
analysis will be presented.

The first—most significant—element in the prioritization tuple im-
plements guideline (JH48). The element is simply the number of com-
pounds that comprise the analysis, found by calling analysis.Get-Number-
of-Compounds(). The function traverses the parse tree and counts
compounds. For example, the analyses shown in Figures 3.1a and 3.1b
both have a compound count of 1 (the attachment of the epenthetic -s-
does not constitute a compound) while the analysis in Figure 3.2 has a
compound count of 2.

The second element, supplied by calling Has-Preferable-Epenthetic-
S(), is a pragmatic replacement of guidelines (JH20) and (JH25). The

52

Handling of
Norwegian
Compounds

(a) An analysis corresponding to (3.3).

(b) An analysis corresponding to (3.4).

Figure 3.1: Two analyses of the compound «musikkspiller» returned
by the parser and evaluated by the compound-word analyzer.

53

Algorithms for
Automatic

Analysis of
Compounds

F
i
g

u
r

e
3.

2:O
ne

of
the

valid
analyses

of
«kontorstøttesystem

et»
(“office

support
the.system

”).

54

Handling of
Norwegian
Compounds

Table 3.1: The weighting of different lexical categories used by
the Get-POS-Weight-Mapping method. A lower value means a
higher priority.

Lexical category Weight

epenthesis 0

joint 0

possessive 0

noun 1

prefix 2

preposition 3

Lexical category Weight

quantifier 3

adjective 4

verb 5

adverb 6

deflection 10

inflection 10

replacement is motivated by extensive experimentation with the prior-
itization rules and by testing the analyzer on compound words from
real-world texts. The method returns true only if the analysis contains
an epenthetic -s- and the epenthetic -s- is preceded by a word ending in
‘-ed’ or ‘ng’. Since the return value is negated, the following guideline
can be put forward:

Guideline 1. Prefer analyses containing epenthetic -s- only if the epenthetic
-s- is preceded by a member ending with ‘-ed’ or ‘-ng’.

The third tuple element, obtained by evaluating Has-Adjective-
Noun-Ambiguity(analyses), will give preference to analyses with nomi-
nal heads over analyses with adjectival heads. However, this preference
is only given if the rest of the analyses are equal with respect to the
classification of the terminals. This preference can be seen as a special-
ization of (JH30) which is also covered by other tuple elements.

The Get-POS-Weight-Mapping method returns a list of numbers
where each number corresponds to a weighting of the lexical category of
the different parts of the analysis. The weighting scheme is shown in
Table 3.1. For example, the weighting scheme gives higher priority to
nouns than to adjectives, and adjectives are given a higher priority than
verbs.

The last value in the list returned from Get-POS-Weight-Mapping is
used to define the fourth tuple element; the weighting of the analysis’
head, based on its lexical category. Because the weights returned by Get-
POS-Weight-Mapping give higher priority to nouns than to adjectives,
the previous tuple element can be seen as an element that counters

55

Algorithms for
Automatic

Analysis of
Compounds

that. However, the previous element is only true if the analyses are
otherwise equal. Therefore, this element covers (JH30) too.

The fifth value is obtained by calling Has-Suffix-Head and is 1 if
the head of the analysis is a kind of suffix (compare with the grammar
presented in Section 3.5) and 0 otherwise. This value is included to give
lower priority to analyses with suffix heads.

The sixth tuple member is −1 if the first member is a compound
and 0 otherwise. The value is obtained by calling First-Member-Is-
Compound and is used to enforce (JH25). Whether the first member is
a compound is determined by checking if the index of the epenthetic
-s- in the list of terminals is greater than 1 (starting at 0), which means
that there are more than one member to the left of it.

The value of the seventh element is the returned value from the
method call Has-Ambiguous-Epenthetic-E(analyses). The method im-
plements the preference principle:

Guideline 2. Epenthetic -e- is preferred when the epenthetic -e- can be am-
biguous between epenthetic use after a monosyllabic noun and the last letter
of a first-member noun.

Thus, the tuple element becomes −1 in case the current analysis con-
tains an epenthetic -e- that causes such an ambiguity, and 0 otherwise.

The eighth tuple element, obtained by calling the Contains-Inflection-
Formatives method, is 1 if the analysis contains any inflection forma-
tive at all, and 0 otherwise.

The ninth element, returned by Contains-Epentheses(), is 1 if the
analysis contains any epenthetic element, and 0 otherwise.

The tenth element, obtained by calling First-Member-Is-Probably-
Compound(Analyses), is −1 if the first member is probably a compound,
and 0 otherwise. This method differs from First-Member-Is-Compound

in that it compares the current analysis with the other analyses. Whether
the first member is a compound is determined by comparing the first
member of the current analysis with concatenations of the first members
of the other analyses. This is done in an attempt to detect words that
were formed through compounding but have become lexicalized and
have thus been included in lexicons and dictionaries. Thus, this tuple
element affects the prioritization according to (JH33).

Get-Reversed-Negated-Part-Lengths() returns a tuple containing
the arithmetically negated length of each of the members of the analysis,
in reversed order. Thus, the negated length of the last member of the
analysis is the first element of the returned tuple, and so on. The
returned tuple constitutes the eleventh element in the prioritization

56

Handling of
Norwegian
Compounds

tuple and is included to give higher priority to analyses with longer
members—from right to left.

The twelfth element is returned by a call to First-Member-Is-Verbal()
and is simply 1 if the first member is verbal, and 0 otherwise.

The thirteenth element is also a tuple. The tuple is obtained by
calling the Get-POS-Weight-Mapping-Adjusted method, which is
quite similar to the Get-POS-Weight-Mapping method described above,
except that a value of 0.5 is subtracted from the last member if it
represents a stem or a gerund.

The final element in the tuple is the analysis object itself, so that it
later easily can be extracted from the tuple.

3.5 Compound-Word Parser

The parser implemented in the automatic compound-word analyzer is
a modified version of the Earley chart parser (Earley 1970) from the
Natural Language Toolkit (NLTK) (Bird and Loper 2004; Bird 2006; Bird
et al. 2008).

The Earley chart parsing algorithm uses a Context-Free Grammar
(CFG) and handles left-recursive grammar rules and ambiguous gram-
mars, while it avoids inefficient reparsing of subtrees through the use of
dynamic programming (Jurafsky and Martin 2000; pp. 377–385). Addi-
tionally, if more than one parse is valid, the Earley algorithm finds all of
them in a single pass through the chart, from left to right. Furthermore,
in the general case, given an input of n words, the parser’s worst-case
behavior is O(n3), but with an unambiguous grammar the worst-case
behavior becomes O(n2) (Earley 1970).

3.5.1 Modifications of the Parser

To be able to adhere to the guidelines proposed by Johannessen and
Hauglin (1996) not covered by the algorithms presented in Section 3.4.2,
the parser needs knowledge about the terminals’ lexical categories,
inflection, derivation, and morphological and phonological traits. Much
of that information is available in the NorKompLeks, but some infor-
mation, like the number of syllables in a word, or whether a word ends
with a sibilant, is not covered by NorKompLeks.

One way to make all of the information needed for each terminal
symbol available to the parser would be to write a script that explicitly
generates all of the productions that contain terminal symbols—that

57

Compound-Word
Parser

is, the lexicon. For example, the lexicon part of such a grammar would
contain rules like

〈monosyllabic noun stem〉→"hopp"
〈monosyllabic verb stem〉→"hopp"

〈non-monosyllabic noun stem〉→"hoppe"
〈noun〉→"hopp"
〈noun〉→"hoppe"
〈verb〉→"hopp"
〈verb〉→"hoppe",

(3.13)

where each right-hand side of the productions contains static string
terminal symbols.

Another way, chosen in this implementation, is to change the parser
slightly, so that it accepts grammar productions where the terminal
symbols can be general functors, or functional objects. This means,
that if a functor, when applied to an input word, returns True, then
whatever the category the left-hand side of that production represents is
warranted by that word. In other words, it becomes possible to perform
arbitrary operations on each part of the input during parsing. Thus, the
part of the grammar shown in (3.13) instead contains rules like

〈monosyllabic noun stem〉→Monosyllabic-Noun-Stem?
〈monosyllabic verb stem〉→Monosyllabic-Verb-Stem?

〈non-monosyllabic noun stem〉→Non-Monosyllabic-Noun-Stem?
〈noun〉→Noun?
〈verb〉→Verb?,

(3.14)

where each terminal symbol is really a functor that will be applied to
the input tokens by the parser.

Each of the functors are methods of a WordPropertyChecker object
that has access to NorKompLeks. The functors take an input token as
an argument. Therefore, each method can lookup the input token in
NorKompLeks and perform arbitrary checks on it.

3.5.2 The grammar

This section will present the grammar used by the compound-word
parser. The parser is responsible for following the guidelines suggested
by Johannessen and Hauglin (1996) not covered by the algorithms
presented above.

58

Handling of
Norwegian
Compounds

The grammar has a start symbol Σ which can expand to either a
word or part of a word:

Σ→〈word〉 | 〈part of word〉 (3.15)

The nonterminal 〈word〉 has the following productions:

〈word〉→〈noun〉
| 〈verb〉
| 〈adverb〉
| 〈adjective〉
| 〈preposition〉
| 〈stem〉 | 〈monosyllabic stem〉
| 〈compound word〉 | 〈compound word〉 〈genitive suffix〉
| 〈noun〉 〈genitive suffix〉
| 〈compound noun〉 〈genitive suffix〉
| 〈prefix〉 〈prefix and verb joint〉 〈verb suffix〉

(3.16)

which is what the function Get-Complete-Word-Parses, presented in
Algorithm 3.4, looks for. While the following productions:

〈part of word〉→〈noun〉 | 〈noun ing〉 | 〈noun suffix〉
| 〈verb〉
| 〈adverb〉
| 〈adjective〉 | 〈adjective suffix〉
| 〈preposition〉
| 〈stem〉 | 〈left stem〉 | 〈right stem〉 | 〈compound stem〉
| 〈inflection formative〉 | 〈derivation formative〉
| 〈vowels joint〉
| 〈prefix and verb joint〉
| 〈prefix〉
| 〈epenthetic e〉 | 〈epenthetic s〉
| 〈genitive suffix〉

(3.17)

comprise the 〈part of word〉, which is what the function Get-Part-of-
Word-Parses, presented in Algorithm 3.5, is looking for.

There are two important things to note about (3.16) and (3.17). The
first thing is that 〈part of word〉 is not part of 〈word〉. The second thing
is that the set of all nonterminal symbols on the right-hand side of
〈word〉 is not a subset of the set of all symbols on the right-hand side
of 〈part of word〉, nor vice versa.

59

Compound-Word
Parser

Figure 3.3: The highest prioritized analysis of «flyktningepolitikk»
returned by the compound-word analyzer.

The reason for this is that 〈word〉 and 〈part of word〉 are used by
different functions, and that a segmentation that is recognized by the
first function—Get-Part-of-Word-Parses—as a part of a word will be
used as input together with other segmentations for the other function—
Get-Complete-Word-Parses. The interaction between algorithms 3.3
and 3.4 in Algorithm 3.2 should be studied carefully to see how this is
done.

Johannessen (2001) claims that only stems of words can be com-
pounded; not arbitrary inflected forms of words. The grammar de-
scribed here is designed to adhere to that claim where practical, but
with a few exceptions. For example, (JH35) states that an “epenthetic -e-
can only be attached to a stem that is monosyllabic.” However, enforc-
ing that principle would inhibit a successful analysis of compounds like
«flyktningepolitikk» (“refugee politics”) and «vikingetiden» (“the Viking
Period”)5 where the left stems are plurisyllables; see figures 3.3 and 3.4,

5 It should be noted that Bokmålsordboka (Wangensteen 2005) contains only the form
«vikingtiden» (without the -e-). However, out of 1326 articles in the newspaper Aftenposten,
335 use only «vikingetiden», 966 articles use only «vikingtiden», and 25 articles use both
forms.

60

Handling of
Norwegian
Compounds

Figure 3.4: The highest prioritized analysis of «vikingetiden» returned
by the compound-word analyzer.

respectively. Therefore an additional production was added to allow
epenthetic -e- to attach to a noun-stem if it ends with “-ing”:

〈left stem〉→〈monosyllabic noun stem〉 〈epenthetic e〉
| 〈ing suffix noun stem〉 〈epenthetic e〉
| 〈monosyllabic verb stem〉 〈epenthetic e〉

(3.18)

It should be noted that these productions also adhere to (JH37). Fur-
thermore, note that a stem with an attached epenthetic -e-, or -s-, is still
considered a stem.

The following grammar rules are used to implement guidelines
(JH22), (JH40), and (JH42):

〈left stem〉→〈non sibilant ending noun stem〉 〈epenthetic s〉
〈compound stem〉→〈compound noun〉 〈epenthetic s〉

| 〈may be compound noun〉 〈epenthetic s〉
(3.19)

61

Compound-Word
Parser

As mentioned above, there is a strong focus on stems in (Johannessen
2001). This is also reflected in the implemented grammar:

〈compound stem〉→〈left stem〉 〈right stem〉
〈left stem〉→〈stem〉 | 〈monosyllabic stem〉 | 〈compound stem〉

| 〈prefix〉 | 〈quantifier〉
〈right stem〉→〈stem〉

| 〈monosyllabic stem〉

〈stem〉→〈non monosyllabic noun stem〉
| 〈non monosyllabic verb stem〉

〈monosyllabic stem〉→〈monosyllabic noun stem〉
| 〈monosyllabic verb stem〉

〈noun stem〉→〈monosyllabic noun stem〉
| 〈non monosyllabic noun stem〉

〈verb stem〉→〈non monosyllabic verb stem〉
| 〈monosyllabic verb stem〉
| 〈verb stem vowel ending〉

(3.20)

However, since Johannessen defines the stem of a word to be the part
that does not change during inflection, some problems arise if the gram-
mar should allow only stems to form compounds. Even though she also
points out that the compound as a whole could be inflected according
to the lexical category of the head of the compound, a problem arises
with compounds, like «raskestvoksende» (“quickest growing”), where
it seems that the left member is indeed an inflected adjective («rask»,

62

Handling of
Norwegian
Compounds

“quick”). Therefore, some less strict productions are included in the
grammar:

〈compound noun〉→〈left stem〉 〈noun stem〉
| 〈left stem〉 〈noun suffix〉
| 〈verb stem〉 〈noun ing〉
| 〈compound verb〉 〈noun ing〉
| 〈verb stem vowel ending〉 〈vowels joint〉 〈noun suffix〉
| 〈verb〉 〈preposition〉 〈noun〉
| 〈adjective〉 〈noun〉
| 〈quantifier〉 〈noun〉

〈compound verb〉→〈noun〉 〈verb stem〉
| 〈adjective〉 〈verb stem〉
| 〈adverb〉 〈verb stem〉

〈compound word〉→〈compound noun〉
| 〈left part〉 〈right part〉
| 〈left part〉 〈compound noun〉
| 〈noun stem〉 〈adjective suffix〉

〈left part〉→〈left stem〉 | 〈noun〉 | 〈compound noun〉
| 〈adjective〉 | 〈adverb〉

〈right part〉→〈noun〉 | 〈adjective〉 | 〈verb〉
〈adjective〉→〈compound noun〉 〈derivation formative〉

| 〈adjective〉 〈inflection formative〉
(3.21)

As can be seen from Figure 3.5, this enables the analyzer to succeed
with its analysis of «raskestvoksende».

63

Compound-Word
Parser

Figure 3.5: The highest prioritized analysis of «raskestvoksende» re-
turned by the compound-word analyzer.

Finally, there are the grammar rules containing the terminal symbols;
each one a functor that checks for what its name suggests:

〈adjective〉→adjective?
〈adjective suffix〉→adjective-suffix?

〈adverb〉→adverb?
〈prefix and verb joint〉→prefix-verb-joint?

〈vowels joint〉→vowels-joint?
〈derivation formative〉→derivation-formative?

〈epenthetic e〉→epenthetic-e?
〈epenthetic s〉→epenthetic-s?
〈genitive suffix〉→genitive-suffix?

〈inflection formative〉→inflection-formative?
〈ing suffix noun stem〉→ing-suffix-noun-stem?

〈may be compound noun〉→may-be-compound-noun?
〈monosyllabic noun stem〉→monosyllabic-noun-stem?
〈monosyllabic verb stem〉→monosyllabic-verb-stem?

〈non monosyllabic noun stem〉→non-monosyllabic-noun-stem?
〈non monosyllabic verb stem〉→non-monosyllabic-verb-stem?

(3.22)

64

Handling of
Norwegian
Compounds

〈non sibilant ending noun stem〉→non-sibilant-ending-noun?
〈noun〉→noun?

〈noun ing〉→noun-ing?
〈noun stem〉→noun-stem?
〈noun suffix〉→noun-suffix?

〈prefix〉→prefix?
〈preposition〉→preposition?
〈quantifier〉→quantifier?

〈verb〉→verb?
〈verb stem vowel ending〉→verb-stem-vowel-ending?

〈verb suffix〉→verb-suffix?
(3.23)

A few of the rules here are rather pragmatically motivated. For
example, the noun «tiltredelse» (“accession”) is not really a compound,
nor is it covered by NorKompLeks. Furthermore, for many verbs, a
noun can be derived from it by adding the ending «-else», which is an
entry in NorKompLeks. In this case, it seems plausible that the noun
was derived from the verb «tiltre» (“enter into”) by adding the «-else»
ending. However, it seems that if the verb ends with an ‘e’, a “joint”
character is needed. In this case, the joint should be a ‘d’. Unfortunately,
«-delse» is not an NorKompLeks entry. Therefore, the 〈vowels joint〉
production checks whether the input token equals "d", to handle such
words.

3.6 Results

To gain an idea of how well the automatic compound-word analyzer—
which is part of the NorKompLeks module—was able to handle previ-
ously unseen compounds, the analyzer was first tested separately.

Since the analyzer would be integrated into the mapping frame-
work that will be presented in Section 4.9, these results also give some
indications of how well the mapping framework will handle com-
pounds.

To test the analyzer, a corpus comprising five recent, arbitrarily cho-
sen articles from the Norwegian national newspaper Aftenposten was
used; see Table 3.2 on the next page. As shown in the table, the total
size of the corpus was 4,951 words, and it contained 109 compound
words not found in the NorKompLeks lexicon. All those compounds
constituted unseen data that the compound-word analyzer never had
been tested with.

65

Results

Table 3.2: Test results for the automatic compound-word analyzer applied to
compounds found in newspaper articles.

Compound analyzes

Text Words Correct Incorrect Success rate (%)

Newspaper articlea
1,420 21 0 100

Newspaper articleb
652 18 0 100

Newspaper articlec
472 25 0 100

Newspaper articled
1,238 17 0 100

Newspaper articlee
1,169 28 0 100

Total 4,951 109 0 100

a Ingrid Brekke, «Andre omstridte kulturskatter,» Aftenposten Morgen, sec. 2, December 23,
2007.

b Gunhild M. Haugnes, «Halvparten har fri programvare: Microsoft får stadig tøffere
konkurranse,» Aftenposten Morgen, sec. 3, December 18, 2007.

c NTB, «Nettbutikken iTunes åpnet i natt,» Aftenposten Aften, sec. 1, May 10, 2005.
d Lars-Ludvig Røed, «Soldater blir overgripere i krig,» Aftenposten Morgen, sec. 1, Septem-

ber 27, 2007.
e Paul C. Taylor, «Norge i et nøtteskall,» Aftenposten Morgen, sec. 2, December 24, 2007.

Furthermore, Table 3.2 also shows the results of the test. Since the
compound-word analyzer actually returns a prioritized list of theoreti-
cally valid analyses, an analysis was defined to be correct if the analysis
with the highest priority was both correctly split up and every part of
the compound was assigned a correct lexical category. For this test, the
examination of the results was done by the author. As the table shows,
all the compounds were analyzed correctly.

However, the analyzer was also tested on 48 example compounds
found in the article about automatic compound analysis by Johannessen
and Hauglin (1996). Of the examples, 42 compounds were both correctly
analyzed and ranked, while 6 results returned by the analyzer contained
the correct analysis, but the correct analysis was incorrectly not given
the highest priority. This corresponds to a success rate of 87.5 %.

Of the 6 unsuccessful results, 3 were caused by the analyzer ranking
an analysis with otherwise identical members as the correct analysis,
except for the head belonging to a wrong lexical category, highest. For
those results, the analysis with the correctly categorized head was given
the second highest priority. The final 3 unsuccessful results were all
ambiguous epenthetic -s- cases where the correct analysis was found

66

Handling of
Norwegian
Compounds

among the top three candidates, but the highest-ranked analyses were
wrong.

3.7 Analysis and Discussion

As shown in Section 3.6, the compound-word analyzer performed
perfectly on previously unseen compounds from a random sample of
newspaper articles.

However, when testing the analyzer on the example compound words
discussed by Johannessen and Hauglin (1996), the analyzer made a few
errors during ranking of the analyses. In three of the six ranking-error
cases, the correct analyses were ranked as the second most probable
analysis, while in the other three cases, the correct analyses were ranked
as the third most probable analysis.

Because the few errors that occurred were caused by incorrect ranking
of the analyses—while the correct analyses were among the top three
candidates—it seems safe to conclude that the grammar and analysis
algorithms are adequate for the task.

On the other hand, ranking the analyses correctly has proved to be
more difficult. At one point during the development of the analyzer, all
the example compounds discussed by Johannessen and Hauglin (1996)
were correctly both analyzed and ranked. However, that ranking scheme
produced erroneous rankings when applied to previously unseen real-
world texts from, for example, newspaper articles. Furthermore, several
attempts at defining rules that would correctly rank both the examples
from the article and real-world examples did not succeed.

The overall performance of the compound-word analyzer was none-
theless satisfying, and showed that the analyzer was adequate for use
in Verto.

For comparison, Kokkinakis et al. (2000) reported that their algo-
rithm using an n-gram-based heuristic for Swedish compound seg-
mentation achieved over 95 % precision. Furthermore, Pedersen (2007)
reported that the compound-word analyzer used in her research for
splitting Danish compounds had an error rate of less than 1 %.

3.7.1 Comparison with Johannessen and Hauglin’s Compound Analyzer

The compound analyzer described in the article by Johannessen and
Hauglin (1996) constituted a module in the Oslo-Bergen tagger being
developed at the time. According to the Text Laboratory (2008a), the
compound analyzer was originally developed and implemented at the
Text Laboratory at the University of Oslo (UIO), but has later been

67

Analysis and
Discussion

reimplemented by Paul Meurer at the Centre of Culture, Language and
Information Technology (Aksis) at the University of Bergen (UIB).

In their article, Johannessen and Hauglin present some preliminary
evaluation results. They state that to succeed, their analyzer must accom-
plish two tasks; it must be able to “find all analyses of all compounds
in a text” (segmentation and parsing), and to “find the correct one
amongst several possibilities” (ordering, or ranking). Furthermore, they
report that their analyzer made a wrong analysis in 1.1 % of the cases,
and a partly wrong analysis in 1.3 % of the cases. They count results
where the analysis with the highest assigned priority has a wrong
head as wrong analyses. As a partly wrong analysis, they count analy-
ses where the final member is correct on its own, but where incorrect
segmentation gives the compound as a whole an incorrect meaning.

According to the criteria used in Section 3.6, both of the two kinds
of errors they describe would be counted as errors. According to these
criteria, their analyzer had a success rate of 100 %− (1.3 % + 1.1 %) =
97.6 %.

However, they do not describe their test data at all; neither the source
texts nor the number of compounds tested. Hence, it is not certain
that a comparison of success rates may be valid. If the comparison
should be made, it is hard to decide which of the success rates from
Section 3.6 to compare with; the 100 % success rate on arbitrarily
selected newspapers, or the 87.5 % success rate on compounds used as
examples in Johannessen and Hauglin’s article—some of which might
be considered a bit strained. Perhaps the most representative success
rate for the compound-word analyzer presented herein would be one
based on the average of the two tests, that is

total # of correct analyses
total # of compounds

=
109 + 42

109 + 48

= 96.2 %. (3.24)

Nonetheless, on the average the success rate compares satisfactory with
Johannessen and Hauglin’s results, and herein the test data has been
described.

A small, but important, detail in the implementation of the com-
pound-word analyzer resulted in an improvement over the compound-
word analyzer from the Oslo-Bergen tagger6. As shown in (3.8)–(3.11),
Algorithm 3.7 handles the omission of redundant identical consonants
when compounding Norwegian words. However, trying to analyze the
same kinds of compounds with the compound-word analyzer from the

6 Available on-line at http://decentius.hit.uib.no:8005/cl/cgp/ranked-analyses.
xml (last visited January 29, 2008).

68

http://decentius.hit.uib.no:8005/cl/cgp/ranked-analyses.xml
http://decentius.hit.uib.no:8005/cl/cgp/ranked-analyses.xml

Handling of
Norwegian
Compounds

Table 3.3: The ranked analyses returned by the Oslo-Bergen tagger’s com-
pound-word analyzer when analyzing «musikkatalog» (“music catalog”).

Analysis # Component Lemma Feature

0 musik musik ukjent
katalog katalog subst appell mask ub ent

1 musikkata musikkata ukjent
log log subst appell mask ub ent

2 musikkata musikkata ukjent
log log subst appell mask ub ent

3 mu mu ukjent
sik sik subst appell fem ub ent
katalog katalog subst appell mask ub ent

4 mu mu ukjent
sik sik subst appell nøyt ub ent
katalog katalog subst appell mask ub ent

5 mu mu ukjent
sik sik subst appell mask ub ent
katalog katalog subst appell mask ub ent

69

Analysis and
Discussion

Oslo-Bergen tagger discloses that the analyzer does not handle them
correctly. For example, the ranked analyses returned by the Oslo-Bergen
tagger’s analyzer is shown in Table 3.3 on the preceding page. It should
be noted that every one of the returned analyses has a first member,
or component, that is «ukjent» (“unknown”) to the analyzer because it
does not compensate for the consonant omission. On the other hand,
in the highest ranked analysis, the head of the compound is correct.
Correctly identifying the head of the compound can be enough for
some uses, but since each member of the analyses returned by the com-
pound-word analyzer in Verto are used for mapping, all the members
must be correct.

3.7.2 Efficiency

Another difference between Johannessen and Hauglin (1996)’s com-
pound-word analyzer and the analyzer presented herein is that their
analyzer was implemented with regular expressions (regexps), while
my analyzer was implemented with the use of a CFG, as detailed in
Section 3.5.

The reason for using a CFG-based approach was twofold. One as-
pect was that I found it easier both to develop, experiment with, and
maintain the analyzer using Context-Free Grammars (CFGs) instead
of regexps. The other aspect was that a CFG-based approach made it
less probable to end up in a situation where the generative power of
the grammar formalism would inhibit the development of the analyzer.

However, if the system ought to be used in, for example, a commer-
cial setting where speed matters more, I would suggest rewriting the
compound-word analyzer to use regexps instead of a CFG. Doing so
would greatly improve the speed of the analyzer, because every regu-
lar expression (regexp) can be represented by a finite-state automaton
(FSA), or finite-state transducer (FST), and an FSA can recognize an
input string of length n in O(n) time (Lewis and Papadimitriou 1998;
Hamburger and Richards 2002).

Section 6.1 discusses how selecting the correct compound analysis
can be improved by exploiting the semantic resource generated by
Verto.

70

4
Mapping Norwegian to WordNet

This chapter presents the method I developed for automatically map-
ping content words—covering nouns, verbs, and modifiers like adjec-
tives and adverbs—in a non-English source language to WordNet senses.
The method was implemented as a computer program named Verto.
Hence, Verto represents the concretization of the method.

In the following presentation of the method, the specific source
language for the mapping process is Norwegian. However, there are
no compelling reasons that the method should not be applicable to
mapping words from other languages to concepts in WordNet as well.

4.1 Resources

The basic principle of the method for automatically mapping Norwe-
gian content words to concepts in WordNet—that will be presented
in detail from Section 4.2 onwards—depends on the availability of the
following three lexical resources:

1 A dictionary containing translations from the source language to the
target language;

2 A dictionary containing translations from the target language to the
source language; and

3 The target ontology of the mapping, a lexical-semantic resource for the
target language.

To be able to handle mapping of compound words, Verto incorporates
the compound-word analyzer described in Chapter 3 as a module.
Through this module, another dependency can be added to the above
list:

4 A lexicon containing morphological information about Norwegian
words.

71

Resources

skatt subst. m 1 treasure
2 tax
3 darling, dear, sweetheart, love (britisk),
honey (amer.)
betale skatt pay tax(es)
direkte skatt direct tax
få igjen penger på skatten get a tax refund
i skatt in taxes
legge skatt på noe impose a tax on
something
proporsjonal skatt proportional tax, flat tax
skatten min my dear, my darling, sweetheart
snyte på skatten cheat on (one’s) taxes, evade
tax
trekke skatt deduct tax(es)
unndra skatt evade tax
utsatt skatt deferred tax
...

skatte verb 1 pay tax(es)
2 (skattlegge) tax, assess
3 (sette pris på) appreciate
skatte av inntekt tax one’s income
være høyt skattet be greatly appreciated

Figure 4.1: The entries for the Norwegian words «skatt» (noun) and
«skatte» (verb) in Norsk–engelsk stor ordbok (Haslerud and Henriksen
2003).

The latter resource is provided by the NorKompLeks-module already
described in Section 3.2.

Although the method developed should be applicable to other lan-
guages, the following discussion will consider the source language to
be Norwegian and the target language to be English.

Table 4.1 on the next page shows a brief quantitative overview of
the three lexical resources used, Norsk–engelsk stor ordbok, Engelsk–norsk
stor ordbok, and Norsk komputasjonelt leksikon (NorKompLeks). It should
be noted that the method presented is only concerned with mapping of
content words; that is, nouns, adjectives, verbs, and adverbs.

72

Mapping
Norwegian to
WordNet

Ta
b
l
e

4
.1

:N
u

m
be

r
of

ke
yw

or
d

s
an

d
tr

an
sl

at
io

ns
(w

he
re

ap
p

lic
ab

le
)

in
th

e
le

xi
ca

lr
es

ou
rc

es
N

or
K

om
pL

ek
s,

N
or

sk
–e

ng
el

sk
st

or
or

db
ok

,E
ng

el
sk

–n
or

sk
st

or
or

db
ok

.

Le
xi

ca
l

ca
te

go
ry

N
or

K
om

pL
ek

s
N

or
sk

–e
ng

el
sk

st
or

or
db

ok
En

ge
ls

k–
no

rs
k

st
or

or
db

ok

K
ey

w
or

ds
K

ey
w

or
ds

Tr
an

sl
at

io
ns

K
ey

w
or

ds
Tr

an
sl

at
io

ns

N
ou

n
5

1
,6

5
5

4
5

,7
1

5
1

3
7

,4
3

5
5

4
,9

1
8

2
0

3
,5

8
3

A
dj

ec
ti

ve
1

9
,2

1
6

9
,2

4
1

3
6

,2
7

0
1

6
,2

0
4

6
9

,5
1

9

Ve
rb

6
,9

3
1

5
,4

5
3

3
8

,3
3

6
8

,8
4

0
9

3
,4

2
0

A
dv

er
b

1
,0

8
4

6
3

5
3

,7
0

4
1

,6
5

9
8

,7
0

5

Pr
ep

os
it

io
n

2
3

5
1

7
4

9
7

5
1

3
3

1
,3

6
5

In
te

rj
ec

ti
on

2
1

2
1

2
4

4
7

4
3

4
9

9
1

6

D
et

er
m

in
er

6
4

1
0

6
8

8
0

1
0

3
1

,0
6

4

C
on

ju
nc

ti
on

8
3

8
2

0
7

4
9

3
1

0

Su
bj

un
ct

io
n

3
7

5
3

8
1

8
1

7
5

Pr
on

ou
n

3
3

2
6

1
7

1
6

6
7

5
4

73

Resources

Next, each of the former three resources mentioned above will be
presented in more detail.

4.1.1 Human/Machine-Readable Dictionaries

The Norwegian–English and English–Norwegian dictionaries made
available for this research were Norsk–engelsk stor ordbok and Engelsk–
norsk stor ordbok, comprising the bilingual dictionary Engelsk stor ordbok:
Engelsk-norsk / norsk-engelsk (Haslerud and Henriksen 2003). Figure 4.1
on page 72 shows a couple of example entries in Norsk–engelsk stor
ordbok, with keywords typeset in bold, followed by their lexical category
and gender (for nouns) typeset in italics; the rest of each entry follows
slightly indented.

All senses are enumerated in bold. Furthermore, for some of the
senses, several suggested translations are listed, separated by com-
mas. Below the enumerated senses, a list of example expressions in
Norwegian are listed along with their translations.

The first example in Figure 4.1 is for the noun «skatt» and the second
for the verb «skatte». As can be seen from the figure, both the noun
«skatt» and the verb «skatte» has three senses, while all but two example
expressions concern the kind of tax usually imposed by authority.
Hence, there is no guarantee of a balanced mix of examples of usage
between the senses. Furthermore, the expressions do not indicate which
sense they concern.

Also shown in the figure is the different information provided in
parentheses. After the sense numbers, a parenthesis indicates what
sense it corresponds to in Norwegian. A parenthesis placed after a sug-
gested translation expresses information about differing usage in, for
example, British, Canadian, and American English. Such parenthetical
remarks can also indicate slang translations. Other places, parentheses
are used for indicating the plural form of words, or expressing words
indicative of the translation’s usage.

The publisher of Norsk–engelsk stor ordbok provided the sources for
the printed bilingual dictionaries, formatted as Extensible Markup Lan-
guage (XML). As such, they constituted machine-readable dictionaries.

There is no reason to believe that the XML format is inappropriate
for typesetting the dictionaries, but it is hardly a format that inherently
provides fast, automatic lookups. Furthermore, since a central part of
the method is based on looking up words in these dictionaries, the need
for some kind of efficient interface was apparent.

Since no document type definition (DTD), or other description of
the format, accompanied the files, quite a lot of work was put into

74

Mapping
Norwegian to
WordNet

parsing and restructuring the dictionaries. A lot of small structural
inconsistencies—most of them invisible to readers of the printed dic-
tionary, but never ignored by a pedantic parser—led to quite a few
suggested corrections.1 In the end, the XML documents were parsed
and the adequate information extracted and converted into a tabular
format.

One should note that all but one of the different kinds of parenthetical
remarks—like the ones shown in Figure 4.1 on page 72—are tagged in
the XML files, indicating the nature of the remark. The only kinds of
parenthetical remark not tagged are the ones mostly used for describing
plural forms and optional words. These parentheses, along with slashes
mostly indicating interchangeable words, resulted in multiple entries
in the tabular format; one for each possible form.

During the transformation into tabular form, an effort was made
to conserve as much relevant information per entry as possible. That
information includes the lexical class and gender, whether something
is only used in a variety of English (like American, and Canadian),
and whether it is a translation that contains an example-phrase (in the
following called phrasal translation).

The tabular files representing the dictionaries were then transformed
into compact data objects, based on the trie data structure. Small pro-
gram modules that when given a keyword returned a list of associated
information then wrapped these objects.

Each list item consists of a tuple representing a possible translation.
The tuple consists of the suggested translation, a set of attributes, and a
number identifying the sense of the keyword in the source language.
For example, looking up the Norwegian word «datamaskin» in the
Norsk–engelsk stor ordbok program module yields

NorEng(datamaskin) =
〈(computer, {(gend, m), (pos, subst)}, 8088)
(laptop (bærbar datamaskin),
{(gend, m), (phrase, true), (pos, subst)}, 8088)

(personal computer (personlig datamaskin),
{(gend, m), (phrase, true), (pos, subst)}, 8088)〉.

(4.1)

where NorEng designates the Norsk–engelsk stor ordbok module.
As (4.1) shows, if a suggested translation constitutes an expression,

this is indicated by the attribute pair (phrase, true) and a parenthesis

1 Martin Thorsen Ranang, e-mail message to Vibecke C. D. Haslerud, March 19, 2004.

75

Resources

smoothie1 subst. /"smu:DI/ eller smoothy
(hverdagslig) sleiping, slesk person,
innsmigrende person

smoothie2 subst. /"smu:DI/ smoothie (leskende
næringsdrikk med frukt, bær og youghurt som
basisingredienser)

Figure 4.2: The entries for the English noun “smoothie” in Engelsk–
norsk stor ordbok. (Source: Haslerud and Henriksen (2003).)

containing the Norwegian expression following the English translation.
The presented method does not use the gender information.

The Engelsk–norsk stor ordbok module, referred to as EngNor, returns
the same kind of information, except that no gender is specified, because
the English language lacks grammatical gender (except, for example,
on pronouns) (Trask 1993; p. 115). For example, Figure 4.2 shows the
entries in Engelsk–norsk stor ordbok for the English word “smoothie”,
and a lookup of “smoothie” in the corresponding program module
results in the list

EngNor(smoothie) =
〈(sleiping, {(pos, subst)}, 67158)
(slesk person, {(pos, subst)}, 67158)
(innsmigrende person, {(pos, subst)}, 67158)
(smoothie, {(pos, subst)}, 67159)〉.

(4.2)

As the last element of each tuple in this example shows, the first three
tuples returned all refer to the first sense of the keyword while the last
tuple refers to the second sense.

4.1.2 WordNet

The target of the mapping performed by the method implemented in
Verto is the WordNet ontology (Miller et al. 1990; Fellbaum 1998c),
version 2.1 (Miller and Hristea 2006). No changes were made to it.

Over twenty years ago, Miller (1985) wrote that

Although there is no principled reason why natural lan-
guage processors should not have vocabularies large enough

76

Mapping
Norwegian to
WordNet

to deal with a [sic] any domain of topics, we are presently
far from having such vocabularies on line.

To improve on that situation, he and others have since developed
WordNet, an electronic lexical database for English. And, perhaps most
importantly, they did this—as Fellbaum (1998c; p. 137) states—“not just
for a handful of words but for the better part of the vocabulary of a
natural language.”

An important design criterion during the development of Word-
Net has been to organize it according to findings in “psycholinguistic
research on the lexical component of language” (Miller 1985). Conse-
quently, WordNet constitutes a semantic network where the semantic
relationships that hold between different word senses are easily accessi-
ble. WordNet quickly became the de facto semantic network in Natural
Language Processing (NLP) research (Fellbaum 1998a; Jurafsky and
Martin 2000).

A concept in the WordNet ontology is defined as a synonym set
(synset). That is, a word in WordNet may have multiple senses, and each
sense of a particular word belongs to a specific synset. Furthermore, all
the senses in a particular synset are synonymous. Hence, each sense of
a word belongs to one and only one synset, and each synset represents
one semantic concept, or meaning.

It should be noted that I used the word “word” quite liberally in the
previous paragraph. WordNet does not discriminate between simplex
words (for example, “cat”, or “engine”), compound words (for example,
“letter box”, or “coffee cup”), or idioms (for example, “kick the bucket”,
or “red carpet”); they are all represented as strings. Note also that the
idiom “kick the bucket” has only one sense in WordNet. Any other
interpretation of that phrase must be composed by the semantics of its
parts.

Each concept, or synset, is accompanied by a definitional gloss. For
example, the three senses of “engine” in WordNet are paired with the
glosses shown in Table 4.2. Some of the glosses also contain example
sentences, as shown in the gloss for {engine_n_2}.

Additionally, verb frames that describe selectional restrictions for the
verb accompany many of the verbs. For example, one of the frames for
design_v_2 (design something for a specific role or purpose or effect;
“This room is not designed for work”)2 is “Somebody —s something”,
where —s is a place holder for the verb, which indicates that the agent
of the design action must be animate, while the patient must be an
object.

2 The gloss from WordNet.

77

Resources
Table 4.2: WordNet glosses for the three synsets representing the differ-
ent senses of engine.

Synset Gloss

{engine_n_1} motor that converts thermal
energy to mechanical work

{engine_n_2} something used to achieve a
purpose; “an engine of
change”

{locomotive_n_1,
engine_n_3,
locomotive_engine_n_1,
railway_locomotive_n_1}

a wheeled vehicle consisting of
a self-propelled engine that is
used to draw trains along
railway tracks

Table 4.3: Unique strings, synsets, and word senses in WordNet.

Lexical category Unique stringsa Synsets Word-sense pairs

Noun 117,097 81,426 145,104

Adjective 22,141 18,877 31,302

Verb 11,488 13,650 24,890

Adverb 4,601 3,644 5,720

Total 155,327 117,597 207,016

a The sense of unique here is per lexical category. The total number of completely
unique strings, ignoring the lexical categories, is 147,249.

78

Mapping
Norwegian to
WordNet

100

101

102

103

104

105
F

re
q

u
en

cy

1 2 5 10 20

Senses per word

noun

verb

adjective

adverb

Figure 4.3: Polysemy count for each lexical category in WordNet.
It should be noted the use of logarithmic scales on both axes. It
should also be noted that the plot is generated from integer values;
the connecting lines are provided only to show the trends, not to
indicate continuity.

Table 4.3 shows the number of strings and synonym sets (synsets)
WordNet contains information about. The third column reports the sum
over all the senses for all the strings in WordNet. That is, if senses(w, C)
is a function that returns all the senses for a given word w belonging to
the lexical category C, then each row in the third column equals

∑
w∈WordNet

|senses(w, C)| (4.3)

for a given lexical category C ∈ {noun, adjective, verb, adverb}.
Figure 4.3 shows the degree of polysemy for each lexical category in

WordNet. The figure shows that, for all the lexical categories, the fre-
quency of words representing a given number of senses decreases
radically as the number of senses increases. For example, in accord
with Table 4.5 on page 83, the figure shows that 101,321 nouns are sin-
gle sense words. However, combining this information with Table 4.3,

79

Resources

Table 4.4: Relations defined for different lexical categories in WordNet.

Lexical category

Relation Noun Verb Adjective Adverb

Synonymy X X X X
Antonym X X X X
Holonym/meronym X
Instance hypernym/hyponym X
Hypernym/hyponyma X X
Entail X
Cause X
Group X
Similar X

a The “hyponyms”of verbs are called troponyms.

shows that only 15,776 nouns represent two or more senses. Furthermore,
only 5,590 nouns represent three or more senses. The same trend applies
to each of the other lexical categories.

Table 4.4 shows what relations are defined to hold between synsets
within each lexical category. Of the relations shown in the table, the
group—also referred to as verb group—relation should be explained
further. The lexicographers use the group relation to manually group
together some semantically related verbs. Hence, the verb group relation
can be considered a manually defined similarity relation for verbs.
Membership of a verb group is specified through ordered pairs of
synsets (A, B) that indicate that A and B belong to the same group.
Through transitivity, such two-element groups that share the same
synsets are combined to form the largest groups possible. This means,
for example, that if two minimal groups are defined by the pairs (A, B)
and (B, C), then since the synset B is shared by both groups, they are
combined to form a larger group {A, B, C}.

Limitations of WordNet

Even though much work has been put into enhancing WordNet both
morphologically and semantically over the years (Harabagiu et al. 1999),
WordNet has its limitations as an NLP resource.

80

Mapping
Norwegian to
WordNet

One of the shortcomings WordNet has been criticized for is that it
does not distinguish between hypernyms of classes and hypernyms
of instances (Gangemi et al. 2001). However, version 2.1 of WordNet3

introduced exactly this distinction (Miller and Hristea 2006). Because
version 2.1 of WordNet is the target of the mapping performed by the
method implemented in Verto, this enhancement has consequences
even for the work presented herein, as shown in Section 4.3.

Another shortcoming of WordNet is that it lacks relations between
topically related concepts. To alleviate that shortcoming, Agirre et al.
(2000) enriched WordNet with topic signatures.

A limitation of WordNet that is often mentioned in the literature is
that it does not encode thematic relations, or selectional restrictions,
on nouns that function as arguments of specific verbs. However, this
limitation is addressed by other, complementary semantic resources,
such as the corpus-based frame-semantic resource FrameNet (Fillmore
et al. 2003; Baker et al. 2003) and the verb lexicon “with explicitly
stated syntactic and semantic information, using Levin verb classes to
systematically construct lexical entries” VerbNet (Kipper et al. 2000a,
2004).

Regardless of the shortcomings and limitations of WordNet, it is still
the de facto semantic resource in NLP. And, because of its popularity,
hordes of researchers will continue to improve, enhance, and extend
WordNet in the future. Some researchers also work on integrating
WordNet with other complementary semantic resources, like Shi and
Mihalcea (2005) who combine FrameNet, VerbNet, and WordNet for
robust semantic parsing.

4.2 The Crux

The following sections will present the main problem of, and suggested
solution to, the task of automatically mapping Norwegian words to
those concepts in the WordNet ontology that express the semantics of
the lexemes that the Norwegian words may represent.

In the following discourse, the assumption is made that the avail-
able resources are NorKompLeks, NorEng, EngNor, and WordNet, as
described in the previous sections. Furthermore, the case is first consid-
ered for Norwegian simplex words; that is, not compound words and
not sequences of words (neither collocations nor idioms).

A Norwegian word can represent multiple lexemes. For example, the
word «skatt» may represent both the imperative form of a verb, with

3 WordNet 2.1 was released in March, 2005.

81

Handling of
Instance

Synonyms

the morphemes {«skatt», «skatte», «skatter», «skattet»}, and the nondefi-
nite singular form of the noun with the morphemes {«skatt», «skatter»,
«skatten», «skattene»}. Both the noun and the verb has multiple senses.
The base form, or stem, of the verb is its infinitive form «skatte», while
for the noun it is the singular nondefinite form «skatt». In most dictio-
naries, the keywords are base forms of words.

When looking up a word—considering its lexical category (or part of
speech (POS))—in the dictionary, a list of possible translations is found.
The list may be empty, in the case that there is no defined translation.
To continue the above example, the Norwegian noun «skatt» may be
translated into the English nouns “tax”, “treasure”, and “honey”.

Furthermore, each word in the target language may have one or more
senses. For example, in WordNet the English noun “honey” has two
different senses, one being “a sweet yellow liquid produced by bees”,
with the other being “a beloved person; used as terms of endearment.”
However, only the latter sense has a meaning that is warranted by the
Norwegian noun «skatt».

Thus, a single word in the source language may lead to a plethora of
possible mappings to senses in the target language ontology. The core
of the problem is then, how one can remove mappings to senses in the
target language ontology that are not warranted by the semantics of
the word in the source language.

The most naïve approach to performing the mapping from a Nor-
wegian word to WordNet senses would be to keep all the suggested
mappings. However, this has already been proved not to work through
the above counterexample.

The following sections present a possible solution to the problem
described above.

4.3 Handling of Instance Synonyms

The method developed herein—as a suggested solution—will not at-
tempt to find mappings to senses representing instance synsets; that is,
any synset in WordNet that is an instance hyponym of another (class)
synset will be ignored. In other words, the method will not try to find
mappings of proper names.

82

Mapping
Norwegian to
WordNet

Table 4.5: Words per lexical category in WordNet that
only represent a single sense each.

Lexical Words in Single-sense
category WordNet words % of words

Noun 117,097 88,643
a

75.70

Adjective 22,141 16,889 76.28

Verb 11,488 6,261 54.50

Adverb 4,601 3,850 83.68

a This number does not include the 12,678 single-sense nouns
that represent instances.

4.4 Single-sense Words

If an English word w, belonging to a particular lexical category C, only
has a single sense defined in WordNet, represented by w_C_1, belonging
to the synset S, so that

synsets(w, C) = 〈S〉
= 〈{w_C_1, x1_C_ix1

, x2_C_ix2
, . . . }〉 ,

(4.4)

then the basic assumption made is that the suggested mapping is kept.
Knight and Luk (1994) also made the same assumption.

A consequence of this assumption is that in such single-sense cases
the complementary synonyms in the synset, represented by the set

S− {w_C_1} = {xj_C_ixj |j = 1, 2, . . . } (4.5)

do not affect the decision whether to accept the mapping to that sense
or not.

By inspecting WordNet, we can get an exact overview of the number
of words per category that have a single sense, as shown in Table 4.5.

4.5 Exploiting the Synonymy within Synsets

To emphasize an important point, the proposed method does not use
any sense information present in the dictionary resources.4 However, it
does use the sense information contained in WordNet.

4 Even though the printed dictionary does discern between some senses, the implemented
system ignores this information.

83

Exploiting the
Synonymy within

Synsets

As mentioned in Section 4.1.2, the semantic relations in WordNet
are defined to hold between synsets. In other words, each synset in
WordNet represents a concept in the ontology that WordNet constitutes.

Furthermore, as each sense of a word belongs to only one synset, this
means that all the different senses that constitute a particular synset

S = {x1_C_ix1
, x2_C_ix2

, . . . } (4.6)

all refer to the same semantic concept. In other words, each sense in the
synset S is just another symbolic name for the same concept.

For example, in WordNet the different senses of the noun “chest” are
represented by the synsets

synsets(chest, n) = 〈Schest_n_1, Schest_n_2, Schest_n_3, 〉
= 〈{thorax_n_2, chest_n_1, pectus_n_1},
{chest_n_2},
{chest_of_drawers_n_1, chest_n_3,
bureau_n_2, dresser_n_2}〉.

(4.7)

Consequently, thorax_n_2, chest_n_1, and pectus_n_1 all refer to the
same semantic concept (“the part of the human torso between the neck
and the diaphragm or the corresponding part in other vertebrates”,
according to WordNet’s corresponding definitional gloss). Likewise,
chest_of_drawers_n_1, chest_n_3, bureau_n_2, and dresser_n_2 all
refer to “furniture with drawers for keeping clothes”. The same holds
for Schest_n_2, even though it is a singleton set.5

Translate(w, C, D`′
`) is a function that returns a set of translations of

the source word w belonging to the lexical category C using a dictionary
resource, D`′

` , that contains translations from source the language, `, to
the target language, `′.

To ease the following explanation, let us assume that that for every
translation

Translate(w, C, D`′
`) = W ′ = {w′

1
, w′

2
, . . . } (4.8)

found in the source–target dictionary there exists an inverse transla-
tion in the target–source dictionary so that for some word—or phrase—
in the set of translations, w′ ∈W ′, the original source word w is found
in the set that represents the inverse translation of w′. This assumption
can also be expressed as

w ∈ ⋃
w′∈W ′

Translate(w′, C, D`
`′), (4.9)

5 A singleton set is a set with exactly one element.

84

Mapping
Norwegian to
WordNet

where W ′ = Translate(w, C, D`′
`). We may refer to this as the assumed

symmetric property of translation. It is important to note that the
assumption is not universal, but tied to the structure and contents of
the particular bilingual dictionary resources available; in this case the
Norsk–engelsk stor ordbok.

An example of the assumed symmetric property of translation is the
case of «brystkasse» and “chest” in NorEng and EngNor, respectively,
because

Translate(«brystkasse», n, NorEng) = {“chest”,
“rib cage”,
“thorax”}

(4.10)

and

Translate(“chest”, n, EngNor) = {«kiste», «kasse»,
«skrin», «boks»,
«bryst», «brystkasse»,
«bringe», . . .}.

(4.11)

We also see that EngNor contains other translations of “chest” too,
such as «kiste», «boks», and «skrin», which refer to different semantic
concepts than «brystkasse».

Some words have no direct translation into the target language.
For example, Norwegian has two words for “grandmother”, «farmor»
and «mormor», that refer to the father’s mother and to the mother’s
mother, respectively. Although neither «farmor» nor «mormor» can be
directly translated into English, Norsk–engelsk stor ordbok solves this
by providing “grandmother” as a translation of both «farmor» and
«mormor» in NorEng and both «farmor» and «mormor» as translations
of “grandmother” in EngNor. Thus, in such cases the assumption from
(4.9) is still valid.

Unfortunately, there are words for which the assumed symmetric
property of translation does not hold. For example, the English bev-
erage “nog” has no direct translation into Norwegian, and none of
the paraphrased translations provided by NorEng—«eggelikør» (“egg
liqueur”), «eggepunsj» (“egg punch”), and «sterkt øl» (“strong beer”)—
yield “nog” when translated back to English. Nonetheless, for the rest
of this discussion we choose to focus on the cases where (4.9) is valid.

Consider a translation from x to y of a given lexical category C, and
that y has a nonempty set of senses

senses(y, C) = 〈y_C_1, y_C_2, . . . , y_C_i, . . .〉, (4.12)

85

Exploiting the
Synonymy within

Synsets

each belonging to a separate synset. Now, assume that y’s ith sense,
y_C_i, is a member of the synset

S = {z1_C_iz1
, z2_C_iz2

, . . . , y_C_i, . . . } (4.13)

where each z ∈ {zj|j = 1, 2, . . . } represents a word that is different from
y. Hence, in the synset S those words are represented by the senses
{zj_C_izj |j = 1, 2, . . . }, which by definition are synonyms of y_C_i.

If one is able to perform a translation of the word that y_C_i rep-
resents back into the source language (an inverse translation) as de-
scribed by (4.9), then that operation yields no new knowledge about
whether the sense y_C_i is warranted by the semantics of x in the
source language, because no new semantic knowledge has been used
or discovered. Similarly, by studying the examples presented in (4.7),
(4.10), and (4.11), one can see that no new knowledge about which
senses of “chest” are warranted by «brystkasse» is gained by inverse
translating “chest” from neither Schest_n_1, Schest_n_2, nor Schest_n_3.

However, by definition all the senses in synset S are semantically
equivalent in some context (see sections 2.2.1 and 4.1.2). Now, let Sy rep-
resent a subset of S that only contains y_C_i. Then S′y, the complement
set of Sy, will be

S′y = S− Sy = {zj_C_izj |j = 1, 2, . . . }. (4.14)

This means that the inverse translations of the words represented by
the members of S′y include x if and only if y_C_i is a member of a
synset that represents a semantic concept warranted by x and that the
following assumptions hold.

Assumption 1. First of all, for the principle just described to hold, there
must exist an inverse translation for (the word represented by) at least one of
the complementary senses of y_C_i in S. That is, there must exist translations
from what was originally the target language back to what was originally
the source language for at least one of the senses in S′y.

Assumption 2. Secondly, the principle requires that the synset S, containing
the sense in question, y_C_1, is not a singleton set; it should actually contain
other senses.

On the other hand, if the different senses of a word y of lexical category C
belong to a mix of both singleton synsets and synsets with nonempty comple-
ment sets, then naturally the inverse-translation principle may be used on the
nonsingleton sets. For example, given the following situation

synsets(y, C) = 〈{y_C_1},
{y_C_2, x1_C_ix1

, x2_C_ix2
, . . . }〉 (4.15)

86

Mapping
Norwegian to
WordNet

the inverse-translation principle may be used on the second synset, but not
on the first one.

Assumption 3. Thirdly, the presented principle requires that complementary
senses in two or more of the synsets that each contain a different sense of a
given word do not all represent a different given word.

To elaborate on this requirement, assume that a word y, of lexical category
C, has m different senses,

senses(y, C) = 〈y_C_1, y_C_2, . . . , y_C_m〉 , (4.16)

where each sense y_C_i belongs to synset Si in

synsets(y, C) = 〈S1, S2, . . . , Sm〉 , (4.17)

then we can say that those synsets “share the word w”. Now, the principle
presented herein makes use of the fact that the different synsets represent dif-
ferent concepts. Hence, if one of the synsets, say Si, contains a complemen-
tary sense that represents a word that is also represented by a complementary
sense in one of the other synsets, Sj ∈ synsets(w, C) where j 6= i, there is an
apparent ambiguity present. For short we may call this phenomenon shared-
synonym ambiguity. It should further be noted that two shared-synonym am-
biguous synsets must necessarily share at least two words (represented above
by y_C_i and y_C_j).

Continuing the examples from (4.7), (4.10), and (4.11), S′chest_n_1, the
complement set of Schest_n_1 will, for example, be

S′chest_n_1 = Schest_n_1 − {chest_n_1}
= {thorax_n_2, pectus_n_1}, (4.18)

and by inverse translating “thorax” (from thorax_n_2),

Translate(“thorax”, n, EngNor) = {«bryst», «brystkasse»,
«toraks», «kropp»,
«forkropp»}.

(4.19)

we see that the inverse translation indeed contains the original source
word, «brystkasse».

However, by analyzing all the words and concepts in WordNet I
detected that the above assumptions are not always met. The results of
that analysis are presented in Section 4.7.

87

Combining the
Basic Principles

Algorithm 4.1: A simplified presentation of the basic mapping algorithm
presented herein. Generate candidate mappings from a given word w to senses
in WordNet while filtering out mappings to unwarranted senses.

1: procedure Map-Word-to-Sense(w, C, D`′
` , D`

`′)
2: mappings← ∅
3: for all w′ ∈ Translate(w, C, D`′

`) do . Translate from ` to `′.
4: T ← Senses-of(w′, C)
5: if |T| = 1 then . Only one sense?
6: mappings← mappings∪ {(w, T[0])}
7: continue . Skip to next translation.
8: for all ti ∈ T do
9: mappings← mappings∪Mirror(w, ti, C, D`

`′)
10: return mappings

4.6 Combining the Basic Principles

The general principles of the method were presented above. Those
principles can be combined into an algorithm for automatic mapping
of words in a language different from English into WordNet senses.
Algorithm 4.1 constitutes a very simplified version of the final mapping
framework that will be presented in Section 4.8. However, even though
the algorithm is presented in a simplified form, it serves to convey how
the above principles can be combined into a coherent procedure.

The first argument to Algorithm 4.1 is the word, w, in the source
language, `. The second argument is the word’s lexical category, C. The
last two arguments to the algorithm are data structures representing
the dictionary resources. The dictionary resource objects are of the
same kind as the program modules NorEng and EngNor presented
in Section 4.1.1, where D`′

` translates from ` to `′, while D`
`′ translates

the other way around.
The purpose of the algorithm is to return a set of correct mappings

from a given word w in the source language `, belonging to lexical
category C, to individual senses in WordNet that are warranted by the
semantics of w.

First, the set of accepted mappings is defined to be empty. Next,
we call the function Translate with the arguments w, C, and D`′

` ,

88

Mapping
Norwegian to
WordNet

Algorithm 4.2: A simplified representation of the inverse translation algorithm,
Mirror, referred to by Algorithm 4.1.

1: procedure Mirror(wO, ti, C, D`
`′)

2: mappings← ∅
3: S← Get-Synset(ti)
4: S← S− {ti} . The complement synset.
5: for all s ∈ S do . Complement senses.
6: w′ ←Word-from-Sense(s)
7: for all w ∈ Translate(w′, C, D`

`′) do
8: if w = wO then
9: mappings← mappings∪ {(wO, ti)}

10: return mappings

which returns all the translations of w from ` to `′. Then, for each
translation w′, we let T represent the set of all senses of w′ defined in
WordNet, as returned by the Senses-of function. As indicated by the
call to Senses-of, the set of a word’s senses is constrained by the word’s
lexical category, C.

If T only contains one sense, we add that (see Section 4.4) to the
set of accepted mappings, and immediately check the next translation.
If, however, T is empty or contains multiple senses, we consider each
available sense in turn. This is done by calling the function Mirror that
returns a possibly empty set of warranted mappings that are added to
the set of accepted mappings. Finally, when all possible mappings for
each translation have been considered, the set of accepted mappings is
returned.

In the Mirror function, shown in Algorithm 4.2, we also start with
an empty set of warranted mappings, mappings. Then we retrieve the
synset S that sense ti belongs to, by calling the Get-Synset function.
Next, we define a set S containing the complement senses of ti.

Now, for each (complementary) sense s in S, by calling Word-from-
Sense we determine the word, w′, that the sense represents and try
to translate it back into `. Each inverse translation, w, is then checked
to see if it equals the original source word, wO. If they are equal, the
pair (wO, ti) is added to the set of warranted mappings. When all
the complementary senses have been evaluated, the set of warranted
mappings is returned.

89

Evaluation of the
Assumptions

4.7 Evaluation of the Assumptions

To determine to what extent the assumptions mentioned in Section 4.5
are met, I wrote several scripts that traverse the complete WordNet
while analyzing different aspects related to the assumptions. The results
of these investigations are shown in Table 4.6 on the facing page and
Table 4.7 on page 92.

For example, as can be seen from Table 4.6, 52.76 % of the noun
synsets are singleton synonym sets (singleton synsets). With respect to
Assumption 2, the number of singleton synsets might seem discomfort-
ing, but the table also shows that 63.65 % of those singleton synsets
represent words with a single sense. Therefore, according to the princi-
ple presented in Section 4.4, the singleton-synset problem only affects
33.58 % of the noun synsets. Likewise, for the other lexical categories
the singleton-synset only affects 33.42 % of the adjective synsets, 13.62 %
of the verb synsets, and 43.96 % of the adverb synsets. However, the
number of synsets that pose a problem according to Assumption 2 is
still too large to be ignored. Countermeasures will be introduced in
Section 4.8.

Furthermore, Table 4.7 shows the number of words in WordNet that
are affected by the shared-synonym ambiguity described in Assump-
tion 3. As can be seen, the fraction of words affected in the noun,
adjective, and adverb categories is encouragingly small. However, the
number of words affected in the verb category serves as a warning that
the method might produce less precise results for verbs.

Even though none of the assumptions listed at the end of Section 4.5
are satisfied for all words and concepts in Norsk–engelsk stor ordbok and
WordNet, the principle of inverse translating synonyms of the target
sense may still be of great value. However, to handle such cases, I
propose that the basic method—as sketched in Algorithm 4.1—should
be augmented by exploiting the defined semantic relations available in
WordNet. We may refer to this augmentation as adding search strategies
to the algorithm.

4.8 Search Strategies

The main principle of the method described herein is based on the fact
that synonymous senses share the same semantics, and the assumption
that translations in the bilingual dictionary express the same semantics
in the target language as in the source language. We may refer to such
translations as lexical equivalents.

90

Mapping
Norwegian to
WordNet

Ta
b
l
e

4
.6

:O
ve

rv
ie

w
of

si
ng

le
-s

en
se

w
or

d
s,

si
ng

le
to

n
sy

ns
et

s,
an

d
si

ng
le

to
n

sy
ns

et
s

re
pr

es
en

ti
ng

si
ng

le
-s

en
se

w
or

ds
in

W
or

dN
et

.

Si
ng

le
-

%
of

Si
ng

le
-

se
ns

e
%

of
si

ng
le

-
Le

xi
ca

l
se

ns
e

Sy
ns

et
s

Si
ng

le
to

n
%

of
si

ng
le

to
n

si
ng

le
to

n
se

ns
e

ca
te

go
ry

w
or

ds
in

W
or

dN
et

sy
ns

et
s

sy
ns

et
s

sy
ns

et
sa

sy
ns

et
s

w
or

ds

N
ou

n
8

8
,6

4
3

b
7

3
,7

5
7

c
3

8
,9

1
7

d
5

2
.7

6
2

4
,7

6
9

e
6

3
.6

5
2

7
.9

4

A
dj

ec
ti

ve
1

6
,8

8
9

1
8

,8
7

7
1

1
,7

5
0

6
2
.2

5
6

,3
0

9
5

3
.6

9
3

7
.3

6

Ve
rb

6
,2

6
1

1
3

,6
5

0
7

,9
4

2
5

8
.1

8
1

,8
5

9
2

3
.4

1
2

9
.6

9

A
dv

er
b

3
,8

5
0

3
,6

4
4

2
,3

4
3

6
4
.3

0
1

,6
0

2
6

8
.3

7
4

1
.6

1

a
A

si
ng

le
-s

en
se

si
ng

le
to

n
sy

ns
et

is
a

sy
ns

et
th

at
re

pr
es

en
ts

a
si

ng
le

w
or

d
th

at
ha

s
on

ly
a

si
ng

le
se

ns
e

ac
co

rd
in

g
to

W
or

dN
et

.
b

1
2
,6

7
8

si
ng

le
-s

en
se

no
un

s
th

at
re

pr
es

en
t

in
st

an
ce

s
w

er
e

ig
no

re
d.

c
7
,6

6
9

sy
ns

et
s

re
pr

es
en

ti
ng

in
st

an
ce

s
w

er
e

ig
no

re
d.

d
2
,7

4
1

si
ng

le
to

n
sy

ns
et

s
re

pr
es

en
ti

ng
in

st
an

ce
s

w
er

e
ig

no
re

d.
e

2
,0

8
3

si
ng

le
-s

en
se

si
ng

le
to

n
sy

ns
et

s
re

pr
es

en
ti

ng
in

st
an

ce
s

w
er

e
ig

no
re

d.

91

Search Strategies

Table 4.7: Words per lexical category in WordNet that are affected by
shared-synonym ambiguity.

Lexical Words in Words affected by
category WordNet shared-synonym ambiguity % of words

Noun 117,097 3,553 3.03

Adjective 22,141 975 4.40

Verb 11,488 1,699 14.79

Adverb 4,601 116 2.52

However, as Hartmann and James (2002) comment on developing
bilingual dictionaries, “finding suitable lexical equivalents is a noto-
riously difficult task, especially in pairs of languages with different
cultures.” Hence, even dictionary authors find it difficult to find the ex-
act translations of some words. Some words and phrases are so tightly
connected to the culture of the native speakers of a language that
precisely translating them to other languages becomes very difficult.

One way dictionary authors handle such difficulties is by providing
multiple, less accurate, translations that together convey the intended
meaning. The level of accuracy for such translations may vary along
several axes. One such axis designates the level of generality. This is the
insight that leads to the idea to augment Algorithm 4.2 with a search
algorithm that will be used when it cannot find appropriate mappings
by applying only the main principles.

For example, according to NorEng the Norwegian noun «kosthold»
translates as

Translate(«kosthold», n, NorEng) = {“diet”, “fare”}, (4.20)

while WordNet define the senses of “diet” as

synsets(diet, n) = 〈Sdiet_n_1, Sdiet_n_2, Sdiet_n_3, Sdiet_n_4, 〉
= 〈{diet_n_1, },
{diet_n_2},
{diet_n_3},
{diet_n_4, dieting_n_1}〉.

(4.21)

We see that the first three senses of “diet” consist of singleton synsets,
which pose a problem because, as noted above, singleton synsets do

92

Mapping
Norwegian to
WordNet

Algorithm 4.3: An extended version of Algorithm 4.2.

1: procedure Mirror(wO, ti, C, D`
`′)

2: mappings← ∅
3: S← Get-Synset(ti)
4: for all Strategy ∈ 〈Synonym, Hypernym〉 do
5: S← Strategy(S, ti) . The “complement” synset.
6: for all s ∈ S do . Complement senses.
7: w′ ←Word-from-Sense(s)
8: for all w ∈ Translate(w′, C, D`

`′) do
9: if w = wO then

10: mappings← mappings∪ {(wO, ti)}
11: if mappings 6= ∅ then
12: break
13: return mappings

not provide enough information for the basic mirroring algorithm,
Algorithm 4.2, to find any valid senses. However, WordNet defines both
of the senses of “diet”, diet_n_1 (“a prescribed selection of foods”)
and diet_n_3 (“the usual food and drink consumed by an organism
(person or animal)”), that are semantically warranted by «kosthold»
to be hyponyms of “fare”. More importantly, EngNor provides the
translation

Translate(“fare”, n, EngNor) = { . . . , «kost», «kosthold», . . .},
(4.22)

which contains the original source word «kosthold» as one of its target
words. This shows that if a synset does not provide enough informa-
tion for Algorithm 4.2 to find any warranted senses, then warranted
senses may be found by inverse translating senses that are, for example,
hypernyms of the synset. Of course, just as for the basic algorithm, this
can only work if one inverse translates words that are complementary
to the original source word.

Algorithm 4.3 shows the extended version of Algorithm 4.2. The main
change is how the new algorithm obtains the complement synset, S. In
the original version S was always defined as S− {ti}, while the new
version lets S be defined according to an arbitrary function, Strategy,

93

Search Strategies

Algorithm 4.4: The Synonym-strategy function referred to by Algorithm 4.3.

1: procedure Synonym(S, ti)
2: return S− {ti} . The complement synset.

Algorithm 4.5: The Hypernym-strategy function referred to by Algorithm 4.3.

1: procedure Hypernym(S, ti)
2: S′ ← ∅
3: for all H ∈ Get-Targets(S, "hypernym") do
4: S′ ← S′ ∪ H
5: return S′ − {ti} . The complement synset.

that takes the original synset, S, and target sense, ti, as its arguments. As
shown in the extended algorithm, the search for warranted mappings
is done by iterating through a sequence of such strategy functions. The
sequence of strategy functions may be altered or extended. It should
be noted that for each applied strategy, if the inverse translation loop,
lines 6–10 in Algorithm 4.3, does not find any warranted mappings,
then the next strategy function is tried. This continues until all strategy
functions have been tried, or a nonempty set of mappings has been
found.

4.8.1 Synonymy and Hypernymy

The first strategy function tried in Algorithm 4.3 is Synonym, which
is simply the original definition of the complement set, as shown in
Algorithm 4.4. However, the Hypernym-strategy function, shown in
Algorithm 4.5, discloses the reason for extending Algorithm 4.2. The
idea is that instead of simply returning the ti-complement set of S, it
will replace S with all the senses that belong to hypernyms of S and
store them in S′. The value returned is the ti-complement of S′.

The extension of Algorithm 4.2 increases the method’s ability to
handle situations where Assumptions 1 and 2 in Section 4.5 do not hold.
For example, when translating the Norwegian noun «søk» NorEng

94

Mapping
Norwegian to
WordNet

suggests both “quest” and “search”. Looking up the synsets of these
nouns in WordNet yields

synsets(quest, n) = 〈{quest_n_1, pursuit_n_2, pursuance_n_1},
{quest_n_2, seeking_n_1}〉

(4.23)

and

synsets(search, n) = 〈{search_n_1, hunt_n_6, hunting_n_2},
{search_n_2},
{search_n_3, lookup_n_1},
{search_n_4},
{search_n_5}〉.

(4.24)

Furthermore, three of five senses of the noun “search” are represented
by singleton synsets, and no inverse translation that suggests «søk»
can be found by looking up the complement senses of quest_n_1,
quest_n_2, search_n_1, or search_n_3 in EngNor.

This means that the original Algorithm 4.2 would not find any war-
ranted mappings, and neither would Algorithm 4.3 if it only were
to try the Synonym-strategy function. However, when the extended
algorithm applies the Hypernym-strategy function, the synsets contain-
ing quest_n_1 and quest_n_2 are replaced by their hypernym synsets,
which are shown in Figure 4.4. This, in turn, enables Algorithm 4.3 to
suggest mappings by inverse translating the complement senses from
the hypernym synsets, because EngNor suggests «søk» as a translation
of “search”.

It should be noted that the strategy algorithm Hypernym considers
synsets only one level away from the original synset in the hypernym
heterarchy. Investigating several similar cases as the one showed here
revealed that searching through synsets more than one level away
seldom succeeded and ran the risk of introducing less precise mappings.

4.8.2 Hyponymy

The preceding example shows how Algorithm 4.3 is able to find map-
pings missed by Algorithm 4.2 by introducing search strategies and
thereby getting access to senses from hypernym synsets. However, the
search strategies need not be constrained to exploiting synonymy and
hypernymy relations. It seems reasonable that if—as in the preceding

95

Search Strategies

Figure 4.4: The hypernym-ancestor synsets of the synsets that
quest_n_1 and quest_n_2 belong to.

96

Mapping
Norwegian to
WordNet

example—otherwise missed mappings can be found by looking at hy-
pernym synsets, adding a hyponym-strategy function might improve
the results too.

For example, the basic algorithm is not able to find any mappings
from the Norwegian word «fremviser» to senses in WordNet. NorEng

suggests a single translation, namely “projector”. The problem is that
both the senses of “projector” are represented by singleton synsets:

synsets(projector, n) = 〈{projector_n_1},
{projector_n_2}〉. (4.25)

Of these senses, only projector_n_2 has hyponyms; these are shown
in Figure 4.5. Now, given that Algorithm 4.3 is provided a Hyponym

function—implemented just like the Hypernym function, except that
it retrieves hyponyms instead of hypernyms—it will find an earlier
missed mapping, namely by inverse translating film_projector_n_1.

4.8.3 Verb Group

The search-strategy functions presented so far are only exploiting the
synonymy relationship, defined for all lexical categories in WordNet,
and the hypernymy/hyponymy relationship, which is defined only
for nouns and verbs. To strengthen the algorithm’s ability to handle
mapping of verbs, a Verb-Group search function is introduced too. As
the name suggests, the new function behaves just like the Hypernym

and Hyponym functions, except that it will replace the original synset
by other synsets belonging to the same verb group.

For example, without the Verb-Group-strategy function, no mapping
is found for the Norwegian word «etterprøve», which NorEng trans-
lates to “check”. The reason for this is that of the synsets that represent
the 25 different senses of check, 12 are singleton synsets, leaving 13, of
which not one contain a complement sense that yields «etterprøve» when
translated back to Norwegian. However, by applying the Verb-Group

function the synset containing check_v_3 is replaced by four semanti-
cally related synsets, where one is {control_v_5, verify_v_2}. Further-
more, the translation of “verify”, using EngNor, yields «etterprøve» and
hence shows that the use of the Verb-Group search-strategy function
can improve the coverage of the algorithm.

4.8.4 Similarity

The final extension is to include a Similar-strategy function to im-
prove Algorithm 4.3’s coverage with respect to adjectives. The Similar

97

Search Strategies

F
i
g

u
r

e
4.

5:H
yponym

s
of

projector_n_2
in

the
W

ordN
et

ontology.

98

Mapping
Norwegian to
WordNet

Figure 4.6: The synsets similar to the synset {abnormal_adj_1}.

99

Mapping
Framework

function is implemented along the lines of the other search-strategy
functions, like Hypernym and Verb-Group, but this one exploits the
similar relation defined between adjective synsets. The similar relation
is defined as discussed in Section 2.2.4. To see how the Similar function
can improve the coverage of Algorithm 4.3, please consider the case of
finding an appropriate mapping for the Norwegian adjective «abnorm».
NorEng suggests the translation “abnormal” only. However, in Word-
Net the adjective “abnormal” has three different senses, all represented
by singleton synsets,

synsets(abnormal, adj) = 〈{abnormal_adj_1},
{abnormal_adj_2},
{abnormal_adj_3}〉.

(4.26)

Since singleton synsets represent all the senses, the basic algorithm
lacks any preference information. However, the application of the Simi-
lar function replaces the synset containing the first sense with the
semantically similar synsets shown in Figure 4.6. Of these senses,
both “aberrant”, “freakish”, and “perverted” translate to the Norwe-
gian «abnorm». Hence, once again, the extension of Algorithm 4.2 to
use search-strategy functions increases the algorithm’s coverage.

4.9 Mapping Framework

As mentioned in Section 4.2, the method described herein generates a
mapping from Norwegian words, phrases, and collocations to n-tuples
of English senses as defined by WordNet, where n ≥ 1. Below, such
mappings will be referred to simply as a mapping from words in the
source language to WordNet senses.

Next, the building blocks of the mapping framework will be pre-
sented, followed by examples showing how the building blocks are
used to create mappings from words in the source language to Word-
Net senses. Appendix A provides a brief introduction to the graph
theory terms used below.

The central data structure of the mapping framework is a weighted
directed acyclic graph (weighted DAG) that gradually grows from a
“seed” vertex—or node—representing a word in the source language, to
a tree-like structure that includes all possible translations and, through
them, all possible WordNet senses.

Each translational module can be seen as a function that accepts a
node that represents a word in some source language, l, and expands

100

Mapping
Norwegian to
WordNet

wl

tl′
1,1 tl′

1,2 tl′
1,q1

tl′
2,1 tl′

2,2 tl′
2,q2

tl′
p,1 tl′

p,2 tl′
p,qp

0

0 . . .

0

0

0

0 . . .

(a)

1
1

1

tl′
i,j

wl′
i,j,1 wl′

i,j,2 wl′
i,j,v

. . .

(b)

Figure 4.7: Expansion of translation DAG vertex types. (a) A ver-
tex representing a particular word wl , from the source language l,
expands into p different translations, where each translation tl′ , in
the target language l′, consists of one or more parts, represented as
a list of vertices. (b) Each such vertex, tl′

i,j, representing a part of a
candidate translation into the language l′, expands into all v possible
variants of the word wl′

i,j that tl′
i,j represents.

it by adding new edges (and nodes) to it, each representing a possible
translation from l to the target language l′.

A language in this context is defined by the dictionary that is used by
the translation module. For example, the modules used by the mapping
framework are NorKompLeks, NorEng, WordNet, and EngNor, in
the order they are applied in the mapping process. Therefore, the first
translation-step of the process is to translate a Norwegian string to the
NorKompLeks “language”.

Figures 4.7a and 4.7b show how a node is expanded in the general
case. The input node, wl—at the bottom of Figure 4.7a—expands into p
translations, tl′ , where each translation consists of q parts. All of those
nodes, called joint nodes, are connected through zero-weighted edges.
In turn, each part, tl′

i,j where i = 1, 2, . . . , p and j = 1, 2, . . . , qp, of each

101

Mapping
Framework

Figure 4.8: Example of how a weighted DAG is expanded in the case
of a multipart translation.

translation is expanded in v alternatives, as shown in Figure 4.7b. These
alternatives are connected through edges with a weight of 1.

The general case of node expansion is designed to handle multipart
translations in order to, for example, handle translations of compound
words that are not found in the machine-readable dictionary used by
the translation module in question. For example, Figure 4.8 shows how
the translation of the compound «bjørnejakt» (“bear hunt”) is handled
by the translation module NorKompLeks.6

Each edge from the weighted DAG’s source represents a possible
translation of the given input. We may view each such edge as a branch
of a tree. However, since the branch represents a subgraph of a directed
acyclic graph (DAG), it may join with other branches at a vertex further
down its own path; this is the reason the final structure is called tree-like.

The reason for using the weighted edges and joint nodes is to be able
to maintain the ordering between the constituents when a translation
requires that a word is split up, while keeping the algorithms for
traversing and inspecting the DAG simple. For example, the (weighted)
distance from the source node to all the NorKompLeks translated nodes
in Figure 4.8 is 1.

6 As mentioned in Chapter 3, the NorKompLeks module features a compound-word
analyzer that will try to split up words not found in the dictionary, such as «bjørnejakt».

102

Mapping
Norwegian to
WordNet

0

1
1

0

1
1

1

wl

tl′
i,1

wl′
i,1,1 wl′

i,1,2 tl′
i,2

wl′
i,2,1 wl′

i,2,2 wl′
i,2,3

Figure 4.9: Example of a generalized subgraph representing a multi-
part translation.

Furthermore, the target nodes of each joint node represent alternative
translations of that part. Each such set of alternatives can be represented
as a set of nodes. Hence, to construct all the different translations of
a subgraph like the one in Figure 4.8, one only needs to compute the
Cartesian product of the sets representing the parts. For example, the
different translations represented by the graph in Figure 4.9, can be
represented by {wl′

i,1,1, wl′
i,1,2} × {wl′

i,2,1, wl′
i,2,2, wl′

i,2,3}, which evaluates to

{(wl′
i,1,1, wl′

i,2,1), (wl′
i,1,1, wl′

i,2,2), (wl′
i,1,1, wl′

i,2,3),

(wl′
i,1,2, wl′

i,2,1), (wl′
i,1,2, wl′

i,2,2), (wl′
i,1,2, wl′

i,2,3)},
where each tuple represents one possible concatenation of the variants
of the parts of a multipart translation.

However, because most translations consist of single words, the use
of multipart expansions only would result in graphs with a lot of
superfluous nodes; that is, joint nodes with only one target—or child—
node. Therefore, the translational modules also expand nodes in a
more compact way, by simply leaving out the zero-weighted edge and
joint node if the joint node has only one target node. In the following
example, several such branches will be used.

103

Mapping
Framework

(a) Initial
seed.

(b) Second step.

Figure 4.10: The two first steps of the mapping of «rotten».

4.9.1 Example Mapping of «rotten»

This section will present a complete example of a mapping from the
Norwegian word «rotten» (“rat.the”). The definite form is used to dis-
tinguish the input word from its ambiguous stem «rotte», which can
be used to refer to both the noun and a verb; however, the verb means
to “conspire against” or “gang up on” and therefore differs from the
English verb “rat”.7

Given ambiguous input—like «rotte»—the framework will handle
both the nominal and the verbal meaning in separate subgraphs, just
like any other ambiguous translation. The distinction in this case was
made only to make the example more comprehensible.

Creating the Graph

Figure 4.10a shows the input to the mapping framework, also known as
the seed node. The seed node represents a tuple containing a language
identifier, the input word itself, and a set of attributes that describe the
input word. The seed node’s attribute set is always empty.

The second step of the mapping process is shown in Figure 4.10b. The
figure shows how the DAG is expanded to represent the “translation”
to NorKompLeks. As shown in the figure, the NorKompLeks nodes
contain a nonempty set of attributes. Furthermore, the second element

7 The verb “rat” has several meanings. For example, WordNet uses the glosses “desert
one’s party or group of friends, for example, for one’s personal advantage”, “take the
place of work of someone on strike”, and “give away information about somebody” to
describe some of them.

104

Mapping
Norwegian to
WordNet

Figure 4.11: The third step of the mapping of «rotten».

of the tuple represents the stem of the source word, while the value of
the word form attribute represents the word form of the source word.

The translation from Norwegian—with characteristics retrieved from
NorKompLeks—to English is shown in Figure 4.11. The translation
is performed by the NorEng module by looking up the stem of the
source node. The module uses information about the source word’s
lexical class, designated by the source node’s pos attribute, to restrict
the set of possible translations. For example, NorEng lists both verbal
and a nominal translations of the stem «rotte». However, because the
source node represents a noun, only the nominal translations will be
used in the expansion.

Next, each of the English nodes are “translated” into matching Word-
Net senses, as shown in Figure 4.12. The language designator and
attribute set has been removed in the figure, both to save space and
because the lexical class and sense number are codified into the string
representing the node.

The next step, shown in Figure 4.13, is to expand the WordNet sense
nodes by adding nodes that represent the WordNet synsets that each
sense belongs to.

Sense Evaluation

After creating the initial translation graph, the mapping framework
must decide which senses are warranted by the original input word. The

105

Mapping
Framework

Figure 4.12: The DAG after adding the WordNet sense nodes.

decisions are made by applying functions that implement the principles
developed in Sections 4.2–4.8.

By evaluating the graph and applying the principle that mappings
that represent single-sense words are kept without further ado (Sec-
tion 4.4) tells the mapping module that the translation of «rotten» into
the sense rattus_n_1 is warranted. Hence, the framework returns a
tuple including that sense:

(rotten,
〈((rat_n_1,

({(form, def), (gend, m), (num, sg), (pos, subst),
(status, nf), (word_form, rotten)}, rotte, 48957)),),

. . . ,
〉,).

(4.27)

If none of the search strategies mentioned in Section 4.8 had been
applied, then that sense would have been the only one returned. The
reason for this is that the other WordNet senses in the graph all rep-
resent the noun “rat”, and the senses rat_n_1 and rat_n_5 are both
represented by singleton synsets (see Assumption 2 in Section 4.5),
while applying the Mirror algorithm without any search strategies—as
described in Algorithm 4.2—on the remaining senses fails to find any
warranted mappings.

106

Mapping
Norwegian to
WordNet

Fi
g

u
r

e
4

.1
3

:T
he

D
A

G
af

te
r

ad
di

ng
th

e
W

or
dN

et
sy

ns
et

no
de

s.

107

Mapping
Framework

Table 4.8: Synsets and descriptions for the five WordNet senses of “rat”.

Sense # Synset Description

1 rat any of various long-tailed rodents
similar to but larger than a mouse

2 scab, strikebreaker,
blackleg, rat

someone who works (or provides
workers) during a strike

3 rotter, dirty dog, rat,
skunk, stinker,
stinkpot, bum, puke,
crumb, lowlife, scum
bag, so-and-so, git

a person who is deemed to be
despicable or contemptible; “only a
rotter would do that”; “kill the rat”;
“throw the bum out”; “you
cowardly little pukes!”; “the British
call a contemptible person a ‘git”’

4 informer, betrayer,
rat, squealer, blabber

one who reveals confidential
information in return for money

5 rat a pad (usually made of hair) worn
as part of a woman’s coiffure

As shown by Table 4.8, which describes the synsets that the different
senses of “rat” belong to, not finding any other warranted mappings is
the desired behavior for the framework, except for the first sense.

However, if the Hyponym search strategy—described in Section 4.8.2—
is used with the extended Mirror function—described in Algorithm 4.3—
the mapping framework will extend the graph by expanding the Word-
Net synset nodes of the graph, so that their hyponym synsets are
included. Figure 4.14 shows how the {rat_n_1} node is expanded.
Furthermore, NorEng translates both “brown rat” and “Norway rat”
to «rotte». Therefore, the mapping to rat_n_1 is also warranted, and the

108

Mapping
Norwegian to
WordNetFigure 4.14: Expansion of the graph by adding nodes representing

hyponyms of the {rat_n_1} node.

complete returned value from the framework, given «rotten» as input,
becomes

(rotten,
〈((rat_n_1,

({(form, def), (gend, m), (num, sg), (pos, subst),
(status, nf), (word_form, rotten)}, rotte, 48957)),),

((rattus_n_1,
({(form, def), (gend, m), (num, sg), (pos, subst),

(status, nf), (word_form, rotten)}, rotte, 48957)),)〉,).
(4.28)

This example has shown how the framework implementing the prin-
ciples described in Sections 4.2–4.8 is able to find warranted mappings
from a Norwegian noun to particular concepts in WordNet. The exam-
ple also showed how the use of a search strategy—namely, Hyponym—
was crucial to find one of the warranted mappings.

4.10 Results

To test Verto, the framework for finding warranted mappings of Nor-
wegian words to senses in WordNet, several experiments were run.
The experiments were designed to shed light on several aspects of the
method in order to answer the research questions (see Section 1.3). The
aspects include:

1 In total, and for each lexical category, how many of the keywords in
Norsk–engelsk stor ordbok is the method able to find mappings for?

109

Results

2 How many mappings does the method generate (considering that a
single keyword can result in multiple mappings)?

3 How precise is the method?

4 What are the reasons for missing mappings?

5 How many of the total of warranted mappings does the method find?

6 How does changing the parameters—that is, the search strategies—of
the method affect the above factors?

The set of mappings from Norwegian words to WordNet senses
produced by running Verto constitutes a novel semantic resource, for
reasons of simplicity named Ordnett8.

4.10.1 Measures

To measure the precision of the mappings suggested by Verto, the well-
known precision measure, from the fields of Information Retrieval (IR)
and Information Extraction (IE) (Jurafsky and Martin 2000; p. 578), was
adapted. If we let P represent the precision, we have

P =
|A+ ∩ S|
|S| , (4.29)

where A+ represents the set of all the correct answers and S is the set
of answers given by the system.

Each mapping suggested by Verto constitutes an answer. In the case
that a Norwegian compound is split up and each constituent is inter-
nally mapped individually, or if a Norwegian simplex word translates
to an English multiword expression, Verto suggests a mapping from
the input word to a tuple of senses. Each such mapping counts as one
answer. For such a mapping to be counted as correct, all the elements
of the tuple must be correct. Thus, the precision measure describes how
many of the mappings returned by the system are actually correct.

It should be noted that the denominator above includes both correct
and incorrect answers. Hence, if all the answers are correct, P will be 1.
In the following evaluations, a correct answer is considered a correct
suggested mapping.

8 Ordnett means word net in Norwegian. However, the new semantic resource should
not be confused with Kunnskapsforlaget’s Web site, http://www.ordnett.no/, which
provides access to on-line dictionaries.

110

http://www.ordnett.no/

Mapping
Norwegian to
WordNet

Another well known measure from the fields of IR and IE is the
recall measure, defined as

R =
|A+ ∩ S|
|A+| , (4.30)

which describes how many of all the possible correct answers were
returned from the program.

When measuring a system with the precision and recall measures,
modifying the system to increase its precision score often leads to a
decrease in its recall score. This phenomenon has lead researchers to
introduce a measure that incorporates the precision and recall scores in
a balanced way. The measure, named F-measure, is defined as

F =
(β2 + 1)PR

β2P + R
, (4.31)

where β is a weight to balance the importance between precision, P,
and recall, R. If β equals 1, precision and recall are weighted equally
important. When β > 1, recall is favored, and β < 1 favors precision9.

Some commonly used β values give rise to named F-measures, like
F0.5, where β = 0.5, F1, where β = 1, F2, where β = 2, etc.

It should be noted that the system being tested cannot itself decide
what constitutes a correct answer; if it could, all answers would be
correct. One way to decide which answers are correct is to use a human
expert to generate a test set that also defines the total number of possible
correct mappings. This approach was used in the evaluation of Verto,
and is described in the next section.

4.10.2 The Test Set

To test the quality of the suggested mappings, a test set was generated
for each lexical category; that is, noun, adjective, verb, and adverb.
For each of the categories, a selection of randomly chosen keywords
from NorEng was made, based on a uniform probability distribution,
using the Mersenne Twister pseudo-random generator (Matsumoto and
Nishimura 1998).

I developed a Web application that given a Norwegian word as input
would present all the target WordNet senses/synsets that are reachable
by Verto—based on the available resources presented in the previous
chapter—to a human expert. Here, reachable means all the WordNet

9 Contrary to what Jurafsky and Martin (2000; p. 578) state. They claim that when β > 1

precision is favored, and vice versa.

111

Results

Figure 4.15: The Web interface used by the human expert to define
the test sets. The human expert marks the check-boxes for senses that
he or she believes are not warranted by the semantics of the original
Norwegian word.

112

Mapping
Norwegian to
WordNet

target synset nodes that are included in the DAG used by Verto during
the mapping process. This way, the senses presented to the human
expert were the same as the ones the Verto algorithm has to consider.

Figure 4.15 on the facing page shows a form where the original
Norwegian word along with possible target senses and their glosses are
presented to a human expert by the Web application. All the possible
senses for each particular word were gathered in one cell in the table,
and each word in a multipart expression contributed to one column.
Thus, if all the words were simplex expressions (which they were not),
the table would consist of a single column, but with multiple rows.

To generate the test set, a Norwegian Bachelor’s level student finish-
ing his Master’s degree, with three and a half years of English studies
at the university level, was appointed to be the human expert, based
on recommendations from Mila Dimitrova-Vulchanova, professor at the
Department of Modern Languages at the Norwegian University of
Science and Technology (NTNU). Unfortunately, at the time the test set
was created Dimitrova-Vulchanova could only recommend this sole stu-
dent that she was convinced had a good enough understanding of both
Norwegian and English to create a test set of adequately high quality.
Therefore, opportunities to take advantage of possible inter-annotator
agreement were missed. The human expert was paid 150 Norwegian
kroner per hour for his effort.

The human expert had no idea of the workings of the algorithm,
and was simply asked to evaluate all the senses presented to him, and
whether each sense was warranted by the semantics and use of the
Norwegian “seed” word that was presented along with the sense. If
a sense was not warranted, the expert marked this by removing the
check mark in the check-box for that sense; this was done with a single
mouse click.

Furthermore, if a mapping consisted of several parts—that is, a
compound mapping—then all its constituents had to be considered
correct to consider the whole mapping correct.

The human expert was allowed to consult all the dictionaries and
encyclopedias he wanted to; the overriding concern was that he was
confident that the answers he gave were correct.

Table 4.9 on the next page shows the number of words and senses the
human expert evaluated, as well as their distribution over the different
lexical categories. A bigger test set may be desirable, but the amount of
work to create the test set described herein was quite substantial. The
human expert worked for 33.5 hours to create the test set.

113

Results

Table 4.9: Number of words and
senses considered by the human ex-
pert.

Lexical category Words Senses

Noun 86 1,382

Adjective 97 1,759

Verb 62 2,884

Adverb 64 729

Total 309 6,754

4.10.3 The Experiment

In the experiment, Verto was run with all the keywords in Norsk–engelsk
stor ordbok as input, with twelve different permutations of parameters
controlling the program.

It should be noted that by running the test on such a large set of
input words, a product of the experiment is the creation of a resource
that consists of mappings from Norwegian words to WordNet senses.

One of the parameters was the dictionary resources available to
Verto. In the first six test runs the original Norsk–engelsk stor ordbok and
Engelsk–norsk stor ordbok dictionaries were used in the form of the
NorEng and EngNor modules, respectively. In the last six test runs two
new, expanded modules, NorEngC and EngNorC, were used instead.
NorEngC was created by inverting all the translations in Engelsk–norsk
stor ordbok and adding them to Norsk–engelsk stor ordbok; thus, creating a
combined version of Norsk–engelsk stor ordbok. EngNorC was made in the
same fashion, except that inverted Norsk–engelsk stor ordbok translations
were added to Engelsk–norsk stor ordbok.

Adding inverted translations might seem like a strange thing to do
under the assumption that the same translations occur both in the
Norwegian–English and in the English–Norwegian dictionary. How-
ever, that assumption does not hold; for example there is an entry in
NorKompLeks for the prefix «anti-» and an entry in Engelsk–norsk stor
ordbok for “anti”, but none of these entries are found in Norsk–engelsk
stor ordbok. Thus, by defining the new, combined dictionary resources
NorEngC and EngNorC, the number of possible translations in both
directions is increased.

114

Mapping
Norwegian to
WordNet

Table 4.10: Search strategies used for each lexical category in each per-dic-
tionary partition of the experiment. The numbers represent the different
test runs of the partition.

Lexical Verb-
category Synonym Hypernym Hyponym Similar group

Noun 1–6 2, 6 3, 6

Adjective 1–6 2, 6 3, 6 4, 6

Verb 1–6 2, 6 3, 6 5, 6

Adverb 1–6 2, 6 3, 6

The dictionary-resources parameter naturally divides the twelve test
runs of the experiment into two partitions of six test runs each. Each
partition comprises six test runs where the parameters that control the
search strategies of the extended Mirror function (see Algorithm 4.3 on
page 93) vary according to Table 4.10. Each number in the table indicates
a test run relative to the dictionary-resource partitioning. For example,
in all the test runs—that is, 1–6 and 7–12—the basic Synonym search
strategy was used, while the Similar search strategy was employed in
test runs 4, 6, 10, and 12. Furthermore, it should be noted that test runs
number 6 and 12 employed all the different search strategies.

4.10.4 With the Original Dictionaries

This section will present the results of the six first test runs. That means
that all of the test runs documented in this section were performed
with the original, pristine dictionary modules NorEng and EngNor.

Test Run 1 (The Synonym Strategy). The first test run represents a start-
ing point where only the Synonym strategy, presented in Section 4.8.1,
is applied.

The results of each test run are represented by two tables; one ta-
ble presents values related to the method’s coverage, the other table
presents precision, recall, and F0.5-measure values.

The coverage of the method describes how many of the words in the
source dictionary, Norsk–engelsk stor ordbok, the method was able to find
any mapping for. Table 4.11 on the following page shows the coverage
values for the first test run.

115

Results

Table 4.11: Coverage results of running Verto with the original dictionaries,
and the Synonym strategy.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 22,841 50.2 17,727 78.3 44,104 0.970

Adjective 9,197 3,304 35.9 4,710 79.9 8,290 0.901

Verb 5,359 3,495 65.2 1,654 88.7 13,750 2.566

Adverb 583 186 31.9 285 71.8 458 0.786

Total 60,626 29,826 49.2 24,376 79.1 66,602 1.306

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.12: Number of times that no map-
ping could be found due to missing Word-
Net entries, with pristine dictionaries.

Lexical category Word not in WordNet

Noun 4,919

Adjective 1,183

Verb 210

Adverb 112

Total 6,424

The first column of the coverage table shows the number of input
words in each lexical category and the total number of input words.

The second column shows the number of words for which Verto was
able to find one or more mapping for, with the percentage in the third
column.

It should be noted that there are basically two reasons for not finding
any mappings for an input word. The first reason is that the graph could
not be expanded to include any WordNet senses. The input words in
each test run are the entries in the dictionaries NorEng and NorEngC
for the first six test runs and last six test runs, respectively. Therefore, if
the graph does not contain any WordNet senses, it is because WordNet
does not include any of the words needed to extend the graph.

116

Mapping
Norwegian to
WordNet

Table 4.13: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and the Synonym strategy.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 126 7 0.947 0.217 0.566

Adjective 121 3 0.976 0.186 0.527

Verb 160 26 0.860 0.161 0.460

Adverb 110 10 0.917 0.308 0.657

Total 517 46 0.918 0.200 0.535

Table 4.12 on the preceding page shows the number of words for
which no mapping could be found because there was no entry in
WordNet that could be included in the translation graph. Since these
numbers only depend on the dictionary used, they are equal for all of
the six first test runs.

The second reason for not being able to find a mapping for a word
is being unable to find a warranted mapping; that is, if the extended
Mirror algorithm is unable to return any mappings. The extended
Mirror algorithm’s ability to find inverse translations depends on
which search-strategy functions are used.

The fourth column of the coverage table shows the number of words
for which no mapping could be found because no inverse transla-
tion could be found. The percentage, in column five, represents the
fraction of cases were no mapping could be found. This was caused by
the extended Mirror algorithm not being able to find a justification
for the mapping.

From Table 4.11 on the facing page the method seems most effective
when finding mappings for verbs (65.2 %) and nouns (50.2 %). Further-
more, it seems that the average number of mappings per input word is
much higher for verbs than for the other lexical categories.

The percentage of mapped words is 49.2 % while the mean number
of mappings per word is 1.306, averaged over the lexical classes.

Table 4.13 shows the correct/incorrect classification of each found
mapping, along with the precision, recall and F0.5 values for Verto based
on the results of the test run. These values are computed by comparing
the output from Verto with the test set generated by the human expert.

117

Results

Table 4.14: Coverage results of running Verto with the original dictionaries and
the Synonym and Hypernym search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 23,253 51.1 17,315 77.9 48,481 1.066

Adjective 9,197 3,305 35.9 4,709 79.9 8,295 0.902

Verb 5,359 3,613 67.4 1,536 88.0 17,816 3.325

Adverb 583 188 32.2 283 71.6 460 0.789

Total 60,626 30,359 50.1 23,843 78.8 75,052 1.520

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

The method’s recall score, or ability to find mappings for each input
word, is somewhat low, but it is encouraging to see that the precision
of the method is quite high; as high as 0.976 for adjectives. The lowest
precision is for verbs at 0.860.

Because the output from Verto should be usable by other computer
programs, a high level of precision is more important than the recall
score. Therefore, the tables report an F-measure where β = 0.5.

Test Run 2 (The Synonym and Hypernym Strategies). In the second
test run, the Synonym and Hypernym search strategies, both presented
in Section 4.8.1, comprise the extended Mirror function’s repertoire.

As can be seen from Table 4.14, there was an increase in the number
of mapped nouns (+ 0.9 %), verbs (+ 2.2 %), and adverbs (+ 0.3 %), while
the number of mapped adjectives stayed the same as in the first test run.
Consequently, the number of cases where no inverse translation could
be found decreased correspondingly.

The average number of mappings per input verb increased quite a
lot.

Table 4.15 on the next page shows that the precision generally de-
creased and the recall generally increased, except for the adjective cate-
gory, which stayed unchanged.

It should also be noted that the total number of correctly and incor-
rectly mapped words in Table 4.15 on the facing page did increase, due
to the increased recall.

118

Mapping
Norwegian to
WordNet

Table 4.15: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and the Synonym and Hypernym search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 137 8 0.945 0.236 0.590

Adjective 121 3 0.976 0.186 0.527

Verb 189 32 0.855 0.190 0.503

Adverb 111 10 0.917 0.311 0.660

Total 558 53 0.913 0.216 0.555

Table 4.16: Coverage results of running Verto with the original dictionaries and
the Synonym and Hyponym search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 23,451 51.6 17,117 77.7 49,024 1.078

Adjective 9,197 3,304 35.9 4,710 79.9 8,292 0.902

Verb 5,359 3,707 69.2 1,442 87.3 17,507 3.267

Adverb 583 186 31.9 285 71.8 458 0.786

Total 60,626 30,648 50.6 23,554 78.6 75,281 1.508

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Test Run 3 (The Synonym and Hyponym Strategies). In test run three
the Hypernym strategy was replaced by the Hyponym strategy, which
was presented in Section 4.8.2.

As shown in Table 4.16, the change caused an increase in the num-
ber of mapped words for two of the lexical categories, leading to a
temporarily new maximum for the noun (+ 1.5 %) and verb (+ 4.0 %)
categories. The parenthetic change indicators (+/-) are relative to the
first test run unless something else is explicitly stated.

Furthermore, the table shows the highest total percentage of words
mapped so far (at 50.6 %).

In the previous test run, the precision score decreased for all the
lexical categories where the number of mappings—and thus the recall—
increased. However, as shown in Table 4.17 on the following page,

119

Results

Table 4.17: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and the Synonym and Hyponym search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 147 8 0.948 0.253 0.612

Adjective 121 3 0.976 0.186 0.527

Verb 192 41 0.824 0.193 0.498

Adverb 110 10 0.917 0.308 0.657

Total 570 62 0.902 0.221 0.558

Table 4.18: Coverage results of running Verto with the original dictionaries and
the Synonym and Similar search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 22,888 50.3 17,680 78.2 44,363 0.975

Adjective 9,197 4,387 47.7 3,627 75.4 13,753 1.495

Verb 5,359 3,495 65.2 1,654 88.7 13,750 2.566

Adverb 583 186 31.9 285 71.8 458 0.786

Total 60,626 30,956 51.1 23,246 78.3 72,324 1.456

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

during Test Run 3 both the precision and the recall increased for the
noun category.

On the other hand, a decrease in the precision of verb mappings
caused a decrease in the overall precision score. Nonetheless, the total
F0.5 score scarcely reached a new maximum, due to an increased overall
recall score.

Test Run 4 (The Synonym and Similar Strategies). The fourth test
run applied the basic Synonym strategy along with the Similar search
strategy that was presented in Section 4.8.4.

Table 4.18 shows that this lead to a strong increase in the number
of mapped adjectives (+ 11.8 %), which caused the overall number of
mapped words to reach a new maximum (at 51.1 %).

120

Mapping
Norwegian to
WordNet

Table 4.19: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and the Synonym and Similar search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 129 7 0.949 0.222 0.573

Adjective 219 10 0.956 0.336 0.698

Verb 160 26 0.860 0.161 0.460

Adverb 110 10 0.917 0.308 0.657

Total 618 53 0.921 0.239 0.587

As shown in Table 4.19, just as in the previous test run, both the
precision and recall scores for the noun category increased compared
to the first test run. However, while the precision reached yet another
maximum (at 0.949), the recall did not increase as much as in Test
Run 3.

The strong increase in the number of mappings of adjectives caused
the corresponding recall number to increase strongly as well. Not
surprisingly, the adjective precision score dropped slightly.

As a result, a new overall maximum in both precision (at 0.921) and
recall (at 0.239) caused yet another maximum F0.5 score (at 0.587).

Test Run 5 (The Synonym and Verb-Group Strategies). The fifth test
run replaced the Similar search strategy with the Verb-Group strategy
presented in Section 4.8.3.

According to Table 4.20 on the next page, the strategy seems to
have little effect on the coverage in general. In fact, only two more
words were mapped, both verbs. However, the number of mappings
per verb increased quite a bit (+ 933). Except for that, the search strategy
had an insignificant impact on the number of words mapped.

Table 4.21 on the following page shows no change in the precision
and recall scores compared to the first test run, except for the verb cate-
gory, where precision decreased (- 0.008) slightly and recall increased
(+ 0.013). The net effect was a minute decrease in the F0.5 score (- 0.005).

Test Run 6 (The Synonym and All Search Strategies). The sixth test run
represents the end of the first partition of test runs. In this test run, all
the search strategies were included in the extended Mirror algorithm’s
repertoire.

121

Results

Table 4.20: Coverage results of running Verto with the original dictionaries and
the Synonym and Verb-Group search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 22,841 50.2 17,727 78.3 44,104 0.970

Adjective 9,197 3,304 35.9 4,710 79.9 8,290 0.901

Verb 5,359 3,497 65.3 1,652 88.7 14,683 2.740

Adverb 583 186 31.9 285 71.8 458 0.786

Total 60,626 29,828 49.2 24,374 79.1 67,535 1.349

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.21: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and the Synonym and Verb-Group search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 126 7 0.947 0.217 0.566

Adjective 121 3 0.976 0.186 0.527

Verb 173 30 0.852 0.174 0.479

Adverb 110 10 0.917 0.308 0.657

Total 530 50 0.914 0.205 0.540

As Table 4.22 on page 124 shows, the results include a new maximum
coverage score for both nouns (at 52.1 %) and verbs (at 70.2 %), while
the corresponding scores for adjectives and adverbs are equal to the
maximums found earlier in Table 4.18 on page 120 and 4.14 on page 118,
respectively. Consequently, the total coverage score also reached a new
maximum (at 52.9 %).

Not surprisingly, as shown in Table 4.23 on page 124, all the pre-
cision scores were lower than in the first test run, except for the ad-
verb category, which was unchanged. As a result, the overall precision
score reached a new minimum (at 0.899).

Conversely, the overall recall score reached a new maximum (at
0.277), and so did the F0.5 score as well (at 0.621).

122

Mapping
Norwegian to
WordNet

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.16: Summary of precision scores through test runs 1–6.

0

0.2

0.4

0.6

0.8

1

R
ec

a
ll

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.17: Summary of recall scores through test runs 1–6.

123

Results

Table 4.22: Coverage results of running Verto with the original dictionaries and
the Synonym and all of the search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,487 23,720 52.1 16,848 77.4 53,344 1.173

Adjective 9,197 4,385 47.7 3,629 75.4 13,757 1.496

Verb 5,359 3,763 70.2 1,386 86.8 21,827 4.073

Adverb 583 188 32.2 283 71.6 460 0.789

Total 60,626 32,056 52.9 22,146 77.5 89,388 1.883

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.23: Precision, recall, and F0.5 results of running Verto with the
original dictionaries and all of the search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 158 9 0.946 0.272 0.633

Adjective 219 10 0.956 0.336 0.698

Verb 228 51 0.817 0.229 0.540

Adverb 111 10 0.917 0.311 0.660

Total 716 80 0.899 0.277 0.621

The graphs in figures 4.16 to 4.18 on pages 123–125 sum up the
precision, recall, and F0.5-score results from test runs 1–6. The full-range
y-axis makes it easier to compare the result summary of the first six
test runs with the results of the last six, shown in figures 4.19 to 4.21

on pages 133–134.

124

Mapping
Norwegian to
WordNet

0

0.2

0.4

0.6

0.8

1

F
-S

co
re

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.18: Summary of F0.5 scores through test runs 1–6.

Table 4.24: Number of times that no mapping could be found
due to missing WordNet entries, with extended dictionaries.

Lexical category Word not in WordNet Change (%)

Noun 4,331 -11.95

Adjective 1,002 -15.30

Verb 161 -23.33

Adverb 93 -16.96

Total 5,587 -13.03

125

Results

Table 4.25: Coverage results of running Verto with the extended dictionaries and
the Synonym strategy.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,268 54.9 16,394 79.1 78,857 1.715

Adjective 9,526 4,404 46.2 4,120 80.4 22,022 2.312

Verb 5,435 4,052 74.6 1,222 88.4 31,574 5.809

Adverb 1,394 488 35.0 813 89.7 1,605 1.151

Total 62,348 34,212 54.9 22,549 80.1 134,058 2.747

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

4.10.5 With the Extended Dictionaries

During the final six test runs, the original dictionary modules, NorEng

and EngNor, were replaced by the extended dictionary modules,
NorEngC and EngNorC, respectively.

Because the extended dictionary modules were generated by combin-
ing the Norsk–engelsk stor ordbok dictionary with the entries obtained by
reversing every translation in Engelsk–norsk stor ordbok, and vice versa,
each extended dictionary is guaranteed to contain a number of entries
greater than or equal to the originals they are extensions of. This is in
accordance with the observed reduction in the number of words that
could not be mapped because no inverse translation could be found, as
shown in Table 4.24 on the previous page. The numbers presented in
Table 4.24 were constant for all the last test runs.

Test Run 7 (The Synonym Strategy). Since this seventh test run starts
a sequence of test runs parallel to test runs 1–6, it will serve as the
reference case for the following five test runs. As a consequence, for
the next five test runs, parenthetic change indicators are relative to the
results of this test run, unless otherwise stated.

Even though the results of Test Run 6 presented new maximum
coverage values, those values are all surpassed by the results of the sev-
enth test run, presented in Table 4.25, except for the adjective coverage
values, which are slightly lower than in Test Run 6 (-1.5 %).

126

Mapping
Norwegian to
WordNet

Table 4.26: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym strategy.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 208 42 0.832 0.262 0.580

Adjective 272 11 0.961 0.224 0.580

Verb 344 67 0.837 0.241 0.560

Adverb 205 22 0.903 0.420 0.734

Total 1,029 142 0.879 0.262 0.598

The average number of mappings for each lexical category was much
higher than in the previous test runs, with a total average of mappings
per input word of 2.747.

As shown in Table 4.26, all the recall values increased compared to
the first run, while they were actually reduced for categories noun and
adjective when compared to Test Run 6.

The total F0.5 score was higher than in Test Run 1 (+ 0.090), and even
slightly higher than in Test Run 6 (+ 0.004).

It should also be noted that the total number of mappings com-
pared to the test set increased with the introduction of the extended
dictionaries, as shown in Table 4.26.

Test Run 8 (The Synonym and Hypernym Strategies). The eighth run
used the same Mirror strategies as Test Run 2, and the same patterns
in coverage increase are seen, relative to the foregoing test run. As
Table 4.27 on the following page shows, the number of mapped words
were increased for all but the adjective category. Consequently, the per-
centage of words Verto was able to map represented a new maximum
(at 56.1 %).

Furthermore, the high average number of mappings per verb (8.030)
should be noted.

As shown in Table 4.28 on the next page, precision was reduced,
while both the recall and F0.5 scores were increased, relative to Test
Run 7. The new F0.5 score represents a new maximum.

Test Run 9 (The Synonym and Hyponym Strategies). The ninth run
replaced the Hypernym search strategy with the Hyponym search
strategy.

127

Results

Table 4.27: Coverage results of running Verto with the extended dictionaries and
the Synonym and Hypernym search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,797 56.1 15,865 78.6 90,552 1.969

Adjective 9,526 4,399 46.2 4,125 80.5 22,036 2.313

Verb 5,435 4,260 78.4 1,014 86.3 43,645 8.030

Adverb 1,394 491 35.2 810 89.7 1,609 1.154

Total 62,348 34,947 56.1 21,814 79.6 157,842 3.367

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.28: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym and Hypernym search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 244 44 0.847 0.308 0.627

Adjective 272 11 0.961 0.224 0.580

Verb 435 100 0.813 0.304 0.609

Adverb 206 22 0.904 0.422 0.736

Total 1,157 177 0.867 0.295 0.625

Table 4.29: Coverage results of running Verto with the extended dictionaries and
the Synonym and Hyponym search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,810 56.1 15,852 78.5 88,070 1.915

Adjective 9,526 4,400 46.2 4,124 80.5 22,028 2.312

Verb 5,435 4,258 78.3 1,016 86.3 38,541 7.091

Adverb 1,394 492 35.3 809 89.7 1,609 1.154

Total 62,348 34,960 56.1 21,801 79.6 150,248 3.118

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

128

Mapping
Norwegian to
WordNet

Table 4.30: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym and Hyponym search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 238 45 0.841 0.300 0.618

Adjective 272 11 0.961 0.224 0.580

Verb 387 87 0.816 0.271 0.582

Adverb 205 22 0.903 0.420 0.734

Total 1,102 165 0.870 0.281 0.613

Table 4.31: Coverage results of running Verto with the extended dictionaries and
the Synonym and Similar search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,311 55.0 16,351 79.1 79,238 1.723

Adjective 9,526 5,364 56.3 3,160 75.9 35,028 3.677

Verb 5,435 4,052 74.6 1,222 88.4 31,574 5.809

Adverb 1,394 488 35.0 813 89.7 1,605 1.151

Total 62,348 35,215 56.5 21,546 79.4 147,445 3.090

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.29 on the facing page shows few surprises. The coverage
values were mostly the same as for Test Run 8. However, the total
average number of mappings per input word was slightly reduced,
mostly caused by a corresponding reduction in the verb category.

As shown in Table 4.30, the overall precision showed a minute in-
crease (+ 0.003), while both the recall and F0.5 scores were reduced,
relative to Test Run 8.

Test Run 10 (The Synonym and Similar Strategies). In the tenth run,
the Similar strategy was used, just as in Test Run 4.

As seen in Table 4.31, the strategy gave rise to a new total cover-
age percentage (of 56.5 %), which represents the maximum so far.

129

Results

Table 4.32: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym and Similar search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 213 42 0.835 0.269 0.587

Adjective 473 30 0.940 0.390 0.734

Verb 344 67 0.837 0.241 0.560

Adverb 205 22 0.903 0.420 0.734

Total 1,235 161 0.885 0.315 0.650

Table 4.33: Coverage results of running Verto with the extended dictionaries and
the Synonym and Verb-Group search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,268 54.9 16,394 79.1 78,857 1.715

Adjective 9,526 4,404 46.2 4,120 80.4 22,022 2.312

Verb 5,435 4,054 74.6 1,220 88.3 33,537 6.171

Adverb 1,394 488 35.0 813 89.7 1,605 1.151

Total 62,348 34,214 54.9 22,547 80.1 136,021 2.837

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

Table 4.32, shows that both the total precision and recall reached new
local—to this partition of the test runs—maximum values (at 0.885 and
0.315, respectively). As a result of the high precision and recall values,
the F0.5 score reached a new maximum, too (at 0.650).

Test Run 11 (The Synonym and Verb-Group Strategies). The eleventh
test run used the Verb-Group strategy, just as Test Run 5. And, just as
for Test Run 5, the results—presented in tables 4.33 and 4.34—show few
interesting changes, except that the number of average mappings per
verb increased—as would be expected, given the strategy’s workings—
and that the F0.5 score showed a minute increase, relative to Test Run 7.

Test Run 12 (The Synonym and All Search Strategies). The final run
used the extended dictionaries and all of the search strategies.

130

Mapping
Norwegian to
WordNet

Table 4.34: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym and Verb-Group search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 208 42 0.832 0.262 0.580

Adjective 272 11 0.961 0.224 0.580

Verb 364 72 0.835 0.255 0.574

Adverb 205 22 0.903 0.420 0.734

Total 1,049 147 0.877 0.267 0.602

Table 4.35: Coverage results of running Verto with the extended dictionaries and
the Synonym and all of the search strategies.

Lexical
category

Mapped No inverse Mappings

Keywords N (%)a N (%)b N Mean

Noun 45,993 25,879 56.3 15,783 78.5 99,594 2.165

Adjective 9,526 5,357 56.2 3,167 76.0 35,049 3.679

Verb 5,435 4,264 78.5 1,010 86.3 51,010 9.385

Adverb 1,394 492 35.3 809 89.7 1,610 1.155

Total 62,348 35,992 57.7 20,769 78.8 187,263 4.096

a Percentage of keywords mapped to WordNet senses.
b Percentage of cases where no mapping could be found.

131

Results

Table 4.36: Precision, recall, and F0.5 results of running Verto with the
extended dictionaries and the Synonym and all of the search strategies.

Mappings

Lexical category Correct Incorrect Precision Recall F0.5

Noun 273 47 0.853 0.344 0.658

Adjective 473 30 0.940 0.390 0.734

Verb 481 123 0.796 0.337 0.625

Adverb 206 22 0.904 0.422 0.736

Total 1,433 222 0.866 0.365 0.680

Table 4.35 on the preceding page shows how all coverage values
increased to reach new maximum levels, except in the adjective category
for which Test Run 10 represented the maximum.

Furthermore, the average number of mappings per input word
reached its maximum value (of 4.096).

To no surprise, as shown in Table 4.36, the precision level decreased
(- 0.013), with respect to Test Run 7, while both the recall and F0.5 level
reached new maximums (at 0.365 and 0.680, respectively).

Figures 4.19 to 4.21 on pages 133–134 show graphs that respectively
sum up the precision, recall, and F0.5-score results in test runs 7–12.

The bar graphs in figures 4.16 to 4.18 and 4.19 to 4.21 emphasize
differences between the different lexical categories (and the total) within
each test run. They also make it easy to get an impression of the sizes
involved. However, the bar graphs are less suited to emphasize change
between each test run. Therefore, the line graphs in Figure 4.22 are
included to emphasize how the precision and recall—and also F0.5—
results change from test run to test run.

4.10.6 Ordnett

As mentioned above, the resulting mappings from the experiments were
used to create Ordnett, a novel Norwegian lexical-semantic resource
that maps Norwegian words to WordNet senses. Because of Verto’s
mapping strategy, Ordnett inherits WordNet’s rich number of semantic
relations.

Figure 4.23 on page 136 shows a small segment of Ordnett. The figure
shows the mappings—designated by dashed arrows—from (base forms

132

Mapping
Norwegian to
WordNet

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.19: Summary of precision scores through test runs 7–12.

0

0.2

0.4

0.6

0.8

1

R
ec

a
ll

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.20: Summary of recall scores through test runs 7–12.

133

Analysis and
Discussion

0

0.2

0.4

0.6

0.8

1

F
-S

co
re

SYNONYM HYPERNYM HYPONYM SIMILAR VERB-GROUP All

Search strategy

Noun Adjective Verb Adverb Total

Figure 4.21: Summary of F0.5 scores through test runs 7–12.

of) Norwegian words to synsets in WordNet. The figure also shows
both meronymy (part of)—designated by arrows with diamond-shaped
arrowheads—and hypernymy (a kind of) relations.

Regarding Figure 4.23, it should be noted that Verto actually finds
mappings from words to WordNet senses, not synsets. However, to make
the figure easier to comprehend, I let the mappings target the synsets
that the senses belong to. Also note that the figure is non-exhaustive in
that the shown synsets are related to many more synsets than can be
shown here, and a few synsets along the hypernymy paths have been
left out, because of space concerns, and replaced by ellipses.

4.11 Analysis and Discussion

As shown by the results presented in Section 4.10.1, Verto—the map-
ping framework—generally offers a high level of precision. Figure 4.22

provides a summary of how the precision, recall, and F0.5-measure
changed during the twelve test runs.

134

Mapping
Norwegian to
WordNet

Noun Adjective Verb Adverb Total

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

o
n

1 2 3 4 5 6

Test run #

(a) Precision, original dictionaries.

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

o
n

7 8 9 10 11 12

Test run #

(b) Precision, extended dictionar-
ies.

0

0.1

0.2

0.3

0.4

R
ec

a
ll

1 2 3 4 5 6

Test run #

(c) Recall, original dictionaries.

0

0.1

0.2

0.3

0.4

R
ec

a
ll

7 8 9 10 11 12

Test run #

(d) Recall, extended dictionaries.

0.4

0.5

0.6

0.7

0.8

F
0
.5

1 2 3 4 5 6

Test run #

(e) F0.5, original dictionaries.

0.4

0.5

0.6

0.7

0.8

F
0
.5

7 8 9 10 11 12

Test run #

(f) F0.5, extended dictionaries.

Figure 4.22: The change patterns in the results from test runs 1–12.

135

Analysis and
Discussion

Figure 4.23: A small, non-exhaustive segment of the Ordnett resource,
showing mappings from Norwegian to WordNet synsets in addition
to both meronymy and hypernymy relations.

136

Mapping
Norwegian to
WordNet

The highest precision value—averaged over all the lexical categories—
at 0.921, was achieved in Test Run 4, featuring the original dictionaries.
However, in the same test run, the total recall value was 0.239, as shown
in Table 4.19.

Even though the F-measure was weighted with β = 0.5—preferring
precision over recall—the highest average F0.5 score with the original
dictionaries was achieved in Test Run 6 at 0.621; see Figure 4.22e and
Table 4.23. Globally, the highest average F0.5 score was achieved in Test
Run 12, as shown in Figure 4.22f and Table 4.36.

During test runs 7–12 the overall recall generally increased, reaching a
maximum at 0.365 during Test Run 12, as shown in Table 4.36. However,
during the same run, the precision level was 0.866, while the F0.5-
measure was 0.680.

During the test runs, the number of words Verto found a warranted
mapping for increased from 29,826 (49.2 %), in Test Run 1, to 35,992

(57.7 %), in Test Run 12, of the total 62,348 words given as input.
All in all, the tests show that the Verb-Group search strategy made

insignificant contributions to both the precision and recall levels. The
Hyponym and Hypernym search strategies on the other hand, both
were able to increase the recall level slightly at the expected cost of a
slightly decreased level of precision. The most surprising result was
probably the Similar search strategy’s effect on the adjective recall
level; its contribution caused the total recall level to increase more than
both the Hyponym and Hypernym search strategies did.

Through all the tests, the adverb category’s precision, recall, and F0.5
levels were unaffected by all of the applied search strategies. However,
the adverb category’s levels were higher than the total levels in each
test. In contrast, the precision, recall, and F0.5 levels of the verb category
generally were lower than the total levels.

Furthermore, it seems that the combination of all the search strategies,
in test runs 6 and 12, caused new maximum F0.5 levels to be reached
for each of the lexical strategies. This suggests that applying the search
strategies in combination causes a synergy effect; the combined appli-
cation has greater effect per affected lexical class than applying them
separately.

The results also show that extending the dictionary resources made
available to Verto made a great impact on both the coverage, precision,
and recall levels. Additionally, the average number of mappings per
input word increased significantly by this extension.

In Section 4.11.1 attempts were made at discovering trends in both
precision and recall levels that might correlate with the input words’
usage frequencies.

137

Analysis and
Discussion

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

0 1 · 105 2 · 105 3 · 105 4 · 105

Word-usage frequency

0

0.2

0.4

0.6

0.8

1
R

ecall
Precision Regression (Precision) Recall Regression (Recall)

Figure 4.24: Scatter graph of precision and recall scores for each
input word against its usage frequency, with regression lines.

The correlation r will always be −1 ≤ r ≤ 1, and values of r close to 0

indicate a very weak relationship between the variables. Therefore, the
scatter graph in Figure 4.24 and the very low correlation between word-
usage frequencies and both precision (r = 0.061) and recall (r = −0.007)
show that there is no significant straight-line relationship between the
word-usage frequencies of the input words and the precision and recall
of the system.

4.11.1 Word-Usage Frequencies

To see whether the common usage frequency of input words affect
the results of the Verto method, I prepared a scatter graph. The scat-
ter graph, based on values from Test Run 1, is shown in Figure 4.24,
and contains scatterplots of both precision and recall values for each
word against the word’s usage frequency. The word frequencies were
gathered from the Oslo Corpus of Tagged Norwegian Texts (Text Labo-
ratory 2008b), and were based on Norwegian newspaper articles in both
Nynorsk and Bokmål. The word-frequency list for Bokmål was based

138

Mapping
Norwegian to
WordNet

on 14,453,053 occurrences and contains 460,416 unique words, while the
word-frequency list for Nynorsk was based on 3,714,453 occurrences
and contains 169,028 unique words.

To see whether there was any straight line relationship between the
word usage frequency and either the precision or recall values, the
correlation between the usage frequency and the two measures was
calculated. The formula for correlation, r is

r =
∑
(

x−x
sx

) (
y−y
sy

)
n− 1

(4.32)

where x and y represent two variables for n observations. For example,
given that the correlation between word-usage frequencies and preci-
sion levels is calculated, x represents the word usage frequency and
y represents the precision. The symbols x and y represent the mean
for these x and y, respectively, while sx and sy represent their standard
deviations. The standard deviation sx is

sx =

√
∑ (x− x)2

n− 1

(4.33)

and sy is calculated equally; just replace x by y.
The correlation between the word-usage frequencies and precision

levels is 0.061, while the correlation between the word-usage frequencies
and recall levels is −0.007.

In an attempt to emphasize trends if there were any, Figure 4.24

also contains simple least-squares regression lines for the precision and
recall observations.

4.11.2 Misaligned Coverage

In a few cases, problems were caused by Norsk–engelsk stor ordbok,
Engelsk–norsk stor ordbok, and WordNet covering disjoint sets of senses
for certain words. This can be seen as a problem with misaligned
coverage between Norsk–engelsk stor ordbok, Engelsk–norsk stor ordbok,
and WordNet.

For example, one of the translations of the Norwegian verb «krote»
(to deck something with scrolls, often by carving) in Norsk–engelsk stor
ordbok is the English verb scroll. However, in WordNet scroll as a verb
has only one sense, and that sense is “to move through text or graphics
in order to display parts that do not fit on the screen.” In this case,
there is no way the inverse-translation principle can be used to find

139

Analysis and
Discussion

the warranted mapping, because WordNet does not cover the senses
referred to by Norsk–engelsk stor ordbok/Engelsk–norsk stor ordbok.

The same problem has been observed for a few nouns. For example,
the Norwegian noun vift (a puff or a whiff) is translated into the English
noun waft, while in WordNet the only sense of waft as a noun is “a long
flag.”

After the dictionaries were combined, the precision decreased, while
the recall increased. This was no big surprise, as there is usually a
tradeoff between the two measures.

For example, when the dictionaries were combined, new possible
translations were introduced, and a problem similar to the one men-
tioned above became visible. For example, the EngNor module pro-
vides a translation from “poppet” to «skatt», while the introduction
of the combined dictionary resource NorEngC therefore adds a new
translation from «skatt» to “poppet”. The problem arises when “poppet”
is found in WordNet, because the only sense of “poppet” in WordNet
is “a mushroom-shaped valve that rises perpendicular from its seat;
commonly used in internal-combustion engines”; a sense not warranted
by «skatt».

4.11.3 Ordnett

The mappings found by Verto were used to create Ordnett, a lexical-
semantic resource that maps Norwegian words to WordNet senses.
Thereby, we obtain access to a rich lexical-semantic resource for Nor-
wegian, because Ordnett inherits the rich number of semantic relations
defined in WordNet.

This section will discuss some of the observations made with regard
to the creation and possible applications of Ordnett.

Cross-Synset Mappings

As shown by the mappings of the Norwegian words «motorvogn»,
«befordringsmiddel», «kjøretøy», «kjøredoning», and «transportmiddel» in
Figure 4.23 on page 136, the rather fine grained distinction made be-
tween some synsets in WordNet does not necessarily fit the meaning
of the mapped words perfectly. From the examples in Figure 4.23, it
seems that some Norwegian words, that are synonymous in some
contexts, risk getting mapped to two (or, perhaps, more) closely related
synsets in WordNet. It appears that these cross-synset mappings can
be traced back to the dictionary resources. For example «motorvogn»
can be used about any kind of motorized car or vehicle, and Norsk–

140

Mapping
Norwegian to
WordNet

engelsk stor ordbok therefore provides translations to both “motor car”
and “motor vehicle”; something that eventually lead Verto to accept
both mappings, even though they target different synsets.

On the other hand, one might also argue that these mappings are a
consequence of WordNet being defined with so fine-grained distinctions
that what differentiates two synsets is sometimes hard to define.

However, deciding whether a cross-synset mapping is caused by such
a combination of source-language synonymy and fine-grained synset
distinctions, or simply reflect different meanings of a homograph, is
important. One way to decide could, for example, be to only consider
cross-synset mappings that are one hypernym/hyponym step apart as
equal, or similar, in meaning. Such a decision is based on a view that
true homographs would be more distinct in meaning.

Nonetheless, in practical use of Ordnett one could handle such cross-
synset mappings in several ways, depending on the application. One
way could be to merge all features that hold for each involved synset,
to create a proxy synset. Another way could be to always choose either
the most or the least general synset. A third way could be to choose the
synset that fits, for example, the current context in the application that
uses Ordnett.

Possible Applications

Generally, it should be possible to utilize the lexical semantic resource
Ordnett in applications that process Norwegian language within most,
if not all, of the NLP areas described in Section 2.1.2. Even though
Chapter 5 will show how Ordnett can be applied to the field of text
interpretation and open-domain question answering (open-domain
QA), because most applications in those areas are quite complex, going
into detail about how it can be used in each of those is outside the scope
of this dissertation. Generally, Ordnett can be used as a Norwegian
general ontology that has all of the semantic relationships defined in
WordNet. Furthermore, because the mapping of Norwegian words
serves as an interface to WordNet, Ordnett can also be used together
with other resources that interface WordNet to extend or complement
it.

On the other hand, one more light-weighted application of Ordnett,
that I would like to mention, is within on-line ad placement or product
suggestions. For example, because of its rich number of semantic rela-
tionships, inherited from WordNet, Ordnett could very well be used for
presenting adverts to users based on search terms used in Web queries.
This could be done by utilizing Ordnett’s (inherited) hypernymy and

141

Analysis and
Discussion

Figure 4.25: Ordnett mappings from Norwegian to the WordNet
synset containing makeup_n_2 and its hyponyms.

142

Mapping
Norwegian to
WordNet

Figure 4.26: Ordnett mappings from Norwegian to the WordNet
synset containing hair_n_1 and its substance meronyms.

meronymy relations. Looking back at Figure 4.23 on page 136, if a user,
for example, searches for «gasspedal», a system could use the meronymy
information in the lexical-semantic resource to recognize that accelera-
tors are part of automobiles. Based on that knowledge, the system could
present adverts for cars or other car parts to the user. Likewise, the
system could use hypernymy information to present users with adverts
for different kinds of makeup if the user searches for a particular kind
of makeup, for example «leppestift» or «øyensværte», as shown in Fig-
ure 4.25. The synsets {lip-gloss_n_1} and {blackface_n_1}—both
hyponyms of {makeup_n_2, make-up_n_1, war_paint_n_3}—were not
included in the figure, because no mappings from Norwegian targeted
those.

Example Semantic Relations

To provide a better impression of the richness of semantic information
that Ordnett gains access to through WordNet, figures 4.26 and 4.27

show a couple of semantic relations not yet presented.

143

Analysis and
Discussion

Figure 4.27: Ordnett mappings from Norwegian to the WordNet
synset containing eat_v_1 and actions it entails.

The segment of Ordnett presented in Figure 4.26 shows a kind of
meronymy called substance meronymy, designated by the arrows with
black diamond heads. The substance meronym relations in the fig-
ure signify that ceratin_n_1 is a substance in both hair_n_1 and
feather_n_1. Or, in Norwegian, that «keratin» is part of both «hår» and
«fjær».

Figure 4.27 shows the entailment relationship in WordNet that is
defined for pairs of verb synsets. For example, the Ordnett segment in
the figure shows that to eat_v_1 something entails that one must both
chew_v_1 and swallow_v_1. Even though, the order of the chewing and
swallowing is not fixed, the information can still be useful for NLP
purposes.

4.11.4 Comparison with Semantic Mirrors

Dyvik’s semantic mirrors method is a way to derive lexical-semantic re-
sources from translational data, typically parallel corpora.

The method is generally based on an assumption that sense distinc-
tions in the source language are mirrored into the target language.

144

Mapping
Norwegian to
WordNet

In particular, the semantic mirrors method is based on the following
assumptions (Dyvik 2005)10:

(D1) Semantically closely related words tend to have strong-
ly overlapping sets of translations.

(D2) Words with wide meanings tend to have a higher num-
ber of translations than words with narrow meanings.

(D3) If a word a is a hyponym of a word b (such as tasty of
good, for example), then the possible translations of a
will probably be a subset of the possible translations
of b.

(D4) Contrastive ambiguity, i.e., ambiguity between two
unrelated senses of a word, such as the two senses of
the English noun band (‘orchestra’ and ‘piece of tape’),
tends to be a historically accidental and idiosyncratic
property of individual words. Hence we don’t expect to
find instances of the same contrastive ambiguity repli-
cated by other words in the language or by words in
other languages. (More precisely, we should talk about
ambiguous phonological/graphic words here, since
such ambiguity is normally analysed as homonymy
and hence as involving two lemmas.)

(D5) Words with unrelated meanings will not share transla-
tions into another language, except in cases where the
shared (graphic/phonological) word is contrastively
ambiguous between the two unrelated meanings. By
assumption (D4) there should then be at most one such
shared word.

The semantic mirrors method refers to the set of possible translations—
based on word-alignment occurrences in parallel corpora—of a word
as the word’s first t-image. Hence, a word’s first t-image is the set of all
observed translations of the word in the parallel target-language text,
while all the first t-images of those words back into the source-language
text are called the original word’s inverse t-image.

Furthermore, the semantic mirrors method works by comparing how
first t-images and inverse t-images overlap and form disjoint subsets. By
exploiting the information implicitly expressed by the different subsets,

10 The labels have been changed by me. Each of the quoted assumptions are identified by a
label (Dn), where D refers to the author Dyvik and n refers to the label used by Dyvik
(2005).

145

Analysis and
Discussion

the method is able to both separate out individual senses of each word
and to derive different semantic relations among them.

The method presented by me, as implemented in Verto, is related
to the semantic mirrors method because both methods take advantage
of the semantic relations expressed by translational relations. The se-
mantic mirrors method creates a lexical-semantic resource by mining
the implicit semantic relations expressed by word-alignments of par-
allel corpora, while my method creates a lexical-semantic resource by
combining the translational relations expressed in dictionaries with the
explicit semantic relations expressed by WordNet.

4.11.5 Comparison with Other Approaches

As mentioned in Section 2.4.1, Rigau and Agirre (1995) used a method
based on the conceptual density measure for disambiguating mappings
from a French-English to WordNet. First of all, it should be noted
that the method they presented only deals with nouns, and for each
translation they only want to find a single representative WordNet sense.
Furthermore, the performance of both their and my method largely
depends on the dictionary resources they use. Therefore, comparing
Rigau and Agirre’s results with the results presented herein might not
be appropriate. This is especially true for a comparison of the coverage
of the methods, because the coverage is measured as a percentage of
all possible translations in the dictionary resources. Nonetheless, Rigau
and Agirre report a coverage of 47 % and a precision of 91 %.11

In comparison, focusing on nouns only, the corresponding results
from Verto are shown in Table 4.37 on the facing page. As can easily
be seen, by focusing on maximization of precision Verto achieved
50.3 % coverage and at the same time 94.9 % precision, both results
slightly better than those reported by Rigau and Agirre. Optimizing
for maximum recall, F0.5, or coverage, on the other hand, yields a
significant improvement in coverage (57.7 %), at the cost of lowered
precision (85.3 %).

11 Rigau and Agirre (1995) do not state their average coverage and precision explicitly.
However, they present coverage numbers, distributed over the following categories of
translation cases (percentage of the total number of attempted translations): (i) single
word with only a single sense in WordNet (2,172 words, 14 %); (ii) (they call this complex
translations) multiple words where one of the translations has only a single sense in
WordNet (2,947 words, 19 %); (iii) more than one possible translation (723 words, 5 %);
and (iv) a cue in French is given provided by the dictionary entry (1,399 words, 9 %).
These numbers sum up to a total coverage of 7,241 words, or 47 %. They report the
following precision measures: Category (i) 100 %, Category (ii) 88 %, Category (iii) 93 %,
and Category (iv) 83 %. Therefore, a weighted mean value for the precision should yield
91 %.

146

Mapping
Norwegian to
WordNet

Table 4.37: Verto’s precision, recall, and coverage results for mapping of
nouns.

Maximum Precision Recall F0.5 Coverage Test Run

Precision 0.949 0.222 0.573 22,888 (50.3 %) 4

Recall 0.853 0.344 0.658 35,992 (57.7 %) 12

F0.5 0.853 0.344 0.658 35,992 (57.7 %) 12

Coverage 0.853 0.344 0.658 35,992 (57.7 %) 12

Using different statistical analyses to evaluate the quality of the broad
spectrum of methods for mapping nouns to WordNet 1.5 presented by
Atserias et al. (1997), Farreres et al. (2002) manage to present detailed
precision and coverage statistics for the methods used to build the
Spanish WordNet. Farreres et al. present detailed results, showing
the costs of trading coverage for increased precision and vice versa.
Their highest reported level of precision is 93.28 %, which is close
to—but lower than—Verto’s maximum, with an according coverage of
only 5.70 %. They also report a configuration that yields a coverage of
44.50 % with a precision of 91.35 %. However, their next step towards
increased coverage yields a coverage of 71.80 % with a precision of
90.97 %.

The comparison of Verto’s results against the results reported by
Rigau and Agirre (1995) and Atserias et al. (1997), through Farreres
et al. (2002), indicates—at least for nouns—that Verto’s performance
is very competitive when optimizing for precision and slightly less
competitive when optimizing for coverage.

Because Atserias et al. (1997)’s “variant criterion”, shown in Fig-
ure 2.6a in Section 2.4.3, exploits a relationship between the syn-
onymy within synsets and the translation relation to determine which
mappings are probably correct, the method could at first resemble
parts of my method (described in this chapter). However, upon closer
inspection it can be seen that the variant criterion is merely hinting at
one of the driving forces behind my method.

First of all, Atserias et al. state that a Spanish word is mapped to
a synset if two or more of the synonyms in the synset “have only
one translation to the same Spanish word” (emphasis added by me).
Secondly, by exploiting the synonymy relation, their criterion is only
using intrasynset information. The method presented in Chapter 3, on

147

Analysis and
Discussion

the other hand, is not constrained to English words that only have a
single translation into what originally constitutes the source language.
Furthermore, compared to the variant criterion, my method uses the
synonymy within synsets merely as a stepping stone, since it also
applies a variety of search strategies that utilize a variety of semantic
relations defined between synsets in WordNet.

148

—Successfully teaching a computer to do
natural language understanding in open
domain is one of the major unsolved
problems in artificial intelligence.

Grunfeld and Kwok (2006)

5
Open-Domain Natural Language Understanding

for Norwegian

This chapter shows how the lexical-semantic resource Ordnett can
be used in TUClopedia, an open-domain question answering (open-
domain QA) system that automatically extracts and acquires knowledge
from Norwegian encyclopedic articles and uses the acquired knowledge
to answer questions formulated in natural language by its users.

5.1 Motivation

The encyclopedic articles to be parsed and interpreted by TUClope-
dia constitute Store norske leksikon (Henriksen 2003), a Norwegian ency-
clopedia that contains information on all branches of knowledge.

1 Because Store norske leksikon is a general encyclopedia, which means that
it is not constrained to any specific domain of knowledge, it amounts
to an open-domain knowledge source.

There are also a couple of other reasons that we constrain our research
to encyclopedic texts:

2 The information an encyclopedia provides is in principle correct and
generally represents grammatically correct and concise written lan-
guage.

3 We strongly believe that a traditional encyclopedia will benefit from the
transformation into a Natural Language Understanding (NLU) system.

As Information Retrieval (IR) technology, such as the Google Web
Search1 engine, becomes part of people’s everyday life—taking the

1 Google Web Search, http://www.google.com/. Accessed July 22, 2007.

149

http://www.google.com/

Motivation

global, social, and democratic aspects of the current digital divide (Nor-
ris 2001) into account—some inherent limitations of traditional, printed
encyclopedias become obvious.

For example, the traditional organization of encyclopedia articles,
where the articles are alphabetized according to a single descriptive
topic word or phrase that identifies the topic or theme of each article, is
well suited for the book medium. It might even be argued that the tradi-
tional organization probably is optimal, given the constraints of the book
medium, and that the topic words are wisely chosen. And, even though
some encyclopedias are accompanied by index volumes that provide ar-
ticle references based on complementary—but still descriptive—terms,
use of the traditional, printed encyclopedias still becomes cumbersome,
compared to querying on-line databases.

So far, however, when traditional encyclopedias have been made
available electronically—see for example Encyclopædia Britannica On-
line2, or the on-line version of Store norske leksikon3—they have been
made alphabetically browsable by subject, by topic, or by index words.
They also offer search features, so that users may search for articles
containing specific words or phrases. Even the newer Wikipedia4 of-
fers the same article access methods as just described; that is, through
browsing and keyword searching.5 Nonetheless, even when augment-
ing encyclopedias, with indexes for traditional and keyword searches
for electronic encyclopedias, there are still some tasks that are rather
cumbersome to perform.

For example, it is still difficult to find answers to questions that re-
quire reading multiple articles in the encyclopedia because the answers
are only partially provided by single articles. An example of this is
a question like “what are the names of the three highest mountains
in Norway?” Provided that one has access to an on-line version of an
encyclopedia enriched with an IR interface, but does not know the
name of any mountain in Norway, one would probably search for the
terms “mountain”, and “Norway”. Furthermore, the search engine
would probably return several candidate articles, of which only a few
really contain pieces of the answer (unless, of course, it finds a single
article that contains a list of the highest mountains in Norway). Conse-
quently, one would not have much other choice than to start reading all

2 Encyclopædia Britannica Online, http://www.britannica.com/. Accessed July 22, 2007.
3 The on-line version of Store norske leksikon, http://www.snl.no/. Accessed July 22,

2007.
4 Wikipedia, http://www.wikipedia.org/. Accessed July 22, 2007.
5 Although it should be noted that Powerset, mentioned in Chapter 1, currently provides a

question-answering (QA) interface for a limited number of Wikipedia articles.

150

http://www.britannica.com/
http://www.snl.no/
http://www.wikipedia.org/

Open-Domain
Natural
Language
Understanding
for Norwegian

the returned articles, one by one, and combine the adequate pieces of
information until the question has been confidently answered.

Generally, to use a modern IR system—as found on the Web today—
to find answers to a question, one must first spend time to transform
the question into a query with keywords that increase the chances of
receiving relevant candidate documents. Then, if the IR system finds
any relevant documents, one must spend time analyzing the documents,
looking for relevant passages that answer the question. In short, as IR
technology is becoming part of everyday life, users want to spend
less time translating their questions into keyword-based queries and
analyzing candidate documents for answers, and more time utilizing
the answers they seek in the first place.

Therefore, considering the above factors, an interesting test for the
Ordnett resource—produced with the method presented in Chapter 4—
will be to see how it can be utilized for NLU and QA in the open domain
that the texts from the general Norwegian encyclopedia (Henriksen
2003) constitute.

Furthermore, as noted by Paşca (2003), the design and implemen-
tation of open-domain QA systems raise several questions, including
(1) “What kind of unified model could be envisaged to represent infor-
mation encoded in open-domain questions?” and (2) “What types of
natural language processing techniques are best suited to find answer
strings within documents?”

Based on earlier experiences with successfully applying The Under-
standing Computer (TUC) to several narrow domains we want to explore
how the NLU system can be applied to open-domain QA and how
TUC must be modified to accomplish this. By putting Ordnett to test
in an open-domain QA system, we also hope to gain insight that can
contribute to answer the above questions posed by Paşca.

However, TUC is a NLU system that performs deep analyses that
include semantic type checking of candidate interpretations during text
parsing and therefore relies heavily on the availability of a semantic
resource in the form of a semantic network, or ontology.

Below, I will show how the TUC system was extended and modified
to perform open-domain QA for Norwegian texts, utilizing Ordnett
and WordNet as its main lexical semantic resources.

5.2 Scaling up TUC

The previous TUC-based projects have considered rather narrow do-
mains of discussion. For example, some indicative numbers for the
BusTUC system—420 nouns, 150 verbs, 165 adjectives, 60 prepositions

151

Semistructured
Resources

and about 4000 entries in the semantic network (Amble 2000)—show
that this is reflected both in the size of the lexicons and the semantic
network.

A much larger lexicon and a larger semantic network will be needed
in order to process and interpret a complete encyclopedia. In order
to meet the new requirements, TUClopedia—the project’s adaption
of TUC—was expanded in several ways. First of all, the Norwegian
lexicon has been considerably extended by using Norsk komputasjonelt
leksikon (NorKompLeks) (Nordgård 1998), a computational lexicon that
contains both morphological and syntactic information for Norwegian.
Additionally, the lexical semantic network WordNet 2.1 (Harabagiu et al.
1999) is made available to TUC in order to increase TUC’s semantic
knowledge. As mentioned in Section 4.1.2, WordNet 2.1 contains 117,097

nouns, 11,488 verbs, 22,141 adjectives and 4,601 adverbs.
Because of the quite specialized, earlier applications of TUC, during

several years of development the grammar has slowly become “tainted”
with pragmatic rules—rules that have been very adequate and success-
ful in these narrow domains, but with little or no general applicability.
The development of TUClopedia will take part in an ongoing effort to
develop a new grammar for TUC, using the same Context-Sensitive-
Categorial-Attribute-Logic (ConSensiCAL) formalism as the previous
grammar, but based on a reference grammar for Norwegian (Faarlund
et al. 1997). Another reason for writing a new grammar is the assump-
tion that encyclopedias are written with correct spelling and use of
the language, while for example BusTUC has to cope with very oral
formulations.

5.3 Semistructured Resources

The documents used as source material for the system were articles
from the general, Norwegian encyclopedia Store norske leksikon (Henrik-
sen 2003). Just as for the Norwegian–English and English–Norwegian
dictionary resources (Haslerud and Henriksen 2003) described in Sec-
tion 4.1.1, the format was semistructured, using Extensible Markup
Language (XML), and the provided files contained all the structural
information used to typeset and actually print the books they represent.

The XML documents contain tags marking fragments of the text as,
for example, keywords, biographic names, and titles of works. Some
of the title-of-work tags also contain information about what kind of
work it is, like ‘literature’, ‘film’, ‘music’, etc.

During preprocessing of the articles, such named entities are ex-
tracted and stored in an index that maps from the named entity to the

152

Open-Domain
Natural
Language
Understanding
for Norwegian

article where it was tagged. Later, when the articles are parsed, this
knowledge solves several inherently difficult problems.

For example, Hull and Gomez (1999) report that their system had
difficulties with recognizing titles in running text. The system described
in this dissertation applies a multiple-pattern approximate sequence
matching algorithm, described in Section 5.5, that uses the informa-
tion about the already extracted and indexed named entities during a
multitagging stage.

5.4 System Overview

Figure 5.1 on the next page shows the main components of the im-
plemented TUClopedia system. The main NLU part of the system is
LexTUC, a version of TUC adapted to TUClopedia. The different re-
sources (denoted by drum symbols—or cylinders—in Figure 5.1) used
and created by the system are:

• Bilingual dictionary, contains Norsk–engelsk stor ordbok and Engelsk–norsk
stor ordbok (Haslerud and Henriksen 2003), described in Section 4.1.1.

• Lexicon, is NorKompLeks (Nordgård 1998), described in Section 3.2.

• Ordnett, is the resource—created with the framework described in Sec-
tion 4.9—that maps Norwegian words and phrases to concepts in
WordNet.

• Encyclopedia, is Store norske leksikon (Henriksen 2003) in XML format,
stored in an Extensible Markup Language database (XML database)6.

• Grammar, is LexTUC’s grammar developed according to the ConSensi-
CAL grammar formalism described in Section 2.7.1. The grammar rules
are based on principles from Norsk referansegrammatikk by Faarlund
et al. (1997) and Norsk generativ syntaks by Åfarli and Eide (2003).

• Semantic network, refers to LexTUC’s manually developed internal se-
mantic network, which is just an interface to WordNet.

• WordNet, is the Princeton WordNet (Miller and Fellbaum 2007).

• Onomasticon, is an index containing a list of everything that was XML
tagged as some kind of named entity in Store norske leksikon.

• Knowledge base, contains rules for reasoning and all the knowledge
acquired from encyclopedia articles.

6 Oracle’s Berkeley DB XML, version 2.4.16.

153

System Overview

Lexical
analyzer

Translation
fram

ew
ork

Sentence-
boundary
detector

N
am

ed-entity
recognizer

N
am

ed-entity
extractor

Parser

Sem
antic

interpreter

R
easoning
engine

U
ser

interface

Sem
antic

resources

Tagged
w

ords

Parse
trees

Q
uery

expression

A
rticle

A
rticles

N
am

ed
entities

A
cquired

know
ledge

Q
uestion

A
nsw

er

Lexicon
(M

orphology)

O
rdnett

(N
orw

egian–
W

ordN
et)

Encyclopedia

O
nom

asticon
W

ordN
et

Sem
antic

netw
ork

K
now

ledge
base

Bilingual
dictionary

G
ram

m
ar

(Syntax
rules)

F
i
g

u
r

e
5.

1:TU
C

lopedia’s
architecture.

154

Open-Domain
Natural
Language
Understanding
for Norwegian

5.4.1 Preparations

Prior to operational use, the system parses the semi-structural encyclo-
pedia articles and stores them in a relational database (“Encyclopedia”,
in the figure) in order to provide easier random access to parts of
documents.

After the encyclopedia articles have been stored in the database, they
are processed by the

• Named-entity extractor, responsible for building the Onomasticon—an
index of named entities, based on structural information in the XML
source documents. This component runs through all the encyclopedia
articles prior to the knowledge-acquisition and QA phase (indicated
with dashed-line arrows in Figure 5.1).

The main operating loop (denoted by dotted-line arrows in Fig-
ure 5.1) starts with an encyclopedia article during the knowledge ac-
quisition phase, and with a question posed by a user during the QA
phase. With this main operating loop as a starting point, the different
processing components of TUClopedia will be described below.

5.4.2 Preprocessing and Lexical Analysis

The entry point of TUClopedia is the preprocessing module that is
responsible for lexical analysis of the input. This section will present
the processing modules of the system (denoted by boxes with rounded
corners in Figure 5.1) that are mainly concerned with this task:

• Lexical analyzer, responsible for tokenizing and tagging the input to the
system. The result is a word graph where each part of the input is
tagged with—if necessary, multiple—tags identifying different aspects
of the both simplex words and phrases. Thus, the lexical analyzer is a
multitagger.

The aspects identified in the word graph include the constituent’s lexical
category, morphology, recognized named entities, and possible match-
ing representations in WordNet. To identify matching representations
in WordNet, the component utilizes the Ordnett Norwegian–WordNet
mapping resource produced by using the method presented in Chap-
ter 4.

The system delegates parts of its responsibilities to the Sentence-
boundary detector, the Translation framework, and the Named-entity
recognizer. This component is also responsible for communicating with
the database server that contains the encyclopedia articles.

155

System Overview

• Translation framework, used by the Lexical analyzer to find mappings
from Norwegian words and phrases to concepts in WordNet if they
were not found in the existing Ordnett resource. The component uses
information available in the Bilingual dictionary and the Lexicon.

• Named-entity recognizer, used by the Lexical analyzer to detect and tag
known named entities. The component uses information available in
the Bilingual dictionary and the Lexicon.

• Sentence-boundary detector, used by the Lexical analyzer to detect and
tag the beginning and end of each sentence in the input, thereby break-
ing up encyclopedia articles into manageable segments.

The modules used for preparations of the XML documents, prepro-
cessing, and lexical analysis are written in Python7.

5.4.3 Text Interpretation and LexTUC

As mentioned above, the text interpretation part of the system is Lex-
TUC, a version of TUC adapted to TUClopedia. The following process-
ing modules are part of LexTUC:

• Parser, a natural language parser, described in Section 2.7.1, that uses
the Grammar and the Semantic resources to syntactically analyze the
tagged word graphs from the Lexical analyzer. The result is a set of
parse trees that have already been semantically validated with regard
to selectional restrictions.

• Semantic interpreter, a module responsible for evaluating the parse trees
from Parser and transforming the one that represents the most probable
parse into TUC Query Language (TQL), a language based on first-order
event logic. To guide this transformation process, information from the
other Semantic resources is used. The result is a TQL expression that is
passed on to the Reasoning engine.

• Reasoning engine, a query processor that receives TQL expressions from
the Semantic interpreter and both stores newly acquired knowledge in
an application-specific knowledge base (KB) and uses information from
the KB and the other Semantic resources in order to answer questions
asked by the users of the system.

The Parser, Semantic interpreter, Reasoning engine, and the resources
they utilize are all parts of LexTUC.

7 Python, version 2.4.2.

156

Open-Domain
Natural
Language
Understanding
for Norwegian

After the natural language parser has extracted the information
from an encyclopedia article, the acquired knowledge is stored in the
application-specific knowledge base.

LexTUC’s Semantic network, including its verb frames, is needed
in addition to WordNet, because WordNet does not contain all the
information needed during text interpretation, and the verb frames
in WordNet are often too general to be useful. However, LexTUC’s
Semantic network has been modified so that WordNet becomes part of
it.

LexTUC, which constitutes the NLU part of the system is written in
Prolog8.

5.5 Multiple-Pattern Approximate

Sequence Matching

The implemented sentence-boundary detection, named-entity recog-
nition, and detection of translatable collocations all make use of the
same basic algorithms. If one sees the input text as a sequence of
words, all problems can be reduced to efficiently matching multiple
patterns—possibly with gaps—against the input sequence. That prob-
lem corresponds to doing approximate string matching (Navarro 2001)
with multiple pattern strings, a problem that is not as well studied
as the single pattern case. Therefore, I developed an algorithm for
multiple-pattern approximate sequence matching, presented as Algo-
rithm 5.1, with emphasis on both efficiency and legibility that matches
multiple patterns in a single run through the input. We also used and
presented the same algorithm in (Sætre et al. 2005, 2007).

The algorithm takes four arguments as its input. The first argu-
ment is a list, denoted P, that represents the patterns to be matched
against. Each element p ∈ P is a tuple, (Tp, idp), where idp denotes the
identity—or value—of the pattern (e.g., based on an enumeration of
all the patterns), and Tp denotes the pattern—or key—in a tokenized
form. Tokenizing a string (possibly) splits it into several shorter strings,
based on certain criteria—for example matching of a regular expres-
sion (regexp). Through tokenization, the pattern is transformed into a
sequence of words. For example, suppose that the patterns

1. "Great Lake",

2. "Great Lake race", and

3. "Lake Pedder"

8 SICStus, version 3.11.1.

157

Multiple-Pattern
Approximate

Sequence
Matching

Algorithm 5.1: Identify any pattern ∈ P, occurring in the sequence T, while
allowing for gaps designated by a set of ignorable tokens Tignore, by using a
carefully constructed hash index IP.

1: function Multi-Pattern-Match(P, IP, T, Tignore)
2: result← {}
3: i← 0

4: while i < |T| do
5: j← 0 . Number of matching tokens in T since i.
6: span← 0 . The length of the current match(es) in T.
7: while (i + span) < |T| do
8: t← T[i + span]
9: if t ∈ Tignore then

10: if span = 0 then
11: break . No path starts with an ignorable token.
12: else
13: span← span +1

14: continue
15: key← (j, t)
16: if key ∈ IP then
17: if span = 0 then
18: parts← IP[key] . Note that parts is a set.
19: else . Discard unwarranted paths.
20: parts← IP[key] ∩ parts
21: j← j + 1

22: span← span +1

23: for all k ∈ {n|(n ∈ parts) ∧ (|P[n][0]| = j)} do
24: result← result∪{(i, (i + span), k)}
25: parts← parts−{k}
26: else
27: break
28: i← i + 1

29: return result

158

Open-Domain
Natural
Language
Understanding
for Norwegian

Algorithm 5.2: Build a hash index, IP, based on the (Tp, idp) tuples that
represent the patterns in P.

1: function Build-Index(P)
2: IP ← Dict()
3: for all Tp, idp ∈ P do
4: for all i, ti ∈ Enumerate(Tp) do
5: if (i, ti) 6∈ IP then
6: IP[(i, ti)]← {}
7: IP[(i, ti)]← IP[(i, ti)] ∪ {idp}
8: return IP

represent the patterns we want to match against. Thus, P—with tok-
enized patterns—becomes

P = 〈(〈"Great", "Lake"〉, id1),
(〈"Great", "Lake", "race"〉, id2),
(〈"Lake", "Pedder"〉, id3)〉.

(5.1)

The second argument to the algorithm is a hash index, denoted IP,
that is constructed by calling Build-Index, shown in Algorithm 5.2, with
P. For each element (Tp, idp) ∈ P, several tuples (i, ti) are generated;
where ti is the ith token in Tp. These tuples are used as the keys in
IP, while the value associated with each key is a set. Each such set
contains the index of each pattern in P that were used to generate the
key associated with it. Given the patterns from (5.1), the result of calling
Build-Index(P) becomes a hash index, IP, that contains the following
key→ value associations:

IP[(0, "Great")]→ {id1, id2},
IP[(0, "Lake")]→ {id3},
IP[(1, "Lake")]→ {id1, id2},
IP[(1, "Pedder")]→ {id3}, and
IP[(2, "race")]→ {id2}.

(5.2)

The third argument of Algorithm 5.1 is a tokenized input string to be
matched against, while the fourth argument is a possibly empty set of
tokens that the algorithm should ignore if they occur within a matching

159

Multiple-Pattern
Approximate

Sequence
Matching

region in the input string. Thus, the last argument can be seen as set of
stop words.

The returned value from the algorithm is a (possibly empty) set of
tuples {(nk, mk, ik), . . . }, where nk and mk are the start and stop indices
of the kth match, while ik is the index of a matching pattern term in P.
There will be one such tuple for each matching pattern.

Incorporating the use of a set of ignorable tokens makes the algorithm
more robust with regard to noise—for example punctuation—in the
input, while preserving the original input. An alternative would be
to simply remove the stop words from the input, but that would alter
the input data structure so that for example preexisting indices that
refer to the original input would become invalid. The non-preserving
alternative would also make the returned indices that designate the
beginning and the end of a matching region useless without the version
of the input that was modified by the algorithm.

Given an ignorable-tokens set Tignore = {" ", "’s"}, that ignores
white space and the possessive ’s, the patterns P from (5.1), and the
index IP from (5.2), Algorithm 5.1 applied to a tokenized input sequence
like

T = 〈"The", " ", "Great", " ", "Lake", "’s", " ", "race"〉
would correctly return the matches designated by the set

{((2, 5), id1), ((2, 8), id2)}.
Presented more graphically, the matches equal

"the great lake
id1

’s race",

and

"the great lake’s race
id2

".

It should be noted that the tokenized input preserved the white-space
characters, but the algorithm ignored them in adherence to Tignore.

It should also be noted that the pattern identity idp of multiple
patterns can refer to the same value. How this feature can be utilized
during named entity recognition will be shown in Section 5.5.2.

5.5.1 Sentence-Boundary Detector

To cut the encyclopedia articles into manageable chunks before parsing,
they are split into sentences. However, since the encyclopedia articles

160

Open-Domain
Natural
Language
Understanding
for Norwegian

generally contain many abbreviations, determining whether a period
(‘.’) designates the end of a sentence is nontrivial. Therefore, sentence-
boundary detector is employed by the lexical analyzer to determine
where the boundaries of the sentences are.

The main idea of the sentence-boundary detector implemented in
TUClopedia is to recognize the use of abbreviations in the input text.
The sentence-boundary detector makes extensive use of the multiple-
pattern approximate sequence matching algorithm described above. The
patterns to match include 488 abbreviations semi-manually identified
in the encyclopedia corpus. The identity idp, for each pattern Tp, is a
tuple containing the form of the abbreviation, and flags that indicate
whether the abbreviation may be used to begin or end a sentence. For
example, the abbreviation «m.h.t.» (“with respect to”) can never end a
sentence, but «red.» (“editor”) may.

The corresponding patterns P indexed in IP are

P = 〈 . . . ,
(〈"m", "h", "t"〉,

(〈"med", "hensyn", "til"〉, may_begin)),
. . . ,
(〈"red"〉,

(〈"redaktør"〉, may_begin, may_end)),
. . .〉.

The multiple-pattern approximate sequence matching algorithm is then
applied with a set of ignorable tokens that, among other things, include
periods.

The sentence-boundary detector then basically iterates through each
of the period occurrences and decides whether the period is a sentence
boundary or not.

5.5.2 Named-Entity Recognition

The named-entity recognizer also makes extensive use of the multiple-
pattern approximate sequence matching algorithm presented above.

Titles of works, for example paintings, books, and musical compo-
sitions, are matched as simple sequences. Names of persons, however,
are matched by permutations automatically generated from the full

161

Lexical Analyzer
(Multitagger)

form of the name with and without initials. In the case of John Fitzgerald
Kennedy, the patterns become

P = 〈 . . . ,
(〈"J", "Fitzgerald", "Kennedy"〉, idJFK),
(〈"J", "Kennedy"〉, idJFK),
(〈"John", "F", "Kennedy"〉, idJFK),
(〈"John", "Fitzgerald", "Kennedy"〉, idJFK),
(〈"John", "Kennedy"〉, idJFK),
(〈"Kennedy", "J", "Fitzgerald"〉, idJFK),
(〈"Kennedy", "J"〉, idJFK),
(〈"Kennedy", "John", "F"〉, idJFK),
(〈"Kennedy", "John", "Fitzgerald"〉, idJFK),
(〈"Kennedy", "John"〉, idJFK),
(〈"Kennedy"〉, idJFK),
. . .〉,

where idJFK designates a system-internal reference to automatically
extracted biographic information about Kennedy.

5.6 Lexical Analyzer (Multitagger)

The multitagger delegates tasks both to the sentence-boundary detec-
tor and to the named-entity recognizer. When results are returned
from these submodules, the multitagger is responsible for detecting
any inconsistencies and cleaning up the word graph.

For example, a biography article in Store norske leksikon about the
author Jo Nesbø contains an interesting passage where a title tag crosses
a period (‘.’), as shown from the XML tags in the original source:

. . . gitt ut <vtit type="LITT">Stemmer fra Balkan. Atten
dager i mai</vtit> (1999) sammen . . .

The sentence-boundary detector tags the period as the end of a sentence,
causing the erroneously analysis

. . . gitt ut Stemmer fra Balkan.
sentence1

Atten dager i mai (1999) sammen . . .
sentence2

.

162

Open-Domain
Natural
Language
Understanding
for Norwegian

However, the named-entity recognizer correctly recognizes the title, as
in

. . . gitt ut Stemmer fra Balkan. Atten dager i mai
litteratur1

(1999) sammen

By preferring the title-of-work tag over end-of-sentence tags, the mul-
titagger correctly avoids errors such as the one introduced by the
sentence-boundary detector.

It should be noted that during normal use of the system, the XML
tags are ignored during preprocessing. The semistructured information
is only used when building the onomasticon.

5.7 Results

This section presents results from the implemented TUClopedia system.
Hence, it also shows how Verto is applied in TUClopedia. It should
be noted that these are only some preliminary results, because the
implementation of TUClopedia is not finished yet.

Most of the modules in the system are already complete. However,
the integration of the modules from LexTUC with the rest of the system
has just begun. This means that the current version of the system
can retrieve all the encyclopedia articles from the database; create a
large onomasticon based on the semistructured articles; perform lexical
analysis of all input, both articles and questions; parse, semantically
analyze, and acquire knowledge from a few arbitrary selected articles;
and answer questions related to the acquired knowledge.

5.7.1 First Example

The first example shows how knowledge is acquired from parsing a
very short9 article from Store norske leksikon. The article is about the
A+ programming language (Henriksen 2003):

A+

programmeringsspråk for datamaskiner, avledet av APL.

[A+

programming language for computers, derived from APL.

(My translation.)]

9 Actually, 23 of the first 100 articles of the encyclopedia are shorter than or have the same
length as the one used in this example.

163

Results

txt(w(’A+’, name(’A+’, n, programming_language_n_1)), 0, 1).
txt(w(’er’, verb(be_v_2, pres, fin)), 1, 2).
txt(w(’programmeringsspråk’,

noun(programming_language_n_1, plu, u, n)), 2, 3).
txt(w(’programmeringsspråk’,

noun(programming_language_n_1, sin, u, n)), 2, 3).
txt(w(’for’, prep(’for’)), 3, 4).
txt(w(’datamaskiner’, noun(computer_n_1, plu, u, n)), 4, 5).
txt(w(’avledet’, verb(derive_v_3, past, part)), 5, 6).
txt(w(’avledet’, [’avledet’]), 5, 6).
txt(w(’av’, prep(’from’)), 6, 7).
txt(w(’av’, prep(’of’)), 6, 7).
txt(w(’av’, prep(’off’)), 6, 7).
txt(w(’APL’, name(apl, n, programming_language_n_1)), 7, 8).
txt(w(’.’, [’.’]), 8, 9).

Listing 5.1: Word graph for the A+ article.

Lexical Analysis

The article gets represented by the word graph as shown in Listing 5.1.
The lexical analyzer currently ignores commas (’,’). The first line of text
in an encyclopedia article does not constitute a full sentence. However,
the lexical analyzer automatically turns it into a sentence by joining it
together with the article heading and the added verb be_v_210.

It should be noted that the word graph had to be manually edited in
three ways. These edits will be discussed below.

First of all, the verb, avledet, was originally mapped in Ordnett to the
senses shown in Table 5.1 on the next page. While some of the senses
definitely hint at the meaning of the verb in the Norwegian article,
none of them really covers the intended meaning. The Norwegian
verb avlede mainly has two senses, to “divert”, “deflect”, or “redirect”
and to “derive”. However, only one of those meanings is covered by
Ordnett. Therefore, those word-graph entries were manually replaced
with derive_v_311, which represents the other meaning of «avlede».

10 WordNet gloss: be identical to; be someone or something; “The president of the company
is John Smith”; “This is my house.”

11 WordNet gloss: come from; “The present name derives from an older form”.

164

Open-Domain
Natural
Language
Understanding
for Norwegian

Table 5.1: Glosses for the target WordNet senses of the mappings
from the Norwegian verb «avledet».

Sense Gloss

deflect_v_1 prevent the occurrence of; prevent from
happening; “Let’s avoid a confrontation”;
“head off a confrontation”; “avert a strike”

deflect_v_2 turn from a straight course, fixed direction,
or line of interest

deflect_v_3 turn aside and away from an initial or in-
tended course

deflect_v_4 draw someone’s attention away from
something; “The thief distracted the by-
standers”; “He deflected his competitors”

divert_v_1 turn aside; turn away from

redirect_v_1 channel into a new direction; “redirect
your attention to the danger from the fun-
damentalists”

Thus, one can argue that this manual interference could have been
avoided if Ordnett’s coverage was higher.

In one respect, LexTUC does not care about symbol names, it will
only use the symbol names for computation. Therefore, one could be
tempted to argue that it does not matter what particular symbols the
individual constituents of a text or sentence is translated into, as long
as the same symbols will be chosen every time that the same words are
encountered. For example, if the system consequently maps the concept
“jet plane” to “cat”, acquired knowledge about jet planes will internally
be linked to “cat”. Therefore, in such a situation, given a question
like “What is the typical speed of a jet plane?”, the question could
be answered correctly—even though, internally the system retrieves
information about a “cat” traveling at 850 km/h.

However, there are at least two main reasons that such unfortunate
mappings should be manually overridden. First, what might seem like
an inaccuracy at one level, will be completely wrong at another. Con-
sider for example what would happen if the reasoning engine needed

165

Results

∃x1(((isa(programming_language_n_1, real, x1)
∧ (∃x2((isa(computer_n_1, real, x2)

∧ ∃x3((event(x3) ∧ (agent(x1, x3)
∧ ((present(real, x3) ∧ action(be_v_4, x3))
∧mod(for, x2, x3)))))))

∧ ∃x4((event(x4) ∧ ((present(real, x4) ∧ action(derive_v_3, x4))
∧ (patient(x1, x4)
∧ (agent(pro, x4) ∧mod(from, apl, x4))))))))

∧ ∃x5((event(x5) ∧ (agent(aplus, x5) ∧ ((present(real, x5)
∧ action(be_v_2, x5))
∧ patient(x1, x5)))))))

Figure 5.2: Logical formula representing the contents of the A+
article.

to use hypernymy or synonymy rules to complete an inference. The
inference would be wrong because the incorrect mapping’s semantics
is implicitly defined by its relations to other concepts in the prede-
fined ontology. Second, allowing such incorrect mappings would entail
them spreading throughout the system, for example to manually de-
fined semantic rules used during parsing and reasoning about queries.
Maintaining such a system would quickly become an unmanageable
task.

The second manual edit of the word graph in Listing 5.1 on page 164

was to change the tags of A+ and APL from entity_n_1 to program-
ming_language_n_1. The reason for this was that there were no entries
in the onomasticon covering those named entities at the time of tagging.
However, such information about all the keywords in the encyclopedia
could quite easily be extracted using a shallow parser that exploits the
encyclopedia’s semistructured information.

The third manual edit of the word graph in Listing 5.1 was to remove
superfluous entries that were removed during semantic disambiguation
anyway.

166

Open-Domain
Natural
Language
Understanding
for Norwegian

Parsing and Semantic Interpretation

The Parser correctly disambiguates the input and generates a parse tree
that, through application of Montagovian semantics (see, for example,
Gamut 1991a; pp. 139–221), is transformed into the rather elaborate first-
order predicate logic expression shown in Figure 5.2 on the preceding
page. The Semantic interpreter then transforms the logical expression
into a Skolemized TQL expression that represents the acquired knowl-
edge, as shown in Listing 5.2 on the following page. The sk(n) terms
represent Skolem-constants, and every event—for example sk(3), sk(4),
and sk(5) in Listing 5.2—functions as a link between the semantic units
and verbal complements that make up the newly acquired knowledge.

As can be seen from the acquired knowledge, the parser has cor-
rectly chosen the correct interpretation of a syntactically ambiguous
sentence, even though the comma in the original text was ignored.
LexTUC correctly interpreted the sentence as a situation where A+ is
a programming language to be used with computers, and that the
programming language was derived from APL by somebody (designated
by the “pro” agent). Two erroneous interpretations were avoided. The
first is where A+ is for computers that have been derived from APL.
The second is where A+ is derived by APL (because the Norwegian
«av» can be translated as both “from”, “by”, and “off”).

5.7.2 Second Example

With minor changes to some of the word graph constituents—similar
to the ones mentioned in Section 5.7.1—the system was able to inter-
pret the following article about the murder of John Fitzgerald Kennedy
(Henriksen 2003):

Drapet på Kennedy.

Presidenten ble myrdet av en snikskytter 22. november 1963

under et besøk i Dallas, Texas. Kennedy-mordet ble umid-
delbart gjenstand for en rekke ulike teorier og påstander
som har fortsatt å oppta allmennheten etterpå. Avgjørende
vekt ble tillagt den bredt oppnevnte offisielle granskings-
kommisjonen ledet av høyesterettsjustitiarius Earl Warren.
Warren-kommisjonens rapport fra 1964 la mordansvaret på
Lee Harvey Oswald (1939–63) alene. Oswald ble arrestert
rett etter drapet, men nektet seg skyldig. Han ble 24. novem-
ber 1963 skutt ned og drept for åpent kamera av nattklubb-
eieren Jack Ruby (1911–67) på Dallas’ hovedpolitistasjon.

167

Results
% ‘‘A+ programmeringsspråk for datamaskiner, avledet av APL.’’
% (A+ programming language for computers, derived from APL.)

isa(programming_language_n_1, real, sk(1))
isa(computer_n_1, real, sk(2))

% Programming language, sk(1), is for computer, sk(2).
event(sk(3))
agent(sk(1), sk(3))
present(real, sk(3))
action(be_v_4, sk(3))
mod(for, sk(2), sk(3))

% Somebody (pro) derives programming language, sk(1), from ’APL’
event(sk(4))
present(real, sk(4))
action(derive_v_3, sk(4))
patient(sk(1), sk(4))
agent(pro, sk(4))
mod(from, ’APL’, sk(4))

% A+ is programming language, sk(1).
event(sk(5))
agent(’A+’, sk(5))
present(real, sk(5))
action(be_v_2, sk(5))
patient(sk(1), sk(5))

Listing 5.2: KB representation of the knowledge acquired from the
A+ article, expressed through TQL expressions. The situation each
event describes is paraphrased in the comments, following the ‘%’
signs. The original text is included as a comment at the beginning of
the listing.

168

Open-Domain
Natural
Language
Understanding
for Norwegian

Dødsdommen over Ruby (1964) ble ikke fullbyrdet idet Ru-
by døde av sykdom kort etterpå. Warren-kommisjonens
rapport har siden blitt kritisert, men det har ikke kommet
frem opplysninger som har kunnet verifisere en annen ver-
sjon. Kennedy-mordet har derfor fortsatt å være en gåte.

Kennedy ble gravlagt på æreskirkegården Arlington utenfor
hovedstaden Washington D.C. I årene etter sin død ble Ken-
nedy regnet som en av de mest betydningsfulle presidenter
i USA. Hans ungdommelige stil, hans veltalenhet og sjarm
innebar en fornyelse av amerikansk politikk og samfunnsliv.
Han og hans kone Jacqueline (se J. Onassis) var samtidens
mest berømte par. Senere har bildet av ham blitt noe mer
nyansert; det er bl.a. pekt på manglende resultater i innen-
rikspolitikken, hans anstrengte forhold til Kongressen og at
hans privatliv muligens var noe mer frynsete enn samtiden
fikk inntrykk av.

[The Kennedy Assassination.

The President was assassinated November 22, 1963 during
a visit to Dallas, Texas. The Kennedy assassination imme-
diately became subject to a range of different theories and
allegations that subsequently have continued to occupy the
general public. Great significance was attached to the widely
appointed public commission lead by Chief Justice of the
Supreme Court Earl Warren. The Warren Commission’s re-
port from 1964 placed the responsibility for the murder on
Lee Harvey Oswald (1939–63) alone. Oswald was arrested
immediately after the murder, but pleaded not guilty. On
November 24, 1963 he was shot down and killed before live
cameras by the nightclub owner Jack Ruby (1911–67) at the
Dallas Police Headquarters. Ruby’s death sentence (1964)
was not executed because Ruby died from disease shortly
thereafter. The Warren Commission’s report has since been
criticized, but no information that has been able to verify a
different version has emerged. The Kennedy assassination
has therefore continued to be an enigma.

Kennedy was buried at the Arlington memorial cemetery
outside the capital Washington D.C. In the years after his
death, Kennedy was recognized as one of the most impor-
tant presidents of the USA. His youthful style, his eloquence
and charm involved a renewal of American politics and
community. He and his wife, Jacqueline (see J. Onassis)

169

Results

were the most famous couple of their era. His image has
since become a little more nuanced; it has, among other
things, been pointed to a lack of results in domestic policy,
his tense relationship with Congress, and that his private
life possibly was a little more dubious than the impression
his contemporaries gained. (My translation.)]

The first sentence was interpreted by LexTUC into the TQL expres-
sions shown in Listing 5.3 on the next page. The TQL expressions were
added to the TUClopedia’s KB as newly acquired knowledge. The
interpretation seems very reasonable.

After having processed all the other sentences of the article in a
similar manner, TUClopedia could answer questions about the text.

Question Answering

For example, given the question «Hvem myrdet presidenten?» (“Who
murdered the president?”), the Semantic interpreter transforms the
question into the TQL query expression shown in Listing 5.4 on page 172.

The answer to the question is deduced from the TQL query expres-
sion that represents the question and the knowledge already acquired
by the system.

The proof performed by LexTUC to answer the TQL query from
Listing 5.4 is shown in Listing 5.5 on page 172. The comments in
the listing show how the variables from the TUC Query Language
query (TQL query) in Listing 5.4 are unified with the facts from
the KB that were shown in Listing 5.3. Interestingly, one can see
how LexTUC applied a rule to search WordNet for specializations
of somebody_n_1. Hence, LexTUC could use the fact that, indirectly, a
sniper_n_1 is a kind of somebody_n_1, to satisfy the query constraint
isa(somebody_n_1, real, A) with the fact isa(sniper_n_1, real, sk(2)) that
was present in the KB.

As can be seen, the answer sk(2) translates to “a sniper”, which is
correct given the information in the KB that was shown in Listing 5.3.

It is outside the scope of TUClopedia to generate natural language
answers. However, the current implementation gives an insight into
some of the considerations that should be taken if such answers were to
be generated. Certain of these considerations will be discussed below.

Complex Entailment

To deduce an answer to the previous question was rather straightfor-
ward. The question «Når døde presidenten?» (“When did the president

170

Open-Domain
Natural
Language
Understanding
for Norwegian

% «Presidenten ble myrdet av en snikskytter 22. november 1963 under
% et besøk i Dallas, Texas.» (‘‘The President was assassinated November
% 22, 1963 during a visit to Dallas, Texas.’’)

isa(president_n_5, real, sk(3))
isa(dallas_n_1, real, sk(4))

% There is a visit, sk(3), in Dallas, sk(4).
event(sk(5))
agent(sk(3), sk(5))
present(real, sk(5))
action(be_v_4, sk(5))
mod(in, sk(4), sk(5))

isa(texas_n_1, real, sk(6))

% The visit, sk(3), is in Texas, sk(6).
event(sk(7))
agent(sk(3), sk(7))
present(real, sk(7))
action(be_v_4, sk(7))
mod(in, sk(6), sk(7))

isa(president_n_3, real, sk(1))
isa(sniper_n_1, real, sk(2))

% The President, sk(1), was murdered by a sniper, sk(2) during the
% visit, sk(3), on November 22, 1963.
event(sk(8))
past(real, sk(8))
action(murder_v_1, sk(8))
patient(sk(1), sk(8))
agent(sk(2), sk(8))
mod(under, sk(3), sk(8))
mod(nil, date(1963, 11, 22), sk(8))

Listing 5.3: KB representation of the knowledge acquired from the
first sentence in the article about the assassination of Kennedy. The
original sentence is included as a comment at the beginning of the
listing. Each event is paraphrased in the comments.

171

Results

% «Hvem myrdet presidenten?» (‘‘Who murdered the president?’’)

which(A),
isa(somebody_n_1, real, A),
isa(president_n_3, real, B),
agent(A, C),
action(murder_v_1, C),
past(real, C),
event(C),
patient(B, C)

Listing 5.4: TQL query representation produced by LexTUC from
a question about who murdered Kennedy. The original question is
included as a comment at the beginning of the listing. The TQL query
can be paraphrased as “Which A was the agent in a murder event, C,
where a president, B, was the patient?”

% Proof for answering the question «Hvem myrdet presidenten?» (‘‘Who
% murdered the president?’’)

which(sk(2))
isa(somebody_n_1, real, sk(2)) <=

isa(person_n_1, real, sk(2)) <=
isa(expert_n_1, real, sk(2)) <=

isa(sniper_n_1, real, sk(2)) % A = sk(2).
isa(president_n_3, real, sk(1)) % B = sk(1).
agent(sk(2), sk(8)) % C = sk(8).
action(murder_v_1, sk(8))
past(real, sk(8))
event(sk(8))
patient(sk(1), sk(8))

=>

sk(2)

Listing 5.5: The proof performed by LexTUC to answer the TQL
query shown in Listing 5.4. The comments show how the variables
from the query are unified with facts from the KB.

172

Open-Domain
Natural
Language
Understanding
for Norwegian

% «Når døde presidenten?» (‘‘When did the president die?’’)

which(A),
isa(president_n_3, real, B),
agent(B, C),
action(die_v_1, C),
past(real, C),
event(C),
mod(in, A, C),
isa(time_n_1, real, A)

Listing 5.6: TQL query representation of a question about when
Kennedy died. The TQL query can be paraphrased as “Which A is
the time of an event, C, in which the President, B, died?”

die?”) looks just as simple as the previous question. However, as be-
comes clear when studying the corresponding TQL expression in List-
ing 5.6, some additional information is needed to provide an answer.
The reason is that the question uses another verb than murder. There is
no explicit knowledge about any die action.

To remedy this situation, a complex entailment rule, shown in List-
ing 5.7 on the next page, was added to LexTUC. The rule can be
paraphrased as “if X the patient of a murder in an event E1, then there
also is a coinciding event E2 where X is an agent who dies.” The rule
also ensures that the same temporal modifiers will be applied to both
events.

As the proof in Listing 5.8 on page 175 shows, by applying the rule
that being murdered entails dying, TUClopedia is able to deduce the
correct answer to the question; that is, November 22, 1963.

Hypernymy

The final QA example relates to the knowledge acquired regarding
where Kennedy was buried. The relevant acquired knowledge is shown
in Listing 5.9 on page 176.

Given the question «Hvor ble Kennedy gravlagt?» (“Where was Kennedy
entombed?”), LexTUC generates the TQL expression in Listing 5.10 on
page 176.

173

Results
coincide(E1, sk(die, X, E1)) <==

(event(E1), action(murder_v_1, E1), patient(X, E1)).
action(die_v_1, sk(die, _X, _E1)) <== true.
agent(X, sk(die, X, _E1)) <== true.

mod(in, D, sk(die, _, E1)) <== mod(in, D, E1).

event(F) <==
(event(E),
coincide(E, F)).

present(Real, F) <==
(event(E),
present(Real, E),
coincide(E, F)).

past(Real, F) <==
(event(E),
past(Real, E),
coincide(E, F)).

future(Real, F) <==
(event(E),
future(Real, E),
coincide(E, F)).

Listing 5.7: Temporal reasoning rules that state that “you die if
someone murders you.”

174

Open-Domain
Natural
Language
Understanding
for Norwegian

% Proof for answering the question «Når døde presidenten?» (‘‘When did
% the president die?’’)

which(date(1963, 11, 22))
isa(president_n_3, real, sk(1)) % B = sk(1).
agent(sk(1), sk(die, sk(1), sk(8))) % C = sk(die,sk(1),sk(8)).
action(die_v_1, sk(die, sk(1), sk(8)))
past(real, sk(die, sk(1), sk(8))) <=

event(sk(8))
past(real, sk(8))
coincide(sk(8), sk(die, sk(1), sk(8))) <=

event(sk(8))
action(murder_v_1, sk(8))
patient(sk(1), sk(8))

event(sk(die, sk(1), sk(8))) <=
event(sk(8))
coincide(sk(8), sk(die, sk(1), sk(8))) <=

event(sk(8))
action(murder_v_1, sk(8))
patient(sk(1), sk(8))

mod(in, date(1963, 11, 22), sk(die, sk(1), sk(8))) <=
mod(in, date(1963, 11, 22), sk(8)) <= % A = date(1963, 11, 22).

mod(nil, date(1963, 11, 22), sk(8))
isa(time_n_1, real, date(1963, 11, 22))

=>

date(1963, 11, 22)

Listing 5.8: The proof performed by LexTUC to answer the TQL
query shown in Listing 5.6. The comments show how the variables
from the query are unified with facts from the KB shown in List-
ing 5.3.

175

Results

% «Kennedy ble gravlagt på æreskirkegården Arlington utenfor
% hovedstaden Washington D.C.» (‘‘Kennedy was buried at the Arlington
% memorial cemetery outside the capital Washington D.C.’’)

isa(arlington_n_1, real, sk(47))
isa(churchyard_n_1, real, sk(48))

% JFK was entombed at a churchyard, sk(48), outside Arlington, sk(47).
event(sk(49))
past(real, sk(49))
action(entomb_v_1, sk(49))
patient(john_fitzgerald_kennedy_p_86918, sk(49))
agent(pro, sk(49))
mod(outside, sk(47), sk(49))
mod(at, sk(48), sk(49))

Listing 5.9: The relevant knowledge acquired by LexTUC about
where Kennedy was entombed. The original sentence is included in
the comment at the beginning of the listing.

% «Hvor ble Kennedy gravlagt?» (‘‘Where was Kennedy entombed?’’)

which(A),
action(entomb_v_1, B),
past(real, B),
patient(john_fitzgerald_kennedy_p_86918, B),
agent(pro, B),
mod(at, A, B),
isa(location_n_1, real, A),
event(B)

Listing 5.10: TQL query expression representing a question about
where Kennedy was entombed. The query may be paraphrased as
“Which A is a location where Kennedy was entombed in an event,
B?”

176

Open-Domain
Natural
Language
Understanding
for Norwegian

% Proof for answering the question «Hvor ble Kennedy gravlagt?»
% (‘‘Where was Kennedy entombed?’’)

which(sk(48))
action(entomb_v_1, sk(49))
past(real, sk(49))
patient(john_fitzgerald_kennedy_p_86918, sk(49))
agent(pro, sk(49))
mod(at, sk(48), sk(49))
isa(location_n_1, real, sk(48)) <=

isa(region_n_3, real, sk(48)) <=
isa(geographical_area_n_1, real, sk(48)) <=

isa(churchyard_n_1, real, sk(48))
event(sk(49))

=>

sk(48)

Listing 5.11: The proof performed by LexTUC to answer the TQL
query shown in Listing 5.10.

The TQL query can be paraphrased as “which A is a location_n_1
where Kennedy was entombed in an event, B?”, which quite correctly
asks for a location. However, in the acquired knowledge, the place that
Kennedy was entombed at is a churchyard_n_1, not at location_n_1.

Just as in the example in Section 5.7.2, because LexTUC’s Reasoning
engine has access to semantic relations defined in WordNet and rules
to explore those relations, LexTUC is able to infer a correct answer, as
shown in Listing 5.11. The proof shows how LexTUC is able to use the
fact that a churchyard (indirectly) is a kind of location to provide the
correct answer “at a churchyard”.

WordNet also contains hypernymy relations for verbs. For example,
according to WordNet, murder_v_1 is a hyponym of kill_v_1. There-
fore, LexTUC can use this information to correctly answer a question
like «Hvem drepte Kennedy?» (“Who killed Kennedy?”).

177

Analysis and
Discussion

Users’ Expectations

The example in the previous section showed that even though LexTUC
is able to answer questions correctly and very concisely, the answer is
not necessarily what a user would expect from a helpful QA system.
If a human asks where a famous person is buried, the answer “at
the churchyard” is probably not among the anticipated answers. The
answer is clearly underspecified. For example, a more valuable answer—
for which the system already has acquired the necessary knowledge—
would be “at a churchyard outside Arlington.”

As mentioned above, Natural Language Generation (NLG) is outside
the scope of TUClopedia. Nonetheless, if a more polished user interface
should be added to the system, a NLG module could be part of such
a solution. However, if polishing the user interface means hiding the
core details, like the proofs performed to provide answers, users may
question the correctness of the answers; or, indirectly question the cred-
ibility of the system. On the other hand, users unable to comprehend
the proofs would probably not be comforted by their presence either.

One way to increase the probability that users perceive the system
as credible is through transparency. By providing the users with text
snippets that contain the source of the acquired knowledge, the users
can easily check that the answer is in accordance with the sources.

5.8 Analysis and Discussion

With regard to the questions by Paşca (2003), quoted in Section 5.1,
TUC’s natural language analysis and TQL knowledge representation
seem well suited to the task of correctly interpreting questions and
finding the correct answer. However, some observations indicate that
caution must be exercised to ensure the scalability of the TUClope-
dia system.

5.8.1 The Scalability of TUClopedia

The current results from the TUClopedia system are not enough to
decisively tell how well the currently implemented approach scales
with regard to both the input size and to the growing size of the KB.
However, the preliminary results and experiences give a few indications
of challenges that must be overcome to make the system ready for full-
scale real-world usage. Next, I will present some observations and
assumptions related to the scalability issues involved and some ideas
on how the system’s scalability can be improved.

178

Open-Domain
Natural
Language
Understanding
for Norwegian

Findings and Assumptions

The Store norske leksikon (Henriksen 2003) encyclopedia contains approx-
imately 651,059 sentences.12 In the examples in Sections 5.7.1 and 5.7.2
the average number of events defined through the extracted knowledge
is 2.33. Furthermore, each such event is on the average related to 7.86

Prolog facts through predicates like isa/3, patient/2, and mod/3. To
simplify this discussion we can assume that most of these Prolog facts
are unique per event.

Assuming that these numbers are representative for the rest of the
other encyclopedia articles, we can get a rough idea of the sizes involved.
Simply multiplying these numbers with the number of sentences yields
1, 516, 967 ≈ 1.5 · 10

6 events that will be related to 11, 923, 364 ≈ 12 · 10
6

Prolog facts. Even though these numbers are based on very sparse
information, and the facts related to each event might be related to
other events too (thus reducing the number of unique Prolog facts), they
might give a vague idea about the potential challenges that must be
conquered for this approach to be viable.

In the original plan, TUClopedia was supposed to first parse the
complete encyclopedia in one big batch job to acquire knowledge, and
then use the acquired knowledge to answer questions from users.

Currently, TUClopedia on the average uses 293.33 ms of central pro-
cessing unit (CPU) time per sentence it interprets, running under a
single SICStus version 3.12.7 process on version 2.6.27 of the Linux ker-
nel on a computer with an Intel Core Duo T2400 dual core 1833 MHz
CPU with a 64 KB level 1 cache and a 2 MB level 2 cache and 2 GB of
random access memory (RAM).

Given that all of the sentences were to be processed by a single
TUClopedia process, the system would use approximately 53 hours,
or 2.21 days and nights, to process them. If, however, the average time
spent on processing each sentence empirically should prove to be, for
example, 1 s then the whole process would take about 181 hours, or 7.5
days and nights.

Hence, we can assume that the whole initial interpretation of the
encyclopedia will take between 2.21 and 7.5 days and nights using this
rather naïve approach. The length of the initialization period does not
necessarily pose a problem, if it is a one-time cost. However, whenever
any of the components involved changes substantially, one might want
to repeat the complete initial interpretation step. This will probably
be the case both during further development of the system and in a

12 This number is based on the output from my algorithm for splitting paragraphs into
sentences, described in Section 5.5.1.

179

Analysis and
Discussion

production setting. Thus, reducing the time TUClopedia spends on
interpreting the complete encyclopedia may prove important.

Another challenge is that the encyclopedia contains 128,822 different
Norwegian words, including different inflections, but not words found
in tagged titles and names. Of the Norwegian words that occur in
the encyclopedia, 55,772 can directly be found in NorKompLeks. For
the TUClopedia approach to scale appropriately, it is of paramount
importance that the system is actually able to recognize the words used
in input text.

Possible Solutions

To comment on the last of the above observations and assumptions first,
the vast majority of the 73,050 words not found in NorKompLeks are
compounds. Those words can therefore be automatically broken down
into their constituents and analyzed by the compound-word analyzer.
Consequently, they should not represent a real problem to TUClopedia.

The words that neither occur directly in NorKompLeks nor can be
automatically analyzed are proper names and certain uncommon words;
the reason they are present in the encyclopedia. These words must be
added manually.

The findings and assumptions described above also indicate that
handling the sheer size of the input, and therefore also the size of the
KB, must be given some consideration.

One way to reduce the total time used interpreting the encyclopedia
articles would be to parallelize the interpretation process. The process of
mass-interpreting encyclopedia articles is well suited for parallelization
because the interpretation of each article can easily be delegated to one
of multiple processes running in parallel. The parallel processes may
run on separate computers, or on separate CPU cores, but must share
the same KB.

Parallelization often comes with an overhead caused by an increased
need for interprocess synchronization and data communication (Patter-
son and Hennessy 1998). However, in a networked cluster, each host, or
node, can keep its own copy of all read-only data, while all the nodes
read from and write to the shared KB that can be hosted on a central
master node. If necessary, even the KB could be duplicated as slaves
on each node for read-only access, while updates to the KB would be
written to the master KB. Each update to the KB would then need to
be distributed to all the slave nodes, but in total the parallelization
overhead should be negligible.

180

Open-Domain
Natural
Language
Understanding
for NorwegianArticles EventsWords

Figure 5.3: Example of an index that maps words to articles they
occur in and an index that map those articles to knowledge extracted
from them. The example is grossly simplified.

Furthermore, building a networked parallel cluster from commodity
hardware is not necessarily very costly (Constantinescu-Fulöp and
Cassens 2003).

By applying, for example, ten clustered computers to the task of
interpreting encyclopedia articles in a distributed, parallel fashion the
wall-clock time needed to complete the task is reduced to between 5.2
and 18.1 hours.

The third concern the above observations and assumptions raise is
related to the growing size of the KB as the complete encyclopedia
gets parsed. It seems unlikely that TUClopedia will be able to answer
questions about its acquired knowledge with satisfactory response
times if the system will have to reason about the question with all the
events and facts in the KB available at the same time.

To improve the response time of the QA system, a possible solu-
tion is to dynamically load only a smaller, more relevant subset of the
complete KB into memory, depending on the received input. That way,
TUClopedia will avoid having to consider large amounts of irrelevant
knowledge when it performs proofs to answer questions. For TUClo-
pedia to extract subsets of its complete KB, relevant to the input text,
one could index acquired knowledge by establishing mappings both
from the identifier of the article that the knowledge was acquired from
and from each word in the article to the article identifier, as shown in
Figure 5.3.

181

Analysis and
Discussion

Articles EventsWords

Figure 5.4: Example of an index that maps words to knowledge
that was extracted form sentences they occurred in. Compared to
Figure 5.3, this scheme omits the use of the article-to-events index
and will therefore likely produce KB subsets with fewer events and
facts per input word.

Given the existence of such indices, TUClopedia could use them to
retrieve a subset of the KB by following the mappings from each word
that occur in the input, via the articles that those words have occurred
in earlier, to facts and events that therefore probably are relevant.

This attempt defines facts’ and events’ relevancy to input words based
on whether the same words were used in articles from which the
knowledge stems from. The events and facts retrieved by using these
indices are probably relevant because they originate from articles where
the same words were used, and it seems safe to assume that each
article comprises a coherent context. This indexing scheme also takes
into account the ambiguity of words because a particular word may
have been interpreted differently, depending on the context that each
sentence and article forms, thereby establishing mappings from that
word to acquired knowledge where different senses of the word occur.

Another solution would be to simply create an index that maps the
article words to the set of knowledge extracted from each sentence
that the words occurred in, as shown in Figure 5.4. However, by using
an indirect indexing like first described, TUClopedia should be able
to gather a higher number of relevant events and facts, because most
articles consist of more than one sentence.

182

Open-Domain
Natural
Language
Understanding
for Norwegian

No matter which one of the indexing schemes for creating dynamic
subsets of the KB are used, care must be taken so that its use does not
degrade the precision and recall of the QA system.

5.8.2 Ordnett’s Suitability

The preliminary results from the implementation of TUClopedia are
in accordance with Verto’s high precision and lower recall reported in
Section 4.11.13

If a mapping was not found in Ordnett, the Lexical analyzer tried to
find one by consulting the Translation framework. However, some of
the mappings not found in the Ordnett resource had to added manually.
These were mostly simplex words.

On the other hand, the Translation framework succeeded several
times when confronted with Norwegian compounds as input. For the
time being, when confronted with compound mappings, LexTUC ap-
plied a simple strategy to simply use only their heads in its analyses.

5.8.3 WordNet’s Lacking Verb Frames

Others (Kipper et al. 2000a, 2004; Kwon and Hovy 2006) have criticized
WordNet for its lacking verb frames, shown in Table 5.2.

We share the experience that the verb frames are too general to be
used for selectional restrictions. Therefore, we had to manually add
more specific verb frames to LexTUC.

Making such manual additions for all the relevant verbs in an open
domain corpora sums up to become a huge task to complete. There-
fore, a possible future direction for TUClopedia would be to incorpo-
rate a semantic resource like VerbNet (Kipper et al. 2000a, 2004) or
FrameNet (Fillmore et al. 2003; Baker et al. 2003) that provide much
more detailed information about selectional restrictions and the seman-
tics of verbs.

Those resources are compatible with WordNet. Therefore, such an
approach would also benefit from the mappings that Ordnett provides.

5.8.4 Providing Answers to Queries About
Encyclopedia Content

There are several possible responses that can be considered adequate for
a question regarding the contents of encyclopedia articles. For example,
a system could simply return references to the articles that match the

13 Verto is the mapping framework developed in Chapter 4.

183

Analysis and
Discussion

Table 5.2: WordNet’s generic sentence frames for verbs
(Source: Kohl et al. 1998).

Frame Generic Sentence

1 Something —s
2 Somebody —s
3 It is —ing
4 Something is —ing PP
5 Something —s something Adjective/Noun
6 Something —s Adjective/Noun
7 Somebody —s Adjective
8 Somebody —s something
9 Somebody —s somebody

10 Something —s somebody
11 Something —s something
12 Something —s to somebody
13 Somebody —s on something
14 Somebody —s somebody something
15 Somebody —s something to somebody
16 Somebody —s something from somebody
17 Somebody —s somebody with something
18 Somebody —s somebody of something
19 Somebody —s something on somebody
20 Somebody —s somebody PP
21 Somebody —s something PP
22 Somebody —s PP
23 Somebody’s (body part) —s
24 Somebody —s somebody to INFINITIVE
25 Somebody —s somebody INFINITIVE
26 Somebody —s that CLAUSE
27 Somebody —s to somebody
28 Somebody —s to INFINITIVE
29 Somebody —s whether INFINITIVE
30 Somebody —s somebody into V-ing something
31 Somebody —s something with something
32 Somebody —s INFINITIVE
33 Somebody —s VERB-ing
34 It —s that CLAUSE
35 Something —s INFINITIVE

184

Open-Domain
Natural
Language
Understanding
for Norwegian

topic of the question. This would constitute document retrieval behavior,
well known from today’s common Web search engines. Such behavior
could be implemented using shallow indexing methods, like some
variation of the vector-space model (VSM) (Salton et al. 1975) or manual
phrase indexing. Phrase, or keyword, searches are already offered by
on-line encyclopedias.14 However, these systems do not interpret the
questions semantically, and hence cannot provide answers based on
deeper semantics of the question.

An improvement over phrase searches would be to interpret the
text of the encyclopedia in order to extract the semantic knowledge,
like TUClopedia does. Questions could then be answered either by
providing references to the articles that must be read in order to answer
the question, or by providing a concise answer to the question, or a
combination of these answer forms.

14 Examples of on-line encyclopedias that offer phrase searches include Store Norske
Leksikon (http://www.storenorskeleksikon.no/) and Encyclopædia Britannica (http:
//www.britannica.com/)

185

http://www.storenorskeleksikon.no/
http://www.britannica.com/
http://www.britannica.com/

6
Analysis and Discussion

This chapter will provide some further analysis and discussion of the
results presented in chapters 3, 4, and 5, focusing on a few topics that
are not easily confined in any single of those chapters. For example,
it will show how the semantic information in Ordnett can be used to
improve the automatic analysis of Norwegian compounds. Finally, it
will provide the answers to the research questions from Section 1.3, and
summarize the contribution of the research presented herein.

6.1 Automatic Analysis of Compounds Based on Semantics

The Ordnett resource may be used for several applications; one ap-
plication could be to improve the automatic analysis of Norwegian
compound words.

Several schemes for interpreting compound nouns have been pre-
sented in the literature. For example, Lauer (1995) proposed a way to
classify compound nominals by paraphrasing them using the eight
prepositions “of”, “for”, “in”, “about”, “with”, “from”, “on”, and “at”.
For example, “a baby chair” means “a chair for babies”.

Furthermore, discussing how to interpret and classify compound
nouns, Copestake and Briscoe (2005) propose a classification scheme
where a compound is said to belong to the first of the categories
presented in Table 6.1 that fits (in the order they are presented). The
deverbal category refers to nouns where the head of the compound is a
deverbal nominal. A relational noun is a noun that describes a relation
between two entities, such as “sport supporter”

sport(x) ∧ supporter(y, x) (6.1)

Copestake and Briscoe explain that “most idiosyncratic deverbal com-
pounds would be treated as relational.” Prepositional compounds are
compounds that could easily be paraphrased using a prepositional

187

Automatic
Analysis of

Compounds Based
on Semantics

Table 6.1: The compound noun categories proposed
by Copestake and Briscoe (2005).

Compound category Examples

Listed “home secretary”
Hypernymic “tuna fish”,

“oak tree”
Deverbal “word inflection”,

“machine operation”
Relational “jazz fan”,

“football supporter”
Made-of “steel sword”,

“cardboard box”
Prepositional “airshow accident”
Non-deverbal verb “steel town”,

“cotton town”
Non-paraphrasable “listeria society”

phrase after the first noun, as in “accident at (an/the) airshow”. The
non-deverbal verb compounds are compounds that are not easily para-
phrasable using a preposition. For example, “steel town” can be para-
phrased as “town producing steel”. While their last category, of non-
paraphrasable compounds, includes pragmatic compounds, such as the
one shown in their example.

Girju et al. (2005) propose 35 different semantic relations for interpret-
ing and classifying compound nouns. For example, they propose the
semantic relations part-whole and is-a (hypernymy), as in “girl mouth”
and “Dallas city”, respectively.

For endocentric compounds, the whole compound is a hyponym of
the compound’s grammatical head. Some Norwegian examples of this
phenomenon are «skolisse» (“shoe lace”), «bjørnejakt» (“bear hunt”), and
«eiendomsskatt» (“property tax”). However, these are slightly different
from what Copestake and Briscoe (2005) refer to as hypernymic and
Girju et al. (2005) classify with their is-a (hypernymy) relation, because
the left constituents are not hyponyms of the right constituents. On
the other hand, as shown in Figure 6.1, «jazzmusikk» (“jazz music”) is
a hypernymic, because as the figure shows, music_n_1 is an (indirect)
hypernym of jazz_n_2, according to WordNet.

188

Analysis and
Discussion

Figure 6.1: Hypernyms of “jazz” found in WordNet.

Figure 6.2: Hypernym of oak_tree_n_1 as defined by WordNet.

189

Automatic
Analysis of

Compounds Based
on Semantics

Figure 6.3: Hypernyms of “castle” and part holonyms for some of
them. Hypernymy edges are solid, while holonym edges are stippled.

Ordnett could, for example, be used to evaluate and rank valid
compound-word analyses returned from a compound-word analyzer,
with respect to these two last-mentioned semantic relationships. For
example, Ordnett contains the mappings

ordnett(tre) = {tread_v_1, tree_diagram_n_1, three_adj_1,
wood_n_2, tree_n_1} (6.2)

and

ordnett(eik) = {quercus_n_1, oak_tree_n_1}, (6.3)

and, as shown in Figure 6.2, in accordance with WordNet, tree_n_1 is
a hypernym of oak_tree_n_1.

Furthermore, when analyzing the example compounds presented
in the article by Johannessen and Hauglin (1996), the automatic com-
pound analyzer failed in ranking the candidates of «slottsvinduene»
(“castle windows.the”) correctly; the—in principle valid—interpretation
«slottsvin-duene» (“castle wine-doves.the”) was ranked higher. However,

190

Analysis and
Discussion

the candidate analysis ranked second was «slott-s-vinduene» (“castle
windows.the”). Now, as Ordnett includes the mappings

ordnett(slott) = {manor_house_n_1, hall_n_11, chateau_n_1,
castle_n_1, palace_n_1} (6.4)

and

ordnett(vinduene) = {window_n_1, fenestra_n_1,
windowpane_n_1}, (6.5)

and as shown in Figure 6.3, actually all of the senses that ordnett(slott)
maps to are hyponyms of building_n_1, which in turn has both
window_n_1 and windowpane_n_1 as (indirect) part holonyms, also
known as a part-whole relation.

Even though «eiketre» (“oak tree”) may be considered a lexicalized
compound, the above examples show how an automatic compound-
word analyzer may exploit information in Ordnett to improve the
ranking of candidate analyses by prioritizing analyses that satisfy either
the hypernymic or part-whole relationship.

6.2 Ontology Alignment

At first sight, it may seem like a straightforward task to use the output
from Verto to create a Norwegian ontology aligned with WordNet.
However, there are a few difficulties with such an approach.

Simple, noncompound Norwegian words should be quite easy to
map, as long as possible mappings to WordNet are found. If so, each
sense of the Norwegian word would be mapped to its corresponding
sense in WordNet.

However, a problem arises when it comes to mapping Norwegian
compounds when there is no single WordNet concept covering the com-
pound meaning. For example, the sense of «bjørnejakt» that translates
into (bear_n_1, hunt_n_5) is a kind of hunt, but it is a hunt where bears
are the target. One way of solving this would be to place «bjørnejakt»
as a new hyponym concept of hunt_n_5 (or as a reference from the
Norwegian wordnet node to an anonymous concept in the same place).

Another, related problem can be observed with verbs. For example,
the verb meaning of the Norwegian «skatt» translates into (pay_v_1,
tax_n_1). And though pay_v_1 is a kind of paying, the second part of
the translation is really defining a selectional restriction.

191

Answers to the
Research

Questions

6.3 Answers to the Research Questions

In this section I will provide answers to the research questions presented
in Section 1.3, based on the findings so far.

Q1 Is it possible to develop a method for automatically building a broad-
domain, general semantic resource for Norwegian that is compatible
with existing freely available, widely used, English semantic resources?

Answer: Yes. Verto, the implementation of the novel method and algo-
rithms presented in Chapter 4, was successfully used to automatically
create Ordnett, a broad-domain, general lexical-semantic resource that
maps Norwegian words and phrases to concepts in the Princeton Word-
Net.

As discussed in Section 2.4, others (Knight 1993; Knight and Luk 1994;
Okumura and Hovy 1994; Rigau and Agirre 1995; Atserias et al. 1997;
Farreres et al. 1998; Vossen 1998; Alonge et al. 1998; Farreres et al. 2002;
Tufiş et al. 2004) have created mappings from other non-English lan-
guages to WordNet, but, contrary to their methods, my method exploits
the implicit information made available through inverse translating the
target senses.

Furthermore, as shown in Section 2.4.5, Dyvik (2004) and Nygaard
(2006) have also generated broad-domain semantic resources for Norwe-
gian. However, their resources are not in any way aligned or integrated
with WordNet, and therefore cannot readily benefit from third-party
resources that integrates with or extends WordNet. Additionally, their
generated resources provide fewer semantic relations than provided by
WordNet and thereby by Ordnett. Finally, in contrast to Nygaard’s ap-
proach, Verto correctly detects and distinguishes between the different
senses of a Norwegian word.

Q2 What restrictions apply to the method? What resources are prerequisite?

Answer: The method described herein requires a) a simple bilingual
dictionary that contains information about the lexical category of entries
and maps words in the source language to words in the target language;
and b) a lexical database that contains semantic information about
synonymy, hypernymy, and similarity between senses in the target
language. To handle compound words, the method also requires the
availability of an automatic compound analyzer.

Q3 For each of the lexical categories nouns, verbs, adjectives, and adverbs,
how large fraction of the words in each class does the method work
for?

192

Analysis and
Discussion

Answer: With the configuration of the mapping framework that pro-
vided the maximum average precision value of 0.921 (achieved in Test
Run 4), the number of successfully mapped words per lexical category
were noun 22,888 (50.3 %); adjective 4,387 (47.7 %); verb 3,495 (65.2 %);
and adverb 186 (31.9 %).

With the configuration that provided the maximum recall value of 0.365

(achieved in Test Run 12), the number of successfully mapped words
per lexical category were noun 25,879 (56.3 %); adjective 5,357 (56.2 %);
verb 4,264 (78.5 %); and adverb 492 (35.3 %). The same configuration
also provided the maximum F0.5-score of 0.680.

Q4 How well does the method avoid mapping words in the source language
to senses in the target language that carry meanings that are not covered
by the source words?

Answer: Comparison of the results produced by the system presented
herein with those produced by a human expert showed that with a
configuration that maximizes the precision value, the system reaches a
precision score of 0.921.

This shows that the system is able to rather precisely avoid unwarranted
mappings.

Q5 Can the method handle (single word) compounds that occur frequently
in Norwegian, but more seldom in English?

Answer: Yes. The framework that implements the method presented
herein handles mapping of compounds by applying an integrated
compound-word analyzer.

Q6 How may the resulting semantic resource be useful for different areas
of Natural Language Processing (NLP) research and development?

Answer: One of the most important benefits of the method is that it
produces a semantic resource that is linked to the Princeton WordNet,
and thereby can benefit from other semantic resources that extends or
complements—but are still compatible with—WordNet.

In this dissertation Verto, an implementation of the method, was used to
generate Ordnett, an open-domain, general lexical semantic resource for
Norwegian. It should be possible to utilize Ordnett for Norwegian (ver-
sions of) applications within most areas of NLP where ontologies are
already used. These areas include, but is not necessarily limited to,
Word-Sense Disambiguation (WSD), Text Summarization, Document
Clustering, Information Extraction (IE), Information Retrieval (IR), Text
Interpretation, and Natural Language Generation (NLG).

193

Contribution

Q7 Can the method be applied to other languages, and if so, to which
ones?

Answer: I see no reason why the method should not be applicable to
at least other Germanic languages, like the Scandinavian languages,
German, and Dutch.

However, if the language makes extensive use of compounding, an
automatic compound-word analyzer may be required.

6.4 Contribution

In this dissertation I have presented (1) a method I have developed that
consists of a model and several algorithms for automatically mapping
content words from a non-English source language to WordNet senses.
Reflecting the importance of compounding in Norwegian, the method
is able to handle compounds. Therefore, I also presented (2) a practical
implementation, including algorithms and a grammar, of a program
for automatically analyzing Norwegian compounds.

Furthermore, I showed (3) that Verto, an implementation of the
model and algorithms, was used to create Ordnett, the first large-
scale, open-domain lexical-semantic resource for Norwegian with a rich
number of semantic relations. Because Ordnett inherits all the semantic
relations from WordNet, it provides access to many more semantic
relations than any of the preexisting approaches to generate general
Norwegian lexical-semantic resources, presented by Nygaard (2006) and
Dyvik (2004). Because Ordnett is a mapping of Norwegian words onto
WordNet senses, the resource can also utilize other semantic resources
that integrate with WordNet to extend or complement it. Examples
of such resources include VerbNet (Kipper et al. 2000b, 2004) and
FrameNet (Fillmore et al. 2003; Baker et al. 2003). This is another feature
not provided by the other Norwegian approaches. Additionally, because
new versions of Ordnett can easily be generated by rerunning Verto,
costs related to maintenance and upgrades of the resource are strongly
reduced, compared to manually performing such tasks. Therefore,
Ordnett will benefit from any improvement of WordNet.

Finally, I showed (4) how Ordnett can be used in an open-domain
question answering (open-domain QA) system, thereby arguing that
my method and automatically generated lexical semantic resource
makes it possible to build large-scale open-domain Natural Language
Understanding (NLU) systems, that offer both wide coverage and deep
analyses, for Norwegian texts.

194

Analysis and
Discussion

As shown in chapters 4 and 5 the Ordnett resource, created with
Verto, constitutes a useful large-scale, lexical-semantic resource for
Norwegian with a rich number of semantic relations.

Only the future will show, but I hope that both the methods and
the resource presented herein can be of great help to future research
on technologies related to—and products for—the Norwegian lan-
guage. The cultural, technological, economical, and educational con-
sequences caused by the relative scarcity of advanced Norwegian
language-technological solutions and resources—compared to the sit-
uation for other, larger languages—has already been widely acknowl-
edged (Simonsen 2005; Norwegian Language Council 2005; Norwegian
Ministry of Culture and Church Affairs 2008). I hope that my work,
presented herein, can help improve the current situation.

6.5 Future Work

There are several possible directions that the research on Ordnett might
take in the future.

The approach implemented in Verto makes it easy to automatically
generate new versions of Ordnett when new versions of the resources
it consumes, like WordNet or bilingual dictionary resources, become
available. Similarly, generating new Ordnett versions, of higher quality,
if improved mapping methods or algorithms are added to Verto, also
requires little effort. Nonetheless, improving the general quality of the
generated resources, manifested as higher levels of coverage, recall, or
precision, will be of great importance in the future.

On the other hand, keeping the generated resource updated might not
be solved by algorithms and newer versions of the input resources alone.
For example, a word’s senses in a language sometimes change over
time. Kokkinakis (2000) reports research on a corpora-based approach
for augmenting machine-readable dictionaries with such novel uses of
words. Updating Ordnett in a similarly fashion might prove advanta-
geous in the future. In general, supplementing Verto with corpus-based
approaches might hold the key to improving Ordnett’s coverage.

Based on the preliminary results from the TUClopedia project pre-
sented herein, one can also catch a glimpse of the extent of the problems
ahead in the development of TUClopedia. Even though large parts of
the system has already been finished and integrated with each other,
it seems safe to state that most of the work lies ahead, because most
of the remaining work deals with increasing the coverage of the NLU
parts of the system.

195

Final Words

One of the first goals of future TUClopedia development should be
to improve the system to the extent that we can provide large-scale
empirical results and evaluations of its workings.

In order to do that, the integration of external sources needs to be
improved. TUClopedia does not yet make full use of WordNet’s features,
and implementing better WSD should be a high priority. For example, it
could be interesting to see how the conceptual density measure (Rigau
and Agirre 1995; Agirre and Rigau 1996) might be applied to improve
TUClopedia’s WSD process.

Furthermore, the coverage of LexTUC’s internal lexical-semantic knowl-
edge should be extended. This might be done by improving the interac-
tion between LexTUC’s internal lexical-semantic knowledge and Word-
Net, or WordNet-compatible resources. For example, it would be a huge
step forward if LexTUC’s information about selectional restrictions of
different verbs could be increased by integrating WordNet-compatible
resources, like FrameNet (Baker et al. 2003), VerbNet (Kipper et al.
2000a, 2004), or eXtended WordNet (Moldovan and Novischi 2004).

Developing adequate user interfaces for presenting answers will also
be needed. This work could probably make use of a document retrieval
system, which is already partly implemented in TUClopedia, but for
now precise answers are prioritized.

6.6 Final Words

As Niels Bohr1 stated, “prediction is very difficult, especially about the
future.” Therefore, I can only hope that parts of my work presented
herein will be used in research that eventually finds it way into the
language technologies of tomorrow. If so should happen, my work
has served as a stepping stone that might eventually help improve
some aspects of everyday life affected by the Norwegian language. Or,
perhaps, some other non-English languages too.

1 Niels Bohr (1885–1962), Danish physicist.

196

Appendix

197

ABrief Introduction to Graph Theory

This appendix provides a short introduction to a small part of graph
theory to ensure that the terms used in Sections 4.9 and 4.11 are properly
introduced.

A graph G is a tuple (V, E) where V denotes a finite set and E defines
a binary relation on V. We call each element of V a vertex (or node)
while each element of E represents an edge between two such vertices.
Figure A.1 visualizes a graph, where the circles represent vertices and
the lines between them represent the edges.

A path of length k between two vertices u′ and v′ in a graph consists of
a sequence 〈v1, v2, . . . , vk〉 where (vi−1

, vi) ∈ E holds for all i = 2, . . . , k,
and v1 = u′ and vk = v′.

Graphs can be directed or undirected. In a directed graph the binary
relation E defined on V consists of ordered pairs, while in undirected
graphs, E consists of unordered pairs. The arrowheads in Figure A.2
on the next page identify the direction of each edge.

Furthermore, we usually distinguish between cyclic and acyclic graphs.
A cyclic graph contains edges so that one can follow a nonempty path
from one vertex in the graph back to itself. For example, the edges (2, 2)
and (5, 1) in Figure A.2 yield cycles in the graph. An acyclic graph

1 2

3

4

Figure A.1: An undirected graph G = (V, E), where V = {1, 2, 3, 4}
and E = {(1, 2), (1, 3), (2, 3), (2, 4)}.

199

Brief Introduction
to Graph Theory

1 2

3 4

5

Figure A.2: A directed graph G = (V, E), where V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 3), (2, 2), (2, 5), (3, 2), (5, 1)}.

1 2

3 4

5

Figure A.3: A directed acyclic graph G = (V, E), where V =
{1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 2), (5, 4)}.

1 2

3 4

5

1

3
5 0

− 1
4

1 2

Figure A.4: A weighted directed acyclic graph
G = (V, E), where V = {1, 2, 3, 4, 5} and E =
{(1, 2, 1), (1, 3, 3

5
), (2, 4, 1), (2, 5,− 1

4
), (3, 2, 0), (5, 4, 2)}.

200

Appendix A

contains no such cycles. We call a directed and acyclic graph for a
directed acyclic graph (DAG), see Figure A.3 on the facing page for an
example.

Every DAG contains at least one source and at least one sink. The
vertices without incoming edges constitute the sources of a DAG, and
likewise, vertices without outgoing edges constitute its sinks. The DAG
in Figure A.3 has only one source {1} and one sink {4}.

Graphs can be weighted. In a weighted graph, every edge has a
certain weight. Likewise, in a weighted DAG, G = (V, E), every edge is
defined as a triple, (u, v, w), where u and v represent the source and
target vertices respectively, while w represents the weight of that partic-
ular edge. For example, in Figure A.4 on the preceding page the edge
(2, 5,− 1

4
) has a weight of − 1

4
, while the edge (3, 2, 0) has a weight of 0.

For a more thorough introduction to graph theory, please consult, for
example, (Cormen et al. 2001; Appendix B) or (West 2001).

201

References

The numbers following each entry in the bibliography denote the pages where
that work was referenced.

Agirre, Eneko, Olatz Ansa, Eduard H. Hovy, and David Martínez. 2000.
Enriching very large ontologies using the WWW. In Proceedings
of the First Workshop on Ontology Learning OL’2000. Berlin, Germany.
Held in conjunction with the 14th European Conference on Artificial
Intelligence ECAI’2000. 81

Agirre, Eneko, Xabier Arregi, Xabier Artola, Arantza Díaz de Ilarraza,
and Kepa Sarasola. 1994. Conceptual Distance and automatic spelling
correction. In Proceedings of the Workshop on Computational Linguistics
for Speech and Handwriting Recognition. Leeds, UK. 27

Agirre, Eneko, and German Rigau. 1996. Word sense disambiguation
using Conceptual Density. In Proceedings of the 16th Conference on
Computational Linguistics, 16–22. Morristown, NJ, USA: Association
for Computational Linguistics. 25, 26, 196

Alonge, Antonietta, Nicoletta Calzolari, Piek Vossen, Laura Bloksma,
Irene Castellon, Maria Antonia Marti, and Wim Peters. 1998. The
linguistic design of the EuroWordNet database. Computers and the
Humanities 32:91–115. 24, 192

Alvar Ezquerra, Manuel, ed. 1987. Diccionario General Ilustrado de la
Lengua Española. Barcelona, Spain: Vox Biblograf S.A. 27

Amble, Tore. 2000. BusTUC - a natural language bus route oracle.
In Proceedings of the 6th Applied Natural Language Processing Confer-
ence, 1–6. Seattle, Washington, USA: Association for Computational
Linguistics. 4, 10, 15, 35, 37, 38, 39, 152

———. 2003. The understanding computer: Natural language understand-
ing in practice. Trondheim, Norway: Department of Computer and

203

References

Information Science, Norwegian University of Science and Technol-
ogy. Preliminary version. xxv, 4, 6, 39

Amble, Tore, Martin Thorsen Ranang, and Rune Sætre. 2002. The
understanding computer: A tutorial. Department of Computer and In-
formation Science, Norwegian University of Science and Technology,
Trondheim, Norway. 37

Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Bot-
stein, Heather Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski,
Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Lau-
rie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese,
Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin
Sherlock. 2000. Gene Ontology: tool for the unification of biology.
Nature Genetics 25:25–29. 10

Atserias, Jordi, Salvador Climent, Javier Farreres, German Rigau, and
Horacio Rodríguez. 1997. Combining multiple methods for the au-
tomatic construction of multilingual WordNets. In Proceedings of the
International Conference on Recent Advances in Natural Language Pro-
cessing (RANLP 97). Tzigov Chark, Bulgaria. 27, 28, 29, 30, 31, 147,
192

Ayad, Hanan, and Mohamed Kamel. 2002. Topic discovery from text
using aggregation of different clustering methods. In Advances in
Artificial Intelligence: 15th Conference of the Canadian Society for Com-
putational Studies of Intelligence, AI 2002, Calgary, Canada, May 27–
29, 2002, proceedings, ed. Robin Cohen and Bruce Spencer, vol. 2338

of Lecture Notes in Artificial Intelligence, 161–175. Berlin, Heidelberg:
Springer-Verlag. 14

Baker, Collin F., Charles J. Fillmore, and Beau Cronin. 2003. The struc-
ture of the FrameNet database. International Journal of Lexicography
16(3):281–296. 81, 183, 194, 196

Bateman, John A. 1990. Upper modeling: organizing knowledge for
natural language processing. In Proceedings of the Fifth International
Workshop on Natural Language Generation. Pittsburgh, PA, USA. 24

Bird, Steven. 2006. NLTK: The Natural Language Toolkit. In Proceedings
of the COLING/ACL Interactive Presentation Sessions, 69–72. Sydney,
Australia: Association for Computational Linguistics. 57

Bird, Steven, Ewan Klein, and Edward Loper. 2008. Natural Language
Processing in Python. Available on-line, http://nltk.org/index.
php/Book. Accessed Jan. 14, 2008. 57

204

http://nltk.org/index.php/Book
http://nltk.org/index.php/Book

References

Bird, Steven, and Edward Loper. 2004. NLTK: The Natural Language
Toolkit. In Proceedings of the ACL 2004 Interactive Poster and Demon-
stration Sessions, 31. Barcelona, Spain: Association for Computational
Linguistics. 57

Bruland, Tore. 2002. ExamTUC - a simple examination system in natural
language. Sivilingeniør’s thesis, Department of Computer and In-
formation Science, Norwegian University of Science and Technology,
Trondheim, Norway. 4, 38

Chandrasekaran, B., J. R. Josephson, and V. R. Benjamins. 1999. What
are ontologies, and why do we need them? Intelligent Systems and
Their Applications, IEEE 14:20–26. 10

Chen, Yu, Andreas Eisele, and Martin Kay. 2008. Improving Statistical
Machine Translation Efficiency by Triangulation. In Proceedings of
the Sixth International Conference on Language Resources and Evaluation
(LREC 2008), 2875–2880. Marrakech, Morocco. 33

Collins, Henry H., Jr., and Colin Smith, eds. 1971. Collins Spanish-
English/English-Spanish Dictionary. New York, USA: William Collins
Sons & Co. Ltd. 24, 31

Constantinescu-Fulöp, Zoran, and Jörg Cassens. 2003. It’s magic:
SourceMage GNU/Linux as HPC cluster OS. In LinuxTag 2003. Karls-
ruhe, Germany: LinuxTag. 181

Converse, Tim, Ronald M. Kaplan, Barney Pell, Scott Prevost, Lorenzo
Thione, and Chad Walters. 2008. Powerset’s natural language
Wikipedia search engine. In Wikipedia and Artificial Intelligence: An
Evolving Synergy: Papers from the AAAI Workshop, 67. Techical Report
WS-08-15, Menlo Park, California, USA: The AAAI Press. 1

Copestake, Ann, and John Edward Briscoe. 2005. Noun compounds
revisited. In Charting a New Course: Natural Language Processing and
Information Retrieval. Essays in Honour of Karen Spärck Jones, ed. John I.
Tait, vol. 16 of The Information Retrieval Series, chap. 9, 129–154. Dor-
drecht, The Netherlands: Springer. xv, 187, 188

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan Sag. 2005. Min-
imal Recursion Semantics: An introduction. Research on Language &
Computation 3:281–332. 40

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. 2001. Introduction to algorithms. 2nd ed. MIT Electrical and

205

References

Computer Science Series, Cambridge, Massachusetts, USA: The MIT
Press. 201

Cruse, D. A. 1986. Lexical semantics. Cambridge textbooks in linguistics,
Cambridge, UK: Cambridge University Press. 18

Dorr, Bonnie Jean. 1992. The use of lexical semantics in interlingual
machine translation. Machine Translation 7(3):135–193. 32

———. 1993. Interlingual machine translation: a parameterized ap-
proach. Artificial Intelligence 63(1–2):429–492. 32

———. 1997. Large-scale dictionary construction for foreign language
tutoring and interlingual machine translation. Machine Translation
12(4):271–325. 32, 33

Dorr, Bonnie Jean, Joseph Garman, and Amy Weinberg. 1995. From
syntactic encodings to thematic roles: Building lexical entries for
interlingual MT. Machine Translation 9(3):71–100. 33

Dyvik, Helge. 1999. The universality of f-structure: discovery or stipula-
tion? The case of modals. In Proceedings of the LFG ’99 Conference, ed.
Miriam Butt and Tracy Holloway King. The University of Manchester:
CSLI Publications. 40

———. 2004. Translations as semantic mirrors. From parallel corpus to
WordNet. Language and Computers 49(1):311–326. 2, 4, 34, 192, 194

———. 2005. Translations as a semantic knowledge source. In Proceed-
ings of the Second Baltic Conference on Human Language Technologies.
Tallinn: Institute of Cybernetics at Tallinn University of Technology,
Institute of the Estonian Language. 144, 145

Earley, Jay. 1970. An efficient context-free parsing algorithm. Communi-
cations of the ACM 13(2):94–102. 57

van Els, Theo J.M. 2001. The European Union, its Institutions and its
Languages: Some Language Political Observations. Current Issues In
Language Planning 2(4):311–360. 1

Faarlund, Jan Terje, Svein Lie, and Kjell Ivar Vannebo. 1997. Norsk
referansegrammatikk. Oslo, Norway: Universitetsforlaget. xxiii, 152,
153

206

References

Farreres, Javier, German Rigau, and Horacio Rodríguez. 1998. Using
WordNet for building WordNets. In Use of WordNet in Natural Lan-
guage Processing Systems: Proceedings of the Conference, ed. Sanda M.
Harabagiu, 65–72. Somerset, New Jersey: Association for Computa-
tional Linguistics. 31, 192

Farreres, Javier, Horacio Rodríguez, and Karina Gibert. 2002. Semiau-
tomatic creation of taxonomies. In Coling-02 on semanet, 1–7. Morris-
town, NJ, USA: Association for Computational Linguistics. 31, 147,
192

Fellbaum, Christiane. 1998a. A semantic network of English: The mother
of all WordNets. Computers and the Humanities 32:209–220. 77

———. 1998b. A semantic network of English verbs. In Fellbaum
(1998c), chap. 3, 69–104. 20, 21

Fellbaum, Christiane, ed. 1998c. WordNet: An electronic lexical database.
Language, Speech, and Communication, Cambridge, Massachusetts,
USA: The MIT Press. xxv, 4, 6, 11, 76, 77, 207, 211, 213, 216, 218

Fillmore, Charles J., Christopher R. Johnson, and Miriam R.L. Petruck.
2003. Background to FrameNet. International Journal of Lexicography
16(3):235–250. http://ijl.oxfordjournals.org/cgi/reprint/16/
3/235.pdf. 81, 183, 194

Flickinger, Dan. 2000. On building a more efficient grammar by exploit-
ing types. Natural Language Engineering 6(1):15–28. 40

Gambäck, Björn, and Stefan Ljung. 1993. Question Answering in the
Swedish Core Language Engine. In Proceedings of the 4th Scandinavian
Conference on Artificial Intelligence, ed. Erik Sandewall and Carl Gustaf
Jansson, 212–225. Frontiers in Artificial Intelligence and Applica-
tions 18, Stockholm, Sweden: IOS Press, Amsterdam, Holland. 35,
37

Gamut, L.T.F. 1991a. Intensional logic and logical grammar, vol. 2 of Logic,
Language, and Meaning. Chicago and London: The University of
Chicago Press. 167

———. 1991b. Introduction to logic, vol. 1 of Logic, Language, and Meaning.
Chicago and London: The University of Chicago Press. 18

Gangemi, Aldo, Nicola Guarino, and Alessandro Oltramari. 2001. Con-
ceptual analysis of lexical taxonomies: the case of WordNet top-level.

207

http://ijl.oxfordjournals.org/cgi/reprint/16/3/235.pdf
http://ijl.oxfordjournals.org/cgi/reprint/16/3/235.pdf

References

In Proceedings of the International Conference on Formal Ontology in In-
formation Systems, 285–296. ACM Press. 81

Girju, Roxana, Dan I. Moldovan, Marta Tatu, and Daniel Antohe. 2005.
On the semantics of noun compounds. Computer Speech & Language
19:479–496. 188

Gomez, Fernando. 1994. Knowledge acquisition from real-world texts:
some lessons learned. In Proceedings of the Sixth International Confer-
ence on Tools with Artificial Intelligence, 229–230. 15, 37

Gomez, Fernando, Richard D. Hull, and Carlos Segami. 1994. Acquiring
knowledge from encyclopedic texts. In Proceedings of the 4th Confer-
ence on Applied Natural Language Processing, 84–90. Association for
Computational Linguistics, Stuttgart, Germany: Morgan Kaufmann
Publishers Inc. 15

Gonzalo, Julio, Felisa Verdejo, Carol Peters, and Nicoletta Calzolari.
1998. Applying EuroWordNet to cross-language text retrieval. Com-
puters and the Humanities 32:185–207. 15

Green, Claude Cordell, and Bertram Raphael. 1968. The use of theorem-
proving techniques in question-answering systems. In Proceedings of
the 1968 23rd ACM National Conference, 169–181. New York, NY, USA:
ACM. 34

Grishman, Ralph. 2003. Information extraction. In The Oxford Handbook
of Computational Linguistics, ed. Ruslan Mitkov. Oxford, UK: Oxford
University Press. 14

Grunfeld, Laszlo, and Kui-Lam Kwok. 2006. Sentence ranking using
keywords and meta-keywords. In Strzalkowski and Harabagiu (2006),
229–258. 35, 149

Hamburger, Henry, and Dana Richards. 2002. Logic and Language Models
for Computer Science, chap. 10, 201–222. Upper Saddle River, New
Jersey, USA: Prentice Hall. 70

Harabagiu, Sanda M., George A. Miller, and Dan I. Moldovan. 1999.
WordNet 2 - a morphologically and semantically enhanced resource.
In Proceedings of SIGLEX99: Standardizing Lexical Resources, 1–8. Spe-
cial Interest Group on the Lexicon of the Association for Computa-
tional Linguistics and the National Science Foundation, University of
Maryland, College Park, Maryland, USA: Association for Computa-
tional Linguistics. 80, 152

208

References

Hartmann, R. R. K., and Gregory James. 2002. Dictionary of lexicography.
Routledge. 92

Haslerud, Vibecke C. D., and Petter Henriksen, eds. 2003. Engelsk stor
ordbok: Engelsk-norsk / norsk-engelsk. Oslo, Norway: Kunnskapsfor-
laget. 72, 74, 76, 152, 153

Hasselgård, Hilde, Stig Johansson, and Per Lysvåg. 1998. English gram-
mar: Theory and use. Oslo, Norway: Universitetsforlaget. 18, 20

Hellan, Lars, and Petter Haugereid. 2003. The NorSource grammar–
an excercise in the Matrix Grammar building design. Proceedings of
Workshop on Multilingual Grammar Engineering, ESSLLI 2003. 40

Henriksen, Petter, ed. 2003. Aschehougs og Gyldendals Store Norske Lek-
sikon. Oslo, Norway: Kunnskapsforlaget. 149, 151, 152, 153, 163, 167,
179

Hobbs, Jerry R., Mark E. Stickel, Douglas E. Appelt, and Paul Martin.
1993. Interpretation as abduction. Artificial Intelligence 63(1–2):69–142.
15

Hotho, Andreas, Steffen Staab, and Gerd Stumme. 2003. Ontologies
improve text document clustering. In Proceedings of the Third IEEE
International Conference on Data Mining (ICDM’03), ed. Xindong Wu,
Alex Tuzhilin, and Jude Shavlik, 541–544. Melbourne, Florida, USA:
IEEE Computer Society, Los Alamitos, CA, USA. 14

Hull, Richard D., and Fernando Gomez. 1999. Automatic acquisition of
biographic knowledge from encyclopedic texts. Expert Systems with
Applications 16(3):261–270. 15, 37, 153

Jackendoff, Ray S. 1992. Semantic structures, vol. 18 of Current Studies in
Linguistics. 4th ed. Cambridge, Massachusetts, USA: The MIT Press.
32

Jacobs, Paul S., and Lisa F. Rau. 1993. Innovations in text interpretation.
Artificial Intelligence 63(1–2):143–191. 15

Jing, Hongyan, and Kathleen McKeown. 1998. Combining multiple,
large-scale resources in a reusable lexicon for natural language gen-
eration. In Proceedings of the 17th International Conference on Compu-
tational Linguistics, 607–613. Morristown, NJ, USA: Association for
Computational Linguistics. 16

209

References

Joachims, Thorsten. 1997. A probabilistic analysis of the Rocchio algo-
rithm with TFIDF for text categorization. In International Conference
on Machine Learning (ICML). Nashville, Tennessee, USA. 14

Johannessen, Janne Bondi. 2001. Sammensatte ord. Norsk Lingvistisk
Tidsskrift 19:59–91. 22, 23, 24, 41, 60, 62

Johannessen, Janne Bondi, and Helge Hauglin. 1996. An automatic
analysis of Norwegian compounds. In Papers from the 16th Scandina-
vian Conference of Linguistics. Turku/Åbo, Finland. 23, 24, 42, 57, 58,
66, 67, 68, 70, 190

Joseph, John Earl. 2004. Language and Identity: National, Ethnic, Religious.
Hampshire, UK: Palgrave Macmillan. 1

Jurafsky, Daniel Saul, and James H. Martin. 2000. Speech and Language
Processing. Prentice Hall Series in Artificial Intelligence, Upper Saddle
River, New Jersey, USA: Prentice Hall. 57, 77, 110, 111

Jönsson, Arne, Frida Andén, Lars Degerstedt, Annika Flycht-Eriksson,
Magnus Merkel, and Sara Norberg. 2004. Experiences from com-
bining dialogue system development with information extraction
techniques. In New Directions in Question Answering, ed. Mark T.
Maybury, 153–168. AAAI/MIT Press. 10, 37

Karlsson, Fred. 1992. SWETWOL: A Comprehensive Morphological
Analyser for Swedish. Nordic Journal of Linguistics 15(01):1–45. 23, 50

Kay, Martin. 1997. The proper place of men and machines in language
translation. Machine Translation 12(1):3–23. 33

Kipper, Karin, Hoa Trang Dang, and Martha Palmer. 2000a. Class-based
construction of a verb lexicon. In Seventeenth National Conference on
Artificial Intelligence (AAAI-2000). Austin, Texas, USA. 81, 183, 196

Kipper, Karin, Hoa Trang Dang, William Schuler, and Martha Palmer.
2000b. Building a class-based verb lexicon using TAGs. In TAG+5
Fifth International Workshop on Tree Adjoining Grammars and Related
Formalisms. Paris, France. 194

Kipper, Karin, Benjamin Snyder, and Martha Palmer. 2004. Extending
a verb-lexicon using a semantically annotated corpus. In Proceed-
ings of the Fourth International Conference on Language Resources and
Evaluation (LREC 2004). Lisbon, Portugal. 81, 183, 194, 196

210

References

Knight, Kevin. 1993. Building a large ontology for machine translation.
In HLT ’93: Proceedings of the Workshop on Human Language Technol-
ogy, 185–190. Morristown, NJ, USA: Association for Computational
Linguistics. 24, 192

Knight, Kevin, and Steve K. Luk. 1994. Building a large-scale knowl-
edge base for machine translation. Proceedings of the Twelfth National
Conference on Artificial Intelligence 1:773–778. 11, 15, 24, 31, 83, 192

Kohl, Karen T., Douglas A. Jones, Robert C. Berwick, and Naoyuki No-
mura. 1998. Representing verb alternations in WordNet. In Fellbaum
(1998c), chap. 6, 153–178. 184

Kokkinakis, Dimitrios. 2000. Concordancing revised or how to aid the
recognition of new senses in very large corpora. In Proceedings of the
Second International Conference on Natural Language Processing: NLP
2000, ed. Dimitris N. Christodoulakis, vol. 1835 of Lecture Notes in
Artificial Intelligence, 370–381. Patras, Greece: Springer-Verlag, Berlin,
Heidelberg. 195

Kokkinakis, Dimitrios, Maria Toporowska Gronostaj, and Karin Warme-
nius. 2000. Annotating, Disambiguating & Automatically Extending
the Coverage of the Swedish SIMPLE Lexicon. In Proceedings of the
Second Conference on Language Resources and Evaluation (LREC-2000).
Athens, Greece. 23, 31, 67

Kowalski, Robert, and Marek Sergot. 1986. A logic-based calculus of
events. New Generation Computing 4:67–95. 39

Kupiec, Julian. 1993. Murax: a robust linguistic approach for ques-
tion answering using an on-line encyclopedia. In Proceedings of the
Sixteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 181–190. ACM Press. 37

Kwon, Namhee, and Eduard H. Hovy. 2006. Integrating semantic
frames from multiple sources. In Proceedings of the Seventh Interna-
tional Conference on Intelligent Text Processing and Computational Lin-
guistics (CICLing), vol. 3878 of Lecture Notes in Computer Science, 1–12.
Mexico City, Mexico: Springer-Verlag, Berlin, Heidelberg. 183

Lambert, Wallace E. 1972. Language, psychology, and culture. Language
Science and National Development Series, Stanford, California, USA:
Stanford University Press. 1

211

References

Larsen, Bjornar, and Chinatsu Aone. 1999. Fast and effective text mining
using linear-time document clustering. In KDD ’99: Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 16–22. New York, NY, USA: ACM. 14

Lauer, Mark. 1995. Designing statistical language learners: Experiments
on noun compounds. Ph.D. thesis, Macquarie University, Sydney,
Australia. 187

Laver, John, and Jan Roukens. 1996. The Global Information Society
and Europe’s Linguistic and Cultural Heritage. In Language, Culture
and Communication in Contemporary Europe, ed. Charlotte Hoffmann,
1–27. Bristol, UK: Multilingual Matters. 1

Lenat, Douglas B. 1995. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM 38(11):33–38. 11

———. 2006. Computers versus Common Sense. Google TechTalks,
May 30. 12 min., 9 sec. AVI, http://video.google.com/videoplay?
docid=-7704388615049492068 (accessed November 4, 2008). 36

Lenci, Alessandro, Nuria Bel, Federica Busa, Nicoletta Calzolari, Elisa-
betta Gola, Monica Monachini, Antoine Ogonowski, Ivonne Peters,
Wim Peters, Nilda Ruimy, Marta Villegas, and Antonio Zampolli.
2000. SIMPLE: A general framework for the development of multilin-
gual lexicons. International Journal of Lexicography 13(4):249–263. 23,
25, 34

Levin, Beth. 1993. English verb classes and alternations: A preliminary
investigation. The University of Chicago Press. 33

Lewis, Harry R., and Christos H. Papadimitriou. 1998. Elements of the
Theory of Computation, chap. 2, 55–112. 2nd ed. Upper Saddle River,
New Jersey, USA: Prentice Hall. 70

Mahesh, Kavi, and Sergei Nirenburg. 1996. Meaning representation for
knowledge sharing in practical machine translation. In Proceedings
of Florida Artificial Intelligence Research Symposium, FLAIRS-96, Special
Track on Information Interchange. Key West, FL, USA. 15

Mani, Inderjeet, and Mark T. Maybury, eds. 1999. Advances in Automatic
Text Summarization. Cambridge, Massachusetts, USA: The MIT Press.
13

212

http://video.google.com/videoplay?docid=-7704388615049492068
http://video.google.com/videoplay?docid=-7704388615049492068

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze.
2008. Introduction to Information Retrieval. New York, NY, USA: Cam-
bridge University Press. 14

Matsumoto, Makoto, and Takuji Nishimura. 1998. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 8(1):3–30. 111

McKeown, Kathleen, Jacques Robin, and Karen Kukich. 1995. Gener-
ating concise natural language summaries. Information Processing &
Management 31(5):703–733. 13

Miller, George A. 1985. Dictionaries of the mind. In Proceedings of
the 23rd Annual Meeting of the Association for Computational Linguis-
tics, 305–314. Morristown, NJ, USA: Association for Computational
Linguistics. 76, 77

———. 1995. WordNet: a lexical database for English. Communications
of the ACM 38(11):39–41. xxv, 4, 6

———. 1998. Nouns in WordNet. In Fellbaum (1998c), chap. 2, 23–46.
18

Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine J. Miller. 1990. Introduction to WordNet: an on-line
lexical database. International Journal of Lexicography 3(4):235–244.
(Revised August 1993). 76

Miller, George A., and Christiane Fellbaum. 2007. Wordnet then and
now. Language Resources and Evaluation 41:209–214. 153

Miller, George A., and Florentina Hristea. 2006. WordNet nouns: Classes
and instances. Computational Linguistics 32(1):1–3. 76, 81

Moldovan, Dan I., Christine Clark, Sanda M. Harabagiu, and Steve
Maiorano. 2003. COGEX: a logic prover for question answering. In
HLT-NAACL ’03: Proceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the Association for Compu-
tational Linguistics, 87–93. Edmonton, Canada: Association for Com-
putational Linguistics. 35

Moldovan, Dan I., and Rada Mihalcea. 2000. Using WordNet and lexical
operators to improve Internet searches. Internet Computing, IEEE 4:
34–43. 15

213

References

Moldovan, Dan I., and Adrian Novischi. 2004. Word sense disambigua-
tion of WordNet glosses. Computer Speech & Language 18:301–317. 13,
196

Moldovan, Dan I., Marius A. Paşca, and Mihai Surdeanu. 2006. Some
advanced features of LCC’s Poweranswer. In Strzalkowski and
Harabagiu (2006), 3–34. 35

Moldovan, Dan I., and Vasile Rus. 2001. Logic form transformation
of WordNet and its applicability to question answering. In ACL ’01:
Proceedings of the 39th Annual Meeting of the Association for Compu-
tational Linguistics, 402–409. Morristown, NJ, USA: Association for
Computational Linguistics. 35

Navarro, Gonzalo. 2001. A guided tour to approximate string matching.
ACM Computing Surveys (CSUR) 33(1):31–88. 157

Nirenburg, Sergei, and Victor Raskin. 2004. Ontological semantics. Lan-
guage, Speech, and Communication, Cambridge, Massachusetts,
USA: The MIT Press. 1, 9

Nordgård, Torbjørn. 1998. Norwegian computational lexicon (Nor-
KompLeks). In Proceedings of the 11th Nordic Conference on Computa-
tional Linguistics, ed. Bente Maegaard, 34–44. University of Copen-
hagen, Denmark: Center for Sprogteknologi. 41, 152, 153

Nordgård, Torbjørn, Martin Thorsen Ranang, and Jostein Ven. 2005.
An approach to automatic text production in electronic medical
record systems. In Proceedings of the 9th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems (KES
2005), ed. Rajiv Khosla, Robert J. Howlett, and Lakhmi C. Jain, vol.
3683 of Lecture Notes in Artificial Intelligence, 1187–1194. Melbourne,
Australia: Springer-Verlag, Berlin, Heidelberg. 8, 16

Norris, Pippa. 2001. Digital divide: Civic engagement, information poverty,
and the internet worldwide. Communication, Society and Politics, Cam-
bridge, New York, USA: Cambridge University Press. 150

Norwegian Language Council. 2005. Norsk i hundre! Norsk som nasjon-
alspråk i globaliseringens tidsalder: Et forslag til strategi. Oslo, Norway:
Norwegian Language Council. On-line http://sprakrad.no/
Politikk-Fakta/Spraakpolitikk/Norsk_i_hundre_Strategiar/,
Last visited May 21, 2009. xxv, 1, 195

214

http://sprakrad.no/Politikk-Fakta/Spraakpolitikk/Norsk_i_hundre_Strategiar/
http://sprakrad.no/Politikk-Fakta/Spraakpolitikk/Norsk_i_hundre_Strategiar/

References

Norwegian Ministry of Culture and Church Affairs. 2008. Mål og
meining: Ein heilskapleg norsk språkpolitikk. Stortingsmelding nr. 35

(2007–2008), Norwegian Ministry of Culture and Church Affairs, Oslo,
Norway. xxv, 1, 195

Nygaard, Lars. 2006. Frå ordbok til ordnett. Cand.philol.-oppgåve,
Universitetet i Oslo, Norway. 4, 34, 192, 194

Oepen, Stephan, Helge Dyvik, Jan Tore Lønning, Erik Velldal, Dorothee
Beermann, John Carroll, Dan Flickinger, Lars Hellan, Janne Bondi
Johannessen, Paul Meurer, Torbjørn Nordgård, and Victoria Rosén.
2004. Som å kapp-ete med trollet? Towards MRS-based Norwegian—
English Machine Translation. In Proceedings of the 10th International
Conference on Theoretical and Methodological Issues in Machine Transla-
tion. Baltimore, MD. 39

Okumura, Akitoshi, and Eduard H. Hovy. 1994. Building Japanese-
English dictionary based on ontology for machine translation. In
HLT ’94: Proceedings of the Workshop on Human Language Technology,
141–146. Morristown, NJ, USA: Association for Computational Lin-
guistics. 24, 192

Paşca, Marius A. 2003. Open domain question answering from large text
collections. CSLI Studies in Computational Linguistics, Center for
the Study of Language and Information, Stanford, California: CSLI
Publications. 35, 151, 178

Paşca, Marius A., and Sanda M. Harabagiu. 2001. High performance
question/answering. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, 366–374. ACM Press. 35

Patterson, David A., and John L. Hennessy. 1998. Computer Organization
& Design: The Hardware/Software Interface, chap. 9, 710–759. 2nd ed.
San Francisco, California, USA: Morgan Kaufmann Publishers, Inc.
180

Pedersen, Bolette Sandford. 2007. Using shallow linguistic analysis to
improve search on Danish compounds. Natural Language Engineering
13(1):75–90. 23, 67

Pereira, Fernando C. N., and David H. D. Warren. 1980. Definite clause
grammars for language analysis—a survey of the formalism and a
comparison with augmented transition networks. Artificial Intelligence
13(1–2):231–278. 38

215

References

Peters, Wim, Piek Vossen, Pedro Díez-Orzas, and Geert Andriaens. 1998.
Cross-linguistic alignment of wordnets with an inter-lingual-index.
Computers and the Humanities 32:221–251. 15

Philpot, Andrew G., Michael Fleischman, and Eduard H. Hovy. 2003.
Semi-automatic construction of a general purpose ontology. Proceed-
ings of the International Lisp Conference. New York, NY. Invited. 11

Procter, Paul, ed. 1978. Longman Dictionary of Contemporary English.
Harlow, England: Longman Group Ltd. 24

Pustejovsky, James. 2001. Type construction and the logic of concepts.
In The language of word meaning, ed. Pierrette Bouillon and Federica
Busa, 91–123. Studies in Natural Language Processing, Cambridge,
UK: Cambridge University Press. 25

Reiter, Ehud, and Robert Dale. 1997. Building applied natural language
generation systems. Natural Language Engineering 3:57–87. 16

Resnik, Philip. 1998. WordNet and class-based probabilities. In Fell-
baum (1998c), chap. 10, 239–263. 13

Rigau, German. 1994. An experiment on automatic semantic tagging of
dictionary senses. In Proceedings of the International Workshop on the
Future of the Dictionary. Uriage-les-Bains, Grenoble, France. 27

Rigau, German, and Eneko Agirre. 1995. Disambiguating bilingual
nominal entries against WordNet. In Seventh European Summer School
in Logic, Language and Information, ESSLLI’95, 71–82. 26, 146, 147, 192,
196

Russel, Stuart Jonathan, and Peter Norvig, eds. 2003. Artificial intelli-
gence: A modern approach. 2nd ed. Prentice Hall Series in Artificial
Intelligence, Upper Saddle River, New Jersey, USA: Prentice Hall. 10

Saint-Dizier, Patrick, and Evelyn Viegas, eds. 1995. Computational lexical
semantics. Studies in natural language processing, Cambridge, UK:
Cambridge University Press. 18

Salton, Gerard, A. Wong, and C. S. Yang. 1975. A vector space model
for automatic indexing. Communications of the ACM 18(11):613–620.
14, 185

Shi, Lei, and Rada Mihalcea. 2005. Putting pieces together: Combining
FrameNet, VerbNet and WordNet for robust semantic parsing. In Pro-
ceedings of the 6th International Conference on Computational Linguistics

216

References

and Intelligent Text Processing (CICLing 2005), ed. Alexander Gelbukh,
vol. 3406 of Lecture Notes in Computer Science, 100–111. Mexico City,
Mexico: Springer-Verlag, Berlin, Heidelberg. 81

Simmons, Robert F. 1965. Answering English questions by computer: A
survey. Communications of the ACM 8(1):53–70. 35

Simonsen, Dag F. 2005. Over the fence—and into English? Reflections on
adolescents, academics, linguistic development and language policy
in Norway in the early 2000s. In The Consequences of Mobility: Linguis-
tic and Sociocultural Contact Zones, ed. Bent Preisler, Anne Fabricius,
Hartmut Haberland, Susanne Kjærbeck, and Karen Risager, 249–271.
Denmark: Department of Language and Culture, Roskilde University.
xxv, 1, 195

Sowa, John F. 2000. Knowledge representation: Logical, philosophical, and
computational foundations. Pacific Grove, California, USA: Brooks Cole
Publishing Co. 10

Statistics Norway. 2009. Population by age, sex, marital status and cit-
izenship. On-line, http://www.ssb.no/english/subjects/02/01/
10/folkemengde_en/. Last visited May 21, 2009. 1

Stevenson, Mark, and Yorick Wilks. 2001. The interaction of knowledge
sources in word sense disambiguation. Computational Linguistics 29(3):
321–349. 13

Strzalkowski, Tomek, and Sanda M. Harabagiu, eds. 2006. Advances in
Open Domain Question Answering, vol. 32 of Text, Speech and Language
Technology. Dordrecht, The Netherlands: Springer. 35, 208, 214

Sætre, Rune. 2006. GeneTUC: Natural Language Understanding in
Medical Text. Ph.D. thesis, Norwegian University of Science and
Technology, Trondheim, Norway. 4, 10, 38

Sætre, Rune, Martin Thorsen Ranang, Tonje S. Steigedal, Kamilla
Stunes, Kristine Misund, Liv Thommesen, and Astrid Lægreid. 2007.
WebProt: Online mining and annotation of biomedical literature us-
ing Google. In Advanced computational methods for biocomputing and
bioimaging, ed. Tuan D. Pham, Hong Yan, and Denis I. Crane. Haup-
pauge, New York, USA: Nova Science Publishers. 8, 157

Sætre, Rune, Amund Tveit, Martin Thorsen Ranang, Tonje S. Steigedal,
Liv Thommesen, Kamilla Stunes, and Astrid Lægreid. 2005. gProt:
Annotating protein interactions using Google and Gene Ontology.

217

http://www.ssb.no/english/subjects/02/01/10/folkemengde_en/
http://www.ssb.no/english/subjects/02/01/10/folkemengde_en/

References

In Proceedings of the 9th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems (KES 2005), ed. Rajiv
Khosla, Robert J. Howlett, and Lakhmi C. Jain, vol. 3683 of Lec-
ture Notes in Artificial Intelligence, 1195–1203. Melbourne, Australia:
Springer-Verlag, Berlin, Heidelberg. 8, 157

Text Laboratory. 2008a. Oslo-Bergen-taggeren—en grammatisk tagger
for bokmål og nynorsk. University of Oslo, On-line, http://omilia.
uio.no/obt/les.html. Last visited Jan. 29, 2008. 67

———. 2008b. The Oslo corpus of tagged Norwegian texts (bokmål and
nynorsk parts). University of Oslo, On-line, http://www.tekstlab.
uio.no/norsk/bokmaal/english.html. Last visited Jan. 29, 2008. 138

Trask, Robert Lawrence. 1993. A dictionary of grammatical terms in lin-
guistics. London, England: Routledge. 13, 17, 22, 76

Tufiş, Dan, Dan Cristea, and Sofia Stamou. 2004. BalkaNet: Aims,
methods, results and perspectives. A general overview. Romanian
Journal of Information Science and Technology 7(1–2):9–43. 25, 192

Verdejo, Felisa, Julio Gonzalo, Anselmo Peñas, Fernando López, and
David Fernández. 2000. Evaluating wordnets in Cross-Language
Information Retrieval: the ITEM search engine. In Proceedings of the
Second International Conference on Language Resources and Evaluation
(LREC-2000), 1769–1774. Athens, Greece. 15

Voorhees, Ellen M. 1993. Using WordNet to disambiguate word senses
for text retrieval. In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
171–180. ACM Press. 15

———. 1998. Using WordNet for text retrieval. In Fellbaum (1998c),
chap. 12, 285–304. 15

Vossen, Piek. 1998. Introduction to EuroWordNet. Computers and the
Humanities 32:73–89. 15, 24, 192

———. 2004. EuroWordNet: A Multilingual Database of Autonomous
and Language-Specific Wordnets Connected via an Inter-Lingual-
Index. International Journal of Lexicography 17(2):161–173. 15

Vox-Harrap. 1992. Vox-Harrap’s Diccionario Esencial Ingles–Español,
Español–Ingles. Barcelona, Spain: Biblograf S.A. 27

218

http://omilia.uio.no/obt/les.html
http://omilia.uio.no/obt/les.html
http://www.tekstlab.uio.no/norsk/bokmaal/english.html
http://www.tekstlab.uio.no/norsk/bokmaal/english.html

References

Wangensteen, Boye, ed. 2005. Bokmålsordboka: Definisjons- og rett-
skrivningsordbok. Oslo, Norway: Kunnskapsforlaget. 34, 60

Warren, David H. D., and Fernando C. N. Pereira. 1982. An efficient
easily adaptable system for interpreting natural language queries.
American Journal of Computational Linguistics 8(3–4):110–122. 35

West, Douglas Brent. 2001. Introduction to graph theory. 2nd ed. Upper
Saddle River, New Jersey, USA: Prentice Hall. 201

Winograd, Terry. 1971. Procedures as a representation for data in a
computer program for understanding natural language. MIT AI
Technical Report 235, Massachusetts Institute of Technology. Revised
Ph.D. dissertation. 35

Woodhouse, Sidney Chawner. 1982. Latin Dictionary: Latin/English, En-
glish/Latin. 20th ed. London, England: Routledge & Kegan Paul
Limited. 6

World Book Encyclopedia. 1987. Chicago, USA: World Book, Inc. 37

Åfarli, Tor A., and Kristin Melum Eide. 2003. Norsk generativ syntaks.
Novus Forlag, Oslo, Norway. Med tillegg av Lars G. Johnsen, Randi
A. Nilsen og Torbjørn Nordgård. 153

219

Index

A+, 163, 164, 166–168

ad placement, 141

adjective, 4, 11, 17, 71, 72, 111,
118, 120–122, 126, 127,
137, 193

adverb, 4, 11, 17, 71, 72, 111, 118,
122, 137, 193

Aftenposten, 60, 65

Agirre, Eneko, 25–27, 81, 146,
147, 192, 196

AI, see Artificial Intelligence
Aksis, see Centre of Culture, Lan-

guage and Information Tech-
nology

Alonge, Antonietta, 24, 192

ambiguity, 87

Amble, Tore, xix, xxiii, xxv, 4,
6–8, 10, 15, 35, 37–39,
152

analysis
deep –, xxv, 2, 6, 7, 36, 151,

194

depth of –, 36

shallow –, 36

Andriaens, Geert, 15

Andén, Frida, 10, 37

Ansa, Olatz, 81

ANSI C, 8

Antohe, Daniel, 188

antonym, 4, 20, 21

direct –, 21

indirect –, 21

antonymy, see antonym
Aone, Chinatsu, 14

APL, 166, 167

Appelt, Douglas E., 15

approximate sequence match-
ing

multiple-pattern –, 8, 153,
157, 161

approximate string matching, 157

argument structure, 33

Arregi, Xabier, 27

Artificial Intelligence, 10

Artola, Xabier, 27

Ashburner, Michael, 10

Atserias, Jordi, 27–31, 147, 192

attribute-logic, 39

auxiliary verb, 17

Ayad, Hanan, 14

Baker, Collin F., 81, 183, 194, 196

Ball, Catherine A., 10

base form, 17

Bateman, John A., 24

Bayegan, May Elisabeth, xxiii
Beckwith, Richard, 76

Beermann, Dorothee, 39

Bel, Nuria, 23, 25, 34

Benjamins, V. R., 10

Berwick, Robert C., 184

Bird, Steven, 57

Blake, Judith A., 10

221

Index

Bloksma, Laura, 24, 192

Bohr, Niels, 196

Bokmål, 138

Bokmålsordboka, 34, 60

Botstein, David, 10

Briscoe, John Edward, xv, 187,
188

Bruland, Tore, xxiii, 4, 38

Busa, Federica, 23, 25, 34

BusTUC, 35, 38, 151, 152

Butler, Heather, 10

cache
level 1 –, 179

level 2 –, 179

Calzolari, Nicoletta, 15, 23–25,
34, 192

Carroll, John, 39

Cassens, Jörg, xxiv, 181

Castellon, Irene, 24, 192

Catalan WordNet, 31

categorial, 39

category, 10

cause to, 4

central processing unit, 179, 180

Centre of Culture, Language and
Information Technology,
68

CFG, see Context-Free Grammar
Chandrasekaran, B., 10

chart –
Earley –, 57

Chat-80, 35

Chen, Yu, 33

Cherry, J. Michael, 10

Clark, Christine, 35

class, 10

CLE, see Core Language Engine
S—, see —, Swedish –

Climent, Salvador, 27–31, 147,
192

Collins English–Spanish/Spanish–
English Dictionary, 24

collocation, 81

compound, 5–7, 22, 23, 27, 32,
66, 67, 180, 188, 191, 193

– nominal, 187

– noun, 187, 188

– segmentation, 23, 67

– word, 24, 32, 71, 77, 81

—word analysis, 23, 41

—word analyzer, 6, 23, 24,
42, 65–71, 180, 190, 191,
193, 194

endocentric –, 22, 188

exocentric –, 22

hypernymic –, 188, 191

non— word, 23

non-deverbal verb –, 188

non-paraphrasable –, 188

Norwegian –, 6

Norwegian —word analy-
sis, 23

prepositional –, 187

compounding, 194

Computer Science, 10

concept, 77, 84

conceptual density, 25–27, 146,
196

conceptual distance, 27, 31

ConSensiCAL, see Context-Sensitive-
Categorial-Attribute-Logic

consonant, 50

Constantinescu-Fulöp, Zoran, 181

content word, 7, 16, 17, 41, 71,
72

Context-Free Grammar, 38, 57,
70

context-sensitive, 39

Context-Sensitive Grammar, 38

Context-Sensitive-Categorial-Attribute-
Logic, 38, 39, 152, 153

Converse, Tim, 1

222

Index

Copestake, Ann, xv, 40, 187, 188

Core Language Engine
Swedish –, 35

Cormen, Thomas H., 201

correlation, 138, 139

coverage, xxv, 38, 115, 129, 137,
146, 147, 165, 195

narrow –, 36

wide –, xxv, 2, 6, 7, 36, 194

CPU, see central processing unit
Cristea, Dan, 25, 192

Cronin, Beau, 81, 183, 194, 196

Cruse, D. A., 18

CSG, see Context-Sensitive Gram-
mar

CYC, 11, 36

da Vinci, Leonardo, 20

DAG, see directed acyclic graph
translation –, see —, trans-

lation –
weighted –, see —, weighted

–
Dale, Robert, 16

Dang, Hoa Trang, 81, 183, 194,
196

Davis, Allan P., 10

DCG, see Definite Clause Gram-
mar

de Ilarraza, Arantza Díaz, 27

Definite Clause Grammar, 38

Degerstedt, Lars, 10, 37

Dehli, Einar, xxiv
determiner, 17

dictionary, 140, 146

bilingual –, 27, 29, 32, 33,
41, 74, 153, 156, 195

English–French, 26

English–Norwegian, 74

English–Spanish, 26, 27, 29

French–English, 26

monolingual –, 27, 31

Norwegian–English, 74

Spanish–English, 26, 27, 29,
31

Díez-Orzas, Pedro, 15

digital divide, 150

Dimitrova-Vulchanova, Mila, xxiii,
113

directed acyclic graph, 102, 104,
113, 201

translation –, 101

weighted –, 100, 102

Document Clustering, 13, 15, 193

document retrieval, 14, 185

document type definition, 74

Dolinski, Kara, 10

domain, 38

narrow –, xxv, 4, 6, 37, 38,
151

open—, 149

Dorr, Bonnie Jean, 32, 33

DTD, see document type defini-
tion

Dwight, Selina S., 10

dynamic programming, 57

Dyvik, Helge, xxiii, 2, 4, 34, 39,
40, 144, 145, 192, 194

Earley, Jay, 57

Eide, Kristin Melum, xxiii, 153

Eisele, Andreas, 33

encyclopedia, 7, 37, 149, 150, 153

electronic –, 150

– article, 37, 150

traditional –, 150

encyclopedic, see encyclopedia
– article, xxv, 6, 149

– text, 37, 149

Encyclopædia Britannica Online,
150

Engelsk–norsk stor ordbok, 72–74,
76, 114, 126, 139, 140,
153

223

Index

EngNor, 76, 81, 85, 87, 88,
93, 95, 97, 101, 114, 115,
126, 140, 224

EngNorC, 114, 126, 224

English Resource Grammar, 40

entail, see entailment
entailment, 4, 144

epenthesis, 23

epenthetic, see epenthesis
Eppig, Janan T., 10

EU, see European Union
European Union, 1, 24

EuroWordNet, 15, 24, 25, 27, 31

event, 167

ExamTUC, 38

eXtended WordNet, 13, 196

Extensible Markup Language,
74, 75, 152, 153, 155, 156,
162, 163

– database, 153

Extraposition Grammar, 38

F-measure, 111, 118, 137

F1, 111

F2, 111

F0.5, 111, 115, 117, 119–122,
124, 125, 127–132, 134,
135, 137, 146, 147, 193

Faarlund, Jan Terje, xxiii, 152,
153

Farreres, Javier, 27–31, 147, 192

feature structure, 40

Fellbaum, Christiane, 20, 21, 76,
77, 153

Fernández, David, 15

field identifier, 29

Fillmore, Charles J., 81, 183, 194,
196

finite-state automaton, 70

finite-state transducer, 70

first-order predicate logic, 167

Fleischman, Michael, 11

Flickinger, Dan, 39, 40

Flycht-Eriksson, Annika, 10, 37

Fodstad, Marte, xxiii
FrameNet, 81, 183, 194, 196

FS, see feature structure
FSA, see finite-state automaton
FST, see finite-state transducer
function word, 17

functor, 58

Gambäck, Björn, xix, xxiii, 35,
37

Gamut, L.T.F., 18, 167

Gangemi, Aldo, 81

Garman, Joseph, 33

Generative Lexicon, 25

GeneTUC, 38

Germanic languages, 194

gerund, 57

Gibert, Karina, 31, 147, 192

Girju, Roxana, 188

GLDB, see Gothenburg Lexical Data
Base

gloss, 33, 165

definitional –, 77, 84

Gola, Elisabetta, 23, 25, 34

Gomez, Fernando, 15, 37, 153

Gonzalo, Julio, 15

Gorrell, Genevieve, xxiii
Gothenburg Lexical Data Base, 32

gProt, 8

grammar, 9, 153, 156

ambiguous –, 57

grammar rules
left-recursive –, 57

grammatical
dependent, 22

– head, 22, 32, 66, 68, 70,
188

– word, 17

graph, 199

acyclic, 199

224

Index

cyclic, 199

directed, 199

edge, 199, 201

– sink, 201

– source, 201

node, 199

tree, 102

undirected, 199

vertex, 199

weighted –, 201

graph theory, 100, 199

Green, Claude Cordell, 34

Grishman, Ralph, 14

Gronostaj, Maria Toporowska,
23, 31, 67

Gross, Derek, 76

group, 80

verb –, 4, 80, 97

Grunfeld, Laszlo, 35, 149

Guarino, Nicola, 81

Gustavsen, Axel Ranang, xxiv

Hamburger, Henry, 70

Harabagiu, Sanda M., 35, 80, 152

Harris, Midori A., 10

Hartmann, R. R. K., 92

hash index, 159

Haslerud, Vibecke C. D., 75

Hasselgård, Hilde, 18, 20

Haugereid, Petter, 40

Hauglin, Helge, 23, 24, 42, 57,
58, 66–68, 70, 190

head, see – head
Head-Driven Phrase Structure

Grammar, 40

Heier, Trond, xxiv
Hellan, Lars, 39, 40

Hennessy, John L., 180

heterarchy, 20

Hetland, Magnus Lie, xxiii
hierarchy, 20

Hill, David P., 10

HLT, see Human Language Tech-
nology

Hobbs, Jerry R., 15

holonym, 4

part –, 190, 191

holonymy, see holonym
homograph, 17, 141

Hotho, Andreas, 14

Hovy, Eduard H., 11, 24, 81, 183,
192

HPSG, see Head-Driven Phrase
Structure Grammar

Hristea, Florentina, 76, 81

Hull, Richard D., 15, 37, 153

human expert, 111–114, 117, 193

Human Language Technology,
2

hypernymy, 2, 4, 18, 20, 26, 95,
97, 134, 136, 141, 143,
166, 177, 192

hypernym, 18, 30, 32, 81,
93, 94, 97, 141, 190

instance –, 20

hyponym, 2, 4, 11, 14, 18, 20, 22,
26, 30, 32, 93, 97, 108,
109, 141–143, 177, 188

instance –, 82

is-a, 20

is-a-kind-of, 4, 11, 18

hyponymy, see hyponym
instance –, 20

idiom, 77, 81

IE, see Information Extraction
index, 181, 182

Information Extraction, 14, 16,
36, 110, 111, 193

Information Retrieval, 13–16, 23,
34, 36, 110, 111, 149–
151, 193

cross-language –, 15

Information Systems, 10

225

Index

Intel, 179

interjection, 17

inverse translating, see inverse –
IR, see Information Retrieval

cross-language –, see —, cross-
language –

Issel-Tarver, Laurie, 10

Jackendoff, Ray S., 32

Jacobs, Paul S., 15

James, Gregory, 92

Jing, Hongyan, 16

Joachims, Thorsten, 14

Johannessen, Janne Bondi, xxiii,
22–24, 39, 41, 42, 57, 58,
60, 62, 66–68, 70, 190

Johansson, Stig, 18, 20

Johnson, Christopher R., 81, 183,
194

Jones, Douglas A., 184

Joseph, John Earl, 1

Josephson, J. R., 10

Jurafsky, Daniel Saul, 57, 77, 110,
111

Jönsson, Arne, 10, 37

Kamel, Mohamed, 14

Kaplan, Ronald M., 1

Karlsson, Fred, 23, 50

Kasarskis, Andrew, 10

Kay, Martin, 33

KB, see knowledge base
Kennedy, John Fitzgerald, 162,

167, 171–173, 176, 177

Kermit, Martin, xxiii
Kipper, Karin, 81, 183, 194, 196

Klein, Ewan, 57

Knight, Kevin, 11, 15, 24, 31, 83,
192

knowledge
body of –, 10

– acquisition, 13, 15, 16, 34,
155

– base, see knowledge base
knowledge base, 10, 153, 156,

168, 170–172, 175, 178,
180–183

Kohl, Karen T., 184

Kokkinakis, Dimitrios, 23, 31,
67, 195

Kowalski, Robert, 39

Kukich, Karen, 13

Kupiec, Julian, 37

Kwok, Kui-Lam, 35, 149

Kwon, Namhee, 183

Lambert, Wallace E., 1

language, 101

Larsen, Bjornar, 14

lattice, 20

Lauer, Mark, 187

Laver, John, 1

LCS, see lexical conceptual struc-
ture

LDOCE, see Longman Dictionary
of Contemporary English

Lehre, Per Kristian, xxiii
Leiserson, Charles E., 201

Leksikon, ordsemantikk, gramma-
tikk og oversettelse for norsk,
39

Lenat, Douglas B., 11, 36

Lenci, Alessandro, 23, 25, 34

Levin, Beth, 33

Lewis, Harry R., 70

Lewis, Suzanna, 10

lexeme, 17, 22

lexical analysis, 163

lexical analyzer, 155, 156,
164, 183

lexical category, 5, 9, 11, 17, 55,
66, 78, 79, 88, 97, 111,
113, 115, 116, 155, 192

lexical conceptual structure, 32,
33

226

Index

lexical disambiguation, see Word-
Sense Disambiguation

lexical item, see lexeme
lexical semantic, xxv, 2, 4, 6, 7,

11, 13, 14, 27, 34, 71,
132, 140, 141, 143, 144,
146, 149, 151, 192, 194,
196

Lexical-Functional Grammar, 39

lexical-semantic, see lexical se-
mantic

lexicalized, 56

lexicon, 9, 153, 156

LexTUC, see The Understanding
Computer

LFG, see Lexical-Functional Gram-
mar

Lie, Svein, xxiii, 152, 153

LinGO, see Linguistic Grammars
Online

Linguistic Grammars Online, 40

Linux, 179

Ljung, Stefan, 35, 37

LOGON, see Leksikon, ordseman-
tikk, grammatikk og over-
settelse for norsk

Longman Dictionary of Contem-
porary English, 24, 31–
33

Loper, Edward, 57

López, Fernando, 15

Luk, Steve K., 11, 15, 24, 31, 83,
192

Lysvåg, Per, 18, 20

Lægreid, Astrid, 8, 157

Lønning, Jan Tore, 39

Machine Translation, 13, 15, 16,
24, 32

machine-readable dictionary, 34,
74, 102, 195

Mahesh, Kavi, 15

Maiorano, Steve, 35

Manning, Christopher D., 14

mapping
cross-synset –, 140, 141

– framework, 65, 100

Marti, Maria Antonia, 24, 192

Martin, James H., 57, 77, 110,
111

Martin, Paul, 15

Martínez, David, 81

Matese, John C., 10

Matsumoto, Makoto, 111

McKeown, Kathleen, 13, 16

memoization, 49

Merkel, Magnus, 10, 37

meronym, 4, 134, 136, 143, 144

substance –, 143, 144

meronymy, see meronym
substance –, 144

Mersenne Twister, 111

Meurer, Paul, 39, 68

Mihalcea, Rada, 15, 81

Miller, George A., xxv, 4, 6, 18,
76, 77, 80, 81, 152, 153

Miller, Katherine J., 76

Minimal-Recursion Semantics,
40

Misund, Kristine, 8, 157

Moldovan, Dan I., 13, 15, 35, 80,
152, 188, 196

Moløkken-Østvold, Kjetil, xxiv
Monachini, Monica, 23, 25, 34

monosemous, see monosemy
monosemy, 28, 29

morphological, 155

– analysis, 23

morphology, see morphological
MRS, see Minimal-Recursion Se-

mantics
MRS transfer rules, 40

MT, see Machine Translation
multiword expression, 110

227

Index

MURAX, 37

Myhrvang, Jo Henning, xxiv
Mørkrid, Olav, xxiii

named entity, see named-entity
named-entity, 152, 153, 155

– extractor, 155

– recognition, 35, 157

– recognizer, 156, 161–163

Natural Language Generation,
16, 178, 193

Natural Language Processing,
xxv, 4, 5, 7, 11, 13, 15,
35, 36, 77, 80, 81, 141,
144, 193

Natural Language Toolkit, 57

Natural Language Understand-
ing, xxv, 2, 4, 6, 9, 15,
36, 37, 149, 151, 153, 157,
194, 195

Navarro, Gonzalo, 157

Nesbø, Jo, 162

Nirenburg, Sergei, 1, 9, 15

Nishimura, Takuji, 111

NLG, see Natural Language Gen-
eration

NLP, see Natural Language Pro-
cessing

NLTK, see Natural Language Toolkit
NLU, see Natural Language Un-

derstanding
node

joint –, 101, 103

nominal, 26

deverbal –, 187

Nomura, Naoyuki, 184

Norberg, Sara, 10, 37

Nordgård, Torbjørn, xix, xxiii, 8,
16, 39, 41, 152, 153

Nordgård-Hansen, Harald, xxiii
NorGram, see Norsk komputasjonell

grammatikk

NorKompLeks, see Norsk kom-
putasjonelt leksikon

Norris, Pippa, 150

Norsk komputasjonell grammatikk,
37, 39, 40

Norsk komputasjonelt leksikon, 41–
43, 45, 46, 57, 58, 65, 72,
73, 101, 102, 104, 105,
114, 152, 153, 180

Norsk–engelsk stor ordbok, 72–75,
85, 90, 109, 114, 115, 126,
139, 140, 153

NorEng, 75, 81, 85, 88, 92,
94, 97, 100, 101, 105, 108,
111, 114–116, 126, 228

NorEngC, 114, 116, 126, 140,
228

NorSource, see Norwegian Resource
Grammar

Norwegian Language Council,
xxv, 1, 195

Norwegian Ministry of Culture
and Church Affairs, xxv,
2, 195

Norwegian Resource Grammar, 37,
40

Norwegian University of Science
and Technology, xix, 113

Norås, Sindre Bjørnar, xxiii
noun, 4, 11, 17, 22, 26, 27, 31, 32,

71, 72, 79, 80, 97, 111,
117–122, 127, 140, 146,
147, 193

relational –, 187

Novischi, Adrian, 13, 196

NTNU, see Norwegian Univer-
sity of Science and Tech-
nology

Nygaard, Lars, 4, 34, 192, 194

Nynorsk, 138, 139

object-oriented, 20

228

Index

Oepen, Stephan, 39

Ogonowski, Antoine, 23, 25, 34

Okumura, Akitoshi, 24, 192

Oltramari, Alessandro, 81

OMEGA, 11

onomasticon, 153, 155, 163

ontological semantics, 9

ontology, 5, 6, 9–11, 13, 15, 16,
36, 141, 151, 193

multilingual –, 16

OO, see object-oriented
Ordnett, xxv, 6, 7, 110, 132, 136,

140–144, 149, 151, 153,
155, 156, 164, 165, 183,
187, 188, 190–195

Oslo Corpus
– of Tagged Norwegian Texts,

138

Oslo-Bergen tagger, 67–70

Paşca, Marius A., 35, 151, 178

Palmer, Martha, 81, 183, 194, 196

Papadimitriou, Christos H., 70

PAROLE, see Preparatory Action
for Linguistic Resources
Organisation for Language
Engineering

parser, 7, 13, 156, 167

parsing, see parser
part of speech, 9, 17, 82

Patterson, David A., 180

Pedersen, Bolette Sandford, 23,
67

Pell, Barney, 1

Penman Upper Model, 24

Pereira, Fernando C. N., 35, 38

Peters, Carol, 15

Peters, Ivonne, 23, 25, 34

Peters, Wim, 15, 23–25, 34, 192

Petruck, Miriam R.L., 81, 183,
194

Peñas, Anselmo, 15

Philpot, Andrew G., 11

plurisyllable, 60

Pollard, Carl, 40

polysemous, see polysemy
polysemy, 29–31, 79

POS, see part of speech
power set, xxv, 6

Powerset, 1, 150

precision, xxv, 15, 36, 67, 110,
111, 115, 117–124, 127–
134, 137–139, 146, 147,
183, 193, 195

Preparatory Action for Linguistic
Resources Organisation
for Language Engineer-
ing, 25

preposition, 17

Prevost, Scott, 1

– distribution
uniform –, 111

product suggestion, 141

programming language
Prolog, 8, 157

Python, 8, 156

proposition, 18

Pustejovsky, James, 25

QA, see question-answering
open-domain –, see —, open-

domain question answer-
ing

query expansion, 15, 23

question-answering, 1, 2, 15, 34–
37, 150, 151, 155, 173,
178, 181, 183

open-domain question an-
swering, xxv, 6, 7, 35–
37, 141, 149, 151, 194

Raghavan, Prabhakar, 14

RAM, see random access mem-
ory

229

Index

Ranang, Martin Thorsen, 8, 16,
37, 75, 157

random access memory, 179

Raphael, Bertram, 34

Raskin, Victor, 1, 9

Rau, Lisa F., 15

reasoning engine, 7, 156, 177

recall, 36, 111, 115, 117–124, 127–
134, 137–139, 146, 147,
183, 193, 195

regexp, see regular expression
regression line, 138

least-squares –, 139

regular expression, 70, 157

Reiter, Ehud, 16

related word, 2

relation
part-whole –, 191

relationship
part-whole –, 191

representation vocabulary, 10

Resnik, Philip, 13

Richards, Dana, 70

Richardson, Joel E., 10

Rigau, German, 25–31, 146, 147,
192, 196

Ringwald, Martin, 10

Rivest, Ronald L., 201

Robin, Jacques, 13

Rodríguez, Horacio, 31, 147, 192

Rosén, Victoria, 39

Roukens, Jan, 1

Rubin, Gerald M., 10

Ruimy, Nilda, 23, 25, 34

Rus, Vasile, 35

Sag, Ivan, 40

Salton, Gerard, 14, 185

Sarasola, Kepa, 27

Schuler, William, 194

Schütze, Hinrich, 14

search

– engine, 14, 15, 34

– strategy, 106, 108–110, 115,
137

seed node, 104

Seehuus, Rolv Inge, xxiii
Segami, Carlos, 15

selectional restriction, 13, 183,
196

semantic
– analysis, 13, 15, 16

– resources, 156

semantic density, see conceptual
density

Semantic Information for Multi-
functional Plurilingual Lex-
ica, 25, 34

Norwegian –, 34

Swedish –, 23, 31, 32

semantic interpretation, see Text
Interpretation

semantic interpreter, 7, 156, 167,
170

semantic mirror, 2, 144–146

semantic network, 4, 6, 7, 9, 10,
25, 38, 77, 151, 153, 157

semantic type checking, 39, 151

semantic-mirror, see semantic mir-
ror

sense, 11, 27–30, 77, 83, 84, 86,
108, 111, 132, 134, 140

complementary –, 87

SENSUS, 11, 24

sentence-boundary detection, see
sentence-boundary de-
tector

sentence-boundary detector, 156,
157, 161–163

Sergot, Marek, 39

set, 159

singleton –, 84, 86

shared-synonym ambiguity, 87,
90

230

Index

Sherlock, Gavin, 10

Shi, Lei, 81

SHRDLU, 35

sibilant, 57

SICStus, 157, 179

similar, see similarity
similarity, 4, 21, 100, 192

Simmons, Robert F., 35

Simonsen, Dag F., xxv, 1, 195

SIMPLE, see Semantic Informa-
tion for Multifunctional
Plurilingual Lexica

Norwegian –, see —, Nor-
wegian –

Swedish –, see —, Swedish –
simplex, 7, 22, 77, 81, 110

simplex word, see simplex
SNOWY, 37

Snyder, Benjamin, 81, 183, 194,
196

Sowa, John F., 10

Spanish WordNet, 27, 31, 147

SQL, see Structured Query Lan-
guage

Staab, Steffen, 14

Stamou, Sofia, 25, 192

Statistics Norway, 1

Steigedal, Tonje S., 8, 157

Stein, Clifford, 201

stem, 23, 57, 62, 105

Stevenson, Mark, 13

Stickel, Mark E., 15

stop word, 160

Store norske leksikon, 149, 150, 152,
153, 162, 163, 179

Structured Query Language, 38

Stumme, Gerd, 14

Stunes, Kamilla, 8, 157

Surdeanu, Mihai, 35

SWETWOL, 23, 50

syllable, 57

synonym, 2, 4, 11, 14, 18, 20, 95,
97, 147, 148, 166, 192

propositional –, 18

synonym set, 27–30, 77, 79, 80,
82, 84, 86, 93, 108, 111,
134, 136, 140–144, 147,
148

singleton –, 90, 92, 95, 100,
106

synonymy, see synonym
absolute –, 18

synonymous, 11, 15, 77, 140

synset, see synonym set
singleton –, see —, single-

ton –
Sætre, Rune, xxiii, 4, 8, 10, 37,

38, 157

t-image
first –, 145

inverse –, 145

tagger
multi–, 155

tagging, 155

Tatu, Marta, 188

taxonomy, 20, 31

test set, 111, 113, 117

Text Interpretation, 15, 193

text interpretation, 34, 35, 141,
156, 157

text retrieval, 14

Text Summarization, 13, 193

Abstractive –, 13

Extractive –, 13

The Understanding Computer, xxiii,
xxv, 4, 6–8, 37–39, 151–
153, 156, 157, 163, 165,
167, 170, 172, 173, 175–
178, 183, 196

Thione, Lorenzo, 1

Thommesen, Liv, 8, 157

tokenization

231

Index

tokenizing, 155, 157

topic signature, 81

TQL, see TUC Query Language
– query, see —, – query

transitive translation, see trian-
gulation

translation
assumed symmetric prop-

erty of –, 85

inverse –, 24, 84, 86, 87, 89,
90, 93–95, 97, 117, 118,
126

inverse—, 86, 87

Trask, Robert Lawrence, 13, 17,
22, 76

triangulation, 33

trie, 75

triple, 201

Trivial Pursuit, 37

troponymy, 20

TUC, see The Understanding Com-
puter

TUC Query Language, 39, 156,
167, 168, 170, 173, 178

– query, 170, 172, 173, 175–
177

TUClopedia, xxv, 6–8, 37, 149,
152, 153, 155, 156, 161,
163, 170, 173, 178–183,
185, 195, 196

Tufiş, Dan, 25, 192

Tveit, Amund, 8, 157

UIB, see University of Bergen
UIO, see University of Oslo
University of Bergen, 68

University of Oslo, 67

van Els, Theo J.M., 1

Vannebo, Kjell Ivar, xxiii, 152,
153

vector-space model, 185

Velldal, Erik, 39

Ven, Jostein, 8, 16

verb, 4, 11, 17, 22, 31, 33, 71, 72,
97, 111, 117–122, 137,
139, 164, 165, 173, 177,
183, 191, 193, 196

– class, 33

– frame, 77, 157, 183

verbal complements, 39

VerbNet, 81, 183, 194, 196

Verdejo, Felisa, 15

Verto, xxv, 6, 7, 17, 24, 41, 67,
70, 71, 76, 81, 109–111,
113, 114, 116–122, 124,
126–132, 134, 137, 138,
140, 141, 146, 147, 163,
183, 191–195

translation framework, 156,
183

Villegas, Marta, 23, 25, 34

Voorhees, Ellen M., 15

Vossen, Piek, 15, 24, 192

VSM, see vector-space model

Walters, Chad, 1

Warmenius, Karin, 23, 31, 67

Warren, David H. D., 35, 38

weight, 201

Weinberg, Amy, 33

West, Douglas Brent, 201

Wikipedia, 1, 150

Wilks, Yorick, 13

Winograd, Terry, 35

Wong, A., 14, 185

Woodhouse, Sidney Chawner, 6

word class, 9, 17

closed –, 17

open –, 17

word form, 17, 105

morphosyntactic word, 17

word frequency, 138

word-frequency list, 138, 139

232

Index

word-occurrence, 36

Word-Sense Disambiguation, 13,
15, 193, 196

WordNet, xxv, 4, 6, 7, 11–13, 16–
21, 24, 26–31, 33–35, 41,
71, 76–84, 87–93, 95, 97,
98, 100, 101, 104–106,
108–111, 114, 116, 117,
125, 132, 134, 136, 139–
144, 146, 148, 151, 153,
155–157, 164, 165, 170,
177, 183, 188–196

– 1.5, 26, 27, 31, 147

– 2.0, 13

– 2.1, 81, 152

World-Wide Web, 14

WSD, see Word-Sense Disambigua-
tion

WWW, see World-Wide Web

XML, see Extensible Markup Lan-
guage

– database, see —, – database

Yang, C. S., 14, 185

Zampolli, Antonio, 23, 25, 34

Åfarli, Tor A., 153

233

Colophon

This dissertation was set in Palatino by the author using LATEX 2ε.
The author made his best efforts in preparing this document, following
guidelines and influences from the following works:

Bringhurst, Robert. 1999. The Elements of Typographic Style. 2nd ed.
Vancouver, Canada: Hartley & Marks, Publishers.

The Chicago Manual of Style, 15th ed. 2003. Chicago, Illinois, USA: The
University of Chicago Press.

	Dedication
	Acknowledgments
	Abstract
	Introduction
	Practical Problem
	Research Problem
	Research Questions
	Research Solution
	Roadmap
	Who Did What?
	The Publications

	Background and Related Research
	Ontologies and Semantic Networks
	Example Ontologies
	Applications of Ontologies in Natural Language Processing

	Lexical Semantics
	Synonymy
	Hypernymy and Hyponymy
	Troponymy
	Antonymy and Similarity
	Compounds and Collocations

	Automatic Analysis of Norwegian Compounds
	Lexical Semantic Resources for Non-English Languages
	Conceptual Density
	Conceptual Distance
	Other Methods
	Triangulation
	Norwegian Semantic Knowledge Bases

	Open-Domain Question Answering
	Deep Analyses versus Wide Coverage

	Encyclopedic Question-Answering Systems
	Natural Language Processing Systems for Norwegian
	The Understanding Computer (TUC)
	The LOGON Project

	Handling of Norwegian Compounds
	Motivation
	Norsk Komputasjonelt Leksikon (NorKompLeks)
	Guiding Principles
	Algorithms for Automatic Analysis of Compounds
	The Get-Compounds-Unsorted Algorithm
	The Prioritize-Analyses Algorithm

	Compound-Word Parser
	Modifications of the Parser
	The grammar

	Results
	Analysis and Discussion
	Comparison with Johannessen and Hauglin's Compound Analyzer
	Efficiency

	Mapping Norwegian to WordNet
	Resources
	Human/Machine-Readable Dictionaries
	WordNet

	The Crux
	Handling of Instance Synonyms
	Single-sense Words
	Exploiting the Synonymy within Synsets
	Combining the Basic Principles
	Evaluation of the Assumptions
	Search Strategies
	Synonymy and Hypernymy
	Hyponymy
	Verb Group
	Similarity

	Mapping Framework
	Example Mapping of <<rotten>>

	Results
	Measures
	The Test Set
	The Experiment
	With the Original Dictionaries
	With the Extended Dictionaries
	Ordnett

	Analysis and Discussion
	Word-Usage Frequencies
	Misaligned Coverage
	Ordnett
	Comparison with Semantic Mirrors
	Comparison with Other Approaches

	Open-Domain Natural Language Understanding for Norwegian
	Motivation
	Scaling up TUC
	Semistructured Resources
	System Overview
	Preparations
	Preprocessing and Lexical Analysis
	Text Interpretation and LexTUC

	Multiple-Pattern Approximate Sequence Matching
	Sentence-Boundary Detector
	Named-Entity Recognition

	Lexical Analyzer (Multitagger)
	Results
	First Example
	Second Example

	Analysis and Discussion
	The Scalability of TUClopedia
	Ordnett's Suitability
	WordNet's Lacking Verb Frames
	Providing Answers to Queries About Encyclopedia Content

	Analysis and Discussion
	Automatic Analysis of Compounds Based on Semantics
	Ontology Alignment
	Answers to the Research Questions
	Contribution
	Future Work
	Final Words

	Appendix
	Brief Introduction to Graph Theory
	References
	Index

