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Abstract. This paper presents a receding horizon genetic algorithm
(RHGA) for dynamic resource allocation. The algorithm combines meth-
ods from control theory and computational intelligence to simultaneously
solve the problems of (i) coordinated control of resources, (ii) task as-
signment, and (iii) multiple target tracking in a dynamic environment.
A simulated case study on optimal positioning of a fleet of tugs along
the northern Norwegian coast serves as a means of evaluating the algo-
rithm. In terms of reducing the risk of oil tanker drifting accidents, the
study shows that the RHGA is able to iteratively plan movement tra-
jectories for each individual tug such that the net collective behaviour
of the tugs outperforms that of stand-by tugs stationed at bases located
uniformly along the coast. The promising results suggest great potential
for further development and generalisation to other dynamic resource
allocation problems.

Keywords: dynamic resource allocation, genetic algorithm, receding
horizon control, model predictive control, optimal control.

1 Introduction

Dynamic resource allocation can be considered a broad class of optimisation
problems, including search and rescue operations, vehicle routing, crew alloca-
tion and scheduling, and many others. This study focuses on the problem of
allocating a group of resources to the tracking of multiple targets in a dynamic
environment. Specifically, it considers a fleet of tugs operating along a coast line
with the purpose of preventing oil tankers from drift grounding. The tugs must
dynamically be assigned moving target positions for tracking such that the over-
all risk of any oil tankers drifting aground is minimised. Such a problem is a
demanding one and poses a number of interrelated challenges.

A first challenge is that of task assignment: Which resources shall track which
targets? On the one hand, if there are more resources than targets, a subset of
resources could be given the task of tracking one target each whilst remaining
resources could be given the task of self-maintenance or simply doing nothing.
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On the other hand, if the number of targets exceeds the number of resources,
some resources must be assigned more than one target. In both cases, some
governing principle is needed for allocating resources.

A second challenge is that of target tracking: How should each resource move
to best track, or cover, its assigned targets? When targets outnumber resources,
there will be an inherent tradeoff between good tracking of some targets at the
expense of bad tracking of others. In addition, some targets may be considered
more important to track than others and therefore must be weighted more.

Collectively considering task assignment and target tracking for the resources
as a group, a third challenge is that of coordinated control and collective per-
formance: How should tasks be assigned and targets be tracked such that some
net performance index is optimised?

Finally, being in a dynamic environment, these challenges need to be con-
stantly reevaluated: How can future changes in the state space, such as motion
of targets and changing dynamics of the surroundings, be incorporated?

This paper presents a receding horizon genetic algorithm (RHGA) for solv-
ing the abovementioned challenges. The performance of the algorithm is demon-
strated in a simulated case study of a real-world problem, namely the positioning
of tug vessels along the coastline of northern Norway.

The following sections provide background information on the tug positioning
problem, derivation of a simplified and concise problem description, and details
on a proposed algorithm that solves the problem by combining receding horizon
control (RHC) with a genetic algorithm (GA). The performance of the RHGA
will be demonstrated in some simulated scenarios. Finally, the simulation results,
aspects of our approach, and future potential will be discussed.

1.1 The Tug Positioning Problem

Each year thousands of ship transits, including several hundred transits of oil
tankers, are made along the coastline of northern Norway, thus exposing it to the
risk of drift grounding accidents and oil spill [9]. In an effort to reduce the risk
of such accidents, the Norwegian Coastal Administration (NCA) runs a vessel
traffic services (VTS) centre in the town of Vardø, which administers a fleet
of tugs patrolling the coastline. The main purpose of these tugs is to cleverly
patrol the coastline in such a manner that if an oil tanker loses manoeuvrability
through steering or propulsion failure, there will be a tug sufficiently close that
it can intercept the drifting oil tanker before it runs ashore [4].

Oil tankers are required by law to sail along predefined piecewise-linear cor-
ridors approximately parallel to the coastline. Hence, for example by linearly
extrapolating its speed along its corridor, it is possible to predict a tanker’s fu-
ture position. Moreover, all ships are required by international law to constantly
transmit both static (identity, dimensions, cargo, etc.) and dynamic (position,
speed, heading, etc.) ship information through the automatic identification sys-
tem (AIS). The AIS information is transmitted both to other ships and nearby
VTS centres and relayed on the Internet. Together with weather forecasts and
dynamic models of wind, wave heights, and ocean currents, the AIS information



can be used to predict potential drift trajectories and grounding locations for
ships that lose manoeuvrability [4].

The NCA has developed risk-based decision support tools based on dynam-
ical risk models that draws on a vast pool of information [4,5]. Some of this
information is static and certain, such as a the type of ship, the nationality of
its crew, and the amount and type of oil it is carrying. Information about other
factors is dynamic and uncertain and requires modelling. Such factors include
wind, waves, currents, accident frequency and consequences, oil spill size and
potential impact, and others. The decision support tools aid the human oper-
ator at a VTS centre in directing tugs by determining high-risk target areas
that tugs should approach. Nevertheless, with the projected rapid increase in oil
tanker transits in coming years [9] and the increasing number of tugs required
for adequate patrolling, the problem quickly becomes unmanageable by a hu-
man operator. Consequently, there is a need of an algorithm able to calculate
position trajectories that each tug should follow in order to reduce the overall
risk of drifting accidents.

1.2 Problem Formulation

Before developing an algorithm, the tug positioning problem must be formulated
carefully and precisely. First, it is assumed that No oil tankers move in one di-
mension only (north or south, say) along a line of motion z. This is a reasonable
assumption considering that oil tankers follow predefined piecewise-linear corri-
dors. Inside of z and closer to shore, it is assumed that Np tugs are patrolling
along a line of motion y parallel to z. The possibility of collisions between oil
tankers and patrol tugs on their respective lines of motion is not considered.

It is acknowledged that the coastline does not constitute a sequence of con-
nected straight line segments due to its vast amount of fjords, peninsulas, and
islands. Nevertheless, because tugs should stop drifting ships before they reach
land or danger zones, a straight patrol line some distance from the rugged coast-
line can be considered a conservative choice. Figure 1 shows a graphical repre-
sentation of the problem description, illustrated by two patrolling tugs and three
oil tankers.

Moreover, the algorithm assumes real-time access to prediction data from a
set of accurate models such as those developed by the NCA and described in
Sect. 1.1. These models must be able to predict future positions of oil tankers
along z and the corresponding potential drift trajectories given current and pre-
dicted information about the tankers themselves and the environment they are
operating in.

Suppose an oil tanker currently positioned at z(t) starts drifting at some
time t = td. The algorithm requires a future position trajectory predicted Th
hours ahead in time, where Th is called the prediction horizon. Employing a
discrete-time model with a sampling period of Ts = 1 hour, the estimated future
positions are given by ẑ(t|td) for t = td + 1, td + 2, . . . , td + Th.

Moreover, for each predicted position ẑ(t|td) there is a corresponding pre-
dicted drift trajectory starting at ẑ(t|td) that may or may not intersect the
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Fig. 1. Problem description. Patrol tugs P1 and P2 (black circles) and oil tankers O1,
O2, and O3 (white circles) move unidimensionally along lines y and z, respectively. Solid
circles correspond to positions at current time of drift t = td, whereas dashed lines and
circles indicate predicted drift trajectories and positions for t > td. The estimated
duration of each drift trajectory is denoted ∆̂k

i , where i and k refers to the drift
trajectory for the ith oil tanker that begins k hours ahead in time at t = td+k. Circles
with a cross indicate cross point points. The dynamic resource allocation problem is
that of determining how the tugs collectively should move in the time ahead in order
to best reduce the risk of drift grounding accidents.

patrol line y after an estimated drift time ∆̂ into the future depending on ocean
currents, wave heights, wind conditions, oil tanker shape and weight, and more.
Collecting all predicted drift trajectories for all oil tankers results in a distri-
bution of cross points where future drift trajectories will intersect the patrol
line.

Based on the predicted distribution of cross points, the problem is to calculate
trajectories, or sequences of patrol points, along y for each of the patrolling tugs
such that the risk of an oil tanker in drift not being reached and towed to safety
before grounding is minimised. This is a difficult problem involving collective
behaviour, task assignment, and multi-target tracking in a dynamic environment.

2 Method

An example scenario in Fig. 2 shows three tugs and three corresponding random
walk patrol trajectories the tugs may follow in order to track the cross point
distributions of six oil tankers. As seen from the plot, these patrol trajectories
provide poor coverage of cross points. The tugs stay more or less around their
initial positions, leaving a large number of cross points unattended. A better
solution would have the tugs spread out, each tug covering its own set of cross
points, and thus improving the overall coverage.
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Fig. 2. Example scenario. White squares on the vertical axis indicate the initial po-
sitions of six oil tankers on the oil tanker line z at t = 0. White circles indicate
where the corresponding predicted drift trajectories will cross the patrol line y as a
function of time. Black circles indicate three random walk patrol trajectories on y for
t = 0, 1 . . . , Th, where the prediction horizon is set to Th = 24 hours. The area reach-
able by each of the three tugs at full speed from their initial positions are depicted
by envelopes delimited by dotted lines. Note that the smallest observed drift time is
∆̂ = 8 hours, whereas the largest drift time is ∆̂ = 11 hours. An algorithm for tug
positioning must generate patrol trajectories such that the tugs cover the distribution
of cross points as well as possible.

How can the quality, or performance, of the choice of patrolling tug trajecto-
ries be measured? One possible approach is to examine a large number of sets of
potential patrol trajectories and for each set evaluate a cost function that quan-
tifies the performance of the tugs. There are several methods that likely can find
near-optimal solutions in reasonable time for this approach, for example vari-
ants of Monte Carlo methods, simulated annealing, ant colony optimisation, ge-
netic algorithms (GAs), or other methods from computational intelligence (e.g.,
see [14] for an overview). This study uses a continuous GA based on a version
similar to that described in [8].

Another challenge is how to accomodate changing dynamics of the environ-
ment. Not only may oil tankers change their speeds and headings but weather
conditions also constantly change. Consequently, cross point distributions will
change with time and solutions must be recalculated. One solution is to redo
the search for candidate patrol trajectories at regular intervals and replace the



previously generated trajectories with new ones. Such a scheme is implemented
in the tug positioning algorithm by utilising receding horizon control (RHC).

Details of the GA and RHC strategy are presented in Sects. 2.1 and 2.2,
respectively.

2.1 The Genetic Algorithm

A GA is a heuristic search method based on principles of natural evolution (e.g.,
see [6,8,14] for detailed descriptions). GAs are particularly useful for obtaining
solutions to difficult optimisation and search problems where the solution space
is nonconvex. Although no mathematical analysis about the convexity of the tug
position problem is provided in this paper, it seems clear that generating patrol
trajectories that are optimal, or near-optimal, in some sense by minimising a
cost function such as (3) (defined later) is not easy and utilising a GA is an
appropriate choice.

Characteristics of the GA. The GA used here consists of the following steps,
which adheres to the general scheme used in most GAs (e.g., see [8]):

1. Define a cost function and a chromosome encoding and set some GA param-
eters such as mutation and selection.

2. Generate an initial population of chromosomes.
3. Evaluate a cost for each chromosome.
4. Select mates based on a selection parameter.
5. Perform mating.
6. Perform mutation based on a mutation parameter.
7. If the desired number of iterations or cost level is reached, stop algorithm

and return solution, otherwise, repeat from Step 3.

The selection parameter is in the range 0–1 and determines how many chro-
mosomes in a population survives from one iteration to the next. The cost as-
sociated with each chromosome is evaluated and the chromosomes are given a
weighted selection probability according to their cost, where a smaller cost re-
sults in a greater probability. For a selection parameter of 0.5, half the population
is then randomly picked, with low cost chromosomes having a greater chance of
being picked and kept for survival and reproduction. The other chromosomes
are discarded to make room for new offspring.

For mating, the GA uses a combination of an extrapolation method and a
crossover method. Information from two parent chromosomes are combined with
an extrapolating method to obtain new offspring variable values bracketed by
the parents’ variable values. A single crossover point is used to determine which
parts of the parent chromosomes are used for creating offspring.

After mating, a fraction of the genes are mutated, which means that the
values of these genes are changed to random numbers within an allowable range.
A mutation rate determines how many genes are mutated at every iteration.

Particular to the problem described in this paper is the choice of cost function
and chromosome encoding, which are described in the following.



Cost Function. Proper choice of a cost function is imperative for the algorithm
to find desirable solutions. Here, the cost function is defined as the sum of the
distances between all cross points and the nearest patrol points. The rationale
behind this choice is that if an oil tanker in drift can be saved by a tug a certain
distance away, it is not important that other tugs further away can save it at a
later time.

Note that choosing distance as a cost measure is equivalent to minimum
rescue time if one assumes that all tugs have the same maximum speed. For
cases where tugs have different maximum speeds, one could define rescue time
as distance divided by maximum tug speed and sum the minimum rescue times
for each cross point.

By intuition, the emphasis on punishing distances to only the nearest patrol
points should yield proper task assignment, as good solutions found by the GA
will tend to have patrol tugs spreading out and tracking different groups of
cross points, thus collectively reducing the overall risk of grounding. Indeed, this
intuition is confirmed by the results presented in Sect. 3.

A cross point (position on y intersected by a drift trajectory) of the cth oil
tanker’s drift trajectory at time t can be defined as yct . For the prediction horizon
Th there is a set of cross points given by

{yct} =
{
yctd , y

c
td+1, . . . , y

c
td+Th

}
, (1)

however, only a subset of these points are defined, since the drift trajectories
must actually cross the patrol line at the specified times. For example, if the
predicted drift time is ∆̂ for all drift trajectories, the earliest occurrence of a
cross point of a drift trajectory starting on z at t = td will be at t = td+ ∆̂, and

{yct} =
{
yc
td+∆̂

, yc
td+1+∆̂

, . . . , yctd+Th

}
. (2)

A patrol point (tug position on y) on the pth tug’s patrol trajectory at time
t can be defined as ypt . For No oil tankers and Np patrol tugs, then, the cost
f(t,Ci) is defined as a function of time t and the ith chromosome Ci by

f(t,Ci) =

td+Th∑
t=td

No∑
c=1

min
p∈P
|yct − y

p
t | , (3)

where P = {1, 2 . . . , Np} and details on ypt and Ci are given below.

Chromosome Encoding. For tug p, consider a sequence {upt } consisting of Th
normalised control inputs, or speed commands, upt , where

{upt } =
{
uptd+1, u

p
td+2, . . . , u

p
td+Th

}
, −1 ≤ upt ≤ 1 . (4)

The maximum control input values of −1 and 1 are equivalent to tugs going
with maximum speed in the negative or positive y-direction, respectively. This
encoding is generic as it is independent of each tug’s maximum speed.



Given a control input upt , a point ypt on the patrol trajectory for tug p at time
t can be obtained through linear extrapolation using the difference equation

ypt = ypt−1 + upt v
p
maxTs , (5)

where vpmax is the maximum speed for the pth tug and Ts is the duration of each
time step. The entire patrol trajectory is a sequence of Th patrol points given by

{ypt } =
{
yptd+1, y

p
td+2, . . . , y

p
td+Th

}
. (6)

To encode Np control trajectories as sequences {upt } of length Th for each
patrol tug p ∈ P , the ith chromosome Ci of length Np × Th is encoded as

Ci =
{
u11, . . . , u

1
Th
, u21, . . . , u

2
Th
, . . . , u

Np

1 , . . . , u
Np

Th

}
. (7)

That is, each chromosome is a concatenation of Np control trajectories, each
of which consists of Th future control inputs. Given an initial tug position yptd
and employing (5) repeatedly, these control trajectories are used to generate the
patrol trajectories in (6).

2.2 Receding Horizon Control

Because of the dynamics of the problem, where neither oil tankers’ speed and
heading nor wind, wave, and ocean current conditions are static, patrol trajec-
tories optimised by the GA will soon become outdated. One possibility is to run
the GA at regular intervals, constantly incorporating updated current informa-
tion about the state of the oil tankers and weathers conditions as well as updated
predictions of these factors. While tugs begin to move according to the solutions
planned by the GA, new patrol trajectories can be calculated and replace the
old ones. This strategy is equivalent to a RHC scheme, which is interchangeably
termed model predictive control (MPC) in the literature (e.g., see [11,13] for
theoretical treatments).

In RHC, a control strategy that minimises some cost function is calculated a
prespecified duration, namely the prediction horizon, into the future. Only the
first portion of this strategy is implemented before another control strategy is
calculated based on new and predicted information available. The new solution
replaces the old one but again only the first portion is implemented. This process
repeats as a sequence of RHC steps.

RHC is currently one of the most popular control algorithms employed in
computer-controlled systems, predominantly in the petrochemical industry, but
also increasingly so in electromechanical control problems (e.g., see [7]). It can
be shown that RHC can be designed with guaranteed asymptotic closed-loop
stability [7] and this remarkable property is perhaps the most important reason
for its popularity.



Constraints. An advantage of using RHC is that constraints can be handled in
the design phase and not post hoc (e.g., see [7,11]). For tugs, such a constraint
is the inherent limitation of moving no faster than their maximum speed. This
speed limits the size of the envelopes in Fig. 2 and thus the number of reach-
able cross points. Using RHC it is possible to incorporate this constraint in the
planning of tug trajectories.

Optimisation. A good choice of initial population allows the GA to find good
solutions in fewer iterations than simply using a random population. It is possible
to take the dynamics of the simulated scenario into account and, assuming that
the scenario will not change significantly, a solution found at one RHC step
should also be a viable solution at the next RHC step. This is achieved by an
elitist strategy of keeping (a slightly modified version of) the best chromosome
at one RHC step and inserting it into the initial population of the GA at the
next RHC step.

2.3 Simulation Study

The technical computing software package Matlab.1 was used for the imple-
mentation of a simulation study of the tug positioning problem. A number of
choices had to be made about properties of oil tankers and patrol tugs, the GA
and RHC, and general settings. Based on preliminary work [1] and extended
testing, the settings described below were chosen.

Number of Ships. Based on information provided by NCA staff or affiliates
and a recent report [9], it was decided to use Np = 3 tugs and No = 6 oil tankers
for the simulations. Whereas these numbers were realistic as of 2010, they will
increase significantly the next decades due to the development of oil and gas
fields in the area (see Sect. 4.5).

Position of Ships. The initial position of oil tankers at time t = 0 was varied
for each simulation, with oil tankers being placed on z (in km) at positions
drawn randomly from a uniform distribution in a 1500-km range from z = −750
to z = 750. Dividing the same range on y into Np = 3 equally-sized segments
of length 500 km, the patrol tugs were always positioned initially at tug bases
located in the centre of these segments, namely at y = −500, 0, 500. The reason
for this was to compare the performance of the actively patrolling tugs controlled
by the RHGA with keeping the patrol tugs on stand-by at uniformly distributed
stationary bases.

Velocities of Ships. According to [2], oil tankers have a typical operating speed
of 14–15 knots whereas tugs have a global average maximum speed of about 12
1 Matlab R2010b, available at www.mathworks.com.

http://www.mathworks.com/


knots, spanning from 5–26 knots [4]. In the geographical area of this case study,
the typical maximum speed of tugs is 15 knots and operating speed of oil tankers
is 10–14 knots.2

Based on these figures, each oil tanker was initialised with a random speed
in either the negative (southbound) or positive (northbound) y-direction and
drawn from a uniform distribution in the range ±[20, 30] (km/h). The oil tankers
maintained their respective speeds throughout each simulation.

The patrol tugs were assigned a maximum speed of 30 km/h, corresponding
to the envelopes presented previously in Figure 2.

Drift Trajectories. Wind, wave heights, ocean currents, oil tanker size and
shape, and other factors lead to nonlinear drift trajectories perhaps resembling
those in Fig. 1. To implement nonlinearity, it was assumed that any oil tanker
in drift will follow an eastbound sinusoidal trajectory with period equal to Th
scaled by its velocity v.3 That is, if the cth oil tanker with velocity v and position
z(td) loses manoeuvrability at t = td, it is predicted to drift across the patrol
line at

yc
td+∆̂

= z(td) + v sin

(
2π

Th
∆̂

)
(8)

after a predicted drift time ∆̂.
For each oil tanker, a random integer drawn from a uniform distribution

[8, 9 . . . , 12] was chosen as its predicted drift time and kept constant throughout
each simulation. According to [4], drift times of only 10 hours are considered
“fast drift,” whereas “slow drift” means that most tankers will not run aground
for the first 20–30 hours of uncontrolled drift. Thus, the choice of drift times in
the interval 8–12 hours is a conservative estimate. In most cases, tugs will have
more time to come to the rescue of a drifting ship.

GA Settings. At every RHC step, the GA was set to perform Niter = 100
iterations searching for a solution set of optimal patrol trajectories minimising
the cost function given by (3). As discussed in Sect. 4.3, each RHC step keeps a
modified version of the best chromosome found in the previous RHC step. This
ensures that much fewer iterations are needed in later RHC steps than early
ones.

The population size was set to 10 chromosomes, the mutation rate was set
to 0.1, and the selection parameter was set to 0.5. Together with the other
simulation parameters, these choices gave a good tradeoff between exploration
and exploitation.

RHC Settings. The GA was used to search for optimal trajectories with a
duration of Th = 24 hours for the patrol tugs. At every RHC step, each of
2 Information provided by a close affiliate of the NCA.
3 Note that this relationship is not physically realistic but simply chosen for the sake
of introducing nonlinearity.



duration Ts = 1 hour, only the first sample of these trajectories was executed
by each tug before another solution set of trajectories was generated by the
GA. This process was repeated for NRHC = 26 RHC steps, yielding scenarios
simulated from td = 0 to td = 25 hours.

General Settings. A total of Nsim = 30 scenarios (random initial positions,
velocities, and drift times of oil tankers) were simulated. For each scenario i, the
minimum costs found by the GA at each RHC step were calculated and the av-
erage cost stored as the ith element in a vector fRHGA of length Nsim. Similarly,
the costs incurred if the patrol tugs stayed on stand-by at their individual bases
were calculated and the average stored as the ith element in a vector f static of
length Nsim.

Settings Summary. The simulation settings are summarised in Table 1.

Table 1. Simulation settings.

Oil tanker settings
Number of tankers No 6

Random initial position (km) [−750, 750]
Random velocity (km/h) ±[20, 30]

Drift field sinusoidal eastbound
Random drift time ∆̂ (hours) [8, 9, . . . , 12]

Patrol tug settings
Number of tugs Np 3
Initial positions (km) {−500, 0, 500}
Max velocity (km/h) ±30

GA settings
Iterations Niter 100
Population size 10
Mutation rate 0.1

Selection 0.5

RHC settings
Prediction horizon Th (hours) 24
Simulation step size Ts (hours) 1

Number of steps NRHC 26

General settings
Number of scenarios Nsim 30

Strategies RHGA, static



3 Results

3.1 Simulation Example

Figure 3 shows a simulation example using the settings given in Table 1. Initially
at time td = 0 (Fig. 3(a)), three patrol trajectories, each of duration Th =
24 hours, are planned for the tugs based on the predicted distributions of cross
points. The first tug at y10 = −500 is assigned the task of covering the isolated
bottom cluster of cross points centred around y = −600, whereas the second tug
at y20 = 0 is assigned the top cluster of cross points centred around y = 100. The
third tug at y30 = 500 is not assigned any cross points and given a “don’t care”,
or random walk, trajectory.

In Fig. 3(b), the positions of oil tankers and patrol tugs are shown for td = 5.
Because of the last five hours of oil tanker movements, there are now three
distinct clusters of cross points. The GA now performs task reassignment by
planning for the top tug to cover the top cluster of cross points. The middle tug
is assigned the middle cluster, and the bottom tug the bottom cluster.

The remaining Figs. 3(c)–3(f) shows how the scenario develops for td =
10, 15, 20, 25, with the three tugs constantly being assigned and tracking sets of
cross points, whose positional distributions change with time.

In terms of performance one may compare the cost of the RHGA-generated
trajectories to that of static trajectories, that is, keeping each patrol tug sta-
tionary at its base. For this simulation example, which was scenario number 4,
the static cost was 10844, whereas the RHGA cost was 3130, representing a cost
reduction of 71.1 %.

3.2 Main Study

Table 2 summarises the results from simulation scenario number 4 in Fig. 3 and
29 other simulated scenarios based on the settings presented in Table 1. For
every scenario, the costs of each RHC step were summed and averaged for both
the static case and the RHGA case. The mean cost for the 30 scenarios was
7372 for the RHGA and 17342 for the static strategy. This represents a mean
improvement, or performance, of 57.5 % by the RHGA.

Comparing the standard deviation (STD) of the costs of the static case and
the RHGA case, the STD of the RHGA was smaller by 34.6 %. However, because
the static case has a much higher mean, its relative STD of 0.211 is 53.9 % smaller
than the relative STD of the RHGA. Hence, relative to respective means, the
cost of the static strategy varied less (it is consistently high) than that of the
RHGA.

The minimum cost for a single scenario was 10844 for the static strategy
and 3130 for the RHGA. Incidentally, the minimum cost occurred in scenario 4
for both cases. Inspection4 of this simulated scenario showed that cross points

4 Where no figure is referred to the reader must trust the inspection made by the
author.
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Fig. 3. Example simulation.



were distributed close to tug bases throughout the simulation, thus the static
strategy resulted in a low cost. Still, the RHGA outperformed the static solution
by 71.1 %.

The maximum cost for a single scenario for the static case was 22846 (sce-
nario 2). Inspection of this scenario revealed that for most of the RHC steps,
a large portion of cross points was distributed far to the south of the nearest
southernmost tug base and thus the static strategy had a high cost for this sce-
nario. The RHGA solution, on the other hand, was very good at this scenario
with a cost of only 4796, thus outperforming the static solution by 79.0 %, which
was also the highest cost reduction by the RHGA for any of the scenarios.

The maximum cost for a single scenario for the RHGA was 12503 (scenario
23). Inspection of this scenario showed that a small cluster of cross points was
located far away to the south from the other cross points. Minimisation of the
cost function by the RHGA resulted in a solution where patrol trajectories ig-
nored this small cluster, which contributed to the high cost. The RHGA still
outperformed the static case by 37.6 %.

The worst performance in terms of cost reduction by the RGHA occurred in
scenario 3, where the static solution had a cost of 16544 and the RHGA had a
cost of 11415, or a reduction of only 31.0 %. Inspection of this scenario showed
that cross points were divided into six separate clusters, each far away from
the others. The static solution performed better than its average cost for this
scenario, which is unsurprising, given that uniformly spread out tug bases is a
good choice for uniformly spread out cross points.

Finally, subtracting 1.645×STD from the mean cost of the static strategy
shows that an estimated 95 % of all scenarios in the static case will have a cost
greater than approximately 11300. Similarly, adding 1.645×STD to the mean
cost of the RHGA shows that an estimated 95 % of all simulated scenarios
employing the RHGA will have a cost smaller than approximately 11300. The
likelyhood that the static solution is at least as good as the RHGA solution is
thus very small.

Table 2. Simulation results.

Statistic f static fRHGA Reduction by RHGA

Mean 17342 7372 57.5 %
STD 3667 2399 34.6 %

Relative STD 0.211 0.325 −53.9 %
Minimum (scenario) 10844 (4) 3130 (4) 31.0 % (3)
Maximum (scenario) 22846 (2) 12503 (23) 79.0 % (2)

95 % bounds 11309 or more 11318 or less −0.1 %



3.3 Conclusions

The simulation results show that the RHGA is able to simultaneously perform
coordinated control, task assignment, and multiple target tracking in a dynamic
environment. Based on current and predicted information, a GA calculates pa-
trol trajectories that minimise a cost function. However, as the environment
changes, an RHC process must be employed, where the GA constantly replans
new trajectories based on the most recent data.

Employing a cost function related to the distance from each cross point to
the nearest predicted patrol trajectory gives good tracking but also provides task
assignment “for free.” The resulting patrol trajectories suggested by the RHGA
yield good prevention against possible drift accidents due to taking the predicted
future environment into account.

4 Discussion

The simulation study presented here is substantially updated and extended
compared to a preliminary study presented previously [1]. Modifications that
have been made include realistic movement distances and speeds of tugs and oil
tankers, nonlinear drift and cross point trajectories, an improved static strategy
with tugs on stand-by uniformly positioned at stationary bases, a more rigorous
problem formulation and definition of cost function, and a detailed analysis of
the results.

In the following, some important aspects of the present study will be dis-
cussed.

4.1 Evaluation of Performance

Performance was measured by comparing the RHGA with a very simple static
strategy where tugs are kept stationary on stand-by at bases located uniformly
along the coastline. The static method is good for very large and uniform dis-
tributions of cross points. For small numbers of oil tankers, on the other hand,
this method does not perform well because cross points will often exist far from
tug bases. As demonstrated in Sect. 3, the RHGA significantly outperformed the
static strategy for all simulated scenarios.

An alternative to the static method is a simple heuristic method such as let-
ting patrol trajectories move towards the nearest cross point. Preliminary studies
not presented here show that this method performs well when the numbers of
tugs and tankers are approximately equal but as the number of tankers increases
its performance drops significantly compared to that of the RHGA. The reason,
of course, is that when all tugs have been allocated a distributions of cross points,
superfluous distributions will be ignored, which in turn causes evaluations of the
cost function to increase drastically.

It still remains to compare the RHGA with other intelligent algorithms for
the same problem as defined in this paper. Nevertheless, the results from this
study are very promising and shows that the RHGA provides a viable method
for solving dynamic resource allocation problems of the kind presented here.



4.2 Choice of Cost Function

Choosing a suitable cost function is essential for a GA to be able to solve the
problem at hand. Although the selected cost function (3) seems to be a reason-
able choice, there are likely other choices that may be equally, or better, suited
to our problem.

A potential modification to the cost function is to include a term for the
control input in order to punish excessive fuel consumption. If so, care must be
taken to ensure that this does not compromise the main goal of covering cross
points and reducing the overall risk picture.

Another option is to introduce risk weights on oil tankers and scale the min-
imum distances in the cost function by these weights. Such risk weights already
exists in the models of the NCA.

Finally, it would be interesting to let tugs have different maximum speeds
and also let the speeds of tugs and oil tankers vary over time due to weather
conditions, cargo and fuel effects, and other factors. In this case, the cost function
would have to be modified to sum minimum rescue times, and not minimum
distances.

4.3 Optimisation

For a slow-changing dynamic environment, a good chromosome at one time
instant is likely a good chromosome at the next. Consequently, as described in
Sect. 2.2, the RHGA keeps the best chromosome from one RHC step and places
it in the initial population of the next. The other chromosomes are randomly
initialised as usual.

If desirable, this strategy can be used to reduce the overall number of GA
iterations since only a fraction of the initial number of iterations is needed for
subsequent RHC steps. This is because the dynamics are slow-varying and the
GA will tune in to good solution spaces where previously found solutions greatly
assists the GA in finding new, good solutions.

4.4 Real-Time Requirements

Simulating a single RHC step with three tugs and six oil tankers for a particular
scenario took about 30 seconds on a MacBook Pro Core 2 Duo 2.53 GHz com-
puter. Increasing the number of oil tankers tenfold to 60 (which might be realistic
in the not too distant future, see Section 4.5), one RHC step took slightly less
than five minutes. This shows that the RHGA can accommodate much greater
complexity than simulated in this study while staying within the real-time re-
quirement of finishing each RHC step within an hour of real-time. It also implies
that more accurate solutions can be obtained by increasing GA parameters such
as population size and number of iterations at each RHC step.

Conversely, the small execution time for a RHC step means that the simulated
duration of a RHC step can be greatly reduced if desired. This may not be
relevant for the study presented here but implies that systems with much faster



dynamics may take advantage of the RHGA. An example where each RHC step
must be in the range of tenths of seconds or smaller is real-time control of
football-playing robots, where algorithm speed will most definitely be an issue.
For such applications, it is possible to adjust the GA and RHC settings to obtain
small RHC step durations as required. Specifically, one may reduce the prediction
horizon, number of iterations, and population size. This may not necessarily
degrade performance. For example, employing a large prediction horizon in a
football game where it is only possible to predict actions a short period ahead
will not increase performance, it may even degrade it if it causes each RHC step
to take too long.

4.5 Other Simulation Scenarios

Based on recent information in a governmental report made by the Norwegian
Institute of Maritime Research [9], the choice of three tugs and six oil tankers
represents a realistic and typical scenario as of today. Nevertheless, due the
development of large oil and gas fields in the Barents Sea such as Goliat, Snøhvit,
and Shtokman, oil and gas tanker traffic will drastically increase over the next
10–15 years. As mentioned in Section 4.1, the RHGA can easily handle the
tenfold number of oil tankers while maintaining real-time requirements and thus
appears well suited for much heavier traffic than that of today.

Cases where drifting actually occurs or situations where a tug becomes un-
available due to refuelling, change of crew, or being busy rescuing a drifting
tanker have not been simulated. Moreover, no attempts have been made at try-
ing to estimate how many tugs are necessary to maintain a sufficient degree of
safety for a given number of tankers. These issues are highly relevant considering
the foreseen increase in tanker activity.

Finally, it would be of interest to include more realistic two-dimensional
(2D) planning for ships and three-dimensional (3D) planning for aeroplanes or
submersible vehicles. This should be investigated further, particularly in light
of other applications where dynamic resource allocation takes place at higher
frequencies than for the tug positioning problem.

4.6 Other Applications

In addition to the one-dimensional (1D) problem described in this paper, the
RHGA could be modify for performing multi-target allocation and tracking also
in 2D and 3D dynamic environments. A 2D version in environments with slow dy-
namics may not require huge modifications, however, for fast dynamics and/or
3D environments, the algorithm must be improved, for example through dis-
tributed evaluation of the cost function.

Moreover, it could be interesting to combine the RHGA with so-called boid,
or flocking, rules involving cohesion, separation, and alignment [12]. In a promis-
ing effort, [10] presents a flocking algorithm that modifies the flocking rules by
[12] and succeeds in multi-target tracking performed by multiple agents. Through



further development, a modified version of the RHGA could perform equally well
as the algorithm used for the scenarios described by [10].

Furthermore, the problem definition used in this paper somewhat resembles
that of the RoboFlag Drill described by [3]. They describe a scenario where a
set of defenders are guarding a circular defence zone against a set of attackers.
The attackers are randomly placed in an outer circle circumscribing the inner
defence zone and move with constant velocity towards the zone. The goal of the
defenders is to intercept as many of the incoming attacking trajectories before
they reach the defence zone. It would be of great interest to test the RHGA for
this scenario and compare the results with those of [3].

4.7 Concluding Remarks

This paper shows that a GA combined with RHC is able to simultaneously
perform coordinated control, task assignment, and multiple target tracking in
dynamically changing environments. The problem description is an interesting
and non-trivial challenge for researchers in the field who are welcome to find
alternative methods for solving it.
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