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Preface

An Artificial Immune System Approach to Preserving Security in Computer Networks de-
scribes the thesis work performed by a 5th year student at the Department of Computer and
Information Science (IDI) of the Faculty of Information Technology, Mathematics and Elec-
trical Engineering (IME) at the Norwegian University of Science and Technology (NTNU).
This report is the result of an obligatory 10vt (weighting, where each vt corresponds to 4.8
hours of work per week) assignment in the 10th semester of the sivilingeniør (graduate de-
gree in computer and information science) education. The advisor for the project has been
Professor Keith L. Downing.

The field of artificial immune systems was presented to the author by Professor Downing,
late in the autumn of 2001. The introduction was given in the form of a reference to an article
(Hofmeyr and Forrest 2000). All other literature used for reference during this work has been
sought and acquired by the author.

The initial task was to implement a prototypical artificial immune system applied to
some aspect of computer security, with the presumption that there certainly would be some
aspects of its workings that would be worth a closer look. The task description (“Oppgavens
tekst”) presented on the cover page is a refined description of this task, written by the author.

The purpose of the thesis work has been to gain a better insight into the research area of
artificial immune systems in general, how it may be applied to areas such as security in com-
puter network environments, and how a phenomenon taking place in the human immune
system, called somatic hypermutation, may be modeled in an artificial immune system. The
work also includes the implementation of an artificial immune system for network intrusion
detection, called DAIS.

MARTIN THORSEN RANANG
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Abstract

It is believed that many of the mechanisms present in the biological immune system are well
suited for adoption to the field of computer intrusion detection, in the form of artificial im-
mune systems. In this report mechanisms in the biological immune system are introduced,
their parallels in artificial immune systems are presented, and how they may be applied to
intrusion detection in a computer environment is discussed. An artificial immune system is
designed, implemented and applied to detect intrusive behavior in real network data in a
simulated network environment. The effect of costimulation and clonal proliferation com-
bined with somatic hypermutation to perform affinity maturation of detectors in the artificial
immune system is explored through experiments. An exact expression for the probability of
a match between two randomly chosen strings using the r-contiguous matching rule is de-
veloped. The use of affinity maturation makes it possible to perform anomaly detection by
using smaller sets of detectors with a high level of specificity while maintaining a high level
of cover and diversity, which increases the number of true positives, while keeping a low
level of false negatives.
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CHAPTER 1

INTRODUCTION

While artificial intelligence uses the technology of computation as a model of intelligence,
artificial life (A-life) is attempting to develop a new computational paradigm based on bio-
logical processes (Cho 2000). The field of artificial immune systems (AISs) is based on ideas
and models that appear in biological immune systems (ISs), thus the field of AISs is a sub-
field of A-life.

The CERT Coordination Center (CERT/CC) has been observing computer intrusion ac-
tivity since 1988 and reports that the number of calls and incidents reported to the CERT/CC
has been almost doubling every year since they started.

The IS is a complex natural defense mechanism which, to some degree, is present in all
living creatures. The IS has the ability to learn about foreign substances (pathogens) in the
body and to invoke the correct response to fight the infectious agents. It is believed that the IS
is a compelling real-world example of a massively parallel adaptive information processing
system, as it exhibits many properties one would like to incorporate into artificial systems
(Hofmeyr and Forrest 2000). AISs are computer programs that perform data manipulation,
classification, reasoning and use representation methodologies that are based on the mech-
anisms in the human IS. It is therefore believed that many of the mechanisms present in the
IS are well suited for adoption to the field of intrusion detection (ID), in the form of AISs.

Presented in this report is the study of how AISs may be applied to computer network
intrusion detection. Further, the implementation of an AIS, called Distributed Artificial Im-
mune System (DAIS) is presented. The results of experiments performed with DAIS to ex-
plore the effect of somatic hypermutation in an AIS are presented and analyzed. It also
presents the author’s analysis of the probability of a match between two randomly chosen
strings using the r-contiguous match rule, which results in a more exact expression for this
probability than has been used in earlier research on AISs.

The rest of this report is structured as follows. In Chapter 2 an short introduction to the
biological IS is given. The most important mechanisms, often modeled in AISs, are presented
more thoroughly. Chapter 3 presents the field of network intrusion detection (NID), with an
emphasis on the central approaches and techniques used. Chapter 4 presents the field of
AISs. Relevant work performed by others are mentioned and a presentation of the most
relevant mechanisms of the IS as applied to AISs are presented. The author’s analysis and
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2 Chapter 1. Introduction

development of an expression for the probability of a match using the r-contiguous match
rule is presented. Chapter 5 presents the implementation of DAIS and how it models some
important aspects of the IS. Chapter 6 presents the experiments performed to investigate the
role of somatic hypermutation in an AIS applied to NID. It also presents the results found.
Chapter 7 discuss and analyze the results found in Chapter 6 and further discuss the role of
AISs in general, and DAIS in particular, applied to NID.



CHAPTER 2

BIOLOGICAL IMMUNE SYSTEMS

This chapter introduces the mechanisms present in the biological IS from which the field of
AIS draws its inspiration. It should be noted that the exploration of how the biological IS
works is still the focus of much research. Hence there is a possibility that the information
presented will be proven incorrect over the course of time.

2.1 IMMUNITY

In biology, immunity is the ability of an organism to resist attacks by invasive foreign sub-
stances. Such a foreign substance is called a pathogen and is recognized by the IS as an
antigen (Ag). The Ag can be virtually any kind of large foreign molecule inside the body,
including those contained in infective agents, snake and scorpion venom, food, and other
cells and tissues from various species, including humans.

There are two kinds of immunity; namely, non-specific, innate immunity and specific,
acquired immunity. The innate immunity comprises an individual’s skin, the linings of
the respiratory and gastrointestinal tracts, as well as some other protective factors. These
immune mechanisms inhibit or kill a wide variety of microbes, irrespective of whether these
have challenged the body before. It is non-specific in that its mechanisms can act against
microbes that are not necessarily similar to one another.

After an individual has contracted a disease and recovered, it generally does not catch
that illness again. This phenomenon is called acquired immunity. It is specific in that its
responses are tailored to act against a particular microbe or its products. Such immunity
is acquired in that the tailor-made responses are enormously increased as a result of being
stimulated by the prior presence of a given microbe or its products.

To be able to resist attacks by Ags, the IS must be able to distinguish between the materi-
als of the body and the materials of the foreign substance. As all living creatures are made up
of basically similar building blocks, the ability of an organism to distinguish the molecules
of which itself is composed—i.e., self—from practically all others—i.e., nonself—is remark-
able. This ability is, to some degree, present in all living creatures, but among vertebrates it
is especially a feature of the white blood cells called lymphocytes.

3



4 Chapter 2. Biological Immune Systems

2.2 LYMPHOCYTES AND ANTIGENS

Lymphocytes are the cells responsible for the body’s ability to distinguish and react to an
almost infinite number of different Ags. There are two main kinds of lymphocytes, i.e.,
B- and T-lymphocytes (also known as B- and T-cells). The stem cells for both B- and T-
lymphocytes originate in the bone marrow. Recognition of foreign Ags in the IS is carried
out by receptors on the surface of both the B- and T-lymphocytes.

The part of an Ag that is recognized by a receptor, the antigenic determinant, is called an
epitope (Roitt and Delves 2001). Hence, an epitope is a location on the surface of a pathogen
or a protein fragment, which is called a peptide. Many Ags have a variety of epitopes on
different areas of their surface. Thus, complex Ags may invoke responses from a variety of
specific lymphocytes.

Lymphocytes are mainly a dormant population, awaiting the appropriate signals to be
stirred into actions. They move only sluggishly on their own, but they can be transported
around the body, carried along in the blood or the lymph. At any one time, an adult person
possesses about 2 � 1012 lymphocytes, about 1% of which are in the bloodstream.

2.2.1 B-LYMPHOCYTES

The B-lymphocytes—also called immunoglobulin (Ig)—are differentiated in the bone mar-
row (hence the B). Each B-lymphocytes is programmed to make antibody (Ab) of a single
specificity and place it on its outer surface to act as a receptor. Each B-lymphocyte has of the
order of 105 identical Ab molecules on its surface.

When an Ag enters the body, it is confronted with a vast array of lymphocytes, all bear-
ing different Abs each with its individual recognition site. The Ag will only bind to those
receptors with which it makes a good fit. When the receptors of a lymphocyte have bound
Ag, it receives a triggering signal and develop into Ab-forming plasma cells. Since the lym-
phocytes are programmed to produce one, and only one, kind of Ab, the Abs generated by
the plasma cells will behave just like the Ab originally acting as a receptor; thus, it will bind
well to the Ag (Roitt and Delves 2001, pp. 24, 25).

2.2.2 T-LYMPHOCYTES

Many microorganisms, e.g. viruses, take advantage of the fact that if they live inside cells of
their host, humoral Ab—as presented on the surface of B-lymphocytes—is unable to reach
them. Thus, a lymphocyte subpopulation, comprising the T-lymphocytes, which is spe-
cialized to operate against intracellular organisms exists. Unlike the B-lymphocytes, the
T-lymphocytes differentiate within the thymus gland. The thymus is a pyramid-shaped
lymphoid organ. In humans it resides immediately beneath the breastbone at the level of
the heart. The organ is called thymus because its shape resembles that of a thyme leaf.

The T-lymphocytes are different from the B-lymphocytes in that they only recognize Ag
when it is presented on the surface of a body cell. Therefore, the T-cell receptors (TCRs),
which are different from the Ab molecules used by the B-lymphocytes, recognize Ag plus a
surface marker indicating that it is presented on the surface of another cell. These cell mark-
ers belong to a group of molecules called the major histocompatibility complex (MHC)1.

1The term histocompatibility was derived from the Greek word histo (meaning “tissue”) and the English word
compatibility due to the MHC’s ability to evoke powerful transplantation reactions.



2.3. Negative Selection 5

Each individual in a population is genetically capable of making a small set of these MHC
markers (about 10), but the set of MHC types varies from one individual to another. Hence,
individuals in a population are capable of recognizing different profiles of peptides. This
mechanism provides an important form of population-level diversity (Hofmeyr and Forrest
2000).

2.2.3 RECOGNITION OF ANTIGENS

The genetic rearrangement described below only takes place when the lymphocytes first
become functional.

The binding of an Ab to an Ag, or of a TCR to a MHC-peptide complex, requires that
portions of the two structures have complementary shapes that can closely approach each
other (Percus, Percus, and Perelson 1993). This complementarity of shape allows the receptor
and the Ag to conform to each other in a fashion roughly analogous to the way a key fits into
a lock. This matching is approximate, which enables one particular lymphocyte to bind to
several different kinds of structurally related pathogens.

The area on an Ag where it has contact with an Ab is, as mentioned in Section 2.2, called
an epitope. The corresponding area on an Ab is called a paratope. The strength of the
binding of an Ag to a single Ab combining site is dependent of the affinity between them.
The higher the affinity, the stronger the binding.

It is known that the IS is capable of recognizing virtually any pathogen that exists or that
may be devised either by nature or by science in the future. To accomplish this task the IS
generates millions of different specific Ag receptors, which is probably vastly more than is
needed during an individuals lifetime (Roitt and Delves 2001).

Ag receptor molecules are proteins that are composed of a few polypeptide chains. A
polypeptide is a peptide containing from 10 to more than 100 amino acids. The sequence in
which the amino acids are assembled to form a particular polypeptide chain is designated by
the genes of the deoxyribonucleic acid (DNA). Since the entire human genome only contains
about 30 000 to 40 000 genes (Venter et al. 2001), individuals cannot inherit a single gene for
each particular Ag receptor site. Therefore, a limited pool of gene segments is inherited for
each type of polypeptide chain, which code for Abs and TCRs. As each lymphocyte matures,
the gene segments are pieced together to form one gene for each polypeptide that makes up
a specific receptor. This gene segment rearrangement, for the most part, occurs at random.

The Ab and TCR repertoire in a mouse is estimated to contain on the order of 107 differ-
ent receptors generated from a much larger potential repertoire of germ-line-encoded recep-
tors (Percus, Percus, and Perelson 1993).

2.3 NEGATIVE SELECTION

When T-lymphocyte precursors leave the bone marrow on their way to mature in the thy-
mus, they are indifferent to stimulation by Ag as they do not yet express receptors. When
they enter the thymus they are called immature lymphocytes and when, or if, they leave they
are called mature lymphocytes. This maturation process is often called tolerization. Within
the thymus the T-lymphocytes multiply many times as they pass through a meshwork of
thymus cells. As they multiply, they acquire receptors and differentiate into different T-
lymphocyte subclasses.
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FIGURE 2.1: The cellular basis for the generation of effector and memory cells by clonal selection
after primary contact with antigen. Based on a figure from (Roitt and Delves 2001,
p. 27).

In the body, of the immature T-lymphocytes entering the thymus, only 2% complete the
maturation process and become functioning T-lymphocytes (Forrest, Hofmeyr, and Somayaji
1997). This means that most of the T-lymphocytes entering the thymus also die there, during
tolerization. This may seem very wasteful, but as the Ag receptors are randomly created,
a lot of them will recognize self Ags. Self Ags are molecules present on the body’s own
constituents. If lymphocytes which are autoreactive—i.e., they react to self—become mature
they will attack the body’s own tissues. Therefore most of them are deleted by apoptosis in
the thymus. Apoptosis is a kind of programmed cell death. This mechanism for preventing
the development of autoimmune lymphocytes is called negative selection. Negative selec-
tion of developing B-lymphocytes is also thought to occur if they encounter high levels of
self Ag in the bone marrow (Roitt and Delves 2001, p. 231).

2.4 CLONAL SELECTION

The first encounter between a naïve lymphocyte and a given Ag is called a primary immune
response. This response is relatively weak, compared to the secondary immune response,
which is a qualitatively and quantitatively improved response that occurs upon the second
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encounter of primed lymphocytes with a given Ag (Roitt and Delves 2001, pp. 28–30). Part of
this improved response is due to a process called clonal selection, which occurs after a lym-
phocyte has recognized a specific Ag. The process is shown in Figure 2.1 on the preceding
page, where the lymphocyte selected for by a specific Ag undergoes many divisions during
the clonal proliferation and the offspring mature to form an expanded population of Ab-
forming cells. A fraction of the offspring of the original Ag-reactive lymphocytes becomes
non-dividing memory cells.

The secondary response in the IS is stronger than the primary response. Since there are
more lymphocytes that possibly bind to the Ag during the secondary response, the infectious
agent will be defeated faster. Because of this mechanism, where the first contact with an Ag
clearly imprints some information, or imparts some memory, into the IS it is said that the IS
develops an acquired memory (Roitt and Delves 2001, p. 28). The memory induced by one
Ag will not automatically extend to another unrelated Ag.

During the clonal proliferation there is an exponentially growing population of lympho-
cytes that are able to detect the activating Ag. The lymphocytes with the highest affinity
between its receptors and the pathogen epitopes are most likely to be activated later on. The
pathogens are usually also replicating during this time period, so there is a race to become
the strongest population.

2.5 SOMATIC HYPERMUTATION

During a primary response, B-lymphocytes—but generally not T-lymphocytes—undergo
high rate point mutation in their variable region genes. This mechanism is called somatic
hypermutation and increases Ab diversity and Ab affinity. It is called somatic2 because it
takes places in body cells rather than in germ-line cells (eggs and sperm). The mutations
are the result of single nucleotide substitutions and are restricted to the variable region of
the lymphocytes, which means that the constant regions are not affected by these mutations.
A nucleotide is the basic structural unit of nucleic acids, such as the DNA or the ribonu-
cleic acid (RNA). The sequence of nucleotides in the DNA or RNA codes for the structure of
proteins synthesized in the cell.

The mutation rate during somatic hypermutation is approximately 10 � 4–10 � 3 per base
pair per generation, which is approximately a million times higher than for other mam-
malian genes (Roitt and Delves 2001, pp. 68, 69).

It is believed that somatic hypermutation is a way for the IS of increasing its chances in
the “proliferation race” mentioned in Section 2.4 above. The somatic hypermutation com-
bined with clonal expansion is an adaptive process known as affinity maturation (Hofmeyr
and Forrest 2000).

2.6 COSTIMULATION

Because some self peptides are never expressed in the thymus, mature lymphocytes that
have been tolerized in the thymus may bind to these proteins and cause an autoimmune
reaction (Hofmeyr and Forrest 2000, p. 450). In practice this does not happen because in
addition to binding to an Ag, a T-lymphocyte needs to receive a costimulation signal in

2The Greek word soma means body.
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order to be activated. This signal is usually some kind of a chemical signal that is produced
when the body is damaged in some way.



CHAPTER 3

NETWORK INTRUSION DETECTION

The Internet has its origin in a U.S. Department of Defense (DOD) program called Advanced
Research Projects Agency Network (ARPANET) that was established in 1969 to provide a
secure communications network for organizations engaged in defense-related research. Re-
searchers and academics in other fields began to make use of the network. The National
Science Foundation (NSF) took over much of the technology from ARPANET and estab-
lished a distributed network of networks capable of handling far greater traffic, which is
today known as the Internet.

From its creation, the Internet grew rapidly beyond its largely academic origin into an
increasingly commercial and popular medium. The original use of the Internet was to send
and receive e-mail, to transfer files, to visit bulletin boards and newsgroups and to access re-
mote computers (by using telnet). The World Wide Web (WWW), which enables simple and
intuitive navigation of hypertext at Internet sites through a graphical interface, expanded
dramatically during the 1990s to become the most important component of the Internet.
With the popularity of the Internet a lot of new individuals have become members of the
Internet user community, and as in most other communities, some individuals have good
intentions while some have bad intentions.

The CERT/CC1 has been observing computer intrusion activity since they were founded
in 1988. The graph in Figure 3.1 on the following page shows the trends in the statistics
presented in (CERT Coordination Center 2002). The same information is presented numeri-
cally in Table 3.1 on page 11. The statistics show how the calls to and incidents reported to
CERT/CC has roughly been doubling every year, since 1988. At the same time, it is reported
by Householder, Houle, and Dougherty (2002) that the level of automation in attack tools
and their sophistication continues to increase. It is also reported that while Internet firewalls
are often relied upon to provide an organizations first line of defense against intruders, tech-
nologies are being designed to bypass typical firewall configurations. Such technologies
includes the Internet Printing Protocol (IPP), a protocol designed to cover the most common
situations for printing on the Internet, which in itself is a non-intrusive activity, but when
it bypasses firewall configurations, it becomes a security hazard. Certain aspects of mobile

1CERT was originally called the computer emergency response team.
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FIGURE 3.1: Trends in CERT/CC statistics. Be aware that the curves for “Calls and e-mails re-
ceived” and “Incidents reported” refer to the left y-axis, while the “Vulnerabilities
reported” curve refers to the right y-axis. Permission to use the information, from
(CERT Coordination Center 2002), was granted by the CERT/CC.

code make malicious software difficult to discover.

3.1 INTRUSION DETECTION

The field of ID attempts to detect inappropriate, incorrect, or anomalous activity in a com-
puter network, or on a host, by the exploration of certain kinds of data. Such activities may
be initiated from external crackers or from internal misuse. In the following an activity of
this kind will be referred to as an event of interest (EOI). Note that an EOI does not neces-
sarily have to be a deliberate attack by an external individual, but may rather be an effect of
a legitimate user’s anomalous actions or errors. Computer programs that perform ID are in
general called intrusion detection systems (IDSs).

3.2 INTRUSION DETECTION APPROACHES

An IDS which operates on a computer to detect malicious activity on that host, is called a
host-based IDS, while an IDS which tries to detect events of interest by analyzing and moni-
toring network traffic data is called a network-based IDS or a NID system. These are the two
main approaches to ID. A host-based IDS will typically monitor and analyze different data
input from users and output from the operating system (OS). It may, for example, monitor
system-calls. As stated by Stillerman, Marceau, and Stillman (1999), “The system calls are a
side effect of the attack, just as fingerprints are a side effect of a burglar’s presence.”

Ideally, an organization would combine both of the above approaches to increase the
probability of detecting intrusions.
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TABLE 3.1: Number of incidents reported to the CERT/CC. Permission to use this information
was granted by the CERT/CC.

Incidents Vulnerabilities Mail Messages Phone Calls
Year Reported Reported Handled Received

1988 6 — 539 —
1989 132 — 2 869 —
1990 252 — 4 448 —
1991 406 — 9 629 —
1992 773 — 14 463 1 995
1993 1 334 — 21 267 2 282
1994 2 340 — 29 580 3 665
1995 2 412 171 32 084 3 428
1996 2 573 345 31 268 2 062
1997 2 134 311 39 626 1 058
1998 3 734 262 41 871 1 001
1999 9 859 417 34 612 2 099
2000 21 756 1 090 56 365 1 280 �
2001 52 658 2 437 118 907 1 417 �

Total 100 369 5 033 437 528 20 287 �

3.3 INTRUSION DETECTION TECHNIQUES

The two basic categories of techniques used to perform ID—both in host-based and network-
based ID—are anomaly-based detection and signature-based detection. The latter technique
is also known as misuse detection and pattern-matching detection.

McHugh, Christie, and Allen (2000) compare the task of ID to a general signal-detection
problem. In this case, one would view an EOI as the signal to be detected and normal behav-
ior as the noise. In classical signal-detection approaches some information is known about
both the signal and the noise distributions, and a decision process uses information about
both distributions to determine whether a given observation belongs to the signal-plus-noise
distribution or to the noise distribution. In ID, on the other hand, the detectors typically base
their decisions either on signal (signature-based detection) or noise (anomaly-based detec-
tion) characterizations. Each approach has its strengths and weaknesses, while both suffer
from the difficulty of characterizing the distributions.

To successfully detect an EOI, a signature-based IDS relies on possessing a description,
or signature, to be matched against the event. This signature can be as simple as a part
of a network packet, and as complex as a neural network description that maps multiple
sensors in an OS to an abstract attack representation. If an appropriate abstraction is used
for creating the signature, a signature-based IDS can detect intrusions not previously seen if
they are abstractly equivalent to known signatures.

The anomaly-based IDSs are based on the assumption that unusual or abnormal behav-
ior is intrusive. By using the above comparison between ID and signal-detection, a anomaly-
based IDS will detect intrusions whenever the observation does not appear to be noise alone,
given that there exists a complete characterization of the noise distribution. It should be
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TABLE 3.2: The relationship between true/false negatives and positives and events of interest.

Event of Interest Detection Classification

No No True negative
No Yes False positive
Yes No False negative
Yes Yes True positive

noted that characterizing the noise distribution so as to support detection is non-trivial.

3.4 LIMITS OF OBSERVATION

There may be several reasons for a IDS not to be able to observe—and therefore not detect—
an EOI. According to Northcutt, Novak, and McLachlan (2000, p. 147 f.), the reasons include
that an EOI may occur on a different network than the one being under surveillance; the
EOI may occur right in front of the IDS, but the system does not detect it because it is not
operative; the EOI occurs in a protocol which the IDS does not understand; or that the EOI
happens during a period when the bandwidth of the IDS is exceeded.

3.5 NEGATIVES AND POSITIVES, TRUE AND FALSE

When an IDS monitors and analyzes network data, its decision in each case falls into one of
the categories shown in Table 3.2. A false negative occurs when an actual intrusive action has
occurred but the IDS allows it to pass as non-intrusive behavior. A false positive occurs when
the system classifies an action as anomalous—a possible intrusion—when it is a legitimate
action (Northcutt et al. 2001, pp. 20, 21). A true negative occurs when there is no EOI and no
detection is done. Finally, a true positive occurs when the IDS correctly classifies an EOI as
intrusive behavior.

It should be quite straightforward to see that, from a user’s perspective, one would like
to minimize the number of false positives and maximize the number of true positives per-
formed by an IDS. This would result in a low number of false alarms and a high number
of intrusions detected, respectively. A high number of false alarms is unattractive because
it may result in making the users of such a system off guard. Naturally, the true and false
negatives are never noticed in a real-life system.

3.6 LOCAL AREA NETWORKS

Halsall (1996) reports that the most widely installed type of local area network (LAN) is
that based on the carrier sense multiple access with collision detection (CSMA/CD) access
control. CSMA/CD is more commonly known as Ethernet which use the Internet Protocol
(IP) as its main protocol. The IP2 does not have any mechanisms to augment end-to-end
data reliability, flow control, sequencing, or other services commonly found in host-to-host
protocols (Postel 1981a), therefore it is often accompanied by the use of Transmission Control

2The IP is defined in (Postel 1981a).
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Protocol (TCP)3, which, according to (Postel 1981b, p. 1), is “intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer communication
networks, and in interconnected systems of such networks.”

The trend has long been that organizations such as large corporations and universities
have used broadcast network technology for their LANs. This trend is changing slightly, as
many organizations have replaced their broadcast networks with switched networks. The
main difference between broadcast LANs and switched LANs is that in a broadcast LAN,
the network traffic addressed for one host will be pass by the network interface card (NIC)
of every other host on the same LAN, while this is not possible 4 in a switched LAN. In
a switched LAN every host is connected to a switch through in own dedicated physical
network segment (cable).

3The TCP is defined in (Postel 1981b).
4Actually, it is possible (without hardware modifications), but only after some non-trivial hacking.





CHAPTER 4

ARTIFICIAL IMMUNE SYSTEMS

This chapter explores how central mechanisms of the biological IS may be abstracted and
used to form an AIS. First, a short review of some of the related work on AISs is presented,
then some important ideas of AISs are reviewed and discussed, while analogies of the AIS
and the IS are emphasized. The main focus will be on mechanisms used in AISs modeled for
use in ID.

4.1 RELATED WORK

As stated in Chapter 2, the ability of the IS to distinguish between self and nonself is remark-
able. This central mechanism of the IS is often modeled in AISs as various kinds of anomaly-
based detection. It should be noted that the IS is much more than a simple anomaly-based
detection and response system; it can be viewed as a general pattern-learning system that is
highly distributed and scalable.

The pattern-learning abilities of the IS has been modeled and described by Timmis, Neal,
and Hunt (2000) and Dasgupta, Cao, and Yang (1999) who successfully applied their AISs to
recognition and classification tasks. They showed that their IS-inspired models were flexible,
noise-tolerant and generalized their classification well. It has also been shown that it is
possible to perform these tasks effectively with resource limited AISs (Timmis and Neal
2001). The behavior of the IS from an information processing perspective is described by
Forrest and Hofmeyr (2001).

It seems that the area where the notion of an AIS has been most widespread, is in the
area of computer security. This idea has been explored in general by Somayaji, Hofmeyr,
and Forrest (1998), Burgess (1998), Dasgupta (1999), Hofmeyr (1999) and Hofmeyr and For-
rest (2000). This work has focused both on computer security architectures as a whole and
on specific areas of computer security. The areas in computer security where AISs have
been used, at least experimentally, range from virus detection (Forrest et al. 1994), as a kind
of host-based anomaly detection, and OS process monitoring (Forrest et al. 1996) to NID
(Hofmeyr and Forrest 2000; Williams et al. 2001), as a kind of distributed network-based
anomaly detection.

15
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Some prototypical NID systems have been implemented, such as Computer Defense
Immune System (CDIS) by (Williams et al. 2001) and Lightweight Intrusion Detection Sys-
tem (LISYS) by Hofmeyr (1999) and Hofmeyr and Forrest (2000).

4.2 CONSTITUENTS OF ARTIFICIAL IMMUNE SYSTEMS

In the following, the theory on AIS mechanisms implemented in the AIS-based NID pro-
gram called DAIS, described in Chapter 5, will be presented. The author will also develop a
more exact/correct expression for the probability for a match between two randomly chosen
strings using the r-contiguous match rule, which is an important constituent of much work
on AISs. At the end of the chapter, some other approaches at modeling features of the IS will
also be mentioned.

As the field of AISs is still quite new, it is difficult to present one coherent theory on
AISs. On the other hand, it should be relatively easy to see how the different approaches to
modeling AISs—and specific features of these models—have been inspired by the biological
IS.

4.3 DETECTORS AND PEPTIDES

In the literature on AISs applied to ID the modeling of Abs and lymphocytes are often
merged into the common entity of a detector. This practice is also used in the implemen-
tation of DAIS.

The ability to discriminate between self and nonself is probably the most fundamental
feature of the IS. This is done through the recognition by lymphocytes of distinct Ags. As the
recognition of Ag in the biological IS happens when chemical bonds are established between
the receptors on the surface of immune cells and epitopes on the surface of pathogens, the
matching at a low level comes down to matching of proteins or fragments of protein, which
are called peptides. In the following, the word peptide will be used for the representation of
both artificial receptors and artificial Ags.

In AISs peptides are often represented as strings of length
�
, consisting of symbols from

an alphabet of cardinality m. This approach was used with m
�

2 (i.e., bit strings) and
�
�

32
in (Forrest et al. 1994), and with

� �
49 in (Hofmeyr 1999; Hofmeyr and Forrest 2000). The

same approach is adopted, with l
�

49, in the implementation of DAIS.
The peptides representing the Ag will encode some information relevant to the problem

domain, to which the AIS is applied. While the IS must distinguish between self and nonself
based on peptides, the AIS must discriminate between self and nonself based on strings of
a fixed length

�
. Each such string will be referred to as an agent a. The set of all agents

form a universe, U
� �

a1 , a2 , . . . , an 	 which comprises two disjoint subsets; i.e., the set of
self, US, and the set of nonself, UN, so that U

�
US � UN and US � UN

�
∅. As stated in

(Hofmeyr and Forrest 2000), the AIS then face a classification problem; given an arbitrary
string from U, classify it as either self or nonself. The classification of self and nonself may
also be viewed as the discrimination between normal and anomalous.

This model of peptides adheres to the requirement that all relevant information in the
problem domain can be represented in some way and that there must be some way of com-
pactly encoding generalizations of this information.
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FIGURE 4.1: Matching under the Hamming match rule, with strings of length ��� 16 consisting
of symbols from an alphabet with cardinality m � 2, with the matching constraint
r � 9. The two strings a and b will match for all r � 9.

It should also be noted that when real-world problems are mapped to representations
like this, self and nonself may not be disjoint, because two cases may be mapped to the same
representation.

Just as an IDS, the IS can also make two kinds of discrimination errors (see Table 3.2 on
page 12). This is true also for the AIS. A false positive occurs when a normal agent is classi-
fied as nonself and a false negative occurs when an anomalous agent is classified as self.

The peptide encoding described above, is also used for modeling the receptors of detec-
tors in the AIS. The AIS has a population D of detectors. Each detector d

�
D has a cover

Cd that describes the number of agents it recognizes. If a detector d recognizes no agents, its
cover is Cd

�
∅. On the other hand, if d recognizes all other agents, its cover is Cd

�
U; all

agents in the universe of discourse.
This representation of peptides enables the AIS to recognize different agents through

string matching. But, as noted in Section 2.2.3, one of the nice features of the IS, seen from
an information processing point of view, is that it is able generalize its matching. The gener-
alization of self and nonself which occurs in the IS is implemented using approximate string
matching.

4.3.1 MATCHING

In the most general form, the problem of approximate string matching is to find a text where
a given text pattern occurs, allowing a limited number of “errors” in the matches. Each ap-
plication uses a different error model, which defines how different strings may be (Navarro
2001). These texts may be regarded as sequences of symbols composed from an alphabet of
cardinality m.

What matching rule to use depends on what characteristics one would like. Two such
rules are the Hamming match rule and the r-contiguous match rule. Herein, the main focus
will be on the r-contiguous match rule, because it is a plausible abstraction of the receptor
binding in the immune system (Percus, Percus, and Perelson 1993). As seen in Section 2.2.3,
the IS is very effective in that it manages to discriminate between self and nonself, with a
relatively small detector repertoire. Using this rule for predicting the optimal size of the T-
cell and Ab combining region from consideration of efficient self-nonself discrimination, the
results were consistent with various experimental determinations on the number of contact
residues between Ab combining sites and protein Ags and the size of the MHC-peptide
complex that interacts with the TCR (Percus, Percus, and Perelson 1993).

Both the Hamming match rule and the r-contiguous match rule are controlled by a
threshold parameter r, where 0 � r � �

. If r
�

0, the cover of d is all strings, Cd
�

U
and if r

� �
, then the cover of d is a single agent string, Cd

� �
a 	 . The higher the value of r,

the more specific the match. And, the specificity of a match is analogous to the affinity of a
binding between an Ag and a lymphocyte, or detector.
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FIGURE 4.2: A match under the r-contiguous match rule, with strings of length ��� 16 consisting
of symbols from an alphabet with cardinality m � 2, with the matching constraint
r � 5. The strings a and b in the above example will match for all r � 5.
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FIGURE 4.3: How the values of r and � affects the probability of a match, using the Hamming
match rule, when � ��� 25, 50, 100 � and 0 � r � � .

It should be noted that in the IS, the match (or recognition) between an Ag and a lym-
phocyte is based on complementary shapes, while in the following the discussion will be
centered around binary strings (m

�
2) and if these are approximately equal or not. The as-

sumption is simply that in an artificial peptide match, a 1 on the epitope is complementary
to a 1 on the paratope.

The Hamming match rule is based on the Hamming distance between two strings. If the
two strings a and b have the same bits in at least r positions, they match. This is shown in
Figure 4.1 on the preceding page.

Under the r-contiguous match rule, two strings match if the two strings a and b have the
same bits in at least r contiguous positions. Figure 4.2 shows an example of this.

Probability of Match Using the Hamming Match Rule

Let Hamming �
,r
�
a, b � be the operator to determine if two strings a and b, both of length

�
,

match, using the Hamming match rule, with the constraint that r bits are pairwise equal.
Then, the probability of a match between two randomly chosen strings a and b, is

P
�
Hamming �

,r
�
a, b � � � 2 �

�
�

∑
i � r

� �
i � (4.1)
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as presented in (Hofmeyr 1999). The probability is derived by noting that 2 �
�

is the proba-
bility of a single match occurring, and � �

i � is the number of strings in U that have the same
bits in i positions.

Figure 4.3 on the facing page shows how the choices of r and
�

affect the probability of a
match between randomly chosen bit strings of length

�
.

Probability of Match Using the Contiguous Match Rule

The texts on AISs that the author is aware of which rely on the r-contiguous match rule, all
refer to the equation

PS
�

m � r
� � ���

r � � m �
1 �

m
� 1 � (4.2)

presented in (Percus, Percus, and Perelson 1993), where PS denotes the an approximation
of the probability that a random receptor recognizes a randomly chosen Ag, abstracted as
strings of a fixed length

�
consisting of symbols from an alphabet with cardinality m, with a

matching threshold r, using the r-contiguous match. The reasoning behind the formula, as
given by Percus, Percus, and Perelson (1993) is that

Denote a matching or a complementary pair by the symbol x and the non-
complementation by y. If receptor and antigen are each constructed with the m
units chosen at random, then at each position complementation occurs with the
probability 1 � m and noncomplementation occurs with the probability

�
m
�

1 � � m.
The probability of recognition PS then translates into the problem of at least one
sequence of at least r contiguous xs out of a total of

�
entries. . . .

. . . A rigorous analysis shows that the probability of a long matching region
is very small, and hence when m � r � 1, to a good approximation the various
contributing possibilities can be regarded as independent. Starting at the leftmost
site of the

�
-site sequence, r contiguous xs occur with probability m � r. Thereafter,

runs of r xs can start at
���

r possible sites. Each such run is preceded by a
mismatch y, for a net probability of m � r � m �

1 � � m.

They arrived at the expression in (4.2) by adding up those probabilities. By substituting
m
�

2, l
�

49 and r
�

4, (4.2) evaluates to

PS
�

2 � 4
� �

49
�

4 � � 2 � 1 �
2

� 1 � � 1
16 � 47

2
�

1.468 75.

Hence, this example shows that PS does not describe a probability distribution.1

Below, the author will present the analysis necessary to arrive at an exact expression for
the probability of a match between two randomly chosen strings of a fixed length

�
using

the r-contiguous match rule.
Repeated independent trials are called Bernoulli trials2 if there are only two possible

outcomes for each trial and their probabilities remain the same throughout the trials (Feller

1The reason that ��	 49 will become clear in Section 5.3. It is the length of the peptides used in the later
experiments.

2Named after Jacob Bernoulli (Born in Basel, Switzerland on December 27, 1654 and died on August 16, 1705
in Basel). He is also referred to as Jaques or James.
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1968a, p. 146). The two possible outcomes are usually assigned probabilities p for “success”
and q for “failure”. Both p and q must be non-negative, and

p � q
�

1. (4.3)

Since the trails are independent, their probabilities multiply. Thus, if S denote a success and
F denote a failure, then P

�
SFS . . . SS � � pqp . . . pp.

According to Muselli (1996), the framework presented by Feller (1968b) for the study of
success runs in Bernoulli trials has been used in most recent studies of the phenomenon.
In particular it is the definition of a run as a recurrent pattern that has been adopted. The
formal definition of success runs is:

A sequence of n letters S and F contains as many S-runs of length r as there are
non-overlapping uninterrupted blocks containing exactly r letters S each (Feller
1968b, p. 305).

According to this definition, two consecutive success runs may not be separated by any
failure. Thus, the sequence SSSSFSSSSSSF can be interpreted as containing 3 success runs
of length 3 (occurring at trials number 3, 8, and 11). It may also be interpreted as containing
2 success runs of length 4 (occurring at trials number 4 and 9). In practice, if one is searching
for runs of length r, the counting of consecutive successes must be restarted when the desired
value of r is reached.

In the following, let r be fixed positive integer and let ε denote the occurrence of a success
run, as defined above, of length r, in a sequence of Bernoulli trials; thus a run is a recurrent
event. Further, let un be the probability of ε at the nth trial, and fn be the probability that the
first success run of length r occurs at the nth trial. For convenience, the variables f 0

�
0 and

u0
�

1 are also defined.
The probability that the r trials number n, n

�
1, n

�
2, . . . , n

�
r � 1 result in success is pr.

In this case, ε occurs at one among these r trials. Hence, the probability that ε occurs at trial
number n

�
k, where k

�
0, 1, . . . , r

�
1, and the following k trials result in k successes equals

un � k pk . Feller (1968b, p. 323) states that since these r possibilities are mutually exclusive, one
gets the recurrence relation

un � un � 1 p � � � � � un � r � 1pr � 1 � pr (4.4)

valid for n
�

r, where u1
�

u2
� � � � � ur � 1

�
0 and u0

�
1.

It would be convenient to express the recurrence relation in (4.4) as a generating func-
tion. Wilf (1993, p. 1) writes that “a generating function is a clothesline on which we hang
up a sequence of numbers for display”, while Abraham de Moivre3 introduced generating
functions in order to solve the general linear recurrence problem. There are several things
one may be able to do with generating functions, but the reason it is introduced here, is that
it often enables one to find an exact formula for the members of a sequence. A generating
function, G

�
x � , defined as

G
�
x � � a0 � a1x � a2x2 � � � � �

∞

∑
n � 0

anxn (4.5)

3Born 26 May 1667 in Vitry, France and died 27 November 1754 in London, England.
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is a single quantity that represents the whole sequence
�
an 	 . As Knuth (1997a, p. 92) writes

when introducing generating functions, it is often convenient to let the notation
�
xn � G

�
x � (4.6)

denote the coefficient of xn in the generating function G
�
x � . E.g., if G

�
x � is the generating

function in (4.5) we have
�
xn � G

�
x � � an and

�
xn � G

�
x � 1�

1
�

x �
� n

∑
k � 0

ak . (4.7)

For the rest of this text, it would be convenient to define two generating functions

F
�
x � �

∞

∑
k � 1

fkxk and U
�
x � �

∞

∑
k � 0

ukxk (4.8)

which are generating the sequences
�

fk 	 and
�
uk 	 . Note that

�
uk 	 is not a probability distri-

bution, as ∑ uk
�

∞. The generating functions of
�

fk 	 and
�
uk 	 are related by (Feller 1968b,

pp. 311–312)

U
�
x � � 1

1
�

F
�
x � . (4.9)

By multiplying both sides of (4.4) by xn, summing over the values of which the recurrence
is valid (i.e., n

�
r, r � 1, r � 2, . . . ), and recognizing U

�
x � from (4.8), one gets

�
U
�
x � � 1 � � 1 � px � p2x2 � � � � � pr � 1xr � 1 � � pr � xr � xr � 1 � . . . � .

The two series, one on each side of the equation, are geometric, and one can see that

�
U
�
x � � 1 � � 1

� �
px � r

1
�

px
� prxr

1
�

x

or, by isolating U
�
x � and introducing the variable q

�
1
�

p, one may obtain

U
�
x � � 1

�
x � qpr xr � 1

�
1
�

x � � 1 � prxr � . (4.10)

Finally, by substituting U
�
x � in (4.9) and isolating F

�
x � , Feller (1968b, p. 323) presents the

generating function

F
�
x � � prxr � 1 � px �

1
�

x � qprxr � 1 (4.11)

which is a probability generating function, describing the probability for occurrences of suc-
cess runs of length r in a sequence of Bernoulli trials.

Let Rp
�
r, n � be the probability that a run of r consecutive successes appears in n indepen-

dent trials. There is a beautiful formula given in terms of the coefficients of (4.11)

Rp
�
r, n � �

�
xn � F

�
x ��

1
�

x �
� n

∑
k � r

fk (4.12)
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TABLE 4.1: The values generated by the function 2 � R1 � 2
�
r, ��� for r � 0, . . . , � and ��� 1, 2, . . . , 12.

r�
0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 1 0 0 0 0 0 0 0 0 0 0 0
2 4 3 1 0 0 0 0 0 0 0 0 0 0
3 8 7 3 1 0 0 0 0 0 0 0 0 0
4 16 15 8 3 1 0 0 0 0 0 0 0 0
5 32 31 19 8 3 1 0 0 0 0 0 0 0
6 64 63 43 20 8 3 1 0 0 0 0 0 0
7 128 127 94 47 20 8 3 1 0 0 0 0 0
8 256 255 201 107 48 20 8 3 1 0 0 0 0
9 512 511 423 238 111 48 20 8 3 1 0 0 0

10 1 024 1 023 880 520 251 112 48 20 8 3 1 0 0
11 2 048 2 047 1 815 1 121 558 255 112 48 20 8 3 1 0
12 4 096 4 095 3 719 2 391 1 224 571 256 112 48 20 8 3 1

where one sums from k
�

r instead of k
�

0 as the r first coefficients are 0. The probability of
a match between two randomly chosen bit strings of length

�
, using the r-contiguous match

rule, is given by setting p
� 1

2 and n
� �

.
Thus, if one selects a random bit string of a fixed length

�
and performs a r-contiguous

match, with a fixed r, against all possible strings of length
�

(i.e., 2
�

different strings), the
number of strings that will match is 2

�
R1 � 2

�
r,
� � . Table 4.1 shows the result of evaluating this

formula for various values of
�

and r.
Figure 4.4 on the facing page shows how the probability for a match between two ran-

domly chosen strings consisting of symbols from an alphabet with cardinality m
�

2, with
varying string lengths

�
and matching thresholds r using the r-contiguous match rule ac-

cording to (4.12).
Not surprisingly, higher matching thresholds result in the creation of less general de-

tectors. This fact was shown in (Forrest et al. 1994). An AIS which use a high matching
threshold will thus need a larger number of detectors to effectively discriminate between
self and nonself. On the other hand, such a system needs fewer retrials for each mature
detector generated.

Figure 4.5 on the next page shows the difference between the probabilities for a match
using the r-contiguous match rule according to (4.2) and (4.12).

4.4 NEGATIVE SELECTION

The negative selection mechanism in the IS is often used in AISs to perform anomaly-based
detection. In (Forrest et al. 1994; Hofmeyr 1999; Hofmeyr and Forrest 2000) this is modeled
by requiring that valid detectors are those detectors which does not detect self agents during
tolerization. Figure 4.6 on the facing page shows this process. First, a detector is randomly
generated, which means that its receptors may recognize anything. If the detector recog-
nizes anything during tolerization, it dies. If the detector survives the tolerization period,
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FIGURE 4.4: How the values of r and � affects the probability of a match, using the r-contiguous
match rule.
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FIGURE 4.5: The difference between (4.2) and (4.12) in predicting the probability for a matching
between two randomly chosen bit strings, using the r-contiguous match rule when
r changes. In both cases ��� 49.
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FIGURE 4.6: The negative selection process a detector undergo during tolerization.
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it becomes a mature and naïve detector. It is called naïve because it has not detected any
pathogens yet.

This use of negative selection is based on the assumption that if a detector recognizes
anything during tolerization, what it matches is self. This way, the AIS implicitly learns that
anything its mature and memory detectors match is nonself.

4.5 CLONAL SELECTION AND SOMATIC HYPERMUTATION

As mentioned in Section 2.5, the combination of clonal selection and somatic hypermutation
is an important factor in the process known as affinity maturation. The purpose of affinity
maturation is to increase the diversity in the IS and the affinity between detectors and agents
in the IS.

The utilization of clonal selection and somatic hypermutation to model affinity matu-
ration in AISs applied to NID has been proposed, but not implemented, by Hofmeyr and
Forrest (2000). Some experimental work exploring the role of somatic hypermutation in the
IS has been performed though (Hightower, Forrest, and Perelson 1996).

4.5.1 RESEARCH HYPOTHESIS

As explored above, with longer T-cell and Ab combining regions—i.e., higher r values—
the AIS will be tuned towards higher specificity. And, vice versa, with shorter receptor
recognition sites, the AIS will be tuned towards more general matching.

For example, with
���

49 and r
�

4, the R1 � 2
�
r,
� � evaluates to 0.566, while if r

�
15 the

same expression evaluates to 0.183 � 10 � 3. As the detectors monitor several peptides over
the course of time, this means that with low r-values, the detectors of the AIS will match
virtually anything. On the other hand, with high values of r the detectors will match a much
smaller set of agents.

Since the AIS’s detector set is generated through negative selection, lower r-values result
in a higher probability of matching self during tolerization, and higher r-values result in
lower probability of matching self during tolerization. Thus, the lower the value of r, the
more retries the AIS needs to generate each mature detector. The number random detectors
that must be generated and tested are reported (Forrest and Hofmeyr 2001) to be “approxi-
mately exponential in the size of self.” With higher r-values fewer detector generation retries
are necessary, but a larger set of detectors are needed to achieve a certain level of coverage
also increases.

This leads to a tradeoff situation, where lower r-values require a smaller detector set
to achieve a certain coverage, while the AIS needs more retries for each valid detector it
generates. Based on the role the combination of clonal selection and somatic hypermutation
plays in the IS, it is assumed that if adopted to an AIS, the mechanisms will increase detector
diversity and the affinity between detectors and agents. This leads to the central research
question of this work:

Is it possible to achieve a higher level of coverage for a detector set generated with a fixed
r-value by utilizing clonal selection and somatic hypermutation?
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4.6 OTHER APPROACHES TO MODELING MECHANISMS

IN THE IMMUNE SYSTEM

In Section 4.3, the use of bit strings for modeling peptides was introduced. Another ap-
proach, used by Kim and Bentley (2001), include the use of strings with m

�
10 and

� �
33.

While the above discussion has been concerned with matching peptides at the genotype
level, their AIS implementation performed matching on the phenotype level. Their work
concluded that the negative selection algorithm was impractical for generating a sufficient
number of valid detectors in a reasonable time. This result will be discussed in Section 7.5.

The role of the molecules of the MHC has been modeled by Hofmeyr and Forrest (2000)
who let each location in their architecture for a distributed AIS filter each agent’s pep-
tides through a randomly generated permutation masks to generate alternative represen-
tations for each peptide. This mechanism was reported to introduce an important form of
population-level diversity.





CHAPTER 5

IMPLEMENTATION OF AN
ARTIFICIAL IMMUNE SYSTEM APPLIED
TO NETWORK INTRUSION DETECTION

In this chapter, the author’s implementation of DAIS—an AIS-based NID system—will be
presented. DAIS was used to perform the experiments presented in Chapter 6. The source
code for the program is included in Appendix A1. It should be noted that the program is
licensed under the GNU’s Not Unix! (GNU) General Public License (GPL) which is included
in Appendix B.

Several aspects of DAIS are based on the proposed AIS architecture named Artificial Im-
mune System (ARTIS), presented by Hofmeyr and Forrest (2000). Other aspects, like somatic
hypermutation and the notion of a thymus present in the AIS are adoptions, made by the
author, based on the mechanisms of the IS presented in Chapter 2.

5.1 WHAT IS MONITORED?

As mentioned in Section 3.4, which protocols a NID system monitors, will greatly affect its
abilities to detect intrusions. Another consideration is that if a NID system is to monitor
everything, it will quickly use too many resources.

The DAIS adopts the peptide encoding used by (Hofmeyr 1999), which encodes TCP
SYN (synchronize) packets. TCP SYN packets are sent to and from the participating hosts
when a TCP connection is established. Figure 5.1 on the next page shows the process of
establishing a TCP connection. First, the client (the initiating host) sends a SYN packet to the
server (the host being contacted). Next, the server responds by sending a packet with both
the SYN and the ACK (acknowledge) flag set to the client. Now the client knows that the
server has received its initial SYN packet, and that it acknowledges the connection attempt.
Finally, the client sends a packet with the ACK control flag set, and when the server receives
this, a connection has been established (Postel 1981b). This procedure is called a three-way
handshake.

The idea here is that a TCP connection cannot be established without the exchange of
TCP SYN packets. Hence, the monitoring of SYN packets should provide a sensible way to
give the AIS a sense of normal, or self, traffic and of abnormal, or nonself, network traffic.

1It will also be made available from the author’s home page, http://www.ranang.org/.

27
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Since the data monitored by DAIS consists of SYN packets, TCPdump is used to obtain it.
The TCPdump program outputs the headers of packets on a network interface. The general
format of the TCP headers output by TCPdump is shown in Figure 5.2. The fields src and dst
are the source and destination IP addresses and ports. The flags field, may be a combination
of S (SYN), F (FIN), P (PUSH), R (RST) or a single ‘.’ (no flags).

5.2 PEPTIDES

As mentioned in above, the encoding of SYN packets into an AIS peptide is adopted from (Hofmeyr
1999), where each connection is represented as a bit string, with

���
49. The schematic rep-

resentation of a SYN connection is shown in Table 5.1. At least one of the computers partic-
ipating in any of the connections has to be on the LAN; thus the first 8 bit of the peptide bit
string represent an internal computer. These 8 bits represent the least significant byte (LSB)
of that computer’s IP address. This may be done under the assumption that all computers
on the LAN share the same class C IP network address.

The next 32 bits are used to represent the other participating host, which may be either
an external host or another internal host on the same LAN. If it is an internal host, only 8
bits are needed to represent it, but the whole address is used (32 bits).

If an external host is involved in the connection, it is always represented in the bits 8–39,

TABLE 5.1: Peptide representation of a SYN.

Bits Description

0–7 Internal host or
Internal host (server)

8–39 External host or
Internal host (client)

40 Server flag
41–48 Service
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Field Possible Values

State
�
immature, mature, memory, active, dead 	

Peptide
�

random bits
Age

�
0, Tdeath

�
Activation level α

Antigen The agent a the detector binds to when activated

TABLE 5.2: Attributes of a detector.

thus bit 40, the next bit, is used to indicate whether or not the first computer is a server. If
bit 40 is set, the first 0–7 bits represent an internal server, otherwise it is not set.

The final 8 bits, i.e., bits 41–48, represent the type of service the client is requesting. This
field may have values in the range

�
0, 255 � . On the Internet different hosts may run various

services on their IP ports. These IP ports are usually running specific services, according to
assignments of IP port numbers done by the Internet Assigned Numbers Authority (IANA).
IANA is an organization that maintains an online database2 which defines a sequence of
unique port assignments (Reynolds 2002). There are more services than can be represented
by 8 bits, therefore the service field contains values who are mappings from IP ports numbers
to a range of services actually occurring in the network traffic being monitored.

5.3 ARCHITECTURE OF DAIS

The architecture of DAIS is described in the following. It is similar to the IS in that it performs
anomaly-based detection, consists of a multitude of detectors in a distributed environment,
generates its set of detectors through negative selection and clonal proliferation combined
with somatic hypermutation (or affinity maturation) and it is dependent on some kind of
costimulation to increase its ability to discriminate between self and nonself.

However, it does not utilize mobile detectors, diversity among detectors through alter-
native representations (or permutations) and location-based sensitivity, as was proposed in
(Hofmeyr and Forrest 2000). These concepts will be discussed later.

When DAIS is used to perform simulations, the distributed environment is modeled as a
graph G

� �
V, E � , where each vertex v

�
V corresponds to a location l

�
L. All communica-

tion between the nodes is done via the edges. Each location corresponds to a node, or host, in
the network. If a broadcast network is simulated, the same traffic sent to and from a location
li is sent over every edge e

�
E in the network; thus all other locations

�
ln � � ln

�
L � ln �� li 	

will receive the same network traffic. If a switched network is simulated, the traffic travels
along only the edges which are needed to establish a connection between the source and the
destination host.

Each location consists of a population D
�

DI � DN � DM, where DI consists solely of
immature detectors, DN consists solely of mature detector and DM consists solely of memory
detector; thus DI � DN � DM

�
∅. The size of the sub-population � DI � is fixed at DImax, while

0 � � DN � � DNmax and 0 � � DM � � DMmax. This way, DN and DM are dynamic populations,
capable of expanding and shrinking over time.

2Available from http://www.iana.org/.
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TABLE 5.3: Analogies between mechanisms in the IS and the implemented AIS.

Immune System Artificial Immune System

Peptide, protein or epitope Bit string
Receptor Bit string
Binding/affinity Approximate string matching
Somatic hypermutation Somatic hypermutation
Memory cell Memory detector
Signal 1 Activation threshold exceeded
Signal 2 Human operator
Pathogen detection Detection event
Lymphocyte cloning Detector replication
Lymphocyte mutation Detector mutation
Affinity maturation r-contiguous affinity maturation

When the populations DN and DM has reached their maximum size, and new individuals
are to be inserted, a decision has to be made on what individual should be replaced by
the new one. In the architecture described here, the insertions are performed by the least
recently used (LRU) principle, described in (Knuth 1997b, p. 452). That is, the individual
in the population that was used (e.g., activated) least recently is removed while the new
individual takes up the newly freed space. This principle is also used by Hofmeyr and
Forrest (2000) in ARTIS.

Each of the implemented detectors has a small set of attributes, as shown in Table 5.2 on
the preceding page. The state of a detector may be either immature, mature, memory or
dead and any of these may be combined with the state active. The peptide of a detector
is the abstraction of the receptors on the surface of a lymphocyte. It is represented as a bit
string of length 49. The age of a detector is measured in the number of agents monitored.
Thus, a detector age of 25 000 corresponds approximately to 1 day in the real world. Every
detector start their lives at age 0, and if they are not removed by any other cause, they die at
age Tdeath. Another important attribute of the detectors is their activation level α. The reason
it is used is that since matching in the AIS is approximate, there is an increased probability
of matching against self. The activation level of a detector is increased every time it matches
anything, and it is reduced gradually over time. The detector does not become activated
until the activation level is above a certain threshold. This mechanism reduces the number
of false positives. The last attribute of the detectors is the antigen which is a copy of the
agent that caused the detector to become activated. This is necessary to perform the somatic
hypermutation with affinity maturation as explained in Section 5.4.2. The analogies between
mechanisms in DAIS and the IS is summarized in Table 5.3.

5.4 THE LIFE-CYCLE OF A DETECTOR

Figure 5.3 on the next page shows the life-cycle of a detector. First, a detector d is created
with a randomly generated bit string. The state of d is then set to immature. It has now
begun its tolerization period. If d matches anything, even just once, during this period, its
state is changed to dead, just like programmed cell death (or apoptosis) in the biological
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immune system. This is the implementation of negative selection in the AIS.

5.4.1 COSTIMULATION

If d survives the tolerization period, its state is changed to mature and naïve. When a detec-
tor has reached the mature state, it is capable of detecting nonself. If the detector matches
nonself frequently enough, its state is set to active. This corresponds to triggering an alarm
if its activation level α reaches the activation threshold τ. Every time d matches an agent,
α is increased by letting α � α � α � , where α � �

1. In a real-world application of this
AIS-based NID, such an activation would result in an e-mail being sent to the administrator
of the network. The operator is then supposed to provide the AIS with its costimulation
(or “signal 2”) within a given time γ, called the costimulation delay period. If the detector
does not match the agent, its activation level is decreased as α � max

�
1, α � α � � , where

0 � α � � 1. If d does not receive its costimulation signal, its state is set to dead. If, on the
other hand, d receives costimulation, it enters the process of clonal proliferation and somatic
hypermutation.

5.4.2 SOMATIC HYPERMUTATION

During the somatic hypermutation, the detector undergoes clonal proliferation. The clonal
proliferation is implemented simply by creating ξ clones of d. Each of the offspring under-
goes a single point mutation with a probability of pmutate. This mutation represents a flip-
mutation variation operator as presented in (Michalewicz and Fogel 2000). To model the
affinity maturation, only the offspring detectors with equal or higher affinity to the agent
(that d recognized) than d is inserted into the population of memory detectors DM; the oth-
ers die. The affinity measure used is the longest r-contiguous match matching sequence
between a detector and an agent. This means that every one of the detectors who survives
this “battle” will match that agents on at least r contiguous locations.

To implement the probability of an event occurring, a positive unsigned 32 bit integer n
is assigned a random value in the range 0–232. This value is converted to a floating point
value p according to the suggestions made by Press et al. (1992, p. 275, 276) as

p
� n
RAND_MAX � 1.0

where RAND_MAX is defined to be 232, the largest possible value returned from the random
generator.

In the AIS, the Mersenne Twister (MT) algorithm, presented and discussed in (Mat-
sumoto and Nishimura 1998), is used to generate uniformly distributed pseudo-random
numbers. A uniform distribution on a finite set is a set where the occurrences of every ele-
ment is equally likely. The implementation presented in (Matsumoto and Nishimura 1998)3

has a period of 219937 � 1 and a 623-dimensional equidistribution property. Over the years,
a lot of research dependent on random data generated by computers has suffered from poor
pseudo-random number generators. What is meant by a poor pseudo-random number gen-
erator is a generator which produces sequences of pseudo-random numbers with short pe-
riods or with poor distribution; i.e., they are not even close to random. The period of a

3The AIS implementation described herein uses an updated version of the MT algorithm, made available from
Makoto Matsumoto’s home page. The update was published 26 January 2002. It takes into consideration Shawn
J. Cokus’ optimizations, which makes the implementation four times faster than the ANSI-C rand function.
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pseudo-random number generator is the number of numbers produced before the sequence
of produced numbers is repeated.

As stated by Matsumoto and Nishimura (1998), “the initialization is care-free. This gen-
erator is as fast as other common generators, such as the standard ANSI-C rand, and it
passed several statistic tests including diehard”.

5.4.3 THYMUS BEHAVIOR

In (Hofmeyr and Forrest 2000, p. 556) it is mentioned that one of the things not implemented
in their AIS implementation, named LISYS, is the notion of a thymus. They argue that the
(self) proteins present in the thymus is the analogy to a training set in the IS, and that the
training of lymphocytes to distinguish between self and nonself will not work if nonself is
frequently expressed in the thymus. They also write, when presenting how training of the
detection system is performed in ARTIS (the architecture which LISYS is based upon), that
during the tolerization period “the detector is exposed to the environment (self and possibly
nonself strings), and if it matches any bit string it is eliminated.”

The author has tried to implement the notion of a distributed thymus behavior. Fig-
ure 5.4 shows how the notion of a thymus has been modeled. It is based on the assumption
that there is a lower frequency of nonself in the thymus than in the rest of the IS. Thus,
the thymus in a way assures that immature detectors run a lower risk of being exposed to
nonself proteins. Without this notion of thymus presence, immature detectors (part of D I)
are just as likely to be exposed to nonself as mature and memory detectors, as shown in
Figure 5.4(a). However, by introducing a filter which prohibits the exposure of immature
detectors to agents that have already been recognized as nonself by mature and memory de-
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tectors, as shown in Figure 5.4(b) on the preceding page, the immature detectors run a lower
risk of being exposed to nonself.

It should be noted that the requirement for the “thymus filter” to filter out an agent is
that one of the mature or memory detectors have matched, i.e., it is not necessary for an
activation to occur.

5.5 THE SPEED OF THE r-CONTIGUOUS-MATCH ALGORITHM

The receptors of the detectors and the agent peptides in DAIS are implemented as arrays
of data types with a length of 64 bits. The r-contiguous match algorithm is implemented
using the unsigned long long int data type in the C programming language, which is
64 bits long on the Intel x86 architecture.

r-CONTIGUOUS-MATCH
�
r, A, B �

1 if r
�

0
2 then return TRUE

3
�

� length
�
A �

4 c � 0
5 X � A � B
6 for i � 0 to

�
7 do if X

�
i � � 1

8 then c � 0
9 else c � c � 1

10 if c
�

r
11 then return TRUE

12 return FALSE

In the r-contiguous match algorithm shown above, A, B and X are bit strings of length
�
, r is

the match constraint and � denotes the exclusive OR (XOR) operator.
The XOR operator is implemented in hardware in the Intel x86 family of processors. This

fact, combined with the use of the left-shift operator, makes the algorithm run very fast. This
is important because the r-contiguous match function is called once for each detector which
is to test for recognition of each and every agent (connection) the program monitors.

5.6 HOW TO USE DAIS

It is possible to control all of the parameters mentioned above from the command line when
starting DAIS. It has a self contained help-screen which is invoked by issuing the command:

./ais --help

The self-explanatory help screen is shown in Figure 5.5 on the next page. In addition to
the parameter flags, DAIS expects a list of input files which are read in the order they are
presented on the command line.

DAIS is able to read two different formats, namely TCPdump headers in American stan-
dard code for information exchange (ASCII) format and a special file format used for sim-
ulations, consisting of pre-formatted connection information as shown in Figure 5.6. The
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Usage: ./ais [ options ] [ inputfile ... ]
-h, --help Display this usage information.
-i, --info Only show the current configuration and exit.
-t, --test Perform a match test.
-r R, --r-value=R Set the r of the r-contiguous-bits algorithm.
-n N, --nodes=N Set the number of nodes.
-I N, --immature-detectors=N

Set the number of immature detectors per node.
-N N, --mature-detectors=M Set the maximum number of mature (naive) agents.
-M N, --memory-detectors=M Set the maximum number of mature agents.
-l N, --detector-lifetime=N

Set the length of a detectors lifetime.
-c N, --detector-childhood=N

Set the duration of a detectors childhood.
-a R, --activation-inc=R Set the factor for increasing the detector

activation.
-d R, --activation-dec=R Set the factor for decreasing the detector

activation.
-D N, --costimulation-delay

Set the length of the period from activation
to costimulation is received.

-f F, --format=F Use TCP or AIS as file format. Default is AIS.
-p S, --node-ids=S Read node IDs from file S. (Switched LAN.)
-y, --somatic-hypermutation

Perform somatic hypermutation (SH).
-m, --sh-p-mutate=P Let P be the probability of mutation under SH.
-u, --sh-clones=N Generate N clones under SH.
-v, --sh-clones-select=N Let N of the clones survive after SH.
-C, --sh-competition Simulate affinity competition under SH.
-z, --thymus Perform thymus simulation.

FIGURE 5.5: The help-screen of DAIS.

classification local_host:remote_host:first_is_server:service

FIGURE 5.6: The pre-formatted peptide file format.
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classification-field may be eitherS (self) or N (nonself), while local_host is a number
in the range

�
0, 255 � and remote_host is a IP version 4 address. The first_is_server

and service fields are according to the peptide encoding described in Section 5.2.

5.6.1 SWITCHED ETHERNET VERSUS LEGACY ETHERNET

Perhaps the most striking advancement in contemporary Ethernet networks is the use of
Switched Ethernets. LISYS, the AIS-based NID system implemented by Hofmeyr (1999),
does not support simulating switched networks environments. This support is implemented
in DAIS, but for this feature to be truly useful, new peptide encodings are needed. This will
be discussed in more detail in Chapter 7.



CHAPTER 6

RESULTS

This chapter describes the experiments performed in order to investigate the role of somatic
hypermutation in the AIS and presents the results of these experiments. Some other IS-
inspired mechanisms are also investigated, although they are not the main focus of this
work.

When criticizing the most comprehensive evaluations of research on IDSs that has been
performed to date, the 1998 and 1999 Defense Advanced Research Projects Agency (DARPA)
Intrusion Detection System Evaluations, McHugh (2000) states that

The operating points or curves obtained by plotting true positives against false
positives is a relatively poor basis for characterizing research IDS systems since
it provides no insight into the reasons for IDS performance (good or bad).

This is further emphasized by the fact that even if the measure is considered useful, there
is no appropriate common denominator for both the true positive and false positive terms.
A proposed approach is to require that both detections and non-detections of an IDS is re-
ported. Where it is meaningful, this approach will be used in this chapter.

6.1 APPARATUS

The simulations were run on a cluster consisting of 1 master node and 43 computational
nodes. Each simulation was done on a single node, but to be able to perform more simula-
tions and thus cover a larger size of the parameter space, the cluster was used.

The nodes were connected to the master node through a dedicated switched LAN. The
hosts’ hardware were configured as shown in Table 6.1 on the following page. The central
processing units (CPUs) were of type Advanced Micro Devices (AMD) Athlon XP 1700+ and
Athlon MP 1600+ . The table shows the speed of the CPUs, the amount of random access
memory (RAM) and hard drive (HD) space, and the speed of the NIC used for communica-
tion between the hosts. On 8 of the computational nodes the HDs utilize the small computer
system interface (SCSI) for data transfers while the rest utilize the integrated device electron-
ics (IDE) interface. All the hosts were running the Source Mage GNU/Linux OS, with the
Linux kernel version 2.4.17.

37
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TABLE 6.1: Hardware configuration of the hosts in the cluster used for running the simulations.

CPU HD

Hosts Type Speed Model RAM Size Interface NIC
(GHz) (GB) (GB) (Mb)

1 Master 1 � 1.46 XP 1700+ 2 3 � 80 IDE 1 000
8 Node 1 � 1.40 MP 1600+ 1 1 � 18 SCSI 100
6 Node 2 � 1.40 MP 1600+ 1 3 � 18 SCSI 100
1 Node 2 � 1.40 MP 1600+ 1 2 � 18 SCSI 100

12 Node 1 � 1.46 XP 1700+ 1 1 � 40 IDE 100
16 Node 1 � 1.46 XP 1700+ 2 1 � 40 IDE 100

44 — 73.14 — 61 1 864 — 5 300

TABLE 6.2: Self data sets used in the simulations.

All Unique
Set Type Symbol Strings Strings Not in Train

Train STrain 1 266 000 3 763 —
Test STest 182 629 626 137

6.2 THE EXPERIMENTAL DATA SETS

The data sets used in the experiments was generously provided by Stephanie Forrest and
Justin Balthrop (and others), at University of New Mexico (UNM). The same data sets were
used in (Hofmeyr and Forrest 2000) and (Hofmeyr 1999). The sets are divided into two
groups, one where each set consists of self data only and one where the sets consist of both
self and nonself data. An overview of the self and the nonself data sets are given in Table 6.2
and Table 6.3 on the facing page respectively.

The set STrain was collected over a period of 50 days. The original self set was much larger,
but some traffic, caused by noisy traffic sources like Hypertext Transfer Protocol (HTTP) and
File Transfer Protocol (FTP) servers, were filtered out. These kind of servers are continually
communicating with new hosts; thus there is no stable definition of what normal network
traffic is, which is one of the prerequisite conditions for the AIS to succeed. Note that only
HTTP and FTP traffic to and from those servers were filtered out; the other ports were still
monitored. It should also be noted that such traffic to and from hosts on the LAN, which
was not supposed to run those kind of services, was not filtered out from the data sets.

Because the connections in training set STrain was gathered in 50 days, it is assumed in
the following that the average number of connections per day is � STrain � � 50 � 25 000.

6.3 THE EXPERIMENTS

Two experiments were performed. The first experiment consisted of 2 640 simulations while
the second experiment consisted of 3 360 simulations. The total size of all the log files gen-
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TABLE 6.3: Nonself data sets used in the simulations.

Fraction Fraction
Intrusion Type Symbol Strings Nonself Unique Nonself

Address probing NAP 8 600 0.540 0.340
Limited probing 1 NLP1 1 174 0.617 0.118
Limited probing 2 NLP2 114 1.000 0.842
Limited probing 3 NLP3 1 317 0.101 0.002
Port scanning NPS 2 966 0.435 0.196
Single port probing 1 NSP1 36 1.000 0.833
Single port probing 2 NSP2 285 0.165 0.130

erated during these experiments was approximately 6.30 terabyte (TB)1. On the average the
size of the log file generated by each simulation was approximately 1.08 gigabyte (GB).

A few measures of goodness will be introduced and used in the following. For each result
set, two measures of goodness per data set were calculated; these measures are the rates of
false and true alarms. During these experiments, one alarm (true of false) was counted if
one or more detectors were activated at one or more locations of the AIS while the system
was presented to one agent. Hence, a true or false alarm is counted once per connection (or
time unit) for the whole AIS seen as a whole.

The rate of false alarms A �δn
for data set δn is defined as

A �δn

� alarm �δn

� � a : a
�

δn � US 	 � (6.1)

where alarm �δn
is the number of false alarms generated while monitoring the data set δn

�
∆

and � � a : a
�

δn � US 	 � is the number of self agents in δn and hence the highest number of
false alarms. Likewise, the rate of true alarms A �δn

is defined as

A �δn

� alarm �δn

� � a : a
�

δn � UN 	 � (6.2)

where alarm �δn
is the number of true alarms generated while monitoring the data set δn

�
∆

and � � a : a
�

δn � UN 	 � is the number of nonself agents in δn.
For each data set δn, the utility functions ∆A �δn

and ∆A �δn
are calculated. These are the

differences in true and false alarm rates, respectively, when somatic hypermutation is used
and is not used. They are defined as

∆A �δn

�
A �δn,plain

�
A �δn,SH (6.3)

and

∆A �δn

�
A �δn,SH

�
A �δn,plain (6.4)

where SH and plain indicates if the alarm rate was generated using or not using somatic
hypermutation. This means, that if the utilization of somatic hypermutation is successful,
both ∆A � and ∆A � should be positive.

1The total HD space actually used was only 60.5 GB due to compression with the gzip utility.
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The probability pmutate of a single point mutation in a bit string, during the clonal prolif-
eration caused by somatic hypermutation, is set to 1.0 in all the experiments. This was done
due to the small scale of the AIS compared to the scale of the IS. All the peptides used in the
experiments are representations of TCP SYN packets encoded as bit strings of length

�
�
49

unless stated otherwise.
It should also be noted that in the results presented for each simulation, the events hap-

pening while DAIS processes STrain (for the first time) are ignored.

6.4 THE EFFECT OF SOMATIC HYPERMUTATION ON ALARM RATES

To see how somatic hypermutation affects the number of true and false alarms; i.e., the effects
at the level that a user of DAIS would interface, an experiment was set up as described below.
An alarm occurs when the activation level α of one of the detectors reach the activation
threshold τ; i.e., when α

�
τ.

The simulated NID was distributed over � L � � 25 locations. Each l
�

L had a popula-
tion D

�
DI � DN � DM of detectors, where the maximum number of immature detectors

DImax
�

40, the maximum number of mature detectors DNmax
�

70 and the maximum
number of memory detectors DMmax

�
100.

The experiment used the data sets STrain, NAP, NPS, STrain, NPS and NAP as input (in that
order). This sequence, with repetitive exposure to nonself, was chosen to see if there were
any signs of a secondary response like one can see in the IS. The total duration of the simu-
lated period was 2 555 132 time steps, or a little over 102 days.

The matching constraint r varied in the range
�
4, 15 � . The tolerization period T was set to

the values in the set
�
10 000, 25 000, 50 000 	 . Thus, the values of T corresponds to approx-

imately 9.6 hours, 1 and 2 days accordingly. The lifetime Tdeath of the detectors was set to
5 and 10 times T. The various T and Tdeath combinations used during the experiment are
shown in Table 6.4 on the next page.

The number of clones ξ that was generated during affinity maturation, when utilized,
was set to 5 and 10. The costimulation delay γ was set to 0 and 25 000, which corresponds to
receiving the costimulation signal immediately and after 1 day, respectively. Two different�
α � , α ��� combinations were used too. In the first combination α � � 1.2 and α � � 0.8 and

in the second one α � � 1.333 and α � � 0.9. In the following, such a tuple will be referred
to as a sensitivity tuple. The first sensitivity tuple has a slower activation rate and a faster
decline, while the second sensitivity tuple simulates the opposite behavior.

All of the above parameters were organized so that every parameter was tested against
all possible values of the other parameters. Finally, every simulation was performed four
times; With and without the modeled notion of a thymus, and both of these combina-
tions was tested once with somatic hypermutation and once without. This resulted in 2 640
unique simulations.

6.4.1 RESULTS

To get an overview of the effect of the somatic hypermutation, the utility functions ∆A �
δn

and
∆A �δn

were averaged over all the n data sets in each simulation. Hence, the values ∆A � and
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Position T Tdeath

0 10 000 50 000
1 10 000 100 000
2 25 000 125 000
3 25 000 250 000
4 50 000 250 000
5 50 000 500 000

TABLE 6.4: The combinations of T and Tdeath used in the simulations and their ordering in the
overview graphs.

∆A � are defined as

∆A � � ∆A �δ1
� ∆A �δ2

� � � � � ∆A �δn

n
(6.5)

and

∆A � � ∆A �δ1
� ∆A �δ2

� � � � � ∆A �δn

n
(6.6)

respectively.
Figures 6.1 and 6.2 on the following page show ∆A � and ∆A � for simulations where the

costimulation delay γ
�

0 and the number of clones generated during clonal proliferation
ξ
�

10. In Figure 6.1 the sensitivity tuple
�
α � , α ��� � �

1.2, 0.8 � , while in Figure 6.2
�
α � , α ��� ��

1.333, 0.9 � . Note that because of the definition of ∆A � and ∆A � , the higher the value of a
data point, the better the effect of somatic hypermutation.

It should be noted that in the graphs summarizing ∆A
�

values like this, the values (pa-
rameters) along the horizontal axis are arranged by increasing values of r, but for each tick
indicating a new r-value, there are 6 data points, arranged in the order shown in Table 6.4.
Thus, for all the figures of this kind for this experiment, the values of T and Tdeath are ordered
as shown in the table.

Because of the huge amount of results generated by this simulation, the trends described
in the following are based on the set of all the results as a whole, while the graphs presented
and commented herein should be representative for these trends.

The graphs in figures 6.1 and 6.2 describe the general trend in the effect of utilizing so-
matic hypermutation when no thymus behavior is used, but affinity maturation is utilized.
First of all, the use of somatic hypermutation has a distinctive negative effect on ∆A � for
values of r

� �
6, 8 � . It should be noted, though, that the negative effect of using somatic hy-

permutation in this region seems to decrease with longer tolerization periods T and lifetimes
Tdeath for the detectors. It also seems that the negative effect in ∆A � in this region is slightly
biased towards higher values of r when using the

�
α � , α ��� � �

1.333, 0.9 � sensitivity tuple.
With respect to ∆A � , somatic hypermutation seems to have a negative effect for all values of
r in the range

�
6, 14 � , and that the negative effect is most significant in the range r

� �
8, 13 � .

The most couraging trend in the graph is however the effect of somatic hypermutation on
∆A � where r

�
10, independently of the sensitivity tuple used. This effect seems to increase

significantly for values of r
�

13.
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FIGURE 6.1: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10 and

the values for T and Tdeath are ordered as shown in Table 6.4 on the page before. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from using
somatic hypermutation. No thymus behavior was utilized, but affinity maturation
was used.
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FIGURE 6.2: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.333, 0.9 � , ξ � 10 and

the values for T and Tdeath are ordered as shown in Table 6.4 on the page before. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from using
somatic hypermutation. No thymus behavior was utilized, but affinity maturation
was used.
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FIGURE 6.3: How A �
plain, A �SH, A

�

plain and A
�

SH for each data set vary when somatic hypermuta-
tion is and is not used. The parameters used for this simulation were the same as
the ones used in Figure 6.1 on the preceding page, with the combination of r � 13,
T � 50 000 and Tdeath � 250 000.

Figure 6.3 shows how the alarm rates A �plain, A �SH, A �plain and A �SH vary when the differ-
ent data sets of the simulation are monitored. The parameters used were the same as in
Figure 6.1 on the preceding page, except that this figure shows the details behind one indi-
vidual data point (r

�
13, T

�
50 000 and Tdeath

�
250 000). The thickness of the bars in

the bar chart does not reflect the number of agents in each data set, and the behavior of the
AIS during the first occurrence of STrain is ignored, since the traffic monitored during this
period was used as the training set of the AIS. The figure shows that when using somatic
hypermutation the simulation has a significantly higher number of true alarms, but also a
slightly higher number of false alarms. There are also signs of something which resembles
a secondary response in the true alarm rates; the number of A � is higher during the second
exposure to the agents in the data set NAP than during the first response (note that the data
sets NAP and NPS are encountered in reverse order the second time). It should also be noted
that there is an insignificant number of false alarms during the second encounter of exposure
to the STrain data set.

The graph in Figure 6.4 on the following page shows how ∆A � and ∆A � vary when
somatic hypermutation is and is not used. The parameters used for this simulation were
γ
�

25 000,
�
α � , α ��� � �

1.2, 0.8 � , ξ
�

10 and the values for T and Tdeath are ordered as
shown in Table 6.4 on page 41. One of the most striking features of this graph is the values
on the ∆A

�

axis. These values are extremely small, compared to the previous examples. The
second thing to notice is that the clean pattern shown in the previous graphs is not present.
These features are characteristic for all the results where the costimulation delay γ

�
25 000,

i.e., approximately 1 day. There is one trend that seems to be persistent in these graphs
where long costimulation delay were used, and that is the tendency that the absolute values
of ∆A

�

get higher, the higher the value of r.
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FIGURE 6.4: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 25 000,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from using
somatic hypermutation. No thymus behavior was utilized, but affinity maturation
was used.
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FIGURE 6.5: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from
using somatic hypermutation. No thymus behavior was utilized, and no affinity
maturation was used.
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FIGURE 6.6: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.333, 0.9 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from
using somatic hypermutation. No thymus behavior was utilized, and no affinity
maturation was used.

The experiment also explored an alternative implementation of somatic hypermutation
that does not use affinity maturation. During clonal proliferation all detector offspring be-
came memory detectors without the requirement that they expressed equal or higher affinity
to the triggering agent than the detector first recognizing the agent. The results of these sim-
ulations are shown in figures 6.5 and 6.6. Surprisingly, this approach did not affect the ∆A �
values as much as expected. But, as is shown in Figure 6.6, when a more aggressive sensi-
tivity tuple

�
1.333, 0.9 � is used, some of the positive characteristics become more apparent

(compare the range r
� �

6, 8 � in the two figures). Note that the ∆A
�

axis is different in the
two figures. In addition, it should be noted that the negative effect seen in A � in figures 6.1
and 6.2 on page 42 when r

� �
6, 8 � seems significantly reduced when no affinity maturation

was utilized.
Finally, the role of the modeled thymus behavior was tested. Figure 6.7 on the next

page shows the trends when this feature was used. There were few dramatic changes in the
behavior of the AIS by utilizing this notion of a thymus, but the gain in ∆A � that somatic
hypermutation gave in Figure 6.1 on page 42 for r

�
14 seems to be slightly amplified in

these simulations.
To get an impression of the overall behavior of the AIS during these simulations, two

additional measures are introduced. The average alarm rates A � and A � are defined as

A � � A �δ1
� A �δ2

� � � � � A �δn

n
(6.7)

and

A � � A �δ1
� A �δ2

� � � � � A �δn

n
(6.8)
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FIGURE 6.7: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from
using somatic hypermutation. Both thymus behavior and affinity maturation were
utilized.
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FIGURE 6.8: How A
�

and A � vary when no somatic hypermutation is used. The parameters
used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � and the values for T and

Tdeath are ordered as shown in Table 6.4 on page 41. The same parameters were
used in Figure 6.1 on page 42. No thymus behavior was utilized.
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respectively. Figure 6.8 on the preceding page shows how A � and A � vary when no so-
matic hypermutation is used. The parameters used for that set of simulations were γ

�
0,�

α � , α � � � �
1.2, 0.8 � , and no thymus behavior was utilized. The other values, T and Tdeath,

were ordered as shown in Table 6.4 on page 41. One of the most significant trends to notice is
that there are close to zero true alarms A � when r � 6, and that for r

�
6 the AIS is quite ef-

fective for detectors with short tolerization periods T and short lifetimes Tdeath. The decline
in A � , with longer tolerization periods and lifetimes that was seen when r

�
6, is also seen

for r
�

7, although the general level of A � is higher for this value of r. When 8 � r � 10 the
level of A � is at its maximum, because

A � � A �NAP
� A �NPS

� A �STrain
� A �NPS

� A �NAP

5
and A �STrain

�
0.

This means that when all the alarm rates for the nonself data sets equals 1.0, the maximum
level of A � � 0.8. Where r

�
11 the trend is that there are fewer true alarms the higher the

value of r. With respect to the false alarm rates, these seem to decline with the length of both
the tolerization period and the lifetime of the detectors, with maximum level of false alarms
where r

� �
7, 8 � . Where r

�
13, there are close to zero false positives.

6.5 DIFFERENT NETWORK TRAFFIC AND

HIGHER VALUES OF r

Another experiment, consisting of 3 360 simulations, was conducted. Here, an AIS was sim-
ulated with different data sets as input than in the experiment described in Section 6.4. Now
the input was STrain, NLP1 , STest, NLP2 , NAP, NPS, STest, NLP3 , NAP, NLP3 , NPS and NSP1 (in that
order). Thus, this simulated network traffic contained more varied nonself traffic than the
first experiment. In addition, because the STest data set was used, this experiment would
test how the AIS behaved when parts of the self set was not present in the training set. The
total duration of the simulated situation was 1 658 348 time steps, which corresponds to ap-
proximately 66.3 days. This means that these simulations were much shorter than the ones
monitored during the first experiment.

Most of the parameters were kept identical to the ones in the first experiment, but some of
them where changed. Notably, the matching constraint r

� �
4, 17 � , the sensitivity tuples were�

1.2, 0.8 � (not changed) and
�
1.333, 0.8 � , and the maximum number of immature detectors

DImax
�

30. The other parameters were kept. The different combinations of tolerization pe-
riods T and the detector lifetimes Tdeath was still arranged as shown in Table 6.4 on page 41.
The motivation behind this experiment was to see how the AIS behaved with different and
more varied input, and if the positive trend seen in the first experiment, with high values
of ∆A � when using somatic hypermutation in the range r

�
10, would improve with even

higher values of r.

6.5.1 RESULTS

In general, the results of the simulations performed during this experiment strengthened
the findings of the first experiment. In general the trends seen in the results from the first
experiment for r

� �
4, 14 � are very much the same as the ones seen in the results from the

second experiment. The results of this experiment are presented in figures 6.9 to 6.20 on
pages 48–54.
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FIGURE 6.9: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from using
somatic hypermutation. No thymus behavior was utilized, but affinity maturation
was used.
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FIGURE 6.10: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.333, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41.
The higher the value of both ∆A

�

and ∆A � , the higher the performance gain
from using somatic hypermutation. No thymus behavior was utilized, but affinity
maturation was used.
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FIGURE 6.11: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 25 000,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41.
The higher the value of both ∆A

�

and ∆A � , the higher the performance gain
from using somatic hypermutation. No thymus behavior was utilized, but affinity
maturation was used.

When comparing Figure 6.1 on page 42 to Figure 6.9 on the preceding page, which share
the same parameter settings, one can see that in the region r

� �
4, 14 � the graphs are very

similar, and that the positive trends seen where r
�

13 in the first graph continues even
further and more positive in the second graph.

The new sensitivity tuple
�
1.333, 0.8 � seems to have the same effect on the number of

both true and false alarms in Figure 6.10 compared to Figure 6.9 as the sensitivity tuple�
1.333, 0.9 � had in Figure 6.2 compared to Figure 6.1 on page 42.

Just as seen in the first experiment, when the costimulation delay γ
�

25 000 the signa-
ture of the simulations become less regular. There is also a tendency that when the sensitivity
tuple is more aggressive; i.e.,

�
α � , α � � � �

1.333, 0.8 � there are higher true alarm rates than
when it is not. It is also a tendency that the false alarm rate is little affected by the use of
somatic hypermutation when γ

�
25 000. These trends may be seen in Figure 6.11 and in

Figure 6.12 on the following page. The values on the ∆A
�

axes are much smaller than the
ones seen when γ

�
0.

The most encouraging findings during this experiment, however, is that the positive
effect of somatic hypermutation continues for r

�
13. This may also be seen in figures 6.13

and 6.14 on page 51. Figure 6.13 and Figure 6.14 on page 51 also show the behavior of the AIS
when both thymus behavior and affinity maturation was utilized. None of the figures show
any decrease in the level of ∆A � where r

� �
6, 7 � when comparing Figure 6.13 and Figure 6.14

with Figure 6.9 on the preceding page and Figure 6.10 on the facing page, respectively. On
the other hand, by comparing the same figures in the region r

�
13, a slight increase is

noticed when thymus behavior is used.
Figure 6.15 on page 51 shows the effect of using affinity maturation combined with thy-

mus behavior at the data set level when r
�

16, T
�

50 000 and Tdeath
�

250 000. It clearly
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FIGURE 6.12: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 25 000,

�
α

�

, α � � � �
1.333, 0.8 � ,

ξ � 10 and the values for T and Tdeath are ordered as shown in Table 6.4 on
page 41. The higher the value of both ∆A

�

and ∆A � , the higher the performance
gain from using somatic hypermutation. No thymus behavior was utilized, but
affinity maturation was used.
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FIGURE 6.13: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from us-
ing somatic hypermutation. Both thymus behavior and affinity maturation were
utilized.
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FIGURE 6.14: How ∆A
�

and ∆A � vary when somatic hypermutation is and is not used. The
parameters used for this simulation were γ � 0,

�
α

�

, α � � � �
1.333, 0.8 � , ξ � 10

and the values for T and Tdeath are ordered as shown in Table 6.4 on page 41. The
higher the value of both ∆A

�

and ∆A � , the higher the performance gain from us-
ing somatic hypermutation. Both thymus behavior and affinity maturation were
utilized.
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FIGURE 6.15: How A �
plain, A �SH, A

�

plain and A
�

SH for each data set vary when somatic hypermuta-
tion combined with affinity maturation and thymus behavior is and is not used.
The parameters used for this simulation were the same as the ones used in Fig-
ure 6.13 on the facing page, with the combination of r � 16, T � 50 000 and
Tdeath � 250 000.
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FIGURE 6.16: How A �
plain, A �SH, A

�

plain and A
�

SH for each data set vary when somatic hypermuta-
tion combined with affinity maturation and thymus behavior is and is not used.
The parameters used for this simulation were the same as the ones used in Fig-
ure 6.15, except that r � 7.

shows how the AIS is able to detect several nonself agents in all the nonself data sets when
somatic hypermutation is used, but that it misses all nonself agents in some of the data sets
and generally has a low true alarm rate when somatic hypermutation is not used. It should
also be noted that with this high value of r, the AIS does not match any of the strings in STest
neither with nor without somatic hypermutation, and it generally has a very low number of
false alarms.

Figure 6.16 shows the effect of utilizing affinity maturation and thymus behavior com-
pared to not using these mechanisms. One can see that when somatic hypermutation is
utilized, the AIS performs worse over time than when it is not. Note that the AIS is exposed
to the data sets in the order they are presented in the figure, from left to right.

To give an overall impression of the behavior of the AIS under different conditions, fig-
ures 6.17 to 6.19 are included. Figure 6.17 on the facing page shows how A � and A � vary
when no somatic hypermutation is used and

�
α � , α � � � �

1.2, 0.8 � and the values for T and
Tdeath are ordered as shown in Table 6.4 on page 41. There is a clear increase in the number
of true alarms as the value of r gets higher in the range r

� �
4, 8 � . In the range r

� �
8, 12 � the

true alarm rate A � is at its maximum, while it decreases as r gets higher when r
�

13.
Figure 6.18 on the facing page also shows how A � and A � vary, but with somatic hy-

permutation and affinity maturation. The differences is notably that A � does not reach its
maximum until r

�
9 and that the significant decrease does not start until r

�
14.

Figure 6.19 on page 54 shows how A � and A � vary when somatic hypermutation, affinity
maturation and thymus behavior is utilized. The trends in this figure are very similar to
those in Figure 6.18, but with a higher values of A � when r

�
14.

Figure 6.20 on page 54 shows how A � and A � vary when no somatic hypermutation is
utilized and with costimulation delay γ

�
25 000. Most notably is the pyramid shape of
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FIGURE 6.17: How A
�

and A � vary when no somatic hypermutation is used. The parameters
used for this simulation were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � and the values for T and

Tdeath are ordered as shown in Table 6.4 on page 41. The same parameters were
used in Figure 6.9 on page 48. No thymus behavior was utilized.
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FIGURE 6.18: How A
�

and A � vary when both somatic hypermutation and affinity matura-
tion are used. The parameters used for this simulation were γ � 0,

�
α

�

, α � � ��
1.2, 0.8 � and the values for T and Tdeath are ordered as shown in Table 6.4 on

page 41. The same parameters were used in Figure 6.9 on page 48. No thymus
behavior was utilized.



54 Chapter 6. Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6 7 8 9 10 11 12 13 14 15 16 17

PSfrag replacements

A

�

A �
A �

r

FIGURE 6.19: How A
�

and A � vary when both somatic hypermutation and affinity maturation
are used combined with thymus behavior. The parameters used for this simula-
tion were γ � 0,

�
α

�

, α � � � �
1.2, 0.8 � and the values for T and Tdeath are ordered

as shown in Table 6.4 on page 41. The same parameters were used in Figure 6.9 on
page 48. No thymus behavior was utilized.
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FIGURE 6.20: How A
�

and A � vary when no somatic hypermutation is used. The parameters
used for this simulation were γ � 25 000,

�
α

�

, α � � � �
1.2, 0.8 � and the values for

T and Tdeath are ordered as shown in Table 6.4 on page 41. The same parameters
were used as in Figure 6.9 on page 48. No thymus behavior was utilized.
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FIGURE 6.21: How A
�

and A � vary when no somatic hypermutation is used, but thymus be-
havior is utilized. The parameters used for this simulation were γ � 25 000,�
α

�

, α � � � �
1.2, 0.8 � and the values for T and Tdeath are ordered as shown in

Table 6.4 on page 41. The same parameters were used as in Figure 6.20.

the alarm rate level with a maximum when r
� �

10, 11 � and the scale of the A
�

axis which
is extremely small compared to the graphs where γ

�
0. The number of false alarms is

also at its maximum in the region where r
� �

10, 11 � . Most of these features are present in
Figure 6.21 too, except that when r � 9 the thymus behavior seems to increase the number of
true alarms quite dramatically, while there is a slight increase in the number of false alarms.

Figure 6.22 on the following page shows how A �plain, A �SH, A �plain and A �SH vary at the
data set level, when the costimulation delay γ

�
25 000. A persistent feature present in

most of the simulations where γ
�

25 000 during the second experiment is that the even
though there are low values for A

�

, there are higher values for A � than for A � , and there
are some true alarms occurring while monitoring each nonself data set except during the
second occurrence of NLP3 .
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FIGURE 6.22: How A �
plain, A �SH, A

�

plain and A
�

SH for each data set vary when somatic hypermuta-
tion, combined with affinity maturation and thymus behavior, is and is not used.
The parameters used for this simulation were γ � 25 000, r � 10, T � 25 000 and
Tdeath � 250 000.



CHAPTER 7

DISCUSSION

The DAIS is a working prototype of a AIS-based NID. While it was used solely for controlled
simulations in the experiments presented in Chapter 6, it is also able to function as a real-life
AIS-based NID system by monitoring network traffic dumped by TCPdump.

7.1 LIMITATIONS OF THE EXPERIMENTS

The simulated NID was monitoring TCP SYN packets only. This is an important limitation,
in that there is much more data being sent over the TCP in general than just SYN packets. In
addition, it is very limiting for a NID system to only monitor a single protocol, as mentioned
in Section 3.4.

The exclusion of some types of network traffic, such as, e.g., HTTP and FTP server traffic,
in the datasets used for the simulations, was intended. This limitation was introduced due to
the continuously changing array of new clients connection to the services. With the peptide
encoding used in DAIS, this kind of “randomness” would probably increase the number of
false alarms to a level where the introduction of such a system would have no use. On the
other hand, it might be possible in the future to find ways in which AIS-based NID systems
may monitor such services too.

Another limitation, or constraint, is that the results presented in Chapter 6 are representa-
tive for how the AIS behaves the data sets used. Thus, the discussion below will be based on
the assumption that these data sets are representative for real-world network traffic. As will
be discussed in Section 7.6, one of the apparent problems when performing NID research is
that acquiring good data sets is a difficult task.

Finally, the parameters used for the experiments clearly defines some of the limitations of
this experiment. First of all, only two different values were used for the costimulation delay
γ, namely 0 and 25 000. In addition, these choices of γ are very far apart when counted in
time units, but the idea behind using γ

�
25 000 is that it models the worst case of how the

AIS will behave when an external source may provide costimulation within 1 day. Also, the
maximum sizes of the subpopulations were kept constant, with the exception of the number
of immature detectors, DImax. The number of mature detectors DNmax

�
70 and memory

57



58 Chapter 7. Discussion

detectors DMmax
�

100 were fixed during the simulations, while DImax was changed from 40
in the first experiment to 30 in the second one. There may be some interesting characteristics
of the AIS that would be shown if the parameters mentioned above were changed, but due
to the huge sizes of the experiments, some limitations had to be introduced.

7.2 INTERPRETATION OF THE RESULTS

There were several trends present in the results presented in Chapter 6. One of the most
important ones for answering the hypothesis stated in Section 4.5.1 is that the use of clonal
selection combined with somatic hypermutation to model affinity maturation in the AIS
certainly affects the systems ability to distinguish between self and nonself.

When interpreting the results of the experiments, it is important to mention what is the
wanted behavior of the AIS as a NID. The ideal behavior would be if the AIS would recog-
nize all connections, and also discriminate effectively between self and nonself connections,
so that the number of true alarms is as high as possible, and that the number of false alarms
is as low as possible.

7.2.1 SOMATIC HYPERMUTATION

The trend most stable throughout the graphs is the added number of false alarms where
r
� �

6, 13 � when utilizing somatic hypermutation. This characteristic did not change much
whether affinity maturation or thymus behavior was utilized. The number of false alarms
was not significantly higher when using somatic hypermutation than not in the area where
r � 6 and r

�
14.

The reason there is no notable difference when r � 6 is probably that the AIS performs
very bad for those values of r in general. As mentioned in Section 4.3.1, lower matching
thresholds, r-values, during tolerization result in more general detectors. But, with too low
matching thresholds, the AIS will need an extreme amount of retries to generate each valid
detector; i.e., due to negative selection, most of the immature detectors die before they be-
come mature. By evaluating R1 � 2

�
r,
� � from (4.12) with r

�
6 and

� �
49, one can see that

the probability of a match between a newly created immature detector (which is randomly
created) and a randomly chosen bit string is 30.9%; and with r

�
4, this probability has in-

creased to 82.1%. This reflects the fact that because of the low r-values compared to the total
length of the peptides, there is an increased probability that other peptides (self or nonself)
contains a matching sequence of bits. This, of course, is also related to the use of alphabets
with cardinality m

�
2. To become a mature detector, however, an immature detector has

to avoid matching any agents during tolerization, and as the probabilities above show the
probabilities of not matching a detector once is very low. On the other hand, it should be
noted that the self set is not as uniformly distributed as completely random strings. But,
for somatic hypermutation to have any effect at all, there need to be some mature detectors
present in the population D, so if D

�
∅ no connections will be detected.

The few occurrences of gains in the false alarm rate when r � 6 is probably also related
to the above mentioned fact. As there probably are few valid detectors in the population
of detectors when such low values of r are used, any activation is likely to trigger a clonal
proliferation of memory detectors which, in turn, are instantly activated when recognizing
nonself peptide.
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FIGURE 7.1: The development of the population of detectors D. The circles represent the sub-
populations, where DI consists of immature detectors, DN consists of mature detec-
tors and DM consists of memory detectors. ξ denotes the number of clones which
are created during somatic hypermutation.

The number of false alarms introduced by utilizing somatic hypermutation increases
from r

�
6 to r

�
9 and decrease from r

�
10 to r

�
14. This is probably caused by the way

affinity maturation is implemented in DAIS. As mentioned earlier, two different approaches
to somatic hypermutation were implemented. In the first one, which utilize affinity matura-
tion, the mutated daughter cells of a detector which exhibit higher affinity to the agent that
activated become memory detectors. In the second implementation of somatic hypermuta-
tion, all daughter cells of the cloned detector become memory detectors. This means that
no matter which of the two somatic hypermutation implementations are used, the cloned
daughter cells become memory detectors immediately, without going through maturation,
in the form of negative selection. In addition, because they are memory detectors, anything
they match will cause an activation. When short contiguous matching regions are used, e.g.
r
�

10, the probability of creating a clone which binds (with high enough affinity) to other
peptides than the originally detected agent is increased. The cause of the high false alarm
rates may be that these clones will possibly also detect self.

If the above phenomenon is the only one affecting the false alarm rate when somatic
hypermutation is utilized, the number of false alarms should be higher for r

�
6 than for

r
�

9, which it is not (see, e.g., Figure 6.18 on page 53). A probable explanation for this is that
the rate of false alarms introduced by somatic hypermutation in the region where r � 9 is
reduced by the lower number of alarms in general (both true and false) in that region. Thus,
this trend in alarm rates seems to be caused by a combination of the higher probability of
introducing autoimmune detectors, and that too low matching thresholds make it difficult—
it requires more retries—to create a detector set D which effectively differentiates between
self and nonself.

The negative effect on the rate of true alarms when r � 9 is probably caused by another
related phenomenon. Figure 7.1 shows how detectors over time are moved from one sub-
population to another in the AIS. First, when the system starts its training period, to generate
a set of valid detectors, the AIS comprises DImax randomly generated immature detectors, so
that � DI � � DImax, � DN � � 0 and � DM � � 0. As discussed above, with lower values of r, the
AIS requires more retries to generate each mature detector by utilizing negative selection.
However, when a mature detector is activated and receives costimulation, it is transfered
from DN to DM and undergoes somatic hypermutation; thus, DN is reduced by 1 mature de-
tector while 1 � ξ memory detectors are inserted into DM. Even though the mature detectors
require multiple matches within a limited time period before they are activated, with low r
values they are likely to be transfered into DM faster than new mature detectors are gener-
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ated during negative selection. Hence, if a sufficient number of nonself agents are detected
in a short time, � DN � may become 0. This effect, combined with the fact that memory detec-
tors are activated by a single match, and thus undergo somatic hypermutation—where the
LRU memory detectors are replaced by newly generated ones—may lead to the evolution of
a population consisting of detectors with very little diversity, and hence little ability to detect
nonself agents. This factor seems to be the reason that the AIS performs worse when using
somatic hypermutation than when not using it, for r � 9, and offers a plausible explanation
to the negative trend that was seen throughout the results when r � 9. This can be seen at
the data set level in Figure 6.16 on page 52.

The positive effect of somatic hypermutation, seen where r
�

14, is likely due to the effect
somatic hypermutation and affinity maturation have in the IS. When a detector is activated,
by recognizing a nonself agent, it undergoes clonal proliferation, with a high probability of
mutation in the daughter detectors’ recognition regions. The daughter detectors compete
with other detectors and clones to bind with nonself agents. The higher the affinity between
a detector and monitored agents, the more likely it is to be activated, and thus cloned again.
It also seems natural that there is a lower number of false alarms while using somatic hyper-
mutation when r � 14, as this means that there is only a low probability that a single point
mutation should enable a cloned detector to recognize a lot of different self agents.

The effect of the costimulation delay γ observed throughout the results first of all seems
to reduce the fraction of both true and false alarms dramatically, as can be seen in Fig-
ure 6.20 on page 54. Still, the AIS was able to detect intrusions in almost all the data sets
during the second experiment, see Figure 6.22 on page 56. The exception was the second
time during each simulation that the AIS was exposed to agents in the NLP3 dataset. This
seems to be caused by the way binding between detectors and agents is implemented in
DAIS. When a memory detector is activated, it binds to the activating agent. If the same de-
tector matches any other agents while it waits for its costimulation, it is not activated again.
Hence, no true alarm is registered either. This seems to cause the detectors to be bound to
agents from the first encounter with NLP3 the second time that data set is encountered.

Since detectors that do not receive costimulation die, the use of costimulation may be
regarded as a form of reinforcement learning. When the costimulation delay, which plays
the role of a reinforcing signal, gets longer, the learning of the AIS gets slower. This would
explain the dramatically lower true and false alarm fractions when γ

�
25 000 than when

γ
�

0.

7.2.2 THYMUS BEHAVIOR

The exploration of the thymus behavior, as defined in Section 5.4.3 has not been the primary
focus of this work. However, it is an interesting mechanism that deserves a closer look. By
the experimental results presented in Chapter 6, it seems that the thymus behavior, as mod-
eled herein, does not affect the overall operation of the AIS much. However, under some
circumstances, it causes a notable difference. The difference is very clear when comparing
Figure 6.21 on page 55 where thymus behavior is used to Figure 6.20 on page 54 where it is
not used. The trend is that when r � 9, the thymus behavior seems to add a significant num-
ber of true alarms, but also a slight increase in false alarms. This trend is probably caused by
the fact that with low r-values it is difficult to generate a detector set with a sufficient cover,
but with the utilization of the implemented thymus behavior it seems likely that several self
agents are matched by either mature or memory detectors and thus will not cause apoptosis
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among the immature detectors.

7.2.3 CONSEQUENCES

What follows is a summary of the above discussion and some of its consequences. First
of all, it should be noted that some of the results presented and discussed herein seems to
be highly dependent on the way certain IS-inspired mechanisms are implemented in DAIS.
For example, as has been shown above, the AIS is very sensitive to variations in r, the r-
contiguous match matching threshold. By replacing parts of the AIS with other algorithms,
the results may be quite different.

The results indicate that when detectors with a high level of specificity, r
�

14, are used,
the utilization of clonal proliferation combined with somatic hypermutation enhances the
ability of the AIS to detect a higher fraction of nonself agents without adding a significant
number of self activations. This finding should answer the hypothesis presented in Sec-
tion 4.5.1, but not without exceptions. These exceptions will be summarized below.

With low r-values, r � 9, the use of somatic hypermutation dramatically reduces the
number of true alarms. This seems to happen because there is not generated enough valid
detectors through negative selection while at the same time somatic hypermutation leads to
the emergence of a population with extremely low diversity. The process of affinity mat-
uration may be seen as a Darwinian process of variation and selection, but the way it is
implemented in DAIS, it does not alone introduce enough variation into the population of
detectors for a population with an adequate cover to emerge. However, if affinity matu-
ration is utilized in populations where a sufficient number of new detectors are constantly
generated through negative selection, it will lead to the emergence of a population with a
larger cover than when it is not utilized.

Based on the above findings, it seems likely that with somatic hypermutation one will
be able to either achieve a higher level of coverage with the same population size as when
it is not used, or to keep the same level of coverage by using a smaller population. As
mentioned in Section 4.5.1, the gain of using higher r-values is that then the AIS needs fewer
retries to generate a valid detector, while the cost is that there is needed a larger population to
achieve the same level of coverage. With somatic hypermutation it should hence be possible
to generate a population of valid detectors with higher specificity faster than without. These
aspects are all concerning the resource usage of the AIS. In short, the findings herein suggest
that somatic hypermutation may be used to decrease the resource consumption by a AIS.
The importance of this will be discussed further in Section 7.4.2.

Another finding, not related to somatic hypermutation, should also be noted. In (Hofmeyr
and Forrest 2000) the ARTIS architecture is presented along with some results of simulations
performed with an AIS implementation called LISYS. Although the implementation by no
means is identical with DAIS, it implements some of the same IS-inspired mechanisms—but,
e.g., not somatic hypermutation or affinity maturation. The simulations were performed
using the same data sets as used herein, although probably not in the same order, and
with a costimulation delay of 25 000 and a population size of 100 detectors per location
in their simulated network consisting of 50. The simulations suggested an optimal opera-
tion with r

�
12, while under almost the same conditions, the results presented herein, see

Figure 6.20 on page 54 suggest an optimal value of r
�

10 or r
�

11. Later, when performing
new tests with LISYS with a newer data set, Balthrop, Forrest, and Glickman (2002) reported
a lower optimal value for r

�
10.
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7.2.4 POSSIBLE IMPROVEMENTS

The findings in the interpretation of the results suggest some improvements of the somatic
hypermutation algorithm implemented in DAIS. It seems that if the clones generated dur-
ing somatic hypermutation had to undergo some kind of negative selection, then somatic
hypermutation would hopefully not introduce as many false alarms as now, when r � 14.
However, for values of r � 9 there would probably still be a problem with somatic hyper-
mutation destroying the diversity of the population, which in turn causes a strong decrease
in the number of true alarms reported.

Another improvement would be to find a better way to handle the binding of an detector
to an agent when costimulation delays γ � 0 are used. One of the apparent problems with
the current implementation is that one detector binds to one agent, and since the AIS should
use as few resources as possible, the suggestion is put forward to let detectors that are bound
to agents be “activated” multiple times. This way, each detector will represent an unlimited
array of such identical detectors. The problem this introduces is that of how to determine
which one of the activating agents should be used to test for affinity during affinity matura-
tion. One simple solution would be simply to use the first activating agent, but there may be
better ways.

7.3 POSSIBLE SOURCES OF ERROR

The TCPdump program, which was used for dumping the network traffic while creating the
data sets, can become overloaded and drop packets, although the possibility of this happen-
ing is reduced by using low data rates.

7.4 THE ROLE OF ARTIFICIAL IMMUNE SYSTEMS IN

NETWORK INTRUSION DETECTION

The exploration of AIS-based NID systems has just been started, so there is a lot of work to be
done before one knows enough to safely deploy AIS-based NID systems in real-world LANs.
The results presented herein indicate that it may very well be tested in real-world networks,
but that it should not be used as a primary line of defense against network intrusions.

As mentioned in Section 3.6 one of the current trends in LAN technology is that orga-
nizations change from broadcast to switched LAN technology. One of the great features of
DAIS is that even though it is distributed, it does not depend on any information being sent
between the nodes in the LAN to describe the problem other than the broadcasted network
traffic. The nodes are still able to cooperate to solve the overall problem—to detect anoma-
lies in the network traffic—as they all get the same information about the status of the LAN.
In a switched network, this will not be possible by with the peptides currently used by DAIS.
It should be noted that there are mechanisms implemented into DAIS which easily enables
the simulation of switched LANs, but the peptide-problem remains. Dasgupta and Forrest
(1996) has shown that their classifying AIS showed good abilities of novelty detection in
time series data. This should be encouraging with respect to designing an effective pep-
tide-representation for use in switched networks, as one of the possible ways to distribute
information of the overall status of a switched LAN seems to depend on the distribution of
different frequencies of various events. Another, banal, solution would be to alter the behav-
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ior of the network switch to broadcast all network information, just like a network hub. This
may actually be done with a technique used in security cracking.

The field of ID has evolved rapidly in the last few years. Still, several important issues
remain to be solved. Kemmerer and Vigna (2002) present some of the open issues in the field
of ID:

First, detection systems must be more effective, detecting a wider range of at-
tacks with fewer false positives. Second, intrusion detection must keep pace with
modern networks’ increased size, speed, and dynamics. Finally, we need analy-
sis techniques that support the identification of attacks against whole networks.

The role of AISs applied to NID with respect to these issues will be discussed below.

7.4.1 PERFORMANCE

Simply detecting a variety of events of interest is not enough. An efficient IDS should also
keep up with the stream of data generated by high-speed networks and high-performance
network nodes. As stated by Kemmerer and Vigna (2002), the combination of increasingly
fast networks and faster network nodes has the effect that system administrators who try to
analyze their log files are confronted with mountains of data.

The results presented herein suggests that DAIS is well suited for this kind of task. As it is
distributed, with small subpopulations that work together to detect network intrusions, the
workload of monitoring the network traffic is divided on the number of hosts performing
the task. The fact that no communication is required between the different nodes makes
DAIS robust too, since even if some locations, or nodes, stop running the performance of the
AIS is only gradually reduced.

In addition, the findings of the experiments performed in this thesis work suggest that
with somatic hypermutation it is possible to achieve that same level of coverage—and hence
the ability to detect nonself—with less detectors

7.4.2 STRIVING FOR AUTONOMY

Even though DAIS seems well suited to the task of coping with the vast stream of data gen-
erated by high-speed networks, there are some issues related to performance and efficiency
worth discussing.

The implemented AIS-based NID, DAIS, has been used to simulate two different scenar-
ios with respect to the length of the costimulation delay γ. When γ

�
25 000 it is meant to

model a LAN where a human operator provides the second signal which an activated detec-
tor will depend on. If the detector does not receive costimulation, it dies. Thus, the default
assumption made by the AIS is that the activation is a false positive. If, on the other hand, it
receives costimulation, it will live and undergo somatic hypermutation if it is utilized.

This behavior of assuming the activation was a false positive is not accidental. This
policy is used to strengthen the security of the AIS. Since DAIS is (or simulates that it is)
distributed over several hosts, the costimulation signal provided by a human operator must
be sent over some interface to the host where the particular detector is awaiting costimu-
lation. If the policy had been to assume that all activations are true positives—and hence,
let all activated detectors live, unless costimulation is received—an attacker of such a NID
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system might send false costimulation packets to the system to create an artificial tolerance
of nonself network traffic.

On the other hand, in an ideal situation the NID system will not depend on a human
operator, but operates autonomously. As many of the network intrusions seen today are
performed from various compromised hosts, the development of a NID system which, once
installed, does not depend on human expertise, will probably reduce the number of this kind
of attacks.

One of the really difficult kinds of attacks, which an AIS-based NID system with such
qualities probably would be able to stop—or to dramatically reduce the effect of—is dis-
tributed denial of service (DDOS) attacks. DDOS attacks usually utilize an array of com-
promised hosts to execute copies of programs that, when used together, are able to render
the victim hosts, or complete networks, unusable due to resource starvation or bandwidth
consumption; i.e., they run out of RAM, CPU-cycles, bandwidth or other resources needed
to run their services (Northcutt et al. 2001, pp. 189–232). As these attacks prove very diffi-
cult to handle when they are first executed, it seems that if one could avoid that the array
of computers used under such attacks got compromised in the first place, it perhaps reduce
the spread of such attacks. One solution could thus be to design an AIS which requires few
resources based on the idea presented below.

A suggestion as to how an AIS may be designed to implement these features, is to com-
bine a distributed AIS-based NID system, like DAIS, with another IS related idea, presented
by Forrest et al. (1996). They present a way to perform host-based anomaly detection by
monitoring peptides that represent short sequences of system-calls executed by processes.
Their overall idea is to build up a separate database for each process, or program, of inter-
est. Once a database is stable—i.e., no new sequences are added during normal operation
of the corresponding process—the database may be used to monitor that process’ ongoing
behavior. The stored sequences of system-calls thus define the normal behavior of the pro-
cess and, likewise, abnormal sequences indicate anomalies it the running process. The initial
experiments performed by Forrest et al. (1996) suggest that with this peptide encoding, the
implicit definition of self is stable during normal behavior of standard Unix programs.

By combining the above host-based anomaly detection method with DAIS there should
be several important gains. First of all the host-based anomaly detection may be used to
deliver costimulation for to activated detectors. This, in turn, would probably reduce the
costimulation delay considerably. It is not realistic that the costimulation delay would be
reduced to zero, but at least to a much lower level that 1 day. Perhaps it may be reduces to
something like a minute, which approximately corresponds to 17 time units in the simula-
tions performed herein. With this combination of host-based and network-based anomaly
detection the learning in the AIS should be faster, and hence better performance with respect
to the number of true and false positives is expected. This solution seems viable also by the
fact that DAIS, as it is implemented today, requires very few resources.

When discussing autonomous behavior of NID systems, it seems natural to look at the
possibilities the introduction of automated response in AIS-based NID systems might bring.

7.4.3 AUTOMATED RESPONSE

There are several aspects of automated response which make it worth striving for. First of
all, it is cheap with respect to what resources an organization will have to spend to utilize
it. Secondly, automated response is relatively easy to perform, compared responding to a
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possible intrusion manually. On the other hand the possibility of reacting to a false posi-
tive makes active automated responses hazardous. They might result in affecting innocent
parties. Thus, it would be safer if one could utilize passive automated responses.

Somayaji and Forrest (2000) present a way of performing host-based automated response,
by delaying system-calls in the OS. The computer program they describe, called process
Homeostasis (pH), is inspired by the homeostatic mechanisms which biological organisms
use to stabilize their internal state. It is implemented as an extension to the Linux kernel.
The program detects unusual behavior by monitoring changes in short traces of system-calls
and slows down the system-calls of processes classified as anomalous.

A related idea, based on the same principle, is to modify the NIC-drivers of the OS to
slowly stall detected network intrusions. There are other possibilities, such as blocking traffic
from hosts that have been detected as an possible intrusion at the firewall level of a LAN.
This response, on the other hand, is very aggressive and will possibly affect innocent parties.

7.4.4 THE WORM THREAT

A computer worm is a program that is able to spread itself from host to host in a network by
automating intrusions. It is generally suggested that if you suspect your LAN to be under
attack from a worm, you should cut off all connections to outside networks until the worm is
isolated and removed. Thus, the spread of this kind of malicious code can severely damage
a victim with regard to accessibility and time, which in turn may lead to great economic
losses.

Staniford, Paxson, and Weaver (2002) argue that future, better engineered, Internet worms
should be able spread to hundreds of thousands of hosts within minutes or even tens of sec-
onds. One of the main problems with these worms is that they may be controlled, modified
and maintained indefinitely; making it extremely difficult to detect these infective agents
with rule-based NID systems. The use of anomaly-based NID systems—including DAIS—to
prevent attacks of this kind seems very promising because they are able to detect malicious
code never encountered before.

7.4.5 NON-DETECTED INTRUSIONS

There are several ways to trick a AIS-based NID system like DAIS to not detect a network
intrusion. One of the obvious ways would be to perform the attack over a protocol not
monitored, i.e., not over TCP in this case. Another way is to design an attack so that it is
indistinguishable from self. This may be done simply by monitoring the normal—or self—
traffic over time, and try to find weaknesses in the programs that service self-connections.

Yet another—but much more sophisticated—way to succeed in an attack on this kind
of AIS-based NID system is to design an attack that is distributing its network traffic over
such a long period of time that none of the detectors gets activated. This kind of prolonged
attack could therefore be used against any kind of service in the network, even if they are
monitored by the AIS-based NID system.

Some of the symptoms mentioned above is caused by the chosen peptide encoding. The
lack of any frequency information seems to be one of the most important shortcomings of
the current implementation. On the other hand, it has been shown (Kim and Bentley 2001)
that finding good peptide encodings which takes traffic frequencies into account and work
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effectively with the IS inspired mechanisms used (such as r-contiguous match and negative
selection) is difficult.

For example, some network attacks, called SYN floods, try to exploit a flaw in TCP itself.
Figure 5.1 on page 28 shows how a three-way handshake is to be performed. During a
SYN flood attack, the client sends lots of the initial SYN packets, but not the ACK packets
expected in return after the server’s SYN/ACK packet has been sent (Northcutt et al. 2001).
Because the TCP is designed so that the communicating parties should wait when a possible
error has occurred, the server will wait for the response for some time. If the initiating SYN
packets are received frequently enough, this may lead to a resource starvation attack on the
server, because it needs to reserve memory for all the possibly initiated connections.

Now, if the attacking host is not part of the set of hosts normally connecting to the host
being attacked, this approach would probably be detected with the current peptide encod-
ing, because of the high frequency of connections which would probably activate some de-
tector, even if it is not a memory detector. On the other hand, if the attacking host is part of
the set of hosts normally connecting to the host under attack, there is a low probability that
any of the detectors will match the Ag peptide at all; therefore the attack would probably
succeed undetected. This last kind of attack should not be difficult to detect, if one used
some temporal and/or sequencing information in the peptide encoding.

7.5 PEPTIDE ENCODINGS USED BY OTHERS

Kim and Bentley (2001) argue that the peptides, used by Hofmeyr (1999), Hofmeyr and
Forrest (2000) and herein, which is based on an encoding of three-way handshakes as strings
of letters from an alphabet with cardinality m

�
2 (i.e., binary) with length

� �
49 is very

limited in order to detect various types of network intrusions.
Kim and Bentley use a wider definition of self which takes into account 33 different pa-

rameters, derived from TCPdump data logs1. Their self definition includes both the source
and destination IP addresses and IP ports, indications of known port vulnerabilities, in-
dications of errors during the three-way handshake and traffic intensity. This resulted in
encoding peptides as strings of length

� �
33 consisting of symbols from an alphabet with

cardinality m
�

10, i.e., every element, e, of the string may be any value in the range
�
0, 9 � .

Now, as was presented in Section 4.3.1 and Figure 4.4 on page 23, the r-contiguous match
rule is quite insensitive, with regard to the probability of a match, to changes in

�
, while it

is very sensitive to changes in the values of r. Kim and Bentley (2001, p. 1334) made the
assumption—by using (4.2)—that the probability for a match at any one single position in
the string s was p

� 1
m ; i.e., there is an equal chance that a symbol s i in the string s is any

one of the symbols si
� �

0, m
�

1 � . Then, Figure 7.2 on the next page shows how the values
of r and

�
affect the probability of a match between two randomly chosen strings of length

�
with cardinality m

�
10. Still, the r-contiguous match rule is little sensitive to changes in

�
.

On the other hand, it should be noted how the change of cardinality, m, affects the matching
probabilities.

A consequence of using strings of cardinality m
�

10 is that the number of possible

1Kim and Bentley (2001) used the “Information Exploration Shootout” NID data set, available from http:
//iris.cs.uml.edu:8080/. These data sets comprise 1 “baseline” (or self set) and 4 attack sets. The self set
includes only normal traffic, while the attack sets include normal traffic and attack data. The attacks present are
“IP spoofing attack”, “guessing rlogin or ftp passwords”, “scanning attacks” and “Network Hopping”.
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FIGURE 7.2: How the the choice of r and � affects the probability of a match, using the contigu-
ous match rule.

strings to construct is increased from 2
�

to 10
�
. This is a huge increase. The number of

unique strings with
�
�

33 and m
�

10 is 1033 � 249 � 533 � 216 � 1.776 36 � 1018 times greater
than the number of unique strings of

�
�
49 and m

�
2.

Kim and Bentley report that they used two different r-values, r
�

4 and r
�

9. When
r
�

4 they were not able to generate one valid detector in 24 hours, but with r
�

9 they were
able to produce a valid detector in a reasonable time. They further report that with r

�
9,

the number of detectors needed to gain a good nonself detection rate is too high. Thus they
argue that the negative selection algorithm is infeasible for the purpose of generating a set
of valid detectors in a reasonable amount of time, and has a severe scaling problem.

Even though the above presentation of the extremely expanded search space during such
an approach by no means is a proof of any kind, it suggests that Kim and Bentley (2001) may
have chosen an inappropriate combination of peptide representation and matching rule to
solve their problem.

7.6 NEED FOR MORE DATA SETS

Another important point to be made from the experiments performed is that there is a great
need for more experimental data sets. To be able to perform reliable future experiments,
there is a need for data sets that contain both different TCP traffic and perhaps also data
from other protocols.

This requires a lot of work, as every connection should be correctly classified a priori
of the experiments. This work will probably need to be performed manually. In addition,
such data traces reveal how the networks where they are generated are organized. They
may also reveal possible weaknesses in the hosts comprising those networks. Because of
this, there are several privacy concerns to be made. If universities or other institutions are
to provide such data sets to the public—mostly researchers and perhaps some commercial
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FIGURE 7.3: The difference between (4.2) and (4.12) in predicting the probability for a matching
between two randomly chosen strings consisting of letters from an alphabet with
cardinality m � 10, using the contiguous match rule when r changes. In both cases
��� 33.

developers—there has to be some kind of trust between the parties. One solution might be
to require that parties acquiring such data sets will have to sign some kind of agreement that
the data will not be abused.

7.7 EVOLUTION AND LEARNING

By the concepts presented in this work, it should be apparent that the field of AISs is related
both to A-life and evolutionary computation (EC). Thus it seems natural to comment on
some of the approaches used in DAIS which is also used in these research areas.

In the field of evolutionary algorithms (EAs), a common approach to solving problems of
different kinds is to maintain populations of individuals that represent candidate solutions.
These populations usually undergo some type of evolution, in terms of mutations and ge-
netic crossover, to hopefully arrive at better solutions (Michalewicz and Fogel 2000). There
are also approaches to EAs which focus not on the individual level of a population but on
the population as a whole.

In DAIS both approaches are used. For example, each location l in DAIS represents a sub-
population of detectors D. During clonal proliferation and somatic hypermutation some of
the individuals of the population are cloned and their offspring are mutated. After mutation
the each offspring is evaluated as possible solutions for the subproblem of best matching an
agent. So during somatic hypermutation the focus is on the individuals of the population,
while the performance of the DAIS in general is evaluated by the effect of the whole popu-
lation working together. It should thus be noted that, since DAIS is distributed over several
locations, with one independent—in the sense that no communication is used between the
locations—subpopulation at each location, it may be argued that the performance of DAIS
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is evaluated on a super-population level.
It should also be noted that the exploration of the relationship between learning and evo-

lution has received much attention in the field of EC. In DAIS this relationship is present in
that clonal selection is the learning process used by the IS (Hightower, Forrest, and Perelson
1996).

7.8 FURTHER WORK

In Section 4.3.1 an expression (4.12) for the probability of a match between to randomly cho-
sen strings of length

�
, consisting of symbols from an alphabet with cardinality m, using the

contiguous match rule with a matching constraint r was developed and analyzed. This ex-
pression was developed analytically and is a more correct replacement for the approximate
expression (4.2) used in earlier work on AISs. Although some attempts has been done to
formalize the theory behind AISs (Hofmeyr 1999), there seems to be a lot of work remaining
to be done.

With regard to somatic hypermutation, now that the mechanism has been observed ef-
fectively applied to an AIS-based NID system, several smaller experiments should be per-
formed to study its finer workings. Along with these future investigations, the improve-
ments suggested in Section 7.2.4 on page 62 should be implemented to see if they will im-
prove the effect of somatic hypermutation. Further work should also explore the effect of
applying somatic hypermutation when the Hamming match rule is used.

Further work should also include testing DAIS in a real-world environment in real-time.
As the implementation of an AIS has proved to be a nontrivial task, the release of DAIS under
the GNU GPL suggests that others could either improve DAIS or investigate its source code
to find inspiration and solutions for their own systems.
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SOURCE CODE

Below, the source code for DAIS, the implementation described in this report, is presented.
It is written in the C programming language.

The program compiled without errors and warnings using the C compiler from the GNU
Compiler Collection (GCC) version 2.95.3 with the warning flags -Wall and -Winline.
When compiling with GCC version 3.1, some warnings were issued because the concatena-
tion of string literals with __FUNCTION__ is deprecated in that version, but it still compiled
nicely.

For optimizing the compiled program, with regard to speed and efficiency, the command
line options-O3, -D_GNU_SOURCE,-mcpu=athlon-xp,-march=athlon-xp,-malign\
-double and -funroll-all-loopswere used when calling the C compiler.

The implementation makes some use of the doubly linked lists provided by GLib. Thus,
the program needs to be linked with this library. GLib is a general-purpose utility library,
which provides many useful data types, macros, type conversions, string utilities, file util-
ities, a main loop abstraction, and so on. It works on many Unix-like platforms, Windows,
OS/2 and BeOS. GLib is released under the GNU Library General Public License (LGPL).

In addition to the source for the AIS, the source for the program fast_log_parse is
included at the end of this chapter. The program provides a fast way to parse and summarize
a whole DAIS log file. This program was essential during the experiments performed as part
of this work.

A.1 AIS.C

/* $Id: ais.c,v 1.28 2002/05/27 18:44:44 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

71
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10 #include � stdlib.h �
#include � string.h �

#ifdef HAVE FCNTL H
#include � fcntl.h �
#endif /* HAVE FCNTL H */

#ifdef HAVE UNISTD H
#include � unistd.h �
#endif /* HAVE UNISTD H */

20
#include � sys/time.h �

#ifndef FALSE
#define FALSE 0 /* This is the naked Truth. */
#endif /* ! FALSE. */

#ifndef TRUE
#define TRUE 1 /* . . . and this is the Light. */
#endif /* ! TRUE. */

30
#include "ais.h"
#include "network.h"

#define AIS NODE MAP BUF SIZE 1024

/* The node map should not be larger than 256, as the traffic was
logged on a class C LAN. */

#define AIS NODE MAP SIZE 256

40
/* Declare network next connection func t as typedef pointer to

function that expects (stream as pointer to FILE, connection as
pointer to network connection t) returning unsigned int. */

typedef unsigned int (* network next connection func t)
(FILE *stream, network connection t *connection);

/* Declare agent from connection func t as typedef pointer to function
that expects (agent as pointer to pointer to bitstring t, len as
const unsigned int, connection as pointer to const

50 network connection t) returning void; */
typedef void (* agent from connection func t)

(bitstring t **agent, const unsigned int len,
const network connection t *connection);

/* Create a pool for clonal proliferation. */
void
ais clone pool create (ais t *ais)
{

unsigned int i;
60

/* Allocate memory for CLONE POOL. */
ais � � clone pool = malloc (sizeof (*ais � � clone pool) * ais � � config � � clones);

/* Check that the allocation was successful. */
if (ais � � clone pool == NULL)
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{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
70

for (i = 0; i � ais � � config � � clones; i++)
{

/* The NULL (data) pointer is a request for generating a
bitstring with 0s only. */

(ais � � clone pool[i]).detector =
detector new (ais � � config � � len, NULL, DS NONE,

ais � � config � � detector activation level min);

ais � � clone pool[i].affinity = 0;
80 }

return;
}

/* Create a pool for clonal proliferation. */
void
ais clone pool destroy (ais t *ais)
{

unsigned int i;
90

for (i = 0; i � ais � � config � � clones; i++)
{

/* Destroy the detector t instances and free the resources
reserved for them. */

detector destroy (ais � � clone pool[i].detector);
}

return;
}

100
/* Initialize an AIS instance. */
void
ais initialize (ais t *ais)
{

unsigned int n;

/* Allocate memory for an array of ais node t objects and check that it was
allocated successfully. */

ais � � node list = (ais node t *) malloc (sizeof (*(ais � � node list))
110 * ais � � config � � nodes);

if (ais � � node list == NULL)
{

perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

/* Create a new allocator, for efficient memory handling when working with
the GSList structure. It also seems necessary to avoid memory leaks.
Set the number of elements in each block of memory allocated to 1024. */

120 ais � � allocator = g allocator new ("AIS_detector_allocator", 1024);

/* Initialize every newly allocated node. */
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for (n = 0; n � ais � � config � � nodes; n++)
{

node initialize (&(ais � � node list[n]), ais � � config);
}

/* If we are to simulate somatic hypermutation, we need an additional pool
for clonal proliferation. */

130 if (ais � � config � � somatic hypermutation == TRUE)
{

/* Create and initizlize a pool with space for clonal proliferation. */
ais clone pool create (ais);

/* Initialize every newly allocated node. */
for (n = 0; n � ais � � config � � nodes; n++)

{
/* Create a link to the clone pool, accessible from every node. */
ais � � node list[n].clone pool = ais � � clone pool;

140 }
}

return;
}

void
ais generate node map (ais t *ais)
{

FILE *stream = NULL;
150 unsigned int done = FALSE;

unsigned int i = 0;

/* Allocate enough memory for the node map. */
ais � � node map = (char *) malloc (sizeof (char) * AIS NODE MAP SIZE);
if (ais � � node map == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
160

stream = fopen (ais � � config � � node ids, "r");
if (stream == NULL)

{
perror (PACKAGE ": " FUNCTION );
exit (1);

}

/* Read all the lines of the file. */
while (! done)

170 {
char buf[AIS NODE MAP BUF SIZE];
unsigned int node;

if (NULL == fgets (buf, AIS NODE MAP BUF SIZE, stream))
{

done = TRUE;
break;

}
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180 if (1 != sscanf (buf, "%i", &node))
{

printf ("%s: %s: buf = ’%s’\n", PACKAGE, FUNCTION , buf);
exit (1);

}

/* Create a mapping between internal node I and external NODE. */
ais � � node map[node] = i++;

}

190 fclose (stream);

/* Set the correct number of nodes. This is later used to decide how many
populations to generate. */

ais � � config � � nodes = i;

return;
}

/* Test the matching capabilities of the AIS with regard to speed and number
200 of matches. Mostly used for debugging purposes. */

void
ais match test (ais t *ais)
{

bitstring match test (ais � � config � � n immature max, ais � � config � � len,
ais � � config � � r);

return;
}

210 /* Create a new AIS instance. */
ais t *
ais new (void)
{

/* Allocate memory for a new ais t instance. */
ais t *ais = (ais t *) malloc (sizeof (*ais));

/* Initialize all member variables. */
ais � � config = ais config new ();
ais config initialize (ais � � config);

220
ais � � current file = 0;
ais � � node list = NULL;

return ais;
}

/* Clean up an ais t instance. I.e., free the memory used by member
variables. Performed in a separate function as it is a little bit more
complex than simple free () calls. */

230 void
ais clean up (ais t *ais)
{

unsigned int n;

for (n = 0; n � ais � � config � � nodes; n++)
{
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node destroy (&(ais � � node list[n]));
}

240 free (ais � � node list);

/* Pop the allocator off the GSList allocator stack. */
g slist pop allocator ();

/* Free all the memory used by the allocator. */
g allocator free (ais � � allocator);

return;
}

250
/* Destroy an ais t instance. */
void
ais destroy (ais t *ais)
{

/* Clean up the ais t. I.e. release, or free, more complex member
variables. */

ais clean up (ais);

/* Destroy the config object. */
260 ais config destroy (ais � � config);

/* Free memory allocated for this instance. */
free (ais);

return;
}

/* Converts an abstractly represented TCP network connection t into a
bitstring t. This is done according to rules, partly described below and

270 more thoroughly described elsewhere. */
void
ais agent from tcp connection (bitstring t **agent, const unsigned int len,

const network connection t *connection)
{

unsigned long long data = 0ULL;
unsigned long long a = 0, b = 0, service = 0;
unsigned long long server flag = FALSE;
unsigned int port = 0;

280 /* In general, the following schema describes the rules for how the
bitstring is created:
Field Bits Description
A 0–7 Internal host, or (if both hosts are internal) internal
server.
B 8–39 External host, or (if both hosts are internal) internal
client.
C 40 Server flag, set if the host in field A is server.
D 41–48 Service identifier. */

if ((connection � � flags
290 & (CF INTERNAL SOURCE

�
CF SERVER SOURCE))

== (CF INTERNAL SOURCE
�

CF SERVER SOURCE))
{

a = connection � � source;
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b = connection � � destination;
port = connection � � source port;
server flag = TRUE;

}
else if ((connection � � flags

& (CF INTERNAL DESTINATION
�

CF SERVER SOURCE))
300 == (CF INTERNAL DESTINATION))

{
a = connection � � destination;
b = connection � � source;
port = connection � � destination port;
server flag = TRUE;

}
else if ((connection � � flags

& (CF INTERNAL SOURCE
�

CF INTERNAL DESTINATION�
CF SERVER SOURCE))

310 == (CF INTERNAL SOURCE))
{

a = connection � � source;
b = connection � � destination;
port = connection � � destination port;
server flag = FALSE;

}
else if ((connection � � flags

& (CF INTERNAL SOURCE
�

CF INTERNAL DESTINATION�
CF SERVER SOURCE))

320 == (CF INTERNAL DESTINATION
�

CF SERVER SOURCE))
{

a = connection � � destination;
b = connection � � source;
port = connection � � source port;
server flag = FALSE;

}
else

{
printf ("%s: %s: Where the shit hits the fan...\n",

330 PACKAGE, FUNCTION );
exit (1);

}

/* Map the server port number to a service identifier. */
service = network get service (port);
//printf ("port = %d, service = %qu\n", port, service);

/* Store the information in the binary string. */
data = ((service � � 41)

340
�

(server flag � � 40)�
(b � � 9)�
(a & 0x000000ff));

/* Create AGENT, a peptide representing the network connection. */
*agent = bitstring new (len, &data);

return;
}

350 /* Converts an abstractly represented network connection t into a bitstring t.
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This is done according to rules, partly described below and more thoroughly
described elsewhere. */

inline void
ais agent from connection (bitstring t **agent, const unsigned int len,

const network connection t *connection)
{

unsigned long long data = 0ULL;

/* In general, the following schema describes the rules for how the
360 bitstring is created:

Field Bits Description
A 0–7 Internal host, or (if both hosts are internal) internal
server.
B 8–39 External host, or (if both hosts are internal) internal
client.
C 40 Server flag, set if the host in field A is server.
D 41–48 Service identifier. */

/* Store the information in the binary string. */
370 data = (((unsigned long long)

connection � � destination port � � 41) /* service */�
((unsigned long long)

connection � � source port � � 40) /* local is server */�
((unsigned long long)

connection � � destination � � 9) /* “remote host” */�
((unsigned long long)

connection � � source & 0x000000ff)); /* “local host” */

/* Create AGENT, a peptide representing the network connection. */
380 *agent = bitstring new (len, &data);

return;
}

/* Simulate the insertion of AGENT into the AIS. */
inline void
ais insert agent (ais t *ais, const bitstring t *agent)
{

unsigned int n;
390

/* Traverse the nodes. */
for (n = 0; n � ais � � config � � nodes; n++)

{
/* Isn’t touched every run if simulating a switched network. */
ais � � node list[n].info.premature deaths = 0;
ais � � node list[n].info.false negatives = 0;
ais � � node list[n].info.true negatives = 0;
ais � � node list[n].info.false positives = 0;
ais � � node list[n].info.true positives = 0;

400 ais � � node list[n].info.activations = 0;
ais � � node list[n].info.sig 1 only = 0;
ais � � node list[n].info.sig 1 and 2 = 0;

/* Insert the agent into every node. */
node insert agent (&(ais � � node list[n]), agent);

}
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return;
}

410
/* Generate ouput according to the state of the system. The function is

intended for generating data for statistical analysis. */
inline void
ais generate output (FILE *stream, const ais t *ais,

const network connection t *connection)
{

unsigned int n;
//unsigned int detections = 0, premature deaths = 0;
//struct timeval now = {0, 0};

420
/* Generate a timestamp. */
//gettimeofday (&now, NULL);
//timersub (&now, &ais � � start, &now);

/* Print the file sequence number so it should be easy to detect
false-negative and false-positive results. */

printf ("%i", ais � � current file);

for (n = 0; n � ais � � config � � nodes; n++)
430 {

//detections += ais � � node list[n].info.detections;
//premature deaths += ais � � node list[n].info.premature deaths;

/* The total number of matches is not printed, as this number is equal
to (PREMATURE DEATHS + DETECTIONS) and thus may be calculated
later. */

printf (":%i %i %i %i %i %i %i %i",
ais � � node list[n].info.premature deaths,
ais � � node list[n].info.false negatives,

440 ais � � node list[n].info.true negatives,
ais � � node list[n].info.false positives,
ais � � node list[n].info.true positives,
ais � � node list[n].info.activations,
ais � � node list[n].info.sig 1 only,
ais � � node list[n].info.sig 1 and 2);

printf (" %i %i", ais � � node list[n].n mature,
ais � � node list[n].n memory);

}
450

printf ("\n");

//fprintf (stream, "%li.%06li %i %i %i %i\n",
// now.tv sec, now.tv usec, ais � � current file,
// matches, detections, premature deaths);

/* The total number of matches is not printed, as this number is equal to
(PREMATURE DEATHS + DETECTIONS) and thus may be calculated later. */

460 //printf ("%i %i %i\n",
// ais � � current file,
// premature deaths, detections);

return;
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}

/* Output a timestamp (NOW - START) to STREAM. */
inline void
ais print timestamp (FILE *stream, const struct timeval *start)

470 {
struct timeval now;

gettimeofday (&now, NULL);
timersub (&now, start, &now);

fprintf (stream, "# time = %li.%06li\n", now.tv sec, now.tv usec);

return;
}

480
/* Run the artificial immune system in a simulated switched LAN. */
void
ais run switched (ais t *ais)
{

unsigned int f;
network next connection func t next connection = NULL;
agent from connection func t agent from connection = NULL;
FILE *stream = NULL;

490 if (ais � � config � � file format == AIS FILE FORMAT TCP)
{

/* Initialize the network module (i.e., generate port mapping). */
network initialize ();

/* Setup pointers to functions according to the file format. */
next connection = network next tcp connection;
agent from connection = ais agent from tcp connection;

}
else

500 {
/* Setup pointers to functions according to the file format. */
next connection = network next connection;
agent from connection = ais agent from connection;

}

/* Store a timestamp, recording when the program was started. */
gettimeofday (&ais � � start, NULL);

for (f = 0; f � ais � � config � � file names; f++)
510 {

unsigned int done = FALSE;
ais � � current file = f;

ais print timestamp (stdout, &ais � � start);
fprintf (stdout, "# Opening %s ...\n", ais � � config � � file name list[f]);

stream = network open (ais � � config � � file name list[f]);

while (! done)
520 {

network connection t connection;
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if (next connection (stream, &connection))
{

done = TRUE;
break;

}
else

{
530 bitstring t *agent = NULL;

/* Create an agent based on the connection data. */
agent from connection (&agent, ais � � config � � len,

&connection);

/* Set the classification of the current agent. Used for
precise statistics and simulation of manual costimulation. */

ais � � config � � current class = connection.class;

540 /* Insert the AGENT into the involved node. */
node insert agent (&ais � � node list

[(int) ais � � node map[connection.source]],
agent);

/* If source port (local is server) is set, then both source and
destination are internal hosts on the LAN. */

if (connection.source port == 1)
{

/* Insert the AGENT into the involved node. */
550 node insert agent (&ais � � node list

[(int) ais � � node map
[connection.destination & 0x000000ffU]],

agent);
}

/* Destroy AGENT after we’ve used it. */
bitstring destroy (agent);

/* Output data describing the state of the system. */
560 ais generate output (stdout, ais, &connection);

}
}

fflush (stderr);

fprintf (stdout, "# ... closing %s\n", ais � � config � � file name list[f]);
network close (stream);

}

570 ais print timestamp (stdout, &ais � � start);

return;
}

/* Run the artificial immune system. */
void
ais run broadcast (ais t *ais)
{
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unsigned int f;
580 network next connection func t next connection = NULL;

agent from connection func t agent from connection = NULL;
FILE *stream = NULL;

if (ais � � config � � file format == AIS FILE FORMAT TCP)
{

/* Initialize the network module (i.e., generate port mapping). */
network initialize ();

/* Setup pointers to functions according to the file format. */
590 next connection = network next tcp connection;

agent from connection = ais agent from tcp connection;
}

else
{

/* Setup pointers to functions according to the file format. */
next connection = network next connection;
agent from connection = ais agent from connection;

}

600 /* Store a timestamp, recording when the program was started. */
gettimeofday (&ais � � start, NULL);

for (f = 0; f � ais � � config � � file names; f++)
{

unsigned int done = FALSE;
ais � � current file = f;

ais print timestamp (stdout, &ais � � start);
fprintf (stdout, "# Opening %s ...\n", ais � � config � � file name list[f]);

610
stream = network open (ais � � config � � file name list[f]);

while (! done)
{

network connection t connection;

if (next connection (stream, &connection))
{

done = TRUE;
620 break;

}
else

{
bitstring t *agent = NULL;

/* Create an agent based on the connection data. */
agent from connection (&agent, ais � � config � � len,

&connection);

630 /* Set the classification of the current agent. Used for
precise statistics and simulation of manual costimulation. */

ais � � config � � current class = connection.class;

/* INSERT the AGENT into the AIS. */
ais insert agent (ais, agent);
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/* Destroy AGENT after we’ve used it. */
bitstring destroy (agent);

640 /* Output data describing the state of the system. */
ais generate output (stdout, ais, &connection);

}
}

fflush (stderr);

fprintf (stdout, "# ... closing %s\n", ais � � config � � file name list[f]);
network close (stream);

}
650

ais print timestamp (stdout, &ais � � start);

return;
}

A.2 AIS_CONFIG.C

/* $Id: ais config.c,v 1.15 2002/05/27 18:44:44 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include "ais_config.h"

#include � stdio.h �
#include � stdlib.h �

#define AIS DEFAULT NODES 8
#define AIS DEFAULT POPULATION SIZE 100
#define AIS DEFAULT LEN 49
#define AIS DEFAULT R 5
#define AIS DEFAULT DETECTOR IMMATURE PERIOD 350000

20 #define AIS DEFAULT DETECTOR LIFETIME (5 * �
AIS DEFAULT DETECTOR IMMATURE PERIOD)

#define AIS DEFAULT DETECTOR ACTIVATION LEVEL MIN 1.0
#define AIS DEFAULT DETECTOR ACTIVATION LEVEL MAX 2.0
#define AIS DEFAULT DETECTOR COSTIMULATION DELAY 2 //25000

/* The following parameters should assure fast increases and slower decay in
the activation levels in the detectors. */

#define AIS DEFAULT DETECTOR ACTIVATION INC 1.5 /* Increase with 50%. */
#define AIS DEFAULT DETECTOR ACTIVATION DEC 0.8 /* Decrease with 20%. */

30
/* The following parameters are similar to the ones above, but are used for

MEMORY detectors. */
#define AIS DEFAULT MEMORY DETECTOR ACTIVATION INC 2.0 /* Increase with
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100%. */
#define AIS DEFAULT MEMORY DETECTOR ACTIVATION DEC 1.0 /* Decrease with 0%. */

#define AIS DEFAULT N MATURE MAX 20
#define AIS DEFAULT N MEMORY MAX 10

40 #define AIS DEFAULT NODE IDS FILENAME (NULL)
#define AIS DEFAULT FILE FORMAT AIS FILE FORMAT AIS

/* Default values concerned with somatic hypermutation. */
#define AIS DEFAULT SOMATIC HYPERMUTATION 0
#define AIS DEFAULT P MUTATE 0.5
#define AIS DEFAULT CLONES 15
#define AIS DEFAULT CLONES SELECT 3

/* Default value to determine wheter we’re going to simulate thymus
50 behavior. */

#define AIS DEFAULT THYMUS 0

/* Default value to determine wheter we’re going to simulate thymus
behavior. */

#define AIS DEFAULT SOMATIC HYPERMUTATION COMPETITION 0

/* Create a new ais config t instance. */
ais config t *
ais config new (void)

60 {
/* Allocate memory for an ais config t object and check that it was

allocated successfully. */
ais config t *config = (ais config t *) malloc (sizeof (*config));
if (config == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

70 return config;
}

/* Destroy an ais config t object */
void
ais config destroy (ais config t *config)
{

/* Free memory allocated for member variables of this object. */
free (config � � file name list);

80 /* Free memory allocated for the object itself. */
free (config);

return;
}

/* Initialize an ais config t instance. */
void
ais config initialize (ais config t *config)
{

90 /* Set the default values for the behavior controlling parameters of AIS.
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Note that these values may be changed changed at runtime by command line
options. */

config � � nodes = AIS DEFAULT NODES;
config � � n immature max = AIS DEFAULT POPULATION SIZE;
config � � n mature max = AIS DEFAULT N MATURE MAX;
config � � n memory max = AIS DEFAULT N MEMORY MAX;

config � � len = AIS DEFAULT LEN;
config � � r = AIS DEFAULT R;

100
config � � match test = FALSE;

config � � detector lifetime = AIS DEFAULT DETECTOR LIFETIME;
config � � detector immature period = AIS DEFAULT DETECTOR IMMATURE PERIOD;
config � � file names = 0;
config � � file name list = NULL;

config � � detector activation level min =
AIS DEFAULT DETECTOR ACTIVATION LEVEL MIN;

110 config � � detector activation level max =
AIS DEFAULT DETECTOR ACTIVATION LEVEL MAX;

config � � detector activation inc =
AIS DEFAULT DETECTOR ACTIVATION INC;

config � � detector activation dec =
AIS DEFAULT DETECTOR ACTIVATION DEC;

config � � memory detector activation inc =
AIS DEFAULT MEMORY DETECTOR ACTIVATION INC;

config � � memory detector activation dec =
AIS DEFAULT MEMORY DETECTOR ACTIVATION DEC;

120 config � � costimulation delay =
AIS DEFAULT DETECTOR COSTIMULATION DELAY;

config � � file format = AIS DEFAULT FILE FORMAT;

config � � node ids = AIS DEFAULT NODE IDS FILENAME;

config � � somatic hypermutation = AIS DEFAULT SOMATIC HYPERMUTATION;
config � � p mutate = AIS DEFAULT P MUTATE;
config � � clones = AIS DEFAULT CLONES;

130 config � � clones select = AIS DEFAULT CLONES SELECT;

config � � thymus = AIS DEFAULT THYMUS;

config � � sh competition =
AIS DEFAULT SOMATIC HYPERMUTATION COMPETITION;

return;
}

A.3 AIS_CONFIG.H

/* $Id: ais config.h,v 1.7 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/
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#ifndef AIS CONFIG H
#define AIS CONFIG H

#ifndef FALSE
10 #define FALSE 0 /* This is the naked Truth. */

#endif /* ! FALSE. */

#ifndef TRUE
#define TRUE 1 /* . . . and this is the Light. */
#endif /* ! TRUE. */

#include "network.h"

typedef enum
20 {

AIS FILE FORMAT NONE = 0x00,
AIS FILE FORMAT AIS = 0x01,
AIS FILE FORMAT TCP = 0x01 � � 1

}
ais file format t;

/* A data structure comprising the configuration information for AIS. */
struct ais config
{

30 /* The number of nodes in the AIS. */
unsigned int nodes;

/* The populations size at each node. */
unsigned int n immature max;

/* Maximum number of MATURE detectors per node. */
unsigned int n mature max;

/* Maximum number of MEMORY detectors per node. */
40 unsigned int n memory max;

/* The length of each bitstring. */
unsigned int len;

/* The r of the r-contiguous matching algorightm. */
unsigned int r;

/* Whether the system should perform a benchmark test of the matching
algorithm. */

50 unsigned int match test;

/* The lenght of a detectors lifetime. */
unsigned int detector lifetime;

/* The length of a detectors childhood. Must be shorter than
DETECTOR LIFETIME. */

unsigned int detector immature period;

/* The lowest level of activation for a detector. */
60 double detector activation level min;
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/* The activation threshold. If the activation threshold exceeds this, the
state of the detector changes to DS ACTIVE. */

double detector activation level max;

/* A factor that the activation level is muliplied with to increase it. */
double detector activation inc;

/* A factor that the activation level is muliplied with to decrease it. */
70 double detector activation dec;

/* A factor that the activation level is muliplied with to increase it for
MEMORY detectors. */

double memory detector activation inc;

/* A factor that the activation level is muliplied with to decrease it for
MEMORY detectors. */

double memory detector activation dec;

80 /* The time a detector has to wait for its costimulation signal. */
unsigned int costimulation delay;

/* The number of file names to be included in the simulation. */
unsigned int file names;

/* An array of file names. Should be FILE NAMES elements long. */
unsigned char **file name list;

/* A symbol representing the file format of the input files. May be either
90 TCP or AIS. */

ais file format t file format;

/* A filename. The file contains a (possible unordered) list of all the
possible internal (i.e., on the LAN) nodes in the test data. */

unsigned char *node ids;

/* A TRUE or FALSE flag to determine if somatic hypermutation should be
performed. */

unsigned int somatic hypermutation;
100

/* A TURE or FALSE flag indicating if “thymus” behavior should be
simulated. */

unsigned int thymus;

/* A TRUE or FALSE flag indicating if the new somatic hypermutation
behavior should be simulated. */

unsigned int sh competition;

/* Determines the probability of a mutation occuring under somatic
110 hypermutation. */

double p mutate;

/* Number of clones to generate in the somatic hypermutation process. */
unsigned int clones;

/* Number of clones to use after somatic hypermutation. */
unsigned int clones select;
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/* Classification of current agent (self, nonself or unknown). */
120 connection class t current class;

};
typedef struct ais config ais config t;

ais config t *ais config new (void);

void ais config destroy (ais config t *config);

void ais config initialize (ais config t *config);

130 #endif /* AIS CONFIG H */

A.4 BITSTRING.C

/* $Id: bitstring.c,v 1.24 2002/05/30 21:39:16 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include "bitstring.h"
#include "mt19937ar_cok.h"

#ifdef HAVE FCNTL H
#include � fcntl.h �
#endif /* HAVE FCNTL H */

#ifdef HAVE LIMITS H
#include � limits.h �
#endif /* HAVE LIMITS H */

20
#ifdef HAVE UNISTD H
#include � unistd.h �
#endif /* HAVE UNISTD H */

#include � stdio.h �
#include � stdlib.h �
#include � string.h �

/* The number of bits in an unsigned long long. */
30 #define ULLONG BITS (sizeof (unsigned long long) * CHAR BIT)

/* Define some constants to speed up division and mod () operations where the
operator is defined a powers of two. */

#define DIV 8 3 /* (x / 8) == (x � � 3). 8 = (1 � � 3). */
#define MOD 8 (8 � 1) /* (x % 8) == (x & MOD 8). */
#define DIV 32 5 /* (x / 32) == (x � � 5). 32 = (1 � � 5). */
#define MOD 32 (32 � 1) /* (x % 32) == (x & MOD 32). */
#define DIV 64 6 /* (x / 64) == (x � � 6). 64 = (1 � � 6). */
#define MOD 64 (64 � 1) /* (x % 64) == (x & MOD 64). */

40
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/* The device to be used as a random generator. This device gathers
environmental noise from device drivers, etc., and returns good random
numbers, suitable for cryptographic use. */

#define RANDOM DEVICE "/dev/urandom"

#if defined GNUC && GNUC � = 2

/* A macro function definition, to be used inline where it is called. The
function makes use of special assembly statements, available on Intel

50 Pentium architectures (and higher) to check wether bit B in D is set. */
#define bit isset(d, b) �

( extension �
({ �

register char result; �
asm volatile �

("btl %1, %2 ; setcb %b0" �
: "=q" ( result) �
: "r" (b), "m" (d) �
: "cc"); �

60 result; �
}))

#endif /* GNUC && GNUC � = 2 */

#ifndef max
#define max(X, Y) �

({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

70 #endif /* ! max. */

#ifndef min
#define min(X, Y) �

({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

#endif /* ! min. */

/* Intialize the MT19937 pseudorandom number generator. */
80 void

random generator init (void)
{

unsigned long seed = 0UL;
size t size = sizeof (seed);
ssize t len = 0;
/* Open the RANDOM DEVICE. */
int fd = open (RANDOM DEVICE, O RDONLY);

if (fd == � 1)
90 {

perror (PACKAGE ": " FUNCTION );
exit (1);

}

/* Retrieve a 32 bit seed from RANDOM DEVICE. */
while ((unsigned int) len � size)

{
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/* Read (size - len) number of bytes into the memory starting at address
(buf + len). */

100 ssize t len d = read (fd, (&seed + len), (size � len));

/* If the number of bytes actually read is negative, a serious error has
occured. */

if (len d � 0)
{

perror ( FUNCTION ": read ()");
exit (1);

}

110 /* Add the number of bytes actually read to LEN. */
len += len d;

}

/* Close the RANDOM DEVICE. */
close (fd);

/* Seed the Mersenne Twister 19937 pseudorandom number generator. */
mt19937 init genrand (seed);

120 return;
}

/* Retrieve BITS random bits store the result in BUF. Requires that both
BUF � = 32 bits and BITS � 0. */

void
random generator randbits (const unsigned int bits, void *buf)
{

unsigned int units = 1 + ((bits � 1) � � DIV 32); /* Divide by 32. */
unsigned int n = 0;

130 unsigned int b = (bits & MOD 32);

while (n � units)
{

((unsigned long *) buf)[n] = random generator rand int32 ();
n++;

}

if (b � 0)
{

140 /* Mask out the excess bits (that should not be used). Set them to 0.*/
((unsigned long *) buf)[n � 1] &= (0xffffffffUL � � (32 � b));

}

return;
}

/* Short-cuts the ‘bitstring destroy () -� bitstring new ()’ sequence and
returns a recycled bitstring t instance, without freeing and reallocating
the memory for the data member variable. Should be used when the size of

150 the instance is not changed. Behaves very much like bitstring new (), see
below. */

inline void
bitstring recycle (bitstring t *bitstring, const unsigned int size,

const unsigned long long *data)



A.4. bitstring.c 91

{
unsigned int units = 1 + ((size � 1) � � DIV 64);

bitstring � � size = size;

160 if (data == NULL)
{

/* If no data pointer was provided, set all the bits in the bitstring to
0. */

memset (bitstring � � data, 0, (sizeof (*bitstring � � data) * units));
}

else
{

/* Copy all the data from DATA to bitstring-� data. */
while (units)

170 {
bitstring � � data[units � 1] = data[units � 1];
units � = 1;

}
}

return;
}

/* Create a new bitstring t incstance and allocates memory for its data member
180 variables. Requires the size (in the number of bits) and a pointer to the

data to store as arguments. The data are copied. */
inline bitstring t *
bitstring new (const unsigned int size, const unsigned long long *data)
{

const unsigned int units = 1 + ((size � 1) � � DIV 64); /* Divide by 64. */
bitstring t *new = (bitstring t *) malloc (sizeof (*new));
if (new == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");

190 exit (1);
}

new � � data = (unsigned long long *) malloc (sizeof (*(new � � data)) * units);
if (new � � data == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

200 bitstring recycle (new, size, data);

return new;
}

/* Destroy a bitstring t instance by freeing the allocated memory in the
reverse order of which it was allocated. */

inline void
bitstring destroy (bitstring t *bitstring)
{

210 free (bitstring � � data);
free (bitstring);
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return;
}

/* Output BITSTRING as a binary number in ASCII format. */
inline void
bitstring print (bitstring t *bitstring)
{

220 unsigned int i = bitstring � � size;

while (i)
{

printf (bit isset (*bitstring � � data, (i � 1)) ? "1" : "0");
i � = 1;

}

return;
}

230
/* Create a new bitstring t instance with SIZE number of random bits,

retrieved from RANDOM GENERATOR. */
bitstring t *
bitstring create random (const unsigned int size)
{

unsigned long long data[(1 + ((size � 1) � � DIV 64))];

random generator randbits (size, data);

240 return bitstring new (size, data);
}

/* The bitstring recycle random () differs to bitstring create random () just
as the bitstring recycle () differs to bitstring new (). Should be used
where applicable to increase performance. */

inline void
bitstring recycle random (bitstring t *bitstring, const unsigned int size)
{

bitstring recycle (bitstring, size, NULL);
250

random generator randbits (size, bitstring � � data);

return;
}

/* Perform a bitwise XOR on two bitstring t instances A and B and
return the result in the newly allocated NEW. The result instance
must be freed after use. */

bitstring t *
260 bitstring xor (const bitstring t *a, const bitstring t *b)

{
bitstring t *new = bitstring new (a � � size, a � � data);
unsigned int i = 1 + ((new � � size � 1) � � DIV 64);

while (i)
{

new � � data[i � 1] = a � � data[i � 1] ^ b � � data[i � 1];
i � = 1;
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}
270

return new;
}

/* Return a boolean value indicating whether there are R contiguous,
pairwise equal, bits present in the bitstrings A and B. */

inline unsigned int
bitstring r contiguous (const bitstring t *a, const bitstring t *b,

const unsigned int r)
{

280 register unsigned int c, i;
register unsigned int bits = a � � size;
const unsigned int units = 1 + ((bits � 1) � � DIV 64);

if (! r)
{

return 1;
}

for (c = 0, i = 0; i � units; i++, bits � = ULLONG BITS)
290 {

register unsigned long long xor;
register unsigned int j;

/* Perform a bitwise XOR on the two units at position I, and
store the result in XOR, where all bits that is pairwise
unequal i A and B are set to 1, and 0 otherwise. */

xor = (*(a � � data + i) ^ *(b � � data + i));

/* For this unit, bitshift through all the remaining bits and
300 count the number of contiguous false bits. */

for (j = 0; j � bits; j++)
{

if (xor & (1ULL � � j))
{

/* Start counting from 0. */
c = 0;

}
else

{
310 /* Add 1 to the count of contiguous false bits. */

c += 1;

if (r == c)
{

/* The R constraint was met, report a positive
test. */

return 1;
}

}
320 }

}

return 0;
}
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/* Return a value indicating the maximum R contiguously affinity
between A and B. The AFFINITY value is the highest number of
contiguous bits occuring in A and B. */

inline unsigned int
330 bitstring contiguous affinity (const bitstring t *a, const bitstring t *b)

{
register unsigned int c, i;
register unsigned int bits = a � � size;
register unsigned int affinity = 0;
const unsigned int units = 1 + ((bits � 1) � � DIV 64);

for (c = 0, i = 0; i � units; i++, bits � = ULLONG BITS)
{

register unsigned long long xor;
340 register unsigned int j;

/* Perform a bitwise XOR on the two units at position I, and
store the result in XOR, where all bits that is pairwise
unequal i A and B are set to 1, and 0 otherwise. */

xor = (*(a � � data + i) ^ *(b � � data + i));

/* For this unit, bitshift through all the remaining bits and
count the number of contiguous false bits. */

for (j = 0; j � bits; j++)
350 {

if (xor & (1ULL � � j))
{

/* Start counting from 0. */
c = 0;

}
else

{
/* Add 1 to the count of contiguous false bits. */
c += 1;

360
/* Set or increase AFFINITY. */
affinity = max (affinity, c);

}
}

}

return affinity;
}

370 /* Perform a benchmarking test to measure the performance of the
bitstring r contiguous test. To generate performance statistics,
compile with the flag ‘-pg’ and use gprof. */

void
bitstring match test (const unsigned int pop size,

const unsigned int len,
const unsigned int r)

{
unsigned int lenz = len /* 49 */;
bitstring t *d = bitstring create random (lenz);

380 bitstring t *t = bitstring create random (lenz);
register unsigned long long m = 0;
register unsigned long long i;
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unsigned int size = 1000000000;

for (i = 0; i � size; i++)
{

bitstring recycle random (t, lenz);

if (bitstring r contiguous (d, t, r))
390 {

m++;
}

}

bitstring destroy (t);
bitstring destroy (d);

printf ("Matches: %g * 2^%d => %qu (of %d)\n",
(m / (double) size), lenz,

400 (unsigned long long)
((m / (double) size) * (1ULL � � lenz)), (size));

return;
}

/* Test the behavior of the bitstring module. */
void
bitstring test (void)
{

410 const unsigned int pop size = 100;
const unsigned int len = 49;
const unsigned int r = 5;
bitstring t *a, *b;
unsigned int n;

random generator init ();

for (n = 0; n � 1; n++)
{

420 bitstring t *c;
unsigned int i;

a = bitstring create random (len);
b = bitstring create random (len);
c = bitstring xor (a, b);
i = bitstring r contiguous (a, b, r);

printf ("a: "); bitstring print (a); puts ("");
printf ("b: "); bitstring print (b); puts ("");

430 printf ("c: "); bitstring print (c); puts ("");
printf ("t: %d\n", i);

bitstring destroy (c);
bitstring destroy (b);
bitstring destroy (a);

}

bitstring match test (pop size, len, r);
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440 return;
}

A.5 BITSTRING.H

/* $Id: bitstring.h,v 1.12 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifndef BITSTRING H
#define BITSTRING H

/*! The bitstring structure. */
10 struct bitstring

{
unsigned long long *data; /*! The data representing the bitstring. */
unsigned int size; /*! Number of bits used for a bitstring. */

};
typedef struct bitstring bitstring t;

#include "mt19937ar_cok.h" /* Mersenne Twister 19937 implementation. */

/* Initialize the Mersenne Twister (MT) random generator. */
20 void random generator init (void);

/* Generates unsigned 32-bit integers. */
#define random generator rand int32() mt19937 genrand int32()

/* Generates unsigned 31-bit integers. */
#define random generator rand int31() mt19937 genrand int31()

/* Generates uniform real in [0,1) (32-bit resolution). */
#define random generator rand real() mt19937 genrand real2()

30
/* Generates uniform real in [0,1] (32-bit resolution). */
#define random generator rand real closed() mt19937 genrand real1()

/* Retrieves BITS random bits from FD and stores the result in BUF. */
void random generator randbits (const unsigned int bits,

void *buf);

/* Short-cuts the ‘bitstring destroy () -� bitstring new ()’ sequence and
returns a recycled bitstring t instance, without freeing and reallocating

40 the memory for the data member variable. */
void bitstring recycle (bitstring t *bitstring, const unsigned int size,

const unsigned long long *data);

/* Create a new bitstring t incstance and allocates memory for its data member
variable. SIZE is the length of the bitstring (in bits) and DATA is the
initial data. */

bitstring t *bitstring new (const unsigned int size,
const unsigned long long *data);

50 /* Destroy a bitstring t instance by freeing the allocated memory in the
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reverse order of which it was allocated. */
void bitstring destroy (bitstring t *bitstring);

/* Output BITSTRING as a binary number in ASCII format. */
void bitstring print (bitstring t *bitstring);

/* Create a new bitstring t instance with SIZE number of random bits,
retrieved from RANDOM GENERATOR. */

bitstring t *bitstring create random (const unsigned int size
60 /*, const int random generator*/);

/* The bitstring recycle random () differs to bitstring create random () just
as the bitstring recycle () differs to bitstring new (). Should be used
where applicable to increase performance. */

void bitstring recycle random (bitstring t *bitstring,
const unsigned int size
/*, const int random generator*/);

/* Perform a bitwise XOR on two bitstring t instances A and B and return the
70 result in the newly allocated NEW. The result instance must be freed after

use. */
bitstring t *bitstring xor (const bitstring t *a,

const bitstring t *b);

/* Return a boolean value indicating whether there are R contiguous, pairwise
equal, bits present in the bitstrings A and B. */

unsigned int bitstring r contiguous (const bitstring t *a,
const bitstring t *b,
const unsigned int r);

80
/* Return a value indicating the maximum R contiguously affinity

between A and B. The AFFINITY value is the highest number of
contiguous bits occuring in A and B. */

unsigned int bitstring contiguous affinity (const bitstring t *a,
const bitstring t *b);

/* Perform a benchmarking test to measure the performance of the
bitstring r contiguous test. To generate performance statistics, compile
with the flag ‘-pg’ and use gprof. */

90 void bitstring match test (const unsigned int pop size,
const unsigned int len,
const unsigned int r
/*, const int fd*/);

/* Test the behavior of the bitstring module. */
void bitstring test (void);

#endif /* ! BITSTRING H */

A.6 DETECTOR.C

/* $Id: detector.c,v 1.17 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/
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#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include � stdio.h �
#include � stdlib.h �

#include "detector.h"

#define BITSPERBYTE 8
#define BITS(type) (BITSPERBYTE * (int)sizeof(type))
#define LONGBITS BITS(long)

#define DIV 64 6 /* (x / 64) == (x � � 6). 64 = (1 � � 6). */
20 #define MOD 64 (64 � 1) /* (x % 64) == (x & MOD 64). */

#ifndef max
#define max(X, Y) �

({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

#endif /* ! max. */

#ifndef min
30 #define min(X, Y) �

({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

#endif /* ! min. */

#define ADDR (*(volatile long *) addr)
static inline void bit toggle(volatile void * addr, int nr)
{

asm volatile (
40 "btcl %1,%0"

:"=m" (ADDR)
:"Ir" (nr));

}

/* Initialize DETECTOR, a detector t instance. */
inline void
detector initialize (detector t *detector,

const detector state t state,
const double activation level min)

50 {
detector � � age = 0;
detector � � activation = activation level min;
detector � � state = state;
detector � � activation age = � 1;
detector � � antigen = NULL;

return;
}

60 inline detector t *
detector new (const unsigned int size,
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const unsigned long long *data,
const detector state t state,
const double activation level min)

{
detector t *detector = (detector t *) malloc (sizeof (*detector));
if (detector == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");

70 exit (1);
}

detector � � bitstring = bitstring new (size, data);

detector initialize (detector, state, activation level min);

return detector;
}

80 /* Unbind ANTIGEN from DETECTOR. */
inline void
detector antigen unbind (detector t *detector)
{

/* Destroy the ANTIGEN. */
bitstring destroy (detector � � antigen);

/* Be shure to indicate that DETECTOR is not bound to any
ANTIGEN. */

detector � � antigen = NULL;
90

return;
}

/* Bind ANTIGEN to DETECTOR. */
inline void
detector antigen bind (detector t *detector, const bitstring t *antigen)
{

/* If DETECTOR is already bound to an antigen, unbind it. */
if (detector � � antigen != NULL)

100 {
detector antigen unbind (detector);

}

/* Create a copy of the antigen. Remember that this must be freed
(most probably done via the detector atnigen unbind () call. */

detector � � antigen = bitstring new (antigen � � size, antigen � � data);

return;
}

110
/* Recycle the memory allocated for DETECTOR to produce a new

detector. If DETECTOR is bound to any ANTIGEN, break up the
binding (i.e., destroy ANTIGEN and free memory allocated for it).
Also, its BITSTRING is recycled in the same mannor. */

inline void
detector recycle (detector t *detector, const unsigned int size,

const unsigned long long *data,
const detector state t state,
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const double activation level min)
120 {

/* If DETECTOR is bound to some ANTIGEN, unbind it. */
if (detector � � antigen != NULL)

{
detector antigen unbind (detector);

}

bitstring recycle (detector � � bitstring, size, data);
detector initialize (detector, state, activation level min);

130 return;
}

/* Create a new detector with a randomly generated bitstring. */
detector t *
detector create random (const unsigned int size,

const detector state t state,
const double activation level min)

{
unsigned long long data[(1 + ((size � 1) � � DIV 64))];

140
random generator randbits (size, data);

return detector new (size, data, state, activation level min);
}

/* Mutate DETECTOR with a probability P MUTATE of a point mutation.
If a mutation takes place, it is performed by toggling a randomly
chosen bit I in the bitstring. If P == 0.0, no mutation takes
place, while if P == 1.0, there certainly will be a mutation.

150 Returns 0 if no mutation took place and 1 if it did. */
inline unsigned int
detector mutate (detector t *detector, const double p mutate)
{

/* Se if P MUTATE is greater than a pseudorandomly generated real in
the range [0, 1) with 32bit precision. If P MUTATE == 1.0 the
conditional will always evaluate to true, and if P MUTATE == 0.0
the expression will always evaluate to false. */

if (p mutate � random generator rand real ())
{

160 /* Get a random index (integer) in the range [0,
detector-� size). */

unsigned int i = detector � � bitstring � � size
* random generator rand real ();

/* Change the bit at the Ith position. */
bit toggle (&detector � � bitstring � � data[i � � DIV 64], (i & MOD 64));

/* Increase the number of mutations. This variable may be used
for statistics and debugging. */

170 return 1;
}

return 0;
}
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/* Clone DETECTOR and return the new clone. */
inline detector t *
detector clone (const detector t *detector)
{

180 /* Create a copy of the current DETECTOR. The new bitstring should
be exactly the same as the original. */

detector t *new = detector new (detector � � bitstring � � size,
detector � � bitstring � � data,
detector � � state, detector � � activation);

/* If DETECTOR is bound to some ANTIGEN, make shure NEW also binds
to the same ANTIGEN. */

if (detector � � antigen != NULL)
{

190 detector antigen bind (new, detector � � antigen);
}

return new;
}

/* Clone DETECTOR without allocating any new memory (i.e., use the
memory allocated for CLONE). */

inline void
detector recycle clone (detector t *clone, const detector t *detector)

200 {
/* Create a copy of the current DETECTOR. The new bitstring should

be exactly the same as the original. */
detector recycle (clone, detector � � bitstring � � size,

detector � � bitstring � � data, detector � � state,
detector � � activation);

/* If DETECTOR is bound to some ANTIGEN, make shure CLONE also binds
to the same ANTIGEN. */

if (detector � � antigen != NULL)
210 {

detector antigen bind (clone, detector � � antigen);
}

return;
}

/* Recycle DETECTOR by reusing the memory it occupies and simply
storing a new randomly generated value into the bitstring data. */

inline void
220 detector recycle random (detector t *detector, const unsigned int size,

const detector state t state,
const double activation level min)

{
/* Note that if DETECTOR is bound to any antibody, this binding will

be destroyed, and the antibody will be freed. */
detector recycle (detector, size, NULL, state, activation level min);

random generator randbits (size, detector � � bitstring � � data);

230 return;
}
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/* Destroy the detector. */
inline void
detector destroy (detector t *detector)
{

/* If DETECTOR is already bound to an ANTIGEN, unbind it. */
if (detector � � antigen != NULL)

{
240 detector antigen unbind (detector);

}

/* Call the destructor of the bitstring member. */
bitstring destroy (detector � � bitstring);

/* Free allocated memory. */
free (detector);

return;
250 }

/* Wrapper call to be used with g list foreach (). DATA is not
used. */

inline void
detector destroy fe wrapper (detector t *detector, void *data)
{

detector destroy (detector);
return;

}
260

/* Increase the activation level of the detector. If ACTIVATION has
reached the threshold ACTIVATION LEVEL MAX, set the ds active
flag. */

inline void
detector activation increase (detector t *detector,

const double activation inc,
const double activation level max)

{
detector � � activation *= activation inc;

270
if (detector � � activation � = activation level max)

{
detector � � state

�
= DS ACTIVE;

}

return;
}

/* Decrease the activation level of the detector. The activation
280 level is not allowed to get lower than ACTIVATION LEVEL MIN. */

inline void
detector activation decrease (detector t *detector,

const double activation dec,
const double activation level min)

{
detector � � activation *= activation dec;

if (detector � � activation � activation level min)
{
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290 detector � � activation = activation level min;
}

return;
}

/* Increase the age of the detector. Kind of ‘‘Make another day pass
by’’. */

inline void
detector age (detector t *detector, const unsigned int immature period,

300 const unsigned int lifetime)
{

/* Increase the age of the detector. */
detector � � age++;

if (detector � � age � lifetime)
{

if ((detector � � state & DS MEMORY) == DS MEMORY)
{

/* Let memory detectors live for ever, avoid age
310 wraparound. */

detector � � age = lifetime;
}

else
{

/* The detector has reached its end station. */
detector � � state

�
= DS DEAD;

}
}

else {
320 if (detector � � age � immature period)

{
/* The detector has reached a mature (and naive) age. */
detector � � state

�
= DS MATURE;

}
}

return;
}

A.7 DETECTOR.H

/* $Id: detector.h,v 1.9 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifndef DETECTOR H
#define DETECTOR H

#include "bitstring.h"
10

typedef enum
{

DS NONE = 0,
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DS MATURE = 0x01 � � 0,
DS ACTIVE = 0x01 � � 1,
DS MEMORY = 0x01 � � 2,
DS DEAD = 0x01 � � 3,
DS COSTIMULATION SELF = 0x01 � � 4,
DS COSTIMULATION NONSELF = 0x01 � � 5

20 }
detector state t;

struct detector
{

bitstring t *bitstring; /* The antigen recognition site. */
double activation; /* Activation level of the

detector. */
detector state t state; /* The state of the detector. */
unsigned int age; /* Age of the detector. */

30 int activation age; /* When (AGE - COSTIMULATION DELAY) ==
ACTIVATION AGE, the detector
receives the costimulation
signal. */

bitstring t *antigen; /* If detector gets activated, this
will be the antigen binding to
it. */

};
typedef struct detector detector t;

40 detector t *detector new (const unsigned int size,
const unsigned long long *data,
const detector state t state,
const double activation level min);

detector t *detector create random (const unsigned int size,
const detector state t state,
const double activation level min);

50 /* With a probability P MUTATE, let DETECTOR undergo a point mutation.
If a mutation takes place, it is performed by toggling a randomly
chosen bit I in the bitstring. If P == 0.0, no mutation takes
place, while if P == 1.0, there certainly will be a mutation.
Returns 0 if no mutation took place and 1 if it did. */

unsigned int detector mutate (detector t *detector,
const double p mutate);

/* Clone DETECTOR and return the new clone. */
detector t *detector clone (const detector t *detector);

60
void detector recycle clone (detector t *clone, const detector t *detector);

void detector recycle random (detector t *detector,
const unsigned int size,
const detector state t state,
const double activation level min);

void detector destroy (detector t *detector);

70 /* Unbind ANTIGEN from DETECTOR. */
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void detector antigen unbind (detector t *detector);

/* Bind ANTIGEN to DETECTOR. */
void detector antigen bind (detector t *detector,

const bitstring t *antigen);

/* Wrapper call to be used with g list foreach (). DATA is not
used. */

void detector destroy fe wrapper (detector t *detector, void *data);
80

void detector activation increase (detector t *detector,
const double activation inc,
const double activation level max);

void detector activation decrease (detector t *detector,
const double activation dec,
const double activation level min);

void detector age (detector t *detector, const unsigned int immature period,
90 const unsigned int lifetime);

#endif /* ! DETECTOR H */

A.8 NETWORK.C

/* $Id: network.c,v 1.10 2002/05/09 14:37:50 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include � stdlib.h �
#include � string.h �

#ifdef HAVE FCNTL H
#include � fcntl.h �
#endif /* HAVE FCNTL H */

#ifdef HAVE UNISTD H
#include � unistd.h �
#endif /* HAVE UNISTD H */

20
#include "network.h"

#define NETWORK READ BUF SIZE 1024

/* Well-known services, based on FreeBSD 4.3’s ‘/etc/services’ and Steven
Andrew Hofmeyr’s Ph.D. dissertation (May 1999, University of New
Mexico). */

static unsigned int services well known[ ] =
{

30 /* Commonly assigned privileged ports. */
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1, 7, 9, 11, 13, 19, 20, 21, 22, 23, 25, 37, 38, 42, 43, 53, 68, 70, 79, 80,
87, 94, 95, 109, 110, 111, 113, 119, 123, 130, 131, 132, 137, 138, 139, 143,
156, 161, 162, 177, 178, 194, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 210, 213, 220, 372, 387, 396, 411, 443, 512, 513, 514, 515, 523, 540,
566

};

/* A conversion table for the services mentioned above. This enables a
service number (port) to be encoded as a byte value, as the size of the

40 above table is smaller than 256 (214). */
unsigned char network service table[NETWORK WELL KNOWN SERVICES] =
{

0,
};

/* An enumeration used to passed to parse host str () to indicate whether it
is parsing a source or a destination address. */

typedef enum
{

50 PHF NONE = 0x00,
PHF SOURCE = 0x01 � � 0,
PHF DESTINATION = 0x01 � � 1

}
parse host flag t;

/* Create a mapping table, so that the service of a connection can be
normalized to be a value between 0 and 255. */

void
network initialize (void)

60 {
unsigned int i;
unsigned int services = (sizeof (services well known) /

sizeof (*services well known));

for (i = 0; i � services; i++)
{

network service table[services well known[i]] = (i + 1);
}

70 return;
}

/* Return the ‘normalized’ service, given PORT as input. */
unsigned char
network get service (const unsigned int port)
{

if (port � NETWORK WELL KNOWN SERVICES)
{

unsigned char s = network service table[port];
80

if (s == 0)
{

/* The service uses a privileged port, but is not in the mapping
table. */

return (sizeof (services well known)
/ sizeof (*services well known)) + 1;

}
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return s;
}

90 else
{

/* Non-privileged port. Return a separate value for this service. */
return ((sizeof (services well known)

/ sizeof (*services well known)) + 2);
}

}

FILE *
network open (const char *path)

100 {
FILE *stream = fopen (path, "r");
if (stream == NULL)

{
perror (PACKAGE ": " FUNCTION );
exit (1);

}

return stream;
}

110
int
network close (FILE *stream)
{

return fclose (stream);
}

inline double
time str to numeral (const char *str)
{

120 unsigned int hours = 0, minutes = 0;
double seconds = 0.0, time = 0.0;

if (3 == sscanf (str, "%u:%u:%lf", &hours, &minutes, &seconds))
{

time = ((double) (hours * 3600) + (double) (minutes * 60) + seconds);
}

else
{

perror (PACKAGE ": " FUNCTION );
130 exit (1);

}
return time;

}

/* Convert the IP version 4 (IPv4) address and port number string str to a
pair of unsigned int variables. This requires IPv4, as these addresses may
be represented by 32 bits. */

inline int
network parse host str (const char *str, unsigned int *host addr,

140 unsigned int *port, unsigned int *flags,
const parse host flag t parse flags)

{
unsigned int h3, h2, h1, h0, p;
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switch (sscanf (str, "%u.%u.%u.%u.%u", &h0, &h1, &h2, &h3, &p))
{
case 5:

*port = p;
/* FALL THROUGH! */

150 case 4:
h2 = (h2 � 255) ? 255 : h2;
h3 = (h3 � 255) ? 255 : h3;

*host addr = (h0 � � 24
�

h1 � � 16
�

h2 � � 8
�

h3);

switch (parse flags)
{
case PHF SOURCE:

*flags
�
= ((0x0000ffff & *host addr) == 0x0002)

160 ? CF INTERNAL SOURCE : CF EXTERNAL SOURCE;
*flags

�
= (p � NETWORK WELL KNOWN SERVICES)

? CF SERVER SOURCE : 0;
break;

case PHF DESTINATION:
*flags

�
= ((0x0000ffff & *host addr) == 0x0002)

? CF INTERNAL DESTINATION : CF EXTERNAL DESTINATION;
*flags

�
= (p � NETWORK WELL KNOWN SERVICES)

? CF SERVER DESTINATION : 0;
170 break;

default:
break;

}
break;

default:
perror (PACKAGE ": " FUNCTION );
return 1;

180 }

return 0;
}

/* Initialize the CONNECTION data structure. */
inline void
network connection initialize (network connection t *connection)
{

connection � � source = 0;
190 connection � � source port = 0;

connection � � destination = 0;
connection � � destination port = 0;
connection � � timestamp = 0.0;
connection � � flags = CF NONE;
connection � � class = CC UNDEFINED;

return;
}

200 unsigned int
network next connection (FILE *stream, network connection t *connection)
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{
char buf[NETWORK READ BUF SIZE];
char class, remote host str[16];
int local host = 0, remote host = 0, local is server = 0, service = 0;

memset (buf, ’\0’, NETWORK READ BUF SIZE);

/* Retrieve the next Transmission Control Protocol (TCP) line from the input
210 stream. There should be no damaged connections in the ARTIS files. */

if (NULL == fgets (buf, NETWORK READ BUF SIZE, stream))
{

return 1;
}

/* Initialize the connection data. */
network connection initialize (connection);

/* The general format of this preparsed lines is:
220 “classification local host:remote host:first is server:service”

The classification may be self (S) or nonself (N). */
switch (sscanf (buf, "%c %i:%15[0-9.]:%i:%i",

&class, &local host, remote host str,
&local is server, &service))

{
unsigned int h0, h1, h2, h3;

case 5:
switch (sscanf (remote host str, "%u.%u.%u.%u", &h0, &h1, &h2, &h3))

230 {
case 4:

remote host = (h0 � � 24
�

h1 � � 16
�

h2 � � 8
�

h3);
break;

default:
perror (PACKAGE ": " FUNCTION );
exit (1);

}
break;

240 default:
printf ("%s: %s: buf = ’%s’\n", PACKAGE, FUNCTION , buf);
exit (1);

}

/* Set the CF PREPARSED flag to indicate that source is local host,
destination is remote host, destination port is the service. */

connection � � flags
�
= CF PREPARSED;

connection � � source = local host;
connection � � source port = local is server;

250 connection � � destination = remote host;
connection � � destination port = service;

/* Determine the classification of the connection. If CLASS is neither ’S’
nor ’N’, connection-� class remains CC UNDEFINED. */

switch (class)
{
case ’S’:

connection � � class = CC SELF;



110 Appendix A. Source Code

break;
260 case ’N’:

connection � � class = CC NONSELF;
break;

}

return 0;
}

/* Read the next TCP connection from a tcpdump formatted file. Parse a header
and store the information in a network connection t data structure. */

270 unsigned int
network next tcp connection (FILE *stream, network connection t *connection)
{

char buf[NETWORK READ BUF SIZE];
char rest[512], time[32], source[32], destination[32];
char flag;

memset (buf, ’\0’, NETWORK READ BUF SIZE);

/* Retrieve the next Transmission Control Protocol (TCP) line from the input
280 stream. */

if (NULL == fgets (buf, NETWORK READ BUF SIZE, stream))
{

return 1;
}

/* If it is a damaged connection header or a fragmented datagram, recurse
and return the next one. */

if (strstr (buf, "bytes missing!")
� �

strstr (buf, "frag"))
{

290 return network next connection (stream, connection);
}

/* Initialize the connection data. */
network connection initialize (connection);

/* The general format of a TCP (protocol) line is:

src � dst: flags data-seqno ack window urgent options

300 In the TCP line format, src and dst are the source and destination IP
addresses and ports. Flags are some combination of S (SYN), F (FIN), P
(PUSH) or R (RST) or a single ‘.’ (no flags). The src, dst and flags
fields are always present. */

switch (sscanf (buf, "%31s %31[0-9.] > %31[0-9.] : %c %511[^\n]",
time, source, destination, &flag, rest))

{
case 5:

/* Convert the time string to a numeral timestamp. */
connection � � timestamp = time str to numeral (time);

310
/* Convert the SOURCE IP address and port number string to unsigned ints

and store the results in CONNECTION. This requires IP version 4, as
IPv4 addresses are represented by 32 bits. */

if (network parse host str (source, &connection � � source,
&connection � � source port,
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&connection � � flags,
PHF SOURCE))

{
/* The conversion failed. */

320 printf ("%s: %s: source = ’%s’\n", PACKAGE, FUNCTION ,
source);

printf ("%s: %s: buf = ’%s’\n", PACKAGE, FUNCTION , buf);
exit (1);

}

/* Convert the DESTINATION IP address and port number string to unsigned
ints and store the results in CONNECTION. */

if (network parse host str (destination, &connection � � destination,
&connection � � destination port,

330 &connection � � flags,
PHF DESTINATION))

{
/* The conversion failed. */
printf ("%s: %s: destination = ’%s’\n", PACKAGE, FUNCTION ,

destination);
printf ("%s: %s: buf = ’%s’\n", PACKAGE, FUNCTION , buf);
exit (1);

}

340 /* Indicate what TCP flag was set in the connection. */
switch (flag)

{
case ’S’:

connection � � flags
�
= CF TCP SYN;

break;
case ’F’:

connection � � flags
�
= CF TCP FIN;

break;
case ’P’:

350 connection � � flags
�
= CF TCP PUSH;

break;
case ’R’:

connection � � flags
�
= CF TCP RST;

break;
}

break;

default:
360 printf ("%s: %s: buf = ’%s’\n", PACKAGE, FUNCTION , buf);

exit (1);
}

return 0;
}

A.9 NETWORK.H

/* $Id: network.h,v 1.7 2002/05/09 14:37:50 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
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*/

#ifndef NETWORK H
#define NETWORK H

#include � stdio.h �
10

/* An enumeration of possible conditions related to parsing of TCP packet
headers. */

typedef enum
{

CF NONE = 0x00,
CF EXTERNAL DESTINATION = 0x01 � � 0,
CF EXTERNAL SOURCE = 0x01 � � 1,
CF INTERNAL DESTINATION = 0x01 � � 2,
CF INTERNAL SOURCE = 0x01 � � 3,

20 CF SERVER DESTINATION = 0x01 � � 4,
CF SERVER SOURCE = 0x01 � � 5,
CF TCP SYN = 0x01 � � 6,
CF TCP FIN = 0x01 � � 7,
CF TCP PUSH = 0x01 � � 8,
CF TCP RST = 0x01 � � 9,
CF PREPARSED = 0x01 � � 10

}
connection flag t;

30 /* An enumeration of the possible classifications of connections. */
typedef enum
{

CC UNDEFINED = 0x00,
CC SELF = 0x01 � � 0,
CC NONSELF = 0x01 � � 1

}
connection class t;

struct network connection
40 {

unsigned int source;
unsigned int source port;
unsigned int destination;
unsigned int destination port;
double timestamp;
connection flag t flags;
connection class t class;

};
typedef struct network connection network connection t;

50
#define NETWORK WELL KNOWN SERVICES 1024

/* Mapping table for network services. */
extern unsigned char network service table[ ];

void network initialize (void);

unsigned char network get service (const unsigned int port);

60 FILE *network open (const char *path);
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int network close (FILE *stream);

unsigned int network next connection (FILE *stream,
network connection t *connection);

unsigned int network next tcp connection (FILE *stream,
network connection t *connection);

70 #endif /* ! NETWORK H */

A.10 NODE.C

/* $Id: node.c,v 1.25 2002/06/04 10:00:53 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include � stdio.h �
#include � stdlib.h �

#include "node.h"

/* A little help structure. See usage below. */
struct node container
{

ais node t *node;
const bitstring t *agent;

20 };
typedef struct node container node container t;

void
node initialize (ais node t *node, const ais config t *config)
{

unsigned int d;

node � � config = config;

30 /* Declare list of immature, mature and memory detectors empty. */
node � � immature detectors = NULL;
node � � mature detectors = NULL;
node � � memory detectors = NULL;

node � � n mature = 0ULL;
node � � n memory = 0ULL;

for (d = 0; d � node � � config � � n immature max; d++)
{

40 node � � immature detectors =
g list prepend (node � � immature detectors,

detector create random
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(node � � config � � len, DS NONE,
config � � detector activation level min));

//bitstring print (node � � detectors[d] � � bitstring); printf ("\n");
}

return;
50 }

ais node t *
node new (const ais config t *config)
{

ais node t *node = malloc (sizeof (*node));
if (node == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

60 }

node initialize (node, config);

return node;
}

void
node destroy (ais node t *node)
{

70 g list foreach (node � � memory detectors,
(GFunc) detector destroy fe wrapper, NULL);

g list foreach (node � � mature detectors,
(GFunc) detector destroy fe wrapper, NULL);

g list foreach (node � � immature detectors,
(GFunc) detector destroy fe wrapper, NULL);

g list free (node � � memory detectors);
g list free (node � � mature detectors);
g list free (node � � immature detectors);

80
//free (node);

return;
}

void
print list show element (const GList *list, gpointer *data)
{

GList *tmp = (GList *) list;
90 unsigned int i = 0;

while (tmp)
{

if (data == tmp � � data)
{

printf ("%d: %p <--\n", i++, tmp � � data);
}

else
{
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100 printf ("%d: %p\n", i++, tmp � � data);
}

tmp = g list next (tmp);
}

return;
}

void
print list (const GList *list)

110 {
GList *tmp = (GList *) list;
unsigned int i = 0;

while (tmp)
{

printf ("%d: %p\n", i++, tmp � � data);

tmp = g list next (tmp);
}

120 return;
}

/* Move the detector (referenced by THIS) to the front of LIST. */
inline GList *
node move detector to front (GList *list, GList *this)
{

list = g list remove link (list, this);
return g list concat (this, list);

}
130

/* Insert DETECTOR into LIST. If the number of elements in LIST has
reached its maximum capacity (*N), this is done by applying the
least reacently used (LRU) principle. */

inline GList *
node insert detector (GList *list, detector t *detector,

unsigned int *n, const unsigned int n max)
{

detector t *new = NULL;
GList *lru = NULL;

140
if (*n � n max)

{
/* If DETECTOR is bound to ANTIGEN, NEW will be bound to a

copy of ANTIGEN. */
new = detector clone (detector);

}
else

{
/* Apply substitution by the least recently used (LRU)

150 principle. As all activated memory detectors are moved to
the head of the list every time it’s activated, the last
element in the list is the LRU detector. Start by moving the
LRU detector to the front of the list. */

lru = g list last (list);
new = lru � � data;



116 Appendix A. Source Code

/* If DETECTOR is bound to ANTIGEN, NEW will be bound to a
copy of ANTIGEN. */

detector recycle clone (new, detector);
160 }

/* Update NEW’s age. */
new � � age = detector � � age;
/* Set NEW’s ACTIVATION AGE. */
new � � activation age = new � � age;

if (*n � n max)
{

/* Prepend NEW to LIST. */
170 list = g list prepend (list, new);

/* Increase the counter of ‘‘this type of elements’’ in LIST.
Should be equal to g list length (LIST). */

(*n)++;
}

else
{

list = node move detector to front (list, lru);
}

180
return list;

}

/* The comparison function returns an integer less than, equal to, or
greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. */

inline int
clone pool element cmp (const void *a, const void *b)
{

190 return ((int) ((clone pool element t *) a) � � affinity
� (int) ((clone pool element t *)b) � � affinity);

}

/* Reversed version of the above function. */
inline int
clone pool element cmp rev (const void *a, const void *b)
{

return ( � clone pool element cmp (a, b));
}

200
/* Simulate somatic hypermutation of DETECTOR in the NODE. */
GList *
node hypermutate (GList *list, ais node t *node, detector t *detector)
{

register unsigned int i;
/* If DETECTOR is bound to ANTIGEN during the detector recycle clone

() call, then the clone will be bound to a copy of ANTIGEN. To
avoid creating all these copies, we’ll temporarioly keep a
reference to the bound ANTIGEN outside the detector. */

210 bitstring t *antigen = detector � � antigen;
detector � � antigen = NULL;

for (i = 0; i � node � � config � � clones; i++)
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{
/* Clone DETECTOR. */
detector recycle clone (node � � clone pool[i].detector, detector);

/* Mutate the clone with a probability of P MUTATE. */
detector mutate (node � � clone pool[i].detector, node � � config � � p mutate);

220
if (node � � config � � sh competition)

{
node � � clone pool[i].affinity =

bitstring contiguous affinity
(node � � clone pool[i].detector � � bitstring, antigen);

}
}

if (node � � config � � sh competition)
230 {

/* Find the AFFINITY level between DETECTOR and ANTIGEN. */
unsigned int affinity =

bitstring contiguous affinity (detector � � bitstring,
antigen);

/* Sort the cloned detectors, according to the strength of their
affinity to the ANTIGEN. The sorted list will be arranged
from high to low affinity values. */

qsort (node � � clone pool, node � � config � � clones,
240 sizeof (*(node � � clone pool)), clone pool element cmp rev);

/* If SH COMPETITION is enabled, select the clones with the
highest affinity (minimum equal to AFFINITY) for AGENT. No
more than CLONES SELECT will be selected. */

i = 0;
while (i � node � � config � � clones select)

{
if (node � � clone pool[i].affinity � = affinity)

{
250 list = node insert detector (list,

node � � clone pool[i].detector,
&node � � n memory,
node � � config � � n memory max);

}
else

{
/* As the CLONE POOL is an ordered list (high to low),

if the current clone’s affinity is below the
threshold AFFINITY, none of its successors will be

260 either. */
i = node � � config � � clones select;

}
i++;

}
}

else /* ! SH COMPETITION. */
{

/* If SH COMPETITION is not enabled, simply randomly select the
CLONES SELECT clones from CLONE POOL and insert them into

270 LIST. */
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for (i = 0; i � node � � config � � clones select; i++)
{

/* Note that none of the clones are bound to the antigen
inside this function. Thus, there’s no need to unbind
before insertion into LIST. */

list = node insert detector (list,
node � � clone pool[i].detector,
&node � � n memory,
node � � config � � n memory max);

280 }
}

/* Remember to set the reference to ANTIGEN back again. */
detector � � antigen = antigen;

return list;
}

/* Update the statistics concerning true and false positives and
290 negatives. */

inline void
node update stats (ais node info t *info, const unsigned char matched,

const connection class t class)
{

switch (class)
{
case CC SELF:

matched ? info � � false positives++ : info � � true negatives++;
break;

300
case CC NONSELF:

matched ? info � � true positives++ : info � � false negatives++;
break;

default:
break;

}

return;
310 }

inline void
node expose immature to agent (detector t *detector, node container t *data)
{

if (bitstring r contiguous (detector � � bitstring, data � � agent,
data � � node � � config � � r))

{
/* DETECTOR matched AGENT. */
node update stats (&data � � node � � info, TRUE,

320 data � � node � � config � � current class);

/* Increase the activation level of DETECTOR. */
detector activation increase

(detector, data � � node � � config � � detector activation inc,
data � � node � � config � � detector activation level max);

/* FIXME: uncomment? */
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detector � � state
�
= DS ACTIVE;

330 if ((detector � � state & (DS ACTIVE
�

DS MATURE)) == DS ACTIVE)
{

/* Active and immature; i.e., it recognized self. Thus, the
detector is killed. */

detector � � state
�
= DS DEAD;

data � � node � � info.premature deaths++;
}

else
{

340 /* If DETECTOR is mature and active but haven’t been
classified yet, then set its costimulation signal. */

if (((detector � � state
& (DS ACTIVE

�
DS MATURE

�
DS COSTIMULATION SELF�

DS COSTIMULATION NONSELF)))
== (DS ACTIVE

�
DS MATURE))

{
detector � � state

�
=

(data � � node � � config � � current class == CC NONSELF)
? DS COSTIMULATION NONSELF : DS COSTIMULATION SELF;

350 detector � � activation age = detector � � age;
data � � node � � info.activations++;

if (data � � node � � config � � sh competition
&& ((detector � � state & DS COSTIMULATION NONSELF)

== DS COSTIMULATION NONSELF))
{

/* Bind to (a copy of) the AGENT. */
detector antigen bind (detector, data � � agent);

}
360 }

}
}

else
{

/* DETECTOR didn’t match AGENT. */
node update stats (&data � � node � � info, FALSE,

data � � node � � config � � current class);

detector activation decrease
370 (detector, data � � node � � config � � detector activation dec,

data � � node � � config � � detector activation level min);
}

/* Check if we’ve finally become DS MATURE. */
if ((detector � � state & (DS ACTIVE

�
DS MATURE)) == DS MATURE)

{
data � � node � � mature detectors =

node insert detector (data � � node � � mature detectors, detector,
&data � � node � � n mature,

380 data � � node � � config � � n mature max);

detector � � state
�
= DS DEAD;

}
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/* Age the DETECTOR. */
detector age (detector, data � � node � � config � � detector immature period,

data � � node � � config � � detector lifetime);

if ((detector � � state & DS DEAD) == DS DEAD)
390 {

/* Immature detector is dead. Recycle it (give it a random
bitstring value and set its state to DS NONE). */

if (detector � � antigen != NULL)
{

detector antigen unbind (detector);
}

detector recycle random
(detector, data � � node � � config � � len, DS NONE,

400 data � � node � � config � � detector activation level min);
}

return;
}

inline void
node expose mature to agent (detector t *detector, node container t *data)
{

if (bitstring r contiguous (detector � � bitstring, data � � agent,
410 data � � node � � config � � r))

{
/* DETECTOR matched AGENT. */
node update stats (&data � � node � � info, TRUE,

data � � node � � config � � current class);

data � � node � � info.mature matched = TRUE;

/* Increase the activation level of DETECTOR. Note that we’re
using DETECTOR ACTIVATION INC as the increase rate. */

420 detector activation increase
(detector, data � � node � � config � � detector activation inc,
data � � node � � config � � detector activation level max);

/* If DETECTOR is mature and active but haven’t been classified
yet, then set its costimulation signal. */

if (((detector � � state
& (DS ACTIVE

�
DS MATURE

�
DS COSTIMULATION SELF�

DS COSTIMULATION NONSELF)))
== (DS ACTIVE

�
DS MATURE))

430 {
detector � � state

�
=

(data � � node � � config � � current class == CC NONSELF)
? DS COSTIMULATION NONSELF : DS COSTIMULATION SELF;

detector � � activation age = detector � � age;
data � � node � � info.activations++;

if (data � � node � � config � � sh competition
&& ((detector � � state & DS COSTIMULATION NONSELF)

== DS COSTIMULATION NONSELF))
440 {

/* Bind to (a copy of) the AGENT. */
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detector antigen bind (detector, data � � agent);
}

}
}

else
{

/* DETECTOR didn’t match AGENT. */
node update stats (&data � � node � � info, FALSE,

450 data � � node � � config � � current class);

/* Decrease activation level. Note that we’re using
DETECTOR ACTIVATION DEC as the decrease rate. */

detector activation decrease
(detector, data � � node � � config � � detector activation dec,
data � � node � � config � � detector activation level min);

}

return;
460 }

inline void
node expose memory to agent (detector t *detector, node container t *data)
{

if (bitstring r contiguous (detector � � bitstring, data � � agent,
data � � node � � config � � r))

{
/* DETECTOR matched AGENT. */
node update stats (&data � � node � � info, TRUE,

470 data � � node � � config � � current class);

data � � node � � info.memory matched = TRUE;

/* Increase the activation level of DETECTOR. Note that we’re
using MEMORY DETECTOR ACTIVATION INC as the increase rate. */

detector activation increase
(detector, data � � node � � config � � memory detector activation inc,
data � � node � � config � � detector activation level max);

480 /* If DETECTOR is mature and active but haven’t been classified
yet, then set its costimulation signal. */

if (((detector � � state
& (DS ACTIVE

�
DS MATURE

�
DS COSTIMULATION SELF�

DS COSTIMULATION NONSELF)))
== (DS ACTIVE

�
DS MATURE))

{
detector � � state

�
=

(data � � node � � config � � current class == CC NONSELF)
? DS COSTIMULATION NONSELF : DS COSTIMULATION SELF;

490 detector � � activation age = detector � � age;
data � � node � � info.activations++;

if (data � � node � � config � � sh competition
&& ((detector � � state & DS COSTIMULATION NONSELF)

== DS COSTIMULATION NONSELF))
{

/* Bind to (a copy of) the AGENT. */
detector antigen bind (detector, data � � agent);
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}
500 }

}
else

{
/* DETECTOR didn’t match AGENT. */
node update stats (&data � � node � � info, FALSE,

data � � node � � config � � current class);

/* Decrease activation level. Note that we’re using
MEMORY DETECTOR ACTIVATION DEC as the decrease rate. */

510 detector activation decrease
(detector, data � � node � � config � � memory detector activation dec,
data � � node � � config � � detector activation level min);

}

return;
}

inline void
node detector age fe (detector t *detector, const ais node t *node)

520 {
detector age (detector, node � � config � � detector immature period,

node � � config � � detector lifetime);

return;
}

inline GList *
node process detectors (GList *list, unsigned int *n, ais node t *node,

unsigned char proc memory)
530 {

GList *tmp = list;
unsigned int m = 0;

//unsigned char *str = proc memory ? "mem: " : "mat: ";

while (tmp != NULL)
{

detector t *detector = tmp � � data;
GList *next = g list next (tmp);

540
/* First, see if DETECTOR has done any detections at all. */
if ((detector � � state & (DS ACTIVE

�
DS MATURE))

== (DS ACTIVE
�

DS MATURE))
{

/* See if we’re done waiting for costimulation. */
if ((detector � � age � detector � � activation age)

� = node � � config � � costimulation delay)
{

if ((detector � � state & DS COSTIMULATION SELF)
550 == DS COSTIMULATION SELF)

{
/* If the activating agent was self, no

costimualtion (signal 2) is received, and
DETECTOR dies. */

detector � � state
�
= DS DEAD;
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/* Increase the number of detectors which received
signal 1 only. */

node � � info.sig 1 only++;
560 }

else
{

/* If the activating agent was nonself, signal 2 is
received, DETECTOR becomes a memory detector and
possibly undergoes somatic hypermutation. */

if ((detector � � state & DS COSTIMULATION NONSELF)
== DS COSTIMULATION NONSELF)

{
/* Clear the following status flags. */

570 detector � � state &= ˜(DS ACTIVE
�

DS COSTIMULATION SELF�
DS COSTIMULATION NONSELF);

/* Increase the number of detectors which
received both signal 1 and signal 2
(costimulation). */

node � � info.sig 1 and 2++;

/* Set the state of the detector to
DS MEMORY. */

580 detector � � state
�
= DS MEMORY;

/* See if we’re processing memory detectors. */
if (proc memory == TRUE)

{
/* Move the element to the front of the

list. This is done to support the LRU
substitution. */

list = node move detector to front (list, tmp);
}

590 else
{

/* Insert the detector into the memory
detectors. */

node � � memory detectors =
node insert detector (node � � memory detectors,

detector,
&node � � n memory,
node � � config � � n memory max);

}
600

/* If the SOMATIC HYPERMUTATION flag is set,
then simulate SH. */

if (node � � config � � somatic hypermutation)
{

/* Simulate somatic hypermutation (SH). */
if (proc memory == TRUE)

{
list = node hypermutate (list,

node, detector);
610 }

else
{
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node � � memory detectors =
node hypermutate (node � � memory detectors,

node, detector);

/* As the DETECTOR is cloned in the
above statement, this one may be
removed from this list by setting its

620 state to DS DEAD. */
detector � � state

�
= DS DEAD;

}
}

}
}

}
}

m++;
630

/* Age DETECTOR. */
detector age (detector, node � � config � � detector immature period,

node � � config � � detector lifetime);

/* Iterate further in the list, before possibly removing
DETECTOR. */

tmp = next;

if ((detector � � state & DS DEAD) == (DS DEAD))
640 {

/* Remove the DETECTOR from the list of mature detectors. */
list = g list remove (list, detector);

/* We should definitely unbind the ANTIGEN from the DETECTOR
it has been bound to (if any) before DETECTOR is
destroyed. */

if (detector � � antigen != NULL)
{

detector antigen unbind (detector);
650 }

detector destroy (detector);

/* Decrease the mature/detector cell counter. */
� � (*n);

}

/* A safety fuse to avoid any possible infinite loop. */
if (m � 1000)

660 {
fprintf (stderr, PACKAGE " " VERSION ":" FUNCTION

": exited an infinite loop.");
exit (1);

}
}

return list;
}
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670 /* Simulate the insertion of AGENT into the IS. */
inline void
node insert agent (ais node t *node, const bitstring t *agent)
{

node container t data;

data.agent = agent;
data.node = node;

/* See if any memory detectors match AGENT. */
680 node � � info.memory matched = FALSE;

g list foreach (node � � memory detectors,
(GFunc) node expose memory to agent, &data);

/* See if any mature detectors match AGENT. */
node � � info.mature matched = FALSE;

g list foreach (node � � mature detectors,
(GFunc) node expose mature to agent, &data);

690
/* If neither memory nor mature detectors matched AGENT, it is probably

self. This protective behavior tries to simulate the thymus. */
if (node � � config � � thymus)

{
if ((node � � info.memory matched == FALSE)

&& (node � � info.mature matched == FALSE))
{

g list foreach (node � � immature detectors,
(GFunc) node expose immature to agent, &data);

700 }
}

else
{

g list foreach (node � � immature detectors,
(GFunc) node expose immature to agent, &data);

}

node � � mature detectors =
node process detectors (node � � mature detectors, &(node � � n mature), node,

710 FALSE);

node � � memory detectors =
node process detectors (node � � memory detectors, &(node � � n memory), node,

TRUE);

return;
}

A.11 NODE.H

/* $Id: node.h,v 1.9 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/
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#ifndef NODE H
#define NODE H

#ifdef HAVE CONFIG H
10 #include � config.h �

#endif /* HAVE CONFIG H */

#include � glib.h �

#include "ais_config.h"
#include "detector.h"

struct ais node info
{

20 unsigned int premature deaths;
unsigned int true positives; /* Matching nonself. */
unsigned int true negatives; /* Not matching self. */
unsigned int false positives; /* Matching self. */
unsigned int false negatives; /* Not matching nonself. */
unsigned int activations;
unsigned int sig 1 and 2;
unsigned int sig 1 only;

unsigned char memory matched; /* TRUE if any memory detector has matched an
30 agent, FALSE otherwise. */

unsigned char mature matched; /* TRUE if any mature detector has matched an
agent, FALSE otherwise. */

};
typedef struct ais node info ais node info t;

struct clone pool element
{

detector t *detector;
unsigned int affinity;

40 };
typedef struct clone pool element clone pool element t;

struct ais node
{

/* Doubly-linked lists. */
GList *immature detectors;
GList *mature detectors;
GList *memory detectors;

50 unsigned int n mature; /* The number of mature detectors currently in
MATURE DETECTORS. */

unsigned int n memory; /* The number of memory detectors currently in
MEMORY DETECTORS. */

ais node info t info;
const ais config t *config;
clone pool element t *clone pool;
//detector t **clone pool;

};
typedef struct ais node ais node t;

60
void node initialize (ais node t *node, const ais config t *config);
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ais node t *node new (const ais config t *config);

void node destroy (ais node t *node);

void node insert agent (ais node t *node, const bitstring t *agent);

void node response (ais node t *node);
70

#endif /* ! NODE H */

A.12 MAIN.C

/* $Id: main.c,v 1.20 2002/05/27 18:44:45 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include "ais.h"
#include "network.h"

#ifdef MTRACE
#include � mcheck.h �
#endif /* MTRACE */

#include � stdlib.h �
#include � string.h �
#include � getopt.h �

20
void
main print usage (FILE *stream, const char *program name)
{

fprintf (stream, "Usage: %s [ options ] [ inputfile ... ]\n", program name);
fprintf (stream,

" -h, --help "
"Display this usage information.\n"
" -i, --info "
"Only show the current configuration and exit.\n"

30 " -t, --test "
"Perform a match test.\n"
" -r R, --r-value=R "
"Set the r of the r-contiguous-bits algorithm.\n"
" -n N, --nodes=N "
"Set the number of nodes.\n"
" -I N, --immature-detectors=N\n "
"Set the number of immature detectors per node.\n"
" -N N, --mature-detectors=M "
"Set the maximum number of mature (naive) agents.\n"

40 " -M N, --memory-detectors=M "
"Set the maximum number of mature agents.\n"
" -l N, --detector-lifetime=N \n "
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"Set the length of a detectors lifetime.\n"
" -c N, --detector-childhood=N\n "
"Set the duration of a detectors childhood.\n"
" -a R, --activation-inc=R "
"Set the factor for increasing the detector\n"
" "
"activation.\n"

50 " -d R, --activation-dec=R "
"Set the factor for decreasing the detector\n"
" "
"activation.\n"
" -D N, --costimulation-delay \n "
"Set the length of the period from activation\n"
" "
"to costimulation is received.\n"
" -f F, --format=F "
"Use TCP or AIS as file format. Default is AIS.\n"

60 " -p S, --node-ids=S "
"Read node IDs from file S. (Switched LAN.)\n"
" -y, --somatic-hypermutation \n "
"Perform somatic hypermutation (SH).\n"
" -m, --sh-p-mutate=P "
"Let P be the probability of mutation under SH.\n"
" -u, --sh-clones=N "
"Generate N clones under SH.\n"
" -v, --sh-clones-select=N "
"Let N of the clones survive after SH.\n"

70 " -C, --sh-competition "
"Simulate affinity competition under SH.\n"
" -z, --thymus "
"Perform thymus simulation.\n"
);

return;
}

void
80 main print info (FILE *stream, const ais config t *config)

{
unsigned int f;

fprintf (stream,
"# " PACKAGE ", version " VERSION "\n"
"#\n# Current configuration:\n"
"# somatic_hypermutation = %d\n"
"# sh_competition = %d\n"
"# thymus = %d\n"

90 "# p_mutate = %g\n"
"# clones = %d\n"
"# clones_select = %d\n"
"# nodes = %i\n"
"# n_immature_max = %i\n"
"# n_mature_max = %i\n"
"# n_memory_max = %i\n"
"# len = %i\n"
"# r = %i\n"
"# detector_lifetime = %i\n"
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100 "# detector_immature_period = %i\n"
"# detector_activation_level_max = %g\n"
"# detector_activation_level_min = %g\n"
"# detector_activation_inc = %g\n"
"# detector_activation_dec = %g\n"
"# costimulation_delay = %i\n"
"# match_test = %d\n"
"# file_format = %s\n",
config � � somatic hypermutation,
config � � sh competition,

110 config � � thymus,
config � � p mutate, config � � clones, config � � clones select,
config � � nodes, config � � n immature max,
config � � n mature max, config � � n memory max,
config � � len, config � � r, config � � detector lifetime,
config � � detector immature period,
config � � detector activation level max,
config � � detector activation level min,
config � � detector activation inc, config � � detector activation dec,
config � � costimulation delay,

120 config � � match test,
((config � � file format == AIS FILE FORMAT TCP) ? "TCP" : "AIS"));

if (config � � node ids != NULL)
{

fprintf (stream, "# switched_lan = 1\n");
fprintf (stream, "# node_ids = ’%s’\n", config � � node ids);

}
else

{
130 fprintf (stream, "# switched_lan = 0\n");

}

for (f = 0; f � config � � file names; f++)
{

fprintf (stream, "# file %d = ’%s’\n", f, config � � file name list[f]);
}

return;
}

140
int
main (int argc, char *argv[ ])
{

/* A string listing of valid short option letters. */
const char *short options = "htr:n:I:N:M:l:c:f:p:ym:u:v:Cz";

/* An array describing valid long options and corresponding short
options. */

const struct option long options[ ] =
150 {

{"help", no argument, NULL, ’h’},
{"info", no argument, NULL, ’i’},
{"test", no argument, NULL, ’t’},
{"r-value", required argument, NULL, ’r’},
{"nodes", required argument, NULL, ’n’},
{"immature-detectors", required argument, NULL, ’I’},
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{"mature-detectors", required argument, NULL, ’N’},
{"memory-detectors", required argument, NULL, ’M’},
{"detector-lifetime", required argument, NULL, ’l’},

160 {"detector-childhood", required argument, NULL, ’c’},
{"activation-inc", required argument, NULL, ’a’},
{"activation-dec", required argument, NULL, ’d’},
{"costimulation-delay", required argument, NULL, ’D’},
{"format", required argument, NULL, ’f’},
{"node-ids", required argument, NULL, ’p’},
{"somatic-hypermutation", no argument, NULL, ’y’},
{"sh-p-mutate", required argument, NULL, ’m’},
{"sh-clones", required argument, NULL, ’u’},
{"sh-clones-select", required argument, NULL, ’v’},

170 {"sh-competition", no argument, NULL, ’C’},
{"thymus", no argument, NULL, ’z’},
{NULL, 0, NULL, 0}

};
unsigned int f;
unsigned int show info = FALSE;
ais t *ais = NULL;
int next option;

#ifdef MTRACE
180 mtrace (); /* Turn on malloc tracing. */

#endif /* MTRACE */

/* Create a new artificial immune system (AIS). The fields of the ais
struct will all be set to default values. */

ais = ais new ();

/* Parse the command line options. */
do

{
190 next option = getopt long (argc, argv, short options,

long options, NULL);

switch (next option)
{
case ’h’: /* -h or –help. */

main print usage (stderr, argv[0]);
exit (1);
break;

200 case ’t’: /* -t or –test. */
/* Perform a benchmark of the r contiguos match algorithm. */
ais � � config � � match test = TRUE;
break;

case ’r’: /* -r or –r-value. */
/* Set the r of the r-contiguous-bits algorithm. */
ais � � config � � r = (unsigned int) atoi (optarg);
break;

210 case ’n’: /* -n or –nodes. */
/* Set the number of nodes. */
ais � � config � � nodes = (unsigned int) atoi (optarg);
break;
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case ’I’: /* -I or –immature-detectors. */
/* Set the number of immature detectors per node. */
ais � � config � � n immature max = (unsigned int) atoi (optarg);
break;

220 case ’N’: /* -N or –mature-detectors. */
ais � � config � � n mature max = (unsigned int) atoi (optarg);
break;

case ’M’: /* -M or –memory-detectors. */
/* Set the number of memory detectors per node. */
ais � � config � � n memory max = (unsigned int) atoi (optarg);
break;

case ’l’: /* -l or –detector-lifetime. */
230 /* Set the length of a detectors lifetime. */

ais � � config � � detector lifetime = (unsigned int) atoi (optarg);
break;

case ’c’: /* -c or –detector-childhood. */
/* Set the duration of a detectors childhood. */
ais � � config � � detector immature period = (unsigned int) atoi (optarg);
break;

case ’a’: /* -a or –activation-inc. */
240 ais � � config � � detector activation inc = atof (optarg);

break;

case ’d’: /* -d or –activation-dec. */
ais � � config � � detector activation dec = atof (optarg);
break;

case ’D’: /* -D or –costimulation-delay. */
ais � � config � � costimulation delay = atoi (optarg);
break;

250
case ’i’: /* -i or –info. */

/* Only show the current configuration and exit. */
show info = TRUE;
break;

case ’f’: /* -f or –format. */
if (0 == strcmp ("TCP", optarg))

{
ais � � config � � file format = AIS FILE FORMAT TCP;

260 }
else

{
ais � � config � � file format = AIS FILE FORMAT AIS;

}
break;

case ’p’: /* -p or –node-ids. */
ais � � config � � node ids = optarg;
break;

270
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case ’y’: /* -y or –somatic-hypermutation. */
ais � � config � � somatic hypermutation = 1;
break;

case ’m’: /* -m or –p-mutate. */
ais � � config � � p mutate = atof (optarg);
break;

case ’u’: /* -u or –clones. */
280 ais � � config � � clones = atoi (optarg);

break;

case ’v’: /* -v or –clones-select. */
ais � � config � � clones select = atoi (optarg);
break;

case ’C’: /* -C or –sh-competition. */
ais � � config � � sh competition = 1;
break;

290
case ’z’: /* -z or –thymus. */

ais � � config � � thymus = 1;
break;

}
}

while (next option != � 1);

/* Retrieve the names of the files to be used as input. The OPTIND points
to the first non-option argument. */

300 for (f = optind; f � argc; f++)
{

ais � � config � � file names++;
}

if (ais � � config � � file names == 0)
{

show info = TRUE;
}

else
310 {

ais � � config � � file name list =
(unsigned char **) malloc (sizeof (*(ais � � config � � file name list))

* ais � � config � � file names);

for (f = optind; f � argc; f++)
{

ais � � config � � file name list[f � optind] = argv[f];
}

}
320

if (ais � � config � � node ids != NULL)
{

ais generate node map (ais);
}

ais initialize (ais);
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main print info (stdout, ais � � config);

330 if (ais � � config � � match test)
{

ais match test (ais);
}

if (show info)
{

exit (0);
}

340 if (ais � � config � � node ids != NULL)
{

ais run switched (ais);
}

else
{

ais run broadcast (ais);
}

ais destroy (ais);
350

return 0;
}

A.13 FAST_LOG_PARSE.C

/* $Id: fast log parse.c,v 1.21 2002/06/12 07:05:33 mtr Exp $
*
* Copyright (C) 2002 by Martin Thorsen Ranang � mtr@ranang.org �
*/

#ifdef HAVE CONFIG H
#include � config.h �
#endif /* HAVE CONFIG H */

10 #include � stdarg.h �
#include � stdio.h �
#include � stdlib.h �
#include � string.h �
#include � math.h �

#include "ais_config.h"
#include "fast_log_parse.h"

#define FGETS BUF SIZE 4096
20

#ifndef max
#define max(X, Y) �

({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

#endif /* ! max. */
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#ifndef min
#define min(X, Y) �

30 ({ typeof (X) x = (X); �
typeof (Y) y = (Y); �
(x � y ) ? x : y ; })

#endif /* ! min. */

#ifdef LIBC
#define MEMPCPY(d, s, n) mempcpy (d, s, n)
#else
#ifndef HAVE MEMPCPY
#define MEMPCPY(d, s, n) ((void *) ((char *) memcpy (d, s, n) + (n)))

40 #endif
#endif

FILE *
flp file open (char *file name)
{

FILE *stream = NULL;

stream = fopen (file name, "r");
if (stream == NULL)

50 {
perror (PACKAGE ": " FILE ": " FUNCTION ": open ()");
exit (1);

}

return stream;
}

void
flp file close (FILE *stream)

60 {
fclose (stream);

return;
}

unsigned int
flp file is self (const ais config t *config, const unsigned int file)
{

if (config � � file name list[file][0] == ’s’)
70 {

return TRUE;
}

else
{

return FALSE;
}

}

void
80 flp config print (FILE *stream, const ais config t *config)

{
unsigned int f;

fprintf (stream,
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"# " PACKAGE ", version " VERSION "\n"
"#\n# Current configuration:\n"
"# somatic_hypermutation = %d\n"
"# sh_competition = %d\n"
"# thymus = %d\n"

90 "# p_mutate = %g\n"
"# clones = %d\n"
"# clones_select = %d\n"
"# nodes = %i\n"
"# n_immature_max = %i\n"
"# n_mature_max = %i\n"
"# n_memory_max = %i\n"
"# len = %i\n"
"# r = %i\n"
"# detector_lifetime = %i\n"

100 "# detector_immature_period = %i\n"
"# detector_activation_level_max = %g\n"
"# detector_activation_level_min = %g\n"
"# detector_activation_inc = %g\n"
"# detector_activation_dec = %g\n"
"# costimulation_delay = %i\n"
"# match_test = %d\n"
"# file_format = %s\n",
config � � somatic hypermutation,
config � � sh competition,

110 config � � thymus,
config � � p mutate, config � � clones, config � � clones select,
config � � nodes, config � � n immature max,
config � � n mature max, config � � n memory max,
config � � len, config � � r, config � � detector lifetime,
config � � detector immature period,
config � � detector activation level max,
config � � detector activation level min,
config � � detector activation inc, config � � detector activation dec,
config � � costimulation delay,

120 config � � match test,
((config � � file format == AIS FILE FORMAT TCP) ? "TCP" : "AIS"));

if (config � � node ids != NULL)
{

fprintf (stream, "# switched_lan = 1\n");
fprintf (stream, "# node_ids = ’%s’\n", config � � node ids);

}
else

{
130 fprintf (stream, "# switched_lan = 0\n");

}

for (f = 0; f � config � � file names; f++)
{

fprintf (stream, "# file %d = ’%s’ [%s]\n", f,
config � � file name list[f],
flp file is self (config, f) ? "self" : "nonself");

}

140 return;
}
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unsigned int
flp config read (ais config t *config, FILE *stream)
{

unsigned int done = FALSE;
config � � file name list = NULL;

while (! done)
150 {

char buf[FGETS BUF SIZE];
char *ptr, *input;

if (NULL == fgets (buf, FGETS BUF SIZE, stream))
{

return 1;
}

input = buf;
160

ptr = strsep (&input, "=");
if (input != NULL)

{
if (strcmp ("# somatic_hypermutation ", ptr) == 0)

{
config � � somatic hypermutation = atoi (input);

}
else if (strcmp ("# sh_competition ", ptr) == 0)

{
170 config � � sh competition = atoi (input);

}
else if (strcmp ("# thymus ", ptr) == 0)

{
config � � thymus = atoi (input);

}
else if (strcmp ("# p_mutate ", ptr) == 0)

{
config � � p mutate = atof (input);

}
180 else if (strcmp ("# clones ", ptr) == 0)

{
config � � clones = atoi (input);

}
else if (strcmp ("# clones_select ", ptr) == 0)

{
config � � clones select = atoi (input);

}
else if (strcmp ("# nodes ", ptr) == 0)

{
190 config � � nodes = atoi (input);

}
else if (strcmp ("# n_immature_max ", ptr) == 0)

{
config � � n immature max = atoi (input);

}
else if (strcmp ("# n_mature_max ", ptr) == 0)

{
config � � n mature max = atoi (input);
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}
200 else if (strcmp ("# n_memory_max ", ptr) == 0)

{
config � � n memory max = atoi (input);

}
else if (strcmp ("# len ", ptr) == 0)

{
config � � len = atoi (input);

}
else if (strcmp ("# r ", ptr) == 0)

{
210 config � � r = atoi (input);

}
else if (strcmp ("# detector_lifetime ", ptr) == 0)

{
config � � detector lifetime = atoi (input);

}
else if (strcmp ("# detector_immature_period ", ptr) == 0)

{
config � � detector immature period = atoi (input);

}
220 else if (strcmp ("# detector_immature_period ", ptr) == 0)

{
config � � detector immature period = atoi (input);

}
else if (strcmp ("# detector_activation_level_max ", ptr) == 0)

{
config � � detector activation level max = atof (input);

}
else if (strcmp ("# detector_activation_level_min ", ptr) == 0)

{
230 config � � detector activation level min = atof (input);

}
else if (strcmp ("# detector_activation_inc ", ptr) == 0)

{
config � � detector activation inc = atof (input);

}
else if (strcmp ("# detector_activation_dec ", ptr) == 0)

{
config � � detector activation dec = atof (input);

}
240 else if (strcmp ("# costimulation_delay ", ptr) == 0)

{
config � � costimulation delay = atoi (input);

}
/* We don’t care if it was a match test or what file format the

simulation used. */
else if (strcmp ("# switched_lan ", ptr) == 0)

{
if (atoi (input) == 0)

{
250 config � � node ids = NULL;

}
}

/* Read the file names. Their ’self’ and ’nonself’ prefixes are
used to determine the correctnes of any ACTIVATIONS occuring in
the log. */
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else if (strncmp ("# file ", ptr, 7) == 0)
{

char *tmp = strsep (&input, "’");
tmp = strsep (&input, "’");

260
config � � file name list =

(unsigned char **) realloc (config � � file name list,
sizeof (*config � � file name list)
* (++config � � file names));

config � � file name list[config � � file names � 1] = strdup (tmp);
}

/* When the “# time ” string is reached, we’re done. */
else if (strcmp ("# time ", ptr) == 0)

{
270 done = TRUE;

}
}

}
return 0;

}

unsigned long long
flp analysis min (const unsigned long long *data, const unsigned int len)
{

280 unsigned int n;
unsigned long long res = data[0];

for (n = 0; n � len; n++)
{

res = min (res, data[n]);
}

return res;
}

290
unsigned long long
flp analysis max (const unsigned long long *data, const unsigned int len)
{

unsigned int n;
unsigned long long res = data[0];

for (n = 0; n � len; n++)
{

res = max (res, data[n]);
300 }

return res;
}

long double
flp analysis avg (const unsigned long long *data, const unsigned int len)
{

unsigned int n;
unsigned long long sum = 0ULL;

310
for (n = 0; n � len; n++)

{
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sum += data[n];
}

return (sum / (long double) len);
}

void
320 flp analysis print avg min max (const ais config t *config,

const unsigned long long *val)
{

printf ("%.5Lf %qu %qu",
flp analysis avg (val, config � � nodes),
flp analysis min (val, config � � nodes),
flp analysis max (val, config � � nodes));

return;

}
330

void
flp analysis responses print (const statistics t *stats,

const ais config t *config)
{

unsigned int f;

for (f = 0; f � config � � file names; f++)
{

printf ("(%d, %d) ", stats � � false alarms[f], stats � � true alarms[f]);
340 }

return;
}

void
flp analysis info print (const ais config t *config)
{

printf ("%d %d %d %d %d %d %d %d %d %d %g %g %d %d %d:",
config � � nodes, config � � clones select, config � � n immature max,

350 config � � n mature max,
config � � n memory max, config � � len, config � � r,
config � � detector immature period, config � � detector lifetime,
config � � costimulation delay,
config � � detector activation inc, config � � detector activation dec,
config � � somatic hypermutation, config � � sh competition,
config � � thymus);

return;
}

360
void
flp analysis rough print (const statistics t *stats, const ais config t *config)
{

flp analysis print avg min max (config, stats � � premature deaths);
printf (", ");
flp analysis print avg min max (config, stats � � false negatives);
printf (" ");
printf ("%qu, ", stats � � b false negatives);
flp analysis print avg min max (config, stats � � true negatives);
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370 printf (" ");
printf ("%qu, ", stats � � b true negatives);
flp analysis print avg min max (config, stats � � false positives);
printf (" ");
printf ("%qu, ", stats � � b false positives);
flp analysis print avg min max (config, stats � � true positives);
printf (" ");
printf ("%qu, ", stats � � b true positives);
flp analysis print avg min max (config, stats � � activations);
printf (", ");

380 flp analysis print avg min max (config, stats � � sig 1 only);
printf (", ");
flp analysis print avg min max (config, stats � � sig 1 and 2);
printf (", ");
flp analysis print avg min max (config, stats � � n mature);
printf (", ");
flp analysis print avg min max (config, stats � � n memory);
printf (":");

flp analysis responses print (stats, config);
390 printf ("\n");

return;
}

inline long double
flp analysis mean (const unsigned long long *data, const unsigned int len)
{

unsigned int n;
unsigned long long sum = 0ULL;

400
for (n = 0; n � len; n++)

{
sum += data[n];

}

return (sum / (long double) len);
}

inline long double
410 flp analysis stddev (const unsigned long long *data, const unsigned int len,

const long double mean)
{

register unsigned int n;
unsigned long long sum = 0ULL;

for (n = 0; n � len; n++)
{

/* Sum of all squared distances from mean. */
sum += ((data[n] � mean) * (data[n] � mean));

420 }

return (sqrt ((long double) sum / ((long double) len � 1.0)));
}

inline void
flp analysis print mean stddev (const unsigned long long *val,
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const ais config t *config)
{

long double mean = flp analysis mean (val, config � � nodes);
430 printf ("%.5Lf %.5Lf",

mean,
flp analysis stddev (val, config � � nodes, mean));

return;
}

inline int
flp ull cmp (const void *a, const void *b)
{

440 const unsigned long long *ulla = (const unsigned long long *) a;
const unsigned long long *ullb = (const unsigned long long *) b;

return (*ulla � *ullb) � (*ulla � *ullb);
}

inline unsigned int
flp is odd (const unsigned int n)
{

return ((n & 0x01) == 1) ? 1 : 0;
450 }

inline long double
flp median ull (const unsigned long long *v, const unsigned int n)
{

long double median = 0.0;

if (flp is odd (n))
{

unsigned int m = n / 2;
460 median = v[m];

}
else

{
unsigned int m = (n / 2) � 1;
median = ((long double) (v[m] + v[m + 1])) / 2.0;

}

return median;
}

470
/* Function to summarize an array of observations as a five-number

summary. */
void
flp analysis print 5 numbers (const unsigned long long *val,

const ais config t *config)
{

register unsigned int n;
unsigned int q3 offset = 0;
unsigned long long v[config � � nodes];

480 /* The five-number summary variables. */
long double min = 0.0;
long double q1 = 0.0;
long double median = 0.0;
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long double q3 = 0.0;
long double max = 0.0;

for (n = 0; n � config � � nodes; n++)
{

v[n] = val[n];
490 }

n = config � � nodes;

/* Arrange the observations from low to high, based on their
values. */

qsort (v, n, sizeof (*v), flp ull cmp);

min = v[0];
max = v[n � 1];

500
median = flp median ull (&v[0], n);

if (flp is odd (n))
{

q3 offset = (n / 2) + 1;;
}

else
{

q3 offset = (n / 2);
510 }

/* Number of elements in to the left of the median. */
n = n / 2;

q1 = flp median ull (&v[0], n);
q3 = flp median ull (&v[q3 offset], n);

printf ("%Lg %Lg %Lg %Lg %Lg", min, q1, median, q3, max);

520 return;
}

void
flp analysis 5 numbers print (const statistics t *stats,

const ais config t *config)
{

flp analysis print 5 numbers(stats � � premature deaths, config);
printf (", ");

530 flp analysis print 5 numbers(stats � � false negatives, config);
printf (" %qu, ", stats � � b false negatives);

flp analysis print 5 numbers(stats � � true negatives, config);
printf (" %qu, ", stats � � b true negatives);

flp analysis print 5 numbers(stats � � false positives, config);
printf (" %qu, ", stats � � b false positives);

flp analysis print 5 numbers(stats � � true positives, config);
540 printf (" %qu, ", stats � � b true positives);
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flp analysis print 5 numbers(stats � � activations, config);
printf (", ");
flp analysis print 5 numbers(stats � � sig 1 only, config);
printf (", ");
flp analysis print 5 numbers(stats � � sig 1 and 2, config);
printf (", ");
flp analysis print 5 numbers(stats � � n mature, config);
printf (", ");

550 flp analysis print 5 numbers(stats � � n memory, config);
printf (":");

flp analysis responses print (stats, config);
printf ("\n");

return;
}

void
560 flp analysis stddev print (const statistics t *stats,

const ais config t *config)
{

/* Probably field 16. */
flp analysis print mean stddev (stats � � premature deaths, config);
printf (", ");

/* Probably field 18. */
flp analysis print mean stddev (stats � � false negatives, config);
printf (" %qu, ", stats � � b false negatives);

570
/* Probably field 21. */
flp analysis print mean stddev (stats � � true negatives, config);
printf (" %qu, ", stats � � b true negatives);

/* Probably field 24. */
flp analysis print mean stddev (stats � � false positives, config);
printf (" %qu, ", stats � � b false positives);

/* Probably field 27. */
580 flp analysis print mean stddev (stats � � true positives, config);

printf (" %qu, ", stats � � b true positives);

/* Probably field 30. */
flp analysis print mean stddev (stats � � activations, config);
printf (", ");
/* Probably field 32. */
flp analysis print mean stddev (stats � � sig 1 only, config);
printf (", ");
/* Probably field 34. */

590 flp analysis print mean stddev (stats � � sig 1 and 2, config);
printf (", ");
/* Probably field 36. */
flp analysis print mean stddev (stats � � n mature, config);
printf (", ");
/* Probably field 38. */
flp analysis print mean stddev (stats � � n memory, config);
printf (":");
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/* Probably field 40+. */
600 flp analysis responses print (stats, config);

printf ("\n");

return;
}

inline void
flp statistics destroy (statistics t *stats)
{

free (stats � � false alarms);
610 free (stats � � true alarms);

free (stats � � n memory);
free (stats � � n mature);
free (stats � � sig 1 only);
free (stats � � sig 1 and 2);
free (stats � � activations);
free (stats � � false negatives);
free (stats � � false positives);
free (stats � � true negatives);
free (stats � � true positives);

620 free (stats � � premature deaths);

return;
}

inline void
flp statistics reset (statistics t *stats, const ais config t *config)
{

register unsigned int n, f;

630 for (n = 0; n � config � � nodes; n++)
{

stats � � premature deaths[n] = 0ULL;
stats � � true positives[n] = 0ULL;
stats � � true negatives[n] = 0ULL;
stats � � false positives[n] = 0ULL;
stats � � false negatives[n] = 0ULL;
stats � � activations[n] = 0ULL;
stats � � sig 1 and 2[n] = 0ULL;
stats � � sig 1 only[n] = 0ULL;

640
stats � � n mature[n] = 0ULL;
stats � � n memory[n] = 0ULL;

}

for (f = 0; f � config � � file names; f++)
{

stats � � true alarms[f] = 0;
stats � � false alarms[f] = 0;

}
650

stats � � b true positives = 0ULL;
stats � � b true negatives = 0ULL;
stats � � b false positives = 0ULL;
stats � � b false negatives = 0ULL;
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return;
}

inline void
660 flp statistics initialize (statistics t *stats, const ais config t *config)

{
stats � � premature deaths =

(unsigned long long *) malloc (sizeof (*(stats � � premature deaths)) *
config � � nodes + 1);

if (stats � � premature deaths == NULL)
{

perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
670

stats � � true positives =
(unsigned long long *) malloc (sizeof (*(stats � � true positives)) *

config � � nodes);
if (stats � � true positives == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

680 stats � � true negatives =
(unsigned long long *) malloc (sizeof (*(stats � � true negatives)) *

config � � nodes);
if (stats � � true negatives == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

stats � � false positives =
690 (unsigned long long *) malloc (sizeof (*(stats � � false positives)) *

config � � nodes);
if (stats � � false positives == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

stats � � false negatives =
(unsigned long long *) malloc (sizeof (*(stats � � false negatives)) *

700 config � � nodes);
if (stats � � false negatives == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

stats � � activations =
(unsigned long long *) malloc (sizeof (*(stats � � activations)) *

config � � nodes);
710 if (stats � � activations == NULL)

{
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perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

stats � � sig 1 and 2 =
(unsigned long long *) malloc (sizeof (*(stats � � sig 1 and 2)) *

config � � nodes);
if (stats � � sig 1 and 2 == NULL)

720 {
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}

stats � � sig 1 only =
(unsigned long long *) malloc (sizeof (*(stats � � sig 1 only)) *

config � � nodes);
if (stats � � sig 1 only == NULL)

{
730 perror ( FUNCTION ": virtual memory exhausted");

exit (1);
}

stats � � n mature =
(unsigned long long *) malloc (sizeof (*(stats � � n mature)) *

config � � nodes);
if (stats � � n mature == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");

740 exit (1);
}

stats � � n memory =
(unsigned long long *) malloc (sizeof (*(stats � � n memory)) *

config � � nodes);
if (stats � � n memory == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

750 }

stats � � true alarms =
(unsigned int *) malloc (sizeof (*(stats � � true alarms))

* config � � file names);
if (stats � � true alarms == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
760

stats � � false alarms =
(unsigned int *) malloc (sizeof (*(stats � � false alarms))

* config � � file names);
if (stats � � false alarms == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
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770 flp statistics reset (stats, config);

return;
}

char *
strconcat (const char *str, . . .)
{

va list ap;
size t allocated = 256;

780 char *result = (char *) malloc (allocated);
char *wp;

if (result != NULL)
{

char *newp;
const char *s;

va start (ap, str);

790 wp = result;
for (s = str; s != NULL; s = va arg (ap, const char *))

{
size t len = strlen (s);

/* Resize the allocated memory if necessary. */
if (wp + len + 1 � result + allocated)

{
allocated = (allocated + len) * 2;
newp = (char *) realloc (result, allocated);

800 if (newp == NULL)
{

free (result);
return NULL;

}
wp = newp + (wp � result);
result = newp;

}
wp = MEMPCPY (wp, s, len);

}
810

/* Terminate the result string. */
*wp++ = ’\0’;

/* Resize memory to the optimal size. */
newp = realloc (result, wp � result);
if (newp != NULL)

result = newp;

va end (ap);
820 }

return result;
}

char
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flp data is self (const char *data dir, const ais config t *config,
int *dfile, FILE **data)

{
char dbuf[FGETS BUF SIZE] = {0, };

830 char self nonself = ’\0’;

if (data dir != NULL)
{

if ((*dfile) == � 1)
{

/* Open the first file. */
char *tmp = strconcat (data dir, config � � file name list[++(*dfile)]);
//printf ("Opening %s\n", tmp);
*data = flp file open (tmp);

840 free (tmp);
}

if (NULL == fgets (dbuf, FGETS BUF SIZE, *data))
{

/* End of file. */
flp file close (*data);

if (++(*dfile) � config � � file names)
{

850 /* Open next file. */
char *tmp = strconcat (data dir,

config � � file name list[*(dfile)]);
//printf ("Opening %s\n", tmp);
*data = flp file open (tmp);
free (tmp);

if (NULL == fgets (dbuf, FGETS BUF SIZE, *data))
{

perror ( FUNCTION
860 "Where the shit hits the fan!\n");

exit (1);
}

}
}

//printf ("This went OK!\n");

self nonself = dbuf[0];
}

870 return self nonself;
}

statistics t *
flp parse (FILE *stream, const ais config t *config,

const unsigned long long offset, const char *data dir)
{

statistics t *stats = (statistics t *) malloc (sizeof(*stats));
unsigned int done = FALSE;

880 int dfile = � 1;
const char *format = " %qu %qu %qu %qu %qu %qu %qu %qu %qu %qu %qu";
unsigned long long line = 0ULL;
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FILE *data = NULL;
char *mem = (char *) malloc (sizeof (*mem) * FGETS BUF SIZE);
if (mem == NULL)

{
perror ( FUNCTION ": virtual memory exhausted");
exit (1);

}
890

flp statistics initialize (stats, config);

while (! done)
{

char buf[FGETS BUF SIZE] = {0,};

if (NULL == fgets (buf, FGETS BUF SIZE, stream))
{

done = TRUE;
900 }

else
{

/* Check that it is neither a comment line nor a data line
we’re gonna use; i.e., with LINE � OFFSET. */

if (buf[0] != ’#’)
{

char self nonself = ’\0’;
//printf ( FUNCTION ": Calling...");
self nonself = flp data is self (data dir, config,

910 &dfile, &data);
//printf ( FUNCTION ": done\n");
//printf ("%c\n", self nonself);

if (++line � offset)
{

volatile unsigned long long y activations = 0ULL;
volatile unsigned long long y true positives = 0ULL;
volatile unsigned long long y true negatives = 0ULL;
volatile unsigned long long y false positives = 0ULL;

920 volatile unsigned long long y false negatives = 0ULL;
char *str = strcpy (mem, buf);
char *tmp = strsep (&str, ":");
volatile unsigned int file = atoi (tmp);
register unsigned int n;

for (n = 0; n � config � � nodes; n++)
{

unsigned long long x premature deaths = 0ULL;
unsigned long long x true positives = 0ULL;

930 unsigned long long x true negatives = 0ULL;
unsigned long long x false positives = 0ULL;
unsigned long long x false negatives = 0ULL;
unsigned long long x activations = 0ULL;
unsigned long long x sig 1 and 2 = 0ULL;
unsigned long long x sig 1 only = 0ULL;
unsigned long long x n mature = 0ULL;
unsigned long long x n memory = 0ULL;

tmp = strsep (&str, ":");
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940 sscanf (tmp, format,
&x premature deaths,
&x false negatives,
&x true negatives,
&x false positives,
&x true positives,
&x activations,
&x sig 1 only,
&x sig 1 and 2,
&x n mature,

950 &x n memory);

stats � � premature deaths[n] += x premature deaths;

stats � � false negatives[n] += x false negatives;
stats � � true negatives[n] += x true negatives;
stats � � false positives[n] += x false positives;
stats � � true positives[n] += x true positives;

stats � � activations[n] += x activations;
960

stats � � sig 1 only[n] += x sig 1 only;
stats � � sig 1 and 2[n] += x sig 1 and 2;

stats � � n mature[n] += x n mature;
stats � � n memory[n] += x n memory;

y false negatives += x false negatives;
y true negatives += x true negatives;
y false positives += x false positives;

970 y true positives += x true positives;

y activations += x activations;
}

/* Boolean count of true and false positives and
negatives. I.e., if any of the nodes classified the
agent as any of these classes, increase the B counter
by one . */

stats � � b false negatives += y false negatives ? 1 : 0;
980 stats � � b true negatives += y true negatives ? 1 : 0;

stats � � b false positives += y false positives ? 1 : 0;
stats � � b true positives += y true positives ? 1 : 0;

/* Similarly possibly increase the true and false alarms
counter. This is recording if an actual activation
was reached. */

if (y activations)
{

990 if (self nonself == ’S’)
{

stats � � false alarms[file]++;
}

else if (self nonself == ’N’)
{

stats � � true alarms[file]++;
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}
else

{
1000 fprintf (stderr, "Gokkiguoppi!\n");

}
}

}
}

else
{

/* Comment line in the log file. Thus, no reading
should be done from the data file. */

}
1010 }

}

free (mem);

return stats;
}
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GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright ©1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

B.1 PREAMBLE

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

153
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Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

B.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The "Program", below, refers to any such program or work, and a
"work based on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work
under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.
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c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered inde-
pendent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regard-
less of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu-
tion of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally dis-
tributed (in either source or binary form) with the major components (compiler, kernel,
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and so on) of the operating system on which the executable runs, unless that compo-
nent itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
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This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a ver-
sion number of this License which applies to it and "any later version", you have the
option of following the terms and conditions either of that version or of any later ver-
sion published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose dis-
tribution conditions are different, write to the author to ask for permission. For soft-
ware which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
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ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.3 HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
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This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.





References

Balthrop, Justin, Stephanie Forrest, and Matthew R. Glickman. 2002. “Revisiting LISYS:
Parameters and Normal Behavior.” Proceedings of the 2002 Congress on Evolutionary Com-
putation. In press.

Burgess, Mark. 1998, December 6–11. “Computer Immunology.” Proceedings of the Twelfth
Systems Administration Conference (LISA 98). Boston, Massachusetts, USA: USENIX, 283–
298.

CERT Coordination Center. 2002, April. “CERT/CC Statistics 1988-2002.” Technical Re-
port, Carnegie Mellon University. Available online at <URL:http://www.cert.org/
stats/cert_stats.html>.

Cho, Sung-Bae. 2000. “Artificial Life Technology for Adaptive Information Processing.”
Chapter 2 in Future Directions for Intelligent Systems and Information Sciences: The Future
of Speech and Image Technologies, Brain Computers, WWW, and Bioinformatics, edited by
Nikola Kasabov, Volume 45 of Studies in Fuzziness and Soft Computing, 13–33. Heidelberg,
Germany: Physica-Verlag. ISBN 3-7908-1276-5.

Dasgupta, Dipankar. 1999, October. “Immunity-Based Intrusion Detection System: A Gen-
eral Framework.” Proceedings of the 22nd National Information Systems Security Conference
(NISSC). National Institute of Standards and Technology and National Computer Secu-
rity Center, Hyatt Regency — Crystal City, Virginia, United States.

Dasgupta, Dipankar, Yuehua Cao, and Congjun Yang. 1999, July 13–17. “An Immuno-
genetic Approach to Spectra Recognition.” Edited by Wolfgang Banzhaf, Jason Daida,
Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith,
Proceedings of the Genetic and Evolutionary Computation (GECCO) Conference, Volume 1.
Orlando, Florida, United States: Morgan Kaufmann, 149–155. ISBN 1-55860-611-4.

Dasgupta, Dipankar, and Stephanie Forrest. 1996, June 19–21. “Novelty Detection in Time
Series Data using Ideas from Immunology.” Proceedings of the 5th International Conference
on Intelligent Systems. Reno, Nevada, United States.

Feller, William. 1968a. “Binomial and the Poisson Distributions.” Chap. VI in An Introduc-
tion to Probability Theory and Its Applications, Volume 1 of Wiley Series in Probability and
Mathematical Statistics, 3d ed., 146–173. New York, United States: John Wiley & Sons.
ISBN 0-471-25708-7.

. 1968b. “Recurrent Events. Renewal Theory.” Chap. XIII in An Introduction to Prob-
ability Theory and Its Applications, Volume 1 of Wiley Series in Probability and Mathematical
Statistics, 3d ed., 303–341. New York, United States: John Wiley & Sons. ISBN 0-471-
25708-7.

161



162 References

Forrest, Stephanie, and Steven Andrew Hofmeyr. 2001, July. “Immunology as Information
Processing.” Chapter in Design Principles for the Immune System and Other Distributed
Autonomous Systems, edited by Lee A. Segel and Irun R. Cohen, Santa Fe Institute Studies
on the Sciences of Complexity. New York, United States: Oxford University Press. ISBN
0-19-513699-3.

Forrest, Stephanie, Steven Andrew Hofmeyr, and Anil Somayaji. 1997. “Computer Im-
munology.” Communications of the ACM 40 (10): 88–96 (October).

Forrest, Stephanie, Steven Andrew Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
1996, May. “A Sense of Self for Unix Processes.” Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy. Los Alamitos, California, United States: IEEE Computer
Society Press, 120–128.

Forrest, Stephanie, Alan S. Perelson, Lawrence Allen, and Rajesh Cherukuri. 1994, May.
“Self-Nonself Discrimination in a Computer.” 1994 IEEE Computer Society Symposium
on Research in Security and Privacy. IEEE Computer Society Technical Committee in Se-
curity and privacy and The International Association for Cryptologic Research (IACR),
Oakland, California, United States: IEEE Computer Society Press, 202–212. ISBN 0-
8186-5675-1.

Halsall, Fred. 1996. Data Communications, Computer Networks and Open Systems. 4th ed.
Electronic Systems Engineering Series. United States: Addison-Wesley Publishing Com-
pany. ISBN 0-201-42293-X.

Hightower, Ron, Stephanie Forrest, and Alan S. Perelson. 1996. “The Baldwin Effect in the
Immune System: Learning by Somatic Hypermutation.” Edited by Richard K. Belew
and Melanie Mitchell, Adaptive Individuals in Evolving Populations: Models and Algorithms,
Santa Fe Institute (SFI) Studies in the Sciences of Complexity. Addison-Wesley Publish-
ing Company, Reading Massachusetts, 159–167.

Hofmeyr, Steven Andrew. 1999, May. “An Immunological Model of Distributed Detec-
tion and Its Application to Computer Security.” Ph. D. dissertation, University of New
Mexico, Albuquerque, NM 87131-1386, United States.

Hofmeyr, Steven Andrew, and Stephanie Forrest. 2000. “Architecture for an Artificial Im-
mune System.” Evolutionary Computation 8 (4): 443–473.

Householder, Allen, Kevin Houle, and Chad Dougherty. 2002. “Computer Attack Trends
Challenge Internet Security.” Security & Privacy (supplement to Computer Magazine),
April, 5–7.

Kemmerer, Richard A., and Giovanni Vigna. 2002. “Intrusion Detection: A Brief History
and Overview.” Security & Privacy (supplement to Computer Magazine), April, 27–29.

Kim, Jungwon, and Peter J. Bentley. 2001, July. “An Evaluation of Negative Selection
in an Artificial Immune System for Network Intrusion Detection.” Proceedings of the Ge-
netic and Evolutionary Computation Conference 2001 (GECCO-2001). San Francisco, United
States, 1330–1337.

Knuth, Donald Ervin. 1997a, September. “Mathematical Preliminaries.” Section. 1.2 in
Fundamental Algorithms, Volume 1 of The Art of Computer Programming, 3d ed., 10–123.
Reading Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-89683-4.



References 163

. 1997b, September. “Dynamic Storage Allocation.” Section 2.5 in Fundamental Al-
gorithms, Volume 1 of The Art of Computer Programming, 3d ed., 435–456. Reading Mas-
sachusetts: Addison-Wesley Publishing Company. ISBN 0-201-89683-4.

Matsumoto, Makoto, and Takuji Nishimura. 1998. “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.” ACM
Transactions on Modeling and Computer Simulation 8 (1): 3–30 (January). ISSN 1049-3301.

McHugh, John. 2000. “Testing Intrusion Detection Systems: A Critique of the 1998 and 1999
DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory.”
ACM Transactions on Information and System Security (TISSEC) 3 (4): 262–294 (November).
ISSN 1094-9224.

McHugh, John, Alan Christie, and Julia Allen. 2000. “Defending Yourself: The Role of
Intrusion Detection Systems.” IEEE Software 17 (5): 42–51 (September/October). ISSN
0740-7459.

Michalewicz, Zbigniew, and David B. Fogel. 2000. How to Solve It: Modern Heuristics. Berlin
Heidelberg, Germany: Springer-Verlag. Corrected Second Printing 2000.

Muselli, Marco. 1996. “Simple expressions for success run distributions in Bernoulli trials.”
Statistics & Probability Letters 31 (2): 121–128 (16 December).

Navarro, Gonzalo. 2001. “A Guided Tour to Approximate String Matching.” ACM Com-
puting Surveys (CSUR) 33 (1): 31–88 (March). ISSN 0360-0300.

Northcutt, Stephen, Mark Cooper, Matt Fearnow, and Karen Frederick. 2001, January. Intru-
sion Signatures and Analysis. 1st ed. 201 West 103rd Street, Indianapolis, Indiana 46290,
United States: New Riders Publishing. ISBN 0-7357-1063-5.

Northcutt, Stephen, Judy Novak, and Donald McLachlan. 2000, September. Network In-
trusion Detection: An Analyst’s Handbook. 2d ed. 201 West 103rd Street, Indianapolis,
Indiana 46290, United States: New Riders Publishing. ISBN 0-7357-1008-2.

Percus, Jerome K., Ora E. Percus, and Alan S. Perelson. 1993, March. “Predicting the size of
the T-cell receptor and antibody combining region from consideration of efficient self-
nonself discrimination.” Proceedings of the National Academy of Sciences of the United States
of America, Volume 90. 1691–1695.

Postel, Jonathan B. 1981a, September. “Internet Protocol.” RFC 791, The Internet Engineer-
ing Task Force (IETF).

. 1981b, September. “Transmission Control Protocol.” RFC 793, The Internet Engi-
neering Task Force (IETF).

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992.
Random Numbers. Chap. 7 in Numerical Recipes in C: The Art of Scientific Computing, 2d
ed., 274–328. 40 West 20th Street, New York, NY 10011-4211, United States: Cambridge
University Press. ISBN 0-521-43108-5.

Reynolds, Joyce K. 2002, January. “Assigned Numbers: RFC 1700 is Replaced by an On-line
Database.” RFC 3232, The Internet Engineering Task Force (IETF).

Roitt, Ivan M., and Peter J. Delves. 2001. Roitt’s Essential Immunology. 10th ed. Edited by
Nick Morgan, Meg Barton, and Fiona Goodgame. Commerce Place, 350 Main Street,
Malden, MA 02148-5018, USA: Blackwell Science. ISBN 0-632-05902-8.



164 References

Somayaji, Anil, and Stephanie Forrest. 2000, August 14–17. “Automated Response Us-
ing System-Call Delays.” Proceedings of the 9th USENIX Security Symposium, USENIX
Security Symposium. USENIX, Denver, Colorado, USA: USENIX.

Somayaji, Anil, Steven Andrew Hofmeyr, and Stephanie Forrest. 1998. “Principles of a
Computer Immune System.” Proceedings of the workshop on New security paradigms work-
shop 1997, New Security Paradigms Workshop. ACM Special Interest Group on Security,
Audit, and Control: ACM Press, New York, NY, United States, 75–82. ISBN 0-89791-986-
6.

Staniford, Stuart, Vern Paxson, and Nicholas Weaver. 2002, May. “How to 0wn the Inter-
net in Your Spare Time.” To Appear in the Proceedings of the 11th USENIX Security
Symposium (Security ’02).

Stillerman, Matthew, Carla Marceau, and Maureen Stillman. 1999. “Intrusion Detection for
Distributed Applications.” Communications of the ACM 42 (7): 62–69 (July).

Timmis, Jon, and Mark Neal. 2001. “A resource limited artificial immune system for data
analysis.” Knowledge-Based Systems 14 (3–4): 121–130 (June).

Timmis, Jon, Mark Neal, and John Hunt. 2000. “An artificial immune system for data
analysis.” BioSystems 55 (1–3): 143–150 (February).

Venter, J. Craig, et al. 2001. “The Sequence of the Human Genome.” Science 291 (5507):
1304–1351 (February 16).

Wilf, Herbert S. 1993, November. generatingfunctionology. 2d ed. Boston, United States:
Academic Press, Inc. ISBN 0-12-751956-4, Available online from <URL:http://www.
math.upenn.edu/~wilf/DownldGF.html>.

Williams, Paul D., Kevin P. Anchor, John L. Bebo, Gregg H. Gunsch, and Gary D. Lamont.
2001, October. “CDIS: Towards a Computer Immune System for Detecting Network
Intrusions.” Edited by Wenke Lee, Ludovic Mé, and Andreas Wespi, Recent Advances
in Intrusion Detection: 4th International Symposium; RAID 2001 Davis, CA, USA, Octo-
ber 10–12, 2001, Proceedings, Volume 2212 of Lecture Notes in Computer Science. Davis,
California, United States: Springer-Verlag, Berlin Heidelberg, Germany, 117–133. ISBN
3-540-42702-3.



Function Index

ais_agent_from_connection, 78
ais_agent_from_tcp_connection, 76
ais_clean_up, 75
ais_clone_pool_destroy, 73
ais_config_destroy, 84
ais_config_initialize, 84
ais_config_new, 84
ais_destroy, 76
ais_generate_node_map, 74
ais_generate_output, 79
ais_initialize, 73
ais_insert_agent, 78
ais_match_test, 75
ais_new, 75
ais_print_timestamp, 80
ais_run_broadcast, 81
ais_run_switched, 80

bit_toggle, 98
bitstring_contiguous_affinity, 94
bitstring_create_random, 92
bitstring_destroy, 91
bitstring_match_test, 94
bitstring_new, 91
bitstring_print, 92
bitstring_r_contiguous, 93
bitstring_recycle, 90
bitstring_recycle_random, 92
bitstring_test, 95
bitstring_xor, 92

clone_pool_element_cmp, 116
clone_pool_element_cmp_rev, 116

detector_activation_decrease, 102
detector_activation_increase, 102
detector_age, 103
detector_antigen_bind, 99
detector_antigen_unbind, 99
detector_clone, 101

detector_create_random, 100
detector_destroy, 102
detector_destroy_fe_wrapper, 102
detector_initialize, 98
detector_mutate, 100
detector_new, 98, 104
detector_recycle, 99
detector_recycle_clone, 101
detector_recycle_random, 101

flp_analysis_5_numbers_print, 142
flp_analysis_avg, 138
flp_analysis_info_print, 139
flp_analysis_max, 138
flp_analysis_mean, 140
flp_analysis_min, 138
flp_analysis_print_5_numbers, 141
flp_analysis_print_avg_min_max, 139
flp_analysis_print_mean_stddev, 140
flp_analysis_responses_print, 139
flp_analysis_rough_print, 139
flp_analysis_stddev, 140
flp_analysis_stddev_print, 143
flp_config_print, 134
flp_config_read, 136
flp_data_is_self, 147
flp_file_close, 134
flp_file_is_self, 134
flp_file_open, 134
flp_is_odd, 141
flp_median_ull, 141
flp_parse, 148
flp_statistics_destroy, 144
flp_statistics_initialize, 145
flp_statistics_reset, 144
flp_ull_cmp, 141

int, 72

main, 129

165



166 Function Index

main_print_info, 128
main_print_usage, 127

network_close, 107
network_connection_initialize, 108
network_get_service, 106
network_initialize, 106
network_next_connection, 108, 113
network_next_tcp_connection, 110
network_open, 107
network_parse_host_str, 107
node_destroy, 114
node_detector_age_fe, 122
node_expose_immature_to_agent, 118
node_expose_mature_to_agent, 120
node_expose_memory_to_agent, 121
node_hypermutate, 116
node_initialize, 113
node_insert_agent, 125
node_insert_detector, 115
node_move_detector_to_front, 115
node_new, 114
node_process_detectors, 122
node_update_stats, 118

print_list, 115
print_list_show_element, 114

random_generator_init, 89
random_generator_randbits, 90, 96

strconcat, 147

time_str_to_numeral, 107



Index

A-life, see artificial life
Ab, see antibody
ACK, Transmission Control Protocol, 27,

66
acquired, immunity, 3
acquired, memory, 7
active, detector, 32, 63, 65
active, response

automated, 65
address, Internet Protocol, 28, 36, 66
Advanced Micro Devices, 37
Advanced Research Projects Agency Net-

work, 9
affinity, 5, 7, 17, 24, 32, 45, 62
affinity maturation, 7, 24, 29, 30, 32, 40–42,

44–46, 48–54, 56, 58–62
Ag, see antigen
agent, 16, 17, 22, 24, 25, 30, 32–34, 39, 43,

45, 52, 58–60, 62, 68
nonself, 60
self, 60

AIS, see artificial immune system
alarm, 39
ALLEN, JULIA, 11
ALLEN, LAWRENCE, 15, 16, 22
AMD, see Advanced Micro Devices
American standard code for information

exchange, 34
ANCHOR, KEVIN P., 15, 16
anomalous, 16
anomaly detection

host-based, 15, 64
network-based, 15, 64

anomaly-based, detection, 11, 15, 22, 29
anomaly-based, intrusion detection system,

11
anomaly-based, network intrusion detec-

tion, 65
antibody, 4, 5, 7, 16, 17, 24

antigen, 3–7, 16–19, 66
artificial, 16
receptor, 5

antigenic determinant, 4
apoptosis, 6, 30, 60
approximate string matching, 17
architecture, computer security, 15
ARPANET, see Advanced Research Projects

Agency Network
Artificial Immune System, 27, 30, 33, 61
artificial immune system, 1–3, 15–17, 19,

22, 24, 25, 27, 28, 30, 32, 33, 36–40,
43, 45, 47, 49, 52, 57–65, 68, 69, 71

peptide, 28
artificial intelligence, 1
artificial life, 1, 68
artificial, antigen, 16
artificial, peptide, 18
artificial, receptor, 16
ARTIS, see Artificial Immune System
ASCII, see American standard code for in-

formation exchange
ATHLON MP 1600+, 37
ATHLON XP 1700+, 37
attack, 10
autoimmune, 59
autoimmune, lymphocyte, 6
automated, response, 64, 65
autoreactive, 6

B-, cell, 4
B-, lymphocyte, 4, 6, 7
BALTHROP, JUSTIN, 38, 61
bandwidth, 64
BEBO, JOHN L., 15, 16
BENTLEY, PETER J., 25, 65–67
BEOS, 71
Bernoulli trial, 19–21
BERNOULLI, JACOB, 19

167



168 Index

bone marrow, 4, 5
broadcast, local area network, 13, 62
broadcast, network, 13, 29
BURGESS, MARK, 15

C, 34, 71
CAO, YUEHUA, 15
carrier sense multiple access with collision

detection, 12
CDIS, see Computer Defense Immune Sys-

tem
cell

B-, 4
memory, 7
T-, 4, 24

central processing unit, 37, 64
CERT, 9
CERT Coordination Center, 1, 9–11
CERT COORDINATION CENTER, vii, 9, 10
CERT/CC, see CERT Coordination Center
CHERUKURI, RAJESH, 15, 16, 22
CHO, SUNG-BAE, 1
CHRISTIE, ALAN, 11
clonal proliferation, 7, 29, 32, 41, 45, 58, 60,

61, 68
clonal selection, 69
clonal, selection, 6, 7, 24, 58
clones, 32
COKUS, SHAWN J., 32
Computer Defense Immune System, 16
computer security, 15

architecture, 15
concern, privacy, 67
configuration

hardware, 37, 38
contiguous, match, 67–69
COOPER, MARK, 12, 64, 66
costimulation, 7, 29, 32, 40, 57, 59–64

delay, 32, 40, 41, 43, 49, 52
costimulation delay, 57, 63
cover, 17, 24, 60, 61, 63
CPU, see central processing unit
CSMA/CD, see carrier sense multiple ac-

cess with collision detection

DAIS, see Distributed Artificial Immune
System

DARPA, see Defense Advanced Research
Projects Agency

Darwinian process, 61
DASGUPTA, DIPANKAR, 15, 62
data set, 38, 43
data set, nonself, 38, 39
data set, self, 38
DDOS, see distributed denial of service
dead, detector, 30, 32
Defense Advanced Research Projects Agency,

37
definition of, self, 66
delay, costimulation, 32, 40, 41, 43, 49, 52
DELVES, PETER J., 4–7
deoxyribonucleic acid, 5, 7
Department of Defense, 9
destination, Transmission Control Protocol,

28
detection

anomaly-based, 11, 15, 22, 29
misuse, 11
pattern-matching, 11
signature-based, 11

detector, 16, 17, 22–25, 29, 30, 32, 34, 39–41,
45, 47, 58–68

active, 32, 63, 65
dead, 30, 32
immature, 29, 30, 33, 34, 40, 47, 57–59,

61
life-cycle, 30, 31
mature, 22, 24, 29, 32–34, 40, 57–60
memory, 24, 29, 32–34, 40, 45, 58–60,

66
mobile, 29
valid, 22, 58

diehard, 33
Distributed Artificial Immune System, 1,

2, 16, 27–30, 34–36, 40, 57, 59–65,
68, 69, 71

distributed denial of service, 64
diversity, 5, 7, 24, 25
DNA, see deoxyribonucleic acid
DOD, see Department of Defense
DOUGHERTY, CHAD, 9

EA, see evolutionary algorithm
EC, see evolutionary computation



Index 169

encoding, peptide, 36, 64–66
EOI, 11
EOI, see event of interest
epitope, 4, 5, 16, 18
epitopes, 7
ETHERNET, 12
event of interest, 10–12, 63
events of interest, 10
evolution, 69
evolutionary algorithm, 68
evolutionary computation, 68, 69
exclusive OR, 34

false negative, 12
false positive, 12, 17, 65
FEARNOW, MATT, 12, 64, 66
FELLER, WILLIAM, 19–21
File Transfer Protocol, 38, 57
FIN, Transmission Control Protocol, 28
firewall, 9, 65
FLANNERY, BRIAN P., 32
flip-mutation, 32
FOGEL, DAVID B., 32, 68
FORREST, STEPHANIE, xiii, 1, 5–7, 15, 16,

22, 24, 25, 27, 29, 30, 33, 38, 61, 62,
64–66, 69

FREDERICK, KAREN, 12, 64, 66
FTP, see File Transfer Protocol

GB, see gigabyte
GCC, see GNU Compiler Collection
General Public License, 27, 69
generating function, 20, 21
generator, pseudorandom number, 32
genotype, 25
gigabyte, 39
gland, thymus, 4
GLIB, 71
GLICKMAN, MATTHEW R., 61
GNU, see GNU’s Not Unix!
GNU Compiler Collection, 71
GNU’s Not Unix, 27, 69, 71
GNU/LINUX, 37
GPL, see General Public License
GUNSCH, GREGG H., 15, 16
GZIP, 39

HALSALL, FRED, 12

Hamming match, 17, 18, 69
hard drive, 37, 39
hardware, configuration, 37, 38
HD, see hard drive
HIGHTOWER, RON, 24, 69
HOFMEYR, STEVEN ANDREW, xiii, 1, 5–7,

15, 16, 19, 22, 24, 25, 27–30, 33, 36,
38, 61, 64, 66, 69

host-based, anomaly detection, 15, 64
host-based, intrusion detection, 11
host-based, intrusion detection system, 10
HOULE, KEVIN, 9
HOUSEHOLDER, ALLEN, 9
HTTP, see Hypertext Transfer Protocol
HUNT, JOHN, 15
Hypertext Transfer Protocol, 38, 57

IANA, see Internet Assigned Numbers Au-
thority

ID, 10
ID, see intrusion detection
IDE, see integrated device electronics
IDS, see intrusion detection system
Ig, see immunoglobulin
immature, detector, 29, 30, 33, 34, 40, 47,

57–59, 61
immature, lymphocyte, 5
immune system, 1–5, 7, 15–18, 22, 24, 27,

30, 33, 37, 40, 61, 64, 69
secondary response, 7

immunity, 3
acquired, 3
innate, 3
non-specific, 3
specific, 3

immunoglobulin, 4
infectious agent, 7
innate, immunity, 3
integrated device electronics, 37
INTEL X86, 34
INTEL X86 FAMILY, 34
Internet

user community, 9
INTERNET, 9, 29
Internet Assigned Numbers Authority, 29
Internet Printing Protocol, 9
Internet Protocol, 12, 28, 36



170 Index

address, 28, 36, 66
port, 29, 66

intrusion detection, 1, 10, 11, 15, 16, 63
host-based, 11
network-based, 11

intrusion detection system, 10, 12, 17, 37,
63

anomaly-based, 11
host-based, 10
network-based, 10
signature-based, 11

IP, see Internet Protocol
IPP, see Internet Printing Protocol
IS, 15, 17, 29, 60, 66

primary response, 7
IS, see immune system

KEMMERER, RICHARD A., 63
KIM, JUNGWON, 25, 65–67
KNUTH, DONALD ERVIN, 21, 30

LAMONT, GARY D., 15, 16
LAN, see local area network
learning, 69
least recently used, 30, 60
least significant byte, 28
left-shift, 34
LGPL, see Library General Public License
Library General Public License, 71
life-cycle, detector, 30, 31
lifetime, 47
Lightweight Intrusion Detection System, 16,

33, 36, 61
LINUX, 37, 65
LISYS, see Lightweight Intrusion Detection

System
local area network, 12, 13, 28, 38, 62, 63, 65

broadcast, 13, 62
switched, 13, 37, 62

location-based sensitivity, 29
LONGSTAFF, THOMAS A., 15, 64
LRU, see least recently used
LSB, see least significant byte
lymphocyte, 3–7, 16–18, 30, 33

autoimmune, 6
B-, 4, 6, 7
immature, 5

mature, 5, 6
naïve, 6
T-, 4–7

major histocompatibility complex, 4, 5, 17,
25

MARCEAU, CARLA, 10
match, 32

contiguous, 67–69
MATSUMOTO, MAKOTO, 32, 33
mature, detector, 22, 24, 29, 32–34, 40, 57–

60
mature, lymphocyte, 5, 6
MCHUGH, JOHN, 11, 37
MCLACHLAN, DONALD, 12
memory, 7

acquired, 7
memory, cell, 7
memory, detector, 24, 29, 32–34, 40, 45, 58–

60, 66
Mersenne Twister, 32
MHC, see major histocompatibility com-

plex
MICHALEWICZ, ZBIGNIEW, 32, 68
misuse, detection, 11
mobile, detector, 29
MOIVRE, ABRAHAM DE, 20
MT, see Mersenne Twister
MUSELLI, MARCO, 20
mutation rate, 7

National Science Foundation, 9
NAVARRO, GONZALO, 17
naïve, lymphocyte, 6
NEAL, MARK, 15
negative selection, 61, 67
negative, selection, 6, 22–25, 29, 32, 58–62,

66
network, 62

broadcast, 13, 29
switched, 13, 29, 36

network interface card, 13, 37, 65
network intrusion detection, 1, 2, 10, 15,

16, 24, 27, 32, 36, 40, 57, 58, 62–66,
69

anomaly-based, 65
rule-based, 65



Index 171

network-based, anomaly detection, 15, 64
network-based, intrusion detection, 11
network-based, intrusion detection system,

10
NIC, see network interface card
NISHIMURA, TAKUJI, 32, 33
non-specific, immunity, 3
nonself, 3, 15–17, 22, 24, 27, 29, 32–34, 36,

40, 47, 55, 58, 59, 61, 63, 67
data set, 38, 39

nonself, agent, 60
nonself, peptide, 58
normal, 16
NORTHCUTT, STEPHEN, 12, 64, 66
NOVAK, JUDY, 12
NSF, see National Science Foundation
nucleotide, 7

one, 62
operating system, 10, 11, 15, 37, 65
OS, 65
OS, see operating system
OS/2, 71

paratope, 5, 18
passive, response

automated, 65
pathogen, 1, 3, 5, 7, 16, 24
pattern-matching, detection, 11
PAXSON, VERN, 65
peptide, 4, 5, 7, 16, 17, 24, 25, 27, 30, 34, 35,

40, 57–59, 62, 64, 66
artificial, 18
encoding, 36, 64–66
nonself, 58

peptide, artificial immune system, 28
peptides, 25
PERCUS, JEROME K., 5, 17, 19
PERCUS, ORA E., 5, 17, 19
PERELSON, ALAN S., 5, 15–17, 19, 22, 24,

69
permutation mask, 25
pH, see process Homeostasis
phenotype, 25
polypeptide, 5
port, Internet Protocol, 29, 66
POSTEL, JONATHAN B., 12, 13, 27

PRESS, WILLIAM H., 32
primary immune response, primary response,

6
primary response, 7

primary immune response, 6
primary response, IS, 7
primed lymphocyte, 7
privacy

concern, 67
trust, 68

process Homeostasis, 65
programmed cell death, 30
pseudo-random number, 32
pseudorandom number

generator, 32
PUSH, Transmission Control Protocol, 28

r-contiguous match, 1, 2, 16–19, 22, 23, 32,
34, 61, 66

RAM, see random access memory
random access memory, 37, 64
real-world, 62
receptor, 4–7, 16, 17, 19, 22, 34

artificial, 16
receptor, antigen, 5
recurrence relation, 20
recurrent event, 20
recurrent pattern, 20
recursion, see recursion
reinforcement learning, 60
response

automated, 64, 65
active, 65
passive, 65

secondary, 6, 40, 43
retries, 24
REYNOLDS, JOYCE K., 29
ribonucleic acid, 7
RNA, see ribonucleic acid
ROITT, IVAN M., 4–7
RST, Transmission Control Protocol, 28
rule-based, network intrusion detection, 65
run, 20

SCSI, see small computer system interface
secondary response, immune system, 7
secondary, response, 6, 40, 43



172 Index

selection
clonal, 6, 7, 24, 58
negative, 6, 22–25, 29, 32, 58–62, 66

self, 3, 6, 7, 15–17, 22, 24, 27, 29, 30, 33, 36,
47, 58–61, 65

data set, 38
definition of, 66

self, agent, 60
sensitivity tuple, 40, 41, 45, 47, 49
signature-based, detection, 11
signature-based, intrusion detection system,

11
small computer system interface, 37
somatic hypermutation, 1, 2, 7, 24, 27, 29,

30, 32, 37, 39–56, 58–63, 68, 69
SOMAYAJI, ANIL, 6, 15, 64, 65
source code, 71
SOURCE MAGE, 37
source, Transmission Control Protocol, 28
specific, immunity, 3
STANIFORD, STUART, 65
STILLERMAN, MATTHEW, 10
STILLMAN, MAUREEN, 10
success run, 20, 21
switch, 13
Switched Ethernet, 36
switched, local area network, 13, 37, 62
switched, network, 13, 29, 36
SYN flood, Transmission Control Protocol,

66
SYN, TCP, 57
SYN, Transmission Control Protocol, 27, 28,

40, 57, 66
SYN/ACK, Transmission Control Protocol,

66
system-call, 10, 64, 65

T-, cell, 4, 24
T-, lymphocyte, 4–7
T-cell receptor, 4, 5, 17
TB, see terabyte
TCP

SYN, 57
TCP, see Transmission Control Protocol
TCPDUMP, 28, 34, 57, 62, 66
TCR, see T-cell receptor
TELNET, 9

terabyte, 39
TEUKOLSKY, SAUL A., 32
three-way handshake, Transmission Con-

trol Protocol, 27, 28, 66
thymus, 4–7, 27, 33, 34, 40–42, 44–56, 58, 60

gland, 4
TIMMIS, JON, 15
tolerization, 5, 6, 22–24, 33, 47
tolerization period, 30, 32, 40, 41
tolerized, 7
traffic intensity, 66
Transmission Control Protocol, 13, 27, 28,

57, 65–67
ACK, 27, 66
destination, 28
FIN, 28
PUSH, 28
RST, 28
source, 28
SYN, 27, 28, 40, 57, 66
SYN flood, 66
SYN/ACK, 66
three-way handshake, 27, 28, 66

true negative, 12
true positive, 12
trust, privacy, 68

University of New Mexico, 38
UNIX, 64, 71
UNM, see University of New Mexico
user community, Internet, 9

valid, detector, 22, 58
VENTER, J. CRAIG, 5
VETTERLING, WILLIAM T., 32
VIGNA, GIOVANNI, 63
virus detection, 15

WEAVER, NICHOLAS, 65
WILF, HERBERT S., 20
WILLIAMS, PAUL D., 15, 16
WINDOWS, 71
World Wide Web, 9
worms, 65
WWW, see World Wide Web

XOR, see exclusive OR

YANG, CONGJUN, 15


