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Abstract

Microarray technology has recently attracted a lot of attention. This technology can
measure the behavior (i.e., RNA abundance) of thousands of genes simultaneously,
while previous methods have only allowed measurements of single genes. By enabling
studies on a genome-wide scale, microarray technology is currently revolutionizing
biological research and creating a wide range of research opportunities. However,
the technology generates a vast amount of data that cannot be handled manually.
Computational analysis is thus a prerequisite for the success of this technology, and
research and development of computational tools for microarray analysis are of great
importance.

This thesis develops supervised learning methods based on Rough Set Theory
(RST) for analyzing microarray data together with prior knowledge. Two kinds of
microarray studies are considered.

The first is cancer studies where supervised learning may be used for predicting
tumor subtypes and clinical parameters. We introduce a general RST approach for
classification of tumor samples analyzed by microarrays. This includes a feature
selection method for selecting genes that discriminate significantly between a set of
classes. RST classifiers are then learned from the selected genes.

The approach is applied to a data set of gastric tumors. Classifiers for six clinical
parameters are developed and demonstrate that these parameters can be predicted
from the expression profile of gastric tumors. Moreover, the performance of the feature
selection method as well as several learning and discretization methods implemented
in Rosetta are examined and compared to the performance of linear and quadratic
discrimination analysis. The classifiers are also biologically validated. One of the best
classifiers is selected for each clinical parameter, and the connection between the genes
used in these classifiers and the parameters are compared to the established knowledge
in the biomedical literature. Many of these genes have no previously known connection
to gastric cancer and provide interesting targets for further biological research.

The second kind of study is prediction of gene function from expression profiles
measured with microarrays. A serious problem in this case is that functional classes,
which are assigned to genes, are typically organized in an ontology where the classes
may be related to each other. One example is the Gene Ontology where the classes
form a Directed Acyclic Graph (DAG). Standard learning methods such as RST as-
sume, however, that the classes are unrelated, and cannot deal with this problem
directly. This thesis gives a solution by introducing an extended RST framework and
two novel algorithms for learning in a DAG.

The DAG also constitutes a problem when a classifier is to be evaluated since stan-
dard performance measures such as accuracy or AUC do not recognize the structure
of the DAG. Therefore, several new performance measures are introduced.

The algorithms are first tested on a data set that was created from human fibroblast
cells by the means of microarrays. They are then applied on artificial data in order to
obtain a better understanding of their behavior, and their weaknesses and strengths
are identified.
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Introduction
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!1
1.1 From data-poor to data-rich biology

Biological research is currently undergoing a revolution. Traditionally, biology has
been a data-poor science. The previous methods for measuring biological phenomena
have been limited and very time-consuming. Thus organisms have not been studied
as complete entities. Rather, a reductionistic approach has been taken: An organism
has been divided into increasingly smaller parts such as organs, cells, cell parts, and
molecules (e.g., chromosomes). These parts have been then studied separately.

However, to understand how a cell functions it is necessary to understand how
its parts, such as the genes, interact. This means the parts must be studied simul-
taneously under many different experimental conditions. Such studies will inevitably
create large quantities of data. Hence, biological research requires tools to produce
and analyze large data sets. Recently, such tools have begun to appear, and biology
seems to be evolving into a data-rich science.

This development started with the genome projects whose mission was to find the
DNA sequence of an organism and identify the genes within the sequence. These
studies generated large amounts of data since the whole sequence was acquired –
not only parts. For example, the human genome contains about 3 mega bases1 [32].
However, DNA sequencing is not the only biotechnology that produces large amounts
of data. Mass spectrometry allows a large number of proteins to be identified within
a cell [186]. Microarray technology, which we will consider in this thesis, can measure
the mRNA abundance of thousands of genes simultaneously. Hence, the trend towards
increasing volumes of data is not limited to the genome projects.

A data-rich biology will not only be important for research in biology, but will
also have an impact on research outside of biology. As biologists produce larger data
sets, they will need new computational tools to handle the data, and this creates

1As is explained in detail in Chapter 2, a DNA sequence is constructed from 4 different bases.
The length of a sequence is thus measured in bases. Hence, the human genome consists of 3 million
bases.

1
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2 CHAPTER 1. INTRODUCTION

new opportunities and challenges for research in computer science. For example, the
genome projects generated large amounts of sequence data that needed to be stored
and analyzed. For these purposes computers were essential, and these needs resulted
in new computational problems such as DNA sequence analysis and development of
DNA sequence databases. So from a computer science perspective, the development
of a data-rich biology can be seen as a source of interesting research problems.

1.2 Functional genomics

The work of determining the DNA sequence has come to an end for many organisms.
At the time of writing the sequence has been completed for 77 organisms [11] and
even more are to come. However, the genome projects have only identified the genes.
It is still unknown what many of the genes do and how they interact. The next step
is to determine the function of the all the genes. This is the topic of the new field of
functional genomics.

One of the first tasks of functional genomics is to annotate the genes in an or-
ganism. This means assigning some element of function to a gene [186], and this
assignment should preferentially be done in an efficient and systematic fashion.

However, the ultimate goal is more ambitious. The biologists want to understand
how the genes work together in functioning cells and organisms and do not want just
a list of genes and their functions [99]. Rather they want a network or a map of how
the genes interact and regulate each other. This may bring answers to questions such
as what goes wrong in a disease, how we age, and what happens if we lose a gene
function.

As many sequence projects have been completed, there is an increasing interest in
functional genomics at the moment. There is really a shift in research focus taking
place, which is similar to the change in focus from syntax to semantics for program-
ming languages in the 1970s. Research until now has been on identifying the genes
– the symbols in the language, but now we want to know what they mean – their
semantics.

However, to understand the semantics we need to measure the behavior of the
genes, since the answers cannot be found directly from the sequence. The gene prod-
ucts, the proteins, or the intermediate product, the RNA, must be measured. Again,
large quantities of data must be acquired since all of the genes must be considered
simultaneously in order to get a picture of what is going on. For this purpose, mi-
croarray technology will be an important instrument, and the data generated with
this technology will require new computational tools. So again, new computational
problems are introduced as a consequence of a development in biology.

1.3 Objectives

Microarray technology was introduced in the mid-1990s [149, 55] and is a method
for assessing the concentration of mRNA from a high number of genes in one assay.
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Hence, it can measure how much a gene is expressed, i.e., how active a gene is in a
cell. It is not the first method for measuring RNA levels. However, previous methods
allow only one gene to be measured at a time, while a microarray can determine the
concentrations for thousands of genes in parallel.

Some microarray studies have already been performed. Still, how this data should
be analyzed and interpreted is not clear. Some authors present only lists of genes
and their expression levels [37], while others use clustering for grouping similarly
expressed genes [169, 48] (A comprehensive overview of microarray analysis is given
in Chapter 3).

It is not likely that one single analysis will be useful in all situations. The questions,
which biologists want to answer, are too diverse. Rather, the method should be chosen
depending on the questions.

This thesis treats questions such as: What is the function of a gene? and What
kind of tumor has a cancer patient? These questions can both be addressed with
supervised learning methods. In this regard, one may distinguish between two kinds
of problems depending on the kinds of objects being classified.

• In the first problem, the genes are classified such that functional descriptions
are assigned to them. The functional descriptions are in this case the classes. A
microarray forms a conditional attribute upon which the classification is based.

• In the second problem, a sample is taken from a patient and examined with a
microarray. The microarray is in this case the object being classified while the
genes form the attributes.

As will be discussed more extensively later, none of these problems can be handled
directly by a standard supervised algorithm. In the first case, the functional classes
that may be assigned to genes are organized in an ontology such that the classes
are related. A supervised learning algorithm, however, assumes that the classes are
unrelated. A new kind of learning algorithm is therefore required. In the second
case, the number of samples that may be collected is much lower than the number of
genes. The most interesting genes must thus be selected before a learning algorithm
is applied. The objectives of this thesis are consequently to develop or adapt methods
for such problems, and evaluate them using experimental data.

1.4 Results

This thesis contains both applied and theoretical results. The results are numerous
and can be classified along the following dimensions:

• Contributions to Rough Set Theory and Machine Learning:

– Advances to Rough Set Theory are made such that the ontology may be
described formally. New operators are developed and some properties of
these are proven.
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4 CHAPTER 1. INTRODUCTION

– Two novel algorithms for learning in an ontology are developed:

∗ One is a bottom-up method. This tries to learn rules that predict the
most detailed classes possible without sacrificing prediction accuracy.
It creates rules by traversing the ontology in a bottom-up fashion. It
starts with the leaf classes and tries to learn rules that have a high
accuracy. If it fails to find such rules for a particular class, it pushes
the genes annotated to this class up to a more general class and tries
again to learn rules for these genes when it visits this more general
class.

∗ The other can be described as an ensemble method. It learns rules for
each class in the ontology using both the genes annotated to a class
and the genes annotated to its subclasses. Classification of new genes
is then done with a special voting system which attempts to balance
the accuracy and the detail level of the predictions that are made by
the rules.

These methods are tested on several data sets:

∗ A data set containing measurements from an experiment on human
fibroblast cells.

∗ Various artificial data sets.

– Classifiers built for an ontology also require that the ontology is taken into
consideration when they are evaluated. Methods for such evaluation are
therefore introduced.

– It is demonstrated that Rough Set methods combined with a gene selection
method may be used for classifying tumors.

• Contributions to Cancer Research:

– Diagnostic classifiers for gastric tumors are created from microarray data
and clinical parameters. These predict the outcome of a clinical parameter
from a tumor sample which has been examined with a microarray.

– It is shown that multiple classifiers can be derived from the same microarray
data set.

– The diagnostic classifiers, which are derived from the microarray data and
the clinical parameters, identify genes that may have an impact on the
parameters. These genes may be interesting targets for further biological
research.

1.5 Structure of the thesis

The intended reader of this thesis should have a background in computer science or
bioinformatics. However, large parts of this thesis should be accessible to a biologist.
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1.5. STRUCTURE OF THE THESIS 5

No previous knowledge of rough set theory is required, but basic knowledge of discrete
mathematics and computer science is assumed.

The thesis contains 10 chapters, besides this introduction. These are as follows:

Chapter 2 introduces to molecular biology and microarray technology.

Chapter 3 concerns itself with microarray analysis. The process involved in this
analysis is explained and an overview on topics such normalization, clustering,
and supervised learning of microarrays is given.

Chapter 4 explains the basic concepts in rough set theory such as indiscernibility
relations and approximations. Moreover, decision rules are introduced, and
several methods for learning such rules are discussed. Concepts such as voting
are also considered.

Chapter 5 presents a general approach where rough set based learning is combined
with a feature selection method and used for classification of tumor samples.
The approach is applied to a data set of gastric tumors, which have been an-
alyzed by microarrays. The performance of several discretization and learning
methods is examined under different feature selection settings and determine
best methods. The classifiers obtained with these methods are then inspected,
and the genes used in them are compared to the established knowledge in the
biomedical literature.

Chapter 6 gives a brief introduction to ontologies in general and the Gene Ontology
in particular. Its discusses several issues, which have to be taken into account
when the Gene Ontology is used for learning. The chapter also explains that
the Gene Ontology may be considered as a DAG.

Chapter 7 introduces an extended rough set framework that allows a formal de-
scription of the ontology. Several new approximations are introduced and their
properties are investigated.

Chapter 8 starts with a discussion on how the DAG complicates the learning process
and describes several problems. It then presents two different algorithms, which
solve these problems.

Chapter 9 presents several measures that can be used for evaluating the performance
of a DAG classifier.

Chapter 10 reports the experimental results, which were obtained with the two
algorithms given in Chapter 8. The algorithms are first applied to a microarray
data set created from human fibroblast cells. They are then tested on artificial
data, and their advantages and disadvantages are examined.

Chapter 11 summaries the thesis and draws conclusions. This chapter also points
out several directions for further work.
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1.6 Other publications

While preparing this thesis, several papers (which are not presented here) have been
written or co-written by the author of this thesis. These may be found in: [111], [112],
and [90].
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2.1 Introduction

This thesis documents work in the borderland between computer science and molecu-
lar biology. In particular, it discusses and introduces methods for microarray analysis.
A general understanding of molecular biology and microarray technology is therefore
essential.

This chapter introduces the necessary biological background. It also explains and
surveys microarray technology. However, it is not the intention to give a detailed
exposition of molecular biology and the chemistry of the cell. Rather, a conceptual
view will be presented in order to make microarray technology comprehensible to a
non-biologist such as a computer scientist. Details and terminology will be introduced
only when necessary.

2.2 DNA, RNA, and proteins

The inherited information in an organism is stored in the chromosomes in the nucleus
of its cells. A chromosome consists of a single DNA (deoxyribonucleic acid) molecule
which again is composed of two strands.

A DNA strand is made up of nucleotides, which are attached to each other just
like links in a chain. A nucleotide consists of a phosphate, a pentose (a carbon sugar
group), and a base (see Figure 2.1). The phosphate and the pentose hold the strand
together, while the base contains the actual genetic information. Only four different
bases may occur in a nucleotide: Adenine, Guanine, Cytosine, and Thymine. The
bases are often abbreviated with the letters (A, G, C, and T), and we may think of
the strand as a string, i.e., a sequence of letters, constructed for this alphabet. Hence,
the genetic code is quaternary code.

The two strands in a DNA molecule are bound together by base pairs. Two bases at
corresponding positions in the two strands may bind to each other through hydrogen

7
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Figure 2.1: A DNA nucleotide. A nucleotide consists of a phosphate, a pentose, and
a base (Thymine). The pentose shown here is 2-Deoxyribose and the nucleotide is a
part of the a DNA molecule.

bonds and form a pair. Only two kinds of pairs occur ordinarily in the living cells:
A-T and G-C. So if A occurs at a particular position in one strand, then T occurs
at the corresponding position in the other. A is in this way a complement of T, and
two strands (or regions of two strands) that obey this rule of pairing are said to be
complementary, e.g. the following two strands are complementary:

... ATTTCG ... Strand 1
||||||

... TAAAGC ... Strand 2

Note that even though the DNA molecules in the nucleus have two strands, there
are also DNA molecules with only one strand. It is customary to distinguish between
these by referring to them as double stranded DNA and single stranded DNA (ssDNA).
The bases in ssDNA do not form pairs since there is only one strand in the molecule.
However, the base pairing mechanism allows ssDNA molecules to combine into a
double stranded molecule. This will be discussed in Section 2.5.

An RNA (ribonucleic acid) molecule is a single stranded copy of (a region of)
a DNA molecule except that the base Thymine is replaced by the base Uracil in
an RNA sequence. The nucleotides in RNA are also slightly different from those in
DNA. These nucleotides contain a pentose called ribose while DNA has a variant call
2-Deoxyribose.

RNAs can be divided into three categories: Messenger (mRNA), Transfer (tRNA),
and Ribosomal (rRNA). mRNA contains genetic information that is used in the pro-
duction of proteins (see below), while tRNA and rRNA participate in this production.
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2.3. INFORMATION FLOW: FROM DNA TO PROTEINS 9

Proteins are involved in most of the activity in a cell. They participate in processes
such as catalysis, defense, movement, protection, regulation, signaling, structural sup-
port, transport, transcription, and translation. The primary structure of a protein is
a sequence made out of 20 different amino acids. As in the case of DNAs and RNAs,
we may consider this structure as a string where the amino acids are abbreviated with
either one-letter or three-letter codes. For example, the amino acid Serine is abbre-
viated either as S or Ser. The 20 one-letter-codes denoting amino acids in proteins
should not be confused with the 5 letters denoting bases in DNA and RNA.

2.3 Information flow: From DNA to proteins

The central dogma of molecular biology states that the inherited information in the
cell is processed in the following fashion:

DNA → RNA → Protein

RNAs are produced from DNAs, and proteins are created from RNAs. The production
of RNAs is called transcription, while the synthesis of proteins is called translation.

Only parts of the DNA sequence encode RNAs. The rest of the DNA have other
purposes. For example, centromers and teleomeres have special roles in DNA dupli-
cation. Still, there are regions whose purpose is unknown and may in fact have no
function at all. The RNA encoding regions are called genes (see Figure 2.4), and a
gene consists of a promoter region and a transcriptional unit. The promoter region
controls the transcription, i.e., the production of RNA, of the gene, and the RNA is
created from the transcriptional unit.

A gene is expressed in a cell if it is being transcribed. The transcription of a gene
is activated by transcription factors that bind to binding sites in the promoter region
of a gene. The transcription factors attract special enzymes called RNA polymerases
which catalyze the synthesis of the RNA strands.

The RNA is transcribed from the one of the two strands in the DNA molecule
by base pairing. The strand, which is used for transcription, is called the template
strand, while the other is called the complementary strand. The synthesized RNA
is complementary to the template due to the base pairing and hence identical to the
complementary strand (except that Thymine is replaced by Uracil).

After the RNA has been transcribed, it undergoes some modifications, and only
parts of the of the original transcriptional unit end up in the final mature RNA (see
Figure 2.4). The transcriptional unit can be divided into regions called exons and
introns. The exons are included in the mature RNA, and the introns are discarded.
This is done in by cleavage and splicing. The RNA strand is cut at the start and end
of an intron, and the ends of the neighboring exons are joined.

mRNA can then be translated into proteins. This is done by gathering the bases
in the mRNA sequence into groups of 3. Such a group is called a codon, and each
codon identifies one of the 20 amino acids that can occur in the protein sequence.
Since a codon has a length of 3, and 4 bases may occupy each position, there are a
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Figure 2.2: Transcription and translation. The DNA sequence of a gene is shown at
the top. The primary RNA, which corresponds to the transcriptional unit is copied
off the template strand and is later cleaved and spliced. This results in the mature
RNA, which contains only the exons. The mature DNA is translated into a protein
where each amino acid corresponds to a codon in the RNA.
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total of 43 = 64 different codons. This means that the genetic code is degenerative.
Several codons may identify the same amino acid.

The translation is performed in a ribosome, which consists of rRNA and proteins.
The ribosome moves along the mRNA strand and produces the protein strand. The
actual matching of codons with amino acids is done by tRNAs. These molecules have
a special region called an anticodon that recognizes codons on the mRNA strand and
a site where one amino acid may attach itself. When a tRNA has bound to an amino
acid, it may move into the ribosome and match a codon. If a codon is recognized,
the amino acid is released and tRNA moves out of the ribosome. The released amino
acid is attached to the protein strand being built by the ribosome.

A tRNA binds only to one kind of amino acid. Hence, different tRNAs are used
for matching each of the 20 amino acids. The anticodon of a tRNA may still recognize
several dissimilar codons coding for the same amino acid. The codons matched by
the same anticodon may for example differ in the base at only one position. However,
the anticodon will not match codons coding for other amino acids.

2.4 Reverse information flow

Though the inherited information flows from DNA to proteins with mRNA as an
intermediate stage, there are mechanisms that work in the opposite direction. Proteins
are involved in transcription and translation. In particular, transcription factors that
activate transcription of genes are proteins. A gene may therefore regulate the activity
of other genes indirectly through its protein(s). Hence, there is a loop back from
proteins to DNA in the information flow.

A more direct reversal of the flow of information is reverse transcription. From
a computer scientific perspective, one may compare DNA to the source code of a
program where the code is stored in a non-volatile memory. The mRNA is a copy of the
source code stored in a volatile memory, and proteins are processes that are running
the compiled object code. Like source code, chromosomal DNA can be modified. An
example of this can be found in the life cycle of retroviruses such as HIV where DNA
is synthesized from RNA by reverse transcription. These viruses have only RNA as
genome, and no DNA. When a retrovirus attacks a cell, it creates a DNA copy which
is inserted into the host DNA. This tricks the host cell into producing RNA copies of
the virus DNA and in this way reproducing the virus.

Reverse transcription is also used in the laboratories to create DNA from RNA.
The process creates a single strand DNA that is complementary to RNA and therefore
called complementary DNA (cDNA).

2.5 Nucleic acid hybridization

DNA is usually double stranded. However, the two strands may be separated exper-
imentally into single stranded DNA by heating the DNA. This process of separation
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is called denaturation. If the temperature is lowered again the ssDNA will recombine
to form double stranded DNA. Such regrouping of ssDNA is referred to as hybridiza-
tion. However, only complementary ssDNA will hybridize and create double stranded
DNA. Non-complementary strands will not form stable molecules. Hence, the strands
in the recombined DNA molecules will match each other. Notice that hybridization is
essentially performing a string matching operation of complementary strings. It could
be compared to a parallel lexical analyzer.

This ability of matching strands makes hybridization an important tool for detect-
ing the presence of a DNA sequence. By using a collection of known and identical ss-
DNA strands as a probe one can identify the complementary ssDNA strands in a target
solution. The complementary target strands will bind to the probe strands when the
probe is applied to the solution. The presence and abundance of the complementary
strands can only be determined if the hybridized strands can be distinguished from
the rest. This is done by labeling. Either the probe or target strands are marked with
radioactive or fluorescent labels. The labeling consists of replacing the nucleotides in
the strand with nucleotides having radioactive isotopes or fluorphores or adding such
molecules to one of the ends of the strands. The radioactively labeled strands can be
identified with X-ray film and the fluorescently labeled strands can be detected with
a laser scanner.

Although only the recombination of ssDNAs has been mentioned so far, hybridiza-
tion is not restricted to such molecules. Two RNA strands are also capable of such
regrouping. Hybridization may also occur between an ssDNA strand and an RNA
strand. However, RNAs are not very stable outside the cell and degrade quickly [140,
p. 319]. They are, for this reason, often reverse transcribed into single stranded cD-
NAs when microarray technology is used. Hybridization takes then place between
DNA strands.

2.6 DNA Cloning

The DNA in the nucleus is duplicated when a cell divides into two new cells. This
action is catalyzed by DNA polymerases, which are similar to RNA polymerases, but
produce DNA strands rather than RNA strands. A DNA polymerase copies only a
single strand. Both strands of a double stranded DNA are copied simultaneously by
separate enzymes starting from one end of the molecule and moving to the other end.
The duplication is a bit more complicated since DNA polymerase can only produce
copies in one direction. Complementary strands are oriented in opposite directions
such that one strand is oriented in the wrong direction with regard to the duplication
process. However, these details will not be considered here. The duplicated DNA is
called a clone.

This replication process is used in laboratories to multiply a DNA strand for
experimental purposes. In this case, the DNA is inserted into an organism such as the
bacterium E.coli where it is duplicated along with the DNA of the organism through
cell division. The cloned DNA can then be extracted from the cell after a series of
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cell divisions.
DNA strands may alternatively be replicated by PCR (Polymerase Chain Reac-

tion). In this case, the DNA is replicated outside a living organism. The process
goes through a series of cycles where the DNA is denaturated and copied by DNA
polymerases.

2.7 Microarray technology

Even though the genes in many organisms have been identified, their functions and
interactions are unknown. Studies of RNA and protein levels in a cell may reveal this.
However, methods for measuring RNA (or protein) levels on a large scale have not
been available until recently.

The traditional methods for measuring gene expression such as Dot-blot and
Northern blot can only measure one gene at a time. In these methods a dena-
tured target solution is fixed to a membrane and a labeled probe for one particular
gene is applied to the membrane such that the probe and the target may hybridize.
However, most organisms have thousands of genes. The human genome consists of
30, 000 − 40, 000 protein coding genes [32] and yeast which has one of the smaller
genomes among the eukaryotic organisms has 6, 000 genes [110]. Hence, only very
limited studies of gene expression have been possible with these methods. Microarray
technology on the other hand allows the expression level of 5, 000 up to 40, 000 genes
to be measured simultaneously one array. In this way, it represents a breakthrough
for genome studies.

A microarray is a glass slide or wafer. Probes for different genes are placed at
fixed locations on the glass. Each probe appears as a circular or rectangular spot on
the microarray. The location of a spot identifies the probe and therefore also the gene
that matches the probe. The same probe can be placed at several locations so that
a gene may be examined at several different spots. A gene may also be represented
with different parts of its sequence such that two spots may inspect the same gene
even though the probes at these locations may have different sequences.

One or two target samples are examined by a microarray. These samples are first
labeled with fluorescent dyes and then applied to the glass plate where the DNA in
samples hybridize with the probes on the plate. Excess target DNA is then washed off,
and the abundance of labeled DNA in each spot is determined with a laser scanner.

There are several different microarray technologies. Their main distinguishing
features are the production method, the probes, and the experimental design. These
features depend often on each other. One particular probe may, for example, be used
with one particular production method. A summary of the features is presented in
Table 2.1.

Microarrays have also another application beside expression studies. They can be
used for detecting SNPs (Single Nucleotide Polymorphisms) in the genome. These
are variations found in individuals and result in different variants of the same gene.
A survey of microarray methods for this application can be found in [66].
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Features Options
Spotted
microarray

Affymetrix’
GeneChip

Production
1. Spotting
2. Photolithography
3. Ink-jet

Spotting
Photo-
lightography

Probes 1. Oligonucleotides
2. cDNAs

cDNAs or
Oligonucleo-
tides

Oligonucleo-
tides

Experimental
Design

1. One sample with PM and
MM probes

2. Relative comparison be-
tween two samples

Option 2 Option 1

Table 2.1: Key features of microarray technology.

2.7.1 Probes

cDNAs and oligonucleotides1 are both used as probes on microarrays. cDNAs may
have a length of 100 to 2000 base pairs, and oligonucleotides are typically 15-100 bases
long. They have several distinguishing properties as probes where oligonucleotide
probes have more advantages than cDNAs. This is mostly due to some properties of
hybridization. Hybridization is not a well-understood process [100, p. 224], but it is
known that the following factors affect the formation of double stranded molecules.

• Sequence length: A long sequence is in principle more specific and less likely to
occur in several genes. Hence, the probability of hybridization between a probe
and a mismatching target strand decreases with length when only the length
is considered. However, the matching of strands is not necessary perfect, and
mismatches may occur. The ability to form stable molecules with mismatches
increases with length. A probe with a short sequence will not form stable double
stranded molecules with target strands if the sequences differ at a single position,
while a probe with a long sequence will (see Figure 2.3). The location of the
mismatched base in the sequence has an affect as well. A mismatch in the center
of the sequence is much more destabilizing than a mismatch near an end [167].

• Sequence composition: The complementary pairs A-T and G-C do not have
the same strength of attraction. Cytosine and Guanine bind to each other
through 3 hydrogen bonds while Adenine and Thymine have only 2 hydrogen
bonds. Sequences with a high frequencies of Cs and Gs will attract each other
more strongly and form more stable duplexes than sequences with a high fre-
quencies of As and Ts [167].

1Oligonucleotides are short (typically 15-100 bases long) chemically synthesized DNA strands.
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Figure 2.3: Matching of probes. The figure illustrates matching of a probe and a
target strand when a long cDNA probe and a short oligonucleotide probe are used.
In the first row, the target strand matches the cDNA probe and the oligonucleotide
probe perfectly. Stable molecules are thus formed in both cases. In the second row,
the middle base of target strand is not matched. In this case, the cDNA probe may
form a stable molecule, while the oligonucleotide probe will not. The oligonucleotide
probe is thus able to detect this discrepancy.

Hence, the specificity of a probe does not solely depend on the length. A short
oligonucleotide may discriminate more effectively against non-matching strands than a
long cDNA strand [74]. Cross-hybridization, i.e., binding of targets for several different
genes to one probe on the array, is less likely. Discrimination of very similar genes from
a gene family can only be done with oligonucleotides. Moreover, short oligonucleotides
can detect a difference in a single base while cDNAs cannot [167]. Oligonucleotide
microarrays can be designed to both identify unknown SNPs and for studying the
correlation of SNP with characteristics in individuals [95]. An oligonucleotide array
can also be stored for a longer period of time [107].

Still, there are some advantages of using cDNA. They are cheaper and less suscep-
tible to the difference in the stability of A-T and G-C pairs. A short oligonucleotide is
more likely to have uneven amounts of these pairs. Hence, the oligonucleotides on an
array may bind to the target with different degrees of efficiency resulting in unequal
sensitivity.

2.7.2 Production technology

Mechanical microspotting

The most widely available technology was developed by Schena et al. [149]. This
is mainly due to the cost. Both the production equipment and the production of
microarrays are less expensive compared other methods [108, 21]. Microarrays are
produced with this technology by depositing cloned cDNA onto a glass slide. Due to
the use of cDNA as probes, it is usually referred to as cDNA microarray technology.
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Figure 2.4: Overview of cDNA microarray printing and scanning. A robot deposits
probes from plates onto a glass slide. Two samples are reverse transcribed and labeled
with different fluorescent dyes. The samples are hybridized on the microarray which
is scanned with a laser. This results in two images – one for each dye – which is
combined into one image by computing the ratio between the spots.

The technology is flexible. The clones printed on the slide can be changed easily so
that different arrays can be produced. It is also quite fast. 150 identical arrays of
12000 genes can be produced in a day [21]. One of the drawbacks is that a collection
of cDNA has to be acquired and prepared and cataloged in advance of printing, which
is time consuming [98]. Duggan et al. [40] have written a good review paper on this
technology.

Figure 2.4 illustrates the production and scanning of cDNA microarrays. Probes
are first printed by a robot onto a glass slide. The robot is equipped with a set of
pins (also known as print tips) that are essentially capillary tubes. Each pin sucks up
some cDNA from wells on probe plates, which are prepared in advance. The robot
moves the pins to a fixed location on the glass slide and cDNA is deposited. This
procedure is repeated until all the probes have been deposited.

Target RNA strands from two different samples – often a test and a reference sam-
ple – are reverse transcribed and labeled with two different fluorescent dyes Cy5 (Red)
and Cy3 (Green). A mix of the labeled cDNA samples is applied to the microarray,
and the target strands are permitted to bind to the complementary probe strands.
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The remaining target strands that do not bind to any spot are then washed off. The
microarray is scanned with a confocal laser using two different wavelengths. This
results in two images – one for each color – with the intensity of each spot. The spot
intensity is proportional to the concentration of the RNA in the sample and therefore
a measure of concentration. For each spot a Cy5/Cy3-ratio is computed and corrected
for background noise as follows:

Ratio =
Intensity of Cy5− Background intensity of Cy5

Intensity of Cy3− Background intensity of Cy3
(2.1)

The background intensity is measured in the vicinity of the spot, and gives an as-
sessment of the noise due to factors such as light reflections from the glass side, and
fluorescence from labeled target cDNA, which has bound to the glass side without a
matching probe [6, p. 277].

Even though cDNAs have mostly been used on spotted array, this technology is
not limited to cDNAs. Oligonucleotides synthesized in advance can also be spotted on
an array. A very early attempt was made by Guo et al. [61]. Kane et al. [80] studied
the sensitive and the specificity of spotted oligonucleotides.

Photolithography

The main competitor to the spotted cDNA microarray is the so-called GeneChip
manufactured by Affymetrix. The Affymetrix technology applies photolithography
used in the production of semiconductors to perform a light-directed synthesis of
oligonucleotides on a glass substrate. It was developed by Foder et al. [56, 55], and a
recent overview is given in [95].

The synthesis of Affymetrix’ microarray is explained in Figure 2.5. Chemical
linkers are initially attached to a glass substrate. These serve as starting points for
building the oligonucleotide strands, and are protected by photochemically removable
groups. A nucleotide will only bind to a linker if the protection group is removed in
advance. The oligonucleotides are produced by adding one nucleotide at time to the
strands. Light is directed through a mask and the illuminated protection groups are
released. Nucleotides with one particular base are added to surface and bind to the
free linkers. These nucleotides have also photochemically protection groups such that
no further binding is possible without additional lighting. The process of illumination
and addition of nucleotides are repeated for the other bases using a different mask
each time. A total of 4×N steps is necessary to produce all possible oligonucleotides
with length N .

Only one sample is measured on a GeneChip. This sample is amplified in order
to increase the sensitivity, and cRNA2 is hybridized to the array instead of cDNA
[95, 67]. Thus, the RNA in a sample is first reverse transcribed into cDNA. The
cDNA is then transcribed in the presence of labeled nucleotides. The result is labeled
cRNA, which is applied to the microarray. The microarray is later scanned with a

2cRNA is transcribed cDNA.
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Figure 2.5: Production of Affymetrix’ GeneChip. Oligonucleotides are synthesized in
several iterations. In each iteration, protection groups are removed by illumination
through a mask. Nucleotides with one particular base are then applied to the glass
substrate such that they bind to the uncovered strands. The sample is amplified,
fluorescently labeled, and hybridized on the array. The abundance of a gene is assessed
with 20 different probe pairs where a pair examines a particular part of the sequence.
Each pair consists of a perfect match probe (PM) and a mismatch probe (MM). The
mismatch probe has a different base in the middle position.
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confocal laser. Notice, however, that this amplification process may introduce errors
since the efficiency of the transcription depends on the sequence composition. The
relative abundance of the RNAs may consequently be changed.

The RNA concentration of each gene is assessed by 20 different probe pairs on
a microarray [95, 67]. Each pair consists of a perfect match (PM) and a mismatch
(MM) probe. A PM probe and its corresponding MM probe are identical except for
the base in the middle of the sequence which is different. Each probe sequence has
length of 25 nucleotides, and PM probes are taken from different regions of the gene
sequence [95] such that they will hybridize to different parts of the RNA. The RNA
abundance is calculated as average difference between PM and MM probes:

1

20

20∑

i=1

(PMi −MMi) (2.2)

One of the advantages with this technology is that no clone collection is necessary.
The probe strands are synthesized with information taken from a sequence database
[151, 98]. The use of oligonucleotides as probes has also many benefits (as described in
Section 2.7.1). However, the synthesis is quite slow. It takes about a day to synthesize
an array with 25 nucleotide-long oligonucleotides [14]. A new mask is required for each
nucleotide such that 4 × N mask is needed for oligonucleotides with N nucleotides.
The production of masks is expensive such that the technology is less flexible than
microspotting [151].

Ink-jets

A third approach to the production of microarrays comes from ink-jet printers. Piezo-
electric pumps used in the print head of such printers for applying ink to paper, are
used to deposit fluids onto a glass slide. Fluids can be placed at exact locations by
moving the print head over the array. This technology can be used for both microspot-
ting of cDNAs or oligonucleotides [151, 145] and synthesis of oligonucleotides directly
onto the glass [14, 74]. However, the synthesis is more desirable since no preparation
of probes is required.

Ink-jet synthesis holds a great potential, and it may become the leading microarray
technology. It is both faster and cheaper that Affymetrix’ technology. Piezoelectric
pumps can operate at very high frequencies and produce arrays much faster that
photolithography. Blanchard et al. [14] suggest that an array of 100, 000 different
oligonucleotides with a length of 25 nucleotides could be produced in less than 2 hours.
No expensive masks are needed either. However, this technology is not completely
mature and suffers from problems such as clogging of delivery heads and interruption
of fluid supply by air bubbles [104].

2.7.3 Design

Two kinds of designs are applied on microarrays. The first type performs a relative
comparison between two samples and is employed on spotted arrays. Usually, a single
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probe sequence is used for each gene. This design has also been used with ink-jet
synthesized microarrays [74]. Often a test sample is compared to a reference sample.
The reference sample may seem unnecessary in this case, but it is required since the
printing technology is not perfect. The form and quality of the spots may vary from
array to array. Two spots that are even printed in the same position on two arrays
may be different such that the intensity is different. By measuring the abundance
relative to a common reference sample and computing ratios, this error is removed
since the error is mainly multiplicative.

Affymetrix’ GeneChips is more uniform and finds the absolute abundance of the
genes. It measures only one sample using several different short oligonucleotide probes
for each gene. The use of several probes makes it possible to measure different regions
of the sequence. This compensates for the lower specificity due to the sequence length,
but utilizes the more exact matching made by a short sequence. The higher AT/GC
bias of the short oligonucleotide probes is also avoided. The use of mismatch probes
permits the cross-hybridization to be estimated and removed [67], which is not possible
with the relative design – at least not when cDNAs are used as probes. Similar
designs can obviously be made with ink-jet synthesis and with spotted pre-synthesized
oligonucleotides.

Affymetrix’ design has more redundancy as well as correction for cross-hybridiza-
tion. In this way, it should give better results. However, this may not be necessary
for relative comparisons. Hughes et al. [74] found that cross-hybridization could be
avoided with careful selection of probes, and that one large oligonucleotide was suffi-
cient for relative comparisons. However, they suggest that the use of several probes
may be important for determining the absolute concentration of several samples since
these measures have a much larger variance.

2.8 Alternative methods

Microarray technologies are not the only methods for performing large genome studies.
There are other technologies that can measure the expression of thousands of genes
and can be used as substitutes for microarray technologies. The raw data created for
these technologies is different and may require different preprocessing than microarray
data. However, the methods which are introduced and described in this thesis could
equally well be applied to data created with such methods. The main alternatives to
microarray will therefore be mentioned in the following sections. These are different
from microarrays in that the abundance is determined by sequencing rather than by
hybridization.

APEX, which is a method for detecting SNPs with spotted microarrays, is also
discussed.

2.8.1 SAGE

Velculescu et al. [183] have developed an alternative approach for gene expression
studies, which is called Serial Analysis of Gene Expression (SAGE). The approach
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is quite different from microarrays since there is no matching of probes and targets.
mRNA abundance is rather estimated by gene sequencing and counting. All mRNA
strands in a sample are sequenced resulting in a set of sequences stored in a database.
The mRNA abundance is then computed by counting the number of times each unique
sequence occurs in this set. However, it is not feasible to sequence the full length of
the mRNAs in a sample. So only a part of each mRNA strand is used. These parts
are later joined into long strands, which are sequenced.

In more detail, cDNAs are first made from the mRNAs in the sample. A slice of
9–14 base pairs, called a sequence tag, is cut from each cDNA strand. These tags
represent the complete sequences in the further analysis. The tags are split in two
pools where a tag in the first pool is concatenated with a tag from the other forming
so-called a ditag. The ditags are further concatenated with 4 base pair long sequences,
which separate the ditags. The final sequence has the following format:

CATC UUUUUUUUU VVVVVVVVV CATGUUUUUUUUUVVVVVVVVVCATG

GTACYYYYYYYYY︸ ︷︷ ︸
tag 1

ZZZZZZZZZ︸ ︷︷ ︸
tag 2︸ ︷︷ ︸

ditag

GTACYYYYYYYYY︸ ︷︷ ︸
tag 3

ZZZZZZZZZ︸ ︷︷ ︸
tag 4︸ ︷︷ ︸

ditag

GTAC

The final strands are amplified (i.e., duplicated) by PCR and sequenced. The sequence
data is then loaded into a database for further analysis.

Amplification process may change relative concentration of the cDNAs since effi-
ciency of this process depends on the sequence composition. Ditags provide, however,
the means for detecting and removing this effect. The probability of creating several
occurrences of the same ditag when the tags from the two pools are merged is quite
low. A repeated ditag would have to be a result of the amplification. All repeated
ditags are therefore removed during sequence analysis.

The details of the sequences analysis is as follows [91]:

1. The ditags are first extracted.

2. All repeated occurrences of the same ditag are removed in order to avoid the
bias of the amplification process.

3. The two tags are identified in each ditag as the bases closest to each end.

4. The occurrences of each tag are counted.

5. Each tag is compared to known gene sequences in order to identify the gene, to
which the tag corresponds.

One advantage of this approach is that no probes have to be made in advance.
Moreover, the gene and its sequence need not to be known prior to the experiment such
that the expression of unknown genes can be detected [182]. However, this can also
be done with oligonucleotide arrays by synthesizing probes for all possible sequences.
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There are several drawbacks with SAGE. Most important is the problem that a tag
may not identify a gene uniquely due to the short tag sequence. A tag may therefore
map to several genes. This problem is even worsened by the fact that DNA sequences
are not random. Some tags are therefore more likely than others. Moreover, the
sequencing process may introduce errors such that the incorrect tag sequence may be
stored in the database and used in further analysis. Hence, the contribution of an
incorrectly sequenced tag will be ascribed to another tag (and gene) than the actual
tag in the sample. These and several other issues are discussed in [172, 91]. The
sequencing of the concatenated tags still requires a lot of time. So the through-put of
this technology is much lower than that of microarrays.

2.8.2 MPSS

A more recent method is Massively Parallel Signature Sequencing (MPSS) [17, 18].
It can be described as a combination of microarray technology and SAGE, but it is
closer to SAGE since it relies on sequencing and counting.

The method uses amplification to increase the sensitivity, but it avoids the distor-
tion that may be introduced by this process. This is achieved by attaching a unique
tag to each strand in the sample prior to amplification, and loading strands onto
microbeads such that strands with identical tags are attached to same microbead.
One strand in the original sample is then represented by one microbead.

The strands bound to each microbead are identified by a 16–20 base long signatures
(which are similar to tags in SAGE). The sequences of the signatures are found in
parallel for all beads using a novel sequencing method. The expression of a gene can
then be determined by counting the microbeads with a signature matching a gene.

In more detail, MPSS analysis consists of following steps:

1. A set of tags is initially created. Each tag is 32 bases long and consists of 8
words. A word has 4 bases, and only 8 of 256 (= 44) possible words are used.
These are selected such that they have the same A-T and G-C proportions, and
therefore the same ability to hybridize. There are a total of 88 different tags.

2. mRNAs in a sample are converted to cDNA, and a tag is attached to each
cDNA molecule. The number of different tags is much larger than the number
of molecules. So the probability of two cDNA molecules receiving the same tag
is very low. The tagged cDNAs are then amplified (i.e., multiplied).

3. Oligonucleotide anti-tags are synthesized onto microbeads such that each mi-
crobead has multiple copies of the one anti-tag. The tagged cDNAs and mi-
crobeads are allowed to hybridize so that the cDNAs become attached to their
matching microbead. A microbead will have approx. 100, 000 copies of the same
cDNA strand after the hybridization [18].

4. However, the gene to which the cDNA belongs it is still unknown. The cDNA
on the microbeads is therefore partially sequenced by finding a signature. This
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is not practical or even feasible with standard sequencing method. A parallel
sequencing method is used instead.

A flow cell is used for immobilizing and spreading the microbeads. Signatures of
20 bases are sequenced in 5 iterations. Four bases are read in each iteration. The
cDNA strands attached to the microbeads are cleaved with an enzyme resulting
in an overhang where one of the double strands is 4 bases longer that the other.
Adapters that function as encoders, are applied to the overhangs. An adapter
has one end, which matches the overhang and another end, to which a decoding
oligonucleotides can bind. Each adaptor tests only one base at a particular
position in the overhang. There are 16 different adapter groups. A group consists
of 43 (= 64) adapters – one for each of the possible sequences when one base is
fixed. All of the adaptors in a group encode for the same decoder oligonucleotide.
The total set of 1024 (= 16 × 64) adapters is applied to the microbeads such
that a microbead has 4 different adapters – one for each position – attached
in equal proportions. Fluorescently labeled decoder oligonucleotides that bind
to the adapters are applied iteratively and detected with a laser scanner in the
same manner that spots are detected on an microarray, One iteration is made
for each of the 16 groups/decoders.

A short overview of the method can be found in [180]. The method is much
faster than SAGE and has a more robust system for performing amplification. The
signatures are also longer than tags used in SAGE and the method is less plagued with
tags that map to multiple genes. However, this problem is not completely avoided as
long as only a small part of the gene sequences is used for identifying the gene.

2.8.3 APEX

Arrayed Primer Extension (APEX) [131, 130] is a method for identification of SNPs
and is an alternative to Affymetrix’ technology for SNP-testing. Pre-synthesized
oligonucleotide probes are spotted on microarrays either by using mechanical mi-
crospotting or ink-jets. Each probe is designed such that its sequence ends with the
base immediately before the position that it should inspect. A sample containing the
mutations to be inspected is hybridized on the array, and the DNA binds to their
matching probes as with ordinary microarrays.

However, the sample is not labeled. Each probe is instead extended with a single
fluorescently labeled nucleotide, which is complementary to the position to be in-
spected. The nucleotides are labeled with different dyes so that each nucleotide type
has one particular dye (A-yellow, C-red, G-green, T-cyan). The base in the sequence
can therefore by identified by the color of the probe. The color is determined as with
cDNA microarrays by laser scanning the microarray at 4 different wavelengths.

The elongation of the probe is made with DNA polymerases. This enzyme adds
nucleotides to the probe strands using the target bound to the probe as a template.
The added nucleotide will consequently be complementary to the target strand. How-
ever, DNA polymerase will continue to add nucleotides that match the target strand
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if this processes is not terminated. Nucleotides with different dyes could therefore be
added to the probe. This is avoided by using Dideoxynucleotides rather than ordinary
nucleotides. These have one end blocked by a hydrogen atom such no new nucleotide
can be linked to them. The probe strand is effectively terminated after the addition
of such a nucleotide.

Several different mutations can be detected with this technology. The most im-
portant of these are base changes, deletions, insertions, and repetitions [174].
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3.1 Introduction

DNA microarray technology makes large gene expression studies possible, but it gener-
ates a vast amount of data about complex biological phenomena. Automated analysis
by computers is therefore essential.

Knowledge discovery and data mining have an important role in this respect since
they provide computational tools for conducting this analysis. This chapter discusses
some of these tools and their application in microarray studies. In particular, clus-
tering and supervised learning of microarrays will be reviewed. Preprocessing is also
very important in microarray analysis, and several normalization methods will be pre-
sented. Since methods for construction of gene networks are outside the scope of this
thesis, they will not be considered here.

The discussion in this chapter will mainly focus on analysis of cDNA microar-
rays since only this type of data is analyzed in this thesis. However, the analysis of
GeneChips is not much different. The difference is mainly in the preprocessing of the
array.

3.2 The process

Knowledge discovery is often described as a process with many steps which may be
iterated several times. One example is Fayyad et al. [50] who defines a knowledge
discovery process with the following steps: Data selection, preprocessing, transforma-
tion, data mining, and interpretation. Microarray analysis is no different. However,
some steps are particular for this analysis such as normalization, and others are not
relevant such as data selection. Microarray analysis passes through the following steps
(see Figure 3.1):

1. Image analysis: The images from each cDNA microarray are initially con-
verted into ratios, which are log2-transformed.

25
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Figure 3.1: The microarray analysis process.
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2. Filtering: The shape of the spots may be inadequate or the expression level
may be under the detection limit. Spots with low average intensity often have
a larger variance than higher intensity spots. This may be due to insufficient
detection for one dye. Such spots must be removed.

3. Normalization: Several factors may introduce systematic bias in the result.
These biases must be removed.

4. Data Mining: A set of arrays is then analyzed with a data mining method.
The choice of method obviously depends on the research goal, and this results
in a suitable model.

5. Validation: The quality of the model is estimated.

6. Interpretation: The model should explain the measured data with some cer-
tainty and its interpretation should provide new knowledge.

Further preprocessing and transformation may be required besides log2-transfor-
mation, filtering, normalization depending on the data mining method. Missing values
(if no ratio can be computed for a spot) may need to be handled. Creation of new
features from the ratios with discretization and feature extraction may be necessary.

3.3 Image analysis

A cDNA microarray is read with a laser scanner. This results in two image files cor-
responding to each of the fluorescent dyes. However, the images need to be quantified
into values that can be used for further analysis. This is done by an image analy-
sis program that turns the probe spots on the images into ratios. Such a program
detects the region occupied by each spot in the images and estimates the intensity
by finding the average or median pixel intensity inside the region. It then computes
ratios from the estimated intensities according to Equation 2.1. The ratios are usu-
ally log2-transformed in order to represent induction and repression (i.e., increased
or decreased expression level) of a gene on similar scales. This also makes the spot
intensities from an image more normally distributed.

Since image analysis is the initial task in any microarray analysis, it has been
studied quite extensively. There are many program packages available. Some ex-
amples are: GenePix [6], ScanAlyze [47], QuantArray [129], and Scanalytics’ IPLAB
Microarray Suite [148], which implements the methods of Chen et al. [24]. Yang et
al. [195] provides a comparison of several methods.

Most image analysis packages also provide some means for filtering and normal-
ization. However, these solutions are less mature, and these tasks still pose research
problems. Separate tools are often used for these problems.
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3.4 Normalization

The data extracted from a microarray are very noisy. This is a serious problem in
microarray analysis since it may result in false conclusions being drawn from data.
The noise should thus be removed as much as possible within affordable limits.

We may distinguish between two kinds of errors in the data:

1. Inherent randomness in samples and measurements, and

2. Systematic bias due to some external factors.

The first category can be reduced with replicates. The mean or median of replicates
will be less sensitive to this type of error. The second category can be removed
by estimating the influence of the factors and removing their contribution from the
measurements. Normalization deals with the last type of error.

3.4.1 Systematic effects

There are many sources in the production of microarrays that may introduce bias.
The printing process is by no means perfect, and the quality of the hybridization may
affect the result. The following is a list of sources of systematic bias that may be
found on a microarray:

• Labeling effects: The genes may incorporate dyes Cy3 and Cy5 with different
efficiency during the labeling procedure such that the measured intensity signals
for one dye becomes generally higher than the intensities for the other [178]. This
results in too high or low ratios. Such effects are often visible on microarrays.
They may depend on the intensity such that the effects are more apparent for
low intensities.

Moreover, the incorporation efficiency may depend upon the gene sequence such
that the bias in the dye intensities may be gene specific. This has been observed
by several authors [84, 178].

• Scanning effects: The bias in the dye intensities is not only the result of in-
corporation differences, but also due to the scanning. The ability of the dyes to
absorb and emit light may be dissimilar, and detection of two emission frequen-
cies by the scanner may be biased [178].

Light emitted from fluorescent molecules may be reabsorbed by other fluorescent
molecules and result in quenching of the signal. Ramdas et al. [142] found
fluorescence quenching on cDNA microarrays. They conducted experiments
with diluted oligonucleotides, and found that the range of the actual signals was
shorter than the theoretical range. In particular, Cy5-signals were found to be
more quenched than Cy3-signals.

There are also other factors that may introduce bias in the signal range so
that the signals of one dye have a shorter range than the signals of the other
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dye. Finkelstein et al. [52] mention several sources such as photo-bleaching, and
improper estimation of background intensity.

• Printing effects: The printing process may introduce several biases. There
may be variations in the amount of probe cDNA immobilized on the arrays.
In particular, the print tips used for deposition cDNA may be different. The
amount of cDNA fetched from the print plates and left on the array may be
print tip dependent. There may also be variations between each fetch and print
iteration. The print tips are cleansed between each iteration, some of the water
used in this process may be left in wells on the print plates, and the cDNA in
the wells may become diluted. Probe spots with cDNA from the same well may
therefore have slightly different concentration depending on when the spot was
printed. Print tip effects have been reported by Yang et al. [196] and Finkelstein
et al. [54].

The plates containing the cDNA, which is printed on the glass slides, may intro-
duce variation. For example, the cDNA concentration may be slightly different
from plate to plate. This may be due to PCR amplification of cDNA [52]. Plate
effects have been detected for 384-well plates using a statistical F-test [53].

• Hybridization effects: The target sample may distribute unevenly on the
slide. The efficiency of the hybridization reaction can also vary over the slide
[153]. This could result in spatial biases. In this case, both global effects over
the whole array and local effects just inside a sector/subarray may occur.

The amount of cDNA applied to the array and environment in the hybridization
chamber may affect the result [178].

3.4.2 Methods

Several papers have addressed the issue of normalization. Most of theses center or
scale the distribution of the spots on an array. In the first case, the contribution of a
source is additive on log2-scale, and the removal of factor amounts to subtracting the
estimated contribution. In the second case, the source is multiplicative on log2-scale,
and the source is removed by dividing on a scaling factor.

Furthermore, we may also consider additive corrections to the dye intensities on
the ratio scale (i.e., before log2-transformation). Such errors are usually assumed to
have been removed with background subtraction. However, the background subtrac-
tion may not be sufficient, or the procedures for estimating the background may be
inadequate.

Centering

There are several different methods for centering. These may be characterized accord-
ing to which sources of error they take into account. A list of the methods that have
been suggested so far is presented in the following.
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• Global normalization: Plots of the intensity distribution of the dyes reveal
whether or not their distributions are shifted. The mean of the intensity signals
of one dye is often lower than the mean of the intensity signals of the other.
This may yield too low or high log2-ratios. In this case, we may assume that
the means of the dye distributions should be the same such that the log2-ratio
distribution have a mean at 0. This can be achieved by subtraction of the mean
log2-ratio.

Normalized log2-ratio = log2(Cy5/Cy3)− c (3.1)

Where c = 1/n
∑

log2(Cy5/Cy3) (assuming that there are n spots on the array.
This correction has been widely used (e.g. [6]). Chen et al. [24] devise a more
elaborate procedure using an iterative algorithm for estimating the normaliza-
tion constant C.

• Intensity dependent normalization: The shift in the dye signals and the
log2-ratio may depend on the signal intensity. Such effects are often visible in
ratio-intensity (RI) plots1. An RI-plot is a scatterplot of the log2-ratio versus the
average log2-intensity of the spots on an array. The average intensity is defined
as I = (log2(Cy3) + log2(Cy5)) /2. One example is shown in Figure 3.2a where
spots with low average intensity are more widely spread, and the shift depends
on the intensity.

This bias can be removed by fitting a normalization function f that depends on
the intensity. The normalized ratio of a spot is then computed by subtracting
the value of f(I) from the ratio where I is the average intensity of the spot:

Normalized log2-ratio = log2(Cy5/Cy3)− f(I) (3.2)

This results in localized shift of the plot. The function f(I) can be estimated
with linear regression, but the effects may be nonlinear such that nonlinear
regression is more suited. Yang et al. [196] suggest using LOWESS (LOcally
Weighted linear regrESSion) [27] for fitting a nonlinear function.

Some authors perform a similar adjustment fitting regression lines in log2(Cy5)
vs. log2(Cy3) plots (See Figure 3.2b). Finkelstein et al. [54] use an iterative
linear regression for removing outliers in such plots. The use of log2(Cy5) vs.
log2(Cy3) plots predates the RI-plots in normalization of microarrays, but the
RI-plot is preferable. The fact that normalization is dependent on the average
intensity is also made more evident. Moreover, an RI-plot is just a 45◦ rotation
and scaling of the log2(Cy5) vs. log2(Cy3) plot, and spot artifacts more easily
seen in this plot.

• Logshift normalization: Kerr et al. [84] introduce an alternative to intensity
normalization. RI-plots of some arrays may have a slight curvature where the
low intensity spots have a lower log2-ratio than the rest. Kerr et al. suggest that

1Ratio-intensity plots are also known as MA-plots.
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Figure 3.2: Two different scatterplots of the same microarray data. Both plots display
intensity-dependent normalization functions. The red curve in the RI-plot is the
LOWESS-fit. The red line in log(Cy5) vs. log(Cy3)-plot is found with linear regression.
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Figure 3.3: A scatterplot with intensity dependent normalization curves for each print
tip.
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the effect could arise as a result of an additive difference between the two dyes
on the ratio-scale (e.g., the estimate of background signal, which is subtracted
from the dye signals, may be improper). They adjust the signal with term s
and a log-ratio is then computed as:

NLRg(s) = log(Cy5g − s)− log(Cy3g + s) (3.3)

for gene g, and s is estimated as:

s = argmin
t

∑

g

∣∣∣∣NLRg(t)−median
g

NLRg(t)

∣∣∣∣ (3.4)

• Dye-swapping: This is an alternative for correcting the shift between the two
dyes. The two samples are hybridized together on two microarrays. However,
labeling is reversed for one of the slides. For example, sample a is labeled with
Cy3 and sample b is labeled with Cy5 on one array. On the other array, sample a
is labeled with Cy5 and sample b is labeled with Cy3. If the errors are of similar
magnitude on the arrays (i.e., c1 = c2), they will be removed by subtracting one
of the log2-ratios for a spot from the other. The average ratio can be found as

1

2

((
log2

Cy31

Cy51
+ c1

)
−
(

log2

Cy32

Cy52
+ c2

))

=
1

2

(
log2

Cy31

Cy51
+ log2

Cy52

Cy32

)
=

1

2

(
log2

a1

b1
+ log2

a2

b2

)
(3.5)

Dye swapping has been introduced by several authors. Kerr et al. [85] show how
microarrays can be analyzed with ANOVA2, and demonstrate in particular how
dye-swapping can be modeled with a latin square design (e.g., [188]). Yang et
al. [196] examine the usefulness of dye-swapping, and found that this method
was appropriate when the arrays had similar normalization function.

The bias, which is removed with dye-swapping, may be specific for each spot
on the array. An important feature of this method is that gene-dye interactions
can be corrected. However, the method assumes that log2-ratios on arrays have
the same additive bias and scale.

• Print tip and plate normalization: As mentioned, the print tips used to
deposit the cDNA during printing may be a source of bias. If such bias occurs,
normalization can be done individually for each print tip. The spots deposited
by the same print tip are collected and a normalization constant or function
dependent on the average intensity is estimated. The normalized log2-ratios are
computed as:

Normalized log2-ratio = log2(Cy5/Cy3)− fp(I) (3.6)

2ANOVA means “ANalysis Of VAriance”. See e.g., [188] for more information on this topic.
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where p identifies the print tip. This type of normalization was introduced by
Yang et al. [196]. They use LOWESS to fit each fp(I). An example is given
Figure 3.3 where the normalization function for each print tip is shown on same
microarray data as in Figure 3.2. Finkelstein et al. [53] give a similar approach
where plate effects (as described on page 29) are also considered. They suggest
a method for detecting this type of bias. An ANOVA test (e.g., [188]) is used
where the plates and the print tips are considered as factors. Corrections to the
dye intensity signals are computed separately for each print tip and each plate.
The shift due to the two dyes is corrected with linear regression after these other
corrections have been applied.

Their method assumes that effects are linearly related such that a normalization
function can be fitted independently for each effect. Any interactions between
print tips, plates, and intensity will not be taken into account. The method used
by Yang et al. does not make such assumptions. However, the normalization
function, which is fitted to the data, depends on more variables since all effects
are considered at once. This normalization function must output a value for each
input combination of these variables, and this output value must be estimated
from the data with the same (or similar) input combination. Unfortunately, less
data are available for each combination since there are more combinations, but
the number of spots is still the same. The data are consequently relatively more
sparse for this function than for a function with only one variable. The risk of
overfitting the function is higher, and the assumption that most genes are not
regulated, may be less likely or not valid at all for some combinations.

Notice that it is important that the gene probes are placed at random on the
array. Otherwise, the observed print tip or plate effects may be caused by the
localization of the spots and not by a source of error.

• Spatial normalization: The print tips create sectors on the array. All spots
in a sector are deposited by the same pin, and sectors are spatially separated
on the glass surface. The print tip bias may therefore be considered a spatial
effect. However, other spatial effects may also be observed on the glass surface.
Patterns may be observed inside sectors, across sectors, and over whole arrays.
Such biases can be corrected by fitting a LOESS function (which is a successor
to LOWESS and allows the function to depend on several variables):

Normalized log2-Ratio = log2(Cy5/Cy3)− f(I, p, R, C) (3.7)

where R is the row and C is the column of the spot in the sector p. Alternatively
one may fit a function fp(I, R, C) for each sector. As mentioned there is a
problem that the normalization function is based on less spots as more factors
are considered. One may, however, assume that some factors do not interact
and decompose the model, e.g. f(I, p, R, C) = f(I) + fp(R, C).

It may also be difficult to discern spatial and print tip effects. The spatial
effect is to some degree confounded with the print tip effects due to the spatial
extension of the print tip sectors.
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While there is some awareness of such spatial effects [52], no work addressing
spatial normalization has been published at the time of writing.

Scaling

The variance of the log-ratios may be different from array to array or inside arrays.
Yang et al. [196] distinguish between two different kinds of scaling. Scaling may be
performed within an array or between arrays. In the first case, they adjust the variance
of each print tip sector with a maximum likelihood estimate. In the second case, the
variance of each array is adjusted such that it is the same over all arrays. In both
cases, the scaling factors are found with a maximum likelihood estimate. It is also
possible to devise scaling strategies between other groups, e.g., the plates. However,
less work has been done on scaling than on centering.

Other methods

The method described above applies to cDNA microarrays where two samples are hy-
bridized on the same array. When only one sample is used per slide such as Affymetrix’
GeneChips, there is no dye-shift to correct. However, the mean log-intensity of the
spots may still vary between arrays, and the arrays may need to be centered. The cor-
rection must be computed over arrays, in this case, such that every array has the same
center. Some of the methods devised for cDNA microarrays may be used. For exam-
ple, Beissbarth et al. [9] use global normalization to center two arrays. Hartemink et
al. [68] use arrays with so-called spiking controls which are spots with predetermined
abundance. The arrays are centered according to the spikes using a maximum a poste-
riori approach. They assume that the log-intensity of each spot is normally distributed
with a different variance of each spot. Zien et al. [198] take a similar approach, but
apply a maximum likelihood approach instead. Moreover, they do not use spikes and
assume that most genes are not regulated or there is similar number of up and down
regulated genes on each array. Kepler et al. [83] take a more advanced strategy. They
propose a model where both the mean and the variance of the measurements depend
on the average intensity. These factors are estimated with LOWESS.

3.4.3 Assumptions

In order to normalize two or more samples there must be some features that should
be similar in all samples. Observed differences in these features can then be used for
adjusting the samples. Most of the normalization methods discussed above adjust the
intensity distributions such that the means become similar. This results in a centering
of the log2-ratio distribution at 0. Global normalization performs this correction.
The intensity, print tip, and plate normalization essentially make the same correction.
However, in the latter methods, the corrections are made on a local rather than global
basis. For example, the mean intensities of the two dyes are made similar for each
print tip or plate.
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The biological assumption behind the normalization methods is that most genes
are not regulated, and should thus have identical intensity in all samples. A similar
assumption is to expect the number and the magnitude of up and down regulated
genes to be approximately the same in all samples. However, the normalization will
not be better than the assumption, and the assumption may be flawed. Especially,
on a small array where only a part of the genome is printed.

One alternative is to use so-called housekeeping genes. These are genes responsible
for the maintenance of the cell and are supposed to be expressed at constant level. If
these are not known in advance they can be identified.

Tseng et al. [178] present one method where housekeeping genes are selected ac-
cording to the rank difference of the dye intensities. The genes are ranked separately
for each dye. A gene is selected if its ranks for the two dyes differ less than a spec-
ified threshold. However, such selection will depend upon the unnormalized data.
A gene, which is actually differentially expressed may be selected and used in the
normalization, if the difference between the unnormalized dye intensities is small.

There are no universally stable genes [52]. The constant expression of the house-
keeping genes may actually depend on the cell type from which the sample is taken
and stress conditions applied to the sample. Housekeeping genes that are constantly
expressed in one cell type do not need to be constantly expressed in another. Hence,
it may be difficult to use such an approach if many different cell types and stress
conditions are used in the same experiment.

Spiking controls are a better alternative. These are spots with a probe sequence,
which is dissimilar to any naturally occurring cDNA sequence in the organism. This
can be achieved by selecting cDNA from another organism (or by using specifically
designed oligonucleotides). The complementary strands of these probes are mixed
with the target samples such that the abundance is fixed. The intensity and log2-
ratio of the spiking controls is predetermined in other words. Spiking controls have
been used by several authors [46, 153].

Notice that the normalization techniques described above can also be used with
both housekeeping genes and spiking controls. In this case, spots corresponding to
the housekeeping gene or the controls are used in the normalization. Furthermore,
the spiking control can also be used for assessing the quality of the normalization
techniques when other assumptions are used.

3.5 Cluster Analysis

After preprocessing, a set of microarrays can be analyzed with a data mining tool.
Cluster analysis is the most popular method in microarray analysis and has been used
in many studies. This is an exploratory technique that discovers groups of objects
in a data set. The groups are formed on the basis of similarities in the objects and
are often called clusters (cf. the name of the method). A clustering algorithm will
typically start with a certain number of groups and try to place the objects into
these groups such that some criterion is minimized. Alternatively, it may discover a
hierarchy of groups (i.e., a taxonomy). In this case, each single object forms a group

URN:NBN:no-7286



36 CHAPTER 3. MICROARRAY ANALYSIS

at the bottom of the hierarchy, and the groups higher up in the hierarchy are formed
by merging two or more groups from a lower level.

There are many different clustering methods and several of these have been applied
to microarrays. Eisen et al. [48] used Hierarchical Clustering (e.g. [164, 165]). A
particular feature of their approach is the way the clustering is visualized. They
accompany the dendrogram made by a hierarchical cluster with a so-called heat map
with the color intensity scaled according to the ratios. Negative ratios are displayed
as green and positive ratios as red. Tamayo et al. [175] applied Self Organizing Maps
[86] to microarray data. Tibshirani et al. [177] compared several different clustering
methods including K-means [97, 105]. However, hierarchical clustering is by far the
most widely used technique in microarray studies.

Two different problems are considered with cluster analysis on microarrays; either
genes or samples are clustered. In the first case, groups of similarly expressed genes are
found. In the second case, groups of similar samples (or test conditions) are discovered.
In both situations, one cDNA microarray is prepared for each test condition, and a
test sample is hybridized together with a reference sample. The reference sample must
be biologically equivalent for all microarrays. This can be achieved by using the same
sample on all microarrays or by using biologically similar material taken from different
individuals. One example of the last case are cancer studies where a tumor sample
and a non-cancerous sample are taken from each patient and the pair of samples is
hybridized together (see e.g.,[92, 103]) on an array. The non-cancerous samples are
supposed to be equivalent. Any differences in these samples are patient specific and
can be ignored.

The data given to a clustering algorithm are often represented in a table or a
matrix where the objects to be clustered correspond to the rows and the attributes
of these objects correspond to the columns. We may represent the log2-ratio in this
manner. When genes are clustered, the test conditions are considered as attributes of
the genes, and each row in the table describes a gene, and each column corresponds
to a test condition. When the test samples are clustered, the matrix is transposed,
and the genes are used as attributes (see Figure 3.4).

3.5.1 Clustering of genes

As mentioned in Section 2.3, transcription of genes is regulated by transcription factors
that bind to the binding sites in the promoter region of the genes. Genes with the same
binding sites will be controlled by the same transcription factor, and the expression
of them will often be similar. However, there may be several binding sites in the
promoter region, and genes may share some, but not all binding sites. The expression
may therefore be different. One often distinguishes between co-expressed genes, which
have similar expression profiles and co-regulated genes, which are regulated by the
same transcription factors or by the same biological stimuli.

Clustering has been used for discovering co-expressed genes. The response in cells
to some external stimulus is considered in this type of study. It is usually measured as
time sequence where each test condition corresponds to a time point. One example is
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Figure 3.4: Two ways to cluster microarray data

Iyer et al. [76]. They examined the response in human fibroblast cells to fetal bovine
serum when this serum was reapplied after it had been removed for a period of 48
hours. They identified 10 major clusters with co-expressed genes. However, the test
conditions do not need to be time points. They can also be the responses to several
experimental conditions. Several different time sequences can be also considered in
the same clustering. Spellman et al. [169], for example, studied several time responses
in yeast which were triggered by different conditions.

The co-expressed gene clusters can be further analyzed in two different ways:

• Identification of regulatory binding sites: Co-expressed genes may be co-
regulated and may have a common transcription factor binding site. However,
these binding sites are often unknown. One may try to locate a site by searching
through the promoter regions of these genes and identify a sequence that is
similar in all promoters.

One of the first studies of this kind was made by Tavazoie et al. [176]. They
used K-means to cluster the data. They then searched with a sequence analysis
program for common sequence motifs in the promoter regions of the genes in
each cluster. A similar study was made by Vilo et al. [184]. They used another
sequence algorithm and focused more on the validation of the discovered motifs.
Two scores were applied to select the motifs: A silhouette value and a pattern
score. The silhouette value quantified the quality of an expression cluster. The
pattern score was defined for a pattern π and an expression cluster C as the
inverse of the probability that π would occur in the promoter regions of the genes
within C. A simulation with random data was used for setting the thresholds
for the selection of patterns. Similar patterns were also post-processed with
clustering.
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• Assignment of functional annotations: The genes have been identified in
many organisms, but they have not been characterized. For example, Gene
Ontology database [29] contained (as of 07 Dec 2001) a process annotation,
i.e., a description of biological objective, for only 2639 genes in Saccharomyces
cerevisiae (yeast) while there are approximately 6000 genes in this genome [110].

A very plausible reason for the similar behavior of co-expressed genes is that
they take part in the same cellular process. The simultaneous behavior occurs
as a result of the regulation of the process. The need for the gene products
is increased or decreased as the activity of the process changes. Co-expressed
genes identified by hierarchical clustering have also been shown to participate in
the same process. (e.g., [48]). Consequently, if we assume that this hypothesis
holds, we may predict the function of an uncharacterized gene by looking at the
characterized genes occurring in same cluster.

This assumption has been used in many studies for suggesting the function of
uncharacterized genes — or at least for proposing hypotheses about the function
(see e.g., [26, 76]). In Iyer et al. [76], data were hierarchically clustered, and gene
clusters were selected visually by inspecting the dendrogram and the heat map.
They hypothesized that the uncharacterized genes in several of the clusters had
the same function as the characterized genes in these clusters. Cho et al. [25]
also used hierarchical clustering, but applied a binomial test to select clusters
with a high proportion of one particular function.

Walker et al. [187] made a similar study, but did not use clustering. Furthermore,
they did not assign a functional description to the genes, but they looked instead
for genes that were involved in prostate cancer. Some of the genes were already
known to be involved in this disease, and if one of these known genes and
another gene had similar expression profiles, this other gene was also assumed
to be associated with the disease. The similarity of the expression profile was
determined with a statistical test that tested for independence between pairs of
genes. A gene was assumed to be involved if null hypothesis of this test was
rejected (i.e., the genes were not independent).

However, there are some difficulties with this approach to predict gene function.
These have been recognized by Shatkay et al. [156] who point out that:

1. Genes may have more than one function such that a strict assignment to
one cluster may be inappropriate,

2. Functionally related genes may be anti-co-regulated in their expression pro-
files such they that end up in different clusters, and

3. Co-expressed genes may not share the same function.

Hence, the assumption that co-expressed genes may share function may not
hold, and even if it holds, clustering may not be the best method to predict the
function.
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3.5.2 Clustering of samples

Tumors are not identical – even when they occur in the same organ, and patients may
need different treatments depending on their particular subtype of cancer. Identifi-
cation of tumor subgroups is therefore important for diagnosis and design of medical
treatments.

Most medical classification systems for tumors are currently based on clinical ob-
servations and the microscopical appearance of the tumors. However, these observa-
tions are not informative with regard to the molecular characteristics of the cancer.
This is unfortunate as the mechanism underlying the tumorgenic process is found on
the molecular level. Mutations in the DNA sequence may result in changes in gene
expression [3, 139], and these changes may disrupt the normal cell processes such that
the cell becomes cancerous. Since microarrays can measure such changes, they may
reveal, which kinds of defects there may be and provide insight into what goes wrong
in a cancerous cell. In particular, they may reveal the mutagenetic variations that
constitute the basis for different tumor subtypes.

Several studies have clustered tumor samples derived from various patients and
measured with microarrays. This includes, amongst others, studies of B-cell lym-
phoma [2], breast cancer [166, 137], and cutaneous malignant melanoma [12].

However, while clustering of genes is a more or less “solved” problem, clustering
of samples is more difficult. This is due to the curse of dimensionality – the data
become dramatically sparser in multidimensional space as the number of dimensions
increases. The production of microarrays is still quite expensive, and the number of
samples that are affordable to analyze in a study is limited. A study with 50-100
samples is considered very large3. The number of genes, which are the attributes (or
dimensions) in this kind of study, will be much larger than the number of samples.
The problem is therefore under-determined. Numerous clusterings may be discovered
in the data. In particular, different subsets of the genes may yield quite different
groups. The relevant genes must therefore be selected before the cluster analysis such
that the “right” clustering is obtained.

Unfortunately, we do not know the “right” clustering (this is what we seek in the
first place), and the discovered clustering depends on the selected genes. So there is no
external criterion for selecting the relevant genes. Still, one may assume that the major
variation in the data yields the right clustering and find the genes that contribute the
most to this variation. Such genes can be found with principle component analysis
(PCA) (also known as singular value decomposition). This technique has been applied
to microarray data by [177, 73]. Alternatively, one may try to fit data into a low-
dimensional space with either PCA or multidimensional scaling such as Bittner et al.
[12].

However, these may not yield the best results and some new methods have been
introduced. Gene Shaving [71, 70] is a novel technique, which selects subsets of genes.
It sorts the genes according to the first principle component of the samples (the genes

3Number of microarrays that were used in the mentioned studies are: 128 microarrays for B-cell
lymphoma study [2], 78 for breast cancer [166, 137], and 31 for cutaneous malignant melanoma [12].
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are considered to be the dimensions) and removes (shaves off) the genes with the least
contribution until a subset with an optimal size is found. This size is determined with
a GAP-statistic. The data is orthogonalized and the procedure is repeated. Several
orthogonal subsets are found where each subset yields a different clustering of the
samples. Another approach has been introduced by Xing and Karp [194]. They use
a mixture model and make several assumptions about the gene behavior to select the
genes.

3.6 Supervised learning

The objective of supervised learning is to find a function that maps an object to one of
several classes based on some observed attributes of the object. A supervised learning
algorithm takes a set of objects with class labels as training data and finds a function
that maps each of the objects to the correct class. The discovered function can later
be used to classify new objects without any class label. Supervised learning is also
known as classification since objects are mapped to discrete classes. Sometimes the
class labels are real numbers. In this case, the problem of finding a function is called
regression.

There are many different supervised methods that have been applied to microar-
rays. Support vector machines [181] have been applied by Furey et al. [58] and Brown
et al. [20, 19]. This method finds a plane that separates maximally between two
classes. A class prediction for an object is then made according to which side of the
plane the object is located. Dudiot et al. [39] use discriminant analysis (e.g. [78]),
which also finds a separating plane. They also used K-nearest neighbor (e.g., [118]),
which makes a prediction based on the classes of the K most similar objects and
decision trees [141, 16], which builds a tree that is used for prediction. In the last
case, a class is assigned to an object by traversing the tree from the root down to a
leaf class where a prediction is made. At each internal node an attribute is examined
and one of the child nodes is visited according the value, which the object has for this
attribute. Rule learning methods such as rough sets [134] have been used by Hvidsten
et al. [75]. Such methods find a set of rules that are used for predicting the class of
an object.

Classification and clustering are closely related. Clustering may be used for clas-
sification. In this case, the class of an object is predicted on basis of the cluster, in
which the object occurs. For example, we may assume that an object belongs to the
most frequently observed class in its cluster.

However, there are important differences. Clustering attempts to find groups of
similar objects, but the groups may not be suitable for predicting the class. Super-
vised learning on the other hand tries to discriminate between the instances from
different classes in order to predict the class of an object. It makes a model such as a
discriminating plane or a set of rules, which is optimized for separating between the
instances of dissimilar classes. Thus a supervised method is more appropriate for this
type of problem, and will usually have better prediction performance than a clustering
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Figure 3.5: Two ways to classify microarray data

method.

Moreover, the criticism of Shatkay et al. (which is mentioned on page 38) is less
relevant to supervised methods. A supervised method can handle anti-co-regulated
behavior and predict several classes at once such that all functional categories of a
gene are predicted (see e.g., [75]).

There are two types of problems that can be addressed by supervised learning.
Either genes or samples can be classified just as in clustering. The difference is mainly
that we now have an extra class attribute as shown in Figure 3.5.

3.6.1 Learning to classify genes

There are several studies on predicting gene function where supervised methods have
been used. Brown et al. [20, 19] applied support vector machines (SVM) to the data
from Eisen et al. [48], and predicted 5 functional categories from the MIPS4 ontol-
ogy [57]. They also compared the performance of SVMs to several other supervised
methods and showed that SVMs outperformed the other methods on this data set.

More recently, Hvidsten et al. [75] used Rough Sets [134] to develop classifiers
for 16 functional categories from the Gene Ontology (GO) consortium’s biological
process ontology [29]. Uncharacterized genes were then classified according to these
categories. The processes were selected such that a classifier was built for a process if
at least 10 genes were annotated with this process or one of the subprocesses.

Pavlidis et al. [132] continued the work of Brown et al. [20, 19]. They used both
gene expression data and phylogenetic profiles, and studied three different methods
for combining these different types of data in an SVM:

4MIPS is an abbreviation for “Munich Information center for Protein Sequences”.
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1. The data set is either initially merged, and an SVM is trained on the merged
data set.

2. Separate kernel5 functions are used for each data set. The sum of these kernels
is then used in a single SVM.

3. An SVM is trained on each data set separately and the discriminating values
produced by the SVMs are added together.

The second approach yielded the best performance in their experiments.
Still, none of these studies attempted to induce a complete classifier. GO or MIPS

ontologies contain hundreds of classes, but only subsets of the classes were selected.
The ontologies also define relationships between the classes such that they have a
structure6. This structure was largely ignored. The classes were simply chosen so
that they were unrelated. However, no considerations were made to the structure in
the learning and the prediction phase, since the learning algorithms could not take
the structure into account.

Unfortunately, valuable information is lost when the ontological structure is not
considered, and this lost information may result in suboptimal predictions. New
learning algorithms that learn in the ontology are consequently needed. This problem
will be considered in Chapters 6-10.

3.6.2 Learning to classify samples

Discovery of tumor subtypes is important in cancer studies. However, it is equally
important to predict such subtypes from microarray samples so that this information
can be applied in the diagnosis of cancer patients.

In particular, the disease may manifest itself earlier at the molecular level than at
the clinical level. Prediction of tumor subtype and other clinical parameters from gene
expression data may therefore enable earlier detection and treatment of the disease.
This may again increase the survival rate. Moreover, the genes, whose expression levels
are associated with the tumor subtypes, are largely unknown. A better understanding
of the cancer could be achieved if these genes are identified.

These problems can be addressed by supervised learning by training a classifier
on the microarray samples. The class (or decision) attribute is in this case tumor
subtypes or other clinical parameters such as the survival time. By inspecting the

5A support vector machine finds a hyperplane that creates the largest margin between the objects
of two different classes. This means an SVM in its simplest form is limited to finding linear boundaries.
A kernel function is a similarity measure between two (information) vectors and provides a means to
escape this limitation. Such an function defines an implicit mapping from one feature space to another
feature space where the features in the new space may be non-linear functions of the features in the
original space. So, when a separate kernel function is used for each data set, a individual mapping
is created to for each set. However, only one hyperplane is found. For more information on SVMs,
see e.g., [33].

6The GO ontology forms a directed acyclic graph, and the MIPS ontology is a tree (See Chapter 6
for more details).

URN:NBN:no-7286



3.6. SUPERVISED LEARNING 43

classifier one may also determine the genes that have the most impact on a clinical
parameter.

Just as in cluster analysis of samples, the main problem in this type of study is
the curse of dimensionality. The number of samples is much smaller than the number
of genes. Hence, a feature selection method is required. The selection problem is
nevertheless easier than the corresponding problem in clustering since a reference
variable, the class attribute, is available. Feature selection for supervised learning has
also received a lot of attention in machine learning and pattern recognition. Some
surveys are [15, 34].

Golub et al. [60, 162] made the first classification study of tumors for microarrays.
They successfully discerned between two different types of leukemia. Initially a set of
significant genes was selected using a permutation test. The selected genes were then
used in a “weighted voting” algorithm introduced by Golub et al. Briefly, each gene
is used individually as a classifier. Given a new sample, each gene produces a vote in
favor of one class, and the weighted sum of votes is used for classifying the sample.
Note, however that the algorithm is not really novel, as pointed out by Dodoit et al.
[39]. It is merely an instance of the diagonal linear discriminant algorithm.

Several studies have compared the performance of various classification methods
in this problem domain. Ben-Dor et al. [10] tested K nearest neighbors (K-NN),
SVMs, boosting of decision stumps, and a clustering-based approach. They selected
genes according to a TNoM (Threshold Number Of Misclassification) score. They
found that the feature selection method improved the prediction accuracy. None of
the methods out-performed the rest on both data sets used in their study. The best
method depended on the data set.

Dudiot et al. [39] compared several linear discriminant methods, K-NN, decision
trees (CART), and bagging/boosting of decision trees. Gene selection was done ac-
cording to the ratio of between-class and within-class sums of squares for each gene.
They obtained good results for most of the methods with diagonal linear regression
and K-NN yielding the best results.

The Naive Bayes algorithm is applied by Keller et al. [82]. They proposed a
maximum likelihood score for selecting genes. The approach was compared to the
method of Golub et al. [60, 162] on several data sets.

Furey et al. [58] used an SVM and claimed that SVMs are less affected by the
curse of dimensionality. They demonstrated that feature selection does not yield
better results for SVMs on some data sets. However, this seems at least inconsistent
with the results of Ben-Dor et al., which used some of the same data sets and found
that the feature selection gave better results for SVMs.

Tree harvesting is a feature extraction procedure, which has been introduced by
Hastie et al. [69]. The genes are first clustered with hierarchical clustering, and the
mean log ratio within each cluster is found for each sample. The clusters are then
used as features in an iterative regression approach where one feature is added to the
model in each iteration. This approach can obviously be used with other learning
methods as well.

More information on supervised learning of microarray samples can also be found

URN:NBN:no-7286



44 CHAPTER 3. MICROARRAY ANALYSIS

in the book collection from CAMDA-2000 conference [93]. This collection contains
several papers on applying supervised learning methods to the data of Golub et al.
[60, 162].
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4.1 Introduction

This chapter gives an introduction to rough set theory (RST) [133, 134, 135] which
constitutes a foundation for the work that will be presented in the following chapters.
This introduction only describes the fundamental parts of RST. More specialized
methods that are often used in combination with RST (e.g., discretization) will be
introduced later when they are needed.

RST is a methodology for dealing with uncertainty in data, and it is most often
used for developing supervised learning approaches. As a methodology for developing
classifiers, RST has several appealing qualities:

• The classifier produced with RST consists of a set decision rules. These are
quite close to natural language and are easily interpreted by a user.

• Many supervised methods can only produce binary classifiers. Rough set theory,
on the other hand, can deal with classification problems with more than two
classes.

• RST handles inconsistencies in the training data. In particular, it can deal with
objects (e.g., genes) that are labeled with conflicting classes. Such inconsisten-
cies may occur as a result of noise in the data or by lack of information.

• In some classification problems, it may be necessary to predict more than one
class for each object. However, most supervised learning methods predict only
one class per object. RST methods, on the other hand, are well-suited for dealing
with such problems. In particular, its facilities for handling inconsistencies may
be used for multiple decision classes as well.

• Rough set based learning finds a minimal set of attributes for which a classifier
can be built. This allows the classifier to focus on attributes that are relevant for

45
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Lower approximation

Boundary region

Upper approximationor

Figure 4.1: A rough set. The figure shows the partition of elementary sets and the
contour of a set X . The lower approximation of X is display with dark gray, and
the boundary region with light gray. The upper approximation consists of lower
approximation and the boundary region.

the classifications problem and discard noisy, redundant and otherwise irrelevant
attributes. An RST classifier will therefore be less sensitive to such problems.

4.2 Rough sets: The idea

The main idea behind rough set theory is that the membership of some elements with
regard to a set may be uncertain such that the set can only be described by an approx-
imation. More precisely, RST assumes that there is a universe of objects and some
information associated with each object. The objects that cannot be told apart given
only the available information are called indiscernible. A set of indiscernible objects
is called an elementary set, and the elementary sets constitute the least granules that
can be distinguished with the available information. Using the elementary sets as
building blocks, one may estimate how a set of objects can be characterized in terms
of the available information. Since an elementary set may be both partially inside and
outside of this set, such a characterization may not be exact. Hence, a rough set is
given in terms of a lower approximation and an upper approximation (see Figure 4.1)
where the lower contains all elementary sets completely inside and the upper contains
all elementary sets partially or completely inside.

4.3 Information systems

Rough set theory is usually developed from an information system.

Definition 4.1 (Information system). The tuple A = 〈U, A〉 is an information
system if

1. U is a non-empty finite set of objects, called the universe, and
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Object 0H-15m 15m-30m 30m-1H 1H-2H 2H-4H

o1 up up up const const

o2 up up up down down

o3 down down down up up

o4 up up up down down

o5 down up up down up

o6 const const const down down

o7 down down down up up

o8 up down down down down

o9 const down down down down

o10 down up up up up

o11 down down up up up

Table 4.1: An information system A = 〈U, A〉. In this particular case, the objects in
U are genes, and the attributes in A describe the change in expression level between
two adjacent time points.

2. A is a set of attributes which describe the objects, and each attribute a in A is
a function a : U → Va where Va is the set of values that an object may take for
attribute a.

An information system is basically a table where each column corresponds to an
attribute and each row to an object. One example is shown in Table 4.1. The set
of attribute-value pairs that are associated with an object is called an information
vector.

Definition 4.2 (Information vector). Given an information system A = 〈U, A〉
and an object x ∈ U , the information vector is

InfA(x) = {〈a, a(x)〉 | a ∈ A}

The objects that have the same information vector are indiscernible. Such objects are
identified by an indiscernibility relation.

Definition 4.3 (Indiscernibility relation). Let A = 〈U, A〉 be an information sys-
tem. The indiscernibility relation is defined as

IND(A) = {〈x, y〉 ∈ U × U | InfA(x) = InfA(y)}
= {〈x, y〉 ∈ U × U | a(x) = a(y), for all a ∈ A}

The indiscernibility relation IND(A) is an equivalence relation and partitions the
universe into equivalence classes, which are called elementary sets in RST terminology.

Definition 4.4 (Elementary set). Let A = 〈U, A〉 be an information system. An
elementary set of x ∈ U is

[x]A = {y ∈ U | 〈x, y〉 ∈ IND(A)}
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The set of all elementary set ({[x]A | x ∈ U}), is called the quotient set and is denoted
as U/IND(A).

The definitions of the lower and the upper approximation of a set X are based on
the elementary sets. The lower approximation contains an object x if its elementary
set [x]A is a subset of X . The upper approximation contains an object x if the
intersection of its elementary set [x]A and X is non-empty (i.e., [x]A and X overlap
partially). It is therefore certain that the objects in the lower approximation are in
X . The objects in the upper approximation, on the other hand, may belong to X ,
but may also belong to the complement of U −X .

Definition 4.5 (Approximations). Given B ⊆ A where A = 〈U, A〉, the upper
and the lower approximations of a set X ⊆ U is given as follows:

• B-lower approximation: BX = {x | [x]B ⊆ X}

• B-upper approximation: BX = {x | [x]B ∩X 6= ∅}

Note BX is always a subset of BX . The set of objects that are in BX , but not in
BX , constitutes the boundary region

Definition 4.6 (Boundary region). Given B ⊆ A, the boundary region of X is
BNDB(X) = BX −BX .

If BX = BX (BNDB(X) = ∅), then X is defined exactly and is called crisp. Other-
wise, the set is called rough.

Example 4.1. Table 4.1 constitutes an information system A = 〈U, A〉 where U =
{o1, . . . , o11} and A = {0H-15m, 15m-30m, 30m-1H, 1H-2H, 2H-4H}. The indis-
cernibility relation, formed by A, has the following elementary sets:

U/IND(A) = {{o1}, {o2, o4}, {o3, o7}, {o5}, {o6}, {o8}, {o9}, {o10}, {o11}}

This means for instance that objects o2 and o4 are indiscernible, while object o5 can
be discerned from the rest.

If X = {o1, o2, o3}, then the lower and the upper approximations are AX = {o1}
and AX = {o1, o2, o3, o4, o7}, respectively. The boundary region BNDA(X) consists
consequently of {o2, o3, o4, o7}.

The upper and the lower approximations have several properties:

1. BX ⊆ X ⊆ BX

2. B∅ = B∅ = ∅, BU = BU = U

3. B(X ∪ Y ) = BX ∪ BY

4. B(X ∪ Y ) ⊇ BX ∪ BY

5. B(X ∩ Y ) = BX ∩ BY

6. B(X ∩ Y ) ⊆ BX ∩ BY
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7. X ⊆ Y implies BX ⊆ BY and BX ⊆ BY

8. B(−X) = −B(X), −X = U −X

9. B(−X) = −B(X)

10. B(BX) = B(BX) = BX

11. B(BX) = B(BX) = BX

An important issue in rough set theory is whether some of the attributes in an
information system are redundant and may be removed without reducing the dis-
cernibility of the objects. A minimal subset of attributes that maintains the original
indiscernibility relation is called a reduct.

Definition 4.7 (Reduct). A reduct is a minimal subset B ⊆ A such that IND(B) =
IND(A).

Example 4.2. The information system in Table 4.2 has one reduct B = {0H-15m,
15m-30m, 30m-1H, 1H-2H}. The attribute is 2H-4H thus redundant and may be re-
moved.

4.4 Decision systems

An information system treats all attributes similarly. In a classification problem,
however, the objects are labeled with decision classes which are to be predicted from
the other attributes. An information system is thus not directly applicable to such
problems, but may be extended to a decision system.

Definition 4.8 (Decision system). A decision system A = 〈U, A, d〉 is an informa-
tion system where

• U is the universe of objects,

• A is a set of conditional attributes, and

• d is a decision attribute, which does not occur in A. It is a function d : U → Vd

where Vd = {d1, . . . , dn} is the set of decision classes that may be assigned to
the objects.

For each decision class c ∈ Vd, we may create a set Xc = {x ∈ U | d(x) = c}
with all objects that belong to the class. The upper and the lower approximations
may be applied to these sets in order to determine whether the class of an object can
be predicted uniquely from the condition attributes. For example, the objects in the
lower approximation AXc belong all to class c and may be discerned from the objects
in U − Xc. The class of these objects can therefore be predicted uniquely from the
conditional attributes. The objects in the boundary region BNDA(Xc), on the other
hand, belong to several classes, and it is not possible to assign a unique decision class
to these objects.
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Object 0H-15m 15m-30m 30m-1H 1H-2H 2H-4H Process Name

o1 up up up const const cell proliferation
o2 up up up down down cell proliferation
o3 down down down up up cell proliferation
o4 up up up down down cell adhesion
o5 down up up down up cell adhesion
o6 const const const down down cell adhesion
o7 down down down up up cell growth & maintenance
o8 up down down down down cell growth & maintenance
o9 const down down down down intracellular protein traffic
o10 down up up up up transport
o11 down down up up up cytoplasmic transport

︸ ︷︷ ︸
A

︸ ︷︷ ︸
d

Table 4.2: A decision system A = 〈U, A, d〉. This table contains the same objects/-
genes and (conditional) attributes as Table 4.1. The only difference is the decision
attribute Process that describes the function of the genes.

The union of the lower approximations over all decision classes is called the positive
region.

Definition 4.9 (Positive region). Let A = 〈U, A, d〉 be a decision system, then the
positive region is POSA(d) =

⋃
c∈Vd

AXc where Xc = {x ∈ U | d(x) = c}.

A decision system is called consistent if POSA(d) = U , and in this case a unique
decision class may be predicted for every object. If POSA(d) 6= U , the decision system
is inconsistent.

Example 4.3. Table 4.2 is identical to the information system in Table 4.1 except
for the decision attribute Process. Xcell adhesion = {o4, o5, o6} is the set of objects
labeled with cell adhesion. The lower and the upper approximations of this set are
AXcell adhesion = {o5, o6} and AXcell adhesion = {o2, o4, o5, o6}. Hence, the class of o4

cannot be determined uniquely from the conditional attributes. The positive region
is POSA(Process) = {o1, o5, o6, o8, o9, o10, o11}, which obviously is only a subset of
U . Hence, the system is inconsistent.

One may also find reducts for decision systems. However, it is not necessary to
discern between objects that are labeled with the same classes in this case. So the
condition in Definition 4.7 may be relaxed such that reducts are found relative to the
decision attribute. A decision-relative reduct is defined as follows.

Definition 4.10 (Decision-relative reduct). Let A = 〈U, A, d〉 be a decision sys-
tem. A decision-relative reduct is a minimal subset B ⊆ A such that POSB(d) =
POSA(d).

However, this definition is quite weak. It requires that the decision classes of the
objects in POSA(d) must be determined uniquely from the attributes in B. So, t
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Object a b d

x1 1 1 d1

x2 2 1 d2

x3 3 2 d1

x4 3 2 d3

x5 3 3 d2

x6 3 3 d3

Elementary set Classes of [x]A Classes of [x]B

x1 d1 d1

x2 d2 d2

x3 d1, d3 d1, d2, d3

x4 d1, d3 d1, d2, d3

x5 d2, d3 d1, d2, d3

x6 d2, d3 d1, d2, d3

Table 4.3: The decision system in Example 4.4. The first subtable presents the de-
cision system A = 〈U, A, d〉. The second subtable provides the classes that will be
predicted for an object when attributes in A = {a, b} or attributes in B = {a} are
used. For each object x, the table lists the classes of the objects in [x]C (where C = A
or C = B). Note that this set of classes is same as the generalized decision ∂C(x).

is sufficient if the decision system is consistent. However, it does not guarantee that
objects in the boundary region are not assigned more classes when the decision system
is inconsistent.

Example 4.4. Consider the decision system in Table 4.3. The indiscernibility rela-
tion on A = {a, b} partitions the universe into the following elementary sets:

U/IND(A) = {{x1}, {x2}, {x3, x4}, {x5, x6}}

The objects in the last two elementary sets have different classes, so that they are
not in the positive region. Hence, the positive region POSA(d) is equal to {x1, x2}.
B = {a} is subset of A, and the indiscernibility relation IND(B) defines the following
partition:

U/IND(B) = {{x1}, {x2}, {x3, x4, x5, x6}}
This means that that the positive region POSB(d) is also {x1, x2}. So, B is a decision-
relative reduct of A (since POSB(d) = POSA(d)). However, objects x3 and x4 would
only be assigned to d1 and d3 with A (See the second subtable of Table 4.3). Objects
x5 and x6 would similarly be assigned just to d2 and d3. With B, on the other hand,
these objects are assigned to all of the classes (d1, d2, d3). Hence, the reduct B will
introduce more classes for the objects in the boundary region.

This problem may be corrected by creating a new decision system A∗ = 〈U, A, ∂A〉
with a generalized decision attribute and then find a decision-relative reduct on this
system.

Definition 4.11 (Generalized decision). Let A = 〈U, A, d〉 be a decision system.
A generalized decision for object x ∈ U is ∂A(x) = {d(y) | y ∈ [x]A}.

The generalized decision attribute makes a new compound class for each object
x in the boundary region. This class consists of the original classes of all of objects
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in elementary set [x]A. Since the indiscernibility relation is an equivalence relation,
we have that [x]A = [y]A for all y ∈ [x]A. All objects in [x]A therefore have the
same generalized decision class. Hence, the new decision system A∗ = 〈U, A, ∂A〉
created from the generalized decision attribute is consistent such that every object in
U belongs to the positive region A∗.

Example 4.5. Objects o2, o3, o4, and o7 do not belong to the positive region in
Table 4.2. The generalized decisions for these objects are:

∂A(o2) = ∂A(o4)={cell proliferation, cell adhesion}
∂A(o3) = ∂A(o7)={cell proliferation, cell growth & maintenance}

The decision system 〈U, A, ∂A〉 created by this generalized decision has only one
decision-relative reduct:

B = {0H-15m, 15m-30m, 30m-1H, 1H-2H}
Note that this is the same reduct as we found in Example 4.2. So, in this particular
case, IND(B) = IND(A) (However, this is purely coincidental).

4.5 Decision rules

From a decision system, we can find decision rules and produce a classifier that can
classify new objects. Decision rules describe the concepts defined by the decision
classes using the conditional attributes and have the form

α→ β

where the antecedent α consists of descriptors such as 〈a, v〉 made from the attributes
in A, and the conclusion β consists of descriptors made from the decision attribute d.

Definition 4.12 (Rule syntax). Let A = 〈U, A, d〉 be a decision system. The lan-
guage of decision rules L(A, {d}) consists of all formulae (α → β) where α ∈ L(A)
and β ∈ L({d}). A formula γ is in L(B) if:

1. γ = 〈a, v〉, a ∈ B, and v ∈ Va

2. γ = α ∧ β and α, β ∈ L(B)

3. γ = α ∨ β and α, β ∈ L(B)

4. γ = ¬α and α ∈ L(B)

Example 4.6. Consider the decision system in Table 4.3. Some of formulae that may
be constructed from this decision system are:

〈a, 1〉 ∧ 〈b, 1〉 〈a, 1〉 ∧ 〈b, 2〉
〈a, 1〉 ∨ 〈b, 1〉 ¬ 〈a, 1〉
¬ 〈a, 1〉 ∧ 〈b, 3〉 〈a, 1〉 ∧ 〈b, 1〉 → 〈d, d1〉
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A rule in L(A, d) has the following semantics with regard to the decision system.

Definition 4.13 (Rule semantics). Let A = 〈U, A, d〉 be a decision system. A
formula α in L(A, d) (or L(A) or L({d}) has the semantics [[α]]A which is defined
inductively as:

1. [[〈a, v〉]]A = {x ∈ U | a(x) = v}

2. [[α ∧ β]]A = [[α]]A ∩ [[β]]A

3. [[α ∨ β]]A = [[α]]A ∪ [[β]]A

4. [[¬α]]A = (U − [[α]]A)

5. [[α→ β]]A = (U − [[α]]A) ∪ [[β]]A

Example 4.7. Consider the decision system in Table 4.3 again. The semantics of
the formulae in Example 4.6 is:

[[〈a, 1〉 ∧ 〈b, 1〉]]A = {x1} [[〈a, 1〉 ∧ 〈b, 2〉]]A = ∅
[[〈a, 1〉 ∨ 〈b, 1〉]]A = {x1, x2} [[¬ 〈a, 1〉]]A = {x2, x3, x4, x5, x6}

[[¬ 〈a, 1〉 ∧ 〈b, 3〉]]A = {x5, x6} [[〈a, 1〉 ∧ 〈b, 1〉 → 〈d, d1〉]]A = U

An object x ∈ U satisfies a rule α → β if x ∈ [[α → β]]A and it satisfies the
antecedent of the rule if y ∈ [[α]]A. A rule covers all of the objects that satisfy its
antecedent, i.e., the objects in [[α]]A. We denote the objects covered by a set of rules
RS ⊆ L(A, d) by

CovA(RS) = {x ∈ U | x ∈ [[α]]A and (α→ β) ∈ RS}

The rules in RS that have a single descriptor with class c in their conclusions are
denoted as

RSc = {(α→ β) ∈ RS | β = 〈d, c〉}

The support of a rule is the number of objects that match the both the antecedent
and the conclusion. It is an estimate of the number of objects that is predicted
correctly by the rule.

Support(α→ β) = |[[α]]A ∩ [[β]]A|

If a rule has more than one descriptor in the conclusion, we may also consider the
support of the rule with respect to each class. The support is in this case defined as

Supportc(α→ β) = |[[α]]A ∩ [[〈d, c〉]]A|

where 〈d, c〉 is in the conclusion β.
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Example 4.8. Assume the decision system in Table 4.2 and consider the following
rules:

r1 = 〈0H-15m, up〉∧〈15m-30m, up〉∧〈30m-1H, up〉∧〈1H-2H, down〉→〈Process, cell prolif.〉
∨ 〈Process, cell adhesion〉

r2 = 〈0H-15m, up〉∧〈15m-30m, up〉 → 〈Process, cell prolif.〉

The semantics of the first rule with regard to the decision system in Table 4.2 is
[[r1]]A = U . Hence, all objects satisfy this rule. Rule r2, on the other hand, has
the semantics [[r2]]A = U − {o4} since object 4 satisfies the antecedent, but not the
conclusion of this rule. So the rule is not consistent with the decision system.

The coverage of the rules are CovA({r1}) = {o2, o4} and CovA({r2}) = {o1, o2,o4}.
Both rules have a support of two since

Support({r1}) = |{o2, o4}| = 2 and Support({r2}) = |{o1, o2}| = 2.

Since r1 has several descriptors in conclusion, we may also consider the support of
each class. In this case both have support of 1:

Supportcell prolif.({r1}) = |{o2}| = 1 and Supportcell adhesion({r1}) = |{o4}| = 1

4.6 Learning decision rules

Rules are found in two different ways in RST; either by finding reducts first and then
creating rules (with possibly several descriptors in the conclusion) from the reducts
or by finding two rule sets that cover the lower and the upper approximations of each
class.

4.6.1 The reduct approach

In the first approach pioneered by Skowron and his co-workers [158, 160], a new
decision system A∗ = 〈U, A, ∂A〉 is created with a generalized decision attribute as
explained in Section 4.4. Decision-relative reducts are then found from the new system
and rules are created from the reducts.

Finding a minimal reduct is unfortunately NP-hard [161]. So reducts are usually
found with by using some heuristic. Typically, a genetic algorithm (see e.g., [116])
is used. Such algorithms are based on an analogy with biological evolution. The al-
gorithm maintains a population (a set) of individuals where each individual contains
a chromosome that determines its properties. The population has a fixed size and
passes through generations such that the individuals in the population become grad-
ually more fit. In each generation some of the individuals are selected and allowed
to reproduce by combining their chromosomes. Some individuals are also removed in
order to make room for the new individuals. The probability that an individual will
reproduce or be removed from the population is related to its fitness. When a genetic
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algorithm is used for finding reducts, a chromosome represents a subset of attributes
in A. The fitness is based on the number of attributes in the chromosome and the
ability of these attributes to discern between the objects with different generalized
decisions. For more details, see Wroblewski [192] and Vinterbo and Øhrn [185].

An alternative to a genetic algorithm is Johnson’s greedy set cover algorithm [77].
This selects a set of attributes iteratively. In each iteration the attribute that discerns
between the largest number of objects with different generalized decision is selected
and added to the attribute set. The algorithm terminates when no more objects can
be discerned by the remaining attributes. For more details see [127]

When a reduct B has been found, a set of rules RSB can be created as follows:

AntB(x) =
∧

a∈B

〈a, a(x)〉

ConB(x) =
∨

c∈∂B(x)

〈d, c〉

RulB = {AntB(x) → ConB(x) | x ∈ U}

Example 4.9. In Example 4.5, we found the reduct B = {0H-15m, 15m-30m, 30m-1H,
1H-2H} for the decision system in Table 4.2. The following rules can be created from
this reduct:

1. 〈0H-15m, u〉∧〈15m-30m, u〉∧〈30m-1H, u〉∧〈1H-2H, c〉→〈Process, cell prolif.〉 (o1)
2. 〈0H-15m, u〉∧〈15m-30m, u〉∧〈30m-1H, u〉∧〈1H-2H, d〉→〈Process, cell prolif.〉

∨ 〈Process, cell adhesion〉 (o2 ,o4)
3. 〈0H-15m, d〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, u〉→〈Process, cell prolif.〉

∨ 〈Process, cell growth〉 (o3 ,o7)
4. 〈0H-15m, d〉∧〈15m-30m, u〉∧〈30m-1H, u〉∧〈1H-2H, d〉→〈Process, cell adhesion〉 (o5)
5. 〈0H-15m, c〉∧〈15m-30m, c〉∧〈30m-1H, c〉∧〈1H-2H, d〉→〈Process, cell adhesion〉 (o6)
6. 〈0H-15m, u〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, d〉→〈Process, cell growth〉 (o8)
7. 〈0H-15m, c〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, d〉→〈Process, intra. p. traf.〉 (o9)
8. 〈0H-15m, d〉∧〈15m-30m, u〉∧〈30m-1H, u〉∧〈1H-2H, u〉→〈Process, transport〉 (o10)
9. 〈0H-15m, d〉∧〈15m-30m, d〉∧〈30m-1H, u〉∧〈1H-2H, u〉→〈Process, cyto. transp.〉 (o11)

The values up, down, and const are represented here as u, d, and c, respectively. The
objects that are covered by each rule are shown in parentheses.

If more than one reduct is found, we may create a rule set for each reduct. Each
rule set may be used as a classifier on its own. However, a more accurate classifier
can usually be obtained by combining the rules obtained from each reduct.

4.6.2 The covering approach

In the second approach, which is used in the LERS system [64, 65], a set of certain
rules CRS and a set of possible rules PRS are found. These rules have only one
descriptor in the conclusion and are created independently for each decision class c.
For each class c the certain rules CRSc, which predict c, cover only objects in lower
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approximation such that CovA(CRSc) = AXc. Hence, the rules only predict the
decision class when an object certainly belongs to the class. The possible rules cover
all objects in the upper approximation such that CovA(PRSc) = AXc for each class
c where PRSc denotes the possible rules predicting c. Thus an object may satisfy
antecedent of several rules at once leading to several class predictions.

The rules are found with a covering algorithm (also known as a separate-and-
conquer algorithm [59]) in this approach. Such an algorithm creates one rule at the
time by searching through a hypothesis space consisting of conjunctions of descriptors.
When a rule is found, the objects covered by it are removed and if not all objects have
been covered yet, the algorithm continues searching for another rule. One example of
this kind of algorithm is given in Section 8.5.1. Certain rules are created with it by
setting the positive set P to AXc and the negative set N to U−AXc (γ = 1). Possible
rules are similarly found with P = AXc and N = U −AXc. Note that the algorithm
used in the LERS system differs slightly from the one in Section 8.5.1. However, the
difference is not important here. For the full details see [65].

Example 4.10. We may create the following certain rules from the decision system
in Table 4.2:

1. 〈1H-2H, const〉 →〈Process, cell adhesion〉 (o1)
2. 〈30m-1H, up〉∧〈1H-2H, down〉∧〈2H-4H, up〉 →〈Process, cell adhesion〉 (o5)
3. 〈0H-15m, const〉∧〈15m-30m, const〉 →〈Process, cell adhesion〉 (o6)
4. 〈0H-15m, up〉∧〈15m-30m, down〉 →〈Process, cell growth〉 (o8)
5. 〈0H-15m, const〉∧〈15m-30m, down)〉 →〈Process, intra. p. traffic〉 (o9)
6. 〈15m-30m, up〉∧〈30m-1H, up〉∧〈1H-2H, up〉 →〈Process, transport〉 (o10)
7. 〈15m-30m, down〉∧〈30m-1H, up〉∧〈1H-2H, up〉→〈Process, cytop. transport〉 (o11)

Example 4.11. The following possible rules can be found from the decision system
in Table 4.2:

1. 〈0H-15m, up〉∧〈15m-30m, up〉 →〈Process, cell proliferation〉 (o1,o2,o4)
2. 〈0H-15m, down〉∧〈15m-30m, down〉 →〈Process, cell proliferation〉 (o3,o7)
3. 〈30m-1H, up〉∧〈1H-2H, down〉 →〈Process, cell adhesion〉 (o4,o5)
4. 〈0H-15m, const〉∧〈15m-30m, const〉 →〈Process, cell adhesion〉 (o6)
5. 〈0H-15m, down〉∧〈15m-30m, down〉 →〈Process, cell growth〉 (o3,o7)
6. 〈0H-15m, up〉∧〈15m-30m, down〉 →〈Process, cell growth〉 (o8)
7. 〈0H-15m, const〉∧〈15m-30m, down)〉 →〈Process, intra. p. traffic〉 (o9)
8. 〈15m-30m, up〉∧〈30m-1H, up〉∧〈1H-2H, up〉 →〈Process, transport〉 (o10)
9. 〈15m-30m, down〉∧〈30m-1H, up〉∧〈1H-2H, up〉→〈Process, cytop. transport〉 (o11)

Note that finding certain rules is not strictly necessary. It is sufficient to find only
possible rules since the possible rules PRS cover all objects that that are covered
by the certain rules CRS. Moreover, the objects that are covered by CRS will only
be covered by a single rule in PRS such that only one class is predicted for these
objects. To see this, consider an arbitrary class c in Vd. The difference between the
two is that the possible rules cover the objects in the boundary region of Xc while
the certain rules do not. However, neither the certain nor the possible rules cover
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the negative region U − AXc. This region (U − AXc) is a superset of the union of
the lower approximations of the other decision classes (

⋃
d∈Vd−{c} AXd). The possible

rules PRSc will therefore not cover objects that certainly belong to the other classes,
and as this holds for any c, the objects in the positive region will only be assigned a
unique class. This is demonstrated in Example 4.11 where, for instance, o1 satisfies
the antecedent of rule 1, o5 satisfies the antecedent of rule 3, o6 satisfies the antecedent
of rule 4, etc.

4.7 Prediction

When a set of rules RS has be learned, it may be used as a classifier for predicting
the class of previously unseen objects. However, the rules may have a conflicting
conclusion. This happens with possible rules and with the rules that are created from
a generalized decision and have a disjunctive conclusion. This occurs also when an
ensemble of rule sets is used together as single classifier where each rule set is created
from a different reduct. In this case, the rules originating from the different reducts
may have different conclusions.

Voting is a procedure for resolving such conflicts. For an object x, the prediction
of the class can be made in the following manner:

1. The set of rules RS(x) that covers x is determined.

RS(x) = {(α→ β) ∈ RS | x ∈ [[α]]A}

2. If RS(x) = ∅, no classification can be made. In this case, different actions may
be taken. One possibility is to predict the most frequent class in the training
data. Another is to predict a predetermined fallback class set by the user. Such
actions are typically specified through parameters set by the user.

3. The certainty of each class in Vd is computed and the class with the largest
certainty is chosen. The certainty is computed as follows:

(a) Each rule is allowed to cast a number of votes in favor of the class in
its conclusion. This number is typically equal to the support of the rule
defined as:

votes(α→ β) = supportc(α→ β)

If a rule has more than one descriptor in the conclusion, we consider the
support of each class separately.

(b) The total number of votes votes(c) for each class c is determined:

votes(c) =
∑

r∈RSc(x)

votesc(r)

where RSc(x) = {(α→ β) ∈ RS(x) | β = 〈d, c〉}
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(c) Certainty of class c is then computed as:

certainty(c, x) =
votes(c)∑

e∈Vd
votes(e)

Note that the certainty(c, x) is an approximation of the probability P (c|x).

Example 4.12. Assume that the rules in Example 4.11 are applied for predicting
the class of object x, which has the following information vector.

InfA(x) = { 〈0H-15m,up〉 , 〈15m-30m,up〉 , 〈30m-1H,up〉 ,
〈1H-2H,up〉 , 〈2H-4H,down〉}

Only two rules cover this object. These are rules 1 and 8. Unfortunately, the
conclusions of these rules are different so that two different classes are predicted. There
is consequently a conflict that needs to be resolved by voting procedure described
above.

The voting procedure will proceed as follows: Rule 1 has a support of 2 since
the objects o1 and o2 in Table 4.2 match both the antecedent and the conclusion.
The support of rule 8 is 1 since only object o10 satisfies both the antecedent and the
conclusion. This means that

votes(cell proliferation) = 2

votes(transport) =1

since there are no other rules that cover x. The certainty of these two classes is:

certainty(cell prolif., x) =
votes(cell prolif.)

votes(transport) + votes(cell prolif.)
=

2

3

certainty(transport, x) =
votes(transport)

votes(transport) + votes(cell prolif.)
=

1

3

Hence, cell proliferation has the largest certainty, and it is therefore predicted.

4.8 The ROSETTA system

The reduct approach, which was described in Section 4.6.1, has been implemented in
a system called Rosetta [126, 88]. Rosetta is a rough set toolbox for analysis of
data and provides many tools for creating rough set classifiers. It has been applied on
a wide range of domains and obtained a large body of users. By April, 2003, it had
been downloaded approximately 4700 times since its first release in summer 1997.
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Rosetta runs under MS Windows and provides both a user-friendly graphical
user interface (GUI) and a command-line interface. The system can also be compiled
and run under UNIX. However, only the command-line interface is available in this
case.

The system supports most parts of the KDD-process:

• It provides several facilities for importing and selecting data. In particular, it
has an ODBC-interface (Open Database Connectivity) which allows the system
to connect to and extract data from various database systems.

• It offers some tools for preprocessing. Missing values in data set can be “re-
paired” with a completion algorithm (also known as an imputation algorithm).
Such an algorithm examines a decision system, and if an object is missing a
value for an attribute, it attempts to predict the missing value and assigns the
predicted value to the object. Rosetta has several different completion algo-
rithms

Rough set methods can only handle discrete values. Rosetta has therefore
several discretization algorithms that can convert real values into discrete values.

• Several algorithms for finding reducts have been implemented in Rosetta.
These include an exhaustive search algorithm, a genetic search algorithm, and
a greedy search algorithm (based Johnson’s greedy set cover). It has also an
algorithm for finding dynamic reducts [8, 7], and an algorithm for creating 1R
classifiers [72] (which consist of rules with only one descriptor in the antecedent).
An algorithm for generating rules from reducts is also provided.

• Prediction of classes is supported through the voting procedure in Section 4.7.
The algorithm implemented in Rosetta provides many options that may be
adjusted by the user.

• Rosetta supports some evaluation strategies. A classifier can be evaluated
by splitting the data set into two sets so that training is done on one set and
evaluation is performed on the other set. Evaluation can also be done with
leave-one-out or n-fold cross-validation. The system applies performance mea-
sures such as accuracy and AUC. (More details about these measures and the
evaluation strategies are given in Section 5.2.4).

In the next chapter, Rosetta is used to build classifiers for gastric tumors.
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Most of this chapter has been published in Midelfart et al. [114]. Some parts are also
presented in Nørsett et al. [124].

5.1 Introduction

As we discussed in Sections 3.5.2 and 3.6.2, classification of microarray samples (or
experiments) is important in diagnosis and treatment of cancer. Predictions based on
gene expression data may, in particular, determine tumor subtype and other clinical
parameters at an earlier stage than clinical examination. This may allow earlier
detection and treatment of the disease, which again may increase the survival rate.

It appears that although there is a general consensus that supervised learning is
an appropriate approach to diagnostic analysis of gene expression, there is no com-
prehensive methodology developed yet. We propose formulating this problem in the
framework of Rough Set Theory (RST) and introduce a general methodology based
on the rough set system Rosetta [126].

The methodology is shown in Figure 5.1. It contains several steps besides the
ones that usually occur in microarray analysis. After image analysis, filtering, and
normalization, a feature selection method is applied to the normalized data. This
identifies genes that discriminate significantly between the decision classes, and only
these genes are used in the further analysis.

Note that this step is required since the size of the universe and the number
of conditional attributes have wrong proportions. The cost of producing an array
is substantial even with microspotting. An array may cost 100–1, 000 US dollars.
At the same time, a microarray may hold 2, 000–40, 000 genes. Hence, the number
of microarrays (i.e., objects) will be much smaller than the number of genes (i.e.,
attributes) in this kind of study.

This means that one may find thousands of decision-relative reducts in the data.
However, many of these reducts will only be artifacts of the data and may not have
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Hs. Cluster NAME SYMBOL

Hs.291 glutamyl aminopeptidase ENPEP

Hs.823 hepsin (transmembrane protease, serine 1) HPN

Hs.74861 activated RNA polymerase II transcription cofactor 4 PC4

Hs.60478 ESTs, Moderately similar to protein HZF2 <Hs.60478>

Hs.284266 hypothetical protein MGC8471 MGC8471

Hs.96 phorbol-12-myristate-13-acetate-induced protein 1 PMAIP1

Hs.2025 transforming growth factor, beta 3 TGFB3
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<PMAIP1,[*, 0.036)> <PC4([-0.716,-0.073)> <Class,Y>

<PMAIP1,[*, 0.036)> <PC4([*,-0.716)> <Class,N>

Ù ®

Ù ®

Figure 5.1: Overview of analysis. The figure illustrate the analysis that is conducted
in this chapter. Compared to the microarray analysis process shown in Figure 3.1, the
data mining step has been extended by several substeps. These are feature selection,
which selects significant genes; discretization, which transforms the real-valued log2-
ratios in to discrete values; and learning, which finds a rule model.
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a satisfactory prediction performance, and generalizing ability. Their accuracy will
typically be very low. Finding reducts will also be very expensive in terms of com-
putation time. An exhaustive search is obviously impossible, but even a heuristic
search with a genetic algorithm is very time consuming with such a large number of
attributes. Therefore, it is necessary to select the genes that have the best ability to
discriminate between the classes and only use these genes in the learning step.

After the feature selection step, a decision system is constructed from the chosen
genes. The log2-transformed ratios are, however, real-valued, and a rough set based
system can only deal with discrete values. The values of the conditional attributes
are therefore discretized. The classifiers are then trained on the discretized data using
one of several rule learning algorithms, which are implemented in Rosetta.

The main results in this chapter are experimental. The utility of the approach is
demonstrated by applying it to a set of gastric tumors, which have been examined
with microarrays. A total of six different clinical parameters are predicted from this
set of microarrays. Moreover, the performance of the feature selection method is
studied. The efficacy of several learning and discretization methods implemented in
the Rosetta system are also examined. Their performance is compared to that of
linear and quadratic discrimination analysis.

The classifiers are also biologically validated. One of the best classifiers is selected
for each clinical parameter, and the connections between the genes used in these classi-
fiers and the parameters are compared to the established knowledge in the biomedical
literature.

5.2 Methods

Our learning problem is to predict the class of tumors examined with microarrays.
We may formalize this problem as a decision system A = 〈U, A ∪ {d}〉 where universe
U is a set of tumors/microarrays. The set A contains a conditional attribute for each
gene. The decision attribute d corresponds to a clinical parameter. Each attribute
a ∈ A ∪ {d} is a function a : U → Va. Va contains log2-transformed ratios for gene a.

In the next section, we present the feature selection method that is used for identi-
fication of differentially expressed genes. The discretization and learning methods that
are employed in our experiments are described next. We then explain the evaluation
methods that are applied for measuring the performance of the classifiers.

5.2.1 Feature selection

The clinical parameters in our study have only two classes each, and we will mainly
consider binary classification problems in this section. Let us call the two classes d0

and d1 such that Vd = {d0, d1}. Assume that there are nj objects with class dj ,
(j = 0, 1). Let Va,j,1, . . . , Va,j,nj

denote the values of attribute a for these objects.
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ComputePValue:
Input: Values Va,j,1, . . . , Va,j,nj

for each class dj (j = 0, 1) and attribute a.
Output: A p-value for attribute a.

1: Compute t(Va,0, Va,1) =
V a,1−V a,0√

s2
a,1/n1+s2

a,0/n0

2: Move the means of the distributions of Va0 and Va1 to 0

• Ṽa,0,i = Va,0,i − V a,0, for all j = 1, . . . , n0

• Ṽa,1,i = Va,1,i − V a,1, for all i = 1, . . . , n1

3: for b = 0 to B do
4: Draw na,0 values Ṽ b

a,0,1, . . . , Ṽ
b
a,0,n0

with replacement from Ṽa,0,1, . . . , Ṽa,0,n0

5: Draw na,1 values Ṽ b
a,1,1, . . . , Ṽ

b
a,1,n1

with replacement from Ṽa,1,1, . . . , Ṽa,1,n1

6: Compute t(Ṽ b
a,0, Ṽ

b
a,1)

7: end for

8: p-value =
|{b||t(eV b

a,0,eV b
a,1)|>|t(Va,0,Va,1)|}|

B

Algorithm 5.1: A bootstrap algorithm for computing p-values (from [44, chap. 16.4]).

The observed sample mean V a,j and variance s2
a,j are then

V a,j =
1

nj

nj∑

i=1

Va,j,i s2
a,j =

1

nj − 1

nj∑

i=1

(Va,j,i − V a,j)2 (5.1)

We select genes/attributes according to their individual ability to discriminate
between classes. For each attribute, the mean value for each class is computed, and
a statistical test is used to determine if these means are significantly different. We
simply test

H0 : µa,0 = µa,1 vs. H1 : µa,0 6= µa,1

where µa,0 is the mean of a for the objects labeled with class d0, and µa,1 is the mean
of a with regard to class d1. a is selected if the null hypothesis H0 is rejected. It is
well-known that this can be tested using the following t-statistic:

t(Va,0, Va,1) =
V a,1 − V a,0√

s2
a,1/na,1 + s2

a,0/na,0

(5.2)

which has an approximate t-distribution if the measured values are normally dis-
tributed (see e.g., [188]). However, the log2-ratios are often not normally distributed.
We therefore use a bootstrap method for computing the significance of each gene.
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Bootstrapping [44] is a resampling-based method, which can estimate the distribution
and the standard error of a statistic. New data sets are sampled from the original
data, and the statistic is computed for each data set. The computed values of the
statistic form the estimated distribution.

In our case, bootstrapping is used to estimate the p-value of each attribute. We
use the algorithm described in Algorithm 5.1, which is taken from [44, chap. 16]. The
t-statistic t(Va,0, Va,1) is first computed for the observed values of attribute a. The
observed values are then adjusted so that they agree with the null hypothesis. The
null hypothesis is µa,1 − µa,0 = 0, and the estimated distribution of the t-statistic
should thus have a mean at 0. However, the mean of the t-statistic computed from
the bootstrap samples will be t(Va,0, Va,1) as computed from the observed values if
the values are not adjusted. The distributions of Va,0 and Va,1 are therefore shifted
to the same mean (which is chosen as 0 in Algorithm 5.1) so that the distribution of

difference Ṽ a,1− Ṽ a,0 and hence the distribution of t(Ṽa,0, Ṽa,1) have the mean 0. After
adjusting the distributions, B bootstrap sets are created from the adjusted data. Each
bootstrap set b is created by drawing nj values with replacement from the Va,j-values
for each class j, and the t-statistic is computed from the drawn values. The p-value
is simply the number of bootstrap sets that have a t-statistic with a higher absolute
value than the observed t-statistic.

We select a set of significant attributes with p-values below a level α. This set may
still be quite large compared to the number of objects. Only the significant attributes
with the highest t-statistics are therefore used in the final decision system. This is
done by sorting the attributes by the t-statistic and selecting the k attributes with
the highest t-statistic.

Feature selection for multi-class problems can be treated in the same way. However,
the t-statistic is not directly applicable since it expects only two classes. There are
nevertheless several different tests that may be used in this case. One option is to test
each attribute with a one-way ANOVA test (e.g., [188]). In this case, an f-statistic
is used to test the null hypothesis that the classes have the same mean against the
hypothesis that at least two classes have different means. An alternative is to test
each attribute with the t-statistic, but to test only one class at the time. The pool of
the other classes is then considered as the other class so that the t-statistic becomes
applicable. The hypothesis test is, in this case, whether the mean of the class is
different from the mean of the pool of the other classes. Notice that the last option
corresponds quite well to decision rules. These also try to separate one class from the
rest of the classes. The t-statistic may thus be preferable even in multi-class problems.

5.2.2 Discretization

Microarray measurements are real numbers and have to be discretized before a learning
algorithm is applied to the filtered data set. In this study, we examine the performance
of several different discretization methods.

A discretization method finds a set of cuts that divide the range of an attribute a
into a set of intervals or bins. Let Ca = {ca

1 , . . . , c
a
i , . . . , ca

n} be such a set of cuts for
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attribute a where ca
1 < · · · < ca

i < · · · < ca
n. The bins are then defined as

U0 = {x ∈ U | a(x) < ca
1} (5.3)

Ui = {x ∈ U | ca
i ≤ a(x) < ca

i+1}, 1 ≤ i < n− 1 (5.4)

Un = {x ∈ U | ca
n ≤ a(x)} (5.5)

Frequency binning. The first method that we use is frequency binning. This is
an unsupervised method that divides the range into n intervals so that the frequency
of the objects is the same in each interval, i.e., |Ui| = |Uj | for all 0 ≤ i, j ≤ n− 1.

Naive discretization. A very simple supervised method sorts the values of an
attribute and defines a cut between of two consecutive values if they have different
decision classes. We call this method naive discretization. Formally, let va

1 < · · · <
va

j < · · · < va
m be the sorted values of attribute a, and let δa

j represent the decision
classes of va

i , i.e., δa
j = {d(x)|a(x) = va

j }. The Ca is defined as:

Ca =

{
va

j + va
j+1

2
δa
j 6= δa

j+1 and j = 1, . . . , (m− 1)

}
(5.6)

Entropy-based discretization. The naive method is sensitive to noise and may
create too many cuts. Fayyad and Irani’s discretization method [49] is more robust.
It makes cuts recursively and uses an entropy-based test to determine if a cut should
be made. In more details, the entropy of a set of objects U is

Ent(U) = −
l∑

i=1

P (di, U) log2(P (di, U)) (5.7)

where P (di, U) is the proportion of objects in U that have class di, i.e., P (di, U) =
|{x∈U |d(x)=di}|

|U | , and l is the number of decision classes in U , i.e., l = |{d(x) | x ∈ U}|.
The entropy gained by making a cut c is

Gain(a, c; U) = Ent(U)− |U0|
|U | Ent(U0) +

|U1|
|U | Ent(U1) (5.8)

where U0 = {x ∈ U | a(x) < c} and U1 = {x ∈ U | a(x) ≥ c}. A cut c is accepted if

Gain(a, c; U) >
log2(|U | − 1)

|U | +
log2(3l − 2)− (lEnt(U)− l0Ent(U0)− l1Ent(U1)

|U |
(5.9)

Boolean reasoning/rough set-based discretization. The methods that we
have discussed so far discretize only one attribute at time. They may therefore in-
troduce more cuts than are absolutely necessary for discerning between the decision
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classes. Nguyen and Skowron [121, 120, 122] have introduced a supervised method
that considers all of the attributes simultaneously and creates consequently fewer cuts.

Their method is developed with basis in rough sets methods and Boolean reason-
ing. Let L be the set of pairs of objects with different decision class, i.e., L = {〈x, y〉 ∈
U ×U | d(x) 6= d(y)}, and va

1 < · · · < va
j < · · · < va

ma
be the sorted values of attribute

a as before. The method selects a semi-minimal subset P of the set of all possible
cuts (over all attributes)

C =

{〈
a,

va
j + va

j+1

2

〉
a ∈ A and j = 1, . . . , (ma − 1)

}
(5.10)

such that for any pair 〈x, y〉 ∈ L there is some pair 〈a, ca
i 〉 ∈ P where ca

i separates
x and y (i.e. (a(x) < ca

i < a(y)) or (a(y) < ca
i < a(x))). P is found with a greedy

algorithm that picks cuts iteratively. In each iteration, the cut that discerns between
the largest number of object pairs in L is selected and added to P . The pairs that
are separated by this cut are then removed from L. The algorithm terminates when
L is empty.

Discriminant discretization. As a last alternative we use univariate discrimi-
nant analysis for discretization. This is really a classification method in itself. How-
ever, it may also be used as discretization method. Basically, we construct a bin for
each class. The values of an attribute a are then put into a bin according to the class
that would be predicted for the value.

Discriminant analysis is developed with basis in Bayesian decision theory. Accord-
ing to this theory the optimal choice when classifying an object is to assign the object
x to class d1 if

p(d1|a(x)) ≥ p(d0|a(x)) (5.11)

where p(di|a(x)) is the posterior probability. By applying Bayes’ theorem

p(di|a(x)) =
p(a(x)|di)p(di)

p(a(x))
(5.12)

we may obtain the following inequality from (5.11)

p(a(x)|d1)p(d1) ≥ p(a(x)|d0)p(d0) (5.13)

If we assume that a(x) is normally distributed given class di with mean µa,i and
variance σa,i, i.e.,

p(a(x)|di) =
1√

2πσa,i

e
−

(a(x)−µa,i)2

2σ2
a,i (5.14)

and that the variance is the same for each class, we may derive the following allocation
rule from (5.13):

Value a(x) should be assigned to the bin U1 for class d1 if

µa,1 − µa,0

σ2
a

a(x)− µ2
a,1 − µ2

a,0

2σ2
a

≥ v where v = ln
p(d0)

p(d1)
(5.15)
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and otherwise to U0. σ2
a is the pooled variance. This allocation rule is equivalent to

making a cut ca
1 :

ca
1 =

µa,1 + µa,0

2
+

σ2
a

µa,1 − µa,0
v (5.16)

U1 and U0 is then defined as U1 = {x ∈ U | a(x) ≥ ca
1} and U0 = {x ∈ U | a(x) < ca

1}.
Notice that if the prior distributions are equal, v = ln p(d0)/p(d1) becomes 0, and
the cut would be halfway between the two means. This corresponds quite well to the
t-statistic (in the feature selection method), which measures the distance between the
means of the two classes.

The allocation rule in (5.15) is known as the linear discriminant rule. If we assume
that variances of the classes are different, the quadratic discriminant rule follows from
(5.13). This rule assign a(x) to the bin U1 for class c1 if

−1

2

(
1

σ2
a,1

− 1

σ2
a,0

)
a(x)2 +

(
µa,1

σ2
a,1

− µa,0

σ2
a,0

)
a(x) − 1

2

(
µ2

a,1

σ2
a,1

− µ2
a,0

σ2
a,0

+ ln
σ2

a,1

σ2
a,0

)
≥ v

(5.17)
We use both the linear and the quadratic discriminant rule for discretization in our
study.

5.2.3 Learning algorithms

We train classifiers primarily with 3 different learning algorithms implemented in
Rosetta [126]. These methods create the following rule models:

• Genetic reducts [193]: This approach finds decision-relative reducts with a
genetic algorithm and was originally introduced by Wróblewski [192]. Rosetta

has two different versions of this algorithm: Wróblewski’s original implementa-
tion and an extended reimplementation by Vinterbo and Øhrn [185]. The latter
has more parameter options and is used in this study. Both versions can create
reducts for a full decision table or on an object-wise basis. In the latter case,
reducts and rules are found separately for each object in the decision system.
We use the object-wise option in our experiments since this usually gives the
best results, in our experience. Vinterbo and Øhrn’s implementation also has a
facility for specifying indiscernibility definition graphs, and this is used to define
a special indiscernibility relation in order to take undefined values into account:

IND(A) = {〈x, y〉 | for all a ∈ A (a(x) = a(y)) or (a(x) or a(y) is undefined)}

• Dynamic reducts [8, 7]: This is a resampling-based method, which selects the
most stable decision-relative reducts. A number of decision systems are ran-
domly sampled from the original decision system and decision-relative reducts
are computed from these decision systems. The decision-relative reducts that oc-
cur most frequently over these systems, are assumed to be more stable, and one
may choose to retain only these reducts. Rosetta provides an algorithm, which
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makes such filtering possible, but the dynamic reduct algorithm in Rosetta

makes no such filtering by itself. Hence, no filtering is used in our study.
We compute decision-relative reducts for each sampled decision system with
Wróblewski’s genetic algorithm.

• 1R classifier [72]: This method assumes that conditional attributes are inde-
pendent and creates very simple rules with only one descriptor (attribute-value
pair) in the antecedent. A classifier contains one rule for each conditional at-
tribute and each value of the attribute found in the decision system. Each rule
has a number of votes, and when an object is classified, the votes from all of the
matching rules are added together.

We compare these methods to diagonal linear and quadratic discrimination analy-
sis, which have been used by Dudiot et al. [39] to classify microarray data. An almost
identical method was also used by Golub et al. [60] for classification of bone marrow
and blood samples taken from acute leukemia patients and analyzed with microarrays.

Diagonal discrimination analysis assumes that there is no covariance between the
conditional attributes (such that the covariance matrix is a diagonal matrix). The
allocation rule for linear discriminant analysis appears by adding the left-hand side
of inequality (5.15) over all conditional attributes so that class d1 is predicted if

∑

a∈A

(
µa,1 − µa,0

σ2
a

a(x) −
µ2

a,1 − µ2
a,0

2σ2
a

)
≥ ln

p(d0)

p(d1)
(5.18)

Class d0 is predicted otherwise. The allocation rule of quadratic discriminant analysis
occurs similarly by adding the left-hand side of inequality (5.17) over all conditional
attributes.

5.2.4 Evaluation

The classifiers are tested with leave-one-out cross-validation. The whole development
process of the classifier is performed in each iteration of the cross-validation procedure.
The features are first selected from the training set and discretized. A classifier is then
trained on the resulting data set. Notice that the result would be too optimistic if
feature selection was run on the complete data set since the selected features would
depend on the test objects in this case (See [157] for a good discussion of this problem).

The performance of the classifiers is estimated with several different measures. In
the next section we report accuracy, sensitivity, specificity, and AUC. We state their
definition here for the sake of completeness. Let C(i, j) denote the number of objects
that have class di, but are predicted to dj . Hence,

C(i, j) =
∣∣∣{x ∈ U | d(x) = di and d̂(x) = dj}

∣∣∣

where d̂(x) is the class predicted by the classifier. Then accuracy, sensitivity and
specificity are defined as:
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Figure 5.2: ROC and AUC

• Accuracy =
P1

i=0 C(i,i)P
1
i=0

P
1
j=0 C(i,j)

• Sensitivity = C(1,1)
C(1,1)+C(1,0)

• Specificity = C(0,0)
C(0,0)+C(0,1)

The Receiver Operating Characteristic (ROC) curve [45, 173] is a graphical repre-
sentation of the discriminatory ability of the classifier. Many learning algorithms (e.g.,
neural networks) do not predict a class for an object directly, but output its degree
of certainty that the object belongs to class d1 instead. Class d1 is then predicted if
the certainty is greater or equal to a threshold τ . The ROC is a plot of sensitivity(τ)
vs. (1 − specificity(τ)) for varying values of this τ (τ ∈ [0, 1]). An illustration is
given in Figure 5.2. Rosetta computes its certainty by the voting scheme given in
Section 4.7.

The area under the ROC curve (AUC) is a measure of the performance of the
classifier. An important feature of the ROC curve and the AUC is that they are
independent of the class distributions and costs associated with incorrect predictions.
The accuracy, on the other hand, assumes that the cost of an incorrect prediction is
the same for all classes and that the classifier will be applied on instances with a class
distribution identical to the distribution in the testing set.

5.3 Data and preprocessing

Our method was applied to a data set of gastric carcinomas. Gastric cancer is the
second most frequent cause of cancer related deaths on a world-wide basis. The disease
is often detected at an advanced stage, and 5-year survival rate is between 10–20%.
There are presently no known genes that allow classification of gastric carcinoma with
respect to important clinicopathological parameters. Molecular classification of gastric
tumors is also important for developing new diagnostic and treatment procedures.
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Clinical parameter Classes (Distribution)
Laurén’s histopathological classification Diffuse (8) or Intestinal (9)
Localization of tumor Cardia (4) or Non-cardia (13)
Lymph node metastasis Yes (10) or No (7)
Penetration of the stomach wall Yes (13) or No (4)
Remote metastasis Yes (3) or No (10)
Serum gastrin High (5) or Normal (9)

Table 5.1: The clinical parameters for which classifiers were built. The number of
objects for each class is shown in parentheses.

5.3.1 Data material

A total of 17 gastric carcinomas were examined with microarrays. One microarray
was used for each tumor. Each array contained probes for 2,504 human genes, and
each probe was printed twice on each array. An mRNA mixture of 10 different cell
lines was used as reference on all microarrays. The reference sample was labeled with
the fluorescent dye Cy3, and the tumor samples were labeled with Cy5.

We developed classifiers for the clinical parameters shown in Table 5.1. Several of
these parameters are directly related to the extension of the disease. Penetration of
the stomach wall describes whether a tumor has penetrated to the external surface
of the stomach. Lymph node metastasis indicates whether a tumor has spread to
local lymph nodes, and remote metastasis denotes whether a tumor has spread to
remote organs. The other parameters examine the biological features of the tumor.
Laurén’s histopathological classification system describes the growth pattern of a tu-
mor. This system is based on microscopical inspection of tumors and correlates to
patient characteristics like age, sex, etc. Gastrin is a hormone-like substance that
stimulates gastric mucosal growth and can be measured in the serum of the patient.
The localization describes the site in stomach where the primary tumor is found. The
stomach is divided into 3 parts: cardia (the uppermost), corpus, and antral (the low-
est). The cardiac tumors are epidemiologically distinct from tumors in other parts.
Hence, we distinguish between cardia and non-cardia in this study.

5.3.2 Preprocessing of microarray measurements

The microarrays were scanned with a confocal laser scanner at two different wave-
lengths – one for each dye. The images produced by the scanner were analyzed using
Scanalytics’ MicroArray Suite, and globally normalized to balance the intensity be-
tween the two dyes.

Further analysis was done on the log2-transformed ratios. Scatterplots of the ratios
revealed a fish-tail-like distribution, indicating higher variance of log2-ratios for spots
with low average intensity. Unreliable spots were thus removed. Filtering was done
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individually for each array by selecting one of the following filtering criteria:

1. A spot was retained if the signal was greater than the corresponding background
signal for both dyes.

2. A spot was retained if the signal was greater than two times the corresponding
background signal for both dyes.

3. A spot was retained if the ratio quality of the spot reported by MicroArray Suite
was above a certain threshold.

The criterion for each array was determined by applying all criteria in turn to the
array. The criterion that retained the most spots and had a correlation coefficient
between the retained duplicate spots of at least 0.70, was chosen and used for filtering
of that array.

Since there were two spots for each gene probe on the microarrays, the log2-ratios
from these duplicates were averaged. A gene was considered undetectable and was
removed, if the ratios for both spots were missing on more than 50% of the microarrays.
This removal of undetectable genes was applied during cross-validation such that the
number of undetectable genes varied slightly for each iteration of this procedure.

5.4 Results

We examined the classification performance for each of the six clinical parameters. In
particular, the dependence of the classifiers on the feature selection method was deter-
mined. Moreover, we also sought to identify if some discretization or learning method
was better suited for this task. Finally, the best classifiers are then inspected, and
the genes used in them are compared to the established knowledge in the biomedical
literature. The results are reported in the following section.

5.4.1 The feature selection

We tried to build classifiers without any selection at first. However, the results were
quite poor. The AUC and accuracy were often well below 0.5. Hence, the classi-
fiers performed worse than random guesswork. The running time was quite long. It
took about 2.5 CPU hours on average to run leave-out-one cross-validation for the
genetic reduct algorithm on Laurén’s histopathological classification system using a
Sun Server with four 750 MHz UltraSPARC III CPUs and 8 GB internal memory.
Leave-out-one cross-validation for the 1R Classifier took about 1 CPU hour on av-
erage. The dynamic reduct algorithm was tried only once on the full data set and
used over 8 days to finish. Further experiments with this algorithm were consequently
made on smaller data sets. These usually contained 200 attributes or less since the
time consumption of the dynamic reduct algorithm was quite high for decision systems
with more attributes.
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Figure 5.3: AUC for Laurén’s classification system over different filtering levels.
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Figure 5.4: AUC for lymph node metastasis over different filtering levels.
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Figure 5.5: AUC for localization of the tumor over different filtering levels.
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Figure 5.6: AUC for remote metastasis over different filtering levels.
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We examined the performance of the discretization methods and the learning al-
gorithms on the Laurén parameter. The results are shown in Figure 5.3. The AUC
clearly decreased with increasing number of attributes. The best AUC was achieved
at significance level 0.01. At this level there were less than 10 significant attributes.
We did not achieve similar AUC-values at higher significance levels (where genes with
higher p-values were admitted), but found that the performance decreased when the
maximum number of attributes, which were permitted in the classifiers, was increased.
Nearly all combinations of the discretization and learning methods displayed a similar
behavior over different feature selection levels. In particular, the performance shown
by various discretization methods was very similar when the genetic reduct algorithm
or the 1R classifier was used. One exception was the Boolean reasoning discretization.
It had a more a U-shaped performance. Its AUC would first decrease to a minimum
and then increase when more attributes were permitted.

The results for lymph node metastasis, which are shown in Figure 5.4 were fairly
similar. The AUC fell with increasing number of attributes for most methods. How-
ever, more attributes were significant at the 0.01 level, and the best performance was
achieved with 20 attributes. The AUC decreased with more attributes, and it was
necessary to restrict the number of attributes in this case. Similar behavior was seen
at higher significance levels. Boolean reasoning discretization again showed a different
behavior than the rest. Its AUC performance was U-shaped or just increased as a
function of the number of attributes.

The training data had a skew class distribution for several of the parameters.
This included penetration of the gastric wall, localization of primary tumor, remote
metastasis, and serum gastrin as shown in Table 5.1. There were markedly fewer
objects for one of the classes. The classifiers that were trained for the parameters
had a tendency to predict only the majority class, and the performance depended to
a large extent on the discretization method that was used. Feature selection also had
less influence on some of the parameters.

One example is the classifiers that predicted the localization of primary tumor as
illustrated in Figure 5.5. The AUC value was clearly lower when all of the genes were
used, but there is no apparent trend showing a decreasing performance with increasing
significance level and increasing number of attributes as for Laurén and lymph node
metastasis. The only exception was the entropy-based discretization method, which
was very sensitive to the filtering level, but also yielded some of the best results.

For remote metastasis, there was some decrease in the AUC with an increasing
number of genes for most of the discretization methods (as shown in Figure 5.6). How-
ever, the AUC value was mostly below 0.5 so that overall performance was quite bad.
Satisfactory results were obtained with entropy-based discretization, but performance
of this method was odd and unexpected. The AUC value increased until 40–50 genes
were used at 0.1 significance level. This is a quite high significance level, and one
would assume that the genes with lower p-values would be better at discriminating
between the classes. One explanation may be that we had very little data for this pa-
rameter. It was known for only 13 of the tumors whether they had remote metastasis,
and only 3 tumors belonged to the minority class (Yes).
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The results for penetration of the stomach and serum gastrin were quite similar
to remote metastasis. However, the entropy-based method behaved to a larger extent
as expected and the AUC dropped when number of genes was increased. Only this
discretization method gave interesting results. The rest of the discretization methods
had AUC below 0.5.

5.4.2 The discretization methods

The discretization methods behaved clearly differently for the clinical parameters with
even class distribution and the parameters with skew class distribution. For Laurén
and lymph node metastasis, the different discretization methods (except for Boolean
reasoning) gave quite similar results, and their AUCs were correlated to the signif-
icance level and maximum number of genes permitted in the classifiers. Given the
small sample size, we have to be cautious when comparing the methods. Still, some
methods seemed to give better results than others. Good results were obtained with
frequency binning, but this depended on the number of bins. Three and four bins
usually worked better than only two bins, which produced some of the worst results.
The entropy-based and the naive method sometimes performed well. Linear discrimi-
nant discretization worked quite well with the genetic reduct algorithm, but otherwise
the results were not so good. Quadratic discriminant discretization performed worse
than the linear discriminant method and usually had one of the worst AUC values.
Boolean reasoning discretization had also a poor performance, and it had a tendency
to increase with increasing number of attributes.

For the parameters with skew class distribution, entropy-based discretization pro-
duced the best results. The AUC obtained with other methods was mostly unsat-
isfactory for penetration, remote metastasis, and serum gastrin. The classifiers for
localization behaved more like those of Laurén and lymph node metastasis. Most
discretization methods performed well. Entropy-based discretization gave the best
results for the 1R classifier and dynamic reducts, but even for this parameter the
method behaved quite differently from the rest. Linear discrimination and frequency
binning gave good results, while quadratic discrimination and naive discretization
were not very effective. Boolean reasoning discretization had the worst performance.

One might question the learnability of penetration, remote metastasis, and serum
gastrin, since only entropy-based discretization gave satisfactory results. In particular,
the results of remote metastasis and serum gastrin seem strange and weak. Localiza-
tion on the other hand seems more reliable, since several methods gave good results.
It might be that the performance of the entropy-based method is just an artifact of
the data, and the classes cannot really be separated using the available microarray
data. However, since this performance was systematic over four different parameters,
it appears to have some merit, and we conclude that the entropy-based method is
better for discerning between classes with skew distribution.

We compared the performance of discriminant discretization to discriminant anal-
ysis. The AUC of each rough set based learning method combined with discriminant
discretization was plotted together with AUC of discriminant analysis methods for
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Figure 5.7: Comparison of the discrimination-based discretization and discrimination analysis.
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4 of the parameters. This comparison can be found in Figure 5.7. The results for
penetration and serum gastrin were similar to the results of remote metastasis. Linear
discrimination usually gave better results than quadratic discrimination. This held
both when these methods were used for discretization and when they were applied
for classification. More importantly, the rough set based learning methods had usu-
ally better AUC than discrimination analysis, but were more sensitive to the filtering
level. This was particularly evident for Laurén, lymph node metastasis and localiza-
tion. The results for penetration, remote metastasis, and serum gastrin were more
complex, and discriminant analysis, in particular quadratic discrimination analysis,
had often higher AUC than the rough set based methods. However, the results for
these parameters were not satisfactory for any of the methods. The AUC was mostly
lower or equal to 0.5. Hence, it seems that better results could be obtained using dis-
criminant discretization together with one of the rough set based learning algorithms
than with discrimination analysis alone.

Discriminant discretization was tested with different values for v. We found that
setting v to 0 (equal class distribution) gave better results than setting this variable
according to the class distribution of the attribute after removal of missing values.
However, this did not have any effects for the discriminant analysis.

5.4.3 The learning methods

We compared the performance of the learning algorithm by plotting the AUC-value
of each algorithm over different filtering levels. For the algorithms that depended on
discretization, we selected the discretization method that gave highest AUC-value.
The results are given in Figures 5.8 and 5.9.

The performance of the 1R classifier and the dynamic reduct algorithm were quite
similar. They gave the best results for the first four parameters, but the genetic
reduct algorithm achieved the highest AUC value for penetration and serum gastrin.
Thus, there is no strong evidence that any of these methods may be better than the
others for learning classifiers from the microarray data. However, the 1R classifier
and dynamic reduct algorithm performed better than the genetic algorithm for more
parameters. The best results for Laurén and lymph node metastasis – the parameters
with even class distribution – were also obtained with these two algorithms. Therefore,
there is some indication that these two methods worked better than the genetic reduct
algorithm

One would expect the 1R classifier to work well since the feature selection method
picks attributes individually according to their ability to discriminate between the
classes. Each of the selected attributes may therefore be used separately as a classifier.
Moreover, it will often be advantageous to use several or all of the selected attributes
in a classifier such that a prediction is based on several attributes, since the values for
some attributes may be distorted by noise or may be missing.

This is exactly what the 1R classifier does. It assumes that the attributes are
independent and makes rules separately for each attribute selected in the feature
selection phase. When a prediction is made, one of the rules for each attribute will
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Figure 5.8: The performance of the each learning method using the discretization
method that achieved the best AUC-value.
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Figure 5.9: The performance of the each learning method using the discretization
method that achieved the best AUC-value.
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match the object, and the votes associated with these rules are added. A single
attribute has little significance on the result. What matters is the total contribution
of all of the attributes. Hence, it will be less affected by noise in some of the attributes.

The genetic reduct algorithm tries to find combinations of attributes that discern
well between the classes and makes another selection from the already chosen at-
tributes. However, it is not certain that using combinations of the already selected
genes will give a better result than using all of them. Since each attribute selected by
the feature selection method is, in principle, a reduct, the reducts found by the genetic
reduct algorithm will not contain many attributes. Moreover, only a limited number
of reducts is found so that the classifier will rely on fewer attributes and be more vul-
nerable to noise. One would expect that the performance of genetic reduct algorithm
was less sensitive to the number of attributes admitted by feature selection so that its
performance should decrease less than the performance of the 1R classifier when this
number was increased. We observed such behavior sometimes, but the AUC value
usually dropped just like in the other methods. The algorithm may work better than
1R classifier when class distribution is skewed. For such parameters, it may be more
difficult to define good cuts during discretization, and combinations of attributes may
be more useful. The algorithm worked quite well in fact for localization, penetration,
and serum gastrin.

The dynamic reduct algorithm also makes a selection, and it uses the genetic
reduct algorithm as a subprocedure. However, it creates more reducts by resam-
pling and achieves a similar effect to the 1R classifier in this way. A classifier built
with this method relies on many more rules and genes when it makes a prediction.
Unfortunately, it has a long running time.

An interesting result is the performance of the linear and the quadratic discrim-
inant methods compared to the other methods. Both methods usually had a lower
AUC-value than the rough set based methods. In particular, the quadratic method
performed poorly. However, these methods are quite similar to the 1R classifier. All of
them assume that the genes are independent such that they should perform fairly sim-
ilarly. However, they did not, and the reason is probably that discrimination analysis
assumes that the measurements of each gene are normally distributed.

5.4.4 Biological validation of the best classifiers

We selected one of the best classifiers of each clinical parameter for further examina-
tion. The details of these classifiers are shown in Table 5.2. Most of these classifiers
had a very good accuracy and a high AUC value. Attributes that were significant at
the 0.01 level were primarily chosen, and at most 10 or 20 attributes were allowed in
the classifiers. We had to relax the significance level to 0.05 in order to get satisfactory
accuracy for serum gastrin. For remote metastasis, a significance level of 0.10 and a
maximum of 40 attributes were used. Figure 5.10 displays the AUC of all learning
and discretization methods at the filter level chosen for each parameter.

The rules and genes used by the classifiers made during leave-one-out cross-valida-
tion were collected for each parameter so that they could be inspected by biologists.
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Sample Method Discretization Fallback? kkk †
α

‡ Thres.
Laurén Dynamic Freq. bin (n=4) Intest. (0.6) 10 0.01 0.458
Localization Dynamic Entropy Cardia (0.6) 20 0.01 0.425
Lymph node meta. Dynamic Freq. bin (n=3) Yes (0.6) 20 0.01 0.655
Penetration 1R Entropy No (1.0) 20 0.01 0.188
Remote metastasis 1R Entropy Yes (1.0) 40 0.10 0.625
Serum Gastrin Genetic Entropy High (1.0) 10 0.05 0.125

?The class that was predicted if no rule applied. The certainty ascribed to this class is
given in parentheses. †Maximum number of genes allowed in a classifier. ‡Significance
level.

Sample Accuracy Sens. Spec. AUC
No. of rules No. of

Average Range genes
Laurén 16/17=0.94 1 0.86 0.93 24.1 10–67 17
Localization 17/17=1 1 1 1 238.1 200–311 72
Lymph node meta. 14/17=0.82 0.7 1 0.9 388.1 222–523 73
Penetration 16/17=0.94 1 0.75 0.85 109.6 28–280 75
Remote metastasis 13/13=1 1 1 1 425.1 305–468 161
Serum Gastrin 11/14=0.79 0.9 0.6 0.66 47.9 18–72 42

Table 5.2: Summary of the performance of the best classifiers. The first table contains
the parameter setting for the chosen classifiers. The second contains the results for
these classifiers. This table is divided into two parts where first part displays the
estimated performance while second part reports the number of rules and genes used
in the best classifiers. The first two columns display the average number of rules used
in each classifier, and the range. The last column displays the total number of genes
collected from the classifiers for each parameter.

The range and average of number of rules used in each of these classifiers are reported
in the last part of Table 5.2. This table also displays the total number of genes that
appear by collecting the genes from all of the classifiers of a parameter. As shown, the
number of rules varied from an average of 24 rules for Laurén to 425 rules for remote
metastasis. The number of genes varied between 17 and 161.

These numbers obviously depended on the number of genes selected in the feature
selection phase as well as the learning algorithm. The genetic reduct algorithm makes
its own selection from the already selected genes, and builds rules from the selected
genes. The 1R classifier makes no such selection and uses all of the genes admitted by
the feature selection. Consequently, it creates more rules and uses more genes. The
dynamic reduct algorithm makes more reducts by resampling and has a performance
that is more similar to the 1R classifier.
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Figure 5.10: Results for each of the classifiers given the best filtering level.
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Most of the collected genes were used in the classifiers of only one parameter, but
some genes were not specific to one parameter and occurred in the classifiers of several
different parameters. However, even these genes seemed to be more strongly related
to one parameter since they were used frequently for only one parameter. Hence, we
assumed that the occasional use of some genes was due to noise, and that these genes
were only related to the parameter for which they occurred frequently. In particular,
genes that were used only once for a parameter, were ignored.

Six genes, however, occurred frequently for both lymph node metastasis and local-
ization of tumor such that we could not assign them to only one of the parameters. The
reason seems to be that these parameters were partially confounded. All cardiac tu-
mors had lymph node metastases, and all tumors without lymph node metastases were
thus non-cardiac (Some tumors with lymph node metastases were also non-cardiac so
that the parameters were not totally confounded). Further study is required to indi-
cate whether these genes are useful for classification of both parameters and whether
their occurrence in many classifiers for both parameters is associated with this specific
collection of tumor material.

The biomedical literature was examined in order to investigate whether it was
possible to verify the connection between a gene and a parameter detected by our
learning method by using established knowledge. However, the literature is not very
comprehensive (which is one of the reasons for doing this study in the first place).
For many of the genes, there is presently no information available at all, and for
most of the genes, it was not possible to find any known association with the clinical
parameters or with gastric cancer or other kinds of cancer in general. For some genes,
literature search revealed knowledge confirming the connection between the gene and
the parameter. Table 5.3 provides a summary of the known connections where we have
divided the confirmations into 4 groups according to the kind of evidence that was
found. A known connection to the parameter in gastric cancer provides the strongest
confirmation between our findings and knowledge present in the literature, but a
similar connection found in another type of cancer is also a strong confirmation that
this particular gene may play a role in this clinical parameter. A connection only to
either gastric or another type of cancer is obviously weaker. We found no information
directly contradicting our indications that the genes could be related to the clinical
parameters or to cancer biology in general. A detailed account and discussion of these
genes is given in Nørsett et al. [124].

5.5 Conclusions

Classification of tumor microarray data is an important biomedical problem that raises
thorny computational modeling issues. A classifier built from microarray data may
provide an early detection of cancer. Such a classifier may also allow determining
tumor subgroup for an incident of cancer. This means that the treatment may be
made more effective since it may be started earlier and may be designed specifically
for the tumor subgroup. Moreover, classifiers built from microarrays may provide
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Parameter

Known connection to
Known connection to

the parameter in Unknown
gastric other gastric other connection
cancer cancer cancer cancer

Laurén 1 2
Localization 2 3 22
Lymph node metastasis 1 2 1 26
Penetration 4 1 1 17
Remote metastasis 3 2 47
Serum gastrin 1 1 18

Table 5.3: Confirmation of the involvement of genes used in the gastric cancer classi-
fiers by information found in the biomedical literature. The table displays the number
for each parameter according to the kind of confirmation that was found. It was not
possible to find confirmation for many of the genes, and the last column gives the
number of genes that were used by more than one classifier, but could not be con-
firmed in the literature to have any known association with gastric cancer or other
cancer.

insight into the underlying biology of tumors. By inspecting such classifiers, we may
find genes that may have a significant impact on the differentiation of the tumors into
subgroups or on other clinical parameters.

We have shown that rough set methods are applicable in classification of tumors
from microarray data. However, feature selection is necessary in order to obtain
satisfactory results since a microarray data set has typically very many attributes
and few objects. Our approach where bootstrapping is used for feature selection and
rough set methods are used for learning is quite general, and it may be used in any
classification study of microarray samples.

The feature selection method given in Section 5.2.1 chooses genes by measuring
their individual discriminatory ability. A gene need not discern equally well between
all objects. For example, one gene may discern well between some objects, while
another gene may be better at discerning some other objects. Groups of the selected
genes may consequently yield a better discriminatory ability than each gene alone.
Hence, the classifiers in this study use all or subsets of the selected genes.

However, genes whose discriminatory ability is only apparent when considered in
combination with other genes will not be selected. For example, two genes can be
associated with two classes, e.g., d0 and d1, in the following manner: If one of the
genes is up-regulated and the other is down-regulated, the tumor sample has class
d1. If either both genes are down-regulated or both are up-regulated, the sample
has class d0. In this case, the classes must be determined through an exclusive-or
of the expression of the genes. This means that the genes will not be individually
significant and will not be selected with the feature selection method in Section 5.2.1.
The approach may therefore fail to built a classifier.
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We may, however, discover such combinations directly with the genetic or the
dynamic reduct algorithms or with a feature subset selection method. Unfortunately,
this requires a large number of samples. The number of tumors in our data set is
much too small for making such discoveries.

Some of the discretization methods seemed to work better than others. Frequency
binning and entropy-based discretization gave good results. Discretization based on
linear discriminant analysis was also useful. The entropy-based method appeared to
handle skewed class distributions better than the other methods.

Boolean reasoning discretization often had poor performance and behaved dif-
ferently from the rest of the discretization methods. The AUC had a tendency to
increase with additional genes. It is likely that this is due to the global nature of
this method. The method considers all attributes at once when it creates cuts. The
feature selection method, on the other hand, selects genes individually such that each
selected gene may be a good classifier in itself. This means that it is more appropriate
to make cuts individually for each gene in this case. The Boolean reasoning approach
is consequently less suited for this problem, but it may yield a good performance in
other situations (see [119] for some examples).

The rough set based learning methods worked quite well and out-performed both
linear and quadratic discriminant analysis. However, there is no strong evidence that
one of the rough set based methods was better than any of the other rough set based
methods. The performance of the 1R classifier and the dynamic reducts algorithm
were very similar, and one may prefer the 1R classifier over the dynamic reducts
algorithm since the running time of the former is much shorter.

We obtained high quality classifiers for at least 2–3 of the clinical parameters in
our study. The quality of the classifiers for penetration, serum gastrin, and remote
metastasis is perhaps more questionable, but the classifiers obtained with entropy-
based discretization for these parameters had a plausible performance.

The genes used in these classifiers were examined, and their connection to the
parameters was confirmed for several of the genes. However, most of the associations
between the genes and the parameters could not be verified by the biomedical litera-
ture. For these genes, further experimental work is needed to determine if there is a
biological connection between the genes and the respective parameters. This finding
demonstrates that the status of present biomedical knowledge is still very scarce and
fragmented. Our classification results provide valuable hypotheses regarding which
genes should be tested for their possible involvement in gastric cancer.

The sample size in our study was quite small. Several of the clinical parameters
had a very skewed class distribution where as few as 3–4 objects belonged to the
minority class. Obviously, it is quite difficult to learn from that few objects. There is
a risk that the classification performance was due to artifacts in the data set. One such
indication is that the performance of classifiers for these clinical parameters depended
more on the discretization and learning method. More reliable results can be obtained
by increasing the samples size.

Furthermore, our study included only 2, 504 genes out of a total of at least 30, 000
genes in the human genome. Some of the genes that were not included in our study
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may have a connection to the parameters. A further study should not only include
more tumors, but also more genes.

Still, our results show that it is possible to develop classifiers with a small number
of tumor samples, and that rough set based methods may be well suited for this task.
We believe that rough set based learning combined with feature selection may become
an important tool for classification of microarray samples.
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6.1 Introduction

Sections 3.5.1 and 3.6.1 discussed the use of microarrays in prediction of gene function.
In this kind of study, some cells are exposed to an external stimulus, and the expression
response in the genes is assessed with microarrays. The response of each gene can
be measured as a time sequence that describes the behavior over a period of time.
Co-expressed genes that have a similar time response are then considered to have the
same function. The underlying assumption for making such conjectures is that their
expression profiles are similar since they are regulated by the same process.

The function of a gene may be predicted by a supervised learning algorithm with
a basis in this assumption. However, such an algorithm needs a set of (unrelated)
classes that may be predicted. Sometimes it is obvious what classes may be used
for this purpose, but for gene function this is not so evident. The classes have to be
defined.

At the moment, there exist several ontologies that define a set of classes for gene
function. Two of these (the MIPS1 ontology [57] and the Gene Ontology [29]) were
mentioned in Section 3.6.1. The classes in these ontologies are, however, related,
e.g., one class may subsume another. Supervised learning algorithms, on the other
hand, assume that the classes are unrelated and cannot take any relationships into
account. There is consequently a need for learning algorithms that predict classes in
an ontology.

In this and the following chapters we will present learning algorithms for predicting
functional annotations in an ontology and methods for evaluating the predictions made
by these algorithms. We begin with an introduction to ontologies in general and the
Gene Ontology (GO) in particular. This chapter also includes a discussion of the
semantics of the Gene Ontology. We identify an issue that may complicate learning

1MIPS is an abbreviation for “Munich Information center for Protein Sequences”.
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cell

cytoplasm nucleus

mitochondrion nuclear
chromosome

nucleolusribosome

mitochondrial
chromosome

Figure 6.1: A partial ontology for the part in a cell.

in the GO and present a transformation algorithm that simplifies the ontology so that
this problem does not occur.

6.2 What is an ontology?

The term ontology originates from philosophy where it is a branch of metaphysics
concerned with the study of being and existence [189]. However, ontology may also
denote a particular theory (developed within this field) that describes what entities
exist [168], in which case we talk about an ontology. In artificial intelligence, the word
is used more narrowly. Gruber [63] defines an ontology as “an explicit specification of
a conceptualization”. Put more simply, an ontology is a description of the concepts
in a domain of interest and of the relationships between these concepts.

A simple example is shown in Figure 6.1. This ontology describes some of the
parts in a cell, but is by no means complete. The edges (or arrows) describe part-of -
relationships. The ontology states the following: The cytoplasm and the nucleus are
both parts of a cell. The cytoplasm contains ribosomes and mitochondrions (amongst
others). The nucleus contains nucleolus and (nuclear) chromosomes. Chromosomes
are, however, not only found in the nucleus. The mitochondrions have also (mito-
chondrial) chromosomes.

Ontologies are important as they facilitate communication. They provide vocab-
ularies with clearly defined semantics that can be used to share information between
people as well as between computer systems. One application is found in databases.
A gene database may for example store information about the subcellular location
where a gene product is active. This information may, of course, be stored as a tex-
tual description. However, it will be practically impossible to select a set of genes
according to the location in this case. A database system has only facilities for syn-
tactic matching of strings and cannot interpret descriptions in natural language. The
selection results would thus be very inaccurate if we tried to select genes on the basis
of such descriptions. Hence, a database is most often built such that it refers only to
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terms in a controlled vocabulary. Such a vocabulary consists of a set of syntactically
different terms or concepts that may be used to describe the domain of interest, e.g.,
the parts in the cell where a gene product may be active. The selection task reduces
then to matching of terms, which is an easy task for a database system.

A controlled vocabulary is a partial ontology. It provides a syntax (a set of con-
cepts), but no semantics (relationships). A complete ontology, on the other hand,
provides a semantics by describing the relationships between the concepts. A seman-
tics may not be needed in some situations, but often it will be required.

One example is integration of databases where an ontology may be used for com-
bining similar information. We may for example retrieve information about genes
and locations (where the gene products are active) from a variety of gene databases
and try to combine this information. However, the databases must refer to the same
location concepts if a computer is to perform this task automatically. In this case, it
is not enough that the concepts are syntactically identical, they must also be seman-
tically equivalent. Otherwise, if a concept has a different meaning in each database, it
cannot be interpreted without knowledge of the context, i.e., the database from which
this piece of information originated.

One may avoid such integration problems by using an ontology as a standard
and let the databases refer to concepts in this ontology. In this case, it will be easy
to combine information from different databases as they refer to the same concepts.
However, it may not be possible to apply an ontology in this way. The databases
that one would like to integrate will often be developed by different people and will
most likely use different ontologies. The databases may therefore refer to semantically
different concepts. Ontologies may still be very useful. One may, for example, try to
define a thesaurus by comparing the structure of the ontologies. This thesaurus can
then be used to translate the concepts in the different databases. Hence, ontologies
facilitate integration of databases.

The information defined in an ontology is also useful for classification of genes.
As mentioned above, a supervised learning system needs a set of classes that can be
predicted. These classes are, of course, a controlled vocabulary. If these classes are
related in some way, the learning algorithm has to take the relationships into account.
A full ontology may therefore be required.

6.3 Representation of ontologies

An ontology may be represented in many different ways. Such representation forms are
investigated in the subfield of artificial intelligence known as knowledge representation,
which is still an active field of research. Here, we will only mention the most important
forms.

Taxonomy. The simplest form is a taxonomy (e.g., [147]). This is a hierarchy
which is organized according to the generality of the concepts. The most general
concepts appear at the top and the most specific concepts at the bottom. If a concept
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a) Taxonomy b) Semantic network
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d) Description Logic

Cell ≡ · · ·
Cytoplasm ≡ ∃partOf.Cell u · · ·

Chromosome ≡ ∃partOf.Cell u · · ·
Ribosome ≡ ∃partOf.Cytoplasm u · · ·

Mitochondrion ≡ ∃partOf.Cytoplasm u · · ·
MitochondrialChromosome ≡ ∃partOf.Mitochondrion u Chromosome u · · ·

Nucleus ≡ ∃partOf.Cell u · · ·
NuclearChromosome ≡ ∃partOf.Nucleus u Chromosome u · · ·

Nucleolus ≡ ∃partOf.Nucleus u · · ·

Figure 6.2: Ontology representations
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A occurs below another concept B, we say that A is subconcept or a child of B,
and B is a superconcept or parent of A. A concept subsumes all of its subconcepts.
Hence, an object (e.g., a gene) that belongs to one of the subconcepts must also
belong to the concept as well. The concepts in a taxonomy have usually only one
immediate superconcept so that the taxonomy forms a tree. A typical example is a set
of classes organized in an inheritance hierarchy according to a is-a-relation. Figure 6.1
gives another example, which is repeated in Figure 6.2a. This ontology is organized
according to a part-of -relation so that a subconcept is a part of a superconcept.

Semantic networks. A taxonomy is a very restricted form of representation,
and many properties and relationships cannot be expressed in such a language. For
example, there are two different kinds of chromosomes in the taxonomy in Figure 6.2a.
Both of these are subconcepts of the more general concept chromosome, but there is no
way to represent this information since only one kind of relationship can be expressed.
Moreover, a node may have only one direct parent.

Semantic networks (e.g., [102]) can be considered as generalizations of taxonomies
where more than one kind of relationship can be represented. Such a network is a
graph where the nodes represent concepts, and the edges represent relations. The
edges may form cycles, and a node may have more than one parent. One example is
shown in Figure 6.2b.

Frames. One alternative to semantic networks is the so-called frames (see e.g.,
[191]). A frame represents a concept and is similar to a class in object-oriented
methodology. A frame has a set of slots, and each slot may hold one or more value(s).
A slot may describe either a property of the frame or a relationship to another frame.
In the last case, the slot value is a pointer to the other frame. A set of frames is
displayed in Figure 6.2c. Each of these frames has an is-a-slot and a part-of -slot,
which are pointers to some other frames.

Description Logics. A serious drawback with frames and semantic networks
is their lack of formal semantics. An ontology represented in these languages may
therefore be ambiguous. One example is a semantic network that contains the concepts
A, B, and C where concept C may be an instance of concept B, and concept B may be
a part of A. In this case, it is not clear how C and A are related or if they are related
at all. One would assume that C may be a part of A, but this cannot be deduced
from the network alone. A rule is needed in order to define how the relationships
should be interpreted. Moreover, one may want to check for inconsistencies, determine
whether two concepts are equivalent, or detect whether one concept subsumes another.
However, automated reasoning is not feasible without a clear semantics.

These problems may be avoided by either defining a semantics for the representa-
tion language in first-order logic (cf. [35]), or by representing the ontology directly in
first-order logic. However, reasoning in first-order logic, such as determining whether
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Description logic First-order logic
C C ′(x) (Concept)
R R′(x, y) (Relation)
C uD C ′(x) ∧D′(x) (Intersection)
∀R.C ∀y.(R′(x, y)→ C ′(y)) (Value restriction)
∃R.C ∃y.(R′(x, y) ∧ C ′(y)) (Existential quantification)

Table 6.1: Translation from description logic to first-order logic.

concept A is a subconcept of concept B, is undecidable2 (see e.g.,[170]) since this
involves testing if the definition of B is a logic consequence of the definition of A.
First-order logic is consequently not a better alternative if a computer is to reason
over the ontology.

The full representational power of first-order logic is often not necessary for rep-
resenting an ontology, and only a small part may be used instead. A description
logic is a fragment of first-order logic that has sufficient expressive power to represent
an ontology and renders reasoning computationally feasible. Many description logics
permit reasoning in polynomial time, but research is also pursued on more expressive
description logics where theoretical results show that inference is computationally in-
tractable [4]. In this case, optimization techniques are used in order to make the task
more tractable.

There are many different description logics, but they are all quite similar and differ
mainly in the constructors that they provide. In Figure 6.2d, the AL-language intro-
duced by Schmidts-Schlauß and Smolka [152] is used. A description in this language
is built from elementary descriptions and constructors. An elementary description
can be either a concept or a role. A role is similar to a relation in our terminology.
The elementary descriptions are represented by symbols such as C and D for concepts
and R for relations. There are no variables as in first-order logic, but variables exist
implicitly. A concept C corresponds to a unary predicate C ′(x) and a role R to a
binary predicate R′(x, y). The language includes constructors such as intersection
(C uD) and value restriction (∀R.C). There are also extensions of the language that
include unions (C tD) and existential quantification (∃R.C). An expression in this
language can be translated into first-order logic (see Table 6.1). For example, ∀R.C
may be translated into ∀y.(R′(x, y) → C ′(y)) in first-order logic, and ∃R.C may be
translated into ∃y.(R′(x, y) ∧ C ′(y)).

A partial description of the example ontology is given in Figure 6.2d. In order
to make this ontology complete, other distinguishing properties would have to be

2Logic consequence in first-order logic is, strictly speaking, semi-decidable. We may develop an
algorithm that terminates if φ follows from a set of formulae φ1, . . . , φn (i.e., if φ1, . . . , φn |= φ holds).
However, it is not possible to develop an algorithm that also terminates when φ does not follow from
a set of formulae φ1, . . . , φn (if φ1, . . . , φn 6|= φ is true). We consider the problem – whether concept
A is a subconcept of concept B or not – to be undecidable since we need an algorithm that terminates
in both cases in order to answer this question.
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described. Notice that is-a-relations can be inferred directly from the descriptions
and are not represented directly in this language3. For example, Chromosome follows
from (subsumes) NuclearChromosome.

6.4 Ontologies for characterization of gene function

Ontologies have a long history in biology and medicine. Most famous is Carl Linnaeus’
taxonomy from the mid-18th century. This taxonomy introduced a novel way of
grouping organisms – an activity, which was performed more or less arbitrarily at that
time. In Linnaeus’ taxonomy, plants and animals were divided into groups according
to biological traits. The ontology has since his time undergone several modifications,
but the principle of grouping organisms on the basis of shared traits still remains. The
current version consists of 7 levels: kingdom (plants/animals), phylum, class, order,
family, genus, and species. With this ontology, Linnaeus also introduced the naming
convention that is used in biology. Organisms are referred to by their genus and
species name. For example, Saccharomyces cerevisiae (yeast) belongs to the genus
saccharomyces and the species cerevisiae.

Other examples of ontologies in biomedicine are the Medical Subject Heading
(MeSH) system [28], which is a controlled vocabulary for searching the biomedical
literature and the Unified Medical Language System (UMLS) [94], which attempts to
improve retrieval and integration of biomedical information by defining a thesaurus
for various biomedical vocabularies.

Ontologies that characterize the function of gene products are a more recent ad-
dition to biology. These are typically developed for bioinformatics databases in order
to provide a vocabulary for querying a database according to function. One of the
first attempts to build an ontology was by Riley [143], who cataloged the genes in
Escherichi coli and devised an ontology in this process. Some other attempts are:

• EcoCyc [81] (A frame approach)

• MIPS [57] (A taxonomy)

• The Gene Ontology (GO) [29] (Several semantic networks)

• KEGG [125] (A taxonomy)

• WIT [128] (A taxonomy)

These ontologies vary with regard to representation language and detail level, i.e.,
how specific concepts are modeled. They may also be species specific or species
independent. Moreover, the notion of function is different in some of these ontologies.
The term “function” has a rather vague meaning when applied to gene products,
and it encompasses several different aspects of the activity of a gene product. For
example, a protein may take part in a particular reaction on a molecular level, but

3However, such relationships are represented explicitly in some description logics [51, 171].
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the protein may also play a particular part in a biological objective on a cellular level.
Some of these ontologies make a clear distinction between these aspects and create a
subontology for each aspect (e.g., the Gene Ontology). Others consider mainly one
aspect or ignore this distinction.

The most comprehensive of these ontologies is the Gene Ontology. It also uses
a more complex representation language than most of the others, which are simple
hierarchical trees. We will thus focus on this ontology and discuss it in more detail
in the next sections. The learning methods that will be introduced are nonetheless
suitable for taxonomies such that most of these ontologies can be used directly with
these methods. Rison et al. [144] provide a comparison of the mentioned ontologies
and several others.

6.5 The Gene Ontology

The Gene Ontology (GO) Consortium was established to develop a shared and struc-
tured vocabulary for describing the function of the gene products in any organism
[29]. The ontology developed by the consortium is not really a single ontology, but
consists of three subontologies where each subontology describes a particular aspect
of a gene product. These aspects are as follows:

• Biological process: refers to the objective to which a gene or a gene product
contributes.

• Molecular function: refers to the biochemical activity, i.e., what the gene
product does on the biochemical level, and

• Cellular component: refers to the subcellular location where a gene product
is active.

Each subontology is represented as semantic network where only two kinds of rela-
tionships are expressed. Two concepts may be related through a is-a- or a part-
of -relationship. A concept may have more than one parent and may be related to
these parents through different kinds of relationships, but no cycles are allowed in the
network. Hence, each subontology forms a Directed Acyclic Graph (DAG).

A part of the biological process ontology is shown in Figure 6.3. We will consider
this subontology (i.e., biological process) exclusively in the experiments in Chapter 10
since only this aspect is considered relevant for predicting gene function from temporal
expression patterns.

The GO Consortium provides not only ontologies, but also annotations for several
model organisms [30]. An annotation is a description of a role that a gene plays in
a cell. It may just be an statement written in a natural language that explains the
function of the gene, or it may be an association between a gene and a concept taken
from an ontology. The annotations created by the GO consortium are associations
between a gene and a concept in one of the subontologies. A gene may have an
annotation for each of the subontologies. However, it may play several different roles
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Figure 6.3: A part of the process ontology (Rev. 2.577 - 24-Sep-2002).
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in the cell. A gene may therefore have not only one, but several annotations for each
subontology.

Originally, annotations were available only for Drosophila melanogaster (fruitfly),
Saccharomyces cerevisiae (yeast), and Mus musculus (mouse) from the GO Consor-
tium. Annotations for more organisms (such as Arabidopsis thaliana) have recently
become available as other model organism groups have joined the consortium. How-
ever, none of these organisms have a completely annotated genome. A lot of the
genes are still uncharacterized, and most of the available knowledge about character-
ized genes has not been formalized as annotations. Automatic prediction of the gene
function is therefore of great importance.

6.6 Interpretation of the Gene Ontology

The subontologies do not have a formal semantics as they are semantic networks.
However, the GO consortium has defined several rules for interpreting the networks.

6.6.1 The True Path Rule

Most important is the True Path Rule that says that “The pathway from a child term
to its top-level parent(s) must always be true” [30, 42]. A gene annotated to a concept
is therefore also annotated to any parent concept. This holds for all paths such that if
a gene is annotated to cell cycle dependent actin filament reorganization in Figure 6.3,
it belongs to both cell cycle and actin filament organization as well as their parents
(as marked with dashed lines in Figure 6.3).

A formalization of the True Path Rule is given at top of Figure 6.4. Notice that
there is no difference between the is-a- and part-of -relationships with regard to this
rule. Both relationships define one concept to be less general than another concept
in some way, and the True Path Rule says that the genes that are annotated to one
concept also belong to the concepts that are more general. Hence, it seems that we
may ignore the difference between the two relations and consider the concepts to be
connected by less general -edges.

6.6.2 Rules on the concepts

Besides the True Path Rule, the GO consortium has defined several logical rules,
which are shown in Figure 6.4. These rules are important as they provide a semantics
for the is-a- and part-of -relationships between the concepts. Unfortunately, there
are some details that are not defined by theses rules, and they seem to complicate the
interpretation a bit. In particular, it is not clear how these rules should be interpreted
with regard to the True Path Rule

The two first make the is-a- and part-of -relations transitive and represent no need
for concern. Rule 4 is more difficult, but not really a problem. It states, for example,
that a synaptonemal complex is not necessarily a part of a chromosome. The True

URN:NBN:no-7286



6.6. INTERPRETATION OF THE GENE ONTOLOGY 101

True Path Rule:
if anno(g, c) and is-a(c, d) then anno(g, d), for all g ∈ G and c, d ∈ V (∗)
if anno(g, c) and part-of(c, d) then anno(g, d), for all g ∈ G and c, d ∈ V (∗∗)

Relationships between the terms:

1. Transitivity of is-a

if is-a(c, d) and is-a(d, e) then is-a(d, e), for all c, d, e ∈ V

Example:
Terminal O-glycosylation is an instance of terminal glycosylation.

Terminal glycosylation is an instance of protein glycosylation.

Terminal O-glycosylation is an instance of protein glycosylation.

2. Transitivity of part-of

if part-of(c, d) and part-of(d, e) then part-of(d, e), for all c, d, e ∈ V

Example:
Laminin-1 is a part of basement lamina.

Basement lamina is a part of basement membrane.

Laminin-1 is a part of basement membrane.

3. An instance inherits all parts from their parents

if part-of(c, d) and is-a(e, d) then part-of(c, e), for all c, d, e ∈ V

Example:
Protein-nucleus import, docking is a part of protein-nucleus import.

Ribosomal protein-nucleus import is an instance of protein-nucleus import.

Protein-nucleus import, docking is a part of ribosomal protein-nucleus import.

4. A part of an instance of a concept need not be a part of this concept

if part-of(c, d) and is-a(d, e) then part-of(c, e), for all c, d, e ∈ V , does not
necessarily hold.

Example:
Synaptonemal complex is a part of meiotic chromosome.

Meiotic chromosome is an instance of chromosome.

Synaptonemal complex is not necessarily a part of chromosome.

V is a set of terms/nodes, and G is a set of genes. part-of(x, y) means that
x ∈ V is a part of y ∈ V . is-a(x, y) means that x ∈ V is an instance of y ∈ V .
anno(g, x) means that gene g ∈ G is annotated to x ∈ V .

Figure 6.4: The semantics of the Gene Ontology (from The GO Usage Guide [31]).

URN:NBN:no-7286



102 CHAPTER 6. LEARNING ANNOTATIONS IN A GENE ONTOLOGY

Path Rule, however, says that the genes annotated to synaptonemal complex belong
to meitotic chromosome by (**) and thus also to chromosome by (*). This may
seem odd, but the rules are consistent and seem to describe the biology accurately.
Even though a synaptonemal complex is not a part of every chromosome, the genes
that are active in synaptonemal complex are also active in some chromosomes and
should be annotated to the chromosome concept as well. Hence, one should really
distinguish between the ordering of the genes and the ordering of cellular components
(or molecular functions or biological processes). Rule 4 applies to ordering of cellular
components, while True Path Rule applies to ordering of annotations. Thus Rule 4
may be ignored when we consider the ontology with respect to gene annotations.

The main concern is Rule 3, which states that a concept inherits the parts of
its parents. This principle is not completely novel – it is well-established in object-
oriented methodology. However, when it is applied to an ontology, it complicates the
ordering of the concepts and thus also the ordering of the genes.

6.6.3 The inheritance problem

A natural interpretation of a DAG is that the order of concepts is defined directly by
edges. There is only a relationship between two concepts if there is a path between
them. All concepts that are more specific than a given concept should therefore appear
as its children. We call this principle the Direct Correspondence Assumption (DCA).

Rule 3, however, violates this assumption. For example, let A be a part of B and
C an instance of B as shown in Figure 6.5. All concepts more specific than C should
then appear below C by the DCA. However, A is a part of C by Rule 3 and does not
appear below C.

The violation of the DCA has consequences for the ordering of the genes since the
True Path Rule as formalized in Figure 6.4 is defined on the part-of -relation derived
from Rule 3. Hence, the subset inclusion order on the genes defined by the True Path
Rule does not correspond to the DAG either. The set of genes annotated to A is for
example a subset of the genes of C.

This will create a serious problem for a learning algorithm since A and C are
siblings in the DAG, and we would normally try to distinguish between them. The
sets of genes in A and in C should therefore be disjoint or almost disjoint (Recall that
a gene may have more than one annotation such that it may be annotated to both A
and C). However, since C contains all of the genes that are annotated to A, it is not
possible to distinguish between them.

The problem may be handled in different ways. Either one may build the inheri-
tance semantics into the learning algorithm, or one may transform the ontology such
that it respects the DCA. The first option does not seem very attractive. It would
make the learning algorithm very dependent on the GO, and we would prefer that the
algorithm could be used on other ontologies and in other domains. Moreover, this se-
mantics would complicate the implementation and analysis of the learning algorithm.
Transformation is therefore a better option. It simplifies the problem, while nothing
is lost. Consequently, we introduce an algorithm for making such a transformation in
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Figure 6.5: Transformation of inheritance in the Gene Ontology. The figure demon-
strates the transformation of the ontology in (a). The part-relationships induced by
the inheritance rule are shown as dashed arrows in (b). The result of the transfor-
mation is the ontology in (c). This maintains the same set-inclusion order on the
annotations as (b). Note that the transformed ontology does not distinguish between
is-a- and part-of -relationships. Thus no labels are associated with the arrows in (c).

the next section.

6.7 Transformation of the Gene Ontology

Before we introduce the transformation algorithm, we would like to give a warning.
It seems that the current version of the Gene Ontology does not implement the in-
heritance rule or at least it defines relationships that are in conflict with this rule.
This will be discussed more closely in Section 6.8. However, the algorithm may give
an unexpected result if it is applied on the current ontology. Thus, it should not be
used with this version.

The transformation problem is illustrated in Figure 6.5 where A is a part-of B.
According to Rule 3, A must also be a part-of C, C1 and C2. So the part-of -relation
derived from the DAG violates the DCA. Our solution is to move A below all leaf
nodes (i.e., C1 and C2) in the is-a-subhierarchy below C. Then, there is a path from
A to each of these nodes. The relationships between A and C1 and C2 follow directly
for the DAG, and the relationships with C and B follow by transitivity.

In order to present the algorithm and prove correctness and completeness, we
need to introduce several definitions. We begin by formalizing what is meant by a
GO-DAG.

Definition 6.1 (GO-DAG). Let V be a set of nodes, > ∈ V a root node, I ⊆ V ×V
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a set of is-a-edges, and P ⊆ V × V a set of part-of-edges. A GO-DAG is a tuple
〈V,>, I, P 〉 if I and P are disjoint sets, and 〈V,>, P ∪ U〉 forms a rooted DAG (see
Definition A.16).

As the algorithm manipulates the actual edges in the DAG, we distinguish between
the edges in the DAG and the relations that are derived from the edges. The following
definitions correspond to the rules in Figure 6.4.

Definition 6.2 (is-a). Let D = 〈V,>, I, P 〉 be a GO-DAG. Then, for all c, d ∈ V ,
is-a(c, d) iff4

1. 〈c, d〉 ∈ I , or

2. is-a(c, e) and is-a(e, d), for some e ∈ V

Definition 6.3 (part-of). Let D = 〈V,>, I, P 〉 be a GO-DAG. Then, for all c, d ∈
V , part-of(c, d) iff

1. 〈c, d〉 ∈ P , or

2. part-of(c, e) and is-a(d, e), for some e ∈ V , or

3. part-of(c, e) and part-of(e, d), for some e ∈ V

These definitions imply that the is-a-relation and the part-of-relation are tran-
sitive. However, they do not define a transitive closure over all edges since Rule 4
implies that this may not hold. Hence, there may not be any relationship between two
concepts if they are connected by a path that consists of both is-a- and part-of-edges.

The True Path Rule, however, ignores the difference between the is-a- and the
part-of-relations, and we may complete the transitive closure for the genes by iterative
applications of (∗) and (∗∗). In order to make this more evident and to simplify the
proofs, we introduce a strictly less general relation with a full transitive closure on
top of the is-a- and the part-of-relations. The True Path Rule may then be defined
on this relation.

Definition 6.4 (slg). Let D = 〈V,>, I, P 〉 be a GO-DAG. Then, for all c, d ∈ V ,
slg(c, d) iff

1. is-a(c, d), or

2. part-of(c, d), or

3. slg(c, e) and slg(e, d), for some e ∈ V

The next lemma proves that the same subset inclusion order on the genes is ob-
tained if the True Path Rule is defined on this relation, instead of the is-a- and the
part-of -relations.

4Note that “if and only if” is abbreviated with “iff”, which is the custom in the computer science
literature.
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Lemma 6.1. Let slg be a relation on the DAG as in Definition 6.4. Then the fol-
lowing rule is equivalent to the True Path Rule (as defined in Figure 6.4):

if anno(g, c) and slg(c, d) then anno(g, d), for all g ∈ G and c, d ∈ V

Proof.

⇐: Assume that the rule does not follow from the True Path Rule. Then there must
be a situation where the rule does not hold while True Path Rule does. In this
situation there must be a gene g′ ∈ G and some concepts c′, d′ ∈ V that do not
satisfy the rule such that anno(g′, c′) and slg(c′, d′) are true, but anno(g′, d′)
is not. We now prove by induction on slg that anno(g′, d′) must follow from
the True Path Rule and anno(g′, c′). So this is impossible.

Basis: If slg(c′, d′) follows from the two first options in Definition 6.4, we have
either is-a(c′, d′) or part-of(c′, d′). Then anno(g′, d′) follows directly from
(∗) or (∗∗).

Step: If slg(c′, d′) follows from the last option in Definition 6.4, we may se-
lect (without loss of generality) an e′ such that slg(e′, d′) corresponds to
is-a(e′, d′) or part-of(e′, d′). anno(g′, e′) must follow from slg(c′, e′) and
anno(g′, c′) by the induction hypothesis. Then anno(g′, d′) follows from
the True Path Rule and anno(g′, e′).

⇒: Assume that (∗) or (∗∗) do not follow from the rule. As before, there must
be a g′ ∈ G and some c′, d′ ∈ V where anno(g′, c′) is true and anno(g′, d′) is
false. Moreover, either is-a(c′, d′) or part-of(c′, d′) must hold. Hence, slg(c′, d′)
must be true. This means that anno(g′, d′) follows from the rule, and we have
obtained a contradiction.

The previous lemma states that we need only to consider the slg-order as far as
the annotations are concerned. Thus, it is sufficient to transform the GO-DAG into
a DAG D′ = 〈V ′,>′, E′〉 with DCA-compliant strictly less general relation slg′ that
is equivalent to slg. The following definition defines this relation, which obviously
obeys the DCA since it adds only transitivity.

Definition 6.5 (slg′). Let D = 〈V,>, E〉 be a DAG. Then, for all c, d ∈ V , slg(c, d)
iff

1. 〈c, d〉 ∈ E, or

2. slg′(c, e) and slg′(e, d), for some e ∈ V

We are now ready to introduce the transformation algorithm, which is shown in
Algorithm 6.1. The algorithm transforms a GO-DAG D’ = 〈V,>, I, P 〉 into a rooted
DAG D′ = 〈V ′,>′, E′〉 by traversing DAG recursively starting at the root >. It
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TransformOntology:
Input: A GO-DAG D = 〈V,>, I, P 〉, a node d, and a list L of part-of -nodes to

be moved.
Output: A rooted DAG D′ = 〈V ′,>′, E′〉.

1: CI(d) = {c | 〈c, d〉 ∈ I}
2: CP (d) = {c | 〈c, d〉 ∈ P}
3: V ′ = ∅ and E′ = ∅ and L′ = ∅
4: if d has not been visited then
5: mark d as visited
6: V ′ = {d} and L′ = CP (d)
7: for all c ∈ CP (d) do
8: 〈V ′′,>′, E′′〉 = Transform(D, c, ∅)
9: V ′ = V ′ ∪ V ′′ and E′ = E′ ∪E′′

10: end for
11: E′ = E′ ∪ {〈c, d〉 | c ∈ CI (d)} {Insertion of is-a-children}
12: end if
13: if CI (d) = ∅ then {d is a leaf node or has only part-of-children}
14: E′ = E′ ∪ {〈c, d〉 | c ∈ L ∪ L′} {Insertion of part-of-children}
15: else
16: for all c ∈ CI(d) do
17: 〈V ′′,>′, E′′〉 = Transform(D, c, L ∪ L′)
18: V ′ = V ′ ∪ V ′′ and E′ = E′ ∪E′′

19: end for
20: end if
21: return(〈V ′, d, E′〉)

Algorithm 6.1: An algorithm for transforming the GO-DAG to a DAG that corresponds
to a subset inclusion order on the genes.

follows both is-a- and part-of -edges. However, the edges are treated differently. is-
a-edges are inserted immediately into the new DAG when a node is visited, while
part-of -children are passed downwards in the is-a-subhierarchy until a leaf node or a
node without is-a-children is reached. The part-of -children are then attached below
this node.

Note that a node may have several is-a-parents, and the part-of -nodes from these
parents have to be attached at the bottom of is-a-subhierarchy of the node. It is there-
fore necessary to travel down the is-a-subhierarchy once for each parent. However,
certain tasks should not be repeated in this subhierarchy. Neither the insertion of
is-a-edges nor the visiting and the passing of part-of -children should be performed
more than once. These tasks are consequently performed only the first time a node
is visited.
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The algorithm maintains certain invariants, which are needed in the correctness
and the completeness proofs. First, a node c is only in the part-of -node list L of
node x if c is a part-of x. Second, slg′(c, x) will be derivable from the new DAG in
this case.

Lemma 6.2. Let D = 〈V,>, I, P 〉 be a GO-DAG. If Algorithm 6.1 is initially called
as Transform(D,>, ∅) then for any x ∈ V called recursively as Transform(D, x, L),
it holds that c ∈ L implies part-of(c, x).

Proof. Each c ∈ L must have been added at some node y on the path from the >
to x since L is initially empty, and nodes are only added to L in the recursive call
in line 17. Nodes are added to L through L′. This set is equal to CP (y) when y is
visited for the first time and empty otherwise. This means that c must be in CP (y)
such that part-of(c, y) holds.

Moreover, the path between y and x must consist of only is-a-edges since if there
were two nodes u and v on this path, and these were connected by an edge 〈u, v〉 ∈ P ,
u would be in CP (v). Thus, u would be called in line 8, and c would not be in L.
Hence, is-a(x, y). Then part-of(c, x) follows from option 2 in Definition 6.3.

Lemma 6.3. Given a GO-DAG D = 〈V,>, I, P 〉, a node x ∈ V , and a subset L ⊆
V of nodes, a call Transform(D, x, L) to Algorithm 6.1 creates a DAG such that
slg′(y, x) holds for all y ∈ L. Moreover, for all z ∈ V where is-a(z, x), slg′(y, z)
holds for all y ∈ L as well.

Proof. By induction on the is-a-edges.

Basis: If CI(x) = ∅ so that x is a leaf node or has no is-a-children, the algorithm
inserts 〈y, x〉 into E′ for each y ∈ L (line 14). Hence, slg′(y, x) (for each y ∈ L)
follows from Definition 6.5.

Step: If CI(x) 6= ∅, slg′(y, z) holds for all y ∈ L and z ∈ CI(x) by the induction
hypothesis and the fact that Transform(D, z, L) is called in line 17. Moreover,
the first time x is visited 〈z, x〉 is inserted into E ′ for all z ∈ CI (x). So slg′(z, x)
holds for each z ∈ CI (x). By the transitivity of slg′, slg′(y, x) holds for all
y ∈ L.

Since any z ∈ V where is-a(z, x), is called recursively from x with a superset of L
(line 17), slg′(y, z) must also hold for any y ∈ L and any of these z’s.

The two of the options in Definition 6.3 are recursive. This would complicate the
completeness proof since both options would have to be considered at once. However,
the completeness proof may be simplified by noting that the definition is really strat-
ified. This means that the tuples in the part-of -relation can be found by applying
the options in sequence. First a set is found from option 1. Then a larger set is found
by applying option 2 of this set, and so on.
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Definition 6.6 (Stratified definition). The definition of a relation R is stratified if
R can be divided into a collection of sets R1, . . . , Rk (k ≥ 1) such that R = R0∪· · ·∪Rk,
and Ri (1 ≤ i ≤ k) is derived from R1 ∪ · · · ∪Ri with option i.

Notice that a tuple in Ri can be derived for another tuple in Ri according this
definition. Hence, it allows recursive applications of option i.

The main idea behind the next proof is as follows: If part-of(c′, d′) can be derived
from option 2 in Definition 6.3 such that the following rule holds,

if part-of(c′, e′) and is-a(d′, e′) then part-of(c′, d′) (r1)

and part-of(c′, e′) can be derived from option 3 (in Definition 6.3) such that this rule
is true,

if part-of(c′, f ′) and part-of(f ′, e′) then part-of(c′, e′) (r2)

then we may unfold the first rule with the second rule such that we obtain:

if part-of(c′, f ′) and part-of(f ′, e′) and is-a(d′, e′) then part-of(c′, d′) (r3)

In this case, option 2 implies that this rule holds as well.

if part-of(f ′, e′) and is-a(d′, e′) then part-of(f ′, d′) (r4)

This means that we may fold Rule r3 such that we obtain:

if part-of(c′, f ′) and part-of(f ′, d′) then part-of(c′, d′) (r5)

that corresponds to option 3. Hence, there is an alternate derivation of part-of(c′, d′)
where option 2 is applied before option 3.

Lemma 6.4. Definition 6.3 is stratified.

Proof. The part-of-relation can be decomposed as follows5:

part-of = Q1 ∪Q2 ∪Q3 ∪Q4 ∪Q5 ∪ · · ·

where Qi is derived from Si = Q1 ∪ · · · ∪ Qi and option o(i). The function o(i) is
defined as

o(i) =

{
1 if i = 1

(i mod 2) + 2 otherwise

This means that Q1 is derived from option 1; Q2, Q4, Q6, . . . are derived from option
2; and Q3, Q5, Q7, . . . are derived from option 3.

5This follows from fixpoint semantics of definite logic programs. For example, Si is equal to

T
(n)
i

(Si−1) where Ti is an immediate consequence operator for option o(i), and T
(n)
i

denotes n ap-
plications of this operator. This operator is obviously a bit different from the immediate consequence
operator, which is usually applied in logic programming since each option is handled separately. How-
ever, it will still reach a fixpoint. For more details see [123, 96].
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From this decomposition, it follows that Si ⊆ part-of. We will show that Qj ⊆ S3

for j ≥ 4 such that part-of = S3 = Q1∪Q2∪Q3. Definition 6.3 is therefore stratified.
Assume that 〈c, d〉 is Q4, but not in Q1, Q2, or Q3 (i.e., 〈c, d〉 6∈ S3) such that

Q4 6⊆ S3. This means that part-of(c, d) must be derived from option 2 such that
part-of(c, e) and is-a(d, e) must hold for some e ∈ V . 〈c, e〉 cannot be in S2 since
〈c, d〉 would be in S2 in this case. So, 〈c, e〉 must be in either Q3 or Q4.

We may assume that 〈c, e〉 is in Q3. The reason is that if 〈c, e〉 in Q4, we may
prove that there is alternate derivation of 〈c, d〉, which is based on a tuple in S3.
The proof is by induction and the hypothesis is as follows: If there is a derivation of
part-of(c, d) such that 〈c, d〉 ∈ Q4 then there is an x ∈ V such that 〈c, x〉 ∈ S3 and
is-a(d, x) is true.

Basis: We know that part-of(c, d) follows from part-of(c, e) and is-a(d, e). So, if
〈c, e〉 ∈ S3, we may set x = e, and the hypothesis holds.

Step: If 〈c, e〉 ∈ Q4, part-of(c, e) must be derived from option 2. By the induction
hypothesis, there must be some x ∈ V where 〈c, x〉 ∈ S3 and is-a(e, x). Since
is-a(d, e) is true, we have by the transitivity of is-a that is-a(d, x). Hence, the
hypothesis holds.

Thus, assume that 〈c, e〉 ∈ Q3. This means that part-of(c, e) must follow from
option 3. Then part-of(c, f) and part-of(f, e) must hold for some f ∈ V . Both
〈c, f〉 and 〈f, e〉 must be in S3 (since 〈c, e〉 ∈ S3). However, we may assume that 〈f, e〉
in S2 since we can prove by induction that if 〈c, e〉 ∈ Q3, there must be some x ∈ V
such that 〈c, x〉 ∈ S3 and 〈x, e〉 ∈ S2.

Basis: If 〈f, e〉 is in S2, we may set x = f such that the hypothesis holds.

Step: If 〈f, e〉 is in not S2, it must be in Q3. By the induction hypothesis, there must
be some x ∈ V such that 〈f, x〉 ∈ S3 and 〈x, e〉 ∈ S2. This means that 〈c, x〉
must be in S3 since both 〈c, f〉 and 〈f, x〉 are in S3, and part-of(c, x) follows
from part-of(c, f) and part-of(f, x) by option 3. Hence, the hypothesis holds.

We may therefore replace f by x if 〈f, e〉 is in not S2. Hence, assume that 〈f, e〉 is
in S2. We have also that 〈c, f〉 ∈ S3 and is-a(d, e) holds. part-of(f, d) follows from
part-of(f, e) and is-a(d, e) by option 2. So, 〈f, d〉 will be in S2. Therefore, 〈c, d〉 is in
S3 since both 〈c, f〉 and 〈f, d〉 are in S3. So, we have obtained a contradiction (since
〈c, d〉 was not supposed to be in S3). Hence, Q4 must be subset of S3.

We still need to prove that Qj ⊆ S3 for j ≥ 5. Since S3 contains all of the tuples
in Q4, S4 must be equal to S3. S3 is created by applying option 3 recursively on S2.
So, if S4 contains no other tuples than those in S3, no additional tuples will be made
when option 3 is applied on S4 in order to create S5. This means that Q5 will be a
subset of S3, and S5 will be equal to S3. The situation will be the same for Q6 since
this set will be created from S3 just as Q4. We may continue this deduction for any
j. However, since neither option manages to add any tuple, Qj must be a subset of
S3 for j ≥ 4. Hence, part-of must be equal to S3.
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Since Definition 6.3 is stratified, we may consider the two first options indepen-
dently from the last option. For the two first options, we may derive this property.

Lemma 6.5. If part-of(c, d) follows from option 2 and 1 (but not option 3) in Def-
inition 6.3, there must be some x ∈ V where 〈c, x〉 ∈ P and is-a(d, x).

Proof. Since part-of(c, d) follows option 2, we know that part-of(c, e) and is-a(d, e)
hold for some e ∈ V . We prove by induction that there must be some x ∈ V where
〈c, x〉 ∈ P and is-a(d, x):

Basis: If 〈c, e〉 ∈ P , we may set x = e. Hence, the induction hypothesis holds.

Step: If 〈c, e〉 6∈ P , we may assume that part-of(c, e) must be derived from option 2
since we do not consider option 3. By the induction hypothesis, there must be
some x ∈ V where 〈c, x〉 ∈ P and is-a(e, x). Since is-a(d, e), we have by the
transitivity of is-a that is-a(d, x). So the hypothesis holds also in this case.

The following theorems prove that Algorithm 6.1 creates a new DAG with a derived
relation slg′ that is equivalent to the slg-relation derived from of the original GO-
DAG.

Theorem 6.1 (Correctness Algorithm 6.1). Let D = 〈V,>, I, P 〉 be a GO-DAG,
and assume that the algorithm is called as Transform(D,>, ∅). Then it will produce
a DAG D′ = 〈V ′,>′, E′〉. The slg′-relation derived from D′ corresponds to the slg-
relation derived from D such that for all c, d ∈ V slg′(c, d) implies slg(c, d).

Proof. If slg′(c, d) holds, one of the two options in Definition 6.5 must hold. We prove
by induction on this definition that slg′(c, d) implies slg(c, d).

Basis: Assume that 〈c, d〉 ∈ E ′. The edges for d are added to E ′ in only line 11 and
14 when the algorithm calls itself recursively as Transform(D, d, L). In line 11,
c ∈ CI(d) so that 〈c, d〉 ∈ I . Hence, slg(c, d) follows from Definition 6.2 and 6.4.
In line 14, c may belong to L or L′. If c ∈ L′ then c ∈ CP (d) and 〈c, d〉 ∈ P .
Thus, slg(c, d) follows from Definition 6.3 and 6.4. If c ∈ L, part-of(c, d) holds
by Lemma 6.2, and slg(c, d) follows by Definition 6.4.

Step: If slg′(c, d) is derived from the transitive closure in Definition 6.5, we may
select an e ∈ V such that slg′(c, e) and 〈e, d〉 ∈ E′. We have just proven
that slg(c′, d′) holds for any edge 〈c′, d′〉 ∈ E′. Hence, 〈e, d〉 ∈ E′ implies
slg(e, d). Furthermore, slg′(c, e) implies slg(c, e) by the induction hypothesis.
Then slg(c, d) follows from the transitivity of slg and slg(c, e) and slg(e, d).

Theorem 6.2 (Completeness of Algorithm 6.1). Given the same conditions as
in Theorem 6.1. The slg-relation derived from D corresponds to the slg′-relation
derived from D′ such that for all c, d ∈ V slg(c, d) implies slg′(c, d).
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Proof. slg(c, d) may be derived in several different ways from Definitions 6.2, 6.3, and
6.4. For each we prove that slg′(c, d) must follow:

1. If slg(c, d) is derived from option 1 in Definition 6.4, we have that is-a(c, d) and
may prove by induction on Definition 6.2 that slg′(c, d) follows.

Basis: If 〈c, d〉 ∈ I then 〈c, d〉 is inserted into E ′ in line 11, and slg′(c, d) follows.

Step: If is-a(c, d) is derived from option 2 in Definition 6.2, we may select an e
such that is-a(c, e) and 〈e, d〉 ∈ I , and as before slg′(e, d) follows. By the
induction hypothesis slg′(c, e) must follow from is-a(c, e). Then slg′(c, d)
holds by the transitivity of slg′.

2. If slg(c, d) is derived from option 2 in Definition 6.4, part-of(c, d) must hold,
and just as for is-a, we may prove that slg′(c, d) follows by induction on Def-
inition 6.3. However, we have two recursive options in this case. We therefore
apply Lemma 6.4 and consider option 2 as a basis case with respect to option 3.

Basis:

(a) If 〈c, d〉 ∈ P , the algorithm will take two different actions depending
on contents of CI(d):

i. If CI (d) = ∅, 〈c, d〉 is inserted into E ′ in line 14, and slg′(c, d)
follows.

ii. If CI(d) 6= ∅, c will be in L′ the first d is visited since L′ = CP (d)
and c ∈ CP (d). Transform(D, x, L ∪ L′) will be called for all
x ∈ CI (d) in line 17. This means that slg′(c, x) must hold for
all x ∈ CI (d) by Lemma 6.3. Moreover, each tuple 〈x, d〉 ∈ I is
inserted in E′ line 11 such that slg′(x, d) holds for all x ∈ CI (d).
By the transitivity of slg′, slg′(c, d) follows.

(b) If part-of(c, d) follows from option 2 in Definition 6.3, there must be
some x ∈ V where 〈c, x〉 ∈ P and is-a(d, x) by Lemma 6.5. This means
that c must be in L′ the first time x is visited since c ∈ CP (x). Since
is-a(d, x) holds, there must be an is-a-path from d to x. In this case,
we may separate between two cases.

i. If 〈d, x〉 ∈ I , it follows from the first part of Lemma 6.3 that
slg′(c, d) because c ∈ L′ when Transform(D, d, L ∪ L′) is called
in line 17.

ii. If 〈d, x〉 6∈ I , there must be some y ∈ V such that 〈y, x〉 ∈ I
and is-a(d, y). c will be in L′, when y is called with Trans-
form(D, y, L ∪ L′). Hence, the second part of Lemma 6.3 may be
applied. This states that slg′(c, z) must hold for all z ∈ V where
is-a(z, y). This means slg′(c, d) must be true since is-a(d, y) holds
(set z = d).

Step: If part-of(c, d) is derived from option 3 in Definition 6.3, we may prove
slg′(c, d) in the same way as we did for is-a.
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3. If slg(c, d) is derived from option 3 in Definition 6.4, we may prove by induction
that slg′(c, d) must hold. The proofs for is-a and part-of constitute the basis
in this case, and the proof of the step is analogous to the proofs of step for is-a
and part-of.

6.8 Some remarks about research methodology

We have now shown that the gene ontology can be transformed into a DCA-compliant
DAG. Annotations in the GO can therefore be predicted by a learning algorithm that
considers only a DAG of this kind. We will consequently assume that the DAG is
DCA-compliant when we develop learning algorithms in the next chapters.

However, it is not obvious that the transformation algorithm should be applied on
the ontology, which is currently delivered by the GO Consortium. The gene ontology
is still under development and is immature. It is unclear whether the designers of
the GO have considered the consequences that the inheritance rule has on the True
Path Rule and whether the rule is applied by the people who perform the annotation
work. There are several ambiguities in the ontology, and the semantics given by the
GO Consortium suggests that the rule has not been implemented yet.

First, the definition of the True Path Rule is very informal6 and seems to ignore
Rule 3. It states only that a gene annotated to a concept belongs to the parents. The
definition obeys consequently the DCA and the DAG may be used directly. However,
this is mainly due to lack of formal analysis of the semantics since it makes little
sense to introduce additional part-of -relationships by inheritance and then ignore
these relationships when the annotations are considered. The principle behind the
True Path Rule is after all that any gene annotated to a concept is also annotated to
a more general concept. So if we assume that the part-of -relationships defined by
inheritance are valid, we must assume that the ordering of the genes corresponds to
these relationships. The GO Consortium’s informal True Path Rule is thus flawed.
However, since the annotations created by them are supposedly based on this rule, it
may be better at this stage to neglect the inheritance rule.

Second, it seems that inheritance is not properly modeled in the ontology. One
example is the subhierarchy under Protein-nucleus import shown in Figure 6.6. Rule 3
introduces the dashed lines in this figure. According to the rule, Protein-nucleus im-
port, docking is a part of ribosomal protein-nucleus import and NF-κB protein-nucleus
import. This is biologically correct as docking is a part of these processes. However,
the genes in Protein-nucleus import, docking are not necessarily a subset of genes in
ribosomal protein-nucleus import. Protein-nucleus import, docking is a quite general
process. The docking procedure that is involved in an instance of protein-nucleus
import is really specific to that particular instance. Ribosomal protein-nucleus import

6The formal definition given in Figure 6.4 was created by the author. However, the other rules
(including Rule 3) are defined by the GO Consortium.
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Figure 6.6: Difficulties in the current ontology when applying inheritance. Potential
concepts and relations that do not exist in the current ontology are shown in gray.
The dashed lines correspond to relations introduced by Rule 3.

should therefore have a docking process like ribosomal protein-nucleus import, dock-
ing, and NF-κB protein-nucleus import should have a process like NF-κB protein-
nucleus import, docking (as shown in gray). These docking processes may contain
different genes. However, they will be instances of Protein-nucleus import, docking
so that this process will contain the genes of both processes. This means that the
genes of Protein-nucleus import, docking may not be a subset of genes in ribosomal
protein-nucleus import (and NF-κB protein-nucleus import). So, Rule 3 will produce
an incorrect ordering in this case and should not be applied.

Moreover, NF-κB protein-nucleus import has a part called regulation of NF-κB
protein-nucleus import. This part is also an instance of regulation of protein-nucleus
import, which again is a part of Protein-nucleus import. This means that regulation
of protein-nucleus import is a part of NF-κB protein-nucleus import by Rule 3. NF-
κB protein-nucleus import has therefore two regulation processes where one is more
general than the other. In this case, it seems that only the most specific concept should
be a part of NF-κB protein-nucleus import. The rule should thus not be applied or
the ontology should be changed so that regulation of protein-nucleus import is not a
part of Protein-nucleus import.

Hence, there is evidence that Rule 3 is not currently implemented, and it appears
that we may be better off by neglecting the rule for now. It was decided to not apply
the transform in the experiments in Chapter 10, but rather assume that the Gene
Ontology is DCA-compliant.

The transformation algorithm may therefore seem unnecessary. However, it is still
important. It demonstrates that the methods, which will be introduced in the next
chapters, may be used on an ontology that implements the inheritance rule. So, when
the GO becomes more mature, we may apply the transform and use these methods
on the transformed ontology. Furthermore, inheritance is a well-known concept and
may be required under other circumstances. The transform shows that the methods
may be applied in these situations as well.
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Parts of this chapter have previously been presented in [113].

7.1 Introduction

In the last chapter, we saw that the function of genes may be described by classes
that appear in a DAG. The DAG defines relationships between the classes. A learning
algorithm, which tries to predict the function of a gene, must thus consider these
relationships. However, ordinary learning algorithms cannot take such relationships
into account. DAG learning algorithms are therefore needed and will be introduced
in the next chapter.

In order to develop such algorithms, we need a formal framework that can handle
the uncertainty about the data just as in ordinary learning problems. In our case, we
would like to use rough set theory, but rough set theory cannot be used directly on
this learning problem. A decision system assumes that the decision classes constitute
a flat set and cannot represent the DAG. This means that the upper and the lower
approximations cannot be used without modifications.

A DAG-decision system is therefore introduce in this chapter. The ambiguities
that arise in the DAG are also discussed, and several approximations for the DAG-
decision system are defined.

7.2 A more general order on the DAG

As in Section 6.7, we begin by defining an ordering relation on the DAG. The following
relation is DCA-compliant.

Definition 7.1 (More general). Let G = 〈Vd, E〉 be a DAG where Vd is a set of
decision classes and E ⊆ Vd × Vd is a set of edges in the graph. The relation c < e
denotes that c is more general than e (c, e ∈ Vd) and is defined on G such that

115
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1. c < c for all c ∈ Vd

2. c < e for all 〈e, c〉 ∈ E1.

3. for all c, f ∈ Vd, c < f , if there is an e ∈ Vd such that c < e and e < f .

Definition 7.2 (Less general). c 4 e denotes that c is less general than e and holds
iff e < c

< (and 4) is a partial order as stated by the following proposition.

Proposition 7.1. < is a partial order on Vd.

Proof. < is reflexive and transitive by cases 1 and 3, respectively, and it remains to
show that < is anti-symmetric. Assume that < is not anti-symmetric. Then, there
are some classes x and y in Vd such that x < y and y < x, but x 6= y. x < y,
together with cases 2 and 3, implies that there is a path 〈y, v1, . . . , vk, x〉 from y to
x in G. Similarly, there must be a path 〈x, w1, . . . , wl, y〉 from x to y (since y < x).
Then, there is a cycle 〈x, w1, . . . , wk, y, v1, . . . , vl, x〉 in the graph, and this results in
a contradiction. Hence, < is anti-symmetric if G is acyclic. This means that < must
be a partial order.

The following relations can be derived from <.

Definition 7.3 (Strictly more general). Given a partial order < on a set of classes
Vd, we say that c is strictly more general than e (c, e ∈ Vd), denoted as c � e, iff c < e
and c 6= e.

Definition 7.4 (Related classes). Let < be a partial order on a set of classes Vd.
The classes c, e ∈ Vd are related, denoted as c ≈ e, iff c < e or e < c. If c 6≈ e, we say
that c and e are unrelated.

Notice that ≈ is reflexive and symmetric, but not transitive. The classes, which are
above, below, or related to a class c, are denoted by these sets:

• Above set: [c]< = {e ∈ Vd | e < c}

• Below set: [c]4 = {e ∈ Vd | c < e}

• Related set: [c]≈ = {e ∈ Vd | c ≈ e}

In the following, we will also need these definitions.

Definition 7.5 (Classes).

• A class c is a superclass of e if c � e. A class c is an immediate superclass of e
if it is a superclass of e and there is no f ∈ Vd such that c � f � e.

1As in Section 6.7, we assume that an edge points from the most specific to the most general
class. So, c is more general than e in this case.
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• A class c is a subclass of e if e � c. A class c is an immediate subclass of e if it
is a subclass of e and there is no f ∈ Vd such that e � f � c.

• A leaf class c has no subclasses. Hence, for all e ∈ Vd, c 6� e.

• A non-leaf class c has at least one subclass. Hence, there is some e ∈ Vd such
that c � e.

• A root class c has no superclasses. Hence, for all e ∈ Vd, e 6� c holds for c.

For a class c, the set of its immediate superclasses (Sup(c)) and the set of its
immediate subclasses (Sub(c)) are denoted respectively as follows:

Sup(c) = {e ∈ Vd | e � c and there is no f ∈ Vd such that e � f � c}
Sub(c) = {e ∈ Vd | c � e and there is no f ∈ Vd such that c � f � e}

7.3 Paths

The concept path can be defined in two different ways. In Definition A.13, a path is
defined directly on edges of the DAG. Here, we will define it on the partial order <

(and 4).

Definition 7.6 (Path). 〈c0, c1, . . . , cn〉 is path from class c0 to class cn if c0 ≺ c1 ≺
. . . ≺ cn.

In the following, we will use this definition since we will only consider the partial order
< (and 4).

By the length of a path, we mean the number of edges on the path. This number
is one less than the number of classes in the path.

Definition 7.7 (Length of a path). Let t = 〈c0, c1, . . . , cn〉 be a path. Then the
length of a path t, ||t|| = n (i.e., ||t|| is equal to the number of edges on the path).

There may be many paths between two classes. We denote the set of paths from class
a to class b as Paths(a, b).

Definition 7.8 (Paths). The set of paths from a to b (b � a), is

Paths(a, b) = {〈c0, c1, . . . , cn〉 | a = c0 ≺ c1 ≺ . . . ≺ cn = b}

In Chapters 8 and 9, we will need to perform some simple operations on paths.
s v t denotes that s is a subpath t, and e / t states that path t contains the class e.

Definition 7.9 (Subpath). Let s = 〈b0, b1, . . . , bm〉 and t = 〈c0, c1, . . . , cn〉 be two
paths. s is a subpath of t, denoted as s v t, if there is mapping such that bi = ci+j

for all 0 ≤ i ≤ m where 0 ≤ j ≤ n−m.

Definition 7.10 (Path membership). Let t = 〈c0, c1, . . . , cn〉 be a path from c0 to
cn. e / t denotes that there is some i (0 ≤ i ≤ n) such that e = ci.
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7.4 DAG-decision systems

A DAG-decision system is an extension of a decision system and is defined as follows.

Definition 7.11 (DAG-decision system). Let A = 〈U, A, d, <〉 denote a DAG-de-
cision system where

• U is a non-empty finite set of (observable) objects, called the universe.

• A is a set of conditional attributes describing the objects. Each attribute a ∈ A
is a function a : U → Va where Va is a set of values that an object may have for
a.

• d is the decision attribute, which is not in A. It is a function d : U → Vd where
Vd is a set of decision classes.

• < is a partial order on the classes in Vd where p < r denotes that p is more
general than r (p, r ∈ Vd).

Only one decision class is assigned to each object in this system. A gene may,
however, have several annotations. In order to reflect this, we also introduce a DAG-
decision system with multiple decisions for each object.

Definition 7.12 (DAG-decision system with multiple decision classes). Let
A = 〈U, A, D, <〉 denote a DAG-decision system with multiple decision classes per
object where U , A, and < are as defined in Definition 7.11. The decision attribute
D, is a function D : U → P (Vd) where P (Vd) is the power set on the decision classes
in Vd.

The upper and the lower approximations cannot be applied directly to a DAG-decision
system with multiple decisions. Hence, it seems that we would have to define new ap-
proximations for this system. Fortunately, this is not necessary. The decision system
can be transformed into an ordinary DAG-decision system with unique decisions, and
the standard approximations may be applied to the transformed system. So, we will
not introduce any approximations, but provide a transformation instead.

Definition 7.13 (Transformation). A DAG-decision system with multiple classes
per object A = 〈U, A, D, <〉 may be transformed into a DAG-decision system with a
unique class per object A′ = 〈U ′, A′, d′, <〉 as follows:

• U ′ = {〈x, d〉 | x ∈ U, d ∈ D(x)}

• A′ = {a′ | a ∈ A} where a′ is defined as a′(〈x, d〉) = a(x), for each 〈x, d〉 ∈ U ′

• d′(〈x, d〉) = d, for each 〈x, d〉 ∈ U ′

Note that the objects (genes) in the original system and their associated set of
classes may be recreated by an indiscernibility relation that partitions the universe
U ′ (in the transformed system) according to the objects in the original system.
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Definition 7.14. Let A′ = 〈U ′, A′, d′, <〉 be a transformed DAG-decision system.
The indiscernibility relation IND(G) partitions the universe into a collection of ele-
mentary sets that correspond to the objects in the original system:

IND(G) = {〈x, y〉 ∈ U ′ × U ′ | x = 〈z, dx〉 and y = 〈z, dy〉}

The generalized decision defined on IND(G) is:

∂G(x) = {d′(y) | y ∈ [x]G}

This is similar to the original set of classes so that D(x) = ∂G(〈x, dx〉) for any 〈x, dx〉 ∈
U ′. Moreover, IND(G) creates a finer partition than IND(A′). Hence, we have that
A′X = A′ GX and A′X = A′ GX .

Theorem 7.1.

a) A′X = A′ GX

b) A′X = A′ GX

Proof. Note that y ∈ [x]A iff [y]G ⊆ [x]A. This follows directly from the fact that
every object in [y]G is created from the same object in the original DAG-decision
system and has therefore the same information vector.

a) A′ GX = {x ∈ U ′ | [x]A ∩GX 6= ∅} = {x ∈ U ′ | y ∈ [x]A and y ∈ GX}
= {x ∈ U ′ | y ∈ [x]A and z ∈ [y]G and z ∈ X}

Since y ∈ [x]A iff [y]G ⊆ [x]A, we have

= {x ∈ U ′ | [y]G ⊆ [x]A and z ∈ [y]G and z ∈ X}
= {x ∈ U ′ | z ∈ [x]A and z ∈ X} = {x ∈ U ′ | [x]A ∩X 6= ∅} = A′X

b) A′ GX = {x ∈ U ′ | [x]A ∩GX 6= ∅} = {x ∈ U ′ | ∀y y ∈ [x]A → y ∈ GX}
= {x ∈ U ′ | ∀y ∀z y ∈ [x]A → (z ∈ [y]G → z ∈ X)}
= {x ∈ U ′ | ∀z (∃y y ∈ [x]A ∧ z ∈ [y]G)→ z ∈ X)}

From the property y ∈ [x]A iff [y]G ⊆ [x]A, it follows that

= {x ∈ U ′ | ∀z (∃y [y]G ⊆ [x]A ∧ z ∈ [y]G)→ z ∈ X)}
= {x ∈ U ′ | ∀z z ∈ [x]A → z ∈ X)} = {x ∈ U ′ | [x]A ⊆ X} = A′X

In the following, we will assume (unless it is explicitly stated) that the transform
has been applied such that the DAG-decision system has only unique decisions.
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7.5 The complement of a class

The complement of a class c is the set of classes that should be separated from c by
a learning algorithm. In an ordinary (flat) decision system, we want to separate each
class from the other classes in Vd. A learning algorithm will thus try to discern the
objects of c (i.e., the objects in Xc) from the objects of Vd − {c} (i.e., the objects in⋃

e∈Vd−{c} Xe = U −Xc). Hence, the complement of c may be defined as Vd − {c} in
this case.

This definition is not appropriate for a DAG-decision system. The DAG defines
relationships between the classes, and these relationships create implicit annotations.
For example, an object does not only belong to the class(es) to which it is labeled, it
also belongs to the superclasses of the class(es). Thus, we define the complement of c
to be the set of classes that are unrelated to c.

Definition 7.15 (Complement). The complement of a class c is the set of classes
that are unrelated to c:

∼c = {e ∈ Vd | e 6≈ c}
For a set of classes C ⊆ Vd, the complement, denoted by ∼C, is the set of classes that
are unrelated to any class in C:

∼C = {e ∈ Vd | for all c ∈ C, e 6≈ c}

Note that ∼{c} is same as the single class complement ∼c. The complement ∼C is
equal to the intersection of the single class complements.

Lemma 7.1. ∼C =
(⋂

c∈C ∼c
)

if we assume that
(⋂

c∈C ∼c
)

= Vd when C = ∅.
This is seen easily. So no proof is given. The complement has the following properties
on unions and intersections of classes.

Lemma 7.2. ∼(C ∪D) = ∼C ∩ ∼D

Proof. Follows directly from Lemma 7.1.

Lemma 7.3. ∼(C ∩D) ⊇ ∼C ∪ ∼D

Proof. According to Lemma A.4, we have that A ∩ B ⊆ A holds for any sets A and
B. So, ∼C ⊆ ∼(C ∩D) since

∼C =
⋂

c∈C

∼c =




⋂

c∈(C∩D)

∼c


 ∩




⋂

c∈(C−D)

∼c


 ⊆

⋂

c∈(C∩D)

∼c = ∼(C ∩D)

Similarly, ∼D ⊆ ∼(C ∩D). Then ∼C ∪ ∼D ⊆ ∼(C ∩D) holds since for any sets A,
A′, and B, we have that A ⊆ B and A′ ⊆ B implies A ∪ A′ ⊆ B by Lemma A.5.

Unfortunately, C 6= ∼(∼C). For example, let C = {c} in Figure 7.1, then ∼C =
{b1, b2, b3} and ∼(∼C) = {c, d1}. C is nonetheless a subset of ∼(∼C).
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Lemma 7.4. C ⊆ ∼(∼C)

Proof. Assume false. Then, there must be an x ∈ C, which is not in ∼(∼C). Since
x 6∈ ∼(∼C), there must be a y ∈ ∼C such that x ≈ y. However, if y ∈ ∼C implies
that x 6≈ y since x ∈ C. So, we obtain a contradiction.

Even though ∼(∼C) ⊆ C does not hold, we may prove that ∼(∼(∼C)) ⊆ ∼C.

Lemma 7.5. ∼C = ∼(∼(∼C))

Proof. ∼C ⊆ ∼(∼(∼C)) follows from Lemma 7.4. Therefore, consider the statement
∼(∼(∼C)) ⊆ ∼C. Assume that it does not hold so that there is an x ∈ ∼(∼(∼C)),
but x 6∈ ∼C. Then x must be related to some c′ ∈ C since x 6∈ ∼C. This c′ must
also be in ∼(∼C) since C ⊆ ∼(∼C) (by Lemma 7.4). Then we have that x ≈ c′ holds
for some c′ ∈ ∼(∼C). This means that x cannot be in ∼(∼(∼C)). Hence, we have
obtained a contradiction so that ∼(∼(∼C)) ⊆ ∼C must be true.

We may also prove a weak subset relation between ∼(∼C) and C.

Lemma 7.6. For all e ∈ Vd, if there is some c′ ∈ ∼(∼C), such that e ≈ c′ and
c′ ∈ ∼(∼C) then there is also some c ∈ C such that e ≈ c.

Proof. Choose an arbitrary e ∈ Vd. If c′ ∈ ∼(∼C) and e ≈ c′, we know that e 6∈ ∼C
since c′ cannot be related to any c′′ ∈ ∼C according to Definition 7.15. Since e 6∈ ∼C,
there must be some c ∈ C such that e ≈ c.

Thus, the set of classes related to the classes in ∼(∼C) is a subset of the classes related
to the classes in C. This lemma allows us to derive several important lemmas that
will be needed in the next sections. In particular, we may prove following properties
on C and ∼(∼C).

Lemma 7.7.

a) [e]≈ ∩ ∼(∼C) 6= ∅ ⇔ [e]≈ ∩ C 6= ∅

b) [e]4 ∩ C 6= ∅ ⇒ [e]≈ ∩ C 6= ∅

c) [e]< ∩ C 6= ∅ ⇒ [e]≈ ∩ C 6= ∅

d) [e]4 ∩ C 6= ∅ ⇒ [e]4 ∩ ∼(∼C) 6= ∅

e) [e]< ∩ C 6= ∅ ⇒ [e]< ∩ ∼(∼C) 6= ∅

Proof.

a) The statement that [e]≈ ∩ ∼(∼C) 6= ∅ implies [e]≈ ∩ C 6= ∅ is a direct con-
sequence of Lemma 7.6. The opposite statement that [e]≈ ∩ C 6= ∅ implies
[e]≈ ∩ ∼(∼C) 6= ∅ follows from Lemma A.1 since C ⊆ ∼(∼C).
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b) Follows from Lemma A.1 since [e]4 ⊆ [e]≈.

c) Follows from Lemma A.1 since [e]< ⊆ [e]≈.

d) Follows from Lemma A.1 since C ⊆ ∼(∼C) by Lemma 7.4.

e) Follows from Lemma A.1 since C ⊆ ∼(∼C) by Lemma 7.4.

The above set [e]< and the below set [e]4 of a class e are related through the
complement such that if some class in ∼(∼C) is in the above set (below set) then
no class in ∼C is in the below set (above set), and vice versa. Note this is due to a
special property of the complement and does not hold for C.

Lemma 7.8. For all e ∈ Vd, if x ∈ [e]< and y ∈ [e]4 then x < y.

Proof. x ∈ [e]< implies x < e, and y ∈ [e]4 implies e < y. Then, x < y by transitiv-
ity.

Lemma 7.9. [e]4 ∩ ∼(∼C) 6= ∅ iff [e]< ∩ ∼C = ∅

Proof.

⇒: There must be some y in [e]4 ∩∼(∼C) since this set is non-empty. Then y ∈ [e]4

and y ∈ ∼(∼C). By Lemma 7.8, x < y holds for any x ∈ [e]<. Since y ∈ ∼(∼C)
and x ≈ y, x must be related to some c ∈ C by Lemma 7.6. As this holds for
any x ∈ [e]<, no x ∈ [e]< may be in ∼C. Hence, [e]< ∩ ∼C must be empty.

⇐: No y ∈ [e]< may be in ∼C since [e]<∩∼C = ∅. This means that for every y ∈ [e]<

there is some c ∈ C such that y ≈ c. In particular, e ∈ [e]< such that e ≈ c′

holds for some c′ ∈ C. Then, e < c′ or c′ < e must hold.

1. If e < c′, we have that c′ ∈ [e]4 so that [e]4 ∩ C 6= ∅ holds. Then,
[e]4 ∩ ∼(∼C) 6= ∅ follows from [e]4 ∩ C 6= ∅ by Lemma 7.7d.

2. If c′ < e, we show that e ∈ ∼(∼C) such that [e]4 ∩ ∼(∼C) 6= ∅. If
e 6∈ ∼(∼C) then there must be some z ∈ ∼C such that z ≈ e.

If z < e, z ∈ [e]< and [e]< ∩ ∼C would not be empty. Contradiction.

If e < z, we have c′ < e < z and z cannot be in ∼C. Contradiction.

Lemma 7.10. [e]< ∩ ∼(∼C) 6= ∅ iff [e]4 ∩ ∼C = ∅

Proof.

⇒: Since [e]<∩∼(∼C) 6= ∅, there must be some y such that y ∈ [e]< and y ∈ ∼(∼C).
y < x holds for any x ∈ [e]4 by Lemma 7.8. Since y ∈ ∼(∼C) and x ≈ y, x
must be related to some c ∈ C by Lemma 7.6. Thus, no x ∈ [e]4 may be in ∼C,
and [e]4 ∩ ∼C must be empty.
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⇐: No y ∈ [e]4 may be in ∼C since [e]4 ∩ ∼C = ∅. This means that for every
y ∈ [e]4 there is some c ∈ C such that y ≈ c. In particular, e ∈ [e]4 such that
e ≈ c′ holds for some c′ ∈ C. Then, e < c′ or c′ < e must hold.

1. If c′ < e, we have that c′ ∈ [e]< so that [e]< ∩ C 6= ∅ holds. Then,
[e]< ∩ ∼(∼C) 6= ∅ follows from [e]< ∩ C 6= ∅ by Lemma 7.7e.

2. If e < c′, we show that e ∈ ∼(∼C) such that [e]< ∩ ∼(∼C) 6= ∅. If
e 6∈ ∼(∼C) then there must be some z ∈ ∼C such that z ≈ e.

If e < z, z ∈ [e]4 and [e]4 ∩ ∼C would not be empty. Contradiction.

If z < e, we have z < e < c′ and z cannot be in ∼C. Contradiction.

7.6 Ambiguities in the DAG

In set theory, the membership of all objects in the universe is assumed to be known.
An object y is either a member of a set X or it is not. This is also the starting
point in rough set theory, but here an elementary set may belong to both X and the
complement U −X . In this case, we say that the membership is inconsistent. Hence,
rough set theory distinguishes between three different ways that an element can be
related to a set: in, not in, and inconsistent.

We may also recognize a fourth membership category; it may be unknown whe-
ther an object belongs to a set or not. This situation arises in the DAG as shown in
Figure 7.1 for class c. The objects of the superclasses a and root may belong to c or
some of the classes that are unrelated to c, i.e., b1, b2, and b3. However, we do not
know which class. The membership of these objects is in other words unknown with
respect to c.

This means that a framework for a DAG-decision system must be able to represent
objects whose memberships are unknown. Since rough set theory does not have such
facilities, we must extend it. We do this by employing the same strategy as rough set
theory and define a lower and an upper boundary for each class. The lower boundary
Kc, which is also called the known set, basically consists of the objects that belong to
the class c or to the subclasses of c. Note that the objects of the subclasses are included
in this set since they are also members of c. The upper boundary Pc, which is also
called the potential set, is a superset of Kc. It contains the objects of the superclasses
of c in addition to the objects of Kc. Using these two sets, we can represent the
unknown objects with regard to c as the difference Pc −Kc.

Formally, we could try to define the lower and the upper boundaries as follows:

Kc = {x ∈ U | c < d(x)} (= {x ∈ U | [d(x)]< ∩ {c} 6= ∅})
Pc = {x ∈ U | c ≈ d(x)} (= {x ∈ U | [d(x)]≈ ∩ {c} 6= ∅})
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root

a

c

d1 d2

b2

b1

e1 e2

b3b3

P{c}

K{c}

P{c}

K{c}
not c

unknown

c

subclasses of c

subclasses of d2

Figure 7.1: Discernibility of the class c.

For a set of classes C ⊆ Vd, these boundaries could also be defined as the union of the
corresponding boundaries of each class, i.e.,

KC =
⋃

c∈C

Kc = {x ∈ U | [d(x)]< ∩ {c} 6= ∅, for some c ∈ C} and

PC =
⋃

c∈C

Pc = {x ∈ U | [d(x)]≈ ∩ {c} 6= ∅, for some c ∈ C}

Unfortunately, these definitions are complicated for several reasons.
One problem is that these boundaries are not complementary. We would like KC

to be complementary to P∼C (i.e., KC = U − P∼C) and PC to be complementary to
K∼C (i.e., PC = U −K∼C). Unfortunately, KC = U − P∼C does not hold.

Example 7.1. Assume that C = {d1, d2} in Figure 7.1. Then KC consists of the
objects in d1, d2, e1, and e2. The complement ∼C is, in this case, equal to {b1, b3},
and P∼C consists of the objects in root, a, b1, b2, and b3. However, the objects in c
do not occur in either set.

The reason that the objects of the class c do not occur in KC and P∼C in the
last example is that c has no other immediate subclasses than d1 and d2. All of its
subclasses are related to C so that no class in the complement ∼C is related to c. Its
objects are therefore not included in P∼C . Moreover, c 6∈ C so that its objects are not
in KC , either.

Notice that this issue is not specific to a DAG. It occurs in a tree as well (see
Section 7.6.2). The problem also arises when a class has only a single child.

Example 7.2. Assume that the edge from d2 to c is removed in Figure 7.1. In this
case, d1 is a lonely child of c. If C = {d1}, then ∼C = {b1, b2, b3, d2, e1, e2} and the
objects of c are in neither KC nor P∼C .

We may correct this problem by changing the definition of either KC or P∼C .
However, it would be counter-intuitive to define P∼C so that it included the objects
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of c in Example 7.1. Class c is not a superclass of any class in ∼C, and its objects
are not potential members of these classes. On the other hand, if we assume that the
objects of c must belong to either d1 or d2, we know that the objects of c belong to C
since C includes both classes. Hence, KC should include objects from a class if all of
its subclasses are related to C. More formally, object x should be in KC if x satisfies

∀e∈Vd (d(x) < e→ ∃c∈C e ≈ c)

This is equivalent to
¬ (∃e∈Vd (d(x) < e ∧ e ∈ ∼C))

which may be expressed as follows using the below set of d(x)

[d(x)]4 ∩ ∼C = ∅2 (Cond. 1)

Note that this condition subsumes the condition in KC (as shown by the following
lemma). Thus, the objects in KC will also satisfy Cond. 1, and we may replace the
condition in the definition of KC with Cond. 1.

Lemma 7.11. [e]< ∩ {c} 6= ∅, for some c ∈ C implies [e]4 ∩ ∼C = ∅
Proof. [e]< ∩ {c} 6= ∅, for some c ∈ C is equivalent to [e]< ∩ C 6= ∅ by Lemma A.2.
[e]<∩C 6= ∅ implies [e]< ∩∼(∼C) 6= ∅ by Lemma 7.7e. [e]< ∩∼(∼C) 6= ∅ is equivalent
to [e]4 ∩ ∼C = ∅ by Lemma 7.10.

There is another problem with the boundary sets. A class may have several im-
mediate superclasses in a DAG. This means that some objects may be included in the
(lower and upper) boundaries of both a set C and the complement ∼C.

Example 7.3. Consider Figure 7.1 again. If C = {c}, we have ∼C = {b1, b2, b3}.
The classes d2, e1, and e2 are subclasses of c and b2. Hence, they are below a class in
C and a class in ∼C. Their objects will consequently be in both KC and K∼C (and
PC and P∼C).

The DAG introduces in this way a new type of inconsistency, which we will call
DAG-inconsistency. Thus, we have to define upper and lower approximations of KC

and PC . The upper approximations contain all objects from the subclasses of the
classes in C, just as before. The lower approximations, on the other hand, do not
contain the objects from subclasses, which introduce this kind of inconsistency.

A DAG-inconsistency occurs when a subclass of a class in C also has another
superclass in ∼C. The subclass has in this case a superclass that is not related to
any class in C. Hence, the objects of a class should only be included in the lower
approximations if all superclasses are related to a class in C. Formally, object x
should be included in the lower approximations if

∀e∈Vd (e < d(x)→ ∃c∈C e ≈ c)

2In [113], we used the first condition that is stated in first-order logic. Here, we will use the set
based condition instead as these simplify the proofs.
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which is equivalent to
[d(x)]< ∩ ∼C = ∅ (Cond. 2)

Note that it is necessary to define this condition for a set of classes since a DAG-
inconsistency that occurs for a single class may disappear if a set is considered.

Example 7.4. Let C ′ = {c, b2} (in Figure 7.1), which is a superset of C in Exam-
ple 7.3. In this case, ∼C ′ = {b1}, and the objects of d2, e1, and e2 belong only to
KC′ and PC′ and not to K∼C′ and P∼C′ . So the DAG-inconsistency that occurred
for c in Example 7.3 has vanished.

We may define the following upper and lower approximations of the boundary sets:

• KC = {x ∈ U | Cond. 1 and Cond. 2}
• KC = {x ∈ U | Cond. 1}
• P C = {x ∈ U | [d(x)]≈ ∩ C 6= ∅ and Cond. 2}
• P C = {x ∈ U | [d(x)]≈ ∩ C 6= ∅}

Some simplifications are possible, however. The conditions in KC , [e]4 ∩ ∼C = ∅
(Cond. 1) and [e]< ∩ ∼C = ∅ (Cond. 2), may be combined into [e]≈ ∩ ∼C = ∅. This
follows from Lemma A.2 and that [e]≈ = [e]4∪ [e]<. Cond. 2 also implies [e]≈∩C 6= ∅.
Thus, the first condition in P C may be removed.

Lemma 7.12. [e]< ∩ ∼C = ∅ implies [e]≈ ∩ C 6= ∅
Proof. [e]< ∩ ∼C = ∅⇔ [e]4 ∪ ∼(∼C) = ∅ (Lemma 7.9)

⇒ [e]≈ ∩ ∼(∼C) 6= ∅ (Lemma 7.7b)

⇔ [e]≈ ∩ C 6= ∅ (Lemma 7.7a)

This results in the following boundary sets.

Definition 7.16 (Boundary sets). Given a set of classes C ⊆ Vd, the following sets
constitute the upper and the lower approximations of the known and the potential
objects of C:

• KC = {x ∈ U | [d(x)]≈ ∩ ∼C = ∅}
• KC = {x ∈ U | [d(x)]4 ∩ ∼C = ∅}
• P C = {x ∈ U | [d(x)]< ∩ ∼C = ∅}
• P C = {x ∈ U | [d(x)]≈ ∩ C 6= ∅}

7.6.1 Properties of the boundaries

In this section, we will examine the properties of the boundary sets. The first theorem
shows that the boundary sets are complementary.
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Theorem 7.2. Given a set of classes C ⊆ Vd, the following complements hold:

a) K∼C = U − P C

b) K∼C = U − P C

c) P∼C = U −KC

d) P∼C = U −KC

Proof.

a) K∼C = {x ∈ U | [d(x)]≈ ∩ ∼(∼C) = ∅}
= U − {x ∈ U | [d(x)]≈ ∩ ∼(∼C) 6= ∅}
= U − {x ∈ U | [d(x)]≈ ∩ C 6= ∅} (Lemma 7.7a)

= U − P C

b) K∼C = {x ∈ U | [d(x)]4 ∩ ∼(∼C) = ∅} = U − {x ∈ U | [d(x)]4 ∩ ∼(∼C) 6= ∅}
= U − {x ∈ U | [d(x)]< ∩ ∼C = ∅} (Lemma 7.9)

= U − P C

c) P∼C = {x ∈ U | [d(x)]< ∩ ∼(∼C) = ∅} = U − {x ∈ U | [d(x)]< ∩ ∼(∼C) 6= ∅}
= U − {x ∈ U | [d(x)]4 ∩ ∼C = ∅} (Lemma 7.10)

= U −KC

d) P∼C = {x ∈ U | [d(x)]≈∩∼C 6= ∅} = U−{x ∈ U | [d(x)]≈∩∼C = ∅} = U−KC

It follows from this theorem that the boundary set on ∼∼C is equal to the boundary
set on C. So, applying double negation to C produces the same known and potential
sets as C.

Corollary 7.1.

a) K∼(∼C) = KC

b) K∼(∼C) = KC

c) P∼(∼C) = P C

d) P∼(∼C) = P C

Proof. Using Theorem 7.2b and 7.2c, we have for option b that K∼(∼C) = U−P∼C =

U − (U − KC) = KC . The other propositions are proven in the same manner by
applying Theorem 7.2.

We will now examine the properties of the boundaries with respect to unions and
intersections. We begin with unions. Given the discussion in Section 7.6, it should
not be a surprise that the boundary sets, except for P C , do not maintain unions.
However, we may prove a weaker property. For each boundary set, it holds that the
boundary set on C ∪D is a superset of the union of the individual boundary sets on
C and D (where C and D are sets of classes).
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Lemma 7.13. Given two set of classes C and D, the following properties hold:

a) KC∪D ⊇ KC ∪KD

b) KC∪D ⊇ KC ∪KD

c) P C∪D ⊇ P C ∪ P D

d) P C∪D = P C ∪ P D

Proof.

a) KC∪D = {x ∈ U | [d(x)]≈ ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]≈ ∩ (∼C ∩ ∼D) = ∅} (Lemma 7.2)

⊇ {x ∈ U | [d(x)]≈ ∩ ∼C = ∅ or [d(x)]≈ ∩ ∼D = ∅} (Lemma A.3)

= KC ∪KD

b) KC∪D = {x ∈ U | [d(x)]4 ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]4 ∩ (∼C ∩ ∼D) = ∅} (Lemma 7.2)

⊇ {x ∈ U | [d(x)]4 ∩ ∼C = ∅ or [d(x)]4 ∩ ∼D = ∅} (Lemma A.3)

= KC ∪KD

c) P C∪D = {x ∈ U | [d(x)]< ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]< ∩ (∼C ∩ ∼D) = ∅} (Lemma 7.2)

⊇{x ∈ U | [d(x)]< ∩ ∼C = ∅ or [d(x)]< ∩ ∼D = ∅} (Lemma A.3)

= P C ∪ P D

d) P C∪D = {x ∈ U | [d(x)]≈ ∩ (C ∪D) 6= ∅}
= {x ∈ U | [d(x)]≈ ∩ C 6= ∅ or [d(x)]≈ ∩D 6= ∅} (Lemma A.2)

= P C ∪ P D

None of the boundary sets maintains intersections. Still, we can show that a
boundary set on C ∩D is a subset of the intersection of the boundary sets on C and
D.

Lemma 7.14. Given two set of classes C and D, the following properties hold:

a) KC∩D ⊆ KC ∩KD

b) KC∩D ⊆ KC ∩KD

c) P C∩D ⊆ P C ∩ P D

d) P C∩D ⊆ P C ∩ P D

Proof.

a) This follows directly from options b and c as KC is an intersection of KC and
P C .
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b) KC∩D = {x ∈ U | [d(x)]4 ∩ ∼(C ∩D) = ∅}
⊆ {x ∈ U | [d(x)]4 ∩ (∼C ∪ ∼D) = ∅} (Lemmas 7.3 and A.1)
= {x ∈ U | [d(x)]4 ∩ ∼C = ∅ and [d(x)]4 ∩ ∼D = ∅} (Lemma A.2)

= KC ∩KD

c) PC∩D = {x ∈ U | [d(x)]< ∩ ∼(C ∩D) = ∅}
⊆ {x ∈ U | [d(x)]< ∩ (∼C ∪ ∼D) = ∅} (Lemmas 7.3 and A.1)
= {x ∈ U | [d(x)]< ∩ ∼C = ∅ and [d(x)]< ∩ ∼D = ∅} (Lemma A.2)

= P C ∩ P D

d) PC∩D = {x ∈ U | [d(x)]≈ ∩ (C ∩D) 6= ∅}
⊆ {x ∈ U | [d(x)]≈ ∩ C 6= ∅ and [d(x)]≈ ∩D 6= ∅} (Lemma A.3)

= P C ∩ P D

Note that the properties in Lemma 7.13 and Lemma 7.14 are similar to the prop-
erties of the upper and the lower approximations, which were given in Section 4.3.
The lower approximation does not maintain unions, and the upper approximation
does not maintain intersections. Similar results hold also for rough set memberships
functions where the membership functions on X ∪ Y and X ∩ Y cannot be computed
from the memberships functions on X and Y (see [136] for more details).

With regard to intersections it should be mentioned that KC∩D and KC ∩ KD

describe different concepts (the situation is similar for the other boundary sets). C∩D
is the set of classes that C and D have in common, and KC∩D is the set of objects that
belong to these classes. KC∩KD, on the other hand, is the set of objects that C and D
have in common. For example, if we consider the DAG in Figure 7.1 and set C = {e1}
and D = {d2}, then KC∩D will be empty, while KC∩KD will contain the objects that
are labeled to e1. In this case, KC ∩KD seems more useful than KC∩D and appeals
more to our intuition. In particular, KC∩D ignores the relationships between the
classes. It is therefore a question if intersection is an interesting operator for classes.
An operator that takes the relationships into account would probably be more useful.
For example, we could define an operator like C e D = {c ∈ C ∪D | c ≈ e, for some
e ∈ C and c ≈ f , for some f ∈ D}. However, we will not need such an operator in
this thesis and will not pursue this issue any further.

7.6.2 Some special cases

When the DAG is a tree

A tree is a special case of a DAG. Many ontologies for the characterization of genes
are represented as taxonomies, and most of these are trees. So, if we choose another
ontology than the Gene Ontology, it might be only a tree. We therefore investigate
what restrictions that may be made to the framework if the ontology is a tree.

A rooted DAG is a tree if there is only one path from any class e in the DAG to
the root class. This means that all classes in the above set [e]< must be related.
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Definition 7.17 (Tree). The DAG is a tree if it is rooted with a root class > (see
Definition A.16) and for each class e ∈ Vd−{>} there is a unique path e = e1 ≺ e2 ≺
· · · ≺ en = > from e to >.

Lemma 7.15. If the DAG is a tree, then for each class e ∈ Vd it holds that all
superclasses of e are related: For all x, y ∈ [e]< ⇒ x ≈ y

Proof. Assume that the lemma is false. Then x′, y′ are in [e′]< for some e′ ∈ Vd, and
x′ 6≈ y′. Since the DAG is a tree, there is a unique path e′ = e1 ≺ e2 ≺ · · · ≺ en = >.
We may assume without loss of generality that x′ is on this path. This means that
y′ is not on the path since x′ 6≈ y′. However, y′ < e′ since y ∈ [e′]< and > < y′ since
the DAG is rooted (see Definition A.16). There must consequently be a path from e′

to > that passes through y′. Hence, we have two paths from e′ to > and obtain a
contradiction since the path between e′ and > was supposed to be unique.

A tree has some special properties. In particular, a class has only one immediate
superclass. This means that there cannot be any conflict where a class has one super-
class that belongs to C and another superclass that belongs to the complement ∼C.
In other words, no DAG-inconsistency may occur. The difference between the upper
and the lower approximations of KC and PC vanishes.

Lemma 7.16. If the DAG forms a tree, then for any e ∈ Vd,

a) [e]≈ ∩ C 6= ∅ implies [e]< ∩ ∼C = ∅

b) [e]4 ∩ ∼C = ∅ implies [e]< ∩ ∼C = ∅

Proof.

a) If [e]≈ ∩ C 6= ∅, then there is some c′ ∈ C such that e ≈ c′. If e < c′, every
x ∈ [e]< is related to c′ since x < e < c′. If c′ < e, then c′ ∈ [e]< and
Lemma 7.15 implies that any x ∈ [e]< is related to c′. Thus, no x ∈ [e]< is in
∼C, and [e]< ∩ ∼C = ∅.

b) [e]4 ∩ ∼C = ∅⇔ [e]< ∩ ∼(∼C) 6= ∅ (Lemma 7.10)

⇒ [e]≈ ∩ ∼(∼C) 6= ∅ (Lemma 7.7c)

⇔ [e]≈ ∩ C 6= ∅ (Lemma 7.7a)

⇒ [e]< ∩ ∼C = ∅ (From option a)

Theorem 7.3. If the DAG forms a tree, KC = KC and P C = P C .

Proof. KC = KC follows immediately from Lemma 7.16b. P C = PC follows from
Lemma 7.16a (and Lemma 7.12).
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When the DAG is well-defined

In Section 7.6, we had to make several adjustments to the boundary sets since they
were not complementary. In particular, it was necessary to assign the objects in a
class e to the known set of C if all of its subclasses were related to a class in C (even
though e was not a subclass of any class in C). Similarly, if a class c was a lonely
child of a class f , f had to be assigned to the known set of c.

It is possible, however, to avoid these complications, if we consider only single
classes and assume that the DAG is well-defined such that there are no lonely chil-
dren. In this case, the boundary sets may be simplified. We will consider these
simplifications in this section. We begin with a definition of what it means for a DAG
to be well-defined.

Definition 7.18 (Well-defined DAG). A DAG is well-defined if it holds for every
non-leaf class e that for each subclass of e there is another subclass of e such that
these subclasses are unrelated. In other words, for any e, x ∈ Vd if e � x then there is
some y ∈ Vd such that e � y and x 6≈ y.

We may now define the alternative boundary sets for a single class.

Definition 7.19 (Boundary sets for a single class). Given a (single) class c, the
following sets constitute the upper and the lower approximations of the known and
the potential objects of c:

• K∗
c = {x ∈ U | c < d(x) and ¬∃f ∈ ∼{c} f < d(x)}

= {x ∈ U | [d(x)]< ∩ {c} 6= ∅ and [d(x)]< ∩ ∼{c} = ∅}

• K∗
c = {x ∈ U | c < d(x)} = {x ∈ U | [d(x)]< ∩ {c} 6= ∅}

• P ∗
c = {x ∈ U | ¬∃f ∈ ∼{c} f < d(x)}= {x ∈ U | [d(x)]< ∩ ∼{c} = ∅}

• P ∗
c = {x ∈ U | c ≈ d(x)} = {x ∈ U | [d(x)]≈ ∩ {c} 6= ∅}

It follows immediately from this definition and Definition 7.16 that P ∗
c = P {c}

and P ∗
c = P {c}. So, the single-class potential sets may be used even when the DAG

is not well-defined. The problem lies with the known sets where only K∗
c ⊆ K{c}

and K∗
c ⊆ K{c} hold generally. Still, if the DAG is well-defined, we may prove

the following lemmas. They imply that the original set-based known sets and the
alternative single-class known sets must be equal for a single class.

Lemma 7.17. If the DAG is well-defined, then [e]4 ∩ ∼{c} = ∅ ⇔ [e]< ∩ {c} 6= ∅.

Proof.

⇐: Always true, since [e]<∩∼(∼{c}) 6= ∅ follows from [e]<∩{c} 6= ∅ by Lemma 7.7e,
and [e]4 ∩ ∼{c} = ∅ follows from [e]< ∩ ∼(∼{c}) 6= ∅ by Lemma 7.10.
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⇒: If [e]4 ∩ ∼{c} = ∅, then e 6∈ ∼{c} such that e ≈ c. If e � c, there is also some
e � y such that y 6≈ c since the DAG is well-defined. Then y ∈ ∼{c} and
[e]4 ∩ ∼{c} is not empty since y ∈ [e]4. Thus, c < e must hold, and this is
equivalent to [e]< ∩ {c} 6= ∅.

Theorem 7.4. If the DAG is well-defined, then

a) K∗
c = K{c}

b) K∗
c = K{c}

Proof.

a) [d(x)]≈ ∩ ∼{c} = ∅ (in K{c}) is equivalent to [d(x)]4 ∩ ∼{c} = ∅ and [d(x)]< ∩
∼{c} = ∅. Lemma 7.17 states that [d(x)]4 ∩ ∼{c} = ∅ ⇔ [d(x)]< ∩ {c} 6= ∅.
[d(x)]< ∩ ∼{c} = ∅ is obviously true in both sets.

b) Follows immediately from Lemma 7.17.

The complement of a single class is a set of classes. Thus, we need boundary sets
that apply to a set of classes in order to find the known and the potential objects of the
complement. Such boundary set could perhaps be found by taking the union of the
single-class boundary sets, which belong to the classes in the complement. However,
the previous discussion and Lemma 7.13 entails that a union of single-class boundary
sets are only a subset of the corresponding set-based boundary set. This suggests that
the complement of a single class may not be found with the single-class boundary sets.
So their utility may appear limited.

However, the complement is a very special set so that the single-class boundary
sets may still be useful. When a set-based boundary set is applied to a set of classes,
it may add some classes that would not be included by the union of the single-class
boundary set (This is the reason why a set-based boundary set is superset of the union
of the corresponding single-class boundary sets). However, no classes will be added
if a boundary set is applied to the complement since the complement has a special
property; any class that possibly could be added by the boundary set is already in the
complement. The union of single-class boundary sets is thus equal to the set-based
boundary set in this case. This will be proven in Theorem 7.5.

This definition defines the boundary sets for the complement by using the union
of single-class boundary sets.

Definition 7.20 (Boundary set for complement). Let C be a set of classes. The
following sets denote the the upper and the lower approximations of the known and
the potential objects of ∼C:

• K∗
∼C =

⋃
c∈∼C K∗

c

• K∗
∼C =

⋃
c∈∼C K∗

c
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• P ∗
∼C =

⋃
c∈∼C P ∗

c

• P ∗
∼C =

⋃
c∈∼C P ∗

c

The following lemmas prove several properties that we will need in Theorem 7.5.

Lemma 7.18. [e]< ∩ {c} 6= ∅ holds for some c ∈ ∼C iff [e]4 ∩ ∼(∼C) = ∅.

Proof. The statement that [e]< ∩ {c} 6= ∅ holds for some c ∈ ∼C is equivalent to
[e]< ∩

(⋃
c∈∼C{c}

)
6= ∅ by Lemma A.2, and ∼C =

⋃
c∈∼C{c}. [e]< ∩∼C 6= ∅ is again

equivalent to [e]4 ∩ ∼(∼C) = ∅ by Lemma 7.9.

Lemma 7.19. If [e]< ∩ ∼{c} = ∅ holds for some c ∈ C then [e]< ∩ ∼C = ∅.

Proof. The statement that [e]< ∩ ∼{c} = ∅ holds for some c ∈ C implies [e]< ∩⋂
c∈C ∼{c} = ∅ by Lemma A.3. Lemma 7.1 states that ∼C =

⋂
c∈C ∼{c}. Hence,

[e]< ∩ ∼C = ∅ is equivalent to [e]< ∩⋂c∈C ∼{c} = ∅.

Lemma 7.20. If [e]< ∩ ∼(∼C) = ∅ then [e]< ∩ ∼{c} = ∅ holds for some c ∈ ∼C.

Proof. If [e]<∩∼(∼C) = ∅ holds, then every x ∈ [e]< must be related to some y ∈ ∼C
such that x 6∈ ∼(∼C). In particular, e must be related to some y′ ∈ ∼C. Then, e < y′

or y′ < e holds.

1. If e < y′, all x ∈ [e]< must be above or equal to y′ since x < e < y′. Then
x ≈ y′ such that no x is in ∼{y′}. Hence, [e]< ∩ ∼{y′} = ∅.

2. If y′ < e, we may prove that e is also in ∼C. Assume that this is false such that
e 6∈ ∼C. Then some c ∈ C must be related to e. So e < c or c < e must hold.

(a) If e < c, then y′ < e < c and y′ ≈ c. So y′ cannot be in ∼C. Contradiction.

(b) If c < e, then c ∈ [e]<, and [e]< ∩ ∼(∼C) cannot be not empty since
C ⊆ ∼(∼C). Contradiction.

Hence, e ∈ ∼C, and it follows that [e]< ∩ ∼{e} = ∅ since no x ∈ [e]< is in
∼{e}.

Lemma 7.21. If [e]< ∩ {c1} 6= ∅ holds for some c1 ∈ ∼C and [e]< ∩∼{c2} = ∅ holds
for some c2 ∈ ∼C then e ∈ ∼C.

Proof. Assume false. Then e 6∈ ∼C and [e]< ∩ {c′1} 6= ∅ and [e]< ∩ ∼{c′2} = ∅ holds
for some c′1, c

′
2 ∈ ∼C. Then e must be related to some y ∈ C (since e 6∈ ∼C). Then

e < y or y < e must hold.

1. If e < y, then c′1 < e < y since [e]< ∩ {c′1} 6= ∅. So c′1 ≈ y, and c′1 cannot be in
∼C. Contradiction.

2. If y < e, then y ∈ [e]<. From [e]< ∩ ∼{c′2} = ∅, we have that y cannot be in
∼{c′2}. Hence, y ≈ c′2, and c′2 cannot be in ∼C. Contradiction.
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Theorem 7.5.

a) K∗
∼C = K∼C

b) K∗
∼C = K∼C

c) P ∗
∼C = P∼C

d) P ∗
∼C = P∼C

Proof.

a) We have that

K∗
∼C =

⋃

c∈∼C

K∗
c

= {x ∈ U | [d(x)]< ∩ {c} 6= ∅ and [d(x)]< ∩ ∼{c} = ∅, for some c ∈ ∼C}
The condition

[d(x)]< ∩ {c} 6= ∅ and [d(x)]< ∩ ∼{c} = ∅, for some c ∈ ∼C (Cond. 3)

is equivalent to

[d(x)]< ∩ {c1} 6= ∅, for some c1 ∈ ∼C and

[d(x)]< ∩ ∼{c2} = ∅, for some c2 ∈ ∼C
(Cond. 4)

Condition 3 implies condition 4 (Just set c1 = c2 = c). Lemma 7.21 says
that if condition 4 is true, then d(x) ∈ ∼C. Since [d(x)]< ∩ {d(x)} 6= ∅ and
[d(x)]< ∩ ∼{d(x)} = ∅ are always true, the condition 3 must be true. Hence,

K∗
∼C =

{
x ∈ U

[d(x)]< ∩ {c1} 6= ∅, for some c1 ∈ ∼C and
[d(x)]< ∩ ∼{c2} = ∅, for some c2 ∈ ∼C

}

The first part of the condition in this set is equivalent to [d(x)]4 ∩ ∼(∼C) = ∅
by Lemma 7.18, and the second part is equivalent to [d(x)]< ∩ ∼(∼C) = ∅ by
Lemma 7.19 (substitute ∼C for C) and Lemma 7.20. So,

K∗
∼C = {x ∈ U | [d(x)]4 ∩ ∼(∼C) = ∅ and [d(x)]< ∩ ∼(∼C) = ∅}

= {x ∈ U | [d(x)]≈ ∩ ∼(∼C) = ∅} = K∼C

b) K∗
∼C =

⋃
c∈∼C K∗

c = {x ∈ U | [d(x)]< ∩ {c} 6= ∅, for some c ∈ ∼C}
= {x ∈ U | [d(x)]4 ∩ ∼(∼C) = ∅} = K∼C

Follows from Lemma 7.18.

c) P ∗
∼C =

⋃
c∈∼C P ∗

c = {x ∈ U | [d(x)]< ∩ ∼{c} = ∅, for some c ∈ ∼C}
= {x ∈ U | [d(x)]< ∩ ∼(∼C) = ∅} = P∼C

Follows from Lemma 7.19 (insert ∼C for C) and 7.20

d) Follows immediately from the definitions (and Lemma 7.13d).

Thus, if one assumes that the DAG is well-defined and considers only single classes
and their complements, one may actually use the alternative boundary sets instead
of the set-based boundaries. We will use these boundary sets in Chapter 8.
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Indiscernibility Consistent Indiscernibility Inconsistent

DAG-Consistent DAG-Inconsistent DAG-Consistent DAG-Inconsistent

Known

BK(C) BK (C) BK(C) BK (C)

Likely
known

BL(C) BL (C) BL(C) BL (C)

Unknown

BP (C) BP (C) BP (C) BP (C)

Figure 7.2: An illustration of the operators on the DAG in Figure 7.1 where C = {c}.
The unknown region is displayed as yellow, the regions corresponding to c and its
subclasses are shown as orange or red, and the negative region is white. The region
covered by each operator is dark gray.

7.7 Set approximations for a DAG-decision system

The boundary sets KC , KC , P C , and PC solve only the part of the problem that is
related to the DAG. They do not consider the uncertainty (due to noise), which is
handled by the standard rough set approximations. The sets may be inconsistent if
they are considered in terms of the elementary sets that are created by an indiscerni-
bility relation. In order to take this kind of inconsistency into account, we use the
standard rough set approximations on the boundary sets:

• BX (C) = B XC = {x ∈ U | [x]B ⊆ XC}

• BX (C) = B XC = {x ∈ U | [x]B ∩XC 6= ∅}
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We create two operators for each boundary set by replacing X with K, K , P , or P .
The operators are illustrated in Figure 7.2. However, they do not capture our

intuition completely when IND(B) is an indiscernibility relation on the conditional
attributes. The lower approximations BK(C) and BK (C) are very conservative, and
it seems that more elementary sets should belong to C. In particular, the elementary
sets where at least some of the objects are known (with respect to C) and the remaining
ones are unknown, are not included in BK(C) and BK (C). This is unfortunate since
the objects in these elementary sets probably belong to C. Some of the objects are
already known to belong C. So, if we assume that the unknown objects in these
sets belong to the complement classes, we will introduce new inconsistencies into the
decision system. If all objects in these sets belong to C, on the other hand, no such
inconsistencies will occur. Hence, the unknown objects in these elementary sets most
likely belong to C since this leads to the fewest number of inconsistencies. We call
these elementary sets for C-likely-known sets.

A key feature of the C-likely-known sets is that they are consistent with the poten-
tial sets, but inconsistent with the known sets. Thus, the upper approximations of the
known sets and the lower approximations of the potential sets contain the C-likely-
known sets. However, these approximations contain also other objects that should
not be in a lower approximation of the known sets. BK(C) and BK (C) cover the
inconsistent elementary sets where some objects are known to belong to ∼C. BP (C)
and BP (C) cover completely unknown elementary sets, i.e., sets consisting of only un-

known objects. The intersection of BK (C) and BP (C), on the other hand, contains
only completely known and C-likely-known elementary sets (The situation is similar
for BK(C) and BP (C)). Hence, C-likely-known sets may be added to BK(C) and
BK (C) by using combinations of these approximations. This motivates us to define
the following approximations.

Definition 7.21 (Approximations with C-likely-known sets).

a) BL(C) = BP (C) ∩BK(C) = {x ∈ U | [x]B ⊆ P C and [x]B ∩KC 6= ∅}

b) BL (C) = BP (C) ∩ BK (C) = {x ∈ U | [x]B ⊆ PC and [x]B ∩KC 6= ∅}

c) BL(C) = BP (C) ∪BK(C) = {x ∈ U | [x]B ⊆ PC or [x]B ∩KC 6= ∅}

d) BL (C) = BP (C) ∪ BK (C) = {x ∈ U | [x]B ⊆ PC or [x]B ∩KC 6= ∅}

Notice that BL(C) and BL (C) contain the same elementary sets as BP (C) and

BP (C) except for the (∼C)-likely-known sets, which must likely belong to the com-
plement ∼C.

7.7.1 Some properties of the approximations

Each approximation has a dual approximation such that the approximation and its
dual are complementary.
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Definition 7.22 (Dual approximations). Two approximations X and Y are duals
denoted as X ↔ Y if X(C) = U − Y (∼C) and X(∼C) = U − Y (C) hold.

Corollary 7.2. The approximations form the following duals.

a) BK ↔ BP

b) BK ↔ BP

c) BP ↔ BK

d) BP ↔ BK

e) BL ↔ BL

f) BL ↔ BL

Proof. From rough set theory, we have that B(U −X) = U −B(X) and B(U −X) =
U −B(X) for a set X ⊆ U .

a) Follows from these properties and Theorems 7.2a and 7.2d.

b) Follows from these properties and Theorems 7.2b and 7.2c.

c) Follows from these properties and Theorems 7.2b and 7.2c.

d) Follows from these properties and Theorems 7.2a and 7.2d.

e) BL(C) = BP (C) ∩ BK(C)

= (U −BK (∼C)) ∩ (U −BP (∼C)) (from Options c and d)

= U − (BK (∼C) ∪ BP (∼C)) = U −BL (∼C)

The proof of BL(∼C) = U −BL (C) is similar.

f) BL (C) = BP (C) ∩ BK (C)

= (U −BK(∼C)) ∩ (U −BP (∼C)) (from Options c and d)

= U − (BK(∼C) ∪ BP (∼C)) = U −BL(∼C)

The proof of BL (∼C) = U −BL(C) is similar.

The approximations are related such that some approximations are subsets of the
other approximations. They may be ordered according to subset inclusion. This
order is shown in Figure 7.3 where an arrow from one approximation to another
approximation means that the former is a subset of the latter. These properties
follow directly from the definitions. So no proof is given.

One may also derive properties for the approximations with regard to unions and
intersections of classes. However, these properties are easily proven from the (rough
set) properties described in Section 4.3 and the properties of the boundary sets that
we established in Section 7.6.1. So, we will not consider them here.
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BP (C)

BP (C) BP (C)

BL (C)

BP (C)

BL (C) BL(C)

BK (C)

BL(C)

BK (C) BK(C)

BK(C)

Figure 7.3: Subset inclusion of the approximations. An arrow from A to B denotes
that A ⊆ B.
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A previous version of the ensemble method has been published in [115, 113].

8.1 Introduction

The last two chapters discussed the Gene Ontology and introduced a framework for
the DAG based on rough set theory. This chapter presents two different algorithms
for learning classifiers in a DAG. Both of them create a set of rules in a similar
manner to the covering approach in Section 4.6.2. However, the classes and objects
are treated differently than in an ordinary covering algorithm. In order to explain
these algorithms and motivate the ideas behind them, we need to look more closely
into the problem of learning in a DAG.

8.2 What makes learning in a DAG difficult?

It may not be apparent that learning in a DAG is a special problem that cannot be
handled by an ordinary learning algorithm. However, the DAG introduces several
issues that may get such an algorithm into trouble.

8.2.1 The classes are related

The most obvious problem is the structure between the classes. An ordinary rule
learning algorithm assumes that the classes are unrelated. It will try to find rules
that discriminate between related classes if it is applied on the DAG. This may result
in very specific rules. Specific rules are, however, a problem since they cover few
objects and are more likely to be based on artifacts (in the training data) that do not
actually contribute to discerning the objects.

For example, some of the objects in two related classes may really be indiscernible,
but some of their attribute values may be different due to noise. An ordinary rule

139

URN:NBN:no-7286



140 CHAPTER 8. ALGORITHMS FOR LEARNING IN A ROOTED DAG

learner will, in this case, try to find rules that discern between these objects. In order
to do so it will choose the noisy attributes as conditional attributes and may neglect
other more relevant attributes. The rules may consequently make poor predictions
when applied to a test set.

Hence, an ordinary learning algorithm will be very sensitive to noise and may have
a low predictive power. If we do not discriminate between the related classes, on the
other hand, we may create more general and better rules.

Example 8.1. In Examples 4.9 and 4.11 we made rules with two RST methods for the
for the decision system in Table 4.2. The classes assigned to the genes in this system
were actually related, and were taken from the GO process ontology (see Figure 8.1).
According to this ontology, intracellular protein traffic is a subclass of cell

growth & maintenance so that the rules need not discriminate between these classes.
In this case, we may find a rule like:

〈15m-30m,down〉 ∧ 〈30m-1H,down〉 → 〈Process,cell growth & maintenance〉

This rule covers objects o3, o7, o8, and o9 and is more general than the corresponding
rule found in Examples 4.9 and 4.11 (see Figure 8.2). So it is clearly an improvement
on these rules. Still, objects o3 and o9 are labeled with subclasses of cell growth &

maintenance. The predictions made by this rule will be less detailed than the original
decision classes of objects o3 and o9. So something is lost in this case.

However, we may find more general rules for the subclasses as well. Objects o8

and o9 have almost the same information vector, and it is likely that object o8 belongs
to intracellular protein traffic. If we do not discern between related classes,
we may learn a rule such as:

〈30m-1H,down〉 ∧ 〈1H-2H,down〉 → 〈Process,intracellular protein traffic〉

This rule covers both objects o8 and o9, and it is more general than the corresponding
rules in Example 4.9. The rules in this example have the same number of descriptors.
However, they try to discern between the objects by means of attribute 0H-15m for
which the objects have a different value. This difference is most likely due to noise
such that the rules from Example 4.11 may have a lower prediction power than this
rule. Furthermore, the rule gives a more detailed prediction for object o8. So, we
obtain both more accurate and more detailed predictions in this case.

A similar situation occurs for objects o3 and o7 where object o7 is annotated with a
superclass of the class of object o3. Both objects are members of the same elementary
set, and we may assume that object o7 belongs to the same class as object o3. Hence,
the following rule may be found:

〈30m-1H,down〉 ∧ 〈1H-2H,up〉 → 〈Process,intracellular protein traffic〉
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Root

cell growth & maintenance cell communication

transport intracellular protein traffic cell proliferation cell adhesion cell recognition

cytoplasmic transport

Object 0H-15m 15m-30m 30m-1H 1H-2H 2H-4H Process Name

o1 up up up const const cell proliferation
o2 up up up down down cell proliferation
o3 down down down up up cell proliferation
o4 up up up down down cell adhesion
o5 down up up down up cell adhesion
o6 const const const down down cell adhesion
o7 down down down up up cell growth & maintenance
o8 up down down down down cell growth & maintenance
o9 const down down down down intracellular protein traffic
o10 down up up up up transport
o11 down down up up up cytoplasmic transport

Figure 8.1: A DAG-decision system A = 〈U, A, d, <〉. The DAG is a small part
of the process ontology (rev. 1.221 - 05-Feb-2001). The decision table contains the
decision system from Table 4.2

Rules from Example 4.9:

〈0H-15m, d〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, u〉 → 〈Process, cell prolif.〉
∨ 〈Process, cell growth〉 (o3 ,o7)

〈0H-15m, up〉∧〈15m-30m, down〉 → 〈Process, cell growth〉 (o8)
〈0H-15m, const〉∧〈15m-30m, down)〉 → 〈Process, intra. p. traffic〉 (o9)

Rules from Example 4.11:

〈0H-15m, d〉∧〈15m-30m, d〉 → 〈Process, cell prolif.〉 (o3 ,o7)
〈0H-15m, d〉∧〈15m-30m, d〉 → 〈Process, cell growth〉 (o3 ,o7)
〈0H-15m, u〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, d〉 → 〈Process, cell growth〉 (o8)
〈0H-15m, c〉∧〈15m-30m, d〉∧〈30m-1H, d〉∧〈1H-2H, d〉 → 〈Process, intra. p. traf.〉 (o9)

Figure 8.2: Rules from Examples 4.9 and 4.11. The values up, down, and const are
represented as u, d, and c, respectively.
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8.2.2 The detail level of the annotations varies

Another problem that occurs in the DAG, is the detail level of the annotations. The
existing biological knowledge about the processes of genes has a strongly varying detail
level. Some annotations refer to leaf classes, but many annotations concern non-leaf
classes. This is illustrated in the DAG-decision system in Figure 8.1 where objects o7

and o8, for instance, are labeled with the non-leaf class cell growth & maintenance.

The variation in the detail level means that we cannot avoid the structure of
the ontology such that an ordinary learning algorithm can be applied directly. For
example, if all of the annotations referred to leaf classes, we could reduce the problem
by only using the leaf classes. However, since an annotation may refer to a non-leaf
class, we would lose a lot of annotations if we tried. Moving all non-leaf annotations
to the leaf classes is not an alternative, either. Most of the annotations in the leaf
classes would belong to non-leaf classes, and these would be shared by many leaf
classes. Discerning between these classes would thus be very hard.

Alternatively, we could create a “cut” through the ontology by selecting the most
general classes, which contain genes (i.e., cell growth & maintenance and cell

adhesion in Figure 8.1) and move the annotations from the subclasses to these classes.
However, the details of the moved annotations would be lost.

Hence, the ontology cannot be reduced to a flat set of unrelated classes without
losing whole annotations or annotation details. So the structure of the ontology must
be considered during learning and prediction.

8.2.3 There are few objects per class

A rule learning algorithm needs a minimum number of objects in order to learn rules
that accurately predict a class. The number of objects in an ordinary training set is
therefore much larger than the number of classes. However, the number of genes in
a microarray study may be of same magnitude as (or even smaller than) the number
of classes in the process ontology. Hence, the number of objects that are available for
each class will be very low. It may therefore be impossible to learn accurate rules.

One extreme example is the yeast genome that has about 6, 000 genes. Revision
2.577 of the process ontology, on the other hand, contains about 4, 400 different classes.
There will consequently be only 1.34 objects/class. However, the number of genes per
class may still be quite small even with a large genome such as the human genome. It
contains about 30, 000-40, 000 genes such that each class would have only 7-9 objects
on average.

The number of objects/class may be a little higher in practice. Some of classes in
the ontology may not be relevant for a particular organism, and these may be removed.
Moreover, a gene may be annotated to more than one class so that several classes may
share the same objects. However, there may still be a lot of classes that need to be
discerned, and the annotations may be spread throughout the whole ontology so that
each class may have very few objects. Finding genuine distinguishing properties in
the information vectors may be very hard even if we do not discriminate between the
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related classes.
Thus, it may be necessary to increase the number of objects in each class. This

may be achieved by moving the objects from some related classes to a joint class.
Rules for the joint class can then learned from the total set of objects1.

The annotations may be moved either upwards or downwards. Moving objects
upwards is the simplest procedure and is always correct. An object x annotated with
a class c belongs also to any of the superclasses of c. So, if a superclass of c is predicted
for x, a correct prediction has been made even though the prediction is less detailed.

Moving objects downwards is more difficult. Details are gained in this case, but
a decision must be made with regard to the subclass to which an annotation should
be moved. The situation will not improve if the objects of a class are moved to all
of the immediate subclasses. The same objects will just occur in all of the subclasses
so that a learning algorithm will be unable to separate between the subclasses by the
means of these objects. The discernibility of the subclasses will just remain the same.

So one (or a few) of the subclasses should be selected as target(s) for the move.
The only available knowledge for making such a decision is the information vectors.
However, objects having a similar information vectors are likely to belong to same
class. It seems reasonable to move generally annotated objects to subclasses where
the objects have similar information vectors2. One way to do this would be to apply a
similarity measure and compute the similarity of the information vectors. An object
could then be moved to the subclass with the most similar objects according to this
measure.

We would like to stress that we are not suggesting that we move all objects to the
most general or the most specific classes. This idea was dismissed in Section 8.2.2,
and we are not reconsidering it. We are only proposing that the objects are moved to
some of the related classes so that the precision and the detail level of the predictions
are optimized.

8.2.4 There is a trade-off between detail level and precision

Moving annotations downwards is obviously preferable since more detailed predic-
tions are obtained. However, it may not be possible to get satisfactory precision by
moving genes downwards, and better results may be obtained by moving the objects
upwards. There is, in fact, a trade-off between the detail level and the precision of
the predictions:

• The number of classes that need to be separated increases as one moves down-
wards in the ontology. The number of classes immediately below the root is

1Note that objects are also “moved” when discrimination between related classes is avoided. An
object labeled with class c may, for example, be covered by the rules of a sub- or a superclass of c.
However, this move is more conservative. The objects of c will only be covered by rules of the sub-
or superclasses if the objects of these classes and the objects of c have similar information vectors.

2Recall that a supervised learning system makes predictions on the assumption that objects with
similar information vectors have the same class. So, we are not introducing any new assumptions if
we move an object x to a subclass where an object y has a similar information vector. We are just
applying the same principle that makes prediction possible in the first place.
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quite low, and it is therefore quite easy to predict these classes. However, the
number of leaf classes is large (The process ontology, rev. 2.577 has 2, 725 leaf
classes), and it may be very difficult to separate all of them. Thus, the difficulty
of the learning problem increases with the detail level of the predictions.

• The number of objects is independent of the number of classes and will remain
the same even if objects are moved. This means that the number of objects per
class will decrease as we move downwards. So, not only must a larger number
of classes be separated, but each class will have fewer objects that set it apart
from the rest.

• The available information for discerning between the objects, i.e., the informa-
tion vectors, remains the same as well. Hence, the ability to discern between
the objects does not change, while more classes must be separated when ob-
jects are moved downwards. In particular, the information vectors may describe
only properties of general classes, and it may not be possible to discern be-
tween detailed classes without additional data. The information vectors may
consequently be insufficient for discerning between the more detailed classes.

Thus, it seems that it may not be possible to have both details and precision.
There is a trade-off where the precision of the predictions increases as the detail level
is reduced, and vice versa. In this trade-off, details should be sacrificed for precision
since a classifier giving detailed, but inaccurate predictions is quite useless. However,
no more details should be given away than what is absolutely necessary. Otherwise,
we could just use the solution from Section 8.2.2 where only the most general classes
were selected.

Note that there is also a biological reason for preferring more general classes.
In Section 3.5.1 it was mentioned that similarly expressed genes may have different
functions. They will therefore be annotated with different classes. If all of these
classes are predicted for the similar expressed genes, many of the predictions will be
incorrect. This may result in a considerable error rate. If a common superclass is
predicted instead, these errors will not occur. Hence, moving genes upwards may also
be a way of dealing with similarly expressed, but functionally dissimilar genes.

In the next two sections, we will introduce two different approaches that handle
the problems that have just been discussed.

8.3 The ensemble method

A main concern for DAG learning is the scarcity of the data that is available for each
class. The approach presented in this section attempts to avoid this problem by using
all of the known objects (i.e., the objects labeled to a class c or the subclasses of c)
when it learns rules for a class. At the same time, it avoids discriminating the known
objects from the potential objects in the superclasses. The objects are moved upwards
in other words, and the objects in related classes are not discerned from each other.
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The method handles the trade-off between detail level and precision in two different
ways. First, a “natural” balance between details and precision is created directly by
the rules. The rules of most detailed classes will often be more specific than the rules
of the superclasses. A previously unseen object is therefore more likely to satisfy a
rule created for a general class than a rule created for a detailed class. Hence, an
appropriate detail level may simply be found because the rules of the more specific
classes will not cover the object.

Second, a voting procedure is applied on the rule predictions. The rules of detailed
classes will often be less accurate than the rules of the general classes. So, noisy
predictions to the detailed classes may occur. There is also a conflict between the
rules. The objects of class c are covered not only by the rules of c, but also by the
rules of the superclasses of c. The superclasses will consequently be predicted when c
is predicted. So, a voting procedure is applied in order to remove the noisy predictions
and resolve this conflict. It attempts to select a set of classes so that the loss of details
and precision is minimized.

The method consists of a learning algorithm and a prediction algorithm, which
are presented in the two next sections. It requires a DAG-decision systems with
single decisions and expects that this system has been created from a DAG-decision
with multiple decisions by the means of the transform that was given in Section 7.4.
Moreover, it assumes that the DAG is well-defined. The simplified boundary set from
Section 7.6.2 is therefore applied instead of the boundary sets defined in Section 7.6.
Observe that these assumptions are made throughout this chapter.

8.3.1 Learning

The learning algorithm, which is given in Algorithm 8.1, finds two sets of rules
for each class in the ontology except for the root. The first set, which is called the
consenting set, predicts a class. The second set, which is called the dissenting set,
predicts the complement of a class. Note that these two sets together form a binary
classifier for a class. The full classifier may therefore be considered to consist of an
ensemble of binary classifiers (cf. the name of the method).

When the rules of a class c is learned, the objects are divided into a positive
set P containing the objects that should be covered by the rules and a negative set
N containing the genes that should not be covered. The rules are then found by a
subroutine LearnRules, which is described in the detail in Section 8.5. This is done
twice so that both consenting and dissenting rules are learned for the class.

The definitions of P andN are crucial since these sets control the kind of rules that
are made by the algorithm. In our case, these sets should fulfill several requirements.

1. The rules learned for class c should not discern the objects of c from the objects
of the classes related to c.

2. The scarcity of the available data for a class c should be compensated by includ-
ing all known objects (with regard to c) in P and not only objects annotated
with c.
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EnsembleLearner:
Input: A rooted DAG-decision system 〈U, A, d, <〉 with root >, and training ac-

curacy γ.
Output: A set of rules RS.

1: RS = ∅
2: for all c ∈ Vd − {>} do
3: P = A G K∗

c

4: N = A G P ∗
∼{c} ∩ A G K∗

∼{c}

5: RS = RS ∪ LearnRules(P ,N , A, d, c, γ)
6: P ′ = A G K∗

∼{c}

7: N ′ = A G P ∗
c ∩ A G K∗

c

8: RS = RS ∪ LearnRules(P ′,N ′, A, d, c, γ)
9: end for

10: return RS

Algorithm 8.1: Learning in the ensemble approach

3. A gene may have several annotations, and all of these annotations should be
predicted. This means that all objects in the transformed DAG-decision system
should be covered by consenting rules.

4. The learning algorithm should create possible rules (with regard to IND(A)) for
both the class and the complement such that conflicts in the boundary region
can be considered by a voting system just as in an ordinary rough set approach.

The first two requirements can be fulfilled by using K∗
c for P and K∗

∼{c} for N
when rules are learned for c. When rules are learned for the complement of c, we
may use K∗

∼{c} for P ′ and K∗
c for N ′. However, the indiscernibility relations must

be taken into account. There are two different indiscernibility relations: IND(G),
which is created by the multiple annotations, and IND(A), which is induced by the
attributes. In order to fulfill the third requirement, we need to assign a G-elementary
set (i.e., a gene) to P (and N ′) if there is an object (i.e., an annotation) in this set
that is known to belong to c. This is achieved by applying a G-upper approximation
on K∗

c and a G-lower approximation on K∗
∼{c}. The last requirement can be satisfied

by creating P and P ′ with an A-upper approximation and N and N ′ with an A-lower
approximation.

The choice of upper approximations is a fairly simple as the elementary sets that
are completely unknown3 with regard to c (i.e., elementary sets that consist of only ob-

3The completely unknown sets consist of only objects that are labeled to the superclasses of c.
These sets are included in BL∗(c) and BL∗(c). However, if these approximations were applied, the
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Figure 8.3: Two situations when a ∼{c}-likely-known may occur. x and y are objects
and a, b, c, and d are classes. c is the class that we would like to learn.

jects labeled to the superclasses of c) should not be included in these approximations.
So only following approximations may be applied:

• BK∗(∼{c}) = B K∗
∼{c}

• BK∗(c) = B K∗
c

For the lower approximations, these operators may be used:

• BK∗(∼{c}) = B K∗
∼{c}

• BK∗(c) = B K∗
c

• BL∗(∼{c}) = B P ∗
∼{c} ∩ B K∗

∼{c}

• BL∗(c) = BP ∗
c ∩ B K∗

c

The difference between these are that the last two contain ∼{c}-likely-known sets
or {c}-likely-known sets while the first two do not. So the question is whether
∼{c}-likely-known sets (or {c}-likely-known) should be included. It appears that
the indiscernibility relations behave differently with regard to this question so that
∼{c}-likely-known sets should be included in the A-lower approximations, but not in
G-lower approximations. This is explained in the following example.

Example 8.2. Figure 8.3 illustrates the two main situations where a ∼{c}-likely-
known may occur. We are trying to learn examples for c. Object x is labeled to a
superclass of c, while object y belongs to a complement class of c.

Assume x and y belong to different G-elementary sets, but to the same A-element-
ary set. [y]A is therefore a ∼{c}-likely-known set with regard to IND(A). In the first

completely unknown sets would be covered by the rules of c and the rules of any sibling of c (i.e., an
unrelated class that has same immediate superclass as c). This means c and all of its siblings would
be predicted for the unknown objects, and we would not obtain any more information than we would
if a superclass was predicted instead. Consequently, it is better that these objects are only covered
by the rules of superclasses.
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case in Figure 8.3, y is labeled to a subclass of a. It is therefore more likely that x
belongs to b than it belongs to c. More importantly, the algorithm will not try to
discern y from the objects in K∗

c if [y]A is not assigned to N . This means that the
rules created for c may actually cover y such that c may be predicted for y. This will
obviously lead to incorrect predictions. Hence, [y]A should be assigned to N , which
is achieved by creating N with AL∗(∼{c}).

In the second case in Figure 8.3, the classes of x and y are not related. x could
perhaps belong to c or b. However, the class labels of x and y are inconsistent, and if
the rules of c and b are allowed to cover x, this conflict may actually become larger.
It is therefore better to assign [y]A to N also in this case.

The situation is quite different, however, if x and y belong to the same G-element-
ary set. x and y represent two different annotations for the same gene in this case.
Hence, there is no conflict between them since both of them should be predicted (cf.
the third requirement). The rules of c (or b) should therefore be allowed to cover x in
the second case in Figure 8.3 since x could belong to this subclass. This means that
[y]G should not be assigned to N .

This may also hold in the first case in Figure 8.3. However, this depends on the
interpretation that we apply to the annotations. In this case, x and y are labeled to
related classes, which is really a peculiar way of annotating a gene. We may assume
that x (i.e., the annotation to a) belongs to b, but this means that x is redundant
since y is already labeled b. So x should in fact have been removed. Alternatively, we
may assume that x is an indication that the gene may belong to another subclass of
a besides b. We choose this interpretation as this seems to be more reasonable (and
creates the simplest approximations). Hence, [y]G should not be assigned to N , which
is achieved with GK∗(∼{c}).

Thus, GK∗(∼{c}) should be used as G-lower approximation, while AL∗(∼{c}) (and
AL∗(∼{c})) should be applied as A-lower approximation. The approximations are
applied in two steps4. The G-approximations are first applied to K∗

c and K∗
∼{c}. This

creates the two sets G K∗
c and G K∗

∼{c} (G P ∗
c and G P ∗

∼{c} are also created from

P ∗
c and P ∗

∼{c}). The A-approximations are then applied to these sets. This done by

substitution so that K∗
c is replaced by G K∗

c , and K∗
∼{c} is replaced by G K∗

∼{c}, etc.

For example, AK∗(c) = A K∗
c becomes A G K∗

c . This creates the four sets that are
used in the algorithm:

• P = A G K∗
c (from BK∗(c))

• N = A G P ∗
∼{c} ∩ A G K∗

∼{c} (from BL∗(∼{c}))

• P ′ = A G K∗
∼{c} (from BK∗(∼{c}))

• N ′ = A G P ∗
c ∩ A G K∗

c (from BL∗(c))

4This means that we first decide whether the genes belong to a class or the complement (using
the G-approximations) and then consider whether the genes have similar information vectors (using
the A-approximations).
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EnsemblePredictor:
Input: A G-elementary set [x]G, a set of rules RS, a partial order 〈Vd, <〉, and a

threshold θ.
Output: A set P of class predictions for [x]G.

1: RS′ = {(α→ β) ∈ RS | [x]G ⊆ [[α]]A}
2: Q = {c ∈ Vd | (α→ 〈d, c〉) ∈ RS′}
3: for all c ∈ Q do
4: RS′

c = {(α→ β) ∈ RS′ | β = 〈d, c〉}
5: RS′

c = {(α→ β) ∈ RS | β = 〈d, c〉}
6: SA(c) =

∑
r∈RS′

c
SA(r)

7: SC(c) =
∑

r∈RS′
c
SC(r)

8: WB(c) =
∑

r∈RS′
c
WB(r)

9: SN(c) =
∑

r∈RS′
c
SN(r)

10: end for
11: (P, PGain, EstWB) = SelectClasses(>, Q, 〈Vd, <〉 , θ)
12: return (P )

Algorithm 8.2: Prediction in the ensemble approach

Observe that we do not set an absolute restriction on the coverage of the rules. The
coverage CovA(RSc) of the rules for c are rather defined by a lower limit A G K∗

c and
an upper limit A G K∗

c∩A G P ∗
c (i.e., P = A G K∗

c ⊆ CovA(RSc) ⊆ A G K∗
c∩A G P ∗

c =
U−A G P ∗

∼{c}∩A G K∗
∼{c} = U −N ). This means that the rules are allowed to cover

objects annotated to the superclasses if this makes them simpler. Hence, the classifier
may actually give more detailed predictions than the original annotations. However,
this happens only when the known objects of c and the objects of the superclasses
have something in common. The rule learning algorithm will not try to create rules
that just cover objects in the superclasses.

8.3.2 Prediction

The consenting rules of a class cover all objects that are known to belong to the
class. An object labeled to class c will therefore be covered by rules of c and by the
rules of any superclass of c. This means that all of these classes will be predicted for
the object, and one may get many redundant predictions. We resolve this issue with a
voting procedure, which selects a set of classes so that the loss of details and precision
is minimized.

This procedure consists of two parts shown in Algorithms 8.2 and 8.3 where the
latter is called by the former. Algorithm 8.2 takes a G-elementary set5 and selects the

5Predictions are made for G-elementary sets rather than for objects since the G-elementary sets
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rules in RS that cover this set. Then, it collects the classes predicted by these rules
and stores them in Q. The votes for each class in Q are computed, and the procedure
SelectClasses is called so that a subset of Q is selected.

Votes

Four different kinds of votes are maintained for each class c in Q: SA(c), SC(c),
WB(c), and SN(c). These are computed from the rules in RS ′. The first three are
computed from the consenting rules, while the last is computed from the dissenting
rules. A consenting rule r = (α→ 〈d, c〉) maintains the following kinds of votes:

• The support above c: SA(r) is the number of objects that are labeled to
superclasses of c and covered by r.

SA(r) = |[[α]]A ∩ (P ∗
c −K∗

c)|

• The support of c: SC(r) is the number of objects that are labeled to c and
covered by r.

SC(r) = |[[α]]A ∩ [[〈d, c〉]]A|

• The weighted support below (and of) c: WB(r) is a weighted sum over
the objects that are covered by r and labeled to c or one of subclasses of c.

WB(r) =
∑

x∈([[α]]A∩K∗
c )

p(c, d(x))

Note that WB(r) corresponds to the number of objects that are known to belong
to c and covered by r if p(c, e) = 1 for all e ∈ Vd (where c < e).

A dissenting rule r = (α→ 〈d, c〉) has the following kinds of votes:

• The negative support of c: SN(r) is number of G-elementary sets in G K∗
∼{c}

that are covered by r.

SN(r) = |{[x]G | [x]G ⊆ ([[α]]A ∩K∗
∼{c})}|

The function p(c, e), which is used by WB(r), defines a penalty when a prediction
to c does not match the original detail level of an object. We assume that p(c, e) has
a range between 0 and 1 when c < e and is equal to 1 when c = e. Moreover, we

correspond to the objects (i.e., the genes) in the original DAG-decision system with multiple decisions.
It is the class(es) of these objects (i.e., the genes) that should be predicted. Note that this difference
is rather technical as all of the objects of a G-elementary set have the same information vector. So,
if a rule covers one object of a G-elementary set, it must cover the rest of the objects as well.

URN:NBN:no-7286



8.3. THE ENSEMBLE METHOD 151

assume that p(c, e) can be decomposed as f(c)
f(e) where the function f describes some

property of the class.
There are many functions that may be chosen as penalty function. One possibility

would be to consider the ratio between the average path length as a measure of how
well c reassembles e.

p1(c, e) =
apl(c)

apl(e)
where apl(c) =

1

|Paths(c,>)|
∑

t∈Paths(c,>)

||t||

A similar measure can be designed by counting the number of classes that are above
c and e.

p2(c, e) =
|[c]<|
|[e]<|

Alternatively, f(c) = 1/|[c]4| could be used as measure of the detail level of c. A class
with many subclasses would, in this case, be considered to be very general and have
a low f(c). The penalty function could then be defined as:

p3(c, e) =
1/|[c]4|
1/|[e]4| =

|[e]4|
|[c]4|

In our current implementation, we use:

pi(c, e) =

max
tc∈Paths(c,>)

||tc||

max
te∈Paths(e,>)

||te||

where tc must be a subpath of te (tc v te). It is quite similar to the p1(c, e) and
p2(c, e).

Remark 1. The support measures (SA(c), SC(c), and WB(c)) for the consenting
votes count objects, while the support measure (WB(c)) for the dissenting votes,
counts G-elementary sets. Hence, the definitions of votes cast for and against a class
may appear to be asymmetrical. However, this is not a mistake. The support measures
are supposed to mirror the global recall RA and the global precision RP , which will
be defined in Section 9.2. The recall measures the share of the annotations that are
matched by the predictions, and the precision assesses the share of the predictions
that match an annotation. The definitions of the votes just reflect the impact a
prediction to a class c will have on the RA and RP . A prediction to c may match
several annotations of the same gene, but it will only add one incorrect prediction for
each gene that has no annotations related to c. Hence, objects must be counted for
votes in favor of a class, and G-elementary set must be counted for the votes against
a class.

Selection of classes

The procedure SelectClasses in Algorithm 8.3 applies the votes to select a subset of
the classes in Q. It starts at the root (>) and traverses the DAG depth first. At each
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class, it decides whether this class should be selected or not. Initially, it examines if
the class has been visited before and avoids recomputing its decision for the class if
the class has been marked as visited. Instead it just looks up the result in an array T
(line 33).

If the class is visited for the first time, on the other hand, it visits the subclasses
and makes a decision for each of them. These decisions are passed up to the class
and merged in lines 4-10. We will come back to the details of this process. However,
the outcome of this process is a set S, which contains the selected subclasses, and the
total gain SGain, which is associated with these classes. SGain is sum of the gain of
classes in S, i.e.,

SGain =
∑

e∈S

Gain(e)

The gain associated with a class e is defined as the votes cast for e (except for the
support above of e) minus the votes cast against e.

Gain(e) = WB(e)− SN(e)

After the decisions have been merged, the algorithm determines if the class is
among the selectable classes in Q (line 11) and just returns the merged decisions
for the subclasses (line 29) if it is not. If the class is selectable, on the other hand,
it decides whether the class should be selected. This is done in two different ways
depending on contents of S:

• If S is empty (such that no subclasses have been selected or there are no sub-
classes), the algorithm has to decide whether the class should be selected or
not. Thus, it compares the votes cast for the class with the votes cast against
it (line 13). If there are more votes for the class, it is added to P (such that it
is selected). If there are more votes against the class, P is set to the empty set
(such that no class is selected).

• If S is not empty such that some subclasses have been selected, the algorithm
has to choose between the class c or the selected subclasses. It makes its decision
by comparing the gain of c with the gain of subclasses in S. This comparison
is made in line 20. The condition in this if -statement may seem complicated.
However, variable SEstWB is just a correction for (WB(c) − SC(c)) and may
be ignored for now. The condition can therefore be simplified to

WB(c)− SC(c)− SN(c) > SGain

This condition may again be rewritten as

Gain(c) > SGain + SC(c)

where term SC(c) is the support of c. This term is already included in WB(c)
and Gain(c), but it is not in SGain. However, the subclasses in S are suitable
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SelectClasses
Input: A class c, a set of predictable classes Q, a partial order 〈Vd, <〉, and a

threshold θ
Output: A set of classes P , their gain PGain, and estimated votes EstWB

1: if class c has not been visited then
2: Mark c as visited
3: S = ∅, SGain = 0, B = ∅, BGain = 0, SEstWB = 0
4: for all e ∈ Sub(c) do {For all immediate subclasses of c}
5: (S′, SGain′, SEstWB′) = SelectClasses(e, Q, 〈Vd, <〉 , θ)
6: if SGain > 0 then S = S ∪ S ′, SGain = SGain + SGain′

7: if B =∅ or (S′ 6=∅ and SGain′>BGain) then B = S ′, BGain = SGain′

8: SEstWB = SEstWB + SEstWB′

9: end for
10: if S = ∅ then S = B, SGain = BGain
11: if c ∈ Q then {Is c among the predictable classes?}
12: if S = ∅ then {Has any of the subclasses been selected?}
13: if SA(c) + WB(c) ≥ SN(c) then
14: P = {c}, PGain = WB(c)− SN(c) {c is selected}
15: else
16: P = ∅, PGain = 0 {no class is selected}
17: end if
18: EstWB = 1/f(c) ·WB(c)
19: else
20: if (1−θ)(WB(c)−SC(c))+θ ·f(c) ·SEstWB−SN(c) > SGain then
21: P = {c}, PGain = WB(c)− SN(c) {c is selected}
22: EstWB = 1/f(c) ·WB(c)
23: else
24: P = S, PGain = SGain + SC(c) {The subclasses are selected}
25: EstWB = SEstWB + 1/f(c) · SC(c)
26: end if
27: end if
28: else
29: P = S, PGain = SGain, EstWB = SEstWB
30: end if
31: Store T [c] = (P, PGain, EstWB)
32: else
33: Look up (P, PGain, EstWB) = T [c]
34: end if
35: return (P, PGain, EstWB)

Algorithm 8.3: Selection of classes in the ensemble approach
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as predictions for the objects that are labeled to c. Therefore, SC(c) is added
to SGain so that this support is also included in the gain of S.

Hence, the algorithm compares the gain of c with the gain of subclasses in S. It
selects c if it has the largest gain, and the subclasses otherwise. It then assigns
its selection to P and computes PGain accordingly.

Remark 2. The support above c, SA(c), is included in neither the gain nor the
comparison in line 20. The reason is that both c and any of the subclasses in S may
serve as predictions for these objects. Hence, these votes must be assigned to both
c and S and will not contribute to select either one. Moreover, if this support is
included in the gain it will occur in the individual gain of all subclasses in S. It will
therefore be repeated in SGain for each of these subclasses, and this repeated support
will have to be removed during the merge process. Hence, it is easier to leave this
support out of the gain and the comparison in line 20.

We may now explain the details of the merge process in lines 4-10. It basically
collects all selections that have been made at the subclasses of c and stores them in S.
However, a subclass e may have been selected in line 13 because it has a large SA(e).
Its gain6 may actually be negative so that it would not have been selected without
the support of the superclasses. All subclasses of c share the votes that are above
c. Hence, several of these classes may have been selected on the basis of the same
votes and may not have the support on their own to be selected. Since any subclass
of c may be considered as a correct prediction for the objects that are labeled to the
superclasses of c, it is not necessary to include all of them. They will only reduce the
total gain of the subclasses since their individual gain is negative. The highest gain is
in fact achieved by accepting only the selections that have a positive gain or the one
that has the highest gain if no selection has a positive gain.

Hence, the algorithm examines each selection made at the subclasses and only
adds a selection to S if it has a positive gain. At the same time, it keeps track of
the selection that has the highest gain and stores this selection in B (and its gain in
BGain). Afterwards, it determines if every selection had a negative gain by testing
if S is empty (line 10) and assigns B to S if this is the case.

Example 8.3. Assume that we want to predict classes for a G-elementary set [x]G,
and the algorithm in Algorithm 8.2 has computed the votes that are given in Fig-
ure 8.4. SelectClasses will, in this case, start at root and move down to c. It will
select c since SA(c) + WB(c) = 11 ≥ 1 = SN(c). It will then move to d and b,
but it will not consider these classes since they have not been predicted. The gain
of c will just be passed to a. The algorithm will consider f next. This class will be
selected since SA(f) + WB(f) = 12 ≥ 5 = SN(f). However, g will not be selected
as SA(g) + WB(g) = 8 < 10 = SN(g). At e, the algorithm has to choose between
f and this class. The gain of e is WB(e) − SN(e) = 13, while the gain of f is
WB(f)−SN(f)+SC(e) = 6. Hence, e will be chosen. The algorithm will then move

6Note that the condition in line 13 can be written as SA(e) + Gain(e) ≥ 0.
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Class SA SC WB SN
a 0 1 10.5 0
b Not predicted by the rules
c 1 10 10 1
d Not predicted by the rules
e 1 3 15 2
f 4 8 8 5
g 4 4 4 10
h 0 3 6 5
i 3 4 4 5
j 3 2 2 5

root 0

1

2

3c

b

d f

e

a h

i j

g

Depth

Figure 8.4: An example of prediction with SelectClasses. The table displays the
votes that have been computed from the rules. The classes in the table refer
to the ontology on the right. WB is computed with penalty function p(c, e) =
depth(c)/depth(e).

to a and consider if this class should be selected instead of c and e. It will pick the
subclasses since the gain of a is WB(a) − SN(a) = 10.5, and the gain of c and e is
(WB(c)− SN(c)) + (WB(e)− SN(e)) + SC(a) = (10− 1) + (15− 2) + 1 = 23.

After SelectClasses has visited a, it will consider h and its subclasses. Both i and
j will be selected initially since SA(i)+WB(i) = 7 ≥ 5 = SN(i) and SA(j)+WB(j) =
5 ≥ 5 = SN(j). However, both of them have a negative gain WB(i) − SN(i) = −1
and WB(j)−SN(j) = −3 so that j will be removed during the subclass merger at h.
The algorithm will therefore consider only i when it decides if h should be selected.
In this case, it will choose i since the gain of h is WB(h) − SN(h) = 6− 5 = 1, and
the gain of i is WB(i) − SN(i) + SC(i) = 4 − 5 + 3 = 2. Hence, its prediction will
be c, e, and i, which are the classes with the largest support in favor of them and the
least support against them.

A corrective to WB(c)

Two different estimates of the support below c are applied in the condition in line 20.
WB(c)−SC(c), which is computed from the rules that predicts c, and f(c)·SEstWB,
which is computed from the SC support as the algorithm moves through the ontology.
The reason is that rules in the more general classes may overestimate the WB support,
and this has the effect that too general classes may be predicted if only WB(c)−SC(c)
is used.

Example 8.4. Assume that we have two objects x and y with information vectors
(and that these objects are the sole members of their respective G-elementary set):

InfA(x) = { 〈0H-15m, down〉 , 〈15m-30m, down〉 , 〈30m-1H, down〉 , 〈1H-2H, up〉 , 〈2H-4H, up〉}
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InfA(y) = { 〈0H-15m, down〉 , 〈15m-30m, down〉 , 〈30m-1H, down〉 , 〈1H-2H, const〉 ,

〈2H-4H, const〉}

Moreover, x is labeled to the class c and y is labeled to the class d in the ontology
in Figure 8.4. The learning algorithm may, in this case, create the following rules for
c, d, and b (their common superclass):

〈15m-30m, down〉 ∧ 〈30m-1H, down〉 ∧ 〈1H-2H, up〉 → 〈Class, c〉 (WB(c) = 1)
〈15m-30m, down〉 ∧ 〈30m-1H, down〉 ∧ 〈1H-2H, const〉 → 〈Class, d〉 (WB(d) = 1)
〈15m-30m, down〉 ∧ 〈30m-1H, down〉 → 〈Class, b〉 (WB(b) = 4/3)

where their WB support is computed with p(c, e) = depth(c)/depth(e). The rule for
b covers both objects and has a higher WB support than the other rules. This means
that b will have a higher gain than c and d if each class has a negative support of 0.
The algorithm will therefore predict b for x and y. However, the more detailed classes
c and d should be predicted in this case since the information vectors of x and y are
discernible, and the negative support of c and d is the same as the negative support
of b.

The problem in the last example is that a rule of the superclass b covers two
different information vectors that belong to different subclasses. Its WB support is
therefore too high compared to the WB support of the subclasses since it does not
discern between these vectors. The SC support is less affected by this problem since
it only counts the objects that are labeled to the class. The problem may therefore
avoided if the support below c can be estimated from the SC support of the subclasses.
This is possible since WB(c) can be decomposed as follows:

WB(c) =
∑

(α→β)∈RS′
c

∑

x∈([[α]]A∩K∗
c )

p(c, d(x)) ≈
∑

x∈(K∗
c∩Tc)

p(c, d(x))

where Tc =
⋃

(α→β)∈RS′
c
[[α]]A. K∗

c is equal to
⋃

c<e[[〈d, e〉]]A and the [[〈d, e〉]]A-sets are
disjoint since each objects is labeled to a single class. Hence,

∑

x∈K∗
c∩Tc)

p(c, d(x)) =
∑

c<e

∑

x∈Tc∩[[〈d,e〉]]A

p(c, d(x))

=
∑

c<e

p(c, e) · |Tc ∩ [[〈d, e〉]]A|

≈
∑

c<e

p(c, e)
∑

(α→β∈RS′
e)

|[[α]]A ∩ [[〈d, e〉]]A|

=
∑

c<e

p(c, e) · SC(e)

WB(c)− SC(c) may therefore be computed as

WB(c)− SC(c) ≈
∑

c�e

p(c, e) · SC(e) = f(c)
∑

c�e

1

f(e)
SC(e) = f(c) · SEstWB
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where SEstWB =
∑

c�e
1

f(e)SC(e).

SEstWB is computed by the algorithm as it moves through the subclasses. The
estimates from the subclasses of c are added up in line 8, and the support of the
classes is added to EstWB in line 25 (when the subclasses are selected). However,
1/f(c) · SC(c) is not added to EstWB in the lines 18 and 22. The reason is that
EstWB will be compared to the corresponding PGain, which is based on WB(c). So
1/f(c) ·WB(c) is assigned to EstWB such that these quantities correspond.

Unfortunately, the estimate SEstWB is not without flaws. The poor rules in
the subclasses of c may give noisy predictions, which may lead to estimation error in
SEstWB. WB(c), on the other hand, is based on the rules of c and will be less affected
by such errors. Therefore, a combination of WB(c) − SC(c) and f(c) · SEstWB is
used in line 20 where the threshold θ controls the influence of each estimate. The
decision of the algorithm will be based entirely on f(c) ·SEstWB if θ = 1 — in which
case the algorithm may produce erroneous predictions — and on WB(c) − SC(c) if
θ = 0 — in which case the algorithm may create too general predictions. Hence, θ
may be used to control the detail level and the precision of the predictions.

8.3.3 An approximate approach

Algorithm 8.1 creates two sets of rules for each class. One is a consenting set, which
is created such that the votes in favor of a class can be estimated. The other set, is a
dissenting set, which is made such that the votes against the class can be estimated.
The dissenting set would not be required if the negative support of a class could
be estimated from the consenting rules of its complement classes. A more efficient
algorithm could therefore be designed since it would only need to learn a consenting
set for each class. Unfortunately, it is not possible to compute the negative support
precisely from the consenting rules (as will be explained shortly). Only an approximate
estimate may be obtained. Still, an approximate version of the ensemble method may
work well in practice, and such an approach is therefore introduced in this section.

The negative support of a rule r = (α→ 〈d, c〉) in the dissenting set is defined as:

SN(r) = |{[x]G | [x]G ⊆ ([[α]]A ∩K∗
∼{c})}|

It counts basically the number of G-elementary sets in G K∗
∼{c} that are covered by

the rule. So, if we want to estimate the negative support from the consenting sets, we
must determine how many G-elementary set in G K∗

∼{c} that are covered by similar
consenting rules.

It is easily seen that the consenting rules of classes in ∼{c} will cover the objects
that are in G K∗

∼{c}. The consenting rules of a class e cover the objects in A G K∗
e

and it can be shown by the means of Definition 7.20 and Property 3 in Section 4.3
that

⋃

e∈∼{c}

A G K∗
e = A G




⋃

e∈∼{c}

K∗
e



 = A G K∗
∼{c} ⊇ G K∗

∼{c}
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So, it is possible that the negative support could be estimated from these classes.
However, in order to estimate the support, we must first assign a new support measure
to the consenting rules. The number of G-elementary sets in G K∗

∼{c} must then be

computed as sum of the support of the classes in ∼{c}. This means that G K∗
∼{c}

must be represented as a union of disjoint sets that are associated with the classes in
∼{c}.

We begin by transforming K∗
∼{c} such that it is expressed as a union. There are

several possibilities in this case. Definition 7.20 states that

K∗
∼{c} =

⋃

e∈∼{c}

K∗
e

So, one possibility would be to defined the support on K∗
e . However, these set are not

disjoint (i.e., K∗
e1
∩K∗

e2
may not be empty for e1, e2 ∈ ∼{c}). So, we cannot use all

of them and must select some. One possible choice would be to select sets that are
associated with the most general classes in ∼{c}.

E1 =
⋃

e∈Zmgc

K∗
e where Zmgc = {e ∈ ∼{c} | ∀f ∈ ∼{c} f 6� e}

Another would be to use the most specific classes in ∼{c}.

E2 =
⋃

e∈Zmsc

K∗
e where Zmsc = {e ∈ ∼{c} | ∀f ∈ ∼{c} e 6� f}

However, these unions will be only subsets of K∗
∼{c} so that the estimate will not

be exact in this case. Alternatively, we may transform K∗
∼{c} with the aid of Theo-

rem 7.5a and Lemma 7.2a as follows:

K∗
∼{c} = K∼{c} = U − P {c} = {x ∈ U | c 6≈ d(x)} =

⋃

e6≈c

Xe =
⋃

e∈∼{c}

Xe

where Xe = {x ∈ U |d(x) = e}. These sets are pairwise disjoint (i.e, Xe1 ∩ Xe2 = ∅,
for e1, e2 ∈ Vd). So, an exact solution may be obtained with

E3 =
⋃

e∈∼{c}

Xe

Still, we need to count the G-elementary sets in G K∗
∼{c} and must apply the

G-lower approximation to the estimates for K∗
∼{c}. Unfortunately, the lower approx-

imation does not maintain unions. Property 4 in Section 4.3 tells us that only

G

(
⋃

e∈Z

Ye

)
⊇
⋃

e∈Z

G Ye

holds. This means that an exact solution cannot be obtained regardless which estimate
is used for K∗

∼{c}. Only an underestimate of the negative support may be computed
from the consenting rules.
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The upper approximation, on the other hand, maintains unions of sets (property
3 in Section 4.3) such that

G

(
⋃

e∈Z

Ye

)
=
⋃

e∈Z

G Ye

An exact estimated could be obtained if this approximation could been used. However,
the G-upper approximation may contain G-elementary sets that belong partially to c
or its related classes, and these sets should not be counted. The upper approximation
also creates sets that are not disjoint so that the same G-elementary set may be
counted several times. This means that the upper approximation will provide a large
overestimate of the negative support.

Hence, neither the lower nor the upper approximation gives an accurate estimate.
The lower approximation underestimates the negative support, while the upper ap-
proximation overestimates it. A combination of these two may still provide a good
estimate as the exact negative support lies between them. This is the idea behind
the approach presented here. Two support scores are associated with each consenting
rule: SU(r), which is based on the upper approximation and SL(r), which is based
on the lower approximation. The negative support of a rule is then computed as

(1− t) · SU(r) + t · SL(r)

where t is a threshold that controls the influence of each estimate (This is currently
set to 0.5 in our implementation).

Still, we have to decide on an estimates of K∗
∼{c} that should be used. We have

actually tried all of them. E3 seems most appealing since this is an exact estimate.
However, the estimate provided by the lower approximation is quite small in this case
since only G-elementary sets with one object may occur in GXe. So, our success with
this estimate was only limited7. E2 did not provide a good estimate, either. It seemed
to overestimate the negative support such that too general classes were predicted. The
best results were obtained by selecting the most specific classes that were predicted
and estimate the support from them. This estimate is therefore used in the approach
that is presented here.

This approach is shown in Algorithms 8.4 and 8.5. Note that Algorithm 8.4 is
basically the same algorithm as Algorithm 8.4 except that is does not learn dissenting
rules. Algorithm 8.5 is also quite similar to Algorithm 8.2. The main difference is that
SN(C) is now computed from consenting rules of the most specific classes in ∼{c}∩Q.
The upper and the lower supports are defined as

SU(r) = |{[x]G | [x]G ∩ [[α]]A∩ 6= K∗
e∅}|

SL(r) = |{[x]G | [x]G ⊆ ([[α]]A ∩K∗
e)}|

7Note that our time for experimenting with this approach was very limited. It is possible that a
good estimate may be obtained with both E2 and E3 by tuning the threshold t. However, we did
not achieve satisfactory results with these estimates in the time we had available.
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EnsembleLearner:
Input: A rooted DAG-decision system 〈U, A, d, <〉 with root >, and training ac-

curacy γ.
Output: A set of rules RS.

RS = ∅
for all c ∈ Vd − {>} do
P = A G K∗

c

N = A G P ∗
∼{c} ∩ A G K∗

∼{c}

RS = RS ∪ LearnRules(P ,N , A, d, c, γ)
end for
return RS

Algorithm 8.4: Learning in the approximate ensemble approach

EnsemblePredictor:
Input: A G-elementary set [x]G, a set of rules RS, a partial order 〈Vd, <〉, and θ.
Output: A set P of class predictions for [x]G.

1: RS′ = {(α→ β) ∈ RS | [x]G ⊆ [[α]]A}
2: Q = {c ∈ Vd | (α→ 〈d, c〉) ∈ RS′}
3: for all c ∈ Vd do
4: RS′

c = {(α→ β) ∈ RS′ | β = 〈d, c〉}
5: SA(c) =

∑
r∈RS′

c
NA(r)

6: SC(c) =
∑

r∈RS′
c
NC(r)

7: WB(c) =
∑

r∈RS′
c
WB(r)

8: Z = {e ∈ (∼{c} ∩Q) | there is no f ∈ (∼{c} ∩Q) such that e � f}
9: SN(c) =

∑
r∈Z 0.5 · (SU(r) + SL(r))

10: end for
11: (P, PGain, EstWB) = SelectClasses(>, A, 〈Vd, <〉 , θ)
12: return (P )

Algorithm 8.5: Prediction in the approximate ensemble approach
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8.4 The bottom-up pruning method

The application of rules in the ensemble method is not very efficient. The rules created
for the most specific classes will typically cover few objects, and their predictions will
not be very accurate. Hence, they will contribute very little to the overall performance
of the classifier, and it may actually be better to remove them all together.

Moreover, the objects that belong to a class c are not only covered by rules of c,
but also by the rules of any superclass of c. If these objects can be predicted correctly
to c, it is not necessary that the rules of the superclasses cover them as well. The
rules of c would be sufficient. Thus the rules of the superclasses are redundant and
could possibly be removed.

However, this redundancy is important in the ensemble approach since it allows
the prediction algorithm to estimate votes and determine which classes should be
predicted. The prediction algorithm would not work without them. Still, we may not
need the prediction algorithm if we can determine which classes that can be predicted
accurately and only learn rules for them. So, this redundancy may be removed.

This is the idea behind the method that will be presented in this section. The
most detailed classes that can be predicted accurately are identified, and the classifier
is built from the rules of these classes. The trade-off between detail level and precision
is thus determined directly by the learning algorithm in this approach.

The classes, which can be predicted accurately, can be found efficiently by examin-
ing the DAG in a bottom-up fashion. We start with the leaf classes and move upwards.
For each class, we create a set of rules and determine if the rules give accurate pre-
dictions. If the rules are of high quality, they are retained, and the objects covered
by them are removed (such that they are not considered when rules are learned for
the superclasses). If the rules are inaccurate, they are pruned, and the objects of the
class are passed to the immediate superclass(es). The procedure is then repeated for
the superclasses.

8.4.1 Learning

The details of the learning algorithm are presented in Algorithm 8.6. The al-
gorithm is executed by a call to the procedure LearnBottomUp, which calls the
recursive procedure RecLearnBottomUp for each class on the top level immedi-
ately below the root. RecLearnBottomUp performs the main task. It traverses the
DAG depth-first and considers each class in a postfix order so that rules are learned
first for the subclasses and then for the class itself. As there may be several paths to a
class c, the algorithm checks initially if the class has been visited already and attempts
only to create rules (and visit the subclasses), if the class has not been visited before.

The algorithm attempts to create rules for each class except for the root8. This
done in two different ways depending on whether a class occurs at top level imme-

8The root itself provides no information about an object since all objects belong to the root. So,
if the classifier predicted the root for an object, it would just imply that the class of the object was
unknown.
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LearnBottomUp:
Input: A rooted DAG-decision system A = 〈U, A, d, <〉 with root >, training

accuracy γ, split ratio ρ, pruning accuracy δ, and pruning support σ.
Output: A set of rules RS.

1: Clear rule set RS {RS = ∅}
2: for all c ∈ Sub(>) do {For all immediate subclasses of >}
3: (RS, R) = RecLearnBottomUp(c, RS,A, γ, ρ, δ, σ)
4: end for
5: return RS

RecLearnBottomUp:
Input: a class c, a set of rules RS a rooted DAG-decision system A = 〈U, A, d, <〉,

training accuracy γ, split ratio ρ, pruning accuracy δ, and pruning support σ.
Output: A set of rules RS and a set of uncovered objects R.

1: if class c has not been visited then
2: Mark c as visited
3: R = ∅
4: for all e ∈ Sub(c) do {For all immediate subclasses of c}
5: (RS, R′) = RecLearnBottomUp(e, RS,A, γ, ρ, δ, σ)
6: R = R ∪ R′

7: end for
8: Rc = {x ∈ U | d(x) = c and x 6∈ CovA(RS≺

c )}
9: P = G (Rc ∪ R) and N = G K∗

∼{c}

10: if c ∈ Sub(>) and top level pruning is off then
11: RS = RS ∪ LearnRules (P ,N , A, d, c, γ)
12: R = ∅
13: else
14: (Pt,Pv) = SplitData(P , ρ) and (Nt,Nv) = SplitData(N , ρ)
15: RS1 = LearnRules (Pt,Nt, A, d, c, γ)
16: RS2 = PruneRules(RS1,Pv,Nv, δ, σ)
17: RS = RS ∪ RS2

18: R = {x ∈ P | x 6∈ CovA(RS2)}
19: end if
20: else
21: R = {x ∈ K∗

c | x 6∈ CovA(RS≺
c )}

22: end if
23: return (RS,R)

Algorithm 8.6: Learning in the bottom-up approach
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diately below the root or at a more detailed level. In both cases, the objects are
divided into a positive set and a negative set, and rules are learned with the sub-
routine LearnRules. However, the pruning algorithm PruneRules is not always
applied to rules that are created on the top level. The reason is that the classes at
this level are the most general classes that may be predicted. So the rules created for
them are the most accurate that can be obtained. Moreover, the objects that are not
covered at a more detailed level, must at least be covered at this level. Otherwise,
they will not be covered by any rule, and the classifier will not make any predictions
for them. Rules are therefore not pruned at the top level by default. The rules created
for the detailed classes, on the other hand, may be improved. Hence, these rules are
pruned. Nevertheless, some rules at the top level may be of poor quality such that
a better performance may actually be obtained by removing them. The algorithm is
therefore equipped with an option that allows pruning at the top level as well.

The positive set and the negative set in this algorithm are slightly different from
those in the ensemble method as the A-approximations are not applied. The positive
set P is a subset of G K∗

c and the negative set N is equal to G K∗
∼{c}. This means that

the discernibility of the objects is not considered with regard to the attributes when
these sets are computed. Note that this is not a problem9 since this discernibility
is also considered indirectly by algorithm LearnRules, which creates the rules for
a class It is possible to use the same A-approximations as in the ensemble method.
However, the algorithm seems to work better without them since no voting system is
employed with it (We have actually tried with A-approximations as well). Moreover,
this simplifies the algorithm since the computation of A-approximations is complicated
by splitting in line 14.

The positive set P is only a subset of G K∗
c since the algorithm should not learn

new rules for the objects that have already been covered at the subclasses. Hence, P
contains only objects in G K∗

c that have not been covered. This set can be computed
efficiently as the algorithm moves through the DAG since K∗

c can be decomposed as
follows:

K∗
c = {x ∈ U | c < d(x)} =

⋃

c<d

Xd

where Xd = {x ∈ U | d(x) = c}. The computation is done at several points in the
algorithm. The objects that have not been covered at the subclasses are collected and
added to R in line 6. The objects that belong to the class are found and stored in Rc

in line 8. In this case, it is possible that some of these objects are covered by rules,
which have been created for the subclasses. These objects should be not covered by
new rules and must be removed from Rc. This is achieved with the requirement that
the objects in Rc must not be in CovA(RS≺

c ). RS≺
c denotes the rules in RS that have

9A similar approach is usually taken in machine learning when flat classifiers with multiple classes
are created. In this case, the positive and the negative sets for a class c are created by assigning the
objects labeled with c to the positive set and the rest to the negative set (see e.g.,[59, 1]). Hence,
the discernibility of the objects are not considered with regard to the attributes when the positive
and negative sets are computed.
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been learned at the subclasses,

RS≺
c = {(α→ 〈d, e〉) ∈ RS | c � e}

and CovA(RS) is the set of objects that are covered by the rules in RS.

CovA(RS) = {x ∈ U | x ∈ [[α]]A and (α→ β) ∈ RS}

Hence, CovA(RS≺
c ) contains the objects that are covered by the subclass rules.

The positive set is computed from R and Rc after these have been determined.
This is done in line 9. The algorithm will then learn rules for the class and prune
these rules, and we end up with a set of rules RS2 that have been accepted for the
class. The objects in P that are not covered by the accepted rules in RS2 must
be passed up to the superclasses such that another attempt (to learn rules for these
objects) can be made at these classes. R is therefore recomputed in line 18 such that
it contains the objects in P that are not covered by the rules in RS2. Unfortunately,
this transfer of objects is complicated by the DAG since a class may be visited again
if it has several parents. The contents of R is not stored since it would require too
much memory to store this set for every class in DAG. The contents of R is therefore
lost when algorithm moves upwards and must be recomputed if a class is revisited.
This computation is done in line 2110.

8.4.2 Pruning

The pruning subsystem is responsible for removing rules that cannot be predicted
accurately. It can be designed in many different ways. Some of these choices are:

• Single rules vs. full classes: The pruning can be made on two different levels
– either on the class level or on the rule level. In the first case, we consider all
rules that have been learned for a class and estimate how well they predict the
class. If their performance is unsatisfactory, all of them are pruned. In the
second case, each rule is tested separately and pruned if its performance is not
good enough.

The latter option has an advantage over the former since the pruning is more
fine-meshed in this case. The learning task may not have the same degree of
difficulty for all objects of a class c. For example, it may be easier to learn
accurate rules for some objects than for the rest. Accurate rules may thus be
made for the easy objects while the rest of objects may be passed to a more
general superclass and covered by rules created for these classes. With the
former option, this is not possible. All of the objects must be covered either at
c or at a superclass. So the classifier will either give more incorrect predictions

10The computations in lines 8 and 21 may seem expensive. In our implementation we do not
actually match each object against the rules in RS≺

c . Instead we label each object with the class(es)
of the rule(s) that cover(s) it, and only check if c is general than these labels when Rc and R are
computed.
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SplitData:
Input: A set X and splitting ratio ρ.
Output: A set T for training and a set V for validation

1: Compute the quotient set X ′ = X/IND(G)
2: Split X ′ into T ′ and V ′ at random such that |T ′| = ρ·|X ′| and |V ′| = (1−ρ)·|X ′|
3: T = {x ∈ X | [x]G ∈ T ′} and V = {x ∈ X | [x]G ∈ V ′}
4: return (T ,V )

Algorithm 8.7: Splitting of data

or lose the details of objects that could be predicted c. Note, however, that
this may be the only option if another learning approach such as discriminant
analysis or support vector machines is applied.

• Validation sample: The algorithm needs a validation sample in order to es-
timate the performance of the rules. The training sample can be used for this
purpose. However, this may lead to overfitting as a rule that fits the training
data perfectly may have a different performance on another data set. The esti-
mated performance may thus be overly optimistic such that a rule may not be
pruned even though it should.

An alternative is to split the original training data into a training sample and
a validation sample such that rules are learned from the training sample and
pruned on the validation sample. Such a strategy is often used in machine learn-
ing to avoid overfitting. Unfortunately, this leaves less data for training which
may be a problem especially for the most specific classes where the available
data is already quite scarce.

• Pruning criterion: The pruning algorithm needs a criterion to determine
whether a rule should be accepted or not. One possible criterion is to allow the
user to specify the minimal acceptable accuracy and prune if the performance
is below this value. Another is to use the rules that are learned for classes
immediately below the root as a yardstick. These classes are most general class
that may be predicted and their rules should thus have the best performance.
The rules that are learned for some class c can then be compared to the rules
of these classes, and if the performance is worst the rules of c can be pruned.

In the approach that is presented here we have chosen to prune each rule inde-
pendently. Moreover, the objects are divided into a training sample and a validation
sample such that overfitting is avoided, and a rule is pruned if its accuracy is below
the pruning accuracy δ, which is specified by the user. A rule is also removed if its
support is below the pruning support σ.
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PruneRules:
Input: A sets of rules RS, a positive set Pv, a negative set Nv , pruning accuracy

δ, and pruning support σ.
Output: A pruned rule set RS.

1: for all (α← β ∈ RS do
2: if Accuracy(α,Pv ,Nv) < δ and Support(α,Pv) < σ then
3: RS = RS − {α← β} {The rule is pruned}
4: end if
5: end for
6: return RS

Algorithm 8.8: Pruning of rules

The learning and pruning of rules are performed in lines 14-16 in Algorithm 8.6.
The data in the positive set P and the negative set N are initially divided into training
sets (Pt,Nt) and validation sets (Pv ,Nv). This is done by the procedure SplitData,
which is shown in Algorithm 8.7. This procedure splits a set X in two according to
the partition induced by the objects (i.e., the genes) in the original DAG-decision
system. All objects of a G-elementary set (i.e., a gene) are therefore put either in
the training set or in the validation set. This is necessary as the objects that belong
to the same G-elementary set (i.e., same gene) should not occur both in the training
set and the validation set. Otherwise, the estimated accuracy on the validation set
would be too optimistic, and rules that should be pruned, might be retained. How
the G-elementary sets are divided on the training set and validation set is controlled
by the splitting ratio s. It is typically set to 2/3 so that 2/3 of the G-elementary sets
end up in the training set and 1/3 in the validation set.

After the algorithm has divided the data into a training and a validation sample, it
learns rules from the training sample (line 15) and prunes these rules on the validation
sample (line 16). The pruning algorithm is shown in Algorithm 8.8. This procedure
examines each rule in RSc and tests if a rule should be deleted. This situation occurs
if the accuracy of the rule is below the pruning accuracy δ or the support is below the
pruning support σ. The accuracy Accuracy(α,P ,N ) and support Support(α,Pv) are
defined as follows:

Accuracy(α,P ,N ) = |[[α]]〈P,A〉|/(|[[α]]〈P,A〉|+ |[[α]]〈N ,A〉|)
Support(α,P) = |[[α]]〈P,A〉|

8.4.3 Prediction

Just as in the ensemble method, predictions are made for G-elementary sets (Re-
member that such a set corresponds to an object, i.e., a gene, in the original un-
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transformed DAG-decision system). However, no voting system is applied with this
algorithm. When predictions are made for a G-elementary set (i.e., gene), the rules
that cover this set are identified and the classes of these rules are simply considered
as the predictions.

8.5 Search algorithms

The methods, which were introduced in the last two sections, learn the rules of a class
in the same manner. A positive set P and a negative set N are first determined for the
class. A set of rules is then learned by a rule learning algorithm called LearnRules.
The details of this algorithm were not discussed. So these details will be provided
here.

There are actually many different search algorithms that can be used for finding
rules. Here, two different search algorithms, which are used in our experiments, will
be presented. Both search through a hypothesis space, which consists of conjunctions
of descriptors. However, the search is conducted in different directions. One searches
the hypothesis space in a top-down fashion. The other searches the space from the
bottom and up to the top.

8.5.1 Top-down search

The top-down algorithm is displayed in Algorithm 8.10. It is a so-called covering
or separate-and-conquer algorithm [59]. This means that it searches for one rule at the
time. When it finds a rule that covers some objects of the positive set with a certain
accuracy (γ), it separates these objects from the rest and conquers the remaining
objects by repeatedly learning rules until all objects are covered.

The separate-and-conquer task is performed in the outer-while loop of Algorithm
8.10 (line 2). The loop terminates when P is empty. When an antecedent has been
found, the objects covered by it are removed from P (line 18), and it is turned into
a rule and added to the rule set RS (line 19). For convenience, an antecedent is
represented as a set (I and Ibest). The function Ant(I) turns the set into a conjunction
when a rule is created

Ant(I) =
∧

〈a,v〉∈I

〈a, v〉

The inner while-loop (line 5) conducts a hill-climbing search for the antecedent.
Initially, the antecedent set I and the best antecedent set Ibest are empty, and the set
B contains all descriptors that may be added to I . In each iteration, the descriptor
that has the highest score is added to I . The loop terminates when I has sufficient
accuracy or no more attribute-value pairs may be added to I .

The accuracy Acc(I,P ,N ) and the score Score(I,P ,N ) are defined as

Acc(I,P ,N ) = Accuracy(Ant(I),P ,N )

Score(I,P ,N ) = Support(Ant(I),P) ·Accuracy(Ant(I),P ,N )
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LearnRulesTopDown:
Input: Positive set P , negative set N , conditional attributes A, decision attribute

d, decision class c, and training accuracy γ (0 < γ ≤ 1).
Output: A set of rules RS

1: RS = ∅
2: while P 6= ∅ do
3: I = ∅ and Ibest = ∅
4: B = {〈a, v〉 | a ∈ A and v ∈ Va}
5: while Acc(I,P ,N ) < γ and B 6= ∅ do
6: select 〈a′, v′〉 ∈ B with the highest Score((I ∪ {〈a′, v′〉}),P ,N )
7: I = I ∪ {〈a′, v′〉}
8: B = B − {〈a′, v〉 | v ∈ Va′}
9: if Acc(I,P ,N ) > Acc(Ibest,P ,N ) or Ibest = ∅ then

10: Ibest = I
11: end if
12: end while
13: for each 〈a, v〉 ∈ Ibest (in the order that they were added to I) do
14: if Acc((Ibest − 〈a, v〉),P ,N ) ≥ γ then
15: Ibest = Ibest − {〈a, v〉}
16: end if
17: end for
18: P = P − [[Ant(Ibest)]]〈P,A〉

19: RS = RS ∪ {Ant(Ibest)→ 〈d, c〉}
20: end while
21: return RS

Algorithm 8.9: Top-down search for rules of a class

Note that it is possible to use just the accuracy as score when descriptors are selected.
However, when the support is multiplied with the accuracy, the algorithm is forced
to consider both measures and not only the accuracy.

The best antecedent is maintained in Ibest and is mainly used when the inner-while
loop terminates by the second condition. In this case, the specified accuracy cannot
be obtained and Ibest contains the most general antecedent with the best accuracy.
Note that Ibest will be equal to I if the inner loop terminates by the first condition.

The inner while-loop performs a greedy search that may add redundant conditions
to an antecedent. The antecedent set Ibest is therefore examined and redundant
conditions are removed before a rule is created. This is done in the for-loop at line 13.
The descriptors are processed in the order that they were added to the antecedent set.
A descriptor is deleted from Ibest if the accuracy without it is above training accuracy.

Note that possible rules are found only if the training accuracy γ is 1. However,
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LearnRulesBottomUp:
Input: Positive set P , negative set N , conditional attributes A, decision attribute

d, decision class c, and training accuracy γ (0 < γ ≤ 1).
Output: A set of rules RS.

1: R = {InfA(x) | x ∈ P}
2: while two antecedents in R can be merged into I and Acc(I,P ,N ) ≥ γ do
3: select the two most similar I1, I2 ∈ R, i.e., those with the least dist(I1, I2)
4: create I = merge(I1, I2)
5: remove I1, I2 from R and add I to R
6: end while
7: RS = ∅
8: for each I ∈ R do
9: for each 〈a, v〉 ∈ I do

10: if Acc((I − 〈a, v〉),P ,N ) ≥ γ then
11: I = I − {〈a, v〉}
12: end if
13: end for
14: RS = RS ∪ {Ant(I)→ 〈d, c〉}
15: end for
16: return RS

Algorithm 8.10: Bottom-up search for rules of a class

sometimes it is possible to obtain better results if this criterion is relaxed. Therefore,
the algorithm allows the user to specify γ manually.

8.5.2 Bottom-up search

The bottom-up search algorithm is shown in Algorithm 8.10. Initially, a most
specific antecedent set is created for each object in the positive set where the most
specific antecedent of an object is essentially its information vector. The algorithm
tries then to merge the two most similar antecedent sets into a more general antecedent
set by dropping dissimilar descriptors. This merge operation can be described with
the following function.

merge(I1, I2) = {〈a, v〉 | 〈a, v〉 ∈ I1, 〈a, v〉 ∈ I2}

The similarity of the antecedent sets is measured by

dist(I1, I2) = |{a ∈ A | 〈a, v1〉 ∈ I1, 〈a, v2〉 ∈ I2, and v1 6= v2}|

The generalization process is repeated as long as there are some antecedent sets that
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may be merged and the resulting antecedent set I has an accuracy above the training
accuracy γ.

The antecedent may have redundant descriptors. So after the generalization pro-
cess has terminated, each antecedent set is examined and redundant descriptors are
removed. This is done in almost same manner as in the top-down search. However,
the algorithm does not add descriptors to the antecedent such that the descriptors
are just processed in the order that they appear in the antecedent set.
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Some parts of this chapter have been published in [115].

9.1 Introduction

The performance of supervised learning methods is usually measured by the accuracy
or the area under the ROC curve (AUC) (see e.g., Chapter 5). Some authors also
consider the error rate, which is simply 1− accuracy. All of these measures assume,
however, that each object has a unique decision class and that only one prediction
is made for each object. Moreover, a prediction is either correct (if it is identical to
the decision class of the object) or incorrect (if it is different from the decision class).
However, a prediction cannot be partially correct.

These assumptions do not hold in our case. As we have discussed previously, a
gene may be annotated with several decision classes, and several predictions can be
made for each gene. A prediction need not be identical to a decision class, either. It
may be above or below the decision class such that it matches the class only partially.

Thus, standard performance measures of supervised learning are not applicable.
In this chapter, we introduce a set of measures for learning with DAG-decision system
with multiple decision classes (as defined in Definition 7.12).

9.2 Measuring multiple annotations and predictions

We begin by considering the problem where an object has multiple decision classes
and predictions and ignore the ontology for now. In this case, we have a decision
system A = 〈U, A, D〉 with multiple decisions per object where D(x) is a set of classes
annotated to object x ∈ U . Moreover, we have a classifier, which is to be evaluated
and a set of predictions D̂(x) that are made by the classifier for each object x ∈ U .
There are two ways that this classifier may fail:

171
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D(x)
^

D(x)

D(x) Ç

^

D(x)

D(x) È

^

D(x)

Figure 9.1: Measure for similarity of annotations and predictions for object x.

• It may not predict a class c that should be predicted (i.e., c ∈ D(x) and c 6∈
D̂(x)).

• It may predict a class c that should not be predicted (i.e., c 6∈ D(x) and c ∈
D̂(x)).

These errors can be both assessed with a metric such as

|D(x) ∩ D̂(x)|
|D(x) ∪ D̂(x)|

which measures how many classes that D(x) and D̂(x) have in common for object x
(as illustrated in Figure 9.1). It will be 1 if D(x) = D̂(x) and 0 if D(x) and D̂(x) are
disjoint (D(x)∩ D̂(x) = ∅). The average similarity over all objects can then be found
with

1

|U |
∑

x∈U

|D(x) ∩ D̂(x)|
|D(x) ∪ D̂(x)|

This measure is useful for comparing the performance of different classifiers such
that the best classifier can be identified. However, it is not very helpful in identifying
in what way the classifier fails when it achieves less than a full score. For example,
if we want to improve the performance of the classifier, we need to know what kind
of mistakes it makes — does it make too few predictions such that some annotations
are not predicted or does it make too many such that some predictions do not match
any annotations? Unfortunately, both kinds of errors are measured in the same way
by this measure. So, there is no way to tell.

One way to solve this problem is to use two measures – one for each kind of
error. We assess the ratio RA of annotations that are predicted, and the ratio RP of
predictions that are correct, i.e., those that correspond to annotations.
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Definition 9.1 (Global Recall/Precision). Let A = 〈U, A, D〉 be a decision sys-
tem with multiple decision classes such that an object x ∈ U is labeled with set of
classes D(x). Assume also that D̂(x) is a set of predictions made for object x by a
classifier.

• Recall: RA =

∑
x∈U |MA(x)|∑

x∈U |D(x)| where MA(x) = D(x) ∩ D̂(x)

• Precision: RP =

∑
x∈U |MP (x)|
∑

x∈U |D̂(x)|
where MP (x) = D(x) ∩ D̂(x)

These metrics were believed to be novel when they were introduced in [115]. How-
ever, similar scores have been used for a long time in Information Retrieval (see e.g.,
[89, Chapter 8] and [5, Chapter 3]) where they are called recall and precision. We will
therefore adopt these names here.

Note that there is an alternate way to define these measures. We may consider
the ratio of annotations on an object-wise basis and then compute the average ratio
over all objects (RA′). Similarly, we find the average ratio of the predictions that are
correct for each object (RP ′).

Definition 9.2 (Average object-wise recall/precision).

• Recall: RA′ =
1

|U |
∑

x∈U

|MA(x)|
|D(x)|

• Precision: RP ′ =
1

|U |
∑

x∈U

|MP (x)|
|D̂(x)|

The measures in Definition 9.1 may be viewed as weighted averages with respect
to the objects where the weights depend on the number of annotations (for RA) or
predictions (for RP ) that an object has. Objects with many annotations/predictions
will affect the measures more than objects with few annotations/predictions. For
example, for recall we have:

RA =

∑
x∈U |MA(x)|∑

x∈U |D(x)| =
∑

x∈U

( |MA(x)|
|D(x)| ·

|D(x)|∑
x∈U |D(x)|

)
=
∑

x∈U

|MA(x)|
|D(x)| · wx

The measures given in Definition 9.2 weight the objects equally. However, this
means that one missing annotation will affect RA′ less if an object has 10 annotations
than if it has only 2.

9.3 Measuring the DAG

We will now consider measures for evaluating a classifier trained on a DAG-decision
system with multiple decisions A = 〈U, A, D, <〉. As before, we will assume that the
classifier makes a set of predictions D̂(x) for each object x ∈ U .
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Recall and precision may also be used in this case. However, they consider an
annotation a and a prediction p to match only if a and p are equal. This is clearly
a too strict requirement for the DAG as a and p may match partially if they are
related. The set of matched annotations MA(x) and the set of matched predictions
MP (x) are therefore redefined so that an annotation is considered matched if there
is a related prediction, and a prediction is matched if there is a related annotation:

MA(x) = {a ∈ D(x) | p ∈ D̂(x) and a ≈ p}
MP (x) = {p ∈ D̂(x) | a ∈ D(x) and p ≈ a}

The definitions of recall and precision as given in Definitions 9.1 and 9.2 can then be
applied on these sets instead of MA(x) = MP (x) = D(x) ∩ D̂(x).

These measures estimate the number of the annotations and number of the pre-
dictions that are partially matched. However, they do not consider the loss of details
that may occur when a prediction is more general than an annotation. For example, if
an object is labeled with oxidative stress response and the superclass stress response
is predicted (see Figure 9.2), some of the original detail level has been lost. The
prediction does not tell us which subclass of stress response that object belongs to.
A classifier that predicts oxidative stress response is therefore better than a classifier
that predicts stress response, and we would select the first classifier if we had a choice.
However, it is not possible to distinguish between such classifiers if only recall and
precision are used. Hence, the loss of details should be assessed so that such classifiers
may be told apart.

In order to quantify this loss, we consider the depth of a class which is equal to
the length of the path from the class to the root (i.e., the number of edges from the
class to the root). There may be more than one path from a class to a the root in a
DAG so that a class may occur at several depths. The depth of a class is therefore
defined with respect to a particular path.

Definition 9.3 (Depth). Let t be a path from c ∈ Vd to the root >. The depth of
a class c with respect to path t, denoted Deptht(c), is ||t||.

The loss associated with a prediction p that is more general than annotation a,
can be measured as the depth of p relative to the depth of a.

Definition 9.4 (Relative depth). Given an annotation a and a prediction p with
the associated paths ta and tp, the relative depth of a and p with respect to ta and tp
is:

RDepthta,tp
(a, p) =

{
Depthtp (p)

Depthta (a) if ta v tp or tp v ta

0 otherwise

where s v t denotes that s is a subpath of t (see Definition 7.9 in Section 7.3).

This measure is illustrated in Figure 9.2. It will be 1 if a and p have the same
depth; less than 1 if p is a superclass of a; and 0 if the a and p are unrelated. It also
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Prediction (p)

biological process

cell growth

stress response

oxidative stress response

Annotation (a)

depth(p) = 2

depth(a) = 3

Figure 9.2: Depth and relative depth. Assume that an object is labeled a = oxidative
stress response and a prediction is made for this object to p = stress response. In this
case, there are two edges from p to the root such that p has depth Depth(p) = 2.

Similarly, a has depth 3. The relative depth is RDepth(a, p) = Depth(p)
Depth(a) = 2

3 .

measures the gain in detail level that is obtained when a prediction is more specific
than an annotation. In this case, RDepthta,tp

(a, p) > 1.
Note that one of the paths ta and tp in RDepthta,tp

(a, p) must be a subpath of
the other. Otherwise, the paths are not comparable. For example, if p < a and a
has several immediate superclasses, there will be some paths from a to the root that
include p and some that do not. The paths that do not contain p cannot be compared
against the paths of p. So only paths that contain a path from p to the root as subpath
should be considered.

RDepthta,tp
(a, p) depends on the paths ta and tp, and there may be several differ-

ent relative depths associated with a and p. We need a single measure on how well p
reassembles a. To this end, the maximal relative depth is used.

Definition 9.5 (Maximal relative depth). Let a be an annotation and p a pre-
diction. The maximal relative depth of a and p is defined as

mrd(a, p) = max
ta∈Paths(a,>),
tp∈Paths(p,>)

RDepthta,tp
(a, p)

mrd(a, p) measures not only the loss (when p < a), but also the gain (when a < p).
However, when we evaluate the classifier, we are mainly interested in how well the
classifier reproduces the actual annotations, and are less interested if some details are
gained. The maximal relative depth mrd(a, p) is therefore restricted such that no
additional points are given if p is more detailed than a.
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2
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a
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p
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Figure 9.3: Maximal relative depth. There are two path from a to > and one path
from p to the >. Depth〈a,b,c,p,>〉(p) = 4, Depth〈a,d,p,>〉(p) = 3, and Depth〈p,>〉(p) = 1
The maximal relative depth is mrd(a, p) = (Depth〈p,>〉(p)/Depth〈a,d,p,>〉(p)) = 1/3.

Definition 9.6 (Bounded maximal relative depth). Let a be an annotation and
p a prediction. The bounded maximal relative depth of a and p is

bmrd(a, p) = max(mrd(a, p), 1)

bmrd(a, p) measures only the loss in a prediction with regard to a single annotation.
In order to capture the loss in all annotations and objects, we introduce two measures
that accompany recall and precision.

Definition 9.7 (Average recall/precision depth). Let A = 〈U, A, D, <〉 be a
DAG-decision system with multiple decision classes, and let D̂(x) be a set of pre-
dictions made for object x by a classifier. Then the average recall and precision
depths are:

• Avg. recall depth: DA =

∑
x∈U

a∈D(x)
maxp∈D̂(x) bmrd(a, p)

∑
x∈U |MA(x)|

• Avg. precision depth: DP =

∑
x∈U

p∈D̂(x)

maxa∈D(x) bmrd(a, p)

∑
x∈U |MP (x)|

The recall depth DA is the average bmrd of the best matching prediction for
each matched annotation. This gives an indication of how well the annotations are
reproduced. The precision depth DP gives the average bmrd for each prediction and
their best matching annotation, indicating how well each prediction matches.
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Note that bmrd(a, p) can be replaced with mrd(a, p) in DA and DP if one wants
to measure the gain as well as the loss in the predictions. However, reductions in the
detail level may not be detected in this case. For example, a loss in the detail level
of one prediction may be compensated by a similar gain of another prediction so that
DA and DP may be approximately 1 or higher. Consequently, it may be better to
use an unbounded version of DA and DP together with DA and DP if the gain is to
be measured.

This also holds more generally. With many different sources of errors, it will
usually be better to measure each source separately than measuring several with a
single measure. It is possible to combine the recall RA′ and the recall depth DA into
a single measure:

1

U

∑

x∈U

∑
a∈D(x) maxp∈D̂(x) bmrd(a, p)

|MA(x)|

A similar measure can also be created with precision RP ′ and DP . One may even
merge all of these measures into a single measure such as

1

U

∑

x∈U

∑
a∈D(x) maxp∈D̂(x) bmrd(a, p) +

∑
p∈D̂(x) maxa∈D(x) bmrd(a, p)

|MA(x)|+ |MP (x)|

However, none of them are easily interpreted. So they are not very useful (except for
the last one that could be used as single metric for comparing classifiers). We will
therefore use the four measures recall (RA), recall depth (DA), precision (RP ), and
precision depth (DP ) in the experiments in the next chapter.
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A previous version of the ensemble method has been applied to the fibroblast data.
The results obtained with that version were published in [115] and were quite similar
to the ones that are presented in this chapter.

10.1 Introduction

This chapter reports on several experiments with the algorithms that were introduced
in Chapter 8. The algorithms are first applied to a real life data set created with mi-
croarrays. We then examine the performance of the algorithms on a series of artificial
data sets.

10.2 The fibroblast data

Our first experiment was on a data set created by Iyer et al. [76]. They studied the
gene response in human fibroblast cells1 with cDNA microarrays. In their experiments,
growth factor serum was initially removed for 48 hours from a cell culture. This forced
the cells into a quiescent state. Growth factor serum was then added, and samples
were collected at 12 different time points (0 h, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16
h, 20 h, and 24 h) and analyzed with cDNA microarrays. Each microarray contained
about 8600 genes. Iyer at al. found that 517 of the genes showed substantial changes
in their expression levels. These genes were clustered using hierarchical clustering,
and 10 major groups were identified by inspecting the dendrogram and the heat map
created by the clustering algorithm.

1Fibroblasts are connective tissue cells that take part in wound healing and are capable of differ-
entiating into specialized cells such as cartilage, bone, fat, and muscle cells. In culture, they require
growth factors for proliferation (i.e., multiplication/reproduction). Growth factors are usually pro-
vided by fetal bovine serum.
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10.2.1 Data material

The data set2 provided by Iyer et al. contained the 517 differentially expressed genes
and their associated expression profiles. However, it did not contain any annotations
for the genes. The genes were therefore annotated manually by using relevant in-
formation from the literature and molecular biology databases (see [90] for details).
The annotation classes were taken from biological process subontology (rev. 1.1152 -
25-Aug-2000) of the GO Consortium. A total of 723 annotations were found for 323
of the genes in the data set. 203 of these genes were annotated with more than one
class. In the following, the annotated data set is referred to as the fibroblast data.

The annotations referred to only 234 classes so that most of the classes in the
process ontology were not used. In particular, no gene was annotated with any of
the leaf classes in the ontology. Therefore a part of the ontology was selected and
only this part was used in the experiment. The part consisted of the most specific
classes with annotations and their superclasses. It had a total of 313 classes where 157
were leaf classes. 113 of the classes were associated with only one gene. As explained
in Section 6.8, the inheritance rule was not applied in this experiment. Hence, the
ontology was not transformed. The difference between is-a- and part-of -relationships
was simply ignored.

The microarray measurements were real numbers. However, the rule learning
algorithms assumed that attribute values were discrete. Thus, it was necessary to
discretize the measurements after log2-transformation and normalization3. This was
achieved with the template approach introduced by Hvidsten et al. [75].

This approach transforms real numbers in the expression profile of a gene into
templates. A template is simply an attribute value that describes a pattern over
several consecutive time points. Hvidsten et al. distinguish between three different
templates: Increasing (up), decreasing (down), and constant (const). A simplified
variant of the templates appeared in Table 8.1 where each attribute is constructed
from only adjacent time points.

In this experiment, we created templates that stretched over 2 to 6 time points.
Thus, attributes such as 0H-15min, 0H-30min, 0H-1H, 0H-2H, and 0H-4H were con-
structed. Templates were then assigned to each attribute and object as follows:

• An up template was created if the slope between the end points in the interval,
which was defined by the attribute, was greater or equal to 0.03. If the interval
stretched over 3 or more time points an additional requirement was set such
that the slope between adjacent time points in the interval could not be below
−0.02.

• A down template was constructed if the slope between the end points was less
than or equal to −0.03. Moreover, if the interval stretched over 3 or more time

2This is available at http://genome-www.stanford.edu/serum/.
3Each expression profile was normalized as follows: Let Xi (1 ≤ i ≤ 12) be log2-ratios for a gene

over the 12 time points. A normalized ratio Yi was then computed as: Yi = Xi/
q

P12
i=1 X2

i
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Method Parameter Description Used in algorithm

Bottom-up Top level
pruning

Pruning at classes immedi-
ately below the root (Yes/No)

8.6

ρ Split ratio 8.7
δ Pruning accuracy 8.8
σ Pruning support 8.8

Ensemble θ Threshold for adjusting the
correction of the WB support

8.3

Top-down search γ Training accuracy 8.9
Bottom-up search γ Training accuracy 8.10

Table 10.1: Overview of the parameters used in the learning algorithms.

points, the slope between any adjacent time points in the interval could not be
above 0.02.

• A const template was assigned if the absolute value of the slope between the
endpoints was less than 0.03. If the interval stretched over 3 or more time points,
the absolute value of the slope between any adjacent time points in the interval
had to be below 0.02 as well.

• If none of the above conditions could be fulfilled, no template was assigned to
the object for this attribute.

10.2.2 Results

We applied the bottom-up and ensemble methods to the data set and estimated their
performance with 10-fold cross-validation. The results are reported in Table 10.2
and were quite similar for all of the methods (A summary of the parameters used
by the methods is given in Table 10.1). Most of the annotations in the fibroblast
data were predicted, and most of the predictions were correct. However, a lot of the
original detail level was lost. The bottom-up method retained slightly more details
than the ensemble method, but had a lower precision than the ensemble method. The
performance of two versions of the ensemble method was very similar.

The algorithms were compared to two “flat” algorithms that ignored the DAG
structure. These learned possible rules for each class in a similar fashion to the
ensemble method. However, the positive sets and negative sets were defined as they
would be defined for a rough set classifier that predicts several classes for each object.
So when the algorithms learned rules for the a class c, the positive set P was AGXc

and the negative set N was AG(U −Xc). When rules were found for the complement
P ′ = AG(U −Xc) and N ′ = AGXc.

The first approach4 (described as “flat (voting)” in Table 10.2) learned rules for a

4A similar classifier could be obtained with a rough set system such as Rosetta by handling each
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Method Search γ Top Match (Global) Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Bottom-up
Top-down 0.8 Yes 0.79±0.02 0.72±0.02 0.29±0.01 0.32±0.01
Bottom-up 0.8 Yes 0.79±0.02 0.73±0.03 0.29±0.01 0.32±0.01
Top-down 0.8 No 0.85±0.02 0.63±0.01 0.30±0.01 0.34±0.01
Bottom-up 0.8 No 0.84±0.02 0.59±0.02 0.29±0.01 0.32±0.01

Ensemble
(Normal) Top-down 0.9 0.73±0.02 0.76±0.02 0.28±0.01 0.31±0.01

Bottom-up 0.9 0.79±0.01 0.82±0.01 0.27±0.01 0.31±0.01
Top-down 0.8 0.79±0.02 0.86±0.02 0.27±0.01 0.30±0.01
Bottom-up 0.8 0.79±0.02 0.87±0.01 0.27±0.01 0.30±0.01

Ensemble
(Approx) Top-down 0.9 0.73±0.03 0.78±0.02 0.27±0.01 0.31±0.01

Bottom-up 0.9 0.77±0.01 0.80±0.02 0.27±0.01 0.30±0.01
Top-down 0.8 0.79±0.02 0.82±0.02 0.27±0.01 0.31±0.01
Bottom-up 0.8 0.79±0.02 0.82±0.02 0.27±0.00 0.30±0.01

Flat
(Voting) Top-down 0.8 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Bottom-up 0.8 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Flat
(No voting) Top-down 0.8 0.14±0.01 0.11±0.01 0.95±0.01 0.95±0.01

Bottom-up 0.8 0.12±0.01 0.09±0.01 0.89±0.03 0.90±0.02

Table 10.2: Results on the fibroblast data. For each measure, the average over the 10
cross-validation folds is shown in bold. The quantity after the ± sign is the standard
error. The bottom-up algorithm was executed with ρ = 0.66, δ = 0.8, and σ = 1. θ
was set to 0.7 for the ensemble method.

class and its complement. For prediction, it used the voting procedure in Section 4.7.
This procedure was applied to each class such that a class was predicted if it had a
higher certainty than its complement.

The second approach (described as “flat (no voting)”) learned only rules for a class,
but not for the complement. It did not use any voting procedure. The predictions for
an object consisted simply of the classes in the rules that covered the object.

Table 10.2 also presents the results obtained with these two algorithms. These
results were very weak. The first algorithm did not make any predictions at all because
the certainty of each class was always lower than the certainty of the complement.
The second algorithm worked slightly better. Approx. 10% of the actual annotations

class as a separate prediction task. In this case, we would create a new training set for each class
c so that an object labeled to another class than c would be labeled with “not c”, and an object
annotated to both c and another class would be labeled with just “c”. The training set would then
be given to Rosetta.
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were predicted, and most of the details of these annotations were retained. However,
about 90% of the predictions made by the classifier were incorrect. Hence, the results
obtained with the bottom-up and ensemble methods were obviously better. By trading
off details, they were able to reproduce many more annotations with much higher
precision. This demonstrated the need for taking the DAG-structure into account
during learning.

The predictions made by our algorithms had lost a lot of the details of the annota-
tion. Most of them were made to the classes immediately below the root. We believe
that this was due to the nature of the fibroblast data. The variation in the data may
not be sufficient to distinguish between the more detailed classes. Iyer et al. found
only 10 major clusters in the data indicating that no more than 10 classes may be
distinguished. So, it seems highly unlikely that all 157 leaf classes in our annotations
may be discerned. The genes participating in different processes may simply be sim-
ilarly expressed in the experiment of Iyer et al., and in order to distinguish between
the more detailed classes, we would require more microarray experiments. Thus, the
essential variations in the fibroblast data may be best captured by the general classes
at the top of the ontology.

The fibroblast data have also been classified with Rosetta– originally, in Hvidsten
et al. [75] and more recently in Lægreid et al. [90]. In both studies a subset of the
classes in the ontology was selected, and the genes, which were annotated to more
specific classes, were relabeled with the selected classes. In Hvidsten et al. the most
specific classes, which had at least 10 genes annotated to either themselves or their
subclasses, were selected. This resulted in a set of 16 classes. In Lægreid et al. 23
classes were selected manually using biological knowledge about the data.

The results obtained in these studies are summarized in Table 10.3. It should be
mentioned that slightly different versions of the annotations were used in these studies,
and that an intermediate version of these annotations was used in the experiments.
There were also some differences in the definitions of the templates. This meant that
only a rough comparison was possible. However, it appeared that our results had a
higher precision, while more details were retained in the other studies. The precision
in Hvidsten et al. was very low, and even in Lægreid et al. about 50% of the predictions
were incorrect. Compared to our results, it seemed that too many details were kept
in these experiments. So at least some of the selected classes in these studies should
have been replaced by more general classes.

A question is obviously whether our algorithms predicted too general classes such
that details were lost needlessly. This could have occurred if the algorithms had a
tendency to predict too general classes. This issue is examined in the next section
through controlled experiments with artificial data. The results that will be reported
in that section showed that the bottom-up method retained the detail level quite well.
The ensemble method could lose details, but this depended on the choice of θ. The
experiments on the artificial data showed that the loss was insignificant when θ = 0.7,
which is the setting that was used with the classifiers in Table 10.2. Hence, it is not
likely that details were lost because of these algorithms.

Still, the detail level of the predictions did not depend solely on the bottom-up or
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Study No. of Match (Global) Depth

Classes Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Hvidsten et al. [75] 16 0.67 0.33 0.71 0.71
Lægreid et al. [90] 23 0.84 0.49 0.69 0.69

Table 10.3: Results obtained with Rosetta on the fibroblast data. These figures are
only rough estimates as Hvidsten et al. only reported sensitivity and specificity for
each class6. Lægreid et al. reported recall and precision so that these numbers are
exact. However, recall depth and precision depth were not reported in either study.
These figures were estimated by comparing the original annotations to the “moved”
annotations that were created by relabeling the genes with the selected classes.

ensemble method. The search algorithms, which were used for learning rules, could
also have affected the detail level. For example, if a search algorithm created poor
rules, they could have been pruned by the bottom-up approach such that objects were
pushed upwards, and the detail level was reduced. Poor rules could also have led to
inaccurate votes, which again could have caused the algorithm to predict too general
classes. A related question is therefore whether more detail could have been obtained
if another search algorithm had been used for learning rules for each class.

The two search algorithms that were used here were fairly simple. They attempted
to find a minimal set of rules so that one rule at most was created for each object.
This made them quite sensitive to noise. For example, when the algorithms built a
rule r, they might have to choose between several attributes that had the same ability
to discern between the objects in the positive and the negative set. Only one of these
attributes would be selected since the algorithms tried to create rules with a minimal
number of attributes. This meant that a new object, which had a distorted value for
the chosen attribute (but was otherwise similar to the objects covered by r) would
not be covered by r. Hence, no class would be predicted for this object. The classifier
would consequently be sensitive to noise in the selected attribute. However, the object
might have been covered if one of the other attributes had been selected instead since
it is not likely that all of its attribute values had been changed by noise. So, if the
algorithms made several rules – one for each of these attributes — one of the rules
would probably cover the object, and the algorithms would be less sensitive to noise.

6Note that sensitivity and specificity are useful when a single class is considered, but they do
not give a good impression of the performance for full classifiers (consisting of multiple classes). In
particular, the specificity may be misleading as measure of the correctness. The reason is that for any
given class, the positive set, containing the genes annotated to the class, is much smaller than the
negative set, containing genes annotated only with other classes. Thus, the number of false positives
may be equal or higher than the number of true positives even with a quite high specificity. This
effect is further increased by the fact that multiple classes are predicted for each gene since the errors
made individually for the classes add up in this case. So even with a seemingly high specificity, the
number of false predictions may be much higher that the number of true predictions, resulting in a
low RP .
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Method Search γ Top Match (Global) Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Bottom-up
Top-down 0.8 Yes 0.81±0.01 0.56±0.02 0.36±0.01 0.39±0.01
Bottom-up 0.8 Yes 0.80±0.02 0.54±0.01 0.34±0.01 0.37±0.01
Top-down 0.8 No 0.84±0.01 0.49±0.02 0.35±0.01 0.38±0.01
Bottom-up 0.8 No 0.83±0.02 0.50±0.01 0.35±0.01 0.37±0.01

Ensemble
(Normal) Top-down 0.9 0.56±0.02 0.58±0.02 0.32±0.01 0.38±0.01

Bottom-up 0.9 0.63±0.02 0.69±0.02 0.33±0.01 0.37±0.01

Ensemble
(Approx) Top-down 0.8 0.53±0.02 0.54±0.02 0.34±0.00 0.39±0.01

Bottom-up 0.8 0.50±0.02 0.53±0.02 0.34±0.01 0.41±0.02

Table 10.4: Results on the fibroblast data with relaxed settings. The bottom-up method
was run with ρ = 0.66, δ = 0.1, and σ = 1. θ was set to 1 for the ensemble method.

Hvidsten et al. and Lægreid et al. used the genetic reduct algorithm described
briefly in Section 5.2.3 and created object-wise reducts. This algorithm created several
rules for each object and was most likely less sensitive to noise than the two search
algorithms used in this study. This was quite evident when we compared the number
of rules used in their approaches to the number of rules used in our algorithms. The
ensemble method created the most rules in our approach. It produced 1855 rules
when top-down search was used and 1679 rules when bottom-up search was applied.
In Lægreid et al. a total of 18064 rules were created. So, the genetic reduct algorithm
created 10 times as many rules. Moreover, it created rules for only 23 classes, while
the ensemble method learned rules for 234 class. Hence, there were 7-8 rules per class
in classifiers created by the ensemble method, while there were 785 rules per class in
the classifier of Lægreid et al.

Thus, it is possible that better results could have been obtained with the genetic
reduct algorithm than with the search algorithms that were used in this study. In
order to examine this hypothesis a bit further, we tried to weaken our results so that
we might obtain a recall depth and a precision depth that were similar to that of
Lægreid et al. This was done by changing θ for ensemble method and the pruning
accuracy δ for the bottom-up method. Some of the results that were achieved are
reported in Table 10.4. However, we were unable to obtain a similar detail level as
these results indicate.

This suggests that more details could, perhaps, have been retained if the genetic
reduct algorithm (or another less noise sensitive algorithm) had been used in the
bottom-up and ensemble approaches. However, it is not certain that we would have
obtained a large increase in the detail level if this algorithm had been used. The
classifier of Lægreid et al. had a low precision, and 17 of the 23 classes in their study
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had a depth of 2 or 3. So, if we wanted to maintain a high precision, we would have
had to give up some of the details that were obtained in their study. Thus, we might
still have ended up with a classifier that predicted mostly classes at the top level (i.e.,
at depth 1). So, even though it is possible that some more detail could have been
obtained with another search algorithm, we believe that our results are reasonable
given the available data. A much larger data set comprising many more measurements
(created under different experimental conditions) would have been required in order
to obtain more detailed predictions.

10.3 The artificial data

The fibroblast data set was difficult for prediction of gene function. Therefore, we
performed several controlled experiments in order to get a better understanding of
the performance of the algorithms. These experiments are reported in this section. In
particular, we demonstrate the importance of avoiding discrimination between related
classes, and trading off details for precision. Moreover, we examine whether the
algorithms predict too general classes such that details are lost needlessly.

10.3.1 Data material

Several different artificial data sets were created for these experiments. Two different
DAGs – one small and one quite large – were constructed initially. The small DAG
contained 13 classes where 7 classes were leaf classes. Five of these leaf classes had a
depth of 3, and two had a depth of 2. The large DAG consisted of 52 classes with 30
leaf classes. Twenty of these leaf classes had a depth of 4. The rest had a depth of 3.

Objects were constructed in two steps. Model objects were first created and as-
signed to one or more leaf classes. Each model object had an information vector that
consisted of 11 attributes where each attribute could be assigned one of the following
values: up, down, and const. Objects were then created from the model objects. An
object was produced as follows: The attribute-value pairs in the information vector
of the model object were first copied to the information vector of the object. The ob-
ject was then annotated by randomly generalizing the leaf class label(s) of the model
object. For each leaf class label, a class was selected at random from a pool that
consisted of the leaf class and its superclasses. The object was then labeled with the
selected class.

Several objects were created for each model object. Fifteen instances of each model
objects were created for the small DAG, 25 instances were created for the large DAG.
These numbers may seem large, however, only a fraction of these objects were assigned
to the leaf classes. The most detailed leaf classes in the small DAG had on average
5 instances of same model object. The deepest classes in the large DAG had 6.25
instances on average.
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10.3.2 Results

Without errors

The bottom-up and ensemble methods were applied to both data sets. The perfor-
mance measures were estimated with 10-fold cross-validation. The results are shown
in Table 10.5 and Table 10.6.

The bottom-up method worked almost perfectly. All predictions were correct and
all annotations were matched. However, a very small loss of details was observed.
This was expected as the bottom-up method requires a minimum of objects in order
to accept a rule.

Instances of the same model object had to occur in both the training set and the
validation set in order for the bottom-up method to learn a rule. Objects were needed
in the training set such that a rule was learned, and objects were required in the
validation set such that a rule was not pruned. Hence, a leaf class needed at least
3 objects (when ρ = 0.66) such that 2 objects were placed in the training set and 1
object was put in the validation set. However, a higher number of objects could be
required if several model objects were annotated to the same class since the random
splitting, which created the training and the validation sets, could place all instances
of a model object in only one of these two sets. The likelihood for this to happen
depended on the number of instances that were annotated to each class. However,
the situation was not unlikely when the number of instances of each model object was
very low as it was in the leaf classes of our data sets.

The results seem very good given this requirement for objects since there were
only 5 or 6.25 objects on average in the data set, and this number was reduced by
approximately 10% in the training sets created by the 10-fold cross-validation pro-
cedure. Moreover, by setting ρ = 0.55, we sometimes achieved perfect results (these
are not shown). However, this depended on the seed given to the random number
generator, which was used when the data were split for cross-validation. Increasing
the number of instances per model object to 20 for the small DAG gave perfect results
as well. Thus the method did not appear to have a tendency to predict too general
classes, besides the small loss that was caused by the need to fill both the training
and the validation set with objects.

The performance of the ensemble method was perfect when θ was 1. However, the
level of detail was reduced when θ was decreased. The loss was marginal at θ = 0.7,
but was clearly a concern when θ = 0. At this level, the recall depth was only 0.856.

As explained in Section 8.3.2, the loss was caused by overestimation of votes in
some of the rules. This could occur if two objects that were labeled with different
classes had almost similar information vectors (but with some different attribute-
value pairs). A rule created for a common superclass of these classes could cover both
objects in this case and would have twice as many votes as the rules created for each
of the two classes. So, when a new object, which was similar to one of the objects,
was classified, the rule in the superclass would have a higher vote. The superclass
would therefore be selected, and this resulted in a loss of details.

The flat methods were also tested on the data sets. The first of these did not predict
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Method Search θ Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 1.000±0.000 0.989±0.005 0.989±0.005
Bottom-up 1.000±0.000 1.000±0.000 0.989±0.005 0.989±0.005

Ensemble
(Normal) Top-down 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
Top-down 0.7 1.000±0.000 1.000±0.000 0.990±0.006 0.990±0.006
Bottom-up 0.7 1.000±0.000 1.000±0.000 0.990±0.006 0.990±0.006
Top-down 0.5 1.000±0.000 1.000±0.000 0.988±0.006 0.977±0.006
Bottom-up 0.5 1.000±0.000 1.000±0.000 0.988±0.006 0.977±0.006
Top-down 0 1.000±0.000 1.000±0.000 0.958±0.014 0.949±0.015
Bottom-up 0 1.000±0.000 1.000±0.000 0.958±0.014 0.949±0.015

Ensemble
(Approx) Top-down 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
Top-down 0.7 1.000±0.000 1.000±0.000 0.990±0.006 0.990±0.006
Bottom-up 0.7 1.000±0.000 1.000±0.000 0.990±0.006 0.990±0.006
Top-down 0.5 1.000±0.000 1.000±0.000 0.988±0.006 0.977±0.006
Bottom-up 0.5 1.000±0.000 1.000±0.000 0.988±0.006 0.977±0.006
Top-down 0 1.000±0.000 1.000±0.000 0.958±0.014 0.949±0.015
Bottom-up 0 1.000±0.000 1.000±0.000 0.958±0.014 0.949±0.015

Flat
(Voting) Top-down 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Bottom-up 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Flat
(No voting) Top-down 1.000±0.000 1.000±0.000 1.000±0.000 0.847±0.010

Bottom-up 1.000±0.000 1.000±0.000 1.000±0.000 0.847±0.010

Table 10.5: Results for the small DAG without errors. The training accuracy γ was
set to 1 for all algorithms. The bottom-up algorithm was executed with top level
pruning and ρ = 0.66, δ = 1, and σ = 1 (similar results were also obtained without
top level pruning).
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Method Search θ Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 1.000±0.000 0.996±0.001 0.994±0.002
Bottom-up 1.000±0.000 1.000±0.000 0.996±0.001 0.996±0.001

Ensemble
(Normal) Top-down 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
Top-down 0.7 1.000±0.000 1.000±0.000 0.964±0.004 0.957±0.005
Bottom-up 0.7 1.000±0.000 1.000±0.000 0.962±0.005 0.954±0.006
Top-down 0.5 1.000±0.000 1.000±0.000 0.922±0.008 0.915±0.009
Bottom-up 0.5 1.000±0.000 1.000±0.000 0.923±0.008 0.915±0.009
Top-down 0 1.000±0.000 1.000±0.000 0.856±0.013 0.843±0.013
Bottom-up 0 1.000±0.000 1.000±0.000 0.860±0.012 0.853±0.011

Ensemble
(Approx) Top-down 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 1 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
Top-down 0.7 1.000±0.000 1.000±0.000 0.964±0.004 0.963±0.004
Bottom-up 0.7 1.000±0.000 1.000±0.000 0.956±0.006 0.954±0.007
Top-down 0.5 1.000±0.000 1.000±0.000 0.922±0.008 0.916±0.009
Bottom-up 0.5 1.000±0.000 1.000±0.000 0.929±0.008 0.923±0.009
Top-down 0 1.000±0.000 1.000±0.000 0.857±0.013 0.850±0.013
Bottom-up 0 1.000±0.000 1.000±0.000 0.876±0.012 0.869±0.011

Flat
(Voting) Top-down 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Bottom-up 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Flat
(No voting) Top-down 1.000±0.000 1.000±0.000 1.000±0.000 0.819±0.007

Bottom-up 1.000±0.000 1.000±0.000 1.000±0.000 0.819±0.007

Table 10.6: Results for the large DAG without errors. The training accuracy γ was
set to 1 for all algorithms. The bottom-up algorithm was executed with top level
pruning and ρ = 0.66, δ = 1, and σ = 1 (similar results were also obtained without
top level pruning).
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Method Search Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 0.993±0.007 0.989±0.006 0.989±0.006
Bottom-up 1.000±0.000 0.995±0.005 0.943±0.012 0.921±0.019

Ensemble
(Normal) Top-down 1.000±0.000 1.000±0.000 0.959±0.013 0.959±0.013

Bottom-up 1.000±0.000 1.000±0.000 0.997±0.003 0.998±0.003

Ensemble
(Approx) Top-down 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 1.000±0.000 1.000±0.000 0.997±0.003 0.998±0.003

Flat
(Voting) Top-down 0.446±0.042 0.949±0.026 0.863±0.047 0.854±0.045

Bottom-up 0.373±0.054 1.000±0.000 0.862±0.036 0.854±0.035

Flat
(No voting) Top-down 0.684±0.021 0.785±0.043 0.877±0.026 0.851±0.020

Bottom-up 0.462±0.052 0.664±0.055 0.867±0.033 0.838±0.028

Table 10.7: Results for the small DAG with irrelevant attributes. The training γ was
set to 1 for all algorithms. The bottom-up algorithm was executed with top level
pruning and ρ = 0.66, δ = 1, and σ = 1 (similar results were also obtained without
top level pruning). θ was set to 1 for the ensemble method.

any classes just as it did on the fibroblast data. The other flat method worked quite
well – its performance was almost as good as those of the bottom-up and ensemble
methods. The reason for this was that there were no irrelevant attributes in the data
set. The search algorithms had no opportunity to make mistakes. So even though it
tried to discriminate between similar classes, it found rules that covered the model
vectors. Its performance was therefore quite good.

With irrelevant attributes

The data sets without errors correspond to an ideal situation where each attribute
contributes to the discernibility of the classes. Such a situation will rarely occur in
practice. A more realistic data set will contain noise. In particular, there will be
attributes that do not contribute to the discernibility of the classes. We called such
attributes irrelevant attributes.

In order to make the data sets more realistic, we added 11 irrelevant attributes
to each information vector such that each vector consisted of a total 22 attributes.
The values of the irrelevant attributes were generated at random when an object was
created. The same three values that were used for the relevant attributes were also
assigned to these attributes.
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Method Search Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 0.999±0.001 0.994±0.002 0.992±0.003
Bottom-up 1.000±0.000 0.999±0.001 0.990±0.002 0.986±0.002

Ensemble
(Normal) Top-down 1.000±0.000 1.000±0.000 0.999±0.001 0.999±0.001

Bottom-up 0.999±0.001 0.999±0.001 0.996±0.001 0.996±0.001

Ensemble
(Approx) Top-down 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Bottom-up 0.999±0.001 0.999±0.001 0.996±0.001 0.996±0.001

Flat
(Voting) Top-down 0.477±0.018 1.000±0.000 0.850±0.020 0.844±0.021

Bottom-up 0.258±0.012 1.000±0.000 0.797±0.023 0.798±0.023

Flat
(No voting) Top-down 0.657±0.015 0.777±0.018 0.862±0.015 0.836±0.019

Bottom-up 0.444±0.011 0.532±0.015 0.815±0.022 0.809±0.018

Table 10.8: Results for the large DAG with irrelevant attributes. The training accuracy
γ was set to 1 for all algorithms. The bottom-up algorithm was executed with top
level pruning and ρ = 0.66, δ = 1, and σ = 1 (similar results were also obtained
without top level pruning). θ was set to 1 for the ensemble method.

The results from these data sets are given in Table 10.7 and Table 10.8 (computed
as before with 10-fold cross-validation). The results for the bottom-up and ensemble
methods were very good. There were some very small errors, e.g., the bottom-up
method had an RP of 0.993 and 0.995. These errors were not significant as reflected
by the associated standard errors. They were estimation errors that were introduced
by unfortunate splits made by the cross-validation procedure. This was confirmed in
several cases by changing the seed of the random number generator that was used by
the cross-validation procedure. In all of these cases, we were able to obtain perfect
results7.

Most of the results were similar to those obtained in the last section. However, the
bottom-up method had a lower recall and precision depth when bottom-up search was
used on the small DAG. This loss occurred since the search algorithm would create a
rule with an irrelevant attribute at some occasions and such rules would be pruned
since they did not a have a high accuracy.

A similar loss in detail level was observed for the ensemble method with top-
down search. In this case, it seemed that the top-down search algorithm could be
confused by random properties in the data when it learned rules for the complement.

7These results are not shown as we have chosen to create all of the results in this chapter with
the same seed such that the results are more comparable.
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The positive set for complement contained many objects with different values for the
relevant attribute. None of these values were very frequent. A value of an irrelevant
attribute could actually be slightly more frequent in some cases due to the random
properties of the data. It would thus have a higher score and be selected by the search
algorithm. The resulting rule would not make accurate predictions and could cause
the votes against a class to be overestimated. A (leaf) class could therefore be rejected
even though it should not, and this resulted in some loss of details.

The results obtained with the two flat methods were clearly much worse than those
of the bottom-up and ensemble methods. The search algorithms tried to separate
related classes. This resulted in rules that were based on the irrelevant attributes
since none of the relevant attributes could separate objects that were created from the
same model object and annotated to related (but different) classes. The predictions
made by these methods were therefore very poor. This clearly demonstrates that a
DAG learning algorithm should not attempt to discern between related classes.

With inconsistencies

The ability of the algorithms to trade off details for precision was also examined.
This was done by adding inconsistencies to the original data sets with no errors.
An inconsistency was created by assigning model objects with identical information
vectors to different leaf classes. Each model object was assigned to one leaf class, and
the leaf classes were selected such that they had at least one superclass in common
besides the root. Objects were then created from these model objects as before, except
that the class labels of these objects were not generalized. All of these objects were
thus assigned to leaf classes.

In biological terms, one could think of an inconsistency as a group of genes that
were similarly expressed, but were labeled to different (leaf) classes. A classifier that
tried to predict one or more of the leaf class(es) for the inconsistent objects (i.e,
the similar expressed genes) would obviously make errors. The objects could not be
discerned, and each object was assigned to only one class. Hence, a prediction to
one leaf class would not be correct for all of the inconsistent objects. However, if the
classifier was able to trade off details for precision such that it predicted the common
superclass instead, no errors would occur.

Several inconsistencies were created for both DAGs. These were made with differ-
ent information vectors. The classes, which were assigned to the model objects, were
selected such that the depth of the common superclass varied. Given the properties
of the data sets, we could compute the optimal recall/precision depth if the learning
algorithm identified the common superclasses correctly. This was 0.846 for the small
DAG and 0.901 for the large DAG. Moreover, if an algorithm made no redundant
predictions (i.e., made no predictions that were related) and predicted a leaf class for
the inconsistent objects, it would, in the worst case, have a precision of 0.765 for the
small DAG and a precision of 0.824 for the large DAG.

The algorithms were tested on the data sets with 10-fold cross-validation. These
results are given in Table 10.9 and Table 10.10. All of our methods worked more or
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Method Search Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 1.000±0.000 0.823±0.018 0.795±0.012
Bottom-up 1.000±0.000 1.000±0.000 0.828±0.019 0.801±0.018

Ensemble
(Normal) Top-down 1.000±0.000 1.000±0.000 0.845±0.022 0.845±0.022

Bottom-up 1.000±0.000 1.000±0.000 0.845±0.022 0.845±0.022

Ensemble
(Approx) Top-down 1.000±0.000 1.000±0.000 0.845±0.022 0.845±0.022

Bottom-up 1.000±0.000 1.000±0.000 0.845±0.022 0.845±0.022

Flat
(Voting) Top-down 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Bottom-up 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Flat
(No voting) Top-down 1.000±0.000 0.871±0.019 1.000±0.000 0.861±0.010

Bottom-up 1.000±0.000 0.871±0.019 1.000±0.000 0.861±0.010

Table 10.9: Results for the small DAG with inconsistencies. The training accuracy
γ was set to 1 for all algorithms. The bottom-up algorithm was executed with top
level pruning and ρ = 0.66, δ = 1, and σ = 1 (similar results were also obtained
without top level pruning). θ was set to 1 for the ensemble method. The optimal
recall/precision depth was 0.846 for this data set.

less perfectly. A small loss of details was visible for the bottom-up. However, this was
of the same magnitude as observed previously and occurred most likely because this
method needed a few more objects in order to learn and accept a rule.

The first flat method did not predict any classes at all. The performance of the
second flat method was similar to its previous performance when the data sets did not
contain any errors. However, the precision was lower because the algorithm predicted
the leaf classes for the inconsistent objects. Still, it was higher than expected. This
happened because the algorithm made a lot of redundant predictions. Basically, a leaf
class and all of its superclasses were predicted for the same annotation. The number
of correct predictions was therefore quite high compared to the number of incorrect
predictions, and this resulted in an inflated precision. However, inspection of the
prediction revealed that it made all the incorrect predictions that were possible.

With irrelevant attributes and inconsistencies

Finally, the two kinds of errors were combined in order to examine how the algorithms
handled their combined effect. 11 irrelevant attributes were added to the data sets
with the inconsistencies. These attributes were assigned to the information vectors
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Method Search Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1.000±0.000 1.000±0.000 0.890±0.005 0.844±0.007
Bottom-up 1.000±0.000 1.000±0.000 0.899±0.005 0.869±0.007

Ensemble
(Normal) Top-down 1.000±0.000 1.000±0.000 0.892±0.007 0.890±0.007

Bottom-up 1.000±0.000 1.000±0.000 0.892±0.007 0.890±0.007

Ensemble
(Approx) Top-down 0.996±0.003 0.996±0.003 0.895±0.006 0.893±0.006

Bottom-up 1.000±0.000 1.000±0.000 0.892±0.007 0.890±0.007

Flat
(Voting) Top-down 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Bottom-up 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

Flat
(No voting) Top-down 1.000±0.000 0.937±0.004 1.000±0.000 0.832±0.003

Bottom-up 1.000±0.000 0.937±0.004 1.000±0.000 0.832±0.003

Table 10.10: Results for the large DAG with inconsistencies. The training accuracy γ
was set to 1. The bottom-up algorithm was run with top level pruning and ρ = 0.66,
δ = 1, and σ = 1 (similar results were obtained without top level pruning). θ was set
to 1 for the ensemble method. The optimal DA and DP was 0.901 for this data set.

of both consistent and inconsistent objects. The inconsistent objects were therefore
not inconsistent in the rough set sense of the word as they did not share the same
elementary set. However, they did share the same values for the relevant attributes.
These objects could therefore not be separated by any rule that was based only on the
relevant attributes. A rule based on the irrelevant attributes could possibly separate
them. However, it would not make any accurate predictions since the values of these
attributes were generated at random. Obviously, this made it much more difficult
for an algorithm to recognize that these objects should be predicted to their common
superclass and not to the leaf classes.

Note that this kind of inconsistency could occur in a real life data set if some genes
were really similarly expressed (and differently labeled), but their expression profiles
(i.e., information vector) were not precisely identical due to some noisy attribute
values. The noisy attribute values would not be sufficient to predict the objects to
the detailed leaf classes. Thus, a learning algorithm would have to predict the common
superclass in this case.

The results are given in Table 10.11 and Table 10.12. The bottom-up and ensem-
ble methods performed clearly much better than the flat methods. However, their
performance was not perfect in these data sets. The ensemble method made several
incorrect predictions and was unable to predict all annotations when θ was 1. This

URN:NBN:no-7286



10.3. THE ARTIFICIAL DATA 195

Method Search θ σ Top Match (Global) Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Bottom-up
Top-down 1 Yes 1.00±0.00 0.98±0.01 0.84±0.02 0.79±0.01
Bottom-up 1 Yes 1.00±0.00 0.97±0.01 0.82±0.02 0.80±0.02
Top-down 3 Yes 0.97±0.02 1.00±0.00 0.68±0.02 0.66±0.02
Bottom-up 3 Yes 0.97±0.02 0.99±0.01 0.70±0.02 0.67±0.02
Top-down 3 No 1.00±0.00 1.00±0.00 0.69±0.02 0.67±0.02
Bottom-up 3 No 1.00±0.00 0.99±0.01 0.69±0.02 0.67±0.02

Ensemble
(Normal) Top-down 1 0.89±0.03 0.87±0.03 0.93±0.01 0.93±0.01

Bottom-up 1 0.96±0.02 0.95±0.02 0.90±0.01 0.90±0.01
Top-down 0.7 1.00±0.00 0.99±0.01 0.81±0.02 0.81±0.02
Bottom-up 0.7 1.00±0.00 1.00±0.00 0.81±0.02 0.81±0.02

Ensemble
(Approx) Top-down 1 0.89±0.02 0.88±0.02 0.92±0.01 0.92±0.01

Bottom-up 1 0.96±0.02 0.96±0.02 0.90±0.02 0.90±0.02
Top-down 0.7 1.00±0.00 0.99±0.01 0.81±0.02 0.81±0.02
Bottom-up 0.7 1.00±0.00 1.00±0.00 0.82±0.02 0.82±0.02

Flat
(Voting) Top-down 0.36±0.04 0.79±0.07 0.86±0.03 0.85±0.02

Bottom-up 0.29±0.04 0.88±0.04 0.92±0.02 0.92±0.02

Flat
(No voting) Top-down 0.54±0.04 0.69±0.05 0.87±0.02 0.85±0.02

Bottom-up 0.40±0.03 0.53±0.03 0.88±0.03 0.87±0.03

Table 10.11: Results for the small DAG with irrelevant attributes and inconsistencies.
The training accuracy γ was set to 1 for all algorithms. The bottom-up algorithm
was executed with ρ = 0.66 and δ = 1. The optimal recall/precision depth was 0.846
for this data set.

was quite evident when top-down search was used.

These errors occurred since the inconsistent objects did not belong to the same
elementary set and could not be identified by the rough set operators. This meant
that both the positive and the negative set could contain objects with the same values
for the relevant attributes when rules were learned for a class (or for the complement
of a class). The search algorithms would therefore try to separate these objects and
create rules with some irrelevant attributes since they could not be discerned by the
relevant attributes. These rules did not make accurate predictions and had a low
support. The votes made for and against a leaf class would therefore be incorrect.
Typically, both the votes for and against a class would be underestimated. A random
prediction made by one of these rules, could therefore fool the prediction algorithm
into accepting a leaf class – even though it should not be accepted. Moreover, the
votes for the superclasses of this leaf class would also be underestimated since the
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Method Search θ σ Match (Global) Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Bottom-up
Top-down 1 1.00±0.00 0.96±0.00 0.90±0.01 0.85±0.01
Bottom-up 1 1.00±0.00 0.98±0.00 0.89±0.01 0.86±0.01
Top-down 3 1.00±0.00 1.00±0.00 0.85±0.00 0.81±0.01
Bottom-up 3 1.00±0.00 1.00±0.00 0.85±0.00 0.83±0.01

Ensemble
(Normal) Top-down 1 0.93±0.01 0.92±0.01 0.95±0.00 0.95±0.00

Bottom-up 1 0.95±0.01 0.95±0.01 0.94±0.00 0.94±0.00
Top-down 0.7 1.00±0.00 0.99±0.00 0.86±0.00 0.85±0.01
Bottom-up 0.7 1.00±0.00 0.99±0.00 0.86±0.01 0.85±0.01

Ensemble
(Approx) Top-down 1 0.93±0.01 0.90±0.01 0.96±0.00 0.96±0.00

Bottom-up 1 0.95±0.01 0.93±0.01 0.95±0.00 0.94±0.00
Top-down 0.7 1.00±0.00 0.98±0.00 0.86±0.00 0.85±0.01
Bottom-up 0.7 1.00±0.00 0.99±0.00 0.87±0.01 0.86±0.01

Flat
(Voting) Top-down 0.45±0.02 0.86±0.02 0.87±0.01 0.86±0.01

Bottom-up 0.25±0.01 0.85±0.02 0.85±0.01 0.84±0.01

Flat
(No voting) Top-down 0.62±0.02 0.70±0.03 0.89±0.01 0.86±0.00

Bottom-up 0.42±0.02 0.50±0.02 0.84±0.01 0.83±0.01

Table 10.12: Results for the large DAG with irrelevant attributes and inconsistencies.
The training accuracy γ was set to 1 for all algorithms. The bottom-up algorithm
was executed with top level pruning and ρ = 0.66 and δ = 1 (similar results were also
obtained without top level pruning). The optimal recall/precision depth was 0.901
for this data set.

votes for a superclass were based entirely on the votes from its subclasses when θ = 1.
The prediction algorithm would therefore select the leaf class over the superclass, and
this resulted in an incorrect prediction.

However, the performance was almost perfect when θ was set 0.7. The precision
was very close to perfect, and the loss of details was very small. In this case, the votes
for a superclass were not only based on the votes cast for it subclasses, but also on
the votes cast by the rule(s) that predicted the superclass. The votes for a superclass
would therefore be estimated more correctly so that the prediction algorithm would
select the superclass over a leaf class, which had been incorrectly accepted.

The bottom-up method was more robust than the ensemble method. It maintained
the detail level quite well when the pruning support σ was set to 1. All annotations
were predicted and only a very few predictions were incorrect in this case.

These errors occurred because a few poor rules slipped through the pruning. The
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search algorithms also tried in this case to separate between inconsistent objects when
rules were learned for a leaf class with such objects. The rules created for these objects
therefore had descriptors with irrelevant attributes. These rules did not cover many
objects in the validation set so that their accuracy and support was low. Hence, they
were usually removed by the pruning algorithm. Nevertheless, on some rare occasions,
a rule had a high accuracy and was accepted, and these rules created the errors.

We were able to remove these errors in most cases by raising support σ to 3.
However, this meant that the algorithms now needed more objects in order to learn
and accept a rule. Some loss of details was therefore observed – especially for the small
DAG where objects were less abundant. This was higher than the loss of precision
that was observed when σ = 1. So, the results for σ = 1 seemed better. The precision
was quite close to the optimal value. σ should thus be kept at 1 – at least when the
number of objects is sparse.

10.4 Conclusion

The experiments with the artificial data sets demonstrate that the bottom-up and
ensemble methods deal appropriately with the issues introduced by the DAG. The
methods do not discern between related classes. The rules created by them have a
much higher quality than the rules of corresponding flat methods. Thus, the predic-
tions made by these methods are much more accurate. The bottom-up and ensemble
methods are able to learn good classifiers when the annotations have a varying detail
level and the data associated with each class is relatively sparse. The classes of the
model objects in these experiments were randomly generalized so that the annotations
had a different detail level, and only a few (5-6) objects were assigned to each class.
The algorithms still managed to produce high quality classifiers. Both methods seem
to handle the trade-off between detail level and precision effectively. When objects
are labeled with classes that cannot be predicted accurately, they identify the most
specific classes that may be predicted.

It is possible that a DAG learning method may lose details that could have been
retained. However, this does not appear to be a problem for the bottom-up method.
It retained the detail level quite well in all of the artificial experiments, and it did
not show a tendency to predict too general classes. Only a very small loss of details
was witnessed in our results. This was expected as the method requires a minimum
of objects in order to split the data into a training set for learning and a validation
set for pruning. So if the examples are very sparse, a small loss may be observed.
However, we believe that this should not be any problem in a real life situation.

The ensemble method does not need to split the data. Its need for objects is thus
slightly lower than the bottom-up method. This was witnessed in the experiments
where this method was often able to obtain a perfect score. It therefore has a small
advantage over the bottom-up method when the data are very sparse. However, this
advantage may not be important in a practical situation.

This algorithm also has a disadvantage. The rules in the superclasses may over-
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estimate the votes for a class such that too general classes are predicted. This is
not a problem when θ = 1 since the votes are estimated precisely in this case, but a
significant loss may occur when θ = 0. Unfortunately, the algorithm is sensitive to
noise when θ = 1. This was demonstrated in the last experiment. Adjusting θ to a
position close to 1 seems to correct this situation. However, the method appears less
robust than the bottom-up method with regard to noise.

The results for both versions of the ensemble method were quite similar. However,
the approximate version needs fewer rules and is much faster since it does not learn
dissenting rules. Hence, this version may be quite useful even though its estimate of
the negative support is not accurate.

The results on the fibroblast data also show that the bottom-up method and the
ensemble method work much better than a corresponding flat method. The predictions
obtained on this data set are accurate. However, they are very general such that they
do not contribute much biological knowledge. Still, it seems that this is the best that
can be achieved with the available data set when the top-down or the bottom-up
search algorithm is used. It is possible that another search algorithm may produce
more detailed predictions. However, the main problem seems to be that the fibroblast
data set is insufficient for making both detailed and accurate predictions. Our methods
should therefore be applied on a much larger data set.
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11.1 Main results and contributions

This thesis lies in borderland between several different disciplines. On the one hand,
we have molecular biology and microarray technology that raise the problems. On the
other, we have computer science and knowledge discovery/data mining that provide
the solutions together with statistics and mathematics. These fields represent different
kinds of knowledge that must be unified in order to provide solutions for microarray
analysis. Such unification is obviously a complex task. The thesis addresses this
challenge by focusing on several typical microarray studies and presenting solutions
where relevant contributions from these disciplines are brought together and novel
methods are developed.

In particular, the thesis considers classification problems for two kinds of microar-
ray studies. These may be described according to the objects that are classified. In
the first kind of study, tumor samples are classified, and in the second kind of study,
genes are classified.

We have explained the main issues involved in these analyses and developed gen-
eral methods that solve them. These methods comprise not only learning, but also
preprocessing and evaluation. The preprocessing methods are perhaps not original in
the sense of particular solutions, but are novel in their composition with the learn-
ing methods. The methods have been tested on experimental and artificial data.
In this process, several software tools have been implemented. These are currently
prototypes, but can easily be developed into more user friendly tools.

There are many issues that remain before we have fully automated systems where
a biologist can push a button and receive a final analysis. Developing such tools
is a long and complex process, and we have probably only scratched the surface in
some cases. Hence, there are a lot of opportunities for further research. This will be
discussed in detail in Section 11.3. The next sections summarize the results that have
been obtained.

199
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Classification of samples

This kind of analysis is important in cancer studies where supervised learning may be
applied to determine the tumor subgroup and other clinical parameters. Prediction
of such parameters from microarrays may allow earlier detection of cancer and more
effective treatment.

The main computational issue in this analysis is the imbalance between the number
of genes and the number of samples. The number of genes is typically much larger
than the number of samples. A supervised learning system, on the other hand, expects
that the number of samples is larger than the number of genes.

Therefore, we have introduced a general methodology based on rough sets and
bootstrapping where a set of genes is selected by a bootstrapping algorithm before
the data are given to a rough set learning algorithm. This approach has been tested
on a data set of gastric tumors, and its ability to develop high quality classifiers
has been demonstrated. In particular, we have shown that the feature selection step
is required in order to obtain good classifiers. Our results also indicate that rough
set learning algorithms may work better than discriminant analysis on this kind of
data. Moreover, it has been shown that high quality classifiers for several different
parameters can be developed from the same data set.

Classifiers have been built for a total of 6 different clinical parameters. The con-
nections between the parameters and the genes used in these classifiers have been
compared to the establish knowledge in the biomedical literature. Some of these con-
nections could be confirmed. However, many of these connections have not yet been
described in the literature and may provide valuable hypotheses for further biological
research.

The gastric cancer data set is rather small. Several of the clinical parameters have
a very skew class distribution where only 3 or 4 objects belong to the minority class.
With that few objects, it is possible that good classifiers may be obtained just by
chance. Hence, the genes used by these classifiers may not be biologically connected
to the clinical parameters. The results for the parameters with skew class distribution
must thus be interpreted with caution.

Classification of genes in an ontology

This kind of analysis is performed in order to determine the function of genes and is
based on the assumption that co-expressed genes share the same function. A major
concern in this analysis is the class descriptions, which are associated with the genes.
These descriptions are typically organized in an ontology. An ontology introduces
several problems that are not considered by an ordinary learning algorithm:

• The ontology defines relationships between the classes.

• The relationships imply that the classes have different levels of detail, but a gene
may be annotated to any class. Thus, the detail level of the annotations may
vary.
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• The data associated with each class may be very sparse.

• It may be impossible to obtain both detailed and accurate predictions. An
algorithm may have to trade off details for precision.

Moreover, a gene may be annotated to more than one class. A learning algorithm for
this task must therefore be able to predict several different classes for each object.

Several tools have been presented to cope with these problems. A general rough
set framework for a DAG have been introduced. Several boundary sets and approx-
imations have been defined, and their properties have been examined. Some special
cases such as trees and well-defined DAGs have also been considered.

Using this framework, two novel algorithms have been defined that address the
issues introduced by the DAG.

• The bottom-up method: This approach also attempts to learn rules for each
class and does not discern between related classes. The scarcity of the data is
handled in the same way as ensemble method since the algorithm moves objects
upwards. However, the trade-off is handled differently. Each rule is tested and
removed if it is inaccurate. The algorithm will, in that case, move the objects,
which are covered by the rule, to a more general class. It will then try to cover
these objects again when it learns rules for this more general class. Hence, the
trade-off is determined directly by the learning algorithm in this approach.

• The ensemble method: This algorithm does not discern between related
classes. It learns rules for each class so that an annotation in the training
data will be predicted regardless of the detail level. The algorithm attempts to
counteract the scarcity of the data by moving objects upwards. Both objects
that are labeled to a class and objects that are labeled to the subclasses are
used when it learns rules for a class. The trade-off is mainly handled through a
voting procedure that attempts to minimize the loss of details and precision.

Performance measures are needed in order to determine the quality of a classifier.
However, standard performance measures for supervised learning do not apply to
the DAG. A gene may also have several annotations, and several predictions can be
made for each gene. Performance measures such as accuracy and AUC expect that
each object is labeled with only one class and that only one class is predicted for each
object. Hence, new performance measures are required. We have therefore introduced
several new measures. Recall and precision assess the share of annotations that are
matched by some prediction and the share of predictions that match some annotation.
These measures have been used for a long time in information retrieval. So, even
though they were developed independently in this work, these measure are not entirely
novel. However, they have not been used in context of rough sets previously and are
important in this field since rough set theory allows multiple classes per object. Hence,
the contribution of this work is to have introduced these measures in rough sets and
in our problem domain (i.e., prediction of gene function from gene expression data).
Moreover, the detail level of the annotations and predictions must also be measured.
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Two novel measures that accompany recall and precision have also been defined. The
recall depth and the precision depth are based on the maximal relative depth between
two classes and measure how well each annotation is reproduced and how well each
prediction matches the annotations. We believe that these four measures together
should give a good assessment of the performance of a DAG learning algorithm.

Using these measures, we have tested the algorithms on both experimental and
artificial data. The results on these data sets show that both the bottom-up and
ensemble methods work much better than a corresponding flat method. The results
from the artificial data demonstrate that the algorithms solve the issues that we have
identified in the DAG. They do not discern between related classes such that the rules
have a higher quality than the rules of a flat approach. They can handle annotations
of varying detail level and classes with relatively sparse data. The bottom-up method
seem slightly more robust than the ensemble method with respect to the trade-off.
However, it requires a bit more data as the objects have to be split into a training
sample and a validation sample. Still, both methods appear to manage the trade-off
quite effectively.

There are many ontologies that describe the function of genes. This thesis has
focused on the Gene Ontology. This is probably the most comprehensive ontology that
is currently available for gene function. Its semantics has been discussed and some
difficulties have been pointed out. The semantic rules defined by the GO Consortium
specify that an instance inherits all parts of their parents. However, this inheritance
rule does not appear to be implemented in the current ontology. Thus, we have not
applied this rule in our experiments and have assumed that the ontology is DCA-
compliant. We have, nevertheless, provided a transformation algorithm and shown
that it maintains the relationships between the classes. This algorithm may be used to
transform an ontology, which implements the inheritance rule, into a DCA-compliant
DAG. This means that our learning methods will also be applicable if the inheritance
rule should be implemented in the future. Hence, these methods are useful in either
case.

Although microarray data have been the motivation for introducing these methods,
they have importance far beyond microarray data. Gene function can be predicted
from other kinds of data such as sequence data and Medline abstracts. Adapting our
methods to such data should be fairly easy (see Section 11.3). Ontologies are also used
in many other domains. One such domain is text classification where our methods
should be applicable.

11.2 Related work with regard to DAG learning

The survey in Chapter 3 describes related work on classification of gene expression
data. However, our work on DAG learning introduces new algorithms and methods
that have importance beyond microarray data. As contributions to machine learning
and rough set theory, our work should be compared to similar work in those fields.
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Related work in text classification

Learning in structured classes has largely been ignored in machine learning and rough
set theory. However, there is some recent work that should be mentioned. Several
studies on learning of hierarchical classes for text classification have been reported.
In this domain classifiers are built in order to predict categories for documents, and
these categories may form a tree or a DAG.

The first study on document classification in a tree seems to have been made by
Koller and Sahami [87]. They propose a top-down approach where the classification
problem is decomposed into smaller subproblems. A Bayesian classifier is learned
for each class in the hierarchy so that the classifier for class c predicts the immediate
subclasses of c. A document is then classified by traversing the tree. The root classifier
predicts first one of the immediate subclasses of the root. This subclass is visited, and
one of its immediate subclasses is predicted. This traversal continues until a leaf class
is reached, and this leaf class is the result of the prediction process. The approach
is tightly integrated with a feature selection scheme so that different features may be
associated with different levels in the tree.

This method seems appealing from a computational perspective as it divides the
problem into simpler subproblems. However, it is quite different from our methods,
and it does not handle problems such as the scarcity of the data or the trade-off. The
objects appear to be labeled to leaf classes. Predictions are only made to leaf classes,
and only one class is predicted for each document.

Moreover, their approach is based on an assumption that different features are
associated with each level in the hierarchy. For example, some sibling classes may have
some distinguishing properties that may be used by the classifier at the immediate
superclass as well as some common properties that should be used by the classifier at
the next superclass (i.e., the immediate superclass of the immediate superclass). If
this assumption does not hold, such that the sibling classes have no common features,
the classifier at the next superclass will have to use the same feature as the classifier at
the immediate superclass. In this case, we may not expect any improvements. This is
quite evident in their results. They are only able show significant improvements over
a flat approach when a few features are selected for each classifier, and even in this
case the improvements are quite modest. Mitchell [117] has also shown analytically
that an optimal version of their approach is equivalent to a flat classifier if the same
features are used at each level. Hence, the utility of their approach seems limited.

Similar approaches have been investigated by several other authors. Koller and
Sahami’s approach is greedy as it selects the subclass with the highest probability at
non-leaf classes. An optimal version, which apparently performs a best first-search,
had been given by Chakrabarti et al. [23]. In this approach several predictions can
be made for each object. Dumais and Chen [41] have used a similar approach with
support vector machines. There are also two different approaches that implement
this idea through a neural network architecture [190, 146]. Both are inspired by a
method called Hierarchical Mixture of Experts [79]. In these approaches a non-leaf
class is represented by a gating network and a leaf class is represented by an expert
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network. Class predictions are made by the expert networks, and the gating networks
determine which expert networks are allowed to make predictions. The method of
Ruiz and Srinivasan [146] associates expert networks also with non-leaf classes and
may therefore be able to predict non-leaf classes. However, the sparseness of the data
and the trade-off is not a concern in this approach either. Standard performance
measures are used in all of these studies. Moreover, only a tree is considered.

McCallum et al. [109] propose a quite different approach for naive Bayes classifiers.
Their main concern is the sparseness of the data in the leaf classes. They therefore
use a statistical technique called Shrinkage. This technique improves the probability
estimates for the leaf classes by shrinking them towards the probability estimates for
the superclasses. Very briefly, weights are associated with each class in the hierarchy.
The class-conditioned word probabilities (i.e., P (word|class)) used in the naive Bayes
algorithm are adjusted using these weights. This is done for each word and each leaf
class such the probability of a word given the leaf class is a weighted sum of the
probability of the class and the probabilities of superclasses. The weights are found
by using a version of the EM-algorithm [36]. They are able to show a reduction in
error up to 29%. Hence, this approach seems more interesting with regard to our
concerns in the DAG. However, the approach assumes that the hierarchy is a tree and
only one leaf class is predicted for each object. The approach is therefore incapable
of dealing with the trade-off.

Hence, there exist some hierarchical text classification approaches. However, our
learning and prediction algorithms are very different from these approaches and have
a least two novel features. They handle a DAG, and they are able to trade off details
for precision. As far as we know, there is no text classification approach that is able to
perform such tasks. Moreover, most of the hierarchical text classification approaches
predict only leaf classes and assume that the classes are labeled to leaf classes. So, our
methods are also fairly novel in their ability to predict non-leaf classes. Only standard
performance measures were used in these studies so that our evaluation method is also
original.

Related work in rough sets

There are also some related approaches in rough set theory with regard to our frame-
work. However, these relationships are more distant.

In our framework a partial order is defined on the classes. The dominance-based
rough set approach (e.g., [62]) also considers an ordering of classes so that these prob-
lems may appear similar. However, there are important differences. In the dominance-
based approach the ordering relation is a linear ordering (or at least a total preorder).
Any two classes are therefore related since the relation is total. This means the mem-
bership of an object labeled to class c is not unknown with respect to subclasses of c
since c does not have two or more unrelated subclasses. Hence, the unknown-property
simply does not occur. Moreover, the inconsistency introduced by the DAG does not
arise either.

The concept of unknown objects occurs in other settings in RST, however. Ma lu-
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szyński and Vitoria [106] present an RST framework for Prolog with unknown objects.
However, they develop a Rough Datalog language and define its semantics. They
do not develop approximations and boundary sets for unknown objects. Learning
classifiers is not a concern for them, either.

11.3 Further work

The work presented in this thesis may be continued in many different directions. This
section describes some of these opportunities.

Classification of samples

The methodology developed for the classification of tumor samples seems to work
quite well, but some improvements are possible. More work could be done at the
feature selection stage. We have only tried one feature selection method, but there
are many other methods that could have been used. Development of hypothesis testing
methods for identifying differentially expressed genes in microarray data is currently
a very active research area, and several methods have already been introduced (e.g.,
[179, 43, 38, 101]). Some of these may yield a better performance than the bootstrap
method used here. This work could be continued by combining rough sets with other
feature selection methods. The performance of these methods could then be compared.
One may, of course, also try to develop new hypothesis testing methods, which later
could be used with rough set methods.

Another opportunity for further research may be to identify combinations of genes
that can be applied to build classifiers. With a combination we mean a set of genes
where no gene possesses a discriminatory ability on its own, but the set as whole can
discern between a set of classes. A combination corresponds basically to a reduct,
and one could try to identify such combinations with the genetic reduct algorithm or
another reduct algorithm. However, when the number of samples is small, most of
the reducts found by such an algorithm will be artifacts of the data and will not have
a real biological connection. Hence, a much larger data set would be required for this
type of analysis than the gastric cancer data set. The exact number of samples that
would be required has not be studied (as far as we are aware of). More work should
be done on determining the necessary number of samples either by simulations or by
analytical methods.

It may be possible in this case to reduce the required number of samples by filtering
out irrelevant reducts. For example, one could split the data into a training set and
a validation set. The training set could then be used for learning reducts, while the
validation set could be used to test the quality of each reduct and to filter out the
irrelevant reducts. Such a strategy could be combined with bootstrapping or cross-
validation such that several training and validation sets were created. We could then
count the number of times that a reduct would pass through filtering and select the
most frequent ones (in a similar manner to the dynamic reduct approach).
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In our study, the rough set methods were compared to discriminant analysis. There
are obviously many learning methods that could be applied to classify tumors from
microarray data. More work could thus be done on comparing rough set methods to
other learning methods such as support vector machines and decision trees.

The evaluation of the classifiers could also be improved. We have computed the
accuracy and the AUC of the classifiers and used these measures to compare differ-
ent learning and discretization algorithms. However, the performance measures were
computed with leave-one-out cross-validation on a relatively small set of samples such
that we obtained only rough estimates of the performance. The results would have
been stronger if the variations in these estimates had been taken into account when the
classifiers were compared. Hence, it would be better to compute confidence intervals1

for the AUC (and the accuracy) of each classifier and then compare the confidence
intervals. In this case, it would be an advantage to have a larger set of tumors than
the set that we had at our disposal. The width of a confidence interval depends on the
number of tumors, and with only 17 samples the confidence intervals would probably
be quite wide in most cases.

More work can also be done on the preprocessing of the data. It is sometimes
difficult to decide which normalization and filtering method to use. The preprocessing
could be improved by using direct references such as spiking controls. Such controls
can be used in several ways. One possibility is to apply spiking controls for method
selection and quality control. This can be done by measuring the differences between
the observed and the actual ratios of the spiking controls. The filtering/normalization
method that results in the smallest differences may then be selected.

However, spiking controls may be used more directly in the preprocessing process.
We may, for example, place spiking controls with varying ratios and intensity levels in
a regular pattern over the whole microarray surface and fit a normalization function
to these controls. Such a normalization method will most likely be more accurate than
the current normalization methods since the actual ratio and the actual intensity level
of the spikes will be known. The method will therefore avoid the assumptions, which
most normalization methods are based on. A potential problem, however, is that the
spiking controls may behave differently from the rest of the spots since the cDNA for
these controls are added to the samples. Experiments are thus required in order to
determine whether this is an actual problem. This approach also introduces a cost
since some of the spots have to be used for the spikes. However, most arrays have
some empty spots that may be used for this purpose. So this cost may not be that
large, and as the arrays become larger, it should diminish.

The analysis of the gastric tumors should be continued. The classifiers identified
many connections between genes and clinical parameters. These connections should
be verified experimentally.

The number of samples in the gastric data set was quite small, and several of the
clinical parameters had very skewed class distributions. The number of genes was also

1In this case, we could compute a confidence interval of a performance measure directly or we
could compute the standard error for the performance measure and then find the confidence intervals
from the standard error.
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relatively small compared to the size of the human genome. Thus, a much larger study
with more genes and many more tumors should be performed. It is recommended that
at least 50–100 microarrays are used in an experiment.

Classification of genes in an ontology

Our rough set framework for the DAG can be extended in several ways. Ziarko [197]
has introduced a generalization of rough set theory, which is called the variable preci-
sion rough set (VPRS) model. In this model, the lower and the upper approximation
are defined according to an arbitrary level π ∈ [0, 0.5〉.

BπX = {x ∈ U | µX
B (x) ≥ 1− π}

BπX = {x ∈ U | µX
B (x) > π}

where µX
B (x) =

|[x]B ∩X |
|[x]B |

These approximations may sometimes give better results than the standard approx-
imations. Thus, they should be introduced into our framework and be implemented
in the learning algorithms.

The framework could also utilize the objects in the superclasses to a larger extent.
When we consider a class c, we assume that objects of its superclasses may belong to
c or any of its siblings. The class membership of these objects is therefore unknown.
However, the boundary sets could try to determine whether these objects belong to
c or any of siblings. We may, for example, assume that the objects of a superclass
belong to the class with most similar objects and move the objects to this class. This
assumption may be implemented by the means of proximity based boundary sets.
These sets may generalize our boundary sets in much the same way as the VPRS
approximations generalize the standard rough set approximations. However, in this
case we will use a similarity measure such as dist(I1, I2) from Section 8.5.2 rather
than the rough membership function µX

B (x). An object x labeled to a superclass of c
may, for example, be assigned to the known set of c if there is some object y labeled
to c or one of the subclasses of c, and 1− dist(InfA(x), InfA(y))/|A| is above some
predetermined threshold.

Our framework is in some ways related Dempster-Shafer theory of evidence [154].
This theory can deal with missing or unknown information. It employs a belief func-
tion and a plausibility function that determine the certainty and the possibility that
an object may belong to a set of classes. These functions correspond roughly to the
known set and the potential set in our framework. It would thus be interesting to
study the relationship between our framework and this theory. It may also be possi-
ble to apply Dempster-Shafer theory on the ontology. However, this theory does not
allow both inconsistent and unknown objects. So some modifications would be nec-
essary. The connection between rough set theory and Dempster-Shafer theory have
previously been studied by Skowron and Grzymala-Busse [159]. Their work might be
a good starting point for such research.

The bottom-up and ensemble methods may be developed further:

• The bottom-up method: The pruning system may be defined in many dif-
ferent ways. We have only tried one alternative, and it is possible that other
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pruning systems may work even better. Some alternate pruning strategies are:

– Pruning without thresholds: In our approach the user must specify sev-
eral pruning thresholds so that the algorithm can determine if a rule should
be pruned. These thresholds might be avoided with other approaches. One
possibility would be to use the classes at the top level as a yardstick. The
performance of a rule learned for a detailed class could be compared to the
performance of the rules made for the top level classes. If the performance
was worse, the rule could be pruned. In this case, we would not need any
thresholds. The algorithm would simply identify the most detailed classes
with the highest achievable precision.

– Pruning without splitting: The pruning system divides the original
training data into a training sample and a validation sample in order to
avoid overfitting. This means that this method needs more data than an
approach that keeps the original data intact, and it may consequently lose
a few details. It would be beneficial if this division could be avoided. This
might be possible if a different pruning criterion is used. One possibility
would be to apply the voting system of the ensemble method as pruning
strategy. For example, we may compare the gain of a rule to the gain of
the rules that have been created for the subclasses and prune the rules that
have the least gain.

• The ensemble method: The voting system of the ensemble method was de-
vised informally. A more formal approach could be conceived with a basis in
Bayesian decision theory. A combination of the performance measures that were
introduced in Chapter 9 could be used as a loss function (or as a gain function).
A formal algorithm could then be derived from this loss function. Such an ap-
proach would allow us to investigate the properties of the voting system (e.g.,
whether the system is optimal or not).

The bottom-up and ensemble methods do not learn rules by themselves. Instead,
they employ a separate algorithm, which learns the rules. They may therefore be
regarded as higher level algorithms that apply a learning algorithm as a sub-algorithm.
Two different sub-algorithms have been used in this thesis, namely the top-down and
bottom-up search algorithms. They were chosen mainly for their simplicity and may
not be the most accurate ones. Many other learning algorithms could be applied
and may yield a better performance. Further work should explore the potential in
combining the bottom-up and ensemble methods with other learning algorithms.

Any rule learning algorithm can be used directly by the bottom-up and ensemble
methods. They just need to be implemented in our system. Some possible candidates
are:

• The genetic reduct algorithm that was mentioned in Section 10.2.2. This may
be less noise sensitive than the top-down and bottom-up methods. Hence, it
may produce more detailed and accurate predictions.
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• Beam search algorithms may give a better performance.

• Bagging and boosting the top-down and bottom-up methods may also improve
the precision and the detail level.

However, our methods are not limited to rule learning approaches. The bottom-
up method can be applied to any binary classifier. We will just prune whole classes
instead of rules in this case. More precisely, the algorithm will learn a binary classifier
from the training sample when a class is visited. This binary classifier will then be
tested on the validation sample and may be pruned if its performance is unsatisfactory.

The ensemble method can also be adapted to other learning approaches, but this
conversion may be slightly more complicated. The consenting and the dissenting rules
of a class constitute a binary classifier. This means that most learning algorithms may
in principle be applied since most algorithms can learn such a classifier. However, the
voting system requires several different kinds of votes, and the SC support and the
SN support must at least be estimated (The SA support and the WB support can
be estimated from the SC support). Some methods may be incapable of providing
such estimates directly. These methods may not be applicable without modifications.
Many learning methods, nevertheless, provide a measure that assesses their confidence
of a class prediction. One possibility would be to train two binary classifiers — one for
the SC support and one for the SN support. The SC support and the SN support
could then be estimated from the confidence measure of the respective classifier.

Such a strategy should be very easy to implement with a Bayesian learning ap-
proach. The consenting votes are basically an estimate of the probability that the
class should be predicted, and the dissenting votes are an assessment of the probabil-
ity that the class should not be predicted. Bayesian learning approaches like the naive
Bayes classifier and Bayesian networks output such probabilities. They may thus be
applied readily with our methods. Note that Bayesian learning algorithms are often
used for text classification problems and could be applied to predict gene function
from Medline abstracts (see below). Hence, they may be a good starting point for
further work.

More research may be done on the performance measures. In our measures, the
maximal relative depth is used to assess how well a prediction reassembles an anno-
tation. However, many other functions could be used for this purpose. Some alter-
natives are the penalty functions that were introduced in Section 8.3.2. A further
study should identify such functions and determine which gives the best and most
interpretable assessments.

The fibroblast data set was quite small and had a limited number of patterns (cf.
the clustering of Iyer et al.). Hence, it was not ideal for prediction of gene function.
The bottom-up and ensemble methods should therefore be applied to much larger
data sets. One possibility would be to use microarray data from several experimental
studies assuming that these contain a larger variety of expression patterns such that
more classes can be separated. However, it is a question whether enough microarray
data can be obtained so that both accurate and detailed predictions can be made. As
mentioned in Section 3.5.1 on page 38, the assumption that co-expressed genes are
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involved in the same biological process has at least been contested by Shatkay et al.
[156]. So, it is possible that gene function cannot be predicted with high accuracy
from gene expression data alone.

Still, it is feasible to combine microarray data with other kinds of data. Gene
function may also be predicted from:

• DNA sequence data, and

• Biomedical documents such as Medline abstracts

We could try to combine microarray data with one of these kinds of data or with both
simultaneously. One possibility would be to add information about transcription
factor binding sites in the promoter region to a microarray data set. This could
be done by creating Boolean attributes that denoted the presence or absence of a
particular binding site in a gene. One may also try to predict the gene function from
only Medline abstracts or sequence data.

An important feature of our methods is their generality. They can be applied on
many different kinds of data and are not limited to microarray data and gene function
prediction. One example is text classification. Further research should explore the
utility of our methods on such problems.

The fibroblast data were discretized with the template approach of Hvidsten et al.
[75]. This approach produces very general patterns from the data and may lose a lot
of information. Other discretization methods may give better results. Thus, different
representation forms should be tried with the fibroblast data and other microarray
data.

Even though it is beyond the scope of this thesis, it is evident that the Gene
Ontology needs cleansing. It is still very immature, and the semantics provided by
the GO Consortium is informal and possibly ill-conceived. As we have pointed out,
there are conflicts between the semantics and the actual ontologies. These conflicts
may reduce classification performance. Thus, they should be resolved, and a clear
and formal semantics should be provided.

Hence, there are still many opportunities for further research. We believe that
such work may prove to be prosperous in the future.
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A.1 Introduction

Several concepts from set and graph theory are used in Chapters 6 and 7. Some of
these concects are repeated here. However, it is not the intention to give a complete
review of these concepts.

A.2 Sets

A set is a collection of objects. It can be specified by listing the objects inside curly
brackets {}. For example, {a, b, c} is a set that consists of the objects a, b, and c. An
object is said to be a member of a set if it occurs in this set. This is denoted with the
symbol ∈ such that a ∈ A states that the object a is a member of the set A.

Two sets play special roles in set theory. The set of all possible objects is called
the universe of discourse and is denoted as U . The set that does not contain any
objects is called the empty set and is denoted as ∅.

The following operators are usually defined on sets.

Definition A.1 (Subset). Let A and B be sets taken from the universe U . Then A
is a subset of B, denoted as A ⊆ B, iff x ∈ A implies x ∈ B.

In the following we assume that universe U is equal to {a, b, c, d, e, f}, and that
X = {a, b, c, d}, Y = {c, d}, and Z = {e, d}. In this case, X ⊆ X , Y ⊆ X , and Z 6⊆ X
are true.

Definition A.2 (Proper Subset). Let A and B be sets taken from the universe U .
Then A is a subset of B, denoted as A ⊆ B, iff A ⊆ B and A 6= B.

For example, X 6⊂ X , Y ⊂ X , and Z 6⊂ X are true.

Definition A.3 (Union). Let A and B be sets taken from the universe U . The
union of A and B is denoted as A ∪ B and is equal to {x ∈ U | x ∈ A or x ∈ B}.
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For example, X ∪ Y = {a, b, c, d}, X ∪ Z = {a, b, c, d, e}, and Y ∪ Z = {c, d, e}.

Definition A.4 (Intersection). Let A and B be sets taken from the universe U .
The intersection of A and B is denoted as A ∩ B and is equal to {x ∈ U | x ∈
A and x ∈ B}.

For example, X ∩ Y = {c, d}, X ∩ Z = {d}, and Y ∩ Z = {d}.

Definition A.5 (Complement). Let A be a set taken from the universe U . The
complement of A is denoted as U −A and is equal to {x ∈ U | x 6∈ A}.

For example, U −X = {e, f}, U − Y = {a, b, e, f}, and U − Z = {a, b, c, f}.

Definition A.6 (Difference). Let A and B be sets taken from the universe U . The
difference A − B denotes the objects that are members of A, but not of B, i.e.,
A−B = {x ∈ U | x ∈ A and x 6∈ B}.

For example, X − Y = {a, b}, X − Z = {a, b, c}, and Y − Z = {c}.

Definition A.7 (Symmetric difference). Let A and B be sets taken from the uni-
verse U . The symmetric difference A4B denotes the objects that are members of
either A or B, i.e., A4B = (A−B) ∪ (B −A).

For example, X4Y = {a, b}, X4Z = {a, b, c, e}, and Y4Z = {c, e}.

Definition A.8 (Power set). Let A be a set taken from the universe U . The power
set is denoted as P (A) and contains all subset of A, i.e., P (A) = {B ⊆ U | B ⊆ A}

For example, P ({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Many different properties can be derived from these definitions. The most important
ones are given in the following theorem.

Theorem A.1. Let A, B, and C be sets taken from the universe U . Then the fol-
lowing properties hold.

• Law of double complement: A = (U − (U −A))

• Idempotent laws: A ∪ A = A
A ∩ A = A

• Identity laws: A ∪ ∅ = A
A ∩ U = A

• Inverse laws: A ∪ (U −A) = U
A ∩ (U −A) = ∅

• Domination laws: A ∪ U = U
A ∩ ∅ = ∅
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• Commutative laws: A ∪ B = B ∪ A
A ∩ B = B ∩ A

• Associate laws: A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

• Distributive laws: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

• DeMorgan’s laws: U − (A ∪ B) = (U −A) ∩ (U −B)
U − (A ∩ B) = (U −A) ∪ (U −B)

• Absorption laws: A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = B

Some special properties are used in Chapter 7. These are proven in the next lemmas.

Lemma A.1. Given, B ⊆ C, it is true that

a) A ∩ C = ∅ implies A ∩ B = ∅

b) A ∩ B 6= ∅ implies A ∩ C 6= ∅

Proof. Assume that the first option is false. Then, A ∩ B 6= ∅ and A ∩ C = ∅ must
be true. There must be some x ∈ A ∩ B, and x ∈ A and x ∈ B must hold as well.
However, x 6∈ A ∩ C since A ∩ C = ∅. This means that x 6∈ C (since x ∈ A), and
B is consequently not a subset of C. Contradiction. So the first option is true. The
second option is equivalent to the first (Just negate the implication).

Lemma A.2.

a) A ∩ B = ∅ and A ∩ C = ∅ iff A ∩ (B ∪ C) = ∅

b) A ∩ B 6= ∅ or A ∩ C 6= ∅ iff A ∩ (B ∪ C) 6= ∅

Proof.

a) A ∩ B = ∅ and A ∩ C = ∅ ⇔ (A ∩B) ∪ (A ∩ C) = ∅ ⇔ A ∩ (B ∪ C) = ∅.

b) This is equivalent to the first option (Just negate both sides of the iff).

Lemma A.3.

a) A ∩ B = ∅ or A ∩ C = ∅ implies A ∩ (B ∩ C) = ∅

b) A ∩ (B ∩ C) 6= ∅ implies A ∩ B 6= ∅ and A ∩ C 6= ∅
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Proof.

a) This is equivalent to the second option.

b) Since A∩ (B∩C) 6= ∅, there must be some y ∈ A∩ (B∩C). Then y ∈ A, y ∈ B,
and y ∈ C. This means that A ∩B 6= ∅ and A ∩ C 6= ∅.

Note that the implication in the other direction does not hold. Consider the first
option. If B and C are disjoint subsets of A (i.e., B ∩ C = ∅), then A ∩ (B ∩ C) = ∅
is true, but neither A ∩ B = ∅ nor A ∩ C = ∅ is true.

Lemma A.4. For any sets A and B, it holds that A ∩ B ⊆ A and A ∩ B ⊆ B.
Moreover, A ⊆ A ∪ B and B ⊆ A ∪B.

Proof. Assume that A ∩ B ⊆ A is false. Then there is an x in A ∩ B, but x 6∈ A.
However, x ∈ A ∩ B implies that x ∈ A. So this is impossible, and A ∩ B ⊆ A must
be true. The proof of A ∩B ⊆ B is similar.

Assume that A ⊆ A ∪ B is false. Then there is an x in A, but not in A ∪ B.
However, x ∈ A ∪ B must be true since x ∈ A. So this leads to a contradiction, and
A ⊆ A ∪B must hold. The proof of B ⊆ A ∪ B is similar.

Lemma A.5. Let A, B, and C be sets where A ⊆ C and B ⊆ C. Then A ∪ B ⊆ C,
and A ∩ B ⊆ C hold.

Proof. Assume that A ∪ B ⊆ C does not hold. Then there is an x ∈ A ∪ B and x is
not in C. Since x ∈ A ∪ B, x ∈ A or x ∈ B must be true. However, A 6⊆ C if x ∈ A
and B 6⊆ C if x ∈ B. This means that x cannot be in A∪B. Hence, A∪B ⊆ C must
hold. The proof of A ∩B ⊆ C is similar.

A.3 Relations

Definition A.9. A cartesian product of A and B, denoted A × B, is defined as
{〈a, b〉 | a ∈ A, b ∈ B}. More generally, the cartesian product A1 × A2 × · · · × An

equals {〈a1, a2, . . . , an〉 | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}

For example, let A = {1, 2} and B = {3, 4}. Then we have that A × B =
{〈1, 3〉 , 〈1, 4〉 , 〈2, 3〉 , 〈2, 4〉}.

Definition A.10. A relation R is subset of a cartisan product.

Definition A.11. A binary relation R on X is:

• Reflexive: If xRx for all x ∈ X

• Symmetric: If xRy implies yRx for all x, y ∈ X

• Anti-symmetric: If xRy and yRx imply x = y for all x, y ∈ X
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(a) Graph G1 = 〈V1, E1〉 (b) Graph G2 = 〈V2, E2〉

Figure A.1: Examples of graphs.

• Transitive: If xRy and yRz imply xRz for all x, y, z ∈ X

• Total: If xRy or yRx holds for all x, y ∈ X

R is an equivalence relation if it is reflexive, symmetric, and transive. R forms a
partial order if it is reflexive, antisymmetric, and transitive.

A.4 Graphs

Definition A.12 (Graph). A directed graph G is a tuple 〈V, E〉 where V is a set of
nodes (or vertices) and E ⊆ V × V is a set of edges between nodes.

One example of a directed graph is G1 = 〈V1, E1〉 where V1 = {a, b, c, d} and
E1 = {〈a, b〉 , 〈b, c〉 , 〈c, a〉 , 〈c, d〉}.
Definition A.13 (Path & Cycles). A path from node v0 to node vn in graph G =
〈V, E〉 is a sequence of nodes 〈v0, v1, . . . , vn〉 such that 〈vi−1, vi〉 ∈ E for all i =
1, . . . , n. A path forms a cycle if v0 = vn.

The graph G1 has a path 〈a, b, c, d〉 from a to d. It has also a path 〈a, b, c, a〉,
which is a cycle.

Definition A.14 (DAG). A directed acyclic graph (DAG) is a directed graph G =
〈V, E〉 with no cycles.

The graph G1 has a cycle. Hence, it is not a DAG. However, the graph G2 =
〈V2, E2〉 where V2 = {a, b, c, d, e} and E2 = {〈b, a〉 , 〈c, a〉 , 〈d, c〉 , 〈d, e〉} is a DAG.
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Definition A.15 (Root). Let G = 〈V, E〉 be a DAG. r ∈ V is a root if there is no
egde from r to another node, i.e., 〈r, v〉 6∈ E holds for all v ∈ V .

The graph G2 has two roots a and e. There are no edges from these nodes to
another node.

Definition A.16 (Rooted DAG). A rooted DAG G = 〈V,>, E〉 is a DAG where
> is a root and for all v ∈ (V − {>}) there is a path from v to >.

G2 is not rooted since it has two roots. There is no path from e to a, and vice
versa. However, the graph would be a rooted DAG if the node e and the edge 〈d, e〉
were removed. In this case, a would be the root.

URN:NBN:no-7286



Bibliography

[1] Kamal M. Ali and Michael J. Pazzani. HYDRA: A noise-tolerant relational con-
cept learning algorithm. In R. Bajcsy, editor, Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-93), pages 1064–1071,
1993.

[2] Ash A. Alizadeh, Michael B. Eisen, R. Eric Davis, Chi Ma, Izidore S. Lossos,
Andreas Rosenwald, Jennifer C. Boldrick, Hajeer Sabet, Truc Tran, Xin Yu,
John I. Powell, Liming Yang, Gerald E. Marti, Troy Moore, James Hudson
Jr., Lisheng Lu, David B. Lewis, Robert Tibshirani, Gavin Sherlock, Wing C.
Chan, Timothy C. Greiner, Dennis D. Weisenburger, James O. Armitage, Roger
Warnke, Ronald Levy, Wyndham Wilson, Michael R. Grever, John C. Byrd,
David Botstein, Patrick O. Brown, and Louis M. Staudt. Distinct types of
diffuse large B-cell lymphoma identified by gene expression profiling. Nature,
403(6769):503–511, 3 February 2000.

[3] Claus L. Andersen, Outi Monni, Urs Wagner, Juha Kononen, Maarit Bärlund,
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