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ABSTRACT

This thesis documents the development of an autonomous row crop guidance
system for a differentially wheeled agricultural robot. Computer vision is used
to identify rows and estimate their position and orientation. The estimates
are used as measurements in a Kalman filter, before being supplied to a row
controller which attempts to make the robot follow the row closely. A simulator
with a realistic robot and fields have been developed, and all methods were
tested on real robots. Tests have been done on an indoor recreation of a field
and outdoors on a real carrot field. The result is a system which is able to
autonomously traverse an entire field in simulations and recreated fields.
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SAMMENDRAG

Denne avhandlingen dokumenterer utviklingen av et autonomt radfølgingssys-
tem for en differensielt styrt jordbruksrobot. Maskinsyn er brukt til å identi-
fisere jorderader og estimere radenes posisjon og retning. Estimatene brukes
som målinger i et Kalman filter, som videre blir brukt i en radkontroller som
forsøker å få roboten til å følge raden så nært som mulig. En simulator med en
realistisk robot og jorder har blitt utviklet, og alle metoder ble testet på ekte
roboter. Tester har blitt utført på et innendørs gjenskapt jorde og utendørs
på et ekte gulrotjorde. Resultatet er et system som er i stand til å autonomt
traversere et helt jorde med simuleringer og gjenskapte jorder.
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1
I NTRODUCT ION

As the world’s population continue to grow there is an ever increasing need to
produce more food. By 2042 the world population is estimated to reach 9 bil-
lion people [1]. To cover the future needs of food production, more advanced
farming techniques are required. Precision agriculture is a concept of estimat-
ing variability in crops to allow optimized management for individual parts of
the field. E.g. by doing frequent measurements all over the field, the measure-
ments can be used to optimize the amount of fertilizer and herbicide that is
being applied to every part of the field to maximize the crop yield.

Applying herbicide to the crops is in most cases necessary to avoid unwanted
plants and improve crop yields. The unwanted plants, weeds, can be harmful
to the crops. Usually though, weeds only cover a very small fraction of the field.
In [2] 12 fields were studied, and as much as 70% of the sample area was found
to be free of grass weeds and 30% free of broadleaf weeds. By identifying and
precision spraying individual weed leafs the savings in applied herbicides can
be massive.

Adigo AS is currently developing an autonomous agricultural robot for detec-
tion and precision spraying of individual weed leafs, named Asterix. The robot
will follow the tractor wheel tracks in the field and treat the rows with herbicide
while navigating autonomously. Previous research on the project includes de-
velopment of a precision drop-on-demand nozzle for herbicide application [3],
a model predictive row controller to minimize potential crop damage during
operation[4] and attitude estimation in agricultural robotics [5].

The nozzle array presented in [3] is intended to only be slightly wider than the
row crops, meaning that the robot has to follow the row crops precisely. A small
offset could mean that the weed is out of reach for the nozzles, leaving the weed
untreated. Even worse, a large offset will cause the robot to damage crops by
running over them. This motivates the research to develop robust row following
methods that can achieve high precision. In this thesis, various methods for
detecting and following row crops for a differentially wheeled mobile robot
using computer vision have been developed.
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introduction

Figure 1.1: Illustration of the navigation problem. The robot starts at lower left posi-
tion, follows the middle row until the end is reached, turns around and starts following
the next row until end of field is reached.

1.1 problem statement

The field crop that has been considered in this thesis is that used for growing
carrots. The field has established tractor wheel tracks that the robot should
follow, and in between the wheel tracks there are three rows of crops, as seen
in Figure 1.2. The approach used here for navigation is to identify the middle
row and attempt to follow it closely. Once the end of a row is reached, the robot
should turn around and follow the next row, as illustrated in Figure 1.1

1.2 literature study

The research field of agricultural robotics is growing rapidly with many con-
ferences taking place every year, so this literature study will only cover a few
interesting projects. Detection and mapping of rows is an important part of
autonomous navigation and has received a lot of research interest. However,
there are so many different kinds of crops that every detection technique needs
to be adapted to the specific crop. In addition, the crops will typically look
completely different from early to late stages of the growing process. In some
cases, the plants will be 20 centimeters tall, while in other cases less than a
centimeter.

In [6] methods for detection and mapping of wide row crops are presented.
These rows are similar to the rows considered here, but all analysis is done off-
line on a recorded video and no real-time implementation with autonomous

8



1.2 literature study

Figure 1.2: Picture of the Asterix robot during field trials on a carrot field in Rygge.

Figure 1.3: Picture of the Dogmatix robot, used for all indoor testing. The "head"
sticking out in the front contains the computer and camera.

operation is presented. Some of the techniques in this paper are similar to
those used here.

A project similar to the Asterix project is a project called BoniRob [7]. It is an
autonomous mobile robot platform that can perform lots of different tasks on a
field depending on needs. In [7] the navigational system is briefly introduced.
The biggest difference from Asterix is that they are using a three dimensional
lidar to detect rows instead of a camera, while the Asterix project only relies on
computer vision so far. Lidar is a robust technique, but it also means that the
plants need to be tall to be detected. For the maize fields used in [7] this is ok,
but for a flat field with small plants a lidar alone will probably not be sufficient.
Also, lidars are much more expensive than a camera.

9
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1.3 the robots

Two different robots have been used for testing. Both robots are differen-
tially wheeled robots with rear caster wheels. A prototype robot in the Asterix
project, from here on referred to as just Asterix, is shown in Figure 1.2. The
rear caster wheel is mounted off-center to ensure that no plants are damaged
during operation. Its width is the same as a tractor to be able to follow the
tractor wheel tracks in the field.

The other robot, nicknamed Dogmatix, has been used for indoor testing. A
picture of it is included in Figure 1.3. Like its bigger brother it is differentially
wheeled, but it has a more conventional design with a rear centered caster
wheel.

Both robots are setup so that the same software and code can be used on both
robots. This means that software developed on Dogmatix can be directly trans-
ferred to Asterix without making any changes, and vice versa.

1.4 report outline

This thesis is divided into nine chapters and two appendices. Chapter 1 intro-
duces the problem and the robots. Chapter 2 covers the theory behind some
computer vision techniques. In Chapter 3 the row controller is derived. Chap-
ter 4 presents some of the hardware and software of the robots. The main parts
of the actual development of the methods are documented in Chapter 5. Chap-
ter 6 contains all simulation results, while Chapter 7 presents the same tests
performed on Dogmatix. Chapter 8 documents the field trip that was done. A
short discussion and concluding remarks are found in Chapter 9. Appendix A
contains links to videos of the system in operation. A paper that was written
and submitted while writing the thesis is included in Appendix B.

10



2
COMPUTER V I S ION TH EORY

This chapter covers some basic computer vision theory. The author had no pre-
vious experience with computer vision or image processing, so a large part of
the thesis was devoted to becoming familiar with basic computer vision.

The chapter opens with a brief introduction to how images and color spaces
are represented in computers. Next, there is a fairly comprehensive study of
how three-dimensional real world objects are projected onto a two-dimensional
image. This is an important basis for finding real world position and orientation
of a row based on an image. Next, some basic image processing techniques
such as filters and thresholding is introduced. After that follows an important
backprojection technique which is used to find plants in images based on colors.
Finally, methods for finding and estimating lines in images are covered.

2.1 digital images

A digital image is usually represented as a matrix. Each element of the matrix
represents a pixel, the smallest addressable element of an image. The position
of a pixel can be represented in a two-dimensional coordinate system x =
�

x y
�T

= (x , y). In OpenCV, a computer vision library which will be covered
in more detail later, the origin of the image coordinate system is in the upper
left corner as shown in Figure 2.1.

This section will cover the basics of digital images, color spaces and some sim-
ple image manipulation methods. First, let us start with simple grayscale im-
ages.

2.1.1 Grayscale Images

Grayscale images are images that only contain brightness values and are more
commonly referred to as black-and-white images [8]. Each element of the ma-
trix (pixel) contains a positive integer that represents the brightness value. Zero
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→
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45 81 58 43 38
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79 186 175 172 147
61 191 178 181 185
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Figure 2.1: Example of a grayscale picture and how it is represented in matrix form.
This is a 8-bit grayscale picture, i.e. brightness values range from 0 to 255 where 0 is
black and 255 is white.

represents black and the maximum value represents white, while all numbers
in between are shades of gray. E.g. for a 8-bit grayscale image the range would
be from 0 (black) to 28−1 = 255 (white). An example 8-bit grayscale picture
is shown in Figure 2.1.

2.1.2 Color Images

To understand how digital color images are represented, it is useful to briefly
cover how the human eye senses light and colors. The human eye has approx-
imately 100 million sensors at the retina. [9, p. 6] The largest portion of these
sensors are so called rods, used for black-and-white vision, while the remaining
sensors are called cones, used for perceiving colors. There are three kinds of
cones that sense different parts of the visible light spectrum [9, p. 6]:

• S: Senses short wavelength - blue.

• M: Senses medium wavelength - green.

• L: Senses long wavelength - red.

The color we perceive is a summation of what the cones sense. The combination
of these three colors can cover almost the entire visual spectrum, which is why
the RGB (Red Green Blue) color space is extensively used in representing digital
images [10, p. 46]. RGB is an additive color space, which means that red, green
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and blue combined add up to white. Figure 2.2 shows a comparison with the
subtractive CMY (Cyan Magenta Yellow) color space.

A digital color image with RGB color model can be represented as an extension
of the grayscale image where each element of the matrix consists of a triplet
instead of a single element. The triplet has one value for each of the colors red,
green and blue, often referred to as channels, which combined make up the
color for the pixel. E.g. for a 24-bit image each channel has a range from 0 to
28−1 = 255, meaning that the triplet (255,0, 0) is red, (255, 255,0) is yellow,
(0,0, 0) is black and (255,255, 255) is white. A 24-bit image can represent up
to 224 = 16, 777,216 different color combinations.

2.1.3 Color Spaces

The RGB color model is useful for hardware implementation, e.g. a single pixel
on a computer monitor often consists of two green, one red and one blue light
source. However, RGB is not very descriptive for humans, as we usually do
not express colors as mixtures of red, green and blue, and the RGB value will
change with different light conditions. From a human point of view it is more
natural to describe a color as i.e. "green" and how bright or saturated the color
appears. As it turns out, this representation is also very useful for interpretation
by a computer. One such color model is known as HSV.

The HSV color model describes colors using hue, saturation and value. While
RGB can be represented in three-dimensional Cartesian coordinates as a cube,
HSV can be represented as a three-dimensional cone, as illustrated in Figure 2.3.
The three different channels represent the following [11]:

• Hue (H): A measure of the spectral composition of a color, i.e. the wave-
length of the color. It is measured in degrees around the vertical axis,
usually between 0 and 180 or 0 and 360 degrees.

• Saturation (S): Indicates how "pure" the color is, i.e. how far from gray
of equal brightness it is. Represented as the radial component of the cone.

• Value (V): A measure of the relative brightness. Represented as the
height of the cone.

Note that at the point V = 0 hue and saturation is undefined, and wherever
S = 0 hue is undefined. There is also a singularity in the hue channel after
completing a whole rotation at 360 and 0 degrees. There are no specified
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standards for the ranges of H, S and V, which means that they will vary in
different computer programs.

G

R

B

Y

M C

RGB CMY

Figure 2.2: RGB is an additive color model, so red, green and blue are additive colors
making up white when all are added together. CMY is a subtractive color model, so
cyan, magenta and yellow specify which colors are removed from white light, adding
up to black. RGB is useful for emitting light sources, such as a computer monitor, while
CMY is used for reflective light sources, such as printing on white paper.

(a) RGB (b) HSV

Figure 2.3: Comparison of RGB and HSV color spaces.

The greatest advantage of using HSV in computer vision will be demonstrated
using a simple example. Assume that we want to pick all regions containing
grass in Figure 2.4. The picture contains a bright blue sky, clouds and grass
under different lighting conditions. Intuitively it might make sense to threshold
the areas that have high G values using RGB. Inspecting the brightly lit grass it
can be verified that it does indeed have high G values. However, by inspecting
parts of the sky it can be seen that it actually containsmore green than the grass!

14



2.2 pinhole camera model

Furthermore, the parts of the grass that lie in the shadow of clouds contain very
little green. Clearly, simply thresholding high values of the G channel of RGB
is not a viable solution for finding grass regions.

If we instead look at the HSV values we see that the H channel is very similar
for all parts of the grass, while especially V varies quite a lot depending on
lighting. The sky has a very different H value, so thresholding using H channel
appears to be a valid option. Indeed, by calculating histograms of each color
channel as shown in Figure 2.5, it can be seen that there are two spikes in the
hue histogram: One at around 70 degrees (green) and another around 210
degrees (blue). The other color channels do not appear to have any particular
features usable for extracting a region. The result of a thresholding based on
hue channel is shown in Figure 2.6

This does not mean that RGB does not have a place in computer vision. A sim-
ple technique sometimes used is comparing the difference between the color
channels. E.g. in the case of separating grass and sky, it is very possible that the
difference between R and G is fairly consistent, i.e. R−G is close to constant.
However, for the rest of this thesis the HSV color space has been used for all
color images.

2.2 pinhole camera model

A pinhole camera is one of the simplest cameras. It consists of a closed chamber
with a very small hole (pinhole) in the front with no lens [12]. The idea is
that light rays from objects in the world pass through the pinhole and form an
upside-down image in the back of the chamber. The distance from the pinhole
to the image plane is known as the focal length. To describe this mathematically,
it’s easier to think of a virtual image at a distance equal to the focal length in
front of the camera. This is illustrated in Figure 2.7.

The pinhole camera model is an ideal and simplified model of a camera, but in
many cases it provides a good approximation. We would like to derive a map-
ping from world coordinates to image coordinates. The world coordinate sys-
tem’s origin is placed at the optical center (pinhole) and is represented as

w =
�

u v w
�T

(2.1)

while image coordinates are represented as

x =
�

x y
�T

(2.2)
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R = 187
G = 216
B = 255
H = 214
S = 27
V = 100

R = 60
G = 77
B = 27
H = 80
S = 65
V = 30

R = 172
G = 203
B = 26
H = 71
S = 87
V = 80

Figure 2.4: Example picture with color values represented with RGB and HSV for dif-
ferent areas. The range used are from (0,0, 0) to (255,255, 255) for RGB and (0, 0,0)
to (360, 100,100) for HSV.
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1
R
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1
H

0 100 200
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1
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1
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0 100 200
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1
B

0 20 40 60 80 100
0

1
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Figure 2.5: Normalized histograms of the color channels of the picture in Figure 2.4.
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Figure 2.6: A mask showing the result of a threshold on the hue channel of the picture
in Figure 2.4 from H = 63 to H = 85. The white area shows the selected region.

The position and orientation of world and image coordinate systems are shown
in Figure 2.8. In the next sections we will derive a model for perspective projec-
tion, i.e. the mapping of 3D points w to image points x .

Camera

Image

Pinhole

Ray

Object in world
Virtual image

Figure 2.7: Illustration of pinhole camera. Rays from the world form an upside-down
image on the back of the camera. A virtual image in front of the camera makes the
image the right way round to make it easier to think about. (Based on figure 14.2 from
Computer Vision: Models, Learning, and Inference [12])
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Optical center

Ray

Object in world

Principal point

Optical axis

Focal length Image plane

w
u

v

w =





u
v
w





x

y

x =

�

x
y

�

Figure 2.8: Illustration of coordinate systems for the pinhole camera model. (Based
on figure 14.3 from Computer Vision: Models, Learning, and Inference [12])

2.2.1 Intrinsic Parameters

Intrinsic parameters or camera parameters are parameters that describe the cam-
era itself. These remain unchanged unless the camera configuration changes,
e.g. by zooming or replacing the lens. First, let’s consider the idealized normal-
ized camera.

The normalized camera is a pinhole camera with focal length equal to one and
image coordinate system centered at the principal point [12, p.361]. This is
illustrated in Figure 2.9. It can easily been seen by use of similar triangles that
the image coordinates can be calculated using

x =
u
w

, y =
v
w

(2.3)

where all lengths are measured in length units, e.g. meters, and not in pixels.
This model has some faults. First of all image position is usually given in pixels
instead of lengths, and there’s no reason why focal length should be exactly
one. This can be compensated by multiplying (2.3) with scaling factors φx

and φy . Secondly, the image point x =
�

0 0
�T

will rarely be at the principal
point, e.g. in OpenCV the origin is in the top left corner. To compensate for
this offsets δx and δy are added to (2.3). Finally, a skew term γ is added to the
x position which is multiplied with the real world v value. This term does not

18



2.2 pinhole camera model

Optical center

1

w

v
Ray

y

Figure 2.9: Normalized pinhole camera model. (Based on figure 14.4 from Computer
Vision: Models, Learning, and Inference [12])

have a simple physical explanation, but it is useful in practice. The resulting
model with the added corrections for intrinsic parameters is [12, p.364]

x =
φxu+ γv

w
+δx , y =

φy v

w
+δy (2.4)

2.2.2 Extrinsic Parameters

Extrinsic parameters describe the position and orientation of the camera. This is
done by converting world coordinates w using a rotation matrix Ω and a trans-
lational vector τ. The transformed point w ′ is expressed as [12, p.364]

w ′ =





u′

v′

w′



=





ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33









u
v
w



+





τx

τy

τz



= Ωw +τ (2.5)
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2.2.3 Full Pinhole Camera Model

The full pinhole camera model can be described by combining (2.5) and (2.4).
Themapping from a three-dimensional point in world coordinates w =

�

u v w
�T

to two-dimensional image point x =
�

x y
�T

is [12, p.365]

x =
φx (ω11u+ω12v +ω13w+τx )+ γ(ω21u+ω22v +ω23w+τy)

ω31u+ω32v +ω33w+τz
+δx

y =
φy(ω21u+ω22v +ω23w+τy)

ω31u+ω32v +ω33w+τz
+δy (2.6)

2.3 geometric primitives and perspective transformations

The concept of perspective is vital in computer vision. It can be used to give a
mathematical description of how a camera projects a three-dimensional scene
to a two-dimensional image. It is therefore useful for mapping image coordi-
nates to real world coordinates.

The human brain does a remarkable job at performing projective transforma-
tions. We can usually identify lines that are parallel in the real world from
an image, even though the lines in the image are not parallel. Similarly, we
might interpret an ellipse in an image as a circle in the real world. The brain
does this effortlessly, but the same cannot be said for a computer. How can
we express this mathematically so that a computer is able to perform perspec-
tive transforms on a digital image? What geometric properties change during a
perspective transform and what properties are invariant? First, let us introduce
some geometric concepts.

2.3.1 Homogeneous Coordinates

The Cartesian coordinate system is a natural choice for describing a point or
vector in a two-dimensional image. E.g. a point in an image may be described
by it’s pixel coordinates in Cartesian coordinates as

x =
�

x y
�T ∈ R2 (2.7)

(2.7) may also be represented using homogeneous coordinates [13, p.32]

x̄ =
�

x̄ ȳ w̄
�T ∈ P 2 (2.8)
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where w̄ is an arbitrary scalar, x̄ = wx , ȳ = wy and P 2 = R3 −
�

0 0 0
�T

which is the two-dimensional projective space. The mapping from homoge-
neous coordinates back to Cartesian coordinates is simply

x =
�

x̄/w̄ ȳ/w̄
�T

(2.9)

Note that any point
�

x̄ ȳ w̄
�T

where w̄ 6= 0 is equivalent to
�

x̄/w̄ ȳ/w̄ 1
�T

,
i.e. all points with w̄ = 1 lie in the Euclidean space. Points with w̄ = 0 are
called ideal points or points at infinity and cannot be represented with inhomo-
geneous coordinates[13, p.32].

Lines can also be represented with homogeneous coordinates. First consider a
line in Cartesian coordinates

ax + b y + c = 0 (2.10)

Where a, b and c are constants. In homogeneous coordinates (2.10) may be
written as

ax + b y + cz = 0 → l =
�

a b c
�

(2.11)

Whichmeans that points and lines have become indistinguishable, they are both
represented by triplets. In Cartesian coordinates two lines are parallel if their
slopes a/b are equal, but there is no way to find the intersection of two parallel
lines. Intuitively it does not make much sense attempting to find intersection
between parallel lines, but for projective transformations it becomes very useful.
By extending from the Euclidean space R2 to the projective space P 2 it is
possible to algebraically express the intersection of parallel lines in points at
infinity. Consider two parallel lines representedwith homogeneous coordinates
in P 2

l0 x + l1 y + l2z = 0 → l1 =
�

l0 l1 l2
�T

l0 x + l1 y + l ′2z = 0 → l2 =
�

l0 l1 l ′2
�T (2.12)

The intersection of the lines can be found by calculating the cross product

l1× l2 =
�

l1l ′2− l1l2 −l0l ′2 + l2l0 0
�

(2.13)

This means that the only intersection between two parallel lines is at the point
where the last element is zero and, as previously mentioned, are called ideal
points or points at infinity.
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Euclidean

similarity
affine

projective

Figure 2.10: Geometric transformations. The original rectangle is to the left.

2.3.2 Transformations

Following are some two-dimensional transformations as shown in Figure 2.10.
Let

x̄ =
�

x̄ ȳ w̄
�T

(2.14)

be the homogeneous representation of the Euclidean point x =
�

x y
�T

.

Translation

A translation transform is simply a constant translation of every point in x and
y direction and can be written as [13, p.36]

x̄ ′ =





1 0 t x

0 1 t y

0 0 1









x̄
ȳ
w̄



=

�

I t
0T 1

�

x̄ (2.15)

2.3.3 Euclidean

Euclidean transformation is a combination of translation and rotation and can
be written as [13, p.36]

x̄ ′ =





cosθ − sinθ t x

sinθ cosθ t y

0 0 1









x̄
ȳ
w̄



=

�

R t
0T 1

�

x̄ (2.16)

Note that all lengths and angles between lines remain the same. Often the
Euclidean transformation is referred to as rigid body motion.
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2.3.4 Similarity

Also known as scaled rotation. It is the same as Euclidean transform, but with
an added scaling factor.

x̄ ′ =

�

sR t
0T 1

�

x̄ =





a −b t x

b a t y

0 0 1



 x̄ (2.17)

where a, b and s are arbitrary scalars. Note that we no longer require sR to
be orthogonal, i.e. a2 + b2 = 1 does not need to be satisfied. This means that
lengths are no longer preserved, but angles remain the same.

2.3.5 Affine

The affine transformation can be written as

x̄ ′ =





a11 a12 b1

a21 a22 b2

0 0 1



 x̄ =

�

A b
0T 1

�

x̄ (2.18)

The elements of A and b can be chosen arbitrarily. After an affine transfor-
mation angles and lengths are no longer preserved, but parallel lines remain
parallel.

2.3.6 Projective

The projective transform, also known as homography or projectivity, can be
written as

x̄ ′ =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 x̄ = Hx̄ (2.19)

Where H is a non-singular 3×3 matrix where only the ratio of the matrix ele-
ments matters, i.e. multiplying H with a scalar does not change the projective
transformation. Therefore, H is called a homogeneous matrix. A definition of
a projectivity can be stated as [14, Definition 2.9 p.33]
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Definition 1 A projectivity is an invertible mapping h from P 2 to itself such that
three points x1, x2 and x3 lie on the same line if and only if h(x1), h(x2) and
h(x3) do.

In other words, straight lines remain straight after the transformation.

2.4 basic image processing

This section contains some basic image processing techniques that perform an
iteration over an image and creates an output image based on an evaluation
of either single pixels or groups of pixels. Examples that will be covered are
thresholding, filters and morphological operations.

2.4.1 Point Operators

Point operators cover the most basic of image processing where individual pix-
els are considered one at a time without looking at surrounding pixels [9, p.86].
E.g. simply multiplying each pixel value in a grayscale image with a scalar can
be used to increase the brightness.

Thresholding

An important point operator is thresholding, which is used to convert an image
into a binary image. E.g. if we would like to obtain only parts of a grayscale
image with brightness values greater than α, then each pixel value in a new
image will be the evaluation of a function

dst(x , y) =

�

1 if src(x , y) > α
0 else

(2.20)

where (x , y) is the pixel position, dst is the destination binary image and src
is the source image. The new binary image will only consist of two different
values, in this case 0 or 1. There are many different thresholding techniques
available, but these will not be covered in detail here. Adaptive thresholding
techniques are particularly interesting for their ability to adapt the value of α
based on neighbor pixels or global properties of the image. Otsu’s method is
one of the most popular adaptive thresholding techniques [15].
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2.4.2 Group Operators

Group operators calculate new pixel values not only based on the current pixel,
but also the neighboring pixels [9, p.98]. For a linear filter a weighted sum of
the current pixel and its surrounding pixels form a pixel value in a new image.
The set of weights is often referred to as kernel or simply filter coefficients. The
shape of the kernel can be arbitrary, but it often forms a square. The sum of the
weights should be equal to one for normalized filters. For the case of the linear
filter the output pixel value g(x , y) can be expressed as [13, p.111]

g(x , y) =
∑

k,l

f (x + k, y + l)h(k, l) (2.21)

where f is the input image, h is the kernel and k and l are the number of
rows and columns in the kernel. (2.21) may equivalently be expressed as a
convolution

g(x , y) =
∑

k,l

f (k, l)h(x − k, y − l) = f ∗h (2.22)

An illustration of this operation is shown in Figure 2.11. Note that the output
image will be smaller than the input image, unless e.g. the outer pixels of the
input image are simply copied over to the output image.

2.4.3 Filters

Filters are used to remove noise, blur images or enhance features. All linear
filters can be expressed as a convolution operation (2.22). Not much filtering
has been needed in this thesis, but some of the filters that have been used
are:

• Gaussian: Kernel is weighted Gaussian with mean in the center. Suited
for removing noise in images, which is typically Gaussian distributed it-
self. Can make image appear blurred.

• Mean: Also known as box filtering. Every element of the kernel is equally
weighted, which means that every new pixel value is simply an average
of itself and the surrounding pixels. Useful for smoothing images.

• Median: Choose the median of itself and the surrounding pixels. Note
that this is not a kernel convolution operation and it is considered a non-
linear filter. Can help remove noise while still keeping edges sharp.
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Figure 2.11: An illustration of a kernel convolution. Note that the kernel is not nor-
malized in this case. Retrieved on May 8th 2015 from https://developer.apple.
com/library/ios/documentation/Performance/Conceptual/vImage/
ConvolutionOperations/ConvolutionOperations.html

2.4.4 Morphological Operations

Morphological operations are very often used on binary images to dilate or
erode pixels. Even though it is usually applied for binary images, it can also
be used for grayscale images, but binary images are used as examples here.
A binary image is iterated over with a structuring element and the output bi-
nary image either has increased (dilated) or decreased (eroded) the size of the
nonzero areas.

Let the image be defined by pixel values of either 1 or 0. Let X be the set of all
nonzero pixels, B the structuring element, x one element of X i.e. one pixel.
Then the erosion operation can be expressedmathematically as [9, p.124]

X 	B = {x |B1
x ⊂ X} (2.23)

where B1
x contains the nonzero pixels of B. In similar fashion dilation is ex-

pressed as

X ⊕B = {x |B2
x ⊂ X c} (2.24)

where B2
x contains the zero pixels of B and X c is the complement of X , i.e. it

contains all zero pixels.
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2.5 histogram backprojection

(d) Dilation(a) Structural element (b) Image (c) Erosion

Figure 2.12: Example of morphological operations with a 3× 3 box element. Black
dots represent pixels in the set X and white dots XC . Gray dots are either removed or
added pixels. (Based on figure 3.33 from “Feature Extraction & Image Processing for
Computer Vision, Third Edition” [9])

To illustrate this more clearly, consider Figure 2.12. In this case B is simply a
box. Consider the process of erosion. If for some pixel x , Bx contains a zero
pixel, then the pixel in the output image will be zero. In other words, it is
like taking the minimum value of the pixels covered by the structuring element
at each pixel and store the value in the output image. Similarly, the dilation
process is the same process except for taking the maximum instead of minimum
value.

By first applying dilation and then erosion one can achieve a closing operation.
This is used a lot in this thesis to merge plants that are close into a smooth row
instead of individual plants. Similarly, a opening operation can be achieved by
first applying erosion and then dilation, but this has not been used here.

2.5 histogram backprojection

Histogram backprojection is a technique that makes it possible to compare a
histogram of a certain feature/channel of a reference image, e.g. hue color
value, to another image and produce a ”probability image” highlighting the
areas that match well [16]. The technique can be summarized into following
steps:

Step 1: Compute histogram of a reference image based on image channels of
choice. In this thesis, both hue and saturation have been used together
to form a two-dimensional histogram. It is a good idea to normalize the
histogram to values between zero and one.
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Step 2: Iterate over all pixels of the image we want to compare with. For each
pixel, look up the value in the histogram of the reference image and copy
this value into a new image, the probability image.

Step 3: After iterating over all of the image, the probability image now consists of
pixel values between zero and one representing "probabilities" that they
belong to the class defined by the reference image. To finally obtain a
binary image one may threshold pixels of high probabilities.

As an example related to agricultural, consider the case of selecting all leafs
from an image. If the areas that do not contain leafs have some what differ-
ent colors than the leafs, then the method of backprojection should be a good
method for finding leafs. Examples of this will be shown in later sections.

2.6 estimating straight lines in images

An important step of estimating the direction and position of row crops in an
image is line detection and fitting. Two different techniques are presented in
this section.

2.6.1 Hough Transform

The use of Hough transform in image processing is one of the classic techniques
for locating shapes in images [9]. It was first introduced by Hough in 1962 [17],
but the first use for detecting lines was in 1972 [18]. It can be used to find both
lines, circles and ellipses among other shapes, but only lines will be covered
here. The typical line equation

y = mx + c (2.25)

can be parametrized as

r = x cosθ + y sinθ (2.26)

where r is the shortest distance from the origin to the line, and θ is the angle
of the line’s normal vector. If θ is restricted to [0,π], then the parameters r
and θ are unique for a line [18]. This means that points that lie on the same
line should intersect at one unique point in the Hough space. This is illustrated
in Figure 2.13 and can be used to identify lines with the following steps:
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Figure 2.13: To the left is a plot of four points in Cartesian space. In Hough space
the four points become sinusoidals. Three of the points lie on the same line, so they
intersect at the same point in Hough space, while the fourth point is not part of the
same line and intersects at different points in Hough space.

Step 1: Divide the Hough space into discrete cells where each cell corresponds to
an interval for r and θ . The cells act as accumulators, basically forming
a two-dimensional histogram.

Step 2: Locate all edge points in an image. For each edge point (x i , yi), calculate
r for all values of θ and increment each matching cell by one.

Step 3: After iterating over all edge points, the lines in the image should corre-
spond to the cells with highest values, i.e. lines can be found by searching
the cells for local maximums.

In practical implementations there are lots of optimizations that can be done,
e.g. reducing the number of values of θ that have to be iterated over.

2.6.2 Line Fitting

Line fitting can be formulated as an attempt to find an approximate solution
of an overdetermined system, i.e. there are more equations than unknowns.
Basically, if one has located several points in an image that are believed to be
part of a line, find a line that best fits the points. It is important to understand
the difference between this approach and the Hough transform. The Hough
transform finds all lines in an image, but with line fitting all the points, or at
least most of the points, are used to estimate just one line.
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Figure 2.14: The white areas show parts of an image that have been selected after a
thresholding. The desired behavior is to fit a line to the white areas to the left, but there
are outliers to the right of the image. The left image shows a line fitting using standard
least squares method, while in the right image a RANSAC-like method is used.

A standard approach to line fitting is the use of a linear least squares method,
which should be known from all kinds of research fields. Given n data points
(x i , yi), i = 1, . . . , n, let ri = yi − f (x i ,β) where f (x i ,β) is the model func-
tion and β contains the line parameters to be found. The optimal values for β
are found by minimizing the sum of square residuals

S =
n
∑

i=1

r2
i (2.27)

This method works well in cases where noise is expected to follow a Gaussian
distribution, i.e. data points are expected to deviate evenly on both sides of the
actual line. In image processing this is not always the case. Very often there
will be outliers that do not belong to the line at all. One of the more robust
solutions to fit lines to data sets with outliers is a random sample consensus
paradigm, also known as RANSAC [19]. OpenCV has a RANSAC-like imple-
mentation with the function fitLine. The method can be summarized with the
following steps:

Step 1: Pick n randomly selected points.

Step 2: Fit a line to the n selected points using e.g. (2.27).

Step 3: Test if the remaining points fit the line found in previous step using a cost
function, which also could be (2.27), but many more cost functions are
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available. If the output of this cost function (residual) is lower than some
defined threshold, then the point is considered an inliner. Otherwise, the
point is considered an outlier.

Step 4: Refit the line to the n randomly selected points plus all the points that
were found to be inliners.

Step 5: Repeat steps 3-4 until convergence, i.e. no more inliners are found, or a
maximum number of iterations is reached.

Step 6: Check if the line is better than the currently best line by comparing sum
of residuals for the inliners. Save it as currently best if better.

Step 7: Repeat steps 1-6 fixed number of times, or until the sum of residuals for
the inliners is smaller than some chosen value.

In Figure 2.14 an example binary image is shown with two different line fitting
methods.
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3
CONTROLLER DES IGN

The control problem of path-following for wheeled mobile robots has been an
extensive field of research due to its many use cases. In our case the prob-
lem can be simplified to path-following of a straight line for a unicycle-like
robot.

The author has previously derived and tested several adaptive controllers for
a trajectory tracking problem based on dynamic models of unicycle-like robots
(see Appendix B for a detailed paper). While these methods could be easily
adapted to this problem, there is simply not enough excitation in the reference
signal when following a straight line at constant speed to ensure correct pa-
rameter convergence. As it turns out the kinematic model alone is sufficient
to develop a controller that meets our specifications. The specifications can be
summarized to:

• Follow a straight line with constant forward speed.

• Ability to restrict the line approaching angle θ to ensure that the rear
caster wheel does not run over crops.

The last point is important and has been previously researched and simulated
as part of this project in [4]. In that paper the problem is tackled using a non-
linear model predictive controller to ensure the rear caster wheel stays in its
wheel track. The controller presented here has a slightly simpler approach to
the problem and will simply attempt to restrict maximum angle difference to
the line/row.

3.1 kinematic model of robot

The kinematic unicycle model is used to model the kinematics, and is given as

ẋ = u cosψ

ẏ = u sinψ

ψ̇=ω

(3.1)
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x

y

h ψ

ω

u

Figure 3.1: Illustration of a robot with off center rear mounted caster wheel, similar
to Asterix.

where u is forward velocity, ω is the angular velocity and ψ is the heading.
The tracking point h =

�

x y
�T

is the point that should follow the line and is
located at the center of the wheel axle at the same point as the rotational axis.
This is illustrated in Figure 3.1.

For the line-following controller it is more useful to express the position and
orientation of the robot relative to the line. In this case it is sufficient to use
the distance to the line d and the angle of the line relative to the heading of
the robot θ . This is illustrated in Figure 3.2 and may be expressed as

ḋ = u sinθ

θ̇ =ω
(3.2)

where the sign of d and θ are as defined in Figure 3.2. The goal is to obtain a
controller that ensures asymptotic stability at the origin (d,θ ) = (0, 0).

3.2 line following controller

Since we only consider the kinematic model it is assumed that the dynamics are
fast enough to approximate ω≈ωr where ωr is the reference signal provided
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3.2 line following controller

xo

yo

xb

yb

θ
d

l

Figure 3.2: Illustration of a line l defined in global coordinates that the robot is set
to track. An orthogonal projection from the point (xb, yb) = (0,0) onto l gives the
distance d, while the angle θ is the angle difference of the robot and the line. The
controller attempts to achieve (d,θ )→ (0,0). In this figure d < 0 and θ > 0.

by the control law. In [20] the following control law is shown to provide global
asymptotic convergence in the case of a straight line

ωr = −k1ud
sinθ
θ
− k2|u|θ (3.3)

where k1, k2 > 0 are constant tuning parameters. For all practical purposes
u> 0 and this will be implicitly assumed for the rest of this thesis. The stability
can be analyzed using the following Lyapunov-like function

V =
1
2

k1d2 +
1
2
θ2 (3.4)

Differentiating (3.4) along the solution of (3.2) gives

V̇ = k1du sinθ + θ (−k1ud
sinθ
θ
− k2|u|θ ) = −k2|u|θ2 ≤ 0 (3.5)

Which means V̇ is negative semidefinite. Further analysis is needed to prove
asymptotic stability, but there are a few problems related to this control law
which might want to make us look into different control laws. Firstly, even
though the limit of the function

lim
θ→0

sinθ
θ

= 1 (3.6)

is mathematically smooth and continuous, it can be problematic to implement
due to the fact that both numerator and denominator are close to zero. Sec-
ondly, it is difficult to restrict the approaching angle (as in the specifications)
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when the distance to the line d is large. For these reasons, a different con-
troller is considered. Consider the following controller based on a controller
represented in [20]

ωr = k1(−uk2S(d)− ḋ) (3.7)

where k1, k2 > 0 and S(d) is a sigmoid function, i.e. its function value is limited
to (−1,1) ∀ d ∈ R . Inserting ḋ from (3.2) into (3.7) gives

ωr = k1u(−k2S(d)− sinθ ) (3.8)

The reason for the choice of a sigmoid function is to add a saturation on d.
In practice this means that the approaching angle can be limited. For a large
value of d one may approximate S(d) ≈ 1. Inserting S(d) = 1 into (3.8) while
letting it equal zero to find equilibrium points we obtain

k2− sinθ = 0 ⇒ θ = sin−1 k2 (3.9)

This means that the approaching angle can be restricted by choosing appro-
priate values for k2. The sigmoid function was chosen to be the hyperbolic
function

S(d) = tanh (k3d) (3.10)

with k3 > 0. Inserting (3.10) into (3.8) gives the complete control law

ωr = k1u(−k2 tanh (k3d)− sinθ ) (3.11)

To prove stability for this consider the following Lyapunov-like function

V =
k1k2

k3
log (cosh (k3d))+ 1− cosθ (3.12)

where log is the natural logarithm. Note that V is radially unbounded for d but
not for θ . However, for the use case of this controller it is sufficient to restrict
the initial conditions of θ to −π/2 < θ0 < π/2. Differentiating (3.12) along
the solution of (3.2) and (3.11) gives

V̇ = k1k2 tanh (k3d)ḋ + θ̇ sinθ

= k1k2 tanh (k3d)u sinθ + k1u(−k2 tanh (k3d)− sinθ ) sinθ

= −k1u sin2 θ ≤ 0

(3.13)

Whichmeans that V̇ is negative semidefinite. To prove local asymptotic stability
we need to ensure that d = 0 and θ = 0 is the only equilibrium point in a closed
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3.3 calculating angle and distance to line

region around the origin. It can be seen that V̇ = 0 can occur if θ = 0 and
d 6= 0, so we need to ensure that the only point where V̇ remains at zero is at
the origin.

Stability can be showed using LaSalle’s theorem [21]. Let Ω= {x : V (x ) ≤ V0}
define a closed region around the origin and denote x = (d,θ ) and V0 = V (x0).
All states with initial conditions x0 ∈ Ω remain in Ω because V̇ ≤ 0. Let R ⊂ Ω
be a subset containing the regions where V̇ = 0, which for this case is all points
where θ = 0. From (3.11) and (3.2) and by inserting θ = 0 we have that

θ̇ = −k1k2u tanh (k3d) (3.14)

which means that a point in R will not remain in R unless d = 0. Let M ⊂ R
contain the maximum invariant set of R, then M will only contain the origin.
All the criteria of LaSalle’s theorem are satisfied and we can conclude that the
system is locally asymptotically stable at the origin.

3.3 calculating angle and distance to line

The distance from the robot’s wheel center h to the line d and the angle differ-
ence of the robot’s heading and the line θ has to be calculated. d can be found
by performing an orthogonal projection from the point (xb, yb) = 0 onto the
line. Consider the three points and two vectors in Figure 3.3. Let v be a vector
perpendicular to the line and r a vector from the point (x0, y0) to the line such
that

v =
�

y2− y1 −(x2− x1)
�T

, r =
�

x1− x0 y1− y0

�T
(3.15)

then the distance d from (x0, y0) to the line is given as

d = −v̂ · r = −
(x2− x1)(y1− y0)− (x1− x0)(y2− y1)

Æ

(x2− x1)2 +(y2− y1)2
(3.16)

where v̂ is normalized v . The choice of minus sign in (3.16) is there to conform
with the same sign convention as in Figure 3.2. The angle difference between
the robot and the line is found by transforming the line coordinates from global
coordinates to robot coordinates. In that case θ is trivial to calculate using the
unit line direction vector lb in robot coordinates and can be determined directly
using

lb =
�

l b
1 l b

2

�T
=
�

cosθ sinθ
�T

(3.17)
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(x0, y0)

(x2, y2)

(x1, y1)

v

r

d

Figure 3.3: Illustration of how three points or two vectors can be used to calculate the
shortest distance from a point to a line. Based on figure from http://mathworld.
wolfram.com/Point-LineDistance2-Dimensional.html on May 14th 2015.

3.4 row estimation with kalman filter

A ”measurement” of a row pose in the form of a line defined in global coor-
dinates is typically obtained several times per second based on processing of
camera images. Each measurement will vary slightly from the previous one,
i.e. the measurements are noisy. If these measurements are used directly to
calculate the states d and θ there will be relatively large discrete jumps in the
states which will lead to less smooth operation. For this reason, a filter was
implemented to obtain smoother estimates of the line.

Most uncorrelated noise can be modeled as Gaussian noise, i.e. the measure-
ments follow a Gaussian distribution. The most obvious choice to smooth mea-
surements with Gaussian noise is a Kalman filter. In ROS the preferred way to
represent a line is by using one point on the line and a direction represented by
a unit quaternion. Quaternions are not as intuitive as other representations, but
it avoids some common problems in rotation and attitude representation like
gimbal locks and non-singularities. The use of quaternions in Kalman filters
has been a big research field due to its many uses in e.g. attitude determina-
tion. A survey of some of the current nonlinear filtering methods for attitude
estimation is provided in [22]. However, a full literature search in this field is
outside the scope of this thesis. The approach presented here is merely meant
as a simple solution to smooth noisy measurements without much investigation
in the wide field of quaternions and their use in filters.

Let a line be represented by a point p and a unit quaternion q

p =
�

xp yp zp
�T

, q = cos
α

2
+(ux i + uy j + uzk) sin

α

2
(3.18)
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3.4 row estimation with kalman filter

where i, j and k represent unit vectors in Cartesian coordinates, and α repre-
sents a rotation around the axis defined by (ux i +uy j +uzk). For this control
problem (3.18) can be simplified a lot. The robot moves on a flat plane, so z can
simply be set to z = 0. The only rotation considered is that around the z-axis,
which means that we can further simplify ux = uy = 0 and uz = 1. (3.18) is
simplified to

p =
�

xp yp
�T

, q = cos
α

2
+ sin

α

2
k (3.19)

In other words, only three parameters are needed to represent a line in global
coordinates: xp, yp and α. One could attempt to use only these three states
for a Kalman filter, but using α directly can be problematic because after a full
rotation there may be a jump from 2π to zero. A possible way to solve this
would be to try to keep track of the number of full rotations and let |α| grow
past 2π. Another possible solution is to augment the state vector x with a
fourth state to form the following state vector

x =
�

x1 x2 x3 x4

�T
=
�

xp yp sin α2 cos α2
�T

(3.20)

The assumption is that the line does not change, so that the model used for
the Kalman filter is simply ẋ = 0. The following Kalman filter equations were
used:

x̂k|k−1 = x̂k−1|k−1

Pk|k−1 = Pk−1|k−1 +Qk

ỹk = zk − x̂k|k−1

Sk = Pk|k−1 +Rk

Kk = Pk|k−1S−1
k

x̂k|k = x̂k|k−1 + Kk ỹk

Pk|k = (I − Kk)Pk|k−1

(3.21)

which were obtained from the usual Kalman filter equations with transition
and observation matrices equal to identity matrices. Note that x3 and x4 are
strongly correlated which may have an undesirable effect on the covariance
matrix. One approach to avoid this is to use the fact that the length of the
unit quaternion is one, so that e.g. x4 can easily be calculated from x3. How-
ever, with that approach singularity problems arise once more, as discussed in
[23].

Another important thing to note is that since x3 and x4 are considered separate
states, the length of the quaternion

q

x2
3 + x2

4 will not necessarily be equal to
one. This means that x3 and x4 need to be normalized before reconstructing the
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quaternion using (3.19). Further research and analysis should be done to verify
or improve upon these results, and is left for future work. However, simulations
and tests on real robots show promising results for this simple approach.
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4
HARDWARE & SOFTWARE

This chapter covers some of the most important aspects of the hardware setup
and software design that went into this project. These elements contributed to
a substantial part of the workload, so a chapter is devoted to document thework
that was done and to hopefully benefit future students. Parts of this chapter
documents preliminary work related to getting the Dogmatix robot up and
running, such as setting up motor controller and wheel encoders. This work
was documented last semester, but it has been included here for completeness.
The chapter covers the setup of the Dogmatix robot, but the Asterix setup is
very similar.

4.1 robot operating system

Robot Operating System (ROS) is a framework for writing robot software. It is a
collection of tools and libraries that aim to simplify robot software development.
ROS is open source and in rapid development. It has a very active community
that constantly contributes with new packages that help to further simplify
development. Tools are available to a wide range of programming languages,
with C++ and Python being the most actively developed ones. In this section,
some of the core aspects of ROS are introduced. Figure 4.1 shows a simple
example of how a system in ROS is divided into nodes and communicate using
topics, which might help with understanding while reading this section.

4.1.1 Nodes

A node is simply put a process, or similar to the concept of threads in many
programming languages. Nodes can easily communicate with each other using
topics, which will be explained later. Usually, several nodes work together to
form the entire robot system. As an example, some of the nodes running on
the Dogmatix robot during typical operation are:
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INPUThTOPIC

TranslatehROShmessage
tohASCIIhmessage

SENSORhREADINGhTOPIC

SensorhReadings
inhROShmessage
format

MicroBasichscript

SENSORhREADINGhNODE

Parsehthehmessages
intohROShmessages

Sensorhreadings,
ASCIIhmessage
overhserialhport

Publishhparsed
sensorhreadingshtohtopic

CONTROLLERhNODE

Calculateshmotor
controlhinput

Controllerhnode
subscribeshto
sensorhreading

Publishhmotor
controllerhinput

Motorhcontrolhinput,
ASCIIhmessage
overhserialhport

PIDhcontroller

Motorh1

Motorhspeed
references
)Motorhcontrol
inputV

Voltage Motorh2
Voltage

Encoder
readings

Encoder
readings

MotorhController

ROS
Figure 4.1: Data flow diagram showing data flow between motors, motor controller
and some of the most relevant ROS nodes and topics.

• Motor controller driver read node: Read and parse all incoming mes-
sages arriving from the motor controller on the serial port.

• Wheel encoder node: Calculate wheel encoder readings into robot ve-
locities and integrate to update the position.

• Vision node: Image processing and row estimation.

• Controller node: Calculate the speed references to send to the motor
controller.
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4.2 opencv

There are more nodes running, but it should be clear that nodes make for a very
modular design that is simple to program, while also simplifying typical chal-
lenges with real time programming, like communication between threads.

4.1.2 Topics

Topics are used for exchanging messages (a message is a simple data struc-
ture) between nodes. Nodes can subscribe or publish to a topic. Consider the
following example:

• Vision node: Receives images, estimates a row pose in global odom co-
ordinates and publishes it to topic /row/pose.

• Kalman filter node: Subscribes to topic /row/pose, incorporates incom-
ing messages as measurements in the Kalman filter and then publishes
the estimates from the Kalman filter to topic /row/kalman/pose.

• Controller node: Subscribes to topic /row/kalman/pose to receive esti-
mate of row pose, which is used to calculate distance d and θ . Finally,
calculate desired speed references ur andωr which are published to topic
/controller_inputs

• Controller inputs node: Subscribes to topic /controller_inputs, recalcu-
lates from forward and angular speed into individual wheel speeds and
sends the command to the motor controller over serial port.

Working with topics is generally much more pleasant than e.g. handling com-
munication between threads in pure C++.

4.2 opencv

OpenCV1, or Open Source Computer Vision, is a computer vision library written
in C/C++. It has functions for almost every typical image processing technique,
and the functions are optimized for real time applications. There are interfaces
available for C, C++, Python and Java, but only C++ have been used in this
project.

1http://opencv.org/
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Other notable computer vision libraries include Matlab and scikit-image2 for
Python. Matlab is a very high-level language and it is easy to quickly make pro-
totypes. However, it is not well suited for real-time implementation, is costly
and has closed source which does not allow for inspection of functions. Scikit-
image is a relatively new collection of tools for Python, but it is being rapidly
developed. Some of the newest methods in image processing are often devel-
oped in Python and will quickly find their way to scikit-image. It is also possible
to combine OpenCV and scikit-image since both have Python libraries.

In the end OpenCV and C++ were chosen for this project due to high perfor-
mance, mature software and plenty of documentation and books available with
example code. In addition, OpenCV includes libraries that make it very easy to
utilize a Graphics Processing Unit (GPU) for higher performance, which will be
done at a later stage in the Asterix project.

4.3 motor controller

The robot lacked a working motor controller, so a Roboteq MDC22303 was in-
stalled. It has some features that proved beneficial throughout the project:

• Communication over USB or the serial port with RS232 protocol.

• Two encoder inputs for determining individual wheel speeds.

• Built-in speed controller which allows to input a speed reference to each
motor individually. This is done using a PID controller where all three
gains can be adjusted.

• Scripting possibilities through a simple scripting language calledMicroBa-
sic.

Communication over USB was found to be less reliable (this is also stated in
the datasheet), so communication through serial port was used instead.

2http://scikit-image.org/
3Datasheet is available at http://www.roboteq.com/index.php/docman/

motor-controllers-documents-and-files/documentation/datasheets/
mdc2xxx-datasheet-1/2-datasheet-mdc2xxx/file
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4.3 motor controller

Figure 4.2: Picture of a Roboteq MDC22XX motor controller

4.3.1 Motor Controller Driver

A driver provides the software interface between the motor controller and the
on-board computer. It should send sensor readings from the motor controller
to the computer at a regular time interval, and allow for motor inputs to be
sent from the computer to the motor controller.

Roboteq provides a simple API for communication between computer and mo-
tor controller. However, this provides only a very low-level interface and it
does not provide any means of interfacing with ROS. An extension of the API
to a full blown driver was needed. Luckily, an implementation of this was al-
ready made available [24]. Some modifications were done to the driver code,
but the main structure of the program remains. Almost no documentation was
provided with the code, so a small explanation is provided below for reference.
Figure 4.1 shows a data flow diagram which might provide for a clearer under-
standing.

• The Roboteq motor controller can be programmed using a simple BASIC-
like programming language called MicroBasic. A script is downloaded
to the motor controller which includes an infinite loop. This loop sends
sensor readings several times per second as an ASCII code using RS232
over the serial port. Sensor readings include encoder readings, motor
current, battery supply voltage etc.

• The Roboteq ROS driver includes a node that is constantly listening on
the serial port. Whenever a message is received, it parses the ASCII mes-
sage and stores it in a custom made ROS message. The parsed message
is published to an ROS topic.
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• Another node subscribes to a different topic listening for motor control
inputs. Whenever it receives a message from this topic, it will send a
corresponding signal to the motor controller on the serial port.

• Other nodes, such as the the various controller nodes calculating the mo-
tor control inputs, can now easily obtain sensor readings and publish it
to the motor control input topic.

4.4 wheel encoders

Wheel encoders provide rotational velocity readings from eachmotor. Encoders
called HEDL-5500 G124 were already installed on each motor. Unfortunately,
these encoders use a 10-pin connector which is incompatible with the single
6-pin encoder input of the Roboteq controller. The reason for this is that the
encoders support sending balanced signals used for removing common-mode
interference, but the motor controller does not support balanced signals. By
looking at the datasheets, an adapter was made to be able to connect the en-
coders to the motor controller. The wiring from pin number to pin number is
shown in Table 4.1.

Table 4.1: Wiring from encoders to motor controller. It seems that encoder and motor
controller datasheets has different definitions of A and B, so A was connected to B and
vice versa.

Motor Encoder Pins Motor Controller Pins

1 pin 6 (A) pin 3 (Enc1B)
1 pin 8 (B) pin 2 (Enc1A)
2 pin 6 (A) pin 5 (Enc2B)
2 pin 8 (B) pin 4 (Enc2A)

1 and 2 pin 2 (+5V) pin 1 (5Vout)
1 and 2 pin 3 (GND) pin 6 (GND)

4Datasheet is available at http://datasheet.octopart.com/HEDL-5500%
23G12-Avago-datasheet-8328570.pdf
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4.4 wheel encoders

4.4.1 Tuning

The encoder readings and speed references sent to the motor controller are
somewhat arbitrary numbers. It is more useful to deal with actual angular
wheel speeds. The measurements coming directly from the motor encoders
are altered by several gearings etc., and therefore have to be multiplied by a
constant. This constant could be calculated fairly accurately by finding gear
ratios from motor to wheel and so on. However, it is much easier and more
accurate to find the constant through a simple experiment. An experiment
to determine how much time the wheels use to complete a fixed number of
rotations given a constant speed was conducted. Table 4.2 shows a selection of
the measurements.

Table 4.2: Selected measurements to determine angular wheel speed from encoder
measurements.

Motor Encoder speed Rotations Time [s] Angular speed [rad/s]

1 50 5 44.8 0.70
1 100 10 43.5 1.44
1 150 10 29.5 2.13
1 200 10 22.0 2.86
2 100 10 44.0 1.43

The numbers appear to have a linear relationship. Linear regression analysis
comes up with the following conversion from encoder reading ωenc to angular
wheel speed ωw:

ωw = 0.0143ωenc (4.1)

4.4.2 Relationship Between Wheel Speeds and Robot Velocities

The mathematical model of the robot and all the controllers in this report use
forward velocity u and angular velocity ω. For that reason, individual angular
wheel velocities have to be recalculated to form u and ω. Using the unicycle
model with differential steering the velocities are given as [25]:

u =
r
2
(ωw,l +ωw,r) (4.2)

ω=
r
d
(ωw,r −ωw,l) (4.3)

47



hardware & software

where ωw,l and ωw,r are left and right angular wheel velocities, r is wheel
radius and d is wheel track, i.e. the distance between the wheels. r was easy
to measure, but d is more difficult due to the fact that the wheels are very wide.
After a few tests to ensure that the values provided correct values of u and ω,
the values of r and d for the Dogmatix robot were found to be

r = 0.2698m, d = 0.985m (4.4)

As already mentioned, the motor controller needs individual wheel speed refer-
ences instead of u and ω. These can easily be found by rearranging (4.2) and
(4.3):

ωw,r =
1
r

�

u+
d
2
ω

�

(4.5)

ωw,l =
1
r

�

u−
d
2
ω

�

(4.6)

which need to be scaled using (4.1) before being sent to themotor controller.

4.5 imu & gps

An IMU and a GPS unit was also available for use to improve velocity and posi-
tion estimates. The IMU was tested in collaboration with wheel encoders. Mea-
surements were fused together using an ROS implementation of an extended
kalman filter (EKF). It turned out, however, that the encoder measurements
alone were very accurate in the test conditions with a completely flat floor and
virtually no wheel slips. Therefore, to avoid the time usage of correctly mount-
ing and verifying that the IMU measurements were correct, the IMU was not
used for the results in this report. The GPS was used briefly during the outdoor
field test with Asterix, but not for any other tests.

4.6 on-board computer

The ”head” of the robot right in the front houses an on-board computer. This
is just a normal desktop computer with mini-ITX form factor running Lubuntu
14.04 as operating system. It has four 9-pin D-SUB serial ports, one of which
is used for communication with the motor controller. The computer receives
wheel speeds from the motor controller and use these to update velocity, posi-
tion and orientation states. It also sends desired individual wheel speeds back
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to the motor controller. Basically, all logic and controllers run on this computer.
An Xbox controller was also connected to the computer which allowed for man-
ual control of the robot. A picture of the computer is shown in Figure 4.3.

Figure 4.3: Left picture shows the on-board computer in the "head" sticking out in the
front of Dogmatix. Right picture shows the PlayStation Eye camera which is mounted
upside down on the underside of the head.

4.7 camera

A PlayStation Eye5 camera is mounted at the front of the robot pointing down-
wards at an angle of about 45 degrees. The camera’s position and orientation is
fixed. PlayStation Eye was developed by Sony to be used with the PlayStation
3 gaming console to allow players to interact with games by doing gestures in
front of the camera. It was designed with computer vision in mind, making it
suitable for this application. Some advantageous features include:

• Very low cost (about 15 USD at time of purchase).

• Standard USB connection and recognizes as a standard web camera. Ex-
pensive higher end cameras often offer more advanced settings, but at
the same time usually rely on proprietary drivers.

• High framerate of 60 frames per second at 640×480 resolution.

• Fairly quick shutter speed and exposure time, which means that pictures
taken at speed will be sharp.

A picture of the camera is shown in Figure 4.3.

5http://us.playstation.com/ps3/accessories/playstation-eye-camera-ps3.
html
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5
DEVELOPMENT

This chapter covers some of the development that went into the simulator and
the various computer vision techniques and methods used for detection and
estimation of row crops in fields. It also covers the mapping from image coor-
dinates to robot coordinates. Some details about implementation in OpenCV
are also provided.

5.1 simulator

Developing code directly on a robot can be time consuming and at times even
frustrating. Having a good simulation environment can help speed up develop-
ment massively, so it is worth putting some time into it. During last semester
the author had no simulator available. Instead, simulations of controllers were
performed using Matlab/Simulink with a nonlinear model. This worked fine
for testing models and controller performance, but the Matlab code or Simulink
diagram had to be completely rewritten to C++ or Python and incorporated
into ROS before testing on the real robot. It became apparent that for the thesis
a better simulation environment had to be developed, so a realistic simulator
was developed using Gazebo1, an open source robot simulator. The advantages
are many:

• Realistic physics can be achieved by supplying the simulator with masses,
inertia matrices, friction coefficient etc.

• The interface between ROS and Gazebo can be made identical to that of
ROS and real robots. This means that code developed using the simulator
can be directly transferred to the real robot.

• Sensors can be simulated. Wheel odometry, IMU and GPS can easily
be simulated with realistic, adjustable noise. Gaussian noise, drift and
discrete jumps in measurements can all be simulated.

• A camera can be installed on the robot.

1http://gazebosim.org/
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• Realistic surroundings can be made, e.g. a realistic field with crops.

The development of the simulator was a fairly time consuming task. Most of
it consists of creating XML-like configuration files to describe the robot and
environments. This is not the most interesting of tasks to read about, but some
of the main parts are documented here.

5.1.1 Robot Design

A 3D model of the chassis of the robot was developed using Blender2, an open
source 3D creation suite. A screenshot during the development is shown in Fig-
ure 5.1. Once the chassis mesh was created, the mesh was imported to Mesh-
Lab3, an open source tool for processing meshes. MeshLab can compute an
inertia matrix from the chassis mesh with the assumption of constant density.
The inertia matrix has the following form:

I =





ix x ix y ixz

ix y iy y iyz

ixz iyz izz



 (5.1)

The real robot will obviously consist of more mass than just the chassis, but as
an approximation this should suffice.

The robot is specified in a file using Unified Robot Description Format (URDF),
which is an XML format for describing a robot. This is the standard format used
in ROS and allows one to add e.g. wheels and camera to the chassis. This is
also where masses, inertia matrices and friction coefficients are specified. The
electric motors are also specified here, while the PID motor controllers to use
speed references are implemented in an ROS node. A graph diagram showing
the position and orientation of wheels, imu and camera relative to the chassis is
shown in Figure 5.2. Joints connect the different parts and lets e.g. the wheels
rotate around the y-axis.

Gazebo does not directly support URDF, but instead offers its own format called
Simulator Description Format (SDF), which is also an XML format. It is similar
to URDF, but offers more features relevant to the Gazebo simulator. Luckily,
there exists parsers that make it possible to use URDF for the most part. In
the end, URDF was chosen as the main format for our simulator to comply

2http://blender.org/
3http://meshlab.sourceforge.net/
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with ROS standards, with the addition of some extra attributes specified using
SDF.

The finished robot can be seen in Figure 5.3. The end result is a robot that
behaves similarly to the real robot, has the same sensors and communicates
with ROS using topics and messages in exactly the same way as the real robot.
Code developed using the simulator could be used directly on the real robot
without any changes.

Figure 5.1: A realistic chassis was developed using Blender.

link_chassis

camera_joint

xyz: 0.4 0 0.6 
rpy: 0 -0 0

imu_joint

xyz: 0 0 0 
rpy: 0 -0 0

joint_caster_wheel

xyz: -1.5 0.87 -0.1 
rpy: 0 -0 0

joint_left_wheel

xyz: 0 0.9 0 
rpy: 0 -0 0

joint_right_wheel

xyz: 0 -0.9 0 
rpy: 0 -0 0

camera_link imu_link link_caster_wheel link_left_wheel link_right_wheel

Figure 5.2: Graph diagram auto-generated from URDF file illustrating the different
parts of the robot, their position relative to the chassis and how they are connected
with joints.

5.1.2 Simulated Field

A simulated field was created to make a realistic environment for the robot to
operate in. The field that was made is similar to the one used in carrot fields.
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Figure 5.3: Screenshot of Gazebo simulator with the finished robot placed in a simu-
lated field with crops. The small, blue box is the camera.

Figure 5.4: Left image shows the entire simulated field. Right image shows a closeup
of a row.

Each row consists of three smaller rows, and the robot uses the middle of the
small rows for estimating a line to follow. Pictures of the field are included in
Figure 5.4. The field was made of real images patched together. There is no
height in the field, only flat images.

5.2 overview of coordinate systems

Representing positions, orientations and velocities in different coordinate sys-
tems can greatly simplify problems. ROS provides framework for defining co-
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ordinate systems and constantly update their rotational and translational ma-
trices. This makes it easy to convert between coordinate systems at any point
in time. E.g. if we would like to know the position of the robot three seconds
ago given in a global coordinate system, this can be easily retrieved using the
provided ROS framework. More specifically this functionality is provided by
the tf package4. The following coordinate systems (frames) were defined in
ROS to be compliant with ROS standards REP-1055 and they all comply with
”right-hand-rule” with z-axis pointing upwards:

• Map: A world fixed frame. The position and orientation (pose) of the
robot relative to map frame should not drift significantly with time. Typ-
ically this frame should be updated with absolute pose measurements
frequently, e.g. from GPS.

• Odom: Also a world fixed frame. The only difference from map frame
is that odom frame is allowed to drift without bounds. This obviously
makes it a bad choice for long-term global reference frame, but it also
ensures it to be continuous, which is an important property for many
controllers. Typically the odom frame is computed using odometry data,
such as wheel odometry, visual odometry or inertial measurement unit
(IMU).

• base_link: Rigidly attached to the robot. In the case of this robot the
origin is chosen to be in the middle of the wheel axle with x-axis pointing
straight forward and z-axis up.

The frames are related in a tree, i.e. each frame can only have one parent but
many children. An illustration is shown in Figure 5.5.

In addition to these three coordinate systems there’s a fourth one, namely the
image coordinate system which is not defined as part of ROS. Instead, a trans-
formation from image coordinates to base_link was developed and will be cov-
ered in later section. With this transformation in place, ROS handles the rest
of the transformations using tf.

5.3 mapping from image coordinates to robot coordinates

As mentioned in Section 4.7 the Dogmatix robot has a camera mounted in the
front angled about 45 degrees downwards. The purpose of this is to identify and

4http://wiki.ros.org/tf
5http://www.ros.org/reps/rep-0105.html

55

http://wiki.ros.org/tf
http://www.ros.org/reps/rep-0105.html


development
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Figure 5.5: Illustration of the different coordinate systems. The frames are related in
a tree, i.e. each frame can only have one parent but many children.

estimate a crop row and its position and orientation relative to the robot. This
means that once the row has been identified in an image, we would like to map
the coordinates of the row into base_link frame. From base_link the coordinates
can easily be transformed into odom or map using the tf package.

Recall from Section 2.2 how a number of intrinsic and extrinsic parameters can
be used to describe themapping of three-dimensional world coordinates to two-
dimensional image coordinates as given in (2.6). Identifying all the unknown
parameters reliably can be a challenge. In our case there are several factors
that allow us to simplify the model:

• The extrinsic parameters, i.e. the position and orientation of the camera,
are constant since the camera is rigidly mounted to the robot and the
robot is assumed to follow the ground at all times.

• The intrinsic parameters remain constant. Zooming or factors that oth-
erwise could alter intrinsic parameters should not occur.

• The ground is assumed to be flat, i.e. it forms a plane in the three-
dimensional space. The height of the plants and height differences due
to uneven ground are assumed to be negligibly small.

The last bullet point is important. It reduces the mapping problem from world
to image coordinates into a simple projective transformation as described in
Section 2.3.6 and (2.19). This is illustrated in Figure 5.6. Therefore, the map-
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x1 x2 x3 x4

A

B

Figure 5.6: Illustration of robot with front mounted camera angled about 45 degrees
downwards. The image captured by the camera is that of plane A, while B illustrates
an image plane after applying a perspective transformation to A. Notice the difference
in spacing of the three points x1, x2, x3 and x4 after projecting to image plane A and
B.

ping of a point (pixel) in the image represented with homogeneous coordinates
x̄i =

�

x i yi 1
�T

to a point in base_link frame x̄b =
�

x̄b ȳb w̄b
�T

is given
as

x̄b =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 x̄i = Hx̄i (5.2)

where H is a homogeneous matrix. The homogeneous coordinates can easily
be transformed to Cartesian coordinates using (2.9). In practice the mapping
process will be divided into a few more steps, which will be covered in the next
subsections.

5.3.1 Finding Homography Matrix

OpenCV has lots of functionality to estimate homography matrices and ap-
ply perspective transformations to images. First we will consider ways to es-
timate H . Recall that H has eight degrees of freedom, which means that at
least eight equations are needed to find all elements of H . The eight equa-
tions can for example be the known transformation of four points. Consider
Figure 5.7. To the left is a rectangle with its correct dimensions without any
perspective, and on the right is the rectangle the way it appears in an image
from a perspective view. This means that if the corners of the rectangle can
be identified in the image, then we have the known transformations of four
points. OpenCV has a function called getPerspectiveTransform that takes the
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points (x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) as argument and returns an estimate of
H .

Figure 5.8 shows how this is done in practice. OpenCV has functions to rec-
ognize chessboards and finding the corners. A printed chessboard was placed
flat on the ground in front of the robot. The located corners are passed as
arguments to getPerspectiveTransform to estimate H . The function warpPerspec-
tive performs the transformation of the image with the estimated H . During
the transformation some pixels need to be interpolated while others will be
extrapolated.

Another thing that can be adjusted is the "zoom" level, or more precisely the
resolution, of the transformed image. Recall from (5.2) that after a projective
transform the coordinates need to be transformed from homogeneous to Carte-
sian coordinates, i.e.

xb =
�

xb yb
�T

=
�

x̄b
w̄b

ȳb
w̄b

�T
(5.3)

From (5.2) it can also be seen that

w̄b = h31 x i + h32 yi + h33 (5.4)

Effectively this means that the "zoom" level can be adjusted by altering h33.
A larger value of h33 leads to smaller values of xb and yb which in turn lead
to higher resolution, i.e. the image appear more "zoomed". Choosing higher
values of h33 might prove beneficial as it can provide higher resolution and
detail level. Keep in mind though that there is little point in attempting to
achieve greater resolution than the input image, as that will eventually just
lead to extrapolation of pixels.

5.3.2 Mapping from Transformed Picture to Robot Coordinates

After the projective transformation two important properties are restored in
the transformed picture:

• Angles are correct. If a line is rotated 45 degrees relative to the robot,
the line in the transformed image will also be 45 degrees. In addition,
parallel lines will now be parallel.

• Lengths are equal over the entire image. E.g. the chessboard in Figure 5.8
will have the same size no matter where on the image it is located.
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x1 x2

x3 x4

x ′1 x ′2

x ′3 x ′4

Figure 5.7: x ′1, x ′2, x ′3 and x ′4 are points in an image corresponding to corners of a
rectangle with corners x1, x2, x3 and x4. Since we know that the corners in the image
correspond to the corners in the real world rectangle, this can be used to estimate a
homogeneous matrix.

Figure 5.8: The left image shows a picture of a chessboard pattern taken with the
camera mounted on Dogmatix. All identified corners have been marked with circles
and lines and are used to find a homography matrix for a projective transform. The
right image shows the same picture after the projective transformation.

With these two properties the transformation between image pixel coordinates
and base_link coordinates is fairly trivial. By considering Figure 5.9 it is easy to
verify that a pixel point in an image xi = (x i , yi) can be expressed in base_link
coordinates as

xb = ix − ip yi , yb = iy − ip x i (5.5)

where ip is a constant with unit meter per pixel which converts pixels to actual
length. ip can also be found from the chessboard in Figure 5.8. If the chessboard
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yb

odom

base_link

yi

x i

iy

ix

Figure 5.9: Illustration of mapping from image coordinates in a projective trans-
formed picture to robot base_link coordinates. The square to the right represents a
transformed picture.

has a real width of e.g. 0.50m and the pixel width in the transformed picture
is 80 pixels, then

ip =
0.50m
80pixel

= 0.00625 m/pixel (5.6)

5.4 find row crops in images

This section will cover the techniques used to find and estimate row crops in a
field from images.

5.4.1 Calculating Reference Histogram

A histogram backprojection technique is used to create a binary image of all
the plants/crops in an image. The first step is to create a reference histogram
based on images of plants. A small program was developed that allows one to
pick the sections of the image that contains plants and calculate a histogram
based on those regions. The program works in the following way:

• An input image that contains clear images of plants is chosen (e.g. closeup
of a row crop).

• The user clicks on the plants that should be used as reference with the
mouse pointer. The selected pixel is passed on to a flood fill function that
attempts to select the entire plant/leaf.
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• Once all interesting regions have been selected, a two-dimensional his-
togram based on the hue and saturation values of the selected plants is
calculated. The histogram is saved to file and will be used later for back-
projection to identify plants in real time.

A screenshot of the program is shown in Figure 5.10.

Figure 5.10: A screenshot from the program that was developed to select regions of
interest in an image and compute a two-dimensional histogram of hue and saturation
values from the selected regions. The left picture shows the program window with the
input image that allows the user to click on regions they want to select (the leafs in
this case), and the right picture is a binary mask that shows the selected regions.

5.4.2 Histogram Backprojection

Once a reference histogram of plants is calculated, it can be used to backproject
an image to find pixels that have high probabilities of belonging to a plant. High
probability pixels are shown as light gray, close to white, while low probability
pixels are shown as darker gray, close to black. The pixels that have a higher
probability than a specified constant are thresholded, i.e. they are completely
white in the binary image. Finally, dilation followed by erosion is applied to
the binary image to close gaps and remove outliers. This process is shown in
Figure 5.11.
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Figure 5.11: The left image is a raw image input from the simulated robot’s camera
while in a simulated field. The middle image shows a probability image after backpro-
jecting the input using the same reference histogram that was calculated in Figure 5.10.
The right image shows a binary image after thresholding the probability image and ap-
plying dilation and erosion to close gaps and remove outliers.

5.4.3 Projective Transformation

In Figure 5.11 it can be seen that the three row crops that are parallel in real
life are not parallel in the image. A projective transformation is performed to
correct this. This is trivial at this point, since the homography matrix H has
already been found using the chessboard that was shown in Figure 5.8. The
result after a projective transformation can be seen in Figure 5.12.

Figure 5.12: The left image is a raw image input from the simulated robot’s camera
while in a simulated field. The right image shows the input after a projective transfor-
mation. Note how the row crops are parallel after the transformation.

5.5 estimating row crop pose

After performing a projective transformation, backprojection and finally thresh-
olding, the output is a binary image of what should be parallel row crops. The
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final step is to estimate the pose, i.e. position and direction, of the middle row.
If the image only contains one row, then using a line fitting technique from
Section 2.6.2 will work well. However, in this case there are three rows, which
means that it if one attempts to run a line fitting method directly one would es-
sentially attempt to fit one line to three rows. This is ensured to give inaccurate
results, as there is no guarantee that the middle line will be chosen. To solve
this, a method to pick out only the middle row had to be developed.

One possible approach could be tomodify the RANSACmethod to store not only
the best line, but several of the best lines. After all the line candidates have been
identified, one would have to pick the three best lines that are spaced apart by
some distance. The reason for this is that the method might return several line
candidates for the same row, and the goal is to pick the best line candidate for
each row. Finally, the "middle" line should be selected, which should be the best
pose estimate of the middle row. This method was never implemented and is
left for future work if needed.

Another solution is to use Hough lines to find all lines in the image and then try
to pick the best line. Hough lines is in fact a very robust tool for this application.
It has two very important parameters that can be adjusted:

• Minimum line length: Ignore all lines that are too short. Too short lines
are unreliable, so having a way to ignore them is important.

• Maximum line gap: Allow some gaps in the binary image while still
being recognized as the same line. However, if the gap is too big then it
is unlikely that the line is part of the row and should be ignored.

OpenCV has a good implementation of Hough lines using a function called
HoughLinesP based on a probabilistic Hough transform presented in [26]. This
probabilistic implementation is based on a "voting" scheme and is fast enough
to be used in real time. The function returns a list of identified lines sorted
from most to least votes. The problem is that the list will most certainly con-
tain several lines per row, so a method is needed to divide the lines into their
respective rows. Therefore, lines are divided into "classes" based on their dis-
tance and angle compared to surrounding lines. Finally, the line with the most
votes is picked from the "middle" row class.

The method that was finally implemented is called method 1 from here on, and
can be summarized in the following steps:
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Method 1

Step 1: Find all lines in the binary image using Hough lines that match
the criteria for minimum line length and maximum line gap using
the OpenCV function HoughLinesP.

Step 2: Select the line withmost votes, i.e. the first line in the list (denoted
l1). Iterate over all other lines and calculate the distance from a
specified point on l1 to the currently selected line and their angle
difference. If the distance and angle difference are small, the line is
classified to be in the same row as l1.

Step 3: Select next line from the list that has not yet been classified and
make this into a new class. Repeat step 2 for this line.

Step 4: Repeat step 2-3 until all lines have been classified.

Step 5: If there are less than three classes, return with no line identified.
If there are more than three classes, select the three classes that con-
tain the most lines.

Step 6: Select the line with most votes from each of the three classes.
These three lines should correspond to their respective rows.

Step 7: Select the line that is located between the other two lines. This
line should be the middle row. The selection of the middle line is
done by simply averaging the image x coordinates for the end and
start points of the lines. The left row will have smallest value and
right row will have largest value. This method works well unless the
robot is almost perpendicular to the rows.

The entire process from input image to identified middle row is shown in Fig-
ure 5.13. Each image is explained below, starting from top left and moving right
then bottom left to right:

Image 1: Input image

Image 2: Input image after performing a projective transformation

Image 3: Cropped version of previous image to remove the areas around the
rows.

Image 4: Probability image after backprojection.
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Image 5: Binary image after thresholding high probability pixels followed by
dilation and erosion to fill in gaps and remove potential outliers.

Image 6: All the lines identified by HoughLinesP. The identification is done on
the binary image, but drawn on the cropped projective transform image.

Image 7: After classification of all lines, the line with the most votes from each
class is selected. The left and right rows are drawnwith green lines, while
the middle row is red.

Finally the identified middle row is transformed to global odom coordinates
and can be passed on to the controller directly or to the Kalman filter as a
measurement for row estimation.

Figure 5.13: A simulation example showing the entire process from input image to
identified middle row using the probabilistic Hough lines method, method 1, to find
straight lines.

5.5.1 Combining Hough Lines and Line Fitting

Recall from Section 2.6.1 that the Hough lines algorithm works by finding lines
along edges. Consequently, an edge detector is usually applied before applying
Hough transform, but that was not done in method 1 that was described in the
previous section. In effect, this means that every time the method runs, the line
that is selected in the end can be anywhere on the row. It can be to the far left
of the row, to the far right, in the middle or cross from left to right. This means
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that the identified row pose will vary quite a lot from image to image, even if
the images are identical. Since the row pose can be used as a measurement in
the Kalman filter that estimates a row, these fluctuations are mostly smoothed.
Still, improving the quality of the measurements will be beneficial.

If an edge detector is applied to a binary image, it will be equivalent to finding
the contours of the white parts. By doing that it can be expected that there will
be fewer detected lines and they will be situated along the contours, i.e. on
left and right side of the row. By somehow averaging these lines it should be
possible to obtain a line along themiddle of the row. Some tests were attempted
to achieve this, but the results were not convincing, and some of the robustness
was lost when the number of detected lines was decreased.

A line fitting method like least squares does a much better job at finding the
center of a row than Hough lines. To utilize this advantage, a method com-
bining both Hough lines and line fitting was developed. The line identified by
method 1 provides an approximate location of the middle row. By expanding
the area around the line and then applying a line fitting method for that area,
the advantages of both methods are achieved. The steps of method 2 can be
summarized as:

Method 2

Step 1: Use method 1 to obtain a line that approximates the middle row.

Step 2: Expand the area around the line and choose only this region from
the binary image. The binary image should now only include the
thresholded middle row.

Step 3: Apply normal least squares method (2.27) to fit a line to the se-
lected are of the binary image. The fitted line should approximate
the middle of the row. Note that since only the area just around the
row is selected, there shouldn’t be any outliers and the normal least
squares can be used instead of the much more resource intensive
RANSAC method.

Figure 5.14 shows a simulation example using method 2. Notice how the line
identified using method 1 is not quite straight and goes from right to left side
of the row, but after applying method 2 the line is straighter and closer to the
middle of the row.
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Figure 5.14: A simulation example of method 2. Left image shows the middle row
identified by method 1, next image shows the expanded area around the line, next
image shows the selected part of the binary image ("bitwise and" with previous image),
and the right image shows the line after a least squares fitting.

5.6 end of row and turning strategy

At the end of a row the robot should turn around and continue with following
the next row, unless it’s at the very last row. The procedure is illustrated in
Figure 5.15 and can be summarized as:

• Detect the end of a row.

• Exit the row. This means going straight for at least the length of the entire
robot to ensure that the rear caster wheel has completely exited the row.

• Turn around 180 degrees, either left or right. If e.g. turning right, the
right wheel can remain stationary during the entire turn, because it will
enter the next row in the same wheel track.

• After completing the turn, move straight forward while attempting to
detect the new row using camera.

• If a new row is detected, start following this.

5.6.1 Detecting End of Row

The end of a row is detected if a specified number of seconds has passed without
receiving any valid row pose updates. The number of seconds can be specified
as a length since the robot moves at constant forward speed. The total length
dr from last row pose update until it is considered the end of a row consists of
several lengths:

dr = da + db + dc + dd (5.7)
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Figure 5.15: Illustration of how a turnaround at the end of a row may be performed.
It is important that the robot completely exits the row to ensure that the rear caster
wheel does not destroy any crops.

where da is length of robot, db is distance from wheel axle to lowermost part
of the image, dc is minimum line length used in the Hough lines method and
dd is extra length margin. These lengths are illustrated in Figure 5.16. The
number of seconds sr from last row pose update until end of row is detected
and turning can begin is simply

sr =
dr

u
(5.8)

where u is the constant forward speed. This method is a very simple one, but
has proved robust in practice. The robustness of this strategy relies on a robust
detection of rows. False positive row pose updates will cause the robot to move
too far out of the row, while positive false updates can potentially cause the
robot to start turning in the middle of a field. With that said, the visual row
detectionmethods have proven to be very robust, so this has not been a problem
during testing. In the final system this could also be coupled with e.g. GPS
position to ensure that turning only happens when the robot is positioned along
the edge of the field.
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da db dc dd

Figure 5.16: Illustration of the different lengths that when added up give the total
length the robot has to move before starting a turn.

5.6.2 Turning Controller

A very simple P-like controller was implemented to turn 180 degrees around at
the end of a row.

ωr =

¨

|kp(ψr −ψ|, if turning left.

−|kp(ψr −ψ)|, if turning right.
, ur =

�

�

�

�

d
2
ωr

�

�

�

�

(5.9)

where kp is a gain constant, ψr is the reference heading angle and d is the
distance between the wheels. In addition, there is a saturation to limit |ωr |.
The absolute values are chosen to ensure that the robot turns in the correct
direction. Clearly, this makes the controller unstable if ψ overshoots ψr , but
that is not a problem because the controller shuts down as soon as ψ reaches
ψr . At the end of a row, ψr is set to the current value of ψ plus 180° before
the turning controller is activated.

During the turning it is desirable that one of the wheels remain stationary. That
is equivalent to following a circle where the stationary wheel is at the center
of this circle and the other wheel follows the edge of the circle, which means
that u is the speed at the half point of the radius of the circle. The half point is
half of the wheel distance d, which gives the control law for ur in (5.9).

5.7 entire system

The entire system with all the components combined is designed as a state
machine. Figure 5.17 shows a diagram of all the states and the transitions. The
system consists of only four states:
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Row following Turning> 10 row pose updates
> 3 meters without row pose

updates
Starting

> 2 seconds/expand FOV

Detect new row

> 5 row pose updates
or > 2 meters without
row pose updates

Terminate

> 7 seconds without
row pose updates Turn completed

Detect rows while
stationary

Detect and follow rows Turn around 180 degrees

Move straight forward
while detecting new rows

Figure 5.17: Diagram of the different states and transitions during operation. The
numbers used for seconds and distances are chosen for illustration purposes and can
be adjusted to needs.

States

State 1 Starting state: The robot remains stationary while attempting to
detect rows. If no rows are detected within the first few seconds, the
field of view (FOV) of the camera is expanded to search a bigger area.
If there are still no detected rows, the system terminates.

State 2 Row following state: This is the normal operating state where
the robot follows the rows. If the robot has not received any row
pose updates in a specified amount of time/distance, end of row is
assumed.

State 3 Turning state: Turn around 180 degrees in either left or right
direction.

State 4 Detect new row: Robot moves forward at constant speed while
camera is searching for the next row. Once several detections are
done, change to starting state.
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5.7 entire system

5.7.1 Implementation in ROS

The system is implemented in C++ using ROS libraries. A somewhat cluttered
auto generated graph is shown in Figure 5.18. The main part of the system is
divided into three different nodes:

• vision_hough_node: Receives images from the camera and performs all
the image processing. The output of this node is an estimated row pose
in global odom coordinates.

• row_global_kalman_filter_node: Receives row poses from vision_hough_-
node and incorporates them as measurements in the Kalman filter. The
output of this node is the filtered row pose.

• row_global_controller_node: Receives filtered row poses from row_-
global_kalman_filter_node and uses them to calculate reference speeds
ur and ωr that are sent to the motor controller. The state machine is
also implemented in this node.
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6
S IMULAT IONS

This chapter contains a selection of simulations that were performed using the
simulation environment that was developed using Gazebo and ROS.

6.1 line following controller

The line following controller (3.11), also referred to as row controller, was tested
by defining a line in global coordinates and letting the robot follow it at con-
stant forward speed starting from different initial positions. The following con-
troller gains were used:

k1 = 2.0, k2 = 0.26, k3 = 5.0 (6.1)

where k2 was found by defining the desired approaching angle to 15 degrees,
i.e. k2 = sin−1(15°) ≈ 0.26. Larger k1 means larger ωr which leads to quicker
response. Larger k3 leads to bigger emphasize on the distance to the line d.
Since the controller is very intuitive and does not involve any dynamics, it was
very easy to tune.

Figure 6.1 shows a simulation where the robot starts in a parallel position to
the line, while Figure 6.2 shows a similar simulation when the robot is initially
facing away from the line.

The performance is overall good. First of all, it can be seen that the assumption
of ω ≈ ωr appears to be valid for the simulation. The approaching angle θ
stabilizes at the expected value of θ = ± sin−1(k2) while approaching the line.
There is very little overshoot and oscillations once it reaches the line. Note that
some Gaussian noise has been added to the speedmeasurements obtained from
wheel odometry in Gazebo.
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Figure 6.1: Simulation of the row controller with robot starting point (x , y ,ψ) =
(0,0, 0) and a line defined in global coordinates as y = 1.5. Notice how the approach-
ing angle θ stabilizes at θ = sin−1(k2) ≈ 0.262 = 15° while approaching the line.
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Figure 6.2: Simulation of the row controller with robot starting point (x , y ,ψ) =
(0,2,π/3) and a line defined in global coordinates as y = 0.5.
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6.2 identifying and following a single line

6.2 identifying and following a single line

In this simulation the goal is to verify the identification of a line using a sim-
ulated camera, map the line in global coordinates and use the line following
controller to follow it.

6.2.1 Estimating Line Pose

Simple tests were conducted to test how precise the mapping from image co-
ordinates to global odom coordinates is. Using the simulator an infinitely long
line can be placed at a known position, e.g. y = 0. The reason for doing this is
to see how precisely the pose of this line can be determined by using only the
camera on the robot. By placing the robot at different positions and orienta-
tions around the line, it is easy to verify whether the mapping using computer
vision is correct. The line is bright green, making it very easy to identify, and
since there are no outliers a simple least squares method is used to fit the line.
Pictures from the simulator are shown in Figure 6.3.

Table 6.1 shows the robot’s pose in global odom coordinates and the angle and
distance error of the estimated line’s pose. The line is defined as y = 0 and
the estimated line is represented as a point and a direction. The distance error
was defined as the y-component of the point and the angle error is equal to
the direction. The transform from robot’s base_link to global odom coordinates
is exact in this simulation, so the test will reveal errors in image to base_link
transform. It can be concluded that the mapping works well, with no more
than a few centimeters and degrees error in the tests.

Table 6.1: Test results to verify the mapping from image to global coordinates.

Robot pose, (x , y ,ψ) Angle error [degrees] Distance error [cm]

(0, 0,0) 0.8° 0.8
(0, 0.5,0) 0.2° 7.4
(0,2.0, π4 ) 1.4° 5.3
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Figure 6.3: A simulation to test the mapping of an identified line in an image to
global coordinates. Robot pose is (x , y ,ψ) = (0, 2.0,π/4). The left picture shows the
robot’s orientation to the line, the middle image shows the raw camera input and the
right image shows the input after projective transformation. The small red line is the
line identified using least squares method.
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Figure 6.4: Simulation of the row controller with camera used for line identification.
Robot starting point (x , y ,ψ) = (0,−2,π/4) and a line defined in global coordinates
as y = 0.

6.2.2 Following a Single Line with Camera

In the previous subsection it was verified that the identification and mapping
of a line using the camera worked well. The next simulation supplies the line
following controller with the line estimated from the camera. The same green
line as in Figure 6.3 and the simple least squares method for line fitting was
used for this test. The results are presented in Figure 6.4. The results are very
similar to the results obtained when only using the row controller without the
camera. Note that the plotted d and θ are calculated from the estimated line,
so they don’t represent the actual distance and angle error as in simulations
without camera. The position plot is same as before and represents the actual
position of line and robot.
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6.3 identifying and following row crops

So far the simulations verify that the row controller and line identification and
mapping for a single line works well. The next step is to combine this with
method 1 and 2 developed in Section 5.5 and Section 5.5.1 to follow the middle
of three rows. The configuration that will be used to test both methods is shown
in Figure 6.5. Real pictures of plants and rows have been put together to form
a fairly realistic representation of a field.

Figure 6.5: Simulation of row detection, estimation and following. The robot starts
in the position shown in the left image and attempts to follow the middle row. The
middle image is the raw camera input, and the right image is the projected image with
identified lines.

6.3.1 Method 1

Method 1 uses only Hough transform to identify the rows. Figure 6.6 shows the
performance. The systemworks well, and the robot follows themiddle rowwith
only very small deviations. However, the estimated d and θ vary quite a lot,
which causesω to become less smooth. The reason for these fluctuations are the
problems discussed earlier with the Hough lines method returning "random"
lines within the middle row, i.e. every image processed will return a somewhat
different line.

6.3.2 Method 2

Method 2 uses the output line of method 1 and improves it using a least squares
line fitting. Figure 6.7 shows the performance. The performance is similar to
method 1, but d and θ are much smoother now, which leads to smoother ω
and smoother operation overall. Note that method 2 has a trajectory slightly
above method 1. The difference is only about one centimeter, and it is hard to
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Figure 6.6: Simulation of row detection, estimation and following using method 1.
The robot starts at (x , y ,ψ) = (0,−2, 0) and attempts to follow the middle row that
is located at approximately y = −2.
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Figure 6.7: Simulation of row detection, estimation and following using method 2.
The robot starts at (x , y ,ψ) = (0,−2, 0) and attempts to follow the middle row that
is located at approximately y = −2.

tell which one is more correct due to the "random" nature of a row crop. The
simulated crop row itself is about 15 centimeters wide.

6.4 row estimation with kalman filter

The final component of the row estimation and following is the Kalman filter
to estimate row pose. The purpose of the Kalman filter is not only to smooth
the measurements and thereby provide smoother operation, but also to make
the system less vulnerable to false measurements. If e.g. a few very wrong row
poses are provided directly to the controller, this could be enough to make the
robot start turning sharply and go off course. If instead these measurements
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Figure 6.8: Simulation of row detection, estimation and following using method 1
with Kalman filter for row estimation. The robot starts at (x , y ,ψ) = (0,−2, 0) and
attempts to follow the middle row that is located at approximately y = −2.

were provided to a filter, the outcome would hopefully be less dramatic and
only cause a small deviation.

6.4.1 Method 1

As seen in Figure 6.6 method 1 produces fairly noisy row pose measurements,
so hopefully a Kalman filter will be able to smooth it. One of the challenges
with a Kalman filter is estimating the process and measurement noise covari-
ance matrices Q and R. In this case the values were found by simply testing
a few different values and then adjusting accordingly. It was found that small
values for process noise covariance and large values for measurement noise co-
variance worked well. Figure 6.8 shows the performance using the following
values:

Q =









0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1









, R =









100 0 0 0
0 100 0 0
0 0 10000 0
0 0 0 10000









(6.2)

The results are very promising. Both d and θ are much smoother which also
leads to smoother operation. In fact, method 1 with Kalman filter performs
equally or even better than method 2 without Kalman filter while following a
straight row.
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Figure 6.9: Simulation of row detection, estimation and following using method 2
with Kalman filter for row estimation. The robot starts at (x , y ,ψ) = (0,−2, 0) and
attempts to follow the middle row that is located at approximately y = −2.

6.4.2 Method 2

Method 2 has much less noise thanmethod 1 to begin with, which suggest that it
might be wise to reduce the values of R a bit. Figure 6.9 shows the performance
of method 2 with Kalman filter using the following values:

Q =









0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1









, R =









10 0 0 0
0 10 0 0
0 0 100 0
0 0 0 100









(6.3)

The performance is overall good, even though R has been drastically reduced
compared withmethod 1. There appears to be some oscillations that are slightly
amplified compared to method 2 without Kalman filter. The oscillations are
probably due to the fact that each row consists of seven repeated pictures, and
the center of each row moves slightly. Method 1 is not affected much by this
because it does not attempt to find the center in the same way as method 2.
Increasing R significantly did not appear to amplify the oscillations any fur-
ther.

6.5 full system

Finally, all the parts of the system were combined and the robot was set to
traverse the entire field. The robot started in the lower left part of the field
as shown in Figure 5.4. Following is the expected behavior which should be
considered while referencing Section 5.7 and Figure 5.17:
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Figure 6.10: Simulation of full system using method 2 with Kalman filter for row
estimation. The robot starts at (x , y ,ψ) = (0,−2, 0).

• The robot starts in state 1. Once enough row pose updates are received
it should change to state 2 and start following the row.

• When it reaches the end it should exit the row and change to state 3 to
turn left.

• After completed turn it should start going straight and look for the next
row. If it detects the new row, change to state 1.

• Gather enough row pose updates in state 1 before changing to state 2 and
continue row following.

• After two more successful turns, it should not find any more rows and
shutdown after idling in state 1 for some time.

For this simulation it is not that relevant which method is used for row estima-
tion, since all of them provide sufficient performance. The preferred configu-
ration was method 2 with Kalman filter, so this was used for full system tests.
Figure 6.10 shows the trajectory of the simulated robot. The system worked
exactly as anticipated and followed all the state transitions as described above.
A plot of the state transitions will be shown later for tests on the real robot in
Figure 7.10. A video of this run is available1.

1https://drive.google.com/open?id=0B0vkABY5y-eqWTNVMWpWMkh2T0U&
authuser=0
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7
LAB T ESTS

This chapter contains a selection of tests that were performed on the Dogmatix
robot. All the tests that were run in the simulator were also run on Dogmatix.
All tests with Dogmatix were done indoors, which meant that there were no
plants available. Also, the rear caster wheel of Dogmatix is centered, which
means that it would destroy the middle row. For that reason, red and white
striped cordoning bands were used as a replacement for the plants. The bright
red color is easily identified.

7.1 line following controller

The line following controller (3.11) was tested by defining a line in global co-
ordinates and letting the robot follow it at constant forward speed. The same
controller gains were used for the real robot as for the simulator. The values
are repeated here for reference:

k1 = 2.0, k2 = 0.26, k3 = 5.0 (7.1)

It might seem surprising that there is no need for tuning when changing from
simulator to a real robot. However, recall that the control law is only based on
kinematics, so as long as the assumption of ωr ≈ω holds, there should not be
any real need for tuning.

The performance is shown in Figure 7.1. The robot behaves almost exactly like
the simulation results in Figure 6.1. The only difference is slightly more noisy
speed measurements acquired from wheel odometry.

7.2 identifying and following a single line

In this test the goal is to verify the identification of a line using the camera
mounted on Dogmatix, map the line in global coordinates and use the line
following controller to follow it.
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Figure 7.1: Real run on Dogmatix with the row controller, robot starting point
(x , y ,ψ) = (0,0, 0) and a line defined in global coordinates as y = 1.5. Notice how
the approaching angle θ stabilizes at θ = sin−1(k2) ≈ 0.262 = 15° while approaching
the line.

7.2.1 Estimating Line Pose

The Dogmatix robot was placed in different positions around a straight line
made up of red and white striped cordoning band. The band was attempted
placed at y = 0 in global odom coordinates and angle and distance error was
found by comparison with the estimated line found by the robot. Figure 7.2
includes images of the setup and Table 7.1 shows the results. Note that the
accuracy used in this table does not represent the actual accuracy of the ex-
periment, it is merely the numbers reported by the robot. It is hard to assess
the accuracy of such a setup, but it can be seen that the performance is good
and the mapping appears to work well. The performance is especially good
around (x , y ,ψ) = (0,0, 0), which is most important since that is the normal
operating area during row following.

Table 7.1: Test results to verify the mapping from image to global coordinates.

Robot pose, (x , y ,ψ) Angle error [degrees] Distance error [cm]

(0,0, 0) 3.3° 1.7
(0,0.4, 0) 1.8° −4.9
(0,−1.0, π4 ) 2.0° 17.2
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7.2 identifying and following a single line

Figure 7.2: Test with Dogmatix to ensure the mapping of an identified line is accurate.
Robot pose is (x , y ,ψ) ≈ (0,−1.0,π/4). The left picture shows the robot’s orienta-
tion to the line, the middle image shows the raw camera input, and the right image
shows the input after projective transformation with the identified line found using
least squares method.

7.2.2 Following a Single Line with Camera

In the previous subsection it was verified that the identification and mapping of
a line using the camera worked well. In the next test the identified line pose is
passed on to the line following controller to follow. The same line as shown in
Figure 7.2 and the simple least squares method for line fitting was used for this
test. The results are presented in Figure 7.3. The results are very similar to the
results obtained when only using the row controller without the camera. Note
that the plotted d and θ are calculated from the estimated line, so they don’t
represent the actual distance and angle error as in tests without camera. The
position plot is based on integration of wheel odometry data, so some drift will
occur over time. Note that the approximate line added to the plot represents
the cordoning band and is very approximate.
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Figure 7.3: Test with Dogmatix with line following controller and camera used for
line identification. Robot starting point (x , y ,ψ) = (0, 0,0).
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7.3 identifying and following row crops

The indoor lab did not include any row crops facilities. Instead, three lines
of cordoning bands were placed next to each other as a replacement for three
rows of crops. This is shown in Figure 7.4. The lines were attempted placed in
a straight line such that the middle line corresponds to a line y = 0 in global
odom coordinates, but it is difficult to lay it out completely straight. When the
robot starts the position will always be (x , y ,ψ) = (0, 0,0), so the robot has
to be totally parallel to the line when starting for it to approximate y = 0.
Therefore, the approximate lines in the plots in this section will deviate quite
a bit from y = 0.

Figure 7.4: Three lines of cordoning bands replace the row crops. Left image is raw
camera input, next image is input image after projective transformation with middle
line identified using method 1, next image is probability image after backprojection
and right image is the binary mask used for line identification.

7.3.1 Method 1

Method 1 uses only Hough transform to identify the rows. Figure 7.5 shows
the performance. The conclusion is pretty much exactly the same as for the
simulation. The system works well, and the robot follows the middle row with
only very small deviations. However, as with the simulation, the estimated d
and θ vary quite a lot, which causes ω to become less smooth.

7.3.2 Method 2

Method 2 uses the output line of method 1 and improves it using a least squares
line fitting. Figure 7.6 shows the performance. Once more the results from Dog-
matix are very similar to the simulation in Figure 6.7 and the same conclusion
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7.4 row estimation with kalman filter

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

Time [s]

Sp
ee
d
[m

/s
],
A
ng

.
sp
ee
d
[1
/s
] Speeds

ω
ωr
u

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Time [s]
D
is
ta
nc

e
[m

],
A
ng

le
[r
ad

]

Line distance/angle

d
θ

0 2 4 6
−0.2

−0.1

0

0.1

0.2

x [m]

y
[m

]
Position

Approximate Line
Trajectory

Figure 7.5: Real run on Dogmatix with row detection, estimation and following using
method 1. The robot starts at (x , y ,ψ) = (0, 0,0) and attempts to follow the middle
row.
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Figure 7.6: Real run on Dogmatix with row detection, estimation and following using
method 2. The robot starts at (x , y ,ψ) = (0,0, 0) and attempts to follow the middle
row.

can be drawn: Smoother d and θ than method 1, which leads to smoother ω
and smoother operation overall.

7.4 row estimation with kalman filter

The final component of the row estimation and following is the Kalman filter
to estimate row pose. The output of method 1 or 2 is used as measurements
in the Kalman filter. The pose estimates from the Kalman filter is then used to
calculate d and θ which are used in the controller. This section uses the same
setup as in Section 7.3 with the only addition being the Kalman filter.
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Figure 7.7: Real run on Dogmatix with row detection, estimation and following using
method 1 with Kalman filter for row estimation. The robot starts at (x , y ,ψ) = (0, 0,0)
and attempts to follow the middle row.

7.4.1 Method 1

Method 1 had fairly noisy values of d and θ , so there is some room for improve-
ment. Values for process and measurement noise covariances that were found
to work well are

Q =









0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1









, R =









10 0 0 0
0 10 0 0
0 0 100 0
0 0 0 100









(7.2)

The performance is shown in Figure 7.7. There is a big improvement from
Figure 7.5, exactly like with the simulations. Much smoother d, θ and ω, and
the trajectory is also a bit smoother.

7.4.2 Method 2

Method 2 already provided much smoother measurements than method 1, but
the Kalman filter still might be able to improve the estimate. The same values
for Q and R were used for method 2, even though the measurements were much
less noisy:

Q =









0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1









, R =









10 0 0 0
0 10 0 0
0 0 100 0
0 0 0 100









(7.3)
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7.5 full system
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Figure 7.8: Real run on Dogmatix with row detection, estimation and following using
method 2 with Kalman filter for row estimation. The robot starts at (x , y ,ψ) = (0, 0,0)
and attempts to follow the middle row.

The results are shown in Figure 7.8. The performance is very similar to the tests
without Kalman filter, but once again d and θ are slightly smoother which also
leads to smoother ω.

7.5 full system

Finally, all the elements are put together to test the full system. The "field"
that was used is the same as for the simulation: Three rows where each row
consists of three smaller rows, and each small row is a line of cordoning band.
A picture of the field with Dogmatix in operation is shown in Figure 7.9. The
expected behavior is the same as for the simulation, which was described in
Section 6.5.

A plot of the trajectory and the state the robot is in is included in Figure 7.10,
and a video which is described in Appendix A is also included1. The robot
followed the rows until the entire field was covered, and the state transitions are
exactly as expected. The system was found to be very robust. Several tests with
different row spacings were also performed, and the robot had no problems
detecting the next row after completing the turn. In cases where it did not
identify any rows after completing a turn, it always managed to find it after
expanding the field of view of the camera.

1https://drive.google.com/open?id=0B0vkABY5y-eqNkZnUjkwb3M3Vms&
authuser=0
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Figure 7.9: Full system test with Dogmatix.
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Figure 7.10: Real run on Dogmatix with full system using method 2 and Kalman filter
for row estimation. The robot starts at (x , y ,ψ) = (0, 0,0) and starts following the
row. The upper plot shows the trajectory with color coding for different states, and the
bottom plot shows which state the robot is in at different times.
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8
F I E LD TESTS

A trip to a field with carrot crops in Rygge, Østfold was conducted in early May.
The purpose of the trip was to collect image data and test the row following
controller and turning strategy at the end of a row. Unfortunately, the carrots
were in a very early stage, which meant that the plants were very small and
hard to see. Figure 8.1 shows the difference between early and late stages of
the growing process. The plants were too small to be spotted after the usual
downscaling and perspective transformation that were applied during lab tests,
so different techniques had to be considered during the few hours of field test-
ing.

Figure 8.1: The same carrot field in Rygge, Østfold during different stages of the
growing process of carrot crops. Left picture is taken in June/July 2014 and right
picture is taken during this field test in early May 2015.

8.1 image analysis

A closeup of a row is shown in Figure 8.2. The tiny plants were used to create
the hue and saturation histogram used for backprojection. From a distance it
was very difficult to spot the plants.

The first thing that was done was to increase the resolution of the image from
640×480 to 2448×1920, more than 15 times pixel count increase. This allows
for greater details at a cost of lower frame rate and longer processing time,

91



field tests

but this alone was not sufficient to fix the problem. The next strategy was to
drop the perspective transform of the image to ensure no details are lost in the
transformation. By doing this the identified lines will not be parallel due to
the perspective of the camera, but that can be overcome by applying the same
homography transform to the line coordinates instead of the image.

There was some success with this technique, but it was not robust enough to
perform any row following. Figure 8.3 shows a successful identification of the
rows. However, by looking at the binary mask it should be obvious that it is
not very robust. If anything it shows how well the Hough line method works.
While the robot was moving it was very difficult to get robust and consistent
identification, so it was not good enough to run any tests with the line following
controller. As a result, no successful runs of the row controller with real plants
were done with the robot during this field test.

Figure 8.2: Left image is a closeup of the plants that were used to calculate a histogram
of hue and saturation values that could be used to identify plants. Right image shows
the probability image after backprojecting the left image.

8.2 turning at end of row

A test of the identification and turning strategy at the end of a row was con-
ducted by adding red and white striped cordoning bands in place of the plants
in each row to provide sufficient visual aid. This should be similar to the amount
of plants that can be expected a few weeks later in the growing process. The
test turned out to be a complete success. A picture of the robot while turning
is shown in Figure 8.4. The only slight problem that occurred was some wheel
slip, but not enough to cause any real problems. At the time the tests were per-
formed, only wheel encoders were used to estimate velocities. If wheel encoder

92



8.3 recreating field in simulator

Figure 8.3: Left image shows the raw input image with identified rows using method
1. Right image shows the binary mask that was used for the identification after backpro-
jection, thresholding pixels with high probability of being a plant followed by heavy
dilation and erosion. There are not enough plants to ensure robust and consistent
identification of rows.

measurements are combined with IMU measurements in a filter, the effects of
wheel spin should be negligible. A video of this run is available1.

8.3 recreating field in simulator

Since we only spent a few hours in field, there was not enough time to attempt
new computer vision techniques for identifying rows with little to no plants.
Therefore, the field was recreated in the simulator by patching together pic-
tures taken that day. Figure 8.5 shows a comparison of the real field and the
simulated field. The simulated field is quite similar to the real field, but it lacks
depth. However, when simply looking straight down the rows the simulation
is convincing.

There are not enough plants in the field to reliable use that for row identifica-
tion, so other features have to be used. There is very little color information
available since everything is just soil, whichmeans that the usual approach with
identification using hue and saturation values will not work. A feature that can
be used is the darker areas in each row. By first converting the image to a gray
scale image, an adaptive threshold technique can be used to extract the darker
areas. Adaptive threshold techniques were briefly introduced in Section 2.4.1.

1https://drive.google.com/open?id=0B0vkABY5y-eqNTdoaTI1d3ZhWDg&
authuser=0
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field tests

Figure 8.4: A test of the identification and turning strategy at the end of a row. The
robot successfully identified the end, kept driving straight for a specified length to com-
pletely exit the row, turned around, identified next row and continued with following
it.

Figure 8.5: Left image shows the simulated robot placed in the simulated field, middle
image is captured by the simulated robot, and right image is a real picture captured
by Asterix.

In this case the areas we want to extract are the darker areas, so an inverse
adaptive thresholding technique is applied:

dst(x , y) =

�

1 if src(x , y) < α(x , y)+ Co

0 else
(8.1)

where α(x , y) is the adaptive threshold value and Co is a constant offset pa-
rameter. A kernel with a specified size and weighting is used (recall what a
kernel is from Section 2.4.2) to calculate α(x , y) based on surrounding pixels.
The offset parameter can be adjusted to ensure decent performance in cases
of large dark areas with little light. In such conditions the binary image might
end up all white without the offset parameter. OpenCV has an implementation
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8.3 recreating field in simulator

named adaptiveThreshold which supports both mean and Gaussian weighted
kernels and an offset parameter.

A very large mean weighted box sized kernel was found to give good results. A
small kernel will adapt the threshold value to keep all small details in the image,
but in this case we would like to extract relatively wide rows without the small
details. The steps for finding a binary image of the rows can be summarized
to:

Step 1: Perform projective transformation on the input image and convert it to a
gray scale image.

Step 2: Use an adaptive thresholdingmethod with a very large kernel. The kernel
used is mean weighted.

Step 3: Apply dilation to close any gaps in the binary image and then erosion to
remove outliers.

The output after these steps should be a binary image with only the three rows
in white. After that the procedure is exactly like earlier and both method 1 or
2 can be used. Figure 8.6 shows the result using inverse adaptive thresholding
and method 1 for identifying the middle row. It works very well, and a complete
run over the entire field was performed with success. The trajectory of the
simulated robot using method 2 with Kalman filter is shown in Figure 8.7. The
performance is almost identical to the test in the field with plants that was
shown in Figure 6.10. The only difference is that the rows were placed closer
to each other this time to better reflect the actual field. A video of this run is
available2.

While the inverse adaptive thresholding technique works equally well in simu-
lations as the hue and saturation backprojection technique, it is uncertain how
robust it is in real fields. The rows are darker primarily because there are ele-
vations on both sides of the rows which causes the elevations to be brighter. If
the sun is lighting the ground from directly above, the rows might not appear
darker than the elevations. Obviously, the system must be robust enough to
handle direct sunlight, so in practice this technique might not provide sufficient
robustness. More tests in real fields are needed to conclude anything.

2https://drive.google.com/open?id=0B0vkABY5y-eqeUdiRGIzZXBzMVU&
authuser=0
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field tests

Figure 8.6: Left image shows input image after projective transformation and iden-
tified lines using method 1, middle image shows the cropped region that is used for
inverse adaptive thresholding and right image shows the binary image after threshold-
ing, dilation and erosion.

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22

−2

0

2

4

x [m]

y
[m

]

Position

Approximate Row
Trajectory

Figure 8.7: Simulation of full system using method 2 with Kalman filter for row esti-
mation in the field without plants. The robot starts at (x , y ,ψ) = (0,−1.75, 0).
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9
CONCLUDING REMARKS

Amethod for extracting plants from images based on hue and saturation values
has been developed. The output of this method is a binary image. From the
binary image, the rows are identified and the position and orientation (pose)
of each row is estimated. The estimated pose is used as a measurement in a
Kalman filter, whose output serves as input for a controller that follows the
row.

All methods were tested on both the simulator, which was developed as part
of the thesis, and real robots. The results from simulator and real robots are
almost identical, suggesting that the simulator provides a realistic platform for
testing and development.

A field test at a carrot field was conducted in early May with the Asterix robot.
At this point in the growing process, the plants were not sufficiently large for the
row estimation method to offer robust performance. The field conditions were
recreated in the simulator, and a row identification method based on an inverse
adaptive thresholding technique was developed. This method can identify rows
in conditions without plants, but it remains to be seen how robust it will be on
a real field.

The method developed for detecting the end of a row, turning around and iden-
tifying the next row has worked very well in the simulator and tests performed
with red and white striped cordoning bands as replacement for plants in rows.
It remains to be tested in rows with actual plants.
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A
V I DEOS

Some videos have been included to demonstrate the system during operation.
Following are the links and a short explanation of every video. Apologies for
the long links, but they are clickable in the PDF:

• https://drive.google.com/open?id=0B0vkABY5y-eqNkZnUjkwb3M3Vms&
authuser=0: Test of the full system on Dogmatix with an indoor field made of
cordoning bands. This is the same run that was shown in Figure 7.10.

• https://drive.google.com/open?id=0B0vkABY5y-eqNTdoaTI1d3ZhWDg&
authuser=0: Test of the end of row detection and turning controller on Asterix
in a real field. Due to lack of plants in the field, some cordoning bands were
placed in the rows to provide sufficient visual aid. A picture from this video was
shown in Figure 8.4.

• https://drive.google.com/open?id=0B0vkABY5y-eqWTNVMWpWMkh2T0U&
authuser=0: Simulation of full system on a field with plenty of green plants
as shown in Figure 6.10. Top right image is raw camera input, the image below
is the input after projective transformation with identified rows, next image is
the binary mask, next image is the probability image after backprojection, and
to the far left is the cropped image that is backprojected.

• https://drive.google.com/open?id=0B0vkABY5y-eqeUdiRGIzZXBzMVU&
authuser=0: Simulation of full system on a field with almost no plants as
shown in Figure 8.7, using inverse adaptive thresholding to find the darker rows.
Top right image is raw camera input, the image below is the input after projec-
tive transformation with identified rows, next image is the binary mask, next
image is a gray scale image before thresholding and to the far left is the cropped
image. This row detection mode is not as robust as the one used for fields with
plants, so at some points in the movie the wrong row is identified as middle row.
However, because of the Kalman filter, a few false measurements does not cause
it to steer completely off course.
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B
PAPER

A paper documenting the work that was done last semester has been written
while working on the Master’s thesis. The paper was written by the first author,
while second and third author contributed with good feedback. The paper has
been submitted to the 19th International Conference on System Theory, Control
and Computing (ICSTCC 2015) in Cheile Gradistei, Romania, October 14th-16th
20151. The paper is currently awaiting acceptance. The full paper follows in
the next pages.

1http://www.aie.ugal.ro/homeconf
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Experimental Comparison of Adaptive Controllers
for Trajectory Tracking in Agricultural Robotics

Jarle Dørum, Trygve Utstumo, Jan Tommy Gravdahl
Department of Engineering Cybernetics

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract—This paper describes the development of several
controllers to handle a trajectory tracking problem for a dif-
ferentially wheeled robot. Both simulations and tests on a real
robot were performed. A simple kinematic controller has been
implemented to calculate desired velocities based on current
position and trajectory. In order to also consider the current
velocities, i.e. the dynamics of the system, the output of this
controller was used as input to a dynamic controller derived from
a nonlinear model. The dynamic controller was made adaptive
by using an on-line parameter estimation scheme to estimate the
unknown parameters of the nonlinear model. Lastly, a direct
model reference adaptive controller (MRAC) based on a linear
model was derived and implemented as an alternative to the
adaptive dynamic controller.

I. INTRODUCTION

This paper presents part of the ongoing research for devel-
oping an agricultural robot that autonomously navigates in row
crops while identifying and precision spraying individual weed
leaves with herbicide. The robot is a differentially steered robot
with two rear mounted caster wheels, and may be modeled as
a unicycle-like robot. A picture of the prototype during testing
in row crops is shown in Fig. 1.

Previous research on the project includes development of
a precision drop-on-demand nozzle for herbicide application
[1], a model predictive row controller [2] to minimize poten-
tial crop damage during operation and attitude estimation in
agricultural robotics [3].

The nozzle array presented in [1] is intended to only be
slightly wider than the row crops, meaning that the robot has
to follow the row crops precisely. A small offset could mean
that the weed is out of reach for the nozzles, leaving the weed
untreated. This motivates the research in this paper to find a
trajectory tracking controller that minimizes the tracking error.

Another aspect to consider is changing physical properties
of the robot. For example, the weight of the robot will change
as herbicide and fuel is consumed. To ensure satisfactory
performance at all times, several adaptive approaches that
update the controller gains continuously have been tested.

Unicycle-like robots are used extensively in all kinds of
fields and numerous models and controllers have been de-
scribed in publications. In this paper a nonlinear model
proposed in [4] has been used for simulations. The same
model was also used in [5] to develop an adaptive dynamic
controller, which has been implemented and tested here but
with a different adaptation law. In [6] an adaptive controller

Fig. 1. A picture of the prototype robot on a field test.

using adaptive backstepping is presented. [7] developed a
model reference adaptive controller (MRAC) for the tracking
problem, but only simulations were performed. A similar
direct MRAC has been derived here and implemented on the
robot for testing.

The most important contribution of this paper is the com-
parison of two different adaptive controllers implemented on
the same robot. The author is not aware of any previous
implementations of the MRAC controller presented here on
a real robot.

Different approaches to row crop guidance systems has
been thoroughly explored and reviewed in [8]. However, this
paper focuses merely on tracking a smooth and well defined
trajectory without considering how to obtain the trajectory.
The results obtained should be applicable to most unicycle-
like robots.

II. MATHEMATICAL MODEL

The model used for simulations and some of the controller
designs in this paper was presented in [4]. It is given as
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(1)

where h =
[
x y

]T
is the position, ψ is the heading angle, u

is forward velocity, ω is angular velocity and a is the distance
from center of wheel axis to h as shown in Fig. 2. Motor
inputs are given as velocities instead of torque values, which
means that the motor controller is assumed to have a PID
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Fig. 2. Drawing of unicycle-like robot with centered rear mounted caster
wheel, similar to the robot all tests were performed on.

controller or similar. θ is a collection of physical parameters
derived in [4] and included here for reference:

θ1 =

(
Ra
ka

(mRtr + 2Ie) + 2rkDT

)
/(2rkPT )

θ2 =

(
Ra
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(Ied
2 + 2Rtr(Iz +mb2)) + 2rdkDR

)
/(2rdkPR)

θ3 =
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ka

(
kakb
Ra
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)
/(rkPT ) + 1

θ5 =
Ra
ka
mbRt/(dkPR)

θ6 =
Ra
ka

(
kakb
Ra

+Be

)
d/(2rkPR) + 1

(2)
where Ra is motor resistance, ka motor torque multiplied by
gear ratio, kb motor voltage multiplied by gear ratio, r wheel
radius, Ie motor moment of inertia, Be motor viscous friction
coefficient, kPT , kDT , kPR, kDR are PID motor controller
gains, Iz moment of inertia about vertical axis at center of
mass, m mass.

δ =
[
δx δy 0 δ̄u δ̄ω

]T
(3)

represent the uncertainties of the system caused by wheel slips
and forces exerted by the caster wheel. For the purpose of this
paper it has been assumed that δ = 0.

III. CONTROLLER DESIGN

In many cases unicycle-like robots operate at low speeds
and often inhibit low moment of inertia. In other words, the
dynamics of u and ω are so fast that in many cases one may

simplify u ≈ uref , ω ≈ ωref and only study the kinematic
model given by


ẋ
ẏ

ψ̇


 =



uref cosψ − aωref sinψ
uref sinψ + aωref cosψ

ωref


 (4)

For larger robots operating at higher speeds the dynamics can-
not simply be ignored. In the next sections, various controller
designs are considered.

A. Trajectory Tracking Controller

Let hd(t) =
[
xd(t) yd(t)

]T
denote the time varying

reference trajectory for the robot. The tracking error is defined
as h̃ =

[
xd − x yd − y

]T
. The kinematics from (1) may be

written as 
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ẏ

ψ̇


 =




cosψ −a sinψ
sinψ a cosψ

0 1



[
u
ω

]
(5)

Recalling that h = [x y]T

ḣ =

[
ẋ
ẏ

]
=

[
cosψ −a sinψ
sinψ a cosψ

] [
u
ω

]
= A

[
u
ω

]
(6)

Multiplying (6) with the inverse of A gives[
u
ω

]
= A−1

[
ẋ
ẏ

]
=

[
cosψ sinψ
− 1
a sinψ 1

a cosψ

] [
ẋ
ẏ

]
(7)

A controller based on inverse kinematics is proposed in [5]:
[
ucref
ωcref

]
=

[
cosψ sinψ
− 1
a sinψ 1

a cosψ

]
ẋd + lx tanh

(
kx
lx
x̃
)

ẏd + ly tanh
(
ky
ly
ỹ
)

 (8)

where kx, ky > 0 are controller gains and lx, ly > 0 are
saturation constants. ucref and ωcref are desired forward and
angular velocities, respectively. The controller is shown in
[5] to have an asymptotically stable equilibrium at the origin
h̃ =

[
0 0

]T
under the assumption of u = ucref and

ω = ωcref . Note that the name trajectory tracking controller
and kinematic controller both refer to the same controller for
the rest of this paper.

B. Dynamic Controller

The kinematic controller will work adequately as long as the
dynamics of the system are fast enough, i.e. the assumption
of u ≈ ucref and ω ≈ ωcref is reasonable. In cases where the
dynamics are too slow to be ignored or high precision tracking
is required, the kinematic controller alone may no longer be
sufficient.

Consider the dynamic part of (1)
[
u̇
ω̇

]
=

[
θ3
θ1
ω2 − θ4

θ1
u

− θ5θ2uω −
θ6
θ2
ω

]
+

[ 1
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0

0 1
θ2

] [
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ωref

]
(9)

Rearranging gives[
uref
ωref

]
=

[
θ1u̇− θ3ω

2 + θ4u
θ2ω̇ + θ5uω + θ6ω

]
(10)



Which may be written as[
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ωref

]
=

[
θ1 0
0 θ2

] [
u̇
ω̇

]
+

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
θ

(11)
Motivated by the inverse dynamics in (11), [5] proposes the
controller given as[
uref
ωref

]
=

[
θ1 0
0 θ2

] [
σ1

σ2

]
+

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
θ

(12)
where

σ =

[
σ1

σ2

]
=

[
u̇cref + k1ũ

ω̇cref + k2ω̃

]
,

ũ = ucref − u
ω̃ = ωcref − ω

(13)

and k1, k2 > 0 are constant gains. In order to implement (12),
the values of θ must be known. Measuring or otherwise ob-
taining the parameters needed to calculate θ may prove hard,
thus the need to estimate θ becomes a necessity. Replacing θ
with the estimate θ̂ in (12) gives

νref = D̂σ +Eθ̂ (14)

where

νref =

[
uref
ωref

]
, E =

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
,

D̂ =

[
θ̂1 0

0 θ̂2

]
, θ̂ =

[
θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6

]T (15)

Following is a stability analysis similar to what was done in
[5]. (11) may be written as

νref = Dν̇ +Eθ (16)

Similarly, (14) is written

νref = D̂σ +Eθ̂ = Gθ −Gθ̃ = Dσ +Eθ −Gθ̃ (17)

where θ̃ = θ − θ̂ and

G =

[
σ1 0 −ω2 u 0 0
0 σ2 0 0 uω ω

]
, D =

[
θ1 0
0 θ2

]
(18)

(13) may be written as

σ =

[
σ1

σ2

]
= ν̇cref +Kν̃ (19)

where K = diag(k1, k2). Combining (16), (17) and (19)

Dν̇ +Eθ = Dν̇cref +DKν̃ +Eθ −Gθ̃ (20)
˙̃ν = −Kν̃ +D−1Gθ̃ (21)

where ˙̃ν = ν̇cref − ν̇ describes the error dynamics of the
system. For this analysis, θ is considered known, i.e. θ̂ = θ,
reducing (21) to

˙̃ν = −Kν̃ (22)

Consider the following Lyapunov-like function

V =
1

2
ν̃TP ν̃ (23)

where P = P T > 0. Differentiating (23) along the solution
of (22) gives

V̇ = −ν̃TPKν̃ < 0 ∀ ν̃ 6= 0 (24)

Which means that V̇ is negative definite and global asymptotic
stability can be concluded.

C. On-line Parameter Estimation

The dynamic controller given by (14) needs a good estimate
θ̂ in order to perform well. One approach to estimate θ̂ is to
log a test run with sufficiently excited input signal and use
an off-line system identification technique, e.g. least-squares
method. Another approach is to estimate θ̂ on-line using an
adaptation law ˙̂

θ. This section shows the derivation of ˙̂
θ using

the gradient method, which is motivated by the minimization
of a cost function.

Consider (10) written on the form

νref = ϕTθ =

[
u̇ 0 −ω2 u 0 0
0 ω̇ 0 0 uω ω

]
θ (25)

where νref = [uref ωref ]T . Filtering both sides gives

νref
Λ(s)

=
ϕTθ

Λ(s)
=

1

Λ(s)

[
su 0 −ω2 u 0 0
0 sω 0 0 uω ω

]
θ

(26)
Which may be written as the parametric model

z = ΦTθ (27)

where z =
νref

Λ(s) , ΦT = ϕT

Λ(s) and Λ(s) is chosen to be a
Hurwitz polynomial of degree one, e.g. Λ(s) = s + 1. Note
that z and Φ are available measurements, while θ is unknown.
An estimate of z denoted ẑ is generated as

ẑ = ΦT θ̂ (28)

where θ̂ is the currently best estimate of θ. A normalized
estimation error is defined as

ε = (MTM)−1(z − ẑ) = (MTM)−1(z −ΦT θ̂) (29)

where MTM = I +Ns
TNs is a diagonal matrix that nor-

malizes the estimation error, and Ns
TNs is another diagonal

matrix for design of the normalized signal. The reason for this
normalization is to ensure boundedness, i.e.

ΦM−1 ∈ L∞ (30)

If Φ ∈ L∞, then M = I is sufficient. If it is not, choosing

MTM = I + ΦTΦ (31)

will ensure (30) is satisfied [9, p. 172]. An instantaneous cost
function J(θ̂) is defined as

J(θ̂) =
1

2
εTMTMε =

1

2
(z −ΦT θ̂)T (MTM)−1(z −ΦT θ̂)

(32)
The gradient of (32) is

∆J(θ̂) = −Φ(MTM)−1(z −ΦT θ̂) = −Φε (33)

Motivated by this, the following adaptation law for generating
θ̂(t) is proposed

˙̂
θ = −Γ∆J(θ̂) = ΓΦε (34)

where Γ = ΓT > is a diagonal gain matrix. According to [9,
p. 175], (34) ensures that

1) θ̂, ε ∈ L∞
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Fig. 3. Block diagram of the model reference adaptive controller.

2) ε,Ns
T ε,

˙̂
θ ∈ L∞

independent of the boundedness properties of Φ. In other
words, both parameters and estimation errors should remain
bounded. It does not, however, ensure that θ̃(t) = θ(t) −
θ̂(t) → 0 as t → 0. To ensure that the parameters θ̂ do in
fact converge to their actual value θ, Φ must be persistently
excited (PE), i.e., it satisfies [9, p. 254]

α1I ≥
1

T0

∫ t+T0

t

Φ(τ)ΦT(τ) dτ ≥ α0I, ∀t ≥ 0 (35)

for some T0, α0, α1 ≥ 0. It is in general difficult to show that
Φ is PE for an input signal νref , and especially in a case like
this where Φ has some nonlinear elements.

D. Adaptive Dynamic Controller

The results from section III-B and section III-C may be
combined to form an adaptive dynamic controller. The on-line
parameter estimation operates independently from the dynamic
controller and vice versa, making it a modular design. This
may prove beneficial in cases where parameter estimation is
only needed parts of the time, or if it is desirable to run
parameter estimation without running the dynamic controller.
The control laws are given by

νref = D̂σ +Eθ̂, ˙̂θ = ΓΦε (36)

where the notation is the same as in section III-B and section
III-C.

E. Direct Model Reference Adaptive Controller

In this section, a simple direct Model Reference Adaptive
Controller (MRAC) scheme as shown in Fig. 3 is derived.
The concept is to design a model of similar structure to the
plant (robot), let the tracking reference be an input to the
model, and make the output of the plant track the output of the
model. For the direct MRAC approach, this is made possible
by developing adaptation laws for the controller gains directly
without having to identify actual system parameters.

Consider a simplified, linear model of the dynamics of (1)
given by [

u̇
ω̇

]
=

[
au+ buref
cω + dωref

]
(37)

where a, b, c, d are unknown system parameters (not the same
as those introduced in Fig. 2). In this case, u and ω are

considered decoupled and will be analyzed separately. A
reference model um for u is chosen to be

u̇m = −amu+ bmu
c
ref (38)

Laplace transforming (37) and (38) gives

u =
b

s− auref , um =
bm

s+ am
ucref (39)

The following control law is proposed

uref = −k∗uu+ l∗uu
c
ref (40)

Inserting (40) into (39) gives

u =
bl∗u

s− a+ bk∗u
ucref , um =

bm
s+ am

ucref (41)

It is desirable to make the transfer functions of (41) equal.
Choosing

l∗u =
bm
b
, k∗u =

a+ am
b

(42)

ensures equal transfer functions. However, it is not possible to
implement since the values of a and b are unknown. Instead
of using the control law (40), a control law using estimates of
k∗u and l∗u is proposed

uref = −ku(t)u+ lu(t)ucref (43)

where ku(t) and lu(t) are the currently best estimates of k∗u
and l∗u, respectively. Adding and subtracting b(−k∗uu+l∗uu

c
ref )

to u̇ yields

u̇ = au+ buref + b(−k∗uu+ l∗ur)− b(−k∗uu+ l∗ur) (44)

which, after combining with (42), may be written as

u̇ = −amu+ bmu
c
refu+ b(k∗uu− l∗uucref + uref ) (45)

Laplace transforming (45) gives

u =
bm

s+ am
ucref

︸ ︷︷ ︸
=um

+
b

s+ am
(k∗uu− l∗uucref + uref ) (46)

Define the tracking error eu = u− um to obtain

eu =
b

s+ am
(k∗uu− l∗uucref + uref ) (47)

Since k∗u and l∗u are unknown, our best estimate of the tracking
error êu is

êu =
b

s+ am
(ku(t)u− lu(t)ucref + uref ) (48)

Inserting uref from (43) into (48) simply gives êu = 0, i.e. the
estimated tracking error is zero. Note that the estimation error



εu = eu− êu = eu = u−um is equal to the tracking error eu.
Combining (43) and (47) while defining the gain parameter
estimation errors k̃u(t) = ku(t)− k∗u, l̃u(t) = lu(t)− l∗u gives

eu =
b

s+ am
(−k̃uu+ l̃uu

c
ref ) (49)

ėu = −ameu + b(−k̃uu+ l̃uu
c
ref ) (50)

Consider the Lyapunov-like function

V =
1

2
e2
u +

|b|
2γ1

k̃2
u +

|b|
2γ2

l̃2u (51)

with γ1, γ2 > 0. Differentiating (51) along the solution of (49)
gives

V̇ =− ame2
u + |b|k̃u

(
−euu sgn(b) +

1

γ1
k̇

)

+ |b|l̃u
(
euu

c
ref sgn(b) +

1

γ2
l̇

) (52)

Choosing

k̇u = γ1euu sgn(b), l̇u = −γ2euu
c
ref sgn(b) (53)

ensures

V̇ = −ame2
u ≤ 0 (54)

Thus it is shown that V̇ is negative semi definite, V has
an upper bound V (0) and bounded below by zero, i.e.
0 ≤ V (t) ≤ V (0). From the boundedness of V (t) and
(51), it is clear that eu, k̃u, l̃u ∈ L∞. ucref , the output of
the kinematic controller (8), is bounded, so ucref ∈ L∞. The
transfer functions of (41) are in L1, and it follows from [9,
p. 80] that u, um ∈ L∞. This means that all signals of (49)
are bounded and ėu ∈ L∞. From [9, p. 74] it follows that
since V (t) is bounded from below and non-increasing, it has
a finite limit as t→∞, denoted V∞. It can also be seen that

||eu||2 =

(∫ ∞

0

e2
u(τ)dτ

)1/2

=

(∫ ∞

0

− 1

am
V̇ (τ)dτ

)1/2

=

(
1

am
(V (0)− V∞)

)1/2

(55)
which is clearly bounded, so that eu ∈ L2. Finally, [9, p. 80]
shows that since ėu, eu ∈ L∞ and eu ∈ L2, then eu(t) → 0
as t→∞.

The results obtained show that the tracking objective of
making the output of the plant u(t) track the output of the
reference model um(t) is achieved. It does not, however,
guarantee that ku(t), lu(t) → k∗u, l

∗
u as t → ∞, i.e. the poles

of the plant may differ from those of the reference model. This
should be of less concern, since ku(t), lu(t) are bounded and
the true values of k∗u, l

∗
u are not of any real importance.

In a very similar manner the same results are found for ω.
A summary of the control laws are given in Table I.

A modification that was done to provide for a more robust
implementation was to add a small feedback loop to (53) to
get

k̇u = γ1euu sgn(b)− αku, l̇u = −γ2euu
c
ref sgn(b)− βlu

(56)

where 0 < α << 1 and 0 < β << 1.

TABLE I. Control Laws for The MRAC

Plant Reference Model Control Law

u = b
s−a

uref um = bm
s+am

ucref

uref = −ku(t)u+ lu(t)ucref ,
k̇u = γ1euu sgn(b)

l̇u = −γ2euucref sgn(b)

eu = u− um

ω = d
s−c

ωref ωm = dm
s+cm

ωc
ref

ωref = −kω(t)ω + lω(t)ωc
ref ,

k̇ω = γ3eωω sgn(d)

l̇ω = −γ4eωωc
ref sgn(d)

eω = ω − ωm

IV. SIMULATIONS AND REAL RUNS

Simulations were done using Matlab/Simulink, while real
runs were performed on the robot shown in Fig. 4. The robot
is running Robot Operating System (ROS) and all controllers
were implemented in C++. The motor controller has a low
level PID controller that uses individual motor velocities as
setpoints, and motor acceleration can be saturated to ensure
slower dynamics. Without limits on acceleration the dynamics
were so fast that all controllers had equal performance. For
both simulations and tests on the real robot the following figure
eight trajectory was used:

xd(t) = re sin(2ωet)

yd(t) = re(cos(ωet)− 1)
(57)

For the simulations re = 1 m and ωe = 0.3 rad/s, while for
the real runs the radius was slightly smaller, re = 0.6 m and
ωe = 0.3 rad/s. In all cases the distance from wheel axle to
h(x, y) was chosen to be a = 0.10 m. The on-line parameter
estimation method was tested in simulations where θ is known
to ensure that the estimated θ̂ converges to its actual value
θ. It was found that θ̂ does indeed converge correctly while
attempting to track the figure eight, which means that the input
signal is sufficiently excited to ensure convergence.

A comparison of all controllers is shown in Fig. 8 and the
estimated parameters are shown in Fig. 5 and Fig. 6. Fig. 7
shows the controller inputs during a real run.

It is obvious from Fig. 8 (a) that the kinematic controller
alone does not provide sufficient performance in this case. The
dynamic controller shows good performance given accurate es-
timates θ̂. The adaptive dynamic controller appears to be able
to improve upon the performance of the dynamic controller as
θ̂ adapts (shown in Fig. 6).

In Fig. 8 (i) and (j) the motor acceleration saturation limit
was increased to make the system a bit faster. It is interesting
that the MRAC improves greatly when the dynamics are faster,
while the adaptive dynamic controller has almost identical
performance to the case with slower dynamics.

V. CONCLUSION

Two different adaptive dynamic controllers for tracking a
trajectory were implemented on a differentially wheeled robot
and compared with non-adaptive kinematic and dynamic con-
trollers. The MRAC configuration, which the author has been
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as the parameters adapt.

Fig. 4. A picture of the robot used for the tests.
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Fig. 5. Controller gains for the MRAC during a real run. All controller gains
have initial values of 0.5.

unable to find previous papers presenting real implementations
of, delivered the best performance of all controllers on a
system with fairly slow dynamics, while the other adaptive
dynamic controller had equal or better performance on a very
slow system.
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(b) Simulation with dynamic controller
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(c) Simulation with adaptive dynamic controller
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(d) Simulation with MRAC
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(f) Real run with dynamic controller
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(g) Real run with adaptive dynamic controller
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(h) Real run with MRAC
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(i) Real run with adaptive dynamic controller on a faster system
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Fig. 8. Comparison of all the controllers with a relatively slow system and two selected runs on a faster system.
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