

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatens navn: Erlend Rønningen og Tore Steinmoen

Fag: Datateknikk, systemutvikling

Oppgavens tittel (norsk): Metrikker for aspektorientert programmering av middelvare

systemer

Oppgavens tittel (engelsk): Metrics for Aspect-Oriented Programming of middleware

systems.
Oppgavens tekst:

The motivation behind the Aspect-oriented programming (AOP) is to improve system
modularity. Scattered code due to crosscutting concerns are to be gathered in single
locations, called aspects. The AOP concept and the first aspect-oriented programming
language, AspectJ, were introduced at Xerox Parc in the 1990s. In this study we aim to
study the quality trend of a system implemented in AspectJ and Java, and possibly
containing aspects. The analysis is based on Telenor Mobile’s middleware system COS.
By using the GQM method we have studied the system quality factors maintainability
and reusability and their subcharacteristics. As a result, we have identified a set of
metrics enabling us to demonstrate changes in these system quality factors. Most
metrics are implemented in a metrics tool named AspectMetrics.

Oppgaven gitt: 20. januar 2004
Besvarelsen leveres innen: 15. juni 2004
Besvarelsen levert: 8. juni 2004
Utført ved: NTNU
Veileder: Tor Stålhane (NTNU), Kristoffer Kvam (Telenor Mobil)

Trondheim,

Tor Stålhane
Faglærer

 iii

SSuummmmaarryy

In this diploma thesis we have aimed to identify metrics that accommodate two chosen system
quality factors and implementing the selected metrics in a metrics tool. The metrics chosen
should measure change in the system quality factors reusability and maintainability for the
middleware system COS at Telenor Mobile and similar systems. The metrics tool should
support the aspect-oriented programming language AspectJ, and is planned to be a plugin to
the open source code analysis framework XRadar. Changes due to introduction of aspects are
of particular interest.

We have through a GQM process identified the following subcharacteristics for the chosen
system quality factors: modularity, testability, analyzability, changeability and stability.
Questions are formulated to analyze these sub factors, and metrics that can answer the
questions are chosen.

We have implemented the tool AspectMetrics, which calculate metrics on Java and AspectJ
code and generates an XML report containing the measurement results. A transformation
from XML to HTML web pages is also provided. The metrics tool can measure size metrics,
like the number of statements and the number of classes, coupling, fan-in/fan-out, cohesion
and advice-in/advice-out. Advice-in and advice-out are two new metrics which respectively
measures how many advice a class (or aspect) is affected by and how many joinpoints an
advice hits on. These metrics are inspired by the concept for the fan-in and fan-out metrics.

The tool has been used to analyze two versions of the system DIAS v.2.0, which is a part of a
diploma study in 2000. We have in our preparation project in 2003 added aspects to the DIAS
system while keeping the system functionally equal to the original version. We have used our
metrics tool to calculate the differences between the system with and the system without
aspects. The introduction of aspects gave a positive change in coupling, fan-in/fan-out and
size measures, while cohesion was negatively affected. The metrics thus, overall, indicated a
positive change to the subcharacteristics testability, analyzability, changeability and stability
and both the main quality factors. There was no indication of a positive change to modularity.

The analysis of the measurement results indicates that most of the metrics perform as
intended. The size metrics, coupling, fan-in/fan-out, and advice-in/advice-out all gave results
that corresponded to what we had expected. However, the cohesion measure did not behave in
a way that could be correlated to the actual changes performed on the code. A closer analysis
showed that moving and merging of functionality could result in either an increase or a
decrease in cohesion. Thus we find that cohesion, at least in its current form, is not a suitable
metric when using aspect-oriented programming. Further, this gave reason to reinvestigate the
disappointing modularity results. With a reworked set of criteria we also found indication of
improved modularity.

 v

PPrreeffaaccee

This diploma thesis is the finalization of our five years study to become masters of
technology, specialization computer science, at the Department of Computer and Information
Science (IDI), at the Norwegian University of Science and Technology (NTNU).

We have studied Aspect-Oriented Programming (AOP) and metrics in the context of the Java-
based middleware system Custom Order Server (COS) at Telenor Mobile AS. The work on
this diploma is the continuation of a project carried out last fall, named “Increasing readability
with Aspect-Oriented Programming”. In this diploma thesis we have studied on the quality
factors maintainability and reusability, with consideration to how AOP affect these factors.

We would like to thank our advisor at Telenor, Kristoffer Kvam, for comments and guidance
throughout project.

We would also like to thank the developers of AspectJ, which gave us technical help through
the mailing list aspectj-dev@eclipse.org.

Last, but definitely not least, we would like to thank our advisor at NTNU, Professor Tor
Stålhane. You have given us most valuable guidance, motivation and suggestions for our
work and report.

Trondheim, 08 June 2004

------------------------------------- -------------------------------------

 Erlend Rønningen Tore Steinmoen

 vii

CCoonntteennttss

Summary ... iii

Preface.. v

Contents..vii

Figures and tables.. ix

Chapter 1. Introduction .. 1

1.1 Background, Metrics and Code Measurements.. 1
1.2 Background, Aspect-oriented programming .. 2
1.3 Background, Project context .. 2
1.4 Problem definition.. 3
1.5 Project work goals.. 3
1.6 Report outline... 4

Chapter 2. Theoretical foundation ... 5

2.1 Introduction to Aspect-Oriented Programming.. 5
2.2 AspectJ ... 6
2.3 Quality frameworks and methods .. 12
2.4 Construction of metrics .. 16
2.5 OO-metrics ... 20
2.6 Dependency trees and program slicing .. 28
2.7 AOP-metrics... 29

Chapter 3. Relevant technologies .. 35

3.1 Metric tools .. 35
3.2 XRadar ... 36
3.3 Candidate technologies for the metrics tool ... 37

Chapter 4. Quality analysis .. 41

4.1 GQM... 41
4.2 Description of system quality factors... 42
4.3 Analytical evaluation of metrics .. 46
4.4 Possible effects on metrics with AOP.. 51

 viii

Chapter 5. The metrics tool.. 55

5.1 Requirements.. 55
5.2 Architecture.. 56
5.3 Design... 58
5.4 Implementation... 71

Chapter 6. Systems explored.. 77

6.1 The systems .. 77
6.2 Data gathered.. 77
6.3 Analysis of the quality factors from GQM... 83

Chapter 7. Discussion .. 91

7.1 GQM analysis... 91
7.2 Metrics.. 91
7.3 The metrics tool.. 93
7.4 Results from the systems and AOP effects .. 94

Chapter 8. Conclusion.. 97

Chapter 9. Further work... 99

9.1 Analyze results from systems in a period of time .. 99
9.2 Refine the quality model .. 99
9.3 Analyze other system goals.. 99
9.4 Cost-effectiveness analysis .. 100
9.5 Develop new metrics.. 100
9.6 Extend metrics tool with call graphs .. 100

Appendix A. References .. 101

Appendix B. Glossary .. 109

Appendix C. Other metrics and metrics suites ... 113

A.1. Complexity metrics .. 113
A.2. Metrics suites.. 115

Appendix D. Example code ... 119

Appendix E. DTD .. 121

Appendix F. Test plan and execution of the metrics tool.. 123

A.3. White box testing.. 123
A.4. Black box testing .. 125

 ix

FFiigguurreess aanndd ttaabblleess

Figures
Figure 1 Crosscutting concerns in UML class diagram: all the methods encapsulated have

to check if user has the right to perform this action. ... 5

Figure 2 Joinpoints in UML sequence diagram. The calling and returning of methods can
be used as joinpoints. ... 6

Figure 3 An example of an inter-type declaration. An inter-type declaration can declare
members that cut across multiple classes, or change the inheritance relationship
between classes. ... 10

Figure 4 An AOP example in AspectJ, caching of values.. 11

Figure 5 The six quality characteristics of the ISO 9126 standard..................................... 12

Figure 6 The Goal-Question-Metrics approach (Basili et al., [42]) 15

Figure 7 The ideally balanced package is placed along the main sequence....................... 25

Figure 8 A simple program and its program dependency graph (PDG), (Tip, [59]) 29

Figure 9 Example of dynamic report from XRadar.. 36

Figure 10 An illustration of the AspectJ weaver .. 38

Figure 11 The system quality factors we want to measure with our AOP-metrics tool 41

Figure 12 The ovals symbolize methods of a class. The circles symbolize the instance
variables the methods use. LCOM = P – Q = 2 – 1 = 1 47

Figure 13 LCOM = P – Q = 4 – 2 = 2 .. 47

Figure 14 LCOM = P – Q = 3 – 3 = 0 .. 48

Figure 15 Aspects can change the behaviour of regular methods. This must be taken into
account when making changes in methods that are affected by aspects.............. 50

Figure 16 Coupling between objects in Java vs. AspectJ program 51

Figure 17 An aspect with a big impact area on the system needs to be faultless. 52

Figure 18 The three main functional tasks of the metrics tool. .. 55

Figure 19 Architecture for the metrics tool. ... 57

Figure 20 Package structure of the metrics tool. .. 58

Figure 21 Design of the task that starts the metrics tool... 59

Figure 22 Design of the program element in the AspectJ compiler. 60

Figure 23 Print extract from the code tree generated with the AspectJ compiler................. 61

Figure 24 Structure of metrics sources used in calculations... 62

 x

Figure 25 Calculators used on metrics sources to provide metric values............................. 63

Figure 26 Sequence diagram for the counting of aspects in a package. 65

Figure 27 Design of source code counting calculators... 66

Figure 28 Design of fan-in and fan-out calculators. ... 67

Figure 29 Design of coupling inside packages calculator. ... 68

Figure 30 Design of Bieman and Kang's cohesion calculators. ... 68

Figure 31 Sequence diagram for the calculation of loose cohesion. 69

Figure 32 Design of reporters in the metrics tool. .. 70

Figure 33 An aspect that hits on all method calls and field references used as a work-around
to build a complete code tree.. 72

Figure 34 Extract from the ANT build file, build.xml. .. 73

Figure 35 Report from the metrics tool in html format. ... 73

Figure 36 Statements in methods for systems DIAS v.2.0 and v.2.1. 79

Figure 37 Loose cohesion of class (LCC) for the packages in DIAS v.2.0 and v.2.1......... 80

Figure 38 Advice-out and fan-out for the aspects in DIAS 2.1. ... 82

Figure 39 Modularity metrics for DIAS v. 2.0 and v. 2.1. ... 83

Figure 40 Testability metrics for DIAS v. 2.0 and v. 2.1. .. 84

Figure 41 Analyzability metrics for DIAS v. 2.0 and v. 2.1. ... 86

Figure 42 Changeability and stability metrics for DIAS v. 2.0 and v. 2.1. 87

Figure 43 Example of scattering with the ExceptionPrinter aspect...................................... 93

Tables
Table 1 Examples of available pointcuts in AspectJ. Pointcuts are program constructs that

let you specify a joinpoint collection. .. 9

Table 2 The advice-types available in AspectJ. Advices specify the executable code when
reaching a certain pointcut. .. 9

Table 3 The subcharacteristics of the ISO 9126 standard ... 14

Table 4 Scales and relevant statistics [5] [25]... 17

Table 5 Six criteria of the Briand et al. coupling measurement framework 19

Table 6 Five criteria of the Briand et al. cohesion measurement framework 19

Table 7 Validation properties of the coupling and cohesion frameworks by Briand et al.20

Table 8 Levels of coupling.. 21

Table 9 Hitz and Montazeri’s coupling definitions... 22

Table 10 Levels of cohesion.. 23

Table 11 The Chidamber-Kemerer metrics suite. ... 27

Table 12 Chidamber and Kemerer’s metrics mapped to Booch’s OOD-steps.................... 27

 xi

Table 13 C&K metrics and AOP affectations [16]. .. 31

Table 14 Extensions to Java system dependence graph (SDG) for Aspect/J (Zhao, [23]) . 32

Table 15 Possible interactions between objects and aspects (Zhao, [23]) 33

Table 16 GQM-questions to determine the systems modularity... 43

Table 17 GQM-questions to determine the systems testability... 44

Table 18 GQM-questions to determine the systems analyzability...................................... 44

Table 19 GQM-questions to determine the systems changeability..................................... 45

Table 20 GQM-questions to determine the systems stability.. 46

Table 21 Main functional requirements for the metrics tool... 56

Table 22 Main non-functional requirements of the metrics tool... 56

Table 23 Designed counting calculators, what they count and on which level................... 64

Table 24 Benchmarks from running the metrics tool.. 74

Table 25 Classes per package for systems DIAS v.2.0 and v.2.1. 78

Table 26 Methods per class or aspect for systems DIAS v.2.0 and v.2.1. 78

Table 27 Loose cohesion of class (LCC) for systems DIAS v.2.0 and v.2.1...................... 79

Table 28 Tight cohesion of class (TCC) for systems DIAS v.2.0 and v.2.1. 80

Table 29 system level coupling for systems DIAS v.2.0 and v.2.1..................................... 81

Table 30 System level fan-in outside package for systems DIAS v.2.0 and v.2.1.............. 81

Table 31 System level fan-out outside package for systems DIAS v.2.0 and v. 2.1........... 81

Table 32 System level advice-in outside package for systems DIAS v.2.0 and v.2.1. 82

Table 33 System level advice-out outside package for systems DIAS v. 2.0 and v.2.1. ... 82

Table 34 Scientific questions, how metrics results affect modularity and comments. 84

Table 35 Scientific questions, how metrics results affect testability and comments. 85

Table 36 Scientific questions, how metrics results affect analyzability and comments. 87

Table 37 Scientific questions, how metrics results affect changeability and comments. ... 88

Table 38 Scientific questions, how metrics results affect stability and comments. 89

Table 39 Change indicated in the sub quality factors of reusability. 90

Table 40 Change indicated in the sub quality factors of maintainability............................ 90

Table 41 Chen and Lu’s OO metrics... 114

Table 42 Li and Henry’s proposed metrics. .. 115

Table 43 Brito e Abreu’s MOOD metrics. .. 116

Table 44 Abbott, Korson and McGregor’s proposed OO metrics. 117

Table 45 Test classes... 125

Table 46 calculations overview... 126

 1

CChhaapptteerr 11.. IInnttrroodduuccttiioonn

The concept of Aspect-oriented programming (AOP) was first introduced to us by Telenor
Mobile1. In the summer of 2003 they were exploring how AOP could contribute to their
system development process. Telenor Mobile was our partner for the readability study [1] and
has also partnered us for this diploma thesis. We also found that no one in the academic staff
at NTNU had any experience with AOP. Thus, it seemed beneficial for the university to
explore this paradigm as well.

This diploma thesis is a continuation of our study on increasing readability with AOP [1] done
in the fall of 2003. We studied the effects of introducing aspects in an object-oriented system,
to see if it would increase system readability. The system, DIAS2, was implemented in Java,
and we used AspectJ to restructure it. We introduced nine new aspects and measured the
effects in three areas: code size, complexity2 and structure. By using GQM we found nine
metrics suitable for analysing the system to see if we had achieved improved readability. The
use of AOP especially affected the values for lines of code, fan-in and fan-out. The conclusion
of our study was that we had increased the readability of the chosen system through reduced
code size, reduced complexity and improved structure. We also found several areas of
possible further work: developing technique for identifying crosscutting concerns, metrics and
metrics tools for AOP, refactoring with AOP, using AOP in resilient systems development,
and using aspects for testing purposes. What we concentrate on in this diploma thesis is the
task of developing a metrics tool that support AOP-implementations. The aim of the tool is to
measure the code quality3 and impact of introducing aspects into an OO-system.

11..11 BBaacckkggrroouunndd,, MMeettrriiccss aanndd CCooddee MMeeaassuurreemmeennttss
The goal of software metrics is, among other things, to improve understanding of a product or
process. With better understanding one might better control the development and reach the
goals for the product. According to Fenton [5] measurement has been considered as a luxury
in software engineering. He claims that:

1. We fail to set measurable targets for our software projects
2. We fail to understand and quantify the development costs of software projects

1 Telenor Mobile is Norway’s leading supplier of mobile telephone services, personal paging and mobile data
communication. At the turn of the year 2003/2004, Telenor Mobile had approximately 2.3 million mobile
subscribers.
2 Complex - Plaited together, interwoven. A whole comprehending in its compass a number of parts, especially
of interconnected parts or involved particulars, a complex or complicated whole. Opposite to simple.
 Complexity – the quality of being complex.
3 Quality – ISO/IEC 8402 define quality as “"the totality of features and characteristics of a product or a service
that bear on its ability to satisfy stated or implied needs".”.

 2

3. We do not quantify or predict the quality of the products we produce and therefore we
cannot tell a potential user for instance how reliable a product will be.

4. We allow anecdotal evidence to convince us to try yet another revolutionary new
development technology, without doing a carefully controlled study to determine of
the technology is efficient and effective.

Further, Fenton [5] states that code measurements are essential to good software engineering
because:

1. They help us understand what happens during system development and maintenance.
2. They give us the opportunity to control the evolution of our projects.
3. They encourage us to improve our development process and our products.

11..22 BBaacckkggrroouunndd,, AAssppeecctt--oorriieenntteedd pprrooggrraammmmiinngg
Aspect-oriented programming is a programming paradigm invented at Xerox Parc in the
1990s. MIT Technology review wrote in 2001 that AOP is among “ten emerging areas of
technology that will soon have a profound impact on the economy and on how we live and
work” [2]. Today AOP is rapidly evolving as a concept within software development. There
have been a great number of articles published during the latest three years. According to
Kiczales et al. [3], AOP research is in many aspects similar to OOP research 20 years ago.

The motivation behind AOP [3] [4] is that existing programming languages cannot represent
independent concerns like synchronisation, resource sharing, distribution or debugging in a
single module. Rather than being localised within a program unit, like a class, these concerns
are orthogonal to the system’s basic program units and module structure.

11..33 BBaacckkggrroouunndd,, PPrroojjeecctt ccoonntteexxtt
Custom Order Server (COS) is Telenor Mobile’s middleware platform and is one of Norway’s
largest Java based systems [6]. COS is designed to give front-end applications such as retail
outlets, customer support, large corporate customers and internal functions, a consistent view
across multiple backend systems such as databases, network connections and mainframes.
COS has during its five year lifetime evolved into a large system, composed of many
subsystems.

Telenor Mobile has a slightly different approach to software metrics than that of Fenton. Their
focus on measuring serves two purposes:

1. They want to watch trends over time, not the quality of the product but the way it
changes

2. They use metrics on code together with design principles to ensure the removal of
certain bad code blocks which they call broken windows. The anecdote behind the
term “broken window”, described by Hunt and Thomas [71], tells us that if we allow
broken windows, the whole system will rapidly deteriorate.

 3

XRadar [80] is an open extensible code analysis framework and report tool for Java, designed
to support reengineering tasks [6]. XRadar was developed during a major refactoring project
at Telenor Mobile, the Pareto Reengineering Project. Its vision is to bring the advantages of
different open source analysis frameworks together, through being extended to support new
languages, frameworks, measurements and reports. In this context, making a plugin tool that
support measurements on AOP-code is seen as a suitable extension of the XRadar framework.

11..44 PPrroobblleemm ddeeffiinniittiioonn
One of the suggested areas of further work from our readability study was to develop a metric
tool that supports AspectJ code [1]. During our study we found that the metrics intended for
examining AOP-based code was not well defined and the tools we used did not support the
AspectJ programming language. This forced us to count several metrics within the aspects
manually.

As a continuation of this problem area we wish to pursue the following problem definition:

• We will find useful metrics for measuring AOP-based programs and
• We will develop a prototype metric tool for use with AspectJ.

The main goals for the AOP-metrics we find are:

• When combined they should measure high level quality factors for the Telenor Mobile
COS system.

• They should be used to support or disprove claims about the abilities and usefulness of
AOP; not by achieving a specific level or numerical value, but to show improvement,
or opposite, and trends through time and change when using AOP.

11..55 PPrroojjeecctt wwoorrkk ggooaallss
With the problem definition as a starting point, we have defined the following work goals for
this diploma thesis:

1. Present a theoretical foundation for AOP and the concerns relevant for studying this
concept.

2. Evaluate the system quality factors for the COS system. Derive sensible quality factors
for an aspect-oriented system.

3. Find possible transitions from quality factors to metrics
4. Justify our choice of metrics. This will answer our first problem definition.
5. Construct a grammar/tree for AspectJ-programs
6. Create a design for the metric tool
7. Implement the metrics tool prototype
8. Find a good way to present the metric results. This will answer our second problem

definition.

 4

In the following section the outline of this work is presented.

11..66 RReeppoorrtt oouuttlliinnee
This is a presentation of the contents discussed in the remaining chapters of this report.

• Chapter 2: Theoretical foundation. A presentation of concepts and principles relating
to AOP and metrics.

• Chapter 3: Relevant technologies. An introduction to the technologies relevant to the
metrics tool developed.

• Chapter 4: Quality analysis. A discussion of what criteria must be present to satisfy
the system quality factors and which of these we are able to measure to verify that the
criteria have been met. Further, we consider the expected effects AOP will have on
our chosen measurements.

• Chapter 5: The metrics tool. A description of the measurement tool, from functional
and non-functional requirements to implementation.

• Chapter 6: Systems explored. A presentation of measurements results we have
gathered when comparing the DIAS system before and after restructuring it with
aspects.

• Chapter 7: Discussion and critique. The work and choices done in chapter 3-6 are
discussed and criticized.

• Chapter 8: Conclusion.

• Chapter 9: Further work. A presentation of possible extensions to the tool,
verification of results over a longer time period, inclusion of other quality factors and
further studies on the effects of AOP.

 5

CChhaapptteerr 22.. TThheeoorreettiiccaall ffoouunnddaattiioonn

In this chapter we introduce theory that is the foundation for our work on Aspect-Oriented
Programming and metrics.

22..11 IInnttrroodduuccttiioonn ttoo AAssppeecctt--OOrriieenntteedd PPrrooggrraammmmiinngg
It is important to note that AOP is not a standalone programming paradigm like object-
oriented programming and imperative programming. AOP is always used together with other
programming paradigms. It can best be described in terms of concerns, joinpoints and aspects.

Concerns are system properties or areas of interest in a system. Separation of concerns is a
main principle in software engineering [7]. Concerns crosscut if the methods related to those
concerns intersect [8], either inside a class or over several classes. AOP provides a way of
encapsulating crosscutting concerns. This can be seen in Figure 1, where all the marked
methods have to check user rights.

Figure 1 Crosscutting concerns in UML class diagram: all the methods

encapsulated have to check if user has the right to perform this
action.

Such concerns can be based both on functional and non-functional requirements. Examples
are logging, security, caching and buffering.

Joinpoints are the locations which are affected by one or more crosscutting concerns. In
Figure 2 we can see examples of possible joinpoints in the calling and returning points of a

File
open()

read()

write()

close()

Catalog
open()

read()

write()

close()

Check user rights
*

User

 6

method. Joinpoints are the locations where we can hook on new actions before or after
executing the original code.

Figure 2 Joinpoints in UML sequence diagram. The calling and returning of

methods can be used as joinpoints.

Aspects are fundamental to the definition of AOP. Aspects are design decisions that are
difficult to address in regular OO-code because they crosscut the system. With AOP we can
separate aspects from the underlying structure of the code; as in the example shown in Figure
1. We can move the updating of the display to a separate subprogram. This subprogram is
called an aspect.

22..22 AAssppeeccttJJ
 AspectJ is a general purpose aspect-oriented extension of Java. It is a free implementation
and language specification developed at Xerox PARC. The language specification defines
several constructs and their semantics to support aspect-oriented concepts. The language
implementation consists of tools for compiling, debugging, and documenting code. AspectJ’s
language constructs extend the Java programming language. Every valid Java program is also
a valid AspectJ program. The byte code produced by the AspectJ compiler is standard Java
byte code, thus it keeps Java’s advantages. AspectJ enables both name-based and property
based crosscutting. Aspects that use name-based crosscutting tend to affect a small number of
other classes. But despite their small scale, they can often eliminate significant complexity
compared to an ordinary Java implementation. Aspects that use property-based crosscutting
can have small or large scale. [74] [78]

The core constructs of AspectJ are discussed in the following sub-sections.

2.2.1 Joinpoints

Joinpoints are well-defined points in a program’s execution. In AspectJ the following points
in the program execution can be used as joinpoints [74]:

• Method call and execution

this:
User

root:
Catalog

Open()

Joinpoints

 7

• Constructor call and execution
• Read/write access to field
• Exception handler execution
• Object and class initialization execution

2.2.2 Pointcuts

Pointcuts are program constructs used to designate joinpoints; they let you specify a joinpoint
collection. They can also expose context at the joinpoint location for use in an advice
implementation. If we study the code example from Figure 4 on page 11 we find this pointcut:

pointcut publicGet(Object key) : execution(*
AdressList.get*(..) && args(key);

First we have the construct, pointcut, which declares that what follows is the declaration
for a pointcut. Next, publicGet, is the pointcut’s name and Object key is the context
that is collected from the joinpoint location.

What captures joinpoint locations is the statement execution(*
AdressList.get*(..) && args(key). execution indicates that the poincut
captures the execution of a method, as opposed to the call to a method. The *
AdressList.get*(..) && args(key) is the signature for methods to be captured.
The first * indicate that there is no discrimination of type of method, as opposed to only
public/private, static, with return type String/int/void and so on. AdressList.get* dictate
that the captured method should belong to the class AdressList and the method name should
begin with ‘get’. Moving on, (..) indicate that methods should be captured regardless of
their arguments, as opposed to for instance only those that carry a String argument.

The && is used to combine the named pointcut in front of it with the anonymous pointcut
following it. Finally, args(key) captures the information needed, called context, about a
method and the arguments to it.

In Table 1 we present examples of the different available types of pointcuts [78].

Pointcut Description

Call to methods and constructors pointcuts

call(public void
MyClass.myMethod(String))

Call to myMethod() in MyClass taking a
String argument, returning void, and with
public access

call(public *
com.mycompany..*.*(..))

All public methods in all classes in any package
with com.mycompany the root package

 8

Execution of methods and constructors pointcuts

execution(public void
MyClass.myMethod(String))

Execution of myMethod() in MyClass taking
a String argument, returning void, and with
public access

execution(public *
com.mycompany..*.*(..))

All public methods in all classes in any package
with com.mycompany the root package

Field-access pointcuts

get(PrintStream System.out) Execution of read-access to field out of type
PrintStream in System class

set(int MyClass.x) Execution of write-access to field x of type int
in MyClass

Exception-handler pointcuts

handler(RemoteException) Execution of catch-block handling
RemoteException type

handler(IOException+) Execution of catch-block handling
IOException or its subclasses

Class-initialization pointcuts

Staticinitialization(MyClass+) Execution of static block of MyClass or its
subclasses

Lexical-structure-based pointcuts

within(MyClass) Any pointcut inside MyClass's lexical scope

withincode(* MyClass.myMethod(..)) Any pointcut inside lexical scope of any
myMethod() of MyClass

Control-flow-based pointcuts

cflow(call(* MyClass.myMethod(..)) All the joinpoints in control flow of call to any
myMethod() in MyClass including call to the
specified method itself

cflowbelow(call(*
MyClass.myMethod(..))

All the joinpoints in control flow of call to any
myMethod() in MyClass excluding call to the
specified method itself

Self-, target-, and arguments-type pointcuts

this(JComponent+) All the joinpoints where this is instanceof
JComponent

target(MyClass) All the joinpoints where the object on which the

 9

method is called is of type MyClass

args(String,..,int) All the joinpoints where the first argument is of
String type and the last argument is of int
type

Conditional-test pointcuts

if(EventQueue.isDispatchThread()) All the joinpoints where
EventQueue.isDispatchThread()
evaluates to true

Table 1 Examples of available pointcuts in AspectJ. Pointcuts are program
constructs that let you specify a joinpoint collection.

2.2.3 Advices

Advices specify the executable code when reaching a certain pointcut. There are three types
of advices, as seen in Table 2 [78].

Advice-type Description

before() A before advice runs just before the
joinpoint.

after() An after advice runs just after the joinpoint,
and can be specified to run after a normal
return, after throwing an exception, or
regardless of what kind of return from a
jointpoint it is.

around() An around advice encapsulates a joinpoint
and controls if the joinpoint is to be
executed or not. It can also execute a
different argument set.

Table 2 The advice-types available in AspectJ. Advices specify the
executable code when reaching a certain pointcut.

In the example from Figure 4 we find two around advices. One of them is:
after(Object key) returning(value): publicGet(key)

{

 cacheValue(key, value);

}

This advice is executed after the method publicGet has executed and returned (but before
execution is handed over to the method that called publicGet). The advice fetches the

 10

context Object key, and executes the method cacheValue, with key and value as
arguments. Then execution continues as normal.

2.2.4 Inter-type declarations

Inter-type declarations in AspectJ are declarations that cut across classes and their hierarchies.
They may declare members that cut across multiple classes, or change the inheritance
relationship between classes. [74]

Consider the problem of expressing a capability shared by some existing classes that are
already parts of a class hierarchy, i.e. they already extend a class. In Java, one creates an
interface that captures this new capability, and then adds a method to each affected class that
implements the interface. AspectJ can express the problem in a single place, by using inter-
type declarations. The aspect declares the methods and fields that are necessary to implement
the new capability, and associates the methods and fields to the existing classes.

An example of using inter-type declarations could be if we had an existing class Point, and
we want Screen objects to observe changes to Point objects. We can implement this by
writing an aspect declaring that the class Point has an instance field, observers. This
field then keeps track of the Screen objects that are observing Points, as seen in Figure 3.

Figure 3 An example of an inter-type declaration. An inter-type declaration

can declare members that cut across multiple classes, or change
the inheritance relationship between classes.

The observers field is private, so only the aspect PointObserving can see it.
Observers are added or removed with the static methods addObserver and
removeObserver on the aspect. Then further functionality can be added to declare what
we need to do when we observe a change in a Point. [74]

2.2.5 Aspects

Aspects are AspectJ’s unit of modularization, the same way classes are in Java. An aspect
contains pointcuts and advices, and as classes, can have methods and fields, extend other

aspect PointObserving {
 private Vector Point.observers = new Vector();

 public static void addObserver(Point p, Screen s) {
 p.observers.add(s);
 }
 public static void removeObserver(Point p, Screen s) {
 p.observers.remove(s);
 }
 ...
}

 11

classes and aspects and implement interfaces. Aspects differ from classes in that you can not
create an aspect object using new, as aspects can not be accessed directly. By default, each
aspect is a singleton, so one aspect instance is created. Only aspects can hold advices, but
classes can declare static pointcuts. Both aspects and pointcuts can be declared as abstract and
act similarly to a class’ abstract methods; they let you defer details to the derived aspects. A
concrete aspect extending the abstract aspect can then provide concrete definitions for abstract
pointcuts. An aspect can be declared dominant over others to control precedence when
multiple aspects affect the same joinpoint. If an aspect is declared privileged it is given
access to private members of aspected classes. [74] [78]

2.2.6 Example of an aspect

We end our introduction of AspectJ by giving an example of how caching can be
implemented as an aspect. In this example, shown in Figure 4, we have an address list which
can be accessed using keys like phone number or name, and it returns values like address or
name. The real address list data might be stored in a database somewhere else and accessed
with SQL statements. Therefore caching might be needed to improve performance. The aspect
provides this function by checking if the called key is found in a caching table. If it is, return
the value. Every time, when returning a value that is not cached, the value and its key is
cached. How the caching in the table is, however, performed is not shown in the example.

Figure 4 An AOP example in AspectJ, caching of values4.

4 Remark that this example requires the key to be distinct for all the methods. This is because AspectJ
implements an aspect as a singleton.

public class AddressList {
 ...
 public String getAdressByName(String
name) {
 …
 }

 public String getAdressByPhone(Integer
phone) {
 …
 }

 public String getNameByAdress(String
name) {
 ..
 }

 …
}

public aspect Caching {
 ...

 pointcut publicGet(Object key) :

execution(* AdressList.get*(..) &&
args(key);

 around(Object key) : publicGet(key) {
 Object cachedValue =

getCachedValue(key);
 if (cachedValue == null) {
 proceed(key);
 }
 return cachedValue;
 }

 after(Object key) returning(value):

publicGet(key) {
 cacheValue(key, value);
 }

 public Object getCachedValue(Object
key) {
 …
 }

 public void cacheValue(Object key,
Object value) {
 ..
 }
}

 12

22..33 QQuuaalliittyy ffrraammeewwoorrkkss aanndd mmeetthhooddss
The quality of software can be seen as multidimensional in the way quality factors are
connected to other quality factors. There are many approaches that can be used to define and
understand such quality. The ISO 9126 standard [21] provides a framework for evaluating
software quality. The Goal-Question-Metrics (GQM) approach aims at giving us a method to
define software quality metrics. Alternatives to both ISO 9126 and GQM exist, e.g. design by
measurable objectives [43] and GQM++ [44].

According to the ISO 9126 standard [21], software product quality should be evaluated using
a defined quality model. However, “it is not practically possible to measure all internal and
external subcharacteristics for all parts of a large software product.” Resources for evaluation
need to be allocated depending on the business objectives.

The ISO 9126 standard consists of six main quality characteristics that are generally important
for software. The importance of the characteristics, shown in Figure 5, must be derived in
accordance to your software and business objectives.

Figure 5 The six quality characteristics of the ISO 9126 standard

The six quality characteristics of the ISO 9126 standard are all divided into subcharacteristics.
These characteristics and their definitions are shown in Table 3.

 13

Characteristics Subcharacteristics Definitions

Suitability Attributes of software that bear on the presence
and appropriateness of a set of functions for
specified tasks.

Accurateness Attributes of software that bear on the provision of
right or agreed results or effects.

Interoperability Attributes of software that bear on its ability to
interact with specified systems.

Compliance Attributes of software that make the software
adhere to application related standards or
conventions or regulations in laws and similar
prescriptions.

Functionality

Security Attributes of software that bears on its ability to
prevent unauthorized access, whether accidental or
deliberate, to programs or data.

Maturity Attributes of software that bear on the frequency
of failure by faults in the software.

Fault tolerance Attributes of software that bear on its ability to
maintain a specified level of performance in case
of software faults or of infringement of its
specified interface.

Reliability

Recoverability Attributes of software that bear on the capability to
re-establish its level of performance and recover
the data directly affected in case of a failure and on
the time and effort needed for it.

Understandability Attributes of software that bear on the users’ effort
for recognizing the logical concept and its
applicability.

Learnability Attributes of software that bear on the users’effort
for learning its application.

Usability

Operability Attributes of software that bear on the users’effort
for operation and operation control.

Time behaviour Attributes of software that bear on response and
processing times and on throughput rates in
performances its function.

Efficiency

Resource
behaviour

Attributes of software that bear on the amount of
resource used and the duration of such use in
performing its function.

 14

Analyzability Attributes of software that bear on the effort
needed for diagnosis of deficiencies or causes of
failures, or for identification of parts to be
modified.

Changeability Attributes of software that bear on the effort
needed for modification, fault removal or for
environmental change.

Stability Attributes of software that bear on the risk of
unexpected effect of modifications.

Testability Attributes of software that bear on the effort
needed for validating the modified software.

Maintainability

Adaptability Attributes of software that bear on the opportunity
for its adaptation to different specified
environments without applying other actions or
means than those provided for this purpose for the
software considered.

Installability Attributes of software that bear on the effort
needed to install the software in a specified
environment.

Conformance Attributes of software that make the software
adhere to standards or conventions relating to
portability.

Portability

Replaceability Attributes of software that bear on opportunity and
effort using it in the place of specified other
software in the environment of that software.

Table 3 The subcharacteristics of the ISO 9126 standard

The model proposed in ISO 9126 is not the only model that describes quality using a
decompositional approach. Early models have been proposed by McCall in 1977 and Boehm
et al. in 1978 [5]. In addition to such fixed models, you might also make your own quality
model based on own and prospective users’ notions. A fixed model will then just be a guide in
the work of defining our own model. According to Fenton [5], the define-your-own-model
approach has been pioneered by Gilb and by Kithenham and Walker.

Gilb’s method can be thought of as “design by measurable objectives”. According to Gilb
[43], quality attributes are performance attribute which tell us how well the system performs.
Gilb claims that “performance requirements must express quantitatively the stakeholder’s
requirements.” With this in mind, Gilb introduce a three-step process to describing
performance requirements:

1. Identify components/objectives of the attribute
2. Describe the essence of each component/objective
3. Specify the requirements in measurable and testable terms.

 15

The Goal-Question-Metrics (GQM) paradigm aims at tying measurement to the overall goals
of projects and process [5]. This approach was first suggested by Basili and colleagues
(1984), and has turned out to be an effective way of selecting and implementing metrics. To
use GQM in an organization, you must first express the organization’s overall goals within a
chosen scope. This scope could be a project, a department or the whole organization. The
second task is to generate questions whose answers you must know in order to determine if
your goals are met. Finally, each question must be analyzed in terms of what measurements
you need in order to answer this question. The result of a GQM process is shown in Figure 6.

Figure 6 The Goal-Question-Metrics approach (Basili et al., [42])

In Fenton [5] we can find the following input for goal definition in GQM:

• Purpose: To (characterize, evaluate, predict, motivate, etc.) the (process, product,
model, metric, etc.) in order to (understand, assess, manager, engineer, learn, improve,
etc.) it.

• Perspective: Examine the (cost, effectiveness, correctness, defects, changes, product
measures, etc.) from the viewpoint of the (developer, manager, customer, etc.)

• Environment: The environment consists of the following: process factors, people
factors, problem factors, methods, tools, constraints, etc.

The GQM template can be related to attribute frameworks, like the one defined in ISO 9126
shown earlier.

There are a number of alternatives to GQM, some of which take a different approach, like
Omnibus Software Quality Metrics, and some that extend GQM, like GQM++. A summary of
methodologies is given by Lee and Chang [44].

Instead of the top-down approach given in the above mentioned methodologies and models,
we may go in the opposite direction starting by describing a metric, and then showing which
quality factors is affected by this metric. This approach is taken in the Chidamber & Kemerer
metrics suite [32].

 16

22..44 CCoonnssttrruuccttiioonn ooff mmeettrriiccss
According to Fenton [5], we seek to formalize our intuition about the way the world works by
attempting to represent it through a set of measurements. The data we obtain should therefore
represent the entities we observe, and manipulation of the data should preserve relationships
that we observe among entities.

According to V.R. Basili et al. [42], in order to be effective, measurement must be:

1. Focused on specific goals
2. Applied to all life-cycle products, processes and resources
3. Interpreted based on characterization and understanding of the organizational context,

environment and goals.

2.4.1 Formal rules

Measurement is formally defined as a mapping from the empirical world to the formal,
relational world. A measure is the number or symbol assigned to an entity by this mapping in
order to characterize an attributes. A measure must specify the domain and range and the rule
for performing the mapping. The mapping must map entities into numbers and empirical
relations into numerical relations; this is called the representation condition. An example of
such empirical relation is “taller than”. [5]

2.4.2 Models and measurement types

To focus on what we find important, we make a model which is an abstraction of reality. This
allows us to strip away detail and view an entity or concept from a particular perspective.
When using such models it is important to give careful thought to the empirical system, not
just the mathematical. We must focus on how the model maps onto the real world. Once we
have a model of the entities and attributes, we can define the measure in terms of them.
Sometimes when the relationships are simple, it is possible to define direct mappings from
attribute to number. When we have complex relationships among attributes, or when an
attribute must be measured by combining several of its features, we need a model of how to
combine the related measures. We thus have two ways to do measurement:

• Direct measurement of an attribute which involves no other attribute
• Indirect measurement of an attribute which must be measured in terms of other

attributes.

Indirect measurement can also be useful in making visible interactions between direct
measurements. In addition to dividing measurements into direct and indirect, we must also
differ between subjective and objective measures. An objective measure only depends on the
object at hand, not on judgement. Example of such measurement is length. Subjective
measures depend on judgement, e.g. personal skills and quality. [5]

2.4.3 Scales and statistics

The mapping of measurement can be done in several ways, driven by measurement scales.
The choice of scale can restrict the kind of analysis we can do. According to Fenton [5], we

 17

generally have five main types of scales, and they are restricted in terms of statistical analysis.
Wohlin et al [25] argue though that the fifth, the absolute scale, is just a special case of the
ratio scale. The four scales he uses are nominal, ordinal, interval and ratio, as can be seen in
Table 4.

Measure of

Scale
type

Defining
relations

central
tendency

dispersion dependency

Nominal Equivalence Mode Frequency

Ordinal Equivalence
Greater than

Median

Percentile

Interval of
variation

Spearman corr. coeff

Kendall corr. Coeff

Interval Equivalence

Greater than
Known ratio of
any intervals

Mean Standard
deviation
Variance

Range

Pearson corr. Coeff

Ratio Equivalence

Greater than,
Known ratio of
any intervals
Known ratio of
any two scale
values

Geometric
mean

Coefficient of
variation

Table 4 Scales and relevant statistics [5] [25].

2.4.4 Main types of product metrics

There is more than one way of classifying metrics, and we will not elaborate on all
possibilities. Classification might be done with respect to quality factors, time of use, attribute
that is measured, indirect or direct use and so on.

As our focus in this project is a metrics tool that can give us measures related to the code, we
want to concentrate on main types of internal product metrics. Fenton [5] focuses on the two
areas size and structure. He has found some important aspects of size which are:

• Length, the size of the product
• Functionality, what the user gets
• Complexity, in terms of the underlying problem that the software is solving
• Reuse5, the extent to which the software is genuinely new.

5 We define reuse as for “parts of a system”, not only the “system as a whole”.

 18

The structure of the product and its quality might be linked. Researchers think, according to
Fenton [5], that structure metrics might help us understand the difficulties we have in
converting a product to another (e.g. design to code), in testing code or in predicting external
software attributes from early internal product measures. Although such metrics vary in what
they measure or how they measure, they are often called complexity metrics6.

Fenton [5] has divided structure (complexity) metrics into three classes:

1. control-flow structure - addresses the sequence in which instructions are executed
2. data-flow structure - follows the trail of a data item as it is created or handled
3. data structure - is the organization of the data itself

2.4.5 Frameworks for cohesion and coupling

Briand et al. [30] [31] have proposed frameworks for cohesion and coupling measurements in
object-oriented systems. Their motivation is to facilitate comparison, evaluation and
validation of existing metrics and support definition of new metrics. They also want to
support the choice of metric according to chosen goals.

The frameworks will, according to Briand et al.:

• ensure that measure definitions are based on explicit decisions and well understood
properties

• ensure that all relevant alternatives have been considered for each decision made
• highlight dimensions of cohesion/coupling for which there are few or no measures

defined

The coupling framework consists of six criteria which determine basic aspects of the resulting
measure, as shown in Table 5.

Criterion Description

Type of connection The mechanism that constitutes coupling between two classes,
e.g. references, is type of and invokes on.

Locus of impact Import or export coupling

Granularity of the
measure

Level of detail at which information is gathered, meaning
domains, like method, class and package, and how connections
are counted, like every individual connection or number of
distinct items at the other end.

6 Fenton finds the term “complexity metrics” misleading, but also uses the same term in his book [5].

 19

Stability of server How stable the classes analyzed are, like build or release. (No
existing measure addresses this criterion.)

Direct or indirect
coupling

If we also count indirect couplings, connections of the form
a→b→c.

Inheritance How inheritance-based coupling and polymorphism is accounted
for.

Table 5 Six criteria of the Briand et al. coupling measurement framework

In the cohesion framework, there are five similar criteria, shown in Table 6.

Criterion Description

Type of connection What makes a class cohesive, which element links are counted,
e.g. method to attribute and method to method

Domain of the measure Level of detail at which information is gathered, meaning
domains, like method, class and package.

Direct or indirect
connections

If we also count indirect couplings, connections of the form
a→b→c.

Inheritance Two aspects are considered:

a) how do we assign methods and attributes to classes
b) for method invocation, shall we consider static or

polymorphic invocations

How to account for
access methods and
constructors

Access methods: how to account for get- and set-methods.

Treat constructors like ordinary methods or exclude them.

Table 6 Five criteria of the Briand et al. cohesion measurement framework

Briand et al. have also proposed some properties for the theoretical validation of coupling and
cohesion metrics. They claim that measurements not fulfilling those properties must be ill-
defined, but fulfilling all does not guarantee a valid measure. The properties of the two
frameworks are shown in Table 7. We have based our choice of coupling and cohesion
metrics on the discussion of alternatives presented in [30] and [31].

Coupling properties Cohesion properties

1. The coupling count is nonnegative
for a class.

2. The coupling for a class is null if
there are no relations with other

1. Nonnegativity and normalization, meaning
the cohesion count can be between zero
(null) and some max value.

2. Null value and max value, where null

 20

classes.
3. Monotonicity, adding relations

means monotony increasing the
coupling count.

4. Merging of classes means less or
equal coupling counts in total

5. Merging of unconnected classes
means equal coupling counts in
total.

means no relations and max means all
possible relations within a unit.

3. Monotonicity, adding internal relations
means monotony increasing the cohesion
count.

4. Merging of unconnected classes result in
decreased or unchanged cohesion count.

Table 7 Validation properties of the coupling and cohesion frameworks by
Briand et al.

22..55 OOOO--mmeettrriiccss
As the base language for AspectJ is the object-oriented language Java, we introduce metrics
and metrics suites relevant to object-oriented structures.

2.5.1 A selection of well-known OO-metrics

The following is a collection of metrics that have been used in order to measure code quality
in object-oriented systems. When implementing our system we have considered which
metrics are best suited to capture the system quality factors of Telenor Mobile COS and the
properties of an AOP-system.

Lines of code
There are several ways to measure lines of code.

• The straight-forward counting of every line.
• Counting all non-blank lines.
• Counting all non-comment and non-blank lines.
• Counting all non-comment and non-blank lines inside method bodies.
• Counting all code statements.

Fan-in / fan-out
Sommerville [11] define fan-in and fan-out as follows: “Fan-in is a measure of the number of
functions that call some other function (say X). A high value for fan-in means that X is tightly
coupled to the rest of the design.” Changes to X will have extensive ripple effects. “Fan-out is
the number of functions which are called by function X. A high value for fan-out suggests that
the overall complexity of X may be high due to the control logic needed to coordinate the
called components.”

Complexity measures
A summary of complexity measures is given in Appendix C.

 21

Coupling
According to Schach [19], coupling can be defined as “the degree of interaction between two
modules”. Coupling can be divided into five levels, from bad to good, as seen in Table 8.

Type of coupling Description

1. Content coupling (bad) Two modules are content-coupled if one
directly references the content of the other.

2. Common coupling Two modules are common-coupled if they
both have access to the same global data.

3. Control coupling Two modules are control-coupled if one
module explicitly controls the logic of the
other.

4. Stamp coupling Two modules are stamp-coupled if a data
structure is passed as an argument, but the
called module operates on only some of the
individual components of that data structure.

5. Data coupling (good) Two modules are data-coupled if all
arguments are homogeneous data items.
Every argument is either a single argument
or a data structure in which all elements are
used by the called module.

Table 8 Levels of coupling.

Afferent coupling is the number of classes outside a specific module that depend on this
module. Efferent coupling is the number of dependencies a specific module has to classes
outside the module [10]. A similar notation is used by Briand et al. [63]. They introduce a
client-server-relationship between the classes. The client class uses (imports services), the
server class is being used (exports services). The distinction between an importing and an
exporting class is important. A class which mainly imports services may be difficult to reuse
in another context because it depends on many other classes. On the other hand, defects in a
class which mainly exports services are particularly critical as they may propagate more easily
to other part of the system and are more difficult to isolate. For the remaining parts of the
report we will use the terms import and export coupling, as we find them more intuitive than
the terms afferent and efferent coupling.

Hitz and Montazeri [53] discuss the concept of coupling in OO systems. Two levels of
coupling are defined, as seen in Table 9.

 22

Coupling Description

Class level coupling (CLC) CLC can occur if a method of a class invokes
a method or references an attribute of another
class.

Object level coupling (OLC) OLC represents the coupling resulting from
state dependencies between two objects
during the run-time of a system.

Table 9 Hitz and Montazeri’s coupling definitions

CLC is given weights according to stability, access type and scope of access. OLC is given
weights according to type of access, scope of access and complexity of interface (number of
arguments). The values from the couplings are ordinal and cannot be summed; thus the two
scales are incomparable.

Cohesion
According to Fenton [5], “the cohesion of a module is the extent to which its individual
components are needed to perform the same task”. Schach [19] presents seven levels of
cohesion, from bad to good, as seen in Table 10.

Type of cohesion Description

1. Coincidental cohesion (bad) A module has coincidental cohesion if it
performs multiple completely unrelated
actions.

2. Logical cohesion A module has logical cohesion when it
performs a series of related actions, one of
which is selected by the calling module.

3. Temporal cohesion A module has temporal cohesion when it
performs a series of actions related in time.

4. Procedural cohesion A module has procedural cohesion if it
performs a series of actions related by the
sequence of steps to be followed by the
product.

5. Communicational cohesion A module has communicational cohesion if
it performs a series of actions related by the
sequence of steps to be followed by the
product and if all the actions are performed
on the same data.

 23

6. Informal cohesion (good, object-
oriented programming) A module has informal cohesion if it

performs a number of actions, each with its
own entry point, with independent code for
each action, all performed on the same data
structure.

7. Functional cohesion (good,
structured programming) A module that performs exactly one action

or achieves a single goal has functional
cohesion.

Table 10 Levels of cohesion

Chidamber and Kemerer [32] propose the metric Lack of Cohesion in Methods (LOCM).
LCOM is based on the number of disjoint sets of instance variables that are used by a method.
The refined version of Chidamber and Kemerer’s LCOM is defined as follows:

Consider a class C1 with n methods M1, M2, … , Mn.

Let Ij = set of instance variables used by the method Mj. There are n such sets

I1, … , In. Let P = { (Ii , Ij) | Ii ∩ Ij = Ø } and

Q = { (Ii , Ij) | Ii ∩ Ij ≠ Ø }

If all n sets I1, … , In are Ø then let P = 0.

LCOM = |P| - |Q|, if |P| > |Q|

 = 0 otherwise

The smaller the number of disjoint sets, the more cohesive is the class. LCOM = 0 indicates a
cohesive class since all methods share instance variables. For LCOM > 0, the developer
should consider splitting the class into two or more classes since instance variables belong to
disjoint sets.

There are doubts about the usefulness of LCOM in Java since it penalizes the proper use of
getter and setter methods as the only methods that directly access an attribute and the other
methods using the getter/setter methods to accessing an attribute [15]. To achieve high
cohesion, all methods in a class should use most of the instance variables. Getter and setter
methods only access one variable, which evidently leads to poor cohesion values. It is clear
that this way of measuring cohesion is not suited for measurements within the object-oriented
paradigm.

Hitz and Montazeri [53], present a graph theoretic version of Chidamber and Kemerer’s
cohesion metric:

 24

Let X denote a class, IX the set of its instance variables and MX the set of its methods.

Consider a simple undirected graph GX(V,E) with V = MX and

E = { (m , n) ∈ V × V | ∃i ∈ IX : (m accesses i) ∧ (n access i) }

LCOM is then defined as the number of connected components of GX.

Hitz and Motazeri identified a problem concerning LCOM with regards to access methods.
An access method provides read or write access to an attribute of a class. Access methods
typically reference only one attribute. If other methods of the class use the access methods,
they may no longer need to directly reference any attributes at all. Thus, the presence of
access methods artificially decreases the class cohesion.

To overcome the limitations of LCOM they defined connectivity metric to be used in
conjunction with the LCOM metric. The connectivity metric would measure the structural
differences between the methods of a set of classes with the same value for LCOM.

)2(*)1(
)1(
−−

−−
=

nn
nEC

C is a measure of the deviation of any given graph from the minimally cohesive case.

Bieman and Kang [64] have also based their cohesion measure on the proposal by Chidamber
and Kemerer. A method can use an attribute directly by referencing it, or indirectly by calling
a method referencing the attribute. They define a predicate cau(m1, m2) (common attribute
usage) which is true, if an accessable method (m1, m2 ∈ MI(C)) directly or indirectly use an
attribute of class c in common. The measure TCC (tight class cohesion) is then defined as the
percentage of pairs of public methods of the class with common attribute usage. The measure
LCC (loose class cohesion) is calculated as the ratio of all directly connected methods and
indirectly connected methods in a class to the maximum possible number of connections in a
class.

Bieman and Kang identified a problem with constructor methods for the calculation of TCC
and LCC. Constructor methods provide the class attributes with initial values and therefore
access most or all of the class’ attributes. The presence of a constructor method artificially
increases cohesion as measured by TCC and LCC. Bieman and Kang recommend excluding
constructors (and destructors) from the analysis of cohesion.

Package stability
Import and export coupling can be used to determine how stable7 a package is. According to
the stable dependencies principle [69] packages should depend on packages that are more

7 Stability - Difficult to move or change. A change in the package might impact or break many other packages
that are package dependent on upon it.

 25

stable than themselves. An instable package that is used by many other packages is a potential
problem in the system. This leads on to another principle: the stable abstraction principle. The
more stable a package is, the more it should consist of abstract classes. The foundation for this
principle is that methods are changed more often than the interfaces between modules. Thus
interfaces are more stable than executable code.

Then we have the open/closed principle: “Software entities8 should be open for extension, but
closed for modification” [70]. This means that you should never change the code in your
modules, only extend them. This can be done by creating concrete implementations of the
abstract interfaces. All packages should not be stable, since a stable package is also an
inflexible package. There is consequently a balance between a package’s stability and its
abstractness. Package instability can be calculated as:

I = #Import coupling / (#Export coupling + #Import coupling)

Package abstractness is simply:

 A = #Abstract classes / #Total classes

Then we can plot the instability and abstractness values in graph as shown in Figure 7.

Figure 7 The ideally balanced package is placed along the main sequence

The main sequence represents the line where packages are balanced between how abstract
they are and how stable they are. The further away a package is from the main sequence, the
harder it is to use and maintain. The zone of pain indicates concrete packages that a lot of
other packages depend upon. Changes to a package in this area will have a high possibility of
ripple effects throughout the dependent packages. The zone of uselessness are abstract
packages that few or none other packages depend upon. A package distance from the main
sequence can be calculated as:

D = | A + I – 1 |

8 Classes, modules, functions, etc.

 26

A package witch distance from the main sequence that is not close to zero should be
examined for possible restructuring.

2.5.2 Object-oriented metrics suites

There have been proposed several collections of metrics that have aimed to show the bigger
picture in terms of one or more system properties.

C&K metrics suite
Chidamber and Kemerer [32] suggest a suite of measures for object-oriented systems. Six
metrics are defined, as seen in Table 11.

Metric Description

Weighted Methods per Class (WMC) WMC is the number of methods included in
a class weighted by the complexity of each
method. The larger the value for this metric,
the more complex the object class is [11]. A
common way of measuring complexity of the
methods is to calculate McCabe’s
Cyclomatic Complexity [62].

Depth of Inheritance Tree (DIT) In an object-oriented design, the application
domain is modelled as a tree, called the
inheritance tree. The DIT metric is the length
of the maximum path from the node to the
root of the tree. DIT is a measure of how
many ancestor classes can potentially affect
this class.

Number of Children (NOC) NOC is the number of immediate successors
of the class.

Coupling between objects classes (CBO) A class is coupled to another class if it uses
its member functions and/or instance
variables.

Response for class (RFC) This measure is defined to be the size of the
response set of a class. The response set
consists of all the methods called by local
methods. RFC is the number of local
methods plus the number of methods called
by local methods.

 27

Lack of cohesion of Methods (LCOM) Cohesion is characterized by how closely the
local methods are related to the local instance
variables in the class. LCOM is defined as
the number of disjoint (non-intersecting) sets
of local methods.

Table 11 The Chidamber-Kemerer metrics suite.

The six metrics shown in Table 11 are designed to meet the three non-implementation steps in
Booch’s definition of object-oriented design [79], and have been categorized in Table 12. The
columns of the table concerns identification of classes, behaviour of classes, and the
communication between classes.

Metric Identification Semantics Relationships

WMC X X

DIT X

NOC X

RFC X X

CBO X

LCOM X

Table 12 Chidamber and Kemerer’s metrics mapped to Booch’s OOD-steps.

Churcher and Shepperd [35] [36] points out that definitions of some of the basic direct counts
were imprecise, such as the number of methods in a class. There are several ways to count
methods, and Churcher and Shepperd show that the results could vary dramatically, and thus
lead to confusion. They conclude that “it is vitally important to precisely specify the mapping
from a language-independent set of metrics to specific programming languages”.

Hitz and Montazeri [37] further claim that CBO is not a sensitive enough measure for
coupling, since it considers all couplings to be of equal strength. They argue that access to
instance variables should constitute stronger coupling than pure message passing, and
message passing with a wide parameter interface is stronger than one with a narrow interface.
They also show that LCOM exhibits an anomaly, since the same value is computed for classes
that intuitively appear to have different cohesion levels.

Henderson-Sellers [38] also criticizes the LCOM measure, because while “a large value
suggests poor cohesion, a zero value does not necessarily indicate good cohesion”.

 28

Basili et al. [39] show that five of the six C & K metrics (WMC, DIT, NOC, CBO and RFC)
were useful in predicting class fault-proneness during the high and low level design phases of
the life cycle. They conclude that the C& K metrics proved to be better predicators than “the
best set of the traditional metrics”, which are only available at the latter phases of the software
life cycle.

Other metrics suites are elaborated on in Appendix C.

22..66 DDeeppeennddeennccyy ttrreeeess aanndd pprrooggrraamm sslliicciinngg
When measuring structure or complexity metrics, specific nodes from the code must be sliced
out of the program to get the information needed.

According to Tip [59], a program slice consists of the parts of the program that affect the
values computed at some point of interest, referred to as a slicing criterion. With this
technique we can extract the information we need, whether we want to make a debugger, a
program understanding tool or a metrics tool. The task of computing program slices is called
program slicing. The first definition a program slice was presented by Weiser [83] in 1979;
later several slightly different notions have been proposed. An important distinction is
between static and dynamic slices; the former notion is computed without making
assumptions about a program’s input, whereas the latter relies on some specific test case.

In Weiser’s approach to static slicing, slices are computed by computing consecutive sets of
indirectly relevant statements, according to data flow and control flow dependencies.
Ottenstein and Ottenstein [82] have suggested an alternative method for computing static
slices. They have restated the problem of static slicing in terms of a reachability problem in a
program dependence graph (PDG). A PDG is directed graph with vertices corresponding to
statements and control predicates, and edges corresponding to data and control dependencies.
An example of a PDG and the corresponding code is shown in Figure 8.

 29

Figure 8 A simple program and its program dependency graph (PDG), (Tip,

[59])

22..77 AAOOPP--mmeettrriiccss
Some studies ([1] [26] [27] [28] [29]) have been conducted with the help of metrics, usually
with the metrics defined for object-oriented programming. Little work has though been done
in the field of defining metrics suitable for Aspect-Oriented Programming.

2.7.1 Metrics used in system studies

In the project we focused on readability when choosing metrics [1]. Using the GQM approach
we found nine metrics that could be used to answer questions about the size, structure and
complexity of the code when introducing aspects to Java-code. The metrics we chose were
lines of code, efferent coupling, afferent coupling, fan-in, fan-out, Henry’s and Kafura’s
complexity metric, lack of cohesion in methods, weighted method per class and hidden

 30

concerns. The introduction of aspects especially affected lines of code, fan-in/fan-out and
Henry’s and Kafura’s complexity9.

In his study, Mickelson [27] focused on size measures like number of classes, functions and
source statements. Coady and Ciczales [28] studied runtime costs and the placement of hidden
concerns in operating system code. Zhang and Jacobsen [26] used cyclomatic number, size,
weight of class10, coupling between objects and response time for their evaluation. Tsang,
Clarke and Baniassad [29] applied the C&K metrics suite in their evaluation of aspect-
oriented techniques. They focused on the quality factors understandability, maintainability,
reusability and testability, and the C&K definitions of metrics suited for measuring these
factors. These metrics are weighted method calls, depth of inheritance tree, number of
children, coupling between objects, response for a class and lack of cohesion in methods.

To sum up, we have found these metrics used in studies of AOP systems:

• size (lines of code/statements)
• number of children
• depth of inheritance tree
• coupling (efferent/afferent/between objects)
• fan-in/fan-out
• Henry’s and Kafura’s complexity
• cyclomatic complexity/cyclomatic number
• weighted method per class/weight of class11
• lack of cohesion in methods
• response time
• response for a class

2.7.2 Metrics reviewed

Zakaria and Hosny [16] have discussed how the metrics in the C&K metrics suite are affected
by aspects. They found that all the metrics in the suite might be affected in some way as
shown in Table 13.

Metric Affectations

Weighted methods per class Might be reduced because crosscutting
functionality is moved into aspects

Depth of inheritance tree Subclasses with the purpose of
implementing special crosscutting
behaviours might be moved into aspects,
thus reducing the depth

9 Henry’s and Kafura’s complexity is based on fan-in/fan-out and in our study also lines of code.
10 Weight of a class is the number of methods in the class
11 Weighted method per class with complexity equal to one is the same as class weight

 31

Number of children Same argument as for depth of inheritance
tree

Lack of cohesion in methods Aspects filters out crosscutting behaviours,
thus increasing cohesion

Coupling between objects Likely decreased between core classes, yet
increasing coupling between core classes
and aspects. Zakaria and Hosny argue that
since core classes are more likely to be
reused, it is more important to reduce
coupling between them.

Response for a class Likely to increase because the entities that a
class need to communicate with increases
when needing to communicate with aspects.

Table 13 C&K metrics and AOP affectations [16].

Zakaria and Hosny [16] suggest Depth of Inheritance Tree (DIT) and Number of Children
(NOC) as measures for improved understandability when using AOP. We need a special kind
of code behaviour to observe changes in these two metrics. “Subclasses that might be defined
only for the purpose of applying their own implementation of aspectual behaviour will not exist in
systems designed using the AO Paradigm, because aspects will be responsible for that.” [16]

Response For a Class (RFC) is also recommended by Zakaria and Hosny [16]. RFC measures
the number of methods that can be invoked in a class in response to a message and can be
used to evaluate understandability, maintainability and testability.

Tsang, Clarke and Baniassad [29] found that the empirical inference based on the metrics in
the C&K suite is limited. They argue that since modularity had improved, but
understandability, maintainability and testability had not, the empirical inference, that the
C&K metrics suite is based on, is limited. Their results suggests that control-flow metrics like
response for a class and weighted methods per class should be used to fully assess the effect
of aspects.

2.7.3 Proposed new metrics

Based on dependencies within a program, Zhao [23] proposes a number of new metrics in
three levels. They are supposed to measure complexity on module-level, aspect-level and
system-level counting control, data, call, parameter-in, parameter-out and program
dependencies on the appropriate level. The overall goal for these measures is to quantify the
information flows of aspect-oriented programs.

Zhao and Xu [24] have proposed three new cohesion metrics for aspects which are named
inter-attribute, module-attribute and inter-module cohesion. They measure how tight aspect

 32

instance variables cohere with aspect modules (advice, introduction, pointcut and methods).
They have shown that these metrics satisfy the properties given by the framework of Briand et
al. [31], shown in Table 7, but they give no empirical evaluation of them.

Influenced by their work with mobile agents, Dospisil and Khemgoen [45] [46] have
proposed a metric based on the theory of entropy12. The basic idea of the metric is that
increasing amount of control flows between units gives increasing complexity. The chosen
units are methods. Local code within a unit does not contribute significantly to complexity,
thus they can exclude local variables. Measuring can either be done to order units without
information or with subjective knowledge of relevance, significance or utility of units. Real
empiric evidence for the measurement is not yet provided as it is only used with very small
systems.

2.7.4 AOP dependency tree

The system dependence graph for aspect-oriented programs is an extension of the existing
graph for the language that AOP extends. For Aspect/J, this means that we need to extend an
existing SDG for Java. To study SDGs for Java, see Kovacs et al. [56] or Walkinshaw [57].

Zhao and Rinard [54] [55] are the first that have made an SDG-extension to suit Aspect/J.
They have included join points, advices, introduction, aspects and aspect-inheritance in their
graph definiton. The extensions they have made are described in Table 14.

Construct Description

Method dependence graph (MDG) Represents a method

Introduction dependence graph
(IDG)

Represents an introduction

Advice dependence graph (ADG) Represents an advice

Module dependence graph (MDG) Because introduction and advice dependence graphs
can is similar to the method dependence graph, they
all can be denoted module dependence graphs
(MDG).

Aspect interprocedural graph
(AIDG)

Represents a single aspect and can consist of several
module dependence graphs plus a unique start vertex.

Aspect-Oriented system-level graph
(ASDG)

Represents a complete aspect-oriented program and
is a collection of the above mentioned dependence
graphs.

Table 14 Extensions to Java system dependence graph (SDG) for Aspect/J
(Zhao, [23])

12 Entropy, a term from physics, is based on increasing amount fof information, introduced by Davis and
LeBlanc (1988) [60]

 33

To make the complete ASDG, Zhao and Rinard propose to first construct a dependence graph
for the object-oriented program and then insert weaving vertices. These vertices are connected
to ADGs with coordination dependence arcs. In Table 15 a list of possible interactions
between objects and aspects is summarized.

Type Description

Creating objects Similar to ordinary Java when an object is created in an advice.

Making calls Calls to public methods in other aspects or classes.

Using introductions Declaring a public introduction to a class in an aspect.

Using join points Connection between and advice and a join point somewhere in the
code. The joinpoints are found through examination of used
pointcuts13.

Table 15 Possible interactions between objects and aspects (Zhao, [23])

Balzarotta and Mange [58] have found some difficulties in constructing a dependence graph
for Aspect/J programs. They argue that the expressive powers of Aspect/J “forces program
slicers to take into account big portions of programs”. They propose to make stricter
boundaries for aspect interactions.

Zhao has used the ASDG as a starting point for change impact analysis [22] and for
constructing metrics on AOP-code [23] [24]. The main feature of his change impact analysis
program is to asses the effects of changing the code. The metrics he has proposed used with
AOP have already been presented in section 2.7.

13 A join point is declared through pointcuts. Pointcuts are collections of zero to many join points.

 35

CChhaapptteerr 33.. RReelleevvaanntt tteecchhnnoollooggiieess

We begin by presenting metrics tool that can be compared to what we have implemented. To
be compatible with XRadar [80], some external technologies must be evaluated and
considered. Another reason for evaluating such technology is convenience in terms of not
needing to “re-invent the wheel”.

33..11 MMeettrriicc ttoooollss
There are a number of metrics tools for object-oriented languages available, both as open
source and commercial tools. The aim of metrics tools is to help the development process by
highlighting weak points in the system code. This is done by parsing the source code of the
system and calculating a range of metrics to measure system properties. Some tools
concentrate on one property, for instance complexity or robustness, while other provides a
wider range for its analysis. The results can be presented several ways, from ordinary names
and numbers to graphs and diagrams. Results can be presented at both high level (project or
package level) down to low level (method or even variable level).

Verifysoft’s CMTJava [66] is a complexity measure tool intended to be an aid in testing,
quality assurance and enforcing company standards for code complexity. CMTJava uses
McCabe's cyclomatic number, Lines-of-code metrics, Number of semicolons and Halstead's
metrics in its calculations.

JDepend [10] aims to analyse the design of the system in terms of extensibility, reusability
and maintainability, and is an aid to manage and control package dependencies. The tool’s
intended use is to automatically check that the designs exhibit expected qualities while
undergoing continuous refactoring by the developers. JDepend provides metrics for Number
of Classes and Interfaces, Afferent and Efferent Couplings, Abstractness, Instability, Distance
from the Main Sequence and Package Dependency Cycles.

JMetric [68] is a result of a research project at Swinburne University, and aims to bring
current OO-metrics and metrics research to the practioners. JMetric collects information from
Java source files and compiles a metrics model. The model is then populated with metrics
information such as Lines of Code, Statement Count, LCOM, and Cyclomatic Complexity.

Metrics 1.3.5 [15] is an open source plugin for the Eclipse IDE [67]. It calculates 17 different
metrics and provides a package dependencies analyser, and is as such an all-round tool. We
used this metric tool in our readability study [1].

 36

We have not found any metrics tool that takes into account the constructs of the AspectJ
language.

33..22 XXRRaaddaarr
XRadar is, as mentioned in the introduction, an open-source code analysis framework [80].
We want our metrics tool to be a compatible plugin to the XRadar.

XRadar gets results from more than 8 open source projects and a couple of in house grown
projects and presents the results as unified html/svg reports. The architecture is based on java,
xml and xsl. Presentation starts at the sub-system level, but drilldowns are available down to
class and method level. [80]

XRadar is available in two forms:

• Statics – reports on current build.
• Dynamics – include time dimension14 as more vesions are analyzed and reported on.

In Figure 9 the number of statements in the different version of Telenor COS is shown as an
example a dynamic report.

Figure 9 Example of dynamic report from XRadar.

The developers of XRadar see five areas of future directions for the tool [80]. These are:

1. Support other programming languages, as it currently only supports Java
2. Support other build frameworks than Apache ANT
3. Add new measurements and reports

14 The time dimension is represented by version numbers [80].

 37

4. Add more GUI-models
5. Support cross project analysis

Our metrics tool supports two of the above mentioned areas, area 1 and area 3.

33..33 CCaannddiiddaattee tteecchhnnoollooggiieess ffoorr tthhee mmeettrriiccss ttooooll
Some of the tasks in the metrics tool may be done in external libraries or program. In this
section we give an introduction to such technologies.

3.3.1 Program startup

Program startup means the actual environment that the application runs in or more simple
how it is started.

Apache ANT is a Java-based build tool. ANT differs from other build tools like make,
gnumake, nmake and jam that are shell-based. Instead ANT is extended using Java classes.
Instead of writing shell commands, the configuration files are XML-based with defined
targets that execute defined tasks. You may choose which targets that shall run. Each task is
run by an object that implements a particular Task interface. ANT does not give the
expressive power we get by using a shell command, but it gives the ability to be platform
independent. [18]

ANT is used by Telenor Mobile in their build process and to schedule running of XRadar. To
be compatible with the work process in Telenor Mobile, our metric tool will need the ability
to be run as an ANT-task. Because of this we will not evaluate alternative technologies for
running.

3.3.2 Building code tree

Getting a structure suitable for metrics calculation from the code in text files is a complex task
due to the structure and possibilities of the programming language. The structure we need is a
simple kind of a program dependence graph (PDG). To get it we need to read the code and
fetch the nodes that are interesting, like class declaration, import or method calls. This is the
same as what needs to be done when compiling code.

A parser can be used to read and get the structure of languages like Java and C. Example of
parsers are Bison [72] and JavaCC [73]. They parse the code by breaking down sentences and
statements into tokens that are acceptable in the language. By defining tokens that are
interesting elements, we can build a code tree. Another possibly feasible solution is to use
regular expressions to search for interesting code blocks.

 38

A problem with AspectJ code is that only parsing the code does not provide enough
information. In addition, the aspects must be weaved in. A tool that does this is the AspectJ
[74] compiler itself. Figure 10 illustrates how the AspectJ compiler weaves in aspects. A
public interface intended for IDE tools like Eclipse and Emacs is included in the compiler.
The compiler provides a tree view of the code including packages, files, classes, aspects,
interfaces, methods, advices, imports, fields, field set/get and method calls. To being able to
use the compiler a build configuration file and a classpath must be provided. In addition, some
classes must be implemented to support AspectJ’s public interface, including some GUI
classes that we will not be using in our tool.

Figure 10 An illustration of the AspectJ weaver

A problem with using the AspectJ compiler is that it is not intended for our use, thereby
introducing some new risks:

o Rare bugs that will not be noticed when used as intented may occur with our use.
o New versions of the compiler may change the public interface in a way that is

incompatible with our use.

As we have not found any other tool that provides a code tree for the AspectJ code, the only
alternative to using the compiler is to make our own parser and weaver. The complexity and
time cost of such solution is too high to be considered.

3.3.3 Reporting

XRadar uses XML to present measurement results. All reports from supporting tools, like
JDepend [10], generate XML-reports which are then transformed to HTML pages and svg
graph figures.

XML is a markup language for documents containing structured information. Structured
information contains both content (words, pictures, etc.) and some indication of what role the
content plays. A markup language is a mechanism to identify structures in a document. The
XML specification defines a standard way to add markup to documents. [17]

 39

XML is not only a language but also a collection of technologies. Two of them that are
relative to our project are Cascading Style Sheets (CSS)15 and Extensible Stylesheet Language
(XSL). XSL Transformations (XSLT) can be used to generate HTML pages and CSS is used
to give the page some specific formatting, e.g. using a specific font. [75]

An XML document must be well-formed to be valid. By well-formed we mean following the
syntax rules. In addition, the XML document should be accompanied with a description how
the XML document is structured. Such description is called a Document Type Definition
(DTD) which can be embedded in the XML file or described in a separate file. The XML
document is valid if it conforms to the DTD. [75]

To be compatible with the work process in Telenor Mobile, our metric tool will to produce
results in an XML-format. Because of this we will not evaluate ways of reporting.

There are many technologies that can be used for generating XML reports in Java. Our goals
for such technology are a simple API and good performance.

One tool that has a simple API is the XmlWriter [76], an open-source tool that outputs simple
XML to a file. A benchmark comparison for XML outputters is included on their site and
shown in Table 1.

Records
Written

XmlWriter
1.0 J2EE 1.3

JDOM 1.0
Beta 8

NanoXML/
Lite 2.2.1 ECS 1.4.1

5000 491 1262 1473 1822 81017

10000 821 2103 2434 3345 350805

15000 1051 3715 3144 *** ***

20000 1442 3886 4416

25000 1642 6339 6059

30000 1853 *** ***

Table 1 A benchmark comparison for XML outputters [76].

The following must be noted:

• few measurements are done, only three for each setup
• Standard deviation is not given (claims that it is small)
• All times are given in milliseconds
• “***” means an out of memory exception is generated

15 A CSS file is not a well-formed XML file.

 40

We find no reason to believe that the numbers in the benchmark comparison are deliberately
false, given the fact that the tool is freeware and open source. For more information about the
benchmarks, see [76].

 41

CChhaapptteerr 44.. QQuuaalliittyy aannaallyyssiiss

To verify if a certain property is well-made you have to express that property in terms of
quality. Further, quality has to be understood in terms of a context. For this analysis the
context is the Telenor Mobile COS-system. The first part of our problem definition is “to find
useful metrics for measuring AOP-based programs”. The metrics should help us measure
high-level quality factors. As a consequence we need to find metrics that can be related to the
quality criteria we want to measure.

We use the development of COS as a basis for our choice of metrics, starting by defining
quality goals supported with scientific questions. Thereby we justify our choice of metrics.
The ISO 9126 framework and application knowledge of the COS-system influence the choice
of factors. Following the measurement philosophy of Telenor Mobile, the point of these
factors are not to reach a specific level or numerical value, but to show improvement, or
opposite, and trends through time and change when using AOP. We will not be able to
identify a “complete AOP-metric suite”. That is not by any means achievable with the given
project resources and manpower, nor do we have the ability to thoroughly test and prove such
a suite.

44..11 GGQQMM

4.1.1 Quality criteria/goals

In Figure 11 we can see system quality factors for the Telenor Mobile COS system.

Figure 11 The system quality factors we want to measure

with our AOP-metrics tool

Reusability Maintainability System goals

System
subgoals

Modularity Testability Analyzability Changeability Stability

 42

Due to time restrictions we have to prioritize and concentrate our work on the two system
goals we find most important for the COS application system; reusability and maintainability.
Other system goals that were not prioritized were functionality, usability, efficiency,
reliability and portability. By using the ISO 9126 framework we have divided the two system
goals into subgoals. It is not possible for us to test the adaptability of the system, so this
subgoal will be disregarded. Otherwise, adaptability would have been a subgoal of
maintainability

44..22 DDeessccrriippttiioonn ooff ssyysstteemm qquuaalliittyy ffaaccttoorrss

4.2.1 G1: Reusability

Reusability is needed for faster development. Making reusable modules will be more time
demanding than making custom-made modules, but this is worth while when reusing the
module.

Sub characteristics of reusability are:

- SG1: modularity
- SG2: testability
- SG3: analyzability
- SG5: stability

4.2.2 G2: Maintainability

COS’ source code is constantly changed and maintained. Maintainability costs are as such an
important part of the COS system.

Sub characteristics of maintainability, according to ISO 9126, are:

- SG2: testability
- SG3: analyzability
- SG4: changeability
- SG5: stability
- adaptability

Adaptability will not be considered because it is not possible for us to carry out such a study.

4.2.3 Scientific questions

In order to check if the system subgoals are fulfilled, GQM tells us that we need to create
questions we can find measurable answers to. For each subgoal we present questions that can
be used to determine the state of that subgoal. We can see that most of the subgoals can be at
least partially answered by use of a metrics tool, but that some question falls outside the scope
of such an application. If the question cannot be answered by using a metrics tool to analyze
the source code, then the type of measurement has been marked with parentheses.

 43

4.2.4 SG1: Modularity

Improved modularity results in less scattered functionality. This supports reusability, since it
reduces the ripple-effect when making changes in the code. The questions for modularity can
be seen in Table 16.

Question Suggested metrics Effect

Q1.1 Are the functions in
modules related?

Coupling inside the package

Coupling outside the
package

Cohesion

+

-

+

Q1.2 How many functions do
modules provide?

#classes per package

#methods per class

(Depends on the coupling
results.)

Table 16 GQM-questions to determine the systems modularity.

4.2.5 SG2: Testability

We need to know how suitable the code is for testing. The tester needs to understand the code,
and the amount of dependencies to other modules can complicate testing. The questions for
testability can be seen in Table 17.

Question Suggested metrics Effect

Q2.1 What responsibilities do
the modules have?

(Design documents) N/A

Q2.2 Are the modules strongly
connected to other modules?

Coupling outside the package -

Q2.3 How many dependencies
do the modules have towards
other modules?

Import-coupling outside the
package

Fan-out

-

-

Q2.4 How many other modules
depend on the modules?

Export-coupling outside the
package

Fan-in

(Depends on how
abstract the modules
are.)

Q2.5 Are all classes and
methods documented?

#commented methods +

 44

Q2.6 Is the documentation of
high quality?

(Manual analysis) N/A

Table 17 GQM-questions to determine the systems testability.

4.2.6 SG3: Analyzability

By analyzability we mean the effort needed to retrieve information from the code; being able
to identify causes of failures, problem areas and parts to be modified. The questions for
analyzability can be seen in Table 16.

Question Suggested metrics Effect

Q3.1 How large are the
modules?

#classes per package

#methods per class

#code size of class

(Must be seen in relation
to the module’s
dependencies.)

Q3.2 Do the modules have
clear and distinct
responsibilities?

Cohesion

Import-coupling

Fan-out + Advice-out for
aspects

+

-

-

Q3.3 Do the modules have
sensible names?

(Manual analysis) N/A

Q3.4 Are sub modules (classes
and aspects) placed in sensible
modules (packages)?

Coupling outside the package -

Q3.5 Are all classes and
methods documented?

#commented methods +

Q3.6 Is the documentation of
high quality?

(Manual analysis) N/A

Q3.7 Are the connections
between modules sensible?

Dependency graph + legal dependencies

- illegal dependencies

Table 18 GQM-questions to determine the systems analyzability.

4.2.7 SG4: Changeability

Changeability can be defined as the efforts needed to carry out modifications and removal of
defects. The questions for changeability can be seen in Table 19.

 45

Question Suggested metrics Effect

Q4.1 Do we trust that the
modules perform the tasks they
are supposed to?

 (Subjective opinion) N/A

Q4.2 Do we have trust in the
developer’s abilities?

(Subjective opinion) N/A

Q4.3 Do we understand the
code?

#commented methods

Coupling

Fan-out

Advice-in

+

-

-

-

Q4.4 Do the modules have
clear and distinct
responsibilities?

Cohesion

Coupling

Fan-out + advice-out for
aspects

+

-

-

Q4.5 Are the interfaces of the
modules precisely defined?

(Manual analysis) N/A

Q.4.6 Are the modules heavily
used?

Fan-in -

Table 19 GQM-questions to determine the systems changeability.

4.2.8 SG5: Stability

Unexpected behaviour caused by modifications deteriate stability. The questions for stability
can be seen in Table 20.

Question Suggested metrics Effect

Q5.1 Do the modules have clear
and distinct responsibilities?

Cohesion

Import-coupling

Export-coupling

Fan-out + advice-out for
aspects

+

-

+

-

Q5.2 Do the modules have many
dependencies towards other
modules?

Import-coupling

Fan-out

-

-

 46

Q5.3 How many other modules
have dependencies towards other
modules?

Export-coupling

Fan-in

+

+

Q5.4 Have the modules been
changed over time, without
failures and complications?

(Historical data) N/A

Table 20 GQM-questions to determine the systems stability.

44..33 AAnnaallyyttiiccaall eevvaalluuaattiioonn ooff mmeettrriiccss
The choice of metrics is highly dependent on what kind of software system you are going to
measure, and what system properties you are interested in. We have identified reusability and
maintainability as our selected properties and have thus chosen metrics that on their own or
combined can provide information about these system properties.

4.3.1 Size

We want our size-measure to give a good indication of the amount of code in the system. As
such we have discarded the counting of all lines and all non-blank lines as alternatives for our
implementation. The most common way to implement a size measure has been to count non-
blank non-commented lines. We have implemented a measure for non-commented non-blank
lines inside methods as a comparison to our chosen measure. Our main size-measure is to
count all statements inside methods. We have chosen to disregard statements outside method
bodies, such as import declarations and class variables. These statements are inherently
simple and add minimal complexity to the system. It is inside methods that the more difficult
to understand statements are found, both as individual statements and the effect of a group of
statements.

Other minor size-measures are the number of classes per package and the number of methods
per class. In relation to other metrics, such as coupling and cohesion, these measures can
indicate if a package or a class is too big.

The number of commented methods gives an indication of the level of documentation in the
system. However, it cannot measure if the documentation is of high quality and comply with a
good standard.

4.3.2 Cohesion

Cohesion is a metric designed to establish to which degree parts of a module belong together.
Many ways have been proposed to measure cohesion. We have based our choice on the
discussion given in [31] and [65]. Most cohesion measures presented in the literature have
either not been suited for our intended use, been designed for an earlier phase in the

 47

development cycle and not for measurements on implemented code, or been of only academic
interest and very difficult to implement.

Chidamber and Kemerer’s Lack of Cohesion in Methods [32] violate the properties for not
have a fixed maximum value for cohesion; this will differ from class to class. The measure is
also not able to distinguish between the structural cohesiveness of two classes, i.e. in the way
which the methods share instance variables. The measure gives conflicting results for
cohesion. Adding a method to a class that shares an instance variable with existing methods
should decrease the value of LCOM. However, adding a method to the example shown in
Figure 12 increased LCOM in Figure 13 and decreased LCOM in Figure 14 [53].

Figure 12 The ovals symbolize methods of a class. The circles symbolize the

instance variables the methods use. LCOM = P – Q = 2 – 1 = 1

Figure 13 LCOM = P – Q = 4 – 2 = 2

 48

Figure 14 LCOM = P – Q = 3 – 3 = 0

Hitz and Montazeri’s LCOM [53] also violate the property of having a common maximum
value for cohesion. This is, however, compensated by their connectivity metric that always
have a value between 0 and 1. As such, Hitz and Montazeri’s measure is an improvement in
terms of being able to tell the structural difference between methods with the same value of
LCOM.

Bieman and Kang’s Class Cohesion Measure [64] is our measure of choice. The drawback
with this measure is that it can result in low values for classes with a large number of
methods. This is because the denominator value for the calculation increases quadratically as
the number of methods in a class increases. However, based on the work and experiences of
Gupta [65], most methods only use one or two data tokens. This would result in that most
classes with many methods would not achieve good cohesion values even with an ideal
metric. Therefore we feel that this is a smaller drawback than not having a ratio scale for our
cohesion values; as would have been the case with the alternative measures. With a ratio scale
classes can be compared and are more informative than unbounded values.

Bieman and Kang use two cohesion measures, Tight Class Cohesion and Loose Class
Cohesion. TCC measures only direct use of instance variables; while LCC also calculate
indirect use of instance variables (the method calls a method that uses the instance variable).
TCC can be prone to give too low cohesion values as it can not be expected that all methods
use most or all instance variables directly. On the other hand, LCC might give too high
cohesion values for classes were many methods might not use instance variables at all.
Because of this we have implemented both cohesion measures, as the middle ground between
their values should be a good indication of the class’ cohesion.

4.3.3 Coupling

Coupling is used to establish the dependencies between classes or packages. There are
numerous ways to calculate coupling. We have based our choice on the discussion presented
in [30] and [50]. The candidates for coupling measure were presented in the prestudy, four of
them as part of different metric suites.

 49

Chidamber and Kemerer’s Coupling Between Objects [32] is a simple and straightforward
measure for coupling. The argument against the measure is its lack of sensitivity, in that it
considers all couplings to be of equal strength [37].

Li and Henry’s Message-Passing Coupling and Data-Abstraction Coupling [40] [41] were
also considered. The drawback with Li and Henry’s measure is that it does not take attribute
references into consideration at all; except in the event of one class being another class’
instance variable.

Brito e Abreu’s Coupling Factor [48] [51] is calculated as the class’ number of coupling not
imputable by inheritance divided by the maximum possible number of coupling in the system.
Both methods and attributes are calculated in the measure. The drawback of this measure is
that most instances will get very low coupling factor values, because of the large amount of
possible couplings in a system. We also regard it as more informative to know the exact
amount of coupling an instance has, than to know a decimal value that will change from
system to system.

Abbott, Korson and McGregor’s measure for “interactions permitted” [52] calculate the
opportunities an object provide for interaction and means for information flow through its
interface. This measure can be used in the design phase to predict an “expert’s opinion” of
design alternatives. Therefore the measure has limited use for measurements on source code.

Hitz and Montazeri [53] have created a framework specifically for coupling in OO systems.
The measure takes into account factors that are especially important to evolving OO systems,
such as stability, type of access and scope of access. For instance, if an unstable package has a
lot of incoming dependencies, then it is a high risk part of the system – and even more so if it
is likely to undergo interface changes. In the same manner, a calling class that refers directly
to an instance variable, instead of accessing through an interface, results in a higher coupling
value as it is a breach of encapsulation.

Hitz and Montazeri’s Class Level Coupling has been the inspiration for our coupling
implementation. However, we have decided to count coupling inside and outside of package
separately. This is because coupling to other classes inside the same package indicate that the
classes belong together. On the other hand, excessive coupling to classes outside the package
should raise the question if the class, or some of the functionality in that class, really belong in
this package.

4.3.4 Fan-in

Fan-in measures the number of methods that call the method in question. Changes to the
method could have extensive ripple effects throughout the system. Fan-in is a basic measure
and does not take into account direct reference to class attributes. For our purpose fan-in will
mostly be used in conjunction with other metrics.

 50

4.3.5 Fan-out

Fan-out measures the number of method calls within a method. The measure serves as an
indication for how dependent the method is on methods in other classes. As for fan-in, it does
not include direct references to class attributes and will mostly be used in conjunction with
other metrics.

4.3.6 Advice-in

The advice-in and advice-out measures have been influenced by the concept for fan-in and
fan-out. Advice-in measures how many advices are connected to the given source, as seen in
Figure 15. This informs the developer that there could be additional or overriding behaviour
located in aspects that he needs to consider before changing the code.

Figure 15 Aspects can change the behaviour of regular methods. This must

be taken into account when making changes in methods that are
affected by aspects.

Depending on the behaviour of the aspect, changes in the regular source code will make no
difference to the running of the program; if the aspect overrides the regular source code
anyway. By using the advice-in measure the developer can be made aware of the possibility
of unintended effects of pointcuts hitting a joinpoint that it was not supposed to hit.

A more minor use for the advice-in measure is to check that only the correct classes and
methods are hit by aspects. If a class or method has a value for advice-in when it should not,
then it is obvious that an aspect has a too broad hit range. This is of more use in a
development setting, using an IDE, than for our purpose of a system wide analysis.

4.3.7 Advice-out

Advice-out measures how many joinpoints an advice hits on. This gives an indication of how
much of the system the aspect affects. If an aspect affects large parts of the system it is

Class SomeObject

...

public doSomething() {
…
}

public readSomething() {
…
}

Aspect
ModifyOutput

Aspect
ExceptionHandler

 51

important that it faultless. Extra effort should probably be used to ensure that it follows its
intended behaviour. This is especially important if the aspect modifies the system behaviour
and not only performs orthogonal tasks like logging.

44..44 PPoossssiibbllee eeffffeeccttss oonn mmeettrriiccss wwiitthh AAOOPP
Several studies have been performed on what effects introducing AOP has on a system in
terms of various system properties, i. e. size, modularity and complexity. In addition we have
derived two “new” metrics, advice-in and advice-out. We will discuss the expected effect they
are designed to capture.

4.4.1 Size

Up to this point all studies, [1] [26] [27], have experienced a reduction in code size when
introducing aspects to a system. This is a consequence of reduced code scattering, one of the
advertised benefits of using AOP.

4.4.2 Cohesion

There is little correlation between moving functionality to aspects and changes in cohesion. In
some instances it will increase cohesion, while cohesion will decrease in other circumstances.
An increase will happen if functionality that had little or no connection with the rest of the
class is moved. A decrease will happen if the crosscutting functionality has a lot of
connectivity with the rest of the class. This does not necessarily indicate that moving the
functionality was a bad decision. The code might have been tangled in such a way that it
would be difficult to extend or maintain the class without removing the crosscutting parts.

4.4.3 Coupling

Coupling is expected to decrease when introducing aspects to a system. As can be seen in
Figure 16, aspects are used to detangle code and as such re-route dependencies.

Figure 16 Coupling between objects in Java vs. AspectJ program

Original Java program Program restructured with aspects

Object connection

Aspect connection

(Advice-in and Advice-out)
Objects Aspect

 52

The effective decrease of coupling will in a few cases be less than what this illustration
shows. In some instances, aspects will have to make a connection back to the pointcut source
in order to fetch object information. However, on a system of significant size, this decrease
will be hard to notice.

4.4.4 Fan-in

Fan-in is expected to decrease for the same reasons as coupling. As illustrated in Figure 16,
more calls will go through aspects and there will be less calls overall.

4.4.5 Fan-out

Fan-out is expected to decrease because of the reasons stated above. Instead of method calls
from the classes, we have pointcuts. The aspects will produce some fan-out, but not as much
as the classes did.

4.4.6 Advice-in

This measure is used as a control instance, to check that the correct number of advice affect a
particular class. It is also used as an indicator, used to show that a class is affected by
additional or overriding behaviour.

4.4.7 Advice-out

Advice-out measures how much of the system an advice affects. This can serve as a good
indicator for prioritizing test resources between aspects. It is more important that a simple
advice that impacts a large part of the source is faultless than an advice with complex code
that only impacts a small part of the source. This is illustrated in Figure 17.

Figure 17 An aspect with a big impact area on the system needs to be

faultless.

Source

Complex aspect

Influential
aspect

 53

4.4.8 Fan-out + Advice-out

An advice (in an aspect) with high fan-out that is connected to many join points is a
dangerous module. The join points are only loosely connected with the code since pointcuts
are based on regular expressions. During operations like renaming or adding new modules it
will be difficult to have the overview and system knowledge needed to predict if you will
create unwanted hits for these aspects. Aspects with too general join point criteria can cause
unintended behaviour in the system.

This measure is an effort to calculate the impact an aspect has on the system. Aspects with a
big impact should probably undergo extra quality assurance to ensure that they perform to
their intended purpose. It can also be an indication of aspects that have become too powerful16
and possibly should be divided into aspects with less functionality or less far-reaching
pointcut criteria.

On the system level, the sum of fan-out + advice-out is interesting to compare to the fan-out
of the original system. Ideally, the introduction of aspects should result in that the sum is less,
indicating that the system now contains fewer dependencies. Note that the summation of fan-
out and advice-out is somewhat artificial, since the dependencies between aspects and classes
are not entirely comparable to that between classes themselves. The similar summation of fan-
in + advice-in is also of interest for the same reasons. If the value has decreased compared to
the original fan-in value, then it is an indication of reduced dependencies on the system level.

16 This can resemble the God Object anti-pattern, where too much processing is performed by one single class
[84].

 55

CChhaapptteerr 55.. TThhee mmeettrriiccss ttooooll

We have designed and implemented a tool that is suitable for measuring the metrics we have
specified in Chapter 4 and that can work on larger systems like Telenor’s COS. This tool has
been given the name AspectMetrics.

55..11 RReeqquuiirreemmeennttss
The metric tool will not be a critical part of a business application, but aims to be an accurate
and effective tool for developers to analyze their code work and give indications of the change
in some of a system’s quality factors. See Chapter 4.

We only give a small list of primary requirements for the tool. The list of requirements is
divided in two; functional requirements shown in Table 21 and non-functional requirements
shown in Table 22.

Functionally, there are three main tasks that the tool must execute. An illustration of these
tasks is shown in Figure 18.

Figure 18 The three main functional tasks of the metrics tool.

5.1.1 Main functional requirements

The functional requirements are not explained in detail in this report. The purpose of the
report is to provide a relation between the tool’s environment, the metrics chosen and the tool
as it is implemented.

Generate
code tree
structure

metric

Calculate
metrics

Generate
reports

 56

Id Requirement

FREQ1 The tool must be able to run as an ANT task to support COSMOS Radar

FREQ2 The tool must calculate metrics on several levels of code elements, defined as
metrics sources. This includes methods, advices, constructors, classes, aspects,
interfaces, packages and the system. Inner elements like inner classes, inner
interfaces and inner aspects must also be included.

FREQ3 The tool must be able to provide information needed to calculate the metrics
chosen. See Chapter 4.

FREQ4 The tool must be able to calculate the metrics chosen.

FREQ5 The tool must be able to deliver the results as an XML-report.

FREQ5 The tool must provide extension points for new calculators and reports.

FREQ6 It must be possible to choose calculators that will be used.

Table 21 Main functional requirements for the metrics tool.

5.1.2 Main non-functional requirements

As with the functional requirements, the non-functional requirements are not explained in
detail.

Id Requirement

NFREQ1 The tool must be able run for larger systems, like COS with 5000 classes, and
this should not take several hours.

NFREQ2 The tool’s architecture must support maintenance. Identifying incorrect code
should be done within one hour if done by an experienced developer that
knows the code, and its design and architecture.

NFREQ3 The tool’s architecture must support extensibility, making it possible to add
new calculators and reporters, and using less than one hour making code that is
needed to be an accessible part of the tool. This applies for experienced
developers that know the tool.

Table 22 Main non-functional requirements of the metrics tool.

55..22 AArrcchhiitteeccttuurree
We have chosen the architecture for the metrics tool based on the functional requirements and
the previously chosen technologies. An overview of this architecture is shown in Figure 19.

 57

Figure 19 Architecture for the metrics tool.

A start task, shown in the upper left corner of the figure, starts up the metrics tool. The task
must comply with the ANT API so that the application can be run through ANT. The
scheduler administrates the whole sequence by calling on other managers, beginning with the
tree builder. The tree builder must communicate with the public interface of the AspectJ
compiler to compile some chosen source code and then make the elements in the code tree.
The source manager is responsible for making metrics sources that must connect with the
appropriate code elements in the code tree and store all values calculated.

We have chosen the following procedure for the calculation of metrics: the calculations
manager calls on the metrics sources which runs the calculators defined on that source. An

Start task

Calculator
Calculator

Calculator

Reporter

Metrics source
Metrics source

Code element
code element

Build tree

Report

Data connection

Action

Object

Manager object

External technology

Data object

XML
writer AspectJ

compiler

ANT

Start
application

Make metrics
sources

Run
calculations

Calculate
on sources

Calculate
metrics for
source

Source
manager

Tree builder

Calculations
manager

Scheduler

Report
manager

 58

alternative solution is to let each calculator work on all sources in turns. We have made our
choice to restrict the amount of times a source is called on. By doing this we can let the
calculators share data on one metrics source, instead of storing data for all sources or
rebuilding necessary data every time a calculator is run. Example of such data is the source
file which must be read to calculate the amount of statements in the code. In the end the
reporter manager calls on the defined reporter which prints data stored in the metrics sources.
For printing to an xml-file, an external xml-writer is used.

55..33 DDeessiiggnn
The main goal of including design information is to describe how we have supported the
calculation of our chosen metrics. Thus, we have included only the relevant parts of the
design and will not discuss the design in detail.

5.3.1 Package structure

no.ntnu.aspectmetrics

sources

calculators

treebuilder

reporters

Figure 20 Package structure of the metrics tool.

Following the functionally focused architecture, the package structure is divided into four
parts where the functions parsing (building code tree), calculating and reporting is placed in
separate packages. The parent package no.ntnu.aspectmetrics contains the ANT start task, a
manager class and a properties class.

5.3.2 Running the application

Since the application needs be run as an ANT task, the class starting the application must
inherit the Task class of the ANT API. This is shown in Figure 21. The same figure shows the
parameters that must or can be set when running the application. Setting sourcepath, classpath
and workspacepath is required, while setting calculators and the reporter is optional.

 59

Task

execute()

Path

add()

From Apache ANT
API From AspectJ

API

CalculatorManager

startCalculation()
CalculatorManager()
getInstance()
getDefinedCalculator()

SourceManager

ReporterManager

BuildManager

WorkspacePathClassPathSourcePath

Calculator
name

setName()
getCalculator()
getName()

 get defined calculator

MetricsProperties

AspectMetrics

execute()
createClassPath()
createSourcePath()
createWorkspacePath()
createCalculator()
setReporter()

1

1

1

1

1

1

0..*

1

1

1 MetricsManager

MetricsManager()
getManager()

1

1

run calculation
1

1

make metrics sources

1

1 report results

1

1

Build source tree

1
1

Schedule all

init

1

0..*

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1

11

1

Figure 21 Design of the task that starts the metrics tool.17

Inheriting the Task class, the method execute must be implemented in the class
AspectMetrics. This method is called whenever an ANT task is run. To run the application,
the AspectMetrics task must be defined in an XML build file and this file must be run with
the ANT application.

The MetricsManager is the scheduler that controls the other managers like
BuildManager and CalculatorManager.

The class MetricsProperties holds general default properties like default calculators
and default reporter.

5.3.3 Building code tree

The most important part of building the code tree is done by the AspectJ compiler. Our code
must support the interface provided by the compiler. The design of this part is not included in
the report.

17 The symbol for BuildManager in the figure is the one defined for interface in Rational Rose [85].

 60

After building the tree, a structure composed of program elements (IProgramElement) is
available. Design of the program element is shown in Figure 22.

IProgramElement.Kind

IProgramElement.Accessibility

IProgramElement.Modifiers

ProgramElement

1

0..*

1

0..*

10..* 10..*

1..*
0..*

1..*
0..*

1 0..*
+parent

1
+children

0..*

File

ISourceLocation

getLine()
getEndLine()

getSourceFile()

1
1

1
1

1
1

1
1

IHierarchy

IRelations
shipMap

Relation IRelation.Kind
111 1

IRelation

getKind()

IProgramEleme
nt

getKind()
setChildren()
getChildren()

getAccessibility()
getModifiers()
getParent()

getSourceLocation()
getName()

toLongString()

11
+root element

get root element

get relations for

0..*

1

+target

0..*

1

get targets of relation

Figure 22 Design of the program element in the AspectJ compiler.

The IProgramElement holds important information about tokens in the code. These
tokens include the following kinds: projects, packages, classes, aspects, methods, advices, and
constructors. In addition, specific AspectJ code, like inter-type declarations, is also supported.
Code that is defined within the above mentioned tokens, like method calls and field
references, have no own tokens, but are defined as “code” tokens. The name of the element
includes “method-call”, “field-set” or “field-get”. The modifiers of a program element include
all Java modifiers like abstract, transient, strictfp etc. and accessibility can be one of the
following: private, package, privileged18, protected and public.

Through the use of IRelationshipMap it is possible to get relations for a program
element. These relations can be one of the following types: advice, declare or declare inter-
type. Any program element can be the target of such relation. See section 2.2 for an
explanation of these types.

18 Priviliged can be defined on aspects that must access fields or methods in a class that normally would not be
accessable (private, protected or package).

 61

The ISourceLocation connects the program element to its file and the line and
endLine gives the position of the element in the file19.

Figure 23 shows a print extract of a file named Main.java. This print is returned from the
method toLongString in the program element and each line corresponds to the name of
an IProgramElement. The indentation indicates which elements that are parents and
children; accordingly the “import declarations” is a child of the file Main.java.

Figure 23 Print extract from the code tree generated with the AspectJ

compiler.

The source code for this file is included in Appendix D for reference.

19 For elements of kind package, the file is the directory that the package corresponds to.

 Print extract:

 Main.java

 import declarations

 figures.primitives.solid.SolidPoint

 figures.primitives.planar.Point

 Main

 TestGUI

 TestGUI

 method-call(void java.awt.Component.disable())

 startPoint

 main(String[])

 field-get(java.io.PrintStream java.lang.System.out)

 method-call(void
java.io.PrintStream.println(java.lang.String)
)

 constructor-call(void
figures.primitives.planar.Point.<init>(int,
int))

 method-call(figures.primitives.planar.Point
figures.Main.makeStartPoint())

 field-set(figures.primitives.planar.Point
figures.Main.startPoint)

 method-call(void java.lang.Throwable.printStackTrace())

 makeStartPoint()

 Test

 testptct()

 before(Point, int): <anonymous pointcut>..

Element type:

[File]

[Class]

[Inner-class]

[constructor]

[code]

[method]

[method]

[code]

[code]

[code]

[code]

[code]

[code]

[method]

[inner-aspect]

 62

5.3.4 Metrics sources

After having generated the code tree, we need a data structure to hold references to the nodes
in the code tree and the calculated values. Therefore, metrics sources are provided. In Figure
24 we have shown the design of those sources.

Interface Method Advice

InnerInterface

Project Package
ClassUnit

Aspect

InnerClass

InnerAspect
SourceManager

makeMetricsSourceHierarchy()
SourceManager()
getInstance()

1

1

1

+projectNode

1

0..*

1

0..*

+packages

1

0..*

1

+classes

0..*

1
0..*

1
+aspects

0..*

1

0..*
+classes

0..*

0..*
1

+aspects 0..*
1

IProgramEle
ment

AbstractMetricsSource
typeName : final String
fullName : String
shortName : String
values : Map
sum : Map
means : Map
mins : Map
maxes : Map
stddevs : Map

calculateMetrics()
propagateMetrics()

+programElement

10..*
+parent
1

+children
0..*

SourceTypeException

<<Wrong sourcetype>>

Figure 24 Structure of metrics sources used in calculations.

The abstract class AbstractMetricsSource holds the values that have been calculated
and propagated. By propagated we mean the values that have been calculated based on nodes
that are children to the current one. The propagated values given are sum, maximum,
minimum, mean and standard deviation of values in children. The source is also connected to
the appropriate IProgramElement in the code tree. Whenever it is attempted to make a
source with the wrong type of IProgramElement, a SourceTypeException is
thrown. The source is responsible for calling the calculators specified for its source kind
(IProgramElement.Kind) and for propagating values. Note that one should avoid
making a single calculator count on different source levels as this could clutter up the

 63

meaning of propagated values like mean value20. A better solution is to provide another
calculator that counts the same kind of measure on a different level.

The SourceManager, which is a singleton, is responsible for connecting program elements
to metrics sources. It also holds maps that include all the packages, classes and aspects in the
tree, using the name of the element as a key. This name is held by the source element as
fullName.

5.3.5 Calculating

The calculation of metrics is bound to the metrics sources in such a way that it is the source
which calls the correct calculators. The CalculatorManager shown in Figure 25 is
responsible for running all calculations by calling on each source’s calculateMetrics
method.

CountPackagesCalculator

CountClassesCalculator

CountAspectsCalculator

CountInterfacesCalculator

CountMethodsCalculator

CountAdvicesCalculator

SourceCodeCalculator

FanCalculator

BiemanKangCalculator

CouplingInsidePackageCalculator

CouplingOutsidePackageCalculator

AdviceCalculator

CheckIfAl lowableSource
<<aspect>>

CalculatorManager
allDefinedCalculators : List

startCalculation()
CalculatorManager()
getInstance()
getDefinedCalculator()

CalculationException

AbstractCalculator
name : String
description : String

calculate()
getAl lowableSources()
getAl lowableSourceTypeLevels()
isAllowableSource()
getCalculator()

<<adv ices on>>

0..*
1

0..*
1SourceTypeException

error in calculation

wrong sourcetype

Figure 25 Calculators used on metrics sources to provide metric values.

20 Example of cluttered sum when using same calculator on different source levels: If statements are calculated
on class and method, then sum on the next level will be all the statements in the methods plus all the statements
in the class; consequently wrong.

 64

The calculation of metrics is carried out in a depth first fashion. Therefore, all children
sources are calculated before a source is calculated.

All calculators must inherit AbstractCalculator with the abstract methods calculate,
getAllowableSources and getAllowableSourceTypeLevels. Allowable
sources specify which metrics sources that the calculator applies to. Since there can be both
classes and inner classes, a level is also used to separate out the right source type. The aspect
CheckIfAllowableSource is responsible for checking that the caller of the calculator is
of the correct type. If not, a source type exception is thrown. Whenever something goes
wrong with the calculation, e.g. a value is out of range, a calculationException is
thrown.

Notice that some calculators are only abstract superclasses for the real calculators. This is
done whenever more than one calculator uses some shared data or calculation. In Figure 25
SourceCodeCalculator, FanCalculator, BiemanKangCalculator,
CouplingInsidePackageCalculator, CouplingOutsidePackage-
Calculator and AdviceCalculator are such calculators.

Adding new calculators is as simple as adding new sources. The calculator needs to inherit
AbstractCalculator and the CalculatorManager needs to be updated to also hold
this type of calculator.

Counting calculators
All the counting calculators, listed in Table 23, are simple calculators that count the amount of
source elements of one type for a higher level element.

Calculator Counts On which level

CountPackagesCalculator # packages System/project

CountClassesCalculator # classes (including inner) Package

CountInnerClassesCalculator # inner classes Package

CountAspectsCalculator # aspects (including inner) Package

CountInnerAspectsCalculator # inner aspects Package

CountInterfacesCalculator # Interfaces (including inner) Package

CountMethodsCalculator # methods Class or aspect

CountAdvicesCalculator # advices Aspect

Table 23 Designed counting calculators, what they count and on which
level.

 65

Figure 26 shows a simplified sequence diagram for the counting of aspects in a package. By
simplified we mean that we have left out inner aspects from the counting.

parent (package) :
AbstractMetricsSource

child (file) :
AbstractMetricsSource

 : CountAspectsCalculator child :
AbstractMetricsSource

1: calculate()

2: getChildren()

4: get typeName

5: typeName

6: if [typeName = file] getChildren()

7: List of children

3: List of children

8: get nameType

9: typeName

10: if [typeName = aspect] add to aspects count

11: counted aspects

Figure 26 Sequence diagram for the counting of aspects in a package.

Whenever inner sources are also included in the count, the count must be done recursively on
appropriate sources. The appropriate sources will be calculator specific. It is e.g. not
appropriate to count all the classes in a sub package, whenever counting the amount of classes
in a package with the CountClassesCalculator, only the classes in package itself.

Source code calculators
As reading code from file is time consuming, it is desirable that this is done only once for
each file. There are two situations that could lead to unnecessary reading. The first is when
two different calculators need to read from the same file. The second situation is when the
same calculator is called for different source elements in same file. Both situations are
accounted for in our design which is shown in Figure 27 as the whole source file is read by
the method readSourceLines and stored along with the current source.

 66

SourceCodeCalculator
statementCalculator : MethodStatementsCalculator
sourceLinesCalculator : MethodSourceLinesCalculator
currentSource : AbstractMetricsSource

readSourceLines()
getNonCommentedLine()

MethodStatementsCalculator

getCalculator()
calculate()

MethodSourceLinesCalculator

getCalculator()
calculate()

Figure 27 Design of source code counting calculators

Because commented lines are not included in our counts, the method
getNonCommentedLine removes all characters within a comment including start and end
characters like “//”, “/*” and “*/”.

Fan-in/fan-out calculators
The fan-in/fan-out calculators calculate the amount of method calls that a class send and
receive. Outgoing method calls are straightforward to calculate since they are present in the
class’ own source code. It is only a matter of determining if the call is made to a local method
or a method belonging to another class, and adding up in the latter case. The exception is calls
to Java or AspectJ library methods, which do not count toward increased fan-out.

The counting of incoming method calls is somewhat more complicated, since the calls are
obviously located in the code of the calling class. This is solved by using a map where we add
the called location and increase its appurtenant value whenever we calculate an outgoing
method-call. Then Fan-in for a class is calculated by looking up its full name in a map and
retrieving the value linked to the name.

We need to make sure that fan-out has been calculated before we calculate fan-in. As can be
seen in Figure 28 this is done by checking the boolean value fanOutIsCalculated. If we
attempt to calculate fan-in and fanOutIsCalculated resolves to false, fan-out-
calculation will commence before returning to complete fan-in-calculation.

 67

FanCalculator
calculatedFanIn : Map
calculatedFanOut : Map
fanOutCalculator : FanOutCalculator
fanInCalculator : FanInCalculator
fanOutIsCalculated : boolean

analyzeSource()

FanInCalculator

getCalculator()
calculate()

FanOutCalculator

getCalculator()
calculate()

Figure 28 Design of fan-in and fan-out calculators.

Advice calculators
The UML class diagram of the advice calculators, advice-in and advice-out is similar to the
one for fan-in/fan-out calculators. The main difference is that the advice-out calculator
measures how many join points an advice perform advice on, and the advice-in measures how
many times advices hits on joinpoints inside some element. The two advice calculators differ
in which source types they are calculated on. Advice-out is calculated on the appropriate
advices, while advice-in is calculated on class or aspect level. Advice-in is calculated based
on the information from advice-out which is stored in a map from program element to advice-
in value, similar to how fan-in/fan-out is calculated.

Coupling calculators
Coupling calculation is done in a similar fashion to fan-in/fan-in calculation, but there are two
differences. The first is that only connections inside the project are counted towards coupling;
calls to third-party projects are not included. Secondly, the coupling values include direct
referencing of class attributes. Referencing of attributes violates the encapsulation properties
typical to OO, but is often used by aspects.

In total we perform four coupling calculations, incoming and outgoing coupling inside a
class’ package, and incoming and outgoing coupling outside a class’ package. As can be seen
from Figure 29, the design of the coupling calculators is similar to the fan calculators’ design.

 68

CouplingInsidePackageCalculator
exportCalculator : ExportCouplingInsidePackageCalculator
importCalculator : ImportCouplingInsidePackageCalculator
calculatedExportCoupling : Map
calculatedImportCoupling : Map
importCouplingIsCalculated : boolean

analyzeSource()

ExportCouplingInsidePackageCalculator

getCalculator()
calculate()

ImportCouplingCalculator

getCalculator()
calculate()

Figure 29 Design of coupling inside packages calculator.

The UML design of coupling outside packages calculators is equal to the one for the coupling
inside packages calculators.

Cohesion calculators

BiemanKangCalculator
instanceVariables : Map
methods : list
accessable_methods : List
methodsByName : Map
tightCohesionCalculator : TightCohesionCalculator
looseCohesionCalculator : LooseCohesionCalculator
relations : boolean[][]
currentSource : AbstractMetricsSource

calculate()
getCohesion()
getActualConnections()
getPossibleConnections()
findAllFields()
findAllMethodsAndAdvices()
searchMethodsAndAdvices()

TightCohesionCalculator

getCalculator()
calculate()

LooseCohesionCalculator

getCalculator()
calculate()

WarshallTransitiveClosure
relations : boolean[][]
n_nodes : int

getWarshallMatrix()

1 1

Figure 30 Design of Bieman and Kang's cohesion calculators.

 69

Both TightCohesionCalculator and LooseCohesionCalculator use the value
calculated in the abstract super class BiemanKangCalculator, as can be seen from
Figure 30 and Figure 31.

 : AbstractMetricsSource : LooseCohesionCalculator : BiemanKangCalculator : WarshallTransitiveClosure

1: calculate()

13: cohesion value

2: calculate()

3: findAllFields()

4: findAllMethodsAndAdvices()

5: searchMethodsAndAdvices()

6: 0

7: getWarshallMatrix()

8: transitive closure of connection matrix

9: getCohesion()

10: getActualConnections()

11: getPossibleConnections()

12: cohesion value

Figure 31 Sequence diagram for the calculation of loose cohesion.

This cohesion value is returned when calling method getCohesion which is calculated
based on real connections and possible connections. To be able to calculate real connections
all fields, methods and advices first must be found. Then we must identify all local method
calls and field references. All connections between fields and methods are stored in a map
organized by the name of the field. When all these connections are found, relations between
methods that use the same field variable are stored in the 2D array “relations”. Connections
between methods are added directly into that array. All relations between accessible methods
in the array are summed up and returned as real connections.

The above mentioned calculation corresponds to Tight Cohesion of class.
LooseCohesionCalculator takes the relations array calculated in the super class and
finds the transitive closure for it through the use of Warshall’s transitive closure algorithm, as
can be seen in Figure 31.

5.3.6 Reporting

The interface Ireporter is provided to make it possible to make any kind of reporters. The
abstract class AbstractDeapthFirstReporter reports in a depth first matter, printing
all the nodes, starting from the outer node in a subtree before moving to the next subtree. The
design of the reporter classes are shown in Figure 32.

 70

IReporter

reportTree()

ScreenReporter

AbstractDeapthFirstReporter
name
outputFile

reportTree()
printNode()
printAfterChildren()

ReporterManager

ReporterManager()
getInstance()

0..*
1

0..*
1

SimpleXmlWriter

writeEntitiy()
writeAttribute()
writeText()
endEntity()

SimpleXMLReporter
11 11

Write xml

From the XML
Writer API

controls

Figure 32 Design of reporters in the metrics tool.

As can be seen in Figure 32, the external class SimpleXmlWriter is used for the purpose
of writing tags in an XML file in SimpleXMLReporter.

5.3.7 Logging

We have not included a design for logging status information and exceptions in this report,
but this is a part of the ANT API and an important part for fulfilling the maintenance
requirement (NFREQ2). Therefore all exceptions as well as some status information are to be
logged to screen.

5.3.8 Extending the tool

Being extendable is a major requirement for the tool. We will thus explain how this can be
done for new source types, calculators and reporters.

Adding metrics sources
The need for adding sources may occur when one two following situations appear:

1. Metrics are to be calculated on some program element that is not already defined as a
metrics source, e.g. pointcuts.

2. AspectJ or Java grammar is extended.

In the first situation, there is no change to the AspectJ compiler source. Thus, we only need to
update code in the AbstractMetricsSource and the SourceManager, and then add

 71

the new source type which must extend AbstractMetricsSource. The
SourceManager must be extended in order to make the metrics source for the
corresponding IProgramElement when the metrics source tree is built.

Whenever the second situation occurs, the AspectJ compiler must be revised before correcting
the metrics tool. If the new version’s public interface is not incompatible with the one we use,
then adding new metrics source becomes almost equal as to the first situation. The only
difference is that the external libraries must be replaced with the new version.

If the new source should have some defined default calculators, this must be set in the class
MetricsProperties.

Adding calculators
A new calculator must extend and implement abstract methods of the class
AbstractCalculator. To be able to use the newly created calculator this must be added
to the list of calculators in CalculatorManager. If the new calculator should be a default
calculator for some source, this must be set in the class MetricsProperties.

Adding reporters
Adding reporters is quite similar to adding calculators. The new reporter must either
implement the interface IReporter or extend and implement abstract methods of the class
AbstractDeapthFirstReporter. When implementing IReporter, the order which
the nodes are printed is not set. Changing the default reporter must be done in the class
MetricsProperties.

55..44 IImmpplleemmeennttaattiioonn
The implementation of the metrics tool consists of 72 classes, 2 aspects and 25 test classes.
The compiled code is packaged in a jar file name aspectmetrics.jar, and three other jar files
are included in the distribution. These are aspectjrt.jar, aspectjtools.jar and xmlwriter-2.2.jar.
To run the application ANT version 1.6.1 must be installed on the machine. An ANT build
file (build.xml) is also included and this must be edited to run the tool. In addition, 8
stylesheet files (XSL) and some HTML files with pictures are included in the example HTML
report site.

All files in the distribution, including example code21 and the example HTML report files are
packaged in a zip file, which can be installed anywhere on the machine. This will run as long
as ANT is installed properly.

21 Two versions of the DIAS2-system is included; with and without aspects.

 72

5.4.1 Retrieving missing information

When designing the metrics tool we had to study and experiment with the code of the AspectJ
compiler itself to learn how it functions. Little documentation exists, and none is detailed. It
became apparent early in the process that the code trees we generated were missing some vital
information. They only indicated method calls and field references that were advised on. This
is confirmed by the developers of AspectJ through their mailing list aspectj-dev@eclipse.org.

To get the missing information we add an aspect to the source which hits on all method calls
and field references, but is otherwise disregarded when building metrics sources and
calculating metrics.

Figure 33 An aspect that hits on all method calls and field references used as

a work-around to build a complete code tree.

Figure 33 shows the aspect that is used to correct the code tree, but otherwise does not add
any code to the joinpoints it hits on. The aspect is always given a name that does not already
exist in the source tree.

5.4.2 ANT build file

To run the application, the ant build file, build.xml, must be set properly. In Figure 34 we
have defined a target that runs the metrics tool on the DIAS 2.1 source code. 4 What is shown
in the figure is that we call the task aspectmetrics with some parameters. These parameters
defines the type of reporter, an output file for the report, a class path for the DIAS source, a
source path and a workspace path that is used when building the source22. As mentioned in the
code comment in Figure 34, you may also choose which calculators that you will use. If not
set, a default set of calculators are used. The default set only contains metrics chosen in the
GQM analysis.

22 The source must be built and the compiled files will be placed in the workspace.

public aspect HitOnAll {

 before() : set(* *) {}

 before() : get(* *) {}

 73

Figure 34 Extract from the ANT build file, build.xml.

5.4.3 XML report

Results from the calculations as well as a description of the defined metrics are written in a
well-formed XML file. The structure of file is defined in the DTD file aspectmetrics.dtd. This
DTD is included in Appendix E.

We have included XSL transformation files which transform the data in the mentioned XML
file into HTML web pages. A screen shot of the HTML site is shown in Figure 35. We have
also a target in the build file which executes the transformation. This is just an example of a
report as Telenor use their own transformation files in XRadar.

Figure 35 Report from the metrics tool in html format.

<target name="run-dias-metrics" description="Run the AspectMetrics
analyzer on specified code">

<aspectmetrics reporter="${reporter.name}"
outputFile="${dias.output.xml.file}">

<classpath refid="dias.class.path"/>
<sourcePath refid="dias.source.path"/>
<workspacePath refid="dias.workspace.path"/>
<!-- This is where you may choose calculators with eg.

<calculator name="Aspects"/> -->
</aspectmetrics>

</target>

 74

The HTML report does not distinguish between sensible and insensible propagated values. An
example of this is the summation of loose cohesion of class which actually has no meaning on
a higher level.

5.4.4 Testing

Testing the tool is mainly done in two separate ways, through use of specific test code and
using the tool on some given code. We have manually counted metric values on the given
code to make sure that the calculations are correct.

The use of test code is implemented as JUnit [77] test cases, but used as simple white-box
tests for testing and debugging. The reason for using JUnit is that it is integrated with the
Eclipse IDE and therefore was convenient to use.

The code has been run on the four different systems DIAS 2.0, DIAS 2.1 (DIAS 2 with
aspects), Apache Tomcat open source server and Telenor COS. We have manually counted all
the metrics on the DIAS 2.1 source. Six bugs were found and corrected. Test plan and test
results are included in Appendix F.

5.4.5 Benchmarks

We have run the metrics tool ten times on three different sources, and the mean times from
these runs are shown in Table 24.

 Statements Has aspects Mean time Stddev

DIAS 2.0 5442 no 19,3 0,67

DIAS 2.1 5047 yes 21,6 0,70

Tomcat 41805 no 94 9,98

 All times are in seconds

Table 24 Benchmarks from running the metrics tool.

The following setup was used when running:

• OS: Microsoft Windows XP Proffesional, version 2002.
• Processor: Intel Pentium 4 2.40 GHz
• Ram: 512 MB
• Other applications were running concurrently on the machine.

 75

5.4.6 Requirements fulfilled

As can be seen from architecture, design and implementation, all functional requirements are
met with this program. It is, however, not possible to conclude on whether all non-functional
requirements are met. The performance requirement (NFREQ1) is met in the tests we have
run, but we can not show that the maintenance requirement (NFREQ2) or the extensibility
requirement (NFREQ3) is met yet. We have, however, designed our tool to meet these
requirements, and we have in this chapter argued why we believe these are met.

 77

CChhaapptteerr 66.. SSyysstteemmss eexxpplloorreedd

In this chapter we explain the systems we have analyzed with the metrics tool, and give a
closer look at the results gathered from the DIAS source code in versions 2.0 and versions 2.1.
Even though DIAS was not the primary system target, these results are used because they are
the only one that gives us the opportunity to compare DIAS versions with and without
aspects. We have done an analysis on DIAS to analyze if the metrics defined may be suited
for indicating change in the quality factors defined in the GQM process.

66..11 TThhee ssyysstteemmss
As mentioned earlier in section 5.4.5 of Chapter 5, we have run the metrics tool on the
Apache Tomcat web server and two versions of Distributed Intelligent Agent System (DIAS).
The running on Telenor’s Custom Order Server (COS) cannot be done within the time limit of
this diploma.

Even though the COS source is the base systems for the choice of quality factors and metrics,
we have chosen to analyze the much smaller and different system DIAS. DIAS is originally a
diploma project at NTNU. The three main reasons for using DIAS, is that we are in control of
the DIAS source, that Telenor are currently only using aspects in the test source and that we
have a version of DIAS with aspects that is functionally equal to the version without aspects.
There are few similarities between COS and DIAS, but they are both based on communication
through server applications and use technologies like XML and Corba.

66..22 DDaattaa ggaatthheerreedd
In this section results from DIAS 2.0 and DIAS 2.1 are presented and compared.

6.2.1 General information

DIAS 2.0 consists of 11 packages, 6 interfaces and 179 classes where 110 classes are
generated with an IDL compiler. In the 2.1 version of DIAS we have added 1 package, 1
interface and 9 aspects, while keeping the same number of classes.

 78

6.2.2 Classes per package

The amount of classes is unchanged in the two versions as can be seen in Table 25.

Table 25 Classes per package for systems DIAS v.2.0 and v.2.1.

We have left out the package no.ntnu.dias.aspects of DIAS 2.1 from the calculations of
classes per package because that package only contains aspects.

6.2.3 Methods per class or aspect

We have included the methods of aspects in our analysis. The calculation takes into account
all methods, not only public methods.

Table 26 Methods per class or aspect for systems DIAS v.2.0 and v.2.1.

 Max Mean Min Stddev Sum
DIAS 2.0 38 5,82 0 6,34 1042
DIAS 2.1 41 5,36 0 6,36 1008

Package DIAS 2.0 DIAS 2.1

no.ntnu.dias.adp 8 8

no.ntnu.dias.agent 3 3

no.ntnu.dias.agent.participationAgent 6 6

no.ntnu.dias.agent.systemAgent 13 13

no.ntnu.dias.agent.userAgent 5 5

no.ntnu.dias.agentPlaceRegister 3 3

no.ntnu.dias.amp 14 14

 79

6.2.4 Statements in methods

0

1000

2000

3000

4000

5000

6000

DIAS 2.0 DIAS 2.1

Written code

Generated code

Figure 36 Statements in methods for systems DIAS v.2.0 and v.2.1.

There is 7.26 percent decrease in the amount of statements from DIAS 2.0 to DIAS 2.1. When
disregarding generated code, the decrease is 11.03 percent.

6.2.5 Cohesion

We have measured the two cohesion measures of Bieman and Kang, tight cohesion of class
(TCC) and loose cohesion of class (LCC). Both metrics employ a ratio scale, with lower limit
0 and upper limit 1.

Table 27 Loose cohesion of class (LCC) for systems DIAS v.2.0 and v.2.1.

Loose cohesion drops with 6.67 percent for the system, shown in Table 27. Figure 37
illustrates how the cohesion differs in the packages of the two versions. Remark that the 2.1
version contains one more package than that of 2.0.

 mean stddev
DIAS 2.0 0,15 0,25
DIAS 2.1 0,14 0,25

 80

0,00

0,10

0,20

0,30

0,40

0,50

0,60

no
.nt

nu
.di

as
.ad

p

no
.nt

nu
.di

as
.ag

en
t

no
.nt

nu
.di

as
.ag

en
t.p

art
ici

pa
tio

nA
ge

nt

no
.nt

nu
.di

as
.ag

en
t.s

ys
tem

Age
nt

no
.nt

nu
.di

as
.ag

en
t.u

se
rA

ge
nt

no
.nt

nu
.di

as
.ag

en
tP

lac
eR

eg
ist

er

no
.nt

nu
.di

as
.am

p

no
.nt

nu
.di

as
.am

p.o
rb

no
.nt

nu
.di

as
.di

as
DTD

no
.nt

nu
.di

as
.K

QML

no
.nt

nu
.di

as
.ut

il

no
.nt

nu
.di

as
.as

pec
ts

(only
 2.

1)

M
ea

n DIAS 2.0 Mean

DIAS 2.1 Mean

Figure 37 Loose cohesion of class (LCC) for the

packages in DIAS v.2.0 and v.2.1.

There is no difference in the mean value of TCC for the two versions, but the standard
deviation is increased in the 2.1 version as shown in Table 28.

Table 28 Tight cohesion of class (TCC) for systems DIAS v.2.0 and v.2.1.

6.2.6 Coupling

Two kinds of coupling are measured, coupling inside package and coupling outside package.
On both kinds outgoing (import) and incoming (export) values are given, as shown in Table
29. Import and export coupling is equal on the system level, but differs in single classes or
aspects.

 mean stddev
DIAS 2.0 0,12 0,21
DIAS 2.1 0,12 0,22

 81

Table 29 system level coupling for systems DIAS v.2.0 and v.2.1.

The difference between the two version’s coupling inside package measures is a decrease of
one instance of coupling. System level coupling outside package is decreased by 23 instances,
or 5.4 percent.

6.2.7 Fan-in and fan-out

The fan-in and fan-out measures are shown in Table 30 and Table 31.

Table 30 System level fan-in outside package for systems DIAS v.2.0 and

v.2.1.

The sum of fan-in is decreased by 3.8 percent on the system-level, while the mean value
decreases by 8.3 percent.

Table 31 System level fan-out outside package for systems DIAS v.2.0 and

v. 2.1.

There is a 6.4 percent decrease in the sum of fan-out and 10.8 decrease in the mean value.

6.2.8 Advice-out and advice-in

The sums of advice-out and advice-in must be equal on the system level, but different on the
lower levels and thereby have different system mean values, as seen from Table 32 and Table
33.

 sum mean max min stddev

DIAS
2.0

DIAS
2.1

DIAS
2.0

DIAS
2.1

DIAS
2.0

DIAS
2.1

DIAS
2.0

DIAS
2.1

DIAS
2.0

DIAS
2.1

Export coupling inside
package 395 394 2,34 2,21 66 66 0 0 6,52 6,37
Import coupling inside
package 395 394 2,34 2,21 42 42 0 0 5,35 5,23
Export coupling outside
package 422 399 2,50 2,24 191 167 0 0 14,52 14,56
Import coupling outside
package 422 399 2,50 2,24 70 59 0 0 9,53 8,22

 sum mean max stddev
DIAS 2.0 1090 6,09 66 11,38
DIAS 2.1 1020 5,43 66 10,09

 sum mean max stddev
DIAS 2.0 688 3,84 113 12,47
DIAS 2.1 662 3,52 87 11,05

 82

Table 32 System level advice-in outside package for systems DIAS v.2.0

and v.2.1.

Advice-in is measured on aspects or classes, while advice-out is measured on advices, thus
making mean, max and standard deviation not comparable between advice-in and advice-out.

Table 33 System level advice-out outside package for systems DIAS v. 2.0

and v.2.1.

6.2.9 Advice-out + Fan-out

There are 8 aspects with advices in the 2.1 version of DIAS and their advice-out and fan-out
values are shown in Figure 38.

0

20

40

60

80

100

120

Advice-out

Fan-out

Figure 38 Advice-out and fan-out for the aspects in DIAS 2.1.

There is one aspect in particular that have a large value for advice-out. This aspect, named
ExceptionPrinter, prints exception to screen or other chosen media. The corresponding

 sum mean max stddev
DIAS 2.0 0 0 0 0
DIAS 2.1 138 0,76 24 2,29

 sum mean max min stddev
DIAS 2.0 0 0 0 0 0
DIAS 2.1 138 13,8 104 1 31,75

 83

fan-out value for this aspect is 0. A fan-out of value of zero means that there are no external
methods calls, except for calls to Java API methods and AspectJ API methods.

66..33 AAnnaallyyssiiss ooff tthhee qquuaalliittyy ffaaccttoorrss ffrroomm GGQQMM
To be able to evaluate the metric values, we will use the questions and quality factors from
the GQM analysis. We want to see if the newest version of DIAS has metric values that
constitute a change caused by the introduction of AOP. Radar plots containing metrics that
can be compared are used to illustrate the changes in the quality criteria. There is no absolute
scale in the plots, but further away from centre indicates a better value. We give an analysis
of the questions in the same tables as where we answer the questions, indicate their effect on
quality factors and comment on the metrics used to give the answers.

6.3.1 SG1: Modularity

Our comparison of modularity is based on coupling inside package, coupling outside package
and loose cohesion of class. All metrics have been calculated on the class level. The results
are illustrated in Figure 39. The questions defined for modularity are analyzed in Table 34.

Coupling inside package

Coupling outside packageLoose cohesion of class

DIAS 2.0

DIAS 2.1

Figure 39 Modularity metrics for DIAS v. 2.0 and v. 2.1.

The comparison shows little difference in the three metrics between the two versions. In
addition, there is little or no difference between the two versions concerning classes per
package and methods per class or aspect.

 84

Scientific question and answer Change Comment on metrics’ effects

Q1.1. Are the functions in
modules related?

The results do not show that
modules are more related in
DIAS v.2.1.

+/- As illustrated in Figure 39, the change in the
coupling and cohesion metrics are small and
inconclusive.

Q1.2. How many functions do
modules provide?

The number of functions in
modules is not substantially
changed.

+/- The number of classes is unchanged, while the
mean number of methods per class or aspect is
slightly decreased, mainly because we have
introduced aspects with few methods. The
number of methods in the classes is unchanged.

Table 34 Scientific questions, how metrics results affect modularity
and comments.

The results of the analysis of modularity as shown in Table 34 indicate no change in the
modularity of DIAS after introducing aspects.

6.3.2 SG2: Testability

We have defined testability as a combination of metrics coupling outside package, fan-in and
fan-out, and their effect is shown in Figure 40. All metrics have been calculated on the class
level.

Coupling outside package

Fan-inFan-out

DIAS 2.0

DIAS 2.1

Figure 40 Testability metrics for DIAS v. 2.0 and v. 2.1.

 85

Another metric defined for testability is the amount of commented methods, but this metric
has not been implemented in the metrics tool.

Scientific question and answer Change Comment on metrics’ effects

Q2.1 What responsibilities do
the modules have?

N/A (Information from other sources than the
metrics is not included.)

Q2.2. Are the modules strongly
connected to other modules?

The modules are less connected.

+ Mean value of coupling outside package is
slightly decreased, thereby constituting a small
positive change.

Q2.2. Do the modules have
many dependencies towards
other modules?

The modules have fewer
dependencies towards other
modules.

+ Mean value for import-coupling outside
package is the same as the coupling outside
package value, which have a small decrease.
The fan-out value decreases in DIAS v.2.1.
These results indicate a positive change.

Q2.3. Do many other modules
depend on the modules?

The modules depend (slightly)
less on modules.

+ Mean and sum value for export-coupling
outside package is the same as the coupling
outside package value, which have a small
decrease. Fan-in is decreased.

Q2.4. Are all classes and
methods documented?

N/A (Amount of commented method is not
calculated.)

Q2.5. Is the documentation of
high quality?

N/A (Information from other sources than the
metrics is not included.)

Table 35 Scientific questions, how metrics results affect testability and
comments.

We have not analyzed all the questions defined for the quality criterion testability. The results
we have shown in Table 35 indicate, however, that we have a positive change in the DIAS
code from the introduction of aspects. We also know that the documentation of the classes
and methods are left unchanged in the 2.1 version of DIAS.

6.3.3 SG3: Analyzability

The main metrics that affects analyzability is shown in Figure 41.

 86

Statements in methods

Coupling outside packageLoose cohesion of class

DIAS 2.0

DIAS 2.1

Figure 41 Analyzability metrics for DIAS v. 2.0 and v. 2.1.

Metrics like methods per class and classes per package are unchanged from v.2.0 to v.2.1 and
are therefore not included in the figure. The scientific questions and corresponding metrics for
analyzability are commented in Table 36.

Scientific question and answer Change Comment on metrics’ effects

Q3.1. Are the modules large?

Modules are smaller.

++ Code size is decreased in DIAS v.2.1 while
classes per package and methods per class are
unchanged. This indicates that modules are
generally smaller in v.2.1.

Q3.2. Do the modules have
clear and distinct
responsibilities?

We cannot conclude that
modules are more or less clear
and distinct.

+/- There is small negative change in cohesion and
a small positive change in mean value for
import coupling outside package. These results
indicate no great change.

Q3.3. Do the modules have
sensible names?

N/A (Information from other sources than the
metrics is not included.)

Q3.4. Are sub modules (classes
and aspects) placed in sensible
modules (packages)?

Classes and aspects should be
more sensibly placed.

+ Mean value of coupling outside packages is
decreased.

 87

Q3.5. Are all classes and
methods documented?

N/A (Amount of commented method is not
calculated.)

Q3.6. Is the documentation of
high quality?

N/A (Information from other sources than the
metrics is not included.)

Q3.7. Are the connections
between modules sensible?

N/A (Information from other sources than the
metrics is not included.)

Table 36 Scientific questions, how metrics results affect analyzability and
comments.

Four of the seven questions, defined for analyzability, have not been answered in this
analysis. We know, however, that the naming and documentation of the classes in DIAS are
unchanged and then only one question remains unanswered. The notable decrease in module
size should indicate a positive change in the analyzability factor for DIAS.

6.3.4 SG4: Changeability

Changeability is affected by loose cohesion of classes, fan-in, fan-out and coupling outside
package, as shown in Figure 42.

Loose cohesion of class

Fan-in

Fan-out

Coupling outside package

DIAS 2.0

DIAS 2.1

Figure 42 Changeability and stability metrics for DIAS v. 2.0 and v. 2.1.

The metrics advice-in and ‘fan-out + advice-out’ are not included in Figure 42, but
commented on in Table 37.

 88

Scientific question and answer Change Comment on metrics’ effects

Q4.1. Do we trust that the
modules perform the tasks they
are supposed to?

We cannot conclude that the
modules perform more or less
of the correct tasks.

N/A (Information from other sources than the
metrics is not included.)

Q4.2. Do we have trust in the
developer’s abilities?

N/A (Information from other sources than the
metrics is not included.)

Q4.3. Do we understand the
code?

Even though we cannot say
anything about the comments,
the code should be more
understandable.

+ The amount of commented methods is not
calculated, but coupling and fan-out is
positively changed. Advice-in add some
negative change.

Q4.4. Do the modules have
clear and distinct
responsibilities?

We cannot conclude that
modules are more or less clear
and distinct.

+/- There is small negative change in cohesion and
a small positive change in mean value for
import coupling outside package. These results
indicate no great change.

Q4.5. Are the interfaces of the
modules precisely defined?

N/A (Information from other sources than the
metrics is not included.)

Q4.6. Are the modules heavily
used?

The modules are less heavily
used.

+ Fan-in decreases, thus modules are less used.

Table 37 Scientific questions, how metrics results affect changeability and
comments.

Three questions are left unanswered in Table 37, but these can be answered through our
subjective opinion and knowledge. The interfaces of DIAS are unchanged in the new version
of DIAS, and it is reasonable to believe that the quality of our code work is of a similar level

 89

to that of the students developing the previous version of DIAS. All in all, the results indicate
a positive change in changeability for DIAS.

6.3.5 SG5: Stability

The stability metrics are roughly the same as the changeability and the difference between the
two versions are therefore illustrated by the same figure, Figure 42. All the questions and
corresponding metrics for stability are commented in Table 38.

Scientific question Change Comment on metrics’ effects

Q5.1. Do the modules have
clear and distinct
responsibilities?

We cannot conclude that
modules are more or less clear
and distinct.

+/- There is small negative change in cohesion and
a small positive change in mean value for
import coupling outside package. These results
indicate no great change.

Q5.2. Do the modules have
many dependencies towards
other modules?

The modules have fewer
dependencies towards other
modules.

+ Mean value for import-coupling outside
package is the same as the coupling outside
package value, which have a small decrease.
The fan-out value decreases in DIAS v.2.1.
These results indicate a positive change.

Q5.3. Do many other modules
depend on some modules?

Fewer other modules depend on
the modules in general.

+ Both import-coupling and fan-out is decreased
indicating a positive change.

Q5.4. Have the modules been
changed over time, without
failures and complications?

N/A (Information from other sources than the
metrics is not included.)

Table 38 Scientific questions, how metrics results affect stability and
comments.

Question number 4 in Table 38 has not been answered with the metrics calculated, but there is
little or no difference in this factor between the two versions. The other results in Table 38
indicate a positive change in stability for DIAS.

 90

6.3.6 G1. Reusability

We show the change indicated in the subquality factors of reusability in Table 39.

Quality factor Change indicated

SG1: Modularity +/-

SG2: Testability +

SG3: Analyzability +

SG5: Stability +

Table 39 Change indicated in the sub quality factors of reusability.

All in all, the changes in the sub quality factors of reusability indicate a positive change in the
reusability factor of DIAS.

6.3.7 G1. Maintainability

We have indicated change for all sub quality factors other than adaptability of maintainability
for DIAS in Table 40.

Quality factor Change indicated

SG2: Testability +

SG3: Analyzability +

SG4: Changeability +

SG5: Stability +

Adaptability N/A

Table 40 Change indicated in the sub quality factors of maintainability.

We have a positive change in four of five sub quality factors of maintainability and thus an
indication of improved maintainability for DIAS.

 91

CChhaapptteerr 77.. DDiissccuussssiioonn

77..11 GGQQMM aannaallyyssiiss
The GQM analysis has given us a set of quality factors and metrics pertaining to improve
product quality and to indicate change in them. We have focused on the two system goals
reusability and maintainability which are important for the development of middleware
systems like COS.

The definition of the chosen quality factors and questions is based on ISO 9126, discussions
with advisors at Telenor and NTNU, experience from the preceding project and common
sense. The ISO 9126 is a respected and frequently used framework for software quality. All in
all, the choice of quality factors should be well-founded. Even so, there is room for
improvement. Experience from system studies, more support from theory and more comments
from developers could have given more reliability to the process.

77..22 MMeettrriiccss
When choosing metrics to answer the questions from the GQM analysis we have for the most
part chosen well-known metrics. The exceptions are advice-in and advice-out, but they have
been inspired by and have much in common with the well-known fan-in/fan-out metrics.

7.2.1 Size

We have made our own statement calculator and a calculator for non-commented non-empty
source lines inside methods. As expected the statement calculator gives a somewhat smaller
value for code size than the more commonly used number of lines calculator. We argue that
the statement calculator gives the more accurate indication of actual code size; and thus the
more accurate indication of how complexity increases as code size increases. The line
calculator indicates a higher value whenever the developer has divided a statement over two
or more lines.

7.2.2 Cohesion

Bieman and Kang’s cohesion measure [64] is not a perfect cohesion measure, even though it
was the best we could find. Its major weakness is for calculation of classes with many
methods. The result will often be a low cohesion value, even though the class is quite
cohesive. This is because of the quadratic increase in denominator value as the number of
methods increase.

 92

There are doubts about the usefulness of cohesion in its current form under the object-oriented
paradigm. Our experience takes this further, by also including AOP. Moving functionality to
aspects can have both positive and negative effect on the local class cohesion value. When
inspecting cohesion values for individual classes in the DIAS system that have been influence
by aspects, we found that the cohesion values sometimes indicated improvement and
sometimes indicated deterioration.

A system may become more modular as a whole, but this is not necessarily reflected in the
new cohesion values. Thus, we are not sure if cohesion, at least in its current form, is a useful
metric when using AOP.

7.2.3 Coupling

Ideally, the coupling metrics should weight calls to methods and direct referencing of
attributes differently. Direct referencing of attributes violates the encapsulation and
information hiding properties associated with OO. In addition, direct referencing is often used
by aspects to gather information about the object, and thus the relative strength between
method calls and attribute referencing is a highly interesting one.

Weighting is originally part of Hitz and Montazeri’s coupling framework, but there is some
ambiguity about the actual weights. In [50] a table for weighting is presented, but to use this
you need to know in advance if the class or package is considered stable or not. This is
problematic, since the calculation of package stability includes coupling. Further, Briand [30]
states that “different measurement goals can require different (partial) orders”. If you are
measuring in relation to regression-testing23, then import-coupling is the most interesting part
as you are interested in the flow of control. Referencing of attributes would not be of interest
as they do not influence this. On the other hand, if you are measuring understandability, then
attribute referencing is just as interesting as method calls.

7.2.4 Fan-in / Fan-out

We experienced a small decrease for both fan-in and fan-out. This was as expected as
illustrated in Figure 16, page 51.

7.2.5 Advice-in / Advice-out

Advices impact the system 138 times, with one aspect, the ExceptionPrinter, being
responsible for 104 of those. This aspect is a good example on how much a particular
functionality can be scattered throughout the system. The advice-out value only tells us the
amount of locations the advice affects, not the locations. Thus, the advice-out value alone
cannot tell us if the advice is used to remove functionality that was scattered through large
parts of the system. Other tools can be used for this, e.g. AJDT [87], as shown in Figure 43.

23 “Regression testing is the process of testing changes to computer programs to make sure that the older
programming still works with the new changes” [86].

 93

Figure 43 Example of scattering with the ExceptionPrinter aspect.

The system advice-in value should be evaluated together with system fan-in. A decrease in
fan-in is expected, but if we add the advice-in value to the fan-in value, this decrease will be
smaller. Thus, the amount of connections in the system is higher than the one given by fan-in
and fan-out alone. The fan-in/fan-out and advice-in/advice-out values could have been
combined in a fan-in and a fan-out metric. We have chosen not to combine them because
method calls and advices are different in the way they are used. A method is called on, while
an advice connects itself to the locations of use (joinpoints), as illustrated in Figure 16, page
51.

7.2.6 Advice-out + Fan-out

We have earlier expressed concern for aspects that have too big an impact on the system. It
would be logical to think that the ExceptionPrinter advice would fall into this category.
However, this advice does not alter the behaviour of the code it impacts on; its fan-out is 0.
All it does is to undertake the responsibility of printing exceptions. The advice with the
biggest functional impact on the system is in fact the StrictCommunication advice. It
has 5 outgoing advices and in addition 9 instances of fan-out. This is by no means large
values, but for this particular system it is the aspect that should probably receive the largest
test effort.

77..33 TThhee mmeettrriiccss ttooooll
We have implemented and tested the tool according to the requirements. The requirements
fulfil almost all metrics defined in the GQM process, see Chapter 4. We have not
implemented the counting of commented methods since we did not prioritize this. A
dependency graph report is also mentioned in the GQM, but not implemented in the tool. In
both cases, the time available was too small.

 94

As we have tested the tool on a small number of systems, there is a risk that some bugs have
not been found. Use and maintenance over a longer period of time is required to be confident
confident of the reliability of the tool.

A property in the tool which might limit the usefulness is the fact that the code must be
compiled. For large systems setting up source path and classpath can be a complicated task as
this requires knowledge about how the system code is built. On the positive side, the fact that
the code must be compiled has as a consequence that code with errors will be left out of the
analysis. Code with errors should not be a part of the system, and thus not measured.

77..44 RReessuullttss ffrroomm tthhee ssyysstteemmss aanndd AAOOPP eeffffeeccttss
In our opinion, the results from DIAS v.2.0 vs. DIAS v.2.1 (with aspects) must be used with
care because the system is small and different from Telenor Mobile COS. It is also worth
noting that the system is a part of a student diploma and not a business system.

The results from the analysis indicate that reusability and maintainability are improved in the
2.1 version. Concerning maintainability, we see a positive change because the aspects
implemented can be reused and because some of the classes are smaller and the system more
readable [1]. There is, however, no difference in the public interfaces, thus indicating no
change in reusability. The maintainability of DIAS is, in our opinion, improved because of
smaller classes and better localization of side functionality, e.g. logging.

A surprising result of the analysis is the fact that there is no indication of positive change in
modularity. Modularity is said to be one of the major benefits with AOP as crosscutting
concerns are localized in aspects and not spread in classes. This might indicate that the
metrics chosen are not good indicators or that modularity is in fact not improved in DIAS
v.2.1. Other possible reasons are that the modularity has in fact improved, but that the metrics
have not been correctly calculated.

The reason we find most likely, however, is that the criteria we have specified for improved
modularity are not good enough. We have already mentioned that we have little confidence in
the cohesion metrics’ ability to demonstrate change in AOP-systems. Considering that
functionality have been moved out to the aspect package, an increase in coupling inside the
packages cannot be expected. A better specification for this criterion would have been to keep
the same level of coupling inside packages. It is the coupling towards other packages that
AOP mainly seek to improve, which is also reflected in the measurement results we have
gathered through coupling outside packages. With improved criteria we would thus have
achieved an indication of improved modularity after introducing aspects to the system.

The other quality factors, such as testability, analyzability and stability, are influenced by the
moving and merger of crosscutting concerns which reduces the code size and reduce the
amount of connections between modules. When considering crosscutting code that is moved
to an aspect, it is positive that we only need to analyze and test the functionality once. On the
other hand, all modules that are affected by an advice must take that advice into consideration
when being changed or updated.

 95

A part that is not taken into account in the metrics is that AspectJ is a more powerful language
than Java. By more powerful, we mean more tokens to use, e.g. pointcuts and introductions.
The new tokens add both new possibilities and new dangers that the developers must handle.
There are some subjective factors that will have influence on how big impact the language has
on the chosen quality factors for instance:

• The abilities of the developers.

• The experience with the language.

 97

CChhaapptteerr 88.. CCoonncclluussiioonn

We have studied Aspect-Oriented Programming and the impacts of implementing aspects
with AspectJ and Java as languages. We have identified the system quality factors for the
COS system, and studied how we could measure changes in the quality factors when using
AOP.

This leads us to the first part of our problem definition:

We will find useful metrics for measuring AOP-based programs.

From our work and measurement analysis we have found the following metrics to be useful
for measuring AOP-based programs:

• Number of statements
• Fan-in / Fan-out
• Coupling
• Advice-in / Advice-out

From our work and measurement analysis we have found the following metric not to be useful
for measuring AOP-based programs:

• Cohesion

The second part of our problem definition has been:

We will develop a prototype metric tool for use with AspectJ.

We have designed and implemented a metrics tool, AspectMetrics, which is able to measure
our metrics selection on AspectJ and Java source code. The tool fulfills all the planned
functional requirements and is able to calculate and present results for a medium sized system,
i.e. Apache Tomcat (800 classes), in less than two minutes.

If the other two non-functional requirements, maintainability and extendability, have been
fulfilled can only be determined through continued use of the tool.

 99

CChhaapptteerr 99.. FFuurrtthheerr wwoorrkk

During our work with this diploma we found several interesting areas that we could not
pursue within the time frame. These areas, alone or in conjunction, should be goals for future
projects.

99..11 AAnnaallyyzzee rreessuullttss ffrroomm ssyysstteemmss iinn aa ppeerriioodd ooff ttiimmee
We have not had the chance to analyze a business system over a period of time in our study.
As we have based our analysis on Telenor Mobile’s middleware systems COS, it would be
favourable if this system was studied. A similar system could also be used; preferably a
system that has implemented aspects through AspectJ. In COS, aspects are at the time of
writing only used for test code.

A study of the above mentioned type is, in our opinion, the most important area for further
work. The goal for such study would be to watch if the chosen metrics have notable effects on
maintainability and reusability. Thus, to find these effects other data besides the metrics also
needs to be gathered. Relevant data is the amount of reported errors, correction cost, and the
qualitative opinion of developers and users. GQM could be used to elaborate on the data
needed24.

99..22 RReeffiinnee tthhee qquuaalliittyy mmooddeell
The quality model that we have defined in this thesis is not a complete model and is partly
based on anecdotal information and experience. Refining the model is therefore of interest;
based on empirical information as well as theoretical knowledge. The work could produce
new scientific questions and metrics as well as alterations of our work.

99..33 AAnnaallyyzzee ootthheerr ssyysstteemm ggooaallss
We have chosen to focus on a subset of the relevant system goals in our study. This is done
because of the time limit for the project. Other relevant system goals defined in ISO 9126 are
functionality, reliability, usability, efficiency and portability.

24 As we have focused on software metrics in our use of GQM, we have not investigated the need for other
information like bugs and qualitative opinions.

 100

99..44 CCoosstt--eeffffeeccttiivveenneessss aannaallyyssiiss
We have indicated improved reusability and maintainabililty for the DIAS system by
introducing aspects. But we have not established a relationship between the values gathered
from the metrics and the amount of reduced maintenance time. This could be studied as a
student project, e.g. like this: “Every student, or group of students, accounts the amount of
time they spend on maintenance for a given project. This is then compared to the results their
systems’ achieve by using the metrics tool.”

99..55 DDeevveelloopp nneeww mmeettrriiccss
In addition to refining the quality model, new metrics suitable for measuring AspectJ code
should be developed and implemented in the metrics tool developed in our study. The metrics
tool is designed so that it is simple to add new metrics. In our opinion, new metrics that
capture the effects of introducing aspects are still needed.

There is a need for research to identify which metrics, and combination of metrics, that best
describes the properties of AOP-systems and their differences compared to regular OO-
systems. The aim for such a study would be to define a more complete and tailored metrics
suite than the one used in this thesis.

There are a collection of metrics that we elected not to implement in this version of the tool
due to time constraints. They range from basic size metrics, such as the number of public
methods and the number of commented methods, to more advanced metrics that aim to
estimate code or system complexity. A selection of complexity metrics is presented in
Appendix C.

99..66 EExxtteenndd mmeettrriiccss ttooooll wwiitthh ccaallll ggrraapphhss
An interesting extension for the metrics tool is a report containing call graphs. Such graphs
can be based on method calls, it can be based on field use or it can be based on aspect
affectations. This can easily be implemented as a metrics calculator in the tool and reported in
a suitable new reporter. To visualize the graph, the XML child languages Scalable Vector
Graphics (SVG) can be used. The SVG reports can also be incorporated as a plugin to XRadar
[80].

 101

AAppppeennddiixx AA.. RReeffeerreenncceess

All web addresses have been confirmed not broken at the date indicated between parentheses.

[1] Rønningen and Steinmoen. Increasing readability with Aspect-Oriented

Programming. TDT4735 Software Engineering, Specialization project. Department

of Computer and Information Science (IDI), Norwegian University of Science and

Technology (NTNU), November 2003.

[2] Editors, Ten emerging technologies that will change the world. MIT Technology

review, January/February 2001.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Lopes, J. Loingtier and J.Irwin. Aspect-

Oriented Programming. Proceedings of European Conference on Object-Oriented

Programming Finland. Springer-Verlag, 1997.

[4] Marcelo Sihman and Shumuel Katz. Superimpositions and Aspect-oriented

Programming. The Computer Journal, British Computer Society, issue 46(5) 2003.

[5] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous &

Practical Approach, 2nd edition. PWS Publishing Company, 1997.

[6] Kristoffer Kvam and Daniel Bakkelund. Cynical Reengineering. Telenor Mobil, IT

Core Systems, COS Middleware. Presented at XP2004.

[7] D. L. Parnas. On the criteria to be used in decomposing systems into modules. ACM

Press, 1972.

[8] G. Kiczales, T. Elrad, T. Aksit, K. Lieberherr and H. Ossher. Discussing Aspects of

AOP. Communications of the ACM 44(10), October 2001.

[9] AccessSience: McGraw-Hill’s online encyclopaedia for science and technology.

http://www.accessscience.com/ (15.03.2004)

[10] JDepend, a Java Metrics tool. http://www.clarkware.com/software/JDepend.html

(15.03.2004)

[11] Ian Sommerville. Software Engineering. Addison-Wesley, 2000.

 102

[12] Sallie M. Henry and Dennis G. Kafura. Software Structure Metric based on

Information Flow. IEEE Transaction on Software Engineering, 7(5), September

1981.

[13] Arthur H. Watson and Thomas J. McCabe. Structured Testin: A Testing

Methodology Using the Cyclomatic Complexity Metric. Computer Systems

Laboratory, National Institute of Standards and Technology, Gaithersburg,

September 1996.

[14] Sencer Sultanoglu. Software Measurement Page, Software Complexity.

http://yunus.hun.edu.tr/~sencer/complexity.html. Department of Computer Science

& Engineering. Hacettepe University, Turkey. (15.03.2004)

[15] Metrics 1.3.4 and Metrics 1.3.5, a metrics plug-in for Eclipse.

http://metrics.sourceforge.net/ (15.03.2004)

[16] Zakaria and Hosny. Metrics for Aspect-Oriented Software Design. The American

University in Cairo. Workshop on Aspect-Oriented Modelling, International

Conference on Aspect-Oriented Software Development, March 2003.

[17] Norman Walsh. What is XML?

http://www.xml.com/pub/a/98/10/guide1.html#AEN58 (15.03.2004)

[18] Apache Ant. http://ant.apache.org/ (15.03.2004)

[19] Stephen R. Schach. Classical and Object-Oriented Software Engineering. McGraw-

Hill, 1999.

[20] Capers Jones. Applied Software Measurement: assuring productivity and quality.

McGraw-Hill, 1996.

[21] ISO9126 Information Technology – Software Product Evaluation – Quality

characteristics and guidelines for their use. International Organization for

Standardization, Geneva, 1992.

[22] Jianjun Zhao. Change Impact Analysis for Aspect-Oriented Software Evolution.

Proceedings of the 5th International Workshop on Principles of Software Evolution,

Orlando, 2002.

[23] Jianjun Zhao. Towards A Metrics Suite for Aspect-Oriented Software. Technical-

Report SE-136-25, Information Processing Society of Japan (IPSJ), 2002.

[24] Jianjun Zhao and Baowen Xu. Measuring Aspect Cohesion. Proc. International

Conference on Fundamental Approaches to Software Engineering, Springer Verlag,

2002.

 103

[25] Clas Wohlin et al. Experimentation in software engineering. Kluwer Academic

Publishers, 2000.

[26] Charles Zhang and Hans-Arno. Jacobsen. Quantifying Aspects in Middleware

Platforms. Department of Electrical and Computer Engineering and Department of

Computer Science, University of Toronto, 2000.

[27] Magnus Mickelsson. Aspect-Oriented Programming compared to Object-Oriented

Programming when implementing a distributed, web-based application. Department

of Information Technology, Uppsala University, 2002.

[28] Yvonne Coady and Gregor Kiczales. Back to the Future: A Retroactive Study of

Aspect Evolution in Operating System Code. University of British Columbia, 2003.

[29] Shiu Lun Tsang, Siobhan Clarke, Elisa L. A. Baniassad. Object Metrics for Aspect

Systems: Limiting Empirical Inference Based on Modularity.

http://www.cs.tcd.ie/Elisa.Baniassad/OO-AOMetrics.pdf. Submitted to ECOOP

2004.

[30] L. Briand, J. Daly, and A. Wurst. Unified Framework for Coupling Measurement in

Object Oriented Systems. IEEE transactions on Software Engineering, Vol. 25, No.

1, pp 99-121, 1999.

[31] L. Briand, J. Daly, and A. Wurst. A Unified Framework for Cohesion Measurement

in Object Oriented Systems. Technical Report, ISERN-97-05, 1997.

[32] Shyam R. Chidamber and Chris F. Kemerer. A Metric Suite for Object Oriented

Design. IEEE Transactionas on Software Engineering, Vol.20, No.6, June, pp. 476-

49, 1994.

[33] Elaine J. Weyuker. Evaluating Software Complexity Measures. IEEE Transactions

on Software Engineering, Volume: 14, No. 9, pp. 1357 – 1365, 1988.

[34] J.C. Cherniavsky, C.H. Smith. On Weyuker's Axioms for Software Complexity

Measures. IEEE Transactions on Software Engineering, Volume: 17, No. 6, pp. 636-

638, June 1991.

[35] N.I. Churcher and M.J. Shepperd. Comments on : ‘a metric suite for object oriented

design’. IEEE Transactions on Software Engineering, Volume: 21, No. 3, pp. 263-

265, March 1995.

[36] N.I. Churcher and M.J. Shepperd. Towards a conceptual framework for object-

oriented software metrics. Technical report, Dept of Applied Computing and

Electronics, Bournemouth University, UK, 1995. internal report.

 104

[37] M. Hitz and B. Montazeri. Chidamber and Kemerer’s metrics suite : A measurement

theory perspective. IEEE Transactions on Software Engineering, 22, 1996.

[38] B. Henderson-Sellers. Software Metrics. Prentice Hall, Hemel Hempstead, UK,

1996.

[39] V. Basili, L. Briand and W. Melo. A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software Engineering, Volume : 22, No.

10, October 1996.

[40] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal of

systems and software, Volume: 23, No. 2, pp. 111-122, 1993.

[41] W. Li and S. Henry, D. Kafura and R. Schulman. Measuring object-oriented design.

Journal of Object Oriented Programming, pp. 48-55, July-August 1995.

[42] Victor R. Basili, Gianluigi Caldiera and H. Dieter Rombach. Goal Question Metric

Paradigm. In: "Encyclopedia of Software Engineering", Volume 1, pp. 528-532,

edited by John J. Marciniak, John Wiley & Sons, 1994.

[43] T. Gilb. Competitive Engineering: A Handbook for Systems and Software

Engineering Management Using Planguage. Pearson Education, 2001.

[44] Young-Jin Lee and Kai H. Chang. Developing Quality Measurement Model for

Object-Oriented System. Referred full paper, 39th Annual ACM Southeast

Conference, March 2001.

[45] Jana Dospisil. Measuring Code Complexity in Projects Designed with Aspect/J™.

Informing Science + IT Education (InSITE) Conference, Finland, June 2003.

[46] Jana Dospisil and Arin Khemngoen. Measuring the Complexity of Mobile Agents

Designed with Aspect/J™. Informing Science + IT Education (InSITE) Conference,

Finland, June 2003.

[47] J.-Y. Chen and J.F. Lu. A new metric for object-oriented design. Information and

Software Technology, Volume 35, No. 4, pp 232-240, April 1993.

[48] F. Brito e Abreu. Object-oriented software design metrics. Proc. of the OOPSLA’92

workshop on OO metrics, 1992.

[49] M. Hitz and B. Montazeri. Measuring product attributes of object-orientes systems.

In W. Schfer and P. Botella, editors, Proc. ESEC’95 (5th European Software

Engineering Conference), pp 124-136. Springer Verlag, September 1995.

[50] Joe Raymond Abounader and David Alex Lamb. A Data Model for Object-Oriented

Design Metrics. External Technical Report, Department of Computing and

Information Science, Queen’s University, Kingston, Ontario, Canada, October 1997.

 105

[51] F. Brito e Abreu and W. Melo. Evaluating the impact of object-oriented design on

software quality. In Proc. METRICS’96, Berlin, Germany, March 1996. IEEE.

[52] D.H. Abbott, T.D. Korson and J.D. McGregor. A proposed design complexity for

object-oriented development. Technical report, Clemson University, South Carolina,

April 1994.

[53] M. Hitz and B. Montazeri. Measuring coupling in object-oriented systems. Object

Currents. Volume 1, No. 4, 1996.

[54] J. Zhao and M. Rinard. System Dependence Graph Construction for Aspect-

Oriented Programs. MIT-LCS-TR-891, Laboratory for Computer Science, MIT,

March 2003.

[55] J. Zhao. Slicing Aspect-Oriented Software” Proc. 10th IEEE International Workshop

on Program Comprehension (IWPC'2002), pp.251-260, Paris, France, June 2002.

[56] G. Kovacs, F. Magyar and T. Gyimothy. Static slicing of Java Porgrams. Technical

Report TR-96-108, Research Group on Artifical Intelligence, Hungarian Academy

of Sciences, December 1996.

[57] M. W. Neil Walkinshaw and Marc Roper. The Java system dependence graph. In

Third IEEE International Workshop on Source Code Analysis and Manipulation,

page 55, Sept. 2003.

[58] D. Balzarotti and M. Monga. Using Program Slicing to Analyze Aspect Oriented

Composition. In Foundations of Aspect-Oriented Languages Workshop, AOSD

2004, Lancashire UK, March 2004.

[59] F. Tip. A survey of program slicing techniques. Journal of programming languages,

Volume 3, pp. 121-189, 1995.

[60] J.S. Davis and R.J. LeBlanc. A study of the applicability of complexity measures.

IEEE Transactions on Software Engineering, Volume 14 (9), pp. 1366-1371.

[61] M.J. Shepperd and D.C. Ince. The use of metrics in the early detection of design

errors. Proceeding of the European Software Engineering Conference’90. 1990.

[62] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A Testing

Methodology Using the Cyclomatic Complexity Metric. Computer Systems

Laboratory, National Institute of Standards and Technology, Gaithersburg,

September 1996.

[63] L. Briand, P. Devanbu and W. Melo. An Investigation into Coupling Measures for

C++. Technical Report ISERN 96-08, IEEE ICSE’97, Boston, USA, May 1997.

 106

[64] J.M. Bieman and B.-K. Kang. Cohesion and Reuse in an Object-Oriented System. In

Proc. ACM Symp. Software Reusability (SSR’94), pp 259-262. 1995.

[65] Bindu S. Gupta. A Critique of Cohesion Measures in the Object-Oriented Paradigm.

Master of Science Thesis, Department of Computer Science, Michigan

Technological University. March 1997.

[66] Verifysoft CMTJava, a Java Complexity Measure tool.

http://www.verifysoft.com/en_cmtjava.html (11.05.2204)

[67] Eclipse, an open extensible IDE. http://www.eclipse.org/ (11.05.2004)

[68] JMetric, a Java metric tool.

http://www.it.swin.edu.au/projects/jmetric/products/jmetric/ (11.05.2004)

[69] Package Design Principles.

http://javacentral.compuware.com/pasta/concepts/packageDesign.html (13.05.2004)

[70] The Open/Closed Principle. http://www.objectmentor.com/resources/articles/ocp.pdf

(13.05.2004)

[71] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley Oct 1999.

[72] Bison, a general-purpose parser generator.

http://www.gnu.org/software/bison/bison.html (16.05.2004)

[73] JavaCC, a parser generator for use with Java tm applications.

https://javacc.dev.java.net/ (16.05.2004)

[74] AspectJ, a seamless aspect-oriented extension to the Java tm programming language.

http://www.aspectj.org (16.05.2004)

[75] Heather Williamson. XML: The Complete Reference. Osborne/McGraw-Hill 2001.

[76] XmlWriter, an XML outputter. http://www.osjava.org/xmlwriter/index.html

(16.05.2004)

[77] JUnit, a framework to write repeatable tests. http://www.junit.org/ (20.05.2004)

[78] I want my AOP! Part 2. http://www.javaworld.com/javaworld/jw-03-2002/jw-0301-

aspect2.html (20.05.2004)

[79] G. Booch. Object Oriented Design with Applications. Benjamin/Cummings,

Redwood City, CA. 1991.

[80] Xradar, an open extensible code analysis framework and report tool for Java.

http://xradar.sourceforge.net (01.06.2004)

[81] M. Shepperd. A critique of cyclomatic complexity as a software metric. Software

Engineering Journal, 30-36, Mar 1988.

 107

[82] Karl J. Ottenstein , Linda M. Ottenstein, The program dependence graph in a

software development environment, ACM SIGPLAN Notices, v.19 n.5, p.177-184,

May 1984.

[83] Mark Weiser, Program slicing, Proceedings of the 5th international conference on

Software engineering, p.439-449, March 09-12, 1981, San Diego, California, US.

[84] God Object anti-pattern.

http://perldesignpatterns.com/perldesignpatterns.html#GodObject (02.06.2004)

[85] Raional Rose, a UML designer tool. http://www-

306.ibm.com/software/awdtools/developer/rosexde/ (07.06.2004)

[86] WhatIs.com, an encyclopedia of information technology. http://www.whatis.com

(07.06.2004)

[87] AJDT AspectJ plug-in for Eclipse. http://www.eclipse.org/ajdt/ (07.06.2004)

 109

AAppppeennddiixx BB.. GGlloossssaarryy

Advice Used in order to define the behaviour of the aspects.

ANT An open-source Java-based build tool from Apache.

Aspect Design decision that are difficult to address in acutal code

AspectJ A programming language that is a seamless aspect-oriented
extension to the Java programming language

Aspect-Oriented
Programming (AOP)

A style of programming that attempts to abstract out features
common to many parts of the code beyond simple functional
modules and thereby improve the quality of software.

Chidamber and
Kemerer (C&K)
metrics suite

A suite of measures for object-oriented systems.

Cohesion A software attribute representing the degree to which the
components are functionally connected within a software module.

Complex Plaited together, intervowen. A whole comprehending in its
compass a number of parts, especially of interconnected parts or
involved particulars, a complex or complicated whole. Opposite to
simple.

Complexity The quality of being complex.

Coupling The degree to which components depend on one another.

Crosscutting concerns Properties or are of interest in a system that can not be cleanly
encapsulated in a generalized procedure.

Custom Order Server
(COS)

Telenor Mobile’s middleware platform; one of Norway’s largest
Java based systems. Designed to give front-end applications a
consistent view across multiple backend systems.

Dependency tree See program dependence graph

 110

DIAS (2) Distributed Intelligent Agent System ver. 2.0 and ver. 2.1 (with
aspects). Central issues in this system are inter-agent
communication, interoperability, dispatching and disposing of
agents.

Document Type
Definition (DTD)

A description how an XML document is structured.

Export coupling Number of classes outside a specific module that depend on a
specific module.

Fan-in A measure of the number of functions that call some other function
(say X). A high value for fan-in means that X is thightly coupled to
the rest of the design.

Fan-out A measure of the number of functions which are called by function
X. A high value for fan-out suggests that the overall complexity of
X may be high due to the control logic needed to coordinate the
called components.

Gilb Introduced a method can be thought of as “design by measurable
objectives” where the goal is to quantify all requirements.

Goal-Question-
Metrics (GQM)

Aims at tying measurement to the overall goals of projects and
process.

Import coupling Number of dependencies a specific module has to classes outside
the module

Inter-type declaration Declarations that cut across classes and their hierarchies.

ISO 9126 A framework for evaluating software quality

Javacc A tool for parsing the code by breaking down sentences and
statements into acceptable tokens in a given language.

Joinpoint Location which is affected bu one or more crosscutting concerns.
Another way of looking at this is that joinpoints are the locations
where we can hook on new actions before or after the original code
is executed.

Lack of Cohesion in
Methods (LOCM)

A metric referring to cohesion, proposed by Chidamber and
Kemerer.

Loose cohesion of
class (LCC)

A specific cohesion metric, which is based on the transitive closure
of the matrix from TCC.

 111

Metric Although metric generally refers to the decimal-based metric
system of weights and measures, software engineers often use the
term as simply "measurement."

Object-oriented
programming (OOP)

Programming that supports object technology. It is an evolutionary
form of modular programming with more formal rules that allow
pieces of software to be reused and interchanged between programs.
Major concepts are encapsulation, inheritance and polymorphism.

Open source Free source code of a program, which is made available to the
development community at large.

Plug-in An auxiliary program that works with a major software package to
enhance its capability.

Pointcut A program element that picks out join points, as as data from the
execution context of the join points. Pointcuts are primarily used by
advices.

Program dependence
graph

The problem of static slicing restated in terms of a reachability
problem in a directed graph with vertices corresponding to
statements and control predicates, and edges corresponding to data
and control dependencies.

Program slicing A program slice consists of the parts of the program that affect the
values computed at some point of interest, referred to as a slicing
criterion.

Quality A characteristic property that defines the apparent individual nature
of something; a construct whereby objects or individuals can be
distinguished.

Quantified statements Statements that have effect many places in the underlying code.

Reenginering The application of technology and management science to the
modification of existing systems, organizations, processes, and
products in order to make them more effective, efficient, and
responsive.

Regex See regular expression

Regular expression A formal description of a language acceptable by a finite automaton
or for the behavior of a sequential switching circuit.

Tight cohesion of
class (TCC)

A specific cohesion metric.

 112

Tomcat Tomcat is the servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages
technologies. The Java Servlet and JavaServer Pages specifications
are developed by Sun under the Java Community Process.

XML Extensible Markup Language

XmlWriter An open-source tool that outputs simple XML to a file.

Xradar An open extensible code analysis framework and report tool for
Java, designed to support reengineering tasks. Originally, developed
by Telenor Mobile.

XSL XML stylesheet language.

 113

AAppppeennddiixx CC.. OOtthheerr mmeettrriiccss aanndd mmeettrriiccss
ssuuiitteess

In this appendix we present metrics and metrics suites we have not found place for in the
Theoretical foundation.

AA..11.. CCoommpplleexxiittyy mmeettrriiccss
Henry and Kafura [12] defined a complexity measure for information flow based on fan-
in/fan-out:

Complexity = C x (Fan-in x Fan-out)2

C is any measure of a complexity factor such as LOC or McCabe’s cyclomatic complexity.

From a measurement theory perspective, Fenton [5] is concerned about the lack of
“complexity” for many modules. He notes that if either fan-in or fan-out is zero, then the
multiplication leads to zero “complexity” for the module. This is obviously a flaw in the
measure, as all modules have some degree of complexity.

Shepperd [61] identified a number of theoretical problems with Henry and Kafura’s measure.
Some arise from the informal definition of the model and the notion of indirect flows, which
make it difficult to produce the model required to compute the measure. The distinction
between local and global flows and the fact that the metric penalized module reuse in the
same system are also questionable; each instance of reuse is counted as a separate information
flow. Shepperd proposed a number of refinements to Henry and Kafura’s model:

• Recursive module calls should be treated as normal calls

• Any variable shared by two or more modules should be treated as a global data

structure. Compiler and library modules should be ignored.

• Indirect flows should be counted across only one hierarchical level. Indirect flows

should be ignored, unless the same variable is both imported and exported by the

controlling module.

• No attempt should be made to include dynamic analysis of module calls.

• Duplicate flows should be ignored.

• Module length should be disregarded, as it is a separate attribute.

 114

The Shepperd refinement to Henry and Kafura’s information flow measure:

 Complexity = (Fan-in x Fan-out)2

Shepperd’s refinements attempt to capture a specific view of information flow structure,
namely development time, and are thus consistent with measurement theory.

McCabe’s cyclomatic complexity measures the amount of decision logic in a single software
module [13]. The metric measures the number of independent paths through a program,
thereby placing a numerical value on the code’s complexity. In practice it is a count of the
number of test conditions in a program. The cyclomatic complexity (CC) of a graph (G) may
be computed according to the following formula [14]:

CC(G) = Number (edges) - Number (nodes) + 1

Cyclomatic complexity has been criticized by Shepperd [81]. He claims that “it is based upon
poor theoretical foundation,” and as such should not be used as a predictor for reliability and
development effort. The cyclomatic complexity is also strongly correlated with lines code
size.

Chen and Lu [47] presents a new set of metrics for OO design, mostly concentrating on
complexity measures, as seen in Table 41.

Metric Description

Operation complexity (OpCom) ∑O(i) , where O(i) is operation i’s
complexity value, and is evaluated from a
table ranging from ‘null’ to ‘extra high’.

Operation argument complexity (OAC) ∑P(i) , where P(i) is the value of each
argument i in each operation in the class, and
is evaluated from a table giving values to
different operators (from Boolean or Integer
to File).

Attribute complexity (AC) ∑R(i) , where R(i) is the value of each
attribute in the class, and is evaluated from
the same table as OAC.

Reuse (Re) Measures whether a class is a reused one,
either from the current or a previous project.

Table 41 Chen and Lu’s OO metrics

Henderson-Sellers [38] argues that “metrics with subjective weighting in which not only are
Likert scales used, but the mapping from that scale to a numerical scale is itself fuzzy, have
no scientific validity, and should be avoided if at all possible.

 115

AA..22.. MMeettrriiccss ssuuiitteess
A collection of metrics suites are given in the following subsections.

A.1.1 Li and Henry’s metrics suite

Li and Henry [40] [41] present ten metrics in their system. They include five of the C & K
metrics, namely WMC, DIT, NOC, RFC and LCOM. In addition, they define five metrics of
their own, as shown in Table 42.

Metric Description

Message-Passing Coupling (MPC) MPC measures the complexity of message
passing among objects. MPC is the (static)
number of send statements defined in a class,
where a send statement is a message sent out
from a method in a class to a method in
another class.

Data Abstraction Coupling (DAC) A class can be viewed as an implementation
of an abstract data type (ADT). A variable
declared within a class may have a type of
ADT which is another class definition. DAC
for a class is its number of instances of
ADTs, or the number of its variables having
an ADT type.

Number of Methods (NOM) The number of local methods.

Number of semicolons (SIZE1) A LOC traditional metric.

Number of properties (SIZE2) The number of attributes plus the number of
local methods.

Table 42 Li and Henry’s proposed metrics.

Li and Henry claim that “there is a strong relationship between [their] metrics and
maintenance effort in object-oriented systems”, and that “maintenance effort can be predicted
from combinations of metrics collected from source code”. The metrics were, however, not
validated in a statistically sound manner, so it is impossible to conclude any correlation
between measurement results and maintenance effort [31].

Besides the critique that the C & K metrics receive, Li and Henry’s own metrics was also
criticised. In SIZE1 the number of semicolons is used, which is language-dependent and not
derivable until the source code is available. Hitz and Montazeri[49] argue that trying to
minimize DIT, in order to decrease complexity, leads to the guideline “do not use inheritance
at all”, while inheritance is one of the major advantages of the OO paradigm.

 116

A.1.2 MOOD metrics

Britoe e Abreu [48] [51] give a set of six metrics known as the MOOD (Metrics for Object
Oriented Design) metrics. The MOOD metrics are seen in Table 43.

Metric Description

Method Hiding Factor (MHF) The invisibility of a method is the percentage
of the total classes from which this method is
not visible.

Attribute Hiding Factor (AHF) The invisibility of an attribute is the
percentage of the total classes from which
this attribute is not visible.

Method Inheritance Factor (MIF) MIF is the sum of inherited methods divided
by the total number of available methods
(locally defined plus inherited).

Attribute Inheritance Factor (AIF) AIF is the sum of inherited attributes divided
by the total number of available attributes
(locally defined plus inherited).

Polymorphism Factor (POF) POF is the actual number of possible
different polymorphic situations divided by
the maximum number of possible distinct
polymorphic situations.

Coupling Factor (COF) COF is the actual number of coupling not
imputable to inheritance divided by the
maximum possible number of coupling in the
system.

Table 43 Brito e Abreu’s MOOD metrics.

The metrics were applied to eight projects representing eight variations of the design for the
same requirements document [51]. A correlation is established between the metrics and defect
density, failure density, and normalized rework. Most of the metrics were good predictors of
these three quality measures.

A.1.3 Interaction metrics

Abbott, Korson and McGregor [52] propose metrics for measuring the number and strength of
the object “interactions permitted” by an object oriented design. Classes in OO designs
exhibit various levels of complexity along two dimensions, as seen in Table 44.

 117

Metric Description

Interaction level (IL) The degree to which an object is likely to
interact with other objects by providing
opportunities for such interactions.

IL = K1 * (value based on number of
interactions) + K2 * (value based on strength
of interactions); where K1 and K2 are
tentatively set to 1.0 each.

Interface size (IS) The degree to which classes provide means
for information flow in and out of their
encapsulation.

IS = K3 * (value based on number of
interface items) + K4 * (value based on size
of interface items); K3 and K4 are tentatively
set to 1/8 and ¼ respectively.

Table 44 Abbott, Korson and McGregor’s proposed OO metrics.

Interface size measures the surface complexity of a class, while the interaction level measures
the opportunities for interaction between its surface and its interior.

 119

AAppppeennddiixx DD.. EExxaammppllee ccooddee

import figures.primitives.planar.Point;
import figures.primitives.solid.SolidPoint;

class Main {

 private static Point startPoint;

 public static void main(String[] args) {
 try {
 System.out.println("> starting...");
 Point p = new Point(0,0);
 startPoint = makeStartPoint();
 } catch (RuntimeException re) {
 re.printStackTrace();
 }
 System.out.println("> finished.");
 }

 public static Point makeStartPoint() {
 return null;
 }

 static class TestGUI extends javax.swing.JFrame {
 TestGUI() {
 this.disable();
 }
 }
}

privileged aspect Test {
 pointcut testptct(): call(* *.*(..));

 before(Point p, int newval): target(p) && set(int Point.xx) &&
args(newval) {
 System.err.println("> new value of x is: " + p.x + ", setting to: "
+ newval);
 }

 before(int newValue): set(int Point.*) && args(newValue) {
 if (newValue < 0) {
 throw new IllegalArgumentException("too small");
 }
 }
}

 121

AAppppeennddiixx EE.. DDTTDD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT AspectMetrics (Metrics-descriptions?, build-configuration-file)>
<!ELEMENT Metrics-descriptions (metric-description*)?>
<!ELEMENT metric-description (id, description, source-kind+)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT source-kind (#PCDATA)>
<!ELEMENT build-configuration-file (statistics, package*, class*, aspect*)>
<!ATTLIST build-configuration-file
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT package (statistics, package*, class*, aspect*)>
<!ATTLIST package
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT class (statistics, class*, aspect*, constructor*, method*)>
<!ATTLIST class
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT aspect (statistics, class*, aspect*, method*, advice*)>
<!ATTLIST aspect
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT method (statistics, class*)>
<!ATTLIST method
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT advice (statistics, class*)>
<!ATTLIST advice
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT constructor (statistics, class*)>
<!ATTLIST constructor
 name CDATA #REQUIRED
 short-name CDATA #REQUIRED
>
<!ELEMENT statistics (metric*)>
<!ELEMENT metric EMPTY>

 122

<!ATTLIST metric
 id CDATA #REQUIRED
 value CDATA #IMPLIED
 mean CDATA #IMPLIED
 sum CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 stddev CDATA #IMPLIED
>

 123

AAppppeennddiixx FF.. TTeesstt ppllaann aanndd eexxeeccuuttiioonn ooff
tthhee mmeettrriiccss ttooooll

This appendix gives a short introduction to our testing of the metrics tool.

There is two major parts in the test plan: white box and black box testing. White box or
structural testing is done with the help JUnit framework which is incorporated in the Eclipse
IDE. Black box testing or functional testing is done on DIAS 2.1 source code, where we have
manually handcounted some metrics to see if they are consistent with the results from the
tool.

AA..33.. WWhhiittee bbooxx tteessttiinngg
We have implemented 24 JUnit test classes which are placed in separate tree from original
source code, but in the same packages as the original source. These tests are mainly used for
debugging purposes, especially for complex functions. They are implemented in paralell with
the original source. Along with the tests, we have also included some test data (classes) that
are originally from the AspectJ source and made especially for testing the AspectJ compiler.
This makes them suitable for testing that we treat the tokens in the language correctly.

Test name Description

no.ntnu.aspectmetrics

AspectMetricsTest This is a setup class for most tests where
test data are chosen and the AspectJ
compiler is run. (Most test classes inherit
from this class which is abstract)

EmptyTest Just runs the super class
AspectMetricsTest.

TaskTest A simple ANT task test.

no.ntnu.aspectmetrics.calculators

AdviceCalculatorsTest Runs test on the advice-out and advice-in
calculators.

 124

CalculatorManagerTest Runs the calculator manager and prints
the results to some file.

CohesionTest Runs tests on the two cohesion
calculators.

CouplingInsidePackageTest Runs tests on the two “coupling inside
package” calculators.

CouplingOutsidePackageTest Runs tests on the two “coupling outside
package” calculators.

FanTest Runs tests on the fan-in and fan-out
calculators.

GetCalculatorNames A test that retrieves all the calculator’s
names.

StatementsTest A test for the calculation of statements.

TestStringForSourceCalculator A test to see if the removal of comments
works for some particular code lines.

no.ntnu.aspectmetrics.reporters

RunAllTest A test that runs calculations and a
reporter.

SimpleReporterTest Similar to RunAllTest, but with
implemented in a different way.

no.ntnu.aspectmetrics.sources

SourceManagerTest A test to make sure all the right sources
is made.

TestAdviceInformation A test that retrieves information about
advices and their relations.

no.ntnu.aspectmetrics.treebuilder

BuilderTestCase Some simple building tests for the
AspectJ compiler, like succession of
build and that the model is created
correctly.

PrintTree Prints the code tree for the test data
chosen in AspectMetricsTest.

 125

TestAsmManager This class tests the AsmManager which
holds the code tree and offer some
different ways of accessing it.

TestHitOnAll A test to see if the adding of aspect
HitOnAll is done correctly.

TestMakeListFile A test to see if the build configuration
file (list of source files) is made
correctly.

TestModel Finds certain nodes in the code tree
through search and prints information
about them.

TestRelations A test that checks aspect relations
(advices and introductions).

Table 45 Test classes

AA..44.. BBllaacckk bbooxx tteessttiinngg
We found at least five sources for each of the element types: method, advice, class, aspect,
file and package. The sources are chosen by random, but some specific sources are added
because they are borderline cases. We also controlled the system values. On these sources we
manually counted those metrics that were relevant and compared the the manual results with
those of from the tool. Table 45 shows how the calculations are made on different source
types and the tests are carried out in consistence with this table.

 Method Advice Class Aspect File Package System

Advice-in 0 0 calculation calculation propagation propagation propagation

Advice-out 0 calculation propagation/0 propagation propagation propagation propagation

Advices 0 0 propagation/0 calculation propagation calculation propagation

Aspects 0 0 0 0 0 calculation propagation

Classes 0 0 0 0 0 calculation propagation

Export-coupling-
inside-package 0 0 calculation calculation propagation propagation propagation

Export-coupling-
outside-package 0 0 calculation calculation propagation propagation propagation

Fan-in 0 0 calculation calculation propagation propagation propagation

Fan-out 0 0 calculation calculation propagation propagation propagation

 126

Import-coupling-
inside-package 0 0 calculation calculation propagation propagation propagation

Import-coupling-
outside-package 0 0 calculation calculation propagation propagation propagation

Inner-aspects calculation calculation calculation calculation propagation propagation propagation

Inner-classes calculation calculation calculation calculation propagation propagation propagation

Interfaces 0 0 0 0 0 calculation propagation

Loose-cohesion-
of-class 0 0 calculation calculation propagation propagation propagation

Methods 0 0 calculation calculation propagation propagation propagation

NCSS-in-methods calculation calculation propagation propagation propagation propagation propagation

Packages 0 0 0 0 0 0 calculation

Statements-in-
methods calculation calculation propagation propagation propagation propagation propagation

Tight-cohesion-
of-class 0 0 calculation calculation propagation propagation propagation

Table 46 calculations overview

