
Erlend Tøssebro

Representing uncertainty in
spatial and spatiotemporal

databases

Doctoral Thesis

Submitted in Partial Fulfilment of the
Requirements for the Degree

Doktor Ingeniør

Norwegian University of Science and Technology
Department of Computer and Information Science

May 2002



NTNU Trondheim
Norges teknisk-naturvitenskapelige universitet
Doktor ingeniør avhandling 2002:88

Institutt for datateknikk og Informasjonsvitenskap (IDI)
IDI-rapport 2002:07

ISBN 82-471-5488-9
ISSN 0802-6394

© Copyright 2002 by Erlend Tøssebro



i

Preface

This is a doctoral thesis submitted to the Department of Computer and In-
formation Science (IDI), Norwegian University of Science and Technology
(NTNU), in partial fulfilment of the degree “Doktor Ingeniør” (Ph.D.). The
work has been carried out at the Database Systems Group1 in the years 1998-
2002. Parts of the work were conducted during a 6 month visit to the group at
Praktische Informatik IV2, FernUniversität Hagen, Germany.

Acknowledgements
This work could not be carried out without the direct or indirect support

and help from others. I would therefore like to express my gratitude and ap-
preciation to all of those who gave me comments, assistance and support dur-
ing my work on this thesis.

My first and foremost thanks go to my supervisor Mads Nygård at
NTNU for the enormous time that he spent with me while doing this work.
This work could not have been done without his direction, guidance and en-
couragement.

Secondly, I would like to thank Ralf Hartmut Güting at FernUniversität
Hagen, both for allowing me to stay for 6 months in Hagen, Germany, pointing
out a lot of literature for me to read, and suggesting possible directions for my
research.

Third, I would like to thank Kjetil Nørvåg at NTNU for providing various
types of advice on being a Ph.D. student and getting the thesis finished.

1. See http://www.idi.ntnu.no/grupper/db/
2. See http://www.informatik.fernuni-hagen.de/import/pi4/index.html



ii PREFACE

Fourth, I would like to thank Heri Ramampiaro at NTNU for help in writ-
ing this thesis and using FrameMaker.

Fifth, I would like to thank Jan Terje Bjørke for providing reading mate-
rial and courses in the basics of geographic information systems. Without his
help in gaining the knowledge required to complete this thesis, it would have
taken me much longer.

I would also like to thank all the other colleagues who have provided as-
sistance, both in the database group in Trondheim and at the FernUniversität
Hagen. In Trondheim these were: Kjell Bratbergsengen, Jon Olav Hauglid, Jon
Heggland, Tore Mallaug, Roger Midtstraum, Maitrayi Sabaratman and Olav
Sandstå. In Hagen these were: Dirk Ansorge, Stefan Dieker, Anne Jahn, Jose
Antonio Cotelo Lema, Miguel Rodriguez Luaces and Markus Schneider.

Last, I would like to thank Stewart Clark at NTNU for checking the lan-
guage of this thesis as well as providing pointers to writing correct scientific
English.



iii

Abstract

The theme of this thesis is uncertainty in spatial and spatiotemporal data-
bases. Due to lack of accurate measurements, or rapid changes in time, spatial
and spatiotemporal data are often uncertain. This thesis presents new abstract
and discrete models for uncertain spatial and spatiotemporal information. The
models are based on the principle that one knows that the uncertain object, re-
gardless of type, must be within a certain area.

The first part of this thesis concerns an abstract model. To this author’s
knowledge, this is the first attempt to create a general type system for uncer-
tainty with spatial data. Individual uncertain types have been modelled before,
but no work has studied points, lines and regions and used the same principles
to model all three. It also seems to be the first model to handle temporal as well
as spatial uncertainty. This thesis contains mathematical definitions of uncer-
tain points, lines, regions and temporal versions of these. The thesis also con-
tains definitions of relevant operations on these types. These operations are
also evaluated for their usefulness with regard to uncertain data.

The second part of this thesis concerns three discrete models which are all
based on the abstract model mentioned earlier. One of these is an advanced
model that manages to model almost all of the aspects of the abstract model,
but at the cost of increased need for storage space. It is also difficult to compute
probabilities in a consistent manner for this model.

The second model is of medium complexity, and balances storage use and
modelling power. It also has the advantage that computing probabilities in a
consistent manner is much easier than for the advanced model. The third
model is an attempt to bring the storage space needed as low as possible. It
therefore has somewhat limited modelling power. Unlike the two other dis-
crete models, it cannot be extended to handle spatiotemporal data.
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The handling of uncertain spatiotemporal data is based on how crisp spa-
tiotemporal data are handled in [GBE+00] and [FGNS00]. This thesis makes
two important additions to these models so that they can handle uncertain
data. First, it presents ways of generating a sliced representation when the
times the snapshots were taken are uncertain. Second, it details how operations
change as a result of uncertainty. The Initial and Final operations exemplify this
as in the crisp case they return the initial and final shapes of an object, but they
cannot be defined in the uncertain case. This thesis discusses how these opera-
tions can be replaced in the uncertain case.
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Chapter 1

Introduction

The theme of this thesis is spatial and spatiotemporal databases. It will
look more specifically at how to model uncertainty in spatial and spatiotempo-
ral databases. This chapter will outline the motivations, research questions, and
important contributions of this thesis. There is also a quick overview of the
contents of the other chapters to serve as a road map for the reader.

1.1. Motivation

Spatial databases are becoming more and more common, especially in the
form of geographic information systems. These systems have traditionally re-
lied on data being clearly defined and having crisp boundaries. This is unfortu-
nately not the case for many types of geographical data. Some phenomena
might be difficult or expensive to measure accurately, and others might change
faster than it is feasible to measure them.

For these reasons there is a need for systems that can store the uncertain
nature of the information and can contain information about the uncertainty it-
self. One might want to ask how uncertain a given piece of information is. This
may be important in estimating the reliability of the results.

The following subsections will give some real-world examples of when
one might want to represent uncertainty in spatial and spatiotemporal data-
bases.

1.1.1. Points

Surveillance of vehicles. One might have limited coverage of the road
network such that in some cases one knows precisely where a given vehicle is,
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but at other times one can only say that it is within a certain area.

Surveillance of animals. If one has tagged an animal with a radio trans-
mitter, one may get its approximate position, at least as long as it is within
range of the receivers. However, if the animal moves outside this range, one
can again only say that it must be within a certain area.

Location of submarine. Submarines are designed to be silent, and sonar
arrays designed to detect them might get disturbance from the ocean floor or
other sources. This may mean that one only has a very general idea of where
the submarine is. It may also be difficult for the crew of the submarine itself to
determine precisely where they are.

Translating textual descriptions of movement. If one has a textual de-
scription of the movements of a person (a moving point), that description
might just say “the person was in Trondheim (a region) from 11 am to 7 pm.”
Then all one knows is that this person was somewhere in that region during
that time.

1.1.2. Lines

Partially dry rivers. Some rivers in dry areas contain water only at some
times in the year or only after a period of rain. Such a river can be said to be un-
certain as it is only a river at certain times

Coastline. Because of the tides, the actual location of the coastline
changes continuously. If one does not want to track this change, the coastline
can be stored as an uncertain line. The coastline should also be represented as
an uncertain line in a map of the coast because the map cannot be updated to
reflect the tide at any particular moment.

Front line. In a war, one never quite knows where the front line is, but
one might have some idea.

The border between two uncertain regions. If there are two uncertain re-
gions and one knows that they share a certain stretch of border, that stretch of
border may be an uncertain line

Disputed borders. If two countries disagree on where the border between
them lies, this part of the border may be stored as an uncertain line. Examples
of this are the border in Kashmir between India and Pakistan, and the border
between Israel and Lebanon.
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1.1.3. Regions

Soil Types. According to [LAB96], soil types can be both vague and un-
certain. Vagueness in this case is when one soil type gradually turns into an-
other. Uncertainty in this case is when an underlying layer changes without
any visible features on the surface. In this case, it is very difficult to measure
where exactly the change occurs, even if the change is fairly abrupt.

Mineral or oil deposits. Like soil types, these can be both vague and un-
certain, and for the same reasons. Additionally, mineral and oil deposits may
change over time as the minerals or oil is extracted.

Digitization of paper maps. When a paper map is turned into a digital
map, there may be small rounding errors in the vertexes. This means that ver-
texes that should be the same are not. This means that there might be a small
sliver between two regions in the digitized version that were neighbours in the
original. This is one of the most well studied sources of uncertainty.

Lake reservoir. A lake that is used as a reservoir for a power plant may
have a water level that varies considerably based on the power consumption
and the amount of precipitation in the area. The varying water level means that
the extent of the lake changes.

1.1.4. Time

Measurement period. If a phenomenon is measured at slightly different
times at different places, the time of the phenomenon as a whole is vague be-
cause it may have changed slightly in the time between the earliest and latest
measurements. This problem may also arise when one generalizes the data to
display it on a small scale. When aggregating several features into one, and
these features were recorded at slightly different times, the time that the snap-
shot of the aggregated feature was taken is vague.

Habitat of species. If a new species of animal or plant is discovered in an
area, one now knows that it is there, and one might know that it was not there
ten years ago, but one probably does not know when in the intervening time
the species first arrived.

Combining databases with different granularities. If one combines
several databases in which time is stored with different granularities into a
single database, the data stored in the databases with course granularity will be
uncertain if the granularity chosen for the resulting database is that of a fine-
grained database.
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1.2. Research questions

Based on the motivation underlying this work in Section 1.1, the main re-
search question becomes:

How can one efficiently model and store uncertainty in spatial and spatio-
temporal data?

This question leads to the follow-up questions, determining the develop-
ment of this work:

Q1 Current Situation: Are there efforts that already have answered the main
question or addressed parts of it?

Q2 Requirements: What are the requirements for a system that addresses the
main research question?

Q3 Abstract Solution: How should uncertainty in spatial and spatiotemporal
data be modelled in general?

Q4 Discrete Solution: How should the abstract solution be implemented in a
computer?

Q5 Evaluation: How well does this research address the challenges, and how
do the solutions presented compare to previous work?

1.3. Research approach

According to [BCW95], research typically starts with a research topic. In
this thesis, the topic is uncertainty in spatial databases. Then, one should for-
mulate a more specific research question which one wants to answer. The re-
search questions for this thesis are given in the previous section. Now we need
to find a rationale for why this work should be done. In this thesis, the rationale
is:

Rationale: To be able to store and retrieve uncertain spatial and spatiotemporal
data, and to be able to answer queries about such data.

In pure research, the rationale is to know something. In applied research,
the rationale is to be able to do something. Given this definition, we can see
that this is applied research.

This work has mainly been theoretical. After formulating the research
questions, it was possible to set up a hypothesis:
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Hypothesis: One can model uncertainty in spatial and spatiotemporal data by
storing a region that the object is certain to be inside, and a probability function de-
scribing the likelihood of the object being in various places inside that region.

From this starting point, I went on to design a mathematical abstract
model. This abstract model is described in Chapter 3. This is the first step to-
wards being able to model and store something according to [EGSV98]. The ab-
stract model was inspired by the model already proposed for crisp
spatiotemporal data in [GBE+00]. The abstract model shows that it is at least
conceptually possible to model uncertainty in spatial and spatiotemporal data
in the manner that I thought.

Then I began constructing an implementable discrete model from the ab-
stract model. This is the second step according to [EGSV98]. This work eventu-
ally became the three discrete models presented in Chapter 4 of this thesis. I
constructed three models rather than one because there is not a single best
model. All the three models presented in Chapter 4 have their own advantages
and drawbacks.

So far, all the work described has been theoretical. I had shown how
something could potentially be implemented. To test the implementability of
my models, I then implemented parts of my medium complexity model. The
results and experiences from that implementation are described in Chapter 5.

1.4. Research environment
The research that went into this thesis was mainly done at the Depart-

ment of Computer and Information Science at the Norwegian University of Sci-
ence and Technology. However, some of the main ideas behind the thesis were
developed when I was in Hagen, Germany in the spring of 2000.

1.5. Requirements
To be able to evaluate this work, I have compiled a set of requirements

that the model should fulfil. I arrived at these requirements by analysing which
queries a user might want to ask about uncertain spatial and spatiotemporal
data. Another goal was to enable the user to ask all the same queries about un-
certain data that existing models for crisp data allow:

R1 One must be able to tell whether an object is uncertain or not.

R2 One should be able to say something about how uncertain an object is.

R3 One must be able to say where the object certainly is not
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R4 One must be able to say where the region certainly is

R5 One should be able to compute the probability that the object overlaps or is
inside a given area

R6 One should be able to compute the probability that a given crisp point is in-
side an uncertain region

R7 The model should be able to handle all numerical and spatial data types

R8 The model should be able to store objects with temporal as well as spatial
uncertainty

R9 One should be able to get crisp versions of uncertain objects with varying
degrees of confidence

R10 One should be able to compute all operations that can be run in standard
spatiotemporal models like [GBE+00]

1.6. Publications

This thesis is partly covered by the papers that I have co-authored during
the years I worked on this thesis.

• Erlend Tøssebro and Ralf Hartmut Güting: Creating Representations for
Continuously Moving Regions from Observations. In the proceedings of the
7th Int. Symposium on Spatial and Temporal Databases (SSTD01),
pages 321-344, July 2001. ([TG01])

This paper deals with the problem of creating a representation for a
region that is capable of showing that the region is continuously chang-
ing when the original data is in the form of snapshots of the region.

• Erlend Tøssebro and Mads Nygård: Abstract and Discrete models for
Uncertain Spatiotemporal Data. Poster presentation at 14th International
Conference on Scientific and Statistical Database Management
(SSDBM 2002). An abstract is in the proceedings ([TN02f]).

This is an overview of the work that is presented in this thesis.

• Erlend Tøssebro and Mads Nygård: Representing Uncertainty in Spatio-
temporal Databases. To be submitted for journal publication ([TN02g]).

This paper is basically Chapter 3 of this thesis.
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• Erlend Tøssebro and Mads Nygård: Three Discrete Models for Uncertainty
in Spatiotemporal Databases. To be submitted for journal publication
([TN02h]).

This paper is basically Chapter 4 of this thesis.

• Erlend Tøssebro and Mads Nygård: Representing Uncertainty in Spatial
Databases. Submitted for conference publication ([TN02a]).

This paper contains an abstract model for uncertainty in spatial data-
bases. It is based on the idea that one knows that any spatial object is
within a region.

• Erlend Tøssebro and Mads Nygård: Uncertainty in Spatiotemporal Data-
bases. To be published in the proceedings of the Second Biennial Inter-
national Conference on Advances in Information Systems (ADVIS)
([TN02b]).

This paper extends the model described in the previous paper so that it
can also model temporal information. It also contains some more opera-
tions. This paper and the preceding one together cover Chapter 3.

• Erlend Tøssebro and Mads Nygård: Advanced Discrete Model for
Uncertain Spatial Data. To be published in the proceedings of the Third
International Conference of Web-Age Information Management
(WAIM). ([TN02c])

This paper describes the first of the three discrete models based on the
abstract model from the two previous papers. This is called the
advanced model because it is capable of modelling more than the
others.

• Erlend Tøssebro and Mads Nygård: Medium Complexity Discrete Model
for Uncertain Spatial Data. Submitted for conference publication
([TN02d]).

This paper describes the second of the three discrete models. The model
presented here requires less storage space than the one from the pre-
vious paper.

• Erlend Tøssebro and Mads Nygård: Extending Discrete Models for Uncer-
tain Spatial Data to Spatiotemporal Data. Submitted for conference publi-
cation ([TN02e]).
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This paper describes how the models presented in the two previous
papers can be extended to model time as well as space. This paper and
the two preceding ones together cover Chapter 4.

1.7. Contributions

The main contributions of this thesis are as follows:

• It shows how uncertain spatial data can be modelled by a support region and a
core of the appropriate type.

In Chapter 3, spatial data types for points, lines and regions based on
this principle are shown.

• It discusses useful operations for spatial and spatiotemporal data, and shows
how some of the operations change in the uncertain case.

As a part of this, a list of operations from earlier work is evaluated for
use in the uncertain case in Chapter 3.

• It discusses operations that measure uncertainty.

The thesis introduces some new operations as well as some operations
that exist for other types of data and shows how they can be used for
uncertain spatial and spatiotemporal data in Chapter 3.

• It shows how the model for uncertain spatial and spatiotemporal information
can be implemented.

Chapter 4 presents three possible ways of implementing this model.

• It examines how to deal with temporal uncertainty in a spatial database.

Chapter 3 contains a method for extending uncertain non-temporal
types into corresponding temporal types that can represent temporal
uncertainty. In Chapter 4, several ways of dealing with temporal uncer-
tainty are described.

• It examines how to use probability functions to estimate probabilities of opera-
tions.

The model presented in Chapter 3 stores probability functions in the
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uncertain data types. Chapter 4 discusses several ways of using stand-
ard one-dimensional functions to compute spatial probabilities.

1.8. Organization of the thesis

This thesis is divided into seven chapters as well as two appendices.

• Chapter 1 contains this introduction.

• Chapter 2 contains an overview of past achievements in spatial data-
bases in general. It defines many of the terms that are used later in the
thesis. More specific overviews of past achievements for specific parts
of the thesis are given at the beginning of each chapter.

• Chapter 3 contains a high-level abstract model for uncertain spatial and
spatiotemporal information. It uses infinite point sets and takes ideas
from both fuzzy set theory and probability theory. It is based on the
idea that one knows an area within which the uncertain object is certain
to be.

• Chapter 4 contains three different discrete models that are all lower-
level versions of the abstract model from Chapter 3. The different
advantages and disadvantages of the three models are discussed in
detail.

• Chapter 5 contains a description of a test implementation of parts of my
medium complexity model from Chapter 4. It also discusses some new
aspects of the model that became evident during the implementation.

• Chapter 6 contains a discussion of the pros and cons of the various mod-
els presented in Chapters 3, 4 and 5.

• Chapter 7 concludes and describes possible extensions of this work.

• Appendix A contains a paper co-authored by me while I was in Ger-
many. This paper is somewhat outside the scope of the thesis itself, but
it is referenced several times in Chapter 4.

• Appendix B contains a list of the classes that the implementation
described in Chapter 5 consists of. It also contains lists of the functions
that these classes contain.
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Chapter 2

Introduction to Spatial
Databases

2.1. Introduction

Spatial databases have become much more common in recent years. Sev-
eral commercial products have already been developed for one of the most im-
portant application areas of spatial databases, Geographic Information Systems
(GIS). Although spatial databases are mainly used in geographic information
systems today, they can also have other uses. It could for instance be useful to
geologists to have a three-dimensional database which contains the type of
rock at different points and depths underground.

This chapter is divided into six sections, which will discuss various as-
pects of spatial databases. Section 2.2 discusses different ways to model spatial
data. To be able to store spatial data in a computer, one must find a proper rep-
resentation, or model, for it. Unlike, for instance, ones bank balance, there is no
single clear, intuitive way to store spatial data. There are also different types of
spatial data, which should be stored in different ways. The location of a house
can be stored as a set of coordinate values, whereas the plot of land in which
the house lies must be stored differently, since one wants to store its shape as
well as its position. Section 2.2 will therefore consider the various types of data
which one might want to store in a spatial database and how they might be
modelled and stored. The section will also introduce a number of terms which
will be used in the later sections.
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Section 2.2.1, Query methods for spatial databases, will discuss common
types of queries which users might want to ask of a spatial database. This issue
is important in choosing models and designing indices for spatial data, because
one wants a data structure which is efficient in answering common queries.

Section 2.3 will discuss how to index data where the key has more than
one dimension in an efficient manner, and discuss the benefits and drawbacks
of the different indexes. Indexes are an important ingredient of all databases,
especially when they store large amounts of data. In recent years, huge vol-
umes of spatial data have been generated by satellites, and this stream of data
will only increase in the years to come as more sophisticated satellites are
launched. Although an index is not strictly necessary to find the data, they pro-
vide a significant boost in speed. Without an index, finding a given piece of
data will take O(n) time, whereas it will usually take O(log(n)) time with a tree-
based index. If the database contains 1 million disk blocks storing one type of
data, it will take on average 1/2 million time units to find a particular data item
without an index, and maybe 6 time units with a tree-based index, which is a
speed-up of over 50000 times.

Section 2.4 is called “automated generalization”. Generalization is the
process of removing unnecessary detail when producing a map on a small
scale from source data on a larger scale. If one for instance had a collection of
maps at the scale of 1:50000 and wanted to produce a map at the scale of
1:250000, one could not just reduce the size of everything and plot it on the
map. The symbols would either become so small that they could not be seen or
be placed so near each other that they overlapped and would therefore become
unreadable. Therefore, map makers remove less important features when they
make maps on smaller scales. A geographical information system, which is by
far the most common form of spatial database, may be used to create maps
from the data that it contains. It would be a great advantage if such a system
could perform this generalization process automatically, because this would al-
low the user to “browse” through the map data. The user could be presented a
very generalized map over a large area and then zoom to the area that the user
was really interested in. More and more details would be added as the scale be-
came larger until the user had what he/she needed. This process could also be
used to assist cartographers in creating generalized paper maps, but so far the
results of manual generalization look much better than those from automated
generalization.

Section 2.5 is about spatiotemporal data, which is a relatively new field
combining research in spatial databases and temporal databases. The time di-
mension has received more attention in the last years. The capacity of the stor-
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age media has become large enough that old data do not have to be deleted.
The advantage of this is that the user can ask the database about historical in-
formation, for example where the borders of one particular country were sixty
years ago.

Section 2.6 contains an overview on existing research in representing un-
certainty and vagueness in spatial and temporal databases. This section con-
tains the answer of research question Q1 from Section 1.2.

2.2. Data models for spatial data

This section will describe the various types of spatial data and how these
data types are usually modelled in a computer. One cannot store an exact rep-
resentation of most types of spatial data. A line, for example, such as the coast
of Norway, consists of infinitely many points, and all these points cannot be
stored in a computer. This means that an inexact representation using a finite
number of points must be used to represent the line.

Section 2.2.1 describes some common queries that users might ask a
spatial database. Section 2.2.2 describes the various data types which can be
stored in a spatial database, and the two next sections describe various ways to
model these kinds of data. Section 2.2.5 compares the different models for
some of the data types. Section 2.2.6 discusses a commonly used way of storing
different kinds of spatial data in the same database called layering, and how
this model has been altered and improved into an object-oriented model.
Section 2.2.7 discusses the problem of getting different spatial databases to
work together. This is included in this section, because much of the problem
lies in the fact that different databases use different models for the same kinds
of data. (If they had used the same type of model, it would be easy to write a
conversion program).

2.2.1. Common query types

Before discussing the data types and data models which are used to store
spatial data, a discussion of some of the most frequently asked query types
might be useful, because some of the models which are described later were
made to answer one or more of these types. The spatial join is especially impor-
tant because it is both frequently used and computationally expensive.

• Region Query (select): The user wants to see all objects of a certain kind
that lie within or overlap a certain area. Example Query (1): Show all
roads, rivers and terrain elevation within a given bounding box.
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• Neighbour Query (select): The user wants to know which object is nearest
in space to a given object or the user wants to know which objects lie
within a certain distance from the object. Example Query (2): Which ele-
mentary school lies closest to a given house? (Used to determine which
school the children living in that house should attend)

• Similarity Query (select): Finds all objects that are similar in shape to a
given object. Example Query (5): In a geological database: Find all cases
where a certain type of rock layer has a certain shape. (Used to find likely
oil deposits).

• Spatial Join (join): Checks which objects overlap a given object or area or
checks overlaps between the objects in two sets of objects. Examples:
Query (3): Which plots of land contain a river? Query (4): which houses
lie less than 200 metres from a river?

2.2.2. Data types

This subsection describes four different data types that are common in
two-dimensional spatial databases.

2.2.2.1. Point data

Point data is data for which the position, but not
the shape, size or other spatial properties are of inter-
est. Examples of such features might be buildings in
rural areas, mountain tops, and view points. Many
point features arise because of generalization. Such
point features should be modelled as the feature
types they have on high scales and then generalized
into points.

Points are often used in the representation of other kinds of features. A
line, for instance, is often stored as a set of points with straight lines between
them. Therefore, storing points is important in a spatial database even if there
are not a lot of point features.

2.2.2.2. Line data

Line data consists of objects which have a length
and a shape, but no discernible area. One good exam-
ple of a line feature would be a network of power
lines. Other features which are often represented by
lines are roads and rivers, but these are really long,
narrow areas rather than lines. They may be stored as

Figure 2.1 Point data

Figure 2.2 Line data
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lines if the database is only going to be used to generate small-scale maps, or
they can be stored as areas and generalized into lines for small scales. See Sec-
tion 2.4 for more on generalization.

2.2.2.3. Field data

Field data is data which varies continually across
the area of interest rather than being divided into dis-
crete areas. Terrain models, soil types, pollution levels,
and some forms of geological data are all good exam-
ples of such data. On traditional paper maps such data
are either presented using contour lines, or by colour-
coding the points in the map. Fields can have any
number of dimensions. (Terrain models are two-dimen-
sional, while geological data are three-dimensional. Meteorological data might
be considered to be a four-dimensional field with time as the fourth dimension)

2.2.2.4. Region features

A region is a geographical object where the
shape and size are of interest, such as a plot of land or
a country. Field features are sometimes represented as
region features, but are a class of their own and
should be represented differently in most cases. The
main difference is that a region represents strictly
bounded, discrete areas such as countries, while field
data represent phenomena which vary continuously
in the area of interest.

2.2.3. Vector models

A vector model consists of one or more networks of lines. The model does
not have to represent line features, though.

A line in continuous space consists of infinitely
many points. It is obviously not possible to represent
this in a computer, so instead a line is represented by a
set of points and an interpolation rule which is used
between the points. The most common way of storing
a line is to store a sequence of points and draw
straight lines between points which are next to each
other in the sequence. Other options include storing

Figure 2.3 One-
dimensional field

Area 1 Area 2

Area 3

Area 4

Figure 2.4 Region
features

Figure 2.5 A line and
its vector

representation
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the control points for a set of Bezier or spline curves which lie next to one an-
other.

2.2.3.1. Modelling curved lines with straight line segments

There are basically two ways of storing a curved line using straight line
segments. The first method, which is often called a spaghetti model, consists of
storing an unordered set of straight line segments. When all of them are put to-
gether, they form a continuous line. The second method consists of storing an
ordered sequence of points, in which neighbours are connected by straight
lines.

2.2.3.2. Modelling region data with vectors

A set of regions can be modelled as a linear network where the lines re-
present the borders between the various regions. There are several versions of
this model. In the earliest version, the border of each area is represented by a
closed line1. In this early model, finding the location of an area is easy, but find-
ing adjacent areas is difficult, since each border line is effectively stored twice,
once for each area.There are two versions of this model which are better at stor-
ing neighbour information which are commonly used. Both are based on stor-
ing the border of an area as multiple lines which form a closed line together. In
these versions each line represents a border with one particular neighbour. The
first version is to store a link to the twin of each line in the neighbouring area.
The second is to store only one line and store links to the areas on each side of
that line.

2.2.3.3. Modelling fields: Iso-lines

Iso-lines is the method which is most commonly used to display terrain
elevation in ordinary paper maps. The method consists of drawing lines in
which the feature of interest remains constant. If these lines and the value they
represent are stored in a database, a reasonably accurate model of the terrain
elevation can be made. The problem with this type of data model is that pro-
ducing iso-lines requires quite a lot of preprocessing, possibly involving an-
other model. Measurements of fields are usually either height measurements in
individual points done by cartographers on the site, or they are height-rasters
generated by a satellite passing over the area. It would then be better to store
this original model and either create the iso-lines when needed or store them as
helpful information to the display software.

1. A closed line is a line where the start point and the end point are the same.
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One argument for using iso-lines to store elevation data is that one of the
most used sources of elevation data for spatial databases is the iso-lines of pa-
per maps. These would be easier to store with iso-lines in the computer than
with any other model.

The reason why iso-lines are used in paper maps is that they are relatively
easy for people to understand as well as easy to draw. The other models, such
as TINs, are better suited to storing the data in a database, but cannot be used
directly to present the data to the user.

2.2.3.4. Modelling fields: Triangular Irregular Networks

A triangular irregular network, or TIN for short, is a set of non-overlap-
ping triangles covering the entire area of interest. This can be used to represent
a field by using points which have been sampled from the field as the corners
of the triangles. Because all the triangles are planar1, interpolating a value for
the field for any point in the area of interest is easy. All one has to do is to enter
the x- and y-coordinates into the formula for the 3D plane which is defined by
the triangle surrounding the point of interest. Interpolating the field value in a
randomly chosen point is much more difficult in an iso-line representation.
Additionally, the interpolated value is not unique in such a representation.

Another reason for using TINs is that one can easily generate a TIN from
a collection of sample points (Some algorithms for doing this are described in
[LS80] and [Tsai93]).

2.2.4. Raster models

In a raster model, the entire area of interest is divided into small cells with
the same shape. The most commonly used shapes are squares and cubes, but
others are also possible. Each cell is then assigned a value which depends on
the feature that particular raster is supposed to model. Rasters are poorly
suited for storing point and line data, and are therefore rarely used for these
purposes. However, both field data and area features can be stored as rasters.

1. A triangle in 3D space defines a plane passing through the triangle. (3D space
because there are two spatial dimensions and the value of the field is the third dimen-
sion.)
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2.2.4.1. Storing fields as rasters

The raster is the oldest method for storing fields. It
divides the area covered by the database with a fine, rec-
tangular grid, and stores the value of the feature in each
grid cell. This is the same method that is used to store
images in computers. The problem with rasters is that
they require a lot of space, and they require either that
the feature of interest is sampled at regular intervals
(one sample per cell), or that the values in the cells are computed from the sam-
ples. The problem with space is usually a lot worse for GIS rasters than for im-
ages, because rasters typically contain a lot more cells than images, and the
user is usually only interested in parts of the raster. The benefit of rasters is that
they are easy to manipulate. Several rasters can be placed “on top of” each
other easily, which produces a composite raster, and the resolution can be re-
duced by turning four points1 into a single points.

2.2.4.2. Storing regions with rasters

Area features can also be represented by rasters. In this form of represen-
tation, each area object receives a particular number, and that number is stored
in all raster cells which are completely within the area. Those that are on a bor-
der will either get a special “border” number or they will get the number of the
area which covers the largest part of them.

2.2.5. Comparing models

This section compares the various models for storing lines and areas.
Points and lines are usually stored in a single format, so there is no basis for
comparison. (Lines can be stored in a more complex manner than chains of
straight lines, but these methods have never, to my knowledge, been imple-
mented in any system.) Areas and fields, however, can be stored in several dif-
ferent ways.

2.2.5.1. Raster vs. linear network for modelling regions

According to Section 2.2.3.2 and Section 2.2.4.2, regions can be modelled
by linear networks or rasters. Of these models, the linear network consumes far
less space than the raster. This is because in the linear network model, only the
edge of the region and its non-spatial properties must be represented, whereas
in a raster, the properties of all the raster cells must be represented, and to get a

1. Or any other number of points with the same number of points in each direction,
such as 9 (3*3) or 16 (4*4).

Figure 2.6 “Raster”
rep. of 1D field.
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fairly accurate representation of the shape of the region, a large number of
raster cells is needed to represent it. The benefit of rasters is that combining dif-
ferent rasters with the same scale is fairly easy, while comparing two linear net-
works requires a lot more computation. (Line intersection tests for the lines in
both linear networks.)

2.2.5.2. Raster vs. TIN for modelling fields

The popularity of rasters and TINs has fluctuated over the last twenty
years. The raster was created first, and was the only model available for a
while. In the 1980s TINs became increasingly popular because of their com-
pactness and adaption to an uneven distribution of sampled points. Whereas a
raster has an equal density of points throughout the area, a TIN may have a
higher point density in areas with rapid change than in areas where the value
remains stable.

In the 1990s the raster has gained popularity once more. This is mainly
due to satellite imaging. Field features are often sampled by satellites taking
high-resolution orthogonal pictures of the feature. This way of sampling pro-
duces “small” rasters as output, so that storing a collection of such images as
rasters is straightforward. It is usually best to store the data in a format that is
as close to the original format as possible, because users may want to perform
new analyses on the original data, rather than a pre-analysed version which
may have removed data which are important to this new user.

Another factor which has contributed to the increased popularity of
rasters is that the capacity of storage media has increased.

2.2.5.3. Summary

In Table 2.1, the various models are summarized and compared with re-
spect to space usage, the cost of performing a spatial join (See “Common query
types” on page 13), and how accurately the models represent the feature that
they are supposed to model.

2.2.6. Layering

Layering is commonly used as a model in GIS to represent various kinds
of information in the same database. In this method, each type of information is
assigned to its own layer. There is usually one index for each layer, so that in-
formation from each layer can be indexed independently. This means that
roads would be one layer, rivers another, plots of land a third and terrain
model a fourth. the user could then combine the layers when performing que-
ries. This gives a simple interface for specifying what one wants in a map. Re-
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cent research has concentrated more on object-oriented databases which do not
use layering directly. Instead, each type of data is its own class. There might be
one class for roads, one for rivers, etc., and although all of these classes will
store a line (or a pointer to a line object), they will store different kinds of non-
spatial data. Thus, one “layer” often becomes a class in object-oriented systems.

However, the type hierarchies in object-oriented systems offer a lot more
flexibility than a layer-based system. For instance, both roads and rivers are
usually represented as line features. These could then inherit from a “generic
line” object and yet be distinct types. The superuser of the database might then
choose whether all lines should be stored in the same index or each subtype
should be indexed independently.

2.2.7. The interoperability problem

This is a problem which has received a lot of attention in the last few
years. The problem is that various users operate with different data models for
the same kind of data in their databases. One company might store the terrain
model as a raster, another as a TIN, and a third as a collection of sample points.
If the companies using these three databases want to cooperate, they might
want to create a single application using data from all three databases. This
would be very difficult even if they all used the same model, because they
might store the data differently. With a standard, the last problem would be all
but eliminated, and the problem of different models would be reduced from
one database not comprehending what is stored in the other to the problem of
converting one model into another.

Another aspect of interoperability is the ability for servers and clients
created by different developers to work together. This last problem is not spe-

Table 2.1 Models for spatial data

Model
type

Model
name

Model
domain

Space
required

join cost accuracy

Raster raster areas, fields high small ok

Vector TIN fields low high ok

Iso-lines fields medium high ok (poor)

line network lines, areas low high good

Points point collec-
tion

points, fields low medium good,

poor1

1. Good accuracy for points, poor for fields.
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cific to GIS, and systems such as CORBA have been developed to deal with it,
but a GIS needs its own set of common interfaces to use these services.

Another problem is to recognize what type of information a given piece
of data is supposed to model. If one has a collection of points, these could be
point features, the points in a linear network, or even sample points for a field.
One would need some form of meta-data to differentiate between these. OGC1

is the largest and most well known organization which is working to create a
standard for this kind of meta-data.

OGIS, the standard which OGC is creating, uses object-oriented architec-
tures such as CORBA and OLE, which permit small programs called “objects”
to cooperate through commonly known interfaces. The OGIS specification con-
tains such interfaces for objects dealing with geographical data. Thus OGIS
allows one to build distributed GIS applications using a variety of components.
OGIS also contains the Open Geodata Model, which is a general set of geo-
graphic data types, which is supposed to cover all kinds of geographical data.
This can be found on their web-site: www.opengis.org.

2.2.8. Relational vs. object-oriented

Many scientists see object-oriented databases as the future for spatiotem-
poral databases, because the normal relational model is too restrictive for this
type of data. If one has a table of points, one for lines which refer to their end-
points, one for regions and one that connects lines and regions, the computer
must do three joins to draw a map for a given area. (Four tables are necessary
to make the scema 3NF). The fact that there are so many tables means that
many joins must be performed even for simple queries. Another problem is
that there are no data types for spatial data and therefore no means to create a
spatial index. The object-oriented method also allows each class to implement
specialized access methods for its instances.

The problems with object oriented databases in general is that there are
no standard query languages, and that object-oriented databases typically are
bound to one particular programming language. (Although many C++ data-
bases now also support Java). This means that one is forced to use this pro-
gramming language when interacting with the database. If this programming
language later becomes obsolete (like Cobol today), it would still have to be
used for those parts of the system which interacted with this legacy database.
Relational databases, however, are independent of programming language (A
system/extension for interacting with SQL is found in most programming lan-

1. Open GIS Consortium
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guages.) However, despite these problems, object-oriented databases seem to
be the better choice for spatial data.

Object-relational databases are also an alternative. In this hybrid strategy,
one keeps the table structure of a relational database, but allows user-defined
types of arbitrary complexity as column values. This allows some of the flexi-
bility of the object-oriented approach, while maintaining the structure of a rela-
tional database. For instance, a river could be a table including such attributes
as length, how much water flows in it and name as well as a line representing
it. This line would be treated as an atomic attribute even though it is actually
stored as a series of points with straight lines between them. Such composite
attributes might include functions to extract or alter component values. the
user should be able to call such functions from the SQL-equivalent that is used
in the database. (The SQL3 standard is supposed to cover this kind of thing)

Among the commercial products, ARC/INFO is a geo-relational data-
base, which means that the geographic part is stored in a proprietary database,
while the other information (non-spatial information on the objects) is stored in
a relational database (any SQL database might be used here). Smallworld is an
object-oriented database using its own language (Magik). GRASS uses the file
system for storing data.

Some years ago, the commercial systems were usually either vector-based
or raster-based. GRASS was a raster database, while ARC/INFO was a vector
database. Now, however, most of the commercial systems support both storage
formats.

In recent years, major vendors of relational databases like Oracle and In-
formix have created spatial extensions to their databases. These support spatial
data types through extensions to SQL, and often uses special access methods
for indexing spatial data. The Informix Spatial Datablade uses R-trees, for in-
stance.

2.3. Spatial access methods

Most ordinary databases use some form of index or access method to ac-
cess data, as both exact matches and similarity searches are much faster with an
index. Hashing is the fastest. However, the most popular index for normal da-
tabases is the B-tree. The problem with hashing is that it requires relatively sta-
ble data to work, and that it can only find exact matches, while B-trees can also
be used to find approximate matches. Some hashing methods, such as extendi-
ble hashing and linear hashing, have been developed to cope with unstable
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data, that is, a lot of insertions and deletions. No known hashing method can
find approximate matches.

The B-tree is organized as a tree where each node is a disk block which
contains pointers to its children. B-trees typically have a large fan-out, because
the nodes store as many references to child nodes as can be fitted into a disk
block, and disk blocks are usually quite large compared to the space required
for such a reference. The leaves either contain pointers to disk blocks contain-
ing data items or to the data items themselves. This means that only logarith-
mic time is needed to find either an exact or an approximate match. For
comparison, linear time is required by a sequential search. Hashing provides
exact matches in constant time, but it cannot do approximate matching, so a se-
quential search must be performed.

Both B-trees and hashing assume that the data items have one totally or-
dered key. This is unfortunately not true for spatial data, at least if one wants to
search its spatial component. Although the coordinate values are totally or-
dered individually, their combination is not. Is for example the coordinates (5,
3) greater than or less than the coordinates (4, 9)? This means that new methods
are needed to obtain the benefits of an index when accessing spatial data. These
access methods can also be used when accessing some other forms of multidi-
mensional data.

A wide variety of spatial access methods have been developed in the last
25 years. These can roughly be divided into two groups: access methods for
points and access methods for extended regions. Most of the data structures
have been developed with two-dimensional data in mind, but can be general-
ized to data with a higher number of dimensions. However, the performance of
many of the data structures degenerate when the number of dimensions be-
comes too large.

Many of the early data structures, and some of the later ones as well, are
main-memory based, that is they do not take into consideration that data is
transferred from disks one block at a time, not one byte at a time. Disk-based
structures, on the other hand, are made to exploit this property.

2.3.1. Access methods for point data

This subsection contains descriptions of many data structures for point
data. The Quad- and Kd-trees are early, main-memory-based access methods
for point data. Both are based on simple binary trees.The Grid file is one of the
early disk-based structures, and is not based on a tree. The BANG-file was de-
veloped to solve some of the problems with the grid file. The KDB-tree and hB-
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tree are attempts to modify the B-tree for use in spatial databases. The KDB-
tree is the earliest attempt, while the hB-tree is much more recent. There are
many point data structures that are not mentioned in this review. For a more
thorough survey, see [GG98]. The structures presented here are either funda-
mental structures like the Quad-tree, kd-tree and grid-file, or more successful
recent structures.

2.3.1.1. Quad tree

The quad tree [Sam90] is one of the earliest data structures that was de-
veloped to access two-dimensional data. It is similar to a binary tree with the
exception that each node has four children, rather than two. In a quad tree,
each node represents a rectangular part of the total space. (The root node repre-
sents the entire area). The children of a node represent a subdivision of that
node. The nodes are split by two split lines, one horizontal and the other verti-
cal. Versions of this type of tree with more than two dimensions will have 2n

children per parent, where n is the number of dimensions.

There are several variants of quad trees. The Point quadtree stores one
point in each node. The subdivision lines of that node go through the point that
is stored in the node. This means that the order in which the points are inserted
is very important for the structure of the quadtree. With a very unfavourable
order, the tree can become quite deep and unbalanced, while a good distribu-

a) Point quadtree with unfavorable order

b) Point quadtree with favorable
order

Figure 2.7 Point quadtree examples
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tion will yield an almost perfectly balanced tree, that is, that all leaf nodes are
on the same level in the tree. This can be clearly seen by comparing Figure 2.7a)
and Figure 2.7b). These two quad-trees contain exactly the same points.

The Region quadtree is a regular subdivision of
the area which is used to index objects or fields. Un-
like the point quadtree, the nodes in the region
quadtree are always split in four parts with the same
size and shape. Each node represents a small area, and
the nodes are subdivided until the entire area covered
by the node has the same value for the property the
quadtree is used to index or the node has reached its
minimum size. This type of quad tree can be used to
compress rasters with a small number of different col-
ours. With a large number of possible values, all the cells must probably be
subdivided to their smallest size, which would yield a plain raster with a tree
index structure on top of it.

The Point-Region quadtree is similar to the re-
gion quadtree, except it is used to store points rather
than field data. Each cell in this quad tree represents a
disk block or something else with a limited storage ca-
pacity. Each leaf node can therefore contain at most a
certain number of points, and must be split if more are
inserted. The problem with this data structure is that
there is no guaranteed space utilization, even if one per-
mits several cells to point to the same disk block. If the
data are very unevenly distributed, one may split a
node only to find that all the points went into just one subnode. Then this sub-
node would have to be split as well, and one would have three empty nodes
corresponding to three empty disk blocks. (One if sharing disk blocks is per-
mitted) Figure 2.9 shows a PR quadtree where only one point may be stored in
each leaf.

The MX (matrix) quadtree also stores points,
but it does so in a different way from the PR quadtree.
In the MX quadtree, nodes are always split until the
lowest possible level around a point. The point coor-
dinates themselves are not stored, only the presence
of a point in one cell of minimum size. This leads to a
very large index relative to the number of points, but
it is sometimes used. The increased size of the index

Figure 2.8 Region QT

Figure 2.9 Point-
Region QT

Figure 2.10 Matrix QT
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can be seen by comparing the number of cells (leaves) in Figure 2.10 and Figure
2.9. Another way to use an MX quadtree, is to store only the quad-tree nodes
which contains a data points. This can be done by using a space-filling curve
(See Section 2.3.1.7 on page 34) and storing the positions of the points along
this curve.

The PM quadtree is a class of quad trees used to
store lines. All PM quadtrees split nodes into equal-
sized subnodes. They differ in the splitting policy.
The two most commonly used PM quadtrees are the
PM3 and the PMR quadtree. The PM3 quadtree splits
nodes when they contain a certain number of points,
while the PMR quadtree splits nodes when a certain
number of lines intersect with them. To avoid an infi-
nite number of splits when one point has many in-
coming lines, the insertion algorithm tests whether
one of the subnodes still contains too many lines after the split. If this is the
case, that node is assigned extra storage space so that it can store a number of
lines that is large enough that it does not need to be split further. Figure 2.11
shows a PMR quadtree where at most two lines may intersect the node. There
is one node, however, which contains four lines. This node has been assigned
extra storage space to accommodate four lines, because it is not possible to split
it in such a way as to get only two lines in it.

An overview of the different quad tree types is given in Table 2.2. The
subdivision type in this table is how the nodes are divided when they must be
split. An irregular subdivision splits the node along the coordinate values of
one of the points it contains, whereas a regular subdivision divides the node
into four nodes with equal area.

Figure 2.11 PMR
quadtree.

Table 2.2 Properties of quad trees

Quad tree type
Data type

stored
Subdivision

type
Subdivision criterion

Point quadtree points irregular Point inserted

Region quadtree areas, fields regular Node contains border

Point-Region qt. points regular More than max. number of
points in node.

MX quadtree points regular Nodes split to smallest size
around points.

PM quadtree lines regular Varies
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2.3.1.2. Kd-tree

The Kd-tree [Ben75], [Ben79] is a binary tree that resembles the point
quadtree. Instead of splitting space in all the dimensions when splitting a node,
the kd-tree splits space in only one dimension. The tree usually alternates be-
tween the dimensions, so that in the two-dimensional case it splits the root
node along the x-axis, the children of the root node along the y-axis, the chil-
dren of those nodes along the x-axis and so forth. An example of a kd-tree is
given in Figure 2.12.

The adaptive kd-tree [BF79] does not split nodes along one of the coordi-
nates of a point, but rather splits it such that the two new nodes get an equal
number of points. Unlike the regular kd-tree, all points are stored in the leaf
nodes of this tree.

2.3.1.3. Grid file

The grid file presented in [NHS84] is a flat (non-hierarchical), disk-based
data structure for storing point data. It divides space into a number of cells by
means of horizontal and vertical grid lines. Each grid cell contains a pointer to
a data bucket. Several grid cells can point to the same data bucket, but all these
grid cells must form a rectangular area.

A data bucket is a place which can store up to a certain amount of data,
usually a disk block. The fact that data items are stored in buckets rather than
individually in tree leaves is one of the most important differences between
memory-based and disk-based indexes. Another important difference is that a
disk-based index itself can be easily stored on disk. Many quad-tree nodes can
be stored in one disk block, which creates the problem of which nodes to store
in which blocks. In contrast, B-tree based indexes store one node in one disk
block. Grid files store a certain number of grid cells in one disk block in such a

Figure 2.12 Kd-tree
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way that it is easy to calculate which disk block to read based on which grid
lines the query point is between. The grid lines are usually stored in main
memory.

An empty grid file consists of one cell with a pointer to one data bucket.
Whenever a data bucket is full, it has to be split. When a data bucket is split, the
program first checks how many grid cells point to that bucket. If more than one
grid cell points to the same bucket, the bucket is split by one of the lines divid-
ing the grid cells. All the grid cells on one side of this line point to the same
new bucket. If only one grid cell points to the bucket, that grid cell must be
split. The cell is split along a line which is parallel to one of the axes. Which di-
mension is used depends on which dimension was used in the last split. If the
last split was horizontal, this split is vertical and vice versa. The coordinate of
the split line is determined in such a way that the points in the cell are equally
divided among the two new cells. The new split line is then drawn across the
entire space, and all cells which are intersected by the line are split, even if they
are not full. If a cell that is not full has to be split, the two new resulting cells
will point to the same data bucket. In this way storage space can be preserved.

The main problem with this data structure is that the index grows faster
than the number of points. If the data are clustered around a few central loca-
tions, a lot of index nodes must be split unnecessarily. This is shown in Figure
2.13. When the light grey point is inserted into the grid file, its grid cell has to
be split. As the last split of that cell was horizontal, this split must be vertical, as

1

2

3

4

Figure 2.13 Grid file
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shown by the dashed line. As the split line intersects the cells above and below
the cell in which the point was inserted, these two cells also have to be split, de-
spite the fact that they are not full. The end effect of the insertion is that there is
one new data bucket and three new index entries. The number of data buckets
increases from six to seven, which is an increase of 1/6. The number of index
entries increases from nine to twelve, which is an increase of 1/3.

This splitting policy ensures that the cell structure remains simple, so that
it can be represented by a normal matrix where each column has the same
number of rows and vice versa. The grid file is relatively fast to search. (Search-
ing occurs by comparing the coordinates of the split lines with the coordinate
of the point or region in question.) If the number of cells is proportional to the
number of points, the number of splitting lines is proportional to the square
root of the number of points.

There are two variants of the grid file, one of which seeks to reduce the
growth of the index structure and the second seeks to improve storage utiliza-
tion. Table 2.3 compares the basic grid file with these two alternatives. The
two-level grid file, which is described in [Hinr85], has a two-level directory in-
stead of the one-level directory of the regular grid file. The grid cells in the top
layer point to buckets containing new grid directories, not data buckets. The
grid directories at the second level point to the data buckets. This technique re-
duces the growth of the index structure, but according to [GG98] it does not
eliminate the problem.

The twin grid file, which is described in [HSW88], was designed to in-
crease storage utilization. It uses two grid files and assigns a new point to one
of them so that storage utilization is maximized. In a normal grid file, when a
bucket is split the two resulting buckets are only 50 % full. This leads to an av-
erage storage utilization of ln(2), which is 69 %. (This is normal for all data
structures which split the nodes in half when they are full, which is true for
most multidimensional data structures and many single-dimensional data
structures). The twin grid file reduces this problem. According to the article,
they manage a storage utilization close to 90 % with the twin grid file. It is,
however, somewhat slower than the regular grid file. (More accesses to the in-
dex to search for or insert points.)

2.3.1.4. BANG-file

The main problem with the grid file is that the index grows faster than the
data. One way to solve this problem is if the directory could contain the bucket
regions1 instead of the grid cells. The first attempt at doing this is the Interpo-
lation-based Grid-file. In this file, each bucket region is represented by a pair
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of numbers,(r, l), where r is the region-number and l is the granularity level.
Each granularity level is created by splitting each bucket region in the previous
level in half along one dimension. The region numbers are generated by add-
ing a 0 or 1 to the back1 of the number of the parent region.

The directory in the interpolation-
based grid file contains the number pairs of
all the bucket regions. This reduces the
problem of index growth in some cases, but
not all. The problem is that when a grid cell
is split in half, there is a risk that all the
points end up in one of the parts, which will
have to be split again. This leads to a poor
storage utilization and does not really solve
the index growth problem.

The BANG-file2 [Free87] solves this problem by allowing bucket regions
to overlap. Each time a point is inserted into the BANG-file, it is inserted into
the smallest region which contains it. In this manner, one can split off smaller
regions of a large bucket region. For example, in Figure 2.15, when the grey
point is inserted, a small part (one eighth) of the original bucket region is split
off. In this manner, the regions of space which are actually stored in a given
bucket are rectangular areas with smaller rectangles extracted from them. The
regions need not even be continuous.

1. A bucket region is the region which is stored in one disk bucket.
1. According to [Free87] the bit is added to the front. According to [GG98] it is added to

the back (as in Z-ordering). The numbering in [GG98] will be used here. Which of
these ways the bucket regions are numbered by has no effect on the effectiveness of
the Interpolation-based grid file or the BANG file.

2. Balanced And Nested Grid-file

Table 2.3 Characteristics of grid file types

type storage utilization index growth access time1

1. Disk accesses required for exact match if grid lines stored in memory.

ordinary medium(69 %) poor 2

twin good(90 %) poor 4

two-level medium(69 %) somewhat better 2-32

2. Two disk accesses required if top-level grid stored in memory, three otherwise.

0,1

2,2

6,3 7,3

Figure 2.14 Bucket regions with
numbering
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The directory for the BANG-file resembles the
B-tree in that it is a perfectly balanced tree with all the
leaves at the bottom level, and that each node occu-
pies one disk block. Each leaf corresponds to a bucket
region and contains the points themselves or refer-
ences to them. Each internal node in the “B-tree” con-
tains the longest possible prefix of the binary versions
of the region numbers of every leaf which is under-
neath it. The region numbers are generated in the same way as in the interpola-
tion-based grid file. The directory for the BANG-file in Figure 2.15 is shown in
Figure 2.16. The numbers in the nodes in Figure 2.16 are binary versions of the
numbers of the bucket regions in Figure 2.15. The ‘*’ sign means the empty bit
string.

2.3.1.5. KDB-tree

The KDB-tree [Rob81] was the first attempt to create a multidimensional
version of the B-tree. Like the B-tree, each node is split when it is full and the
parent node is updated with the location of the two new children. However, in
the multidimensional case one cannot separate between the nodes using a sim-
ple value. The solution used in the KDB-tree is to store an adaptive kd-tree in
each internal node, and each leaf in this kd-tree points to a child of this node.
When a node is split, its corresponding node in the kd-tree of the parent is also
split along the same line.

0,0

1,1

2,2

4,11

3,1

Figure 2.15 BANG-file

* 1

* 001 1 10 1011

Figure 2.16 Directory
of the BANG-file
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If an internal node must be split, all its children must be split along the
same line even if they are not full. This may cause nodes further down the tree
to be split unnecessarily, leading to a large index and a low storage utilization.

This can be clearly seen from Figure 2.17. In the tree structures, the large
boxes are the B-tree nodes and the small boxes are the kd-tree nodes. The ovals
are disk blocks. In this case, the insertion of a point causes a split in the B-tree
node which in the first figure contains the entire tree. To split this node, a new
root has to be added, and its kd-tree must contain two child nodes, which point
to the two new B-tree nodes. One of the split lines in the kd-tree of the original
node is then chosen in such a manner that each subnode of the new root con-
tains at least two subnodes in the B-tree (in this case disk blocks). The new root
then contains a kd-tree which is split along that line (Which is indicated in the
second figure by a thicker line). However, notice that node E is split by this
line, and therefore has to be split into nodes E1 and E2, even though it was not
full. As this can happen, the KDB-tree cannot guarantee any minimum storage
utilization.

Queries to this file can be answered simply by a traversal of the tree. This
is like traversing a B-tree, except that the internal kd-trees of the nodes also
have to be traversed.

a) KDB-tree before split b) KDB-tree after split

A B E

C D

A B C D E

A B E1

C D

F

E2

A B E1 C D F E2

Figure 2.17 Splitting a KDB-tree
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2.3.1.6. HB-tree

This data structure from [LS89] is based on the KDB-tree. In the KDB-tree,
each node is a rectangular area. In the hB-tree, the nodes are rectangular areas
with smaller rectangular areas extracted from them. Each internal node con-
tains an adaptive kd-tree which contains the references to the smaller regions
which the node consists of. One difference between the KDB-tree and the hB-
tree, is that more than one of the leaf nodes of this kd-tree can point to the same
child node in the B-tree. Because of this, the area covered by the child node is
not necessarily square. Because kd-trees contain representations of square ar-
eas, the kd-tree of the child node must contain a child covering the “hole” in
the area. This kd-tree node must contain a special value signifying that this B-
tree node does not cover this area.

Figure 2.18 shows an hB-tree in the same situation as the KDB-tree in Fig-
ure 2.17. Again, the borders in the new root are indicated by thicker lines. It is
clear that block E no longer needs to be split, so the hB-tree has a better storage
utilization than the KDB-tree in this case. The problem, however, is that in this
case the kd-tree in the B-tree root node is split by some of the same lines as the
kd-tree in the left B-tree child, which means that the same split lines are stored
more than once in the index1. This problem might be less pronounced for hB-

a) hB-tree before split. b) hB-tree after split.

A B E

C D

A B C D E A B C DE F

A B E

C D

F

Figure 2.18 Splitting an hB-tree
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trees which can have a larger number of kd-tree nodes inside their B-tree nodes
than the example tree. It also occurs only if a B-tree child is referred to by more
then one kd-tree child in its parent. According to [GG98], an experiment con-
ducted by the creators of the hB-tree showed that more than 95 % of the index
nodes of the hB-tree have only one reference to them.

One of the children in the kd-tree of the left child in the B-tree is a pointer
which simply says that this region is not covered by this node. In a more recent
variant of the hB-tree, the hBΠ-tree, this node would instead contain a reference
to the node which contains the region. This is shown by a dashed line in the fig-
ure.

2.3.1.7. Space-filling curves

A space-filling curve is a curve which is shaped in such a manner that it
passes through all the points in space. Each point in space can then be given a
number based on its position along this curve. In this manner one can impose a
total order on spatial objects. This allows the objects to be indexed using a tra-
ditional index method such as a B-tree. To be able to find approximate matches,
it would be best if the space-filling curve is such that points which are close in
space are also close along the curve.

The simplest space-filling curve is the scan-line curve. This curve moves
like the electron beam of a TV or monitor, that is, it passes from 0 to maximum
in the first row, and then in the second row, and so forth. The problem with this
curve is that many point that are close to each other in space are not close to
one another along this curve.

The two most popular curves are the Z-curve [OM84] and the Hilbert
curve, both of which are shown in the figure below. The simplest form of the
curves is represented in the small, middle figures. When one of the square
“points” is divided into four, the single corner in it is replaced by a copy of the
entire figure, as shown in the figures furthest down. The figures on the top
show the structure when all the four cells have been divided. The main differ-
ence between the Z-curve and the Hilbert curve is that the latter is often rotated
when a point is divided in four, whereas the Z-curve is always the same way.
This makes the value of a cell along the Z-curve very easy to calculate, it can be
calculated by interleaving the bits in the values of the X and Y-coordinates. The
Hilbert curve, on the other hand, requires a much more complicated formula.
The benefit of the Hilbert curve is that the likelihood that a point which is close

1. The kd-tree in the root is the same as the kd-tree part in the grey box in the left B-tree
child.
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in space is close on the curve is slightly higher for the Hilbert curve according
to [GG98].

2.3.2. Access methods for region data

Another problem with spatial data is that many objects have a spatial ex-
tent, that is, they are areas instead of points. In ordinary databases, even ones
with multiple keys, the keys have definite values. For an area object, the coordi-
nate key is a range of values rather than a single value. For this reason, ex-
tended areas must be handled differently from points when they are indexed.

Indexing areas by their centroids is too simple. One common query is the
spatial join, in which the user wants to check whether the members of two sets
of objects overlap one another. Because objects can be arbitrarily large or small,
an index based on the centroid alone will not give any benefit in this case, be-
cause the centroids of two overlapping objects may be arbitrarily far apart.

There are two classes of data structures which have been developed to in-
dex region data. The first is the R-tree, an adaptation of the B-tree with the pur-
pose of indexing extended areas. Numerous variants of the R-tree have been
developed, and the most important of them are mentioned. The second method
is to somehow transform an index for accessing point data into an index for ac-

a) Z-curve b) Hilbert curve

Figure 2.19 Space-filling curves
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cessing region data. Both these techniques have been fairly successful, and
there is no clear winner.

2.3.2.1. R-trees

The R-tree [Gutt84] is a
tree structure for representing
region data. It is based on the
B-tree [BM72]. An empty R-
tree contains only one node,
the root, which points to a
disk block. If more and more
objects are inserted into the
tree, the block will eventually
become full. When that hap-
pens, the block has to be split.
When a block is split, half the
objects are stored in one and the other half in the other block. There are several
different algorithms for selecting which objects go into which block, but there
are basically two criteria.

Each node in an R-tree is associated with a minimum bounding region.
An MBR is the smallest quadratic region which contains all the objects which
are stored in that node or in children of the node. All objects are stored in the
leaf nodes of the tree, the internal nodes only store pointers to their children.
Also, all the leaves are on the same level of the tree, the tree is perfectly bal-
anced. (The R-tree inherits these properties from the B-tree.) When splitting a
node, the objects may be allocated to the two new nodes according to two heu-
ristics. One can either minimize the total area covered by the MBRs of the two
new nodes or minimize the area in which the two new MBRs overlap. When a
node is split, the parent node is updated with entries for the two new nodes. If
this causes the parent node to become full, it is split in the same manner. If the
root node becomes full, it is split, and a new root is added on top of the two
new nodes.

The advantage of R-trees is that they can store regions with a spatial ex-
tent without resorting to transformations. It is also straightforward to search in
an R-tree. The problem with R-trees is that internal nodes may overlap, so that
the search procedure may have to traverse several branches of the tree in order
to find an object.

There are several variants of R-trees. The R+-tree prevents overlapping
internal nodes by splitting the objects along the split lines of the internal nodes.

Figure 2.20 R-tree
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This may cause the same object to be found in several leaf nodes of the tree. The
R*-tree [BKSS90] works much like the standard R-tree, but uses slightly differ-
ent algorithms for searching and node splitting, which improves the perform-
ance. The algorithm for assigning the objects to one of the two new nodes takes
several criteria into consideration rather than only the area criterion. These are:
minimize area, minimize overlap, minimize ratio of boundary to area. The last
criterion is there to try to prevent long, thin MBRs. The R*-tree also uses the
technique of forced reinsertion to create a better distribution of data in the
nodes. Each time a node becomes full, some of the entries in the node are re-
moved and reinserted into the tree. If the node is still full, it is split. The entries
to be reinserted are chosen based on the distance between the centroids of the
entries and the centroid of the node. According to [BKSS90] this technique in-
creases the average number of disk accesses for inserts by only 4 % and im-
proves search performance by 20 %. The R*-tree is said to be the fastest of the
R-trees in [GG98].

2.3.2.2. Transformation technique

The transformation technique is a method for storing and retrieving re-
gion data in point data structures. The main idea is to transform the MBR of a
region into a point with twice the number of dimensions of the original region.
This can be done by using the coordinates of two diagonally opposed points. If
the MBR goes from (x1, y1) to (x2, y2), the point representation could be (x1, y1,
x2, y2). this allows any data structure for storing points to store regions if it can
handle a high number of dimensions.

This works fine for exact queries, but there are some problems with other
kinds of searches, an intersection test for example. Because objects can be arbi-
trarily large, and the coordinate values of the endpoints therefore can be arbi-
trarily far apart. This may cause the search space to become infinite for query
regions which were finite in ordinary space. Another problem is that the data
distribution becomes uneven, as half of the data space is never used (Corre-
sponding to that x2 is smaller than x1 or y2 smaller than y1). An additional
problem is that queries are often much more difficult to express in transformed
space than in original space.

Another technique is to use the centroid and the distance to the edges
along the coordinate axes as coordinate values. Although this method is often
preferred to using diagonally opposite points, it solves none of the problems of
transformation.

Another way to transform a point data structure into a region data struc-
ture is to allow overlapping regions. The centroid of the MBR determines
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which region a new object is to be inserted in, and this region is then extended
to cover the new object entirely.

However, despite these problems, some of the point data structures per-
form almost as well as the R*-tree when the transformation technique is used
according to [GG98].

2.3.3. Access method summary

2.4. Automated generalization

Generalization is the problem of reducing the amount of information to
display on a map when producing maps on small scales from original data on
large scales. If for instance you wanted to make a map of Norway and had the
data collected for the 1:50000 series1 available, you could not plot all of that on
the map of Norway. The map would become completely unreadable because
there were so many things on it. Instead, you would have to choose what data
to use and how to represent them.

One way of querying a GIS would be to mark an area on the world map.
The GIS would then display that area at greater detail. The user might mark ar-
eas for enlargement several times before he/she got the area he/she wanted.

Table 2.4 Access methods

Access
method

Disk or
memory

based

hierarchical
or flat

point or
area

branch
factor

storage
utilization

Quad tree memory hierarchical varies 4 varies

Kd-tree memory hierarchical point 2 ok

Grid-file disk flat point N/A ok1

1. Twin grid file has good storage utilization

BANG-file disk hierarchical point2

2. Can be transformed into an area access method

high ok

KDB-tree disk hierarchical point high poor

hB-tree disk hierarchical pointb high ok

Z-ordering varies varies varies varies varies

R-tree disk hierarchical area high ok

1. The 1:50000 series is the most detailed series of maps which covers all of Norway.
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This would require that the GIS was able to perform generalization by itself,
that it could select the data to represent at each scale without the aid of hu-
mans.

There are several things that have been called “automated generaliza-
tion”. Here they will be divided into two categories, data reduction and infor-
mation reduction. It is the information reduction which really should be called
generalization. (Data reduction might be called compression.)

2.4.1. Data reduction

Data reduction is to reduce the amount of data that has to be displayed. If
for instance the terrain elevation is stored as a raster where each point is a
10x10 metre square, and the user wants to display the map on a scale in which
the points on the screen have a size of 20x20 metres, the computer has to calcu-
late the values of the points on the screen based on the points in the database as
quickly as possible. (A regular user does not want to wait for several minutes
before the map is displayed.)

Another use of data reduction is to minimize the amount of data that has
to be transmitted across a network. Lossless data compression is a good exam-
ple of pure data reduction, because all the information can be reconstructed
from the compressed data. The user will probably be sitting at a PC which re-
quests the geographic data from a server through the Internet, a slow, unrelia-
ble medium, especially if the PC is connected via a modem.

2.4.2. Information reduction

If a database includes information on all the roads of Norway, and the
user requests a map of the entire country, the database should not display all
the roads. If it did, the map would be only black lines with roads and names
that overlapped each other so much that they would be impossible to read.
Therefore, only the major roads should be displayed at that scale. The problem
is on which scales should which objects be represented and what form should
they be represented in? If the map should display a cluster of houses, should
these be represented by a symbol for each house or a single symbol for the en-
tire cluster? Another example would be the Norwegian coastline. If data reduc-
tion was the goal, reducing the number of control points with an algorithm
such as Douglas-Peucker [DP73] would be a solution. This algorithm tries to
represent the line as accurately as possible with fewer control points. Informa-
tion reduction, on the other hand, would be to eliminate less important bays
and fjords and only display the more important features.
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An example of this is shown in Figure 2.21b). The data reduction has re-
duced the number of control points while trying to keep the line as close to the
original as possible, which leads to a line with many sharp angles, which
would appear almost as cluttered as the original line at smaller scales. The in-
formation reduction, on the other hand, has removed the information on the
smaller bays and rather kept only the main feature, the fjord itself. This map,
Figure 2.21c), would appear much less cluttered on smaller scales than the two
others. The fjord in Figure 2.21c) is also wider than it is in Figure 2.21a). This is
to make it more apparent at small scales.

Scientists have tried to automate information reduction for a number of
years, but with relatively little success. Purely algorithmic solutions created
very poor quality maps. Rule-based systems, which have been successfully ap-
plied in medical diagnostics, also proved to be too limited for this problem.
This caused scientists to concentrate more on so-called amplified intelligence
rather than expert systems for some years according to [Wei95] and [Kel95].
Amplified intelligence is a method where the computer presents a solution to a
problem and a human operative then tells it whether it was good or bad, and
how it should have been solved. The computer then learns from its mistakes.
Case-based reasoning is the amplified intelligence approach which is most
promising according to [Wei95] and [Kel95]. The problem with this approach is
that it requires a user who is familiar with cartography. However, many GIS
products should be usable to an ordinary person with no such experience. For
this reason, scientists are now trying again to create a completely automated
generalization.

There are two types of data, object data and field data. Generalization of
these two types of data must use different methods. Most of the research so far

a) Original coastline b) Coastline with data
reduction

c) Coastline with informa-
tion reduction

Figure 2.21 Data and information reduction
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has been on the generalization of object data such as lines or areas. Of these,
line generalization is the area which is most well developed.

2.4.3. Generalization of object data

Object data in this context are points, lines and areas (not fields). These
features can represent any kind of geographical phenomenon.

Generalization operators for object data (From [MS92])

• Simplification: Reducing the number of points in a line. This operator
reduces the number of points that a line goes through. (A line is made up
of a number of points with straight line segments between them.) A good
example of a simplification algorithm is Douglas-Peucker from [DP73].

• Smoothing: Makes the line smoother by moving the points it goes
through.

• Aggregation: Replaces a group of points or lines by a single point or line
representing the group.

• Amalgamation: Unites several area features into a single larger area.

• Merge: If a rail station has 10 tracks, and the scale has become so small
that these begin to overlap in the representation, pairs of tracks can be
merged so only five tracks need to be shown. This reduces the amount of
information, but shows that there are several parallel tracks.

• Collapse: Turns an area feature into a line feature or point feature. A river
is an area on a large scale, but on a smaller scale the width of the river
becomes so small that it cannot be seen. Then it is better to draw the river
as a visible line feature if the river is important to the intended user of the
map. A house is an area on a very large scale, but on a smaller scale the
area becomes so small it is better to represent the house with a symbol,
which is usually a point feature.

• Refinement: If you have a map depicting a river basin with all the tribu-
taries, it can become cluttered on a small scale because there are so many
small rivers and brooks on the map. Refinement is to remove the smaller
brooks and only keep the larger or more significant rivers.

• Enhancement: Since a bridge is the same width as the road, it must be rep-
resented by a special symbol on smaller scales to be visible. Another
example would be roads of differing importance. Different roads are
often shown as lines with different widths to mark importance. These
lines are often a lot wider than the road itself would be if it was repre-
sented on the map’s scale.
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• Displacement: If a road is next to a river, these two features could come so
close that they are drawn on top of each other on a small-scale map. The
solution to this is to place them further apart so that both are visible.

• Classification: Representing similar features with a single symbol type to
reduce the number of different symbols on the map.

• Symbolization: Under collapse, changing a house from an area to a point
is mentioned. That change also involves symbolization. The house, which
was an area with a given shape, is replaced with a symbol which indicates
that there is a house here.

[SW99] describes a framework for generalizing graphs using the opera-
tions of amalgamation and selection. In this paper, the definition of the amalga-
mation operation is more general than that in [MS92]. Amalgamation is
defined in [SW99] as joining several features (regardless of type) that are indis-
tinguishable at the smaller scale into a single feature. For regions, this is the
same as the amalgamation definition from [MS92], but this new definition also
applies to line and point features.

2.4.4. Generalization of field data

2.4.4.1. Generalization of raster data

[MS92] uses the following operators for raster generalization, which are
largely drawn from image processing operations:

• Structural generalization: There are several variants of this. The simplest
is resolution reduction. this can either be done by calculating the averages
of the points or by resampling. Another variant is vector to raster conver-
sion. You can for example transform a lake with numerous islands to a
raster, use a generalization operator on the raster and transform it back to
vector form. This can be used for amalgamation.

• Numerical generalization: This consists of using various filters1 on the
raster to reduce the amount of information in it or to enhance specific fea-
tures. A low-pass filter can make the raster more smooth, while a high-
pass filter will enhance areas of rapid change.

• Numerical categorization (Image classification): Reduces the amount of
information by assigning categories to points (instead of individual val-

1. A filter in this context is an operator which is applied to all the pixels in the image. A
typical low-pass, or smoothing filter calculates a weighted average of the point and
all its neighbours and assigns this value as the new value of the point. In a high-pass
filter the value in the point itself will have a high positive weight, while the neigh-
bours will have small negative weights.
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ues). Example: Many small-scale maps do not show the terrain elevation
in individual points, but rather divide the range of elevations into broad
categories and show which category each point belongs to by giving it a
particular colour.

• Categorical generalization: Reducing the number of categories.

2.4.4.2. Generalization of TINs

Triangular irregular networks are more difficult to generalize than
rasters. The “dynamic” algorithms for building TINs build them from the top
down, that is, from a single triangle covering the entire area, which is refined
until it reaches the desired resolution. This refinement works by calculating the
difference between the interpolated value of a point which has not yet been in-
serted and the interpolated value in the existing TIN for that point. It then in-
serts the point with maximum difference and modifies the existing TIN so that
that point is included (See Section 2.2.3.4, “Modelling fields: Triangular Irregu-
lar Networks,” on page 17). This process continues until the difference between
the interpolated value and the actual value is smaller than a given tolerance.
This means that the entire process for creating a TIN must be run each time one
wants to generalize it to a new resolution unless one already have stored one
for a coarser resolution, in which case the TIN with coarser resolution can work
as a start. One solution would be to store several TINs with different tolerances
and switch between them. The problem with this is that it causes abrupt
changes in resolution instead of gradual changes.

[FP95] describes a way to build a hierarchical TIN where each triangle is
subdivided into smaller triangles. The problem is that to create a set of sub-
triangles that is reasonably good (Where the triangles are not too enlongated),
the lines of the original triangle have to be split, and the likelihood that some of
the points used to create the smaller triangles lie exactly on the line is rather
small. How they plan to solve this problem was not described in the article,
which concentrated on the concept.

2.4.5. When to generalize

One of the main problems in generalization is to determine which of these
operators to use and which parameters should be used with them. [MS92] de-
scribes some measures which can be used to determine when to generalize.
However, several of these measures are subjective, and much of that book
seems to assume that a human operator is involved in the generalization proc-
ess. However, some of the spatial measurements can be calculated by a compu-
ter.
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[MS92] uses the following measures:

Geometric conditions

• Congestion: Too many geographical features are represented in a limited
area.

• Coalescence: Two or more features are so close together that they appear
as a single feature on the output device.

• Conflict: Logical error. Example: If a river has been removed by generali-
zation, there will be a bridge symbol on the road that crosses the river, but
no corresponding river on the map.

• Complication:

• Inconsistency: Generalization operator is applied in an inconsistent man-
ner across the map. This may or may not be desirable. (Buildings can be
represented as individual building symbols in rural areas, and as “urban
areas” where there are many buildings close together.)

• Imperceptibility: An area feature has grown so small that it cannot be
seen or can be seen only with great difficulty.

Spatial measures:

• Density measures: How many features are there per unit of area?

• Distribution measures: Are the features uniformly distributed, randomly
distributed or clustered around a few points?

• Length and sinuosity measures: How long is the line feature, and how
much does it curve. Is it almost straight, or does it go through a lot of
twists and turns. Are these twists and turns so small that they should be
generalized away?

• Shape measures: There are some measures of shape. The simplest of these
is the ratio between the area of the object and the length of its circumfer-
ence. This can be used as an indication of how enlongated the object is.
(The object with the largest ratio is the circle)

• Distance measures: How far is a given object from its nearest neighbour?

• Gestalt measures: Perceptual characteristics of a feature or group of fea-
tures. No good measures have been developed.

• Abstract measures: Examples of abstract measures: Complexity, homoge-
neity, symmetry, repetition and recurrence.
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2.4.6. Generalization in commercial products

There do not seem to be much capability for generalization in commercial
spatial databases, at least their web-sides do not mention it. They can be made
to show different maps on different scales, but these maps must be manually
generalized. Commercial databases also support simple zooming, but they do
not dynamically generalize the data. (If you zoom in, the map will be displayed
on a larger scale, but it will not show more features than at the smaller scales. It
is like looking at a paper map through a magnifying glass). If they store differ-
ent maps for different scales, they can show the map which is the closest in
scale to the scale the user wants.

One example of such a product is the on-line map service at
www.mapquest.com. This service seems to have some set levels of generaliza-
tion. At in-between scales it zooms one of the preset maps. This effect is seen by
the fact that at certain scales a lot of new features appear on the map compared
to a slightly smaller scale, while at others there is no change in the number of
features compared to the next smaller scale.

2.5. Spatiotemporal data

Spatiotemporal data is a research field which has emerged in the last few
years. It is a union between earlier research in spatial and temporal data, which
used to be completely separate fields. To understand spatiotemporal data, one
first needs an introduction to purely temporal data.

2.5.1. Temporal data

Temporal databases usually store several versions of the same data item
which were valid at different times. These times are usually stored as intervals,
so that a data item was valid from time 1 to time 2. If it is still valid, time 2 is
“now”.

There are two different times that can be stored in databases: Transaction
time and valid time. Databases which support transaction time store the time
when all transactions were performed and when their results ceased to be valid
in the database. Databases which support valid time store the time when the
results of a transaction became/becomes true in the real world and when it
stops being true. For example if Lisa the accountant was hired on 5 January
1999 on a two-year contract, but the paperwork was delayed so that it was reg-
istered in the database on 19 January, then valid time would be from 5 January
1999 to 5 January 2001, and transaction time would be from 19 January until
now. This situation is shown in Figure 2.22a. In this manner future events can
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be stored in the database if they are known in advance. This data can also be
changed. If on 10 September 2000 the firm decided to extend Lisa’s contract for
a year, they could create a new transaction with transaction time 10 September
2000 which extends Lisa’s employment to 5 January 2002. The old transaction
(giving the final date as 5 January 2001) would not be erased, but would get a
new final transaction time as 10 September 2000. This new situation is shown in
Figure 2.22b. A bitemporal database will give not only a history of the domain
the database models, but also a history of the database itself.

There are several types of temporal databases:

• Snapshot database: This is the traditional database, which stores the data
as they are now, and discards earlier states. Another type of snapshot
database is one which stores “snapshots” of the domain at various dis-
tinct times.

• Historical database: This database supports valid time.

• Bitemporal database: This database support both transaction time and
valid time.

There has been some research on indexing bitemporal data. One pro-
posed structure is a variant of the two-dimensional R-tree with transaction
time and valid time as the two dimensions. This variant, which is described in
[BJSS98], allows two kinds of new nodes. The first kind of node is the node in
which one of the dimensions has the value “now”, that is, it is continually ex-
panded as time passes, since the objects within expand. (For each new day, it is
known that they were valid for one more day.) The second class is the “stair-
case” shaped regions. These arise when both transaction time and valid time is
“until now”. Thus, each day one knows that both the transaction and its effects
were valid for another day.
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Figure 2.22 Bitemporal graphs

a) Before change b) After change
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2.5.2. Combining space and time

In the last few years, scientists have been writing about databases which
can store both spatial and temporal information on the same objects. This is im-
portant in applications such as meteorology, where the changes are of great in-
terest. A survey of this work can be found in [AR99]

There are two main types of queries a user might want to ask in a spatio-
temporal database. One is a snapshot view of the database or parts of it at a
given point in time. The other is how an object or group of objects has changed
over time. This would have to be displayed as a kind of “movie” in which the
events are displayed in sequence. If this “movie” is supposed to run very fast
relative to the number of events in the database, temporal generalization might
be required.

According to [Peu99], there are four types of events:

• Continuous: the object is slowly, but steadily changing in a certain way.
(Example: deserts are increasing in size)

• Majorative: This event happens most of the time. (Example: The sun
shines in Sahara)

• Sporadic: This event happens some times. (Example: El Niño)

• Unique: This event only happens once (Example: The opening of the
channel tunnel)

The same article lists a number of data models which have been proposed
by researchers in spatiotemporal databases. None of these have been imple-
mented in a commercial system yet. No spatiotemporal commercial systems
exist although some temporal extensions exist. Oracle, for instance, has a tem-
poral extension to their database.

• Snapshot model: In this model “snapshots” of the world at different times
are stored in the database as layers. This method is rather primitive, but is
good when the data is updated relatively infrequently. The maps in the
1:50000 series from Statens Kartverk in Norway are updated once every
20 years, and would therefore be suited to this form of storage. The prob-
lem with this approach is that a lot of data is stored redundantly. If a fea-
ture has not changed in the last 20 years, it will still be stored in both
layers.

• Temporal grid: This is a variant of the raster in which a linked list of ver-
sions are stored in each cell instead of a single value. This list contains the
time when the change occurred, so that the correct value can be chosen.
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• Amendment vectors: When a line changes, for instance when a river
changes its course, a special amendment vector is stored along with that
line indicating its new course. This line also stores the time in which the
change became valid.

• Object oriented: Object may have links to older versions of themselves, or
the object itself might store various versions of itself.

• Temporal vector: This type of database stores an “original state” and a
time vector. This vector contains all the events which have occurred in the
database and what they changed. This representation is good for answer-
ing change-based queries, but is not good at answering queries about the
current state.

2.6. Uncertainty in spatiotemporal data

This section describes several different methods for modelling uncer-
tainty and vagueness in spatial and spatiotemporal data.

In [DMSW01], an ontology of different kinds of uncertainty is defined.
The hierarchy of forms of uncertainty, or imperfection, is shown in Figure 2.23.
Imperfection is considered to be the general form of uncertainty. Error is when
measurements do not reflect reality. Imprecision is when measurements are
lacking in specificity or are incomplete. [DMSW01] considers vagueness1, to be
a subcategory of imprecision. The basic goal of this thesis is representing un-
certainty in the position or extent of an object, regardless of the source of that
uncertainty. In the rest of this thesis, uncertainty therefore means either meas-
urement error or imprecision due to incomplete knowledge, but does not cover
vagueness. This definition of uncertainty is shown by the dashed box in Figure
2.23.

1. An example of a vague statement would be that Bergen is in the south of Norway,
because the south of Norway is not clearly defined.

Figure 2.23 Hierarchy of the types of imperfection

Error Imprecision

Vagueness

Imperfection

Uncertainty
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2.6.1. Raster models

One approach to modelling uncertainty is to use a raster. In such a model,
any spatial object is represented by a raster where each cell contains the proba-
bility that the cell is a member of the object. Examples of such models are pre-
sented in [Alt94] and [Low94]. These models represent uncertain regions.
Figure 2.24 shows an uncertain region represented in the model from [Alt94].
The advantage of a raster model is that it can store probabilities explicitly. You
do not have to compute them when you need them. Raster models can also
store the evaluations of an arbitrarily complex probability function. The disad-
vantage is that raster models require much more space than vector models.

[HG95] discusses how to handle errors in digital elevation maps. They
use the example that they need to know which parts of the land will be flooded
by a new dam. The dam will be 350m above sea level, so all the land behind it
that is lower than that will be flooded. However, the digital elevation data con-
tains errors. According to [HG95], the best way to handle this situation is to
start with a height raster and for each raster cell generate the probability that it
is below 350m using a normal probability distribution. This can then be visual-
ized with a gray-scale or colour-scale map of the region in which only the re-
gion in which there is uncertainty of 2.5 % or greater is shown. [HG95] also
describes epsilon bands, which in this example would be to generate the 340m
and 360m contour and say that the land between them will maybe be flooded.

[CMB97] and [CM99a] describes a way of extracting fuzzy objects from
observations. In [CMB97], methods for assigning raster cells to various objects
are described. These methods use a combination of fuzzy sets and probability
theory. The model that they describe is a raster model because fuzzy member-
ship values are stored in each cell. However, they also group the cells into ob-

Figure 2.24 Raster model of an uncertain region
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jects according to different criteria. A Crisp-Fuzzy (CF) object is an object with
a crisp border, but where the interior of the object may be fuzzy. When generat-
ing objects from field data, each raster cell is assigned to the object in which it
has the largest fuzzy membership. A Fuzzy-Crisp (FC) object is an object with a
fuzzy boundary but a crisp interior. FC objects may overlap while CF objects
may not. Figure 2.25 illustrates these two types of objects. CF objects cannot
overlap but may have no membership values of 1.0. Therefore each raster cell is
assigned to one and only one object when making CF objects. FC objects must
have some value which is 1.0 (the crisp interior), but may overlap each other.
An object that overlaps other objects and has no 1.0 fuzzy membership values
is a FF (Fuzzy-Fuzzy) object, while a normal crisp object is a CC (Crisp-Crisp)
object.

[CM99b] describes a temporal extension to this model. This temporal ex-
tension is essentially a snapshot model from Section 2.5.2 in which each snap-
shot uses the model from [CM99a]. In addition, corresponding objects in
different snapshots are identified and labelled as different versions of the same
object. Fuzzy overlap is used as the criterion for deciding which objects in one
snapshot corresponds to which objects in the next snapshot.

[Wor98] uses rough sets to define the outer and inner boundaries of possi-
bly imprecise spatial objects. [Wor98] defines resolution objects that are parti-
tions on the underlying space, and shows how to convert objects from one
resolution to another. This process may introduce imprecision even if the origi-
nal representation was precise, because the object may only partially overlap
one of the new partition parts.

2.6.2. Abstract models using broad boundaries

Several abstract models for uncertain regions employing broad bounda-
ries have been proposed. Abstract in this context means that they base them-
selves on point set theory rather than a model that can be represented in a
computer. A broad boundary is a boundary that has an area and is not just a
line. A region with a broad boundary is often represented as two regions. An
outer region indicates where the region might possibly be, while an inner re-
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1
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1
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Fuzzy-CrispCrisp-Fuzzy

Figure 2.25 CF and FC objects
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gion marks where the region certainly is. An uncertain region with a broad
boundary is shown in Figure 2.26. The grey area in this figure is the broad
boundary.

Two examples of such models are the broad boundary model from [CF96]
and the egg-yolk model from [CG96]. These models are used to deduce which
topological relationships that might possibly exist between regions with broad
boundaries. [CF96] describes 44 different relationships, and [CG96] describes
46 different relationships. For comparison, there are only nine such relation-
ships for regions without uncertainty.

[MC89] describes a way to model uncertainty in the location of the
boundary of a region that uses probabilistic error bands. This means that on
each side of the estimated border there is an area with a certain width in which
the border can be. Additionally, the probability that a point p is inside the area
is a function of the distance from the estimated border to p.

[ES97] describes another model of this type for uncertain regions. This
model defines a vague region as two regions, a kernel region and a boundary
region. The boundary region represents the broad boundary. [ES97] defines the
meaning of normal set operations like Union and Intersection for regions with
broad boundaries. The paper uses a three-valued logic1 for predicates.

2.6.3. Abstract models using fuzzy sets

Some abstract models for uncertainty in spatial data employing fuzzy sets
have also been proposed. In Chapter 8 of [Ren99], a model for vague spatio-
temporal regions using fuzzy sets is proposed. This model basically states that
a fuzzy spatiotemporal region is a function from space and time to [0,1]. It also
introduces an operation which can check how much the region has grown or

1. The values used are 1 (True), ? (Maybe) and 0 (False).

Figure 2.26 Region with broad boundary
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shrunk between two time instants. An example of such a fuzzy region is given
in Figure 2.27. In this figure, darker colours indicate higher fuzzy membership
values.

[WH96] describes a model for fuzzy boundaries between regions in
which the fuzzy membership function indicates how sharp the boundary is. A
membership of 1.0 indicates a crisp boundary. [WH96] also describes several
ways of computing this membership function including taking the derivative
of the characteristic under consideration and looking at how different the adja-
cent regions are in that characteristic.

[Sch99] contains a model for vague points, lines and regions using fuzzy
sets. This model defines a region as a function over the plane. A vague line is
defined as a function over a crisp line that returns a number between 0 and 1.
This number represents the fuzzy membership of that point in the line. These
vague lines have a crisp1 position in space. [Sch99] proposes two models for
vague points: one of which has a vague point as a point with a fuzzy member-
ship value, and in the second, the vague point has a vague position. A vague
position is modelled as a function over the plane that has the value of 1.0 where
the point is expected to be and lower values for other points.

2.6.4. Discrete vector models

Vector models using broad boundaries also exist. [Sch96] proposes such a
model for uncertain regions. This model is based on the ROSE algebra pre-
sented in [GS95]. Like the abstract models with broad boundaries, an uncertain
region in this model consists of two crisp regions, one inside the other. An ex-
ample of such an uncertain region is given in Figure 2.28.

An example of a vector model for uncertainty in moving point data is pre-
sented in [PJ99]. That paper studies the uncertainty that arises from the sam-

1. As opposed to uncertain.

Figure 2.27 Fuzzy region



2.6. UNCERTAINTY IN SPATIOTEMPORAL DATA 53

pling rate itself. If an object could possibly move as far as 150m between two
sample times, and two actual samples show a movement of 100m, the object
could have been anywhere in an elliptical area between the two samples. [PJ99]
describes a model in which the trajectory of the moving point is stored as a set
of line segments along with the information needed to reconstruct the elliptical
area in which the point could have been in between.

2.6.5. Temporal uncertainty

Uncertainty has also been studied in the temporal database community.
One of these efforts is described in [DS98]. This paper contains a description of
how uncertainty may be modelled in a temporal database, as well as the exten-
sions to SQL that would be necessary. The model employs discrete time, that is
the time line is divided into units called chronons. These chronons are the
smallest units of time that the database will store. Probability distributions are
stored as probability mass functions which give the probability that a particu-
lar event happened at particular chronons. Figure 2.29 shows an uncertain time
instant in this model. The grey bars represent one chronon, and their height
give the probability that the time instant is “located” in that particular chronon.

[DS98] also presents a way to store the results of probability mass func-
tions, which can be used for uncertain time instants spanning different num-
bers of chronons.

Figure 2.28 Discrete vector model of an uncertain region

t

Probability mass

Figure 2.29 Uncertain time instant
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2.6.6. Uncertainty in future projections

Some researchers have also studied the uncertainty that results from at-
tempting to project current knowledge to future situations or to project past
knowledge to the current situation. One example is an airline control tower
which gets to know the position, speed and direction of travel of an aeroplane
at certain times. Then the computers in the control tower must project the cur-
rently known positions and speeds of the aeroplanes into the future to detect
possible collisions.

[WXCJ98] describes a way to handle the uncertainty that occurs in such
cases. In their model, an object is expected to send an update on its position,
speed and direction of travel when the difference between the actual position
and the interpolated position in the database reaches a certain limit. Figure 2.30
shows a moving point with registered locations at various time instants. There
has been no update since t3. Therefore, the current position of the point is un-
certain. It can be anywhere in the grey area. The dashed line represents the ex-
pected path of the point.

t0

t1

t2

t3

now

Figure 2.30 Uncertainty in future projections
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Chapter 3

An Abstract Model for
Uncertainty in Spatiotemporal

Data

Due to lack of accurate measurements, or rapid changes in time, spatial
and spatiotemporal data are often uncertain. This chapter presents a new ab-
stract model for uncertain spatial and spatiotemporal information. The model
is based on the principle that one knows that the uncertain object, regardless of
type, must be within a certain area. This is to the authors’ knowledge the first
attempt to create a general type system for uncertainty with spatial data. Indi-
vidual uncertain types have been modelled before, but no previous work has
studied points, lines and regions and used the same principles to model all
three. It also seems to be the first model to handle temporal as well as spatial
uncertainty. This chapter contains mathematical definitions of uncertain
points, lines, regions and temporal versions of these. The chapter also contains
definitions of relevant operations on these types. These operations are also
evaluated for their usefulness with regard to uncertain data.

3.1. Introduction

Databases which store information about geographic objects are becom-
ing increasingly common in modern society. However, many forms of spatial
data cannot be measured exactly, or they may vary with time in such a manner
that one cannot know exactly where the spatial object is at any given time. Ex-
amples of the former are soil types or geological formations, which may change
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abruptly without any sign of this on the surface. This makes it difficult to meas-
ure them exactly. An example of the latter is given below:

Example 1: A lake is used as a reservoir for a hydroelectric power
plant. Because of differences in energy demand and precipitation in
the area, the water level, and thus the extent of the lake may vary
considerably. There may also be small islands that are submerged
when the water level is high.

Although one could store the exact size of the lake at any time by taking
measurements frequently enough, this would be costly both in terms of man-
power (taking the measurements) and space. A better solution might be to
store the lake in a manner that indicates that it is uncertain. This uncertainty in-
cludes both position and the exact shape of the object.

Models for static uncertain regions exist already, and are well docu-
mented. See Section 3.2 for examples. However, other types of spatial data may
also be uncertain, and the uncertainty may vary in time. There may also be un-
certainty in the timing of events. Let us consider two further examples to illus-
trate this:

Example 2: If one is monitoring an animal with a radio transmitter,
and the animal wanders outside the coverage of the radio receivers,
one probably only has a vague idea where the animal is. One might
only know that it is within a certain area.

Example 3: A new species of animal is observed in an area. One then
knows that this species was there at that time, and one might know
that it was not there five years ago, but one does not know when in
this interval the species first appeared.

To the authors’ knowledge, no general type system for spatial or spatio-
temporal uncertainty exists. Although there are some definitions of individual
types, the authors know of no general framework for all the types.

It is common to distinguish between two types of spatial indeterminacy:
vagueness and uncertainty. Vagueness is uncertainty in classification. Asked if
a particular person is tall or not, different people will answer both yes and no.
One example of this from geographical data is the fact that geographic features
may change gradually rather than abruptly. An example of this is an animal
habitat, which may contain a core where the animals are frequently found and
a large region outside this where individual animals occasionally may be
found. Uncertainty, on the other hand, is the uncertainty in position or shape
mentioned earlier. This thesis will just consider uncertainty.
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In this chapter, we will attempt to create a set of data types and opera-
tions for uncertain data, building on earlier work in spatiotemporal databases
and models for vague and uncertain data. Three types of uncertainty will be
studied: positional uncertainty, shape uncertainty and existence uncertainty.
Positional uncertainty is when one does not quite know where an object is, ei-
ther in space or in time. Shape uncertainty is when one does not know the exact
shape of the object. Existence uncertainty is when one does not know whether
an object exists or not.

3.2. Related work

There are several different types of models for spatial data. For spatiotem-
poral data, [EGSV98] describes two modelling levels, abstract and discrete. Dis-
crete models for spatiotemporal data can be directly implemented and are
based on discrete representations such as vector or raster models. Abstract
models are higher-level and usually model spatiotemporal data with point
sets. In many abstract models, such as the one described in [GBE+00], lines and
regions are modelled as infinite point sets in the Euclidean plane. This makes
the model simpler, and may provide ideas for query operation designs that
might be missed if one immediately went to the discrete level.

Abstract models also usually contain some rules to ensure that it is possi-
ble to store the data, although discrete models contain a lot more such rules.
Three discrete versions of this abstract model are presented in chapter 4.

One early model for uncertain points and lines is presented in [Dut92]. In
this model, a point is represented as a central point with a circular deviation
and a Gaussian distribution function over this area. A line is represented as a
series of such points. The line segments between the points are represented by
the union of the straight line segments going between all possible positions of
the two points. The paper then shows that such a line will look like a knotted
rope, as the greatest variance is in the points themselves, and the least variance
is in the centre of the lines between the points.

The egg-yolk model described in [CG96] models an uncertain region with
only one face as two regions, one inside the other. The inner region is referred
to as the ‘yolk’ and the outer region as the ‘white’ in the egg. This representa-
tion is then used to find a lot of different topological relations between uncer-
tain regions, each consisting of only one component. A very similar model is
described in [CF96], which uses the term “broad boundary” to describe the
‘white’ in the egg. Most of the operations in this article are the same as in
[CG96].
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One problem with these types of models is that they cannot model certain
kinds of uncertainty. For example, if there is a lake with a dam, the water level
in this lake might vary significantly, thereby producing uncertainty as to the
size of the lake. Such a lake may also have low islands which are submerged if
the water level is high enough. Such uncertain holes cannot be modelled by
these models.

Models based on fuzzy sets have been frequently used to model vague re-
gions. Fuzzy sets [Zad65] are sets in which the membership of any individual
point in the set is not either yes or no, but rather a number between 0 and 1.
Many of these models, such as the discrete models presented in [LAB96] and
[Low94]1, use rasters to represent the fuzzy sets. The models described in
[Sch99] and [ES97] represent another type of fuzzy set model, because these,
like the abstract models for crisp2 objects, use infinite point sets. The most com-
prehensive model for vague data using fuzzy sets is the one presented in
[Sch99], which models all the standard spatial types (points, lines and regions)
using fuzzy sets. Although these fuzzy models cannot be used as they are to
model positional uncertainty, some of the ideas from them may be adopted.

Another possible model for uncertain regions, regardless of the type of
uncertainty, is the vector-based discrete model presented in [Sch96]. This
model bases itself on two boundaries, like the egg-yolk models. However, un-
like the egg-yolk approach, it can also model holes and multicomponent re-
gions.

Uncertainty has also been studied in the temporal database community.
[DS98] describes a model and an extension to SQL for handling temporal un-
certainty. They use a probability function to indicate the likelihood that the
event occurred at a given time unit.

There has been an effort to create a comprehensive type system for differ-
ent kinds of spatial databases. [GBE+00] describes such a type system for spati-
otemporal databases. [Sch99] describes a similar kind of model for vague
spatial data.

3.3. Basis for the new model

The new model presented in this chapter takes ideas from several of the
models described earlier. The model in [Dut92] is adequate for modelling digi-
tization error, but not adequate for some other applications. One example of

1. [Low94] models indeterminacy, regardless of type, with fuzzy sets.
2. Crisp: Usual meaning is the opposite of vague.
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this is Example 2 from the introduction. This example cannot be modelled by
the one in [Dut92] because the region may have an arbitrary shape. However,
the concept that the point is known to be located within a region and has a cer-
tain probability distribution can be used in the new model. Another example is
that the approach suggested in [Dut92] cannot model uncertainty about the
length of a line. As with points, the concept of a line with a probability distribu-
tion function is useful for our work.

[Sch99] describes an abstract model for vague spatial data. The region
model in that paper may be used as a basis for a model for uncertain regions.
[Sch99] models a vague region as a fuzzy set where places which are certainly
members of the region have values of 1 and regions which are only partially
members have values between 0 and 1. In the same way, an uncertain region
may be modelled as a probability function where points which are certainly
members have a value of 1 and points for which membership is uncertain have
values between 0 and 1.

Schneider’s model as given in [Sch99] for a vague line or vague point,
however, is not so useful for uncertain data. A vague line is a line with a crisp
position but uncertain membership. In Schneider’s model, this uncertain mem-
bership is indicated by a function which gives values between 0 and 1 for each
member of the crisp line. An uncertain line has uncertainty about position as
well, which means that a different type of model must be used. However, an
uncertain line may also have uncertainty about whether it exists or not. This ex-
istence uncertainty may be modelled in the same way as vagueness. The differ-
ence between vague and uncertain points is the same as for lines.

An important difference between our new model and Schneider’s is that
his model uses somewhat different mathematics. While Schneider uses fuzzy
sets, our new model uses probability theory. This is both because uncertainty is
best modelled by probabilities, and because the probabilities for uncertain
points and lines must be modelled by probability density functions. The au-
thors do not know of a similar concept in fuzzy set theory.

[GBE+00] describes a complete model for crisp spatiotemporal data. That
model is also a basis for some of this chapter. In particular, many of the opera-
tions described come from [GBE+00]. Also, some of the ideas for transforming
a spatial model into a spatiotemporal model are reused. For operations, this
chapter describes how useful that model’s operations will be in the uncertain
case, and whether it can be used in new ways or on new types of data. How-
ever, the chapter also describes new operations which are not from [GBE+00].
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Some of the types from [GBE+00] are also used as building blocks for the
types presented here. Therefore, a brief description of these types is given now.
The basic type for points is Apoints, which is a finite set of points. The type for a
single point is Apoint. A line in [GBE+00] (of type Aline) is defined as a set of
curves forming a graph. A curve is defined by a function from a variable t,
which is between 0 and 1, to the X-Y plane. Curves cannot intersect with them-
selves. The carrier set of this type is called Acurve.A region [GBE+00] is an infi-
nite set of points in the plane with the condition that there may be no singleton
points or lines. That is, the region must be a valid result of a regularized set op-
eration. A region may consist of a finite set of disjoint components, or faces.
These again can have a finite number of holes. The carrier set of faces is called
Aface, while the carrier set of regions is Aregion.

3.4. Data types for uncertain spatial information

This section describes a set of data types for modelling uncertain spatial
information. The first subsection will describe how to model the basic da-
tatypes such as numbers. The other subsections will describe uncertain points,
lines and regions. All the types will be defined by their carrier sets.

In the following descriptions, the word “crisp” will be used as the oppo-
site of uncertain.

To define the data types that follow, the operation support is needed. This
operation comes from fuzzy set theory, but has a slightly wider application
here. In this thesis, support is defined as follows for any function :

The z in this formula is a member of whatever type or set of types the
function f accepts as input values. This means that support is defined for all un-
certain types, whether they are spatial or not. A more complete definition and
discussion of this operation can be found in Section 3.6.1.3.

Table 3.1 Carrier sets for the data types from [GBE+00]

Individual Set

Apoint Apoints

Acurve Aline

Aface Aregion

f:z ℜ→

Support f( ) z f z( ) 0>{ }≡
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All the uncertain data types defined in this thesis rely on probabilities or
probability density functions. The properties of these are defined by the follow-
ing functions:

• Probability Density:

• Spatial Probability Density:

• Probability Function:

• Spatial Probability Function:

3.4.1. Base types

An uncertain number can easily be modelled by a probability distribution
function. For a real number, this function would have to be defined as a proba-
bility density function, whereas for integers, it might be just a collection of
probabilities for the number having particular values.

Definition 1: An uncertain number is defined as follows.

PieceCont(F) is true if the function F is piecewise continuous. DiracDelta(F)
is true if F is a dirac delta function.

In this chapter, both uncertain real numbers and uncertain time instants
are modelled with the type. This simplifies the definitions of opera-
tions which are applicable to both these types.

Many queries in spatial databases return Boolean values for data without
uncertainty. Because a single Boolean value cannot indicate uncertainty, differ-
ent ways of answering these queries must be found. The simplest alternative is
to introduce a third “Boolean” value, Maybe, which indicates that the answer is
not known. This is described in [ES97]. However, many times a better ap-
proach is to return the probability of the answer being true.

Both of these types of uncertain Boolean values will be used in different
cases. If it is possible and meaningful to compute the probability of the answer

ProbDens P( ) x:P x( ) 0≥∀( ) P x( )
x∫ 1≤∧≡

SProbDens P( ) x y:P x y,( ) 0≥∀∀( ) P x y,( ) 1≤
y∫x∫∧≡

ProbFunc P( ) x: P x( ) 0≥ P x( ) 1≤∧( )∀≡

SProbFunc P( ) x y: P x y,( ) 0≥ P x y,( ) 1≤∧( )∀∀≡

AUNumber NP x( ) ProbDens NP( )
PieceCont NP( ) Support NP( ) ARange number( )∈∧( )

DiracDelta NP( ) Support NP( ) Anumber∈∧( )
∨(

)

∧{

}

≡

AUNumber
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being true, then that probability will be returned. If this is not possible or not
meaningful, the Maybe value will be used to indicate uncertainty.

These two forms of Boolean values are treated as two different types in
this thesis. The uncertain Boolean is the version with three values, and the
other is called a probability. A third type which is useful for uncertain data is a
type which indicates to which degree a statement is true. Some operations may
return a degree of truthfulness which cannot be interpreted as a probability.

3.4.2. Uncertain points

An uncertain point is a point for which an exact position is not known.
However, one usually knows that the point is within a certain area. One may
also know in which parts of this area the point is most likely to be. An uncer-
tain point is therefore defined as a probability density function P(x, y) on the
plane. The support of this function is the area in which the point may be. To be
able to store the function P(x, y) in a computer, it must be piecewise continu-
ous. The probability that the uncertain point exists at all is the double integral
of P(x, y) over the plane. To be able to model crisp points, P(x, y) must be al-
lowed to be a dirac delta function.

Definition 2: An uncertain point is defined as follows.

A possible uncertain point is shown in Figure 3.1a. Figures 3.1b and 3.1c
show views of the X and Y directions. The central spikes indicate the expected
value of the points, and that a single point is being modelled, one just does not
know where it is. The numbers indicate that the integral must be between 0
and 1. The thick bar underneath indicates the area of uncertainty.

The model described here can model Example 2 because it allows the
point to be inside an arbitrarily shaped region, and not just a circle like [Dut92].
It also enables a point to be modelled where its existence is not certain.

One problem with this model is how to determine the probability density
function so that the double integral of it over the universe becomes 1 if the
point is certain to exist.

AUBool False Maybe True, ,{ }≡

AProb 0 1,[ ]≡

ADegree 0 1,[ ]≡

AUPoint PP x y,( ) SProbDens PP( )
Support PP( ) Aregion∈ PieceCont PP( )∧( )

Support PP( ) Apoint∈ DiracDelta PP( )∧( )∨
(

)
∧

{

}

≡
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Definition 3: The uncertain points set type is defined as follows.

The Finite function returns True if the set contains a finite number of ele-
ments and False otherwise.

3.4.3. Uncertain lines

The line type as defined in [GBE+00] is a set of curves where each mem-
ber is a simple curve. The first step in developing a model for an uncertain line
is therefore to create a model for a curve. An uncertain curve is a curve for
which the exact shape, position or length is not known, but it is known in
which area the curve must be. An example of an uncertain curve is shown in
Figure 3.2a. It may also be known where in this area the curve is most likely to
be. The dotted line in Figure 3.2a exemplifies this.

When seen along a line crossing it, a crisp curve would look like a point,
or a set of points in the case of multiple crossings. When seen along the same
line, an uncertain curve should be a probability density function indicating
where the curve is most likely to cross. Such a function is shown in Figure 3.2b.

Figure 3.1 Uncertain point

∆P
∆P

∆P

(0,1] (0,1]

X Y

a) b) c)

AUPoints UP AUPoint⊆ Finite UP( ){ }≡

Figure 3.2 Uncertain curve

a) b) c)

(0,1]
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This function may apply along the line marked “Gradient” in Figure 3.2a. For-
mally this line and its probability density function may be defined as follows:

When seen along its length, the uncertain curve has a probability of exist-
ing at each point. In Figure 3.2c, one common example of such a probability
function is shown. In this example, there is uncertainty about the length of the
line. This means that the line is certain to exist in the middle, and the probabil-
ity of the line existing becomes lower the closer one comes to the ends.

One way of modelling this probability is that the uncertain line has a cen-
tral line with a probability function associated with it. This probability function
should not have areas in the middle where it is 0, because a curve with such a
function is really two curves and not one, and should therefore be modelled as
two curves. Such an illegal function is shown in Figure 3.3.

If there is uncertainty as to the number of curves, this may be modelled by
a function which is less than 1 in a period between two places in which it is 1.
This is shown in Figure 3.4.

This property of a function may be expressed mathematically as follows:

Agradient gc fg,( ) gc Acurve∈
p gc∈( ): fg:p ℜ→( )∀( ) ProbDens fg( )

∧
∧

{
}

≡

1

t

Figure 3.3 Illegal probability function for uncertain curve

1

t

Figure 3.4 Probability function indicating uncertainty about the number of curves

NoDip f( ) x y z: f x( ) 0>( ) f z( ) 0>( )
x y z< <

∧
∧

(
) f y( ) 0>→

∀∀∀(
)

≡
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An uncertain line may be defined as a central line and a set of gradient
lines. This set of gradient lines models the positional and shape uncertainty of
the line. For each point of the central line there should be one and only one gra-
dient line crossing it. The expected values of the probability functions of all the
gradients should be somewhere on the central line. This is ensured by the fol-
lowing three conditions:

• The gradients do not share points or parts:

• For each point p on the curve, there is a gradient. The expected value of
this gradient is p:

• The expected value of all the gradient lines are on the central line:

For all of these functions, E(x) is the expected value for a probability den-
sity function.

To ensure that the type is implementable, the probability density values
of points that are close to one another should have similar values. To ensure
this, we use the condition that all iso-lines of probability must be continuous.
This means that for all possible probability density values, the set of points
formed from the points along all the gradient lines that have this probability
density should form either a continuous line along the central curve or a set of
continuous cycles. The set of points from all the gradient lines that have a given
probability density value is returned by the ISet function, which is defined as
follows:

To ensure that the iso-lines are continuous cycles, the following condition
is used:

The function points(C) returns a set containing all the points which are
parts of at least one cycle in the set of cycles.

NoCross G Agradient⊆( ) g1 g2, G∈( ): g1 g2∩ ∅≠( ) g1 g2=( )→∀( )≡

ExpectedCurve ec ACurve∈ G Agradient⊆,( ) p ec∈( ) g G∈( ):E g.fg( ) p=∃∀( )≡

CurveExpected ec ACurve∈ G Agradient⊆,( ) g G∈( ) p ec∈( ):E g.fg( ) p=∃∀( )≡

ISet i 0> G Agradient⊆,( )
x g G∈( ): x g.gc∈ g.fg x( ) i=∧( )∃{ }

≡

ContIso ec ACurve∈ G Agradient⊆,( )
i: Iset i G,( ) Points ec( )⊆( )
C Acycle⊆( ):Finite C( ) points C( ) Iset i G,( )=∧∃

∨(
)

∀(
)

≡
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To compute the area in which the uncertain line may be, one can take the
union of all the gradient lines. The following condition ensures that the union
of all the gradient lines forms a crisp face:

Definition 4: An uncertain curve is defined as follows.

This type definition is quite complex, and is the most complex type of the
three main ones. The reason for this is that a point is a probability density func-
tion, a region is a probability function where each point has a probability of be-
ing in the region. A line, however, is a little of both, as shown in Figure 3.2.

Note that this definition of a curve does not allow a curve that is partially
crisp and partially uncertain. This is because there would be a point where the
uncertain area ends and the crisp area begins where the probability density
function of the gradients rises until it becomes infinite. In this place, some of
the iso-lines would not be cycles as they will end right next to the point where
the line becomes crisp.

Both points and regions are defined as functions over the plane. To make
it simpler to define operations which are common to all uncertain spatial types,
a view of the uncertain curve as a function over the plane is therefore also
given:

Computational definition. Uncertain curve (C) as function over the
plane:

In this function, gl is the member of C.G on which the point (x,y) lies and
cp is the point at which gl crosses C.ec.

The line type is a set of curves for the same reasons as given for points.

Definition 5: The uncertain line is defined as a set of uncertain curves.

FormFace G Agradient⊆( )
x g G∈( ):x g.gc∈∃{ } AFace∈( )

≡

AUCurve ec fe G, ,( ) ec Acurve∈ G Agradient⊆
p ec∈( ): fe:p AProb→( )∀

NoDip fe( ) NoCross G( )
ExpectedCurve ec G,( ) CurveExpected ec G,( )
ContIso ec G,( ) FormFace G( )

∧ ∧
∧

∧ ∧
∧ ∧

∧

{

}

≡

C.f x y,( ) gl.fg x y,( ) C.fc cp( )⋅=

AULine UC AUCurve⊆ Finite UC( )
ac UC∈( ) bc UC∈( ): ac bc≠ Cross ac bc,( )¬→( )∀∀

∧{
}

≡
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The requirement that two curves should not cross is there to ensure the
uniqueness of the representation. If two curves that cross are added to the same
set, they must be divided so that all four get the crossing as their end points.
The Cross operator is defined in Section 3.6.1.2.

The problem that a curve cannot be partially uncertain can be solved by
defining such a curve as a line with several curves, some uncertain and some
crisp. The crisp curve is defined by having all its gradient lines have length 0
and their probability functions being dirac delta functions.

One problem with this model for lines is that it involves fairly complex
mathematics, such as finding gradients of a function. Also, some operations,
such as testing whether two lines cross each other, are much more complex in
this model than in models for crisp or vague lines. This complexity exists be-
cause the uncertain curve is neither a simple probability density like for the un-
certain point nor a simple probability function for each point like in an
uncertain face. The line type is therefore the most complex of the three basic
spatial types.

3.4.4. Uncertain regions

An uncertain region is a set of uncertain faces. An uncertain face is one
where the location of the boundary or even the existence of the face itself is un-
certain. This may be modelled as a probability function P(x,y) which gives the
probability that the point (x,y) belongs to the face. Support(P) must be a valid
crisp face. Additionally, an alpha-cut operation must yield a valid crisp region
for all input values between 0 and 1. The alpha-cut function is defined as fol-
lows:

A more complete definition may be found in Section 3.6.1.3. Note that the
Support operation is the same as an alpha-cut with i=0.

Definition 6: An uncertain face is defined as follows.

This definition is used because it is very general, and gives the capability
of modelling uncertain regions in which the exact number of faces is unknown.
This is possible because the uncertain face can have a core which contains mul-
tiple crisp faces like the uncertain face shown in Figure 3.6. It also allows holes

αcut f i,( ) z f z( ) i>{ }=

AUFace FP x y,( )
SProbFunc FP( ) Support FP( ) Aface∈

i 0 1,[ ]∈( ):αcut FP i,( ) Aregion∈∀
PieceCont FP( )

∧ ∧
∧

{

}

=
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which are not certain to exist (such as the submerged islands in Example 1) be-
cause there may be an area with a function value less than one inside an area
with function value one.

Figure 3.5a shows an example of an uncertain face where the black area is
the area in which the face is certain to exist and the grey area is the area of un-
certainty. Figures 3.5b and 3.5c show views of the probability distribution
along the X and Y axis.

An uncertain face is known to exist if at least one point has probability
one of being a member of the face. Notice also that, unlike the crisp case, the
boundary for an uncertain face is not necessarily an uncertain line. See Figure
3.6 for an example of this. In this example, there are two possible configura-
tions, one in which there are actually two faces, and one in which there is only
a single face. There may therefore be either one or two boundary lines in the ac-
tual object.

Definition 7: The uncertain region is defined as a set of uncertain faces.

Figure 3.5 Uncertain face

(0,1] (0,1]

X Y

a)

∆P ∆P

b) c)

Figure 3.6 Face where the border is not a valid uncertain line

AURegion UF AUFace Finite UF( )
af UF∈( ) bf UF∈( ): af bf≠ Disjoint af bf,( )→( )∀∀

∧⊆{
}

≡
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Disjoint for uncertain types is defined as follows:

This type of model for faces and regions has the advantage that such faces
and regions are well documented for the vague case using fuzzy sets in [Sch99]
and [ES97]. It is also very general, capable of modelling any kind of uncer-
tainty, even uncertainty about how many components the region really has. Er-
ror-band based models can only model uncertainty about the position and
shape, not the number of components or holes such as in Example 1 above.

3.5. The time type and temporal uncertainty
Temporal uncertainty has been studied in [DS98]. However, their model

is based on discrete time. To be consistent with the way the spatial dimension
has been modelled, the temporal dimension should also be continuous. There-
fore, the model defined here uses continuous time.

A crisp time instant can be modelled as a real number. An uncertain time
instant may therefore be modelled by an uncertain real. The modelling of time
intervals requires a type for a set of uncertain intervals. This type takes the
Arange type constructor from [GBE+00] and adds uncertainty to it.

An uncertain interval (AUInterval) is a probability function over the real
number line which indicates the likelihood of the interval existing for that
number. Figure 3.7 shows one example of such a function. In this example,
there is uncertainty about the length of the time interval, represented by the
two time intervals marked dT. Because an interval should be continuous, the
probability function should not have areas in the middle where it is 0. Such an
illegal function is shown in Figure 3.3. The interval must be defined over a par-
ticular type of number ( ), such as integer or real.

Disjoint A B,( ) Union Support A( ) Support B( ),( ) ∅=≡

α

Figure 3.7 Example of uncertain time interval

1

dTdT

t
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Definition 8: An uncertain interval is defined as follows.

is the set of all continuous intervals over the type .

This defines a single interval, but many operations may return a set of
such intervals. This requires the type.

Definition 9: The uncertain range is defined as a set of uncertain intervals.

To find the time instant at which the time interval starts, take the deriva-
tive of the probability function of the time interval in the dT intervals. Each dis-
joint region on the real number line in which this derivative is not zero is a time
instant which bounds the time interval.

Our types for time instants and intervals are chosen because they can
model both uncertainty as to the length of a time interval and uncertainty as to
exactly how many time intervals there are in a set. The last can be done in the
same way as modelling uncertainty as to the number of curves as shown in Fig-
ure 3.4. In this case, the set of bounding time instants described in the previous
paragraph will also contain some uncertain time instants corresponding to the
area of uncertainty in the middle of Figure 3.4.

3.5.1. Turning spatial types into spatiotemporal types

Types for uncertain temporal data may be derived from the non-temporal
data types. If A is a data type, let TA be its temporal version. The value of TA in
each time instant in which it exists must be a valid member of A. It is therefore
natural to define TA as a function from time to A. Uncertainty about when an
object first appeared or ceased to exist may be indicated by making the exist-
ence of the A’s close to the start or end uncertain.

The uncertain spatial data types in Section 3.4 may be transformed into
spatiotemporal types using the “UMoving( )” type constructor.

AUInterval α( ) IFα I
ProbFunc IFα I

( )
PieceCont IFα I

( ) Support IFα I
) AInterval α( )∈( )

NoDip IFα I
( )

∧
∧ ∧

{

}

≡

AInterval α( ) α

AURange

AURange α( ) UR AUInterval α( ) Finite UR( )
ai UR∈( ) bi UR∈( ): ai bi≠ Disjoint ai bi,( )→( )∀∀

∧⊆{
}

≡

α
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Definition 10: The Uncertain Moving type constructor.

This type constructor creates a temporal type from a non-temporal type.
For instance, is the carrier set for a temporal, or moving, un-
certain point. This carrier set contains all functions from time to which
satisfies the above criteria.

In this definition, is the function from TA to A. The first two condi-
tions in the definition are the same as those of the moving( ) type constructor
from [GBE+00], and are there to ensure implementability. PartFunc(f) is true if f
is a partial function. The difference between A and is that does not include
the empty set.

The final condition ensures that the probability values or probability den-
sities are piecewise continuous in time as well as in space. This is necessary for
implementability as well as to ensure that the return values of some operations
are valid.

The function is piecewise continuous if the probability or probability
density values are piecewise continuous in time for all points in space.

An example of this is the moving uncertain point, . This
type is a function f from Ainstant to AUPoint, that is, for any time instant in which
f is valid, a value of type AUPoint is returned. Notice that f takes a crisp time in-
stant, not an uncertain one. Because this function must be piecewise continu-
ous, there may not be any time instant where the point is at a completely
different location from the time instants immediately before and after it. Piece-
wise continuous means that the probability density in a single crisp point for
the AUPoint values returned by f at different time instants must be piecewise
continuous.

3.6. Operations on uncertain data

An important part of a set of data types is a general definition of the oper-
ations that can be applied to them. This section begins with an overview of op-
erations on non-temporal uncertain spatial data, and then moves on to
temporal uncertain data. For both sets of operations the operations described in
[GBE+00] have been evaluated. The operations from [GBE+00] that the evalua-

AUMoving α( ) fαM
fαM

:Ains ttan Aα→ PartFunc fαM
( )

Finite Components fαM
( )( ) PieceCont fαM

( )

∧

∧ ∧













≡

AUMoving AUPoint( )
AUPoint

fαM

α

A A

fαM

AUmoving AUPoint( )
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tion showed to be most important as well as some new operations for uncertain
data are described. The operations are divided into three categories, those that
are applied to data with no uncertainty, but which are meaningless for uncer-
tain data, those that can be applied to both kinds of data, and new operations
for uncertain data.

The set of operations described in this section is somewhat redundant, as
some of the operations can be defined in terms of other operations. However, it
is often easier to use a comprehensive set of operations rather than a minimal
one, because a user might not know how to put together the operations in a
minimal set to get the result that he/she wants. It may also be faster to imple-
ment some of the redundant operations directly rather than as a sequence of
other operations.

In this section, the letter name of the variable describes its type as given in
Table 3.2. A signature of the type means that both the inputs must be
of the same type, and the output is of the same type as the input. In a signature
of the type , the S input is neither limited to the type of the other in-
put nor of the output.

In the semantics for the operations, the letter R is used for the result, A for
the first input and B for the second input.

3.6.1. Operations on non-temporal uncertain data

The Core and Support operations from fuzzy set theory will be used for
operations on uncertain data. These have slightly different semantics than in
the vague case because of the differences between uncertainty and vagueness.
Core is defined as follows.

• Core( ): For a region or interval, this operation returns the crisp
set containing all the points or values having membership 1 in A. For
other types it returns other values. For a complete definition, see Sec-
tion 3.6.1.3.

• For Support, see Section 3.4.

3.6.1.1. Operations on crisp data which are meaningless for uncertain data

The operations described in this subsection are listed in Table 3.3 and
Table 3.4. They are useless for uncertain data because they either cannot be de-
termined or become identical to other operations. For some of these operations
one may determine whether the operation is certainly false or not. The formula
for determining this is given in the table when it exists.

S S× S→

S R× B→

T CT→
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Equal: One cannot determine equality between two uncertain objects.
Even if the two objects have exactly the same type and probability function,
they are not necessarily equal, because the real objects may be different even if
the uncertain representation is “equal”. For instance, if two regions both have
the representation given in Figure 3.8, one of them can be bordered by line A
and the other by line B. The regions produced by A and B are clearly not equal,
but they can both correspond to the same uncertain region. The only way one

Table 3.2 Type indicators1

1. All these stand for uncertain data types except for
CX

Letter Type

Po Point

Ps Points

C Curve

L Line

F Face

Re Region

S Spatial (Point, Curve or Face)

Ss Spatial Set (Points, Line or Region)

N Number (Real or Time Instant)

I Interval (of Number)

Ra Range (of Number)

NI Non-Spatial (Number or Range)

T Any non-spatial or spatial type

B Boolean

Pr Probability

D Degree

MOV(X) Moving(X)

CX Crisp X
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can know that two uncertain objects are equal is if they are in fact the same ob-
ject, with the same object identity or primary key value.

Meet: Unless the fact that two curves meet is explicitly stored, one cannot
know for sure whether they meet or not. The two curves definitively do not
meet if their supports do not overlap. Otherwise, the answer can be no better
than “Maybe”. Even if the end points are known and identical, the two curves
may still end in different parts of the end point. This is also true of uncertain in-
tervals.

Touch: In the uncertain case this operation determines the possibility that
two faces have a common border. Even if the supports overlap and the cores do
not, one cannot be sure whether they actually have common borders or the bor-
ders just cross each other. Therefore, the operation cannot return “Yes” when

Table 3.3 Operations for which a positive answer is impossible for uncertain data

Operation Signature Semantics

Equal Maybe:

No otherwise

Meet See text

Touch Maybe:

No otherwise

S S× B→ core A( ) support B( )∩ core A( )=( )
core B( ) support A( )∩ core B( )=( )

∧

C C× B→
I I× B→

F F× B→ core A( ) core B( )∩ ∅=( )
support A( ) support B( )∩ ∅≠( )

∧

A B

Figure 3.8 An uncertain region and two possible “real regions”
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there is uncertainty, unless the fact that the two faces have a common border is
explicitly stored.

Attached1, Overlap2, On_border3, In_interior4: These operations from
[GBE+00] depend on point set topology. Specifically they test for intersection
with the boundary as opposed to the interior of an object. Point set topology for
indeterminate data is outside the scope of this thesis. This has been studied in
several other papers, such as [CG96], [CF96] and [Win00]. In the model pre-
sented in this chapter, it is impossible to say anything certain about the rela-
tionships between the boundary of two uncertain objects unless this is
explicitly stored. In our model, Attached, Overlap and In_Interior become identi-
cal to Intersect from Section 3.6.1.2. On_Border has probability 0 of being true
because the likelihood of the two border lines being in exactly the same place is
0.

3.6.1.2. Operations which may be used on both crisp data and uncertain data

The operations in this section are divided into five categories, depending
on the types of their input and output: set operations, operations applicable to
all uncertain spatial data types, operations for uncertain regions, operations for
uncertain lines and projections. There are no operations that are only applica-
ble to uncertain points and cannot also be applied to other types.

Set operations

The set operations for the points and line data types are the same as in the
crisp case. Using a set operation on the individual points and curves does not
make sense. The point data type is not a set. Performing a set operation on a
curve will most likely produce an illegal value. An uncertain region is in essence
an infinite point set where the individual points have a certain probability of

Table 3.4 Operations which become identical to other operations for uncertain data

Operation

Attached

Overlap

On_Border

In_Interior

1. Does the boundary of A overlap the interior of B?
2. Do the interiors of A and B overlap?
3. Is point A on the border of region B?
4. Is point A in the interior of B?
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being members. Each set operation should therefore return a set that for each
point gives the probability of the operation being true. This is easiest to do by
combining the probability functions of the two input sets. Probability theory
has been used to arrive at the formulas given in Table 3.5. The events that a
point belongs to regions A and B are considered to be independent.

The union operator is not defined for arguments of different types because
this would produce meaningless results such as a region with a line sticking
out of it. Such results are also not legal values of any of the types defined here.
The intersection operator returns a result of the lowest dimension of the two in-
puts. An intersection between a point and a line does not make sense in the un-
certain case because the probability that the two are at exactly the same place is
0. An intersection between either a point or a line and a region uses the same se-
mantics as the intersection of two regions. The output type is point or line.

Because it is impossible to know exactly where the border of a region or
end point of a line is, the intersection operation cannot produce results of a
lower dimension than the lowest dimension input. Unlike the crisp case, there
is no need for specialized versions of intersect that return these.

The Minus operator is not defined for arguments of different types be-
cause the results of this operation are not useful even for crisp data. For in-
stance, a region minus a point is the region. This also applies in the uncertain
case.

The No_Components and Decompose operations may be defined exactly as
in the crisp case because the uncertain model contains the same types of curves

Table 3.5 Normal set operations applicable to all uncertain spatial data

Operation Signature Semantics

Union Points, Line:
Region:

Intersection Points, Line:
Region:

Minus Points, Line:
Region:

No_Components Number of elements in set

Decompose A set of the corresponding single-element
type, each containing one component

Ss Ss× Ss→ A B∪

R x y,( ) A x y,( ) 1 A x y,( )–( ) B x y,( )⋅+=

Ss Ss× Ss→ A B∩
R x y,( ) A x y,( ) B x y,( )⋅=

Ss Ss× Ss→ A B–

R x y,( ) A x y,( ) 1 B x y,( )–( )⋅=

Ss N→

Ss S{ }→
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and faces as the model in [GBE+00]. For uncertain lines and regions, this means
that the number of components operation returns the minimal number of compo-
nents, and decompose decomposes the object into the minimum number of com-
ponents. For instance, the region in Figure 3.9 has two components according
to this definition, while in reality it might have three.

Other operations applicable to all uncertain spatial data types

This is a collection of operations which are not set operations but which
nevertheless can be used on all uncertain spatial data types. Their semantics
are defined in Table 3.6.

Area: For uncertain lines and points, it may be useful to determine the size
of the area of uncertainty. Therefore the area operation is defined for them as
well as for regions. For uncertain regions there are two alternatives to answer-
ing this question. One is to return minimum and maximum possible sizes. The
problem with this is that the area operator now returns two numbers, which
makes it different from the crisp case. The other alternative, which we go for, is
to compute the average size using the area operator from [Sch00b]. This opera-
tor can be applied to uncertain regions by taking the integral of the function of
the region over the universe.

Resemble: This operator determines how much two uncertain spatial ob-
jects resemble one another. It may be used to replace equal for uncertain objects.
For crisp regions it is used to determine similarity in shape. The function min

Figure 3.9 Minimum and maximum number of components

Min. 2

Max. 3

Table 3.6 Other operations applicable to all uncertain spatial data

Operation Signature Semantics

Area Point, Curve: area(Support(A))

Face:

Resemble

S N→

A x y,( ) yd xd
y∫x∫

S S× ADegree→ area min A B,( )( )( ) area max A B,( )( )( )⁄
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returns the minimum probability or probability density value of A and B. Max
returns the maximum.

Operations for uncertain regions

This is a set of operations for which at least one input must be an uncer-
tain face or region. The semantics for these operations are defined in Table 3.7.

Inside: This operation has somewhat more complex semantics in the un-
certain case than in the crisp case because the result may be uncertain. This is
indicated by the “Maybe” value.

• For faces: If = , return “Yes”. If
= , return “Maybe”. Otherwise return

“No”.

• For curves and points: If return “Yes”. If
and A is a curve, return “Maybe”. If Exist-

ence1 and A is a point, return “Maybe”. Otherwise return
“No”.

Intersect: This operator determines the probability that A and B intersect.
This is the “overlap” criterion used in many spatial searches.

Negation: This is a set operation which is meaningless for uncertain points
and lines. The negation of an uncertain point or line would contain an infinite
number of points or curves, some of which would be almost identical to those
removed. This result is meaningless, so the negations for these datatypes are
not defined

1. The Existence operator returns the probability that an object exists. It is defined in Sec-
tion 3.6.1.3.

Table 3.7 Operations for uncertain regions

Operation Signature Semantics

Inside See text

Intersect

Negation

S F× B→

S F× AProb→ Existence A B∩( )

Re Re→ R x y,( ) 1 A x y,( )–=

Support A( ) Core B( )∩ Support A( )
Core A( ) ∩ Support B( ) Core A( )

A B∩ A=
A Support B( )∩ A=

A B∩( ) 0>
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Operations on uncertain lines

The semantics of these operations are given in Table 3.8 and are defined
on single curves. Crosses is only useful for single curves. The length of an un-
certain line is the sum of the lengths of its curves.

Cross: Determining whether or not two uncertain curves cross each other
is far more complex than for crisp curves because one does not know quite
where the curves are. If , the two curves cannot
cross. Otherwise they may cross. To know for sure, the following conditions
must be checked:

• Both curves must exist in the entire area in which they cross. The fol-
lowing formula test whether curve A exists in the entire area. The test is
analogous for B.

In this formula, . This prevents lines
which are not guaranteed to exist in the area in which the lines may
cross from getting “Yes” to the question Crosses(A, B)

• Let ba = and bb =
. Both ba and bb must consist of at

least two crisp curves.

• Each component of ba and bb must cross line ec of the other line an odd
number of times. This applies to both lines. This prevents lines such as
line A in Figure 3.10 from getting “Yes” to the question Crosses(A, L).

Length: The true length of an uncertain line cannot be determined. For in-
stance, Figure 3.11 depicts an uncertain line and three possible lines which all
may be the correct line. All these three lines have different lengths. In fact, the
“possible line” has much more than twice the length of the minimal line. Be-
cause the actual line may be arbitrarily long, only the minimal length can be

Table 3.8 Operations for uncertain lines

Operation Signature Semantics

Cross See text

Length Line: See text

Range:

C C× B→

C N→
I N→ R f t( ) td

t∫=

support A( ) support B( )∩ ∅=

g A.G∈( ): g ca∩ ∅≠( ) A.fe g A.ec∩( ) 1=( )→∀

ca support A( ) support B( )∩=

boundary ca( ) ∩ boundary support A( )( )
boundary ca( ) boundary support B( )( )∩
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computed. In the example shown in Figure 3.11, the minimal line is just a
straight line.

To compute the minimal length, one may use the following procedure:
Let c=Core(A). For each crisp curve find the two gradient lines that are at
each end of s. Then find the shortest line l between these gradients that lies en-
tirely within the support of A. The minimal length of the line is the sum of all of
these l’s.

The l’s must also go in the same direction as the central line. Otherwise
one might get inappropriate results for uncertain cycles. The support of an un-
certain cycle is a torus, and one might get a shorter distance by going the
wrong way.

Projections

Many operations in both spatial and spatiotemporal databases involve
projecting a data type down into a universe with fewer dimensions than the
universe in which the argument was defined. The exact probabilities of the pro-
jection cannot be determined without knowledge of the underlying probability

A
B

L

Figure 3.10 A curve which may cross, and a curve which certainly crosses, the curve L

Line with
minimal length

Possible
line

Core line

Figure 3.11 An uncertain line, its core, its minimal line, and another possible line

s c∈
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model1. Therefore, the best one can do is to create approximations. One could
for instance project the support of the data type to get an outline of the pro-
jected result, and this might be enough for some applications. Alternatively, for
each projected value one might use the maximal value of all the values pro-
jected into it. One example of this would be if one wanted to know where a
moving region has been at any point in time, one might use the maximal prob-
ability for each point.

3.6.1.3. New operations for uncertain data

These operations are new for uncertain data because they determine dif-
ferent aspects of that uncertainty. A list of these operations and their semantics
is given in Table 3.9.

Alpha_Cut: This operation was first described for fuzzy sets in [Zhan98]. It
returns a crisp set which contains all the points which have a membership
value or probability density value above the given number in A. The support
operation can be seen as a special case of the alpha cut operation with B=0.

Core: This operation returns the set of values which the object must con-
tain. For lines it returns the central line. It is defined for lines because some
other operations need this definition. For points and numbers, the Core does
not exist unless the point or number is crisp. In this case, Core returns a crisp
version of the point or number.

Expected_Value: This operator returns the crisp object of the same type
which represents the shape and position the object has the greatest likelihood
of having. For lines, this is different from both Core and Alpha-Cut(A, 0.5) as
shown in Figure 3.12.

Support: This operation returns the set of values which the object might
possibly contain or be at.

Accuracy: This operator indicates how accurately an uncertain object is
given. For lines and points, one can only determine whether the object is crisp
(Accuracy 1) or uncertain (Accuracy 0).

Existence: This operation returns the probability that object S exists.

More_Accurate_Than: This operator checks whether A might be a more ac-
curate version of B.

1. The underlying probability model means what exactly it is that varies. In Example 1,
there is really only one random variable, the water level. For a geological feature with
uncertain measurements, however, the location and shape of different parts of the
boundary are independent random variables.
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Breadth: This operation returns how wide the area of uncertainty for an
uncertain line is at a particular point.

3.6.2. Operations on temporal uncertain data

In the same way as the previous section, this one is also divided into three
subsections, one for operations which are no longer useful for uncertain data,

Table 3.9 New operations for selected uncertain data types

Operation Signature Semantics

Alpha_Cut Spatial types:

Number, Range:

Core Point, Number: See text
Line:

Region:

Range:

Expected_Value Point: E(PP)
Number: E(NP)
Line:

Region, Range: Alpha_Cut(A, 0.5)

Support Spatial types:

Number, Range:

Accuracy Point, Line, Number:
If Crisp(A) return 1 otherwise 0

Region:

Range:

Existence
Point:

Line, Region: See text on projections

Number:

Range: See text on projections

More_Accurate_
Than

All types:

Breadth

S 0 1,[ ]× CP{ }→
NI 0 1,[ ]× CN{ }→

R P CP A P( ) B>∈{ }=

R N CN A N( ) B>∈{ }=

S CP{ }→
NI CRa→

R P CP P A.ec∈ A.fc P( ) 1=∧∈{ }=

R P CP A P( ) 1=∈{ }=

R N CN A N( ) 1=∈{ }=

T CT→

R P CP P A.ec∈ A.fc P( ) 0.5>∧∈{ }=

S CP{ }→
NI CRa→

R P CP A P( ) 0>∈{ }=

R N CN A N( ) 0>∈{ }=

T 0 1,[ ]→

area Core A( )( )( )
area Support A( )( )( )

----------------------------------------------------

length Core A( )( )( )
length Support A( )( )( )

----------------------------------------------------------

T 0 1,[ ]→
A x y,( ) yd xd

0

max

∫
0

max

∫

A v( ) vd
0

max

∫

T T× CB→ Support A( ) Support B( )⊂
Core A( ) Core B( )⊇

∧

C CP× CN→ length l A.G B Points l( )∈∈( )
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one for operations that work for both certain and uncertain data, and one for
new operations on uncertain data.

Like operations for crisp data, operations for uncertain data can be lifted
into operations for uncertain temporal data as described in [GBE+00]. The basic
idea is that the lifted operation takes temporal versions of the normal input pa-
rameters as input and returns a temporal version of the normal output, which
is such that for any time instant this output is the same as would be returned by
the non-lifted version of the function on the inputs as they are at that time in-
stant. For a function that returns numbers in the [0,1] range, this corresponds to
an because both are functions from a time instant to a value in
the [0,1] range.

The prefix MOV is used to indicate a moving, or temporal, type as op-
posed to a non-moving type.

Let LA be the lifted version of operation A, and I and J be temporal ver-
sions of the input parameters of A. Also let O=LA(I, J). Then for all time instants
t:

As an example of lifting, the lifted version of Union has the signature
MOV(Ss) MOV(Ss) MOV(Ss). For regions, its semantics is:

Another example is the lifted version of the Area operator. It has the sig-
nature , and has the following semantics for faces:

The result here is dependent on time, but not on the coordinate because
both the x and y axes are eliminated by the integrals, while the time dimension

Figure 3.12 Expected value

Support

Core

Alpha_Cut(A, 0.5)

ExpectedValue

AURange AIns ttan( )

O t( ) A I t( ) J t( ),( )=

× →

R t( ) x y,( ) A t( ) x y,( ) 1 A t( ) x y,( )–( ) B t( ) x y,( )⋅+=

MOV S( ) MOV N( )→

R t( ) A t( ) x y,( ) yd xd
y∫x∫=
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is not. Thus the lifted version of Area returns a moving number which can
change over time as the object changes.

3.6.2.1. Operations on crisp data which are meaningless for uncertain data

There are two operations for temporal data which cannot be determined
when there is uncertainty about the time. They are listed in Table 3.10.

Initial ( ): If there is uncertainty about when an object first ap-
peared, its initial value cannot be determined. As an example, a region B is
known to exist at time 3, and to overlap region A. It is also known that region B
did not overlap region A before time 2, and that region B did not exist prior to
time 1. In this case determining an initial shape is impossible. If B began to exist
before time 2, it could not have overlapped region A at the start, but if it came
into being after time 2, it could have overlapped region A right from the start.

Final ( ): If there is uncertainty about when an object ceased
to exist, its final value cannot be determined. The argument is the same as for
Initial.

3.6.2.2. Operations which may be used on both crisp data and uncertain data

Temporal restriction operations

These are operations which restrict a spatiotemporal object to certain
times. The semantics of these operations are given in Table 3.11.

At: This operation limits A to the times and places in which it intersects B.
Checking At with a second argument other than a face or interval does not
make sense in the uncertain case because the probability that the point or curve
A intersects the point or curve B is 0.

At_Instant: This operation returns the shape of the object at a time instant.
For the uncertain case an integral is used because one must consider the shape
of the object in the entire period of uncertainty.

Table 3.10 Operations which are
meaningless for temporal uncertain data

Operation

Initial

Final

MOV T( ) T→

MOV T( ) T→
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At_Periods: This operation limits the first input so that it exists only in the
time range given by the second input. In our model, this can be implemented
by multiplying the functions for the two inputs.

When: This operation limits A to the times when the function B is true
with respect to A. This operation may be used both when the function returns a
probability and when it returns an uncertain Boolean value. For uncertain
Boolean values, one may assume that Maybe has a “probability value” of 0.5
and use the semantics for a probability.

Projections from space-time

These operations create projections of a spatiotemporal object into either
space or time. The semantics of these operations are defined in Table 3.12.

Def_Time: This operation returns the uncertain time interval in which the
object A exists. Because this is the same as would be returned by a lifted ver-
sion of Existence, no new definition is needed for this operation.

Locations: This operation returns the portions of the projection of an un-
certain moving point which are points themselves. The projection of an uncer-
tain moving point will only be a point when it stands still. This operation is
therefore defined to return all the uncertain locations in which the point has
stood still.

Present: This function must return a probability rather than a Boolean
value, because it may be uncertain whether the object is present or not.

Trajectory: This operation returns the portions of the projection of an un-
certain moving point which are lines. These are the projections of the uncertain

Table 3.11 Temporal restriction operations

Operation Signature Semantics

At

At_Instant

At_Periods

When See text

MOV NI( ) I× MOV NI( )→
MOV S( ) F× MOV S( )→

R t( ) x( ) A t( ) x( ) B x( )⋅=

R t( ) x y,( ) A t( ) x y,( ) B x y,( )⋅=

MOV T( ) CN× T→
MOV T( ) N× T→

R v( ) A B( ) v( )=

R v( ) A t( ) v( ) B t( )⋅ td
t∫=

MOV T( ) Ra× MOV T( )→ R t( ) v( ) A t( ) v( ) B t( )⋅=

MOV T( ) T B→( )× MOV T( )→
MOV T( ) T AProb→( )× MOV T( )→ R t( ) x y,( ) A t( ) x y,( ) B A t( )( )⋅=
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point when it is moving. It contains the entire projection except for those peri-
ods in which the point has been standing still.

Routes: This operation returns the portions of the projection of an uncer-
tain moving curve that are curves themselves. For an uncertain line, this opera-
tion must be run individually on all the curves of the line. The semantics of this
operation uses the same principle as Locations. This definition does not cover
the cases where the uncertain curve moves in such a fashion that the result
would still be an uncertain curve.

Traversed: This operation returns the portion of the projection of an uncer-
tain curve that are regions. This operation must use uncertain projection, but is
otherwise identical to the crisp case.

Speed: The exact speed of a moving, uncertain point cannot be deter-
mined, because the exact location of the point is not known. However, a fairly
good approximation is to compute the speed of the expected position of the
point. If an uncertain point has expected value a at time 1 and expected value b
at time 2, the speed of the point is distance(b-a)/(time2 - time1).

3.6.2.3. New operations for uncertain data

Although there are no truly unique new operations for uncertain spatio-
temporal data, one may run any of the new operations from Table 3.9 on the
time aspect of the object as well as the spatial aspect. These operations may also

Table 3.12 Projections from space-time into space or time

Operation Signature Semantics

Def_Time This is a lifted version of Existence

Locations

Present Existence(At_Instant(A, B))

Trajectory Projection (See Section 3.6.1.2)

Routes

Traversed Projection (See Section 3.6.1.2)

Speed Speed(P) = Speed(Expected_Value(P))

MOV T( ) Ra→

MOV P( ) P{ }→ R p t: p A t( )=( )∃ ε 0>( ) a b:
t ε– a t ε+< < t ε– b t ε+< <∧( )
A a( ) A b( )=( )

→
∀∀∃∧{

}

=

MOV T( ) N× AProb→

MOV P( ) L→

MOV C( ) C{ }→ R c t: c A t( )=( )∃ ε 0>( ) a b:
t ε– a t ε+< < t ε– b t ε+< <∧( )
A a( ) A b( )=( )

→
∀∀∃∧{

}

=

MOV C F∨( ) Re→

MOV P( ) MOV N( )→
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be lifted to become new operations on uncertain spatiotemporal data. Thus,
one gains two new operations from each one in Table 3.9. As an example, the
lifted version of Support returns the spatial support of the object as a function of
time, whereas Support run on the time aspect gives the time intervals in which
the object may have existed. Examples of these two versions of Support for a
moving uncertain interval are shown in Figure 3.13. The lifted support of the
interval in the example is the total of the grey and black areas of the moving in-
terval.

3.7. Discussion

This work is, to the authors’ knowledge, the first attempt to produce a
general type system for uncertain spatial and spatiotemporal data. It also uses
a more general definition for uncertain points and lines than earlier work, and
these definitions facilitate the modelling of more types of uncertainty.

The type system described is also uniform in that all the types are defined
in roughly the same way. For all the types there is a “region” indicating where
the object might be. In this sense all the uncertain types are based on the crisp
region. For all the types there is also a probability function indicating where the
object is most likely to be.

This is similar to Schneider’s model for vague regions, but in our work
that method is applied for all the data types. The type system in this chapter is
also capable of modelling vagueness. If one removes the positional and shape
uncertainty from the point and line types, there is still the uncertainty about ex-
istence, and this can be used to model vagueness as well. The new model be-
comes almost identical to Schneider’s model in that case.

Figure 3.13 Different variants of support for a moving interval

t

n

Lifted support at given time instants

Support operation used on temporal aspect



88 CHAPTER 3 AN ABSTRACT MODEL FOR UNCERTAINTY IN SPATIOTEMPORAL DATA

One advantage of our abstract model is that existing discrete models are
possible implementations of parts of it. The models described in [Dut92] and
[Sch96] are possible discrete implementations of parts of this model because
both ultimately describe probability functions over the plane which are legal
according to our model.

This is an advantage because it shows that the model is fairly general
(which is one of the aims of our abstract model). If existing discrete models did
not implement parts of this model, this might indicate that it could be too spe-
cialized or had ignored significant types of uncertainty.

Our work also introduces types for continuous uncertain time instants
and time intervals and uses these to create types for spatiotemporal data with
uncertainty both in the spatial and temporal dimensions.

Additionally, many of the operations from [GBE+00] are evaluated for
use in the uncertain case. Some of the operations are meaningless for uncertain
data, but many can be used for both crisp and uncertain data. Some operations
may also be used in new ways or on new data types when the data is uncertain.
Some new operations (and operations from other sources) are also introduced
to deal with the uncertainty. For uncertain Boolean values, two methods are
used. The simplest is a three-value logic, which has been used earlier. How-
ever, due to the definitions of the types, many functions may instead return the
likelihood of the answer being true.

One potential problem with our model is that the mathematical complex-
ity will make it a challenge to implement, and that simpler models might be
better in certain cases. This is particularly true for the uncertain line model. The
reason for the complexity of the uncertain line is that the probability distribu-
tion for an uncertain line is neither a probability density function like for points
nor a probability distribution function like for regions, but something in be-
tween. This and other issues related to implementation of our model and simi-
lar models are discussed in chapter 4 and chapter 5.

Part of the mathematical complexity discussed in the previous paragraph
may be easily removed from the model at the cost of a decrease in expressive-
ness. There is, for instance, no need to include a model for temporal data or
temporal uncertainty in a given system unless one is actually needed. The
probability functions may also be arbitrarily simple or complex. The simplest
variant is the function with equal probability over the entire point or line, and
with probabilities 1, 0.5 and 0 indicating the core, uncertain boundary and the
outside of a region. The advantage of a simple function is that it is easier to
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store and faster to compute. The advantages and disadvantages of models of
different complexity are discussed in chapter 4.

The advantage of complex functions is increased expressiveness. Some
operations, such as existence, will return only 1, 0.5 or 0 if the simplest option is
used for the functions. This is the same as a three-valued logic. In some cases,
the geologists making the measurements may make good educated guesses as
to the probability function. Thus it would be an advantage to be able to store
these like our more generic abstract model allows.
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Chapter 4

Three Discrete Models for
Uncertain Spatiotemporal

Data

4.1. Introduction

In many cases, one does not have accurate measurements of the position
and shape of a geographic or spatial object. However, one often knows roughly
where the object may be, and how uncertain its position or shape is. When stor-
ing such objects in a spatial or spatiotemporal database, it is therefore impor-
tant not just to be able to store the object, but to also store how uncertain the
object is.

Spatial and spatiotemporal objects may be uncertain because the mea-
surements needed to place the object accurately are too expensive, or because
exact measurements are impossible.

Example 1: When making a database over the soil types of different
areas, there may be two kinds of indeterminacy according to
[LAB96]. Firstly, there may be uncertainty. This means that the soil
type changes abruptly without any visible sign on the surface. Sec-
ondly, there may be vagueness. This means that there is no clear
boundary, and the two types are mixed in the boundary area.

Traditionally, vagueness has been modelled by using fuzzy sets, whereas
uncertainty has traditionally been modelled using probability theory. Like
chapter 3, this chapter will look mainly at uncertainty. The models presented
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here may also be used for vagueness in the same way as the abstract model
from chapter 3.

The timing of events may also be uncertain, for the same reasons as for
spatial uncertainty.

When an animal type becomes extinct, it is hard to know exactly when
this happened. One may know that in 1999 there were observations of the ani-
mals or at least signs of their presence, whereas in 2001 there are no signs of
them at all, and they are presumed extinct. However, one does not know when
in this time the last individual died.

The abstract model presented in chapter 3 is based on infinite point sets
so that it can be conceptually simpler than a lower-level model. It may be seen
as a high-level design for a database for uncertain spatiotemporal information.
The goal of this chapter is to build on that model to create the next natural level
design for such a database.

This chapter will present three distinct models for uncertain spatiotempo-
ral information: A complex model that attempts to model almost all of the as-
pects that the abstract model covers, a medium complexity model that models
only a subset of these aspects but is much easier to implement, and a simple
model built to minimize the amount of storage required. These three models
will be compared with respect to storage required, how easy it is to implement
different operations on them, processing speed of some operations and model-
ling capabilities.

Unlike the abstract model, the models presented in this chapter will be
based on a finite representation which can be stored in a computer. This means
that they are much closer to an implementation than the model from chapter 3.
They may become somewhat more complex, and they only manage to model a
subset of the aspects that the abstract model manages. However, the goal of
this chapter is to be able to model a larger subset than existing models at this
level.

4.2. Related work

There are two basic discrete methods for storing spatial data, the raster
and vector models. The raster model divides space into a partition (typically a
grid) and stores one value in each cell. For vague data, [LAB96] and [Low94]
present raster models in which a fuzzy membership value is stored in each cell.
Fuzzy sets [Zad65] is a type of set in which the membership of an individual
may be fuzzy, that is, it has a value between 0 and 1. The problem with this
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kind of model is that the data volume quickly becomes very large if the spatial
objects are to be stored accurately. The two raster models mentioned also can-
not model lines or points. The advantage of such raster models is that the val-
ues of arbitrarily complex functions can be stored explicitly in the cells. Also,
overlay operations in which the values from two functions are combined are
much easier to compute for raster models than for vector models.

Vector models, on the other hand, store the boundary of a region as a set
of line segments. This form of storage is more complex, but usually takes much
less space. An example of a vector model for uncertain regions is presented in
[Sch96]. In this model, the ROSE algebra, which is a vector-based representa-
tion built to avoid inconsistencies, is used as a foundation for a model for un-
certain regions. However, you cannot store probability functions with this
model. One approach for storing distinct probabilities in such a model is to
store a number of different regions, one inside the other, where each successive
region has a higher probability than the one before. This method is used to
compute fuzzy intersection in [Sch01].

An early model for uncertain points and lines is presented in [Dut92]. In
that model, an uncertain point is stored as a central point with a circular devia-
tion. The probability of a point being at any one place follows a bi-Gaussian
distribution over the deviation. Lines are made up of a series of such points.
Each line segment may start at any possible position of the first point and end
at any possible position of the second point. The probability of each of these
potential line segments is the product of the probabilities of the two points be-
ing at those precise locations. The paper shows that the iso-lines of probability
in such an uncertain line look like a snake that has eaten a lot of eggs, and the
eggs are in different parts of its throat and stomach. This effect is shown in Fig-
ure 4.1, where the iso-line of probability density 0.5 has this characteristic ap-
pearance. The support of the uncertain line is also shown. The support is the
area in which the line may possibly be.

Support
Iso-line 0.5

Figure 4.1 Dutton’s model of an uncertain line
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An attempt at a combination of raster and vector models is presented in
[Sch00a]. This model resembles a raster model in that space is divided into a
partition, and a fuzzy membership value is stored in each cell. Unlike normal
raster models, the boundary of a region is stored by storing which vertices1,
rather than which raster cells, it goes through. Like any raster model, the
boundary must follow the cell boundaries. This paper also shows how to im-
plement fuzzy union, intersection and difference with this model.

A model for crisp2 spatiotemporal objects has been presented in
[FGNS00]. This paper uses a vector model for spatial objects and extends this
model with time slices. The basic idea is that in each time slice, each spatial ob-
ject evolves by simple rules. This is shown in Figure 4.2, where the number
changes linearly inside each time slice. A point in this model moves along a
straight line in each time slice, and may only change velocity between time
slices.

A moving line segment may move and grow or shrink in a linear fashion,
but may not rotate, and its speed of movement is the same throughout the time
slice. The rule against rotation is there because a rotating line segment would
yield a curved surface in space-time, whereas a non-rotating line segment
would yield a straight one. Many operations are much easier to perform on
straight planes than on curved ones. An example of how rotation may be im-
plemented by non-rotating lines is shown in Figure 4.3.

Like other vector models, advanced types are built up from simpler ones,
so that a region is built from several cycles which are built from several line

1. The vertices are the points in which two grid lines cross.
2. As opposed to indeterminate

Figure 4.2 Sliced representation of uncertain number

t

x

Time Slice
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segments. The moving types themselves are sets of disjoint time slices. A de-
scription of an implementation of the model from [FGNS00] can be found in
[Rod00].

[TG01] discusses some of the problems in interpolating between snap-
shots to create the model presented in [FGNS00] and presents algorithms that
solves many of them. This chapter will not focus on algorithms for such inter-
polation, but will also include some issues which become more complex with
the presence of uncertainty, especially temporal uncertainty. The interpolation
problem will be used to illustrate why the sliced representation becomes more
complex in the uncertain case. This chapter will also discuss how the algo-
rithms from [TG01] may be extended to the uncertain case.

4.3. Basis for the new model

As mentioned in Section 4.2, there are two basic modelling techniques for
creating a discrete model: raster and vector. The vector approach is chosen in
this chapter because rasters require much more storage space for regions, and
lines may become inaccurate when stored in a raster format. A line in a raster
model must be approximated to a series of pixels just like when a line is drawn
on the screen.

Additionally, this chapter presents ways to store and compute probability
functions in a vector model, so that a raster model is no longer needed to store
exact probability values or fuzzy set values.

For the simple model, the points from [Dut92] will be used to store single
points because they are simple to store. However, a different model for lines is
developed in which computing the probability density of the line passing a cer-
tain point is somewhat simpler than in Dutton’s model. Dutton’s model is also
unsuited to model uncertainty about the length of the line.

t

x
y

Figure 4.3 Sliced representation of line segments
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For the advanced model, the model presented in [Sch96] is used as a basis
for regions. The advanced model for an uncertain region is based on the same
concepts as those used in [Sch96], but it also includes other aspects like a sys-
tem for modelling a probability function. This chapter adds lines, points, time
and probability functions to this model.

For the medium complexity model, there is no previously published
model which we can naturally make any comparisons with.

For the temporal aspects of the models, the methods from [FGNS00] will
be used as a basis, although for some applications they will require significant
modifications. However, in most cases the basic approach of splitting the ob-
jects into time slices will be retained.

The following types for crisp spatial data will be used to define the types
in this chapter. These are taken from [FGNS00] with the exception of DSegment
and DLine. These two are different because a more specialized definition of
lines is needed in the uncertain case1.

The following terminology will be used for lines in this chapter. A line
segment is a straight line going between two points. A curve is a single contin-
uous line that does not intersect itself. A curve consists of a set of line segments.
A line is a set of curves. Note that [FGNS00] does not use the concept of curves.

The abstract model from chapter 3 will be used as a basis for this discrete
model. This means that the advanced model will try to model most of the as-

Table 4.1 Types for crisp spatial data

Type name Type definition

DPoint A single point

DPoints A set of points

DSegment A single line segment consisting of a start point and an end point

DLine A set of DSegment where each segment except possibly the two end seg-
ments share end points with the previous and the next segment, and where
none of the segments may share interior points.

DCycle A DLine where the start point and end point are the same

DFace Area that has an outer cycle and a number of disjoint hole cycles

DRegion Consists of a number of disjoint faces

1. See Section 4.4, 5 and 6.
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pects that the model from chapter 3 can model. The simpler models are of
course more limited.

The basic idea from chapter 3 is that all uncertain objects, regardless of
type, are known to be within a certain crisp region. It may also be known
where the object is most likely to be. This is modelled as a function over the
plane for all three types1. For points this is a pure probability density function,
for regions it is a pure probability distribution function, and for lines it is a hy-
brid.

The uncertain point (AUPoint) is modelled as a region with a probability
density function indicating where the point is most likely to be. The uncertain
curve (AUCurve) is modelled as a core line with gradient lines crossing it, and
probability functions for both of them. The probability distribution function
along the core line represents uncertainty about the existence of the line and
the length of the line. The probability density function along the gradient lines
represents the fact that the exact location of the line is not known. These gradi-
ent lines must form a crisp face which is the area in which the line might possi-
bly be.

The uncertain face (AUFace) is modelled as a probability distribution func-
tion over the plane. The set of points with function value above 0 must form a
crisp face.

In the abstract model from chapter 3 there are two types of functions,
probability density functions and probability distribution functions. The prob-
ability distribution functions may be used in the discrete model as well, but
there is a problem with the probability density functions.

A probability density function is defined as having an integral of 1, and is
used for a continuous number line. However, in a computer the number line is
never really continuous. Even if floating-point numbers are used, there is a
minimum precision and therefore a minimum distance between subsequent
numbers. This means that the correct choice is to store a probability mass func-
tion rather than a probability density function.

A probability mass function is a function which gives the probability that
the number has a certain precise value, and the sum of all these values is 1.

The properties of these are defined by the following functions:

• Probability Mass Function:

1. Points, lines and regions.

ProbMass P( ) x:P x( ) 0≥∀( ) P x( )
x

∑ 1≤∧≡
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• Probability Distribution Function:

A simple way of storing a probability mass function that is shaped as a se-
ries of steps is described in [DS98].

There are several ways of representing coordinate values in a computer.
The simplest of these is the integers, but there are other such systems, such as
the dual grid presented in [LG00]. In the discussion of the types, the number
system used for coordinate values will be referred to as CVS.

In chapter 3, the point and face types are modelled as functions over the
plane. In the discrete case, this is not a feasible way of storing them for two rea-
sons. First, such a function would quickly become very complex and the com-
puter might have difficulties storing and computing them. Second, it would be
next to impossible for the user to define such a function for each point or re-
gion. Therefore another method must be used. One simple method that has
been used in many earlier models for vague and uncertain regions is to store
two regions, one inside the other. The innermost region is the area in which the
region is certain to exist, and the outermost region is the area where the region
may be. It is known that the region is not outside the outermost region.

This method may be extended with a probability function describing how
likely it is for the region to be in all the points in between the innermost and
outermost regions. To make it simpler for the user to define this function, it
should be one-dimensional rather than two-dimensional. User might choose
between some predefined functions such as linear, Gaussian or step function,
or they can be allowed to define their own functions.

Three different models for uncertain spatial and spatiotemporal informa-
tion will be presented in this chapter. A summary of the properties of these
models is given in Table 4.2. This table shows how much storage space the
types use in the three models compared with the corresponding crisp types. It
also shows how complex it is to compute set operations and probability values
for the various types in the three models. Additionally, it shows how many of
the three methods for dealing with uncertain time from Section 4.8.3 can be
used with each model. A “no” in a row means that that operation or feature
cannot be used on that data type in that model.

The next three sections will describe the three different models for uncer-
tain spatial data that are all based on the principles described in this section.
Section 4.7 will describe how to store and compute the probability functions.
Section 4.8 and Section 4.9 will describe how to extend the three models to be

ProbFunc P( ) x: P x( ) 0≥ P x( ) 1≤∧( )∀≡
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spatiotemporal. Section 4.10 contains a description of the implementation of
some spatial and spatiotemporal operations on the models described.
Section 4.11 contains a discussion and comparison of the models presented in
this chapter.

4.4. Advanced model for uncertain spatial data
The first model to be presented is the advanced one, because it is most

similar to the model in chapter 3. This chapter also presents two simpler mod-
els. These are detailed in the next two sections and were created to address the
problems with the advanced model. They are both less expressive than the ad-

Table 4.2 Comparison of the three models

Type1

1. For uncertain reals and Boolean values, the three models are roughly the same.
Uncertain Boolean values do not require more storage space than crisp ones. Uncer-
tain reals require 3X space in the advanced and medium case and 2X space in the
simple model.

Model

Advanced Medium Simple

Integer Storage Large Stores prob-
ability of
each possi-
ble value

3X Stores sup-
port and
probability
mass func-
tion

2X Same as
Medium
except
assumes
uniform
probability

Set. Ops Simple Simple Simple

Prob. Func. Simple Simple No

Temporal All
methods

All All

Range Storage 7.5X Core and
support as
separate
“interval”
objects

2.5X Core and
support in
same inter-
val object

2X Same as
Medium
except
assumes
uniform
probability

Set. Ops. Simple Simple Simple

Prob. Func. Simple Simple No

Temporal All All All

Point Storage Large Support as
general face

5.5X Support as
distances at
set angles

1.5X Spherical
support.Set. Ops. Simple Complex Complex

Prob. Func. Complex Simple No

Temporal All Special2

2. See Section 4.9.2

Special2

Curve Storage 3.75X Support as
general face

3X Stores
CrossCur-
ves at arbi-
trary angles

1.75X Same as
Medium
except
CrossCur-
ves have set
angles.

Set. Ops. Simple Complex Complex

Prob. Func. Complex Simple No

Temporal All Simple
only

No

Face Storage 2X Support as
general
face, core as
general
region

3X As crisp
face except
uses uncer-
tain curves

1.75X Same as
Medium
except sim-
ple curves
are used.

Set. Ops. Simple Complex Complex

Prob. Func. Complex Simple No

Temporal All Simple
only

No
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vanced model. These three model sections will detail purely spatial models for
uncertainty, without a time component. Section 4.7 will consider how to store
probability functions and compute probabilities, Section 4.8 will describe how
to extend the advanced model to become spatiotemporal and Section 4.9 will
describe the same for the simpler models.

In all the modelling sections, the word Core will be used to mean the area
with greatest probability. This is usually 1, but not necessarily. The probability
in the core is always the probability that the object exists. This is stored sepa-
rately. The reason for this is given in Section 4.4.2 and Section 4.7.

The word Support will be used to mean the area in which the probability
or probability mass of the object is above 0. This is the area where the object
might possibly be.

Section 4.4.1 deals with how to model non-spatial types. This is a neces-
sary foundation for both the spatial and temporal types. The subsequent sec-
tions will look at points, lines and regions.

4.4.1. Base types

A single type for uncertain numbers was used in the abstract model. This
is not a good solution in a discrete model, because in an actual database some
numbers may be stored as integers and others as floating-point numbers. In the
present model, two types of uncertain number are defined, the uncertain inte-
ger and the uncertain real number.

One way to store an uncertain integer is to store each value the uncertain
integer might take as well as the probability that it takes that value. An exam-
ple of such an integer is shown in Figure 4.4. This allows us to store an uncer-
tain integer following any conceivable probability distribution. The database
should have an integrity rule which disallows the storage of an uncertain inte-
ger with a total probability above 1. A crisp integer can be stored with just a
single number and a probability of 1.

Definition 1: The uncertain integer is defined as follows:

DAUInteger is

is i Z∈ pi ℜ +∈,( ){ }⊆

Finite is( ) is.pi 1=

is
∑

a∀ is∈ b∀ is∈ a b≠, , a.i b.i≠→

∧

∧ ∧













≡
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Because this model stores one floating-point for each possible value, it
will use (m+1)*n times the storage space of a crisp integer, where n is the
number of values the uncertain integer may take and m is how many times
more storage space is needed to store a floating-point number compared to an
integer. Due to this large increase in the storage required, a simpler model may
be preferred in most cases.

For storing uncertain reals, one cannot use this approach, because it
would yield a very large number of probabilities. The uncertain real should in-
stead be stored as a probability mass function over the number line. One way
to do this would be to store a starting point and an end point for the interval in
which the real number may be, and a probability function over that interval as
shown in Figure 4.5.

Prob. Mass.

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

Value

Figure 4.4 Advanced uncertain integer

Figure 4.5 Advanced uncertain real

Prob. Mass

Value

A B

f



102 CHAPTER 4 THREE DISCRETE MODELS FOR Uncertain Spatiotemporal DATA

Definition 2: The uncertain real is defined as follows:

A crisp real may be stored by setting A=B and letting f be a function
which is 1 for a single number and 0 for all others.

For the uncertain real, one must store two real numbers and a reference to
the probability function used. Assuming this reference is the same size as a
floating-point number, this means that an uncertain real takes three times as
much storage space as a crisp real.

Chapter 3 describes two ways of handling functions which return
Boolean values in the crisp case. If the function that returns the value is capable
of determining the probability of the answer being true, that probability should
be returned. Otherwise, a third “Boolean” value, Maybe, is returned when the
result is uncertain. These two data types are defined as follows:

Definition 3: The probability is defined as a number between 0 and 1:

.

This probability may be stored in a computer as a floating-point number.

Definition 4: The uncertain Boolean is defined as follows:

If the crisp Boolean can be stored as a single bit, the uncertain Boolean
needs twice as much storage space because it needs two bits. However, in
many systems an entire byte is used to store a single Boolean and in those sys-
tems there is no additional storage space needed.

A type for an uncertain range, or set of intervals, is also needed. An un-
certain range is a one-dimensional probability function that for each number
gives the probability that the number is part of the range. An example of how
the uncertain range could be stored is illustrated in Figure 4.6. In this figure,
the light grey areas are the areas of uncertainty and the dark grey areas are the
areas where the range is certain to be. In a computer, one probably only has
some specific functions defined. Therefore, it is impossible to model the entire
range as a single probability distribution function. A more plausible approach

DAUReal a b pr, ,( )

a ℜ∈ b ℜ∈

pr: a b,[ ] ℜ +→

a b≤ ProbMass pr( )

∧ ∧

∧

∧

{

}

≡

DAProb 0 1,[ ]≡

DAUBool False Maybe True,,{ }≡
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is to split the range up into several parts each of which can be modelled by a
simple function.

One way to define the uncertain range from chapter 3 is to define each of
the light or dark grey areas as separate intervals and define the range as a col-
lection of such intervals. In this case, the range shown in Figure 4.6 consists of
five such intervals. However, the core of this range consists of only two crisp
intervals, and the support of this range is just a single crisp interval. The reason
why the core and support yields a different number of crisp intervals is the fact
that interval 3 from Figure 4.6 is uncertain and therefore is in the support but
not in the core. To be able to model such uncertain intervals as interval 3, mini-
mum and maximum probabilities must be included in the uncertain intervals.

Definition 5: The uncertain interval is defined as follows:

Definition 6: The uncertain range is defined as follows:

The in these definitions refers to the type that the interval or range is
tied to. This can be one-dimensional types such as integer, real or time.

In this model, each uncertain interval takes 2.5 times as much storage
space as a crisp interval (which requires two numbers) because two additional
real numbers must be stored as well as a reference to a probability function
(five numbers in total). Additionally, five such intervals are needed to store the
range shown in Figure 4.6. For a single interval with uncertainty as to the
length in both ends, three of the uncertain intervals defined here are needed.

Figure 4.6 Advanced uncertain range
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Interval 1 Interval 2 Interval 3 Interval 4 Interval 5

DAUInterval α( ) sv ev min max if, , , ,( )
sv α∈ ev α∈
min DAProb∈ max DAProb∈
if: sv ev,[ ] min max,[ ]→

∧ ∧
∧ ∧

{

}

≡

DAURange α( ) IS pe,( )
IS DAUInterval α( )⊆ pe DAProb∈
Finite is( )

a∀ IS∈ b∀ IS∈ a b≠, , Disjoint a b,( )→

∧ ∧
∧

{

}

≡

α
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This means that the storage space needed for an uncertain range is likely to be
2.5 * 3 = 7.5 times as high as that required for a crisp range.

4.4.2. Uncertain points

An uncertain point is a point for which the position is not known. It may
not even be known if the point exists or not.

Example 2: An animal with a radio transmitter may be tracked as
long as it is in the range of the sensors, but if it moves outside this
range, the people tracking the animal may only have a very general
idea of where it is.

The uncertain point in the abstract model from chapter 3 is essentially a
region with a probability density function indicating where in this region the
point is most likely to be found. In most cases, this region will be connected,
that is, be a single face. In the discrete model, this probability density function
becomes a probability mass function. An easy way to define the probability
mass function is to say that the value of the function is dependent on how far
the position in question is from the edge of the face compared to how far it is
from a central point. The central point is the point where the uncertain point
has the highest likelihood of being. This means that a one-dimensional proba-
bility mass function can be used to store the probability distribution of the un-
certain point. An example of an uncertain point is shown in Figure 4.7.

If one allowed a point to be in multiple disjoint faces, there would have to
be one such central point in each face, as well as stored probabilities for how
likely it is that the point is within any given face. Because allowing multiple
faces makes the model significantly mode complex and is not necessary for
most uncertain points, we choose to restrict uncertain points to a single face

The probability of the existence of a point may either be stored separately
or be determined by the probability density function. In Section 4.7, it will be
shown how the probability density functions may be stored and normalized so
that they yield an integral value of 1 regardless of the size of the face. To avoid

Figure 4.7 Advanced uncertain point
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making this process even more complex, the probability of the point existing is
stored separately.

Definition 7: The uncertain point is defined as follows:

The Increasing function returns true iff the input function always in-
creases, that is, its derivative is positive. No further requirements on the func-
tion are necessary because the function has to be normalized for the area of the
particular point anyway.

This definition allows for only one peak in the probability mass. This is
because the probability mass function is increasing and because it increases
when moving toward the central point.

One way to allow multiple peaks would be to allow multiple central
points and one probability function tied to each. This would result in a some-
what more complex model and more complex mathematics because one would
have to take the average of all these separate functions to get the actual proba-
bility values.

The face, which determines where the point may be, may take up much
more storage space than a single crisp point because its representation may
contain a large number of points. The storage space needed to store an uncer-
tain point with this model may therefore be very high compared to that needed
for a crisp point. To be able to model crisp points, the face must be allowed to
be only a single point, and the probability function must be a function with a
value of 1 in that point.

Set operations will need to return sets of points rather than individual
points.

Definition 8: The uncertain points set type is defined as follows:

4.4.3. Uncertain lines

The uncertain curve as defined in chapter 3 consists of a core line and a
set of gradient lines that cross the core line and that form a face together. The

DAUPoint pf cp ps pe, , ,( )
pf DFace∈ cp DPoint∈
ProbMass ps( ) pe DAProb∈
Inside cp pf,( )
Incre g ps( )asin

∧ ∧
∧ ∧

∧

{

}

≡

DAUPoints UP DAUPoint Finite UP( )⊆{ }≡
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core line is where the curve has the greatest likelihood of being. This arrange-
ment with an infinite number of gradient lines is impossible to store in a com-
puter, so an approximation must be used.

Instead of storing a set of gradient lines, the support is stored as a face. In
this way, the curve gets a finite representation. This is the same as for the un-
certain point. The gradient lines are computed when needed. The algorithm for
doing this depends on how the probability functions are stored. This is dis-
cussed in Section 4.7. A face rather than a region is used because a curve should
be continuous, and it cannot be continuous if the support consists of several
disjoint parts. One example of an uncertain curve is shown in Figure 4.8. The
support of this curve is the grey area.

The central curve is the thick line inside the grey area in Figure 4.8. This is
stored in a similar fashion to a crisp curve with the additional requirement that
any end points of the curve must also be on the boundary of the support.

The probability of existence of the curve may be stored together with the
central curve by associating a probability function with each line segment. This
works exactly like the uncertain range from Section 4.4.1 with a line segment
corresponding to an interval as defined in Section 4.4.1, and the entire curve
corresponding to a continuous range.

The uncertain line segment is stored with its two end points and a proba-
bility function over it. The segment itself is the straight line going between the
two points.

Definition 9: The uncertain segment is defined as follows.

Figure 4.8 Advanced uncertain curve

DUSeg sp ep min max sf, , , ,( )
sp DPoint∈ ep DPoint∈
min DAProb∈ max DAProb∈
sf: sp ep,[ ] min max,[ ]→

∧ ∧
∧ ∧

{

}

≡
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The probability of existence for the curve as a whole is stored separately.
This is both to make it easier to compute, and to be similar to the uncertain
point. This value should be multiplied to the probability function for the cen-
tral line to get the actual probabilities.

The uncertain curve is therefore defined with a central line, which is a set
of DUSeg, a face as support, a probability of existence and a probability function
for the gradient lines.

Definition 10: The uncertain curve is defined as follows:

Cross in this definition means that the two line segments cannot share
points. ContCurve returns true iff the input set of line segments forms a contin-
uous curve. This means that all the end points of the line segments except pos-
sibly for two must occur twice. The Endpoints function returns the end points in
a set of line segments which occur only once. The Points function returns the
points that are explicitly stored in the boundary of a curve or face1. The proba-
bility mass function pg is the function which determines the probability that the
line passes through a particular point of the gradient line.

Note that the central line is permitted to be a cycle in this definition,
which allows the modelling of uncertain cycles.

A crisp curve is stored by making sf equal to the central line. This is the
only instance in which sf is allowed to be something other than a valid member
of DFace. The probability mass function is in this instance equal to 1 on the cen-
tral line and 0 otherwise.

Each segment of the central line stores two probability values (two num-
bers) and a reference to a function (one number) in addition to the two end
points (which consist of two numbers each). This means that they consume
7:4=1.75 times as much space as a crisp line segment. The outer cycle of the sur-
rounding face takes twice as much space as a crisp line if it is stored with the
same accuracy. If the support of the line has holes, these take more space. If

1. The points which the straight lines are drawn between.

DAUCurve sf CC pg pe, , ,( )
sf DFace∈ CC DUSeg⊆
ProbMass pg( ) pe DAProb∈

a∀ CC∈ Inside a sf,( )→
ContCurve CC( )

a∀ CC∈ b∀ CC∈ a b≠, , Cross a b,( )¬→
a∀ Endpoints CC( ) b Points sf( )∈∃∈ a b=→

∧ ∧
∧ ∧

∧
∧

∧

{

}

≡
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each line has one hole on average, and each hole has as many border points as
the core line, the uncertain line of this model takes 1.75(core line) + 2(outer cy-
cle) + 1(hole cycle) =4.75 times as much storage space as a crisp line. It is most
likely, however, that most lines do not have holes. In this case, the storage re-
quires is 1.75+2=3.75 times that of a crisp line.

This method of defining uncertain curves is different from the method
used in [FGNS00] for crisp curves. In their model, an uncertain curve is just a
single line segment and the uncertain line is an arbitrary set of these. This ap-
proach cannot be used in the uncertain case. The shape of the support of the
uncertain curve from the abstract model in chapter 3 is not necessarily related
to the shape of the central curve. The support is also required to be a crisp face,
which is a set of cycles. A cycle is a set of line segments which together form a
closed line, and it is both easier and better to store a cycle as a closed line rather
than as a set of unrelated line segments. Thus, the support of the uncertain
curve cannot be divided in this way. When the support cannot be divided in
this way, there is little point in using this method to divide the central curve.

An uncertain line is a set of uncertain curves. In the abstract model from
chapter 3, the uncertain curves are required to be disjoint to ensure uniqueness
of representation. When data about uncertain lines is stored, the uncertain
curve should be used as it adequately covers the normal concept of a line, and
the uncertain line should normally be reserved for temporary constructs and
query results. Therefore, the restriction of disjointedness is not really needed in
the discrete case unless one wants to model an uncertain graph. The latter is
outside the scope of this thesis. Relaxing this requirement also makes the set
operations much easier to implement for uncertain lines because it is no longer
necessary to split curves that intersect or cross. Correctly splitting such a curve
is impossible in some cases. One example of this is the example in Figure 4.9. In
this case lines A and L may intersect, but do not necessarily intersect. Should
they be split or not, and in that case where?

Definition 11: The uncertain line is a set of uncertain curves:

4.4.4. Uncertain regions

Using a vector model to store indeterminate regions in a manner similar
to the one described above for lines and points has been done in [Sch96]. The
uncertain region model presented here will build on that model. The main ex-
tensions are storing a probability function and using the same methods for
building point and line models. An uncertain face may be stored as a crisp face
and a crisp region, where the region is contained in the face. The face is the

ADULine UC DAUCurve⊆ Finite UC( ){ }≡
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support and the region is the core. The core is a region rather than a face be-
cause a face with multiple disjoint cores can be used to model uncertainty
about the exact number of faces in a region. An example of an uncertain face is
shown in Figure 4.10. In this example, the dark grey area is the region indicat-
ing the core, and the union of all the grey areas is the face indicating the sup-
port.

Additionally, the uncertain face should contain a probability function for
determining the probability of the face existing in various parts of the area of
the uncertainty. It should also contain a probability of existence.

Figure 4.9 Possibly intersecting curves

A

L

Figure 4.10 Advanced uncertain face
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Definition 12: The uncertain face is defined as follows:

Additionally, there should be a means to indicate the value of the proba-
bility function inside uncertain holes such as the one in the upper right corner
of Figure 4.10. In this case, one might store a central point with either a proba-
bility value or a virtual distance from that point to the support.

A region is a set of disjoint faces. The uncertain region may be defined
either through the face definition or directly using crisp regions:

Definition 13: The uncertain region is defined as a set of uncertain faces:

To make it easier to compute the storage requirement of the uncertain re-
gion, an alternative definition is presented that defines the uncertain region
only in terms of crisp regions.

Alternative specification: The uncertain region can also be defined as a
core and a support region in a manner that closely resembles the DAUFace defi-
nition.

From this alternative definition, one can see that storing an uncertain re-
gion essentially requires the storage of two crisp regions. This means that the
storage requirement for an uncertain region is twice that of the crisp region.
The function reference to the probability function takes minimal space com-
pared to a crisp region. In Table 4.2, it says that faces require twice as much
storage space. When an uncertain region takes twice as much space as a crisp
one, the faces that it consists of should also take twice as much space as crisp
faces.

DAUFace sf cr ps pe, , ,( )
sf DFace∈ cr DRegion∈
ProbFunc ps( ) pe DAProb∈
Inside cr sf,( )

∧ ∧
∧ ∧

{

}

≡

DAURegion UF DAUFace⊆
Finite UF( )

a∀ UF∈ b∀ UF∈ a b≠, , Disjoint a b,( )→
∧

{
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≡

DAURegion sr cr ps pe, , ,( )
sr DRegion∈ cr DRegion∈
ProbFunc ps( ) pe DAProb∈
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4.5. Medium complexity model

The advanced model presented in Section 4.4 manages to model most of
the aspects of the abstract model in chapter 3, but at the cost of increased com-
plexity and increased storage space, especially for points. The advanced model
would be good for applications which require the full power of the abstract
model. However, for many applications a simpler model may be sufficient.
This section presents a model that is much simpler than the advanced one, and
the next section presents possible simplifications to make an even simpler
model, while maintaining the goal of modelling all uncertain spatial data
types.

4.5.1. Base types

The advanced model has a very costly but powerful model for uncertain
integers. A cheaper model would be to use something like the advanced model
for uncertain reals, that is, a probability function and an interval in which the
number may be. The interval might be expressed as two crisp integers, and the
probability function as a reference to the function. Such a reference does not
need to take more space than a crisp integer.

Definition 14: The uncertain integer is defined as follows.

This form of uncertain integer takes three times as much space to store as
a crisp integer because two numbers and a reference are stored rather than one
number. This is far less than the advanced model, and this method can still
store a wide range of functions.

The uncertain real is stored in the same way as in the advanced model.

If there is no need for uncertain holes in an uncertain interval, the uncer-
tain interval and range may be defined in a different manner to save space. The
uncertain interval may store four boundaries and one probability function, and
the uncertain range is still a disjoint set of such intervals. The four boundaries
are: start of support, start of core, end of core and end of support. Figure 4.11
contains an example of such a range containing two intervals. The light grey ar-
eas are the areas of uncertainty, and the dark grey areas are where the intervals
are certain to exist.

DMUInteger a b pi, ,( )

a Z∈ b Z∈ pi: a b,[ ] ℜ +→

a b≤ ProbMass pi( )
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≡
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Because a single interval now contains both core and support, the uncer-
tain range does not need to contain nearly as many intervals, and the uncertain
interval means what one intuitively expects it to mean. However, the definition
of the interval becomes somewhat more complex.

Definition 15: The uncertain interval is defined as follows.

The probability function is used between a and b and reversed between c
and d. Between b and c, the probability value is 1. An alternative would be to
store two different probability functions for the start and end of the interval.
This would increase the storage cost for a single interval by +0.5. A single func-
tion is chosen because a given interval is likely to have similar behaviour in
both edges.

The uncertain range in this model is defined exactly as in the advanced
model, except that the medium complexity interval type is used instead of the
advanced one.

For a single interval, one needs to store four border values instead of two,
and also needs to store a reference to a probability function. Therefore, an un-
certain interval takes (4+1):2=2.5 times as much storage space as a crisp inter-
val. This is the same as in the advanced model. However, an uncertain interval
with uncertainty about the length at both ends may be stored with just a single
interval in this model, rather than three as in the advanced model. Thus a range
consisting of such intervals costs 1/3 as much storage space as in the advanced
model. However, for crisp intervals the two models are equally inefficient, be-
cause one interval of either type must be used to store a crisp interval, and both
types of interval take the same amount of storage space.

Uncertain Boolean values and probabilities are stored the same way as
in the advanced model.

Figure 4.11 Medium complexity range containing two medium complexity intervals
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4.5.2. Uncertain points

One major problem with the advanced model for uncertain points is that
the storage space needed may be far larger than that needed for crisp points. If
the database models mainly points and if storage space is an issue, models re-
quiring less storage space may be needed. One way to limit the amount of stor-
age space needed is to limit the number of points that make up the boundary of
support of the uncertain point. One natural way of doing this would be to store
the distance from the central point to the boundary of the support at certain
predefined angles, such as every 45 degrees. An example of such an uncertain
point is shown in Figure 4.12.

The probability mass values of the uncertain point can now be computed
based on the relative distance from the central point and the edge of the sup-
port.

Definition 16: The uncertain point is defined as follows:

In this formula, CVS is the number type used to represent the coordinates
of DPoint values.

The disadvantage of this model compared to the previous one is that it
cannot model holes, and that it can only model uncertain points in which there
is a straight line from the central point to any point in the support.

Another problem with this model is that the results of spatial set opera-
tions such as finding the intersection of an uncertain point and a face1 are not
necessarily members of the base type. They are not members because the result

1. This is the part of the support of the uncertain point that is inside the face.
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Figure 4.12 Medium complexity uncertain point with eight angles.
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can have corners in different places than on the particular angles that are stored
for the uncertain points. One solution is to store the normal point and to indi-
cate that the probability mass function is the product of the normal probability
mass function and the probability distribution function of the face. This prob-
lem does not occur in the advanced model because the face can be an arbitrary
face in that model.

One advantage of this model compared to the advanced one is that the
storage space needed is known and bounded. Storing a single distance for
every 45 degrees yields eight numbers. Because the central point needs two
and the probability mass function requires one, this means that the uncertain
point takes 11 numbers to store, or 5.5 times as much as a crisp point. For a
number of angles n, the uncertain point takes times as much
space.

The uncertain points set type is defined as in the advanced model except
that it contains medium complexity uncertain points.

4.5.3. Uncertain lines

The storage cost for an uncertain curve in the advanced model is 3.75
times that of a crisp curve. This section will describe a model which takes
somewhat less space. Another advantage is that it is very easy to compute
probabilities for this model. The method for doing this will be described in
Section 4.7. Some disadvantages are that the model presented here does not al-
low holes, and the shape of the support is partially determined by the shape of
the central line. Another problem is that spatial set operations, such as finding
the parts of an uncertain line that is inside a given region, may require some
additional support. This problem is further discussed in Section 4.5.4 because it
occurs a lot more often for medium complexity uncertain faces than for lines.

The basic idea is to store a central line, as well as crossing lines for each
stored point along the central line. These crossing lines are equally long on
each side of the central line, and determine the extent of the support of the line.
These crossing lines are the “gradient lines” from Section 3.4.3 for the end
points of each line segment. In the interior of the line segment, the gradient
lines have an angle which is linearly interpolated between the two gradient
lines at the end. The support of the uncertain curve is determined by taking
straight lines between the ends of all the crossing curves. Straight lines are used
to make it easier to run plane-sweep algorithms on the support.

n 2⁄( ) 1.5+( )
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One example of a line stored in this fashion is shown in Figure 4.13. One

can clearly see from this figure how the crossing lines determine the shape of
the support of the uncertain line.

The only aspects that need to be stored about the crossing lines (hereafter
called CrossCurves) are the length of the line and the angle between the line and
the segment to which it belongs.

Definition 17: The CrossCurve is defined as follows:

In this formula, ANG is an angle. Angles are represented with floating-
point numbers.

A line segment in this model may be defined as a single line segment of
the central curve and the CrossCurves at each end of it. Each line segment con-
tains a probability distribution function indicating how likely it is that the ac-
tual line exists in the various parts of the segment. The line segment also
contains a probability mass function which applies along the CrossCurves. Stor-
ing the probability mass function in the segment rather than for the entire
curve makes one able to use different functions for different parts of the curve.
However, there will be discontinuities in the probability values if the function
changes. Therefore, most curves should use a single function throughout the
curve.

Definition 18: The medium complexity uncertain segment is defined as fol-
lows:

Figure 4.13 Medium complexity uncertain curve

DCCur a b,( ) a CVS∈ b ANG∈∧( ){ }≡

DMUSeg cc bc ec pc, , ,( )
cc DUSeg∈ bc DCCur∈ ec DCCur∈
ProbMass pc( )
CenteredOn bc cc.sp,( ) CenteredOn ec cc.ep,( )

∧ ∧ ∧
∧

∧

{

}

≡
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CenteredOn means that the given point is on the middle of the CrossCurve.
Note that in the advanced model, the uncertain curve as a whole cannot be split
into uncertain line segments. The advanced uncertain segments are only parts
of the central curve.

Definition 19: The medium complexity uncertain curve is defined as follows:

Ccross for uncertain segments is true iff their central curves cross. In Fig-
ure 4.13 the CrossCurves at the end have length 0. To model a crisp curve, all the
CrossCurves should have length 0.

Compared to a crisp line, the CrossCurves and function references have an
additional cost. A single CrossCurve contains two numbers. That means that the
two crosscurves in the uncertain segment require four numbers. The advances
uncertain segment requires seven numbers. The probability mass function re-
quires one number. Because a crisp line segment can be stored with four num-
bers, an uncertain line segments takes 12/4=3 times as much space as a crisp
one. This is only slightly better than for the advanced model.

The uncertain line is defined as in the advanced model except that it uses
medium complexity curves.

4.5.4. Uncertain regions

One problem with both the abstract model from chapter 3 and the ad-
vanced model presented earlier is that the border of an uncertain region some-
times is not a valid uncertain line. This may be solved by defining the uncertain
face in the same way as the crisp face with the exception that uncertain cycles
are used instead of crisp ones. The uncertain cycle here is a special case of the
uncertain curve in which the start and end points and crosscurves are the same
and the curve has the same probability of existence over the entire curve. An
example of such a face is shown in Figure 4.14. An uncertain hole in the core
can be stored in this model by using an uncertain cycle which is not certain to
exist.

Definition 20: The uncertain cycle is defined as follows:

DMUcurve SS pe,( )
SS DMUSeg⊆ pe DAProb∈
ContCurve ss( )

a∀ SS∈ b∀ SS∈ a b≠, , Ccross a b,( )¬→

∧ ∧
∧

{

}

≡

DMUCyc sc DMUCurve∈
IsCycle sc.SS( ) ConstProb sc.SS( )∧

{
}

≡
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In this definition, IsCycle means that the set of uncertain segments forms a
cycle. A set of uncertain segments forms a cycle iff both the central line and the
outer lines form cycles. ConstProb means that all the line segments in the set
have the same constant probability of existing.

Because the uncertain parts of the object are uncertain lines and these can-
not have holes, this model cannot store holes in the support. It also cannot store
a face with multiple core regions.

However, it is very easy to determine the probability function at individ-
ual points as well as iso-lines of probability. In Section 4.7 it will be shown that
this is even easier for these regions than it is for medium complexity uncertain
lines.

The uncertain face also uses a different kind of probability function than
an uncertain curve. In the grey area enclosed by the cycles, the probability of
existence is always 1. Inside the supports of the uncertain cycles, the probabil-
ity of existence is the sum of the probability mass function of the uncertain
curve taken from outside and inward. To avoid having to compute this, it
might be better to store this sum directly rather than the probability mass func-
tion for the curves. If the function of the curves is also needed by the applica-
tion, both may be stored together.

The definition of the uncertain face is taken from [FGNS00] and modified
to use uncertain cycles.

Figure 4.14 Medium complexity uncertain face
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Definition 21: The uncertain face is defined as follows:

In this definition, EdgeInside means that all the line segments of a are in
the interior of the cycle defined by bc with 100 % certainty, and EdgeDisjoint
means that the interiors of two cycles are certainly disjoint. The sum of a prob-
ability mass function is a probability distribution function. Therefore, ps is a
probability distribution function. Existence is the probability that an uncertain
object exists.

The definition of the uncertain region in this model is the same as Defini-
tion 13 except that medium complexity faces are used.

To make this model computationally closed under normal set operations,
ways of dealing with uncertain curves that cross each other must be intro-
duced. Figure 4.15 shows the union and intersection of two example objects.
From this figure, one can see that the results of such set operations contain
places in which one has to use just parts of some uncertain segments. The dot-
ted lines from the figure shows where the segments are divided. This line also
separates the segments that originated in the two curves.

However, this does not solve the problem when there is one or more
CrossCurves inside the area in which the lines may possibly intersect as shown
in Figure 4.16. This problem may be solved by adding a new type of “line seg-
ment” called a CrossSet to the uncertain curve. In Definition 19, the CrossSet be-
haves like a MUSeg.

DMUFace bc HS ps pe, , ,( )
bc DMUCyc∈ HS DMUCyc⊆
ProbFunc ps( ) pe DAProb∈

a∀ HS∈ EdgeInside a bc,( )→
a∀ HS∈ b∀ HS∈ a b≠, , EdgeDisjoint a b,( )→

bc.sc.pe 1≡

∧ ∧
∧ ∧

∧
∧

{

}

≡

Figure 4.15 Union and intersection of medium complexity regions

a) Original objects b) Union c) Intersection
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The CrossSet contains all the uncertain segments that might possibly inter-
sect the area in which the two curves may intersect. Figure 4.17 contains an ex-
ample with four curves in the CrossSet. The CrossSet is computed as follows:

• Label the two curves as curve A and curve B. For each of these two
curves, store all the segments that have supports that intersect the area
in which the two curves may cross. Figure 4.17a contains two example
curves that cross.

Figure 4.16 Crossing lines with CrossCurve inside area of intersection

Figure 4.17 Constructing a CrossSet

a) The two lines that cross. b) The separating line between two
segments.

c) Alternative result 1 d) Alternative result 2
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• For any pair of segments, where one is from curve A and the other from
curve B, compute the separating line (the dotted line from Figure 4.15).
This may require that one or both segments are extended beyond their
normal end. In Figure 4.17b, the separating line between the two seg-
ments given with thick lines is computed. Because it is not certain that
the two line segments intersect, they must be extended beyond their
normal ends with the lines of medium thickness. The resulting separat-
ing line is the thick dotted line in the middle of the figure.

• On one side of the dividing lines use the line segment from curve A. On
the other side, use the line segment from curve B. In Figure 4.17c and d,
the thick lines indicate the two alternative CrossSets that can result from
the two example curves.

Whether the result from Figure 4.17c or d is used depends on whether the
CrossSet was the result of a Union or Intersection operation in the same manner
as this is done for two normal line segments in Figure 4.15.

Definition 22: The CrossSet is defined as follows:

The function SepLine returns true iff the crisp line segment is a separating
line between the two uncertain line segments.

One problem that needs to be solved is if two CrossSets cross. A simple so-
lution to this problem is to approximate by creating a new CrossSet that uses
only those line segments that extend outside the area in which the curves may
cross and disregarding the two others, which contribute only small parts to the
CrossSet. In Figure 4.17c, the two segments that extend outside are segments a2
and b2.

A more complex solution to the previous problem would be to allow the
CrossSet to contain other CrossSets in addition to uncertain line segments. How-
ever, this will increase the storage requirement greatly and only give a minor
increase in accuracy.

The increase in storage space for an uncertain region compared to a crisp
region in this model is the same as for the uncertain curve. This means that it
actually costs more storage space to store a medium complexity uncertain re-
gion than an advanced one. However, the basic uncertain segment stores some
numbers that are not really necessary for uncertain regions. The probability of

DCSet A B SL, ,( )
A DMUSeg⊆ B DMUSeg⊆
SL DSegment⊆

a∀ A∈ b∀ B∈ sl∃ SL∈, , SepLine sl a b, ,( )→

∧ ∧
∧

{

}

≡
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existence for each end point in each uncertain segment is unnecessary because
all probabilities of existence should be the same for all uncertain segments that
are parts of the boundary of an uncertain face. The same reasoning applies to
the reference to the probability function along the uncertain segment. If one
does not store these, the storage space used is reduced from 3X to 2.25X. This is
only slightly more than the advanced model uses.

However, for this slight increase in storage space, we gain the ability to
compute alpha-cuts and the probability that a given crisp point is inside the re-
gion in an efficient and consistent manner. In Section 4.7 it will be shown that
this is very difficult for the advanced model. Additionally, all but the first
method for computing the probability functions for the advanced model in-
creases the storage space required to even more than 3X.

4.6. Simple model

This section describes a very simple way of modelling uncertainty in spa-
tial data. To save space, the simple model does not store probability functions
but rather assumes a uniform probability distribution or probability mass. This
makes computing the probabilities simple but does not allow the more accu-
rate probability computations of the advanced and medium complexity mod-
els. This model may be used by those applications that do not require
advanced features or that cannot afford much complexity.

4.6.1. Base types

The easiest way to store an uncertain number, regardless of type, is to
store a single value, a deviation, and possibly a probability function. An exam-
ple of such a number is shown in Figure 4.18. This example assumes a uniform
probability mass. A number stored in this way takes up twice as much space as
a crisp number. This definition covers the uncertain integer and uncertain
real.

Value

Expected
value

Deviation

Figure 4.18 Simple uncertain number
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Definition 23: The simple uncertain number is defined as follows:

In this definition, is the type of number one wants to make uncertain.
This type of uncertain number takes twice as much space as its crisp equivalent
rather than three times for the medium complexity model. This assumes that
the probability function is not stored. A function reference to a probability
function would bring the storage cost of this type to the same level as that for
the medium complexity model.

The only way to make the uncertain interval simpler is to remove the
probability function and instead assume a probability of 0.5 in the area of un-
certainty. This reduces the storage cost from 2.5 to 2 times as much as a crisp in-
terval.

The uncertain range is the same as in the medium complexity model ex-
cept that it uses simple uncertain intervals.

The uncertain Boolean and probability are the same in the simple model
as in the medium complexity model.

4.6.2. Uncertain points

The simplest way to store an uncertain point is the way described in
[Dut92]. This method stores a point as a central point with a circular deviation
of a certain radius and assumes a probability function. (A Gaussian function is
assumed in [Dut92].) A point stored in this fashion is shown in Figure 4.19.

Definition 24: Simple uncertain point:

This way of storing an uncertain point takes 1.5 times as much storage
space as storing a crisp point because it needs one additional number and a
point requires two numbers. A crisp point can be stored by setting r to 0.

The uncertain points set type is the same as in the medium complexity
model except that it contains simple uncertain points.

DSUNumber α( ) ev d,( ) ev α∈ d α∈∧{ }≡

α

Uncertainty

Figure 4.19 Simple uncertain point

DSUPoint a cp,( ) a CVS∈ cp DPoint∈∧( ){ }≡



4.7. STORING AND COMPUTING PROBABILITY FUNCTIONS 123

4.6.3. Uncertain lines

The simple uncertain curve and uncertain line are based on the medium
complexity ones. An alternative would be to store the uncertain line as a series
of uncertain points as described in [Dut92]. This would yield a rather strange-
looking line with bulges where each point is. However, if the uncertain line is
measured as such points, this is a perfectly valid model.

Which of these two models is the most appropriate depends on the meas-
urements used. If these are points, they could be directly stored in Dutton’s
model. However, if the model is derived in another way, our model is better
for the reasons given in Section 4.3.

One natural restriction to the medium complexity uncertain curve and
line is to require that the angle of the CrossCurves be the same with regard to
both the incoming and outgoing line segments. In this case, the angle would
not need to be stored. Additionally, one can save some space by not storing a
probability function or a probability mass function and by storing a single
number that indicates whether this segment is uncertain to exist or not rather
than two probabilities in the end points. This would save five numbers for each
line segment and make the storage required 1.75 times that of a crisp curve
rather than three times. This is slightly more than the 1.5 times that a Dutton
style uncertain curve would require, but we retain the ability to store uncer-
tainty about the length of the curve, something that the Dutton model lacks.

4.6.4. Uncertain regions

The uncertain cycle, uncertain face and uncertain region are defined in
an identical manner to the medium complexity one, except that simple uncer-
tain curves are used. This means that the extra storage space used for an uncer-
tain cycle, face or region compared to a crisp one is the same as for the simple
uncertain curve. An extension to Dutton’s model would be to store a region as
a set of closed curves as in his model. The reason that we do not choose this is
the same as for the simple uncertain line

4.7. Storing and computing probability functions

Different means of storing and computing probability functions for use in
a vector model will be discussed in this section. The first section contains a dis-
cussion of how to store the probability functions. The second, third and fourth
sections will describe various ways of computing the probability functions for
the advanced model, and the last section will discuss how to compute the prob-
ability functions for the simpler models. This section will focus mostly on the
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advanced model, because computing probabilities and iso-lines are more com-
plex in this model than in the medium and simple models.

Another goal of this section is to find ways of using one-dimensional
functions to compute the probabilities or probability densities rather than two-
dimensional ones. This is done because one-dimensional functions are much
easier to define for the user of the system and much easier to store and com-
pute.

4.7.1. Storing probability functions

There are several alternatives as to how functions should be stored. The
simplest alternative is to provide a set of predefined functions which are de-
fined symbolically. A good set of functions might be the constant function for
the cases in which nothing is known about the probabilities, the linear function,
and the Gaussian function. If one needs sums (such as if one wants to store
both the function for a medium complexity uncertain region and the function
for the lines that make up its border), one might want to store the symbolic in-
tegrals of these functions as well. By storing these symbolic integrals along
with the functions, they can be accessed fast and do not need to be computed.

Another alternative would be to let the user define the functions and store
these as separate objects in the database. This would require the ability to store
these functions somehow. A method for storing approximated probability
mass functions in databases is described in [DS98]. In this method, each func-
tion is defined by a certain number of blocks with the same probability, but
covering areas on the number line of possibly widely varying length. This
means that the function is not stored symbolically, but that some values com-
puted with the function are stored instead. These stored blocks together form a
kind of step function.

Which of these methods one should choose depends on the data. If one
needs detailed probability distributions for a few functions, the first method
should be used because it allows more precise calculations. If one needs to be
able to register a lot of different functions, especially if one wants the user to be
able to register his/her own functions, the second approach should be used be-
cause it allows easy storage in the database. The second method also benefits
from increased speed, as it is far cheaper to look up a table of blocks than it is to
compute a complex formula on the fly.

The probability functions must also be scaled so that they always yield
the proper sums regardless of the physical size of the object. This applies to the
probability masses of points and along the gradient lines. The sum of the prob-
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abilities of the point or line being at any of the possible coordinate values must
be one1. For uncertain curves one can just divide the function results by the
length of the curve. For an uncertain point, however, this is a problem because
here the sum over the entire plane must be one, not just over a single line. Pos-
sible solutions to this problem are discussed in each method for computing
probability functions.

The probability mass functions should be functions that accept input
values from 0 to 1 and the sum of the probability of all possible positions must
be 1. The actual distances should be scaled to be between 0 and 1. The values
should be scaled to the number of possible values. [DS98] describes a way to do
this for temporal uncertainty.

4.7.2. Computing values using distance from centre and edge

The following is a method for computing the values of the probability
functions for all the spatial types in the advanced model. In this method, the re-
lationship between the distance from the point to the support, ds, and the dis-
tance from the point to the core, dc, is used to compute the probability (for
regions) or probability mass (for lines and points). For regions, this is the prob-
ability that the region contains this crisp point. For lines, this is the probability
that the line goes through this crisp point. For points, this is the probability that
the point is in this position. The value is computed using Equation 1. The dis-
tance to the core or support is the minimum distance that can be achieved by
only going through points that are in the support of the object. Examples of
these distances for objects with and without holes are shown in Figure 4.20.

Equation 1:

This approach is simple for computing the probability of a single point,
but it has several disadvantages for other operations. First of all, it cannot be
used reliably to compute iso-lines of probability. It is not feasible to compute
each and every point along such an iso-line directly. An alternative would be to
compute only some points and draw straight lines between them. The problem
with this is that it may introduce inconsistencies. A point may be outside the al-
pha-cut returned, but when one asks about the probability of that particular
point it may be on or slightly above the alpha-cut threshold. In Figure 4.21, the
point P lies outside the computed alpha-cut but has an actual function value
above the alpha-cut threshold. Additionally, there is no simple way to choose
sample points which would yield small inconsistencies.

1. Because the existence is stored separately, this probability should not be less than one.

P p( ) F ds
ds dc+
----------------- 
 =
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Another problem is that there is no easy way to compute the sum over all
the potential points of an uncertain point to check whether it is above one or
not. If the function is stored symbolically, an analytic integration may be per-
formed. For a step function one can compute the areas with each value and
sum it. If the function is not a step function and an analytic integration is im-
possible, it is virtually impossible to compute this sum. For a continuous func-
tion, an approximation may be computed by taking sample points,
constructing a Voronoi diagram from them and the edge, and use the value in
the point over the entire Voronoi cell containing the point. An alternative is to
compute a set of iso-lines and use set values in each of the bands formed. The
value used should be that which is in the middle between the two iso-line val-
ues. This essentially transforms the function into a step function.

To core

To support

Figure 4.20 Computing probabilities for uncertain region

Actual Alpha Cut(0.5)

Sample points

Computed Alpha-Cut(0.5)

P

Figure 4.21 Inconsistency of alpha-cut
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For lines one can get an approximate normalization by dividing the result
of the function by ds+dc. This assumes that the gradient line through a given
point follows a path consisting of straight lines. For instance, the gradient line
that goes through point A in Figure 4.22 is assumed to follow two straight lines,
one of which goes through point B. This is not a perfect normalization, how-
ever, because the gradient lines will not really follow this path. If one followed
the path through A, point B would have a fairly high value, but if one followed
the shortest path through point B, point B would have a value about as low as
that of point A.

This method of computing probability functions does not incur any addi-
tional storage cost.

This method of computing probability functions can be used for all spa-
tial objects, but does not really support operations like alpha-cut well. One of
the other methods should be used if possible.

4.7.3. Triangulation between core and support

If the spatial object does not have holes, and the support does not have
concavities that are not shared by the core, a solution to the problems of the
previous method is to create a triangulation between the core and the support
like that shown in Figure 4.23. This may be done for regions by using the algo-
rithm for creating a sliced representation found in [TG01]. For lines, a modified
version of this algorithm may be used, and for points, lines may be drawn from
all the corners in the support to the central point.

The reason that holes and concavities in the support cannot be handled is
that some of the new lines that are inserted may be partially outside the object
itself. There may be some cases with concavities in the core in which some lines
will go through the core as well. In these cases, the algorithm will yield strange
results.

The probability function is computed over the lines of the triangle. Figure
4.24 shows an example triangle containing a point. For the point p in Figure

Figure 4.22 Uncertain line with bulge in support

A

B
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4.24, draw a line that passes through both p and a. For a triangle with a line
along the support, a is the point that is on the core. For a triangle with a line
along the core, a is the point that is on the support. Then the function may be
normalized so that the sum over this line from the core to the support is one
and then computed for point p using Equation 1 as shown in Figure 4.24. For
regions, the iso-lines only need to be computed along the triangle edges, and
straight lines drawn between them. This will yield a consistent result. For any
point along this straight line, this method of computing the function will yield
the same result. This only works for lines when the probability functions are
linear. This is because any other function would cause the iso-lines to become
curved.

For uncertain points, the function may be normalized by computing the
sums in each triangle and summing all the triangles. If the function is a step
function, the following method may be used to compute the sum of all the
probabilities:

• Find the points corresponding to the start and end of each step of the
function on the two triangle legs ending in the core point.

• Draw a line between these points.

Figure 4.23 Triangulation between core and support

a
p

ds
dc

Figure 4.24 Computing probability function for arbitrary point using the triangula-
tion method
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• Compute the area of the resulting polygon with four vertices.

• Multiply this area with the value of the function in this block.

Computing this for all the blocks yields the integral over that triangle. Re-
peat this for all triangles to get the integral of the function. This number should
then be stored in the uncertain point so that the function values may be divided
by it later.

One problem with this model for uncertain lines is that the function val-
ues in the points along the core line in which several triangles have their end
points are undefined. This is because many lines meet at this point. These lines
may have different lengths and may therefore be normalized differently.
Therefore the functions along them will yield different values for the point
along the central curve.

Another potential problem is that iso-lines of non-linear functions are not
straight because of normalization. However, in Section 4.10.2 it will be shown
that iso-lines are not that useful for lines and points, but what is useful is rela-
tive probability. This can be determined for lines and points in the same way as
iso-lines for regions. Using relative probabilities also removes the problem of
inconsistent probability values described in Section 4.7.2.

This model requires more storage space than the method from Section
4.7.2 because the additional lines in the triangles must be stored. A triangula-
tion requires one additional line for each point in either the core or the support.
These lines may be stored either as references in each point or as a list of refer-
ences linking two points together. Assuming a reference takes as much space
as a single number, this means that the lines take about half as much space as
all the points on both the core and the support.

For points, this does not increase storage space as all the lines are as-
sumed to go from the support to the central point. For lines, the triangulation
between the core line and one side of the support would require one line seg-
ment for each line segment in the core line and support. Because the points are
already stored, only two references are needed to store these lines. Therefore
the triangulation between the core and one side of the support takes as much
space as the core line, which takes as much space to store as a crisp line. Be-
cause this cost applies separately to each side of the support, the storage re-
quired for uncertain lines increases by +2X the space of a crisp line.

For regions, there must be a triangulation between the core cycles and the
support cycles. The triangulation between these two cycles takes as much space
as a single cycle with the same number of points as either the core or the sup-
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port because there is one additional number per point and there are two points,
one on the core and the other in the support. Therefore, the storage required for
uncertain regions is +1X the space of a crisp region.

4.7.4. Storing boundary area as simplical complexes

The major problem with the second model is that it can neither store holes
nor some concavities. This is because it may not be possible to create a triangu-
lation that makes sense when there are holes in the support without corre-
sponding holes in the core.

In some cases one may know the probabilities of the object existing in cer-
tain points precisely. This is the case in a lake with varying water level, because
the probability that there is water there is directly related to the height of the
point. In these cases one may use these points as additional base points for a
triangulation as shown in Figure 4.25.

The boundary area (the area that is in the support but not in the core) is
then stored as a set of triangles instead of with just the core and support. This
means that the storage cost of this variant may be much higher than for the pre-
vious model, as there may be any number of measured points.

This approach solves the problem of holes if there are enough measured
points. Enough in this sense means enough to create a triangulation that makes
sense, that is, all triangle edges are inside the support of the object. Whether
any given set of measured points is enough may be difficult to test without at-
tempting to create the triangulation. This type of triangulation is created by

Figure 4.25 Triangulation with extra points



4.7. STORING AND COMPUTING PROBABILITY FUNCTIONS 131

drawing a line from each corner in the core or support to the closest point. This
may be one of the additional base points or another point on either the core or
the support, whichever the starting point is not on.

To use this approach for large data sets, the measured points must be
available in advance. In many cases, such measured points are not available or
the lack of measurements is itself a source of the uncertainty. In these cases this
approach is not useful.

The user may create “measurement points” when storing data and use
some other form of interpolation to get the values in those points. However,
this requires a lot of user interaction with the system. It also requires a very
skilled user because one has to know which points need to be computed. It is
also not feasible for temporal data where one may have hundreds of snapshots
for the same object, each of which may need its own measured points.

Another problem with this method is normalization. For uncertain points,
the method described in Section 4.7.3 may be used. For uncertain lines, how-
ever, it is not so simple, because it may be impossible to determine where the
gradient lines go. The function must be normalized by dividing it by the length
of the gradient line, so if its length is unknown, the function cannot be correctly
normalized.

4.7.5. Computing probability functions for medium and simple
models

For the lines and regions in the medium complexity and simple models,
computing the probability functions is easy. In the end points of each uncertain
line segment, the probability is computed along the CrossCurves. In the interior,
the function value for a point p should be computed as follows for regions:

Figure 4.26 Computing probability values for medium and simple uncertain
segments
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1. Take the lines A and B (the central line) from Figure 4.26 and compute
the point M in which they intersect.

2. Compute the line C from M to p.

3. Compute the point c or d where the line C crosses the CrossCurves.

4. Compute the distance H between the point c and the central curve B
along the CrossCurve.

5. Find how long H is compared to the CrossCurve. This ratio determines
the value of the probability distribution function for point p.

Two special cases need to be considered. The first is if the lines A and B
are parallel, because in this case there is no meeting point M. In this case, the
line C should be parallel to A and B and go through p.

The second is if the line A has length 0. In this case the line A becomes the
point a. Compute the line K that passes through both a and p. H is now the dis-
tance from p to the line B along K, and the ratio from 5) uses the length of K in-
stead of the length of the CrossCurve.

For uncertain lines, an additional step is needed to compute the probabil-
ity function along the central curve. For a region, this is always 1 and therefore
one does not need to compute it.

6. Find how long the distance L is compared to the distance between c
and d. This ratio is used to find the probability that the curve exists at
point p.

For lines, one also uses a probability mass function along the gradient
lines rather than a distribution function. This mass function needs to be nor-
malized to yield a sum of 1 regardless of the length of the gradient. Instead of
using H and the length of the CrossCurve to determine the probability function,
one has to find the length of the gradient that passes through p. The angle be-
tween this line and line B is linearly interpolated. Because the length of L is
known, this ratio is easy to determine. One then needs to find where this gradi-
ent crosses A and B. Then the distance between A and B along the gradient and
the location of p on the gradient is used to determine the value of the probabil-
ity mass function.

This method of computing probabilities has several advantages com-
pared to other models. In Dutton’s model for uncertain lines, one would need
to take the sum of the probabilities of all the possible lines that might cross p to
determine the probability that the line was in p. This is much more costly than
the procedure outlined above. In the advanced model there is the problem of
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consistency from Figure 4.21, which is solved for the medium and simple mod-
els by this approach.

For points, the normalization in the medium complexity model is done as
described in Section 4.7.3. In the simple model, one divides the probability
mass function by the area of the support.

Computing iso-lines of the probability1 is also simple in the medium com-
plexity and simple models. The iso-line passing through point p in Figure 4.26
is line C.

4.8. Representing time and temporal uncertainty

An object may have uncertainty in the timing of events in addition to the
spatial shape. This section will discuss how to represent time for uncertain spa-
tial data as well as what the effect of uncertainty is on how spatiotemporal data
should be represented.

4.8.1. The temporal types

There are two temporal types: Time instants and time intervals. Types for
normal numbers and intervals have been described in Sections 4.4.1, 4.5.1 and
4.6.1. Time may be stored as either an integer or a floating-point number. In
this model, time is stored as a fixed-precision number to make its representa-
tion similar to the representation of the spatial dimensions.

4.8.2. Storing spatiotemporal objects

In [FGNS00], spatiotemporal data is represented as a set of time slices. In
each time slice the object evolves using a simple function. For a point, this sim-
ple function is linear movement. Thus a temporal point is stored as a set of dis-
joint time slices each of which contains a straight line in space-time. This line
describes the linear movement of the point in time.

A moving line is a set of line segments, each of which consists of two end
points. As noted in Section 4.3, this model does not allow rotating lines. Instead
it stores a rotating line segment as two lines each of which becomes a single
point at one of the ends of the time slice. Such anomalies are only permitted at
the ends of the time slices, not inside them. A region is stored as a set of such
lines. A method of interpolating between crisp regions to generate this storage
format is described in [TG01].

1. Iso-lines of relative probability for lines and points.
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The problem with using this approach for uncertain data is that the snap-
shots themselves may have temporal uncertainty, that is, one does not know
precisely when they were taken. This means that either the sliced representa-
tion must be extended to deal with time slices with temporal uncertainty, or the
temporal uncertainty must be eliminated by an interpolation algorithm so that
the time slices may use crisp time instants as borders.

Storing temporal uncertainty for the object as a whole can be done in a
similar manner as storing spatial uncertainty for uncertain lines. For each time
slice, one can store an advanced uncertain interval (regardless of whether the
advanced model is used for other types). This uncertain interval is considered a
time interval and stores the start and end times for the time slice as well as the
probability that the object exists at different times in that time slice.

4.8.3. Interpolating between snapshots with uncertain time

In this section, several possible algorithms are proposed to interpolate be-
tween snapshots with temporal uncertainty in such a manner that the resulting
sliced representation can be stored using crisp time slices.

Note that all the algorithms from Sections 4.8.3.1 to 4.8.3.4 cause temporal
uncertainty to be turned into spatial uncertainty. For instance, if one has a spa-
tially crisp moving region, but does not quite know when the snapshots were
taken, then the core of that region becomes smaller than its support because the
support is a conservative estimate and the core is a progressive one. Thus a
spatially crisp region with temporal uncertainty becomes a spatially uncertain
region without temporal uncertainty, but possibly with an uncertainty about
whether or not it exists at certain times.

4.8.3.1. Interpolating the support of uncertain objects by storing uncertain
time slices

The support of all uncertain spatial objects is a face or region, which is
composed of a set of cycles. Therefore, the support of a spatiotemporal version
is a set of moving cycles. This subsection will therefore discuss how one can
create a representation of an uncertain moving cycle given uncertainty about
the times of the snapshots. Although interpolation is not the main subject of
this chapter, it must be discussed in this context because the storage method
used will depend on the interpolation method used.

When one knows for certain when the two snapshots were taken, the al-
gorithm from [TG01] may be used to create the sliced representation from
[FGNS00] of the object. With uncertain time, one must take into consideration
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the various times the snapshots could possibly have been when creating the in-
terpolation.

If one stores the temporal uncertainty for each time slice, one does not
quite know where the lines of the border in space actually go. Figure 4.27
shows one example of two interpolations based on different times for snap-
shots 1 or 2. If one stores the temporal uncertainty in the time slices, the com-
puter does not know which of these to use. Even for a non-temporal spatial
query, the results would depend on the temporal uncertainty, and this aspect
would have to be computed at query time.

As Figure 4.27 shows, the two interpolations become different at different
time instants, but are both versions of the same interpolation. They are just dis-
placed in time.

Because the support of the uncertain object should contain all points in
which the object might possibly be, the support should be a conservative esti-
mate of where the object may be. This means that it must include all points that
are parts of the support for any combination of times for the snapshots.

To achieve this, we choose two sets of times, A and B. In A, both snap-
shots are at their earliest possible time. In B, both snapshots are at their latest
possible time. In Figure 4.28 there is an example of two time slices with uncer-
tain time, and the crisp time instants from each that would be included in A
and B.

The snapshots themselves are really the same regardless of which time
they are assumed to be in. Therefore the interpolations for A and B are the same
except that they are displaced in time. In Figure 4.28a the two lines to the right

Time slice 1 earliest time

Time slice 1 latest time

Time slice 2 earliest time

Time slice 2 latest time

Figure 4.27 Interpolations with different times
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of the time axis are the crisp time intervals that are represented by A and B. For
a given time instant TS, one checks where the time instant is on these lines. The
relative position of TS on each of those two lines is then converted into a
number between 0 and 1. This number is where the snapshots corresponding
to time sets A and B should be taken in the sliced representation between the
time slices. This is shown in Figure 4.28b.

However, because the snapshots could also be at intermediate times, sim-
ply taking the union of these two is not enough. This is because there may be
concavities in this union that the object may have been in if the snapshots actu-
ally are from intermediate times.

Label the time instant in the sliced representation given by time set A as
tA and the instant given by time set B as tB. To check for this movement, one
can look at the movement of the points that make up the border of the sliced
representation in the time from tA to tB and remove any concavities that any of
these points move through in this time. These concavities may be closed be-
cause if the point has moved through it, the support of the object is there in
some combination of times of the two snapshots. One example of this process is
shown in Figure 4.29.

The following procedure may therefore be used to find the support of an
uncertain spatiotemporal object at a given crisp time instant.

• Create a normalized1 interpolation between the two snapshots when
they are first stored. All the possible interpolations are versions of this

1. Normalized here means that the interpolated version starts at time 0 and ends at time 1.

Time

X

Y
Snapshot 1

Snapshot 2

Time Set B

Time Set A

Figure 4.28 Interpolating with between snapshots with temporal uncertainty
a) Time sets A and B. b) Sliced representation with indicated times.
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one with different start and end times because one always interpolates
between the same snapshots.

• At query time, find the normalized times corresponding to the follow-
ing two cases:

– Both snapshots are at the earliest possible time (tA)

– Both snapshots are at the latest possible time (tB)

• Take the part of the sliced representation that goes between times tA
and tB.

• Remove the time dimension from all the lines, including those that
depict movement of points1 and are not lines in any of the snapshots.

• Remove all lines and parts of lines that are inside the resulting object.

• The remaining line segments form the outline of the support.

In this method a lot of computation is delayed to query time. This means
that it is faster to store the data, but slower to query them. For a write-opti-
mized database, this would be a good solution. However, most databases are
read-optimized because there are many more queries than writes.

Only time instants, not time intervals can be queried when using this
method. This is because the computation would then have to be performed for
all the possible time instants in the time interval.

It is therefore usually better to use an interpolation algorithm that elimi-
nates the need to store temporal uncertainty in each time slice. The time slices
will then be crisp, and few computations about temporal uncertainty need to
be done at query time.

1. See Figure 4.30

Original Union including lines Finished estimate

Figure 4.29 Creating conservative estimate for support
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4.8.3.2. Interpolating the support of uncertain objects by taking conservative
estimates

One solution is to create a time slice which is a conservative estimate of
the real object. This is done by first assuming that all the snapshots are at the
expected time and then changing the snapshots so that they are conservative
estimates of the real snapshot. This can be based on the following procedure.

• For each snapshot there is a period of uncertainty. Take the following
interpolations:

– This snapshot and the earlier snapshot with the snapshots at the
latest possible time.

– This snapshot and the later snapshot with the snapshots at the ear-
liest possible time.

• Take the combination of the first interpolation at the earliest time of this
snapshot, the second interpolation at the latest possible time, and the
snapshot itself using the method described in Section 4.8.3.1.

• Use this value for the entire period of uncertainty

• Interpolate between these new snapshots in the areas of uncertainty.

The main difference between this method and the method in Section
4.8.3.1 is that the estimates of where the object might be are constructed when
the data are stored rather than when the user asks a query.

This method gives a conservative estimate of the support of the object.
The advantage of this method compared to the one from Section 4.8.3.1 is that

Figure 4.30 Different types of lines in 3D polyhedral version of sliced representation

Time
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Y

Line in object
Line depicting
movement of point
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it requires much fewer computations at run-time, and that it can be used for
uncertain time intervals as well as time instants. The disadvantage is that the
estimate is less accurate, and that this method requires more storage space. An
analysis of the storage requirements for this approach is given in Section 4.8.4.

4.8.3.3. Interpolating the support of uncertain objects by assuming constant
values

A very simple method which might be good enough in certain cases is to
use the snapshot itself as the object value in the entire period of uncertainty,
and use the normal interpolation method for objects without temporal uncer-
tainty between the snapshots. This method is an almost trivial extension to a
system which already uses the sliced representation, but is less accurate than
either of the other two representations because it does not guarantee that the
support of the object contains the object. In most cases this discrepancy is really
small, but if the object changed significantly and the periods of uncertainty are
large compared to the periods between the snapshots, this method yields very
inaccurate results.

Note that none of these three algorithms work if the times of the snap-
shots are so uncertain that the periods of uncertainty overlap. To do this with
any degree of accuracy, one would have to consider not only the previous and
next snapshots, but potentially others as well. When interpolating between two
snapshots, one would have to consider all snapshots that have periods of un-
certainty that overlap with the periods of uncertainty of either of the two snap-
shots under consideration.

4.8.3.4. Interpolating the core of an uncertain object

The core of an object is often a different type of object than the support.
For instance, the support of an uncertain curve is a crisp face while the core is a
crisp line. Therefore other techniques must be found to interpolate between the
cores.

The easiest case is the uncertain region because its core is also a region
and therefore the algorithm for support can be used. The only difference is that
the core should be a progressive estimate instead of a conservative one. This is
because a point should only be a member of the core if it is part of the core for
all possible times of the two snapshots.

This progressive estimate can be produced using any of the methods from
Sections 4.8.3.1 to 4.8.3.3. However, the progressive estimate for the methods
described in Section 4.8.3.1 and Section 4.8.3.2 must be computed differently.
Instead of taking the union of times A and B, one must compute the intersec-
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tion. Rather than closing concavities by adding to the interpolation, one must
remove outcroppings by subtracting from the interpolation. Any point moving
through an outcropping shows that at some intermediate set of times the out-
cropping was not part of the core. One example of this process is shown in Fig-
ure 4.31.

The following procedure may therefore be used to find the core of an un-
certain region:

• Let A and B be the two interpolations described in Section 4.8.3.1.

• Let C be the intersection of A and B.

• Remove the time dimension of all the lines as described in Section
4.8.3.1.

• For any of these lines crossing C, do the following:

– Go along the crossing line in the direction of time.

– Check the curvature of C at the end points of the line.

– If it curves to the left, remove the part of C that is to the left of the
line.

– If it curves to the right, remove the part of C that is to the right of
the line.

After this procedure, C is the progressive estimate of the polygon.

For the cores of lines and points, one does not have conservative and pro-
gressive estimates. For a point, the simplest solution is to use average values.
That is, use the expected time of the snapshot when interpolating the central
point. Because the support is a conservative estimate, one is always guaranteed
that this central point is inside the support.

Original
Intersection including lines Finished estimate

Figure 4.31 Creating progressive estimate for the core of an uncertain region
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A more complex solution is to take the average of the core as it would
have been with the snapshots at different times. This works like the method de-
scribed in Section 4.8.3.1 except that the average between the two values is
used rather than their combination.

The average is constructed using a modified version of the algorithm for
interpolating between two regions from [TG01] and then using the value in the
middle rather than trying to find a progressive estimate.

These solutions for uncertain points can be used for uncertain curves as
well with one modification. The central curve of an uncertain curve extends all
the way to the edge of the support in the definitions of the uncertain curve.
However, when the support is a conservative estimate and the central curve
uses the expected times, it is no longer guaranteed to do this. Therefore the last
segments must be enlongated until they reach the edge of the support. Alterna-
tively, an additional line segment may be inserted at the end and the probabil-
ity function for the segments adjusted accordingly.

All the methods described in this section assume that the support is the
conservative estimate generated by one of the methods from Sections 4.8.3.1
and 4.8.3.2. Because the method in Section 4.8.3.3 does not produce a conserva-
tive estimate, one is not guaranteed that the core is always inside the support if
one combines the methods described here with that method. The best method
to use in that case is to use the method from Section 4.8.3.3 for the core as well
as for the support. Because the method from Section 4.8.3.3 does not depend on
an algorithm for interpolating regions, it can be used equally well for lines and
points.

4.8.3.5. Interpolating the probability function

When creating an interpolation between two snapshots with uncertain
time, one also needs to interpolate the probability values of the points in be-
tween the snapshots.

The mathematically correct solution would be this: Define a function as
follows: For each possible set of time instant in which snapshots 1 and 2 each
could have been generated, compute the probability of the point under consid-
eration being inside the region or on the line or point. Multiply this by the
probability masses of snapshots 1 and 2 each being at those time instants. Take
the symbolic double integral of the resulting function over all the time instants
in which each of the snapshots 1 and 2 could possibly be.

This is a very complex solution and works only if the computer knows the
symbolic integral of this compound function and can compute a mathematical



142 CHAPTER 4 THREE DISCRETE MODELS FOR Uncertain Spatiotemporal DATA

function indicating whether the point is inside the polygon for a given combi-
nation of times or not. In most cases the probability function will not change
between snapshots. A simpler solution is to use the normal method for com-
puting the probability function for the non-temporal version of the object un-
der consideration for the estimated value1 at that time instant.

A particular problem that occurs when creating the representation of a
crisp region with uncertain time is how to compute the probability values. Us-
ing the mathematically correct method above, the probability function becomes
an advanced symbolic integral. The second method is not usable because crisp
objects do not necessarily have probability distribution functions. A possible
solution would be to assume a simple function such as a linear function in this
case.

4.8.4. Storing the sliced representation on disk

Storing the interpolated version of an uncertain spatial object using the
methods from either Section 4.8.3.1 or Section 4.8.3.3 does not require any addi-
tional storage space. For the method from Section 4.8.3.1, the normalized inter-
polation as well as the uncertainty in the timing of each snapshot are stored.
This time uncertainty requires storing an uncertain number. Comparing the
storage required for an uncertain number with that required for the other
types, one finds that this takes negligible space compared to all spatial objects
in all models except simple uncertain points. In the simple model, an uncertain
number requires two numbers to store, and an uncertain point requires three
numbers to store.

The method from Section 4.8.3.3 takes no more space than storing a repre-
sentation without temporal uncertainty. In the time period in which a given
snapshot may have been generated, the snapshot is assumed to be static, so no
additional information about these periods needs to be stored.

The method from Section 4.8.3.2 will likely cause the storage requirement
to be between 2 and 3 times as much as storing an object without temporal un-
certainty. First of all, the interpolated versions used to construct the conserva-
tive estimate will contain twice as many points as the snapshots themselves.
This is due to the fact that the sliced representation does not tolerate rotating
line segments and all segments that rotate become two segments in the inter-
mediate versions. Second, the estimate itself is the combination of two such in-
terpolations as well as the snapshot itself. In the ideal case, much of the original
snapshot is used, so the storage space is only slightly increased. In the worst

1. Estimated using any of the methods from Section 4.8.3.1 to Section 4.8.3.4.



4.9. STORING SPATIOTEMPORAL DATA WITH THE SIMPLER MODELS 143

case, large portions of both interpolations will be used, which means that stor-
age space is increased four times. In the average case, however, slightly more
than twice as much space will be used.

For this method it might also be a good idea to store the actual snapshots
in addition to the spatiotemporal structure. This enables one to reinterpolate if
additional snapshots are inserted, and also enables the user to ask queries re-
garding the snapshots as well as the derived spatiotemporal structure. Storing
the two snapshots takes half as much space as storing a time slice, which means
that 0.5X space is added.

A small disadvantage of this is redundancy, as the database system must
check that the snapshots are not updated without also updating the time slices
and vice versa. In most cases, the user should only be allowed to update the in-
dividual snapshots. After such an update, the database should automatically
perform a reinterpolation of the object around the updated snapshots.

For the method in Section 4.8.3.1, the storage requirement is the same as it
would have been without temporal uncertainty because the handling of tem-
poral uncertainty is done at query time, not storage time.

4.9. Storing spatiotemporal data with the simpler
models

This section describes how the specific data types discussed in Sections
4.5 and 4.6 can be stored as temporal data using the time slice model for storing
spatiotemporal data. The spatial data types from the advanced model from
Section 4.4 can be stored using the techniques described in Section 4.8 directly.
The other models do not need quite as complex storage structures.

4.9.1. Base types

Integers can only change discretely. Crisp integers are therefore constant
in each time slice in [FGNS00]. Uncertain integers may also be modelled in this
way, and this would ensure consistency with the crisp integers. However, un-
certain integers can also be modelled in other ways. For instance, the probabil-
ity values of each possible number may be linearly interpolated between the
two snapshots.

For a crisp integer, this would correspond to a linear interpolation of the
value, rounded to the nearest integer value. For the medium and simple mod-
els this interpolation is computed by taking a weighted1 average of the proba-
bility functions in each snapshot.



144 CHAPTER 4 THREE DISCRETE MODELS FOR Uncertain Spatiotemporal DATA

The easiest method for handling temporal uncertainty is to use the snap-
shot value in the entire period of uncertainty, and to use interpolated values
between the snapshots. By using this method, temporal uncertainty does not
cost any additional storage space.

Alternatively, the border values of the support may be interpolated. Any
of the algorithms presented in Section 4.8.3.1 to Section 4.8.3.3 may be used to
interpolate the support of uncertain numbers, intervals and ranges from all
the three models. For the core of the uncertain number and interval, any of the
methods from Section 4.8.3.4 that apply to corresponding spatial types1 may be
used.

For the advanced uncertain integers, the equivalent of the combination al-
gorithm from Section 4.8.3.1 would be to take the average probability for each
value for the two interpolations. Because the border values move linearly be-
tween the two interpolations along a single line (the number line), there is no
need to consider intermediate values.

Uncertain Boolean values are like uncertain integers: They may either be
constant or linearly interpolated. A linear interpolation yields “Maybe” in all
cases except where both the time slice immediately before and immediately af-
ter are both “No” or both “Yes”. To save space, all time slices with the same in-
terpolated value may be joined into one. This takes O(n) time, where n is the
number of snapshots.

Some uncertain Boolean values are the results of functions rather than
fixed values. One may get more accurate results for these by storing the func-
tional relationship and executing it for the time instant one wants rather than
interpolating the Boolean value.

Probabilities may be interpolated in one of two ways. If there is an exact
function that produces the number, that function may be computed for any
time instant to yield a value. If there is no such function, the value may be line-
arly interpolated between the two snapshots. If there is temporal uncertainty,
the probabilities should be interpolated as if each time instant lies where it has
the greatest probability density. The normal interpolation methods for uncer-
tain numbers cannot be used in this case because probabilities and degrees are
defined as crisp numbers.

1. Weighted by the time distance of the point to each snapshot divided by the time dis-
tance between the snapshots.

1. Point for number, Region for interval.
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4.9.2. Uncertain points

For the medium complexity and simple uncertain points, the following
method may be used: First, the central point is interpolated as described for the
core of an uncertain object in Section 4.8.3.4. Second, each of the distance values
are interpolated as uncertain real numbers. This algorithm ensures that the in-
terpolation remains a valid instance of the data type. A problem here is that it
may lead to rotating line segments for the medium complexity model, and the
sliced representation from [FGNS00] does not allow this.

One possible solution for this is to split the rotating line segment into two
line segments as is normal for the [FGNS00]-model. The problem with this is
that the intermediate versions are no longer members of the original type, but
must at least partially be described with the advanced model for uncertain
points. Therefore there is a choice between allowing rotating line segments or
allowing the intermediate values to be something other than members of the
normal type, which means that a query on an interpolated value must return
another type than the one used to construct the interpolation.

This means that the medium complexity uncertain point is not well suited
to spatiotemporal information. Because the advanced model for points does
not suffer from these problems, it should be used instead, unless one cannot af-
ford the storage space required.

The algorithms for combining two interpolations from Section 4.8.3.1 and
4.8.3.2 do not work with the simple and medium complexity models for uncer-
tain points because one is not guaranteed that the results of the interpolation
algorithms in those two sections can be represented as a medium complexity or
simple uncertain point. Therefore, only the strategy from Section 4.8.3.3 for in-
terpolating with temporal uncertainty can be used with the simple and me-
dium complexity models. To ensure a consistent treatment of the core and the
support, the same method should also be applied to the core.

4.9.3. Uncertain lines

The medium complexity line is fairly simple to extend to the spatiotem-
poral case. Each line segment in a crisp curve has become a trapezium with a
central line segment and two outer line segments. Three examples of these are
shown as light grey areas in Figure 4.32. The uncertain line segments may be
matched to a single crossing line in the other uncertain curve as shown in the
figure. Then take each of the outer lines as well as the core line of the uncertain
line segment and match each of these lines to a point on the crossing line. The
central line is matched to the central point and the outer lines are matched in
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such a fashion that the triangles they form do not cross each other. These three
lines and the points they are matched to form triangles to be used in the sliced
representation from [FGNS00].

This yields a valid sliced representation because neither the segments in
the central line nor the segments in the borders of the support rotate. The fact
that the crossing lines rotate is not important because these are not returned in
queries, but are just aids in storing and computing.

It is in fact impossible to create a spatiotemporal version of the uncertain
curve in which these crossing lines do not rotate. Because the angles of the
crossing lines are normally not the same in the two uncertain curves, and be-
cause a line segment in one snapshot normally has to be matched to a crossing
line in the other, the crossing lines may have to rotate.

The intermediate values in this interpolation are also valid members of
the non-temporal type. Points A, B and C begin and end on a straight line seg-
ment, and they are equally far apart. This is required by the non-temporal
model. Because they move linearly between these two positions, they are also
on a straight line in all the interpolated time instants between the two snap-
shots, and they are always equally far apart.

The interpolation method described in this section does not allow the un-
certain line segments to be matched to each other unless the grey area in each
has exactly the same shape or one allows rotating line segments in the sliced
representation. To avoid rotations altogether, line segments are always
matched to crossing lines even if the central line segments are parallel.

Note that this method does not work for the simple model where the
angles of the crossing lines are fixed by the angles between the two central
lines. This is because the crossing lines rotate through the interpolation.

Figure 4.32 Interpolating medium complexity uncertain line

A

B

C
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Because these line segments must rotate, it is impossible to create a
spatiotemporal version of this model which guarantees a valid member of the
non-temporal model for all time instants.

One problem with both the medium and simple models for uncertain
lines is that the combining strategy described in Section 4.8.3.1 does not pro-
duce results of the non-temporal types. Because the method from Section
4.8.3.2 also relies on these combining strategies, it cannot be used either. This
means that only the strategy from Section 4.8.3.3 may be used to interpolate the
shape of an uncertain line when the time the snapshots were taken is uncertain.
Because the core and the support are stored together in the medium and simple
uncertain lines, this method must be applied to the entire object, not just the
support.

4.9.4. Uncertain regions

For the simple and medium complexity models, a region is just a collec-
tion of uncertain lines. These are modelled and interpolated as described in the
previous section.

4.10.Examples of operations
In this chapter, we will describe algorithms for three operations, Inside,

Alpha_Cut, and Intersection using the data models described in this chapter. The
actual implementation and how to implement more operators is briefly de-
scribed in chapter 5.

In the algorithms presented here, the type definitions from Table 4.3 will
be used.

4.10.1.Inside

The Inside operation is used as an example of how to implement a spatio-
temporal operator using these models. Although this operation is described for
the spatiotemporal case and the other two are described for the spatial case
only, we choose to take Inside first because it is the easiest. The Inside function
test whether a given spatial object A is inside a given region B. In Figure 4.33,
some examples of the results of the Inside operator for an advanced uncertain
point and an advanced uncertain region are shown. This figure uses a purely
spatial representation rather than a spatiotemporal one to improve readability.

The algorithm that is given in this section works for all three data models
and for all the presented approaches for interpolating with uncertain time. The
differences between these approaches lie inside the intersection operations and
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how the UNIT(X) objects are computed. A time slice of a variable is referred to
as a unit of that type in the descriptions. The following implementation works
if A is an uncertain point.

Algorithm Inside(mp, mr)

Input: A MOV(Po) (mp) and a MOV(Re) (mr)

Output: A MOV(B) telling for each time instant whether the moving point
is inside or outside the moving region

Method:

let such that the list is ordered by time intervals

let such that the list is ordered by time intervals

Table 4.3 Type designators1

1. All these type designators are for uncertain
types except for CX.

Type designator Type

N Number

B Boolean

I Time Interval

Po Point

C Curve

F Face

Re Region

S Any spatial type

UNIT(X) One time slice of X

MOV(X) Moving (set of time slices) X

CX Crisp X

Inside = No Inside = Maybe Inside = True

Figure 4.33 Examples of results of the Inside operator applied to a point and a region

mp up1 … upn, ,{ }=

mr ur1 … urn, ,{ }=
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let ri be an initially empty set containing the following:

tups := mp
turs := mr
while do

pst := Member_Lowest_Start_Time(tups)
rst := Member_Lowest_Start_Time(turs)
psvt := Valid_Time(pst)
rsvt := Valid_Time(rst)
if Overlaps(psvt, rsvt) then

tvt := Intersection(psvt, rsvt)
tri := (tvt, pst, rst)
ri :=

end if
if then

tups := tups \ {pst}
else

turs := turs \ {rst}
end if

end while
let ub be an initially empty set of UNIT(B)
let mb be an initially empty MOV(B)
let
for each rii do

ub := Upoint_Uregion_Inside(rii.up, rii.ur)
mb := Concat(mb, ub)

end for
return mb

end Inside

The function Concat adds new time slices to an existing sliced representa-
tion. It also merges adjacent time slices with the same value (Boolean values are
constant in each time slice). The function Member_Lowest_Start_Time returns
the time slice with the smallest start time in a set of time slices. The Valid_Time
function returns the time interval in which a particular time slice is valid. The
Overlaps function returns True if the two time intervals overlap and False other-
wise. The Intersection function returns the time interval in which the two given
time intervals overlap. The End function returns the time instant in which a
given time interval ends.

Note that this algorithm for Inside is exactly the same as the one presented
in [FGNS00]. This means that the entire difference lies in the
Upoint_uregion_inside algorithm.

i up ur, ,( ) i I∈ up Po∈ ur Re∈∧ ∧{ }

tups ∅≠ turs ∅≠∧

ri tri{ }∪

End psvt( ) End rsvt( )≤

ri ri1 … rin, ,{ }=
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A point is only known to be inside a region if the support of the point is
inside the core of the region and both point and region are certain to exist.
Otherwise, if the supports of the point and region intersect, then the point may
be inside the region.

Algorithm Upoint_Uregion_Inside(up, ur)
Input: A UNIT(Po) (up) and a UNIT(Re) (ur)
Output: A set of UNIT(B) representing when up was inside ur during the

time interval in which both are valid
Method:

let up = (ip, cp, sp)1

let ur = (ir, cr, sre)2

i :=
sir :=
sra := DefTime(sir)
let
let ub be an initially empty set of UNIT(B)
for each sri do

ub :=
end for
cins := Inside(sp, cr)
let
for each cbi do

Replace(ub, cbi, True)
end for
isr := i \ sra
isr := isr \ DefTime(cr)
let
for each isri do

ub :=
end for
return ub

end Upoint_Uregion_Inside

The function Replace adds a Boolean unit with the second input as the
time interval and the third input as the truth value to the set of Boolean units
given in the first input. In the case of overlaps, the part of the overlapping unit
from the first input is removed and the unit from the second and third inputs is
inserted in its place. This may cause the overlapping unit from the first input to
be split into several parts. The function DefTime returns the uncertain range of

1. ip is the time interval in which this point is valid. cp is the central point. sp is the sup-
port of the point.

2. ir is the time interval in which this region is valid. cr is the core of this region and sr is
the support of this region.

ip ir∩
sp sre∩

sra sr1 … srn, ,{ }=

ub sri Maybe,( )∪

cins cb1 … cbn, ,{ }=

isr isr1 … isrn, ,{ }=

ub isri No,( )∪
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times in which the input object exists. The function Inside returns a moving
crisp Boolean value that is true when the first crisp region is inside the second.

The Upoints_Uregion_Inside algorithm needs to take the intersection of
two polyhedra, the support of the moving point unit and the support of the
moving region unit. Taking the intersection of two general polyhedra is a very
expensive operation. However, in this case we know that two sides are flat and
parallel to each other. This knowledge may be exploited to create a simpler al-
gorithm. However, this is outside the scope of this thesis. An educated guess as
to the running time of such a function would be the running time of the inter-
section of one general and one convex polyhedron. This has a running time of
O(n*log(n)) according to [DMY93], where n is the number of points in the two
polyhedrons plus the number of points in the result. The maximal number of
times the Upoints_Uregion_Inside algorithm is run is up + ur, where up is the
number of time slices in mp and ur is the number of time slices in mr.

4.10.2.Alpha_Cut

The Alpha-Cut operation is an example of an operation that uses the prob-
ability function of an object. This function will have different implementations
depending on which data type it is applied on and which mode for storing the
probability functions is used. Three examples are given here, two for the ad-
vanced model with different ways of storing the probability function, and one
for the simpler models. All of these versions deal with uncertain regions. One
of the methods can also deal with uncertain lines.

For uncertain lines and points, an operation which uses an absolute
threshold is of relatively little use as the amount of the object it will return is
strongly dependent on the size of the support of the line or point. This is due to
the normalization required to make the sum over the line or area equal to one.
For a point that is certain to exist and has a large support, Alpha_Cut(p, 0.5)
might return nothing, while if the same point had a small support the same op-
eration might return almost the entire support of the point. An example of this
phenomenon is shown in Figure 4.34. This figure shows two uncertain reals,
both of which are certain to exist because the integral of their probability mass
functions are 1. However, for the real number A the alpha-cut(0.7) operation
yields a small interval while for B it yields nothing because the highest proba-
bility mass for that real is 0.5.

A more useful variant of this operation is the one that uses a relative
weight rather than an absolute one. This means that the parameter to the oper-
ation does not give a specific threshold, but a multiplier to the highest value the
function has. This will cut a similar amount of the support from points with
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both large and small supports as long as they use the same probability func-
tions. In the example in Figure 4.34 B would have an alpha-cut(0.7) that is twice
as long as that of A because the support of B is twice as long as the support of
A. This type of alpha-cut is also easier to implement because it does not need to
be concerned with the normalization of the function. This behaviour is caused
by the normalization required to make the probability sum 1, and this therefore
applies to both points and lines, but not regions.

All these implementations assume that the probability function either
rises or is constant until it reaches the core. That means that there are no addi-
tional peaks at lower values.

4.10.2.1.Alpha-cut, Advanced model, Region, Distance to centre and edge

This method for computing the probability functions has the problem that
to accurately compute the alpha-cut, one would have to compute an infinite
number of values. Because this is not feasible, a set of sample points must be
computed. The advanced model also gives no really good method for finding a
point with value “x”. One strategy is to take a number of random points in the
support, compute their value, and use that information to compute the value of
the alpha-cut. This can be done by constructing a triangulation as described in
Section 4.7.4 from the sample points and computing the alpha-cut using that
triangulation with the algorithm described in Section 4.10.2.2. The basic prob-
lem with this method is that it will yield an inaccurate result.

4.10.2.2.Alpha-cut, Advanced model, Region, Triangulation or Simplical
Complexes

This algorithm will base itself on the “storing boundary areas as simplical
complexes” method from Section 4.7.4. This method can also be applied to the
“triangulation between the core and the support” method from Section 4.7.3,
but an implementation made specifically for it would be somewhat simpler as
all the lines between the core and the support would have probability values
from 0 to the maximum.

Figure 4.34 Absolute alpha-cuts for uncertain reals
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The algorithm basically works as follows. First, one computes where on
the edges of each triangle the probability function is equal to the input value.
The probability function is equal to the input value in either no segments or
two segments if the probability function is increasing. Then, one must draw a
line between these two points. One example of this with input value 0.5 and a
linear function is shown in Figure 4.35a. This process is applied to all the trian-
gles of a face represented by the Triangulation and Simplical Complexes approach
respectively in Figure 4.35b and c. The area that is inside the support but not in-
side the core is referred to as the boundary in the algorithm.

Because the alpha-cut of a continuous function which rises from a sup-
port to a core will be a cycle or a set of cycles, this algorithm assumes that the
individual lines returned by the function AlphaLine will form a set of cycles to-
gether.

In this algorithm, a type for a tree of cycles in which each node spatially
contains all its children is needed.

Additionally, the crisp face is assumed to be defined as follows:

a) Iso-line in single tri-
angle

b) Triangulation
example

c) Simplical Complexes example

Figure 4.35 Alpha-cut for advanced model with different representations of the
probability function
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Algorithm Alpha_Cut_A(ur, v)
Input: A R(ur) and a CN (v)
Output: A CRe containing all points in ur with probability value greater

than v
Method:

let cl be an initially empty set of line segments
let tri be the set of triangles that makes up the boundary of ur.
let
for each trii do

cl :=
end for
let roots be an initially empty set of CTree
let sc be a cycle constructed from the line segments in cl
let
for each ci do

InsertCCNode(ci, roots)
end for
let fs be an initially empty set of crisp Faces
AddFaces(roots, fs)
let cr be a crisp region containing the faces in fs
return cr

end Alpha_Cut_A

Procedure AlphaLine(tri, v)
Input: A triangle (tri) and a threshold value (v)
Output: A set containing either zero or one line. The line is the line with

value v
Method:

let tri = (l1, l2, l3)
for each li in tri do

if the entire line li has the value v then
return li

end if
end for
let ps be an initially empty set of points
for each li in tri do

if there is a point p on line li that has value v then
ps :=

end if
end for
if Card(ps) = 2 then

l := the straight line between the two points in ps
return l

end if

tri tri1 … trin, ,{ }=

cl AlphaLine trii v,( )∪

sc c1 … cn, ,{ }=

ps p∪
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return
end AlphaLine

Procedure InsertCCNode(cyc, nl)
Input: A DCycle (cyc) and a set of CTree (nl)
Output: This procedure alters the nl input variable by inserting cyc in the

right-hand node of the right-hand member of nl or adding a new root to
nl.

Method:
ins := False
let
for each ni do

if Inside(cyc, ni.n) then
InsertCCNode(cyc, ni.C)
ins := True
break

end if
end for
if not(ins) then nl :=

end InsertCCNode

Procedure AddFaces(nl, fs)
Input: A set of CTree (nl) and a set of CF (fs)
Output: This procedure alters the fs input variable by adding faces con-

structed from the trees in nl.
Method:

let
for each ni do

let tf be a crisp face
tf.oc := ni.n
let ni.C =
for each cj do

tf.HC :=
if then AddFaces(cj.C, fs)

end for
fs :=

end for
end AddFaces

The function Card returns the number of elements in a set. The function
Inside returns True if the first input cycle in inside the second input cycle and
False otherwise.

∅

nl n1 … nm, ,{ }=

nl cyc{ }∪

nl n1 … nm, ,{ }=

c1 … cn, ,{ }

tf.HC cj.n{ }∪
cj.C ∅≠

fs tf{ }∪
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The running time of this version of Alpha-cut is proportionate to the
number of triangles in the representation of the support because the for state-
ments run once for each line, and there are three lines in each triangle. The
checking in each for statement takes constant time. The Inside tests in InsideCC-
Node must be run once for each cycle. However, one already knows that either
one cycle is completely inside the other or it is completely outside. This means
that one only needs to test a single point of one polygon against the other poly-
gon. Testing this only takes O(log(n)) time, where n is the number of points in
the polygon according to [BKOS98].

4.10.2.3.Alpha-cut, Medium and Simple models, Lines

To compute the alpha-cut operator for the simpler models, one must find
the line segments with the given probability value for each segment of the core
line. Figure 4.36 shows the same alpha-cut for a medium complexity or simple
uncertain line segment as Figure 4.35 shows for the advanced model.

For an uncertain line, the alpha-cut consists of two segments for each seg-
ment of the core line because the probability function is highest at the core line
and then falls towards both ends.

The algorithm below is for uncertain curves, using the definition of alpha-
cut from the start of Section 4.10.21. This algorithm also assumes that the func-
tions are linear for both the gradient lines and the core line. This is because the
alpha-cut becomes a set of straight line segments if the functions are linear. If
these functions are both constant, Alpha_Cut becomes trivial and if the func-
tions are non-linear, the alpha-cut becomes a curved line. A step function will
result in a line with many small segments, some being straight in the same di-
rection as a linear function would have, and others being straight in a direction
towards or away from the central curve.

The alpha-cut for an uncertain line is the union of the crisp regions result-
ing from the alpha-cuts on the individual curves.

1. That is, it uses relative threshold rather than absolute ones.

Figure 4.36 Alpha-cut for the medium and simple models

0.5
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Algorithm Alpha_Cut_MS(uc, v)
Input: A C (uc) and a CN (v)
Output: A CRe which contains the alpha-cut of the curve uc at the thres-

hold value v
Method:

let sc be an initially empty set of line segments
let
let rr be an initially empty CRe
for each usi do

let usi = (cc, bc, ec, pc)
let p11 and p12 be the points on bc where the function

let p21 and p22 be the points on ec where the function

If p11 or p12 does not exist then
let p be the point on cc where cc.sf(p) = v
let p11 and p12 both be equal to p

end if
If p21 or p22 does not exist then

let p be the point on cc where cc.sf(p) = v
let p21 and p22 both be equal to p

end if
If p11 and p21 exist and then

let s be the line segment that goes from p11 to p21
sc :=
let s be the line segment that goes from p12 to p22
sc :=

end if
if p21 = p22 then

cy := Construct_Cycle(sc)
rr :=
let sc be an initially empty set of line segments

end if
end for
return rr

end Alpha_Cut_MS

In this program, the function Construct_Cycle constructs a cycle based on
the line segments given as input. The line segments in sc will form either a
cycle, a line or two lines. In the first case, constructing a cycle is trivial. In the
second case, an additional line segment is inserted between the ends of the line
to make it a cycle. In the third case, two line segments are inserted between the
ends of the two lines in such a way that the two new segments do not cross.

uc us1 … usn, ,{ }=

pc p1x( ) cc.sf cc .sp( )⋅ v=

pc p2x( ) cc.sf cc .ep( )⋅ v=

p11 p21≠

sc s∪

sc s∪

rr Construct_Face cy( ){ }∪
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Construct_Face constructs a crisp face with the given cycle as the outer
cycle and with no holes.

This version of the alpha-cut function takes time that is proportionate to
the number of line segments that the line is made up from. The outer for state-
ment runs once for each line segment and the inside takes constant time.

For uncertain regions, the algorithm only needs to return one segment for
each segment of the core line, and it must test each cycle in the region sepa-
rately. There is only one line segment because the function is highest on the
side of the uncertain line segment that borders the core.

4.10.3.Intersection

The Intersection operation is a very commonly used set operation. This op-
erator determines the area in which two objects intersect. One problem that
needs to be solved to make this function work is how to calculate the probabil-
ity that the intersection between two objects exists when the supports intersect
but the cores do not. If the cores intersect, then the probability that the intersec-
tion exists is the probability that both object exist. However, if only the sup-
ports intersect, the probability that they intersect is lower.

If the functions used are step functions, a possible solution is described in
[Sch01]. A step function in this context is a function that is increasing and that
increases in only a finite set of discrete points. In all other points, it is constant.
The solution for two objects A and B is to compute the alpha-cut regions for all
the points at which the function jumps to a higher value. Then one computes
the intersection of each possible alpha-cut of A with each possible alpha-cut of
B. The probability that each such combination is the actual intersection is the
product of the probabilities that the two alpha-cut values are the true values of
the two regions. This is generally the height of the step up to this value from
the previous one. The final probability is the sum of the probabilities of all the
combinations that intersect. One problem with this approach is that it takes a
lot of time, because one has to take n2 crisp intersections where n is the number
of steps in the step function.

If the function is not a step function, the result can only be approximated.
An accurate result could only be obtained through creating an area integral
over the area of the result of the intersection operation. One method which
might produce good results in some cases would be to compute the centre of
gravity of the intersection and compute the probability value there. However,
this does not always yield a good result. In fact, one is not guaranteed that the
centre of gravity is inside the object.
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In all the models, one knows that the two cores are closest to one another
at a place where at least one of the cores has a corner1. Therefore, one method
for checking where the highest value is, is to check the distance from each cor-
ner in each core to the other core. Then draw a line from the corner that is clos-
est to the other line so that this line is as short as possible. Take the probability
value of the intersection at the point in the middle of this line. Use this value as
the probability that the intersection exists. This is the optimal value if the prob-
ability function for the region is linear, and also works well for many other
types of functions. It may not work well for step functions, but for those the
method described in [Sch01] may be used.

If the functions are simple enough2, one can also estimate the probability
of existence by computing the one-dimensional symbolic integral that checks
whether the intersection exists at a particular line. This line is typically the
shortest line between the cores of the two regions. This is the same as checking
the existence of the intersections of two intervals. To check this, one must check
whether the upper border of interval A is greater than the lower border of in-
terval B. The probability of this is , where P(a) is the
probability density that the border of A goes at a, and i is the interval in which
they may possibly intersect. For a linear probability distribution function, the
corresponding density function is constant. For the example in Figure 4.37, this
symbolic integral ultimately becomes the following formula:

Equation 2: Probability of overlap between intervals with linear
probability distribution:

Another problem is to compute the probability function for the resulting
object. An easy and correct way to do this is to store a link to the source objects

1. A registered point in the core cycle.
2. That is, simple enough that computing its symbolic integral is easy.

a b>( ) P a( ) P b( ) bd ad⋅ ⋅
i∫i∫

P P b( ) e d–( ) 1
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Figure 4.37 Finding the probability of intersection of two intervals
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instead of constructing a new function. Every time the value of the function is
requested, the value is computed for that point for the source objects and then
multiplied together to get the probability value of the result object. The prob-
lem with this approach is that parts of the parent objects must be fetched every
time the probability function of the intersection is used.

If this extra data fetching is unacceptable, one may simply use the func-
tion of one of them1 for the result object. This is less accurate, but may yield an
acceptable approximation. Which of these two methods to use is a trade-off be-
tween increased accuracy and faster data retrieval.

4.10.3.1.Intersection, Advanced model, Regions

To take the intersection of two regions in the advanced model, one must
take the intersection of the cores with each other and the supports with each
other. Then, one has to combine these to form legal uncertain faces, which
make up the resulting region. One example of this is shown in Figure 4.38.
These regions consist of only one face each, but the resulting region consists of
two faces. One of these faces is not certain to exist. Note that in this particular
case, using the centre of gravity to compute the probability value is the best, be-
cause the face is convex and the shortest line between the two cores that passes
through the face passes through one of its corners.

Algorithm Intersection_A(r1, r2)
Input: Two Re’s (r1 and r2)
Output: A Re which is the intersection of the two input regions
Method:

let crc1 and crc2 be initially empty crisp regions
let crs1 and crs2 be initially empty crisp regions
let r1.UF =

1. One approach is to choose the one that would give the easiest computations. If there is
no difference, a good rule would be to choose the function of the first input.

Figure 4.38 Intersection of two advanced regions

r1f1 … r1fn, ,{ }
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let r2.UF =
for each r1fi do

crc1 :=
crs1 :=

end for
for each r1fi do

crc2 :=
crs2 :=

end for
let crc be an initially empty crisp region
crc :=
crcs := Decompose(crc)
let crs be an initially empty crisp region
crs :=
crss := Decompose(crs)
let res be initially empty an uncertain region
let
let
for each crssi do

let resi be an initially empty uncertain face
resi.sf := crssi
for each crcsj that is inside crssi do

resi.cr :=
end for
let resi.ps be a reference to the product of the probability functions of

the source faces
if then

resi.pe := 1
else

let f1 and f2 be the faces in the original objects from which resi
were created.

let l be the shortest line from f1.cr to f2.cr that goes through resi
p := Prob_Comp(f1, f2, l)
resi.pe := p

end if
res :=

end for
return res

end Intersection

In this program, the function Prob_Comp computes the probability that
the two faces given as the first and second input intersect in the area that the
line given in the third input passes through. This can be done using any of the

r2f1 … r2fm, ,{ }

crc1 r1fi.cr∪
crs1 r1fi.sf{ }∪

crc2 r2fi.cr∪
crs2 r2fi.sf{ }∪

crc1 crc2∩

crs1 crs2∩

crcs crcs1 … crcsm, ,{ }=

crss crss1 … crssn, ,{ }=

resi.cr crcsj∪

resi.cr ∅≠

res resi∪
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methods given in Section 4.7. The function Decompose returns a set of the com-
ponents of the input type. For a region, it returns a set of faces.

The running time of this operation is the running time of its longest com-
ponent. These components are:

• Constructing crc1 and crc2: O(f), where f is the total number of faces in
both regions, because all f faces must be extracted. Constructing crs1
and crs2 has the same complexity, but there are fewer support faces
than core faces. This also applies to the next point.

• Constructing crc: O(p*log(p) + k), where p is the total number of points
in the cores of both input regions and k is the number of crossing
points. This is the running time of the crisp Intersection operator
between two arbitrary polygons according to [BKOS98].

• Constructing res: As written in the pseudocode, this operation takes
O(s*c*psc*log(psc)) where s is the number of faces in the support, c is the
number of faces in the core and psc is the average number of points in
each support and core face, because all the faces in the core must be
checked with an Intersection against all faces in the support. However,
with the use of a spatial index, this could be reduced to O(s*log(s) +
c*log(s) + c*psc*log(psc)) by indexing the support faces and querying this
index when inserting the core faces.

4.10.3.2.Intersection, Medium and Simple models, Regions

For medium and simple regions, the intersection of two region objects is
the intersection of all its faces. The function for the intersection of two single
faces is given here. To find the intersection of an entire region, find which faces
intersect at all, compute the intersections of those and put all the resulting faces
in the resulting region.

Algorithm Intersection_Face_MS(f1, f2)
Input: Two F’s (f1 and f2)
Output: A Re which is the intersection of the two input faces
Method:

s1 := Support(f1)
s2 := Support(f2)
sr := Intersection(s1, s2)
if ( return
let iseg1 be an initially empty set of uncertain line segments.
for each uncertain line segment segi in f1.bc do

if Intersection(Support(segi), sr) != then
iseg1 :=

sr ∅= ∅

∅
iseg1 segi{ }∪
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end if
end for
let iseg2 be an initially empty set of uncertain line segments.
for each uncertain line segment segi in f2.bc do

if Intersection(Support(segi), sr) != then
iseg2 :=

end if
end for
for each that crosses a member in iseg2 do

let cs2 be a set containing all the segments in iseg2 that cross si
let cs1 be a set containing all the segments in iseg1 that cross at

least one member of cs2
iseg2 := iseg2 \ cs2
iseg1 := iseg1 \ cs1
iseg1 :=

end for
for each that crosses a member in iseg1 do

let cs1 be a set containing all the segments in iseg1 that cross si
let cs2 be a set containing all the segments in iseg2 that cross at

least one member of cs1
iseg2 := iseg2 \ cs2
iseg1 := iseg1 \ cs1
iseg1 :=

end for
let hs be an initially empty set of uncertain cycles
cr := Intersection(Core(f1), Core(f2))
for each hole hi in f1 do

if Intersects(hi, cr) then
hs :=

end if
end for
for each hole hi in f2 do

if Intersects(hi, cr) then
hs :=

end if
end for
for each do

for each do
if Intersects(hi, hj) then

hs := hs \ {hi, hj}
hu :=
hs :=

end if
end for

∅
iseg2 segi{ }∪

si iseg1∈

iseg1 Generate_Cros g cs1 cs2,( )sin∪

si iseg2∈

iseg1 Generate_Cros g cs1 cs2,( )sin∪

hs hi{ }∪

hs hi{ }∪

hi hs∈
hj hs∈

hi hj∪
hs hu{ }∪
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end for
let rr be an initially empty uncertain region
c := Construct_Cycles( )
let c =
for each ci do

let rf be an uncertain face
rf.bc := ci
rf.HS := the members of hs that are inside ci
rf.ps := f1.ps
if then rf.pe := 1 else

rf.pe := Probability_of_Existence(rf)
end if
rr :=

end for
return rr

end Intersection_Face_MS

In this algorithm, the function Generate_Crossing handles line segments
that cross. It takes two sets of line segments that cross each other as input. If the
sets contain only one element each, it generates two new line segments that do
not cross as shown in Figure 4.15. Otherwise, it generates and returns a Cross-
Set.

The function Construct_Cycles returns a set of all valid uncertain cycles
that can be formed from a set of uncertain line segments.

The predicate Intersects returns True iff the two faces given as inputs inter-
sect and False otherwise.

The function Probability_of_Existence computes the probability that a
given uncertain object exists. It may be implemented using any of the methods
described in the beginning of Section 4.10.3.

This algorithm requires that one finds the support and core of the regions
and intersects them. Of these operations, the intersection is the only one with
greater than linear running time. It runs in O(p*log(p) + k) time, with p and k
defined as in Section 4.10.3.1.

4.11.Discussion
This chapter has presented three different discrete models for storing un-

certain spatial data. These models have been extended to store spatiotemporal
data. For the advanced model, three different ways of storing the probability
function have been described.

iseg1 iseg2∪
c1 … cn, ,{ }

Core rf( ) ∅≠

rr rf{ }∪
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The advanced model has the advantage that it is capable of modelling al-
most as many cases as the abstract model presented in chapter 3. However, the
advanced model requires much more storage space than the other two models,
especially for points. It also is the only model that requires special considera-
tions for storing the probability function. The medium complexity and simple
models are capable of storing and computing the probability functions in a
simple way, but the advanced model is not. Only the distance to centre and edge
method from Section 4.7.2 for computing the probability function can be used
universally, and in Section 4.10.2.1 it is shown that the alpha-cut operator can-
not be properly implemented for this method. The triangulation between core and
support method from Section 4.7.3 cannot be used when there are holes, and the
simplical complexes method from Section 4.7.4 can only be used when the proba-
bility function actually has been measured in certain points or the user is
skilled enough to choose appropriate points for which the probability function
is computed. The advantages of the advanced model is that it can use more ad-
vanced and accurate algorithms for handling temporal uncertainty, and that
set operations are much easier to implement for this model than for the other
two. Additionally, this model is much closer to the abstract model in chapter 3
than the other two.

The medium complexity and simple models are fairly similar. One prob-
lem with them is that they cannot model holes in lines or the support of re-
gions. They also cannot model faces with disjoint cores but single support.
Thus they are less expressive than the advanced model. They also have the
problem that a special construct called the CrossSet has to be defined to make
them computationally closed for regions. The advanced model does not need
any special considerations for this.

One problem with the simple line model is that it does not support inter-
polation in time. This is because the angles between the crossing curves and the
core line are fixed. This means that the linear interpolation algorithm described
in Section 4.9.3 for the medium complexity model cannot be used for the sim-
ple model. For points the simple model is less expressive, but requires less stor-
age space. The simple model for points also does not fit into the sliced
representation because the support of the point is a circle and not a set of
straight line segments. This may be solved by making it into a set of such line
segments approximating a circle (such as a hexagon or octagon where the cor-
ners are at the given distance).

Compared with earlier models, the major advantage of the new models
for spatial data is that they can model all the normal spatial data types. [Dut92]
only describes modelling points and lines, although it is simple to extend his
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model to regions. An advantage of the medium and simple models presented
here over the model from [Dut92] is that it is much easier to compute the prob-
ability values. In [Dut92], only the points have a probability function, and to
compute the probabilities of the line passing through a given point, one has to
take the integral of all possible placements of the two end points which would
yield a line passing through the given point. This integral is infeasible to per-
form in practice in a database system, although it could be done numerically in
a simulator in which one has a lot of time available.

The different advantages and drawbacks of the three models show that
none of the three models are obviously superior to the others. One should
choose which to use based on what data one has and which functionality and
operations one needs.

The advanced model presented here is really an extension to the work
presented in [Sch96]. The additions are the ability to model points and lines as
well as the ability to store and compute a probability function. Some work has
been done on fuzzy membership functions in [Sch01], although this work con-
centrates on step functions rather than continuous functions. However, it
seems that some operations, such as Intersection are much easier to compute for
step functions than for continuous functions.

In this chapter, various operations have been defined with different prob-
ability functions as examples. This shows that different probability functions
are easy to handle for various types and operations. When choosing what type
or types of functions to use, one might keep this in mind. In general, checking
the existence of the intersection of two or more uncertain regions is easiest with
step functions, while finding the alpha-cut is easiest with a linear function.
Finding the alpha-cut from a step function is easy for regions, but is somewhat
more complex for lines.

Storing spatial uncertainty (or vagueness) takes more space than only
storing crisp data. How much space is demanded depends on the model cho-
sen. In the advanced model, uncertain regions require twice as much space,
lines 3.75 times as much, and points many times as much. Thus, for a database
containing mainly regions, the cost is doubled, whereas for a database contain-
ing mostly points, it is increased enormously. For the simple model, uncertain
regions, lines and points take 50 % more space than crisp ones. This is a much
smaller increase, but still significant. In the model presented in [Dut92], points
and lines take twice as much space as crisp points and lines, because the radius
of the spheres for each point must be stored. We assume here that the probabil-
ity function used for the points is predetermined.
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One problem with all the data types presented here is that they are much
more complex than the corresponding crisp types from [FGNS00]. This also
causes the implementation of the operations to be run on these data to become
more complex. However, the simple model is less complex than some other
models for uncertain spatial or spatiotemporal data that have been published.
The probabilities are much easier to compute than in Dutton’s model, and the
region model is not much more complex than a model for a crisp region

The time taken to process data depends on the operation. Plane-sweep al-
gorithms typically take O(n*log(n) + k) time where k is the number of intersec-
tion points according to [NP82]. However, these do not usually run on all the
points at once. For regions with only spatial uncertainty, they run on the core
region and the support region separately. Therefore the increase in processing
cost is proportional to the increase in data stored. This is also true for uncertain
lines, although the support here normally takes twice as much space as a crisp
line. This means that an operation on the core will take somewhat longer com-
pared to the size of the line than operations on crisp lines. Only for points is
there an increase in processing cost significantly greater than the data increase,
because operations that before only had to operate on a single point now have
to operate on the support face of the point.

Storing the probability function also requires space if one of the triangula-
tion models are used. For the Triangulation between core and support method, it
takes +100 % storage space compared to an object without probability function
support, whereas the Simplical Complexes method takes more than that. These
data only need to be fetched when the probability function is used, but many
operations use this function. All the operations from Section 3.6 in which a
probability value or a degree of truth is returned need the probability function.

Temporal uncertainty also costs additional storage space. For the model
presented in Section 4.8.3.3, the storage space increase is minimal as the only
additional information is the duration of the time in which the snapshot itself is
used as the object value. This is also true for the approach from Section 4.8.3.1,
but here the temporal interpolation is done at query time, which significantly
increases the query cost. The method from Section 4.8.3.2 replaces the snap-
shots themselves by interpolations. Because these are created using the sliced
representation method, they take at most twice as much storage space as the
original snapshots, and they are likely to take close to twice as much. The only
time in which an interpolated line segment does not take twice as much space
as the snapshot is when the lines are parallel, and that almost never happens in
practice. Because lines, regions and advanced points consist of line segments,
this increase applies to all the advanced types, which are the only types for
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which the method from Section 4.8.3.2 can be used. In the method from Section
4.8.3.2, processing cost increases more than the storage cost because the
O(n*log(n)) procedures have to run on polygons with a greater number of ver-
tices than the originals.
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Chapter 5

Implementation of the
Medium Complexity Discrete

Model

The goal of any computer science design process should be to create a de-
sign that can be implemented. To test the implementability of the model and to
determine whether there were any major gaps in the design that were not
found already, parts of the medium complexity model from Chapter 4 have
been implemented as a set of Java classes. Some tests have also been run on
these. The medium complexity model was chosen because it is fairly easy to
implement and because if it can be implemented, so can the simple model as
the simple model is a straightforward simplification of the medium complexity
model. The implementation was constructed by first implementing and testing
the simple types and then extending this to more complicated types. For in-
stance, the medium complexity uncertain curve is used as part of the medium
complexity uncertain face. This chapter deals with the implementation and
how it was done. Some test results are also included.

One example of an application of this model is this: Imagine you have sci-
entists who are driving around making measurements in the Sahara desert to
determine the extent of underground water reservoirs. The scientists them-
selves are uncertain points due to the imprecision of the positioning system
that they use. The roads are uncertain lines because the roads in the Sahara
desert are more like routes that shift as the sand dunes move than paved roads.
The water reservoirs that the scientists are studying are uncertain regions be-
cause they are located deep underground and it is therefore not feasible to do
more than a few measurements at each site. The scientists therefore lack the
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necessary information to define them precisely.

5.1. Implementation environment

This implementation of the data types was made in Java. This language
was chosen because it is easy to use and relatively common. It can also be run
on almost any platform. It is possible to use Java to program plug-in modules
for several database systems, so there is no need to change the programming
language used to integrate these classes into a database. For increased perform-
ance, one might want to convert them to C++. As Java is closely related to C++,
such a conversion should not be too difficult.

5.1.1. The Java object model

Java is an object-oriented language. Programs are divided into separate
classes, which contain a set of operations and encapsulate some data. Because
the model from Chapter 3 was designed as a set of abstract data types, it is easy
to translate this model to an object-oriented language. Each ADT becomes a
separate class. Each class implements the operations that can be applied to that
type.

Java supports only single inheritance of functionality, that is, an object
can inherit code from only one parent. However, it supports multiple inherit-
ance of interfaces. An interface in Java is a collection of method declarations
without method bodies. An interface may also contain constants, but not varia-
bles. A Java class can inherit from any number of interfaces. A class inheriting
from an interface must contain the implementation of the methods specified in
the interface. Interfaces are considered types, and one can have variables of
these types. A variable of an interface type can contain an instance of any object
that implements that interface.

5.1.2. The Java collections framework

The Java collections framework is used in this implementation to store
sets of individual types. The collection classes are used internally in the imple-
mentations of the set types and not directly. The classes in the collection frame-
work are implemented to work with generic objects. Therefore, any type
checking or checking for such things as spatial overlap must be implemented
by the classes for the set types.
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5.1.3. Serialization in Java

Java contains a mechanism in which objects may be stored and retrieved
from disk. To indicate that an object can be stored on disk, it should implement
the serializable interface. This interface contains no methods. Java contains
standard methods for storing objects on disk. All the types in this implementa-
tion implement the serializable interface, but this functionality has not been
tested yet.

5.2. Program design

This section contains a description of how the program is designed. Class
hierarchies for both the uncertain types and the crisp ones on which they are
based are given as well as a brief description of the testing environment. Fur-
ther information on the structure and functions of the program can be found in
Appendix B.

5.2.1. Class hierarchy

This implementation was designed so that each of the uncertain types de-
scribed in Chapter 3 is a separate class. This is also true of the corresponding
crisp types. Additionally, a class hierarchy was created so that one might be
able to use a spatial object even without knowing exactly what kind of spatial
object it is. The class hierarchy used is shown in Figure 5.1 and Figure 5.2. The
boxes with dashed lines indicate interfaces, the rest indicate classes. The nor-
mal arrows indicate inheritance, while the lines that end in squares indicates
that an object of the type with the square contains objects of the type without
the square.

The SpatialObject interface works as a supertype for all spatial objects.
The MSet type works as a superset for all set types. This is called MSet and not
just Set because that name is already in use in Java. The MSet type is needed be-
cause the Java collections framework uses different names for its methods and

Figure 5.1 Type hierarchy for the crisp types

MSetSpatialObject

CPoint CPoints CLine CFace CRegionCLines

Interval

Integers Range



172 CHAPTER 5 IMPLEMENTATION OF THE MEDIUM COMPLEXITY DISCRETE MODEL

does not contain all the methods that the model presented in Chapter 3 speci-
fies. The UncertainObject class is the superclass of all the uncertain types, and
defines all the functions that should be implemented by all of them. It also con-
tains the probability of existence variable because that is also common to all un-
certain objects. The Uncertain Boolean is not a subclass of this class because
some of the operations that are meaningful for the other uncertain objects, like
Accuracy, are not meaningful for uncertain Booleans. Uncertain Booleans also
lack uncertainty about existence, because this would make the logic that they
define much more complex.

The integer type was used for coordinate values to make the implementa-
tion simple. This means that there may be small inconsistencies like that in Fig-
ure 5.4e in which the alpha-cut face ends in a point slightly outside the core line
when the end should have been on the core line. This problem may be solved
for spatial data by for instance implementing the ROSE algebra from [GS95] or
for spatiotemporal data by using dual grids from [LG00].

5.2.2. Test system design

Each of the basic types has been tested separately. The basic types are in-
terval, range, point, curve, face and uncertain versions of these. These have
been tested using separate test programs. These consist of one main class that
contains the actual test code. The curve, face, uncertain curve and uncertain
face use a graphical interface to enter the types, the others use a text interface.
Additionally, the test programs include a common class that can display sev-
eral spatial object and guarantee than one of them is at the top.

The spatial objects all contain a draw method, which takes a graphics con-
text as input and draws a representation of the object in that context. Calling
this method in all objects to be displayed is enough to get them on the screen.

Figure 5.2 Type hierarchy for the uncertain types

UncertainObject

UncertainSpatialObject UncertainInteger UncertainInterval

UncertainBoolean

UncertainPoint UncertainCurveUncertainSegment UncertainFace

UncertainCycle

MSetSpatialObject

UncertainIntegers UncertainRange

UncertainPoints
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5.3. Data type examples

In this chapter there are examples of tests of the uncertain point, uncer-
tain curve and uncertain face types. These three were chosen because they rep-
resent the individual types. The uncertain points and uncertain line set types
are little more than regular sets, with no checks for overlapping. The uncertain
region type has not been fully implemented yet.

All the types presented here use linear probability functions. The uncer-
tain curves use linear probability functions both for the central curve and for
the gradient lines. This is because the algorithms used for determining alpha-
cut for curves depend on that assumption. A linear probability function also al-
lows the test to show that the alpha-cut operation yields different results for
different input values. The constant function would not have allowed this.

5.3.1. Uncertain point

The uncertain points shown in Figure 5.3 have linear probability func-
tions and eight corners. The core of the points are the dots inside the polygons.
The first point, which is the point the operations are run on, is somewhat irreg-
ular in shape, whereas the second point has an almost circular support with the
core at the centre. Both the points are certain to exist.

The number of corners is a constant defined in the uncertain point type.
This means that all uncertain points have the same number of corners.

The return values of the other operations are as follows:

• A equals B: Maybe

a) Two uncertain points b) Support of first
point

c) Alpha-Cut(0.7) d) Alpha-cut(0.3)

Figure 5.3 Uncertain point example
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• A More Accurate Than B: False

• Resemblance between A and B: 0.12

• Area of A: 6876.6 pixels

The following source data was given to the program to produce the sam-
ple points:

Point A: Core X: 60, Core Y: 70, corners: 30, 50, 60, 40, 50, 55, 60, 50.

Point B: Core X: 90, Core Y: 100, corners: 25, 25, 25, 25, 25, 25, 25, 25.

5.3.2. Uncertain curve

Figure 5.4 shows two uncertain curves. Curve A has many segments and
curve B has only one segment. Both curves have probability 1.0 of existing. The
black line is the central line, the black line segments crossing the black line are
the crosscurves and the grey lines are the boundaries of the support of the
curve. The points along it have the following probabilities of existing, from left
end to right end: 0.0, 0.6, 1.0, 1.0, 0.5, 1.0, 1.0, 0.4. The figure shows the results of
various operations performed on the uncertain curve A.

Figure 5.4 Uncertain curve example

a) Two uncertain curves b) Core of first c) Support of first

d) Expected value of first f) Alpha-Cut(0.3)e) Alpha-Cut(0.7)
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In Figure 5.4a, the long black line is the central curve, the black line seg-
ments that go through it are the crosscurves, and the grey lines that go between
the crosscurves indicate the support of the curve.

The core and expected values are indicated by thick lines in Figure 5.4b
and 5.4d respectively. The support and alpha-cuts are indicated by black areas.
The alpha-cut function returns a crisp region, which can contain any number of
crisp faces.

Because a graphical user interface was used to draw the uncertain curve
and face examples, it is impossible to provide the exact input to the program
for either curves or faces. For curves, many of the non-spatial operations have
not been implemented yet.

The uncertain curve was at first implemented as a collection of lists. There
was a list of core lines, a list of crosscurves, a list of probabilities and a list of
probability functions. This would have been the most efficient implementation
for uncertain curves if it was not for the needs of the uncertain region. Accord-
ing to Section 4.5.4, one may need CrossSets to represent the results of set oper-
ations on uncertain regions. Because of this, the uncertain curve was changed
so that it was just a set of uncertain segments instead. The uncertain segments
contain the core line, crosscurves, probabilities and probability function. The
function for inserting new segments into the uncertain curve makes sure that
the crosscurves of consecutive segments are the same. The CrossSet is a subclass
of the uncertain segment. This also means that uncertain cycles, which by defi-
nition are closed, must continuously update the closing segment as new seg-
ments are inserted.

5.3.3. Uncertain face

The example in Figure 5.5 contains two faces, both of which are certain to
exist. Face A contains two holes and face B has no holes. The topmost hole is
certain to exist, and the bottom-most hole has a probability of 0.6 of existing.
Because the borders of the uncertain face in the medium complexity model is
an uncertain curve, the borders are drawn as uncertain curves. In those of the
examples from Figure 5.5 that contain large black areas, these are the crisp
faces that result from the operation mentioned below the example.

Other implemented operations on the two faces in the example give the
following results:

• Accuracy of A: 0.422
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Figure 5.5 Uncertain face example

a) Two example faces b) Core of first

c) Support of first d) Expected value

e) Alpha-cut(0.3) f) Alpha-cut(0.8)
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• A equals B: False

• A More Accurate Than B: False

• Resemblance of A and B: 0.098

• Area of face A: 27355.75 pixels

Implementing union and intersection as max and min operations (like in
fuzzy set theory) is much simpler than a correct probabilistic implementation.
For instance, a very simple algorithm can be used for overlapping holes if one
used max and min. This allows us to extend the medium complexity model for
uncertain faces so that it also handles uncertain holes that may overlap each
other or that overlap with the border curve.

When taking the alpha-cut using fuzzy set mathematics, check the alpha-
cut of the support face as well as the alpha-cut of each hole. This is alpha-
cut(threshold/prob.exist - 1.0/prob.exist + 1.0). If this formula is below 0, the
alpha-cut does not exist. Then take the alpha-cut of the support and do a spatial
set subtraction of all the alpha-cuts of the holes with it. The result is the alpha-
cut of the face as a whole. The support is alpha-cut(0.0), the core is alpha-
cut(1.0), and the expected value is alpha-cut(0.5).

To do the same with probabilistic computations of the intersection opera-
tion would require that for each point one had multiplied the probability of the
object existing and 1-p, where p is the probability of the hole existing. If the re-
sult is lower than the alpha-cut, the point is in the alpha-cut, otherwise it is out-
side. This computation is infeasible to perform in practice.

5.4. Implementation of set operations

There are three types of set operations: Regular set operations, number-
line operations and spatial set operations. The two last are closely related but
different from the first type. These three types of set operations have to be dis-
tinguished because they are implemented very differently. They also have
somewhat different semantics, so that the regular set union of two regions may
be different from the spatial set union of the same regions.

5.4.1. Regular set operations

A regular set operation checks each individual member of a set for union,
intersection, minus or containment in the set. Regular set operations are used
when the set is finite and discrete.
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5.4.2. Number-line set operations

These operations are used for sets containing a potentially infinite
amount of numbers. A number-line containment operation would check if one
of the intervals in a range contained the specific interval, that is, that it covers
the same area of the number line and potentially more. A regular set contain-
ment operation, however, would check if the set contained that specific interval
by using the equals() operation that is built into Java. This operation returns
True if the two objects are equal and False otherwise. Because intervals are
equal when they have the same boundaries, the regular set containment opera-
tion would only return True if the range contained that specific interval, but
would return False if it contained an interval that contained the input interval.

5.4.3. Spatial set operations

These are like the number-line set operations, except that they apply to
spatial objects. A regular set union of two regions could just be implemented
by using the Java collection framework and would give no guarantees that the
faces in the result region are disjoint. A spatial set union, on the other hand,
checks for intersection of the faces and combines those faces that do intersect.
The spatial set union thus helps to maintain the requirement on regions that
the faces are disjoint.

Another example of the difference is containment. A regular set contain-
ment operation on a region and a face would check if the region contains that
specific face, whereas a spatial set containment operation would check if the re-
gion contains a face that covers the entire area that the input face covers.

5.5. Core and Support for uncertain faces

The outer boundary of an uncertain face is an uncertain cycle. The sup-
port of such a cycle is a ring-shaped region that is bounded by a crisp cycle
both on the outside and the inside. The outside cycle bounds the support of the
uncertain face, and the inner cycle bounds the core of the uncertain face. How-
ever, the uncertain curve does not contain any means to compute this. There-
fore, the uncertain cycle subclass computes which cycle is the inner and which
is the outer when they are needed. This computation simply checks which is in-
side the other.

This computation is also needed to compute alpha-cuts for uncertain
faces. The function along the crosscurves should be 1 on the core cycle and 0 on
the support cycle, so one must make sure that the function produces 0 on the
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support cycle and 1 on the core cycle. To do this, one must know which is
which.
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Chapter 6

Discussion and Evaluation

This chapter contains a discussion of some of the aspects of this work. It
also contains an evaluation of the work. This evaluation looks on how well the
work fulfils the requirements and answers the research questions posed in
Chapter 1. There is also a comparison of this work with earlier work, and a ta-
ble showing where I got the inspiration for some of the features of the models
presented in this thesis.

6.1. Discussion
This section will discuss some issues concerning the models presented in

this thesis. It extends the discussion sections in Chapter 3 and Chapter 4.

6.1.1. Probability functions

In the abstract model from Chapter 3, the probabilities of the objects being
at various places in the area of uncertainty may be computed with an arbitrary
probability function. In the discrete models from Chapter 4, it is shown that rel-
atively simple functions like the step function and the linear function give
much easier computations. Thus, there is a trade-off between accurate meas-
urements of probability and ease of computation.

Cartographers have developed various statistical techniques to estimate
the probabilities of objects. For instance, [Edw94] contains a method for statisti-
cally estimating a fuzzy boundary based on different interpretations of the
same feature. These estimates may form 2D probability distributions. Although
Chapter 4 assumes 1D probability functions, there is no problem using a 2D
function instead. These estimation techniques often produce results in which a
probability of 0 is never reached, or is reached only very far from where the ob-
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ject is expected to be. Thus, rather than taking the 0 probability boundary as the
support, a good approximation would be to use a number slightly higher, such
as the 5 % probability.

Hence being able to handle sophisticated functions allows the model to be
more accurate. The problem with this is set operations and the alpha-cut func-
tion. For a spatial set operation, one ideally has to multiply the probability
functions of both objects. This may be achieved by storing the product as the
function for the new object.

Another problem, which is made worse by the previous one, is that the
actual alpha-cut of an object may consist of curved segments rather than
straight ones. Computing these curved segments is impossible in practice, so
an approximation must be made. However, such an approximation leads to the
inconsistency problem described in Section 4.7.2. Thus, using the alpha-cut op-
eration with a complex function type may lead to inconsistencies.

Simple functions are also easier for the user to define if the user is not
very skilled. They even cause the implementation to become much easier. The
easiest cases from an implementation viewpoint is linear or step functions com-
bined with the rules from fuzzy set theory rather than those from probability
theory for set operations. Intersection in fuzzy set theory requires taking the
minimum of the two values while in probability theory it requires taking the
product. In Section 5.3, it is shown that the medium complexity uncertain face
can model some additional cases if fuzzy set mathematics is used.

Probability theory was chosen as a basis for the models rather than fuzzy
set theory because it allows a more accurate representation of reality, and it
provides much more powerful tools. For instance, fuzzy set theory has no
equivalent of probability densities or masses.

6.1.2. Uncertainty vs. vagueness

The models described in this thesis have primarily focused on modelling
uncertainty, that is when one does not know whether an object exists or exactly
where it is. Another aspect of spatial indeterminacy is vagueness, that is when
objects are imprecisely defined or when there is a gradual rather than abrupt
change. See Section 1.1 for examples.

Parts of the framework presented in this thesis may also be used to model
vagueness, although this framework could not distinguish uncertainty from
vagueness. A vague region behaves much like an uncertain region. In fact,
[Sch99] models vague regions in much the same way as uncertain regions are
modelled in chapter 3. Vague lines and points would not need a support area
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because one already knows where the object is. A vague line would only re-
quire a fuzzy membership function over the line. The probability function over
the central curve could be used for this purpose. Likewise, the probability of
existence could be used for this purpose for vague points.

6.1.3. The three discrete models

In Chapter 4, three different discrete models for uncertainty in spatial and
spatiotemporal information were described. Table 6.1 shows some relevant
properties for the abstract model and each of the three discrete models. The
storage requirement is based on a database containing roughly equal numbers
of points, lines and regions. The table clearly shows that none of the discrete
models is always better than the two others. Each of them has its own strengths
and weaknesses. The advanced model handles arbitrary supports for all types
and handles set operations easily. The medium complexity model handles
probability functions consistently and requires less storage space, but set oper-
ations are more difficult to implement. The simple model requires the least
amount of storage space, but even it requires twice as much as the [FGNS00]
model for crisp spatiotemporal objects.

Table 6.1 Comparison of models

Aspect Abstract Advanced Medium Simple

Arbitrarily shaped
support

Yes Yes Region Only Region Only

Support for proba-
bility functions

Yes Yes1

1. Only 1D is described, but 2D is also possible

only 1D No

Consistency in
probabilities

N/A No Yes N/A

Arbitrary holes Yes Yes No No

Normalization Yes Complex Simple N/A

Set operations Yes Simple Complex Complex

Storage required N/A Large Roughly 3X Roughly 2X

Temporal exten-
sion possible

Yes Yes Yes No
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6.2. Evaluation
The chosen approach and the methods used will now be evaluated with

respect to the research questions and requirements that were presented in
Section 1.2 and Section 1.5 respectively.

6.2.1. Fulfilment of requirements

This subsection lists all the requirements from Section 1.5 with an expla-
nation of whether they are fully satisfied and for which models and types they
are fully satisfied.

R1 One must be able to tell whether an object is uncertain or not

This requirement is satisfied by all the models. For regions, one can deter-
mine if the support and core are equal. In that case, the object is crisp. In all
other cases it is uncertain. For lines and points, one can determine whether the
support has an area. If it does, the object is uncertain. If it does not, one must
check the probability of existence as well as - for lines - the probabilities along
the line segments. If all of these are 1.0, the object is crisp. In all other cases it is
uncertain.

R2 One should be able to say something about how uncertain an object is

Chapter 3 describes the Accuracy operator that returns this for uncertain
regions. For uncertain lines, one may check the width of the support at various
points long the line, and for points one might check the size of the support. The
Accuracy operation has been implemented for uncertain faces.

R3 One must be able to say where the object certainly is not

All the types in all the models include a support, which is defined such
that the object is certainly inside it. This means that the object is certainly not
outside the support.

R4 One must be able to say where the region certainly is

Regions in all the models contain a core that is defined as the area in
which the region certainly is.

R5 One should be able to compute the probability that the object overlaps or is
inside a given area

This requirement is satisfied by the abstract model, but only partially sat-
isfied by the discrete models. For the simple discrete model, this cannot be
done as there are no probability functions in this model. For the other two dis-
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crete models, the results can often only be approximated. See Section 4.7 and
Section 4.10.3 for details.

R6 One should be able to compute the probability that a given crisp point is in-
side an uncertain region

In the abstract model and in both the advanced and medium complexity
discrete models, this is possible through computing the probability function at
that crisp point. In the simple discrete model, this probability is either 1.0, 0.5
or 0.0.

R7 The model should be able to handle all numerical and spatial data types

The abstract model defines numbers, intervals, Boolean values, points,
lines and regions. The discrete models also define these types, except that the
number type is divided further into integers and floating-point numbers.

R8 The model should be able to store objects with temporal as well as spatial
uncertainty

Both the abstract model and the advanced discrete model allow this. In
the medium complexity discrete model there are some problems with storing
temporal uncertain points, and the simple discrete model cannot be extended
to store spatiotemporal objects.

R9 One should be able to get crisp versions of uncertain objects with varying
degrees of confidence

All the models contain the Alpha-cut operation, which does this.

R10 One should be able to compute all operations that can be run in standard
spatiotemporal models like [GBE+00]

Chapter 3 defines the semantics for all the operations that are defined in
[GBE+00] for uncertain spatial and spatiotemporal data. However, some of
these operations cannot return meaningful results when there is uncertainty.
These operations are listen in Section 3.6.1.1 and Section 3.6.2.1.

6.2.2. Answering the research questions

This section describes the answers to the five research questions from
Section 1.2.

Q1 Current Situation: Are there efforts that already have answered the main
question or addressed a part of it?



186 CHAPTER 6 DISCUSSION AND EVALUATION

There are overviews of the current situation in Chapter 2 as well as in the
introductory sections in Chapter 3 and Chapter 4. From these overviews, it be-
comes clear that there is already work that answers parts of the research ques-
tions. Typically, the previous efforts have concentrated on one particular data
type and constructed a model for that. Examples are [Sch96] for regions and
[Dut92] for points. An exception to this is the abstract model for vague spatial
data from [Sch99], which includes all three spatial data types and uses the same
framework for each. However, [Sch99] tries to model vagueness whereas this
thesis tries to model uncertainty.

Q2 Requirements: What are the requirements for a system which answers the
research question?

The requirements in Section 1.5 were set up based on some of the aspects
of uncertain spatial data that users would find most vital to know. Some of the
requirements also ensure that the new model does not lose too many of the ca-
pabilities that have been developed for models for crisp data.

Q3 Abstract Solution: How should uncertainty in spatial data be modelled in
general?

The main idea has been that all uncertain spatial objects, regardless of
type, should store a region that indicates where the object might possibly be.
This idea was behind all the developments in Chapters 3, 4 and 5.

Q4 Discrete Solution: How should the abstract solution be implemented in a
computer?

Three different solutions to this question were given in Chapter 4. The ad-
vanced model was based on storing a discrete region or face with each uncer-
tain spatial object. The medium complexity model was developed to make
computing the probability function simple. The simple model was further de-
veloped from the medium complexity one to see how much storage space
could be saved by removing various capabilities.

Q5 Evaluation: How well does this research solve the problems, and how do
the solutions presented compare to previous work?

The rest of Chapter 6 addresses this question.

6.2.3. Limitations of the chosen approach

There are some special cases that have not been adequately covered by
the model. One is an uncertain point with a linear support rather than a region
support. An example of this would be a car that is known to be on a certain
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road (a crisp line), but one does not know precisely where. This may be cov-
ered by the abstract model by saying that a line is a degenerate face.

Another example is a line that is uncertain only in parts of it. This is han-
dled in the abstract model by using several lines, some that are crisp and some
that are uncertain. In the abstract model, partially crisp lines cause the problem
that the probability function goes from being finite to being infinite in the point
in which the line becomes crisp. In the discrete models, this is not a problem
because probability mass functions are used. The probability mass function
would become 1 in the same point.

A further limitation is that the uncertain line models are complex and
therefore hard to implement. The implementation used the medium complex-
ity line model. An implementation of the advanced line model might become a
lot harder, especially if probability functions are used.

6.2.4. Advantages of the chosen approach

The major advantage of the chosen approach is that it models all uncer-
tain spatial data in roughly the same manner. Thus it is easy to see how they
will interact with each other. Most previous work has concentrated on a single
type or at most two types. It is also straightforward to extend the more ad-
vanced models to model temporal as well as spatial aspects of the data. The
temporal extensions presented in this thesis seem to be the first attempts at rep-
resenting uncertainty that is temporal as well as spatial. This approach also
makes it possible to store probability functions that indicate the likelihood of
an object being at particular places.

Although a full test of the entire medium-complexity model has not been
performed, the preliminary testing of the implementation described in Chapter
5 indicates that the models designed in this thesis work in practise and that the
approaches taken and choices made during this work seem appropriate for the
challenges that this thesis tries to address.

6.3. Comparison with other work

This thesis builds on a number of ideas from previous work. An overview
of the main ideas employed and their inspiration is listed in Table 6.2.

Compared to [Dut92], this work has had a slightly different focus. While
[Dut92] focused on measurement errors and digitization error, this work also
attempts to model uncertainty due to incomplete knowledge. Therefore, the
abstract model for uncertain points allows the point to be inside a general face
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and not just a circle. Additionally, the medium complexity and simple discrete
models for uncertain lines also have a much easier way of computing probabil-
ity densities for lines that Dutton’s model.

Compared to Schneider’s various models ([Sch96], [ES97], [Sch99] and
[Sch00a]) the approach presented in this thesis can model more types of data
because it can model temporal as well as spatial data. Schneider also focuses on
vagueness while this thesis has focused on uncertainty. The difference in focus
has caused the point and line models proposed here to become very different
from those presented in [Sch99]. The types presented here model uncertainty
about the position of the object, while the types in [Sch99] model uncertainty in
whether a point or line belongs to a given concept.

For regions, the abstract model is fairly similar to the regions from
[Sch99]. In both models the region is a function over the plane that for every
point in the plane can yield a value between 0 and 1. The difference concerns
what the function represents. In [Sch99], the function represents uncertainty in
classification (vagueness), whereas in the models from this thesis the function
refers to uncertainty in where the border lies.

Table 6.2 Inspiration of features

Feature Inspiration Extension

Region as support for uncer-
tain spatial objects

[Sch96]: Region as support for
vague regions.

[Dut92]: Circular support for
points.

Region as support for all uncertain
spatial objects, not just uncertain
regions. Non-circular support for
uncertain points.

Spatial types as probability
functions over the plane

[Sch99]: Fuzzy types as mem-
bership functions over the plane.

Use of probability theory instead
of fuzzy set theory. Use of proba-
bility densities and probability
masses.

1D probability functions in dis-
crete models

[DS98]: Probability distribu-
tions for temporal uncertainty.

Use of 1D functions for 2D data
types.

Temporal uncertainty as uncer-
tainty about existence over time

[DS98]: Uncertain time inter-
vals.

Use of this concept for spatial
objects. Connecting temporal
uncertainty with uncertainty about
existence.

Appropriate operation of uncer-
tain data

List of operations in [GBE+00]. Evaluation of the operations with
uncertain data.

New operations for uncertain
data

Operations for vague spatial data
and fuzzy set theory [Zad65].

Extension to spatiotemporal data.

Triangulation approaches to
computing probability func-
tions

Triangular irregular networks
used for elevation models
[Hell90].

New usage: Used for computing
probabilities in border area.
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Further, in the advanced discrete model, regions are very similar to the
regions from [Sch96]. Both approaches see uncertain regions in the same way:
with a core in which the region is certain to be and a border area in which the
region may possibly be. The advanced discrete model has added the ability to
compute probability values for various parts of the border region.

Handling temporal uncertainty was inspired by [DS98]. The time that a
spatial object exists (the DefTime operation) is a time range in that paper. My
extension is to store such a time range with a spatial object and to combine it
with the sliced representation. Like an uncertain line or an uncertain range, a
time slice contains a probability function indicating the probability that the ob-
ject exists at various times in that time slice.

All the operations from [GBE+00] have been evaluated for use in the un-
certain case as part of this work. However, as given in Section 3.6, not all of
these operations are useful when there is uncertainty. This thesis also presents
some new operations that can be used with uncertain spatial and spatiotempo-
ral data. Some of these, like the Core, Support and Alpha-Cut operations, have
been described previously for fuzzy set theory.

The triangulation approaches to storing and computing probabilities in
the advanced discrete model from Section 4.4 were inspired by the triangula-
tion approaches for storing elevation models in geographic databases.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the conclusions reached in this thesis and points
out directions for possible future research.

7.1. Conclusions

An abstract model for spatial and spatiotemporal data has been described
in this thesis. Three different discrete models have been built based on this ab-
stract model. The medium complexity discrete model has been partially imple-
mented. This shows that it is possible to create an implementable model for
uncertainty in spatial and spatiotemporal data.

However, the analysis of storage requirements in Chapter 4 shows that
uncertain data requires significant amounts of storage space. Even the simple
discrete model, which was made to minimize the required storage space, in-
creases storage space by 1.75 times for curves and faces, and by 2 times for
points and base types compared to similar models for crisp data. In the ad-
vanced discrete model, faces require 2 times as much space, curves 3.75 times
as much space and points many times as much space as the corresponding
crisp types. This shows that there is a trade-off between modelling capability
and storage space needed. The more computationally complete models require
more storage space.

Another conclusion from Chapter 4 is that there is a trade-off between
modelling capability and how easy it is to compute probability functions con-
sistently. For the advanced discrete model, special additions must be made if
one requires consistent results from the probability functions. Some of these
additions cost extra storage space and impose limitations on the modelling ca-
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pabilities. The medium complexity discrete model does not require such spe-
cial considerations, and the simple discrete model does not store probability
functions.

In Chapter 5, it was shown how much easier it is to implement certain op-
erations if one uses the mathematics from fuzzy sets rather than the mathemat-
ics from probability theory. The difference stems from the fact that fuzzy set
theory uses the minimum operation for intersection, while probability theory
uses multiplication. Likewise, fuzzy set theory uses the Maximum operation
for union, while probability theory uses the formula .

7.2. Future work

Although this thesis presents a complete approach, this may be extended
with further capabilities. The implementation may also be extended.

7.2.1. Model extensions

• Modelling uncertain fields. The thesis discusses how to model uncertainty
with object data. Object data is data about specific objects, which may
be vague or uncertain, but are nonetheless distinct. Fields, on the other
hand, are functions over the entire plane or space under consideration,
and do not represent specific objects. However, fields can also be uncer-
tain due to many of the same factors as for objects.

• Three-dimensional data. The models presented here work for two-dimen-
sional data, but there are further problems if one wants to model uncer-
tainty with objects in three (or more) dimensions.

• Granularities/Mass functions in discrete models. Using a probability mass
function normally requires that one knows how many possible values
there are. For spatial data, this is possible if one uses integers or another
fixed point system for numbers. However, floating-point numbers are
also often used. Further, the dual grid approach from [LG00] uses num-
bers of different precisions. This makes computing the number of possi-
ble values difficult. How to handle this consistently is still an open
question.

• Uncertain points with linear support. Uncertain points are assumed to
have a crisp face as support in this model. However, sometimes an
uncertain point may have a crisp line as support. In the abstract model,
one may treat a line as a degenerate face. How this will affect the dis-
crete model is also an open question.

a 1 a–( ) b⋅+
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• Modelling relations between uncertain objects. The model described in this
thesis treats single objects. However, in a real database objects are often
connected to each other. An uncertain line might be the border between
two uncertain regions, or a set of uncertain regions might form an
uncertain partition. In Section 3.6.1.1 it is mentioned that one cannot
determine that two uncertain regions have a common border unless
this fact is explicitly stored. One might extend the model described in
this thesis so that it is capable of storing such relationships as well as
individual objects.

7.2.2. Implementation extensions

• Complete implementation of the medium complexity model. The implementa-
tion described in Chapter 5 is not complete. The uncertain region type,
as well as several operations for uncertain curves, have not been imple-
mented. Further, the implementation does not cover the temporal part
of the approach.

• Implementation of the advanced model. To test how implementable the
models presented here are, the advanced discrete model should also be
implemented. The advanced model is potentially much more difficult
to implement than the medium complexity model.

• Implementation of a data blade. As a further test, the implementation
should be extended with an integration into an existing database sys-
tem. This has not been done due to constraints in both time and
resources.

7.2.3. Other extensions

• Query language extensions. This thesis has presented ways to model
uncertainty in spatial and spatiotemporal data. However, the query
language of a database may also have to be extended to enable the user
to fully utilize the new models.
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Appendix A

Creating Representations for
Continuously Moving

Regions from Observations

By Erlend Tøssebro and Ralf Hartmut Güting1

Abstract. Recently there is much interest in moving objects databases,
and data models and query languages have been proposed offering data types
such as moving point and moving region together with suitable operations. In
contrast to most earlier work on spatiotemporal databases, a moving region
can change its shape and extent not only in discrete steps, but continuously.
Examples of such moving regions are oil spills, forest fires, hurricanes, schools
of fish, spreads of diseases, or armies, to name but a few.

Whereas the database will contain a “temporally complete” representa-
tion of a moving region in the sense that for any instant of time the current ex-
tent and shape can be retrieved, the original information about the object
moving around in the real world will most likely be a series of observations
(“snapshots”). We consider the problem of constructing the complete moving
region representation from a series of snapshots. We assume a model where a
region is represented as a set of polygons with polygonal holes. A moving re-
gion is represented as a set of slices with disjoint time intervals, such that
within each slice it is a region whose vertices move linearly with time. Snap-
shots are also given as sets of polygons with polygonal holes. We develop algo-
rithms to interpolate between two snapshots, going from simple convex

1. Praktische Informatik IV, Fernuniversität Hagen, D-58084 Hagen, Germany
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polygons to arbitrary polygons. The implementation is available on the Web.

A.1. Introduction

Databases have for some time been used to store information on objects
which have positions or extents in space. There are also many applications of
databases which store information about how such objects change over time.
Spatial objects that move or change their shape over time are often referred to
as moving objects. In [GBE+00] an abstract model for representing moving ob-
jects in databases is described. In an abstract model, geometric objects are mod-
eled as point sets. For continuous objects like lines or regions, these point sets
are infinite. This means that these models are conceptually simple, but cannot
be directly implemented. A discrete model, on the other hand, can be imple-
mented but is somewhat more complex. A discrete model for spatiotemporal
objects, which builds on the abstract model in [GBE+00], is described in
[FGNS00].

Early research on spatiotemporal databases concentrated on modeling
discrete changes to the database. Examples of such models can be found in
[Wor94], [CG94], and [PD95]. More recent research also addresses the dynamic
aspect, that is, that objects may change continuously without explicit updates.
One example of such a model is presented in [SWCD97]. However, this model
covers only the current and expected near future of the objects, and not the his-
tories of the objects, and it also does not deal with moving regions. Constraint
databases can also be used to describe such dynamic spatiotemporal databases.
One study of constraint databases which explicitly addresses spatiotemporal
issues is [CR97]. [CR99] contains a framework in which all spatiotemporal ob-
jects are described as collections of atomic geometric objects. Each of these objects
is given as a spatial object and a function describing the development of this
object over time. For the continuous functions, affine mappings (allowing
translation, rotation and scaling) and subclasses of these are considered. How-
ever, to the authors’ knowledge, [GBE+00] and [FGNS00] describe the only
comprehensive model describing spatiotemporal data types and operations.

The model in [FGNS00] describes a way to represent continuously mov-
ing, amorphous objects in a database in such a manner that it is possible to pro-
duce a “snapshot” of the object at any time within the time interval in which it
exists. However, most data about moving objects will come in the form of
snapshots taken at specific times. This paper addresses the problem of creating
this type of representation from a series of snapshots of a moving amorphous
region. Important types of such regions in the real world would be oil spills,
forest fires, fish schools, and forests. (Forests change continuously because of
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deforestation, climatic changes, etc.).

This problem is similar to the problem of interpolating or blending
shapes, which has been studied in the computer graphics community, because
both problems involve creating plausible in-between shapes at any time be-
tween the two states given. One example of such a shape interpolation algo-
rithm is given in [SG92]. This algorithm was created to solve the problem of
creating a smooth blending between two figures in an animated movie. A com-
parison between the algorithm given in [SG92] and our algorithm is given in
Section A.8.

A problem which occurs when the moving region consists of several dis-
joint parts is to discover which part in the first snapshot corresponds to which
part in the second snapshot. Because the region parts may have changed both
their positions and shape, it may not be obvious to a computer which of them
to match. One region part may also have split into two between the two snap-
shots.

In Section A.2 the representation of regions and moving regions from
[FGNS00] is described. Section A.3 then introduces the basic algorithm for
building this representation for convex regions. In Section A.4, a way of repre-
senting a non-convex area as a tree of convex areas with convex concavities is
described. This structure is later used to apply the technique described in Sec-
tion A.3 for non-convex regions. Section A.5 describes strategies for discover-
ing which regions, or components of regions, in one snapshot correspond to
which regions in the other snapshot. This is important both for creating repre-
sentations for multi-component regions and for matching parts of the tree rep-
resentation of Section A.4 correctly. Section A.6 describes the algorithm for
interpolating between arbitrary polygons; an important subproblem is the
matching of concavities between snapshots. In Section A.7, the quality of the
results for different types of regions is discussed. Section A.8 is a comparison
between our work and [SG92], and Section A.9 contains the conclusions to this
paper.

A.2. Representing Regions and Moving Regions
In this section we review the structure and representation of static and

moving regions defined in [FGNS00], since this representation needs to be cre-
ated by our algorithms. We start by considering a (static) region, as a moving
region needs to be consistent with it. Indeed, a moving region, evaluated at any
instant of time, yields a region.

A region may consist of several disjoint parts called faces, each of which
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may have 0 or more holes. At the discrete level, the boundaries of faces as well
as holes are described by polygons. Hence a region looks as shown in
Figure A.1.

This structure is defined in terms of segments, cycles, and faces. We sketch
the structure of the formal definitions in [FGNS00]; more details can be found
there.

Seg = {(u, v) | u, v ∈ Point, u < v}

A segment is just a line segment connecting two points which need to be
distinct.

Cycle = { | ...}

A cycle is a set of line segments forming a closed loop which does not in-
tersect itself, hence it corresponds to a simple polygon.

Face = {(c, H) | , , such that ...}

A face consists of a cycle c defining its outer boundary, and a set of cycles
H defining holes. These holes must be inside the outer cycle, and must be pair-
wise disjoint. H may be empty.

Region = { | }

A region is a set of disjoint1 faces.

A moving region is described - like the other “moving” data types in
[FGNS00] - in the so-called sliced representation. The basic idea is to decompose
the temporal development of a value into fragments called slices such that
within a slice this development can be described by some kind of “simple”

Figure A.1 A region

1. Edge-disjoint means that two faces may have common vertices, but must otherwise
be disjoint (i.e., they may not share edges).

x

y

S Seg⊂

c Cycle∈ H Cycle⊂

F Face⊂ f1 f2, F∈ f1 f2≠( )∧ edge-disjoint⇒ f1 f2( , )
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function. This is illustrated in Figure A.2.

Hence each slice corresponds to a time interval; the time intervals of dis-
tinct slices are disjoint. For a moving region, the “simple function” within a sin-
gle slice is basically a region (as defined above) whose vertices move linearly in
such a way that at any instant of time within the slice a correct region is
formed. Such a slice is shown in Figure A.3.

The structure represented within a single slice of a moving region is
called a region unit. This structure is defined bottom-up in terms of moving
points, moving segments, moving cycles, and moving faces analogously to the defi-
nition of a region. Again we sketch the formal definitions from [FGNS00].

MPoint = {(x1, x1, y0, y1) | }.

A moving point is given by four real coordinates. The semantics of this
four-tuple, that is, the function for retrieving the position of the moving point
at any point in time is

Figure A.2 Sliced representation

Figure A.3 A slice of a moving region representation
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In the three-dimensional (x, y, t)-space, a moving point forms a straight
line.

A moving segment is defined by:

A moving segment consists of two moving points which are coplanar, i.e.,
lie in the same plane in the (x, y, t)-space. Hence in 3D a moving segment is a

trapezium (Figure A.4a). The segment may degenerate at one end of the time
interval into a point, hence we may have a triangle in the 3D space. This means
that a moving segment cannot rotate as time passes. One can create a (rough)
representation for a line segment which rotates by creating two moving seg-
ments, each of which is the line segment in one snapshot and becomes a point
in the other (Figure A.4b).

An MCycle is the moving version of the Cycle. It contains a set of moving
line segments. None of these may intersect in the interior of the time interval in
which the MCycle is valid. The MCycle must yield a valid Cycle in all instants in
the interior of the time interval.

This is a moving version of the Face. The MFace must yield a valid Face in
all time instants in the interior of the time interval.

Figure A.4 Moving line segments
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A region unit consists of a time interval and a set of moving faces such
that evaluation at any instant of time in the interior of the time interval yields a
valid region value.

A.3. The Easy Case: Interpolating Between Two
Convex Polygons

The problem is now to compute from a list of region snapshots a moving
region representation. This reduces to the problem of computing a region unit
from two successive snapshots.

In this section we first consider the most simple case of the problem
which occurs if each of the two snapshots is a single convex polygon without
holes. In this case one can apply an algorithm that we call the “rotating plane”
algorithm. It can be described as follows. Input are two convex cycles at differ-
ent instants of time.

To create one moving segment, start with a segment s in one of the poly-
gons and create a plane perpendicular to the time axis through it. Then rotate
that plane around segment s until it hits a segment or a point from the other
polygon1. If in the other polygon there exists a segment s’ which is parallel to s,
then the plane will hit this segment, and the algorithm will create a proper tra-
pezium-shaped moving segment between s and s’. If there is no parallel seg-
ment, then the plane will hit a point p. Then a degenerate moving segment will
be created which starts out as the original segment s and ends as point p, thus
forming a triangle in space-time.

This algorithm can be implemented in a computer in the following fash-
ion: Take the segments in both polygons and sort them according to their angle
with respect to the x-axis (for instance). Then go through the two lists in paral-
lel, starting with the segment with the smallest angle in either list. For a given
segment check the next segment in the other list. If the angle of this segment is
equal to the angle of the chosen segment, create a proper moving segment con-
necting the two and mark both segments as done. If the angle is different, take
the first point in the other segment, use it as the second “segment”, and mark
only the chosen segment as done. After the moving segment is formed, take the
unmarked segment from either list with lowest angle as the next segment.

An example of the matchings generated by this algorithm is given in Fig-
ure A.5. Because the angle of segment c is greater than the angle of segment a,

1. It should be rotated in such a direction that the part which moves towards the other
object hits the other object on the same side as the segment is on the first object.
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and less than the angle of b, the segment c is matched to the point between seg-
ments a and b.

We now give a more formal description of this algorithm (Figure A.6).
The representation of a line segment (Seg) is extended to contain an angle as
well as the two end points. Also a function make_moving_point (Figure A.7) is
used to create a moving point from two static points.

Computing the angles between all segments and the x-axis takes O(n)
time, where n is the total number of segments. Finding the segments with the
lowest angle can also be done in O(n) time. Assuming the segments in the two
snapshots are already ordered so that adjacent segments are also neighbours in
the list, finding the next segment with the lowest angle can be done in constant
time (test the next segments in both snapshots and use the smaller one). Add-
ing a new moving segment to the result r can also be done in constant time. Be-
cause both of the last two operations must be performed once for every
segment, the total time for them is O(n). Therefore, this algorithm takes O(n)
time. Note that in the implementation the removal from um and checking for
membership in um is done by modifying or checking a variable associated with
each line segment rather than by physically removing or checking in a set. This
also applies to the other algorithms below which use a set of unmarked objects.

If the segments are unsorted or sorted by a different criterion than order-
ing along the border of the cycle, sorting them by angle takes O( )
time, and hence the running time of the algorithm will grow to O( ).

Theorem 1: Given two convex cycles c1 and c2 at times t1 and t2, algorithm
rotating_plane computes a region unit connecting these two cycles. If the two
cycles consist of a total of n segments and the cycles are represented in (e.g.
clockwise) order, then the algorithm requires O(n) time. If the two argument
cycles are not given in order, then O( ) time is required.

Figure A.5 Example of matching created by the rotating plane algorithm
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A problem with this interpolation method is that it is poor in handling ro-
tation. If a long, thin object rotates 90 degrees between snapshots, the interpola-
tion in the middle between them will be more or less quadratic, and will
probably have a much larger area than the object has in either snapshot. For
this reason, one must ensure that the snapshots are so close to each other in
time that only a small amount of rotation has happened between them.

algorithm rotating_plane(s1, s2, t1, t2)
input: Two convex cycles, s1 and s2, which represent snapshots of the

moving cycle at the distinct times t1 and t2, respectively.
output: An mcycle which yields the two cycles at the given times.
method:

let s1 = {s1, 1, ..., s1, n}; let s2 = {s2, 1, ..., s2, m};
let um be a list of Segs; um := ;
for each si, j do

compute the angle between si, j and the x-axis, and store it in
si, j.angle;
um :=

end for;
MCycle r := ;
while ( ) do

l1 := the si, j with the lowest angle, ;
l2 := the sk, l, , with the lowest angle, ;
if no such l2 exists then

l2 := the sk, l, , with the lowest angle
end if;
if ( ) then

let l1 = (a, b); let l2 = (c, d)
else let l1 = (c, d); let l2 = (a, b)
end if;
let mp1 and mp2 be MPoints;
if (angle of l2) = (angle of l1) then

mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, d, t1, t2);
um := um \ {l1, l2}

else
mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, c, t1, t2);
um := um \ {(a, b)}

end if;
MSeg ms := (mp1, mp2);
r :=

end while;
return r

end rotating_plane

Figure A.6 Algorithm rotating_plane
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So far we can handle a single convex polygon in both snapshots, the most
simple case. Two major problems remain:

1. Treating concavities.

2. Treating regions with more than one face. Here the problem is to match
faces from the first snapshot correctly with faces from the second snap-
shot. Another version of this problem is one face with several holes.
One face with one hole can be treated by interpolating separately
between the outer cycles from the two snapshots and the two hole
cycles and then subtracting the “moving hole” from the “moving outer
cycle”. But if there are several holes, the algorithm must discover
which holes correspond.

These problems are addressed next.

A.4. Representing Non-Convex Polygons by
Nested Convex Polygons

We now focus on treating a region which still consists of a single face
without holes, i.e., a single cycle, but which needs not be convex any more. The
basic idea is to reduce this problem to the previous one by viewing a non-con-
vex polygon as being composed recursively from convex components.

This section first describes a representation in which a general cycle is
stored as nested convex polygons. The second subsection describes an algo-
rithm for generating this representation from a Cycle.

A.4.1. The Convex Hull Tree

This is a way to store arbitrarily shaped regions by storing convex regions
with convex holes. These convex regions and convex holes may then be treated
independently by the rotating plane algorithm, allowing it to work for objects

function make_moving_point(a, b, t0, t1)
input: Two points, a and b, and two distinct times t0 and t1.
output: A moving point which is at a at time t0 and at b at time t1.
method:

dx := (b.x - a.x) / (t1 - t0);
dy := (b.y - a.y) / (t1 - t0);
mp := (a.x - , dx, a.y - , dy);
return(mp)

end make_moving_point

Figure A.7 Function make_moving_point
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with concavities as well.

In an abstract view of the convex hull tree, each node p represents a con-
vex cycle c without holes. Each descendant d of p represents a hole to be cut out
from c to form the cycle represented by the subtree rooted in d. This general
method may be used both for storing real holes and for storing concavities in
the object. A concavity can simply be represented by a hole which includes a
part of the boundary of the cycle. See Figure A.8.

In the implementation of the convex hull tree, a cycle is stored in the fol-
lowing manner: Each node contains a list of line segments representing the
convex hull of the cycle. For each of the segments in this representation which
were added to make the cycle convex, a link to a child node is stored. This child
contains the convex hull of the area which should be extracted to get the real
cycle. If the extracted area contains concavities itself, then the child will have
children of its own with extracted areas.

An example of a cycle with several concavities and a convex hull tree rep-
resentation of this cycle is shown in Figure A.9. In this figure, the cycle itself is
represented by the thick lines. The segments of medium thickness were added
to make it convex. The other segments were added to make nodes further
down in the tree represent convex areas. The top node of the tree representa-
tion to the right in the figure contains the segments of the convex hull. The line
style is the same in the nodes as in the drawing of the region.

This structure as it is described here cannot store holes, because a hole is
not connected to a segment in the parent node. However, one could permit the
root1 node to have links to subnodes which are not connected to any particular

Figure A.8 A convex hull tree

1. This should not be permitted for nodes other than the root. If the hole is in the object
itself, it should be linked to the root. If the hole is in a concavity, then the object is no
longer a single region, but several disjoint regions.
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segment. These would then represent holes.

A.4.2. Computing a Convex Hull Tree from a Polygon

To build a convex hull tree for an arbitrarily shaped polygon, use the fol-
lowing steps:

1. Start at the root node and the entire polygon.

2. Create the convex hull of the polygon.

3. Store a segment list representation of the convex hull into the node.

4. For each of the segments which were added to make the polygon con-
vex, create a new node.

5. For each of these holes with new nodes, go to step 2.

The algorithm for building a convex hull tree (Figure A.10) uses two new
types, CHTNode and CHTLineSeg. CHTLineSeg is a line segment (Seg) which in
addition to the two end points may store a link to a child CHTNode. The CHTN-
ode type is the same as the Cycle type, with the exception that it stores CHTLine-
Segs instead of normal line segments.

Our implementation uses the Graham scan from [Gra72] to compute the
convex hull in O( ) time for a given polygon with n vertices. This must
be performed once for the whole object and once for each concavity. Because
the number of vertices in all the concavities at each level of the tree is less than
or equal to n, the total time for computing convex hulls is bounded by

Figure A.9 A region with concavities and its convex hull tree representation
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O( ), where d is the depth of the convex hull tree.

The line segments in the convex hull will be returned in counterclockwise
order by the procedure for computing the convex hull. If the line segments in
the given polygon are also ordered in this way, discovering which segments
from the convex hull are not in the original region and discovering which seg-
ments they have replaced can be done in linear time by going through both
lists in parallel, and testing for equality. When the two segments are not equal,
go through the list from the original polygon and put segments into a separate
list L until a segment with end point equal to the end point of the segment from
the convex hull is found. List L will then contain the segments which were re-
placed by the segment in the convex hull. The only problem with this algo-
rithm is finding where in the two lists to start, because the starting segment
must be in both sets. This can be done by marking which segments are in the
convex hull and which are not during the construction of the convex hull, and
then testing the lines in the region beginning with the first until one is found
which is on the convex hull. This takes O(n) time. Finding which element of the
hull is equal to this segment can then also be done in O(n) time. Marking
whether the segments are in the convex hull or not does not change the asymp-
totic running time of the Graham scan. Because this linear running time is less
than the time taken by the Graham scan, the running time of the entire algo-
rithm is equal to the running time of the Graham scan.

algorithm build_convex_hull_tree(polygon)
input: A Cycle polygon.
output: A CHTNode which is the root of the convex hull tree for polygon.
method:

CHTNode cl := ;
Cycle ch := the convex hull of polygon; let ch = {cs1, ..., csn};
for each do

if ( ) (that is, it was added to make the polygon convex)
then

cp := csi and the segments in polygon which were replaced by csi;
cch := build_convex_hull_tree(cp)

else
cch := ⊥

end if;
cl := cl ∪ {(csi.u, csi.v, cch)}

end for;
return cl

end build_convex_hull_tree

Figure A.10 Algorithm build_convex_hull_tree
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Theorem 2: For a given polygon with n vertices, the convex hull tree can be
built in O( ) time, where d is the depth of the resulting tree.

To recreate the polygon which is represented by a convex hull tree, start
with the root node and do the following:

• For each segment in the node which does not have a child, return that
segment.

• For each segment in the node which has a child, go to that subnode and
use this procedure on that node.

A.5. Matching Corresponding Components
We now address the problem of matching components in one snapshot

with components of the other which comes in three flavors:

• Given observations of a moving region consisting of several faces,
which faces in the older snapshot correspond to which faces in the
newer one?

• Given a moving face with several holes, which holes in the old snapshot
correspond to which holes in the new?

• Given a moving face (cycle) with concavities and two snapshots of it,
which concavities in the old and new snapshots correspond to each
other?

Figure A.11 illustrates the problem. It becomes aggravated by the fact that
components may split or merge between snapshots.

In all three cases we need to find matching pairs of cycles (i.e., simple pol-
ygons). From now on we assume that two sets of cycles C and D are the given
input for this problem.

Figure A.11 Matching components of moving region observations
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A.5.1. Requirements for Matching

Before discussing strategies for matching, we should understand the
quality criteria for such strategies.

1. It seems obvious that matching should work correctly for any compo-
nent that has not moved at all.

2. Components that have moved a small distance relative to their size
should be matched correctly.

3. It should be possible to match components that have had minor
changes to their shape and size.

4. A matching algorithm should discover that a component has been split
into fragments or merged from them.

5. A matching strategy should offer criteria to judge the quality of obser-
vations. In other words, it should allow one to decide whether two suc-
cessive snapshots are close enough in time, or too far apart.

Generally, it seems reasonable to require that a matching strategy is guar-
anteed to produce correct matchings for the components of a moving region if
the frequency of observations is increased. This can be formulated a bit more
precisely as follows:

Definition 3: Let mr be a moving region with several components, and let S1
and S2 be two observations of it at times t and . A matching strategy is
called safe, if it is guaranteed to produce a correct matching of the components
of mr if . In other words, there exists an such that the matching is
correct for all .

A.5.2. Strategies for Matching

Strategies for matching include the following:

1. Position of centroid. For each cycle, compute its centroid (center of grav-
ity). This transforms each set of cycles into a set of points. A closest pair
in the point sets C’ and D’ is a pair of points (p, q) such that q is the
point in D’ closest to p and p is the point in C’ closest to q. For each clos-
est pair, match the corresponding cycles.

2. Overlap. For each pair of cycles c in C and d in D compute their intersec-
tion area u and take the relative overlap, that is, overlap(c, d) = size(u)/
size(d) and overlap(d, c) = size(u)/size(c). The overlap relationship can be
represented as a weighted directed graph (i.e. if overlap(c, d) = k, for k >

t t∆+

t 0→∆ ε 0>
t ε≤∆
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0, then there is an edge from c to d of weight k). Then there are several
options:

a. Fixed threshold. Introduce a threshold t (e.g. t = 60%). Two cycles c
and d match if overlap(c, d) > t and overlap(d, c) > t .

b. Maximize overlap. For all cycles (nodes) order their outgoing edges
by weight. For a node c let succ1(c), ..., succn(c) be its ordered list of
successors. Match c with d if d = succ1(c) and c = succ1(d).

So far we have considered the matching of single cycles. However, the
overlap graph allows us to recognize in a natural way transitions where cycles
split or merge. See Figure A.12. Here c splits into d, e, and f (or is a merge of d, e,

and f). This can be deduced from the fact that for each of the three fragments
the overlap with c is large (above 50 %, say) whereas for c the overlap with ei-
ther d, e, or f is relatively small, but the sum of their overlaps is large. This leads
to strategies for matching a cycle with a set of cycles:

c. Fixed threshold, set of cycles. As in (a), introduce a threshold t (e.g. t

= 60%). Match c with { | overlap(c, d) > t} ∪ { | over-
lap(d, c) > t}.

d. Maximize overlap, set of cycles. Order outgoing edges by weight as in
(b). Match c with {succ1(c)} ∪ { | c = succ1(d)}.

What is a good strategy in the light of the requirements of Section A.5.1?
Using the centroids, although simple, is not a safe strategy. This is because cen-
troids may lie outside their cycles so that centroids even of disjoint cycles may
coincide. This can lead to entirely wrong matchings. The overlap techniques
are safe because overlaps approach 100% for region observations when .
Of course, snapshots have to be close enough to ensure reasonable results.

Figure A.12 Cycle c splits into three cycles d, e, and f
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In the remainder of this paper, we will restrict attention to considering a
single cycle with concavities, represented in a convex hull tree. The full paper
[TG02] covers the general case with multiple faces and holes. However, the
techniques for matching components are already needed in the restricted case
for matching concavities in two snapshots of a single cycle. Also, we need to
treat transitions such as the splitting/merging of concavities.

A.5.3. Matching Two Convex Hull Trees

To support the matching of concavities, we compute for two given convex
hull trees an overlap graph. Its nodes are the nodes of the convex hull trees; to
store the edges, the data structure for nodes is extended to store also a set of
pointers to other nodes; each pointer has an associated weight indicating the
overlap.

type OverlapEdge = { (node, weight) | node ∈ CHTNode, weight ∈ real}
CHTNode subtype CHTNodeWO = { (..., O) | O ⊂ OverlapEdge}

In the description of algorithm compute_overlap_graph (Figure A.13) we as-
sume that the two argument convex hull trees have been constructed using
nodes of type CHTNodeWO (“convex hull tree node with overlap”) and that in
each node the set O of overlap edges has been initialized to the empty set. This
is a trivial modification of algorithm build_convex_hull_tree.

The algorithm traverses the tree, computing the overlap for pairs of nodes
of different trees at the same level whose parents overlap. If the two nodes
overlap at a percentage higher than criterion, then the nodes are linked.

The intersection of two convex polygons with l and m edges can be com-
puted in time O(l + m) (see e.g. [PS85, Theorem 7.3]). If the two polygons repre-
sented in the convex hull trees have a total of n edges, then the running time for
compute_overlap_graph can be bounded by O(d ⋅ f2 ⋅ n), where d is the depth of
the tree and f the maximal fanout, since on each level of the tree there are less
than n edges and overlap computation is called for each combination of f sons
of a node. – Our implementation described in Section A.7 uses a function for
computing the intersection of two polygons that comes with java 1.2
(java.awt.area) and the authors do not know what algorithm is used there.

A.6. Interpolating Between Two Arbitrary
Polygons

We are now ready to address the problem of interpolating between two
general, possibly non-convex polygons. We assume these polygons are repre-
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sented by convex hull trees for which the overlap graph has been computed.

The basic idea is, of course, to use the rotating_plane algorithm from Sec-
tion A.3 on each matching pair of nodes of the two convex hull trees. Let us
consider what can happen for a concavity from one snapshot to the next.

The first case (see Figure A.14 a)) is that the concavity does not find a
“matching” partner in the other polygon. In this case we consider the trape-
zium t involving its parent edge pe which is most likely a triangle (drawn fat in
Figure A.14). All the edges of the concavity are connected by triangles with the

algorithm compute_overlap_graph(cht1, cht2, criterion)
input: Two convex hull trees cht1 and cht2 with nodes of type CHT-

NodeWO and the real number criterion, which controls how much two
convex hull tree nodes must overlap to be considered a match.

output: cht1 and cht2 are updated to contain overlap edges for matching
pairs of nodes.

method:
overlap := intersection(cht1, cht2); // intersection of convex polygons

// in the roots
overlap1 := (area(overlap)/area(cht1))*100;
overlap2 := (area(overlap)/area(cht2))*100;
if (overlap1 > criterion) and (overlap2 > criterion) then

OverlapEdge oe1 := (cht2, overlap1);
OverlapEdge oe2 := (cht1, overlap2);
cht1.O := cht1.O ∪ {oe1}; cht2.O := cht2.O ∪ {oe2};
for each son s1 of cht1 do

for each son s2 of cht2 do
compute_overlap_graph(s1, s2, criterion)

end for
end for

end if
end compute_overlap_graph

Figure A.13 Algorithm compute_overlap_graph

Figure A.14 Transitions for cancavities
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point p in the other polygon in which triangle t ends.1 So the concavity appears
to spring from p or to disappear into p depending on which snapshot is first in
time.

Technically, trapeziums are first constructed for the two convex outer
polygons, which includes the creation of t. Then, trapeziums (triangles) are
constructed for the concavity, including its parent edge, so that t is created once
more. Then the union is formed of the first set and the second set of trapezi-
ums, subtracting their intersection. This leads to the complete removal of trape-
zium t.

The second case (Figure A.14 b)) is that there is a single matching partner
for the given concavity in the other polygon. Then trapeziums are constructed
recursively for the two concavities. Again, this also yields the trapeziums in-
volving the parent edges of the two concavities so that these can be removed
from the result when forming the union with the trapeziums from the next
higher level.

The third, most involved case occurs if the concavity matches more than
one concavity in the other polygon (Figure A.15).

In this case, before the interpolation is performed, the set C of concavities
matching the one concavity is first joined into a single convex polygon. This is
done as a transformation on the convex hull tree, which is illustrated in
Figure A.16.

The algorithm for performing the transformation shown in Figure A.16 is
called join_concavities (Figure A.17). It uses a function recreate_polygon

1. If t is indeed a trapezium which happens if there is a segment s parallel to pe in the
other polygon, then one of the end points of s is selected arbitrarily to play the role of
p.

Figure A.15 Transitions for concavities: one concavity matches
several concavities
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Figure A.16 Rebuilding the convex hull tree to join concavities

algorithm join_concavities(chts, chtp, bl)
input: A set of convex hull tree nodes with overlap graph, chts, which

represents the concavities to be joined, the convex hull tree node with
overlap graph chtp, which is the parent node of the nodes in chts, and a
set of lines, bl, which represents the lines between the concavities.

output: A single convex hull tree node which is the union of the others.
method:

let chtu be an empty set of line segments;
for each do

chtu := chtu ∪ recreate_polygon(cht)
end for;
let dset be an empty set of line segments;
dset := dset ∪ bl;
for each do

if l ∈ chtp.S do
chtu := chtu \ {l};
chtp.S := chtp.S \ {l};
dset := dset ∪ {l};

end if
end for;
let cl be the line segment that needs to be added to dset to make it a
cycle;1

chtu := chtu ∪ bl;
chtu := chtu ∪ {cl};
let res be the cycle formed by the line segments in chtu;2

resch = build_convex_hull_tree(res)
let rlp be a CHTLineSeg containing the line segment cl and a reference
to the CHTNodeWO resch;
chtp.S := chtp.S ∪ {rlp};
return resch

end join_concavities

Figure A.17 Algorithm join_concavities
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(Figure A.18) implementing the strategy for reconstructing a polygon from a
convex hull tree sketched at the end of Section A.4. Some of the notations used
in join_concavities are shown in Figure A.16.

Finally, the overall algorithm for interpolating between two polygons is
given in Figure A.19, Figure A.20, and Figure A.21. The strategy for matching

1. dset now contains all the line segments in the parent that point to the cycles that
should be joined. It also contains the lines between them. Because the lines in the
parent form a convex polygon, adding only a single line makes this collection of
line segments a cycle.

2. Note that the line segments in chtu are not necessarily a cycle, because the line cl
may cross some of the other lines. The implementation contains code that han-
dles this particular case in all functions that normally take cycles as input. The
implementation always ignores the line which a node has in common with the
parent.

algorithm recreate_polygon(cht)
input: A convex hull tree, possibly with overlap graph, cht.
output: The cycle represented by cht.
method:

let res be an empty set of line segments;
for each ls ∈ cht.S do

if (ls contains link to child node) then
res := res ∪ recreate_polygon(ls.child)

else
res := res ∪ {ls}

end if
end for;
return res

end recreate_polygon

Figure A.18 Algorithm recreate_polygon

algorithm create_moving_cycle(poly1, poly2, t1, t2, criterion)
input: Two polygons, poly1 and poly2 represented as Cycles, two times, t1

and t2, representing the times when poly1 and poly2 are valid, and a
criterion specifying how much overlap is required to consider two
objects to match.

output: An MCycle resulting from the interpolation of the two polygons.
method:

cht1 := build_convex_hull_tree(poly1);
cht2 := build_convex_hull_tree(poly2);
compute_overlap_graph(cht1, cht2, criterion);
return trapezium_rep_builder(cht1, cht2, t1, t2)

end create_moving_cycle

Figure A.19 Algorithm create_moving_cycle
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concavities is actually a mixture of strategies 2c and 2d: The overlap graph is
constructed applying a fixed threshold (criterion). But then a concavity c is
matched to all concavities connected by an overlap edge for which it is the
maximally overlapping concavity.

The analysis of the complexity of this algorithm is a bit more involved
and for lack of space omitted here. In the full paper [TG02] an upper bound of
O(d2 n log n) is derived, where d is a bound on the depth of the convex hull
trees and n the total number of edges of both polygons.

algorithm trapezium_rep_builder(cht1, cht2, t1, t2)
input: Two convex hull trees with overlap graph represented by their

roots, cht1 and cht2, and two times, t1 and t2, when the polygons
represented by cht1 and cht2 are valid.

output: An Mcycle resulting from the interpolation of the two polygons.
method:

children1 := the children of cht1; children2 := the children of cht2;
MCycle mc := rotating_plane(cht1, cht2, t1, t2);// convex hull tree node

// is a subtype of cycle.
um := children1 ∪ children2; // “unmatched children”

//Step 1: Find partners in cht2 for children in children1
for each child ∈ children1 do

ol := the list of concavities that overlap child (according to the
overlap graph);
// restrict ol to concavities for which child is the maximally
overlapping one
for each c ∈ ol do

col := the list of concavities that overlap c;
if not (child is the element of col with greatest overlap) then

ol := ol \ {c}
end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities in ol};
concavity := join_concavities(ol, cht2, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2)
mc := (mc ∪ cr) \ (mc ∩ cr);
um := um \ {child}; um := um \ ol;

end if
end for;

Figure A.20 Algorithm trapezium_rep_builder, Part 1
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A.7. Experimental Results
All algorithms described in this paper have been implemented in Java.

The implementation is available on the Web at http://www.idi.ntnu.no/
~tossebro/mcinterpolator/interpolator.html. There is an applet
that allows one to interactively enter two snapshots and then see the interpola-
tion, then a version for download that creates from two snapshots a VRML file
which can be studied through a VRML viewer. The documented source code is
also available.

//Step 2: Find partners in cht1 for yet unmatched children in children2
for each child ∈ (children2 ∩ um) do

ol := the list of concavities that overlap child (according to the
overlap graph);

for each c ∈ ol do
col := the list of concavities that overlap c;
if not (child is the element of col with greatest overlap) then

ol := ol \ {c}
end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities in ol};
concavity := join_concavities(ol, cht1, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2);
mc := (mc ∪ cr) \ (mc ∩ cr);
um := um \ {child}; um := um \ ol;

end if
end for;

//Step 3: Connect still unmatched children with points (Figure A.14 (a))
for each child ∈ ((children1 ∪ children2) ∩ um) do

li := the line in the parent containing the pointer to child;
ml := the moving line segment in mc which contains li;
cp := one of the points in ml but not in li;
for each line segment l in recreate_polygon(child) do

ms := a moving line segment connecting l as and cp (a triangle);
mc := mc ∪ {ms}

end for;
change ml such that it no longer contains li, but only one end point
from li. If this turns it into a moving point, remove it entirely

end for;
return mc

end trapezium_rep_builder

Figure A.21 Algorithm trapezium_rep_builder, Part 2
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The experimental results described next have been derived from this im-
plementation. Matching multiple regions and joining separate regions (dis-
cussed in the full paper [TG02]) have not been implemented yet. The current
program also has no support for holes which are not concavities. The imple-
mentation works for all regions which remain in one piece and do not move
much relative to one another. (The more movement or rotation there is, the
lower the quality of the resulting triangle representation will be.) The represen-
tation created by the algorithm was passed to the extensible database graphical
user interface created by Miguel Rodríguez Luaces, which used it to create in-
terpolated values between the two snapshots. All the interpolations shown in
this document were created by this program.

An extension which handles multiple regions, regions with holes and re-
gions which split and merge is planned to be built on top of the existing pro-
gram.

For the artificial test cases which were used to test the program for bugs,
the results have in most cases become fairly good, such as in Figure A.22. How-
ever, the algorithm is very sensitive to overlap, and the smaller concavities
may be erroneously matched to points if they have moved a large distance rel-
ative to the size of the concavity. This problem may be reduced by reducing the
threshold overlap, that is, how much should two concavities overlap to be con-
sidered to match. The danger of reducing this criterion is that concavities might
be matched erroneously if they overlap by a small percentage (The program al-
ways matches the object to the first object or combination of objects which
match by more than the criterion). The overlap percentage was lowered several
times during testing. The first tests were conducted with an 80% overlap re-
quirement, while the last tests used a requirement of 10%. 5% may be even bet-
ter in some cases, but with such a small overlap criterion, there is a danger of
matching the concavities wrongly due to small overlaps with other concavities.
Note that this problem is more likely to occur for high snapshot distances. With
a very small snapshot distance, the concavities have moved little, and overlaps
between “non-matching” concavities will be unlikely. With a greater snapshot
distance, these overlaps may be significant. Figure A.23 shows two interpola-
tions, one with a criterion of 40% and one with a criterion of 10%. The one with
10% clearly looks better than the one with 40%, especially the right part of the
figure.

Another problem which has occurred in a few cases is that the convex
hull trees have become slightly different for very similar regions, causing some
strange behavior by the matching algorithm. A specific example of this is
shown in Figure A.24, where changing the position of a single point causes a
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line which previously belonged to the convex hull of the region to instead be-
long to the concavity. In this particular example, concavity a will be matched to
point b. When the larger concavities are first matched, the thin line in concavity
a will be matched to point b by the rotating plane algorithm. When concavity a
is then added, and no matches are found for it, all the lines in it will be matched
to point b. This interpolation artifact is clearly seen in the interpolations shown
in the right part of Figure A.24, where the interpolation has two “teeth” instead
of the single ending in the two snapshots. To get a good-looking result, the two
lines from the real region in concavity a would have to be matched to the two
lines c and d in the other snapshot. The program does not discover this match-
ing because of the different positions of these two lines in the convex hull tree.

However, this problem is most often caused by using objects with few
lines and sharp angles, and is therefore less likely to happen with real objects.
For instance, in the first example in Figure A.24, a real object would probably
have a rounded corner, which would have caused a small concavity which
might be matched to concavity a in the rightmost figure. In the few remaining
cases the concavities will likely be so small and/or thin that it will be hard to

Figure A.22 Interpolation of regular object

Figure A.23 Test object with original snapshots and interpolated values

First snapshot Second snapshot Interpolated value

First snapshot Second snapshot Interpolation, over-
lap criterion 40%.

Interpolation, over-
lap criterion 10%.
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observe the error. However, for test data which use relatively few lines, this
will continue to be a problem.

A.8. Related Work
As mentioned in the introduction, algorithms for creating interpolations

between two snapshots already exist. One of these, [SG92], was designed to
help creators of animated movies by generating intermediate shapes between
two snapshots of cartoon figures. This is a very similar problem to the shape in-
terpolation done by the rotating plane algorithm and convex hull tree in this
paper. From the examples they have presented, it seems that their approach is
better at preserving shape and avoiding some strange behaviors than ours. It is
also definitely better at rotation, which it seems able to detect and account for.
The problem, however, is that the user of the system must specify seven con-
stants which are used in the interpolation. They present a table with the num-
bers they have used in each of their examples, and for four of the constants
they are all different. This probably means that there is no set of numbers that
works universally. In our approach, one of the goals is that this process should
go completely automatically, without any user interaction at all. Also, the pres-
ervation of shape is not that important for our application, because the goal is
to store a representation for amorphous objects and not objects with a fairly
fixed shape, such as the dancing person used as an example in [SG92]. Another
problem is the running time. If the user specifies an initial correspondence be-
tween two points, their algorithm runs in O(n2) time. However, if the user does
not specify this, it runs in O(n2 log n) time. The average case running time of
our approach, however, is close to O(n log n). The d variable is somewhat de-
pendent on n, because more details may be shown. However, it will grow only
very slowly.

Figure A.24 Convex concavity becomes non-convex

a
b

c

d
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A.9. Conclusions
This paper has presented an approach to building the moving region rep-

resentation described in [FGNS00] from a series of snapshots of an amorphous
region. The combination of rotating plane algorithm and overlap graph seems
to work well for most regions of this type, although there seem to be better ap-
proaches if an interpolation between two snapshots is all that one wants. How-
ever, if one instead wants to interpolate between five hundred snapshots, our
approach seems to be a good one, because it does not demand any user interac-
tion and has a reasonable running time. The algorithms described in the paper
have been implemented. The running time has not been a problem with any of
the tests that have been run up until now, even though the test program has
been implemented in Java. There are some interesting possibilities for future
work:

1. The matching strategies described in Section A.5 should be imple-
mented and compared systematically. So far we have only imple-
mented one particular choice.

2. A problem with the overlap strategies is that for a large object that is
translated in the plane the smaller parts (e.g. lower level concavities)
move a lot relatively to their size even though the entire object moves
only a little. Hence small concavities will not overlap any more. There
are several ways to compensate for this, for example, by combining
overlap with a distance criterion for the small components. This should
be explored in more detail and evaluated experimentally.

3. Given a large collection of snapshots of an object which moves only lit-
tle, techniques for data reduction need to be developed. For example,
suppose an oil spill in the sea is captured every minute, constructing
interpolations between all successive snapshots may lead to an unnec-
essary amount of data. How can one construct a minimal representa-
tion according to some required precision?

4. Precise definitions for the quality of a series of snapshots should be
developed. This should allow one to decide whether a series of obser-
vations is “good enough”. Such definitions could be given in terms of
the matching strategies described in the paper.
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Appendix B

Class Description for the
Implementation

B.1. Class hierarchy
• class uncertainspatial.AreaUtils

• class uncertainspatial.CFace (implements uncertainspatial.SpatialObject)

• class uncertainspatial.CLine (implements uncertainspatial.SpatialObject)

• class uncertainspatial.CLines (implements uncertainspatial.MSet, uncertain-
spatial. SpatialObject)

• class uncertainspatial.ContainmentTree

• class uncertainspatial.CPoints (implements uncertainspatial.MSet, uncer-
tainspatial. SpatialObject)

• class uncertainspatial.CRegion (implements uncertainspatial.MSet, uncer-
tainspatial. SpatialObject)

• class uncertainspatial.CrossCurve (implements java.lang.Cloneable)

• class uncertainspatial.Integers (implements uncertainspatial.MSet)

• class uncertainspatial.Interval (implements java.io.Serializable)

• class java.awt.geom.Point2D (implements java.lang.Cloneable)

– class java.awt.Point (implements java.io.Serializable)
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• class uncertainspatial.CPoint (implements uncertainspatial. Spa-
tialObject)

• class uncertainspatial.ProbFunc (implements java.io.Serializable)

– class uncertainspatial.EquiProbFunc

– class uncertainspatial.LinearProbFunc

• class uncertainspatial.ProbMassFunc (implements java.io.Serializable)

– class uncertainspatial.EquiProbMassFunc

– class uncertainspatial.LinearProbMassFunc

– class uncertainspatial.TwoDeltaProbMassFunc

• class uncertainspatial.Range (implements uncertainspatial.MSet)

• class uncertainspatial.UncertainBoolean (implements java.io.Serializable)

• class uncertainspatial.UncertainObject (implements java.io.Serializable)

– class uncertainspatial.UncertainInteger

– class uncertainspatial.UncertainIntegers (implements uncertainspatial.
MSet)

– class uncertainspatial.UncertainInterval

– class uncertainspatial.UncertainRange (implements uncertainspatial.
MSet)

– class uncertainspatial.UncertainSpatialObject (implements uncertain-
spatial. SpatialObject)

• class uncertainspatial.UncertainCurve

– class uncertainspatial.UncertainCycle
• class uncertainspatial.UncertainFace

• class uncertainspatial.UncertainPoint

• class uncertainspatial.UncertainPoints (implements uncertainspa-
tial. MSet)

• class uncertainspatial.UncertainSegment

B.2. Interface hierarchy
• interface uncertainspatial.MSet

• interface uncertainspatial.SpatialObject
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B.3. Classes and functions

B.3.1. AreaUtils

B.3.2. CFace

Method Summary

static
boolean

inside(java.awt.Shape a1, java.awt.Shape a2) Tests
whether a1 is inside a2.

Field Summary
protected

java.awt.geo
m.Area

faceArea

An Area object that represents the face

protected
java.util.Ar

rayList

holeCycles

A list of holes represented as polygons

protected
java.awt.Pol

ygon

outerCycle

The polygon defining the outer boundary of the face

Constructor Summary

CFace()

Constructs an empty CFace.

CFace(java.awt.Polygon oc)

Constructs a CFace that is bounded by a polygon

Method Summary

protected
static void

addChild(java.util.ArrayList tmpres, CFace build-

face, java.awt.Polygon child, ContainmentTree ct)

Adds holes to a component face in a containment tree

protected
static void

addToRoots(java.util.ArrayList tmpres, java.awt.Poly-

gon newroot, ContainmentTree ct)

Adds a new root to the containment tree

double
area()

Computes the area covered by this face
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protected
static

java.awt.Pol
ygon[]

areaToPolygons(java.awt.geom.Area area)

Returns the polygons that an area object is made up of.

protected
static

java.awt.Pol
ygon

copyPolygon(java.awt.Polygon in)

Creates a copy of a polygon.

void
draw(java.awt.Graphics g)

Draws a representation of this face on the screen

java.awt.geo
m.Area

getFaceArea()

Gets the area covered by the face.

boolean
insertHole(java.awt.Polygon hole)

Insert a hole into the face.

protected
void

insertSureHole(java.awt.Polygon hole)

Insert a hole into the face.

CFace[]
intersection(CFace f)

Computes the spatial intersection of two faces.

UncertainBoo
lean

intersects(CFace f)

Tests whether two faces share an area

UncertainBoo
lean

intersects(CLine l)

Tests whether a line lies at least patially inside this face.

UncertainBoo
lean

intersects(CPoint p)

Tests whether a point lies inside this face.

UncertainBoo
lean

intersects(SpatialObject so)

Tests whether the shapes of two spatial objects share points or
parts.

CFace[]
minus(CFace f)

Computes the spatial minus of two faces.

UncertainBoo
lean

outside(CFace f)

Tests whether this face geometrically contains another face.

UncertainBoo
lean

outside(CRegion r)

Tests whether this face geometrically contains a region.

static
CFace[]

reconstructFaces(java.awt.geom.Area ar)

Finds the faces which make up the given area and returns them as
an array of faces.

CFace[]
union(CFace f)

Computes the spatial union of two faces.
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B.3.3. CLine

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Field Summary
protected

java.awt.Rec
tangle

bb

The bounding box of the curve.

protected
java.util.Ar

rayList

vertexes

A list of the points that make up the curve

Constructor Summary

CLine()
Constructs an empty curve

Method Summary

void
addVertex(int x, int y)
Adds a vertex to the curve.

void
addVertex(java.awt.Point p)

Adds a vertex to the curve.

double
area()

The area of a curve

void
draw(java.awt.Graphics g)

Draws a representation of this curve on the screen

boolean
equals(java.lang.Object o)

Checks whether two curve object are equal, that is, that they repre-
sent the same curve.

java.awt.Rec
tangle

getBounds()

Gets the bounding box of the curve

java.awt.Poi
nt

getVertex(int a)

Gets the location of a vertex in the curve
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B.3.4. CLines

java.util.Li
stIterator

getVertexIterator()

Gets an iterator that iterates over the vertexes of this curve

UncertainBoo
lean

intersects(CLine l)

Tests whether the shapes of two crisp curves share points or parts.

UncertainBoo
lean

intersects(CPoint p)

Tests whether a point is on this curve.

UncertainBoo
lean

intersects(SpatialObject so)

Tests whether the shapes of two spatial objects share points or
parts.

int
noVertexes()

The number of vertexes in the curve

Methods inherited from class java.lang.Object

clone, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Summary

CLines()
Constructs an empty ALine set.

Method Summary

boolean
add(java.lang.Object element)

Adds an element to this set

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

void
draw(java.awt.Graphics g)

Draws a representation of this CLines on the screen

MSet
intersection(MSet intersectwith)

Takes the regular set intersection of two CLines.

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.
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B.3.5. ContainmentTree

B.3.6. CPoints

MSet
minus(MSet subtract)

Takes the regular set difference of two CLines.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an element from this set

MSet
union(MSet unionwith)

Takes the regular set union of two CLines.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

ContainmentTree()

Constructs an empty containment tree.

Method Summary

void
addNode(java.awt.Polygon p)

Adds a node to the containment tree

java.awt.Pol
ygon[]

getChildren(java.awt.Polygon p)

Gets the children of a particular node, that is, all the polygons that
are contained in a particular polygon directly.

java.awt.Pol
ygon[]

getRoots()

Gets the roots of the containment tree (which really is a forest)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

CPoints()

Constructs an empty CPoints set.
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B.3.7. CRegion

Method Summary

boolean
add(java.lang.Object element)

Adds an element to this set

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

void
draw(java.awt.Graphics g)

Draws a representation of this Cpoints on the screen

MSet
intersection(MSet intersectwith)

Takes the regular set intersection of two CPoints.

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.

MSet
minus(MSet subtract)

Takes the regular set difference of two CPoints.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an element from this set

MSet
union(MSet unionwith)

Takes the regular set union of two CPoints.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

CRegion()

constructs an empty CRegion.

CRegion(java.awt.geom.Area a)

Constructs a region from an Area object containing a set of polygons

CRegion(CFace[] fs)

Constructs a CRegion from a list of faces.
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Method Summary

boolean
add(java.lang.Object element)

Adds a face to this region.

double
area()

Computes the area covered by this region

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

void
draw(java.awt.Graphics g)

Draws a representation of this region on the screen

protected
java.awt.geo

m.Area

getArea()

Gets the area covered by this region

MSet
intersection(MSet intersectwith)

Takes the spatial set intersection of two CRegions.

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.

MSet
minus(MSet subtract)

Takes the spatial set difference of two CRegions.

int
noComponents()

Gets the number of members in this set

UncertainBoo
lean

outside(CFace f)

Tests whether this region geometrically contains a face.

UncertainBoo
lean

outside(CRegion r)

Tests whether this region geometrically contains a region.

boolean
subtract(java.lang.Object element)

Subtracts a face from this CRegion.

MSet
union(MSet unionwith)

Takes the spatial set union of two CRegions.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait
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B.3.8. CrossCurve

B.3.9. Integers

Field Summary

double
angle

The angle of the crosscurve compared to the horizontal axis

int
length

The distance from the core line of the support (half the length of
the crosscurve)

Constructor Summary

CrossCurve()
Constructs a crosscurve with a length and an angle of 0.

Method Summary

java.lang.Ob
ject

clone()
Creates a new CrossCurve that is a copy of this one.

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Summary

Integers()

Constructs an empty set of crisp integers.

Integers(java.lang.Integer[] base)

Constructs a set of integers containing the given integers.

Method Summary

boolean
add(java.lang.Object element)

Adds an element to this set

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements
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B.3.10. Interval

Integers
intersection(Integers intersectwith)

Takes the regular set intersection of two Integers objects.

MSet
intersection(MSet intersectwith)

Takes the regular set intersection of two sets.

Integers
minus(Integers subtract)

Takes the regular set difference of two Integers objects.

MSet
minus(MSet subtract)

Takes the regular set difference of two sets.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an element from this set

java.lang.St
ring

toString()

Generates a string representation of this Integers object.

Integers
union(Integers unionwith)

Takes the regular set union of two Integers objects.

MSet
union(MSet unionwith)

Takes the regular set union of two sets.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
wait, wait, wait

Constructor Summary

Interval()

Creates an empty interval.

Interval(int s, int e)

Creates an interval that starts and ends at the specified values.

Method Summary

boolean
contains(Interval i)

Tests whether this interval contains the other interval.

Interval
copy()

Creates a copy of this interval

int
end()

Returns the end value of the interval
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B.3.11. CPoint

Interval[]
intersection(Interval i)

Takes the number-line intersection of two Intervals.

boolean

intersects(Interval i)

Tests whether this interval and the input interval overlap each
other.

int

length()

Finds the length of the interval, that is, the distance along the
number line from the start value to the end value.

Interval[]
minus(Interval i)

Takes the number-line difference of two Intervals.

int
start()

Returns the start value of the interval

java.lang.St
ring

toString()

Generates a string representation of this object.

Interval[]
union(Interval i)

Takes the number-line union of two Intervals.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
wait, wait, wait

Inner classes inherited from class java.awt.geom.Point2D

java.awt.geom.Point2D.Double, java.awt.geom.Point2D.Float

Fields inherited from class java.awt.Point

x, y

Constructor Summary

CPoint()

Constructs an empty CPoint.

CPoint(int xc, int yc)

Constructs a CPoint from two coordinate values.

CPoint(java.awt.Point p)

Constructs a CPoint from a Point
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B.3.12. ProbFunc

Method Summary

double
area()

The area of a CPoint

void
draw(java.awt.Graphics g)

Draws a representation of this CPoint on the screen

UncertainBoo
lean

intersects(CPoint p)

Tests whether the shapes of two CPoint share points or parts.

UncertainBoo
lean

intersects(SpatialObject so)

Tests whether the shapes of two spatial objects share points or
parts.

Methods inherited from class java.awt.Point

equals, getLocation, getX, getY, move, setLocation, setLocation,
setLocation, toString, translate

Methods inherited from class java.awt.geom.Point2D

clone, distance, distance, distance, distanceSq, distanceSq,
distanceSq, hashCode, setLocation

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Summary

ProbFunc()

Constructs a new ProbFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

ProbMassFunc
derivative()

Returns the derivative of this function.
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B.3.13. EquiProbFunc

B.3.14. LinearProbFunc

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

EquiProbFunc()

Constructs a new EquiProbFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

ProbMassFunc
derivative()

Returns the derivative of this function.

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

LinearProbFunc()

Constructs a new LinearProbFunc object
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B.3.15. ProbMassFunc

Method Summary

ProbFunc
copy()

Creates a copy of this object

ProbMassFunc
derivative()

Returns the derivative of this function.

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

ProbMassFunc()

Constructs a new ProbMassFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait
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B.3.16. EquiProbMassFunc

B.3.17. LinearProbMassFunc

Constructor Summary

EquiProbMassFunc()

Constructs a new EquiProbMassFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

LinearProbMassFunc()

Constructs a new LinearProbMassFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait
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B.3.18. TwoDeltaProbMassFunc

B.3.19. Range

Constructor Summary

TwoDeltaProbMassFunc()

Constructs a new TwoDeltaProbMassFunc object

Method Summary

ProbFunc
copy()

Creates a copy of this object

double
evaluate(double input)

Returns the function value for a particular x-value.

double
inversEvaluate(double value)

Returns the inverse of the function for a particular value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Summary

Range()

Constructs an empty range object.

Range(Interval[] base)

Constructs a range object containing a set of intervals.

Method Summary

boolean
add(java.lang.Object element)

Adds an interval to this range.

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element.

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

MSet
intersection(MSet intersectwith)

Takes the number-line intersection of two Ranges.

Range
intersection(Range intersectwith)

Takes the number-line intersection of two Range objects.
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B.3.20. UncertainBoolean

MSet
minus(MSet subtract)

Takes the number-line difference of two Ranges.

Range
minus(Range subtract)

Takes the number-line difference of two Range objects.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an interval from this range.

java.lang.St
ring

toString()

Generates a string representation of this range.

MSet
union(MSet unionwith)

Takes the number-line union of two Ranges.

Range
union(Range unionwith)

Takes the number-line union of two Range objects.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
wait, wait, wait

Field Summary

static
UncertainBoolean

FALSE

The uncertain boolean value FALSE.

static
UncertainBoolean

MAYBE

The uncertain boolean value MAYBE.

static
UncertainBoolean

TRUE

The uncertain boolean value TRUE.

protected static
int

V_FALSE

The integer value of FALSE.

protected static
int

V_MAYBE

The integer value of MAYBE.

protected static
int

V_TRUE

The integer value of TRUE.
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B.3.21. UncertainObject

Method Summary

UncertainBoo
lean

and(UncertainBoolean in)

Uncertain AND.

boolean
equals(UncertainBoolean o)

Tests whether two uncertain booleans are equal.

UncertainBoo
lean

not()

Uncertain NOT.

UncertainBoo
lean

or(UncertainBoolean in)

Uncertain OR.

java.lang.St
ring

toString()

Generates a string representation of this uncetrain boolean.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

wait, wait, wait

Field Summary

protected
double

probExistence

The probability that the uncertain object exists at all

Constructor Summary

UncertainObject()

This class is only used as a superclass to other classes. This constructor therefore
does nothing.

Method Summary

abstract
double

accuracy()

The Accuracy of the uncertain object.

abstract
java.lang.Ob

ject

alphaCut(double threshold)

The Alpha_Cut of the uncetrain object.
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B.3.22. UncertainInteger

abstract
java.lang.Ob

ject

core()

The Core of the uncertain object.

abstract
UncertainBoo

lean

equ(UncertainObject o)

This is the Equals operation.

abstract
double

existence()

This is the Existence operator.

abstract
java.lang.Ob

ject

expectedValue()

The Expected_Value of the uncertain object.

abstract
UncertainBoo

lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

abstract
java.lang.Ob

ject

support()

The Support of the uncertain object.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainInteger()

Creates an empty uncertain integer.

UncertainInteger(int c, int deviation)

Creates an uncertain integer with a given center value and deviation.

UncertainInteger(int start, int c, int end)

Creates an uncertain integer with a given start, peak value and end.

UncertainInteger(int start, int c, int end, ProbMassFunc pmf)

Creates an uncertain integer with a given start, peak value, end and probability den-
sity function.
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UncertainInteger(int start, int c, int end, ProbMassFunc pmf, double

pe)

Creates an uncertain integer with a given start, peak value, end, probability density
function and probability of existence.

UncertainInteger(int c, int deviation, ProbMassFunc pmf)

Creates an uncertain integer with a given center value, deviation and probability
mass function.

UncertainInteger(int c, int deviation, ProbMassFunc pmf, double pe)

Creates an uncertain integer with a given center value, deviation, probability mass
function and probability of existence.

Method Summary

double
accuracy()

Computes the accuracy of the uncertain integer.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain integer.

java.lang.Ob
ject

core()

Generates the core of the uncertain integer.

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

double
existence()

Checks the probability that this integer exists.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the integer.

UncertainBoo
lean

intersects(UncertainInterval o)

Tests whether the shapes of two uncetrain integers share points or
parts.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

java.lang.Ob
ject

support()

Generates the support of the uncertain integer.

java.lang.St
ring

toString()

Creates a string representation of this uncertain integer.

Constructor Summary
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B.3.23. UncertainIntegers

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

wait, wait, wait

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainIntegers()

Constructs an empty set of uncertain integers.

UncertainIntegers(UncertainInteger[] base)

Constructs a set of uncertain integers containing the given integers.

Method Summary

double
accuracy()

Computes the accuracy of the set of uncertain integers.

boolean
add(java.lang.Object element)

Adds an element to this set

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of this set of uncertain integers.

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject

core()

Generates the core of the set of uncertain integers.

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

UncertainBoo
lean

equ(UncertainIntegers o)

Uncertain equality.

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

double
existence()

Checks the probability that this set of uncertain integers exists.
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java.lang.Ob
ject

expectedValue()

Computes the expected value of the set of uncertain integer.

MSet
intersection(MSet intersectwith)

Takes the regular set intersection of two sets.

UncertainInt
egers

intersection(UncertainIntegers intersectwith)

Takes the regular set intersection of two UncertainIntegers

objects.

UncertainInt
egers

intersectsWith(UncertainInterval o)

Checks which of the elements in this set can possibly be inside the
given uncertain interval.

MSet
minus(MSet subtract)

Takes the regular set difference of two sets.

UncertainInt
egers

minus(UncertainIntegers subtract)

Takes the regular set difference of two UncertainIntegers

objects.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an element from this set

java.lang.Ob
ject

support()

Generates the support of the set of uncertain integers.

java.lang.St
ring

toString()

Creates a string representation of this set of uncertain integers.

MSet
union(MSet unionwith)

Takes the regular set union of two sets.

UncertainInt
egers

union(UncertainIntegers unionwith)

Takes the regular set union of two UncertainIntegers objects.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

wait, wait, wait
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B.3.24. UncertainInterval

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainInterval()

Creates an empty uncertain interval.

UncertainInterval(int[] bs)

Creates an uncertain interval with the given parameters.

UncertainInterval(int[] bs, double pe)

Creates an uncertain interval with the given parameters.

UncertainInterval(int[] bs, ProbFunc pf)

Creates an uncertain interval with the given parameters.

UncertainInterval(int[] bs, ProbFunc pf, double pe)

Creates an uncertain interval with the given parameters.

UncertainInterval(int startsup, int startcore, int endcore, int end-

sup)

Creates an uncertain interval with the given parameters.

UncertainInterval(int startsup, int startcore, int endcore, int end-

sup, double pe)

Creates an uncertain interval with the given parameters.

UncertainInterval(int startsup, int startcore, int endcore, int end-

sup, ProbFunc pf)

Creates an uncertain interval with the given parameters.

UncertainInterval(int startsup, int startcore, int endcore, int end-

sup, ProbFunc pf, double pe)

Creates an uncertain interval with the given parameters.

UncertainInterval(UncertainInterval a)

Creates an uncertain interval that is an exact copy of another one.

Method Summary

double
accuracy()

Computes the accuracy of the uncertain interval.
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java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain interval.

UncertainBoo
lean

contains(UncertainInterval i)

Tests whether this uncertain interval contains the other uncertain
interval.

java.lang.Ob
ject

core()

Generates the core of the uncertain interval.

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

double
existence()

Checks the probability that this uncertain interval exists.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the interval.

UncertainInt
erval

intersection(UncertainInterval i)

Takes the number-line intersection of two uncertain intervals.

UncertainBoo
lean

intersects(UncertainInterval i)

Tests whether the shapes of two uncetrain intervals share numbers
or parts.

UncertainInt
erval[]

minus(UncertainInterval i)

Takes the number-line difference of two uncertain intervals.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

Returns TRUE if this object is a more accurate version of the given
object.

java.lang.Ob
ject

support()

Generates the support of the uncertain interval.

java.lang.St
ring

toString()

Generates a string representation of this object.

UncertainInt
erval[]

union(UncertainInterval i)

Takes the number-line union of two uncertain intervals.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

wait, wait, wait
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B.3.25. UncertainRange

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainRange()

Constructs an empty uncertain range object.

UncertainRange(UncertainInterval[] base)

Constructs an uncertain range that contains the given uncetrain intervals.

Method Summary

double
accuracy()

Computes the accuracy of the uncertain range.

boolean
add(java.lang.Object element)

Adds an uncertain interval to this uncertain range.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain range.

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element.

java.lang.Ob
ject

core()

Generates the core of the uncertain range.

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

UncertainBoo
lean

equ(UncertainRange o)

Uncertain equality.

double
existence()

The probability that a range exists is the probability that at least
one of the intervals it contains exists.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the range.

MSet
intersection(MSet intersectwith)

Takes the number-line intersection of two uncertain Ranges.
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B.3.26. UncertainSpatialObject

UncertainRan
ge

intersection(UncertainRange intersectwith)

Takes the number-line intersection of two UncetrainRange

objects.

UncertainBoo
lean

intersects(UncertainRange intersectswith)

Tests whether the shapes of two uncetrain ranges share numbers or
parts.

MSet
minus(MSet subtract)

Takes the number-line difference of two uncertain Ranges.

UncertainRan
ge

minus(UncertainRange subtract)

Takes the number-line difference of two UncertainRange objects.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

MoreAccurateThan for a range is true iff all the intervals of the
given range (O) are more accurate versions of intervals in this
range, and there is a one-to-one correspondence between intervals
in O and in this range.

int
noComponents()

Gets the number of members in this set

boolean
subtract(java.lang.Object element)

Removes an uncetrain interval from this ucnertain range.

java.lang.Ob
ject

support()

Generates the support of the uncertain range.

java.lang.St
ring

toString()

Generates a string representation of this uncertain range.

MSet
union(MSet unionwith)

Takes the number-line union of two uncertain Ranges.

UncertainRan
ge

union(UncertainRange unionwith)

Takes the number-line union of two UncertainRange objects.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

wait, wait, wait

Fields inherited from class uncertainspatial.UncertainObject

probExistence
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B.3.27. UncertainCurve

Constructor Summary

UncertainSpatialObject()

This class is only used as a superclass to other classes. This constructor therefore
does nothing.

Method Summary

abstract
double

area()

The Area operator.

abstract
double

resemble(UncertainSpatialObject comparison)

The Resemble operator is defined for all uncetrain spatial objects,
and can be used to test degree of equality.

Methods inherited from class uncertainspatial.UncertainObject

accuracy, alphaCut, core, equ, existence, expectedValue, moreAccu-

rateThan, support

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Methods inherited from interface uncertainspatial.SpatialObject

draw, intersects

Field Summary

protected
CrossCurve

finalCC

The last crosscurve in this curve.

protected
double

finalExist

The probability of existence of the curve in the last point.
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protected
java.awt.Poi

nt

finalPoint

The last point in this curve.

protected
java.util.Ar

rayList

segments

The list of segments that this curve consists of.

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainCurve()

Creates an empty uncertain curve object.

UncertainCurve(java.awt.Point cp1, java.awt.Point cp2, CrossCurve

c1, CrossCurve c2, ProbFunc pf, ProbMassFunc pmf, double pexist1,

double pexist2, double pexistline)

Creates an uncertain curve that consists of one segment.

Method Summary

double
accuracy()

Computes the accuracy of the uncertain curve

void

addSegment(java.awt.Point cp, CrossCurve c, ProbFunc

pf, ProbMassFunc pmf, double pexist)

Adds a segment to the uncertain curve.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain curve.

double
area()

Computes the area of the support of the uncertain curve.

protected
CFace

buildFace(CLine upper, CLine lower)

This function creates a face (with no holes) from two CLine

objects, each representing one side of the uncertain curve.

java.lang.Ob
ject

core()

Computes the core of the uncertain curve.

void
draw(java.awt.Graphics g)

Draws a representation of this uncertain curve on the screen

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.
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B.3.28. UncertainCycle

double
existence()

This is the Existence operator.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the curve.

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

double
resemble(UncertainSpatialObject comparison)

The Resemble operator is not implemented for curves yet.

java.lang.Ob
ject

support()

Computes the support of the uncertain curve.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Field Summary

protected
ProbFunc

allProbFunc

The probability function that is used along all the segments of this
cycle.

protected
UncertainSeg

ment

closingSegment

The segment that closes the cycle.

protected
java.awt.Pol

ygon

innerPoly

The inner polygon of the uncertain cycle.

protected
double

outerMult

The multiplier to apply to the crosscurves to get the outer polygon.

protected
java.awt.Pol

ygon

outerPoly

The outer polygon of the uncertain cycle.

Fields inherited from class uncertainspatial.UncertainCurve

finalCC, finalExist, finalPoint, segments
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Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainCycle(java.awt.Point cp1, java.awt.Point cp2, CrossCurve

c1, CrossCurve c2, ProbMassFunc pmf, double pexistline)

Creates an uncertain cycle that consists of one segment.

Method Summary

void

addSegment(java.awt.Point cp, CrossCurve c, ProbFunc

pf, ProbMassFunc pmf, double pexist)

Adds a segment to the uncertain cycle.

void

addSegment(java.awt.Point cp, CrossCurve c, ProbMass-

Func pmf)

Adds a segment to the uncertain cycle.

protected
void

computePolys()

Computes the two polygons that bound the support of this uncer-
tain cycle and finds which is the inner and which is the outer.

java.awt.Pol
ygon

getFaceHoleAlpha(ProbFunc pf, double threshold)

Computes the part of the alpha-cut of a face that has this cycle as
one of its holes.

java.awt.Pol
ygon

getFaceOuterAlpha(ProbFunc pf, double threshold)

Computes the part of the alpha-cut of a face that has this cycle as
its outer boundary.

java.awt.Pol
ygon

getInnerPolygon()

Computes the inner polygon of the uncertain cycle.

java.awt.Pol
ygon

getOuterPolygon()

Computes the outer polygon of the uncertain cycle.

Methods inherited from class uncertainspatial.UncertainCurve

accuracy, alphaCut, area, buildFace, core, draw, equ, existence,

expectedValue, intersects, moreAccurateThan, resemble, support
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B.3.29. UncertainFace

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Field Summary
protected

java.util.Ar
rayList

holeCycles

The list of hole cycles.

protected
UncertainCyc

le

outerCycle

The outer cycle of the uncertain face.

protected
ProbFunc

probDistFunc

the probability distribution function that applies over all the uncer-
tain cycles of this face.

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainFace()

Creates an empty uncertain face.

UncertainFace(UncertainCycle oC, double pe, ProbFunc pf)

Creates an uncertain face

Method Summary

double
accuracy()

Computes the accuracy of the uncertain face.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain face.

double
area()

Computes the area of this uncertain face.

java.lang.Ob
ject

core()

Generates the core of the uncertain face.
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B.3.30. UncertainPoint

void
draw(java.awt.Graphics g)

Draws a representation of this uncertain face on the screen

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

double
existence()

Checks the probability that this face exists.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the face.

boolean
insertHole(UncertainCycle hC)

Inserts a hole cycle if it is completely inside the support of the
outer cycle.

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two uncetrain faces share points or
parts.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

double
resemble(UncertainSpatialObject comparison)

The Resemble operator for uncertain faces.

java.lang.Ob
ject

support()

Generates the support of the uncertain face.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Field Summary
protected

java.awt.Poi
nt

core

The location of the core.

static int

NOCORNERS

This constant indicates how many corners the support of an uncer-
tain point should have.
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protected
ProbMassFunc

probmass

The probability mass function that applies along all lines from the
core to the support.

protected
int[]

support

The distance from the core to each of the corners.

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainPoint()

Constructs an empty uncertain point.

UncertainPoint(int[] corners, java.awt.Point c)

Constructs an uncertain point with the given parameters.

UncertainPoint(int[] corners, java.awt.Point c, ProbMassFunc fs)

Constructs an uncertain point with the given parameters.

UncertainPoint(int[] corners, java.awt.Point c, ProbMassFunc fs,

double pe)

Constructs an uncertain point with the given parameters.

Method Summary

double
accuracy()

Computes the accuracy of the uncertain point.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of the uncertain point.

double
area()

Computes the area of the support of the uncertain point.

java.lang.Ob
ject

core()

Generates the core of the uncertain point.

void
draw(java.awt.Graphics g)

Draws this uncertain point.

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.

double
existence()

Checks the probability that this uncertain point exists.
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java.lang.Ob
ject

expectedValue()

Computes the expected value of the uncertain point.

protected
int

getSupXCoordinate(int c)

Computes the x-coordinate of a given corner of the support

protected
int

getSupYCoordinate(int c)

Computes the y-coordinate of a given corner of the support

UncertainBoo
lean

intersects(CFace f)

Tests whether this point may lie inside the given crisp face.

UncertainBoo
lean

intersects(CLine l)

Tests whether a crisp curve lies at least partially inside the support
of this point.

UncertainBoo
lean

intersects(CPoint p)

Tests whether a crisp point lies inside the support of this point.

UncertainBoo
lean

intersects(SpatialObject so)

Tests whether the shapes of two spatial objects share points or
parts.

UncertainBoo
lean

intersects(UncertainPoint ip)

Tests whether the shapes of two uncertain points share points or
parts.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

Returns TRUE if this object is a more accurate version of the given
object.

double

resemble(UncertainSpatialObject comparison)

The resemplance of two uncertain points is the area of the intersec-
tion of the supports of the two points divided by the area of the
uncertain point with the largest area.

java.lang.Ob
ject

support()

Generates the support of the uncertain point.

protected
java.awt.Pol

ygon

supportAsPolygon()

Generates a polygon representation of the support of this uncertain
point.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait
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B.3.31. UncertainPoints

Field Summary
protected

java.util.Ha
shSet

points

The set of uncertain points.

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainPoints()

constructs an empty set of uncertain points.

Method Summary

double
accuracy()

Computes the accuracy of the set of uncertain point.

boolean
add(java.lang.Object element)

Adds a new member to this set.

java.lang.Ob
ject

alphaCut(double threshold)

Computes the alpha-Cut of this set of uncertain points.

double
area()

Computes the area of the support of this set of uncertain points.

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject

core()

Generates the core of the set of uncertain points.

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

void
draw(java.awt.Graphics g)

Draws all the members of this set of uncertain points.

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality.
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double
existence()

An uncertain points object exists if at least one of its members
exist.

java.lang.Ob
ject

expectedValue()

Computes the expected value of this set of uncertain points.

MSet
intersection(MSet intersectwith)

Takes the regular set intersection of two DMUPoints.

UncertainPoi
nts

intersection(UncertainPoints intersectwith)

Takes the regular set intersection of two DMUPoints.

UncertainBoo
lean

intersects(SpatialObject o)

Finds whether this set of uncertain points intersects the given spa-
tial object.

MSet
minus(MSet subtract)

Takes the regular set difference of two DMUPoints.

UncertainPoi
nts

minus(UncertainPoints subtract)

Takes the regular set difference of two DMUPoints.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

Returns TRUE if this object is a more accurate version of the given
object.

int
noComponents()

Gets the number of members in this set

double
resemble(UncertainSpatialObject comparison)

The resemplance of two sets of uncertain points.

boolean
subtract(java.lang.Object element)

Removes an element from this set

java.lang.Ob
ject

support()

Generates the support of the set of uncetrain points.

MSet
union(MSet unionwith)

Takes the regular set union of two DMUPoints.

UncertainPoi
nts

union(UncertainPoints unionwith)

Takes the regular set union of two DMUPoints.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait
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B.3.32. UncertainSegment

Field Summary

protected
ProbMassFunc

cCFunction

The probability mass function along the crosscurves.

protected
ProbFunc

coreFunction

The probability distribution function along the core segment.

protected
CrossCurve

endCC

The crosscurve at the end of this segment.

protected
double

endExist

The probability of existence in the end point.

protected
java.awt.Poi

nt

endPoint

The point in which this segment ends.

protected
CrossCurve

startCC

The crosscurve at the start of this segment.

protected
double

startExist

The probability of existence in the start point.

protected
java.awt.Poi

nt

startPoint

The point in which this segment starts.

Fields inherited from class uncertainspatial.UncertainObject

probExistence

Constructor Summary

UncertainSegment()

Constructs an empty uncetrain line segment.

UncertainSegment(java.awt.Point start, java.awt.Point end, Cross-

Curve sc, CrossCurve ec, ProbFunc pf, ProbMassFunc pmf, double se,

double ee, double pe)

Constructs an uncertain line segment with all parameters.

Method Summary

double
accuracy()

Computes the accuracy of this uncertain segment.
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java.lang.Ob
ject

alphaCut(double threshold)

Alpha-Cut of uncertain segment.

protected
CLine[]

alphaCutCurve(double threshold)

This function computes the contribution of this segment to the
alpha-cut of an uncertain curve.

protected
java.awt.Poi

nt[]

alphaPoints(java.awt.Point cp, CrossCurve cc, Prob-

MassFunc pmf, double threshold)

Computes the relative alpha-cut along a single crosscurve.

double
area()

Computes the area of the support of the uncertain segment.

protected
double

areaOfQuadrangle(int x1, int y1, int x2, int y2, int

x3, int y3, int x4, int y4)

Returns the area of a given quadrangle (shape with four corners).

protected
double

areaOfTriangle(int p1x, int p1y, int p2x, int p2y, int

p3x, int p3y)

Computes the area of a triangle given by the positions of its cor-
ners.

void

changeBeginning(java.awt.Point start, CrossCurve sc,

double se)

Alters this uncertain segment by changing its beginning.

void

changeEnd(java.awt.Point end, CrossCurve ec, double

ee)

Alters this uncertain segment by changing its end.

java.lang.Ob
ject

core()

Computes the core of this uncertain line segment.

void
draw(java.awt.Graphics g)

Draws a representation of this uncertain segment on the screen

UncertainBoo
lean

equ(UncertainObject o)

Uncertain equality of uncertain line segments has not been imple-
mented yet.

double
existence()

This is the Existence operator.

java.lang.Ob
ject

expectedValue()

Computes the expected value of the segment.

protected
CLine

getPartFaceAlpha(double mult)

Gets the contribution of this segment to the alpha-cut of an uncer-
tain face.
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B.3.33. Interface MSet

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.

UncertainBoo
lean

moreAccurateThan(UncertainObject o)

This is the More_Accurate_Than operator.

protected
java.awt.Poi

nt

pointOnLine(java.awt.Point oldpoint, java.awt.Point

cpoint, double position)

Computes a point along the core line segment.

double
resemble(UncertainSpatialObject comparison)

The Resemble operator is not implemented for segments yet.

java.lang.Ob
ject

support()

Computes the support of the uncertain segment.

protected
CLine[]

supportCurve()

This function computes the contribution of this segment to the sup-
port of an uncertain curve.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Method Summary

boolean
add(java.lang.Object element)

Adds an element to this set

boolean
contains(java.lang.Object element)

Checks whether this set contains the given element

java.lang.Ob
ject[]

decompose()

Decomposes a set into its constituent elements

MSet

intersection(MSet intersectwith)

Takes the regular set intersection of two sets This is the Intersec-
tion operation for all data types except those that represent sets in
themselves (such as intervals, faces and regions).

MSet
minus(MSet subtract)

Takes the regular set difference of two sets.

int
noComponents()

Gets the number of members in this set
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B.3.34. Interface SpatialObject

boolean
subtract(java.lang.Object element)

Removes an element from this set

MSet
union(MSet unionwith)

Takes the regular set union of two sets.

Method Summary

void
draw(java.awt.Graphics g)

Draws a representation of this spatial object on the screen

UncertainBoo
lean

intersects(SpatialObject o)

Tests whether the shapes of two spatial objects share points or
parts.
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