
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatens navn: Andreas Knudsen, Kristian Marheim Abrahamsen

Fag: Datateknikk

Oppgavens tittel (engelsk): Reuse Of Experience In HazOp

Oppgavens tekst:

Some systems can have serious impact on their environment if they fail. These systems can be
a threat to both the people and nature surrounding it. HazOp is a methodology for finding
hazards in such systems. It is a knowledge intensive technique in which a group works through
the system design representation to find all possible hazards. Previous studies have indicated
that experienced HazOp personnel is crucial to the success of the method.

The aim of this thesis is to create a software tool to facilitate reuse of knowledge in connection
to this method. The work will include an experiment to test the value of knowledge reuse in
HazOp.

Oppgaven gitt: 19. januar 2004
Besvarelsen leveres innen: 14. juni 2004
Besvarelsen levert: 14. juni 2004
Utført ved: Institutt for datateknikk og informasjonsvitenskap
Veileder: Tor St̊alhane

Trondheim, 14. Juni 2004

Tor St̊alhane
Faglærer

Abstract

This report presents a study of the effect of reusing experience in the Hazards and Operability Anal-
ysis method (HazOp method) with regards to how the effectiveness of the method is affected. The
study was conducted by first creating a software tool for experience reuse in HazOp, then testing that
tool in a student experiment in which the participants used the tool when conducting a HazOp.

During the experiment it was found that students using the tool found 21% more hazards in the
system under study than their counterparts. After conducting the experiment it was found that there
was a 94% certainty that this improvement was not due to random effects.

3

CONTENTS

Contents

Abstract 3

Contents 5

List of Tables 8

List of Figures 9

Preface 11

1 Introduction 13
1.1 Hazards Identification and Methodology . 13
1.2 HazOp . 13
1.3 Purpose . 14

2 HazOp 15
2.1 Initiating the Study . 15
2.2 Planning the Study . 16
2.3 Conducting the Study Meetings . 16
2.4 Dealing With Follow-up Work . 18

3 Software Tool for Reuse of Experience in HazOp 19
3.1 Improvement of HazOp by Use of Existing Knowledge 19
3.2 Program Information Base . 21

4 Software Tool Requirements Specification 23
4.1 Functional Requirements . 23

4.1.1 Main Functions of the Software Tool . 24
4.1.2 Selecting Project . 25
4.1.3 Storing Information . 26
4.1.4 Editing Category Dialog Box . 27
4.1.5 Finding Information . 29
4.1.6 Design Representation Category . 31
4.1.7 Group Selection . 33
4.1.8 Detected Hazards . 35
4.1.9 Guideword Interpretation . 37

4.2 Non-Functional Requirements . 39

5 Software Tool Design 41
5.1 Introduction . 41
5.2 Architecture . 41

5.2.1 Realised Architecture . 42
5.2.2 Ideal Architecture . 43

5.3 Data Model . 44
5.4 Example of Use . 46

5.4.1 Introduction Screen . 46
5.4.2 Design Representation Screen . 47
5.4.3 Detected Hazards Screen . 48
5.4.4 Guide Word Screen . 49
5.4.5 Key Adder Screen . 50
5.4.6 Search Screen . 51
5.4.7 Search Result Screen . 52

5.5 Further Development . 53

5

CONTENTS

6 Software Tool Implementation 55

7 Experiment 57
7.1 Experiment Theory . 57
7.2 Experiment Definition . 58
7.3 Experiment Plan . 59

7.3.1 Context Selection . 59
7.3.2 Hypotheses . 59
7.3.3 Variable Selection . 59
7.3.4 Selection of Subjects . 60
7.3.5 Experiment Design . 60
7.3.6 Instrumentation . 61
7.3.7 Validity Evaluation . 63

7.4 Experiment Operation . 65
7.4.1 Preparation . 65
7.4.2 Execution . 65
7.4.3 Data Validation . 66

8 Results 67
8.1 Statistical Data from Experiment . 67

8.1.1 #Total Hazards Found . 67
8.1.2 #Hazards Found Element by Element . 68

8.2 Observations During Experiment . 69
8.3 Questionnaire . 70

9 Analysis 73
9.1 Measuring and Organizing Collected Data . 73
9.2 Descriptive Statistics . 74
9.3 Dataset Reduction . 75
9.4 Statistical Analysis . 75
9.5 Discussion . 77

9.5.1 Knowledge Base Size . 77
9.5.2 Validity . 78

10 Conclusion 79

11 Further work 81
11.1 Better Experiment . 81
11.2 Case Study . 82
11.3 Improving the Software Tool . 82
11.4 Other Topics . 82

References 85

A Glossary 87

B Introduction to HazOp 89

C Cases 91
C.1 Robot Case . 91
C.2 Train Positioning Case . 92
C.3 Landing Case . 93

D List of all hazards found 95
D.1 Hazards found in GPS satelites . 95
D.2 Hazards found in The airplane modules . 95

6

CONTENTS

D.3 Hazards found in the Ground station communication module 96
D.4 Hazards found in the RMM unit . 96
D.5 Hazards found in the remote control . 96
D.6 Hazards found in the ATC Panel . 97
D.7 Hazards found in the central Landing System control system 97

E Software Tool 99

7

LIST OF TABLES

List of Tables

1 HazOp meeting sheet taken from [6] . 18
2 Result Table . 62
3 Hazard Recording Form . 62
4 Statistical data - total . 67
5 Observations Element by Element without tool . 68
6 Observations Element by Element with tool . 68
7 Statistical Data - Without Tool . 76
8 Statistical Data - With tool . 76
9 Hazards in GPS Satelites . 95

8

LIST OF FIGURES

List of Figures

1 HazOp Meeting Structure . 17
2 Knowledge Base in HazOp . 20
3 Program Use Case . 24
4 Select Project Use Case . 25
5 Select Project Use Case Table . 25
6 Store Information Use Case . 26
7 Store Information Use Case Table . 26
8 Edit Category Use Case . 27
9 Edit Category Use Case Table . 28
10 Find Information Use Case . 29
11 Find Information Use Case Table . 30
12 Design Representation Use Case . 31
13 Design Representation Use Case Table . 32
14 Group Selection Use Case . 33
15 Group Selection Use Case Table . 34
16 Detected Hazards Use Case . 35
17 Detected Hazards Use Case Table . 36
18 Guideword Interpretation Use Case . 37
19 Guideword Interpretation Use Case Table . 38
20 Implemented Architecture . 42
21 Ideal Architecture . 43
22 Implemented Data Model . 44
23 Ideal Data Model . 45
24 Introduction Screen . 46
25 Design Representation Screen . 47
26 Hazards Screen . 48
27 Guide Word Screen . 49
28 Key Adding Screen . 50
29 Search Screen . 51
30 Result Screen . 52
31 Example Of Fine Granularity In Data . 73
32 Example Of Coarse Granularity In Data . 73
33 Robot Case . 91
34 Train Positioning Case . 92
35 GPS Landing System Case . 93
36 GPS Landing System Usage . 94

9

Preface

This report is the result of work performed in a project at the Department of Computer and Infor-
mation Science, Norwegian University of Science and Technology, during the spring of 2004. This
project is the Masters Thesis of Andreas Knudsen and Kristian Marheim Abrahamsen, for the degree
of Master of Technology: Computer Science

We would like to extend our gratitude to Professor Tor St̊alhane at the Department of Computer and
Information Science, NTNU, who has been our supervisor during the project and has provided us
with invaluable guidance and feedback.

We would also like to thank Knut Carlsen at NTNU Drift for his help in securing technical resources
for our experiment.

Andreas Knudsen Kristian Marheim Abrahamsen

1 Introduction

1 Introduction

Some systems can have serious impact on their environment if they fail. If a control system for a
nuclear power plant fails, the consequences for people and environment can be disastrous. According
to B. Carter , ”Major disasters, particularly in the oil, nuclear and chemical spheres, have stimulated
attention on risk reduction to protect the environment and human safety[4].” These systems often
contain software components. It is necessary to know how and why a system might fail to reduce the
risk it poses to the environment. In this context we focus on system hazards. Hazards, accidents, and
risks are subjects that are tightly coupled. We will use the C.Knutsons definition of hazard in this
project:

”A hazard is a set of conditions, or a state, that could lead to an accident, given the right environmental
trigger or set of events. An accident is the realization of the negative potential inherent in a hazard.”
[8]

Being aware of what hazards a system might present, and dealing with these before they turn into
accidents is crucial. In order to become aware of hazards, one must analyse the systems in question.

Avoiding risks when designing systems is an important part of systems engineering. As software
becomes an ever larger part of the systems that surround us, avoiding risks also increasingly falls
under the domain of software engineering.

”(...) and so we learn to live with the inherent risks that surround us, because the cost of avoidance
just seems simply too high. However, as technology becomes more and more ubiquitous, with more of
that technology controlled by software, a greater portion of the risk we face is ultimately in the hands
of software engineers.” [8]

In this paper we create a software tool that provides access to previous experiences made doing such
analyses with the HazOp methodology and run an experiment to test whether using such a tool can
be helpful when doing HazOp analyses.

1.1 Hazards Identification and Methodology

There are several methodologies and techniques for identifying risks and hazards in systems. Some
of the most common are What If?, Interaction Analysis, Zonal Analysis, Checklists, Fault Mode and
Effect Analysis (FMEA) and HazOp. Which is the most appropriate technique will depend on the
project at hand. A combination of them can give the best result [6].

1.2 HazOp

This paper will focus on the HazOp methodology. ”Hazard and operability study (HazOp) is perhaps
the most powerful technique for the identification and analysis of hazards[6].” HazOp was originally
developed for the chemical industry but has been successfully employed in other industries [6]. HazOp
is a group study where the concept is to review a system in a series of meetings, during which a
multidisciplinary team methodically ”brainstorms” the system design, following the structure provided
by the guide words and the team leader’s experience [3]. In the study they look for possible deviations
from design intent which might have serious consequences. HazOp is a creative technique where a
thorough exploration of the design is in focus.

No matter how good a methodology may be, it still has to be managed by people. The HazOp
methodology is a tool for a team, to identify hazards. As for any tool, its power is for naught if the
persons using it does not know how to use it. The outcome of an analysis is therefore a combination
not only of the of the methodology applied on the case at hand, but also of the practitioners’ skills
and knowledge in utilising the methodology; their ability to put it into practice. ”A HazOp is carried
out by a team and is successful only if the team is well composed and well led[6].”

13

1 Introduction

A problem with HazOp today is that all the experience about the methodology and the practice
fully depends on the knowledge of the persons involved in the team, and does not take advantage of
the knowledge available in the organization. The members of the HazOp team are usually a part of
the organization, but the organization can contribute with information no individual member is in
possession of. Taking advantage of experience in an organization, a HazOp team can make sure that
many aspects are taken into consideration during the project.

1.3 Purpose

The purpose of this paper is to test what effect a software tool for reuse of knowledge can have on a
HazOp study.

This project will continue the work of Kristian Marheim Abrahamsen, exploring how reuse of knowl-
edge can be applied in HazOp projects to achieve better results. In his work he suggested that a
software tool could support exchange of experience between projects [1]. To the best of the authors’
knowledge, no such tool exists to date. Abrahamsen set out a framework in the form of a requirements
specification which such a program should adhere to. In this paper, this requirements specification is
expanded on and implemented into a fully functional tool for assisting the HazOp process.

To get empirical quantitative information on what effect such a program might have, an experiment
will be executed and the results from this will be analysed. The experiment will consist of groups of
students conducting HazOp on simplified cases taken from the real world, both with and without the
implemented program. This provides statistical data that will either support or undermine the theory
that using a software tool to assist the HazOp process leads to more efficient identification of hazards
in systems.

14

2 HazOp

2 HazOp

This chapter is an introduction to the HazOp methodology. To a large extent it is based on the book
”System Safety, HAZOP and Software HAZOP” by Redmill et al. [6]. They claim that ”HazOp is
recognized to be a powerful technique, and its power is based on teamwork and a methodical step-by-
step procedure.” This means that the organization must ensure that they are carrying out the HazOp
process the way in which it is intended. If not, there is a high likelihood that the study will achieve
only poor results even if the cost is high ”The title HazOp has been accorded to almost any attempts to
identify hazards, often when the most casual approaches were employed[6].” The reason for this might
be that the literature on the subject has been sparse and that the management of the study has been
inadequate. As with any creative process, the result often depends on who is involved and how they
work. The best and, in theory at least, easiest way to ensure the success of a HazOp is to select the
right study leader and give that person access to all necessary resources. The resources needed for a
HazOp are for the most part properly skilled people, with time enough to be a part of all the study
meetings. The material resources will not contribute significantly to the overall cost of the study, but
are just as necessary in order to ensure success.

The study has four sequential stages. These are:

• Initiating the study

• Planning the study

• Holding the study meetings

• Dealing with follow-up work

This chapter will take a closer look at each stage and see what is recommended practice.

2.1 Initiating the Study

Planning is an essential part of a HazOp; ”If a HazOp is to be carried out successfully, it needs to be
planned in advance and someone in the organization needs to be made responsible for it [6].” A study
initiator should be selected. This person has the overall responsibility for the study. It is important
that the study initiator has a good understanding of the process, and that he or she has the authority
to allocate the necessary resources to the project. It can be hard to get the most qualified people
in the organization to join the HazOp team as these persons often have other regular duties. The
organization must prioritize the study by giving the study leader enough power to make sure that the
quality of the team is good enough. The study initiator selects the study leader who is responsible
for planning and managing the HazOp.

15

2 HazOp

2.2 Planning the Study

HazOp is a study that identifies hazards and operability problems. ”A HazOp is carried out by a team
and never by an individual [6].” The quality of the HazOp depends on the performance of the selected
team; hence the selection of appropriate members is crucial. The study leader is responsible for
selecting appropriate members for the team. The members must have complementary skills. Together
they must have the technical knowledge that is necessary to complete the study. Because HazOp is
a creative technique, the members and their team work are of vital importance to the result of the
process. Group dynamics are of great importance for the quality of the study. ”A group which has
complementary personalities may work better than a group which has been selected solely on technical
ability [17].” The members must be able to understand the design papers. A member can have more
than one role. Typically, the roles are classified as:

• Study leader

• Designer

• User or intended user

• Expert

• Recorder

The study leader is responsible for managing the study. The designer role may be filled by different
people depending on which part of the design is presented. It is crucial that the person filling the user
role is able to explain operational and environmental issues. If not, this role will not add much value
to the study and may even confuse the other team members. The expert role can be filled by one of
the other team members, for example the study leader or designer. This would reduce the cost of the
study, but it is an advantage to have an extra explorer, particularly when this person is a specialist in
a field essential to the study [6]. The study will have several meetings before the group has covered
the complete design. Different people can fill a given role in different meetings. The study leader must
make sure that the intended group is available at the time the meetings are being held.

2.3 Conducting the Study Meetings

”HazOp is based on the principle that several experts with different backgrounds can interact and
identify more problems when working together than when working separately and combining their
results [3].” The concept is primarily to make the team brainstorm the hazards of the system based
on the design representation. The reason why HazOp emphasizes the design is that a hazard can
result from a deviation from design intent. This can be within a single component like a module for
SQL queries, or the deviation can occur in an interaction between two components, for instance a
database and a program module that tries to update a table.

To get an overview of what a system can do and how, it is important that the design representation
covers all concerns of the system’s stakeholders. It is impossible to detect any deviation from a
design representation that does not exist. Therefore, the team must always be sure that the design
representation is complete. If they should see that they lack the necessary information for carrying
out their intended work, the designer must return with a complete design representation later.

16

2.3 Conducting the Study Meetings

Figure 1: HazOp Meeting Structure

HazOp study meetings have a defined structure for how they are carried out, as seen in figure 1.
A study meeting starts with pre-meeting activities. This includes recording the presence of the team
members, explaining the meeting rules etc.

The next step is to explain the intention of the design representation which the group is going to
study. The study leader selects an entity for further investigation. It is the designer’s responsibility
to explain the design of that entity.

After this has been carried out, the study leader’s next step is to identify one of its attributes for
study. An attribute is a relevant property of the entity. This could be response time, data flow etc.
The team should then take a closer look at each guideword that could be combined with the selected
attribute. ”A guideword is a word or phrase which expresses and defines a specific type of deviation

17

2 HazOp

from design intent [6].” It is a common practice to have a list of generic guidewords like ”no”, ”more”,
”less”, ”as well as”, ”part of”, ”reverse”, and ”other than”. When it is relevant to examine timing as
a part of a HazOp, guidewords like ”early”, ”late”, ”before”, and ”after” should be used.

There are three different ”schools” on how to treat guidewords in a HazOp study. One can either use
the list of words ”as is” directly in the analysis, where any special interpretations of the guidewords
need to be found at the study meetings. Alternatively, the study leader can work out all the inter-
pretations beforehand in light of the system at hand and present these to the HazOp group. The last
option is to work out standard domain-specific guidewords that are brought to the HazOp studies in
stead of the standard list. Experience shows that the derived guidewords can be too restricted, and
are not flexible enough to bring out the analysts’ creativity to the fullest [18].

Table 1 is an example of HazOp sheet row for a helicopter diagnosis project taken from [6]. The system
can be represented in many views to cover the stakeholders concern. The HazOp team is interested
in the design representation that involves the part of the system which can have consequences for
the environment. This could for example be the software modules of a control system for a nuclear
power plant; what could happen if the graphical user interface module doesn’t work in the intended
manner? The study should cover all entities in the design representations and the interactions between
them. The team must have a member who is responsible for recording the results from the meeting,
otherwise it will be difficult to keep track of what has been done and what remains to do.

HazOp item Entity Attribute guideword Cause Consequence/
implication

Question/
recommen-
dation

15 Data Chan-
nel handle
value to
initiate
evidence

Data flow Part of Generation
of messages
is event
driven and
so evidence
might be
missed

Algorithms
fail to
recognise
a critical
event

R15 The
criticality
of evidence
should be
considered
and critical
evidence
should
be sent
respectively

Table 1: HazOp meeting sheet taken from [6]

2.4 Dealing With Follow-up Work

During the study, uncertainties can arise which might influence the work of discovering hazards. These
questions must be dealt with so the associated issues can be resolved in subsequent meetings. A HazOp
must end with conclusion and recommendations, not questions [6].

The study leader must make sure that all questions by the end of the study are resolved by delegating
follow-up work to the appropriate persons who are involved in the design of the system. The study
record should be used to verify the completeness of the HazOp. It is hard to give a precise answer to
a question which is not well defined; thus, it is important for the team to reach a consensus.

Besides answering questions, the follow-up work could consist of dealing with the recommendations
arising from the meetings. Recommendations differ from questions by not demanding an answer.

”The studies which are the subjects of the recommendations may be carried out after the HazOp study
has been completed; whether they have been completed may be an issue for a later HazOp, or for a
subsequent part of the continuing hazard or safety analysis, but it may not need to detain the current
study.” [6]

18

3 Software Tool for Reuse of Experience in HazOp

3 Software Tool for Reuse of Experience in HazOp

Although HazOp for software intensive systems is a well-established technique which has been used
by many organizations with good results, there is always room for improvement. Leaving hazards
undetected can be disastrous. Every possibility to improve the methodology at a relatively low cost
should be investigated further. By utilizing experience from previous projects within the organization,
HazOp can be improved. To make this improvement the organization must focus on what information
should be stored and how it should be retrieved. A well-designed program could be a solution to the
problem. To avoid any misunderstanding, we point out that for this chapter, the term ”system” will
be used to denote the system being studied, not the software tool used in the study.

3.1 Improvement of HazOp by Use of Existing Knowledge

Experienced team members play an important role in achieving the desired results in HazOps [6].
However, there is no formal process for using existing knowledge within the organization at the begin-
ning of a HazOp. This project focuses on the motivation and software support for such a pre-study.
There can be many benefits from taking advantage of existing organization knowledge at the begin-
ning of the study. Learning from experiences is an important factor for attaining the desired quality
requirements [16]. Such an activity could be a part of the organization quality culture, a culture where
quality is a focus of the software process. Even if the organization has good results with their HazOp
projects and feel that they have the necessary human resources, there are several reasons why they
should consider building a knowledge base for use in future studies.

One reason is that when a person leaves the organization, the knowledge and experience of that person
is lost if knowledge and experience is not systematically structured and stored within the organization
[16]. This could be a problem even if the person doesn’t leave the organization. The person can simply
be unavailable for the HazOp because he or she has other duties to take care of.

Another reason is the limits inherent in the human brain. We are not machines with a stable memory
like a computer. There is no assurance that we remember all the things we want to. Long-term
memory has a large capacity for storage of information for long periods of time. There is, how-
ever, no easy or obvious way to determine the limits of how much can be stored, or for how long it
can be stored [7]. Storing information on a hard-disk or in a back-up ensures that nothing is forgotten.

19

3 Software Tool for Reuse of Experience in HazOp

Figure 2: Knowledge Base in HazOp

As figure 2 shows, the knowledge base for the software tool contains information from several parts of
the project life cycle. The first thing to do is to record important experience from the HazOp. Such
experience could for instance be the consequences of deciding whether to consider multiple design
aspects concurrently or sequentially [6]. Designing software systems is a complex task, and during the
development phase programmers may experience possible hazards the HazOp team did not foresee.
Recording this information can be invaluable. Why did not the study discover the hazard? Was there
anything special about the combination of system intent and design representation? What can be
done to help us discover such hazards during a HazOp in the future?

The outcome depends on the quality and relevance of the information. If the knowledge base is large,
an efficient way to search through the documentation is needed to maximize the benefits of such a
pre-study. If too much time is spent reading irrelevant information, the cost of the pre-study would
not pay off. The way the organization structures the information can have impact on how an employee
searches through the documentation.

20

3.2 Program Information Base

3.2 Program Information Base

In order to plan a project we need knowledge and experience. A good plan is crucial for success in
a project. By using information within the organization at the start of the project it could be easier
to see what kind of design views are required to represent the project. The organization can look at
what incidents former systems had and investigate why they occurred. What design representation
could express the system in such a way that a HazOp team could have noticed a deviation from design
intent? Such information can make the difference between failure and success for a HazOp.

Documenting a project is time-consuming and costly. As an organisation would want to get as much
value as possible from such an activity, care should be taken on what information to store. If everything
in connection with a project is recorded and documented, it can prove tedious to find the relevant
information when planning a new HazOp. It could become too much of a bother making people feel
they are drowning in information. Psychologists characterize this as a kind of malady, and call it the
Information Fatigue Syndrome. Psychologist David Lewis comments it this way: ”We’re often seeing
a failure of concentration. We’re seeing a loss of motivation, loss of morale. We’re seeing greater
irritability.” [10]

Another related subject is information overload. Information overload is defined by Mark R. Nelson as
”the inability to extract needed knowledge from an immense quantity of information for one of many
reasons [13].” All these factors can have negative impact on the HazOp planning and might even
give worse results than not seeking stored experience. People’s emotions impact their performance.
”Even if they recognise their need for information, people often lack the understandings and skills to
identify, locate, access, evaluate and then apply the needed information [2].” The value of information
structuring and extraction should not be underestimated, and the problem of information overload
should be considered in a software tool for reusing HazOp experience.

Storing too much data can lead to information overload unless the data is handled properly. Infor-
mation overload increases the cost since the organization will use more time on recording and finding
information. Information overload can also make it harder to sift through the irrelevant information
to find the things that are relevant. Storing only relevant information/knowledge should be a goal for
the organization. The problem is to understand what exactly relevant information is. Furthermore,
what is considered relevant today may not be so in the future. The best way to ensure a sound
recording and retrieving of information will be to continually improve the processes and artifacts used
for this purpose.

Selecting what information should be stored is a hard task, since it difficult to predict future needs.
Making sure that all vital information has been stored can make the information database big. Struc-
turing information could then resolve a potential conflict between storing all necessary knowledge and
preventing information overload when seeking relevant information.

HazOp focuses on deviation from design intent. The HazOp team examines the design representation
looking for possible hazards in the system. An appropriate design representation is crucial for the
result of the HazOp [11]. The problem is to know when you have the right representation of the
system design. We will use IEEE’s recommended practice for architectural descriptions of software-
intensive systems [14] as a guideline when dealing with the design representation topic. Here is a brief
explanation:

A system has many stakeholders with different interests and concerns. Examples of stakeholders are
users, acquirers and developers. The HazOp team is also a stakeholder in safety-critical systems.
Viewpoints are used to cover all the concerns of the stakeholders. A viewpoint is a specification of
the convention for constructing and using a view. The design representation that the HazOp team is
examining can be called ”views” in the architecture of the software system. A view is a representation
of the whole system from the perspective of a related set of concerns. Every view should conform to
a viewpoint, which are ER diagrams for databases, UML diagrams etc.

Adhering to this recommended standard ensures that the design representation the HazOp team will
be examining covers the whole system. However, it can be difficult to select the appropriate viewpoints

21

3 Software Tool for Reuse of Experience in HazOp

for the software architecture. Selecting the right viewpoints has consequences for how many hazards
will be detected. A view is an abstraction of the system from a certain viewpoint and it is crucial
that the abstraction gives the team members a good understanding of how the system has met its
requirements.

Learning from previous projects can give a better understanding of which viewpoints to select in
order to cover the concerns of the HazOp team. During the study the team might discover that one
viewpoint makes it hard to detect hazards. The software tool could then be used to store information
on why this viewpoint made it hard to do their work. This experience can result in recommending
a different kind of viewpoint for study in similar HazOps in the future, possibly resulting in more
detected hazards.

Other topics the program should cover are group selection and what hazards were detected. As
mentioned in section 2, group selection has serious impact on the result of the study. Information
about what roles and personalities a group should consist of can be valuable when selecting the team.
Some projects can have much in common, and hazards that were detected in a previous project similar
to the one that is being studied might be relevant to the new system.

Interpretation of guide words is a vital part of detecting hazards in HazOp. As mentioned in section
2.3, there are three ways of treating guide words in a HazOp study. The tool should ideally support all
these ways of doing HazOp. A dedicated category for guide word interpretation can make the HazOp
participants aware of how the guide words can be interpreted in certain contexts. In this way it can
be used by the HazOp team for inspiration on how to interpret guide words in a study meeting, by
the study leader when preparing for study meetings by providing insights into how guide words can
be interpreted for different types of systems, and via searchable keywords which can be alternative
guide words, the followers of the third way of using guide words (a specialised set of guide words per
domain) can be satisfied.

There are numerous other topics that can be of relevance for future studies. It is impossible to know
in advance all topics that the software tool should support. Trying to build a separate module for
every single topic can not succeed because there will always evolve new topics no person was aware
of in advance. To overcome this problem the software tool should support customizing user specific
modules to cover requested topics. The advantage of this choice is that it gives the users more freedom
in structuring their own information. The drawback is that the program will require a higher awareness
of what constitutes relevant information and how to structure that knowledge from its users. This
awareness will grow with the experience gained by the use of the program. The example topics and
how they are used in the program can help the user to create and structure new topics. A technique
such as Post Mortem Analysis, PMA, can help the organization structure information and decide what
experience should be stored after a HazOp. The PMA concept is described by St̊alhane, Dingsøyr,
Hanssen and Moe in [19] to be to: ”(...)gather all participants from a project that is ongoing or just
finished and ask them to identify which aspects of the project worked well and should be repeated, which
worked badly and should be avoided, and what was merely ”OK” but leave room for improvement.”

There can be other methods and techniques that can be applied to decide what experience to be stored,
and the organization should select one that works for them. The idea is that they are conscious of
how they elicit and record experience after a project. In the beginning, when an organization starts
using the tool, they might experience that the information base is too small to be helpful in many
circumstances. If the system being studied is quite different from those already in the knowledge base,
they can feel that the software tool is only wasting their time. Such feelings might lead to the HazOp
team disliking the tool, which again will have a negative effect on how the tool is used, thus starting
a vicious cycle ultimately leading to the company discontinuing the use of the software tool. To avoid
this, the HazOp team leader should look at the description of the projects in the information base
to see if there are any projects that have similarities with the current HazOp. If so, the programs
search function should be able to yield relevant information. If not, using the program might be
inappropriate for that particular HazOp.

22

4 Software Tool Requirements Specification

4 Software Tool Requirements Specification

The software tool must have a defined scope. This project is not intended to develop a single program
that meets every need a HazOp team would ever have. The program will focus on recording and
finding information on previous HazOps. As a minimum requirement, the organization should be able
to store all the information they deem necessary. This means they should be able to store not just
plain text, but also images, video streams, and other data in different formats. In principle it must
be capable of storing every file format the organization uses.

Functional requirements are statements of services that the system should provide. The requirements
in this section continues the discussion in section 3. They are a more formal way to express what
functionality the software tool should contain. Also, the software requirements include how the system
should react inputs made by users of the software.

The functional requirements will be illustrated by use cases as used by Martin Fowler in the book
”UML Distilled” [5] to see in what context they are relevant. Each use case will be followed by a list
of requirements relating to that use case.

Non-functional requirements are constraints on the services or functions offered by the system. Ex-
amples of such requirements are performance, usability etc. These requirements are also sometimes
called the quality attributes of the system. The non-functional requirements of the software tool will
be discussed after the functional requirements.

4.1 Functional Requirements

The functional requirements can be divided into different main functions the program should pro-
vide. We illustrate the functional requirements with use cases both textually and figurative. The
implemented requirements will be highlighted in sections 5 and 6.

23

4 Software Tool Requirements Specification

4.1.1 Main Functions of the Software Tool

The main functions of the software tool are to store information and later find that information so
that more hazards may be discovered. Being conscious about how the knowledge should be struc-
tured will make it easier to find relevant information. The example topics in the program: ”design
representation”, ”group selection”, ”guideword interpretation” and ”detected hazards”, will illustrate
how the knowledge can be structured. All stored information must be linked to a project so it can be
read with an understanding of the context.

Figure 3: Program Use Case

24

4.1 Functional Requirements

4.1.2 Selecting Project

The program is intended to store experience related to specific projects. All problems, reflections
and observations must be seen in a context if a good understanding is to be achieved. We define the
context needed to properly make sense of the experience to be the ”system project”. The system
project includes the HazOp, development, testing, maintenance and operation of the system.

It is not enough to simply relate the experience to just specific HazOps as there might be information
valuable to a HazOp even if it has been discovered in other parts of the system life cycle.

Figure 4: Select Project Use Case

Figure 5: Select Project Use Case Table

• F-1 The user must be able to create a new project

• F-2 The user must be able to describe a project

• F-3 The user must be able select an existing project

25

4 Software Tool Requirements Specification

4.1.3 Storing Information

When the user wants to store information, the program must ensure that it is properly catalogued.
Each topic should have a distinct category. This is done by forcing the user to select an existing
category or create a new one if none of the existing one can be used. Each category should have
a certain structure. Examples of categories are Design Representation, Group Selection, Detected
Hazards and guideword Interpretation. This can be accomplished by having dialog boxes where the
users fill in the appropriate information.

Figure 6: Store Information Use Case

Figure 7: Store Information Use Case Table

• F-4 The user must be able to create a new category

• F-5 The system must have no categories which share the same name

• F-6 The user must be able to modify an existing category

• F-7 The user must be able to fill the category form fields with appropriate data

• F-8 The user must be able to save the data

26

4.1 Functional Requirements

4.1.4 Editing Category Dialog Box

By letting the user specify the dialog box of a category, the program becomes more flexible. The dialog
box is made up from user-specified fields. The user can set constraints on what kind of data a field
can contain, the default being the string format. Examples of data formats can be strings, integers or
certain file types such as pdf, doc, gif, mpeg etc. The purpose of constraining the categories dialog box
fields is to enforce that the information is structured in a standard way. If the users specify certain
fields when searching for information they can use these constraints to get a better search result. The
program must give the users the opportunity to remove or rename fields. The dialog box editing has
many similarities with editing tables in databases.

Figure 8: Edit Category Use Case

27

4 Software Tool Requirements Specification

Figure 9: Edit Category Use Case Table

• F-9 The user must be able to add fields to the category dialog box

• F-10 The user must be able to remove fields from a category dialog box.

• F-11 The user must be able to specify a fields data format

• F-12 The user must be able to rename a field

• F-13 The user must be able to select fields from a field library that can be added to the category
dialog box

• F-14 All fields in the category must have a unique name

28

4.1 Functional Requirements

4.1.5 Finding Information

When the users want to find information it is important that they have functionality which can be
used to filter the search so they can avoid information overload. This can be done by selecting a
category, selecting some keywords from a fixed list, and optionally associate these words with certain
fields in the dialog box of the selected category. The reason why the users select keywords from a list
is that this can force the different users to have a common understanding of how information should
be described. This will hopefully make the search result better.

Figure 10: Find Information Use Case

29

4 Software Tool Requirements Specification

Figure 11: Find Information Use Case Table

• F-15 The user must be able to select one or more categories

• F-16 The user must be able to specify keywords for the search

• F-17 The user must be able to select keywords from a list.

• F-18 The program must return a list of hits after the search

• F-19 The user must be able to browse through the search result

30

4.1 Functional Requirements

4.1.6 Design Representation Category

If the users do not have any relevant category dialog boxes to look at and work with in the beginning
they might avoid using the program. There are some categories which can be useful for any kind of
HazOp. One of these categories is design representation. A good design representation is crucial for
achieving success with the HazOp. This is because the HazOp staff discover hazards by systematically
working through the design representation looking for deviations from design intent. Bad material will
make the work harder. A minimum requirement is that the design representation covers the whole
system. Another requirement is selecting the best way to represent a system when carrying out a
HazOp. This will depend on the system represented. Even if there is a good selection of viewpoints
there might be some aspects the HazOp staff should be aware of working through that part of the
design representation. Some hazards may be hard to find no matter what choice of viewpoints has
been made. Reading guidelines could then help the group studying the design representation.

The design representation category dialog box should cover all these issues. The problem is to have
fields that are not too specific, since this may restrain the expressiveness of the users. Also, if they are
too generic, information overload can be a problem since the user might get more information than
required when they read through the search result.

Figure 12: Design Representation Use Case

31

4 Software Tool Requirements Specification

Figure 13: Design Representation Use Case Table

• F-20 The user must be able to fill in information in the field for completeness (of the design
representation)

• F-21 The user must be able to fill in information in the field for selections of viewpoints

• F-22 The user must be able to fill in information in the field for reading guidelines

• F-23 The user must be able to fill in information in the categories field for additional information

• F-24 The user must be able to associate key words from a fixed list to fields that are non-empty

• F-25 The user must be able to fill the fields with data on the formats string, picture files, movie
files and document files.

32

4.1 Functional Requirements

4.1.7 Group Selection

A good team is crucial for achieving success with a HazOp. The groups performance depends on each
members skills and knowledge combined with how well they work as a team. Before a HazOp can
start there must be a group selection. By having information on what expertise a group should have
for a particular kind of system, the study leader is better suited to select the right team. Not only
information about the roles can be of importance for the organization, but also knowledge of the skills
and experience for each person who can have the different roles can help the organization selecting
the right people.

A groups performance depends not only on each members contribution but also how they work to-
gether. The combination of personalities has impact on how the group works as a team. After a study
it might be concluded that the personality composition of the HazOp staff was too homogenous. Lack
of certain personalities can also be a problem.

After a HazOp, an evaluation may suggest that the group lacked certain roles. For example during
the development a software engineer might detect some difficulties that can lead to a hazard. During
an evaluation of what could have been done to detect this hazard the conclusion can be that the group
lacked an expert on the topic UML state diagrams.

If the organization is large, different roles can be filled by many individuals. Stored data of each persons
experience can help the organization in selecting the right person for a particular role. Information
about the employees personalities can also be of interest. The program user must be careful when
evaluating the persons who were involved in the HazOp as the staff might feel uncomfortable about
this, and can this could have a negative impact on the working environment.

Figure 14: Group Selection Use Case

33

4 Software Tool Requirements Specification

Figure 15: Group Selection Use Case Table

• F-26 The user must be able to fill in information in the field for role selection

• F-27 The user must be able to fill in information in the field for group personality composition

• F-28 The user must be able to evaluate every person that was a part of the HazOp group.

• F-29 The user must be able to select the persons that should from an employee list within the
program

• F-30 If the user wants to evaluate a person that is not on the organization employee list the user
should be able to add persons to the list.

• F-31 The user must be able to fill in information in the categories field for additional information

34

4.1 Functional Requirements

4.1.8 Detected Hazards

Hazards that were detected in a certain system and environment are likely to appear in similar systems
and environments. By comparing the system to be studied with previous ones the HazOp group can
see if the hazards that were detected are relevant to the study. The category should contain a short
heading for each hazard and a more detailed description. Information about which environment it
belongs to can also be valuable since a system might operate in several environments. The program
user should have the opportunity to browse all the documentation for the HazOp included the design
representation. This documentation would be files from external programs since this program does
not support recording of the study meetings. If the HazOp group uses this information as checklist
when reading the design representation, that may have a negative effect on the creativity. Looking
for hazards that appeared in similar systems and environments should therefore first take place after
the ordinary inspection.

Figure 16: Detected Hazards Use Case

35

4 Software Tool Requirements Specification

Figure 17: Detected Hazards Use Case Table

• F-32 The user must be able to fill in information in the hazard heading field

• F-33 The user must be able to fill in information in the field for hazard description

• F-34 The user must be able to fill in information that describes the hazards environment.

• F-35 The user must be able to add any documentation files which are relevant for the hazards.

• F-36 The user must be able to associate keywords with every field in this category.

36

4.1 Functional Requirements

4.1.9 Guideword Interpretation

Interpretation of guidewords is a vital part of the HazOp. Some interpretations can be relevant in other
HazOps. These interpretations can be creative and not immediately obvious. Being aware of such
interpretations might help detecting more hazards. To get a good understanding of the interpretation,
information about the context is required. Additional information might also be useful.

Figure 18: Guideword Interpretation Use Case

37

4 Software Tool Requirements Specification

Figure 19: Guideword Interpretation Use Case Table

• F-37 The user must be able to fill in information in the interpretation heading field.

• F-38 The user must be able to associate the interpretation with a guideword from a list.

• F-39 The user must be able to fill in information in the interpretation field.

• F-40 The user must be able to fill in information in the context field.

• F-41 The user must be able to fill in information in the additional information field.

• F-42 The user must be able to associate keywords with every field in this category.

38

4.2 Non-Functional Requirements

4.2 Non-Functional Requirements

There are four main non-functional requirements which must be taken under consideration when
implementing the software tool:

1. Learnability - It should be relatively easy to understand how to use the tool. The user should
not spend too much time learning the program. If the user have problems with understanding
how the program works, it might become discarded.

2. Usability - Using the program should be as effective as possible. If the user must invest a lot
of time and effort into getting the information from the program, they might think that it is not
worth the bother, ultimately discarding the tool.

3. Maintainability - The program must have an architecture that enables the possibility to extend
and maintain it. This is important since when a program is being used, people often see things
which could have been done different and better. It is also likely that users want to add new
functions which the implementers did not think of.

4. Reliability - The program must should be stable and crash as little as possible. If the users
do not feel they can depend on the program, they might not use it because it poses a risk to
only wasting their time. Additionally, the tool should not lose any data as this kind of data is
potentially a very valuable resource to organisations.

39

4 Software Tool Requirements Specification

40

5 Software Tool Design

5 Software Tool Design

5.1 Introduction

When designing the software tool it was important to consider two factors. Firstly, the ease with which
the software could be made to implement all the requirements from the requirements specification.
Secondly, the necessity to implement the software quickly, leaving enough time to do the experiment.
These two factors were found to be mutually exclusive, so a compromise had to be made. The basis
of the software was made general enough to accommodate later increments implementing the more
advanced functionality in the software requirements specification. The software, however, was made
for the requirements in section 4. The single most significant deviation from the requirements was the
ability to design new categories in which to store knowledge, and the ability to modify existing ones.
This functionality was left out in order for us to be sure we would have the tool ready in time for the
experiment. Since this was left out, the tool that was created can not be classified as anything but a
prototype on which further development is possible.

5.2 Architecture

The software tool was implemented using a three layer architecture. A cleanly layered architecture
makes it easier to replace parts of the program without having to restructure the entire program each
time a change is made [9]. There is a separate database-access module, a separate data object model,
graphics module and controlling module.

For the rest of this section of the document, the term ’Project’ will be used to denote HazOp studies
that has been done, for which information is to be stored in the HazOp Tool.

41

5 Software Tool Design

5.2.1 Realised Architecture

The following is an overview of the design that was implemented. The program consists of a project

Figure 20: The Architecture of the implemented HazOp Tool.

browser that is used both to input data into the database, and to provide data to the user in an easily
navigable form. The project browser is controlled by a controller that handles changes to the state
of the program. The controller is also the link between the browser and the database module. The
database module acts as a server which provides and stores data on request from the controller. When
starting up, the program first collects all the data from the database and stores this data in an object
model. This model is then accessed and modified by the project browser when the program is in use.
Finally, when the program is shut down, it stores all added and modified data into the database, and
deletes all data that has been deleted by the user. This is suboptimal at best, but it made for rapid
development. A better solution would be to load data only when needed. The participants of the
experiment were not inconvenienced by this, however, since the database was small at the time of the
experiment.

The category management part of the tool was not implemented, but three hard-coded categories were
provided. These categories were the ones deemed most appropriate and helpful for this experiment.
The categories were ”Design Representation”, ”Guide Word Interpretation” and ”Hazards Found”.
Since only three categories were used in the experiment, the workload involved in hard-coding them
was far smaller than the workload required to make a general system, capable of handling any number
of categories.

42

5.2 Architecture

5.2.2 Ideal Architecture

The following is what we believe to be an optimal design, offering a general solution to satisfy a vast
amount of categories. Due to constraints on time, however, it was not implemented.

Figure 21: The Architecture thought to be ideal for the HazOp Tool.

The program consists of a form editor, which creates and edits xml-forms. These forms are templates
for the different categories. It also modifies the database to incorporate the changes made. When
the other parts of the program are loaded, these xml-forms are read and the categories and their
database-linking are rendered from them. Thus, at compile time, none of the categories might exist,
these are created and modified later by users. The program therefore consists of a module to interpret
these XML-files and feed information to the graphical layer.

The graphical layer generates a graphical user interface (GUI) at runtime, based on the categories in
any given project. When editing projects, new categories can be added to that project from the list
of already existing categories or ones already present can, along with all their data, be deleted from
a project.

XML files are used to keep track of the following: Which categories exist, what fields they have, what
each field is called in the database, whether any field is a list of constants, and in that case whether
that list can be added to. In effect this gives the program enough information to give the users the
latest categories with their respective data for any project stored in the database without the need of
foreseeing such information at compile time.

The XML files are themselves put into the database and are the first things the program reads from
the database. This then sets up the program to use the rest of the database.

43

5 Software Tool Design

5.3 Data Model

In order to reuse data in later increments of the software, the database was created as general as
possible. All textual data found in the software is located in ”fields” These fields can have keywords
attached to them via a key list, and files attached to them. Each field is attached to one and only one
project via categories. The idea is that as the program evolves more categories will be made through
a user interface, and the program will keep stock of which categories exist.

The implemented data model is shown below

Figure 22: Data model of the HazOp Tool as implemented.

For practical reasons, we made an object model of the data as an interface between the database
and the user interface. The main difference between this model and the database model is that the
fields only exist as strings within the categories. The categories themselves keeping stock of all its
fields and their key lists and files. This was done to be able to work on separate parts of the program
concurrently without the need for database access. Unfortunately, this led to the necessity of a lot of
extra code for database management. Currently, this code resides in one class of about 1000 lines. In
order to add even one category, one would have to add about 150 lines of code at various places in
this class. This is suboptimal at best, but in order to guarantee a prototype within the time we had
to work, this was the safest option.

44

5.3 Data Model

A completely general data model was also designed that differs only minutely from the implemented
one. Instead of having a special ”guide word” table, a more general constant list is used. This list offers
the same functionality for the guide word category that the guide words did, as well as being available
to other categories where a list of constants might be needed. This could be a list of employees, a list
of grades etc. The constant list does not even need to be ”constant”. A variable set in the XML files
which stores the category information and are read at startup signifies whether the list can be changed
or not. In this way, several different categories may share the same list of constants if required.

The data model thought to be ideal and general is shown below:

Figure 23: Data model of the HazOp Tool as thought to be ideal.

45

5 Software Tool Design

5.4 Example of Use

The following is an overview of the functionality offered by the software tool. The tool is structured
as a set of windows forms

5.4.1 Introduction Screen

Figure 24: Screenshot from the Introduction Screen in the HazOp tool

The HazOp tool implemented welcomes users with an introduction screen in which users can choose
the desired mode of operation. Either the users can view projects in a safe mode in which no data can
be modified or they can edit projects already inserted into the system. A last possibility is to make a
new project that can be filled with new data. As a safety feature, it is impossible to delete projects
from this interface. That functionality should be left to managers as it could potentially mean the loss
of valuable knowledge. Since a separate interface for managers was not called for in our experiment,
we did not implement such functionality. The only way to delete projects in the tool as it stands is
by manually editing the database.

46

5.4 Example of Use

5.4.2 Design Representation Screen

Figure 25: Screenshot from the design representation screen

When entering the project browser, the user is presented with three main tabs, ”Data in”, ”Search”
and ”Results”. These are linked to the two main functionalities of the tool; inputting data into the
HazOp tool and searching through the data already in the tool. When inputting new information into
a project and when only browsing projects, the users will be in the ”Data in” section of the program.
Within this tab a new tab-selection is found in which all the categories already used for the project
can be found. For the system we made, this was limited to the three categories already mentioned.
The user can freely switch between these and edit them if in edit mode.

47

5 Software Tool Design

5.4.3 Detected Hazards Screen

Figure 26: Screenshot from the hazards screen

Each category may have one or several branching points. Branching points are places where later
information depends on the value at that point. In practice this is done through the use of Combo
Boxes. When a new value is inserted, all fields below are blanked out and ready to accept new data.
When selecting an already created value, the fields below the branching point are filled with the data
for that value.

48

5.4 Example of Use

5.4.4 Guide Word Screen

Figure 27: Screenshot from the guide word interpretation screen

In our implementation, two such branching points were made, one in the ”Hazards Found” category
where all the fields were dependent on which hazard the user was looking at any given time. The
other was located in the Guide Word Interpretation category.

49

5 Software Tool Design

5.4.5 Key Adder Screen

Figure 28: Screenshot from the keyword adding screen

When editing projects, keywords can be added to any field via the ”Add keyword” button next to each
field. When pressing this button, an overview of all keywords used so far in any project is presented to
the user, and the user may decide whether to add a new keyword or use an already existing keyword.
This is done to ease the search functionality. Too many similar keywords will make searching harder
as all synonyms would have to be chosen to ensure a complete search of the database. The user is
encouraged to first search through the list and se whether a good candidate already exists before
adding a new key word.

50

5.4 Example of Use

5.4.6 Search Screen

Figure 29: Screenshot from the search screen

When the user wants to search the database for data relevant to what he/she may be facing in a
current HazOp, he/she can use the search functionality. By adding keywords to the fields as they are
entered into the tool, one can ensure that information will be easy to track down at a later stage.
Users may specify a search where the entire database is searched and all hits are returned in a table
where their origin HazOp study can be seen and a small excerpt from the field in question is shown
to help the user decide whether this is a relevant hit or not.

51

5 Software Tool Design

5.4.7 Search Result Screen

Figure 30: Screenshot from the search result screen

The user can select one of the fields by clicking on it, the project from which this field was taken will
automatically pop up in a separate browser in view mode. In addition, the browser will be focused
on the field selected by the user in the search, making it easy for the user to use the search functions.
When the user is finished browsing the project that was presented in the search he or she simply closes
the new browser and is returned to the search results where a different entry may be selected. If the
user should want to change the search criteria he/she simply presses the ”search” tab and is returned
to the search criteria section of the program.

52

5.5 Further Development

5.5 Further Development

In order to get the tool to implement the requirements for generality as set out in section 4, a few things
need to be done. Firstly and most importantly, the graphical module aka the project browser needs
to be able to display a user interface based on the content of xml-files. This means that no graphical
elements can be hard-coded into the program for the ”Data In” part of the browser. Secondly, we
need a controller module that is able to read XML files and use the information in the files to generate
the graphical user interface from scratch, based on the content of those files. Thirdly, the category
editor needs to be made. This editor needs to be able to generate XML files for the categories as
specified by the users and update the database accordingly.

The data model can be kept more or less as is, the only difference being the constant lists replacing
the guidewords. Hence, all the data we have collected in this experiment can be reused in a later
experiment. We made sure that the data model was general enough from the start. This was done so
that it would be possible to conduct more experiments in the future while re-implementing the tool
part by part at later stages. Some graphical elements such as the welcome screen and the keyword
management screen as well as the screens for searching for fields via keywords can also be kept as is.

Other changes that is advised for future development of the software tool is to remove the object model
of projects and their fields and instead using the database directly to feed the graphical layer with
information. Additionally, a better search functionality should be implemented based on searching
directly through the database. This will lead to a significant simplification in the program when
changing it to a dynamic self-changing tool.

53

5 Software Tool Design

54

6 Software Tool Implementation

6 Software Tool Implementation

This section of the document is mostly written for anyone wanting to continue our work on the software
tool. It explains some of the choices we made when implementing, For a more detailed and thorough
description of the implementation see E

Our main concerns for the software tool was that it should be both easy to use and fast to implement.
We wanted our participants to be able to use the program with ease so that little error was introduced
by people not understanding what to do. We also needed to make this program in a short period of
time as we needed time to do the experiments and analyse the results.

C# seemed a suitable tool to make the program in, as it delivered a familiar user interface with a
windows-feel to it, and proved quick to implement using Visual Studio .NET. Using C# resulted in a
lot of code, but using Visual Studio, implementing this code was relatively easy.

The total number of lines of source code in the software tool ended up to be 5100. Some of this code
was auto-generated by Visual Studio.NET. We estimate that a completely universal program would
need some 10000 lines of code in order to work as specified in section 4. The program we used in the
experiment had 5100 lines of code. Out of our code, some 1000-2000 lines should be directly reusable
in such a program, the rest would only work as a starting point on which to base more general code.

We have included the source code for the software tool as well as a compiled version in Appendix E.
Anyone wishing to extend our work is free to do so, and all code is offered as is. In Appendix E, a
more complete overview of the code produced is offered.

55

6 Software Tool Implementation

56

7 Experiment

7 Experiment

We base our experiment on the theory as presented by Claes Wohlin et al. in [22]. First we will
present the theory, then we will follow their template in presenting how we conducted the experiment.

7.1 Experiment Theory

Experiments are a form of empirical quantitative research. The aim of an experiment is to identify
a cause-effect relationship. An advantage of experiments, is that they provide quantitative data that
promote comparison and statistical analysis. This makes an experiment useful in our case since we
want to study the effect of using a software tool for reuse of experience in a HazOp.

According to Wohlin et al. [22], the phases typically involved in software experiments are:

• Experiment definition.

• Experiment planning.

• Experiment operation.

• Analysis and interpretation.

• Presentation and package.

In the definition phase, we state the purpose of the study, and define the goals of the study. A null
hypothesis and alternative hypotheses are formulated in this phase.

In the planning phase, the context of the experiment is determined in detail. This includes setting up
testing facilities and determining what is to be tested and how.

In the operations phase, the experiment environment is set up according to what has been determined
in the planning phase. Actual experiments are run and data collected.

In the analysis and interpretation phase, descriptive statistics are used to understand the data infor-
mally. More detailed statistical analysis is done on data deemed to be relevant. The null hypothesis
is either rejected or accepted.

In the presentation and package phase, the results are written down and made available to the public
(this report).

All of these phases were used explicitly in our work.

57

7 Experiment

7.2 Experiment Definition

In order to conduct a successful experiment it is necessary to have a good understanding of its purpose.
Defining its goals of makes an experiment easier to plan, as this will avoid confusion of what it tries
to achieve. Goal Question Metric (GQM) is a useful method for defining the goals of an experiment.

The GQM model is a standardized way of seeing software experiments through from start to end. The
purpose of the GQM is to make sure that the focus is kept on fulfilling the goals of the experiment.
Using the GQM method makes it easier to verify that important aspects of the experiment are defined
before the planning and execution phase.

”GQM defines a goal, refines this goal into questions, and defines metrics that should provide the
information to answer these questions. By answering the questions, the measured data defines the
goals operationally, and can be analysed to identify whether or not the goals are attained. Thus GQM
defines metrics from a top-down perspective and analyses and interprets the measurement data bottom-
up.” [21]

Using the Goal Question Metric Models goal template, the goal definition of the experiment is to:

Object: The HazOp Tool
Purpose: Find if use of the program leads to more hazards found in a HazOp studies.

Quality Focus: Number of Hazards found, time needed for HazOp.
Perspective: HazOp team member, Project management.

Context: Student experiment with a toy size problem.

58

7.3 Experiment Plan

7.3 Experiment Plan

The purpose of the experiment plan is to describe how the experiment will be conducted. It is
important that the plan correspond to the goal definition of the experiment. An experiment is built
up around trying to check if the null hypothesis could be replaced with an alternative hypothesis.

The plan must include a context selection for the experiment. Next, hypotheses must be formulated
and variables must be selected. Subjects for the experiment must be selected and together this forms
a basis for the experiment design. The instrumentation, ie. what input to the experiment will be
made and what outputs from the experiment will be measured, must be prepared. Finally, we need
an evaluation of the validity aspects of the experiment.

7.3.1 Context Selection

Ideally, the experiment should reflect a real situation. In our case this would mean a real HazOp
for an organization with a rich program information base. Unfortunately, this was not possible. The
project problem was decided in January, at which time no tool had been implemented. As there was
less than half a year to both create the tool and run an experiment on it, it proved impossible to make
arrangements with an organisation for real life testing. A more realistic alternative was to run a HazOp
experiment staffed with students. This, however, put limitations on how much time each treatment
could take, as it was assumed to be difficult to get enough students to participate in treatments that
lasted longer than 2 hours. This again set limitations on the size of the cases the students would
analyse. Nevertheless, an experiment with students on a relatively small HazOp can still add value
to the discussion of reusing experience in HazOp. Ours is not the first experiment to encounter such
problems, using students in experiments is a common phenomenon. Even if using students leads to
less external validity, many people, including Arne Sølvberg et al. believe that student experiments
still can add value to research [20].

7.3.2 Hypotheses

As a starting point, our null hypothesis is that using a knowledge base tool in HazOp has no effect.
We set this as our null hypothesis as we would like to show that it does have a positive effect on the
HazOp. It is conceivable that using the tool could either improve the quality of a HazOp or reduce it.
Since no two teams are the same, experience made by one team may be helpful to a different team and
might help them find hazards they otherwise would have missed. On the other hand, using the tool
takes up time. If it doesn’t contribute enough to the process, it might not be worthwhile and result
in time wasted, hence reducing the quality of HazOps. Therefore, our null hypothesis and alternative
hypotheses are as follows:

• Null Hypothesis: Using the software tool has no effect on the number of hazards found in a
HazOp.

• Alternative Hypothesis A: Using the software tool leads to more hazards found in a HazOp.

• Alternative hypothesis B: Using the software tool leads to less hazards found in a HazOp.

7.3.3 Variable Selection

Variables in an experiment are either independent or dependent. The independent variables are those
variables we control and change in the experiment. The dependent variables are variables that might
change as a result of applying the different independent variables. In this experiment there will be
one independent variable; whether or not the students are using the software tool. The effect of the
treatment of this variable will be the dependent variable; the number of hazards identified.

59

7 Experiment

7.3.4 Selection of Subjects

HazOp is team work, where the team members must have enough knowledge to understand the design
representation of the system being studied. Ideally, the study leader is experienced and many of the
participants have taken part of a HazOp earlier. Unfortunately, there are not many students that
fulfill this need. However, selecting students that had enough knowledge to understand the design
representation of the flight case and train case was easy, since these design representations required
only basic computer knowledge and an ability to read design documents. This taken into consideration,
the selected subjects were chosen from the studies ”Computer Science”, ”Cybernetics”, ”Electrical
engineering” and ”Communication Technologies” that had completed their first year of study.

We could not force anyone to take part in this experiment, we had to rely on convenience sampling
within the limits just mentioned to get enough students to participate. We needed 42 students in order
to carry out the experiments as planned. To get students to participate in the experiment, we sent
e-mails to all the students doing the subject ”TDT 4140 - Systemutvikling” at IDI, and also recruited
students within the aforementioned limits from data labs on the campus of NTNU. We ended up with
a semi-random sample from all of this by randomly selecting participants from the volunteers. In
order to ensure enough interest in the experiment, each participant received a compensation of NOK
200.

7.3.5 Experiment Design

For testing the software tools effects on HazOps, we conducted a student experiment with two treat-
ments (i and ii);

• (i) A HazOp without the use of the software Tool as a reference.

• (ii) A HazOp with the use of the software Tool to see how the tool affects the HazOp

The students involved in treatment (ii) used the tool when conducting the HazOp. Students in group
(i) functioned as a baseline to measure the students in (ii) against.

The treatment (i) consisted of:

• A 15 minute introduction to HazOp using the robot cell case as an example

• A 90 minute period in which to do the HazOp on the provided case.

• A 10 minute period in which to fill in a questionnaire provided (see section 8.3).

The treatment (ii) consisted of:

• A 15 minute introduction to HazOp using the train position case as an example

• A 5 minute introduction to the software tool

• A 90 minute period in which to do the HazOp on the provided case.

• A 10 minute period in which to fill in a questionnaire provided (see section 8.3).

In treatment (ii) there was a 5 minute explanation of the HazOp tool to the students before the
problem solving part so that they would be able to utilise it efficiently. The questionnaires provided
both information to feed into the tool (after treatment (i)), and feedback on how they experienced
the task of doing a HazOp. When doing the HazOp, the groups used a special form to record any
hazards found. These forms also provided information to the HazOp tool.

When conducting the two treatments of the experiment, it was important to both get enough data
that we might statistically show a difference between groups in (i) and (ii), and that we could be

60

7.3 Experiment Plan

confident that the data we collect is comparable. This was ensured through using only groups made
up of a certain type of students for the experiment (see 7.3.4). Furthermore, any deviations from this
optimal group composition was done symmetrically, so that the two treatments were as similar and
comparable as possible.

7.3.6 Instrumentation

The instruments for an experiment can be divided into three types:

• objects

• guidelines

• measurement instruments

Objects The objects in this experiment was the cases the participants have to solve and a software
tool with a knowledge base. The cases were taken from real world situations. There was a train
position case and a flight landing case.

The software tool is useless unless it contains information that can be used during a HazOp. We
needed to get data into the HazOp Tool before the experiment to test its usefulness. Since this would
normally be done by persons used to the HazOp process, we opted to have more groups work on the
same case to make the collected data more representative. We used four groups of three persons each
in a pre-experiment. The resulting data was put into the system after being checked so that no two
identical hazards were added. A group size of three persons seemed to be an optimal number in a
student experiment to facilitate contribution from all members of each group. If too many students
are placed in a group, it would be easy for some of them to ”hide” in the mass, their ideas and
experiences being lost to the users of the tool.

We conducted a pre-experiment with four groups for two reasons:

1. Gather information for the programs knowledge base

2. Gain experiment experience

It could not be taken for granted that the participants in the experiment could conduct a HazOp in
a satisfying way when they had no experience with the methodology. In the pre-experiment we could
also observe if any unforeseen problems would arise. The pre-experiment was conducted in this way:

• A 15 minute introduction to HazOp using a robot cell case as an example. See section C.1.

• A 60 minute period in which to do the HazOp on the provided train case. See section C.2.

• A 15 minute period in which to fill out a questionnaire provided. See section 8.3.

61

7 Experiment

The data collection gave the following statistics:

Element Hazards found
Group 1 18
Group 2 20
Group 3 23
Group 4 18

Mean: 19.75
Range: 5

Variance: 5.58

Table 2: Results from pre-experiment

The results show that the participants did not have much problem conducting the HazOp. This can
be seen from the number of detected hazards, relatively low statistical range and standard deviation.
If the results had been bad we would had to reconsider our introduction to HazOp. The purpose of
our survey was to figure out if there were any problems that could not be seen from the results and
observations. The survey pointed out that the time limit was a problem during the HazOp. Because
of this, the HazOp in experiment treatments was expanded with 30 minutes from the pre-experiment.

An important issue to consider is the amount of experience stored in the knowledge base. Due to
constraints on the experiment, we were only able to input experience from one HazOp done in the
pre-experiment into the tool. In order to make sure that the participants would find relevant infor-
mation in the knowledge base, we deliberately chose the two cases mentioned. They both portray
systems for supervising position information of vehicles. For a thorough description of each system,
see Appendix C. Specification and implementation of the software tool was also part of the instru-
mentation. Information on how we went ahead to produce the tool can be found in sections: 4, 5,
6.

Guidelines Since the subjects of the experiment did not have any experience with HazOp, we had
to teach them and give them guidelines of how to work through the cases. For the students who were
using the software tool we had to make guidelines for how to use the program when conducting the
HazOp. More information about the HazOp guidelines we provided the participants can bee seen in
B.

Instruments The measurement instrument used was the forms the groups used to record the haz-
ards they found during the HazOp and a questionnaire in which they gave us feedback on the experi-
ment. The hazard forms were of the type shown in Table 3.

Element Attribute guideword Deviation Consequence Cause

Table 3: Form used by participants to record hazards

The questionnaire contained questions that both provided information to put into the knowledge base
and feedback on how the participants experienced doing a HazOp.

62

7.3 Experiment Plan

7.3.7 Validity Evaluation

A discussion of validity threats of the experiment prior to the execution is needed to make sure that
the experiment is planned in a proper way. The four kinds of validity in experiments according to
Claes Wohlin et al in [22] are:

• Conclusion Validity: Ability to draw the correct conclusions.

• Internal Validity: Certainty that observed effect is caused by treatment.

• Construct Validity: Certainty that observed effect is part of assumed theory.

• External Validity: Ability to generalise results to industry practice.

For this experiment, the threats to conclusion validity were:

• Low statistical power.
Not enough groups to get statistical significance. Since we had limited funding, we might risk
not getting enough students to do the experiment as planned.

• Random heterogeneity of subjects.
We might end up with having one treatment with very skilled students and a different treatment
with very unskilled students. Since there was no clear cut way of testing this, and since using
grades from university courses was not viable, due to the sensitivity of this information, we had
no way of ensuring this does not happen.

• Random irrelevancies in experimental setting.
Since the rooms we could book for the experiment was fairly small, the participants might be
disturbed by noise from the other groups. There was also a possibility that some groups might
hear and use what other groups discuss.

Threats to Internal Validity were:

• Instrumentation.
The forms used may not catch the data we needed or the program might be unsuitable to use.
Also, we had no guarantee that the categories we had chosen would be useful for future HazOps.
The programs knowledge base might be too small to have significant impact in the experiment.
In our experiment, we made the assumption that there was relevant information in the knowledge
base. If the cases in the experiment were too different, the program wold probably have almost
no effect on the HazOp.

• Selection.
A certain type of student might be more likely to participate in the experiment, making it
possible that observed effects stem from this biased selection instead of the treatment.

63

7 Experiment

Threats to Construct Validity are:

• Experimenter expectancies.
We might unconsciously give hints to the students that we expected the second treatment to be
better than the first, thereby affecting them to put more effort into the second treatment than
the first.

• Hypothesis guessing.
When people take part in an experiment they might try to figure out what the purpose and
intended results of the experiment is. This could influent their behavior in the experiment.

Threats to External Validity are:

• Interaction of selection and treatment.
In practice, HazOp teams usually had a certain structure. Ideally, it has an experienced study
leader, domain experts, and system designers. We could not compose such groups because of
the resource constraints. This makes it difficult to generalise results to the real world.

• Interaction of setting and treatment.
Due to time and economic constraints set on the experiment, the cases used for each treatment
would necessarily be toy size or overly simplified real world problems. This would make it
difficult to claim that any results could be generalised for problems of larger magnitude in the
industry.

64

7.4 Experiment Operation

7.4 Experiment Operation

This section explains the preparations done before conducting the experiment and the measures that
were taken to ensure a high degree of validity.

7.4.1 Preparation

During the experiment we experienced that getting enough participants was not as big a problem as
we thought it to be. We were able to select 42 participants randomly from a pool of 75 interested
students. We hope that this leads to a smaller bias on the experiment from the students involved.

We also found that our estimated 15 minute introduction to the HazOp process easily could be cut
down to 10 minutes as the students took to the process quickly. The extra 5 minutes was given to
them to do the HazOp, bringing the total time to analyse the system up to one hour and 35 minutes.

At the start of the experiment, each student was given a booklet containing a brief introduction to
HazOp and an example case with an example HazOp form filled in to exemplify the HazOp process.
The introduction they were given can be found in section B. In addition, they each received an
explanation of the case they would work on, the flight landing case, and a design representation of
that case. This information can be found in section C.3.

7.4.2 Execution

Physical location The groups were placed in relatively large rooms dimensioned for meetings with
20+ people. We had at most four groups at any one time in a room, each placed in a corner of the
room. We would sit in the middle of the room ready to answer any question that might arise. The
groups using the HazOp Tool were each given one computer at their desk to use as they pleased. Care
was taken to make sure that the groups were spread out, so that they would not be within earshot
of each other when talking softly. We had to do the experiment in four batches. This was done for
practical reasons, both regards to the size of the room and with consideration of when the students
were available for the experiment.

Subjects We ended up having to use two students from 5. year Computer Science on the first
treatment of the experiment (HazOp without tool), these were spread on two different groups in that
treatment. To balance the experience, we also used two 5. year students in the second treatment
(with tool). When observing the groups, no difference could be observed in the groups that had one
5. year student from those groups that had none.

In order to avoid any Hawthorne Effect [12] in the experiment, we kept the real purpose of the
experiment hidden from the participants until they were done with their HazOp. This was done
so that the participants without the program were not to feel less obliged to do high quality work.
Likewise that the participants using the tool should not feel a higher degree of stress to do good in the
experiment than the other participants. To accomplish this we made care not to mention the HazOp
tool to the participants in the first treatment, and we made care not to mention the first treatment
to the participants of the second treatment. Wohlin et al. say that deception should only be used as
a last resort:

”If deception is the only alternative, it should only be applied if it concerns aspects that are insignificant
to the participants and do not affect their willingness to participate in the experiment. ... If deception
is applied it should be explained and revealed to the participants as early as possible.” [22]

We have lived up to this rule, we found no alternative to ”fooling” the participants to believe the
experiment tested them in a different way.

65

7 Experiment

7.4.3 Data Validation

All the groups found between 18 and 30 hazards out of a total of 73 hazards found. This shows that
none of the groups had too little understanding of the HazOp process to be able to work efficiently.
In order to verify the hazards, we checked that the proposed hazards was indeed credible, and that
the groups did not get credit for the same hazard more than once. During the experiment we were
occasionally asked questions on the HazOp process by the groups, and we made a round after approx-
imately 10 minutes to check that all the groups did indeed know what they were doing. During these
rounds, we did not encounter a single case where the students were still with in the wilds regards to
the HazOp process. Furthermore, all the groups were asked whether they experienced any problems
during the HazOp and none answered that they thought the process was difficult to do or understand.
During the experiment we observed that the students took their job seriously, and that they seemed
genuinely concerned with getting the best results possible. All of this adds up to giving us a high
confidence that the data we collected was produced by the best of the students’ abilities.

66

8 Results

8 Results

This section of the document shows the results from the experiment. First, an account of the obser-
vations made during the experiment will be made, Next, the hazards found by each group are given.
Lastly, the feedback forms filled in by the groups will be discussed.

8.1 Statistical Data from Experiment

The groups in the experiment found a total of 73 different hazards. These are listed in the appendix
section D. Here follows an overview of the statistical data found in the experiment.

8.1.1 #Total Hazards Found

In order to see whether the tool was beneficial to the process, we measured the total number of hazards
found by each group and averaged those numbers to find the average number of hazards found both
by groups using the tool, and groups without the tool. The results are shown in table 4.

Average Variance Std. deviation % of total
Without tool 22 18.5 4.3 30.1

With tool 26.6 15.8 3.97 36.4

Table 4: Statistical data from the experiment. Total amount of hazards found

The groups with the software tool found on average 36.4% of the hazards. The groups without found
30.1%. This means that, on average, the groups with the tool found 21% more hazards than their
counterparts without the tool.

67

8 Results

8.1.2 #Hazards Found Element by Element

In addition to comparing the total number of hazards found by each group we also wanted to see if
the program could have an impact on detecting more hazards associated with certain elements. To
do this, we measured how many hazards each group found on each element.

The spread of the hazards after interpreting them can be found in tables 6 and 5 shown below. The
letters at the top represents modules in the GPS - landing system as identified by the groups. The
letters are assigned to the modules as follows: (see section C.3 for a thorough explanation of the
system.)

• a: The GPS satellites

• b: The different modules aboard the airplane

• c: The communication part of the ground system

• d: The RMM unit

• e: The remote control unit

• f: The ATC panel

• g: The central controlling system

Element a b c d e f g sum
Group A 4 4 3 0 8 0 0 19
Group B 3 7 4 1 2 1 0 18
Group C 0 5 3 4 6 2 0 20
Group D 6 7 5 4 0 3 0 25
Group H 3 7 5 3 4 6 0 28

Table 5: Results from treatment 1, without tool

Group E 8 2 8 4 8 0 0 30
Group F 8 10 0 0 8 0 3 29
Group G 3 7 6 1 3 0 0 20
Group I 5 3 7 0 10 0 3 28
Group J 4 3 9 2 0 8 0 26

Table 6: Results from treatment 2, with tool

These data are analysed in section 9 of this document.

68

8.2 Observations During Experiment

8.2 Observations During Experiment

Some differences were observed in the way the groups worked on the problem. The largest difference
could be seen in the groups where a clear leader surfaced. These groups had more effective discussions
when finding hazards than the other groups. For the most part, this was achieved through keeping
focus away from the possible causes and consequences of hazards, and instead focusing on identifying
possible hazards. In the most efficient groups, the leader would cut right through a discussion and
demand progress to the next hazard with authority enough to ensure efficiency.

On the other hand, in one group two leaders surfaced. This lead to some rather unwanted conse-
quences. Firstly, the group would lose time bickering over the wording of certain hazards, neither of
the leaders willing to give in. Secondly, neither part would admit ”defeat” and ask questions about
the design when issues were thought to be ambiguous. This naturally lead to frustration within the
group and more time wasted. Lastly, the last member of the group almost did not contribute to the
HazOp at all, his comments being ignored by the other two. In the end the group did not do as bad
as could be expected, finding a total of 20 hazards. This is largely due to the fact that one of the
”leaders” was acting as secretary, and would write down his own opinions while discussing with the
other ”leader”.

The groups seemed to get into the HazOp method quickly, but some groups would sit and read the
case for about 15 minutes before starting to work. This was more true for the groups that used the
tool than for the others. We believe this was a direct result of entries in the tool which proclaimed
the value of doing this. We also observed much fewer questions from groups that had taken the time
to read the design representation properly from start to finish before starting to work on parts of it.
The groups that had read through the design representation seemed more confident, and also gave
more positive feedback afterwards.

When doing the HazOp, controversy within the groups as to the validity of a certain hazard would
often arise. Some of the groups would spend much time deliberating over the hazard in question,
effectively wasting their time while debating some esoteric point. The groups were never interrupted
in their discussions so as to affect the experiment as little as possible. The futility of longwinded
discussions was, however, pointed out in the start of the experiment during the introduction to the
HazOp method. To be fair, all feedback was given directly to the groups asking questions, not to the
room at large, so that the other groups present in the room at the time would not be unfairly favored
over the other groups not in the room at that time. Each group had the same opportunity to ask
questions during the experiment.

The groups working with the tool learned from the tool that previous groups had found it advantageous
to start in one end of the ”signal path” and work their way through to the other end. This seemed
to work well, but it also lead some of the groups to not reach the end, being too detailed in their
treatment of some of the elements in the design representation to have time to cover all of the design.
The groups without the tool seemed “better” at budgeting their time to cover the entire design than
the ones with the tool. On the other hand, the ones with the tool seemed to go deeper into each
element. In effect, they seemed to go into more detail and to discover more hazards per element than
the groups without the tool.

No treatment was noticeably better at finding non-trivial interpretations of guidewords. This is not
surprising, however, since the data available in the tool provided few insights on how to interpret
guide words. The two treatments thus had almost exactly the same starting point in this respect.

A difference we observed between those that used the software tool and those that didn’t was that
the latter was more sporadic in their use of guide words. Those that had the tool would go through
the list of guide words methodically and write hazards for each guide word that made even remotely
sense, even if that meant repeating hazards. Those without the tool would only write those that
made sense once, and sometimes even forget about a guide word interpretation until after some time,
going back to write a new hazard on an element they had ”finished” some time ago. This made for a
rather erratic progress with the groups constantly trying to see whether they had forgotten something

69

8 Results

earlier, instead of focusing on the element at hand.

These observations all support that using inexperienced students has quite a few similarities to using
personnel used to the HasOp method for experiments. The problems often encountered by HazOp
teams are; time wasted while focusing on the problem and not on the solution, and the importance
of an efficient and clear leader. These problems are often cited in HazOp literature as key issues
that must be sorted out in order to ensure a successful HazOp [6] [15]. Having observed that the
same tendencies in a way governed the successfulness of the groups in our experiment, this makes us
more confident that the environment in the experiment at least to some degree matches the real-world
environment of HazOp studies.

8.3 Questionnaire

When the groups had finished their HazOp or were told to stop, they filled in a questionnaire. This
questionnaire had some standard feedback fields from which we could see how they felt they fared
and what they thought of HazOp etc. Also, there were fields that were linked to the HazOp tool,
giving us information both to put into the tool for later groups to use, and on how to improve the
tool. Information put into the tool was for example information on what the students had learned
about design representations during the HazOp etc. Later users of the tool will be able to use this
information and add to it if need be. Here follows the questions, asked along with a summary of the
answers.

What do you think of HazOp as a method for finding hazards? The groups without the
tool answered almost unanimously that HazOp is both systematical and simple enough to be useful.
One group pointed out that every hazard seems equally probable when doing the HazOp, thus one
need a later study to identify probabilities.

Of the groups with the tool, three claimed that the method was a good one, emphasising the use of
guide words to direct the thought process. Two groups thought the method was boring.

Do you think that HazOp is suited for finding hazards in practice? The groups without
the tool answered that they thought HazOp was a good idea in principle, but that for the method to
work in practice, knowledge of the domain at hand was paramount. They also pointed out that the
HazOp method seemed to find all the ”simple” hazards, but that it didn’t investigate deeply into the
systems.

One of the groups using the tool said that they didn’t think HazOp dealt properly with hazards as a
result of multiple components failing at the same time. Another claimed that they felt restricted by
earlier observations. The rest thought the method was well suited in practice.

How was it to conduct a (limited) HazOp? some of the groups not using the tool said they
felt they lacked the domain knowledge to do a good job. One group claimed that the study was boring,
and one group said they felt they had identified all the hazards.

One group with the tool said they missed probability in the analysis, two group claimed they were
unsure with what to fill in the hazard forms, and one group said they had been too detailed, thus not
being able to cover the whole system.

70

8.3 Questionnaire

Did you experience any problems in the experiment? Out of the groups not using the software
tool, one group said they had a hard time identifying the elements in the design and one group said
they needed more time to complete the study.

Three of the groups using the program felt they had too little time. One group said they felt they
didn’t know how to use the program properly. Incidentally, this was the group that scored lowest of
the groups with the tool.

Did you use the tool actively during the HazOp Only one of the groups said they had not
used the tool during the HazOp, this was group G, the group that scored lowest out of all the groups
using the tool. The other groups had used it to some degree. One group claimed they had used it
mostly at the beginning to get a flying start. One group said they used the tool to help brainstorming
when they found no hazards on elements.

Was the tool helpful? One group (group G) claimed the tool just hindered the process consuming
time without them getting anything back. The other groups claimed the tool had been helpful.

What functionality would you like the tool to have One group felt that the tool should be
closer linked to the hazard forms. Two groups said they would want more search-functionality in the
tool. The ability to specialise searches and group the results on the keywords.

Questionnaire summary Groups with the tool were generally more sure of their own domain
knowledge when doing the HazOp. They also found the tool to be helpful during the study. The
only negative aspect of using the tool was that they to a larger extent felt they had too little time.
Seeing as they found more hazards than their counterparts, this could indicate that they were more
thorough in their study. This, of course, is not negative at all. From observing the answers given by
the groups the software tool seems to be a success. There does seem to be a potential for improvement
in the tool. Most notably, the search functionality should be changed to reflect better the wishes of
the participants.

71

8 Results

72

9 Analysis

9 Analysis

In the analysis part of an experiment, the results are discussed via descriptive statistics and hypothesis
testing is done. The goal of the analysis is to be able to within a certain confidence reject the null
hypothesis and accept an alternative hypothesis.

9.1 Measuring and Organizing Collected Data

After we had collected the schemas from the groups, we had to get a measurement of their work. As
a part of the experiment plan, we wanted to compare hazards found using the program versus those
found not using the program.

One problem with analyzing the schemas was that the same hazard can be described in different ways.
Specifically, the granularity of the data offered by the groups was often different.

As an example there were some groups that interpreted the guide word ”no” combined with the
satellite’s attribute signal as two hazards:

Figure 31: Example of fine granularity in the data provided by the groups

Many of the other groups, however, interpreted this combination of element, attribute and guide word
as one hazard:

Figure 32: Example of coarse granularity in the data provided by the groups

In order to be able to compare the two different granularities, we interpreted the second example as
expressing two distinct hazards in one row. Since they did not specify which signal was missing, no
signal to both of the elements was implied.

This sort of organising the collected data was done throughout the experiment data, in effect bringing
the data down to the lowest granularity level suggested by any group. We did this consistently
throughout the results provided by the groups. This lead to the fact that groups tending to give more
vague hazards were rewarded by having more hazards total. There was, however, very few instances
of us having to modify the granularity of the data. As we had provided a very fine granularity in the
example data, the groups tended to use this granularity as a template.

73

9 Analysis

9.2 Descriptive Statistics

We have divided the participating groups into two categories. One that used the program and one
that did not. Groups A through D and H did not use the software tool, groups E through G and I
through J did use the tool.

As can be seen from the results in tables 6 and 5; the groups that used the software tool seemed
to find more hazards than the ones without the tool. This was also noticed in the operation of the
experiment as seen in section 8.

It was also noticed that the groups working with the software tool did not touch some of the elements.
At the time of the experiment it was suggested that this came as a result from the groups not having
enough time to complete the HazOp.

Group E, F, G and I did not find any hazards on the ATC panel. This component is a central part
of the system and is to a large degree visible in the design representation. It is not likely that the
groups merely ”forgot” the component when doing the analysis. Far more likely is the possibility
that they just did not make it because the limited time available. A total of 11 different hazards
were identified on this component alone by other groups. We therefore made the assumption that
it was not the absence of possible hazards that led to 0 hazards found for the four groups with this
component. Three of the four groups in question were the groups that identified the most hazards
in total, this leads us to believe that the oversight was not the result of sloppy work. Instead, the
explanation is assumed to be that the groups did not have time to start analysing this component.
This is supported by the observations made that suggested that the groups did not get to finish their
analysis. See section 8.

With this assumption made, we had to look beyond merely counting the total number of hazards
found, as this might not give a correct view of the effectiveness of the groups. It is conceivable that
some groups started out with ”easy” elements which had a lot of hazards connected to them, whereas
some groups may have started out with elements without that many hazards. If the groups spent a
comparable amount of time on each element, this would lead some groups to end up with more hazards
found in total by skipping the ”hard” elements. Thus, in order to see how effective a group was, a
better measurement would be how thorough they were on each element they did get to investigate.
Ie how many hazards they found on each element they got to start on.

None of the groups without the software tool found anything wrong with component g, the central
controlling system. This might be because they did not think to include it into the analysis. This
element could not be directly seen from the design representation. It had to be derived from the
system explanation. In the program knowledge base there was information about a similar element
abstraction for the train position system. The design representation category contained this advice
and some of the entries in the detected hazards category could help the groups identifying this element.
We believe that this is the reason why two of the groups using the program did analyse g and found
3 hazards each. The total hazards detected for this element was four.

When disregarding element g, the total count of un-analysed components are 4 out of 30 for the groups
without the tool and 8 out of 30 for the groups with the tool. Since the groups who where using the
program found more hazards, this indicates that these groups were more thorough when analyzing
each element, and that they did not have enough time to complete the study.

74

9.3 Dataset Reduction

9.3 Dataset Reduction

In addition to comparing the total number of hazards found by each set of groups, we also analysed
the results element by element. During the experiment we observed that the groups using the software
tool seemed less able to cover the entire design representation when doing the analysis. Thus, the
groups could well be doing the HazOp more thoroughly, but still end up with approximately the same
amount of identified hazards as the other groups. In order to test whether this was the case, the
groups’ analysis of each element was compared. When doing this comparison, the element called ”g”
was omitted as none of the groups not using the software tool found any hazards in this element.
Furthermore, this element was found only implicitly in the design representation and case description.
Additionally, the dataset was reduced so that only groups that had actually covered the elements
were taken into consideration. Since we could not observe during the experiment which elements were
and were not covered by each group, we instead interpreted zero hazards found on a given element to
mean that the group did not have time to start work on that element. Thus, all groups that found
zero hazards on an element were not counted when analysing the results element by element.

9.4 Statistical Analysis

In order to reject the null hypothesis, one must show statistically within a certain level of confidence
that the alternative hypothesis can be assumed to be correct. One method to do this when comparing
two treatments is the Student’s t-test. For the Student’s t-test to work, the observations need to be
normally distributed. We have no way to confirm this with just 5 observations made in each category,
but since we are confident that we have a good semi-random sample of experiment subjects, and that
the variations in the number of hazards found for each group stem from randomness in the sample,
we assume that the samples are normally distributed and we can hence use the Student’s t-test.

The student’s t-test takes into consideration the observed variance and tests if there is a significant
difference in the observed mean values. The null hypothesis is that there is no significant difference
between the two treatments. If a significant difference is found on the mean values, this means that
we can reject the null hypothesis.

Our null hypothesis was that the students using the software tool and the ones without discovers
approximately the same amount of hazards in a system during a HazOp. In order to reject this null
hypothesis, we needed to show that the students using the software tool either found significantly
more hazards (alternative hypothesis A) or that the students using the software found significantly
less (alterative hypothesis B). From the data available, it was clear that the alternative hypothesis B
could not be accepted, since the students using the software tool found more hazards than the one
without. Whether they found significantly more hazards, however, can be tested using the Student’s
t-test.

The groups using the software tool found an average of 26.6 hazards in the GPS landing system. The
ones without the tool found a total average of 22 hazards.

Using a one sided Student’s t-test, we found that the null hypothesis could be discarded with a 6%
risk of error. In other words, there was a 94% possibility that the observed increase in hazards found
by the groups using the software tool was not due to random effects. We were thus able to discard
the null hypothesis and replace it with the alternative hypothesis A: ”Using the software tool leads
to more hazards found in a HazOp”

As was observed throughout the experiment, it seemed that the groups using the program were
generally more thorough when going through the elements in the design representation. As a result
of this, they did not cover the entire design representation. In order to check whether the groups with
the program generally found more hazards on each element, the following test was applied:

75

9 Analysis

For each of the identified elements named ”a” through ”f”, skipping ”g” on account of its ambivalent
nature, a Student’s t-test was done on an element by element basis, where groups with no hazards
found for a particular element was disregarded (see section 9.3). When doing this, we got the following
results:

Average Variance Std. deviation #Groups
a 4 2 1.41 4
b 6 2 1.41 5
c 4 1 1 5
d 3 2 1.41 4
e 5 6.67 2.58 4
f 3 4.67 2.16 4

Table 7: Statistical data from the experiment. Groups without tool

Average Variance Std. deviation #Groups
a 5.6 5.3 2.3 5
b 5 11.5 3.39 5
c 7.5 1.67 1.29 4
d 2.3 2.33 1.53 3
e 7.25 8.92 2.99 4
f 8 0 0 1

Table 8: Statistical data from the experiment. Groups with tool

When feeding this data into the t-test, the results were as follows:

• Element a: The groups using the software tool was more thorough than the other groups with
88% confidence.

• Element b: The groups using the software tool was more thorough than the other groups with
71% confidence.

• Element c: The groups using the software tool was more thorough than the other groups with
92% confidence.

• Element d: The groups using the software tool was more thorough than the other groups with
70% confidence.

• Element e: The groups using the software tool was more thorough than the other groups with
85% confidence.

• Element f: This proved impossible to test due to there being only one observation from the
groups using the program.

Setting a limit at 90% confidence, only element b was shown to be more thoroughly investigated by
the groups using the software tool than the others. Thus we were not able to show that using a HazOp
software tool for knowledge reuse leads to each element being more thoroughly investigated. We have,
however, been able to show that the total amount of hazards found increases with the use of such a
tool.

76

9.5 Discussion

9.5 Discussion

The tool available to the students held only experience from one previous HazOp. The results showed
that even if only one project is found in the programs knowledge base, the groups could use this
experience to detect more hazards. In a real life setting, such a program might hold experience from
tens, even hundreds, of HazOps. Thus, the usefulness of a HazOp tool for experience transfer would
be much greater in real-life. It is probably the similarity of the two cases that compensates the limited
program information. If the knowledge base was huge, it could have been more difficult to find relevant
information which again could have effect on the groups’ motivation on using the program.

One should be careful, however, to proclaim the software tool to be a necessity for real-life HazOp
based on the results from this experiment. The participants in this experiment had absolutely no
experience with the HazOp process and only a little experience in reading design documents. It could
well be that the information they got from the HazOp tool only helped them get a better understanding
of the HazOp process. If this is the case, people in the industry would not benefit from using the tool
to the same extent as they are already familiar with the process.

During the experiment we observed that the groups did not find it to be a inconvenience having a
computer in front of them during the HazOp. The process seemed well suited to accommodate the
participants occasionally seeking information and inspiration from the tool. This, we think, could be
transferrable to real life HazOps.

9.5.1 Knowledge Base Size

It is important to consider how much data is needed in a knowledge base before it can be considered
to be useful. Clearly, a large knowledge base would be able to provide more clues to help the HazOp
process than a small one. If there is insufficient data, the tool could become a burden more than a
help to the process as explained in section 3.2. The question therefore arises how much information
is needed as a minimum. If this amount could be identified, the data could be pre-loaded into the
system before it was used by any company.

We found that experience from but one study was enough to help the students do a better HazOp. In
the real world, this would probably not be the case. There is one factor that needs to be considered in
order to make a claim about what the minimum value might be. Knowledge recorded by the HazOp
teams would probably be limited to just the non-trivial experience they would gain. This to limit the
knowledge base to a manageable size and to cut the costs of recording the experience.

Thus, a related question will be how much non-trivial experience is gained in a standard HazOp. If
the HazOp teams are continually reinventing the wheel, having even one HazOp recorded would be a
help. On the other hand, if most of the work is routine work, a different tool supporting automation of
the HazOp process would be more suitable. The literature suggests, however, that the process works
best when done as a creative process conducted by experienced persons [6]. This suggests that the
practice of doing HazOps is nearer the former type.

Apart from basic knowledge on the HazOp method itself, all the experience gained in HazOp will be
domain-specific to some extent. If doing a HazOp in a dissimilar domain, such knowledge could turn
out to be next to irrelevant. In order to ensure that the tool is useful to an organisation no matter
what the object of the HazOp might be, it is our opinion that there should at least be experience from
one HazOp done on a system within each of the domains the organisation would need to do HazOps
on in the future.

77

9 Analysis

9.5.2 Validity

As was identified during the experiment plan, certain threats to the validity of the experiment exist.
The complete list of threats we have found to apply for this experiment can be found in section 7.3.7

Conclusion Validity We had enough groups to reject the null hypothesis with 94% statistical
significance. Thus, the threat of low statistical power was answered.

Almost all the participants were from the same year of university studies, and little difference in the
skill-levels of the groups were observed. The deviations we made from the rule of just using second
year students were done symmetrically. Thus, the threat of random heterogeneity seems to have been
answered.

The rooms used for the experiment proved to be suitable for the experiments. The participants were
able to speak softly to each other without being overheard by other groups. Our presence in the
rooms made sure that the groups did not cooperate. This answers the identified threat of random
irrelevancies

Internal Validity The tool proved to be useful during a HazOp, and the information we collected
into the tool also proved useful. Furthermore, since we chose participants randomly from the pool of
available students, and also chose randomly which treatment to put each student in, any bias from
the participants should have been properly dealt with.

Construct Validity None of the groups were told beforehand the setup of the experiment, so
they were not aware that we were to have two treatments. This effectively removed the threat of
experimenter expectancy. The threat of hypothesis guessing was also countered in the same way.

External Validity We found it hard to counter the threats to external validity in this experiment.

Using only students from a limited set of possible students made for a very narrow spread in the
experience of the students. Although this makes us able to claim that there is little threat to the
conclusion validity, it means that we are unable to claim that our results could have been duplicated
in a real-world HazOp study where this homogeneity would certainly not be found.

Using only toy-sized cases on which the students did HazOps, we could make sure that the groups
would be able to cover most of the cases in the time allotted. But this also means that we cannot
claim our results to be valid for-real world HazOps that might go on for months with larger groups of
people working on much larger problems.

78

10 Conclusion

10 Conclusion

In this paper we have shown the possible benefits with using a tool for experience transfer in HazOps.
We have laid out a requirements specification for such a tool, and implemented a prototype of that
tool. Furthermore we have run an experiment to test whether using the tool is helpful during HazOps.

During the experiment we found that using a tool in which previous HazOp experience was stored
lead to more hazards found in a HazOp done by students. Sadly, the lack of external validity in the
experiment means that the results cannot easily be generalised to be true in the real world. We found
that students with little or no experience with the HazOp methodology benefited significantly from
having a tool available in which previous experience was stored. As such we have shown that there is
some reason to believe that using experience transfer in HazOp might work in practice.

We were unable to show that using the HazOp tool led the groups to be more thorough on each
individual element in the study, even though we did find some evidence to suggest this.

When using the tool, the groups felt less hindered by a lack of domain knowledge than their counter-
parts without the tool did. They also felt that they would need more time to complete the study. The
only group that was negative towards the tool after the HazOp had not been able to use it properly,
and was also the group with the least hazards found out of all the groups using the tool. (see section
8.3)

Observations made in section 8 support that the experiment we did have a lot in common with a
real-world setting in that the groups faced the same problems often faced by HazOp teams in the
industry.

All this makes us able to conclude that using the tool we have made can be beneficial to the HazOp
process under certain conditions, especially when used by relatively inexperienced team members. In
order to conclude on its overall usefulness, we would need to test it under several conditions. We
explore this further in section 11.

79

10 Conclusion

80

11 Further work

11 Further work

Our experiment is only a beginning in quantitative research of experience-reuse in HazOp. Even
though results from the experiment indicates that a well designed software tool can increase the
performance of a HazOp, there are still many questions that need to be answered,

The rest of this section is organised as follows: First we will discuss what changes we see in hindsight
we should have made to the experiment to make it better. Then we will explain how the tool should
be improved to better facilitate cooperation with companies doing HazOp. Further, we will set out
what we think to be ideal test conditions for the software tool. Lastly, we will discuss other topics
that may be investigated in the wake of this report.

11.1 Better Experiment

The participants involved in the experiment had for the most part three complaints:

• They didn’t have enough time to complete the study.

• The search functionality of the software tool could have been better.

• The amount of available data in the software tool was small.

Time: The time limit was imposed by us as we found it hard to believe that we would get enough
participants if the experiment lasted much longer than two hours. As we didn’t have any problems
recruiting enough participants for this experiment, the next time a similar experiment is to be run,
more time should be budgeted. Ideally, one should first get a few participants to do a HazOp where
the goal is to see how long time they need to complete the study. Then one could limit the size of
the system to be studied according to how much time it is possible to recruit the required number
of participants with. From our experience, it should be possible to get students to participate in an
experiment of at least three hours.

Having enough time to do the study is important. In a real-life HazOp, enough time is usually
budgeted for the study. Lack of time leads to an inferior HazOp study which no party is interested
in [6]. Thus, to better mimic a real life situation and thereby improve the external validity of the
experiment, enough time should be afforded.

Tool: Some improvements on the software tool would also be preferable. The groups complained
that they couldn’t narrow down the search by putting in conditions like a logical ”and” between
keywords in the search. Also, they complained that the search data should be sorted in a better way.
These shortcomings in the search functionality didn’t seem to hinder the participants unduly, but it
is likely that with a larger information base to search through, problems like information overload
would soon arise if nothing is done to ease information retrieval.

In order to improve the search functionality of the tool, a few small changes are needed. Firstly, when
users search for multiple keywords simultaneously, the entries with the most keywords applying to
them should appear at the top, being the most relevant hits. It should also be possible to specify
some of the keywords as obligatory in the search. Entries failing to have these keywords would not
be taken into consideration when building the result set of the search. Finally, being able to specify
logical operators like AND and OR would make the search much more sophisticated.

Data: In our experiment, the participants only had access to experience from one previous HazOp.
In an industrial setting, the tool would contain information from several HazOps. Since we had
a serious lack of data, we should perhaps have supplemented the data in the knowledge base with
information found in the literature in addition to common sense that just wasn’t put down in writing

81

11 Further work

by any of the groups in the pre-experiment. Adding more data into the tool might make it more
beneficial to use, provided that the search functionality facilitates easy information retrieval.

11.2 Case Study

A next logical step is to bring the software tool out into the real world. A viable option is to present
the tool to an organisation and see how it affects their effectiveness in HazOps. Such a case study
would need to be compared to the company baseline in order to check effectiveness. Multiple case
studies would be needed in order to see whether the tool is helpful on a regular basis.

The need to move beyond student experiments is great. In a student experiment, we must limit our-
selves to toy-sized problems and subjects with little or no prior experience with the HazOp process.
This makes for little external validity in the experiments. A case study does have its disadvantages
though. Most noteworthy is the inability to generalise the results from one case study in one or-
ganisation to the industry at large. We are seeing this drawback already in a student experiment,
however.

In spite of this drawback, a case study would provide valuable information on how the organisation
used the tool, and what they would want such a tool to do. However, before an organisation will want
to use the tool, it must be made configurable and should be filled with useful data. Without initial
data, there is little chance of any return on the investment of using the tool the first time around.

The case study should therefore be done in two parts. First, one should collect data to put into the
tool and find which categories are needed. This should be done in cooperation with companies that do
HazOps on a regular basis. This work could also be done simultaneously with upgrading the tool to
encompass the category editor by one or two Master of Technology, Computer Science 5. year students
for their project work in the ninth semester. Second, the follow-up case study of the HazOp tool used
in practice in one or more companies for real life HazOps could then be done as the Master Thesis in
the tenth semester. A small HazOp would be required so that there would be time to complete it in
the course of six months.

11.3 Improving the Software Tool

Before a case study can be performed with the software tool, it will need to be improved beyond the
prototype used in this experiment. Most of the changes needed are mentioned in section 5.5 of this
document. Firstly, the category editor and universal behavior of the tool is paramount. Without
this functionality, the tool will be very cumbersome to update, and it will generally be more trouble
than it’s worth to modify the existing categories. This might lead to little goodwill among the
companies towards putting the tool into production. As mentioned earlier, a better approach towards
information retrieval is needed, as the search functionality currently embedded in the tool is too
simple. Additionally, having a standard minimum knowledge base when distributing the tool might
encourage smaller organisations to use the tool, as they might not be able to build a large knowledge
base by themselves.

11.4 Other Topics

Apart from seeing whether or not the tool is helpful in a HazOp, more interesting topics could be
investigated during a case study. One interesting point would be how the tool was used in practice,
who would use it and when. An additional point is what sort of data is stored. Keeping in mind
that the tool would be universal enough that the different organisations would be able to change it
over time as needed, different strategies for knowledge storing and retrieval could possibly arise with
different needs in each organisation. It would also be interesting to see whether the tool had any effect
on the employees’ views on HazOp and its value within the organisation.

82

11.4 Other Topics

Given that enough organisations participated, knowledge on how to do HazOps could be shared
between them within the tool, making for better HazOps in each organisation, and a faster growing
knowledge base. If this proved to be politically feasible within the industry, it could lead to safer
systems produced at a lower cost. In our opinion this is a goal that further studies should try and
work towards.

83

REFERENCES

References

[1] Kristian Abrahamsen. A software tool for reuse of experience in hazop, 2004.
url: www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2003/fordypning2003-Kristian-Marheim-
Abrahamsen.pdf, accessed 13.06.04. 1.3

[2] A. Bundy. Drowning in information, starved for knowledge: information literacy,
not technology, is the issue. VALA Conference, Melbourne 2000, 2000. url:
http://www.library.unisa.edu.au/about/papers/drowning.htm, accessed 13.06.04. 3.2

[3] Prepared by Battelle Columbus Division for The Center for Chemical Process Safety of the
American Institute of Chemical Engineers. Guidelines for hazard evaluation procedures. url:
http://pie.che.ufl.edu/guides/HazOp/, accessed 13.06.04. 1.2, 2.3

[4] B. Carter, T. Hancock, J. morin, and N. Robins. Introducing RISKMAN methodology. Blackwell
Ltd., 1994. 1

[5] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language. 2. Ed.
Booch Jacobson Rumbaugh, 2003. ISBN: 0-321-19368-7. 4

[6] F.Redmill, M. Chodleigh, and J. Catmur. System Safety: HAZOP and Software HAZOP. WI-
LEY, 1999. ISBN: 0-471-98280-6. (document), 1.1, 1.2, 2, 2.1, 2.2, 2.3, 1, 2.4, 3.1, 3.1, 8.2, 9.5.1,
11.1

[7] T. Hewett. Cognitive factors in design: Basic phenomena in human memory and problem solving.
url: www.acm.org/sigchi/chi96/proceedings/tutorial/Hewett/tth txt.htm, accessed 13.06.04. 3.1

[8] C. Knutson and S Carmichael. Safety first: Avoiding software mishaps. url:
http://www.embedded.com/2000/0011/0011feat1.htm, accessed 13.06.04. 1

[9] Rick Kazman. Len Bass, Paul Clements. Software Architecture in Practice, second ed. Addison-
Wesley, 2003. ISBN: 0-321-15495-9. 5.2

[10] D. Lewis. Psychologist d. lewis quoted on cnn webpage. url:
http://www.cnn.com/TECH/9704/15/info.overload/index.html, accessed 13.06.04. 3.2

[11] J. McDermid, M. Micholson, D. Pumfrey, and P. Fenelon. Experience with the application of
HAZOP to computer-based systems. British Aerospace Dependable Computing Systems Centre
and High Integrity Systems Engineering Group of Computer Science, 2000. url: http://www-
users.cs.york.ac.uk/ djp/publications/djp-compass95.pdf, accessed 13.06.04. 3.2

[12] Phillip Meyer. The new precision journalism. url: http://www.csudh.edu/dearhabermas/hawthbk02.htm,
, accessed 13.06.04. 7.4.2

[13] M. Nelson. We have the information you want, but getting it will cost you: Being held hostage by
information overload, 2001. url: http://info.acm.org/crossroads/xrds1-1/mnelson.html, accessed
13.06.04. 3.2

[14] IEEE press. IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems. IEEE press, 2000. 3.2

[15] Marvin Rausand. Risikoanalyse, veiledning til NS 5814. Tapir, 1991. 8.2

[16] F. Sazama. An organizational approach for experience-based process improvement in software
engineering: The Software Experience Center. Software Quality Systems, 2001. 3.1

[17] I. Sommerville. Software Engineering. Addison - Wesly, 2001. 2.2

[18] T. Srivatanakul, John A. Clarck, and Fiona Polack. Writing effective security abuse cases, 2004.
url: http://www-users.cs.york.ac.uk/ fiona/PUBS/UseCaseYR.pdf, accessed 13.06.04. 2.3

85

[19] Tor Staalhane, Torgeir Dingsøyr, Nils Brede Moe, and Geir Kjetil
Hanssen. Post mortem - an assessment of two approaches, 2001. url:
http://idi.ntnu.no/grupper/su/publ/doc/PMA two approaches-final.doc, accessed 13.06.04,
accessed 13.06.04. 3.2

[20] Arne Sølvberg, Daniel L. Moody, Guttorm Sindre, and Terje Brasethvik. Evaluting the quality
of information models: Empirical testing of a conceptual model quality framework, 2003. 7.3.1

[21] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method, A Practical Guide
for Quality Improvement of Software Development. Mc Graw Hill, 1999. ISBN: 007 709553 7.
7.2

[22] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders
Wesslén. Experimentation In Software Engineering. An Introduction. Kluwer Academic Pub-
lishers, 2002. ISBN: 0-7923-8682-2. 7, 7.1, 7.3.7, 7.4.2

A Glossary

A Glossary

Attribute - An attribute is a relevant property of an entity.

Design representation - All documentation of the system design which is the HazOp team needs
to complete the study.

Dialog box - A window in a graphical user interface which appears in order to request information
from the user. The user confirms the information by clicking the ”OK” button

Experiment - Empirical quantitative research aiming to identify cause-effect relationships

Guide word - A guide word is a word or phrase which expresses and defines a specific type of
deviation from design intent.

GQM - Goal Question Metric. Method for defining the goals of an experiment.

Hazard - A hazard is a set of conditions, or a state, that could lead to an accident, given the right
environmental trigger or set of events. An accident is the realization of the negative potential
inherent in a hazard.

HazOp - Hazards and Operability study. A technique that helps an organization detecting hazards by
having a group brainstorms through the systems design representation in a structured manner.

Information overload - The problem of exposing individuals of too much information

PMA - Post Mortem Analysis. A technique for eliciting experience in a project or after it has finished

SQL - Structured Query Language. Query language which is used to update, insert, select and delete
data from a database.

Study initiator - The person in the organization who is responsible for initiating the HazOp and
selecting the study leader. The study initiator has the overall responsibility for the HazOp
project.

Study leader - The person who is responsible for leading the meeting and makes sure that the
follow-up work is done.

System - A collection of components organized to accomplish a specific function or set of functions.

System stakeholder - An individual, team, or organization (or classes thereof) with interest in, or
concerns relative to, a system

View - A representation of a whole system from the perspective of a related set of concerns.

Viewpoint - A specification of the convention for constructing and using a view.

87

B Introduction to HazOp

B Introduction to HazOp

This part of the report gives the Information given to the students in the experiment. Since we were
only dealing with norwegian students, the introduction they got into the HazOp method was only
given in Norwegian. This introduction was a synopsis of the explanation in 2 and was as follows:

HazOp er en metode for å identifisere ”farlige” elementer i systemer (hasarder). Selv om metoden er
svært enkel er den meget populær i industrien, siden den tilbyr en grundig gjennomgang av systemet
og en systematisk prosess for å identifisere hasarder. Man tar utgangspunkt i designen av systemet
som man ser vha. en s̊akalt ”Design Representasjon” (Design representation). Og g̊ar igjennom denne
element for element. For hvert element benytter man alle ledeordene som passer til det elementet.

Disse er:

1. Ingen (No) - Benektelse av Formålet.

2. Mindre (Less) -Kvantitativ Minking

3. Mer (More) - Kvantitativ Økning

4. Del Av (Part Of) - Kvalitativ Minking

5. Motsatt (Opposite) - Motsatt av Formålet

6. Andre Enn (Other Than) - Fullstendig Substitusjon

7. Tidlig (Early)

8. Sen (Late)

for hvert av disse ordene tolker man hva betydningen blir i forbindelse med elementet og undersøker
s̊a hvorvidt dette medfører en hasard. Ofte kan man støte p̊a elementer hvor et gitt ledeord kan tolkes
p̊a flere ulike måter. I disse tilfellene tar man rett og slett og undersøker alle tolkningene hver for
seg. Som konklusjon har man enten ”hasard” eller ”ingen effekt”. Hvor hasard dekker over b̊ade
personskader/dødsfall og forsinkelse/stopp i produksjon osv.

Hensikten med HazOp er å avdekke hasarder, deres årsaker og konsekvenser, ikke å foresl̊a løsninger
p̊a problemene. For at tiden skal kunne benyttes effektivt er det viktig å hele tiden drive prosessen fre-
mover og unng̊a lange diskusjoner utover identifisering av hasarder. Dersom man ikke klarer å avgjøre
hvorvidt anvendelsen av ledeord p̊a element kan utgjøre en hasard eller ikke, skal dette dokumenteres
som ”Mer Informasjon Trengs”.

89

C Cases

C Cases

The following three cases were used in the experiment. The robot case as an example to the students
in the pre-experiment on how the HazOp method works, the train case as an example to the groups
in both treatments of the experiment and lastly, the landing system case was studied and analysed
by the participants in the experiment.

C.1 Robot Case

This case was given as an example only on how a HazOp might be done to further enlighten the
students in the HazOp process. The case was only given to the participants of the pre-experiment.
These students did a HazOp on the ”Train Case” see traincasend recorded their experience into the
database. In a robot cell environment there is a robot with an arm powerful enough to maim or kill

Figure 33: The Robot Cell System case used in the pre-experiment

a person. The robot works in a room with chicken wire walls (a cell) divided into two parts. a door
leading into each. In the first there is an ”inbox” where the robot picks up raw materials to work
with. In the second there is an outbox where the robot puts finished artifacts into. Maintenance
workers constantly need to refill the inbox and remove finished artifacts from the outbox. To do that,
they go into the part of the cell where the robot is not, do the needed work and get out before the
robot comes back to that part of the room. Additionally, sometimes the robot needs maintenance,
the workers then need to get into the part of the room where the robot is.

To ensure the safety of the workers, the cell is equipped with some safety-features. If one were to open
one of the doors, a circuit would be broken and the system registers the part of the cell where the door
is located as ”breached”. If one were to cross into the other part of the room, a photoelectric switch
would trigger, thus marking both rooms as breached. If the robot were to find itself in a breached
part of the cell, it will automatically shut down. When passing from one part of the cell to the other,
the robot triggers a flipswitch, thus making the system aware of its new position. In order to reset
the system so that no part is marked as breached and restart a stopped robot, there is a button on
the outside of the cell. This reset button cannot be reached from within the cell. If both doors are
closed, a press on the reset button resets the system and restarts a stopped robot

91

C Cases

C.2 Train Positioning Case

This case was given to four student groups. They were to do a HazOp on the system and so provide
data for the groups using the software tool. The case was also given to the participants in the
experiment as an example of how to do a HazOp analysis.

Figure 34: The Train Positioning System case used in the experiment

NSB (Norwegian State Railroad) is replacing the old safety system of line-telephones with a new one
based on radio signals. In the old system, when an engine broke down or the line was blocked, the
engineer needed to get out of the train and walk to the nearest mast where he would find a telephone.
He would then call the traffic controller and tell him where he was. The controller would then hang
up and call back. This would confirm the location. The controller would then direct other trains away
from that part of the line using the light signals along the tracks to avoid accidents. This system
requires two engineers in every train, one to guard the train and another to find a telephone.

In order to save money and at the same time be able to give better directions to the engineer NSB is
replacing this system with one based on radio. This system consists of radio masts along the tracks
so that a train always will be within reach of two of them. There’s an antenna on the train which
receives and sends signals to the radio masts. The radio masts are connected to the traffic controller
room via fiberoptic cables. In addition to regular voice contact, the train sends position information.
It happens like this: The train constantly sends a radio signal directed at the tracks. In the tracks
there are ”balises” that reflect the radio signal back to the train with a signature unique to each balise.
This signature is then concatenated with the trains own unique signature and sent via the antenna,
radio masts and fiberoptic cables to the traffic controller. The signals are received by an input unit,
processed by a position-converter unit which uses a balise-table to keep track of where the balises are,
and finally the traffic controller gets an indication on his display telling where the train is located. As
balises from time to time get destroyed by weather or accidents, they occasionally need to be replaced.
When a balise has been replaced, the old balise is removed from the balise-table and the new is added
with the correct position stored. This is done manually. If two trains are headed into the same area,
the traffic controller can give them a red light and use the radio to talk them through the area. In
this way collisions are avoided

92

C.3 Landing Case

C.3 Landing Case

This case was given to the students participating in the experiment. They did a HazOp on this system
which provided us with statistical data for our analysis. Most airports have a system to assist planes

Figure 35: The GPS Landing system case used for the experiment

when landing. This system consists of a radio beam sent from the start of the runway and gives the
optimal landing trajectory. Unfortunately, this beam only goes in a straight line. Some airports are
situated in such a way that flying in a straight line when landing is not an option. Thus, these airports
cannot use the current system, making it impossible to land there during fog. The new system is based
on positions acquired through GPS satellites. GPS satellites sends signals to a GPS receiver on the
plane which calculates the coordinates and height the plane currently has. This information is then
fed into an onboard computer which, together with a 3d coordinate model calculates how far off the
plane is from the optimal trajectory stored in the model.

As this system is meant to work under all conditions, including fog, it is of utmost importance that
the coordinates are accurate. GPS positions are not accurate enough, however, and to counter this
inaccuracy, there is a ground station with its own GPS receiver. The ground station knows its own
exact position since it never moves. When the plane is close enough to initiate the landing system
the error in the GPS signals for the plane will be almost identical to that of the ground station. The
ground station can, however, knowing its own location exactly, send a correction signal to the plane.
The GPS signals are adjusted by the correction signal before being fed into the on board computer.

Should any fault happen (such as if the signals from the satellite are of poor quality), an alarm will
be sent to the plane, and the control panel for the system will display an alert.

The system has three modes of operation:

• Regular - the system runs and planes can land.

93

C Cases

• Test - the system runs, but does not do self-checks.

• Service - the system may be reprogrammed.

Test Mode is used to calibrate the system and to check that everything works before using it for
landing planes. The 3D model of the perfect landing trajectory is stored with the ground station and
transmitted to the plane when it approaches. In order to change the model, the system needs to be in
service mode. When the system is in service mode, service personnel may change the system through
the Remote Monitoring and Maintenance System (RMMS). When in test mode or regular mode this
system offers statistics and surveillance data.

In order to control the system there is a control panel attached to the ground station and a remote
control located in the air traffic control tower. The ground control is located by the runway and is
connected to the remote via wires. Both have the following switches and indicators:

• on/off switch

• alarm indicator
- indicates whether an alarm situation has arisen.

• operation mode indicator
- shows which mode of operation the system is currently in

• Test mode switch
- switches the system in and out of test mode.

• Service mode switch
- switches the system in and out of service mode.

These are used by airport employees when there is a need of a mode switch, and by air traffic controllers
to verify which mode of operation the system is in and whether an alarm has arisen.

Figure 36: The various usages of the GPS Landing System

94

D List of all hazards found

D List of all hazards found

Here follows the complete list of the hazards identified by all the groups.

D.1 Hazards found in GPS satelites

a1 No satelites available
a2 No signal comes through
a3 Fewer GPS satelites, erratic signal
a4 GPS signals very weak, erratic.
a5 too late GPS signals, wrong pos.
a6 GPS signal incomplete
a7 GPS signals too infrequent
a8 GPS signal is wrong.
a9 too late GPS signals, wrong pos.

a10 Signal wrong but passes CRC
a11 Signal contains too much information.
a12 Satelite in wrong position.

Table 9: The hazards the groups found in the GPS satelites.

D.2 Hazards found in The airplane modules

b1 On board computer dead
b2 Pilot misinterprets signals
b3 Pilot reacts too late
b4 On board computer missing
b5 Weak signals from Ground Station
b6 No signals from GPS
b7 No signals from Ground Station
b8 Onboard Antenna dead
b9 Signal misinterpreted

b10 Wrong signal from Ground Station
b11 GPS signal too late
b12 Too much noise on signals
b13 Signal from Ground station too late
b14 Weak signals from satelite

95

D List of all hazards found

D.3 Hazards found in the Ground station communication module

c1 No GPS signals
c2 Weak GPS signals
c3 Wrong GPS signal recieved
c4 GPS signals recieved too late
c5 Too much noise on GPS signals
c6 Antenna gone
c7 Antenna dead
c8 No signals sent
c9 Less signals sent

c10 wrong signals sent
c11 late signal sent

D.4 Hazards found in the RMM unit

d1 RMM unit dead
d2 RMM unit cannot contact Ground Station
d3 RMM only recieves parrt of the signals
d4 RMM recieves wrong data
d5 RMM does not send data
d6 RMM sends data too late
d7 RMM corrupts the data

D.5 Hazards found in the remote control

e1 Remote dead
e2 Remote sends wrong signals
e3 Remote does not recieve signals
e4 Remote does not send signals
e5 Remote only sends part of signals
e6 Testmode switch dead
e7 Servicemode switch dead
e8 Alarm indicator does not indicate an alarm
e9 Alarm indicator indicates alarms too late

e10 Alarm indicator indicates false alarms
e11 Operation Indicator dead
e12 Operation Indicator indicates mode switches too late
e13 Operation Indicator indicates wrong mode
e14 Remote sends signals too late
e15 Remote does not indicate all alarms

96

D.6 Hazards found in the ATC Panel

D.6 Hazards found in the ATC Panel

f1 ATC Panel dead
f2 Wrong info shown on ATC Panel
f3 Human error in using ATC Panel
f4 No one present to operate ATC Panel
f5 ATC Panel operated too late
f6 Alarm Indicator indicates alarms too late
f7 Alarm Indicator indicates false alarms
f8 Alarm Indicator does not indicate an alarm
f9 Operation Indicator dead

f10 Operation Indicator indicates wrong mode

D.7 Hazards found in the central Landing System control system

g1 System failure, system down
g2 System calculates the wrong corrections
g3 System calculates corrections too late
g4 System does not calculate all the corrections

97

E Software Tool

E Software Tool

As has been mentioned in section 5, we made some choices during implementation. We decided that
we could not risk implementing the complete set of requirements as set out in section 4, but that we
instead implemented a specific subset of these that made the tool usable in the experiment setting.
We made the tool use central database access instead of local file storage to facilitate multiple users
simultaneously accessing the same knowledge base. We did not, however, build in any checks to make
sure that simultaneous editing would work as this would not be needed in the experiment.

The software tool consists of three parts, the graphical user interface and central logic module, the
database access module, and the object model of the data.

The GUI and central logic module consists of the following classes:

Control.cs This class contains the main logic of the program, its main job is to switch between the
different screens in the program and to collect data from the database and search through the
data. It holds one active ProjectBrowser and can generate more as the user searches through
the knowledge base and wants to see other projects. This is the class that contains the main
method which starts off the program.

Intro.cs This class contains the graphics and logics belonging to the introduction screen. (see section
5.4.1 It is linked to the Control.

ProjectBrowser.cs This class contains the graphics and logics belonging to the project-browsing
functionality of the program. In practice, this covers the uses as shown in sections 5.4.2, 5.4.3
and 5.4.4. The ProjectBrowser is loaded with all the data pertaining to one ”project”, ie a
HazOp already done, when it is started. The ProjectBrowser is linked to the Control unit.

KeyAdder.cs This class contains the graphics belonging to the key adder screen as shown in section
5.4.5.

The Database Access Module consists of the following classes

IDBAccess.cs This is an interface used by Control in order to get data from the database.

HazOpDB.cs This class implements the IDBAccess interface. It delivers data objects to the Control
unit on the basis of data in the database and makes updates in the database based on data objects
given from the Control unit.

The Data Object Model consists of the following classes

Project.cs All data in the database is in some way connected to a project. In the object model, the
project is the object that is loaded into project browsers when users want to see or edit data from
previous HazOp studies. Each project contains one of each of CatHazardFound, CatGuideWord
and CatDesignRep.

ProjectCollection.cs This is a collection of projects. It is the data format delivered to and from
the database module

CatHazardFound.cs This is one of the categories implemented. It may contain one or more Haz-
ardFound objects.

CatGuideWord.cs This is one of the categories implemented. It may contain one or more Guide-
Word objects.

CatDesignRep.cs This is one of the categories implemented.

HazardFound.cs This object contains data belonging to the CatHazardFound object.

99

E Software Tool

GuideWord.cs This object contains data belonging to the CatGuideWord object

SearchRequest.cs This object is part of the search-functionality of the program. The search request
is tossed around the object model and generates SearchResults whenever appropriate

SearchResult.cs This represents a single hit between the keywords searched for and data.

SearchResultCollection.cs This represents the complete set of hits which are returned to the Con-
trol unit and used when the users are presented the search results in the tool as shown in section
5.4.7.

the sql file provided is enough to reconstruct the database the way it was when we did the experiment.
In order to use it, a database must first be made using for example mysql. Then this file must be
imported into the database.

In the physical copy of this appendix, here follows a cd containing the software tool with source code
and sql script.

100

