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ABSTRACT
In close collaboration with the maritime industry, vir-

tual prototyping with maritime application has been an
important research topic for Aalesund University College
for some years. In this paper, we describe the development
of a computer-automated design tool for intelligent virtual
prototyping of offshore cranes. Our work is part of
a research project funded by the Research Council of
Norway and takes place in close cooperation with two
partners from the maritime industry. A literature review
of virtual prototyping, computer-automated design, and
modelling and simulation of offshore cranes sets the stage
for the description of a design tool whose main com-
ponents consist of a computational model, a simulator,
and a genetic algorithm. We show how domain-specific
constraints can be accounted for in conjunction with an
automated optimisation procedure of design parameters to
yield crane specifications that closely match the desired
design criteria. Limitations of slewing rings and hydraulic
cylinders are of particular importance in offshore crane
design and are used as an example of the multitude of
design calculations that form the computational model.
Being work in progress, we report on completed parts
and the work that remains.

INTRODUCTION
20 years ago, Pratt (1995) defined virtual prototyping

(VP) as the computer-aided construction of digital product
models (usually virtual prototypes or digital mockups)
and realistic graphical simulations for the purpose of
design and functionality analyses in the early stages of
the product development process. Later, in a review on
VP, Wang (2002) defined VP as the construction and
testing of virtual prototypes, where such prototypes are
computer simulations of physical products that can be
presented, analysed, and tested from concerned life-cycle
aspects such as design and engineering, manufacturing,
service and recycling as if on a real physical model.

* Equal first author contribution. Robin T. Bye is the corresponding
author.

The use of virtual prototypes and simulation tech-
niques, for example in the shipbuilding (Kim et al., 2002)
and automotive (Wöhlke and Schiller, 2005) industries
has made a significant contribution to the process of
evaluating and improving product design and to the val-
idation of product planning and manufacturing processes
(e.g., Mujber et al., 2004; De Sa and Zachmann, 1999;
Weyrich and Drews, 1999). However, whereas VP is per-
haps mostly associated with the design and development
process of concrete commercial products, other uses exist,
for example with respect to planning processes in the
ship-building industry. As noted by Cha et al. (2010),
process planning may be set up based on past experience
but problems not expected in advance may, and will,
still occur during production, since all ships and offshore
structures to be constructed will differ in purpose, shape
and size. To cope with these challenges, Cha et al. pro-
poses an integrated simulation framework for the process
planning of ships and offshore structures, separating a
simulation kernel, and a basic simulation component from
the application-specific simulation component.

For example, in the field of construction engineering,
construction VP (CVP) can be utilised to facilitate in-
tegrated planning and visualisation of large construction
projects, thereby assessing the executability of construc-
tion plans including site layout, temporary work design,
and resource planning (Huang et al., 2007). Since the turn
of the millennium, a number of CVP tools have been de-
veloped that allow construction teams to practice on major
construction processes and examine various execution
strategies in realistic virtual enviroments (VEs) before and
during the actual construction (Waly and Thabet, 2003),
thus enabling client briefing, simulation of properties such
as lighting, acoustics, and energy consumption, and 4D
(space and time) visualization of the building construction
sequence (Sarshar et al., 2004; Yerrapathruni, 2003).
Consequently, VP can cause flaws to be corrected early
in the design phase, or in some circumstances, prevent
flawed projects from even materialising.

Moreover, VP can be used as a tool for collaborative
product design, broadly classified into component design
and assembly design (Shyamsundar and Gadh, 2002).
Even in the early days of public Internet, researchers
described how to use the world wide web and VP for col-
laborative component design, where designers can view
and modify component geometry and exchange ideas
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online and in real-time (Chang et al., 1999; Chan et al.,
1999). Likewise, for product assembly design, researchers
were early to discuss online VEs in which collaborative
assembly modeling can be performed using constraints
and 3D models marked up and exchanged (Maxfield
et al., 1995; Kuttner and Deitz, 1996). In multidisciplinary
product development such as mechatronic engineering,
cooperative VP is particulary useful, since inefficient
communication between the designers and engineers from
different domains can become a serious obstruction for
accelerating the design of mechatronic products (Shen
et al., 2005). Finally, Choi and Cheung (2008) note that
employing virtual reality (VR) as a collaborative VP tool
can greatly improve the product design, test and review
loop before committing to physical fabrication, especially
if fully-immersive VR systems such as a cave automatic
virtual environment (CAVE) is used.

It is clear that VP encompasses a number of aspects for
the design and development of virtual prototypes, includ-
ing modelling, simulation, visualisation, analysis, test-
ing, validation, optimisation, team cooperation, product
presentation, and so on. In this paper, we will focus on
computer-automated design (CautoD), combining artifi-
cial intelligence (AI) with VP in order to automate and
optimise the design phase of offshore cranes.

Computer-Automated Design

The first scientific report of computer-automated
product design is perhaps that of Kamentsky and Liu
(1963), who created a computer programme able to de-
termine suitable logic circuits satisfying certain hardware
constraints while at the same time evaluating the ability
of the logics to perform character recognition. Since
then, many contributions of CautoD have been made,
particularly in the field of structural engineering (see Hare
et al., 2013, for a survey). The general paradigm appears
to be that of optimisation, where the design problem
is formulated as the minimisation of a cost function
or maximisation of a fitness function. AI lends itself
naturally to solving many complex optimisation problems,
in particular by the use of nature-inspired heuristic com-
putational algorithms. For example, based on condensed
matter physics, the simulated annealing algorithm was
one of the first nature-inspired algorithms used for design
optimisation (Kirkpatrick, 1984; Černỳ, 1985) and is still
being used today for a variety of purposes, including
CautoD for tensegrity systems (e.g., Xu and Luo, 2010).

Goldberg (1983) used a genetic algorithm (GA) for the
design of computer-based control of gas pipeline systems,
whereas Rajeev and Krishnamoorthy (1992) used a simple
GA for optimizing structural systems, as did Pezeshk
et al. (2000) for the design of 2D, geometrical, nonlinear
steel-framed structures. More recently, Kaveh and Talata-
hari (2009) constructed a hybrid algorithm that employed
both particle swarm optimisation (PSO) and ant colony
optimization (ACO) to find an optimal design of different
types of truss structures and frame structures, while Peng
et al. (2010) used an adaptive GA for optimising the
piping design process of offshore drilling platforms.

Also worth mentioning is a very recent PhD thesis,
which analysed and investigated a homogeneous charge
microwave ignition system through a simulation-based

CautoD framework, in which intelligent bio-inspired op-
timisation algorithms can interrogate a simulator in search
of novel design solutions (Schöning, 2014). Access to
the full thesis is restricted by embargo and third-party
copyright until September 2017, which underlines the
potential financial impact of CautoD and VP in the
industry.

Modelling and Simulation of Offshore Cranes
VP is an active focus of research of the newly formed

Software and Intelligent Control Engineering (SoftICE)
Laboratory at Aalesund University College (AAUC) of
which both authors of this paper are members. Indeed,
the work we present in this paper is part of one of two
nationally funded research projects that the SoftICE lab
currently participates in. In addition, for the last few
years, our colleagues in the Mechatronics Laboratory at
AAUC have published several papers relating to mod-
elling, simulation and visualisation of offshore cranes
and installations. (e.g., Sanfilippo, Hildre, Æsøy, Zhang
and Pedersen, 2013; Sanfilippo, Hatledal, Schaathun, Pet-
tersen and Zhang, 2013; Sanfilippo et al., 2014; Chu,
Sanfilippo, Æsøy and Zhang, 2014; Chu, Æsøy, Zhang
and Bunes, 2014; Halse et al., 2014; Hatledal et al., 2015).

As noted by Halse et al. (2014), advanced marine
operations such as subsea installations consist of mul-
tiple subsystems that must be collectively controlled in
a precise manner and typically involves controlling a
crane and winch mounted on a vessel operating in a
dynamic, uncertain environment affected by wind, waves,
currents, shape and size of payload, and more. Modeling
and simulation of such interactive multibody systems is
a complex task that involves hydrodynamics, mechanics,
hydraulics, electronics, and control systems (Halse et al.,
2014).

Chu, Æsøy, Zhang and Bunes (2014) used the bond
graph method as their approach for modelling offshore
hydraulic cranes. This method is suitable for modelling
systems of systems, where modules may be removed
or added or connected to other systems, and thus the
method lends itself naturally to VP. Using the same bond
graph methodology, Sanfilippo, Hildre, Æsøy, Zhang and
Pedersen (2013) built a modular prototyping system ar-
chitecture in which a number of different maritime cranes
or robotic arms with different kinematic structures and
degrees of freedom were modelled and simulated in a VE.
Focusing on the control of offshore cranes, Sanfilippo and
colleagues have developed control algorithms for effective
heave compensation and anti-sway control (Chu, Sanfil-
ippo, Æsøy and Zhang, 2014), as well as using both GAs
(Sanfilippo, Hatledal, Schaathun, Pettersen and Zhang,
2013) and artificial neural networks (ANNs) (Sanfilippo
et al., 2014) for universal control of multiple cranes with
different properties by means of a single unique input
haptic device.

In a paper recently accepted for publication and to
be presented at the 34th International Conference on
Ocean, Offshore and Arctic Engineering in June this year,
Hatledal et al. (2015) presents a voxel-based numerical
method for computing and visualising the 3D workspace
of offshore cranes. Despite the importance of a crane’s
lifting capacity in different positions in the workspace
(often visualised as a 2D load chart), which depend on the



properties of crane components such as cylinders, links,
sheaves, and joints, workspace and load chart calculations
are usually not taken into account in the design phase and
are merely realised as an indirect consequence of a priori
design choices (Hatledal et al., 2015). However, Hatledal
et al. note that employing their algorithm as a trial-and-
error VP tool during the preliminary design phase, factors
such as the length of crane links and size of cylinders can
be designed to yield better workspace characteristics.

Finally, we would like to point to recent work by Bak
et al. (2011); Bak and Hansen (2013); Peng et al. (2010);
Pawlus et al. (2014), who present detailed analyses on
aspects of VP of offshore knuckleboom cranes and pipe
handling equipment, including techniques for modelling,
simulation, and parameter identification that can aid in
the VP process.

Motivation and Aim

The contributions presented above are valuable in the
pursuit of VP systems for offshore cranes but provide
little insight into how the various models, calculations,
simulations, and visualisations can be used for VP, and
in particular, CautoD. Hatledal et al. (2015) mentions
using trial-and-error to improve the design phase but al-
though their method is a step forward from the traditional
experience-based rule-of-thumb approaches employing
pen-and-pencil or spreadsheet calculations commonly em-
ployed in the maritime industry, it is hardly satisfactory
given the large number of design parameters. In short,
the literature above provides various means to determine
crane properties and behaviour based on pre-determined
design parameters, somewhat analogous to calculating
the forward kinematics of a robotic arm or offshore
crane. However, the problem of determining the inverse
kinematics is generally much harder, and continuing the
analogy, we are thus faced with the following “inverse”
challenge, for which analytical solutions are infeasible:
How can we choose appropriate values for numerous,
possibly conflicting, offshore crane design parameters
such that the resulting cranes have the desired properties
and behaviour that we want?

The research we present in this paper tries to an-
swer this question and is part of the project Artificial
Intelligence for Crane Design (Kunstig intelligens for
krandesign (KIK)) funded by the Research Council of
Norway. The project is a collaboration between the
SoftICE lab at AAUC and two industrial partners, ICD
Software AS and Seaonics AS. We report on the current
status of the project and the planned way forward. A goal
of the project is to build an offshore crane simulator
able to generate 2D-visualised crane load charts and
calculate a number of crane properties on-the-fly based on
a particular choice of design parameter values. Another
goal is to use a method well-known from AI, namely
a GA, to search through the vast number of design
choices and combinations until the desired design criteria
are satisfied. The aim of the project is to succeed in
reaching these goals and develop a working software
prototype of a simulator for intelligent CautoD and VP for
offshore cranes that can be tested and further developed
by offshore crane designers and manufacturers such as
our aforementioned partner Seaonics AS.

METHOD
An offshore crane such as the one in Figure 1 is a

complex machine. Often equipped with advanced control

Figure 1: The new boomerang-shaped crane of Seaonics
AS, which has its wire/rope routed directly from winch
to boom tip. This increases the work area compared to
standard knuckleboom cranes and reduces wear and tear
of the wire or rope. The crane is ideal for arctic operations
and fiber rope use. Image courtesy of Seaonics AS.

systems for heave compensation, boom tip positioning,
and anti-sway, it has many features in common with
articulated robots. Even simple versions of such offshore
cranes consist of a large number of components, such as
hooks, winches, slewing rings, cylinders, booms, hinges,
sheaves, and pedestals (see Figure 2). The placements,
types, capacities, materials, and abilities of these compon-
ents all affect the overall properties of the crane. Various
parameters of interest can then be derived from the
physical properties of the crane components themselves
and their interrelationships.

Figure 2: Illustration of the main components of an
offshore knuckleboom crane and its 2D load chart. Image
courtesy ICD Software AS.



Some of these derived parameters of the crane are of
greater interest than others and constitute the main design
parameters of the crane, for example key performance
indicators (KPIs) such as the desired workspace and the
working load limit (WLL) and safe working load (SWL)
within that workspace, total weight, control system char-
acteristics, durability, installation and operating costs, and
safety concerns such as wind impact. Additionally, laws,
regulations, and the use of design codes such as the
standards provided by classification socities like DNV-
GL (formerly DNV), Lloyd’s Register Group Limited
(formerly Lloyd’s Bureau of Shipping), and the American
Bureau of Shipping (ABS) all put constraints on the
choice of design parameters.

Computational Model
When making a computational model (CM) of an

offshore crane, we have to choose which parameters that
need to be modelled since modelling everything is intract-
able. The CM we have developed has reduced the number
of parameters from potentially several thousands to about
120 parameters. It is these 120 parameters that must be
chosen by the designer to ensure that requirements by
laws, regulations and standards, various KPIs, and other
desired design criteria are met.

Example of Design Calculations
A complete overview of the myriad of various com-

ponents, mathematical models, and design constraints
contained in our CM cannot be provided in this paper but
the interested reader may refer to aforementioned work
on VP and modelling of offshore knuckleboom cranes
(Bak et al., 2011; Bak and Hansen, 2013) or offshore
pipe handling machines (Pawlus et al., 2014). Instead, we
wish to illustrate the complexity of our CM by presenting
an example of the design calculations required for a
hydraulic cylinder as given by the DNV-GL’s “Rules for
Certification of Lifting Appliances” (Det Norske Veritas
(DNV), 1999). Figure 3 shows a hydraulic cylinder and its
key components with a nomenclature used for the design
calculations that follows.

Hydraulic cylinders are the key component that
provides “muscle power” to offshore cranes. To ensure
compliance with DNV-GL standards, the cylinders must
be designed to avoid buckling, a phenomenon of mathem-
atical instability leading to failure mode, namely a sudden
sideways deformation. Specifically, the buckling load P
must be greater than the actual maximum cylinder force
F by a factor of at least 2.3 (see Eq. 17).

The buckling calculations assume that stresses in the
rod due to axial load, initial deflection, frictional moment
in the bearings, and weight of the cylinder do not exceed
the yield stress σy of the rod material (note that the weight
of the cylinder can normally be ignored in the buckling
calculations if intended for the design of an ordinary
crane):

P

A
+
(
P · f0

W
+ P · µ · r

W

+mCyl · g · L
W

)
· PE
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≤ σy (1)

Simplified, the form of deflection for the cylinder is
assumed to be:

y(x) = C1 · sin
(π · x

L

)
+ C2 · sin

(
2 · π · x
L

)
(2)

To find the acceptable load P , the following equations
are used (note that some variables such as f0, AA, BB,
etc. are not given in the nomenclature as they are mainly
intermediate auxiliary calculations):
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We can then find P as

P = σy ·A
2 + PE

2 · (1 +A · FF −HH) (16)

Finally, the safety factor P/F against buckling must be
at least 2.3 as given by the following formula:

P

F
≥ 2.3 (17)

Simulator
The CM is parameterised and implemented in software

as a simulator. The simulator is then able to produce a
number of outputs dependent on the parameter values of
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Figure 3: Diagram of hydraulic cylinder (above) and nomenclature for design calculations in Eqs.1-17 (below).

Parameter Description

A piston rod cross section area, mm2

d piston rod outer diameter, mm
E modulus of piston rod material elasticity, 2.06 105 N/mm2 for steel
F actual maximum cylinder force, N
I1 moment of inertia of cylinder tube cross section, mm4

I2 moment of inertia of piston rod cross section, mm4

L length of hydraulic cylinder from centre to centre of end eyes, mm
L1 cylinder tube length from centre of end eye, mm
L2 piston rod length from centre of end eye, mm
L3 guiding length of piston in cylinder tube, mm
mCyl weight of the hydraulic cylinder, kg
P buckling load, N
r piston rod end eye bearing radii, mm
W section modulus of the rod, mm3

∆ clearance between piston guide and cylinder tube, mm
µ coefficient of friction for end eyes (default value of µ = 0.19)
σy yield strength of piston rod, N/mm2

the inputs and the CM. By comparing calculations made
by the simulator with those of the crane manufacturers’
own crane calculators we have been able to verify that
our CM is accurate. Unfortunately, sufficiently general-
ised, flexible and detailed modelling software or crane
calculators are not common. Moreover, because we want
a tool for optimising the design of cranes, we are not
able to utilize existing crane calculators ready-made for
existing crane models.

A block diagram depicting the functionality of the
simulator is shown in Figure 4.

Computational Modelx y

Figure 4: Offshore crane simulator. About 120 input
design parameters in the input vector x are passed to
a complex computational model, which in turn returns
a number of KPIs and other properties of the resulting
simulated crane in the vector y, e.g., load charts such as
that depicted in Figure 2.

Note About Structure and Strength
Strength calculations and validation of the main struc-

ture is trivial and readily available from off-the-shelf
finite element modelling (FEM) software, therefore these
considerations have been excluded from the simulator.

FEM software usually does not model the components
though, as we do in our CM. We assume that structure
and strength data are available from FEM software and
focus on the constraints posed by the crane components,
in particular the hydraulic cylinders and the slewing ring,
for given crane configurations.

Choosing the Right Values
By adjusting the 120 parameters in the simulator, the

effect of the parameters on a number of KPIs and other
design criteria can be investigated. Of particular interest
is the load chart, which can be calculated within a few
seconds on an ordinary office computer, something that
could take days when designers did their calculations by
hand.

Since the formulas to calculate the KPIs are hard
to invert or derive, finding closed, analytical solutions
is generally not feasible. Consequently, a trial-and-error
approach is still required by the designer, as depicted in
Figure 5.

Genetic Algorithms
The GA is a bio-inspired stochastic search heuristic for

solving search and optimisation problems. The algorithm
is inspired by natural evolution, with elements such as
inheritance, mutation, selection, and crossover. Most of
the literature attributes the GA to Holland (1975), with
subsequent popularisation by Goldberg (1989), and it is
currently a very popular optimisation tool across many
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Human Designer

Figure 5: Human operator using a trial-and-error approach
with the simulator to tune the input design parameters x
until desired design criteria are met.

different disciplines (e.g., see Haupt and Haupt, 2004).
The authors and colleagues have used GAs for a number
of applications and projects, including dynamic resource
allocation with maritime application (DRAMA), in which
a fleet of tug vessels must be collectively positioned (Bye
et al., 2010; Bye, 2012; Bye and Schaathun, 2014, 2015);
adaptive locomotion of caterpillar-like robots (Li et al.,
2014); universal control architecture for maritime cranes
and robots (Sanfilippo, Hatledal, Schaathun, Pettersen and
Zhang, 2013); the Java Intelligent Optimisation (JIOP)
machine learning framework (Hatledal et al., 2014); and
optimisation of swarms of boids (Alaliyat et al., 2014).
Here, the intention is to use a GA in conjunction with our
offshore crane simulator as a VP tool for optimising the
design phase of offshore cranes. This requires selecting
a suitable objective function that must incorporate the
design criterions that we wish to optimise.

Objective Functions

Central to all GAs is the problem of determining values
for a number of input parameters x such that some
objective function f(x) is optimised. Note that in GA
terminology, the objective function is usually called a
cost function if it is minimised, or a fitness function if
it maximised. In this project, potential input parameters
consist of any of the numerous components needed for
building an offshore crane. The current version of our
simulator incorporates more than 120 parameters that
must be specified by the crane designer. Clearly, this large
number of parameters makes the search space (the space
of all possible combinations of parameter values) very
large and design approaches such a trial-and-error will
necessarily be both time-consuming and cost-inefficient
and lead to suboptimal designs.

Nevertheless, choosing an appropriate objective func-
tion is no easy task. In addition to adhering to laws,
regulations and standards, offshore cranes must be de-
signed in accordance with the specific needs of the client.
Optimising such a set of potentially conflicting design
criteria (that is, there is a tradeoff between two or more
objectives) is called multiobjective optimisation (MOO).
Once an objective function, or in the case of MOO,
several objective functions, has been selected, the GA
can find an optimal solution by means of intelligently
probing the search space and evolving better solutions.
In the case of MOO, the GA will return a set of Pareto
optimal solutions, which means that none of the objective
functions can be improved without degrading others (e.g.,
see Haupt and Haupt, 2004; Arora, 2012, for details).

Description of a Basic GA
The basic steps that almost any GA consists of are

outlined in high-level pseudocode in Algorithm 1 below,
where we adopt a cost function as our objective function
(loosely adapted from Haupt and Haupt, 2004):

/* INITIALISATION */
define encoding scheme for chromosomes c;
define cost function f(c);
set criteria for selection, crossover, mutation, elitism;
generate initial population of chromosomes;
sort population in increasing order of cost;
bestChrom← population[0];
set minCost, maxIterations;
i← 1;
/* LOOP */
while i < maxIterations OR bestCost > minCost do

evaluate cost for each chromosome;
select chromosomes for mating;
perform mating, crossover, mutation, elitism;
update population;
sort population in increasing order of cost;
bestChrom← population[0];
bestCost← f(bestChrom);
i← i + 1;

end
return i, bestChrom, bestCost;
decode bestChrom to original domain;

Algorithm 1: Basic GA.

A chromosome c is an encoded candidate solution to
the problem of optimising an objective function f(c).
The objective function quantifies the quality of candidate
solutions, that is, how well they fulfill the desired design
criteria. The design parameters that we want to optimise
must be translated (encoded) from their original domain to
a format suitable for the GA, usually arrays of bits or real-
valued numbers, in the latter case, often normalised to
the interval [0, 1]. The bits or numbers are usually called
genes.

The selection criterion determines which chromosomes
in a population survives from one iteration to the next. For
examle, using the roulette wheel method, the cost (fitness)
associated with each chromosome is evaluated and the
chromosomes are given a weighted selection probability
according to their cost, where a smaller cost (greater
fitness) results in a greater probability.

A pre-determined fraction, of chromosomes (typically
half the population) is then randomly picked, with low
cost (high fitness) chromosomes having a greater chance
of being picked and kept for survival and reproduction.

For mating, several crossover methods exists, where
genes from two parent chromosomes are combined into
one or several offspring, which are then put back into the
population, replacing those chromosomes that were not
selected for mating.

After mating, a fraction of the chromosomes will have
one or several of their genes mutated. This means flipping
(inverting) bits for binary chromosomes, or changing the
values of these genes to random numbers within some
allowable range.

Next, each of the chromosomes in the updated pop-
ulation is evaluated by the objective function and the
population is sorted in descending order of performance
(ability to minimise cost or maximise fitness).



The process repeats until the maximum number of
iterations has been reached, or the solution (the best chro-
mosome) has reached a satisfactory performance. Then
the algorithm ends and returns the best chromosome,
which is decoded back to its original domain. In our
case, the decoded solution specifies the optimal values
for selected design parameters of an offshore crane.

Constraints
In terms of contraints of the crane design, the most

interesting components are the hydraulic cylinders and
the slewing ring. These components are commercially
available “off-the-shelf” with given dimensions and per-
formance ratings. In the case of the slewing ring, the
maximum torque is of special interest, because it limits
both the lifting distance and weight of the payload. The
case of the cylinders are a bit more complex, however.
When analysing the forces acting on the cylinders, we
have to pay careful attention to the current angles of the
joints in addition to the payload. Dependent of the forces
acting on the cylinders it is possible to calculate two
important constraints that originate from the properties
of the cylinders: (i) maximum pressure; and (ii )buck-
ling limit. Firstly, the cylinders will have a maximum
hydraulic rating, independent of the cylinder position.
This limit cannot be exceeded and constitues and import-
ant constraint on the properties of the crane. Secondly,
depending on cylinder position, there will be a certain
level of pressure where the cylinder will buckle (see
mathematics presented above). Obviously the cylinder can
handle higher pressure when close to the inner position
than when close to the outer position. Both of these
constraints can easily be incorporated by a GA when
searching for optimal designs.

Automated Design Solution
With the framework we have presented above, we are

able to automate the design process by replacing the
human designer by a GA, as depicted in Figure 6. We

Computational Modelx y

GA

Figure 6: Automated design solution by means of a GA
that automatically tunes the input design parameters x
until desired design criteria are met.

propose the following solution using genetic algorithms
(GA). A subset of the 120 design parameters are coded
as variables (genes) in the GA. As an initial approach, we
further simplify the problem by keeping a large number
of the 120 parameters constant and let the GA optimise
only those parameters that we consider most important
for affecting our design criteria. As what we present
here is work-in-progress, the point of this reduction in
parameters is to reduce computation time and get a “feel”
of our approach. We can easily extend the number of

parameters later when we have gathered more insight into
our automated VP process. The most important design
criteria include KPI factors such as lifting capacities at
different distances from the pedestal (derived from the
load chart), weight and cost. The selected KPIs form the
basis of the cost function of the GA and are weighted
according to the preferences of the client.

RESULTS
Computational Model and Simulator

Currently, the CM is tailored for offshore knuckleboom
cranes and has a very high level of detail. It incor-
porates mathematical models provided by our partner
Seaonics AS, a design and manufacturing company of
customised offshore lift and handling equipment as well
as relevant laws, regulations, standards and design codes.

Our simulator is a parameterised Java implementation
of the CM made by ICD Software AS, a software design
and development company of offshore industrial control
systems. In addition to an offline backend solution, two
online server versions of the simulator have been de-
veloped.1 One is a simple graphical interface for manually
entering input values to the simulator. The other is using
the WebSocket protocol, which is an advanced technology
for interactive communication between client applications
and a server. Using the WebSocket application program
interface (API) enables computer programs, or clients,
(instead of a human operator) to utilise the simulator and
automatically simulate cranes for chosen sets of design
parameters. Data is transferred by means of JavaScript
Object Notation (JSON), which is a lightweight human-
readable data-interchange format. The generation of a
single full set of crane data from a particular choice of
design parameters takes about 150–300 ms, whereas the
overhead in transferring data between the simulator server
and the client GA is in a similar range.

Graphical Web Interface
Figure 7 shows an example load chart generated by us-

ing the graphical web interface of the simulator. The load
chart is divided into zones showing the SWL for different
configurations of the crane and the chosen values of the
120 design parameters. The left column contains drawers
where these design parameters can be set, whereas the
right column shows some numerical results such as the
load vector (position and SWL), slewing ring torque,
boom angle, jib angle, and the main and jib cylinder
data (compression force, buckling force and SWL, and
pressure and its SWL).

Genetic Algorithm
Development of the genetic algorithm is still work-in-

progress. We use the functional programming language
Haskell for our implementation of the GA, as well as for
the communication interface to the server version of the
simulator. We expect a working prototype of the GA to
be completed within the first half of 2015. Reasons for
the choice of programming language is discussed in the
next section.

1Access only via agreement with ICD Software AS.



Figure 7: Example load chart generated by simulator using the graphical web interface.

DISCUSSION
This paper has described a CautoD tool for intelligent

VP of offshore cranes. The three main parts of the tool
are (i) a CM; (ii) a simulator, and (iii) a GA. Being work-
in-progress, only (i) and (ii) have been completed at the
current stage, whereas development of (iii) during the first
half of 2015 is expected to lead to a working version of
the complete system some time after this.

Functional Implementation of Genetic Algorithm
Haskell is a purely-functional programming language,

which means that functions in Haskell are pure, there
is no global state, and no side effects. In addition, the
separation between pure and impure functionality makes
code easier to debug. Code written in Haskell is therefore
less error-prone and usually more concise, compact, and
readable than imperative programming languages like C
or Java.

Haskell is a good choice for parallel programming,
which we believe is likely to be needed as the complexity
of our simulator grows. Using pure parallelism guar-
antees deterministic processes and zero race conditions
or deadlocks, however, non-pure concurrency related to
pseudorandom number generators and other processes is
also required.

Using Haskell for implementation makes our simulator
very modular and extendable, something we believe is
necessary in order to expand the simulator and design
tool in the future.

Parallel Computing
The most computationally expensive part of the GA

calculations is the evaluation of the cost function. For-
tunately, calculating cost functions in a GA is known as

“an embarrassingly parallel problem” because it involves
solving many similar, but independent tasks simultan-
eously in parallel, with little or no need for intertask
coordination and communication. Consequently, it is pos-
sible to speed up the GA by outsourcing cost function
calculations to local computer clusters or computing
clouds. An affordable and interesting option is to use
general purpose computing on graphical processing units
(GPGPUs), since GPUs in common modern desktop com-
puter graphics cards are already optimized for parallelism.

Complexity and Sensitivity
We have not analysed algorithm complexity nor sens-

itivity with respect to the design parameters. A core of
N = 120 parameters is implemented in the computational
model but only n � N parameters will be optimised
by the GA for early phases of our work. When we
have a successful solution with n parameters, we will
begin to investigate both the effects of varying paramet-
ers (sensitivity) and expanding our solution and let the
number n grow (complexity). Again, parallel computing
may be needed in order to find optimal solutions within
reasonable time.

Graphical User Interface and Added Functionality
It is essential to make our VP tool available to domain

specialists without prior knowledge of AI or program-
ming. Accordingly, we plan to develop a user interface
where the weights in the fitness function of the GA
are connected with sliders in the graphical user interface
(GUI) that relate to the domain specialists’ preferred KPIs
or design criteria. Typical KPIs that can be weighted will
include cost, lifting capacity, operating range and weight.
The user shall then be able to move the sliders (e.g., in



the range 0–100%) and adjust the relative importance of
the KPIs and thus obtain the optimal crane for the given
weights. In addition, the GA should be able to calculate
and intelligently provide some realistic alternatives that
the user might be interested in.

Concluding Remarks
Whilst our VP tool is currently not complete, we

are confident that the framework we describe here will
be of great value to crane designers, especially since
our simulator is already in the process of being tested
and used manually by human crane designers. We look
forward to completing a working software of the tool as
well as expanding it in the directions described above.
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