

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatenes navn: Jon Ole Nødtvedt og Man Hoang Nguyen

Fag: Datateknikk

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Mobility and context-awareness in workflow systems

Oppgavens tekst:

The main objective of this project is to develop a workflow prototype that incorporates context
information caused by mobility. This information can be used to control transitions between
activities or provide useful functionality to the user. The workflow client should be context-
aware.

Oppgaven gitt: 19. januar 2004

Besvarelsen leveres innen: 14. juni 2004

Besvarelsen levert: 14. juni 2004

Utført ved: Institutt for Datateknikk og Informasjonsvitenskap

Veileder: Carl-Fredrik Sørensen

Trondheim, 14. juni 2004

Faglærer
Alf Inge Wang

 I

Abstract

This project aims to describe how workflow systems can integrate and make use of
context information from context rich environments, to enhance the execution of
workflow processes. Context information can for example be used to control
transitions between activities, activity enactment and process/activity coordination. A
dynamic contextual environment also requires that a workflow system is capable of
responding to contextual events. A set of requirements for a context-aware workflow
system, based on existing workflow standards, theory behind context-aware
computing and activity theory, will be presented and elaborated. Prototypes, which
illustrate how these requirements can be implemented in a standard based workflow
system, are also provided. Based on the solutions presented in the prototypes, a new
interface for a workflow enactment service is presented. This new interface serves as
the link between the contextual environment and the workflow system. We also
present a solution for handling context related exception states. The definition of basic
terms in workflow systems are expanded to better support context-aware behaviour.
Ideas and solutions for more complex requirements not met in our prototypes are also
discussed, such as situated activity coordination.

 II

 III

Preface

This report is the result of a master project in workflow and context-aware systems.
The authors behind this report are Jon Ole Nødtvedt and Man Hoang Nguyen from the
Institute for Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU) in Trondheim. The master project ran from January
to June 2004.

We would like to thank our supervisor, PhD Fellow Carl-Fredrik Sørensen of the
Software Engineering group at IDI-NTNU, for valuable insights and comments during
our thesis work. We would also like to thank Torkel Fyrvik at MARINTEK, Asgeir
Drøivoldsmo at the Institute for Energy Technology in Halden, and Knut-Olav Fjell at
Statoil for providing scenarios and ideas to this project. In addition, we would like to
thank Gerd Kortuem at the Computing Department of the Lancaster University for
making their research results available to us.

Trondheim, June 14, 2004

Jon Ole Nødtvedt Man Hoang Nguyen

 IV

 V

Contents

1. Introduction ... 1

1.1 Background ... 1
1.2 Motivation .. 1
1.3 Problem description... 2
1.4 Research method .. 3
1.5 Structure of the report ... 5

Part I: State-of-the-art ... 7

2. Workflow .. 8

2.1 Basic definitions .. 9
2.2 Workflow Reference Model ... 11
2.3 Types of workflow.. 16

2.3.1 Summary ... 17
2.4 Workflow process modelling.. 17

2.4.1 Petri-net ... 18
2.4.2 State Chart Diagram.. 22
2.4.3 Activity diagram ... 24
2.4.4 Summary ... 24

2.5 Exception handling .. 25
2.5.1 Summary ... 28

3. Context-awareness ... 29

3.1 Introduction to context-awareness .. 29
3.2 Context sensing... 30
3.3 Model context information in computer systems 31

3.3.1 Context classifications ... 31
3.3.2 Entity-relationship model ... 31
3.3.3 Object oriented model ... 32
3.3.4 World model .. 33
3.3.5 ContextMap model .. 34
3.3.6 Event representation ... 35
3.3.7 Summary ... 36

3.4 Sentient objects... 36
3.4.1 Summary ... 37

4. Situated actions and planning ... 39

4.1 Summary ... 41

5. Mobile workgroups with computer based support of their work 42

5.1 HandyMan ... 42
5.2 Summary ... 44

Part II: Our contribution.. 45

6. Application scenarios ... 46

6.1 Scenario 1: Maintenance performing on an oil platform............................ 46
6.2 Scenario 2: Intelligent chemicals containers ... 52
6.3 Discussion ... 54

6.3.1 Context-awareness.. 54
6.3.2 Situated planning... 55

 VI

6.3.3 Coordination of activities ... 58
6.3.4 Summary ... 58

7. Requirements for workflow systems integrating context information 59

7.1 Basic workflow system requirements .. 59
7.2 Context information representation and retrieval....................................... 60
7.3 Context-aware functionality in a workflow system..................................... 62

7.3.1 Workflow enactment service context-awareness 62
7.3.2 Workflow client based context awareness... 64

7.4 Summary of functional requirements... 66
7.5 Mobility requirements .. 67
7.6 Non-functional requirements and design considerations........................... 67

8. Prototypes.. 68

8.1 Design overview .. 68
8.2 Context information used in workflow transitions 69

8.2.1 Prototype packages... 70
8.2.2 Workflow enactment service.. 71
8.2.3 Inter-process communication .. 72

8.3 Workflow actions based on context changes .. 75
8.4 Context exception states handling in workflow systems............................ 77

8.4.1 Handling context related exceptions.. 78
8.5 Process path revalidation .. 81
8.6 Invariant scenario .. 83
8.7 Client based context-awareness ... 84

8.7.1 Inference engine.. 84
8.7.2 Workflow client with local process enactment and rule based building
of the situated process .. 85
8.7.3 Workflow client with activity contextual post conditions..................... 87

Part III: Discussion and conclusion .. 89

9. Discussion ... 90

9.1 Discussion of prototypes ... 90
9.1.1 Context information used in the processing of workflow transitions .. 90
9.1.2 Workflow actions based on context changes 90
9.1.3 Handling context related exceptions.. 91
9.1.4 Process path selection and invariants ... 92
9.1.5 Client based context-awareness ... 92

9.2 Evaluation of research method.. 94

10. Future work.. 95

11. Conclusion... 97

Glossary .. 101
References.. 105

Appendix A: Vertical Prototyping... 113
Appendix B: UML State Chart Diagram .. 115
Appendix C: UML Activity diagram.. 116
Appendix D: Test report .. 117
Appendix E: Context information used in workflow transitions process definition... 122
Appendix F: Class diagrams for all packages in the initial prototype 125
Appendix G: Workflow actions based on context changes process definition 130

 VII

Appendix H: Revised process for exception condition .. 133
Appendix I: XML schema for exception handling rules ... 136
Appendix J: XML exception handling document for context state exception condition
.. 139
Appendix K: Process path revalidation process specification 140
Appendix L: Process path revalidation exception handler rules.............................. 144
Appendix M: Process description for invariant scenario ... 146
Appendix N: Exception handler rules for invariant scenario.................................... 151
Appendix O: Workflow client with local process enactment and rule based building of
the situated process – process description ... 153
Appendix P: Workflow client with local process enactment and rule based building of
the situated process – client knowledge base... 159
Appendix Q: Workflow client with activity contextual post conditions process
description... 162

 VIII

List of figures

Figure 1: Report overview ... 6
Figure 2: An example of an order processing workflow .. 8
Figure 3: Basic terms and their relationship.. 9
Figure 4: Workflow Reference Model – components and interfaces......................... 12
Figure 5: Workflow process definition meta-data model ... 14
Figure 6: Workflow primitives .. 19
Figure 7: The structure of a task ... 20
Figure 8: The structure of a procedure.. 21
Figure 9: An UML State Chart Diagram for an order processing workflow 23
Figure 10: An UML activity diagram for an order processing workflow 24
Figure 11: Overall FAR architecture.. 27
Figure 12: Entity relationships between key entities ... 32
Figure 13: Classification of context for an entity ... 32
Figure 14: Class hierarchy for the context information model................................... 33
Figure 15: An example of a ContextMap... 35
Figure 16: Simple sentient object model ... 37
Figure 17: Screenshot from HandyMan .. 43
Figure 18: Maintenance related business processes.. 47
Figure 19: “Verify condition” workflow ... 48
Figure 20: “Plan maintenance job” workflow ... 49
Figure 21: “Accomplish and Report” workflow .. 50
Figure 22: “Prioritise and Co-ordinate” workflow... 51
Figure 23: Left: physical view of an intelligent chemicals container. Right: Intelligent

Container Test Bed ... 52
Figure 24: Example arrangement illustrating different hazards: (a) no hazard, (b)

critical mass exceeded, (c) reactive chemicals in proximity, and (d) container
stored in a disapproved area too long. The exclamation mark indicates which
containers are involved in a hazardous condition. .. 53

Figure 25: “Accomplish and Report” workflow, revised figure................................... 57
Figure 26: Use case diagram for a basic workflow system 60
Figure 27: Use case diagram for context framework and context-aware application 62
Figure 28: Use case diagram for workflow enactment service context-awareness .. 64
Figure 29: Use case diagram for workflow client based context-awareness 65
Figure 30: Workflow process illustration ... 70
Figure 31: Component view of the complete prototype... 70
Figure 32: Class diagram of the most important classes in the workflow enactment

service... 72
Figure 33: Workflow client registration .. 73
Figure 34: Workflow client activity processing .. 74
Figure 35: Sequence diagram for context source polling from a workflow enactment

service... 75
Figure 36: Workflow processes illustration for context source subscription.............. 76
Figure 37: Context source subscription with process initialisation 77
Figure 38: Exception scenario... 78
Figure 39: Exception handling revised process illustration 79
Figure 40: Class diagram for the exception handler package................................... 80
Figure 41: Sequence diagram for the exception handlings scenario 81
Figure 42: Process path revalidation process illustration.. 82
Figure 43: Invariant scenario process illustration.. 83
Figure 44: Processes for client based context-awareness prototype........................ 86
Figure 45: Class diagram for the updated workflow client .. 86

 IX

Figure 46: Sequence diagram for activity post condition .. 88
Figure 47: WfMC workflow reference model with new interface. 97
Figure 48: Revised basic terms and relationships .. 98

 X

List of tables

Table 1: An overview of prototyping techniques ... 114
Table 2: Basic state chart diagram symbols and notations..................................... 115
Table 3: Basic activity diagram symbols and notations... 116
Table 4: Software test types.. 117
Table 5: System test for the prototype in Chapter 8.2... 118
Table 6: System test for the prototype in Chapter 8.3... 118
Table 7: System test for the prototype in Chapter 8.4... 119
Table 8: System test for the prototype in Chapter 8.5... 119
Table 9: System test for the prototype in Chapter 8.6... 120
Table 10: System test for the prototype in Chapter 8.7.2.. 120
Table 11: System test for the prototype in Chapter 8.7.3.. 121

Introduction

 1

1. Introduction

This chapter will give the reader an introduction to the project report and present the
project background, motivation, problem description and research method for our
work.

1.1 Background

The project description for this thesis was given by the MOWAHS1 project [81]. The
MOWAHS project is a basic research project carried out jointly by the Software
Engineering group and the database technology group at IDI. The project is supported
by the Norwegian Research Council. MOWAHS consists of two parts. One part of the
project looks at how mobile process support can be achieved for heterogeneous
devices. The other part looks at how support for cooperative workspaces/transactions
can be achieved. These topics are interesting because of the growth of usage of
mobile devices with Internet connection. Current tools for mobility support are
immature, and herein lay the research challenge. The MOWAHS project has three
research goals:

• Helping to understand the work processes in virtual organisations and how
they can be improved.

• Provide a flexible work environment where work processes can be executed
and shared together with artefacts belonging to those work processes.

• Distributing the results.

In our thesis work, the focus will be on work processes in the context of workflow
systems. Further, we want to look at how context information can be integrated into
workflow systems to enhance the execution of workflow processes. The context
information can among other things be used to control transitions between activities,
activity enactment and provide useful functionality to the user. The focus of our work
is related to the second research goal for the MOWAHS project. We try to use the
dynamic information from a context rich environment, to provide more dynamic
workflow processing and thereby provide a more flexible work environment for the
users.

1.2 Motivation

The motivations for a context-aware workflow system are two-fold. The first
motivation comes from the requirements for support of mobility in computer systems.
As mobile devices have become available, companies have started seeing the value in
using computerised tools in mobile business processes. The reason for this is that such

1 Mobile Work Across Heterogeneous Systems

Introduction

 2

tools may increase efficiency and profitability by providing needed information and
services in the field, which would otherwise not be available. When computerised
tools support mobility, they should also be able to dynamically handle changing
contextual surroundings. Acquisition and interpretation of context information from
the surrounding environment may be necessary for the correct execution of the
computer system and/or to provide valuable context specific information and services
to the overall system and the user.

The second motivation comes from the value workflow systems provide in industry
today. Workflow systems provide a way to plan and execute business critical
processes as efficiently as possible. The adoption of mobile computerised equipment
in companies also provides the possibility for extending workflow systems with
support for mobile work processes and activities. Mobile work processes had
previously no workflow support. As stated earlier, context-awareness becomes an
important issue when using computerised tools in a mobile setting. This is also the
case, when we are dealing with computerised workflow support of processes and
activities performed in the field. The support of such processes and activities requires
a dynamic behaviour not previously found in workflow systems. As will be explained
later in this report, workflow systems are generally very statically defined, with
support for only minimal amounts of dynamic behaviour. It is therefore important to
study how workflow systems can integrate and use context information in their
support of process and activity enactment.

1.3 Problem description

The initial task description for this thesis was:

“The main objective of this project is to develop a workflow prototype that
incorporates context information caused by mobility. This information can be
used to control transitions between activities or provide useful functionality to
the user. The workflow client should be context-aware”.

As the task description states, our focus will be on the development of workflow
prototypes, which will be context-aware. Please note that issues regarding mobility
specifically will not be the focus for this report. Instead, mobility will be considered
as a source for changes in context information. Some issues regarding mobility will
nevertheless be discussed briefly.

The report will provide a pre-study of workflow technology and context-aware
computing. Further, based on the pre-study and presented scenarios, requirements for
context-aware workflow systems will be presented. Suggested solutions to these
requirements will be presented in several prototypes. The key to our contribution lies
within the functionality that is implemented in the prototypes and how they relate to
the existing workflow standards.

The problem description clearly relates our work to existing research performed in the
field of mobile, context-aware computer systems. Since workflow systems are a

Introduction

 3

concrete example of groupware2 systems, which satisfy the need for managing task
interdependencies, and we are focusing on the design of such systems, the relation to
existing work in the groupware field is also clear. Our work does not contribute to the
understanding of cooperative work. Instead we base our understanding of cooperative
work on existing work and our own assumptions, thus this report is not directly
related to the research field of CSCW3.

1.4 Research method

Research in software engineering can rely on a wide range of methods. Most of these
research methods have the ultimate goal of answering empirical questions through
controlled experiments, but different questions call for different research methods,
because the nature of a research questions often constraint the methods that can be
used to answer them. According to [64], there are four general categories of research
approaches, each of which can be stated as follows:

• Scientific method: Scientists develop a theory to explain a phenomenon; they
propose a hypothesis and then test alternative variations of the hypothesis. As
they do so, they collect data to verify or refute the claims of the hypothesis.

• Engineering method: Engineers develop and test a solution to a hypothesis.
Based upon the results of the test, they improve the solution until it requires no
further improvement.

• Empirical method: A statistical method is proposed as a means to validate a
given hypothesis. Unlike the scientific method, there may not be a formal
model or theory describing the hypothesis. Data is collected to verify the
hypothesis.

• Analytical method: A formal theory is developed, and results derived from
that theory can be compared with empirical observations.

The main objective for our thesis is to develop prototypes that illustrate the concepts
behind context-aware workflow systems. These concepts refer to how context
information arising from for example mobility can be integrated into workflow
systems and be used to improve the execution of workflow processes. To achieve this
objective, our research work has been conducted following a combination of the
scientific and engineering method. It is important to mention that the prototypes we
have proposed in this report are not meant to be final products which do not require
any further improvement, as stated in the engineering method.

The task description forms the basis for our work. However, to elaborate further on
this description, we have defined a set of research questions to be answered in our
work:

• How to integrate context information that is usable for process reasoning and
enactment in workflow systems?

2 Groupware definition: “Computer-based systems that support groups of people engaged in a common task (or goal) and that
provide an interface to a shared environment” [19].
3 CSCW definition: “CSCW should be conceived as an endeavour to understand the nature and requirement of cooperative work
with the objective of designing computer-based technologies for cooperative work arrangements” [49].

Introduction

 4

• How to specify rules and components necessary for a workflow system to be
reactive to context changes before and during workflow process and activity
execution?

• How can a workflow system handle contextual exception states?
• How can context information be used to enable more dynamic process

execution with regards to selection of process paths?
• How can situated actions and situated process reasoning be supported in a

workflow system?
• How is situated process and activity enactment accounted for at a later time?
• How to select and use relevant context sources related to current activity or

process plan?
• How can a workflow system functions as a coordinator for cooperative

situated activities?
• How to create intelligible and accountable context-aware workflow process

systems? By intelligible we mean that a workflow system should be able to
show users what it knows about context information and what it is doing about
it. By accountable we mean that the system should enforce user accountability,
when it tries to mediate user actions that impact others.

Based on existing standards and research in the fields of context-aware systems and
workflow systems, we will try to find the interfaces and components necessary to
allow for context-aware workflow systems. Our solutions will be illustrated through
vertical prototypes4.

In addition, our research method includes the following activities:

• Literature survey: This survey was conducted to identify related literature to
workflow technology, support for context aware systems, situated-actions and
situated planning. Using the Internet and the libraries located at Gløshaugen,
Trondheim, we were able to collect and structure relevant information such as
articles, books and notes, which are within our subject. For the Internet we
used research sites such as Association for Computing Machinery (ACM)
[69], Elsevier Computer Science [73], Cite Seer [71] and Science Direct [84]
for seeking after relevant documents. The literatures study has given us useful
knowledge and information, which helped us to understand the theoretical part
of this thesis.

• Review of different sources: This review aimed at identifying the requirements

of workflow system, design and architecture considerations, and
understanding existing standards.

• Collection of data: We have been in touch with relevant companies where our

purpose was to collect information about workflow processes that are being
used in different industries. The meetings were conducted at the Statoil offices
at Rotvoll Forskningspark, at the offices of the Institute for Energy
Technology (IFE) in Halden and at NTNU where we met a representant from
MARINTEK. At Statoil we found that they were focused on mobile
technology that could be used in oil platforms. For us, it would be a great

4 Vertical Prototyping: A technique for doing prototyping. See Appendix A for a description of this term.

Introduction

 5

opportunity to get useful input from Statoil, but they did unfortunately not
have time and resources to cooperate with us. The meeting with IFE gave us
the opportunity to meet scientists working in the field of augmented reality5.
They found the ideas behind our research to be very interesting, but because of
the current state of their own projects, they did not have time to cooperate with
us. From Marintek we were given a case study, which contains workflow
process information of how to perform maintenance on an oil platform. This
case study has been used as a basis in the development of one scenario6. In
addition, we created another scenario based on the research results we got
from the people at Lancaster University. We also participated in a seminar7,
which took place at Ingeniørenes Hus in Oslo. At this seminar, we got the
chance to get updated on the current usage of mobile technology in the
Norwegian industry. Several companies and technology providers presented
respectively their needs and products within mobile computing at this seminar.
This has helped us to understand the current state of mobile computing in the
industry and which technology that is available in the market. Some of what
we learnt at this seminar has been used to specify how mobile workgroups use
mobile computing equipment.

The activities have been conducted in parallel to optimise resource usage and to
reduce the risks connected to the research nature of this project. In addition,
performing activities in parallel can improve cross-fertilisation between concurrently
running parts of the project. This approach has proven to be very useful for us.

1.5 Structure of the report

The structure of this report reflects the order in which these issues have been dealt
with throughout the research process. This report is organised as follows:

• Chapter 1: Gives the reader an introduction to the project report.
• Chapter 2: Presents the technology and ideas behind workflow systems.
• Chapter 3: Gives the reader an introduction to context-awareness in computer

systems.
• Chapter 4: Provides the theory behind situated actions and planning.
• Chapter 5: Studies mobile workgroups with computerised work support

systems.
• Chapter 6: Presents application scenarios for context-aware workflow systems.
• Chapter 7: Presents requirements for a context-aware workflow system
• Chapter 8: Presents the prototypes developed in response to the requirements.
• Chapter 9: Discusses our findings from Chapter 7 and 8.
• Chapter 10: Presents what further work should be done, based on our

contribution and our discussion.
• Chapter 11: Draws conclusions based on all parts of the report.

5 “An augmented reality system generates a composite view for the user. It is a combination of the real scene viewed by the user
and a virtual reality (VR) scene generated by the computer that augments the scene with additional information”. [65]
6 “Scenarios are short stories, descriptions about use of technology contextualised in a meaningful setting. … [Scenarios] can …
be used in describing completely novel practices made possible by new technology. [29]
7 The subject of the seminar was ”Mobile IKT-løsninger i industrien – status og fremtidsmuligheter”.

Introduction

 6

Figure 1 shows a graphical view of the chapters and how they are related in this
report. Chapter 1 contains our introduction, while Part I consists of our presentation of
workflow in Chapter 2, context-awareness in Chapter 3, situated actions and planning
in Chapter 4 and finally mobile workgroups in Chapter 5. Part II is made up of the
application scenarios and our contribution. While the final part, discusses and draws
conclusions based on all our previous parts.

Figure 1: Report overview

Chapter 1
Introduction

Chapter 2
Workflow

Chapter 6
Application scenarios

Chapter 7
Requirements

Chapter 9
Discussion

Part I

Part II

Chapter 10
Further work

Chapter 11
Conclusion

Part III

Chapter 3
Context-awareness

Chapter 4
Situated actions and

planning

Chapter 5
Mobile workgroups

Chapter 8
Prototypes

 7

Part I: State-of-the-art

The objective of this part is to provide a state-of-the-art study of workflow
technologies, context-aware systems and other related subjects. Part I begins with an
introduction to workflow. This includes workflow terminology, the workflow
reference model, types of workflow, exception handling and workflow modelling.
Further, an introduction to context-awareness, context sensing, context modelling and
sentient objects will be described in the chapter for context-awareness. The chapter
for situated actions and planning provides an introduction to these topics, which will
be used as a basis for further study into how situated actions and planning influences
workflow systems. The last chapter in this part describes some mobile workgroups
with computer based support of their work.

Workflow

 8

2. Workflow

A workflow can be described as a collection of tasks that are completed by multiple
resources. A workflow engine controls the execution of a defined business process.
The sequence of tasks constituting a workflow could execute over a period from a few
milliseconds to run for months. Typically, business processes last from a few minutes
to several days. Workflow can thus be regarded as long-lived transactions.

The concept of workflow has been around for some time. Technologies like Java [89],
XML [96], and the Web have made it easier to define and exchange information
across applications. The growth of the Web has also had a major impact on workflow,
establishing a ubiquitous8 platform to interact and participate in workflows. This
empowers businesses using workflow and makes workflow-based tools especially
useful. As businesses utilise the Web more dynamically for e-commerce [66] and for
interfacing with customers, partners, suppliers and employees, the use of workflow
technology becomes imperative. Using workflow encourages a business to capture
and define the processes it uses. As an example, Figure 2 show how a part of an order
processing workflow [72] can be automated.

Figure 2: An example of an order processing workflow

Each node in this workflow represents an activity. Activities can depend on other
activities, like Validation requires the completion of Order Placement, before it can
start. Some activities can proceed in parallel, like Inventory Check and Customer
Credit Check. Activities may be automated, or they may require manual processing.
In general, a workflow could have a combination of automated and non-automated
activities. Later in the report, we will present a more generic workflow process, which
is implemented in our prototype. This prototype uses the Workflow Management
Coalition’s Interface 1 specification, which we will describe greater detail in this
section.

8 “Ubiquitous” is a term meaning the seamless integration of computing into the fabric of everyday life.

 Order
Placement Validation

Inventory
Check

Customer
Credit
Check

Payment
Processing

Order
Fulfillment

Workflow

 9

2.1 Basic definitions

In this section, the basic terms of workflow terminology will be defined. The
relationships among them are illustrated in Figure 3 [61] according to the Workflow
Management Coalition (WfMC) [101]. WfMC is a non-profit international
standardization organization founded in August 1993. WfMC Members include
workflow vendors, users, consultants and people from the academic community.
WfMC was founded to encourage the use of workflows. Main goals include defining
workflow terminology and standardising specification used for interconnecting
workflow products.

Figure 3: Basic terms and their relationship9

Workflow
WfMC has defined workflow in [61] as:

The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules.

9 Copyright @ 2002 The Workflow Management Coalition

Business Process
(i.e what is intended to happen)

Process Definition
(a representation of what is

intended to happen)

Workflow Management System
(controls automated aspects of

the business process)

is defined in a is managed by a

Activities Process Instances
 (a representation of what is

actually happening)

composed of via
Sub-Processes

used to create &
manage

Manual
Activities

(which are not
managed as part
of the Workflow

System)

Automated
Activities

which may be

Activities Instances

include one or
more

Work Item
(tasks allocated to a
workflow participant)

Invoked Applications
(computer

tools/applications used
to support an activity)

or

which include

and/or

during execution
are represented
by

Workflow

 10

A workflow consists of a process that is automated. A work item or data set is created,
processed and changed in stages at a number of processing points to meet business
goals. Most workflow engines can handle complex series of processes. Conditions,
that can be expressed mathematically or logically, can be managed by a workflow
system.

A workflow process is normally based on several logical steps, each of which is
known as an activity. An activity can involve manual interaction with a user or
workflow participant, or the activity might be executed using machine resources.
Automating the actual work may increase efficiency, and provide managers with the
facilities to create the virtual organization, and to participate effectively in e-
commerce.

The concept of a virtual organization can be viewed as a set of participants with
various relationships that wish to share resources to perform some task. For example,
if several parties co-operate together towards a particular project, in for example a
space shuttle development project, a virtual organization is formed and each party will
be considered as the member of the virtual organization.

Workflow Management System
A workflow is created and managed in a workflow management system. WfMC has
defined workflow management system in [61] as:

A system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines, which
is able to interpret the process definition, interact with workflow participants
and, where required, invoke the use of IT tools and applications.

When making a workflow specification, a workflow planner would look at a process
to be defined and divide it into individual sub-processes. The sub-processes are then
divided into activities. This workflow specification forms the basis for the execution
of the workflow process and once made, several instances of the workflow process
can be executed simultaneously.

The main goal of a workflow management system is to manage the flow of activities
through the workflow system. Users and their roles are managed through the
workflow management system. The participation of users are managed by setting
deadlines, activity synchronisation and by passing activity data from one participant
to another and ensuring that they fulfil their contribution as expected.

Business Process
A business process is a set of one or more linked procedures or activities, which
collectively realise a business objective or policy goal. Normally it is made up within
the context of an organization structure defining functional roles and relationships
[61].

Process Definition
A process definition is a representation of a business process in a computerised form.
The representation supports automated manipulation, such as modelling, or enactment

Workflow

 11

by a workflow management system. The process definition consists of a network of
activities and their relationships, criteria to indicate the start and termination of the
process, and information about the individual activities, such as participants,
associated IT applications and data, etc. [61].

Activity
An activity is a description of a piece of work that forms one logical step within a
process. An activity may be manual, which is not supported by computer automation,
or a workflow (automated) activity. A workflow activity requires human and/or
machine resource(s) to support process execution: where a human resource is
required, an activity is allocated to a workflow participant [61].

Automated activity
An automated activity is an activity which is capable of computer automation using a
workflow management system to manage the activity during execution of the business
process, which it forms a part of [61].

Manual activity
A manual activity is an activity within a business process, which is not capable of
automation and hence lies outside the scope of a workflow management system. Such
activities may be included within a process definition, for example to support the
modelling of the process, but do not form part of a resulting workflow [61].

Process Instance
A process instance is the representation of a single enactment of a process including
its associated data. It therefore represents an instance of a process definition that
includes manual and automated aspects [61].

Activity Instance
An activity instance is the representation of an activity within a (single) enactment of
a process, for instance within a process instance [61].

Work Item
A work item is a representation of the work to be processed (by a workflow
participant) in the context of an activity within a process instance [61].

Invoked Application
An invoked application is a workflow application that is invoked by the workflow
management system to automate an activity, fully or in part, or to support a workflow
participant in processing of a work item [61].

2.2 Workflow Reference Model

The workflow reference model [62] has been developed by the WfMC to identify the
interfaces within the generic workflow product structure. Different products in the
market will have different levels of conformance to these models due to different
positioning in the market, especially concerning interoperability. Figure 4 [62]

Workflow

 12

illustrates the workflow reference model that defines a reference architecture
consisting of components and related interfaces among them.

Figure 4: Workflow Reference Model – components and interfaces10

Below is a description of these components and interfaces in Figure 4:

Workflow Enactment Service
A workflow enactment service is a software service that consists of one or more
workflow engines to manage and execute particular workflow instances [62]. As we
see in the reference model (Figure 4), the workflow enactment service is separated
from the other functions, which must be performed by a workflow management
system through the use of interfaces. Applications may interface to this service via the
workflow application programming interface (WAPI) [60].
The workflow management service may be centralised or functionally distributed. In a
distributed workflow enactment service, several workflow engines are involved in the
enactment of one process. Each workflow engine interacts only with users and
application tools managed by it. A homogenous workflow enactment service
comprises one or more compatible workflow engines, which provide the run-time
execution environment for workflow processes with a defined set of process definition
attributes. A heterogeneous workflow enactment service comprises two or more
homogeneous services, which follow common standards for interoperability at a
defined conformance level.

10 Copyright @ 2002 The Workflow Management Coalition

Workflow API and Interchange formats

Workflow Enactment Services(s)

Workflow
Engines(s)

Other Workflow
Enactment Service(s)

Workflow
Engines(s)

Administration
& Monitoring
Tools

Workflow
Client

Application

Invoked
Applications

Process Definition
Tools

Interface 2 Interface 3

Interface 4 Interface 5

Interface 1

Workflow

 13

Workflow Engine
A workflow engine is a software service that provides the run-time execution
environment for a process instance [62]. A workflow engine may be responsible for
the whole run-time process execution, but also for only a part of it.

Workflow Application Programming Interface (WAPI) & Interchange Formats
WAPI [63] is an abbreviation for Workflow API’s and Interchange Formats,
published by the WfMC, and incorporating specifications to enable interoperability
between different components of workflow management systems and applications.
WAPI consists of a set of API calls and interchange functions supported by a
workflow enactment service at its boundary for interaction with other resources and
applications. Most of the WAPI are APIs with defined parameter and result sets.

We will now describe the five interfaces that are presented in the reference model
(Figure 4):

Interface 1: Process Definition Tools
This interface provides software tools that are used by process designers to create a
representation of a business process, including all process related data, which can be
interpreted by a workflow enactment service later.

The specification for this interface [63] defines a common interchange format which
allows different tools to share process definitions and exchange information. The
interface covers standard definitions and the interchange of such information as:

• Process start and termination conditions.
• Identification of activities within a process.
• Identification of data types and access paths.
• Definition of transition conditions and flow rules.
• Information for resource allocation decisions.

To illustrate the sharing of process definitions, a workflow process meta-data model
has been created [63] in Figure 5:

Workflow

 14

Figure 5: Workflow process definition meta-data model11

The meta-data model describes commonly used entities in workflow process
definitions. Attributes are used to describe the characteristics of these entities. This
model is described in the XML Process definition language (XPDL) [63]. The top-
level entities of the model are defined in Figure 5 [63]. The different entities are
explained below:

• Workflow process definition:
o Provides contextual information which applies to all other entities. It is

also a container for the process itself.

• Workflow process activity:
o Defines a logical, self-contained unit of work. The activity may also be

a container for a separately specified sub-flow.

• Transition information:
o Binds activities together. Each transition has three elementary

properties; the from-activity, the to-activity and the condition under
which the transition is made.

• Workflow participant declaration:

o Describes the resources which function as performers in the process.
The performer does not have to be a human, but it can refer to several
people with similar responsibilities or a computer resource.

11 Copyright @ 2002 The Workflow Management Coalition

Workflow

 15

• Resource repository:

o Is associated with the workflow participant declaration. The workflow
participant declaration may refer to a resource repository or an
Organizational Model in the case of human participants.

• Workflow relevant data:

o Refers to data created within a workflow process and used during
execution of the process. The data is available to activities and
applications executed while performing the process. The data may also
be used to pass information from an activity to another and it may be
used while evaluating transitions. The same is valid for system and
environmental data. The difference is that system and environmental
data is created and maintained by the workflow management system or
the local system environment, while workflow relevant data is defined
as part of the workflow process definition.

When implementing this interface, it brings two important advantages. Firstly, it
provides independence of modelling tools and workflow run-time products. Secondly,
it provides the potential to export a process definition to several different workflow
products that could cooperate to provide a distributed run-time enactment service.

Our prototypes are also based on the specification for this interface. Interfaces 2, 3, 4
and 5 are not so relevant for our work regarding the implementation and design
considerations. However, we will give a short description of these interfaces below to
get a complete overview regarding the reference model.

Interface 2: Workflow Client Application
This interface defines standards for workflow engines to maintain work items that a
workflow client presents to the user. The workflow client presents the user with work
items and may also invoke appropriate applications to present the user with the task
and data associated with it. Once the user has completed the task, the work item is
returned to the workflow enactment service. Workflow clients may be provided as
part of a complete workflow management system or a third party product or
application.

Interface 3: Invoked Application
This interface defines a standard interface allowing a workflow engine to invoke a
wide variety of applications. This is useful in order for workflow management
systems to support complex business processes. Many workflow management systems
have to deal with limited types of applications such as word processors or
spreadsheets. For other types of applications, the required operations may be executed
using standard interchange mechanisms such as the HTTP protocol [97]. Some
workflow products use so-called “Tool Agents” that can handle the application
control and information exchange. These tool agents represent a specific invocation
technology, for instance: Microsoft .NET [79] or communication protocols like SOAP
[85], IIOP [82], DCOM [80] or CORBA [83].

Workflow

 16

Interface 4: Workflow Interoperability
This interface defines a standard interface, which will allow workflow management
systems developed by different vendors to pass work items between each other across
a network. This network can be a LAN [98], WAN [99] or Internet/Intranet. In its
glossary, the WfMC has defined workflow interoperability in [61] as:

The ability of two or more workflow engines to communicate and interoperate
in order to coordinate and execute workflow process instances across those
engines.

Different levels of interoperability are defined by the Workflow Management
Coalition in which the interoperability can be achieved. These levels range from
supporting simple passing of activities between different systems, to supporting
complete sharing and transferring of process definitions and adoption of a common
look and feel. A number of APIs have been defined to support this concept.

Interface 5: Administration & Monitoring Tools
This interface defines a standard which will allow the activity status monitoring
application of one vendor to work with workflow enactment service. This will allow
complete view of the status of work throughout the organisation and extended
enterprise without regard to which workflow system is currently controlling the work.
It will also allow users to choose better monitoring tools to work with their preferred
workflow engine.

2.3 Types of workflow

According to [3], workflow systems can be segmented into the several types:
Production, Administrative, Collaborative and Ad-hoc. These types are separated with
respect to how they are used and what features they have.

• Production workflow systems
Try to achieve the highest throughput possible. The human interaction with
the system is minimised and as many as possible activities are automated.
The tasks are usually very repetitive.

• Administrative workflow systems

Focus on the definition of the process. The definition process is made as
easy as possible. Many process definitions may run concurrently,
sacrificing throughput, but achieving flexibility.

• Collaborative workflow systems

Concentrate on supporting groups working together. Process definitions
can be changed often and they have a loose structure.

• Ad hoc workflow systems

Feature easy process definition and flexibility. This is done so that users
can adapt easily to changing circumstances. Users own their own process,

Workflow

 17

which separates this type of workflows from process workflows where the
organisations own the processes.

2.3.1 Summary

The presented WfMC standard and the types of workflow systems in the previous
sections are statically defined, because of their usage of pre-planned definition of
processes. A dynamic workflow system is essential because it will enable the
workflow system to better adapt to a dynamic context rich environment. The ad hoc
workflow system type is best suited for such dynamic behaviour. However, even an
ad hoc workflow system does not have enough dynamic behaviour we want to satisfy
the requirements in a very dynamic working environment.

2.4 Workflow process modelling

Some existing workflow management tools like Staffware [87], FlowMark [74], and
TeamWare [90] concentrate on project execution and provide little or no support for
process modelling and project planning. In particular, a process plan change during
enactment requires a complete restart of the process in most workflow management
tools. However, there are a number of other approaches in the area of process
modelling and enactment research [70]. Some examples of these approaches are:
Endeavors [10], Serendipity [24], EPOS12 [34] [38], SPADE13 [4], Petri nets [1] [2],
State Chart diagrams [68] and Activity diagrams [67]. In short, these approaches can
be described as:

• Endeavors is a support system for distributed execution of (workflow)
processes.

• Serendipity is a process modelling and enactment environment that supports
collaborative modelling as well as execution of software processes.

• EPOS is a Software Engineering Environment with emphasis on Process
Modeling, Software Configuration Management and support to cooperative
work.

• The SPADE project aims at defining and developing a software engineering
environment for software process modelling and enactment. Its process
modelling language is based on a high-level Petri net formalism.

• Petri nets are use to model concurrent systems.
• A state chart diagram is a view of a state machine that models the changing

behaviour of a state.
• Activity diagrams are a closely related modelling technique to state chart

diagrams.

These approaches all have their own way to model workflow processes with their
respective properties and attributes. By studying workflow modelling techniques, we
will get a better understanding of workflow processes modelling. We can then make

12 EPOS stands for Expert System for Program and System Development
13 SPADE stands for Software Process Analysis Design and Enactment

Workflow

 18

an informed decision as to which modelling technique is best suited to representing
context-aware workflow processes.

In the following subsections, we will present three of the approaches mentioned above
with some examples.

2.4.1 Petri-net

Petri-net14 is a conceptual framework that has been used to model and analyse a
variety of systems ranging from operating systems to logistics systems. So far, we
have seen that Workflow Management Systems (WfMSs) are software tools that
support and control specified tasks in an environmental setting. However, there is no
clear definition of these systems. Moreover, there is no general conceptual model for
workflow management systems, like the relational data model for most database
management systems. For this reason, a conceptual standard is needed for modelling
workflow systems.

The formalisation of Petri-net can also be used to model and analyse workflow
systems. In [1], the authors have suggested a Petri-net based approach to model
workflow and workflow management systems. This example is concerned with
workflows in offices and their management. As a result, they use Petri-net based
analysis techniques to analyse the workflow in an office. They have also developed a
prototype of a workflow management system based on the formalisation of Petri-net.

In [2], three good reasons for using a Petri-net-based WfMC are suggested by the
author:

• Reason 1: Formal semantics despite the graphical nature
o This means that business logic can be represented by a formal, but also

graphical, language. To illustrate this, Figure 6 shows how the
workflow primitives identified by the WfMC [62] are mapped into
Petri nets. Tasks are mapped as into transitions and relations are
modelled by places.

14 In this report, we assume that the reader knows the basic concepts of Petri nets. Otherwise, the reader may refer to [37] [43]
[44]

Workflow

 19

Figure 6: Workflow primitives

• Reason 2: State-based instead of event-based

o This allows a clear distinction between the enabling of a task and the
execution of a task. It is important to have this distinction because the
enabling of a task does not imply that the task will be executed.

• Reason 3: Abundance of analysis techniques
o Petri-nets provide several analysis techniques that can be used to prove

properties (for instance safety/ invariance properties, etc.) and to
calculate performance measures (response/ waiting times, etc.). This is
useful to evaluate alternative workflows.

The graphical representation of a Petri-net consists of places, transitions, and arcs
that connect them. Input arcs connect places with transitions, while output arcs start
at a transition and end at a place. A place can contain tokens and transitions are
components. Transitions are only allowed to fire if they are enabled, which means that
all the preconditions for the activity must be fulfilled. Figure 7 shows an example of
the structure of a task represented in Petri-net. This example is extended from Figure
2 that shows an order processing workflow. The task Validation in that workflow
process is illustrated in Figure 7.

Workflow

 20

Figure 7: The structure of a task

The task in Figure 7 can be decomposed into five transitions p1, p2, p3, p4 and p5 and
four places s1, s2, s3 and s4. Tasks are atomic, which mean they cannot be
decomposed into other tasks. Transition p1 is triggered by a job token arriving via
input connector order, which in turn sends a request to the resource manager via
output connector request_validation_resource. The job token is then consumed by
p1 and put on place s1. Each following place marks a new stage in the life-cycle of
the task. Finally, at the end, transition p5 sends a token to the resource manager to
indicate that the validated resource has been released. Transition p5 also returns the
job token to the procedure that started the task, through output connector
order_validation_task_completed.

A workflow procedure is represented in the Petri net illustration in Figure 8. This is
the same process as illustrated in Figure 2. It is easy to see that tasks and procedures
have similar connectors. A procedure is composed of tasks, control activities and
subprocedures. In the illustration control activities are marked with a “c” and tasks are
marked with a “t”. Subprocedures are usually marked with a “p”. Control activities
are mainly used to route jobs inside the procedure.

i

p1

p2

p3

p4

p5

o

o

i

o

i

o

request_validation_resource

request_validation_resource

validate_order

validation_complete

release_validation_resource

order_validation_task_completed

order

s1: awaiting validation
resource

s2: resource assigned

s3: awaiting validation
completed

s4: validation
completed

i = input
o = output

Workflow

 21

Figure 8: The structure of a procedure

The connectors for input (i) and output (o) are limited to execute_task and
finish_task for this example. This descision was made because we want to model the
procedure as simplely as possible. With many connectors, as in the example in Figure
7, the input and output arcs that are connected to each task (t) may become difficult to
follow. This is something one can take into consideration for the graphical view of
process modelling, when processes become more complex.

i

C
c1

order_placed

T
t1

C
c1

T
t2

T
t3

C
c3

 T
t4

C
c4

T
t5

o

i

execute_task

finish_task

o

order_completed

The following tasks can be
described as:
t1: Validation
t2: Inventory Check
t3: Customer Credit Check
t4: Payment processing
t5: Order fulfillment

Workflow

 22

2.4.2 State Chart Diagram

A state chart diagram15 [68] is a view of a state machine that models the changing
state of a process. State chart diagrams show the various states that an object goes
through, as well as the events that cause a transition from one state to another. State
chart diagrams are especially useful in modelling reactive objects whose states are
triggered by specific events.

State chart diagram model elements
The common model elements that state chart diagrams contain are:

• States
• Start and end states
• Transitions
• Entry, do, and exit actions

A state represents a condition during the life of an object during which it satisfies
some condition or waits for some event. Start- and end-states represent the beginning
or ending of a process. A state transition is a relationship between two states that
indicates when an object can move the focus of control to another state once certain
conditions are met. In a state chart diagram, a transition to the self element is similar
to a state transition. However, it does not move the focus of control. A state transition
contains the same source and target state.

Actions in a state chart diagram
Each state on a state chart diagram can contain multiple internal actions. An action is
best described as a task that takes place within a state. There are four possible actions
within a state:

• On entry
• On exit
• Do
• On event

Figure 9 shows an example of a state chart diagram for an order processing workflow.
The example is the same process that was illustrated in Figure 2.

15 See Appendix B for a description of notations used in Unified Modeling Language (UML) state chart diagram

Workflow

 23

Figure 9: An UML State Chart Diagram for an order processing workflow

The rounded rectangles represent states: as seen in Figure 9. These are Awaiting
Order, Order Placed, Validation, Inventory Check, Customer Credit Check,
Payment Processing, and Order Fulfillment states. An object starts in an initial
state, represented by the closed circle, and end up in a final state, represented by the
bordered circle.

The arrows in Figure 9 represent transitions, which are progressions from one state to
another. The notation for the labels on transitions is in the format event
[guard][/method list]. It is mandatory to indicate the event which causes the
transition, for example validate or order item. Guards, which are optional, are
conditions that must be true for the transition to be triggered. Guards can be described
in any manner, including both free form text and formal language. The invocation of
methods can optionally be indicated on transitions. The order in the listing implies the
order in which they are invoked.

The notation used within states is the same as that used on transitions, the only
difference being that the method list is mandatory and the event is optional. Had there
been no event indicated, those methods would have been invoked continuously (in a
loop), whenever the object is in that state. Methods to be invoked, when the object
enters the state, can be indicated by the keyword entry. Methods to be invoked as the
object exits the state can be indicated by the keyword exit. The capability to indicate
method invocations, when you enter and exit a state is useful because it enables you to
avoid documenting the same method several times on each of the transitions that enter
or exit the state, respectively.

Workflow

 24

Transitions are the result of the invocation of a method that causes a change in state.
However, we can also have recursive transitions, also called self transitions that start
and end in the same state.

2.4.3 Activity diagram

Activity diagrams16 [67] are a closely related modelling technique to state chart
diagrams. State chart diagrams model how an object changes state in response to
external stimuli. The activity diagrams model how an object changes state in response
to internal events. This means that all states are action states. This technique is
commonly used to model workflow processes. Figure 10 shows an example of a state
chart diagram for an order processing workflow.

Figure 10: An UML activity diagram for an order processing workflow

It is obvious that the activity diagram uses many of the same notations as the state
chart diagram. This has to do with the fact that an activity diagram is a special case of
a state chart diagram. As seen in Figure 10, transitions or control flow as they are
called in activity diagrams, are labelled with conditions to be satisfied.

2.4.4 Summary

A difference between the Petri-net modelling of workflow processes and the
workflow process modelling used by WfMC [63], which is an activity diagram
modelling technique [67], is that each activity is decomposed into several transitions

16 See Appendix C for a description of notations used in Unified Modeling Language (UML) activity diagram

Workflow

 25

and places for the Petri-net approach. This allows Petri-net models the advantage of
specifying the flow of an activity at a much more detailed level than the activity
approach from WfMC. We did not find detailed activity modelling essential for our
work, so we decided to go for activity diagram modelling. This technique is good for
illustrating the flow between action states of an object, which is exactly what we want
to do. The flow of an activity can also be drawn as a sub flow using the activity
diagram technique. Since we need to represent processes driven by external events,
we will also make use of the state chart diagram modelling technique.

2.5 Exception handling

Exception situations arise in workflow systems as in any other computer system. It is
therefore necessary to study how exceptions in a workflow system can be handled,
without requiring human intervention.

The WfMC definition of Interface 1 [63] defines exception transitions on the same
level as normal transitions. These transitions functions as normal transitions, but are
called exceptions, since they deviate from the expected workflow process enactment.
Transitions defined as exceptions are handled by the workflow enactment engine, like
any other transition.

There are also other ways of handling exceptions in workflow systems. There are two
types of exceptions in workflow systems in addition to what has been defined on the
workflow process definition level: expected exceptions [16] and unexpected
exceptions. These exceptions are handled by the exception handler of the workflow
system. Expected exceptions are exception situations known in advance by the
workflow planner. Unexpected exceptions are not known and usually require
intervention by humans. Expected exceptions can be handled by the exception handler
using the semantics of the workflow system. The exception handler usually uses some
form of reactive processing to handle expected exceptions. Expected exceptions are
unpredictable, asynchronous and may require special treatment. This makes these
exceptions hard to represent in workflow process definitions.

Workflow systems are gradually starting to support expected exceptions.
Commercially available workflow systems usually support a limited number of such
excepted exceptions. In [14], a new approach to exception handling of expected
exceptions is presented. This approach includes a new language for expressing
expected exceptions, called Chimera-Exc [14], and a way of integrating the exception
handler with the workflow system, called FORO Active Rule component (FAR) [14].
FORO is a workflow management system.

The exception handling mechanism defined in [14] captures exceptions and reacts to
them. The approach suggested has much in common with trigger management
strategy used in active databases [12] [13]. Active rules defined for active databases
are also representative for expected exceptions. The common characteristics are:

• Event part, which defines the symptoms of the exception.

Workflow

 26

• Condition part, which defines a check whether the event really constitutes an
exception.

• Action part, which describes what corrective action(s) to be taken.

Each rule is executed in a separate transactional context.

The exceptions need to access the state of workflow processes. This state is shared
between the workflow enactment engine and the exception handler. The authors of
[14] therefore introduce a schema definition language for managing state information
about workflows. The schema is a simple, object-oriented schema, consisting of
object classes. The classes defined in Chimera-Exc are:

• Workflow management classes, which store meta information about
workflows and their enactment.

• Exception management classes, which store meta information about
exceptions and their management

• Workflow specific classes, which store values of variables defined within
workflow schemas.

Events, conditions, actions and priorities are central in Chimera-Exc. Below follows a
closer description of these parts:

• Events
o Each event can monitor several events.
o Belong to one of 4 classes:

 Data manipulation events, which enable the monitoring of
operation that change the content of the database used.

 External events, which are raised by external applications
interacting with the exception handler

 Temporal events, which can be instant or periodic events.
 Workflow events, which enable monitoring of workflow

processes and activities.
• Conditions

o Verify that rule triggering really constitutes an actual exception.
o True conditions are conditions, which needs to be handled, while false

conditions are false alarms.
• Actions

o Define one or more primitives to be executed in order.
o Primitives are divided into two main categories:

 Data modification primitives, which can be create, modify or
delete primitives.

 Workflow management primitives, which are used to initiate
actions within the workflow enactment service.

• Priorities
o Define the order of execution within a triggered rule set.

After rules have been created, they are stored within in a rule repository. A rule only
becomes triggered, when an event belonging to that rule occurs. A Scheduler process
is responsible for starting the execution of the rules. This process responds to events
or is activated periodically. Before the actual execution takes place, the scheduler

Workflow

 27

process has to determine which rules have been triggered. These are then placed in a
ready queue before execution. The Scheduler also handles ordering according to
priority.

Exceptions defined in Chimera-Exc [14] are handled by FAR. The overall architecture
of FAR is shown in Figure 11 [14].

Figure 11: Overall FAR architecture

The main components are the Compiler, Time Manager, Scheduler and
Interpreter. Below follows a short description of each of these components.

The Compiler is responsible for translating rules written in Chimera-Exc [14] to an
internal representation. It also produces relational triggers to capture data events
directly inside the database.

The Time Manager is responsible for management of time dependent events. This
includes workflow and external events.

The Scheduler is responsible for ordering rules according to priority and submitting
them to the Interpreter for execution. It is activated periodically or in response to
real-time rule triggering.

The Interpreter is responsible for executing rules, with some degree of parallelism.

Compiler Time Manager

Scheduler Interpreter

CEIL
code

Realtime
Schedule

WF
Action

WF
Event

Foro Interface

Chimera-Exc
Rule

Basic Access Layer
(library)

ORACLE
ORACLE
Triggers

FAR Server

FAR Program

Event Flow

Service Flow

Execution Flow

External Application

External Event

Workflow

 28

2.5.1 Summary

Chimera-Exc [14] and the FAR [14] architecture provide flexible mechanisms for
handling exceptions, which arise through workflow enactment. By using this
approach one avoid having to model each exception situation in the workflow process
description. One can specify a wide range of exception situations with actions
changing both the state and possibly the description of a workflow process.

Context-awareness

 29

3. Context-awareness

An introduction to context and awareness will be presented in this chapter. Further,
context sensing, different techniques for context information modelling in computer
systems, and sentient objects which represent an approach to context-awareness in
distributed computer systems will also be presented.

3.1 Introduction to context-awareness

Several definitions for context have been put forward in the literature, serving
different purposes. In Information Bases [55], context describes a group of conceptual
entities from a particular standpoint. In Artificial Intelligence [36], context appears as
a means of partitioning a knowledge base into manageable sets or as logical construct
that facilitates reasoning activities.

Although context has already been subject of investigation in different fields, only
recently has this notion been explored for ubiquitous computing. Most of the initial
efforts for defining context in ubiquitous computing were specific for certain kinds of
context - location and time being the most obvious examples. Schilit and Theimer
[47] claimed in 1994 that the important aspects of context were the user location and
identities of nearby people. Brown et al. [11] and Ryan et al. [45] gave their definition
in terms of examples of context information instead of generalising the concept. Since
the number of examples that can be given is limited, the application of this definition
is also limited.

Schilit et al. [47] claim that the important aspects of context are where you are, who
you are with, and what resources are nearby. They define context to be the changing
environment. The environment is composed by the following views:

• Computing environment: e.g., available processors, devices accessible for
user input and display, network capacity, connectivity and costs of
computing.

• User environment: e.g., location, collection of nearby people and social
situation.

• Physical environment: e.g., lighting and noise level.

Also this definition turned out to be too specific. It was necessary to give definitions
without having to enumerate examples of context because the user experience changes
from situation to situation. For those reasons, Dey and Abowd in [18] came up with a
more generic definition of context, which is:

“Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant to

Context-awareness

 30

the interaction between a user and an application, including the user and
applications themselves”.

Context-awareness seeks to exploit human-computer interactions, by providing
computing devices with knowledge of the users’ environment, i.e. with context.
Awareness of the context can potentially be used to diminish the amount of explicit
input a user is required to give to a computing system. Contextual information about
the current activity, what the user knows and what the user and system capabilities
are, can greatly simplify the user scenario. Such manipulation of contextual
information can also be used to reduce the teaching needed, for the user to accomplish
an activity.

A definition of what it means for a computer system to be context-aware has been
provided by [18]:

“A system is context-aware if it uses context to provide relevant information
and/or services, where relevancy depends on the user’s task.”

This definition has use in the mobile computing field, where context is to a high
degree the deciding factor of the level of service when providing information and
services to mobile users.

3.2 Context sensing

A context-aware workflow system using mobile equipment in its workflow enactment
requires sensor technology beyond what commonly available today. Sensors are
usually hardwired to the system using the sensed information where all the processing
of the sensed values takes place. In other words, the sensors function as “dumb
sensors”. Examples of such sensors are thermometers and pressure sensors. This
approach to context sensing is inappropriate when dealing with distributed and mobile
context-aware systems. Mobile equipment must be able to acquire the context
information from the environment without using wires.

The development of better sensing technology is a requirement for achieving the
vision of ubiquitous computing, which is presented by Mark Weiser in [58]. Several
strides have been made in context sensing technology. Smart sensors [46] are such
an advancement. Smart sensors have built in memory, short-range wireless
transceivers and a small battery. Using this technology, it is possible to develop
mobile context-aware systems, which are capable of sensing their environmental
surroundings. Another advancement of the smart sensor technology is smart dust
[46]. This technology allows for self configuring sensors, which can be scattered
throughout the environment. The sensors would then set up a wireless network
through which sensed context information can be extracted. The goal is that these
sensors should be so cheap that they can be discarded once their batteries run out.

Context-awareness

 31

3.3 Model context information in computer systems

There are two main challenges when building a context-aware computer system.
Firstly, the system architectures have to be decided for how to map the context data
into a computer readable representation. This means that raw context data such as
sensed values from sensors have to be modelled in a computer supported
representation. To accomplish this, it is important to decide which information should
be included in a context-aware system. It is therefore necessary to adapt some form of
context classification, which separates the different types of context information. This
challenge is dealt from sections 3.3.1 to 3.3.7. We will first present several context
classifications, and we will then move on to several examples of how context
information is modelled.

The next main challenge when building a context-aware computer system is to
actually acquire sensor output and map this into a context information model, which is
then made available for the main context-aware application. Section 3.4 deals with
examples to solutions of this challenge.

3.3.1 Context classifications

A context information classification is presented by Dey et al. in [33]. The context is
classified by the entities the context addresses and categories of context information.
The most significant entities defined are places, people and things. Places refer to
geographical locations such as a room. People can be single individuals or groups of
people. Things can both be physical objects and software components. The categories
of context information are identity, location, status and time. Identity refers to a
namespace unique identifier of an entity. Location is not simply limited to
geographical location, but also aspects like orientation, elevation, co-location and
proximity are part of location. Status refers to the relevant information that can be
sensed about an entity. Time is used to characterise a situation. Together with other
pieces of context information, time can be used to produce historical information.

Schmidt et al. present a different classification in [48]. In this classification we have
two main categories of context information: human factors and physical environment,
which each has three subcategories. Orthogonal to these categories, context history
provides another dimension of context information.

3.3.2 Entity-relationship model

In [27], a solution for sensor fusion of context information from several sensors is
presented. The architecture presented uses a bit more pragmatic context classification
than the classifications presented earlier. The classification has three main categories:

1. Environment
2. The activity the user is currently performing
3. The users own physiological state.

Context-awareness

 32

The context model used in the architecture is based on the entity-relationship model
[27], which is represented in a relational database. This solution for context modelling
reflects the user-centred and application-oriented design philosophy the authors of
[32] have adopted.

The application scenario presented in [27] is a small group of users who frequently
use a conference room. Basic information about the users and the conference room is
predefined, while presence and user’s activity are dynamic based on context
information. In Figure 12 [27], the entity relationships between the conference room
and user, and user and activity are presented.

Figure 12: Entity relationships between key entities

3.3.3 Object oriented model

A system for network-centric context-aware support of mobile users in next
generation networks is presented in [30]. This system is called Transparent Enterprise
Access for Nomadic Users (TEANU). The system supports device migration between
networks and context-aware services related to these migrations.

The solution for context modelling in [30] adopts the context classification by Dey et
al. in [33]. Based on this classification a classification of context for an entity is
developed for the context-aware service. This is illustrated in Figure 13 [30].

Figure 13: Classification of context for an entity

Identity Location

Entity

Person

Device

NetMngtStation

Time Activity

identified by located at

at time of involved in

Context-awareness

 33

The TEANU system uses policy-based network Management (PBNM) [50] [75] as a
means of flexible configuration of network elements. The use of policies levitates the
network administrator of configuring every single device manually. Instead multiple
network elements can be reconfigured by changing or creating new policies. The
policy method is well suited for context, since context is usually complex, fluctuating
and layered. The policy language is an English-like declarative language, which uses
a rule-based format with “if-then” condition and action relationships. The policies are
represented as a class hierarchy. The context representation is part of this class
hierarchy as illustrated in Figure 14 [30].

Figure 14: Class hierarchy for the context information model

3.3.4 World model

Requirements for context management in the Georgia Tech’s Aware Home
environment are presented in [31]. The vision is that smart everyday devices
communicate and cooperate to provide services and information to users. This means
that the devices need to have a common representation of context.

It is important that applications can access context information in the context model.
This access is often based on identity and time or location and time as indexes for
context information. In [6], a context model using only location as index is presented.
The index represents the spatial relations between entities. Location based context
models can be divided up into topographical, topological and hybrid models.
Topographical models use geometry to model space. Topological model describes the

Context-awareness

 34

relations between spatial objects directly without placing them in a coordinate system.
Hybrid models combine these approaches. The context model in [6] is based on a
spatial structure of the real world, and is therefore called a world model.

3.3.5 ContextMap model

In [33], a scenegraph schema, called a ContextMap, is presented for context
information modelling. This solution for context information modelling has been
developed to satisfy the need for a consistent way to model context information and
address correlation between and ambiguity of context data.

The ContextMap model separates the context information of an entity into intrinsic
and relational context attributes. Intrinsic attributes can be represented without
referring to others. Relational attributes can not be represented without specifying the
relation to other entities.

A ContextMap is a directed acyclic graph, which is the traditional solution for
scenegraph. The attributes are collected through depth-first traversal. The ContextMap
represents a view of the world, which can be shared between several applications.

Entities are represented as nodes in the graph. Each node maintains its own intrinsic
attributes. Relational attributes are represented as edges in the graph.

Activity is a type of node in the graph. This node represents the social semantics of
one or more entities in the graph.

Place nodes represent entities which are places in the graph. This can be large
regions or small areas.

Object nodes represent physical objects. These nodes can have “contain”
relationships to its sub nodes.

Person nodes represent people entities in the graph. Edges from a Person node
represents “conduct” or “use” relationships.

An example of a ContextMap is illustrated in Figure 15 [33]. In this illustration, Place
nodes are represented as rectangles. Activity nodes are represented as diamonds.
People nodes are represented as ellipses. Object nodes are represented as ellipses in
grey.

Context-awareness

 35

Figure 15: An example of a ContextMap

The ContextMap model also handles context information ambiguity by tagging edges
in the map and intrinsic attributes with confidence values. These values are then used
to calculate the confidence of the sensed context.

3.3.6 Event representation

Representation of context information as events separates itself from the solutions
presented above since this solution does not represent context as an overall model.
Instead this solution focuses on the fact that context-aware applications need to
respond to changes in context. This means that context-aware applications need to
have an event-driven structure, and that context changes need to be represented as
events.

UC Berkeley Campus

Soda Hall Cory Hall South Hall Research
Education

happen
contain contain contain

Soda 523EECS

happen
happen

contain

SIMS

happen

UI research Bob Alice

happen

contain

Contain 0.9

Contain 0.3

writing pen whiteboard computer

camera tablet

conduct

use use use
use 0.9

contain contain

Context-awareness

 36

Events need to be represented in a format that both the event publisher and the event
receiver can agree on. This means that the format can be almost any computer
interpretable format. However, there exist four typical formats for events [15], which
are presented below.

Events can have a format which is encoded binary. In this format, events are
represented as a simple data structure, like a C “struct”.

Object representation allows for a more complex data structure utilising the object
oriented facilities of a high level programming language.

Attribute-value event representation is the most limiting solution. This has to do with
the difficulty of creating a good structure. However, the solution is language- and
platform independent.

XML encoding of events has the advantage of enhancing interoperability and
extensibility of events, but XML also requires substantial processing and bandwidth
overhead. In [20], an XML based solution for event format is presented. This solution
uses the resource description framework (RDF) [102]. RDF has a simple and powerful
model and syntax definition. This means that RDF is a good choice for delivering
sensed context information irrespective of the application using the context. The RDF
model consists of three object types, which form subject, predicate and object triples,
called RDF Statements. These object types are:

1. Resources: All objects described in RDF are called resources.
2. Properties: Properties describe the attributes of the resources.
3. Statements: Subject (resource), predicate (property) and the property value

(object) triple, build an RDF statement.

3.3.7 Summary

The presented context modelling techniques are closely linked with the context
classification supported and the context information, which has been considered in
our approach. It is therefore necessary to consider the application domain carefully
before deciding on a context modelling technique. The context modelling technique
used should provide easy access to the context information where it is needed.

3.4 Sentient objects

Sentient objects represent an approach to context-awareness in distributed computer
systems. Cheap sensors can be distributed throughout an environment and can be
connected through wireless networking. Mobile software components, called sentient
objects, can respond to events from sensors autonomously and act through actuators.
To allow the sentient objects to respond intelligently, these objects need to have built
in logic. In [21], a model for development of sentient objects is presented in addition
to definitions of the involved entities.

Context-awareness

 37

Sentient objects acquire context information input from sensors and respond to
changes in context information through output actuators. This means that the only
interfaces a sentient object has are sensors and actuators. An object model of a
sentient object is illustrated in Figure 16 [21].

Figure 16: Simple sentient object model

A sentient object can perform meaningful actions based on context information
through built-in logic, such as a rule based inference engine. The communication
between sentient objects is event based allowing for loose coupling between objects.
All events handled by sentient object are software events. This means that all events
registered by sensors have to be converted into software events by the sensors.
Actuators, which change the state of the environment, have to receive the software
events from sentient objects and act accordingly. In short, a sentient object consumes
software events from sensors, passes the events through control logic and produces
new software events, which the actuators handle.

The context awareness in sentient objects comes from the fact that they sense the
environment through sensors and act on the environment through actuators. The first
step in achieving context awareness in a sentient object is the capture of sensor data.
A sentient object must perform sensor fusion to get an overview of the environment.
Secondly, the context data from sensors must be represented in a usable form. This
can be done in the sensor or in the sentient object. The sentient object must then
perform context reasoning before new software events are generated for the actuators.
The inference component is responsible for the context reasoning. A knowledge base
used within the inference component forms the basis for the reasoning. This
knowledge base contains rules, which the sentient object can use in its reasoning.

3.4.1 Summary

The sentient object model is interesting in a context-aware workflow system both for
the underlying context information framework and the workflow system components
themselves. The ability to react based on sensor input through the use of a rule based
inference engine and actuators can be useful when reacting in response to contextual
conditions. Components in the underlying context information framework can be used

S
e
n
s
o
r
s

A
c
t
u
a
t
o
r
s

Rule(s)

Rule(s)

Rule(s)

Context-awareness

 38

to initiate actions in a workflow system if the sentient object model is used for those
components. Workflow clients, functioning as sentient objects, can also use own
contextual conditions to initiate actions in other workflow components and in the
environment. A workflow enactment service may also use the sentient object
abstraction to respond in a similar fashion.

Situated actions and planning

 39

4. Situated actions and
planning

This chapter will concentrate on situated planning and how this influence workflow
systems. However, we will introduce another important term, situated actions, before
we start describing situated planning. We will include a brief description of the
differences between Trukese navigators and European navigators, which was first
written by Thomas Galdwin and presented in [9]. European navigators start with a
plan or a course, which has been charted according to well known principles. Every
action the European navigator takes is related to that plan. If something unexpected
happens, the plan is first changed before action is taken. The Trukese navigator starts
with the goal instead of the plan. Information from the environment, like the wind, the
weather and the sea, influence the decisions of the navigator. The navigator responds
to changes in the environment in an ad hoc fashion. At any moment the Trukese
navigator can describe the current goal, but not a plan or course. This example
illustrates very well the difference between actions done in situ in the case of the
Trukese navigator and the pre planned actions performed by the European navigator.

Workflow systems utilise predefined process models for controlling work. This
approach has been criticised, because of the static, rigid representation of work
processes [53] [59] [7] [25].

In [54] by Suchman, the difference between actual work and representations of work
are highlighted. Suchman argues that work is essentially ad hoc and situated, and
planning must therefore be a pre activity task or plans must be constructed after the
activity is finished. This means that plans become resources for the work instead of
controlling the work. In [5], a case is made for plans as mechanisms for giving order
to work. To illustrate this, a scenario from a hospital is given. Patient’s diagnosis and
treatment plans are essential for collaboration and coordination between several health
professionals. Without such plans it would be necessary with communication to
inform everyone about the patient, the condition the patient has and how the physician
intends to treat the patient. While considering both these aspects of plans we are left
with a planning paradox [5]. On one side, work has an ad hoc nature, so plans do not
form the basis for work. On the other side, plans do play an important part in giving
order to work in almost any organisation. Based on this, one can say that plans are
made out of situated action.

Activity theory is a philosophical framework for studying human work practise. This
includes both the individual and social level. In [56], three main characteristics of
human activity are presented:

• Directed towards a material or object
• Mediated by artefacts
• Social within a culture

Situated actions and planning

 40

Activity theory states that human activity is a hierarchy of three levels. Activities are
realised through the use of actions, which are carried out by operations. The
motive for an activity stems from the reflection of and expectation to, a material or
ideal object. Actions result in objective results. Humans have anticipations for results
of an action, and these anticipations form the goals for a human performing an
activity. An activity exists as one or more actions, but the activity and action are not
identical. The conditions of a concrete situation govern how an action can be
performed. This means that actions are realised through a series of operations, where
each operation is adapted to the physical conditions of the action. At all three levels
activities are guided by anticipation.

Based on previous stated definitions and explanations of current workflow standards,
it is easy to see that workflow systems do not handle unforeseen events and
breakdowns easily. A lot of work has gone into making workflow systems capable of
handling exceptions. However, the main point in [5] is that unforeseen situations are
not exceptions, but are important parts of any activity. These situations instead serve
to develop and enhance plans for future actions. The plan is a central resource in
execution of activities and is enhanced based on the experience obtained during the
execution of activities. These points are illustrated in [5] with a prototype called the
PATIENT SCHEDULER. This prototype illustrates how coordination of patient care
within hospitals can be supported by computer technology. Activity theory gives us a
new definition of a plan [5]:

“cognitive or material artefact which supports the anticipatory reflection of future
goals for actions, based on experience about recurrent structures in life”.

Based on the definition, one can see that a major challenge for planning tools is to
support the anticipation of recurrent events in human work. This anticipation must
also be used in human work. The author of [5] has used this conceptualisation of
human activities and the experience gained from the PATIENT SCHEDULER
prototype, to discover some guidelines for design of computer support for planning:

• Producing and altering plans in the course of work:
In order for plans to become resources for future realisation of an activity, the
plan should be made as part of the activity.

• Sharing plans within a work practice:
Plans function as coordination mechanisms between several actors involved in
an activity.

• Executing plans according to the conditions of the work:
One should consider the difference between plans as anticipated results of
actions and the realisation of these actions as operations according to the
conditions of the situation.

• Inspecting plans and their potential outcome:
All plans within a work practice should be available for inspection. The
potential outcome for applying a particular plan should also be revealed.

• Monitoring the execution of plans:
It is important to monitor the progress in work according to the plan.

Plans as sequence of actions are central to human work. However plans must be
realised according to contextual conditions. Plans function as a way to anticipate and

Situated actions and planning

 41

pre handle recurring events, and to store for reuse the experience gained from
handling these events. This understanding of plans implies that workflow systems
should support mediation of the anticipatory reflection of recurrent events in human
work, instead of simply supporting routing of information. So, a planning tool should
support building, altering, sharing executing and monitoring plans; situated planning
in other words. A planning tool should therefore not promote a rigid match between
process models and work.

Workflow systems are essentially polymotivated. On one side we have workflow
systems as the mediator of work. On the side we have workflow systems as
technology of accountability. A definition of “technology of accountability” was
given in [53]:

“By technologies of accountability I mean systems aimed at the inscription and
documentation of actions to which parties are accountable […] in the sense
represented by the bookkeeper’s ledger, the record of accounts paid and those
still outstanding”.

The accountability aspect is primarily a concern of the management and not the main
goal of the organisation. From an Activity theory perspective, both these aspects
should be considered and satisfied if possible.

4.1 Summary

There are several research challenges connected to workflow systems supporting
situated activities and situated planning. The following list presents some of the
relevant research challenges:

• How can a workflow system support situated process and activity planning?
• How can situated process and activity plans be recorded, to allow the

workflow system to function as a “technology of accountability” [53].

 42

5. Mobile workgroups with
computer based support of
their work

This chapter describes an application that has been implemented for supporting
companies and their employees in work requiring mobility. By looking at how mobile
computer systems are used by mobile workgroups, we achieve an understanding of
what functionality is already present and what functionality is needed. We are also
able to get an understanding of what mobile computing equipment is used in the
industry today.

5.1 HandyMan

HandyMan is a software application created by ePocket Solutions ASA to support
electricians in their work. The system was created for the Pocket PC platform. It was
tailored for electricians since their work usually involves paper work that later have to
be entered into a computer system.

HandyMan handles memos, time spent on particular work activities and material
management. In addition, it has workflow process management through the use of
check lists. These check lists help the electrician to manage all parts of work order, to
be able to complete the work order. The main functionalies of the HandyMan system
are the following functions:

• Tasks: The user can access all information about each task to be carried out
next. This includes information such as name and address of the customer,
office messages and priority of the task. This function also keeps track of the
work progression by making sure the user follows a pre-defined workflow.

• Inventory and orders: This function allows the user to access all information
about inventory in the service car, the main company stock, and the merchants.
If a certain product is not available in the service car, an order can be sent to
the main company or a merchant.

• Hour usage: This function allows the electrician to register the time spent on
each task. It makes it possible to register how much should be charged.
HandyMan also provides all information necessary to make an invoice.

• Synchronisation: The system allows for synchronisation with both the
customer support and the economy system.

• Preferences: This function allows for tailoring of each Handyman for each
individual user.

An illustration of the HandyMan system is shown in Figure 17 [57].

 43

Figure 17: Screenshot from HandyMan

In [57], a case study was presented of the HandyMan system. This study looked at
how the system performed in five Norwegian electrician companies. The goal of the
case study was:

“Analyse the usage of tool HandyMan for the purpose of identifying requirements
and problems for support systems for mobile work from the perspective of
software developer in the context of the working environment of electricians.”

The data for the case study was collected through interviews with employees at each
of the five companies.

Based on the answers provided by the electricians, the authors of [57] found five
guidelines that must be considered when designing a system for mobile work:

1. Working environment and device: One have to consider the working
environment before starting to design a system for mobile work. The working
environment has to be compared against the available devices. In some cases it
might not be possible to find a usable mobile device.

2. The system must give the worker additional functionality: It is important
the system provides additional useful support that makes the work more
efficient for the employees using the system.

3. Usability must be top priority: Usability is often more important on mobile
devices than on desktops because of the small screen and limited input
devices.

4. A mobile work tool must be flexible: Since mobile work often is
characterised by ad-hoc work, it is important that a mobile work support tool
can cope with such tasks in an efficient manner.

5. Organisational procedures must be in place: Mobile workers often work
alone, making it difficult to get help when using the system. This makes it
very important that the employee using the system is properly trained. The
work processes of the workers should also be adapted to the mobile work
support tool. This means that there should be procedure rules for when to
synchronise, recharge and for how to handle ad hoc tasks.

 44

5.2 Summary

It is clear, based on the system mentioned above, that computer systems made for
mobile workgroup only support limited parts of the work of a mobile workgroup
participant. Limitations of connectivity, usability pose restrictions on the usage of
such computer systems. Users want flexible computer systems that provide the worker
with added functionality, compared to what was available without a mobile
computerised work support tool. We would claim that the usage of context
information is necessary to provide such functionality.

 45

Part II: Our contribution

This part presents application scenarios for a context-aware workflow system and our
contribution to the understanding and development of context-aware workflow
systems.

Application scenarios

 46

6. Application scenarios

The main objective of this chapter is to draw up some realistic scenarios based on the
case reviews and literature study. The reason for providing these application scenarios
is that we want to give a picture of how our workflow prototypes, which are presented
later, are related to actual work processes. The scenarios presented in this chapter are
based on existing processes performed in the industry today. The previous chapters of
the state-of-the-art part provide background information for our enhancement of these
processes. There are several existing scenarios in different environments in the
industry (for instance the process industry, the oil and gas industry, the mill industry,
high-tech industry, software service industry and other service industry sectors),
which are relevant for our work. Travel booking, trouble ticket application, airplane
design process and RainMain (a workflow system for the Internet) are some examples
of workflow scenarios that have been presented in [26] [39] [40] [42].

In our thesis, it is interesting to look at application scenarios, which emphasise the
issues of maintenance and safety. These issues have played an important role for the
activities that should be taken into consideration when designing a system. In
addition, we want to focus on these issues because they give us the feasibility to
implement possible functionality to promote the concepts of workflow, context-
awareness and situated planning.

In the following sections we will present two scenarios. The first scenario focuses on
maintenance as carried out on an oil production platform. The second scenario
explains how safety conditions are maintained in a chemical storage area. In the last
section we will discuss how aspects of the presented scenarios can be enhanced and
reused in a context-aware workflow system.

6.1 Scenario 1: Maintenance performing on an oil platform

Our first scenario is based on a case review [35] provided by MARINTEK17. The
scenario describes how maintenance work is performed at an oil production platform.
By following different steps of the work processes, we will see how a task is
triggered, the flow of communication between platform and onshore, until the
maintenance work is finally performed on the platform. The generic work processes
for corrective maintenance on traditional installations are illustrated in Figure 18 [35]:

17 MARINTEK, the Norwegian Marine Technology Research Institute, does research and development in the maritime sector for
industry and the public sector. Their website can be found at http://www.marintek.sintef.no

Application scenarios

 47

Verify condition Plan
maintenance job

Accomplish and
report maintenance

Prioritise and Co-ordinate
jobs

Anomaly
occur

Failure
verified

Maintenance
accomplished

Work order
is activated

Job is
planned

Figure 18: Maintenance related business processes

As can be seen in Figure 18, to perform a maintenance job three processes have been
identified; Verify condition, Plan maintenance job and Accomplish & Report.
This sequence forms the lower line in the figure. The sequence can be described as a
typical situation, which contains one single maintenance job in the “pipeline”. The
process Prioritise and Co-ordinate jobs looks at the challenges of handling a high
number of maintenance jobs in parallel. A situation with many jobs running in parallel
is normal for most complex technical systems.

Further, all processes are decomposed to a workflow process level, identifying roles,
activities and sequence/information flow. Four roles have been identified and they can
be described as follows:

• Offshore staff: consists of Field operators, Maintenance workers and

Organisers.
• Onshore staff: consists of technical support, planners and purchasing.
• Management: is located both onshore and offshore.

o Onshore management: consists of daily decision makers.
o Offshore management: consists of Operations Team Leader,

Maintenance manager, and Technical coordinator.
• Central Control Room (CCR).

Figure 19 [35] illustrates the first process of the maintenance sequence: Verify
condition workflow.

Application scenarios

 48

Offshore Onshore

Offshore staff ManagementCCR Onshore staff

Identify anomaly

Verify anomaly Verify and
diagnose
anomaly

Prepare failure
notification

Failure

Notification

Anomaly
occur

Failure
verified

Evaluate / Verify
anomaly

Occasionally

Continue
operation

No failure

Figure 19: “Verify condition” workflow

A task is triggered after the Central Control Room (CCR) has registered an anomaly
from the local environment. When the anomaly has been identified by the CCR, it is
sent to either the Onshore or Offshore staff to verify and diagnose the anomaly. When
the verification has been accomplished, two situations can occur. If the failure has
been verified, the CCR shall respond by preparing the failure notification. In the
second situation, where no failure has been found, the operation can continue.

Figure 20 [35] shows the second process of the maintenance sequence; Plan
maintenance job workflow process:

Application scenarios

 49

Offshore Onshore

Offshore staff ManagementCCR Onshore staff

Create
prosedures on
maintenance
activities.

Create
Workorder Work order

Plan job in detail.

Assist in
planning

Initiate
maintenance
tasks. Order
parts, human
resources etc.

Failure
verified

Updated Work
order

Job is
planned

Approve
notification

Approved
notification

Figure 20: “Plan maintenance job” workflow

The “Failure verified” message is sent to the management staff. The main activity for
the management is to approve the notification from the CCR. After the notification
has been approved, the CCR will be able to create procedures on the maintenance
activities. The information will then be sent to the offshore staff to create a work
order. The plan for the execution of a maintenance job is completed when the onshore
staff has planned the job in detail. The onshore staff then initiates the maintenance
tasks. As seen in Figure 20, most of the planning work is done onshore. The resulting
work orders are often incomplete when they arrive offshore, and have to be updated
there. The planning process may go several rounds between onshore and offshore
before the work order is issued. A lack of communication onshore/offshore and the
fact that planners are not present offshore are the most apparent reasons. A solution
for this problem is suggested in a later section (see Chapter 6.3.2).

Figure 21 [35] shows the last process in the maintenance sequence; Accomplish and
Report workflow:

Application scenarios

 50

Offshore Onshore

Offshore staff ManagementCCR Onshore staff

Work
order is
activated

Prepare work
permit(s)

Approve work
permit(s)

Carry out
maintenance
tasks

Close the work
permit

Report
maintenance
history

Maintenance
accomplished

Approve work
permit(s)

Prepare for
maintenance job

Prepare for
maintenance job

Active work
order

Maintenance
history

Figure 21: “Accomplish and Report” workflow

As shown in Figure 21, all activities of the actual maintenance job are performed
offshore. After a work order is activated, the offshore staff will begin to prepare the
work permit(s). The CCR is responsible for approving these work permit(s) in
conjunction with the management. The CCR also makes the necessary preparations
for the maintenance job. After this has been completed, the offshore staff is able to
carry out the maintenance tasks. A maintenance job is accomplished when the CCR
closes the work permit. The only task which remains for the offshore staff, is to
update the maintenance history for the involved equipment in the maintenance task.

As illustrated in Figure 18, there is an “alternative” path in addition to the main
sequence for performing a maintenance job. Normally, there will always be a set of
parallel maintenance jobs in the “pipeline”. The main added challenge from this fact
is prioritising and co-ordination of the activities to meet overall objectives of safety,
production performance and cost effectiveness. The workflow illustration of the
Prioritise and Co-ordinate process is shown in Figure 22 [35].

Application scenarios

 51

Offshore Onshore

Offshore staff ManagementCCR Onshore staff

Work
order is
activated

Notification Rough planning.

Coordination of
all maintenance
activities

Create
prosedures on
maintenance
activities.

Create
Workorder Work order

Weekly
planning chart

Active work
order

Prioritising
maintenance
tasks

Failure
verified

Job is
planned

Updated Work
order

Advice and
assist
technically

Figure 22: “Prioritise and Co-ordinate” workflow

As illustrated in this workflow process, the main activities here are planning,
prioritising tasks and coordination of all maintenance activities. All of these activities
belong to the Management. To support these activities, there are in addition other
activities like creating procedures on maintenance activities, which are assigned the
CCR. The onshore also assist in this process by providing technical advice. The
offshore staff’s contribution is the creation of work orders. An important issue when
coordinating all maintenance activities is that a work order shall be updated when a
parallel job is triggered (in this case a job has been planned and sent into to the
workflow process). The work order is finally activated when the Management has
prioritised their tasks and coordinated all their maintenance activities.

Application scenarios

 52

6.2 Scenario 2: Intelligent chemicals containers

This scenario is based on [52] by Strohbach et al. The issue of safety will be the focus
of this scenario. The scenario will give a description of different situations to see how
the environment will influence the system in which chemicals containers are able to
detect and alert potentially hazardous situations concerning their storage. The
situation is critical when two containers with different incompatible contents are
stored close to each other.

The motivation for describing this type of scenario, is that it is taken from a concrete
application domain, chemical processing. In this application domain, context-aware
services are developed against real needs and under consideration of realistic
constraints.

The authors of [52] have called the proposed system for Intelligent Artefacts. An
important aspect here is that the artefacts shall be able to cooperatively assess their
situation in the world, without the need for supporting infrastructure in the
environment. The Intelligent Artefacts concept is also based on embedded domain
knowledge, perceptual intelligence, and rule-based inference engines in moveable
artefacts. In order to experiment with possible hazardous situations, there has been set
up a test bed, which can be described as a scaled-down prototype of a chemical
storage facility as it may exist in a chemical processing plant. The test bed is shown in
Figure 23 [52] and consists of:

• Intelligent chemicals containers.
• Infrared beacons mounted on cones used for defining approved storage areas.
• A set of software tools for remote monitoring of the inference process and

communication of intelligent containers.

Figure 23: Left: physical view of an intelligent chemicals container. Right: Intelligent Container

Test Bed

As shown in Figure 23, the approved storage area indicates that chemical containers
may be stored in this area for an indefinite time. The unapproved area, in contrast,
indicates that chemical containers may temporarily be located in this area but must be
moved to an approved area after a certain amount of time.

Approved
area

Unapproved
area

Application scenarios

 53

The test bed is also set up with three containers a1, a2, and b. The two containers a1
and a2 are assumed to contain peroxide, while container b is assumed to be filled with
an acid. Acids are incompatible with peroxides. A sequence of container arrangements
is shown in Figure 24 [52]:

Figure 24: Example arrangement illustrating different hazards: (a) no hazard, (b) critical mass
exceeded, (c) reactive chemicals in proximity, and (d) container stored in a disapproved area too
long. The exclamation mark indicates which containers are involved in a hazardous condition.

To illustrate possible hazardous situations for the container arrangements, the
following scenarios have been identified:

• No Hazard (a)
o In this situation all containers are stored in an approved area. The

containers have been stored there with different time durations. A
hazard condition can not be found because all three containers are not
placed close enough to each other (which shall be detectable by the
ultrasound transceivers when the condition is true).

• Chemical exceeds critical mass (b)

o In this situation a hazardous situation is detected, when two containers
are placed close to each other so that too much of one chemical is
stored in one place. During the inference process, both containers
wirelessly send queries to each other to determine each others content
and mass.

• Reactive chemicals stored next to each other (c)

o In this situation, a hazardous situation is detected when two containers
with two different contents (in this case, the first container contains
peroxide and the other contains acid) are stored close to each others.

Application scenarios

 54

• Container stored in unapproved area for too long (d)

o In this situation, a hazardous situation is detected when a container is
stored in an unapproved area over a maximum time limit.

• Return to safe situation

o In this last scenario, all containers are moved back to the original
arrangement (Figure 24 (a)). Information about location (where the
containers have been stored) and proximity (distance to each others)
have also been updated in order to indicate that the containers are again
located within an approved area.

The Intelligent Artefact approach has emphasised an important aspect in which that
information gathering and reasoning can be accomplished in a decentralised way to
enable each artefact to determine the state of the world (for instance safety) by itself.
Consequently, there is no need for an external database or infrastructure.

6.3 Discussion

In this section, we will discuss how aspects of the presented scenarios can be adapted
and reused in a workflow system that incorporates context information. The reason for
this is that we want to draw up some generic functionality, which can be implemented
in our prototypes. Using this approach, we think we are able to illustrate the main
concept behind the proposed workflow system that we will discuss in this section.

Some of the common features that we can draw from the scenarios are that they all are
dealing with planning, coordination and enactment of activities, which are being
performed in the environment. Situated planning and coordination of activities should
also be taken into consideration when designing the overall process. This means that
context information from the environment should be integrated with the workflow
system. From this point of view, the workflow system will be able to plan according
to current contextual conditions, coordinate according to the contextual state of the
workflow clients and respond to contextual changes.

6.3.1 Context-awareness

It is clear that the information gathered from the environment plays an important part
in the processes described in scenario 1. This means that it is necessary to integrate
context information into the workflow enactment service to provide computerised
processing of this information. The workflow enactment service must be able to poll
or subscribe to context sources to get an overview of the current contextual conditions
and access context information gathered in individual activities of the processes.

In scenario 1, the use of context information is illustrated in Figure 19, when the CCR
has identified an anomaly that has occurred in the locale environment. This type of
triggering of an activity is an example of an ad hoc start of processes and activities.

Application scenarios

 55

To support this ad hoc triggering, the workflow enactment service should be able to
receive contextual events, for example through a subscription mechanism.

Contextual conditions are not always absolute since variance in sensors and sensor
malfunctions may indicate undefined contextual states. It is important that a context-
aware workflow system is capable of handling such situations. The handling of
undefined context states could involve human workflow participants verifying states
or ascertaining the context state through other automated means.

In Figure 19, the activity “Verify anomaly” is performed by the offshore staff. This is
done manually by the staff. In this case a tool (for instance handheld computer like
PDA18, wearable equipment etc.) can be used by a maintenance worker to gather
information from the environment and send the verified information back to the CCR.
Further, augmented artefacts (for instance smart sensors [46] or Intelligent
artefacts [52]) and inference engine and rules in the mobile device, can provide the
mobile user assistance in verifying the anomaly. The more information that can be
gathered from the environment before a worker from the offshore staff is sent out, the
more specific the provided inference rules for the activity can become as to what
context information to verify. However, complete automated verification by the CCR
may not be possible because of limitations of sensor range and sensor sensing
capabilities.

Location is another type of context information that has been illustrated in Figure 21
for the Accomplish and Report workflow process. To know what place to go to for
carrying out the maintenance tasks, a workflow system should support the workflow
participant in getting to the right location for the activity in question.

6.3.2 Situated planning

A workflow system should be built in such a way that it both supports pre-planned
and ad hoc/unplanned activities. In Figure 20, the activity “Plan job in detail” is a
typical example of a pre planned activity. In this process, the onshore staff is making a
plan to carry out the maintenance tasks. This is also a situation that can be compared
with the example of the European navigator in Chapter 4.

In the instance of the Turkese navigator in Chapter 4, the activity “Plan job in detail”
can relate to a workflow sub process where all possible sub activities are defined in
the workflow enactment service. The activity “Plan job in detail” would then involve
specification of how this sub process is to be performed based on current contextual
conditions. This specification could consist of inference rules using context
informaiton as facts. The workflow client and the workflow participant should then be
able to carry out activities by rule based inferring on the current context information
and retrieving the related activities from the workflow enactment service.

It is also possible to draw the situated planning scenario further by completely
removing the “Plan job in detail” from Figure 20 for scenario 1. This would mean that
all planning would have to be performed situated or the activities would have to be

18 Personal Digital Assistant

Application scenarios

 56

specified by the environment. A worker would then arrive at the site where the
activity is to be performed. The activity specification would then only specify a goal.
By transmitting this goal to the context services in the environment, the context
services would have to build in whole or in part a workflow process consisting of
workflow activities provided by these context services. This means that we have
augmented artefacts containing both workflow activity definitions and rules for how
these activities are related to each other based on current contextual conditions.

The first scenario, where we have limited planning of an activity by specifying sub
activities and rules for the completion of an activity, is one extreme of situated
planning. The second scenario, where all planning and activity specification is done in
the environment where the activity is to be performed, makes up the other extreme of
situated planning. In between the scenarios, lies the scenario where all the possible
sub activities is specified by workflow planners in the workflow enactment service
and the rules for sub process building is provided by the augmented artefacts in the
environment. Another possible scenario is that the rules for how to build a sub process
is provided by the workflow planners, while the environment through augmented
artefacts provide the activities for the sub process.

Figure 21 illustrates two sub processes for “Prepare for maintenance job” and “Carry
out maintenance tasks”. In this case, we want to provide a solution in which activities
are planned in the execution environment to a as high degree as possible.
Communication between offshore and onshore about these plans should be decreased
to achieve the benefit of cost effectiveness. This means that a sub process called “Plan
job in detail” can also be added between these two activities (see Figure 25).

Application scenarios

 57

Figure 25: “Accomplish and Report” workflow, revised figure.

As seen in this revised workflow process, the benefit for placing the sub process “Plan
job in detail” to the offshore staff is that we will be able to plan activities in situ. The
arrow that points back to the process “Plan job in detail” from “Carry out maintenance
tasks” indicates that the workflow system should support re-planning, as work is
progressing based on changing contextual conditions (for example when unanticipated
events occur in the environment). In this situation, the process is being defined in the
context of dynamic changes in the environment. The maintenance worker should
perform the tasks until a defined post condition is achieved, since the maintenance
worker obviously functions as an actuator in the environment altering the contextual
state. The workflow system should also provide for learning based on the plan created
and new activities defined from the detailed job planning to improve workflow
processing at a later stage. All of these issues should be taken into consideration when
designing context-aware workflow systems.

Offshore Onshore

Offshore staff Management CCR Onshore staff

Work
order is
activated

Prepare work
permit(s)

Approve work
permit(s)

Carry out
maintenance
tasks Close the work

permit

Report
maintenance
history

Maintenance
accomplished

Approve work
permit(s)

Prepare for
maintenance job

Prepare for
maintenance job

Active work
order

Maintenance
history

Plan job in
detail

Application scenarios

 58

6.3.3 Coordination of activities

Coordination of activities is illustrated in Figure 22 for scenario 1. In this scenario, the
management is responsible for prioritising tasks and coordination of incoming
activities. To achieve this, the management is dependent on supporting processes such
as: create procedures, create work order and update work order. When we relate this
to a workflow system, we can assume that coordination of activities should be
supported to delegate activities to workflow clients. For this coordination, individual
workflow participants performing activities become context sources for the workflow
system and each other. In this case, a workflow system should be able to coordinate
the activities so that maintenance workers do not have to perform activities that
interfere with each other. For activities performed in situ, rules specifying process or
activity planning should also describe the activity’s relations to other activities being
performed. The workflow clients will then become context sources for each other,
which can be used during situated planning.

6.3.4 Summary

Based on the issues that we have discussed in this section, we will at this point
summarise some possible generic functionality that we think should be taken into
consideration for the overall design of a context aware workflow application:

- Integration of context information into workflow processes. This could be
done using existing technology and standards provided by WfMC.

- Ad hoc activity and process enactment.
- Undefined context state exception handling.
- Situated planning.
- Process and activity coordination.

In addition, it should be considered how a context information infrastructure can be
built to support context information retrieval and exchange between a workflow
system, participants in the system and the environment. How context information
history can be maintained is another important aspect. The sensors in the environment
need to be integrated with the context information framework and this integration is
another important aspect of a context information infrastructure. We have decided to
focus on the actual usage of context information in workflow system, but we will
discuss these aspects briefly.

Based on our discussion in this chapter, we will specify requirements and design
considerations for our prototypes.

Requirements for workflow systems integrating context information

 59

7. Requirements for workflow
systems integrating context
information

In this and the following chapter, our contribution in the development of context-
aware workflow systems will be presented. We start by presenting the requirements
for such a system. The following chapter will present prototypes of workflow
systems, which focus on different aspects of the dynamic nature of a context-aware
workflow system.

This chapter specifies both the functional and non-functional requirements for a
context-aware workflow system. The presented requirements are related to the
previously presented WfMC standards and the application scenarios discussed. By
using the standards and the scenarios as a starting point, it is possible to specify some
requirements for a general workflow system supporting context-aware processing of
processes and activities.

7.1 Basic workflow system requirements

It is not possible to describe the requirements of a context-aware workflow system
without first specifying the requirements of a general workflow system. We will
attempt to follow the workflow standards as presented by the WfMC as far as
possible. This includes the Workflow Reference Model [62] and the specified
interfaces. Our prototypes should only extend the WfMC specifications, when
absolutely necessary. The most important of the interface definitions for us is the
WfMC’s Interface 1 specification [63], which specifies the interface between the
workflow enactment service and the process definition. This specification will be used
as the basis for our workflow enactment engine. The other interface specifications are
not directly relevant for our work, and we will only mention these briefly and when
our solutions are incompatible with these specifications.

As we attempt to follow the WfMC’s Interface 1 specification [63], the foremost
requirement is that the workflow enactment service is able to interpret a workflow
process specified in XPDL and execute according to this definition. The execution of
a process definition entails sending and receiving activities, evaluation of transitions
and updating workflow relevant data. The enactment service may have several
concurrently running processes with different process definitions. The enactment
service must be able to communicate with workflow clients over a network to send
and receive workflow activities. This constitutes our requirements of a basic
workflow system. Figure 26 illustrates the actors and use cases in such a system. The
actors are the workflow enactment service, the workflow client application and the

Requirements for workflow systems integrating context information

 60

workflow participant. These three actors perform the tasks in a basic workflow
system.

Enact process description
Workflow enactment

service

Workflow
participant

Perform activity
Workflow client

Communicate activity data

Update workflow relevant
data

Evaluate transitions

<<include>>

<<include>>

Figure 26: Use case diagram for a basic workflow system

As was concluded in Chapter 2.4, we have decided to represent our workflow
processes using both the state chart modelling technique and the activity diagram
model.

7.2 Context information representation and retrieval

The underlying context support system is an important part of any context-aware
system. A general context-aware system poses several requirements to such a system.
We have two key requirements related to the context support system. The first
requirement is to remove low-level input handling from the context-aware system.
The second requirement is for context interpretation and aggregation to be provided
by the context support system.

The requirement for removal of low level input handling from the main application
code is necessary to provide for reuse of existing context handling code. This is
important in a workflow system where different workflow processes and workflow
clients may use the same context sensors.

A level of context interpretation and aggregation provided by a context-support
system is necessary to allow for reuse of context interpretations. The higher the level
of context interpretation and aggregation becomes, the more difficult it becomes to
present users with the reasons behind the actions taken by the system on behalf of the
users [8]. Nevertheless, for this report, the need for reuse of context interpretations
will be considered superior to the need for showing users the “reasoning” behind the
actions performed based on context information. This has to do with the fact that most
aspects of the execution of workflow processes are performed autonomously by the

Requirements for workflow systems integrating context information

 61

workflow engine. In addition, workflow processes are highly planned sequences of
activities, so the addition of context information in the transitions of a workflow must
be planned by the workflow designer to obtain the desired effect. Workflow
transitions can already be based on context information, so the goal must be to enable
workflow systems to handle the dynamic contextual environment that exists in the
mobile world.

Dey et al. have presented a context information framework in [17], which contains
several abstractions for context information collection and transformation. A
summary of this article was presented in [41]. A widget abstraction communicates
directly with context sources, such as sensors, and provides the lowest level of
abstraction. We chose to use this abstraction for our context sources. A widget
transforms low-level input from sensors into the context information representation
used by the system. Since we achieve the effect of having underlying context sources
by using this abstraction for our overall system, there is no need for actual sensors in
our prototypes. This means that the widgets provide our context information. The
context information framework in [17] also uses a discoverer service that satisfies
the requirement for locating distributed context sources. The discoverer service
works by allowing context sources to register with attributes describing the context
information they provide. The context-aware system can then query this discoverer
service to get a handle to the context source. This service is useful when trying to
locate context sources, so our prototypes also include this service.

Context sources should provide two means of context information retrieval. This
means that both context source polling and subscription to context sources should be
supported. The polling approach gives us the ability to retrieve context information
when it is needed, but we are not notified of changes to the context information. The
publish/subscribe paradigm used when subscribing to context sources does not
provide context information at once, but listeners receive context events when such
events occurs. It is also necessary to allow subscribers to specify conditions for when
they should receive contextual events, at least when workflow clients are receivers of
these events. Workflow clients running on limited mobile devices may easily be
overloaded under such conditions. A workflow system should also specify conditions
for receiving these events on some level, to avoid unnecessary processing.

Requirements for workflow systems integrating context information

 62

Lookup context source

Poll context source

Subscribe to context source

Receive context event

Context-aware
Application

Register with discoverer

Publish context event

Context source

Figure 27: Use case diagram for context framework and context-aware application

Figure 27 shows the actors and use cases involved in usage of the context information
framework. The context source provides the context information. The context-aware
application uses the services of the other actors. The discoverer is not shown in the
illustration, since it does not perform actions. It simply provides access to context
sources.

7.3 Context-aware functionality in a workflow system

The goal of this report is to integrate and make use of context-information in our
workflow prototypes. This includes the acquisition and usage in both the workflow
enactment service and the workflow client. This means that the previously given
requirements for a workflow system needs to be extended with requirements for the
context-aware functionality needed.

7.3.1 Workflow enactment service context-awareness

We will first look at context-aware functionality in the workflow enactment service.
The first requirement for context-awareness in a workflow enactment service is the

Requirements for workflow systems integrating context information

 63

ability to use context information in the processing of workflow transitions. This is
possible using the current standards. However, the modelling of context source
lookup, polling/subscription and conversion of the context information between the
context information representation and the workflow representation, must be as easy
as possible.

Responsiveness to contextual changes is another important requirement for a context-
aware workflow system. For the workflow enactment service part, this means that the
enactment service must be able to handle several different types of events. Ad hoc
start of processes and activities are an important requirement related to responsiveness
to contextual changes. This means that context events can be considered as pre-
conditions for process and activity start. Since activities may influence the
environment and the environment changes over time, context events may also
function as terminators to process enactment. This means that context events can be
considered as post conditions to processes. Context events may also invalidate
previous satisfied conditions for the current process path. In such an invariant
scenario, it is necessary for the enactment engine to revalidate the current process path
or choose another. A workflow enactment service must therefore be able to set up
subscription and receive context events. These events must then be mapped to the
correct process and the correct response must be executed.

Contextual changes may also open new process paths, which earlier in the process
enactment had been discarded. A workflow enactment service should therefore be
capable of finding other ways to finish a process if the current process path does not
lead to the process goal with the current contextual situation.

The contextual environment is not always in defined states. It is therefore sometimes
impossible for the underlying context sources to decide the concrete state the
environment is in. This situation may require the workflow system to decide the
contextual state with more elaborate means or the situation may require human
intervention. A workflow enactment service must therefore be able to handle this
exception situation and provide solutions for the management of such situations.

Activity theory [56] and situated planning [5] also lay out important requirements for
our prototypes. It is necessary to allow for both pre-planned and unplanned workflow
process enactment. Pre-planned workflow enactment is already provided for in the
WfMC specifications. Unplanned workflow represents more of a challenge since this
is not yet part of any specification. The building of workflow processes based on
current contextual state is therefore necessary functionality of a workflow enactment
service. This functionality can be based on rules provided for context state evaluation
and linking the current state(s) with one or more activities. The other possibility is that
augmented artefacts are capable of returning activities to be performed based on input
of the overall goal from the workflow enactment service and communication between
the relevant augmented artefacts to ascertain the current contextual state. The
environment itself may also provide goals instead of the workflow client based on its
own perception of the current state. The new process should become part of the
overall process definition to allow the context-aware workflow system to work as a
“technology of accountability” [5].

Requirements for workflow systems integrating context information

 64

Figure 28 illustrates the previously mentioned requirements for context-awareness in
a workflow enactment service.

Use context information in
transitions

Respond to context changes

Manage contextual
exeception situations

Enact pre-planned process

Build and enact unplanned
process

Workflow Enactment
Service

Poll/subscribe to context
source

Figure 28: Use case diagram for workflow enactment service context-awareness

7.3.2 Workflow client based context awareness

The workflow clients have a relatively simple function according to the WfMC
Interface 1 [63] specification. They receive activity definitions with related data and
update the data as necessary and then return the activity to the workflow enactment
service.

The relation between workflow systems and Activity theory [56] and situated
planning [5] mean that we have to enhance the functionality of the workflow client.
When a workflow client receives an activity, which specifies a job to be done at a
remote location, activity theory specifies that this action is best done in situ. A
workflow client should therefore benefit from being able to enact a process definition
by itself. Of course, the workflow enactment service should be capable of processing
this for the workflow client, but it is possible to envision a situation in a mobile
scenario where the necessary communication is not possible or undesirable. All
possible contextual conditions at the site, where the activity is to be performed, cannot
be known in advance by a workflow planner. Several rules, specifying how the
workflow client should interpret the contextual situation, must be provided along with
the activity definition. All activities, which are to be performed in situ to solve the
overall activity, can either be defined in advance if they are known or by the
environment itself. A workflow client must be able to carry out process enactment,
poll or subscribe to context sources and interpret the contextual state based on rules. A
process path based on activities received from augmented artefacts in the environment
or the local or central workflow enactment service must also be built.

Requirements for workflow systems integrating context information

 65

Activity coordination is another important aspect of workflow process enactment. It is
possible to have several concurrent activities running in a workflow system.
Sometimes these processes directly affect each other. In existing workflow systems,
the coordination is handled by the workflow enactment service. In the situated
planning scenario, this is not as easy if one want to achieve the highest possible
efficiency. Individual situated activities performed by one workflow participant as a
result of situated planning may function as pre-conditions for other situated actions
performed by another workflow participant. In this scenario, the workflow clients of
the workflow participant would work as context sources for each other. The rules for
each activity, to be performed in situ, must therefore specify the relation to other
activities, also performed in situ. The polling or subscription to another workflow
client would not be any different from the subscription to any other context source.
The current state of the local enactment service in the workflow client works as the
context source.

Contextual post-conditions for activities are best handled by workflow clients. This
applies to both normal activities and situated activities. A workflow client should
therefore handle such conditions.

Figure 29 illustrates the use cases for the workflow client and the participant using the
client based on the previously mentioned requirements for client based context-
awareness.

Build and enact process
based on current context

Perform situated activity Workflow Participant Perform pre-planned activity

Poll/subscribe context source Provide context informaiton
to other workflow clients

Manage activity post
conditions

Workflow Client

Use context informaiton in
situated activity coordination

Figure 29: Use case diagram for workflow client based context-awareness

Requirements for workflow systems integrating context information

 66

7.4 Summary of functional requirements

The previous sections presented several functional requirements for a context-aware
workflow system and its support components. We will summarise there requirements
in this section.

The following list summarises the requirements for a basic workflow system:

• Adhere to the WfMC standards and the Interface 1 specification in particular.
• Interpret and enact process definition specified in the XPDL language.
• Send and receive activities.
• Evaluate transitions.
• Update workflow relevant data, based on completed activities from workflow

participants, which has updated such data.
• Perform concurrent enactment of processes.
• Communicate with workflow clients to send and receive activities.

To summarise the requirements for context information representation, interpretation
and retrieval, the following list is provided:

• Widget abstraction for context sources to remove low-level input handling
from the main application code (separation of concerns) and to provide limited
context interpretation.

• Discoverer service for context source lookup.
• Support both polling and publish/subscribe mechanisms for context

information retrieval from context sources.

To summarise the functional requirements related to the use of context information in
workflow systems, the following list is provided:
For a workflow enactment service:

• Context information used in the evaluation of workflow transitions.
• Easy process definition of context source lookup, polling and conversion of

the context information between the context representation and the workflow
representation.

• Responsiveness to contextual changes or events:
o Ad hoc start of processes and activities.
o Context as post conditions for processes.
o Correct handling of invariant conditions.

• Support revalidation of selected process paths, if the current path does not lead
to the process goal.

• Exception handling of undefined contextual states.
• Support both pre-planned and unplanned process enactment, by providing

rule-based process building with learning.

Workflow client based context-awareness:

Requirements for workflow systems integrating context information

 67

• Perform situated planning based on current contextual conditions.
• Perform situated activity coordination between workflow participants.
• Context as post-condition for activities.

7.5 Mobility requirements

The requirement for mobility is of lesser concern for our prototypes. We will however
mention these here, since they form a basis for a discussion of our prototypes. The
background for these requirements was presented in [41]. Generally, a workflow
system supporting mobility should try to fulfil the following requirements. These
requirements are related to both the underlying technology as well as the workflow
system itself:

• Support for physical mobility and network mobility.
• Support for unreliable communications.
• Support for disconnected operations and asynchronous communications.
• Activity locking with support for reassignment of activities.
• Flexible task assignment support.
• Support for session mobility.
• User able to select the data elements to be transferred to the mobile device.
• Device independence.

7.6 Non-functional requirements and design
considerations

We base our work on vertical prototype development and the prototypes provide
proof-of-concepts. The stakeholders in a context-aware workflow system are the
workflow participants, the workflow planners, system developers and support
personnel for system operation and management. However, we are not considering a
fully implemented context-aware workflow system. The main stakeholders are
therefore reduced to us as prototype developers and possibly other developers, who
want to extend our prototypes. This means that in practice all of our non-functional
requirements to our prototypes are related to us as developers.

Each prototype builds on the earlier created prototypes. This makes the non-functional
requirements for modifiability and reusability essential for our system design. This
means that our system design should promote:

• Separate components.
• Loose coupling between components.
• Separation of concerns, by separating functionality between components.

We will follow these requirements in the architecture and design of all our prototypes.

Prototypes

 68

8. Prototypes

In this chapter we will the present the prototypes, which represent our solutions to the
stated requirements. Each prototype focuses on different sets of requirements and all
requirements will unfortunately not be covered by our prototypes. The prototypes are
developed iteratively, so each prototype extends the functionality of the previous
prototypes. The prototypes are presented in the order they were created. The source
code, the Java documentation and the prototype programs can also be found in the
attached CD-ROM. A simplified test report for the prototypes is provided in
Appendix D.

8.1 Design overview

It is first necessary to know how we will represent context information in our
prototypes. Chapter 3.3 lists several context information representation and modelling
techniques. We have chosen to go with an event representation of context
information. This stems from the fact that we wanted to represent context information
in the simplest way possible. The information itself should not be complex either, so a
context source generating Boolean values is ideal. The other reason why an event
representation of context information satisfied our needs is that the workflow system
needs to be responsive to events coming from an external source. When we
considered both of these requirements, the choice of representation became easy.
Further, events can be represented in several ways. Since our context information is
not very complex, a simple data structure containing the context information is
sufficient.

The non-functional requirements for separate components and separation of concerns
lead us to separate the prototypes into several components at the outset. We created
five components, which run as separate processes. These are:

• BooleanWidget – Process which provides Boolean context values.
• Discoverer – The discoverer service, which provides service discovery for

context sources.
• CII19 – The link between the workflow enactment service and the context

framework components.
• WorkflowClient – A workflow client, representing a human workflow

participant.
• WorkflowEnactmentService – The workflow enactment service, which

carries out enactment of workflow process descriptions.

19 CII: Context Information Integrator component.

Prototypes

 69

The processes are connected using Java RMI20 [88] over a TCP/IP21 [76][77] network.
The choice of Java RMI was based on the fact that we wanted an easily available
system for distributed computing to illustrate how context information can be
integrated into a workflow enactment service. The main drawback of Java RMI is the
fact that it is based on synchronous communication, and as such is not well suited for
mobile systems. We chose to disregard this drawback at this stage, since it is not
critical to illustrate the main point behind the prototypes.

The following sections specify a more detailed design for each prototype.

8.2 Context information used in workflow transitions

This prototype is made in response to the following functional requirements:

• Adhere to the WfMC standards and the Interface 1 specification in particular.
• Interpret and enact process definition specified in the XPDL language.
• Send and receive activities.
• Evaluate transitions.
• Update workflow relevant data, based on completed activities from workflow

participants, which has updated such data.
• Perform concurrent enactment of processes.
• Communicate with workflow clients to send and receive activities.
• Context information used in the processing of workflow process transitions.
• Easy process definition of context source lookup, polling and subscription and

conversion of the context information between the context representation and
the workflow representation.

Context information can be used in the evaluation of workflow transitions. Process
paths in a workflow processes can be dependent on certain specific conditions being
valid, before the workflow system commences enactment of the process path. An
example of such a condition is to check customer credit before an order is fulfilled.
Another example is that a certain system has to be off-line before maintenance is
initiated.

To illustrate how context information can be used in the evaluation of workflow
transitions, a simple prototype has been constructed. This prototype uses the WfMC’s
Interface 1 specification [63] to build a workflow enactment service. As specified in
this specification, an XPDL document is used to create the workflow processes. The
workflow enactment service reads this document as part of its initialisation procedure.
The parsing of the XML is based on the Xerces parser [91]. The XPDL document
used in this prototype specifies a process with three activities and two transitions.
Activity 2 and 3 each has one specified performer. Activity 1 is the actual query of the
context source, which forms the basis for the transition that follows. In this example, a
context source providing Boolean values is used. Based on the returned Boolean
value, the workflow enactment service evaluates which transition to use. The

20 RMI: Remote Method Invocation
21 TCP/IP: Transmission Control Protocol/Internet Protocol

Prototypes

 70

workflow enactment service sends the correct activity to the specified performer
based on the context information provided. An activity diagram illustration is
provided in Figure 30. The complete XPDL specification can be found in Appendix E.

Figure 30: Workflow process illustration

8.2.1 Prototype packages

The prototype consists of eleven packages. These packages are illustrated in Figure
31. The dependencies between the packages illustrate which packages use the
facilities of the other packages. We have collected several of the interfaces used in
communication between the different processes in the “common” package. This was
done to make the processes separate from each other by allowing each process to have
everything it needs without needing to have the complete implementation of each
class. By using this approach, one can create separate program packages. Each
program package would only contain its own package in addition to the “common”
package. Common interfaces used between context related processes such as the
Discoverer, CII and BooleanWidget are available in the “contextsource” package.
These interfaces are used for context information query and subscription.

workflowenactment

contextsource

contextsource.widget

contextsource.discoverer

workflowclient

common

cii

workflowenactment.
dataservice

workflowenactment.
enactmentrepresentation

workflowenactment.
networkservice

workflowenactment.service.
processenactment

Figure 31: Component view of the complete prototype

Prototypes

 71

The following packages are part of the workflow enactment service process:

• WorkflowEnactment – contains the functionality to initiate the other
components of the workflow enactment service. It is also responsible for
control of the running workflow processes.

• WorkflowEnactment.NetworkService – contains functionality which makes
the services of the workflow enactment service available in network mode.

• WorkflowEnactment.EnactmentRepresentation – contains the classes which
represent the specification of a workflow process.

• WorkflowEnactment.DataService – contains functionality which maps the
XPDL process specifications into the internal process representation.

• WorkflowEnactment.ProcessEnactment – contains the functionality to enact a
workflow process.

The other packages are named according to the processes they belong to.

8.2.2 Workflow enactment service

The workflow enactment service does two main tasks. At start up, it reads a specified
file, which contains the process definition. This file is important since it contains the
definition of how the workflow enactment service is supposed to execute the
workflow process. A description of the process used in this prototype was given in the
introduction to this chapter. The complete process definition in XPDL is provided in
Appendix E. The workflow enactment service acquires the process definition through
the “DataService” interface, which is part of the WorkflowEnactment.DataService
package. This separates the workflow enactment classes from the data acquisition
classes, and thereby satisfies the need for separation of concerns. We are in essence
creating two separate layers, a data service layer and a workflow enactment layer.
The main class in the data layer is the BasicDOM class. It first builds a W3C DOM
[95] tree utilising the Xerces DOM parser [91]. This tree is then traversed to build a
hierarchy of objects used in the workflow process enactment.

A class diagram, illustrating some of the classes involved in representing the process
definition and executing this definition, is provided in Figure 32. The “BasicDom”
class is responsible for reading the XPDL based process definition and traversing it. It
creates one or more instances of the “WorkflowProcess” class, which is located in the
WorkflowEnactment.EnactmentRepresentation package. This is the main class
representing a workflow process. The “Activity”, “Participant”, “Transition” and
“Condition” are some of the other classes involved in representing a workflow
process. These classes inherit several utility methods from the abstract
“EnactmentRepresentation” class. These classes are located in the
WorkflowEnactment.EnactmentRepresentation package.

The “WorkflowProcessExecuter”, which is located in the
WorkflowEnactment.ProcessEnactment package, is responsible for carrying out the
actual enactment of a workflow process. The implementation of this class follows the
principles behind a state machine. It runs as a separate thread in the workflow

Prototypes

 72

enactment service. The “WorkflowEnactmentService” class, which is located in the
WorkflowEnactment package, works as a controller class for the entire workflow
enactment service. This class starts the enactment of new processes and functions as
gateway to each “WorkflowProcessExecuter” instance, which wants to send and
receive activities.

Figure 32: Class diagram of the most important classes in the workflow enactment service

This class diagram forms only a limited view of the entire prototype. Class diagrams
for all packages are presented in Appendix F.

8.2.3 Inter-process communication

This section will illustrate how the separate processes in this prototype communicate.
To support this illustration, several sequence diagrams showing method calls and
returned information over RMI [88] are presented.

8.2.3.1 Context framework implementation

The context information used in this prototype is available through a widget. In
addition a discoverer has been implemented to facilitate service discovery. This
implementation is a partial implementation of the context framework specified in [17]
by Dey et al. Both the discoverer and the widget have been implemented in Java
RMI [88]. The widget registers itself at the discoverer by providing its remote
interface to the discoverer. It also specifies its key attribute to the discoverer. This
attribute is used to perform a lookup of the widget. A process, which wants to get a
reference to a context source, would then have to query the discoverer to get a
reference to the remote object of the context source it wants to use. A context source
is accessed through its remote interface, the “ContextSource” interface, which is a
generic interface for all context sources. This interface provides possibilities to poll

Prototypes

 73

the context source or to set up a subscription to the context source. The subscription
follows the publish/subscribe paradigm [78].

8.2.3.2 Workflow client integration

The registration of workflow clients and the CII with the workflow enactment service
follows the principles behind the Factory pattern [22]. Each connected client has a
reference to its own “WorkflowClientConnection” object located within the workflow
enactment service. This is strictly not necessary for this prototype, but can be used to
identify each connection in later prototypes. In addition it can also be used to handle
correct deregistering of each client when network failures occur through use of the
Unreferenced interface. The “WorkflowClientConnection” interface also servers to
adapt certain methods of the “WorkflowEnactmentService” class to network mode
according to the Adapter pattern [22]. However, the main mission of the
“WorkflowClientConnection” is to provide call-back functionality to the clients. By
having the possibility to initiate calls from the client to the workflow enactment
service, we give workflow clients the ability to return activities upon completion. The
“WorkflowEnactmentService” class maintains a Vector of all registered clients. The
process of registering a workflow client is illustrated in the sequence diagram in
Figure 33.

WorkflowClient WorkflowConnectionFactory WorkflowEnactmentService

1: registerClient(WorkflowClient client)
2: addClient(WorkflowClient client)

3: WorkflowClientConnection

Figure 33: Workflow client registration

The sequence diagram for the delegation of activities from the workflow enactment
service to the workflow clients is a limited version of the context source polling
diagram provided later. The reason for this is that both the CII and the workflow client
implements the same WorkflowClient interface. The main task for the client is to
receive an activity from the workflow enactment service and process this activity by
interaction with the users and/or other applications. In terms of this prototype, this
functionality has not been implemented for the workflow clients. Instead the
workflow clients simply return the workflow activity back to the workflow enactment
service. Prior to receiving activities, the workflow clients have to register with the
main workflow enactment service. Each client has a unique id, which serves to
uniquely identify the client when activity assignment takes place. The id of the
performer to execute each activity is specified in the workflow process definition. To
illustrate the process of workflow client activity processing, the sequence diagram in
Figure 34 is provided. It is also worthy of note that the workflow enactment service

Prototypes

 74

accesses the clients through a NetworkService interface. This interface serves to
separate the workflow enactment service from RMI implementation details. This
separates in practice, the workflow enactment service in a new layer, the network
layer. In total, the workflow enactment service is divided into a data service,
workflow enactment and network layer. This has been done to fulfil the requirement
of separation of concerns.

WorkflowClientConnectionWorkflowEnactmentService WorkflowClientNetworkService

1: registerActivity(WorkflowClient client, Activity activity, String processID)

2: registerActivity(Activity activity, String processID)

3: returnActivity(Activity activity, String processID)

4: returnActivity(Activity activity, String processID)

Figure 34: Workflow client activity processing

8.2.3.3 Context information integration

A context information integration component was discussed in [41] as a link between
the context framework specified in [17] and a workflow enactment service. The main
reason to have such a component is easier process definition. Particularly, this
component addresses the requirement for easy process definition of context source
lookup, polling and conversion of the context information between the context
information representation to the workflow representation. Since this component
handles all interaction with the context framework, the process of looking up, polling
and subscribing to a context source can be modelled as a single activity. In the case of
subscriptions to context sources, this component can be set up to initiate actions in the
workflow enactment service based on context changes. This is important, since it
allows the workflow enactment to be responsive to changes in the environment. In
[41], this component was called Context Information Integrator (CII). In this
prototype only the context source polling aspect of the CII is explored. The CII
appears as just another client to the workflow enactment service. The activity received
by the CII specifies which context source to use. The CII then contacts the discoverer
to find the correct context source. Upon receiving a reference to the context source to
use, the CII polls the context source and returns the result to the workflow enactment
service. Figure 35 illustrates the interaction between the workflow enactment service,
CII, discoverer and context source. The workflow enactment service is represented
by the “WorkflowEnactmentService” class, the “NetworkService” interface and the
“WorkflowClientConnection” interface, which is a call-back interface for workflow
clients. The CII component is represented by the “WorkflowClient” interface, which it
implements, and the CII main class. All interaction between separate processes is over
RMI [88], same as the rest of the prototype.

Prototypes

 75

Figure 35: Sequence diagram for context source polling from a workflow enactment service

8.3 Workflow actions based on context changes

This prototype is made in response to the following functional requirements:

• Responsiveness to contextual changes or events:
o Ad hoc start of processes and activities.

The state of the contextual environment surrounding a workflow system is dynamic.
Sudden changes in the environment may require actions on behalf of a workflow
system in response to these events. In the specification of our application scenarios in
Chapter 6, we suggested that the detection of an anomaly could be such a context
event requiring actions on behalf of the workflow system.

It is necessary to allow the workflow system to set up subscriptions to context sources
in the environment and react responsively to the events coming from those context
sources. In [41], it was suggested that the CII component could fulfil this task. The
workflow enactment engine is not capable of handling events by it self on the level
which is required. However, the WfMC’s has defined Workflow Application
Programming Interface (WAPI) functions in Interface 2 & 3 in the workflow
reference model [62]. The WAPI functions can be utilised to achieve flexible handling
of context changes by the workflow enactment service. The CII would receive an
activity to set up a subscription to a context source according to the publish/subscribe
paradigm. The CII would then wait for a specified condition to be fulfilled, before it
initiates a specified action in the workflow enactment service through a WAPI call.
The most relevant functions in WAPI for responsiveness to context changes are:

• WMCreateProcessInstance – creates a new workflow process instance.
• WMStartProcess – starts a new workflow process instance.
• WMTerminateProcessInstance – stops a workflow process instance.

Prototypes

 76

• WMChangeActivityInstanceState – changes the state of a workflow activity
instance.

• WMAssignProcessInstanceState – sets a piece of workflow relevant data.

The CII component needs the following information to effectively handle context
subscription and WAPI calls:

• Properties of the context source to subscribe to.
• Condition to be fulfilled before action is taken.
• Name of the WAPI function to call.
• Parameters for the WAPI function call, such as activity id and process id.

This information can be given in the in-parameters to the activity.

To illustrate how a workflow enactment engine can be made responsive to context
changes, a simple prototype has been created. This prototype is an extended version of
the previous prototype. This prototype consists of two workflow processes each
containing an activity. The first process sets up the context source subscription with
the CII. As before the context source is a BooleanWidget. The CII will initiate
execution of the second process through a function call to the workflow enactment
engine as soon as the BooleanWidget initiates an event indicating the value
“TRUE”. The processes are specified in standard XPDL. An illustration is shown in
Figure 36 and the complete XPDL document can be found in Appendix G. The
illustration for process 1 uses an activity diagram, while the illustration for process 2
uses a state chart diagram.

Figure 36: Workflow processes illustration for context source subscription

The implementation of the BooleanWidget has been extended to allow for context
value generation at specified intervals. The “ContextSource” interface implemented
by the BooleanWidget supports subscription. The BooleanWidget maintains a
Vector of all subscribed clients. When a context change occurs, the BooleanWidget
initiates an update command to all registered listeners. All listeners must implement
the “ContextSourceListener” call-back interface. This interface allows the
BooleanWidget to publish the contextual event. Upon receiving an event fulfilling
the specified condition, the CII initiates the specified function call in the
“WorkflowClientConnection” interface. In this case, the function to be called
launches the second process within the workflow enactment service, as illustrated in
the lower half of Figure 36. An illustration of the sequence of events has been
provided in the sequence diagram in Figure 37. The BooleanWidget is represented
by its “ContextSource” interface. The CII component is represented by the

Prototypes

 77

“ContextSourceListener” interface, the CII main class and the “WorkflowClient”
interface. The workflow enactment service is represented by the
“WorkflowClientConnection” interface and the “WorkflowEnactmentService” main
class.

Figure 37: Context source subscription with process initialisation

8.4 Context exception states handling in workflow
systems

This prototype has been made to satisfy the following requirements:

• Exception handling of undefined contextual states.
• Support both pre-planned and unplanned process enactment, by providing

rule-based process building with learning.

Sensors may provide unreliable results or the state the sensors produce may be
unknown, which may prevent widgets or other context framework components from
determining the exact state of the environment. An example of such a situation can for
example be when a sensor connected to a power switch says the power is on because
the switch is in that position. However, the equipment using the power says the power
is off. The real problem is that the power is not connected, because of a failure outside
the sensed contextual environment. This is a simple example, but it serves to illustrate
that context information can often be in a state that is unknown to the context-aware
application.

When we consider the first prototype, it is easy to see that this prototype requires an
absolute response from the CII indicating either the value “TRUE” or “FALSE”. This
may not be possible to achieve in every case. Based on the unreliable nature of
sensors, one may get an ambiguous reply where absolute values are required. If the
value received for the transition attribute is undefined, the workflow processing will
stop at the first activity. It is therefore necessary to have the means to handle
situations where context information does not follow expected parameters. In existing
workflow systems, this is called exception handling. However, exception handling

Prototypes

 78

requires the workflow planner to model the flow of activities in exception situations.
We will in this section elaborate on how workflow systems can handle exception
situations involving context information without requiring pre-modelling of activities
and transitions. The idea is to make workflow standards more in line with the ideas
behind activity theory [56] and situated planning [5]. We have developed a prototype
to better illustrate our ideas.

8.4.1 Handling context related exceptions

In this section, we will describe a prototype, which handles context related exceptions.
This prototype uses our earlier prototype, where context information was used in
workflow transitions. The prototype will use ideas from the approach used in the FAR
[14] system, presented in Chapter 2.5, for the exception handling part. However, we
will expand this approach, since we want the prototype to generate new activities in
an exception situation involving context information. This new activity must also
become part of the plan, the workflow process definition in this case, according to the
learning aspect of situated planning [54].

An illustration of the scenario for this prototype is provided in Figure 38.

Figure 38: Exception scenario

The scenario we will use in this prototype is similar to the one in the first prototype
where we used context information in transitions. The process for this prototype was
illustrated in Figure 30. However, the CII will not be capable of generating an
absolute response to the context polling activity it is assigned in this instance. This has
to do with the fact that the BooleanWidget it uses, responds with different return
values for the polling request than the values the CII expects. The end result is that the
CII is not capable of making an absolute decision on the requested contextual state,
and an undefined value is returned to the workflow enactment service. In response to
this undefined value, an exception is thrown within the workflow enactment service,
which in turn is handled by the exception handler. The exception handler generates a

Workflow
Enactment Service

Context Information
Integration

Context
widget 1

Undefined

Undefined

Prototypes

 79

new activity for a human to verify the requested state, according to specified rules.
Depending on the result found by the human workflow participant, the system makes
the final transition to one of the final activities, finishing the workflow process. The
original workflow process flow diagram is the same as in Figure 30. After the new
activity involving a human participant verifying the contextual state, the process
diagram is changed. The revised process is illustrated in Figure 39. Activity 1 is the
context polling activity. Activity 2 and 3 are activities with human performers.
Activity 4 is the verification of the context information activity. The complete
generated XPDL for the new process description is available in Appendix H.

Figure 39: Exception handling revised process illustration

8.4.1.1 The Exception handler component

The approach used for the exception handling component for this prototype is similar
to the FAR architecture [14]. A class diagram for the
WorkflowEnactment.ExceptionHandler package is illustrated in Figure 40.

Prototypes

 80

Exception
Handler

Scheduler

ExceptionCondition

Interpreter

Event

Compiler

Rule
0..*0..*

0..*0..* 0..*0..*

0..*0..*

Action0..*0..*

Generate

Figure 40: Class diagram for the exception handler package

This exception handler uses Event-Condition-Action (ECA) rules, similar to rules in
Chimera-Exc [14]. These exception handling rules have to be defined in XML
according to a given XML schema presented in Appendix I. The rules follow the idea
behind ECA rules, which have an event, condition and action part. The exception
handling document specifies a TransitionException event in this scenario. This event
occurs in response to the “ProcessExecuter” thread not being able to find any
transitions to follow and the current activity is not a final activity. The condition part
of the exception handling XML document specifies that the transition value has to be
“UNDEFINED” in order for this rule to fire. The event part of the exception handling
rule specifies a “Generate” action. This action specifies what activities and transitions
to generate based on the current state of the “ProcessExcuter”. The full text for the
exception handling XML document is available in Appendix J.

The “Compiler” class is responsible for interpreting the exception handler definition
document. The document data is forwarded from the DataService component of the
workflow enactment service to the “Compiler”, which interprets the data and creates
an internal representation.

The “ProcessExecutor” thread generates transition exceptions as necessary. The
“TransitionException” class has been defined in the WorkflowEnactment.Exceptions
package together with other exceptions. This package also includes an
ExceptionOwner interface, which the “ProcessExecuter” class implements. This
interface serves two purposes. Firstly, it serves as the link for the exception handler to
access the process in question. Secondly, is provides methods for the exception
handler to manipulate the workflow process being executed by the “ProcessExecuter”.
The “Scheduler” class of the exception handler evaluates which rule has fired, when a

Prototypes

 81

request for exception handling comes in through the “ExceptionHandler” interface.
The exception and the rule, when fired, are then forwarded to the Interpreter class.
This class runs as a separate thread. It accesses the representation of the rule and
manipulates the workflow process, where the exception arose, through the
“ExceptionOwner” interface. The new process elements are built both based on the
current state of the workflow process and the defined data in the exception handler
definition document. Upon completion of the exception handling the
“ProcessExecuter” thread is resumed.

We are in essence building a new process, by adding new process elements to the
existing process to handle an exception situation. These new elements become part of
the permanent process to satisfy the requirement for learning, which in turn allow the
workflow enactment service to function as a “technology of accountability” [5]. The
DataService component receives the new process elements and maps the process
elements into the DOM representation internal to the “DataService”, which in turn can
be written to a file as XPDL. An interaction diagram for the processing of an
exception has been provided in Figure 41. Please note that the “ProcessExecuter” is
represented both by the “ProcessExecuter” class and the “ExceptionOwner” interface.

Figure 41: Sequence diagram for the exception handlings scenario

8.5 Process path revalidation

This prototype has been made in response to the following requirements:

• Support revalidation of selected process paths, if the current path does not lead
to the process goal.

It is easy to envision scenarios where specified transitions for the current process path
are not satisfied in a dynamic contextual environment. Excepted conditional
conditions may not be satisfied under previously found contextual conditions, which
has lead the process enactment into a process path that cannot be completed. It would
therefore be advantageous for the workflow enactment service to re-evaluate the
previous context based transitions made. For example, during the execution of a
maintenance process it is discovered that a needed part is not available. If the specific

Prototypes

 82

maintenance process path was selected on the assumption that all parts were available,
other possible maintenance process paths may open up at the process split point. This
can for example be to replace an entire system.

We will use a process definition with six activities for this prototype. Figure 42
illustrates the workflow process. Activity 1 queries the CII for the value of
contextvalue1, while Activity 4 and 5 queries for the value of contextvalue2. Activity
2, 3 and 6 are activities performed by other workflow participants.

Figure 42: Process path revalidation process illustration

This process will not lead to process completion if contextvalue2 is of the opposite
value of the specified value for either of the process paths. A process path revalidation
can therefore be initiated. The complete process specification is given in Appendix K.

The task of revalidating the process path and possibly rolling back to an activity
before a split is left up to the exception handler developed in the previous prototype.
We specify an additional rule for this exception condition. This exception is also
caused by a TransitionException event, but the action specified is a
RevalidateProcessPath action. The full text for the exception handler rule description
can be accessed in Appendix L.

The process path is then re-evaluated by the “Interpreter” in the exception handler
through the use of the methods in the “ExceptionOwner” interface. Re-evaluation is
accomplished by reversing the activity history located within the “ProcessExceuter”
class. If a split which evaluates differently is found, the current state of the
“ProcessExecuter” is set to the activity which had the split. The state change is done
by rolling back the activities step by step. Activities, which are not context polling
activities, are rolled back by sending a “rollback” activity to the workflow client,
which previously had this activity. The “ProcessExecuter” will then re-evaluate the
transition split and follow another process path.

Prototypes

 83

8.6 Invariant scenario

This prototype has been made in response to the following functional requirements:

• Responsiveness to contextual changes or events:
o Correct handling of invariant conditions.

Some workflow processes can be dependent on previously verified contextual states,
called invariants, which state remains unchanged until process end. If for some reason
they are altered, the entire process is invalidated and enactment has to be interrupted.
This interruption can involve either restarting the entire workflow process or
restarting enactment from the state where the invariant invalidation occurred.
Invariants are especially important when dealing with security related conditions.
Such conditions can for example be the existence of gas in an area where work is
performed or the pressure acting on valves, which has to remain within tolerance
when work is performed.

We have made a prototype, which addresses the requirement for correct handling of
invariants. The workflow process, which is enacted in this prototype, is illustrated in
Figure 43. Here activity 1 specifies that contextvalue1 is an invariant for the entire
process. Activity 4 and 5 are normal context polling, while activity 2, 3, 6, 7, 8 and 9
are activities performed by workflow participants. The entire process description in
XPDL is provided in Appendix M.

Figure 43: Invariant scenario process illustration

Activity 1 specifies both a context source polling for the value of contextvalue1 and a
subscription to the same context source. Similarly to the prototype, where a
subscription event caused process start, this subscription also specifies a method to
call in the workflow enactment service, when an event satisfying a condition occurs.
The condition is specified using a notation, which causes the CII to replace the value

Prototypes

 84

specified with the opposite of the current value. This causes the CII to only notify the
workflow enactment service of an invariant exception when the value has changed.
Once such an event occurs, the CII notifies the correct process in the workflow
enactment service. This forwards an “InvariantException” to the exception handler
component. When the “ProcessExecuter” enters a non-critical section such as when an
activity has been sent to a workflow client, the “Interpreter” thread of the exception
handler takes control of process. This is achieved by synchronising the threads on the
“ProcessExecuter” object itself.

The exception handler rule for this scenario specifies an “InvariantException” event.
The action portion specifies a “RevalidateProcessPath” action, and the exception is
handled similarly. The full text for the rule is available in Appendix N. The workflow
process is rolled back to the activity specified in the exception object. This activity is
the same activity which set up the subscription to the invariant in the first place. This
activity is then redone to remove the old invariant subscription and instantiate a new
subscription with the CII. When exception handling is completed the
“ProcessExecuter” thread is notified and processing continues from the place where it
left off with the new process state.

8.7 Client based context-awareness

In this section, we will examine our prototypes related to workflow client based
context-awareness. The main issues examined are situated planning with process
building and post-conditions for activities.

To specify the usage of context information in the building of the local workflow
process for the current activity, it is necessary to specify rules for this usage. A
workflow client would then need to have a rule based inference engine, which process
these rules and builds the process.

8.7.1 Inference engine

Inference engines are common parts of expert systems and other systems using
knowledge bases. An inference engine infers new knowledge from existing
knowledge by using previously defined sets of rules.

An inference engine can use several methods of inferring new knowledge. Backward
chaining [92], forward chaining [93] and search trees [94] are all possible ways of
inferring new knowledge. In forward chaining, one starts with one or more facts, then
these facts are processed against the defined set of rules. Each rule that is satisfied,
infer new facts. When no more rules can be satisfied, one has arrived at the goal state.
Backward chaining takes a different approach in that the system starts with the desired
goal and tries to find rules, which are satisfied and leads to the known facts, and
thereby proves the goal. Search tree methods take advantage of the fact that most
knowledge bases can be represented as trees. An inference engine iterates through the
search tree using a variety of techniques. This iteration starts with either the given
data or the goal, such as was described for backward chaining and forward chaining.

Prototypes

 85

8.7.2 Workflow client with local process enactment and rule based
building of the situated process

This prototype has been built to satisfy the following requirements:

• Perform situated planning based on current contextual conditions.

Situated planning [5] involves building the process in situ. We provided scenarios
where situated planning might be advantageous in Chapter 6.

It is not possible to always know all possible states of a contextual environment, so a
complete process can be built. This means that we build the process in the field.
However, it is not possible to build a process without some guidelines so we are going
to use a knowledge base, which a simple inference engine can infer new knowledge
from. The inference engine ascertains the current contextual state and builds the
process by stating transitions as facts during the inferring process until the goal of
workflow process completion is reached. The situated activities are already provided
by the enactment service.

The overall process in the enactment service specifies only one activity. This activity
is an activity to be performed situated with rule-based building of the local process.
Sub-flows can be specified as part of activities. These are normally enacted by the
workflow enactment service. We will, however, allow a workflow client to carry out
this enactment by saying that a specified performer can carry out such a process
definition. This violates the WfMC Interface 1 [63] specification, but does not require
changes in the XPDL language itself. The first activity in this sub-flow has an in-
parameter with a knowledge base specifying the inference rules. This is a separate
XML document and can be specified as workflow relevant data. The tool for this
activity is the inference engine. All possible activities are specified as normal in this
sub process. Once rule based inferring has been completed a process has been
specified, with activities and transitions between them. Please note that the transitions
will have no conditions connected to them. The overall process is illustrated in Figure
44. Above the black line, the overall workflow process is illustrated. This process
only contains one activity. This activity has a sub process implementation and is sent
to a workflow client for enactment. Below the black line is the local sub process after
it has been built, based on the result provided by the inference engine. The inferring
process is based on the context values generated from two context sources. The sub-
process defines six activities, to which transitions can be defined based on the results
of the inferring. Activity 1 in the local client based sub process is enacted in every
case, since this activity specifies the rule based inferring. The complete process
definition including both the overall process and the sub process is available in
Appendix O.

Prototypes

 86

Figure 44: Processes for client based context-awareness prototype

The inference component is located in the “InferenceEngine” package under the
“WorkflowClient” package. The “WorkflowClient” class is also joined by the
“LocalProcessExecuter” class in the “WorkflowClient” package, which enact a single
local process. The class diagram for the updated workflow client is shown in Figure
45.

Rule

Question

InferenceEngine
0..*0..*

0..*0..*

LocalProcessExecuter
11

WorkflowClient 11

1

1

1

1

DataServi
ce

Figure 45: Class diagram for the updated workflow client

The inference engine is based on forward chaining [93]. Facts are acquired from the
contextual environment. During rule processing the transitions between activities are
created through the use of methods in the “LocalProcessExecuter” class. Transitions
are built based on the activity mentioned in the inference rule and the last activity,
which has a transition linking it to the other activities of the process. The support
classes “Rule” and “Question” specify respectively inference rules and context
sources to poll.

The “WorkflowEnactment.DataService” and
“WorkflowEnactment.EnactmentRepresentation” packages had to be moved from the
“WorkflowEnactment” package to the “Common” package. This has to do with the
fact that the workflow client has to represent a workflow process and load the process
data from XML. In addition the inference rules also have to be loaded from XML.
This means that the data service component and the enactment representation classes
are shared between the workflow client and the workflow enactment service.

The inference rules used during inferring is provided in Appendix P.

Prototypes

 87

8.7.3 Workflow client with activity contextual post conditions

The enactment of workflow activities may change the contextual environment. This is
the basis for this prototype, which satisfy the following requirements:

• Context as post-condition for activities.

Most activities influence the environment in some form. However, some activities
may be directly dependent on context sensors to know when to finish the activity. An
example of this is manipulation of valves to fill tanks. Sensors monitor the state of the
tanks and form the basis for post-conditions for the activity.

The XPDL language does not allow specification of post-conditions internal to
activities. However, we can use in-parameters to specify post-conditions for activities.
In this prototype, we will specify a context information based post-condition for an
activity and the workflow client will only return the activity when the condition is
satisfied. This means that the workflow client has set up a subscription to a context
source. It is necessary to have the client implement the “ContextSourceListener”
interface, to allow it to receive context events. This means that the workflow client
implements the same interfaces as the CII component.

The context source used by the workflow client must be capable of accepting
conditions for context event sending to avoid overloading the workflow client.
Without such conditions the workflow client might easily be overloaded with context
events.

The process used in this prototype is similar to the overall workflow process
illustrated in Figure 44. However, activity 1 represents a single activity for a specific
workflow client. The activity definition also includes a post-condition for the activity
defined in parameters to the activity. Once the event satisfying the post-condition has
been received, the activity is returned to the workflow enactment service. The
complete process description is provided in Appendix Q.

Figure 46 illustrates the interaction between the components in this prototype. The
workflow client is represented by the “WorkflowClient” interface, the
“ContextSourceListener” interface. The workflow enactment service is represented by
the “WorkflowEnactmentService” class, the “WorkflowClientConnection interface
and the “NetworkService” interface.

Prototypes

 88

Figure 46: Sequence diagram for activity post condition

 89

Part III: Discussion and
conclusion

This part presents the discussion based on the represented requirements and
prototypes from the previous part. Based on the discussion, suggestions for further
work are presented. Finally, we make some conclusions based on the discussion and
previous parts.

Discussion

 90

9. Discussion

We will discuss the prototypes developed in this chapter. The discussion will be
related to the research questions. How the functionality presented in the prototypes fit
with workflow standards is another important topic of this chapter.

9.1 Discussion of prototypes

We implemented several prototypes, which each focus on a different set of
requirements for a context-aware workflow system.

9.1.1 Context information used in the processing of workflow
transitions

Our first prototype presented in Chapter 8.2, focused on how context information can
effectively be integrated with a workflow system and used in workflow enactment.
The centralised workflow enactment service was based on the Interface 1
specification [63] by the WfMC. The basic idea was to acquire and use context
information while following WfMC standards. This was achieved by using an
external component. Process paths selection is based on the state of workflow relevant
data according to the WfMC Interface 1 specification. The workflow relevant data is
updated during activity enactment at the workflow clients by specifying in- and out-
parameters to activities. We made use of this functionality when we designed our
external support component. This component, named CII, is capable of receiving
workflow activities and updates the necessary data by polling the components of the
underlying context framework. This solution for context integration, while satisfying
only the requirement for context information acquisition and usage in process
reasoning, is achieved completely within WfMC specifications. A solution without
using an external component would not have been possible without the context
framework components being able to accept activity objects directly from the
workflow enactment service. Even if the context framework components supported
receiving activities directly, the necessary process description would increase. This is
based on the fact that a simple poll of a context source consists of both the lookup
operation of a discoverer service and the actual polling of a context source. This
means that context source polling would have to be modelled as two separate
activities with different performers.

9.1.2 Workflow actions based on context changes

For the second prototype, the functionality of the CII component was extended. It is
now capable of setting up subscriptions with context sources. The same approach used
for the previous prototype was reused for this prototype. An activity specifies the

Discussion

 91

details of the subscription and the CII initiate the necessary operations based on the
activity description. Once the subscription is set up, the activity is returned to the
workflow enactment service. The subscription is specified with a simple condition to
be fulfilled before action is taken. WfMC specifies several methods in an API for
Interface 2 and 3 in the workflow reference model [62], called the WAPI [60]. These
methods enable external applications to alter the state of individual processes and
manipulate the workflow enactment service directly. This functionality was used in
this prototype. We implemented methods, which were made available to the CII. The
naming of the methods and the parameters were not identical with the WAPI
definition, but equivalent methods to the methods implemented by us exist in the
WAPI definition. The CII could then use these methods to do the specified operation
in the subscription activity.

The chosen solution for this prototype has a few drawbacks. First of all, the use of a
simple contextual condition as the basis for operations in the workflow enactment
service does not allow for responsiveness to complex contextual situations. A context
situation is usually complex with multiple context sources generating information.
The sum of this information forms the overall state of the environment, which in turn
may result in the need for operations performed to the workflow enactment service.
This means that we need to specify rules for each operation, which can be used in an
inference engine to discover whether the operation is necessary. The sentient object
[21] abstraction becomes appropriate for the CII component now. The input for the
CII component is sensor information. With an inference engine and the workflow
enactment service as actuator, it fits the definition perfectly.

By separating the CII from the workflow enactment service it self, loose coupling and
separation of concerns are supported. However, it is possible to envision scenarios
where a direct connection between the workflow enactment service and the CII
component would be beneficial. The WAPI covers operations connected to pre-
planned processes. In the case of unplanned, situated processes, no support is offered.
If situated process planning based on context information is to be performed, direct
access to update the process definitions is needed. Such functionality is best achieved
with the component responsible running as part of the workflow enactment service.
This component would then form a new interface to the workflow enactment service.

9.1.3 Handling context related exceptions

Contextual exception situations were the focus for this next prototype. To enable
handling of such exception situations, a workflow exception handler was created. This
exception handler used rules built similarly to ECA rules. The rules specifies events,
conditions and actions to be performed when an event satisfying the conditions have
been received. The exception in the prototype was generated internally during process
enactment in the workflow enactment service. The CII simply returned a value
indicating an undefined state. An exception handler is ideal for handling pre-defined
exceptions. Such exceptions can potentially arrive from a variety of sources. The
chosen solution for exception generation in this prototype means that the exception
situation has to be “discovered” during process enactment. Exception situations
requiring more direct action would have to wait to be discovered by the workflow

Discussion

 92

enactment service during process enactment. A possible solution to this problem
would be to generate the exception in the CII component and send it to the workflow
enactment service. The exception handler could then handle the exception
immediately. The exception handler interface could also be directly available as a
separate interface to the workflow enactment service. However, this means that we
open another interface to the workflow enactment service, which is strictly not
necessary since only the workflow enactment service and the context information
integration component need access to the exception handler. If the CII is integrated
with the workflow enactment service it self, it would be able to send the exception
directly to the exception handler.

Another focus area for this prototype was accountability. By updating the process
description based on the result of the exception handling, we were able to make what
the system knew about the context situation available for review by the user.

9.1.4 Process path selection and invariants

The prototypes, which focused on process path revalidation and invalidation of
invariants, are examples of exception situations. The process path revalidation
prototype focused on exceptions internal to the workflow enactment engine. The idea
was that greater dynamic behaviour would be achieved, if the workflow enactment
service would be able to revalidate process paths selections made earlier. The
previously developed exception handler work perfectly in that respect. The exception
handler “rolled back” the process to a point where the context situation opens another
process path. This dynamic behaviour is not found in existing workflow systems, but
would be necessary where dynamic context is used as the basis for process path
selection.

Invalidation of context related invariants is an example of an exception situation,
which requires immediate action by the workflow enactment service. In the invariant
scenario prototype, we used our external CII component to set up subscriptions to
context sources, which constituted invariants in the process. The activity specifying
the invariants also specifies which method to call in the workflow enactment service if
the invariant was invalidated. Once the method is called, an exception is forwarded to
the exception handler. The chosen solution with an external CII and an internal
exception handler means that we have to implement methods to which there are no
equivalents in WAPI.

9.1.5 Client based context-awareness

We developed two different prototypes, which focused on workflow client based
context-awareness. The first prototype put the workflow client in the situated activity
scenario.

Mobile workflow participants moving through a pervasive computing environment
can receive information from many context sources. Much of this context will be
irrelevant for the current activity the participant is performing. In addition the mobile

Discussion

 93

device used by the participant may be incapable of processing all context information
received from the environment. At the very least too many context sources will be a
heavy strain on the bandwidth and battery capacity of the mobile device. It will
therefore be necessary to limit the context sources used by the mobile device. The best
way to do that is to find the context source attributes desired from the current
executing activity. The context information gained from the context sources can then
be used to build a more detailed mini process flow for the goal of completing the
current activity based on the current state of the environment.

The problem of creating a workflow process flow based on the current state of the
environment can be approached from several angels. In traditional workflow systems,
a central server processes all workflow enactment. This approach may not be possible
dependent on the scenario in question. In a scenario where all sensors are connected to
the central workflow system, the central workflow enactment server would be the
obvious place to build the process flow for each activity based on the current
environmental state. However, in a scenario where the location is remote and not
connected to the main workflow enactment server, this approach has disadvantages. It
would still be possible for the mobile device to collect the context information and
forward the information to the central server. The mobile device would then receive
activities from the workflow server as usual. This requires, however, that the mobile
device has a connection to the workflow server at the particular location, something
which may not be possible. Considering this requirement, it would be advantageous to
allow the workflow client in a mobile device to perform local enactment based on the
current activity.

In [41], it was suggested that it would be necessary to provide a policy for the
management of context information for each activity. This policy definition must
include the attributes of the contextual sources to be used, the polling frequency or
context source subscriptions and the usage of the context information. The context
acquisition technique best suited for client based context-awareness varies according
to the needs of the client. If the client only needs to access a specific context value at a
specific time, a polling approach is obviously best suited. However, if a client needs
to receive updates on contextual changes, a subscription approach may be better
suited. This requires that a context source is capable of receiving conditions for
subscriptions. If this functionality is not in place, a workflow client on a mobile
device will get swamped with possibly useless context updates. Even with such a
condition based subscription mechanism, the client may still be overloaded with
events. A high frequency of incoming context information updates from the
environment may also pose problems for resource limited mobile devices. The mobile
device will burn valuable energy receiving and processing context updates. The
polling approach allows the mobile workflow client to control the context acquisition
frequency.

The actual prototype implemented used a previously specified sub-flow together with
a knowledge base connecting activities to context states. The knowledge base was
used in an inference engine located within the client. The knowledge base specified
context sources to poll, to be able to build the transitions in the situated sub-flow.
According to the Interface 1 specification [63] by the WfMC, sub-flows are meant to
be executed by the workflow enactment service. In that respect we violated this
specification. However, we were able to use the performer attribute of the owner

Discussion

 94

activity of the sub-flow as the link between the sub-flow definition and the executing
entity.

We only utilised context source polling in the prototype, which focused on situated
process building. This is limiting since the situated process will remain static until the
process is completed. If a subscription policy had been used, the process could have
been reconfigured dynamically throughout the process.

Workflow client based context source subscription was implemented in our final
prototype, which focused on contextual post-conditions for activities. The added
implementation of context source subscription meant that the workflow client had all
the functionality of the CII component. For situated activities, the workflow client
does require all the functionality of a fully integrated CII as specified for the
workflow enactment service. This component will have to be able to perform situated
planning and context information acquisition with a supporting inference engine. In
addition context exception situation must also be handled in some form of exception
handler for the workflow client. This is based on the fact that the workflow client
needs an independent local enactment service for situated activity enactment.

9.2 Evaluation of research method

Through the use of a combination of scientific and the engineering research method,
we were able to see the problem of context-awareness in workflow systems from both
a high-level view of the problem to the low-level implementation view. We could
realise our theories in implementations of a workflow systems and actually see how
well our solutions fitted with workflow standards. Even though we could probably
have stopped at the design level and gotten the same results, the context-aware
workflow prototypes functions as a good demonstration tool for our ideas.

We chose vertical prototyping as our prototyping technique. This prototyping
technique is good to demonstrate the features of a product. However, a complete
product does not have to be made. The implementation of a complete product requires
a much more extensive set of requirements than what was needed for our prototypes.
We found it impossible to satisfy the requirements for a complete product in the
allotted time for this project. A fully implemented and usable context-aware workflow
system tested in an environment containing smart sensors [46] and augmented
artefacts would have given us valuable insights into the usefulness of this technology.

Future work

 95

10. Future work

Several of our research questions were not properly answered based on our work with
the prototypes and our discussion. A few simplifications were also made. This chapter
will discuss some of these issues, to provide a reference for future work.

We used a Boolean context source. This solution had the advantage of limiting the
possible values to true and false. In addition, we had an undefined value, indicating an
exception condition. However, it is not sufficient to limit context values to Boolean
values. In fact, all possible data types defined in XPDL [63] should be supported.
Additional data types can also be defined using XML Schemas [103]. With more
possible values for context information, the number of possible process paths
increases. For example with N possible context values from a specific source and M
process paths splits based on this context source the number resulting process paths
would be NM. This is of course the worst case scenario if no grouping of values is
possible. To avoid such scenarios one should try to aggregate context values to reduce
the number of permutations. This aggregation can both be conducted in the underlying
context information framework and the context inference engine connected to the
workflow system.

Inference engines deal only in absolute values of true or false. Fuzzy logic [100] is a
super set of normal Boolean logic. It is possible to have partial truths in fuzzy logic.
This is useful when with dealing exception conditions for context values, where the
exact state cannot be ascertained. It would be possible to use fuzzy logic in the
inference engines of a context-aware workflow system to handle a wider array of
context states without involving an exception handler. This should be investigated
further.

The activity coordination aspect is not fully explored in this report. Activity
coordination should be possible in the workflow enactment service for both pre-
planned and unplanned situated processes. The same is true on the workflow client
level for situated activities. A workflow process can contain both cooperating and
competing workflow participant. The workflow enactment service provides process
coordination of activities already by controlling the movement of activities. When
using dynamic process building for situated processes, the coordination is implicit.

For the workflow client, the coordination of situated activities is more complex. Each
situated activity should specify its relation to other situated activities. The other
workflow clients then become context sources for the workflow client running a
situated action sub process. By using the state of the other workflow clients, which
runs situated processes, as context in the local situated process enactment, we are able
to control how work progresses. However, this aspect of coordination requires further
study.

We have not performed any functional test of a context-aware workflow system. A
functional context-aware workflow system should be tested in a pervasive computing
environment containing smart sensors [46] and augmented artefacts. This will help us

Future work

 96

to understand the usefulness of context-aware work processes. Preferably, the test
should be conducted using real and relevant process descriptions.

Conclusion

 97

11. Conclusion

We will summarise some conclusions based on our work in this chapter. The
conclusions will be based on the discussion and our prototypes, but we will also relate
our conclusions to the state-of-the-art part.

We discovered that it possible to use context information in workflow transitions
without changing any of the WfMC standards. We accomplished this with an external
component, which gathered the context information from the environment on behalf
of the workflow system and made this information available by activity parameter
passing. Simple responsiveness to context changes was also achieved by using the
functionality of the WAPI [60] and an external component. The dynamic behaviour
achieved by this approach is limited to the methods defined in the WAPI.

Based on discussion of situated planning and situated activities, we must conclude
that a context information integration component is best integrated with a workflow
enactment service, since this component needs to make radical changes to processes
as they run and build processes based on current contextual conditions. Such a
component should be built around the principle of a sentient object [21]. This
component, which is named CII, would effectively form a new interface for the
workflow enactment service. This is illustrated in Figure 47.

Figure 47: WfMC workflow reference model with new interface.

The workflow client needs a local workflow enactment service to satisfy the
requirement for situated actions. This means that similarly to the workflow service,
the client needs to build situated local processes, based on local contextual conditions.

Workflow API and Interchange formats

Workflow Enactment Services(s)

Workflow
Engines(s)

Other Workflow
Enactment Service(s)

Workflow
Engines(s) Administration

& Monitoring
Tools

Workflow
Client

Application

Invoked
Applications

Context
Information
Integrator (CII)

Process Definition
Tools

Interface 2 Interface 3

Interface 4

Interface 5

Interface 6
Interface 1

Conclusion

 98

This situated planning should also be based on inference rules. So the workflow client
needs a component with the same functionality as the CII component of the workflow
enactment service.

The handling of context related exception situations is another important aspect of a
context-aware workflow system. An exception handler for a context-aware workflow
system should be able to handle exceptions generated during process enactment and
exceptions based on context. The exception handler can be used to increase the
dynamic behaviour of a workflow enactment service with regard to process path
selection. The same is true for the local enactment service of the workflow client.

The WfMC defines two types of activities. Activities, which cannot be run by calling
applications, are called manual activities. Automated activities can use applications
called directly. Situated activities fall in between these two definitions. A situated
activity is done manually by a human participant, but the way the activity is
completed is controlled by automatic means. We will therefore suggest a semi-
automated activity, which is defined in between the manual and automated activities.
This is illustrated in Figure 48, which is an edited version of the basic terms and
relationships illustrated in Figure 3.

Figure 48: Revised basic terms and relationships

Business Process
(i.e what is intended to happen)

Process Definition
(a representation of what is

intended to happen)

Workflow Management System
(controls automated aspects of

the business process)

is defined in a is managed by a

Activities Process Instances
 (a representation of what is

actually happening)

composed of via
Sub-Processes

used to create &
manage

Manual
Activities

(which are not
managed as part
of the Workflow

System)

Automated
Activities

Semi
Automated
Activities
(situated
activities)

which may be

or

Activities Instances

include one or
more

Work Item
(tasks allocated to a
workflow participant)

Invoked Applications
(computer

tools/applications used
to support an activity)

or

which include

and/or

during execution
are represented
by

Context
Sources

and/or

Conclusion

 99

Activities consist of work item data and invoked applications. For workflow activities
to be performed situated, context sources perform a vital role. We have therefore
chosen to include context sources as a part of activity instances, which is illustrated in
Figure 48.

Conclusion

 100

Glossary

 101

Glossary

A
API (Application Programming Interface) A set of routines that

an application uses to request and carry out lower-level
services performed by a computer's operating system. For
computers running a graphical user interface, an API
manages an application's windows, icons, menus, and dialog
boxes.

Augmented artifact A device with built-in processing capability, memory,
wireless communications and its own power source.

B
C
COM (Component Object Model) An architecture for making

component based programs on the Windows system.
CORBA (Common Object Request Broker Architecture) An

architecture allowing communication between components
in a system.

CSCW (Computer-Supported Cooperative Work) CSCW should be
conceived as an endeavour to understand the nature and
requirement of cooperative work with the objective of
designing computer-based technologies for cooperative
work arrangements.

D
DCOM (Distributed Component Object Model) An extension of the

Component Object Model (COM) that allows COM
components to communicate across network boundaries.

DOM (Document Object Model) The DOM is a platform- and
language-neutral interface that will allow programs and
scripts to dynamically access and update the content,
structure and style of documents.

E
ECA rule Event-condition-action rule
E-commerce (Electronic Commerce) Business that is conducted over the

Internet using any of the applications that rely on the
Internet, such as e-mail, instant messaging, shopping carts,
Web services etc.

EPOS (Expert System for Program and System Development) A
Software Engineering Environment with emphasis on
Process Modeling, Software Configuration Management
and support to cooperative work.

F
G
Groupware Computer-based systems that support groups of people

engaged in a common task (or goal) and that provide an
interface to a shared environment

Glossary

 102

H
HTTP (Hyper Text Transfer Protocol) The protocol used between

web servers and browsers on the WWW.
I
IIOP (Internet Inter-ORB Protocol) Enables browsers and servers

to exchange integers, arrays, and more complex objects,
unlike HTTP, which only supports transmission of text.

IP (Internet Protocol) A protocol, which specifies the formats
of packages and an addressing scheme.

J
Java Java is a object-oriented programming language developed

by Sun Microsystems Inc. Java is an interpreted language.
This means that in order for a Java program to run on a
computer, a run-time system (interpreter) will need to have
been installed on the computer.

K
L
LAN (Local Area Network) A computer network that spans a

relatively small area.
M
Microsoft .NET A Microsoft operating system platform that incorporates

applications, a suite of tools and services and a change in
the infrastructure of the company's Web strategy.

MOWAHS Mobile Work Across Heterogeneous Systems
N
O
P
PDA (Personal Digital Assistant) A handheld device which

combines mobile computing and networking features.
Pervasive computing See Ubiquitous computing.
Q
R
RDF (Resource Description Framework) A general framework

for describing a Web site's metadata, or the information
about the information on the site.

RMI (Remote Method Invocation) A set of protocols, which
enables distributed Java object to communicate.

S
SOAP (Simple Object Access Protocol) A lightweight XML-based

messaging protocol used to encode the information in Web
service request and response messages before sending them
over a network.

SPADE (Software Process Analysis, Design and Enactment) Is a
research process modelling environment. Its main objectives
are to support the analysis, design, and enactment of
software processes.

T
TCP (Transmission Control Protocol) The end to end protocol

used in TCP/IP networks.

Glossary

 103

TCP/IP TCP over Internet Protocol (IP).
U
Ubiquitous computing Is a term meaning the seamless integration of computing

into the fabric of everyday life.
UML (Unified Modeling Language) A general-purpose notational

language for specifying and visualising complex software,
especially large, object-oriented projects.

V
W
W3C (World Wide Web Consortium) An international

consortium of companies involved with the Internet and the
Web.

WAN (Wide Area Network) A computer network that spans a
relatively large geographical area. Typically, a WAN
consists of two or more local-area networks (LANs).

WAP (Wireless Application Protocol) A specification allowing
immediate access to information on mobile devices.

WAPI Workflow Application Programming Interface.
Web See WWW.
WfMC Workflow Management Coalition.
WfMS Workflow Management Systems.
WML (Wireless Markup Language) XML based language which is

used to specify content and user interface in WAP devices.
WWW (World Wide Web) A system of Internet servers that

support specially formatted documents.
X
XML (Extensible Markup Language) A specification which allow

the addition of new tags, enabling the definition,
transmission, validation and interpretation of between
applications.

XPDL XML Process definition language
Y
Z

Glossary

 104

References

 105

References

[1] W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben, "Modelling workflow

management systems with high-level Petri nets", In G. De Michelis, C. Ellis,
and G. Memmi, editors, Proceedings of the second Workshop on Computer-
Supported Cooperative Work, Petri nets and related formalisms, pages 31-50,
1994.

[2] W.M.P. van der Aalst, "Petri-net-based Workflow Management Software", In

A. Sheth, editor, Proceedings of the NFS Workshop on Workflow and Process
Automation in Information Systems, pages 114-118, Athens, Georgia, May
1996.

[3] Rob Allen, editor. Workflow: An Introduction. WfMC, 2001.

[4] Sergio Bandinelli, Alfonso Fuggetta, Carlo Ghezzi, “Software Process Model

Evolution in the SPADE Environment”, GOODSTEP Technical Report No.
014, Dec. 1993.

[5] Jakob E. Bardram, "Plans as Situated Action: An Activity Theory Approach to

Workflow Systems", Proceedings of the 1997 European conference on
Computer Supported Cooperative Work (ECSCW'97), p. 17-32, 1997.

[6] Martin Bauer, Christian Becker, Daniela Nicklas and Othmar Lehmann, "From

Home to World - Supporting Context-aware Applications through World
Models", IEEE International Conference on Pervasive Computing and
Communiactaions (PerCom'04), March 14-17, 2004.

[7] J. Bowers, G. Button and W. Sharrock, "Workflow from within and without:

Technology and Cooperative Work on the Print Industry Shopfloor", In
Proceedings of the Fourth European Conference on CSCW, Stockholm,
Sweden, Kluwer Academic Publishers, p. 51-66, 1995.

[8] Victoria Bellotti and Keith Edwards, “Intelligibility and Accountability:

Human Considerations in Context-Aware Systems”, Human-Computer
Interaction (HCI) Journal. Special Issue: Context-Aware Computing, 16(2–
4):193–212, 2001.

[9] G. Berreman, “Anemic and emetic analyses in social anthropology”, American

Anthropologist, 68(2)1:346-54, 1966.

[10] G.A. Bolcer and R. N. Taylor: “Endeavors: A Process System Integration

Infrastructure in Proceedings of the Fourth International Conference on the
Software Process”, Brighton, England, December 1996.

References

 106

[11] P. J. Brown and J. D. Bovey and X. Chen, “Context-Aware Applications:
From the Laboratory to the Marketplace”, IEEE Personal Communications,
4(5), pp. 58-64, 1997.

[12] S. Ceri and R. Ramakrishnan, "Rules in database systems", ACM Comput.

Surv. 28, 1, 109-111, 1996.

[13] S. Ceri and J. Widom,"Deriving production rules for constraint maintenance",

In Proceedings of the 16th International Conference on Very Large Data
Bases, VLDB Endowment, Berkeley, CA, 566-577, 1990.

[14] Fabio Casati, Stefano Ceri, Stefano Paraboschi and Guiseppe Pozzi,

"Specification and implementation of exceptions in workflow management
systems", ACM Trans. Database Syst., volume 24, nr. 3, p 405--451, ACM
Press, 1999.

[15] Guanling Chen and David Kotz, "Context Aggregation and Dissemination in

Ubiquitous Computing System", In Proceedings of the 4th Workshop on
Mobile Computing Systems and Application (WMCSA 2002), pages 105-114,
Callicoon, New York, June 2002.

[16] J. Eder and W. Liebhart, "The workflow activity model WAMO", In

Proceedings the International Conference on Cooperative Information
Systems, Vienna, Austria, May 1995.

[17] Anind K. Dey and Gregory D. Abowd, “A Conceptual Framework and a

Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications”, Human- Computer Interaction (HCI) Journal. Special Issue:
Context-Aware Computing, 16(2–4):97–166, 2001.

[18] Anind K. Dey, “Understanding and Using Context”, Personal and Ubiquitous

Computing Journal, 5(1):4-7, 2001.

[19] C. Ellis, S. Gibbs, and G. Rein, "Groupware - Some Issues and Experiences,"

Commun. of the ACM, vol. 34, no. 1, p. 38-58, 1991.

[20] Alois Ferscha, Simon Volg, Wolfgang Beer, "Ubiquitous context Sensing in

Wireless Environments", 4th Austrian-Hungarian Workshops on Distributed
and Parallel Systems (DAPSYS), ISBN 1-4020-7209-0, Kluwer Academic
Publishers, 2002.

[21] Adrian Fitzpatrick, Gregory Biegel, Siobh´an Clarke, Vinny Cahill, "Towards

a Sentient Object Model", Position Paper Workshop on Engineering Context-
Aware Object Oriented Systems and Environment (ECOOSE), Seattle WA,
USA, Nov. 2002.

[22] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, “Design

Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley
Professional, ISBN 0201633612, 1994.

References

 107

[23] C. Ghezzi, D. Mandrioli, S. Morasca and M. Pezze, “A Unified High-level
Petri Net Formalism for Time-critical Systems”, IEEE Transactions on
Software Engineering, Feb. 1991.

[24] J.C. Grundy and J.G. Hosking: “Serendipity: integrated environment support

for process modelling, enactment and work coordination”, Automated
Software Engineering: Special Issue on Process Technology 5(1), Kluwer
Academic Publishers, p. 27-60, Jan. 1998.

[25] C. Heath and P. Luff, "Documents and Professional Practice: 'bad'

organisational reasons for 'good' clinical records", In Proceedings of the
Conference on CSCW, Boston, Massachusetts, USA, ACM, p. 354-363, 1996.

[26] Marc Herrmann, "Technical Report 01: C3DS Requirements Analysis", C3DS

Public Technical Report Series, 42 pages, 1999.

[27] Huadong Wu, Mel Siegel and Sevim Ablay, "Sensor Fusion for Context

Understanding", IEEE Instrumentation and Measurement Technology
Conference, Anchorage, AK, USA, 21-23, May 2002.

[28] G. Hulin, M. Lacroix, D. Roelants and M. Vanhoedenaghe, "Integrated

Product and Process Modelling", in Proc. of First European Workshop on
Software Process Modeling, Milan, Italy, May 1991.

[29] G. Iacucci and K. Kuutti, "Everyday Life as a Stage in Creating and

Performing Scenarios for Wireless Devices", Personal and Ubiquitous
Computing (6:4), p. 299 – 306, 2002.

[30] Kerry Jean, Kun Yang, Alex Galis, "A Policy Based Context-aware Service

for Next Generation Networks", 8th London Communication Symposium, 8-
10. Sept, 2003.

[31] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt, T.

Starner, W. Newstetter, "The Aware Home: A Living Laboratory for
Ubiquitous Computing Research", Proc. of 2nd International Workshop on
Cooperative Buildings - CoBuild, 1999.

[32] David M. Kroenke, “Database Processing: Fundamentals, Design &

Implementation” 8th edition, Prentice Hall, 2002.

[33] Yang Li, Jason I. Hong and James A. Landay, "ContextMap: Modeling Scenes

of the Real World for Context-Aware Computing", 5th International
Conference on Ubiquitous Computing, Seattle, Washington, 12-15 Oct 2003.

[34] C. Liu and R. Conradi, "Process Modeling Paradigms: an evaluation", in Proc.

Of First European Workshop on Software Process Modeling, Milan, Italy,
May 1991.

[35] MARINTEK, SINTEF, “Operational Experience Review, Optimal Operation

and Control of Offshore Installations” (not published)

References

 108

[36] J. McCarthy, “Notes on formalizing context”, Proc. of the Thirteenth

International Joint Conference on Artificial Intelligence (IJCAI-93), 1993.

[37] T. Murata, “Petri nets: Properties, analysis and applications”, Proceedings of

the IEEE, vol. 77, pp. 541-580, April 1989.

[38] M.N. Nguyen, A.I. Wang and R. Conradi, “Total Software Process Model

Evolution In EPOS”, Submitted paper for 4th ICSP, Brigthon, UK, 1999.

[39] Nortel, supported by the University of Newcastle upon Tyne, "OMG

document bom/98-03-09," Nortel's Responce to "Workflow Scenario: Airplane
Design Process, 1998.

[40] Nortel, supported by the University of Newcastle upon Tyne, "OMG

document bom/98-03-10," Nortel's Responce to "Workflow Scenario: Trouble
Ticket", 1998.

[41] Jon Ole Nødtvedt, “Mobility and context-awareness in workflow systems”,

http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2003/fordypning2003-
Jon-Ole-Noedtvedt.pdf, 2003.

[42] Santanu Paul, Edwin Park, and Jarir Chaar, “RainMan: A workflow system for

the Internet”, In USENIX, editor, USENIX Symposium on Internet
Technologies and Systems Proceedings, Monterey, California, December 8-
11, 1997.

[43] James Lyle Peterson, "Petri Net Theory and the Modeling of Systems", ISBN

0136619835, Prentice Hall PTR, 1981.

[44] W. Reisig, "Petri Nets. An Introduction", EATCS Monographs on Theoretical

Computer Science, 4, 1985.

[45] Nick Ryan, Jason Pascoe and David Morse, “Enhanced reality fieldwork: the

context-aware archaeological assistant”, Computer Application in
Archaeology, (CAA97), Digest of Papers, British Archaeological Report
Series, Archaeopress, Oxford, UK, 1997.

[46] M. Satyanarayanan, "Of Smart Dust and Brilliant Rocks", IEEE Pervasive

Computing, Vol. 2, no. 4, Oct.-Dec. 2003.

[47] Bill Schilit and M. Theimer, “Disseminating Active Map Information to

Mobile Hosts”, IEEE Networks, 8(5), pp. 22-32, 1994.

[48] Albrecht Schmidt, Michael Beigl and Hans-W. Gellersen, "There is more to

Context than Location", Proceedings of the International Workshop on
Interactive Applications of Mobile Computing (IMC98), Rostock, Germany,
Nov. 1998.

References

 109

[49] Kjeld Schimidt and Liam Bannon, "Taking CSCW Seriously: Supporting
Articulation Work", Computer Supported Cooperative Work (CSCW), An
International Journal, Vol. 1, Nos. 1-2, p.7-40, 1992.

[50] M. Sloman, "Policy Driven Management For Distributed Systems", Journal of

Network and System Management, vol.2, no. 4, pp. 333-60, Dec. 1994.

[51] A. Spriestersbach, H. Vogler, F. Lehmann, T. Ziegert, "Integrating Context

Information into Enterprise Applications for the Mobile Workforce - Case
Study", Mobile Commerce Workshop MOBICOM, 2001.

[52] Martin Strohbach, Hans Gellersen, Gerd Kortuem, Christian Kray, “Intelligent

Artefacts: An Embedded Systems Approach for Cooperative Assessment of
Situations in the World”, To appear in Proceedings Ubicomp, 2004.

[53] Lucy A. Suchman, "Do categories have politics? The language/action

perspective reconsidered", CSCW 2 (3), p. 177-190, 1994.

[54] Lucy A. Suchman, “Plans and situated actions: the problem of human-machine

Communication”, ISBN: 0-521-33137-4, Cambridge University Press, 1987.

[55] Manos Theodorakis, Anastasia Analyti, Panos Constantopoulos and Nikos

Spyratos, “Context in information bases”, Proc. of the 3rd International
Conference on Cooperative Information Systems (IFCIS), New York, USA,
pp. 260-270, August, 1998.

[56] L. S. Vygotskij, “Mind and Society”, Cambrigde, MA: Harvard University

Press, 1978.

[57] Alf Inge Wang, Carl-Fredrik Sørensen, Eldrid Schei and Thale Christina

Fritzner, "Case study: Use of the Mobile Tool Handyman for Mobile Work",
In Proceedings of the IASTED International Conference on Software
Engineering and Applications (SEA 2003), Marina Del Rey, USA, Nov. 03-
05, 2003.

[58] Mark Weiser. The Computer for the 21st Century. IEEE Pervasive Computing,

1(1):18–25, January-March 2002. Reprinted from Scientific American, 1991.

[59] T. Winograd, "Categories, diciplines and social coordination", CSCW 2 (3), p.

177-190, 1994.

[60] The Workflow Management Coalition, Workflow Client Application

(Interface 2), Application Programming Interface (WAPI) Specification,
Document Number WFMC-TC-1009, Oct. 1997.

[61] The Workflow Management Coalition, “Workflow Management Coalition –

Terminology & Glossary”, Technical Report WFMC-TC-1011, The Workflow
Management Coalition (WfMC), Document Number WFMC-TC-1011, Feb.
1999.

References

 110

[62] The Workflow Management Coalition, “The Workflow Reference Model”,
Technical Report WFMC-TC-1003, The Workflow Management Coalition
(WfMC), Document Number WFMC-TC-1003, Jan. 19th 1995.

[63] The Workflow Management Coalition, “Workflow Process Definition

Interface – XML Process Definition Language”, Technical Report WFMC-
TC-1025, The Workflow Management Coalition (WfMC), Document Number
WFMC-TC-1025, Oct. 25th 2002.

[64] Martin V. Zelkowitz and Dolores R. Wallace, "Computing Practices:

Experimental Models for Validating Technology", IEEE, May 1998.

Web references

[65] About.com, http://3dgraphics.about.com/library/glossary/bldefAR.htm, 2004.

[66] About.com, What is E-Commerce?,

http://ecommerce.about.com/cs/faqstutorials/a/aa021502.htm, 2004.

[67] Scott W. Ambler, UML Activity Diagramming Guidelines,

http://www.agilemodeling.com/style/stateChartDiagram.htm, 2004.

[68] Scott W. Ambler, UML State Chart Diagramming Guidelines,

http://www.agilemodeling.com/style/stateChartDiagram.htm, 2004.

[69] Association for Computing Machinery (ACM), http://portal.acm.org/, 2004.

[70] Carnegie Mellon Software Engineering Institute, Software Process

Automation, http://www.sei.cmu.edu/legacy/procauto/projects.products.html,
2004.

[71] Cite Seer, http://citeseer.nj.nec.com, 2004.

[72] Dralasoft, “An example of an order processing workflow”,

http://www.dralasoft.com/products/workflow/engine/details.html, 2004.

[73] Elsevier Computing Science, http://www.elseviercomputerscience.com/, 2004.

[74] IBM, FlowMark, http://www.software.ibm.com/ad/flowmark, 2004.

[75] IETF, Policy Framework Working Group web page,

http://www.ietf.org/html.charters/policy-charter.html, 2004.

[76] IETF, Internet Protocol, http://www.ietf.org/rfc/rfc0791.txt, 1981.

References

 111

[77] IETF, Transmission Control Protocol, http://www.faqs.org/rfcs/rfc793.html,

1981.

[78] Loosely Coupled, Publish-Subscribe,

http://www.looselycoupled.com/glossary/publish-subscribe, 2004.

[79] Microsoft, Microsoft .NET,

http://www.microsoft.com/net/basics/, 2004.

[80] Microsoft, Distributed Component Object Model (DCOM),

http://www.microsoft.com/com/tech/dcom.asp, 2004.

[81] MOWAHS. Mobile Work Across Heterogeneous Systems,

http://www.mowahs.com, 2001.

[82] Object Management Group, OMG's Internet Inter-ORB Protocol (IIOP),

http://www.omg.org/library/iiop4.html, 2004.

[83] Object Management Group, Common Object Request Broker Architecture

(CORBA), http://www.omg.org/gettingstarted/corbafaq.htm, 2004.

[84] Science Direct, http://www.sciencedirect.com, 2004.

[85] Soapuser.com, What is Simple Object Access Protocol (SOAP)?,

http://www.soapuser.com/basics1.html, 2004.

[86] Software QA and Testing Resource Center,

http://www.softwareqatest.com/qatfaq1.html, 2004.

[87] Staffware, http://www.staffware.com, 2004.

[88] Sun Microsystems, Java Remote Method Invocation (RMI),

http://www.sun.com/products/jdk/1.2/docs/guide/rmi/, 1999.

[89] Sun Microsystems, Java Technology,

http://wwws.sun.com/software/learnabout/java/, 2004.

[90] TeamWare, http://www.teamware.com, 2004.

[91] The Apache XML project, Xerces2,

http://xml.apache.org/xerces2-j/index.html, 2004.

[92] The University of Missouri- Rolla EMC Consortium, Backward chaining,

http://www.emclab.umr.edu/consortium/Whatis/node19.html, 2004.

[93] The University of Missouri- Rolla EMC Consortium, Forward chaining,

http://www.emclab.umr.edu/consortium/Whatis/node18.html, 2004.

References

 112

[94] The University of Missouri- Rolla EMC Consortium, Tree searches,
http://www.emclab.umr.edu/consortium/Whatis/node20.html, 2004.

[95] The World Wide Web Consortium, Document Object Model,

http://www.w3.org/DOM/, 2004.

[96] W3C, Extensible Markup Language (XML), http://www.w3c.org/XML/,

2004.

[97] W3C, Hypertext Transfer Protocol (HTTP),

http://www.w3.org/Protocols/, 2004.

[98] Webopedia.com, What is Local Area Network (LAN)?,

http://www.webopedia.com/TERM/L/local_area_network_LAN.html, 2004.

[99] Webopedia.com, What is Wide Area Network (WAN)?,

http://www.webopedia.com/TERM/W/wide_area_network_WAN.html, 2004.

[100] Whatis.com, Fuzzy Logic,

http://whatis.techtarget.com/definition/0,,sid9_gci212172,00.html, 2004.

[101] Workflow Management Coalition

http://www.wfmc.org/

[102] World Wide Web Consortium, "Resource Description Framework (RDF)",

http://www.w3c.org/RDF, 2004.

[103] World Wide Web Consortium, XML Schema,

http://www.w3c.org/XML/Schema, 2004.

Appendix

 113

Appendix A: Vertical
Prototyping

This chapter provides a description of the technique for vertical prototyping. In
addition, a statement on why we used this technique in our development and other
related techniques for prototyping will also be covered in this chapter.

Vertical prototype is an approach that can be used to demonstrate the exact
functionality of a product, but for only small section of the entire product. For
example, a vertical prototype of a word processor might demonstrate all of the spell-
checking functions, but none of the formatting or text-entry functions. All of the
functions in a vertical prototype mimic their real counterparts as much as possible.

This approach should be used when the design for a particular section is rather
complete and merits testing as a complete unit. Since a vertical prototype needs to be
practically fully functional (although just for a small portion of the product interface),
the best way to obtain a vertical prototype is to use a fully functioning module of the
product. For software programs that are written with a modular architecture, this can
usually be done, although the interface to other modules won’t work. For a car, it
could be the seating and other interior furnishings that will be tested, while the drive
train, body sensors, and other components which are not ready yet.

A complete workflow system is comprised by a complex structure, in terms of their
functionalities and their relationship between different components. Furthermore,
such systems can also be in operation although the fully functionalities are not
implemented. For instance you can make a payment transaction in a net bank, but
since the system are not fully implemented according to their requirements of the
system, you will not be able to make a stock trading.

Because of the limited project period, we were not able to implement a complete
workflow system. Our choice of this type of prototyping was also based on that this
technique allowed us to cover more features and functions of a context-aware system
in the given amount of time, than building an entire system.

There are a number of different terms we can hear in conjunction with prototyping
methods. The following is a listing of some of these techniques:

Technique: Purpose Pros Cons
Rapid Prototyping Is a technique that

quickly develops new
designs

New design is quickly
developed as the design
cycle progresses.

Expensive, in terms
of time and money.

Reusable Prototyping Is a technique that
makes use of parts
(or all) of the
prototype in the
actual product.

Existing parts can be use
in a product.

Expensive, in terms
of time and money.

Modular Prototyping Concerns with Able to reconfiguration of Expensive, in terms

Appendix

 114

different modules of a
product.

each module.
New parts can be added
into the product/ system.

of time and money.

Horizontal Prototyping Covers a large
breadth of features
and functions, but
most aren't working.

Best for testing breadth of
scope but not actual use.

Does not provide the
extensive
functionality behind
each function.

Vertical Prototyping Covers a large
breadth of features
and functions.

Best for testing usage in
a small portion of the
product.

Does not cover the
complete
functionalities of the
product.

Low-fidelity
Prototyping

Is a technique that
uses paper and
pencil to mock-up
interface screens

Not expensive to use, in
terms of time and money.
Provides lot of feedback
about the interaction
between the interface and
the user.

Mimics the function of
the actual product.

High-fidelity
Prototyping

Concerns with the
actual design/
interface of a product.

Not expensive to use, in
terms of time and money.
This technique is useful
when the actual interface
of a product is not
finished yet.

Does not show the
fully functionality of a
product.

Table 1: An overview of prototyping techniques

As Table 1 describes, low-fidelity and high-fidelity prototyping are concerned with
the design and interface of the actual product, which is not our focus for the
development of the workflow prototypes. Our prototypes will just cover a small
section of a whole system, which fits the technique for vertical prototyping.

Appendix

 115

Appendix B: UML State Chart
Diagram

A state chart diagram shows the behaviour of classes in response to external stimuli.
This diagram models the dynamic flow of control from state to state within a system.

Table 2 presents basic symbols and notations of the state chart diagram:

States
States represent situations during the life of
an object.

Transition
A solid represents the path between different
states of an object. Label the transition with
the event that triggered it, the condition
which is satisfied and the action that results
from it.

Initial State
A filled circle followed by an arrow
represents the object’s initial state.

Final State
An arrow pointing to a filled circle nested
inside another circle represents the object’s
final state.

Synchronization and Splitting of Control
A short heavy bar with two transitions
entering it represents a synchronization of
control. A short heavy bar with two
transitions leaving it represents a splitting of
control that creates multiple states.

Table 2: Basic state chart diagram symbols and notations.

Appendix

 116

Appendix C: UML Activity
diagram

An activity diagram illustrates the flow of control from activity to activity, where
transitions from activity to activity are done in response to internal stimuli such as
activity completion.

Table 3 illustrates the key symbols and notations used in activity diagrams:

Action states
States represent actions to be performed
during the life of an object.

Control flow
A solid represents the path between different
action states of an object. They can be
labelled with the condition, which is
satisfied.

Initial State
A filled circle followed by an arrow
represents the object’s initial state.

Final State
An arrow pointing to a filled circle nested
inside another circle represents the object’s
final state.

Synchronization and Splitting of Control
A short heavy bar with two transitions
entering it represents a synchronization of
control. A short heavy bar with two
transitions leaving it represents a splitting of
control that creates multiple states.

Branching
A diamond represents a decision with
alternate paths. The outgoing paths should
be labelled with the conditions, which are
satisfied.

Table 3: Basic activity diagram symbols and notations.

Appendix

 117

Appendix D: Test report

Testing of software means that the software product is operated under controlled
conditions. The results from this test are compared against the excepted results to
evaluate the results of the test.

During the development process of a software product, the product goes through
verification and validation. Verification means that plans, requirements and
specifications are reviewed by the customer. Validation involves the actual testing of
the product and is done after verification phase.

It is possible to divide software testing into static and dynamic testing. Static testing
means testing without running the software product. Code review is one of the most
common strategies for static testing. Dynamic testing involves testing while running
part of or the whole software product. It is possible to separate dynamic testing into
several categories. Some of the dynamic testing categories are illustrated in Table 4
[86].

Test type Description
Back box test Testing without any knowledge of

internal design.

Unit test

Testing of individual functions or
modules. Usually done by the software
developers themselves.

Integration test Testing of combined parts of an
application to determine if they function
correctly together.

System test Black box testing based on the overall
requirements specification.

Acceptance test Final testing based on the specifications
of the end user/customer.

Table 4: Software test types

We have implemented vertical prototypes in our project. The prototypes function as a
demonstration tools and proof-of-concepts. The requirements for the prototypes were
prompted by our research questions and our study of the state-of-the-art. This means
that the verification part of the development process is irrelevant for our prototypes.
Since the prototypes mainly function as demonstration tools of the dynamic behaviour
of a context-aware workflow system, we chose to limit our validation to limited
system tests. The limited system test allows us to test the functionality of the system
according to our requirements. We did not want to do a complete system test, since
our prototypes are supposed to be used as demonstration tools only and require
minimal input from the user. A fully implemented context-aware workflow system
requires a more comprehensive system test than what we have performed. Additional
tests may also be required.

Appendix

 118

Our previously stated requirements in Chapter 7 constitute high-level requirements
and are not directly testable. We have therefore specified functionally testable
requirements for each prototype. These requirements are stated in the following tables
for our system tests. The system tests completed are stated for each prototype. The
scenario for each system test is specified as part of the individual prototype
specification. For the system test, the individual processes of the prototypes are
considered as a single entity.

The prototypes consist of several command line applications that have to be started up
in the correct order. This is handled by a start-up script. The behaviour of the
prototype is shown by the textual output in the command window and by updates to
the process description file for one prototype. The execution of each prototype is
described in the attached CD-ROM.

The system test for the prototype specified in Chapter 8.2 where context information
was used in workflow transitions is presented in Table 5
.
Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

Table 5: System test for the prototype in Chapter 8.2

The system test for the prototype specified in Chapter 8.3 where workflow actions are
initiated based on context changes is presented in Table 6.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 A second process is started based on a
context event

OK

Table 6: System test for the prototype in Chapter 8.3

Appendix

 119

The system test for the prototype specified in Chapter 8.4 where an exception handler
is used to handle context exception states is presented in Table 7.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 The prototype operates according to the
exception handler definition file.

OK

6 The prototype generates a new process
definition file according to the original
process definition and the exception
handler file

OK

Table 7: System test for the prototype in Chapter 8.4

The system test for the prototype specified in Chapter 8.5 where the exception handler
is used to re-evaluate the process path is presented in Table 8.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 The process path is re-evaluated
according to the scenario definition.

OK

Table 8: System test for the prototype in Chapter 8.5

The system test for the prototype specified in Chapter 8.6 where an invariant is
invalidated by the user is presented in Table 9.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

Appendix

 120

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 The BooleanWidget with id
“BOOLEAN1” accepts user input.

OK

6 The process is rolled back if the user
writes “FALSE” in the BooleanWidget
with id “BOOLEAN1” when the
process is running.

OK

Table 9: System test for the prototype in Chapter 8.6

The system test for the prototype specified in Chapter 8.7.2 where a client based
inference engine is used to build a local process for the client is presented in Table 10.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 The workflow client indicates that local
process activities has been received and
returned.

OK

6 The local process activities enacted is
based on the contextual state and the
client knowledge base

OK

Table 10: System test for the prototype in Chapter 8.7.2

The system test for the prototype specified in Chapter 8.7.3 where a context source
forms the post-condition for the enactment of an activity is presented in Table 11.

Test number Requirement Test result
1 The prototype type starts up correctly

without error messages using the start-
up script.

OK

2 The prototype indicates where activities
have been received.

OK

3 The prototype indicates that workflow
relevant data has been updated.

OK

4 The prototype operates according to the
process definition.

OK

5 The BooleanWidget with id OK

Appendix

 121

“BOOLEAN1” accepts user input
6 The executing activity is returned as

soon as the user type “TRUE” in the
command window for the
BooleanWidget with id
“BOOLEAN1”.

OK

Table 11: System test for the prototype in Chapter 8.7.3

Appendix

 122

Appendix E: Context
information used in workflow
transitions process definition

<?xml version="1.0" encoding="us-ascii"?>
<Package xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0
http://wfmc.org/standards/docs/TC-1025_schema_10_xpdl.xsd" Id="0" Name="test context query
workflow process">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>1/21/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess Id="1" Name="ContextValueQuery" AccessLevel="PUBLIC">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 <DataField Id="contextvalue1" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 </DataFields>
 <Participants>
 <Participant Id="CII">
 <ParticipantType Type="SYSTEM"/>
 <Description>Reference to Context Information Framework</Description>
 </Participant>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 <Participant Id="P2">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="pollContextSource">

Appendix

 123

 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue1" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <Tool Id="pollContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN</ActualParameter>
 <ActualParameter>
 </ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 <TransitionRef Id="1"/>
 <TransitionRef Id="2"/>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="2" Name="Activity2">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="3" Name="Activity3">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions>

Appendix

 124

 <Transition Id="1" From="1" To="2">
 <Condition>contextvalue1 == "TRUE"</Condition>
 </Transition>
 <Transition Id="2" From="1" To="3">
 <Condition>contextvalue1 == "FALSE"</Condition>
 </Transition>
 </Transitions>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

Appendix

 125

Appendix F: Class diagrams
for all packages in the initial
prototype
The cii package:

This package consists of the “CII” class. It implements the
functionality of the CII component.

The common package:
This package consists of several classes and interfaces used by several independent
processes in our prototypes

WorkflowClient
ContextSourceListener

CII

-workflow_url:String
-workflow_port:String
-workflow_name:String
-disc_url:String
-disc_port:String
-disc_name:String
-id:String
-connection:WorkflowClientConnec
-ciirunners:Vector

+CII
+registerActivity:void
-returnActivity:void
+reciveveEvent:void
+main:void

-CIIRunner

 ID:String

Remote
interface

ContextData

 data:String
 dataType:String

Remote
interface
Activity

+getOutParameter:String
+setOutParameter:void
+getInParameter:String
+setInParameter:void

 activityID:String
 activityName:String
 implementation:Implementation
 performer:Participant
 participant:Participant
 transitionRestriction:TransitionRestriction[]
 outParameters:HashMap
 inParameters:HashMap
 toolId:String

ContextDataImpl

-datatype:String

+ContextDataImpl

 data:String
 dataType:String Remote

interface
WorkflowClient

+registerActivity:void

 ID:String

Remote
interface

WorkflowClientConnection

+returnActivity:void
+startProcess:void

EnactmentRepresentation
ActivityImpl

+ELEMENT_NAME:String
-ATTRIB_ID:String
-ATTRIB_NAME:String
-ActivityID:String
-ActivityName:String
-transitionrestrictions:TransitionRestriction[]
-inparameters:HashMap
-outparameters:HashMap
-toolid:String

+ActivityImpl
+ActivityImpl
+getOutParameter:String
+setOutParameter:void
+getInParameter:String
+setInParameter:void
+loadAttributes:void
+addElement:void

 activityID:String
 activityName:String
 implementation:Implementation
 performer:Participant
 participant:Participant
 transitionRestriction:TransitionRestriction[]
 outParameters:HashMap
 inParameters:HashMap
 toolId:String
 text:String

Remote
interface

WorkflowConnectionFactory

+registerClient:WorkflowClientConnection

interface
NetworkService

+enableService:void
+sendActivity:void

Appendix

 126

The contextsource package:

This package contains the interfaces of the
context framework components. The sub-
packages for the discoverer and
BooleanWidget are located in this
package.

The contextsource.discoverer package:

This package contains the interface and class for the
discoverer component.

The contextsource.widget package:

This package contains the implementation of a BooleanWidget
context source.

The workflowclient package:

This package contains the implementation of a workflow
client.

widget

+BooleanWidget

Remote
interface

ContextSourceListener

+reciveveEvent:void

discoverer

+DiscovererImpl
+Discoverer

Remote
interface

ContextSource

+registerListener:void
+pollContextSource:ContextData

DiscovererImpl

-sources:HashMap
-disc_url:String
-disc_port:String
-disc_name:String

+DiscovererImpl
+registerSource:void
+lookupSource:ContextSource
+main:void

Remote
interface

Discoverer

+registerSource:void
+lookupSource:ContextSource

ContextSource
BooleanWidget

-registeredclients:Vector
-disc_url:String
-disc_port:String
-disc_name:String
-contextgenerator:Thread

+BooleanWidget
+registerListener:void
+pollContextSource:ContextDa
+main:void

-ContextGenerator

 currentData:ContextData

WorkflowClient
WorkflowClientImpl

-enactment_url:String
-enactment_port:String
-enactment_name:String
-current_activity:Activity
-current_processID:String
-id:String
-connection:WorkflowClientConnection

+WorkflowClientImpl
+WorkflowClientImpl
+registerActivity:void
-startProcess:void
+main:void

-ActivityExecuter

 ID:String

Appendix

 127

The workflowenactment package:
WorkflowEnactmentService

-networkservice:NetworkService
-processes:Vector
-registeredclients:Vector
-workflowprocessdescriptions:WorkflowProcess[]
-ds:DataService

+WorkflowEnactmentService
+addClient:void
+removeClient:void
+registerProcess:void
+newActivity:void
+returnActivity:void
+getProcessDescription:WorkflowProcess
+main:void

processenactment

+WorkflowProcessExecuter

dataservice

+BasicDOM
+DataService

enactmentrepresentation

+DataField
+Tool
+TransitionRestriction
+BasicType
+InitialValue
+Transition
+Participant
+Join
+TransitionRef
+Description
+Application
+EnactmentRepresentation
+Split
+DataType
+WorkflowProcess
+Implementation
+FormalParameter
+Condition
+Length
+ActualParameter
+ParticipantType

networkservice

+WorkflowConnectionFactoryImpl
+WorkflowClientConnectionImpl

This package contains the implementation of the workflow enactment service. In
addition the sub-packages of enactmentrepresentation, processenactment, dataservice
and networkservice are also located within this package.

The workflowenactment.dataservice package:

This package contains the interface and
implementation class of the “DataService” layer.

BasicDOM

-processes:WorkflowProcess[]

+BasicDOM
-traverse:void
+loadWorkflowProcesses:WorkflowProcess[]
+main:void

interface
DataService

+loadWorkflowProcesses:WorkflowProcess[]

Appendix

 128

The workflowenactment.enactmentrepresentation package:

Appendix

 129

The workflowenactment.enactmentrepresentation contains all the classes necessary to
represent the process definition within the workflow enactment service at run-time.
The “EnactmentRepresentation” class is the base class for all other representation
classes.

The workflowenactment.networkservice package:

This class contain the
implementation classes of the
“NetworkService” layer of the
workflow enactment service.

The workflowenactment.processenactment package:

This package contains the implementation class, which is
responsible for process enactment.

WorkflowConnectionFactory
WorkflowConnectionFactoryImpl

-workflowenatmentservice:WorkflowE
-factory_url:String
-factory_port:String
-factory_name:String

+WorkflowConnectionFactoryImpl
+enableService:void
+sendActivity:void
+registerClient:WorkflowClientConnec

WorkflowClientConnection
Unreferenced

WorkflowClientConnectionImpl

-workflowenactmentservice:WorkflowE
-client:WorkflowClient

+WorkflowClientConnectionImpl
+returnActivity:void
+startProcess:void
+unreferenced:void

Runnable
WorkflowProcessExecuter

-definition:WorkflowProcess
-enactment:WorkflowEnactmentS
-process_activities:Activity[]
-process_transitions:Transition[]
-current_activity:Activity
-processID:String
-lock:Object

+WorkflowProcessExecuter
+run:void
-initializeParameters:void
+returnActivity:void
-updateDataFields:void

 id:String

Appendix

 130

Appendix G: Workflow actions
based on context changes
process definition

<?xml version="1.0" encoding="us-ascii"?>
<Package xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0
http://wfmc.org/standards/docs/TC-1025_schema_10_xpdl.xsd" Id="0" Name="test context query
workflow process">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>3/04/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess Id="1" Name="ContextSourceSubscription" AccessLevel="PUBLIC">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 </DataFields>
 <Participants>
 <Participant Id="CII">
 <ParticipantType Type="SYSTEM"/>
 <Description>Reference to Context Information Framework</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="subscribeContextSource">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextcondition" Index="2" Mode="IN">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="operation" Index="3" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>

Appendix

 131

 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <Tool Id="subscribeContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN</ActualParameter>
 <ActualParameter>TRUE</ActualParameter>
 <ActualParameter>startProcess(2)</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions>
 </Transitions>
 </WorkflowProcess>
 <WorkflowProcess Id="2" Name="Adhocprocess" AccessLevel="PUBLIC">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 </DataFields>
 <Participants>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions>
 </Transitions>
 </WorkflowProcess>

Appendix

 132

 </WorkflowProcesses>
</Package>

Appendix

 133

Appendix H: Revised process
for exception condition

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="0" Name="test context query workflow process"
 xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>1/21/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="1" Name="ContextValueQuery">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 <DataField Id="contextvalue1" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 </DataFields>
 <Participants>
 <Participant Id="CII">
 <ParticipantType Type="SYSTEM"/>
 <Description>Reference to Context Information Framework</Description>
 </Participant>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 <Participant Id="P2">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="pollContextSource">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>

Appendix

 134

 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue1" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <Tool Id="pollContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="2" Name="Activity2">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="3" Name="Activity3">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="4" Name="verifyState">
 <Description>Verify contextual state</Description>
 <Implementation>
 <Tool Id="pollContextSource" Type="0">
 <ActualParameter>BOOLEAN</ActualParameter>
 <ActualParameter>UNDEFINED</ActualParameter>
 </Tool>
 </Implementation>
 <Performer>P1</Performer>
 <TransitionRestrictions/>
 </Activity>
 </Activities>
 <Transitions>
 <Transition From="1" Id="1" To="2">
 <Condition>contextvalue1 == "TRUE"</Condition>

Appendix

 135

 </Transition>
 <Transition From="1" Id="2" To="3">
 <Condition>contextvalue1 == "FALSE"</Condition>
 </Transition>
 <Transition From="4" Id="3" To="2">
 <Condition>contextvalue1 == "TRUE"</Condition>
 </Transition>
 <Transition From="4" Id="4" To="3">
 <Condition>contextvalue1 == "FALSE"</Condition>
 </Transition>
 <Transition From="1" Id="5" To="4">
 <Condition>contextvalue1 == "UNDEFINED"</Condition>
 </Transition>
 </Transitions>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

Appendix

 136

Appendix I: XML schema for
exception handling rules

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Action">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Generate" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="RevalidateProcessPath" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Condition">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Value"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Event">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Type"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Generate">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Activity" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Transition" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Activity">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="Description"/>
 <xs:element ref="Implementation" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="Performer" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="UseCurrent" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Transition">
 <xs:complexType>
 <xs:sequence>

Appendix

 137

 <xs:element ref="UseCurrent" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="ConditionValue" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="To" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="From" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="Performer" type="xs:string"/>
 <xs:element name="Implementation" type="xs:string"/>
 <xs:element name="UseCurrent" type="xs:string"/>
 <xs:element name="ConditionValue" type="xs:string"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="To" type="xs:string"/>
 <xs:element name="From" type="xs:string"/>
 <xs:element name="RevalidateProcessPath" type="xs:string"/>
 <xs:element name="Events">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Event" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Condition" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Actions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Action" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Events" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="Conditions" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="Actions" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rules">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Rule" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExceptionHandling">
 <xs:complexType>
 <xs:sequence>

Appendix

 138

 <xs:element ref="Rules" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Appendix

 139

Appendix J: XML exception
handling document for context
state exception condition

<?xml version="1.0" encoding="UTF-8"?>
<ExceptionHandling xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="exceptionschema.xsd">
 <Rules>
 <Rule Id="1">
 <Events>
 <Event Id="1">
 <Type>TransitionException</Type>
 </Event>
 </Events>
 <Conditions>
 <Condition Id="1">
 <Value>transition value == "UNDEFINED"</Value>
 </Condition>
 </Conditions>
 <Actions>
 <Action Id="1">
 <Generate Id="1">
 <Activity Id="1">
 <Name>verifyState</Name>
 <Description>Verify contextual state</Description>
 <Implementation>current</Implementation>
 <Performer>P1</Performer>
 <UseCurrent>FALSE</UseCurrent>
 </Activity>
 <Transition Id="1">
 <UseCurrent>TRUE</UseCurrent>
 <From>1</From>
 </Transition>
 <Transition Id="2">
 <ConditionValue>transition value == "UNDEFINED"</ConditionValue>
 <To>1</To>
 <From>current</From>
 </Transition>
 </Generate>
 </Action>
 </Actions>
 </Rule>
 </Rules>
</ExceptionHandling>

Appendix

 140

Appendix K: Process path
revalidation process
specification

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="0" Name="test context query workflow process"
 xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>1/21/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="1" Name="ContextValueQuery">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 <DataField Id="contextvalue1" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 <DataField Id="contextvalue2" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 </DataFields>
 <Participants>
 <Participant Id="CII">
 <ParticipantType Type="SYSTEM"/>
 <Description>Reference to Context Information Framework</Description>
 </Participant>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>

Appendix

 141

 <Participant Id="P2">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="pollContextSource1">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue1" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 <Application Id="pollContextSource2">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue2" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <Tool Id="pollContextSource1" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN1</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="2" Name="Activity2">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="3" Name="Activity3">

Appendix

 142

 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="4" Name="Activity4">
 <Implementation>
 <Tool Id="pollContextSource2" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN2</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="5" Name="Activity5">
 <Implementation>
 <Tool Id="pollContextSource2" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN2</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="6" Name="Activity6">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions>
 <Transition Id="1" From="1" To="2">
 <Condition>contextvalue1 == "TRUE"</Condition>
 </Transition>
 <Transition Id="2" From="1" To="3">
 <Condition>contextvalue1 == "FALSE"</Condition>
 </Transition>
 <Transition Id="3" From="2" To="4">
 </Transition>
 <Transition Id="4" From="3" To="5">
 </Transition>
 <Transition Id="5" From="4" To="6">
 <Condition>contextvalue2 == "TRUE"</Condition>
 </Transition>

Appendix

 143

 <Transition Id="6" From="5" To="6">
 <Condition>contextvalue2 == "FALSE"</Condition>
 </Transition>
 </Transitions>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

Appendix

 144

Appendix L: Process path
revalidation exception handler
rules

<?xml version="1.0" encoding="UTF-8"?>
<ExceptionHandling xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="exceptionschema.xsd">
 <Rules>
 <Rule Id="1">
 <Events>
 <Event Id="1">
 <Type>TransitionException</Type>
 </Event>
 </Events>
 <Conditions>
 <Condition Id="1">
 <Value>transition value == "UNDEFINED"</Value>
 </Condition>
 </Conditions>
 <Actions>
 <Action Id="1">
 <Generate Id="1">
 <Activity Id="1">
 <Name>verifyState</Name>
 <Description>Verify contextual state</Description>
 <Implementation>current</Implementation>
 <Performer>P1</Performer>
 <UseCurrent>FALSE</UseCurrent>
 </Activity>
 <Transition Id="1">
 <UseCurrent>TRUE</UseCurrent>
 <From>1</From>
 </Transition>
 <Transition Id="2">
 <ConditionValue>transition value == "UNDEFINED"</ConditionValue>
 <To>1</To>
 <From>current</From>
 </Transition>
 </Generate>
 </Action>
 </Actions>
 </Rule>
 <Rule Id="2">
 <Events>
 <Event Id="1">
 <Type>TransitionException</Type>
 </Event>
 </Events>
 <Conditions/>
 <Actions>
 <Action Id="1">
 <RevalidateProcessPath>TRUE</RevalidateProcessPath>

Appendix

 145

 </Action>
 </Actions>
 </Rule>
 </Rules>
</ExceptionHandling>

Appendix

 146

Appendix M: Process
description for invariant
scenario

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="0" Name="test context query workflow process"
 xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>1/21/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="1" Name="ContextValueQuery">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 <DataField Id="contextvalue1" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 <DataField Id="contextvalue2" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 <DataField Id="contextvalue3" IsArray="FALSE">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 <InitialValue>TRUE</InitialValue>
 <Length>0</Length>
 </DataField>
 </DataFields>
 <Participants>
 <Participant Id="CII">

Appendix

 147

 <ParticipantType Type="SYSTEM"/>
 <Description>Reference to Context Information Framework</Description>
 </Participant>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 <Participant Id="P2">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="subscribeContextSource">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextcondition" Index="2" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="operation" Index="3" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 <Application Id="pollContextSource1">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue1" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 <Application Id="pollContextSource2">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue2" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>

Appendix

 148

 <Application Id="pollContextSource3">
 <FormalParameters>
 <FormalParameter Id="context_source_attributes" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="contextvalue3" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <Tool Id="pollContextSource1" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN1</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 <Tool Id="subscribeContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN1</ActualParameter>
 <ActualParameter>[!BOOLEAN1]</ActualParameter>
 <ActualParameter>contextvaluechange</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="2" Name="Activity2">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="3" Name="Activity3">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="4" Name="Activity4">
 <Implementation>
 <Tool Id="pollContextSource2" Type="APPLICATION">
 <ActualParameters>

Appendix

 149

 <ActualParameter>BOOLEAN2</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 <Tool Id="subscribeContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN2</ActualParameter>
 <ActualParameter>[!BOOLEAN2]</ActualParameter>
 <ActualParameter>contextvaluechange</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="5" Name="Activity5">
 <Implementation>
 <Tool Id="pollContextSource3" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN3</ActualParameter>
 <ActualParameter/>
 </ActualParameters>
 </Tool>
 <Tool Id="subscribeContextSource" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN3</ActualParameter>
 <ActualParameter>[!BOOLEAN3]</ActualParameter>
 <ActualParameter>contextvaluechange</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>CII</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="6" Name="Activity6">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="7" Name="Activity7">
 <Route/>
 <Performer>P1</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="8" Name="Activity8">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>

Appendix

 150

 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="9" Name="Activity9">
 <Route/>
 <Performer>P2</Performer>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions>
 <Transition Id="1" From="1" To="2">
 <Condition>contextvalue1 == "TRUE"</Condition>
 </Transition>
 <Transition Id="2" From="1" To="3">
 <Condition>contextvalue1 == "FALSE"</Condition>
 </Transition>
 <Transition Id="3" From="2" To="4">
 </Transition>
 <Transition Id="4" From="3" To="5">
 </Transition>
 <Transition Id="5" From="4" To="6">
 <Condition>contextvalue2 == "TRUE"</Condition>
 </Transition>
 <Transition Id="5" From="4" To="7">
 <Condition>contextvalue2 == "FALSE"</Condition>
 </Transition>
 <Transition Id="6" From="5" To="8">
 <Condition>contextvalue3 == "TRUE"</Condition>
 </Transition>
 <Transition Id="6" From="5" To="9">
 <Condition>contextvalue3 == "FALSE"</Condition>
 </Transition>
 </Transitions>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

Appendix

 151

Appendix N: Exception handler
rules for invariant scenario

<?xml version="1.0" encoding="UTF-8"?>
<ExceptionHandling xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="exceptionschema.xsd">
 <Rules>
 <Rule Id="1">
 <Events>
 <Event Id="1">
 <Type>TransitionException</Type>
 </Event>
 </Events>
 <Conditions>
 <Condition Id="1">
 <Value>transition value == "UNDEFINED"</Value>
 </Condition>
 </Conditions>
 <Actions>
 <Action Id="1">
 <Generate Id="1">
 <Activity Id="1">
 <Name>verifyState</Name>
 <Description>Verify contextual state</Description>
 <Implementation>current</Implementation>
 <Performer>P1</Performer>
 <UseCurrent>FALSE</UseCurrent>
 </Activity>
 <Transition Id="1">
 <UseCurrent>TRUE</UseCurrent>
 <From>1</From>
 </Transition>
 <Transition Id="2">
 <ConditionValue>transition value == "UNDEFINED"</ConditionValue>
 <To>1</To>
 <From>current</From>
 </Transition>
 </Generate>
 </Action>
 </Actions>
 </Rule>
 <Rule Id="2">
 <Events>
 <Event Id="1">
 <Type>TransitionException</Type>
 </Event>
 </Events>
 <Conditions/>
 <Actions>
 <Action Id="1">
 <RevalidateProcessPath>TRUE</RevalidateProcessPath>
 </Action>
 </Actions>
 </Rule>

Appendix

 152

 <Rule Id="3">
 <Events>
 <Event Id="1">
 <Type>InvariantException</Type>
 </Event>
 </Events>
 <Conditions/>
 <Actions>
 <Action Id="1">
 <RevalidateProcessPath>TRUE</RevalidateProcessPath>
 </Action>
 </Actions>
 </Rule>
 </Rules>
</ExceptionHandling>

Appendix

 153

Appendix O: Workflow client
with local process enactment
and rule based building of the
situated process – process
description

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="0" Name="test context query workflow process"
xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>1/21/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="1" Name="ContextAwareClient">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields/>
 <Participants>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications/>
 <Activities>
 <Activity Id="1" Name="Activity1">
 <Implementation>
 <SubFlow Id="2" Execution="SYNCHR">
 <ActualParameters/>
 </SubFlow>
 </Implementation>
 <Performer>P1</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 </Activities>

Appendix

 154

 <Transitions/>
 </WorkflowProcess>
 <WorkflowProcess AccessLevel="PUBLIC" Id="2" Name="ContextAwareClient">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields>
 <DataField Id="client_kb" IsArray="FALSE">
 <DataType>
 <SchemaType>
 <xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="action">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="activity" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="actions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="action" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="activity" type="xs:string"/>
 <xs:element name="attribute" type="xs:string"/>
 <xs:element name="condition">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="value"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="condition" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="goal">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="text" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="knowledgebase">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="goal"/>
 <xs:element ref="rules"/>
 <xs:element ref="questions"/>
 </xs:sequence>
 </xs:complexType>

Appendix

 155

 </xs:element>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="poll-attrib" type="xs:string"/>
 <xs:element name="question">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="poll-attrib"/>
 <xs:element ref="response" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="questions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="question" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="response" type="xs:string"/>
 <xs:element name="rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="conditions"/>
 <xs:element ref="actions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="rules">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rule" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="text" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:schema>
 </SchemaType>
 </DataType>
 <InitialValue>file://client_kb.xml</InitialValue>
 <Length>0</Length>
 </DataField>
 </DataFields>
 <Participants/>
 <Applications>
 <Application Id="inferenceContext">
 <FormalParameters>
 <FormalParameter Id="client_kb" Index="1" Mode="IN">
 <DataType>
 <SchemaType>
 <xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="action">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="activity" minOccurs="0" maxOccurs="unbounded"/>

Appendix

 156

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="actions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="action" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="activity" type="xs:string"/>
 <xs:element name="attribute" type="xs:string"/>
 <xs:element name="condition">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="value"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="condition" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="goal">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="text" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="knowledgebase">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="goal"/>
 <xs:element ref="rules"/>
 <xs:element ref="questions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="poll-attrib" type="xs:string"/>
 <xs:element name="question">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="attribute"/>
 <xs:element ref="poll-attrib"/>
 <xs:element ref="response" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="questions">
 <xs:complexType>
 <xs:sequence>

Appendix

 157

 <xs:element ref="question" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="response" type="xs:string"/>
 <xs:element name="rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="conditions"/>
 <xs:element ref="actions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="rules">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rule" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="text" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:schema>
 </SchemaType>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="inference">
 <Implementation>
 <Tool Id="inferenceContext" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>client_kb</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="2" Name="Activity2">
 <Route/>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="3" Name="Activity3">
 <Route/>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="4" Name="Activity4">
 <Route/>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 <Activity Id="5" Name="Activity5">
 <Route/>
 <TransitionRestrictions/>

Appendix

 158

 <ExtendedAttributes/>
 </Activity>
 <Activity Id="6" Name="Activity6">
 <Route/>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions/>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

Appendix

 159

Appendix P: Workflow client
with local process enactment
and rule based building of the
situated process – client
knowledge base

<?xml version="1.0" encoding="utf-8" ?>
<knowledgebase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="sie.xsd">
 <goal>
 <attribute>processfinished</attribute>
 </goal>
 <rules>
 <rule>
 <name>1</name>
 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>FALSE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <activity>2</activity>
 </action>
 </actions>
 </rule>
 <rule>
 <name>2</name>
 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>TRUE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <activity>3</activity>
 </action>
 </actions>
 </rule>
 <rule>
 <name>3</name>
 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>TRUE</value>
 </condition>
 <condition>

Appendix

 160

 <attribute>contextvalue2</attribute>
 <value>TRUE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <attribute>processfinished</attribute>
 <value>TRUE</value>
 </action>
 <action>
 <activity>4</activity>
 </action>
 </actions>
 </rule>
 <rule>
 <name>4</name>
 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>TRUE</value>
 </condition>
 <condition>
 <attribute>contextvalue2</attribute>
 <value>FALSE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <attribute>processfinished</attribute>
 <value>TRUE</value>
 </action>
 <action>
 <activity>5</activity>
 </action>
 </actions>
 </rule>
 <rule>
 <name>5</name>
 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>FALSE</value>
 </condition>
 <condition>
 <attribute>contextvalue2</attribute>
 <value>TRUE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <attribute>processfinished</attribute>
 <value>TRUE</value>
 </action>
 <action>
 <activity>6</activity>
 </action>
 </actions>
 </rule>
 <rule>
 <name>6</name>

Appendix

 161

 <conditions>
 <condition>
 <attribute>contextvalue1</attribute>
 <value>FALSE</value>
 </condition>
 <condition>
 <attribute>contextvalue2</attribute>
 <value>FALSE</value>
 </condition>
 </conditions>
 <actions>
 <action>
 <attribute>processfinished</attribute>
 <value>TRUE</value>
 </action>
 <action>
 <activity>6</activity>
 </action>
 </actions>
 </rule>
 </rules>
 <questions>
 <question>
 <attribute>contextvalue1</attribute>
 <poll-attrib>BOOLEAN.V1</poll-attrib>
 <response>TRUE</response>
 <response>FALSE</response>
 </question>
 <question>
 <attribute>contextvalue2</attribute>
 <poll-attrib>BOOLEAN.V2</poll-attrib>
 <response>TRUE</response>
 <response>FALSE</response>
 </question>
 </questions>
</knowledgebase>

Appendix

 162

Appendix Q: Workflow client
with activity contextual post
conditions process description

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="0" Name="test context query workflow process"
xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xyz="http://www.xyzeorder.com/workflow"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>0.09</XPDLVersion>
 <Vendor>Man og Jon Ole</Vendor>
 <Created>6/2/2004 5:27:17 PM</Created>
 </PackageHeader>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <Script Type="text/javascript"/>
 <TypeDeclarations/>
 <Participants/>
 <Applications/>
 <DataFields/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="1" Name="ContextAwareClient">
 <ProcessHeader/>
 <FormalParameters/>
 <DataFields/>
 <Participants>
 <Participant Id="P1">
 <ParticipantType Type="HUMAN"/>
 <Description>Human client</Description>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="contextual_actuator">
 <FormalParameters>
 <FormalParameter Id="postcondition_attrib" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="postcondition_value" Index="2" Mode="IN">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 </Application>
 </Applications>
 <Activities>
 <Activity Id="1" Name="Activity1">

Appendix

 163

 <Implementation>
 <Tool Id="contextual_actuator" Type="APPLICATION">
 <ActualParameters>
 <ActualParameter>BOOLEAN1</ActualParameter>
 <ActualParameter>TRUE</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>
 <Performer>P1</Performer>
 <TransitionRestrictions/>
 <ExtendedAttributes/>
 </Activity>
 </Activities>
 <Transitions/>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

