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Abstract A rigid body model for the dynamics of a marine vessel, used in
simulations of offshore pipe-lay operations, gives rise to a set of ordinary differ-
ential equations with controls. The system is input-output passive. We propose
passivity-preserving splitting methods for the numerical solution of a class of
problems which includes this system as a special case. We prove the passivity-
preservation property for the splitting methods, and we investigate stability
and energy behaviour in numerical experiments. Implementation is discussed
in detail for a special case where the splitting gives rise to the subsequent inte-
gration of two completely integrable flows. The equations for the attitude are
reformulated on SO(3) using rotation matrices rather than local parametriza-
tions with Euler angles.

Keywords passivity; structure preservation; differential equations; time
integration; multibody dynamics

1 Introduction

In this paper we propose passivity preserving splitting methods for the control
of input-output passive rigid body systems, and in particular for a model of a
marine vessel. The preservation of passivity under numerical discretization is
not well known in the literature. We here propose a simple and general tech-
nique to achieve passivity-preservation under numerical discretization when
using splitting methods. This technique is applicable to a large class of input-
output passive systems, of which the vessel model is a special example.

The control of vessel rigid body equations is important in the simulation of
a number of offshore marine operations [11]. One example is the simulation of
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Fig. 1: The offshore pipe-lay process. The purpose build pipeline vessel uses
heavy tension equipment to clamp the pipe on to it. The pipe is then extended
in a production line. The two main pipelay methods are the dominant S-lay
(shown) and J-lay. In the S-lay method, the pipe is extended horizontally.
The name S-lay comes from the S-shape of the pipe from vessel to seabed.
A submerged supporting structure, called a stinger, controls curvature and
ovalization in the upper part (overbend). Pipe tension controls the curvature in
the lower curve (sagbend). The strain must be checked to stay within limits for
buckling and ovalization. See [12] and the references therein for more details.

pipeline installations sketched in Figure 1. The pipe-laying process comprises
the modeling of two interacting structures, a vessel and a pipe. It is usual
to model the vessel as a torqued rigid body with control, and the long and
thin pipe as a rod. The parameters to control are the vessel position and
velocity, the pay-out speed, and the pipe tension. The control objectives are to
determine the position of the touchdown point of the pipe, and to avoid critical
deformations and structural failures [12], [13]. The design of damping forces
and controls must ensure that the resulting system is input-output passive,
i.e. an energy conservation/dissipation property must be satisfied.
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The full pipe-lay problem has already been simulated in [13], using local
parametrisations based on Euler angles for both the pipe and the vessel model
and with standard numerical techniques. The focus in this paper is the the
passivity preserving integration of the vessel rigid-body model.

We consider the six degrees of freedom model for the dynamics of a marine
vessel given in [13] (see also [11] and [27]), which expressed in matrix-vector
form is

η̇ = J(η)ν,

M ν̇ + C(ν)ν +D(ν)ν + g(η) = τ + X + w, (1)

where η and ν are generalised position and velocity respectively, M is the
system inertia matrix, C(ν) the skew-symmetric Coriolis-centripetal matrix,
D(ν) the symmetric damping matrix, g(η) the vector of gravitational and
buoyancy forces and moments, τ the vector of control inputs, X the forces
and moments from the pipe, and w environmental disturbances such as wind,
waves and currents, see section 3 and 3.1 for details. The position variables
η include the three Euler angles representing the attitude of the body and
evolving on the Lie group SO(3). We reformulate the equations using rotation
matrices, and provide numerical approximations that preserve the structure
of this manifold.

This vessel model (1) is a special example of an input-output passive
systems, and in particular an input-state-output port-Hamiltonian system,
[29]. The passivity of the vessel system follows directly from the passivity of
port-Hamiltonian systems (see Section 2). Our proposed numerical integration
methods are splitting methods, a class of integration methods very well known
in the geometric numerical integration literature [16]. We propose to split sys-
tems of the type (1) into a conservative part, and a part comprising torque,
dissipative forces and controls. We prove passivity of the proposed splitting
methods for the general class of input-state-output port-Hamiltonian systems.

For a simplified model, where both control and damping are linear with
constant coefficients and the mass matrix has a special structure, the two
individual flows are completely integrable, and we discuss the implementation
details of their exact solution.

In the presence of PID (proportional-integral-derivative) controls, τ de-
pends on ν, on η and on the integral of η over time. We include this integral
as an extra unknown to the system to avoid explicit time dependence in the
system of equations.

Finally, we make a numerical study of the order and the energy behaviour
of the methods. The results are compared with those given by explicit Runge-
Kutta methods.

The outline of the paper is as follows: in Section 2 we remark on the
passivity of this system, describe the details of the splitting and composition
techniques and show their input-output passivity; in Section 3 we describe
the vessel equations and describe the implementation details; in Section 4
we report our numerical results illustrating the performance of the methods;
Section 5 is devoted to conclusions.
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2 Energy conservation and passivity

In the present section we consider the problem of conservation of the total
energy. In terms of control dynamics, the systems of interest are frequently
considered as nearly isolated, and the energy conservation law is formulated
in terms of the passivity of the system. We will use the following definition of
passivity.

Definition 21. [10] (Chapter 2)
Consider a model

ẏ = f(y, u),

ζ = h(y).

Suppose that there is a storage function V (y) ≥ 0 and a dissipation function
g(y) ≥ 0 so that the time derivative of V for a solution of the system satisfies

V̇ = ∇V (y)T f(y, u) = uT ζ − g(y),

for all control inputs u. Then the system with input u and output ζ is said to
be (input-output) passive.

Notice that the passivity condition is equivalent to

V (y(t))− V (y(0)) =

∫ t

0

(
u(s)T ζ(s)− g(y(s))

)
ds. (2)

Let H : Rm → R be a total energy function, ξ(t) ∈ Rm, τ (t) ∈ Rp,
S(ξ) ∈ Rm×m skew-symmetric, G(ξ) ∈ Rm×p, D(ξ) ∈ Rp×p positive definite.
Consider the system

ξ̇ = S(ξ)∇H(ξ)−G (D(ξ)ν − τ ) , (3)

ν = GT∇H(ξ) (4)

also known as an input-state-output port-Hamiltonian system with input τ
and output ν, [29].

Proposition 21. The system (3) is input-output passive with input τ and
output ν.

Proof Differentiating H with respect to time and using (3) we find

Ḣ = ∇H(ξ)T ξ̇ = ∇H(ξ)TS(ξ)∇H(ξ) + νT (−Dν + τ ) = νT (−Dν + τ ), (5)

where the last equality in (5) follows from the skew symmetry of S.
If we choose V = H, y = ξ, u = τ and ζ = ν, then it follows from (5)

that the system (3) satisfies Definition 21 with g(y) = νT Dν and h(y) =
GT∇H(ξ). Thus the system is passive. The requirement g(y) ≥ 0 is fulfilled
because the matrix D is positive-definite.
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2.1 Splitting methods

Consider a general system of first order ODEs where the right hand side vector
field admits the splitting

ẏ = S1(y) + S2(y). (6)

We generate a numerical approximation of (6) by composing the exact
flows of S1 and S2, computed on time intervals of suitable length, with suitable

initial values. Let Φ
[S1]
h and Φ

[S2]
h denote, respectively, the exact flow maps of

S1 and S2. The Lie-Trotter splitting, giving approximations of order 1, is

yj+1 = Φ
[S2]
h ◦Φ[S1]

h

(
yj
)
, or yj+1 = Φ

[S1]
h ◦Φ[S2]

h

(
yj
)
. (7)

An approximation of order 2 is given by the classical Strang splitting scheme
as

yj+1 = Φ
[S1]
h/2 ◦Φ

[S2]
h ◦Φ[S1]

h/2

(
yj
)
, (8)

or alternatively

yj+1 = Φ
[S2]
h/2 ◦Φ

[S1]
h ◦Φ[S2]

h/2

(
yj
)
. (9)

The two flows S1 and S2 can also be combined to obtain splitting methods of
higher order. Specifically, symmetric splitting schemes of the type

yj+1 = Φ
[S2]
a1h
◦Φ[S1]

b1h
◦Φ[S2]

a2h
◦ · · · ◦Φ[S2]

am+1h
◦ · · · ◦Φ[S1]

b1h
◦Φ[S2]

a1h

(
yj
)
, (10)

are considered. These are a generalization of the scheme (9). The Strang split-
ting can be reproduced from the general formula (10) by choosing m = 1,
a1 = b1 = 1/2 and a2 = 0. The coefficients of a 4th and a 6th order scheme
are reported in Appendix C.

We refer to [2] for other schemes which are used in the numerical exper-
iments. We remark that the exact flows of S1 and S2 can be replaced with
suitable high order numerical approximations, while keeping the overall order
of the splitting method unchanged.

2.2 Passivity-preserving splitting of input-state-output port-Hamiltonian
systems

We split the equations (3) by splitting the skew symmetric matrix S(ξ) into
the sum of two skew-symmetric terms S(ξ) = S1(ξ) + S2(ξ).

Proposition 22. The order 1 splitting method (7), when applied to the flows
of the two systems{
ξ̇ = S1(ξ)∇H(ξ)
ξ(0) = ξ0,

on [0, h],

{
˙̃
ξ = S2(ξ̃)∇H(ξ̃)−G (Dν̃ − τ )

ξ̃(0) = ξ̃0,
on [0, h],

(11)
and with ξ̃0 = ξ(h), is input-output passive with input τ and output ν̃ =
G∇H(ξ̃).
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Proof We want to prove that (2) holds with V = H. We have

H(ξ̃(h))−H(ξ0) = H(ξ̃(h))−H(ξ̃0) +H(ξ(h))−H(ξ0)

=

∫ h

0

∇H(ξ̃(s))T
˙̃
ξ(s) ds+

∫ h

0

∇H(ξ(s))T ξ̇(s) ds

=

∫ h

0

∇H(ξ̃(s))T
(
S2(ξ̃)∇H(ξ̃)−G (Dν̃ − τ )

)
ds+

+

∫ h

0

∇H(ξ(s))TS1(ξ(s))∇H(ξ(s)) ds,

and by using the skew-symmetry of S1 and S2 we get finally

H(ξ̃(h))−H(ξ0) = −
∫ h

0

∇H(ξ̃(s))TG (Dν̃ − τ ) ds

= −
∫ h

0

ν̃T (Dν̃ − τ ) ds.

Notice that the order of composition of the flows is immaterial. If we now
choose V = H, y = ξ̃, u = τ and ζ = ν̃, then it follows that the composition
of the flows of the systems (11) satisfies Definition 21 with g(y) = ν̃T Dν̃ and
output ν̃.

Remark 21. The passivity result proved in Proposition 22 for the simple order
1 splitting of two flows, generalises to the order 1 splitting and composition of
m flows arising from writing S as a sum of m skew-symmetric terms, S(ξ) =∑m
i=1 Si(ξ). This splitting method is a direct generalisation of (7).

Remark 22. The passivity result proved in Proposition 22 for the simple split-
ting method of order 1 generalises easily to the Strang splitting given by (8)
and (9). Note however, that it is crucial in the proof that the coefficients of
the splitting method are real and positive. There are no splitting methods of
order higher than 2 with this property, [3]. But there exist splitting methods of
order greater than or equal to 3 with complex coefficients which have positive
real part, see for instance [3]. The construction and implementation of passiv-
ity preserving splitting methods of higher order for rigid body dynamics using
complex coefficients is not pursued here, but can be an interesting subject for
future investigations.

Remark 23. If the splitting method used for the integration has order p, then
it is possible to replace the exact flows of the two subsystems with approximate
numerical flows of order p without compromising the order of the method. If the
corresponding numerical flows are energy-preserving for the first system of the
splitting, and energy-dissipative for the second system, then the overall splitting
method with positive coefficients remains input-output passive. Methods with
such preservation/dissipation properties can be found among implicit Runge-
Kutta schemes for polynomial vector fields [6], and among discrete gradient
methods and their generalizations for general vector fields [23], [15].
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We next consider a simplified system for which the proposed splitting
method always dissipates the total energy independently of the sign of the
(real) coefficients of the splitting method. Specifically, we consider the system

ξ̇ = (S(ξ)−D(ξ))∇H(ξ), (12)

with S ∈ Rm×m skew symmetric, D ∈ Rm×m symmetric and positive definite.
Note that the system (3) can be rewritten in this form under the assumption
that τ = −KGT∇H(ξ) with K ∈ Rp×p symmetric and positive semi-definite.
Let H be a quadratic energy function H(ξ) = ξT H̃ ξ, with H̃ ∈ Rm×m sym-
metric and positive definite. We can then define the energy norm

‖ξ‖H :=

√
ξT H̃ ξ,

associated with the inner product 〈·, ·〉H := 〈·, H̃·〉.

Lemma 23. System (12) satisfies

〈(S(ξ)−D(ξ))∇H(ξ), ξ〉H ≤ −2σmin ‖ξ‖2H (13)

and

〈−(S(ξ)−D(ξ))∇H(ξ), ξ〉H ≤ 2σmax ‖ξ‖2H (14)

with σmax ≥ σmin > 0.

Proof We have ∇H = 2 H̃ ξ, so

〈(S(ξ)−D(ξ))∇H(ξ), ξ〉H = −2ξT H̃(S(ξ)+D(ξ))H̃ ξ = −2ξT H̃DH̃ξ, (15)

If σmax > 0 and σmin > 0 are the maximum and minimum eigenvalue of
H̃

1
2DH̃

1
2 , we have

σmin‖ξ‖2H = σmin‖H̃
1
2 ξ‖22 ≤ ξ

T H̃DH̃ξ ≤ σmax‖H̃
1
2 ξ‖22 = σmax‖ξ‖2H . (16)

Notice that, by Sylvester’s law of inertia, H̃
1
2DH̃

1
2 is symmetric positive

definite since D and H̃ are. From (15) and (16), (13) and (14) follow.

The following Lemma is an adaptation of the results of [17, p.180].

Lemma 24. Assume σmax ≥ σmin > 0 and (13) and (14) hold. Then for t ≥ 0
along continuous solutions ξ of (12) we have

H(ξ(t)) ≤ e−4tσminH(ξ(0)); (17)

for t ≤ 0 along continuous solutions ξ of (12) we have

H(ξ(t)) ≤ e−4tσmaxH(ξ(0)). (18)
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Proof We have

dH(ξ(t))

dt
= ∇H(ξ)T ξ̇(t) = 2〈(S(ξ)−D(ξ))∇H(ξ), ξ〉H ,

for t ≥ 0. From (13) we then get

dH(ξ(t))

dt
≤ −4σminH(ξ(t)),

H(t) = H(ξ(t)) is a continuous function of t if ξ(t) is. Integrating the obtained
differential inequality we get (17).

Notice that integrating (12) with negative time corresponds to solving

ξ̇ = −(S(ξ)−D(ξ))∇H(ξ)

for t ≥ 0, so differentiating H(ξ(t)) with respect to t and using (14), we arrive
in this case (18).

Assume S = S1 +S2 with both S1 and S2 skew-symmetric. In what follows
we give a sufficient condition for (10) to be energy dissipative even when the
coefficients of the splitting method are real and both positive and negative.

Proposition 25. The splitting method (10) of order p ≥ 1 given by composing
the flows

S1 :

{
ξ̇ = S1(ξ)∇H(ξ)
ξ(0) = ξ0

on [0, h], S2 :

{
˙̃
ξ = (S2(ξ̃)−D(ξ̃))∇H(ξ̃)

ξ̃(0) = ξ̃0
on [0, h],

(19)

and with ξ̃0 = ξ(h), is energy dissipative if

2

m∑
i=1

µiai + µm+1am+1 ≥ 0, µi :=

{
σmin if ai > 0,
σmax if ai < 0,

(20)

with σmax and σmin the maximum and minimum eigenvalue of H̃
1
2DH̃

1
2 .

Proof By the order 1 conditions of the splitting method [16, sec. III.3.4] we
have

2

m∑
i=1

am + am+1 = 1, 2

m∑
i=1

bi = 1.

Consider

µi :=

{
σmin if ai > 0,
σmax if ai < 0.

For the solution, ξ̃(t), of the system S2, we have from Lemma 24 that on the
time interval [0, aih],

H(ξ̃(aih)) ≤ e−4µiaihH(ξ̃(0)).
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For the solution ξ(t) of S1 on [0, bih], we have

H(ξ(bih)) = H(ξ(0)).

Using (10) and the above inequalities we have

H(ξj+1) ≤ e−4µ1a1he−4µ2a2h · · · e−4µm+1am+1h · · · e−4µ2a2he−4µ1a1hH(ξj),

and so

H(ξj+1) ≤ e−4(2
∑m

i=1 µiai+µm+1am+1)H(ξj) ≤ H(ξj),

if (20) is satisfied.

The coefficients of the method of order four used in our numerical exper-
iments are given in Appendix C. For this method we obtain that condition

(20) is satisfied when σmax

σmin
≤ 2(a1+a2)+a4

−2a3 ≈ 12; and interchanging the role of

S1 and S2, we obtain instead the condition σmax

σmin
≤ (b1+b2)

−b3 ≈ 4.5.

3 A vessel rigid body model

We give now more details about the system (1) presented in the introduction.
We will eventually show that it can be cast in the format of the system (3). The
generalized velocity vector ν = [vT ,ωT ]T ∈ R6 lies in the body frame, where
v,ω ∈ R3 denote respectively the linear velocity and the angular velocity.
The generalized position vector η = [xT ,θT ]T ∈ R6 lies in the spatial frame.
Here x ∈ R3 is the position vector and the components of θ = [φ, θ, ψ]T are the
Euler angles, which provide a local representation of the attitude of the vessel.
The attitude of the body evolves on the Lie group SO(3), which is a manifold.
The elements of SO(3) can be represented as 3 × 3 rotation matrices. If Q is
sufficiently close to the identity, then the conversion between Euler angles and
rotation matrices is

Q = Ψ(θ) = Rz,ψ Ry,θ Rx,φ, θ = [φ, θ, ψ]T , (21)

with

Rx,φ =

 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , Ry,θ =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , Rz,ψ =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ,
and Ψ is a local diffeomorphism, i.e. Ψ is invertible for Q close to the identity.
Notice that Q can always be transported close to the identity by multiplying
with a rotation Q−10 ≈ Q−1 so that Q−10 Q = Ψ(θ). The kinematic equation
associated with (1) is

η̇ = J(η)ν, J(η) =

[
Q 03×3

03×3 Π
−1
e Q

]
, (22)

with
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Πe =

 cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0
− sin(θ) 0 1

 ,
see also [11], [28]. We then get the kinematic equation θ̇ = Π−1e Qω for the
Euler angles, which can be obtained by differentiating (21) and is also valid
locally. The matrix Πe is not invertible for θ = ±π2 and ψ = ±π2 . To avoid
these singularities, we rewrite this kinematic equation as an equation for Q

Q̇ = Q ω̂. (23)

This equation is globally defined on SO(3). The rotation matrix Q transforms
vectors in the body fixed frame {b} to vectors in the spatial frame {s} 1. Here

̂ : R3 → so(3), ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
is the hat-map, and so(3) is the Lie algebra of SO(3), consisting of 3 × 3
skew-symmetric matrices, for further details see [25].

Following [19] (p. 151) and [20], equations (1) can be obtained defining the
kinetic energy of the system to be

K =
1

2
νTMν,

leading to Kirchhoff’s equations

d

dt

∂K

∂v
=
∂K

∂v
× ω + Fv, (24)

d

dt

∂K

∂ω
=
∂K

∂ω
× ω +

∂K

∂v
× v + Fω, (25)

where [pT ,mT ]T := ∂K
∂ν = Mν, and with Fv and Fω the external force and

torque respectively. These include the damping forces, the gravitational and
buoyancy forces, the control inputs, the forces due to the pipe, and environ-
mental forces.In absence of external forces, the obtained equations have a
Lie-Poisson structure, and can be derived by variational methods [18] (p.129).
We refer to [21] (p. 421) for the general description of the Euler-Poincare
reduction on Lie groups (the relevant Lie group in this case is SE(3)). For for-
mulations obtained applying the Hamilton-Pontriagin principle, see [5], and
for the inclusion of external forces see [22] (p. 421).

If we set

p :=
∂K

∂v
, m :=

∂K

∂ω
,

[
p
m

]
= M ν, (26)

1 Q := Reb in the notation of [27] and [11].
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the general form of the skew-symmetric Coriolis-centripetal matrix is

C(ν) = −

 03×3
∂̂K
∂v

∂̂K
∂v

∂̂K
∂ω

 = −
[

03×3 p̂
p̂ m̂

]
. (27)

Since K is a homogeneous quadratic polynomial in the components of
ν, only the symmetric part of M plays a role, and we can assume M to
be symmetric. The matrix M can be split into a rigid body part MRB and
a part for added mass MA. The same can be done for the kinetic energy
K = KRB +KA and the Coriolis-centripetal matrix C(ν) = CRB(ν) +CA(ν).
Letting the origin of the body fixed frame coincide with the center of gravity
in our model, the rigid body system inertia matrix MRB has the simple form

MRB =

[
mvI3×3 03×3

03×3 T

]
, (28)

where mv is the mass of the vessel, I3×3 is the 3-dimensional identity matrix,
and T is the inertia tensor. The added mass term MA is a symmetric matrix,
and we notice that when MA is set to zero, due to the structure of MRB , the
term ∂K

∂v × v in (25) vanishes.
With this simplification, we get

∂K

∂v
= mvv,

∂K

∂ω
= Tω,

and from (24) and (25) we deduce that the rigid body Coriolis-centripetal
matrix in this case can be rewritten in the form

CRB(ν) =

[
mvω̂ 03×3
03×3 −T̂ω

]
.

In the general case, M is symmetric and C(ν) is given by (27), with p and m
given by (26). We will here make the additional assumption that M is block
diagonal, (see [11] p. 98 about this assumption), and that it is diagonal when
the origin of the body frame is in the center of gravity.

We have so far accounted for the first two terms in the equations (1), and
we will in the sequel describe the remaining forces and moments.

The term g(η) from Equation (1) takes restoring forces and moments into
account. In the model adopted in [12], g(η), which lies in the body frame, is
given as

g(η) =

[
QTgst
QTgsr

]
,

where the superscript s denotes that the vector lies in the spatial frame.
Again following [12], we have for the rotational part

gsr = (Qrbr)× (mvge3),
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where g is the gravitational acceleration and rbr is the moment arm in the body
frame. The latter can be expressed as

rbr =

GML(Qe1)Te3

GMT (Qe2)Te3

0

 ,
where GML and GMT are the longitudinal and the transverse metacentric
heights of the vessel, respectively.

The vector gst accounts for buoyancy forces, and can be modelled as

gst = gρwAwp(z − zeq)e3,

following an approach similar to that in [13]. Here ρw is the density of water,
Awp is the water plane area and zeq is the equilibrium water level. These forces
can be directly included by adding a potential energy term to the kinetic energy
K = 1

2ν
TMν, when considering the Lie group models of [18], [21] and [5].

For the positive definite damping matrix D(ν), we also make use of a
common simplifying assumption that the matrix is diagonal when the origin
of the fixed body coordinate system coincides with the center of gravity. We
therefore represent this matrix as

D(ν) =

[
Dt(v) 03×3
03×3 Dr(ω)

]
,

where Dt, Dr ∈ R3×3 are positive definite diagonal matrices.

3.1 Right hand side forces

Let us now consider the term τ in (1). Following the model presented in [13]
we set

τ = −JT (η)τPID,

τPID = Kpη̃ +Kd
˙̃η +Ki

∫ t
t0
η̃(σ) dσ,

(29)

where the matrices

Kp =

[
Kt
p 03×3

03×3 Kr
p

]
, Kd =

[
Kt
d 03×3

03×3 Kr
d

]
, and Ki =

[
Kt
i 03×3

03×3 Kr
i

]
, (30)

are called controller gains, and η̃ := η − ηref .
This formulation of the control forces is based on the use of Euler angles,

θ, to locally parametrize the rotation matrix Q. Away from singularities, i.e.
for Q close to the identity, we have θ = Ψ−1(Q), with Ψ given by (21). A
reformulation of the control forces using only Q and the angular velocity ω
will require a different design of the controller gains (30) and will not be
pursued here.
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In the case where Ki is different from the zero matrix, we introduce a new
set of unknowns

ϕ :=

∫ t

t0

η̃(σ) dσ,

and add a corresponding new set of equations to the system (1)

ϕ̇ = η̃(t), ϕ(t0) = 0.

The integral term in τPID can then be written as∫ t

t0

η̃(σ) dσ = ϕ, ϕ = (ϕx,ϕθ),

(as with θ, the equation for ϕθ is valid locally). Note that the system of
equations is then autonomous, i.e. does not explicitly depend on t. Though not
required, we let w = 0 for simplicity in what follows. In [13] the pipe is assumed
to be fixed to the center of gravity of the vessel. The forces and moments from
the pipe on the vessel, X , depend on the stress resultant and stress couple of
the pipe. Since the modeling and simulation of the pipe structure is not the
focus of this paper, these forces are not taken into account.

3.2 The set of equations

Using the explicit expressions for the right hand side forces, the system (1)
can be written as

ṗ = p× ω −
(
Dt(v)v +QTgst (x)− τ t

)
,

ṁ = m× ω + p× v −
(
Dr(ω)ω +QTgsr(Q)− τ r

)
, (31)

Q̇ = Q ω̂,

ẋ = Qv,

with

τ r = −
(
Π−1e Q

)T
(Kr

p θ̃ +Kr
d

˙̃
θ +Kr

i ϕθ), (32)

τt = −QT
(
Kt
px̃ +Kt

d
˙̃x +Kt

iϕx

)
, (33)

θ̃ = Ψ−1(Q)− θref , ˙̃
θ = θ̇ = Π−1e Qω, x̃ = x− xref , (34)

and

ϕ̇θ = θ̃,

ϕ̇x = x̃.

An alternative version of these equations, which uses Euler parameters to
represent the attitude, is given in Appendix B.
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3.3 Passivity and splitting of the vessel equations

For the vessel model, we now define ξ := [pT ,mT ,qT1 ,q
T
2 ,q

T
3 ,µ

T ,xT ] with

p := mvv, m := Tω, qi := QTei, µ := Gq3,

with mv and T diagonal and invertible matrices. We take H = H(ξ) to be the
Hamiltonian of the system, given as the sum of the kinetic energy K and the
potential energy U . Defining

A := diag(0, 0, c), G := mvg diag(GML, GMT , 0), G̃ :=
1

mvg
diag((GML)−1, (GMT )−1, 0),

and c := gρwAwp, we have

K = 1
2mT T−1m + 1

2pTm−1v p,

U = 1
2µ

T G̃µ+ 1
2qT1 q1 + 1

2qT2 q2 + 1
2qT3 q3 + 1

2xTAx,
H = K + U.

(35)

Notice that the following identities hold

gst = Ax, QTgsr = µ× q3. (36)

We will in the next proposition replace the matrix equation Q̇ = Qω̂ in (31)
with three vector equations, one for each column qi, i = 1, 2, 3, of QT .

Proposition 31. The system (31) can be written in the form

ξ̇ = S(ξ)∇H(ξ)− Ĩ (D(ξ)ν − τ̃ ) , (37)

with

S(ξ) :=



03×3 p̂ 03×3 03×3 03×3 03×3 −QT
p̂ m̂ 03×3 03×3 −µ̂ 03×3 03×3

03×3 03×3 −T̂−1m 03×3 03×3 03×3 03×3

03×3 03×3 03×3 −T̂−1m 03×3 03×3 03×3

03×3 −µ̂ 03×3 03×3 −T̂−1m −T̂−1mG 03×3

03×3 03×3 03×3 03×3 −G T̂−1m 03×3 03×3

Q 03×3 03×3 03×3 03×3 03×3 03×3


, Ĩ :=

[
I6×6

015×6

]
, (38)

D(ξ) := D +

[
Q 03×3

03×3 Π
−1
e Q

]T
Kd

[
Q 03×3

03×3 Π
−1
e Q

]
,

and

τ̃ = τ −
[
Q 03×3

03×3 Π
−1
e Q

]T
Kd

[
Q 03×3

03×3 Π
−1
e Q

]
ν

=

[
Q 03×3

03×3 Π
−1
e Q

]T [
Kr
p θ̃ +Kr

i ϕθ

Kt
px̃ +Kt

iϕx

]
with

θ̃ = θ − θref , ˙̃
θ = θ̇ = Π−1e Qω, x̃ = x− xref , ϕ̇θ = θ̃, ϕ̇x = x̃.
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Proof The proof follows by a direct calculation of the gradient of H.

The obtained system is completely analog to (3), and its passivity follows
from Proposition 2. To obtain a passivity preserving splitting of the vessel
model, we can proceed by splitting S in (38) as the sum of the two following
skew symmetric terms

S1(ξ) :=



03×3 p̂ 03×3 03×3 03×3 03×3 03×3

p̂ m̂ 03×3 03×3 03×3 03×3 03×3

03×3 03×3 −T̂−1m 03×3 03×3 03×3 03×3

03×3 03×3 03×3 −T̂−1m 03×3 03×3 03×3

03×3 03×3 03×3 03×3 −T̂−1m 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3


,

S2(ξ) :=



03×3 03×3 03×3 03×3 03×3 03×3 −QT

03×3 03×3 03×3 03×3 −µ̂ 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 −µ̂ 03×3 03×3 03×3 −T̂−1mG 03×3

03×3 03×3 03×3 03×3 −G T̂−1m 03×3 03×3

Q 03×3 03×3 03×3 03×3 03×3 03×3


,

and then applying an energy-preserving/energy-dissipative integrator on each
of the individual flows. The energy in this case is quadratic. By Proposition 22,
such a splitting method preserves passivity. In the next section we consider
the implementation of this method in a special case, when the splitting leads
to two completely integrable flows.

3.4 Implementation

In the numerical experiments, and in this section, we will consider the case
when the mass matrix has the form (28). This occurs for example when the
added mass is zero, i.e. MA = O, or when MA has the same diagonal structure
as MRB . We will also assume the damping matrix D to be constant. As a
consequence the term p×v in the equation for the angular momentum is zero
(because p and v are parallel). For this reason the matrix S can be modified to
have a skew symmetric diagonal block −ω̂ in the upper left diagonal corner,
while both off diagonal blocks of the type p̂ disappear. The equations (31)
simplify and become

ṗ = −ω̂ p−
(
Dtv +QTAx− τ t

)
,

ṁ = −ω̂m− (Drω + µ̂q3 − τ r) ,
Q̇ = Q ω̂,

µ̇ = −G ω̂ q3,

ẋ = Qv,

ϕ̇θ = θ̃,

ϕ̇x = x̃.

(39)
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This case is particularly interesting because it is possible to split S as the sum
of two skew symmetric terms S = S1 + S2 while obtaining two completely
integrable flows for which explicit solutions can be found. The system S1,
arising from S1, is a free-rigid body flow, as in the more general case of the
previous section. Conversely, we will see that the system S2, arising from S2, is
linear and can be integrated exactly using the variation of constants formula.
Proposition 22 applies directly to this case. In the more general case discrete
gradient methods and their higher order generalisations, see [23] and [15], can
be applied to solve S2.

In what follows, regarding notation, we reparametrize time using γ, such
that γ = 0 represents the current starting point. We also use the convention
that index 0 for a variable, e.g. x0, denotes the current initial value (at γ = 0).

3.4.1 System S1: Free-rigid body integration

The system S1 amounts to a system of free rigid body equations

S1 =



ṗ = −ω̂ p,

ṁ = m× ω,
Q̇ = Q ω̂,

µ̇ = 0,

ẋ = 0,

ϕ̇θ = 0,

ϕ̇x = 0.

(40)

This system is completely integrable. To integrate these equations we employ
techniques developed in [7] and [8].

S1 is integrated several times on some interval [0, αh] as a part of the
splitting methods, with h being the step size of integration and α = ai, i =
1, . . . ,m+1, i.e. one of the coefficients of the splitting method. We observe that
ω̇ and Q̇ do not depend on v and x. As ω can also be computed independently
of Q, we proceed as follows. We first compute ω using explicit formulae based
on Jacobi elliptic functions, see [8] Proposition 2.1. Then using ω, we solve
numerically the equation for Q in (40) using the Magnus series expansion. For
a method of order 2 the computed approximation for Q is

Q[2] = Q0 exp

(
h ω̂( 1

2 )

)
,

with ω( 1
2 ) = ω( α2h ). The two approximations of order 4 and 6 require the

computation of commutators, and the use of quadrature. They give the ap-
proximations:

Q[4] = Q0 exp

(
α1 −

1

12
[α1, α2]

)
, α1 :=

h

2
(ω̂(c1h)+ω̂(c2h)), α2 :=

√
3h(ω̂(c2h)−ω̂(c1h)),
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with c1 = 1
2 −

√
3
6 c2 = 1

2 +
√
3
6 ; and

Q[6] = Q0 exp

(
α1 +

1

12
α3 +

1

240
[−20α1 − α3 + s1, α2 + r1]

)
,

where

s1 := [α1, α2], r1 = − 1

60
[α1, 2α3 + s1],

and

α1 := hω̂(c2h), α2 :=

√
15h

3
(ω̂(c3h)−ω̂(c1h)), α3 :=

10h

3
(ω̂(c3h)−2ω̂(c2h))+ω̂(c1h)),

with c1 = 1
2 −

√
15
10 , c2 = 1

2 and c3 = 1
2 +

√
15
10 . See also [7], [14] for details. This

method will be referred to as the Magnus method. It was shown in [4] that
this method requires a minimal number of commutators. One can truncate
the Magnus expansion to arbitrary high order. Here we have implemented this
method to order 2, 4, and 6, and combined it with splittings of the same order.

Once ω and Q are computed to the desired accuracy, p can be easily
obtained by

p(γ) = QTQ0p0,

while

µ(γ) = µ0,

x(γ) = x0,

ϕq(γ) = ϕq,0,

ϕx(γ) = ϕx,0.

The rotational part of the equations evolves on SO(3). The Magnus method
respects the manifold structure of this Lie gorup. Compared to using Euler
angles, this approach avoids singularities by construction. This may not be
important when simulating the vessel alone, because only a certain limited
range of rotations are allowed. However, it becomes more difficult to avoid the
singularities of Euler angles when considering the attitude of the vessel and
of each cross sections of the pipe simultaneously, [13]. The Magnus expansion
(which by construction provides an attitude that evolves on SO(3)) can also
be applied when the mass matrix of the system is more general and the added
mass matrix is not diagonal.
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3.4.2 System S2: Integration of the damping, gravitational and control forces.

It is easy to realize that the system of differential equations S2

S2 =



ṗ = −
(
Dtm

−1
v p +QTAx− τ t

)
,

ṁ = −
(
DrT

−1m + µ̂q3 − τ r
)
,

Q̇ = 0,

µ̇ = −G ω̂ q3,

ẋ = Qv,

ϕ̇θ = θ̃,

ϕ̇x = x̃.

(41)

is linear. As with the system S1, S2 should be integrated several times on
some interval [0, βh], where β is b1, b2, . . . , bm, i.e. one of the coefficients of
the splitting method. Using (32), (33), (34) and the variation of constants
formula we obtain the following explicit expressions for the solution of (41)

Q(γ) = Q0,

ϕθ(γ) = ϕθ,0 + γ θ̃0, θ̃0 := θ0 − θref ,[
m(γ)
µ(γ)

]
= eγA

[
m0

µ0

]
+ γ φ1(γA)

[
wr,1

0

]
+ γ2 φ2(γA)

[
wr,2

0

]
, p(γ)

x(γ)
ϕx(γ)

 = eγB

 p0

x0

ϕx,0

+ γ φ1(γB)

 wt

0
−xref

 ,
where

A :=

−(DrT
−1 +QT

0 Π
−T
e Kr

dΠ
−1
e Q0T

−1) q̂3

Gq̂3T−1 O

 ,

B :=


−(Dtm

−1
v +QT

0 K
t
dQ0m

−1
v ), −(QT

0 A+QT
0 K

t
p) −Q

T
0 K

t
i

Q0m
−1
v O O

O I O

 ,

wr,1 := −QT0Π−Te (Kr
p θ̃0 +Kr

i ϕθ,0),

wr,2 := −QT0Π−Te Kr
i θ̃0,

wt := QT0 (Kt
p xref ),

and

φk(z) =
1

(k − 1)!

∫ 1

0

ez(1−x)xk−1 dx, k = 1, 2.

From the variation of constants formula we deduce

γ φ1(γA)

[
wr,1
0

]
+ γ2 φ2(γA)

[
wr,2
0

]
= −

∫ γ

0
e(γ−σ)AQT0 Π

−T
e (Kr

p θ̃ +Kr
i ϕθ(σ)) dσ,

where θ̃ does not depend on σ.
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Fig. 2: Evolution of the generalized position variables over time with t ∈
[0, 200]. The PID controller is turned on at t = 50. All the controlled vari-
ables converge rapidly towards the reference values, with a small overshoot
caused by the integral term in the controller.

4 Numerical results

In this section we report the results of some numerical experiments for (31).
The parameter values used for the rigid body vessel model are given in Ap-
pendix D. For the parametrization of the rotation matrices we have used
unit quaternions, see Appendix B. The reference solution has been computed
with the classical Runge-Kutta method of order 4 (RK4) with small step size
h = 10−6 in the order tests, Figure 3, and h = 10−4 in the other experiments.

In Figure 2, we show the features of the solution of the considered controlled
system, and see that the desired equilibrium is attained. We plot the evolution
of the generalized positional coordinates over the interval t ∈ [0, 200]. The
controls are turned on at t = 50, [12]. Let us denote by x and y the first
two components of the vector x, and recall that ψ is the third component of
θ. The results show rapid convergence towards the reference values for x, y
and ψ. There is a slight initial overshoot due to the presence of the integral
term, which will vanish over time. The overshoot can be reduced by further
optimizing the choice of controller gains. In our experiments, choosing different
values for the environmental forces, we observe that the integral term is in
general necessary to ensure convergence to the set point, see also [12]. The
uncontrolled variables show expected behaviour. The remaining angles have
small initial oscillations which are damped towards 0. In the case of φ the
damping is present, but too small to be observed from the plot. When the
controls are turned on, the elevation z moves away from the equilibrium, but
it rapidly stabilises back to the desired value.
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We now verify the order of accuracy of the numerical solutions obtained
by the order 2, order 4 and order 6 splitting schemes, which we will refer to as
SP2, SP4 and SP6, respectively. We define the relative error for the angular
momentum at time tn

e[m] =
||mn −m(tn)||2
||m(tn)||2

,

where m(tn) is the reference solution, and mn ≈ m(tn) is the approximation
given by the numerical method whose accuracy we want to investigate. Similar
relative errors e[q], e[v] and e[x] are considered for q, v and x, respectively. Here
q is the unit quaternion representing the attitude Q. The errors are evaluated
at the end of the time interval, t ∈ [0, 1]. In Figure 3 we plot the relative errors
against the step size for step sizes hk = 1

2k
with k = 0, 1, . . . , 4, and show that

the correct order is attained by the methods.
Finally, in Figure 4, we compare the norm of the scaled control input

and the energy function H, given by (35) for the splitting methods SP2 and
SP4, and two explicit Runge-Kutta methods: the Improved Euler method (a
second order Runge-Kutta method2) and RK4. Methods of the same order are
compared using relatively large step sizes, specifically h = 2/3 (top figures)
and h = 1.9375 (bottom figures). The values from the splitting methods in
this experiment cannot be distinguished from the corresponding values from
the exact solution, while the values from the explicit Runge-Kutta methods
differ noticeably. For larger values of the step-sizes the explicit Runge-Kutta
methods are unstable. A more detailed analysis of the stability and of the
error of splitting methods for similar problems in rigid body dynamics is under
investigation. Preliminary results show that as h increases, splitting methods
suffer of order reduction, but they do not become unstable and the error
remains bounded. This is similar to what shown in the case of Schrödinger
equations, see [26].

5 Concluding remarks

We have proposed a class of splitting schemes for a system of controlled vessel
rigid body equations in use in offshore marine operations. The discrete sys-
tems respect important qualitative features of the continuous system: we have
proved that the numerical flow obtained by the splitting methods is input-
output passive, and the numerical attitude evolves on the Lie group SO(3)
as its continuous counterpart. The benefit of the passivity-preserving schemes
is that they satisfy a definition of passivity analogous to the one satisfied by
the continuous equations. The control of the continuous system is designed so
to guarantee the attainment of a certain desired equilibrium, but ultimately

2 yn+1 = yn + h
2

(
f(yn) + f(yn + hf(yn))

)
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Fig. 3: Dependence of the relative endpoint error (y-axis) on the size of the
integration step (x-axis) for (40). Results for SP2, SP4 and SP6 are plotted
in logarithmic scale for t ∈ [0, 1], h = 1

2k
and k = 0, 1, . . . , 4. Top: global error

in angular momentum m (left) and attitude q (right). Bottom: global error
in linear momentum p and position x. The expected order for the splitting
schemes is obtained.

the systems are discretized with numerical integration techniques. The pas-
sivity preserving schemes ensure this same property at the discrete level by
construction of the numerical methods.

With the proposed splitting schemes we achieve improved accuracy in the
numerical solution. In our numerical experiments the methods show better
energy behaviour compared to classical Runge-Kutta techniques.
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Fig. 4: Time versus the scaled energy H(yn)/H0 (left) and time versus the
norm of the scaled rotational control

∥∥T−1τr∥∥2 (right). The two top figures
compare the methods of order 2: SP2 and Improved Euler, for time t ∈ [0, 50]
and step size h = 2/3. The two bottom figures compare methods of order
4: SP4 and RK4 with step size h = 1.9375 on the time interval [0, 100]. All
methods are compared with the exact solution. The splitting methods follow
the exact scaled energy and torque well. On the contrary, the values from the
RK4 and of the Improved Euler method are seen to differ.

The splitting methods considered have not been optimised with respect to
global error, number of stages, i.e. elementary flows composed, and compu-
tational effort. This is future work. A reformulation of the input forces using
only the attitude and the angular velocity, and a general improvement of the
controlled system will also be considered in the future.

A Euler parameters

We here review briefly the main properties of quaternions and Euler parameters. More
information on this subject can be found in e.g. [21]. The set of quaternions,

H := {q = (q0,q) ∈ R× R3, q = [q1, q2, q3]T } ∼= R4,

is a strictly skew field [1]. Addition and multiplication of two quaternions, p = (p0,p), q =
(q0,q) ∈ H, are defined by

p+ q := (p0 + q0,p + q),
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and
pq := (p0q0 − pTq, p0q + q0p + p× q). (A.1)

For q 6= (0,0) there exists an inverse

q−1 := qc/‖q‖2, ‖q‖ :=
√
q20 + ‖q‖22,

where qc := (q0,−q) is the conjugate of q, such that qq−1 = q−1q = e = (1,0). In the sequel
we will consider q ∈ H as a vector q = [q0, q1, q2, q3]T ∈ R4. The multiplication rule (A.1) can
then be expressed by means of a matrix-vector product in R4. Namely, pq = L(p)q = R(q)p,
where

L(p) :=

[
p0 −pT
p p0I + p̂

]
, R(q) :=

[
q0 −qT
q q0I − q̂

]
,

and I is the 3 × 3 identity matrix. Note that R(q) and L(p) commute, i.e. R(q)L(p) =
L(p)R(q).

Three-dimensional rotations in space can be represented by Euler parameters, i.e. unit
quaternions

S3 := {q ∈ H | ‖q‖ = 1}.
Equipped with the quaternion product, S3 is a Lie group, with q−1 = qc and e = (1,0) as the
identity element. There exists a (surjective 2 : 1) group homomorphism (the Euler-Rodriguez
map) E : S3 → SO(3), defined by

E(q) := I + 2q0q̂ + 2q̂2.

The Euler-Rodriguez map can be explicitly written as

E(q) =

 1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q21 + q22)

 .
A rotation in R3,

w = Qu, Q ∈ SO(3), u,w ∈ R3,

can, for some q ∈ S3, be expressed in quaternionic form as

w = L(q)R(qc)u = R(qc)L(q)u, u = (0,u), w = (0,w) ∈ HP ,

where HP := {q ∈ H | q0 = 0} ∼= R3 is the set of so called pure quaternions.

A.1 The Lie algebra s3

If q ∈ S3, it follows from qqc = e that

s3 := TeS3 = HP .

The Lie algebra s3, associated with S3, is equipped with a Lie bracket [ · , · ]s : s3 × s3 → s3,

[u ,w ]s := L(u)w − L(w)u = (0, 2u×w),

where u = (0,u), w = (0,w).
The derivative map of E is E∗ = TeE : s3 → so(3). This map, given by

E∗(u) = 2û, u = (0,u),

is a Lie algebra isomorphism. Assume now that q ∈ S3 is such that E(q(t)) = Q(t), then
L(qc)q̇ ∈ s3, QT Q̇ ∈ so(3) and

E∗(L(qc)q̇) = QT Q̇. (A.2)

Furthermore, it can be shown that

E∗(L(q)R(qc)u) = 2Ê(q)u ∀ q ∈ S3, u = (0,u) ∈ s3. (A.3)

As a consequence of (A.2) and (A.3), the kinematics of the attitude of the vessel (23) can
be expressed in Euler parameters in S3 as

q̇ =
1

2
q ω, ω = (0,ω). (A.4)
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B The equations using Euler parameters

We rewrite the equations (31), (32), (33), (34), using (A.4) to represent the attitude with
Euler parameters. Note that if q ∈ S3 is known, we also know the Euler angles θ from a
transformation between the two representations.

ṗ = p× ω −
(
Dtv + E(q)T gst − τ t

)
,

ṁ = m× ω + p× v −
(
Drω + E(q)T gsr − τ r

)
,

q̇ =
1

2
q ω, ω = (0,ω),

ẋ = E(q)v,

ϕ̇θ = θ̃,

ϕ̇x = x̃,

with

τ r = −
(
Π−1
e E(q)

)T
(Kr

p θ̃ +Kr
d

˙̃
θ +Kr

i ϕθ),

τt = −E(q)T
(
Kt
px̃ +Kt

d
˙̃x +Kt

iϕx

)
,

θ̃ = θ − θref , ˙̃
θ = θ̇ = Π−1

e E(q)ω, x̃ = x− xref .

C Splitting coefficients

The coefficients of a 4th order splitting scheme in the format (10) are

a1 = 0.0792036964311956500000000000000000000000, b1 = 0.209515106613361881525060713987,
a2 = 0.353172906049773728818833445330, b2 = −0.14385177317981800000000000000000000,
a3 = −0.042065080357719520000000000000000000000, b3 = 1

2 − (b1 + b2),
a4 = 1− 2(a1 + a2 + a3).

The coefficients of a 6th order splitting scheme in the format (10) are

a1 = 0.0502627644003923808654389538920, b1 = 0.148816447901042828823498193483,
a2 = 0.413514300428346618921141630839, b2 = −0.132385865767782744686048193902,
a3 = 0.045079889794397660000000000000000000, b3 = 0.0673076046921849473963237618218,
a4 = −0.188054853819571375656897886496, b4 = 0.432666402578172649872653897748,
a5 = 0.541960678450781151905056284542, b5 = 1

2
− (b1 + b2 + b3 + b4),

a6 = 1− 2(a1 + a2 + a3 + a4 + a5).

We refer to [2] for an overview on splitting schemes.

D Parameter values

The values of the parameters we use in the experiments are in SI units
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Dr1 = 9.329153987× 102, Dt1 = 3.53933789× 101,
Dr2 = 6.514979127508227× 108, Dt2 = 1.1781388× 102,
Dr3 = 3.15094664584× 104, Dt3 = 1.4566249× 106,
Dr = diag(Dr1, Dr2, Dr3), Dt = diag(Dt1, Dt2, Dt3),
Kr
p = diag(0, 0, 1 · 108), Kt

p = diag(4 · 105, 4 · 105, 0),
Kr
d = diag(0, 0, 1 · 109), Kt

d = diag(4 · 106, 4 · 106, 0),
Kr
i = diag(0, 0, 2 · 105), Kt

i = diag(1 · 103, 1 · 103, 0),
T1 = 2.873071× 108, θ0 = [0.05,−0.02, 0.10]T ,
T2 = 2.726143× 109, θref = [0, 0, 0.54],
T3 = 2.90000× 109, x0 = [723, 0, 0]T ,
T = diag(T1, T2, T3), xref = [780, 20, 0],

GMT = 2.1440, mv = 6.3622085× 106,

GML = 103.628, Awp = 1.3834× 103,
g = 9.81,
ρw = 1.025× 103,
zeq = 0.

Many of the values are taken from data for a supply vessel from [24].
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