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Abstract: From a hydrodynamicist’s point of view the inclusion of viscosity concepts

in the macroscopic theory of the cosmic fluid would appear most natural, as an ideal

fluid is after all an abstraction (exluding special cases such as superconductivity). Making

use of modern observational results for the Hubble parameter plus standard Friedmann

formalism, we may extrapolate the description of the universe back in time up to the

inflationary era, or we may go to the opposite extreme and analyze the probable ultimate

fate of the universe. In this review we discuss a variety of topics in cosmology when it is

enlarged in order to contain a bulk viscosity. Various forms of this viscosity, when expressed

in terms of the fluid density or the Hubble parameter, are discussed. Furthermore, we

consider homogeneous as well as inhomogeneous equations of state. We investigate viscous

cosmology in the early universe, examining the viscosity effects on the various inflationary

observables. Additionally, we study viscous cosmology in the late universe, containing

current acceleration and the possible future singularities, and we investigate how one may

even unify inflationary and late-time acceleration. Finally, we analyze the viscosity-induced

crossing through the quintessence-phantom divide, we examine the realization of viscosity-

driven cosmological bounces, and we briefly discuss how the Cardy-Verlinde formula is

affected by viscosity.
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1 Introduction

The introduction of viscosity coefficients in cosmology has itself a long history, although the

physical importance of these phenomenological parameters has traditionally been assumed

to be weak or at least subdominant. In connection with the very early universe, the

influence from viscosity is assumed to be the largest at the time of neutrino decoupling (end

of the lepton era), when the temperature was about 1010 K. Misner [1] was probably the

first to introduce the viscosity from the standpoint of particle physics; see also Zel’dovich

and Novikov [2]. Nevertheless, on a phenomenological level, the viscosity concept was

actually introduced much earlier, with the first such work being that of Eckart [3].

When considering deviations from thermal equilibrium to the first order in the cosmic

fluid, one should recognize that there are in principle two different viscosity coefficients,

namely the bulk viscosity ζ and the shear viscosity η. In view of the commonly accepted

spatial isotropy of the universe, one usually omits the shear viscosity. This is motivated

by the WMAP [4] and Planck observations [5], and is moreover supported by theoretical

calculations which show that in a large class of homogeneous and anisotropic universes

isotropization is quickly established. Eckart’s theory, as most other theories, is maintained

at first-order level. In principle, a difficulty with this kind of theory is that one becomes

confronted with a non-causal behavior. In order to prevent this one has to go to the second

order approximation, away from thermal equilibrium.

The interest in viscosity theories in cosmology has increased in recent years, for var-

ious reasons, perhaps especially from a fundamental viewpoint. It is well known among

hydrodynamicists that the ideal (nonviscous) theory is after all only an approximation to

the real world. For reviews on both causal and non-causal theories, the reader may consult

Grøn [6] (surveying the literature up to 1990), and later treatises by Maartens [7, 8], and

Brevik and Grøn [9].

The purpose of the present review is to explore how several parts of cosmological theory

become affected when a bulk viscosity is brought into the formalism. After highlighting the

basic formalism in the remaining of the present section, in Section 2 we consider the very

early (inflationary) universe. We briefly present the conventional inflation theory, covering

“cold”, “warm” and “intermediate” inflation, and we extract various inflationary observ-

ables. Thereafter we investigate the viscous counterparts in different models, depending

on the form of bulk viscosity as well as on the equation of state.

In Section 3 we turn to the late universe, including the characteristic singularities in

the far future, related also to the phantom region in which the equation-of-state parameter

is less than −1. The different types of future singularities are classified, and we explore

the consequences of letting the equation of state to be inhomogeneous. A special case is

the unification of inflation with dark energy in the presence of viscosity, a topic which is

dealt with most conveniently when one introduces a scalar field. Additionally, we discuss

holographic dark energy in the presence of a viscous fluid.

In Section 4 we discuss various special topics, amongst them the possibility for the

viscous fluid to slide from the quintessence region into the phantom region and then into a

future singularity, if the magnitude of the present bulk viscosity is large enough. Compari-
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son with estimated values of the bulk viscosity derived from observations, indicate that this

may actually be a realistic scenario. In the same section we also discuss the viscous Big

Rip realization, and finally we see how the Cardy-Verlinde formula becomes generalized

when viscosity is accounted for, since the thermodynamic (emergent) approach to gravity

has become increasingly popular.

Finally, in Section 5 we summarize the obtained results and we discuss on the advan-

tages of viscous cosmology.

1.1 Basic formalism

We begin by an outline of the general relativistic theory, setting, as usual, kB and c equal

to one. The formalism below is taken from Ref. [10]. We adopt the Minkowski metric in

the form (−+ ++), and we use Latin indices to denote the spatial coordinates from 1 to 3,

and Greek indices to denote spacetime ones, acquiring values from 0 to 3. Uµ = (U0, U i)

denotes the four-velocity of the cosmic fluid, and we have U0 = 1, U i = 0 in a local

comoving frame.

With gµν being a general metric tensor we introduce the projection tensor

hµν = gµν + UµUν , (1.1)

and the rotation tensor

ωµν = hαµh
β
νU(α;β) =

1

2
(Uµ;αh

α
ν − Uν;αh

α
µ). (1.2)

The expansion tensor is

θµν = hαµh
β
νU(α;β) =

1

2
(Uµ;αh

α
ν + Uν;αh

α
µ), (1.3)

and has the trace θ ≡ θµµ = Uµ;µ. The third tensor that we shall introduce is the shear

tensor, namely

σµν = θµν −
1

3
hµνθ, (1.4)

which satisfies σµµ = 0. Finally, it is often useful to make use of the three tensors above in

the following decomposition of the covariant derivative of the fluid velocity:

Uµ;ν = ωµν + σµν +
1

3
hµνθ −AµUν , (1.5)

where Aµ stands for the four-acceleration, namely Aµ = U̇µ = UνUµ;ν .

The above formalism is for a general geometry. In the following we will focus on

Friedmann-Robertson-Walker (FRW) geometry, which is of main interest in cosmology,

whose line element is

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1.6)

where a(t) is the scale factor and k = 1, 0,−1 the spatial curvature parameter. In this

case the coordinates xµ are numerated as (t, r, θ, ϕ). In these coordinates the covariant

derivatives of the velocity acquire the simple form

Uµ;ν = Hhµν , (1.7)
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with H = ȧ/a the Hubble parameter. The rotation tensor, the shear tensor, and the

four-acceleration all vanish, i.e

ωµν = σµν = 0, Aµ = 0, (1.8)

and the relation between scalar expansion and Hubble parameter is simply

θ = 3H. (1.9)

As a next step we consider the fluid’s energy-momentum tensor Tµν in the case where

viscosity as well as heat conduction are taken into account. If K is the thermal conductivity,

considered in its nonrelativistic framework, then for the spacelike heat flux density four-

vector we have the expression

Qµ = −Khµν(T,ν + TAν), (1.10)

with T the temperature. The last term in this expression is of relativistic origin. The coor-

dinates used in (1.1) are comoving, with freely moving reference particles having vanishing

four-acceleration. Thus, one obtains the usual expression Qî = −KT,̂i for the heat flux

density through a surface orthogonal to the unit vector eî. Hence, assembling everything,

in an FRW metric we can now introduce the energy-momentum tensor as

Tµν = ρUµUν + (p− 3Hζ)hµν − 2ησµν +QµUν +QνUµ, (1.11)

with ρ and p the fluid’s energy density and pressure respectively, and where ζ is the bulk

viscosity and η the shear viscosity.

Taking all the above into consideration, we conclude that for a universe governed by

General Relativity in the presence of a viscous fluid, in FRW geometry the two Friedmann

equations read as:

H2 +
k

a2
=
κρ

3
(1.12)

2Ḣ + 3H2 = −κp , (1.13)

with κ the gravitational constant. Note that these equations give

Ḣ = −(κ/2)(ρ+ p) (1.14)

for a flat universe. We mention that the energy density and pressure can acquire a quite

general form. For instance, a quite general parametrization of an inhomogeneous viscous

fluid in FRW geometry is [11–13]

p = w(ρ)ρ−B(a(t), H, Ḣ...) , (1.15)

where w(ρ) can depend on the energy density, and the bulk viscosity B(a(t), H, Ḣ...) can

be a function of the scale factor, and of the Hubble function and its derivatives. A usual

subclass of the above general equation of state is to assume that

B(a(t), H, Ḣ...) = 3Hζ(H) , (1.16)
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with ζ(H) > 0 the bulk viscosity, which can be further simplified to the subclass with

ζ(H) = ζ = const..

Let us now focus on thermodynamics, and especially on the production of entropy. The

simplest way of extracting the relativistic formulae is to generalize the known formalism

from nonrelativistic thermodynamics. We use σ to denote the dimensionless entropy per

particle, where for definiteness as “particle” we mean a baryon. The nonrelativistic entropy

density thus becomes nkBσ, where n is the baryon number density. Making use of the

relationship [14]

dS

dt
=

2η

T
(θik −

1

3
δik∇ · u)2 +

ζ

T
(∇ · u)2 +

K

T 2
(∇T )2, (1.17)

where u denotes the nonrelativistic velocity and ∇ the three-dimensional Laplace operator,

we can generalize to a relativistic formalism simply by imposing the effective substitutions

θik → θµν , δik → hµν , ∇ · u→ 3H, −KT,k → Qµ, (1.18)

whereby we obtain the desired equation

Sµ;µ =
2η

T
σµνσ

µν +
9ζ

T
H2 +

1

KT 2
QµQ

µ, (1.19)

in which Sµ denotes the entropy current four-vector

Sµ = nkBσU
µ +

1

T
Qµ. (1.20)

More detailed derivations of these results can be found, for instance, in Refs. [15] and [16].

In summary, viscous cosmology is governed by the Friedmann equations (1.12) and

(1.13), along with various considerations of the fluid’s equation of state. Hence, these

relations will be the starting point of the discussion of this manuscript. In the following

sections we investigate viscous cosmology in detail.

2 Inflation

We start the investigation of viscous cosmology by focusing on early times, and in particular

on the inflationary realization. Inflation is considered to be a crucial part of the universe

cosmological history, since it can offer a solution to the flatness, horizon and monopole

problems [17–19]. In order to obtain the inflationary phase one needs to consider a suitable

mechanism, which is either a scalar field in the framework of General Relativity [20–22],

or a degree of freedom arising from gravitational modification [23, 24]. In this section we

will see how inflation can be driven by a viscous fluid.

2.1 Inflation: The basics

Before proceeding to the investigation of viscous inflation, let us briefly describe the basic

inflationary formulation and the relation to various observables. For convenience we review

the scenarios of cold and warm inflation separately.
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• Cold Inflation

We first start with the standard inflation realization, also called as “cold” inflation,

in which a scalar field φ plays the role of the inflaton field. The Friedmann equations

are

H2 =
κ

3
ρ =

κ

3

(
1

2
φ̇2 + V

)
, (2.1)

ä

a
= −κ

6
(ρ+ 3p), (2.2)

where ρ and p are respectively the energy density and pressure of the inflaton field,

and V = V (φ) is the corresponding potential. In (2.1) we have used the fact that the

scalar field can be viewed as a perfect fluid with

ρ =
1

2
φ̇2 + V, (2.3a)

p =
1

2
φ̇2 − V, (2.3b)

and hence its equation-of-state (EoS) parameter reads

p = wρ, (2.4a)

with

w =
1
2 φ̇

2 − V
1
2 φ̇

2 + V
. (2.4b)

The fluid interpolates between an invariant vacuum energy with w = −1 for a con-

stant inflaton field, and a stiff (Zel’dovich) fluid with w = 1 and V = 0.

The scalar-field equation of motion takes the simple form

φ̈+ 3Hφ̇ = −V ′, (2.5)

where V ′ = dV/dφ, which can be re-written as a continuity equation

ρ̇+ 3H(ρ+ p) = 0. (2.6)

Finally, we can define the quantity N , i.e. the number of e-folds in the slow-roll era,

as the logarithm of the ratio between the final value af of the scale factor during

inflation and the initial value a(N) = a, namely

N = ln
(af
a

)
. (2.7)

In inflationary theory it proves very convenient to define the so-called slow roll pa-

rameters. One set of such parameters is defined via derivatives of the potential with
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respect to the inflaton field. These “potential” slow roll parameters, conventionally

called ε, η, ξ, are defined as [25]

ε =
1

2κ

(
V ′

V

)2

, (2.8a)

η =
1

κ

V ′′

V
, (2.8b)

ξ =
1

κ2

V ′V ′′′

V 2
. (2.8c)

Since these should be small during the slow-roll period, the potential V (φ) must have

a flat region.

One may also define the slow roll parameters in a different way, by taking the deriva-

tives of the Hubble parameter with respect to the e-folding number (such an approach

has a more general application, since it can be also used in inflationary realizations

that are driven from modified gravity, where a field and a potential are absent) [25].

In particular, these horizon-flow [26–28] parameters εn (with n a positive integer),

are defined as

εn+1 ≡
d ln |εn|
dN

, (2.9)

with ε0 ≡ Hini/H and N the e-folding number, and Hini the Hubble parameter at

the beginning of inflation (inflation ends when ε1 = 1). Thus, the first three of them

are calculated as

ε1 ≡ −
Ḣ

H2
, (2.10)

ε2 ≡
Ḧ

HḢ
− 2Ḣ

H2
, (2.11)

ε3 ≡
(
ḦH − 2Ḣ2

)−1
[

...
H −

Ḧ2

Ḣ
− 3

ḦḢ

H
+ 4

Ḣ3

H2

]
. (2.12)

We now briefly review the formalism that is used to describe the temperature fluc-

tuations in the Cosmic Microwave Background (CMB) radiation. The power spectra

of scalar and tensor fluctuations are written as [29]

Ps = As(k∗)

(
k

k∗

)ns−1+(1/2)αs ln(k/k∗)

, (2.13)

PT = AT (k∗)

(
k

k∗

)nT+(1/2)αT ln(k/k∗)

, (2.14)

with

As =
V

24π2εM4
p

=

(
H2

2πφ̇

)2

, (2.15)

AT =
2V

3π2M4
p

= ε

(
2H2

πφ̇

)2

. (2.16)
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Here k is the wave number of the perturbation, and k∗ is a reference scale usually

chosen as the wave number at horizon crossing (the pivot scale). Often one chooses

k = ȧ = aH, with a the scale factor. The quantities As and AT are amplitudes at

the pivot scale, while ns and nT are called the spectral indices of scalar and tensor

fluctuations. Moreover, −δns = ns − 1 and nT are called the tilts of the power

spectrum, since they describe deviations from the scale invariant spectrum where

δns = nT = 0. The factors αs and αT are called running spectral indices and are

defined by

αs =
dns
d ln k

, αT =
dnT
d ln k

. (2.17)

Finally, the tensor-to-scalar ratio r is defined as

r =
PT (k∗)

Ps(k∗)
=
AT
As

. (2.18)

Analysis of the observations from the Planck satellite give the result ns = 0.968(6)±
0.006 [5, 30]. Furthermore, the observations give αs = −0.003 ± 0.007. The tilt of

the curvature fluctuations is δns = 0.032. The combined BICEP2/Planck and LIGO

data give nT = −0.76+1.37
−0.52 [31], while the BICEP/Planck data alone constrain the

tensor tilt to be nT = 0.66+1.83
−1.44.

From the above equations we derive

δns = −
[
d lnPs(k)

d ln k

]
k=aH

, nT = −
[
d lnPT (k)

d ln k

]
k=aH

, (2.19)

where the quantities are evaluated at the horizon crossing (k = k∗), and as we

mentioned k = aH. Hence, we can finally extract the expressions that relate the

inflationary observables, namely the tensor-to-scalar ratio, the scalar spectral index,

the running of the scalar spectral index, and the tensor spectral index, with the

potential-related slow-roll parameters (2.10)-(2.12), which read as [25]:

r ≈ 16ε, (2.20)

δns ≈ 6ε− 2η, (2.21)

αs ≈ 16εη − 24ε2 − 2ξ2, (2.22)

nT ≈ −2ε. (2.23)

Hence, a consistency relation between r and nT follows from Eqs. (2.13), (2.16) and

(2.19), namely nT = − r
8 . The preferred BICEP2/Planck value of r = 0.05 then gives

nT = −0.006.

Lastly, when the horizon flow slow-roll parameters are used, the inflationary observ-

ables read as [25]

r ≈ 16ε1, (2.24)

δns ≈ 2(ε1 + ε2), (2.25)

αs ≈ −2ε1ε2 − ε2ε3, (2.26)

nT ≈ −2ε1. (2.27)
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Definitely, in cases where both the potential slow-roll parameters and the horizon flow

slow-roll parameters can be used, the final expressions for the observables coincide.

• Warm Inflation

Let us now briefly review the scenario of “warm” inflation. Usually, one is concerned

with cold inflationary models described above, for which dissipation arising from the

decay of inflaton energy to radiation is omitted. Nevertheless, this contrasts the

characteristic feature of the so-called warm inflation, where dissipation is included as

an important factor, and inflaton energy dissipates into heat [32–35]. This implies in

turn that the inflationary period lasts longer than it does in the cold case. Addition-

ally, no reheating at the end of the inflationary era is needed, and the transition to

radiation era becomes a smooth one.

The main characteristic for the warm inflationary models is that the inflaton field

energy ρφ is considered to depend on the temperature T [36], in a same way as the

radiation density ρr depends on T . The first Friedmann equation writes as

H2 =
κ

3
(ρφ + ρr), (2.28)

and the continuity equations for the two fluid components read

ρ̇φ + 3H(ρφ + pφ) = −Γφ̇2, (2.29)

ρ̇r + 4Hρr = Γφ̇2, (2.30)

where Γ is a dissipation coefficient describing the transfer of dark energy into radiation

and it is in general time dependent. In warm inflation the inflaton energy is the

dominating component, ρφ � ρr, and H, φ and Γ vary slowly such that φ̈ � Hφ̇,

ρ̇r � 4Hρr and ρ̇r � Γφ̇2. In the slow roll epoch, the radiation is produced by dark

energy dissipation. Thus

3H2 = κρφ = κV, (2.31)

(3H + Γ)φ̇ = −V ′. (2.32)

Defining the so-called dissipative ratio by

Q =
Γ

3H
, (2.33)

we see that in the warm inflation era Eq. (2.30) yields

ρr =
3

4
Qφ̇2. (2.34)

During warm inflation T > H (in geometric units), and it turns out that the tensor-

to-scalar ratio is modified in comparison to the cold inflation case, namely [37]

r =
H/T

(1 +Q)5/2
r, (2.35)
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and thus this ratio is suppressed by a factor (T/H)(1 +Q)5/2 compared to the cold

inflationary case.

The slow roll parameters in the present models are calculated at the beginning t = ti
of the slow roll epoch. From the definition equation (2.8) we acquire

ε = −(1 +Q)
Ḣ

H2
. (2.36)

Comparing with (2.10) we see that the first slow-roll parameter of the warm inflation

scenario is modified with the factor 1 +Q relative to the corresponding cold inflation

parameter. Furthermore, manipulation of the above equations then yields for the

parameter η

η =
Q

1 +Q

1

κ

Γ′V ′

ΓV
− 1 +Q

H

φ̈

φ̇
− Ḣ

H2
. (2.37)

For convenience we introduce the quantity β = Γ′V ′/(κΓV ), and therefore this quan-

tity appears in the expression for the relative rate of change of the radiation energy

density, namely
ρ̇r
Hρr

= − 1

1 +Q

(
2η − β − ε+ 2

β − ε
1 +Q

)
. (2.38)

Introducing also

ω =
T

H

2
√

3πQ√
3 + 4πQ

, (2.39)

one can find that [38]

δns =
1

1 +Q

{
4ε− 2

(
η − β +

β − ε
1 +Q

)
+

ω

1 + ω

[
2η + β − 7ε

4
+

6 + (3 + 4π)Q

(1 +Q)(3 + 4πQ)
(β − ε)

]}
. (2.40)

When warm inflation is strong, Q� 1 , ω � 1, and thus

δns =
2

2Q

[
3

2
(ε+ β)− η

]
, (2.41)

whereas when it is weak, Q� 1, and therefore

δns = 2(3ε− η)− ω/4

1 + ω
(15ε− 2η − 9β). (2.42)

Finally, the cold inflationary case corresponds to the limit Q → 0 and T � H, and

then ω → 0 and

δns → 2(3ε− η). (2.43)

Visinelli found the following expression for tensor-to-scalar ratio in warm inflation

[38]:

r =
16ε

(1 +Q)2(1 + ω)
. (2.44)

– 10 –



Hence, in the limit of strong dissipative warm inflation we have

r → 16

Q2ω
ε� ε, (2.45)

while in the limit of cold inflation we re-obtain the standard result (2.20), namely

r → 16ε. Thus, the warm inflation models with Q� 1 and ω � 1 yield a very small

tensor-to-scalar ratio.

• Intermediate inflation

Intermediate inflation scenario, introduced by Barrow in 1990 [39] (see also [40, 41]),

also uses a scalar field. We consider the scale factor to take the form

a(t) = exp[A(t̂α − 1)]′, (2.46)

with 0 < α < 1, and where A is a positive dimensionless constant, while ap refers

to the Planck time (t̂ = t/
√
κ, tp =

√
κ). The reason that these models are called

intermediate, is that the expansion is faster than the corresponding one in power-

law inflation, and slower than an exponential inflation (the latter corresponding to

α = 1). It follows from (2.46) that

H =
Aα

ts
t̂α−1, Ḣ =

Aα

t2p
(α− 1)t̂α−2, (2.47)

and since Ḣ < 0 for α < 1, the Hubble parameter decreases with time. Inserting

these equations into Eqs. (2.1) and (2.2) we obtain

ρ =
3A2α2

t4p
t̂2α−1, p =

Aα

t4p
t̂α−2[2(1− α)− 3αAtαp ]. (2.48)

Since ρ+ p = φ̇2 we obtain by integration, using the initial condition φ(0) = 0, that

φ(t) =
2

tp

√
2A

1− α
α

t̂
α
2 , (2.49)

while since V = 1
2(ρ− p) we acquire

V (t) =
Aα

t4p
t̂α−2[3Aαt−αp − 2(1− α)]. (2.50)

Hence, eliminating t between (2.49) and (2.50) we can express the potential as a

function of the inflaton field:

V (φ) =
Aα

t4p

[
α

2A(1− α)

]α−2
α
(
tpφ

2

) 2(α−2)
α

[
3α2

2(1− α)

(
tpφ

2

)2

− 2(1− α)

]
. (2.51)

For this class of models the spectral parameters are most easily calculated from the

Hubble slow roll parameters

εH = − Ḣ

H2
, ηH = −1

2

Ḧ

ḢH
. (2.52)
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The optical parameters δns, nr and r can be expressed in terms of the Hubble slow

roll parameters to lowest order as

δns = 2(2εH − ηH), nr = −2εH , r = 16εH . (2.53)

This gives

εH =
1− α
Aα

t̂−α, ηH =
2− α

2(1− α)
εH . (2.54)

The slow roll parameter εH can be expressed in terms of the inflaton field as

εH = 8

(
1− α
α

)2(MP

φ

)2

. (2.55)

In the intermediate inflation, the e-folding number becomes

N = A(t̂αf − t̂αi ), (2.56)

where t̂i and t̂f are the initial and final point of time of the inflationary era, re-

spectively. In these models the beginning of the inflationary era is defined by the

condition εH(t̂i) = 1, giving

ti =

(
1− α
Aα

)1/α

tp. (2.57)

Hence, the inflationary era ends at a point of time

tf =

(
Nα+ 1− α

Aα

)1/α

tp. (2.58)

The slow roll parameters are evaluated at this point of time, giving

εH =
1− α

Nα+ 1− α
, ηH =

2− α
2(Nα+ 1− α)

. (2.59)

Inserting the above expressions into (2.53) we can thus write

δns ≡ 1− ns =
2− 3α

Nα+ 1− α
, nr =

2(α− 1)

Nα+ 1− α
, r =

16(1− α)

Nα+ 1− α
. (2.60)

Note that the curvature spectrum is scale independent, corresponding to ns = 1, for

α = 2/3. Furthermore, ns < 1 requires α < 2/3. Note that the expression for ns
corrects an error of Ref. [40]. For these models the r, δns relation becomes

r =
16(1− α)

2− 3α
δns. (2.61)

The constant α can be expressed in terms of N and δns as

α =
2− δns

3 + (N − 1)δns
≈ 2

3 +Nδns
. (2.62)

With the Planck values δns = 0.032 and N = 60 we get α = 0.4 giving r = 0.38.

This value of r is larger than permitted by Planck observations. However, the more

general models with non-canonical inflaton fields studied in Refs. [40] and [41], contain

an adjustable parameter in the expressions for the observables, leading to agreement

with observational data. Below we shall consider warm intermediate inflation models,

which lead naturally to a suppression of the curvature perturbation, resulting to a

small value of r.
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2.2 Viscous Inflation

Having described the basics of inflation, in this subsection we will see how inflation can be

realized in the framework of viscous cosmology, that is if instead of a scalar field inflation

is driven by a viscous fluid [42]. We start from the two Friedmann equations (1.12) and

(1.13), namely

H2 +
k

a2
=
κρ

3
(2.63)

2Ḣ + 3H2 = −κp . (2.64)

Concerning the viscosity of the fluid we consider a subclass of (1.15) and parametrize the

equation of state as

p = −ρ+Aρβ + ζ(H) , (2.65)

with A,β constants, and ζ(H) the bulk viscosity considered with a dynamical nature in

general, i.e. being a function of the Hubble parameter. As a specific example we consider

ζ(H) = ζ̄Hγ , (2.66)

with ζ̄, γ parameters.

From the Friedmann equation (2.63) and for an expanding flat universe (H > 0, k = 0),

we acquire

H =

√
κρ

3
. (2.67)

Therefore, ζ(H) can be expressed in terms of ρ, i.e ζ(H) = ζ(H(ρ)). Thus, comparing the

general expression for the EoS of a fluid, namely

p = −ρ+ f(ρ) , (2.68)

with (2.65) and (2.66), we deduce that

f(ρ) = Aρβ + ζ(H(ρ)) = Aρβ + ζ̄

(√
κ

3

)γ
ργ/2 . (2.69)

We mention that f(ρ) is expressed as a series of powers in ρ due to the imposed assumption

that ζ(H) is a power of H. Hence, this allows us to find analytical solutions and examine

the behavior of various inflationary observables.

Since in fluid inflation we do not have a potential, it proves convenient to use the

Hubble slow-roll parameters. Inserting the Hubble function from (2.67) into (2.10)-(2.12)

and then into the inflationary observables (2.24)-(2.27), after some algebra one can express

the tilt, the tensor-to-scalar ratio and the running spectral index as [42]

(δns, r, αs) ≈ (6
f(ρ)

ρ(N)
, 24

f(ρ)

ρ(N)
, −9

(
f(ρ)

ρ(N)

)2

) (2.70)

= (6 (w(N) + 1) , 24 (w(N) + 1) , −9 (w(N) + 1)2) , (2.71)

where we have also used that f(ρ)/ρ(N) = w(N)+1. In these expressions all quantities may

be considered as functions of the e-folding number N . Hence, if we choose f(ρ)/ρ(N) =
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4.35 × 10−3, we obtain w = −0.996, and thus (ns, r, αs) = (0.974, 0.104,−1.70 × 10−4).

These results are consistent with the Planck data, namely ns = 0.968 ± 0.006 (68% CL),

r < 0.11 (95% CL), and αs = −0.003± 0.007 (68% CL), [5, 43].

Let us now use the required scalar spectral index in order to reconstruct the EoS of

the fluid through a corresponding effective potential, following [42, 44]. In order to achieve

this, we first express the Friedmann equations using derivatives in terms of the e-folding

number N as

3

κ
[H(N)]2 = ρ , (2.72)

−2

κ
H(N)H ′(N) = ρ+ p , (2.73)

and similarly for the slow-roll parameters (2.8a)-(2.8c), namely

δns = − d

dN

[
ln

(
1

V 2(N)

dV (N)

dN

)]
r =

8

V (N)

dV (N)

dN

αs = − d2

dN2

[
ln

(
1

V 2(N)

dV (N)

dN

)]
. (2.74)

Hence, one can use these quantities in order to reconstruct the equation-of-state of the

corresponding fluid. In particular, having the δns(N) as a function of N , using (2.74)

we can solve for V (N), which will be the effective potential in an equivalent scalar-field

description. Then the Hubble function is related to V (N) through (2.72), and thus we

obtain H = H(N). Finally, using (2.73) we can reconstruct f(ρ) through (2.68).

Let us give a specific example of the above method, in the case where [42]

δns =
2

N
, (2.75)

which is valid in Starobinsky inflation [45], and it can be satisfied in chaotic inflation [20],

in new Higgs inflation [46, 47], and in models of α-attractors [48, 49], too. Combining

(2.75) and (2.74) gives

V (N) =
1

(C1/N) + C2
, (2.76)

where C1(> 0) and C2 are constants. Hence, using (2.76) and (2.74) we acquire

r =
8

N [1 + (C2/C1)N ]
=

4δns

1 + C2
C1

2
δns

=
4δ2
ns

δns + 2C2/C1
, (2.77)

and thus
C2

C1
=

(
4
δns
r
− 1

)
δns
2
. (2.78)

If δns = 0.032, r = 0.05 one gets C2/C1 ≈ 0.025. Finally, from (2.74) we find that

αs = − 2

N2
. (2.79)
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Thus, inserting a reasonable value N = 60 we obtain αs = −5.56 × 10−4, in agreement

with Planck analysis.

In the case of a fluid model one uses the equation-of-state parameter from (2.68) instead

of the scalar potential. Hence, one can have
(
3/κ2

)
(H(N))2 = ρ(N) ≈ V (N), since the

last approximation arises from the slow-roll condition that the kinetic energy is negligible

comparing to the potential one. Therefore, using (2.76) we obtain

H(N) ≈
√

κ

3 [(C1/N) + C2]
, (2.80)

with (C1/N) + C2 > 0. Additionally, inserting ρ ≈ V into (2.76) results to

N ≈ C1ρ

1− C2ρ
. (2.81)

Thus, inserting (2.80) into (2.72) and (2.73) gives

p = −ρ− 2

κ
H(N)H ′(N) ≈ −ρ− 3C1

N2κ2
H4 . (2.82)

Finally, comparing (2.68) with (2.82) leads to

f(ρ) ≈ − 3C1

N2κ2
H4 ≈ − 1

3C1

(
1− 2C2ρ+ C2

2ρ
2
)
, (2.83)

where we have also used (2.72) and (2.81).

We now focus on fluid inflationary models with ns and r in agreement with observa-

tions. From (2.68) and (2.69) we obtain

p = −ρ+ f(ρ) = −ρ+Aρβ + ζ̄

(√
κ

3

)γ
ργ/2 . (2.84)

Therefore, we suitably choose the model parameters A, ζ̄, β, and γ, in order for relation

(2.75) to be satisfied. For convenience we will focus in the regimes |C2ρ| � 1 and |C2ρ| � 1

separately following [42].

• Case I: |C2ρ| � 1

In this case expression (2.83) leads to

f(ρ) ≈ 2C2

3C1
ρ− C2

2

3C1
ρ2 , (2.85)

with C2 < 0 in order to have a positive N from (2.81). From (2.84) and (2.85) we

acquire

w =
p

ρ
≈ −1− 2

3

(
−C2

C1

)
+

1

3

(
−C2

C1

)
(−C2ρ) ≈ −1 +

1

3N
(−2− C2ρ) , (2.86)

where we have also used that (−C2) /C1 ≈ 1/N . For instance, if |C2ρ| = O(10),

(−C2) /C1 ≈ 1/N , and N & 60, relation (2.86) leads to w ≈ −1, and hence the de

Sitter inflation can be realized, with a scale-factor of the form

a(t) = ai exp [Hinf(t− ti)] . (2.87)
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It should be noted that for (−C2) /C1 < 1/N , relation (2.77) for N & 73 provides a

tensor-to-scalar ratio r > 1, in disagreement with observations.

Comparing (2.85) and (2.69) we deduce that we obtain equivalence for two combina-

tions of parameters:

Model (A) : A =
2C2

3C1
, ζ̄ = − 3C2

2

C1κ4
, β = 1 , γ = 4 , (2.88)

and

Model (B) : A = − C2
2

3C1
, ζ̄ =

2C2

C1κ2
, β = 2 , γ = 2 . (2.89)

Hence, the corresponding fluid equation of state can be reconstructed.

• Case (II): |C2ρ| � 1

In this case expression (2.83) leads to

f(ρ) ≈ − 1

3C1
+

2C2

3C1
ρ . (2.90)

Thus, (2.81) with |C2ρ| � 1 gives C1ρ ≈ N � 1 and thus |C2| /C1 � 1. Hence,

(2.84) and (2.85), give

w =
p

ρ
≈ −1− 1

3

1

C1ρ
+

2

3

(
C2

C1

)
≈ −1 +

1

3

(
− 1

N
+ 2

C2

C1

)
, (2.91)

where we have used that C1ρ ≈ N . Similarly to the previous subcase, (2.91) with

1/N � 1 and |C2| /C1 � 1, leads to w ≈ −1, i.e to the realization of the de Sitter

inflation, with a scale factor given by (2.87). Moreover, for C2 > 0 and C2/C1 . 1/N ,

and for N & 60, relation (2.77) gives r < 0.11 in agreement with Planck results. On

the other hand, for C2 < 0 and |C2| /C1 < 1/N , we need to have N & 73 in order to

get r < 0.11, similarly to the previous Case (I). Finally, comparing (2.85) and (2.69)

we deduce that we obtain equivalence for two combinations of parameters:

Model (C) : A = − 1

3C1
, ζ̄ =

2C2

C1κ2
, β = 0 , γ = 2 , (2.92)

and

Model (D) : A =
2C2

3C1
, ζ̄ = − 1

3C1
, β = 1 , γ = 0 . (2.93)

Having analyzed the basic features of inflationary realization from a viscous fluid, let

us examine the crucial issue of obtaining a graceful exit and the subsequent entrance to

the reheating stage [42]. In particular, we will investigate the instability of the de Sitter

solution characterized by H = Hinf = const. under perturbations. One starts by perturbing

the Hubble function as [50]

H = Hinf +Hinfδ(t) , (2.94)
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where |δ(t)| � 1. Thus, the second Friedmann equation writes as a differential equation in

terms of the cosmic time t, namely

Ḧ − κ4

2

[
βA2

(
3

κ2

)2β

H4β−1 +
(
β +

γ

2

)
Aζ̄

(
3

κ2

)β
H2β+γ−1 +

γ

2
ζ̄2H2γ−1

]
= 0 . (2.95)

Without loss of generality we choose

δ(t) ≡ eλt , (2.96)

with λ a constant, and therefore a positive λ would correspond to an unstable de Sitter

solution. This instability implies that the universe can exit from inflation. On the other

hand, a stable inflationary solution is just an eternal inflation.

Inserting (2.94) and (2.96) into (2.95), and keeping terms up to first order in δ(t), we

obtain

λ2 − 1

2

κ4

H2
inf

Q = 0 , (2.97)

with

Q ≡ β (4β − 1)A2

(
3

κ2

)2β

H4β
inf +

(
β +

γ

2

)
(2β + γ − 1)Aζ̄

(
3

κ2

)β
H2β+γ

inf

+
γ

2
(2γ − 1) ζ̄2H2γ

inf . (2.98)

The solutions of (2.97) read as

λ = λ± ≡ ±
1√
2

κ2

Hinf

√
Q , (2.99)

and therefore if Q > 0 we may obtain λ = λ+ > 0, which implies the realization of a

successful inflationary exit.

Let us now check whether the four fluid models described in (2.88), (2.89), (2.92), and

(2.93) above, can give rise to a graceful exit, i.e whether they can give a positive Q in

(2.98). Substituting the corresponding values of A, ζ̄, β, and γ into (2.99), we obtain the

expressions of Q as [42]:

Model (A) : Q = 2

(
C2

C1

)2(Hinf√
κ

)4
[

6− 45C2

(
Hinf√
κ

)2

+ 63C2
2

(
Hinf√
κ

)4
]
> 0 ,

(2.100)

Model (B) : Q = 6

(
C2

C1

)2(Hinf√
κ

)4
[

2− 15C2

(
Hinf√
κ

)2

+ 21C2
2

(
Hinf√
κ

)4
]
> 0 .

(2.101)

Model (C) : Q =

(
C2

C1

)2(Hinf√
κ

)2
[
− 1

3C2
+ 12

(
Hinf√
κ

)2
]
, (2.102)

Model (D) : Q = 2

(
C2

C1

)2(Hinf√
κ

)2
[

6

(
Hinf√
κ

)2

− 1

3C2

]
. (2.103)
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Table 1. The equation-of-state parameter of the reconstructed viscous inflationary models of (2.88),

(2.89), (2.92), and (2.93), along with the conditions for a graceful exit. The parameter C1 is always

positive, while |C2ρ| � 1 and C2 < 0 for Models (A) and (B), and |C2ρ| � 1 for Models (C) and

(D). From [42].

Case Model EoS Conditions for graceful exit

(i) (a) p = −ρ+ [2C2/ (3C1)] ρ−
[
3C2

2/
(
C1κ

2
)]
H4 No condition

(i) (b) p = −ρ−
[
C2

2/ (3C1)
]
ρ2 + [2C2/ (C1κ)]H2 No condition

(ii) (c) p = −ρ− [1/ (3C1)] + [2C2/ (C1κ)]H2 C2 < 0 or C2 > (1/36) (
√
κ/Hinf)

2

(ii) (d) p = −ρ+ [2C2/ (3C1)] ρ− [1/ (3C1)] C2 < 0 or C2 > (1/18) (
√
κ/Hinf)

2

Hence, Models (A) and (B) have always Q > 0. On the other hand, Models (C) and (D)

have Q > 0 for f C2 < 0, while for C2 > 0 they have Q > 0 if

C2 >
1

36

( √
κ

Hinf

)2

for Model (C) , (2.104)

C2 >
1

18

( √
κ

Hinf

)2

for Model (D) . (2.105)

In summary, we can see that the models of viscous fluid inflation can have a graceful exit

without any tuning. In Table 1 we summarize the obtained results. From the corresponding

equation-of-state parameters, and comparing with (2.65), we can immediately see the term

inspired by the bulk viscosity. Finally, as we described in detail above, in these models

the inflationary observables are in agreement with observations. In particular, the spectral

index from (2.75) is ns = 0.967 for N = 60. The running of the spectral index is given by

αs = −2/N2 in (2.79), leading to αs = −5.56× 10−4.

We close this subsection by studying the singular inflation in the above viscous fluid

model. The finite-time singularities are classified into four types [51], and hence one can see

that Type IV singularity can be applied in singular inflation since there are no divergences

in the scale factor and in the the effective (i.e. total) energy density and pressure. In

particular, in Type IV singularity, as t→ ts, with ts the singularity time, we have a→ as,

ρ→ 0 and |p| → 0. Here, as is the value of a at t = ts. Nevertheless, the higher derivatives

of the Hubble function diverge.

Let us consider the above viscous fluid inflationary realization, assuming that

H = Hinf + H̄ (ts − t)q , q > 1 , (2.106)

a = ā exp

[
Hinft−

H̄

q + 1
(ts − t)q+1

]
, (2.107)

with H̄, q, and ā the model parameters. From the two Friedmann equations (2.63),(2.64)

we straightforwardly acquire

ρ =
3H2

κ
, p = −2Ḣ + 3H2

κ
. (2.108)
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Therefore, a Type IV singularity appears at t = ts, since (2.107) and (2.108) imply that as

t→ ts the quantities a, ρ, and p asymptotically approach finite values, while from (2.106)

we deduce that higher derivatives of H diverge. From (2.106) and (2.108) we find the

following equation-of-state parameter of the cosmic fluid:

p = −ρ+ f(ρ), (2.109)

with

f(ρ) =
2qH̄1/q

κ

(√
κρ

3
−Hinf

)(q−1)/q

. (2.110)

In the case where Hinf/
√
κρ/3 = Hinf/H � 1 we have

f(ρ) ≈ 2

3(q−1)/(2q)

H̄1/q

κ(q+1)/2q

[
ρ(q−1)/(2q) −

√
3 (q − 1)

q

Hinf√
κ
ρ−1/(2q)

]
. (2.111)

Thus, one can clearly see from (2.111) that the function f(ρ) includes a linear combination

of two powers of ρ, as in (2.69) and (2.85). Hence, indeed this scenario can be realized by

the viscous fluid models reconstructed above.

From (2.111), using (2.108), we find

f(ρ)

ρ
≈=

2q

3

(
H̄

Hq+1

)1/q [
1− (q − 1)

q

Hinf

H

]
, (2.112)

and therefore for H̄/Hq+1 � 1 we get f(ρ)/ρ � 1. Thus, ns, r, and αs can be approxi-

mately given by (2.70) and be in agreement with observations, which act as an additional

advantage of singular inflation.

We now examine the limit ζ̄ = 0 in (2.65), in which the fluid equation of state in

(2.65) becomes p = −ρ + Aρβ. In this limit from (2.69) we deduce that f(ρ) = Aρβ, i.e

f(ρ) has only one power of ρ. However, from (2.111) and (2.112) we see that f(ρ) consists

of two ρ powers. Thus, f(ρ) can be given by (2.111) and (2.112) only if the singular

inflation is realized. Hence, for a non-viscous fluid, i.e. for a fluid without the ζ(H)-term

in (2.65), singular inflation cannot be realized. From this feature we can see the importance

of the viscous term, and its significant effect on the dynamics of the early universe. This

important issue will be studied in more detail in the following subsection.

In summary, in the present subsection we studied the realization of inflation in a fluid

framework, whose equation-of-state parameter has an additional term corresponding to

bulk viscosity. Firstly, we saw that the obtained inflationary observables, namely ns, r and

αs, are in agreement with Planck data. Secondly, we presented a reconstruction procedure

of the fluid’s equation of state, when a specific ns is given, while the tensor-to-scalar ratio is

still in agreement with observations. Thirdly, we analyzed the stability of the inflationary,

de Sitter phase, showing that a graceful exit and the pass to the subsequent thermal history

of the universe is obtained without fine tuning. Finally, we investigated the realization of

singular inflation, corresponding to Type IV singularity, in the present viscous fluid model.

Hence, viscous fluid inflation can be a candidate for the description of early universe.
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2.3 Viscous warm and intermediate inflation

In this subsection we show how the viscous cold inflationary models considered above can

be generalized to the warm case. These kind of models are most likely more physical

than the idealized cold ones, since they take into account the presence of massive particles

produced from the decaying inflaton field. Moreover, an important advantage of warm

scenarios is that they give rise to a much smaller tensor-to-scalar ratio than the cold

models, and hence are easier to be in agreement with the Planck data. The presence of

massive particles provides a natural way to explain why the cosmic fluid can be associated

with a bulk viscosity.

We abstain from using the simple equation of state p = (1/3)ρ holding for radiation,

and we assume instead the more general form p = wρ, where w is constant. For convenience,

one can introduce the form p = (γ − 1)ρ with γ = 1 + w. The effective pressure becomes

peff = p+ pζ , where

pζ = −3Hζ (2.113)

is the viscous part of the pressure and ζ the bulk viscosity. In this case Eq. (2.30)

generalizes to [52]

ρ̇+ 3H(ρ+ p− 3ζH) = Γφ̇2. (2.114)

The usual condition about quasi-stationarity implies ρ̇� 3H(γρ− 3ζH) and ρ̇� Γφ̇2.

We will henceforth follow the formalism of [52] for the strong dissipative case, namely

for Q � 1 (see also [53]). As it was mentioned in subsection 2.1 above, in intermediate

inflation the scale factor and the Hubble parameters are given by (2.46) and (2.47). We

will base the analysis on the basic assumptions

Γ(φ) = κ3/2V (φ), ζ = ζ1ρ, (2.115)

where the proportionality of ζ to ρ is a frequently used assumption (a similar analysis can

be performed for the case where Γ and ζ are assumed constants [52, 53], however we will

not go into further details and focus on the general case). From Eqs. (2.31) and (2.33) we

then have Q =
√
κH. Focusing on the strong dissipative case Q� 1, manipulation of the

equations gives the following expression for the inflaton field as a function of time:

φ(t) = 2κ−3/4
√

2(1− αt). (2.116)

This equation, predicting φ(t) to increase with time, is seen to be different from the corre-

sponding Eq. (2.49) for cold intermediate inflation.

Taking into account the expression (2.47) for H we can express the potential as a

function of time:

V (t) = 3A2α2κ−2(t/
√
κ)2(α−1), (2.117)

which can alternatively be represented as a function of φ as

V (φ) = 3A2α2κ−2

[ √
κφ

2
√

2(1− α)

]4(α−1)

. (2.118)
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Since

ρ =
V φ̇2

3H(γ − 3ζ1H)
, (2.119)

we see that it is necessary for the constant ζ1 in (2.115) to satisfy the condition ζ1 < γ/3H

in order to make ρ positive. The density varies with time as

ρ(t) =
2Aα(1− α)κ−3/2(t/

√
κ)α−2

γ
√
κ− 3ζ1Aα(t/

√
κ)2(α−1)

, (2.120)

while when considered as a function of the inflaton field it reads

ρ(φ) =
2Aα(1− α)κ−3/2

[√
2κ(1− α)φ/2

]2(α−2)

γ
√
κ− 3ζ1Aα

[√
2κ(1− α)φ/2

]2(α−1)
. (2.121)

Additionally, the number of e-folds becomes in this case

N =

√
κ√
3

∫ φ

φf

V 3/2

V ′
dφ = A

(1− α)

α
−A

[ √
κφ

2
√

2(1− α)

]2α

, (2.122)

where φf is the inflaton field at the end of the slow-roll epoch. Finally, the slow-roll

parameters in the strong dissipative epoch (Q� 1) become

ε =
1

2Q

(
V ′

V

)2

, η =
1

Q

[
V ′′

V
− 1

2

(
V ′

V

)2
]
, (2.123)

giving in turn for the spectral parameter δns

δns =
3α− 2

1− α
ε =

3α− 2

αA

[ √
κφ

2
√

2(1− α)

]−2α

. (2.124)

Hence, the Harrison-Zel’dovich spectrum (independent of scale) corresponds to α = 2/3.

2.4 Singular inflation from fluids with generalized equation of state

In the end of subsection 2.2 we presented a brief discussion on the possibility to realize

singular inflation in the framework of viscous cosmology. Since this is an important issue,

in this subsection we investigate it in detail following [54], considering more general viscous

equation of states. We consider an inhomogeneous viscous equation-of-state parameter of

the form

p = −ρ− f(ρ) +G(H) , (2.125)

which is a subclass of the general ansatz (1.15). Thus, when the function G(H) becomes

zero we re-obtain the homogeneous case. An even more general equation of state would be

to consider

p = f (ρ,H) . (2.126)

In the following we desire to investigate the realization of type IV singularity in inflation

driven by a fluid with the above EoS’s.
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As we mentioned earlier, a type IV singularity occurs at t→ ts, if the scale factor and

the effective energy density and pressure remain finite, but the higher derivatives of the

Hubble function diverge. A general form of the Hubble function which can describe a Type

IV singularity reads as

H(t) = f1(t) + f2(t) (ts − t)α , (2.127)

with f1(t), f2(t) being arbitrary differentiable functions. Hence the type IV singularity

occurs when α > 1, and without loss of generality we can consider it to take the form

α =
n

2m+ 1
, (2.128)

with n, m positive integers.

Let us start from a simple example of type IV singularity realization, namely we

consider f1(t) = 0 and f2(t) = f0, with f0 a positive parameter. In this case the two

Friedmann equations, namely ρ = 3
κH

2 and p = − 1
κ

(
3H2 + 2Ḣ

)
, become

ρ =
3f2

0

κ
(ts − t)2α (2.129)

p = −1

κ

[
3f2

0 (ts − t)2α + 2αf0 (ts − t)α−1
]
, (2.130)

and hence eliminating ts − t we get the result

p = −ρ− 2 · 3−
α−1
2α κ−

α+1
2α f

1/α
0 ρ

α−1
2α . (2.131)

Hence, a viscous fluid with this equation of state can generate the Hubble function (2.127)

and hence the type IV singularity. Defining α̃ ≡ α−1
2α , a type IV singularity will occur if

0 < α̃ < 1
2 (or equivalently, α > 1).

Observing the equation-of-state parameter in (2.131) we deduce that it can be seen

either as a homogeneous one, of the form (2.125) with G(H) = 0 and

f(ρ) = −2 · 3−
α−1
2α κ−

α+1
2α f

1/α
0 ρ

α−1
2α , (2.132)

or as an inhomogeneous one, of the form (2.125) with f(ρ) = 0 and

G(H) = −2α

κ
f

1/α
0 H

α−1
α (2.133)

(since ρ = 3
κH

2).

Let us now consider a more general Hubble function inside the class (2.127), namely

H(t) = f0(t− t1)α + c0(t− t2)β , (2.134)

where c0, f0 are constants, and α,β > 1. Thus, two type IV singularities appear at t = t1
and t = t2. We choose t1 to correspond to the inflation end and t2 to lie at late times.

In order to simplify the expressions, we focus our analysis in the vicinity of the type IV

singularity. In this region, inserting (2.134) into the two Friedmann equations leads to

ρ ≈ 3c2
0(t− t2)2β

κ
(2.135)

p ≈ −3c2
0(t− t2)2β

κ
− 2c0(t− t2)−1+ββ

κ
, (2.136)
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and therefore the equation of state reads

p = −ρ− 2c0β

κ

(
ρκ

3c2
0

)β−1
2β

. (2.137)

Interestingly enough, we observe that the late-time type IV singularity is related to the

early-time type IV singularity and the corresponding equation-of-state paramater. In the

same lines, the early-time singularity is related to the effective equation of state that gives

rise to the late time one.

One can proceed in similar lines, and study the scenario where

H(t) =
f1√
t2 + t20

+
f2t

2(−t+ t1)α

t4 + t40
+ f3(−t+ t2)β . (2.138)

In this case, in the vicinity of the early-time singularity at t1 we obtain [54]

ρ ' 3f2
1(

t2 + t20
)
κ

+
6f1f3(−t+ t2)β√

t2 + t20κ
+

3f2
3 (−t+ t2)2β

κ
,

p ' 2f1t(
t2 + t20

)3/2
κ
− 3f2

1(
t2 + t20

)
κ
− 6f1f3(−t+ t2)β√

t2 + t20κ
− 3f2

3 (−t+ t2)2β

κ
+

2f3(−t+ t2)−1+ββ

κ
,

(2.139)

where these relations are again determined by the late-time singularity.

Finally, one can study the scenario where

H(t) = f0 + c (t− t1)α (t− t2)β , (2.140)

which is reproduced by

ρ =
3f2

0

κ
+

6cf0(−t+ t1)α(−t+ t2)β

κ
+

3f2
0 (−t+ t1)2α(−t+ t2)2β

κ
,

p =− 3f2
0

κ
− 6cf0(−t+ t1)α(−t+ t2)β

κ
− 3f2

0 (−t+ t1)2α(−t+ t2)2β

κ

+
2f0(−t+ t1)−1+α(−t+ t2)βα

κ
+

2f0(−t+ t1)α(−t+ t2)−1+ββ

κ
. (2.141)

At both type IV singularities at t1 and t2, the effective energy density and pressure become

ρ =
3f2

0

κ
, p = −3f2

0

κ
, (2.142)

and thus the corresponding equation-of-state parameter becomes −1.

Let us now proceed to the calculation of the slow-roll parameters, which as usual are

used for the calculation of the various inflationary observables, since the effect of the type

IV singularity can be significant. The starting point is that in flat FRW geometry one can

express the various quantities as a function of the number of e-foldings N , namely [54]

ρ =
3

κ
(H(N))2 (2.143)

p(N) + ρ(N) = −2H(N)H ′(N)

κ
, (2.144)

– 23 –



where H ′(N) = dH/dN . Assuming that the equation of state is given by the general

ansatz:

p(N) = −ρmat(N) + f̃(ρ(N)) , (2.145)

then (2.144) gives

f̃(ρ(N)) = −2H(N)H ′(N)

κ2
. (2.146)

Since the usual conservation equation is valid, namely

ρ′(N) + 3H(N) (ρ(N) + p(N)) = 0 , (2.147)

with ρ′(N) = df̃(ρ(N))/dN , using (2.146) we find

ρ′(N) + 3f̃(ρ(N)) = 0 . (2.148)

Finally, inserting (2.148) into (2.145) we acquire

2

κ

[
(H ′(N))2 +H(N) +H ′′(N)

]
= 3f̃ ′(ρ)f(ρ) , (2.149)

with f̃ ′(ρ(N) ≡ df̃(ρ)/dρ.

Now, for a given H(t), the slow-roll parameters ε, η and ξ write as [54]

ε = −H
2

4Ḣ

(
6Ḣ

H2
+

Ḧ

H3

)2(
3 +

Ḣ

H2

)−2

,

η = −1

2

(
3 +

Ḣ

H2

)−1(
6Ḣ

H2
+

Ḣ2

2H4
− Ḧ

H3
− Ḣ4

2H4
+
Ḣ2Ḧ

H5
− Ḧ2

2H2
+

3Ḧ

HḢ
+

...
H

H2Ḣ

)
,

ξ2 =
1

4

(
6Ḣ

H2
+

Ḧ

H3

)(
3 +

Ḣ

H2

)−1(
9Ḧ

HḢ
+

3
...
H

Ḣ2
+

2
...
H

H2Ḣ
+

4Ḧ2

H2Ḣ2

− Ḧ
...
H

HḢ3
− 3Ḧ2

Ḣ3
+

Ḧ3

HḢ4
+

....
H

HḢ2

)
. (2.150)

Hence, if H(t) is given by (2.127), and if α > 1, i.e when a type IV singularity is obtained

– 24 –



at t ∼ ts , the slow-roll parameters at the vicinity of the singularity become

ε ∼


− f1(ts)2

4ḟ1(ts)

[
6ḟ1(ts)f1(ts)
f1(ts)2 + f̈1(ts)

f1(ts)3

]2 [
3 + ḟ1(ts)

f1(ts)2

]−2
, when α > 2

− f1(ts)2

4ḟ1(ts)
f2(ts)α(α− 1) (ts − t)α−2

[
3 + ḟ1(ts)

f1(ts)2

]−2
, when 2 > α > 1

,

η ∼


−1

2

[
3 + ḟ1(ts)

f1(ts)2

]−1
[

6ḟ1(ts)
f1(ts)

+ ḟ1(ts)
2

2f1(ts)4 − f̈1(ts)
f1(ts)3 − ḟ1(ts)

4

2f1(ts)4 + ḟ1(ts)
2
f̈1(ts)

f1(ts)5

− f̈1(ts)
2

2f1(ts)2 + 3f̈1(ts)

f1(ts)ḟ1(ts)
+

...
f 1(ts)

f1(ts)2ḟ1(ts)

]
, when α > 3

−1
2

[
3 + ḟ1(ts)

f1(ts)2

]−1
f2α(α−1)(α−2)

f1(ts)2ḟ1(ts)
(ts − t)α−3 , when 3 > α > 1

,

ξ2 ∼



1
4

[
6ḟ1(ts)
f1(ts)2 + f̈1(ts)

f1(ts)3

] [
3 + ḟ1(ts)

f1(ts)2

]−1
[

9f̈1(ts)

f1(ts)ḟ1(ts)
+ 3

...
f 1(ts)

ḟ1(ts)
2 + 2

...
f 1(ts)

f1(ts)2ḟ1(ts)

+ 4f̈1(ts)
2

f1(ts)2ḟ1(ts)
2 − f̈1(ts)

...
f 1(ts)

f1(ts)ḟ1(ts)
3

−3f̈1(ts)
2

ḟ1(ts)
3 + f̈1(ts)

3

f1(ts)ḟ1(ts)
4 +

....
f 1(ts)

f1(ts)ḟ1(ts)
2

]
, when α > 4

1
4

[
6ḟ1(ts)
f1(ts)2 + f̈1(ts)

f1(ts)3

] [
3 + ḟ1(ts)

f1(ts)2

]−1
f2(ts)α(α−1)(α−2)(α−3)

f1(ts)ḟ1(ts)
2 (ts − t)α−4 , when 4 > α > 2

1
4

[
3 + ḟ1(ts)

f1(ts)2

]−1
f2(ts)2α2(α−1)2(α−2)(α−3)

f1(ts)4ḟ1(ts)
2 (ts − t)2α−6 , when 2 > α > 1

.

(2.151)

Therefore, we deduce that if f1(t) is a smooth function then the slow-roll parameter ε

diverges when 2 > α > 1, whereas it remains regular for α > 2. Moreover, η diverges for

3 > α > 1. Finally, ξ2 diverges when 2 > α > 1 and when 4 > α > 2. In summary, when

α > 4 all slow-roll parameters are non-singular near the Type IV singularity.

In order to provide a more concrete example, we consider the simplified case where

H(t) = f0 (t− ts)α. Thus, the slow-roll parameters become [54]

ε =
f0(t− ts)−1+αα(−1 + 6t− 6ts + α)2

4 [3f0(t− ts)1+α + α]2
, (2.152)

η =
{

4f0

[
3f0(t− ts)1+α + α

]}−1
{

(t− ts)−3−α [−t2sα2 + 2α3 − 2α4

−6f0(t− ts)3+α(−1 + 3α) + f2
0 (t− ts)2αα2(1− 2α+ 2α2)

]
+(t− ts)−3−α (−4t2 + 8tts − 4t2s + 4t2α− 8ttsα+ 4t2sα− t2α2 + 2ttsα

2
)}

,(2.153)

ξ2 =
(t− ts)−5−2α(−1 + α)(−1 + 6t− 6ts + α)

4f2
0 [3f0(t− ts)1+α + α]

×
[
5(t− ts)2(α− 1)2 + 3f2

0 (t− ts)2α(α− 2)2(α− 1)α+ 3f0(t− ts)3+α(1 + 2α)
]
.(2.154)

Hence, we immediately observe that the slow-roll parameters exhibit singularities at t = ts,

as mentioned above. However, such singularities in the slow-roll parameters can be viewed

as rather unwanted features.
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We close this subsection by making a comparison with observations. In order to achieve
this it proves convenient to express the various quantities in terms of the number of e-
foldings N . In particular, for a given H(N) the slow-roll parameters read as [54]

ε = − H(N)

4H ′(N)


6H′(N)
H(N) + H′′(N)

H(φ) +
[
H′(N)
H(N)

]2
3 + H′(N)

H(N)


2

(2.155)

η = −1

2

[
3 +

H ′(N)

H(N)

]−1{
9H ′(N)

H(N)
+

3H ′′(N)

H(N)
+

1

2

[
H ′(N)

H(N)

]2
−1

2

[
H ′′(N)

H ′(N)

]2
+

3H ′′(N)

H ′(N)
+
H ′′′(N)

H ′(N)

}
(2.156)

ξ2 =

6H′(N)
H(N) + H′′(N)

H(N) +
[
H′(N)
H(N)

]2
4
[
3 + H′(N)

H(N)

]2 {
3H(N)H ′′′(N)

H ′(N)2
+

9H ′(N)

H(N)
− 2H(N)H ′′(N)H ′′′(N)

H ′(N)3

+
4H ′′(N)

H(N)
+
H(N)H ′′(N)3

H ′(N)4
+

5H ′′′(N)

H ′(N)
− 3H(N)H ′′(N)2

H ′(N)3

−
[
H ′′(N)

H ′(N)

]2
+

15H ′′(N)

H ′(N)
+
H(N)H ′′′′(N)

H ′(N)2

}
. (2.157)

Therefore, we can use (2.143) and (2.144) in order to calculate the usual inflationary

observables, namely the spectral index ns, the tensor-to-scalar ratio r and the running

spectral index as as [54]

ns − 1 =− 9ρ(N)f̃(ρ(N))

(
f̃ ′(ρ(N))− 2

2ρ(N)− f̃(ρ(N))

)2

+
6ρ(N)

2ρ(N)− f̃(ρ(N))

{
f̃(ρ(N))

ρ(N)

+
1

2

(
f̃ ′(ρ(N))

)2
+ f̃ ′(ρ(N))− 5

2

f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

(
f(ρ)

ρ(N)

)2

+
1

3

ρ′(N)

f̃(ρ(N))

×

(f̃ ′(ρ(N))
)2

+ f̃(ρ(N))f̃ ′′(ρ(N))− 2
f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

(
f̃(ρ(N))

ρ(N)

)2
 ,

(2.158)

r =24ρ(N)f̃(ρ(N))

(
f̃ ′(ρ(N))− 2

2ρ(N)− f̃(ρ(N))

)2

, (2.159)

αs =ρ(N)f̃(ρ(N))

(
f̃ ′(ρ(N))− 2

2ρ(N)− f̃(ρ(N))

)2 [
72ρ(N)

2ρ(N)− f̃(ρ(N))
J1

−54ρ(N)f̃(ρ(N))

(
f̃ ′(ρ(N))− 2

2ρ(N)− f̃(ρ(N))

)2

− 1

f̃ ′(ρ(N))− 2
J2

 , (2.160)
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where

J1 ≡
f̃(ρ(N))

ρ(N)
+

1

2

(
f̃ ′(ρ(N))

)2
+ f̃ ′(ρ(N))− 5

2

f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

(
f̃(ρ(N))

ρ(N)

)2

+
1

3

ρ′(N)

f̃(ρ(N))

×

(f̃ ′(ρ(N))
)2

+ f̃(ρ(N))f̃ ′′(ρ(N))− 2
f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

(
f̃(ρ(N))

ρ(N)

)2
 , (2.161)

and

J2 ≡
45

2

f̃(ρ(N))

ρ(N)

(
f̃ ′(ρ(N))− 1

2

f̃(ρ(N))

ρ(N)

)
+ 18

(
f̃(ρ(N))

ρ(N)

)−1
(
f̃ ′(ρ(N))− 1

2

f̃(ρ(N))

ρ(N)

)2

+

(
f̃ ′(ρ(N))− 1

2

f̃(ρ(N))

ρ(N)

)3
− 9

(
f̃ ′(ρ(N))− 1

2

f̃(ρ(N))

ρ(N)

)2

− 45f̃ ′(ρ(N)) + 9
f̃(ρ(N))

ρ(N)

+ 3

(
4f̃ ′(ρ(N))− 7

f̃(ρ(N))

ρ(N)
+ 2

)−3

2

(
f̃ ′(ρ(N))− 1

2

f̃(ρ(N))

ρ(N)

)
+

(
f̃(ρ(N))

ρ(N)

)−2
ρ′(N)

ρ(N)

×

(f̃ ′(ρ(N))
)2

+ f̃(ρ(N))f̃ ′′(ρ(N)) −2
f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

(
f̃(ρ(N))

ρ(N)

)2


+

(
f̃(ρ(N))

ρ(N)

)−2{
−3

2

(
f̃(ρ(N))

ρ(N)

)(
ρ′(N)

ρ(N)

)[
3
(
f̃ ′(ρ(N))

)2
+ 2f̃(ρ(N))f̃ ′′(ρ(N))

−11

2

f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
+

5

2

(
f̃(ρ(N))

ρ(N)

)2


+

(
ρ′′(N)

ρ(N)

)(f̃ ′(ρ(N))
)2

+ f̃(ρ(N))f̃ ′′(ρ(N))− 2
f̃(ρ)f̃ ′(ρ)

ρ(N)
+

(
f̃(ρ)

ρ

)2


+

(
ρ′(N)

ρ(N)

)2 [(
3f̃ ′(ρ(N))f̃ ′′(ρ(N)) + f̃(ρ(N))f̃ ′′′(ρ(N))

)
ρ(N)− 3

(
f̃ ′(ρ(N))

)2
−3f̃(ρ(N))f̃ ′′(ρ(N)) + 6

f̃(ρ(N))f̃ ′(ρ(N))

ρ(N)
− 3

(
f̃(ρ(N))

ρ(N)

)2
 . (2.162)

In order to obtain a qualitative picture of the above observables we consider an equation

of state of the form p = −ρ+f(ρ), with f(ρ) = Aρα. Since according to (2.143) and (2.144)

the scale factor reads as

a(t) = a0e
ρ1−α

3(1−α)A , (2.163)

we can express ρ as a function of N as

ρ(N) = [3(1− α)A]
1

1−α N
1

1−α . (2.164)

Additionally, since a Type IV singularity is obtained when 0 < α < 1
2 , we can choose

f(ρ)
ρ � 1. Inserting these into (2.158)-(2.160) we finally acquire

ns ' 1− 2

N(1− α)
, r ' 8

N(1− α)
, αs ' −

1

N2(1− α)2
. (2.165)
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Now, the 2015 Planck results [5] provide the following values:

ns = 0.9644± 0.0049 , r < 0.10 , as = −0.0057± 0.0071 . (2.166)

Hence, if in the scenario at hand we choose (N,α) = (60, 1/20), we obtain

ns ' 0.96491 , r ' 0.1403 , as = −0.000307 . (2.167)

Therefore, concerning the spectral index we acquire a good agreement, however the values of

the tensor-to-scalar ration and of the running spectral index are not inside the observational

bounds. Nevertheless, we can obtain satisfactory agreement in more sophisticated models

instead of the simple example f(ρ) = Aρα.

3 Late-time acceleration

According to the concordance model of cosmology the universe is currently accelerating,

while it entered this era after being in a long matter-dominated epoch. This behavior,

similarly to the early accelerated era of inflation, cannot be reproduced within the standard

framework of general relativity and flat ΛCDM-model with dust and vacuum energy, and

therefore extra degrees of freedom should be introduced. One can attribute these extra

degrees of freedom to new, exotic forms of matter, such as the inflaton field at early times

and/or the dark energy concept at late times (for reviews see [55, 56]). Alternatively, one

can consider the extra degrees of freedom to have a gravitational origin, i.e. to arise from a

gravitational modification that possesses general relativity as a particular limit (see [24, 57–

59] and references therein). In this section we will show how the late-time acceleration can

be driven by the fluid viscosity [10, 12, 15, 42, 60–73].

3.1 Late-time viscous cosmology

We start our investigation by studying the basic scenario of late-time viscous cosmology,

presenting the main properties of the viscous cosmic fluid, following [9]. As usual we

assume a homogeneous and isotropic FRW universe with geodesic fluid flow, and thus the

two Friedmann equations are given by (1.12),(1.13).

Let us very briefly discuss the non-viscous case. According to the standard model the

total energy density and pressure are

ρtot = ρ+ ρΛ, ptot = p+ pΛ = −ρΛ, (3.1)

where ρΛ = Λ/8πG is the Lorentz invariant vacuum energy density and pΛ = −Λ/8πG is

the vacuum pressure corresponding to a positive tensile stress. With the critical energy

density ρc, the matter density parameter ΩM , and the Einstein gravitational constant κ

defined as

κρc = 3H2, ΩM =
ρ

ρc
, κ = 8πG, (3.2)

we obtain for the scale factor [74]

a(t) = K1/3
s sinh2/3

(
t

tΛ

)
, (3.3)
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with tΛ = 2
3H0
√

ΩΛ0
, Ks = 1−ΩΛ0

ΩΛ0
, where the subscript zero refers to the present time

t = t0 (as usual we impose a(t0) = 1). The present age of the universe is

t0 = tΛarctanh
√

ΩΛ0, (3.4)

which leads to tΛ = 11.4× 109 years if we insert that t0 = 13.7× 109 years and ΩΛ0 = 0.7.

In terms of these quantities for the Hubble parameter we obtain

H =
2

3tΛ
coth

(
t

tΛ

)
, (3.5)

whereas the deceleration parameter becomes

q ≡ −1− Ḣ

H2
=

1

2

[
1− 3 tanh2

(
t

tΛ

)]
. (3.6)

Inserting Eq. (3.4) the present value for for the deceleration parameter of the ΛCDM-

universe is

q̂0 =
1

2
(1− 3ΩΛ0). (3.7)

With ΩΛ0 = 0.7 we obtain q̂0 = −0.55.

It is of interest to determine the time t = t1 when deceleration turns into acceleration.

The condition for this is q(t1) = 0, and leads to t1 = tΛarctanh 1√
3
, with corresponding

redshift

z1 =
1

a(t1)
− 1 =

(
2ΩΛ0

1− ΩΛ0

)1/3

− 1, (3.8)

that is t1 = 7.4× 109 years and z1 = 0.67. Finally, let te be the time of emission of a signal

that arrives at the time t0. Considering time in units of Gyr and inserting t0 = 13.7 and

ΩΛ0 = 0.7, we acquire the useful expression

te = 11.3 arctanh[1.53(1 + z)−1.5]. (3.9)

After this brief introduction we now proceed to the investigation of the viscous case,

that is we switch on the viscosity in the equation-of-state parameter of the cosmic fluid.

For convenience we assume a flat geometry. Without loss of generality we consider the

simplest ansatz (1.16), and thus the two Friedmann equations (1.12),(1.13) become

3H2 = κρ+ Λ, (3.10)

Ḣ +H2 =
κ

6
(9ζH − ρ− 3p) +

1

3
Λ, (3.11)

while the conservation equation reads

ρ̇+ 3H(ρ+ p) = 9ζH2, (3.12)

with

p = wρ, (3.13)
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where in its simplest version w is a constant. Finally, similarly to ΩM = ρ/ρc, it proves

convenient to introduce the density parameters

Ωζ =
κζ

H
, ΩΛ =

Λ

κρc
, (3.14)

where the critical density follows from 3H2 = κρc. Thus, we can express the current

deceleration parameter as

q0 =
1

2
(1 + 3w)− 3

2
[Ωζ0 + (1 + w)ΩΛ0]. (3.15)

If the cosmic fluid is cold, i.e. with w = 0, as is often assumed, we obtain

Ωζ0 =
1

3
(1− 2q0)− ΩΛ0. (3.16)

In principle, this equation enables one to estimate the viscosity parameter Ωζ0 if one has

at hand accurate measured values of q0 and ΩΛ0. It follows from Eqs. (3.7) and (3.16) that

Ωζ0 =
2

3
(q̂0 − q0). (3.17)

Hence Ωζ0 is proportional to the deviation of the measured deceleration parameter from

the standard ΛCDM-value as given in Eq. (3.7). This means that one needs to measure the

deceleration parameter very accurately in order to obtain information about the viscosity

coefficient from its relation to the deceleration parameter. One has so far not been able to

determine Ωζ0 in this way.

However, we can indicate its present status. Ten years ago D. Rapetti et al. [75]

gave kinematical constraints on the deceleration parameter using type Ia supernovae- and

X-ray cluster gas mass fraction measurements, obtaining q0 = −0.81 ± 0.14 at the 1σ

confidence level. Inserting q0 > −0.95 in Eq. (3.17) we obtain Ωζ0 < 0.27. However,

some years later Giostri et al. [76] used SN Ia and BAO/CMB measurements and found

−0.42 < q0 < −0.20 with one light curve fitted, and −0.66 < q0 < −0.36 with another.

Note that if measurements give q0 < −0.55 then Ωζ0 < 0, which is unphysical.

We mention though an interesting study of Mathews et al. [77], in which the production

of viscosity was associated with the decay of dark matter particles into relativistic particles

in a recent epoch with redshift z < 1.

Let us review the simplest viscous model in some detail. It was proposed by Pad-

manabhan and Chitre already in 1987 [78], and is based upon a dust model for matter,

vanishing cosmological constant, and constant viscosity coefficient ζ = ζ0. Equation (3.11)

gives

Ḣ = −3

2
H2 +

3

2
Ωζ0H0H, (3.18)

which upon integration with H(t0) = H0 leads to

H =
Ωζ0H0

1− (1− Ωζ0)e
3
2

Ωζ0H0(t0−t)
. (3.19)
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Another integration with a(t0) = 1 gives

a =

[
e

3
2

Ωζ0H0(t−t0) − (1− Ωζ0)

Ωζ0

] 2
3

. (3.20)

This implies that the age of the universe when expressed in terms of the present Hubble

parameter H0 becomes

t0 =
4

3Ωζ0H0
arctanh

(
Ωζ0

2− Ωζ0

)
. (3.21)

Hence, it is seen that for early times, in which Ωζ0H0t� 1, the viscosity can be neglected,

and we obtain

a ≈
[
1 +

3

2
H0(t− t0)

] 2
3

, (3.22)

corresponding to the evolution of a dust universe. At late times Ωζ0H0t� 1, the expansion

becomes exponential with H = κζ0, a ∝ exp(κζ0), ρ = 3κζ2
0 , and thus the universe enters

into a late inflationary era with accelerated expansion. A drawback of this model is however

that the time when the bulk viscosity becomes dominant is predicted to be unrealistically

large.

Let us now consider briefly the following model, which has attracted attention, namely

the one where viscosity is considered to be [65, 79, 80]

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

a
. (3.23)

It is based on the physical idea that the dynamic state of the fluid influences its viscosity.

We then obtain

aḢ = −bH2 + cH + d, (3.24)

where

a = 1− 3κζ2

2
, b =

3

2
[1 + w − κ(ζ1 + ζ2)], c =

3κζ0

2
, d =

1

2
(1 + w)Λ. (3.25)

Integrating this equation with a(0) = 0, a(t0) = 1 and assuming κ(ζ1 + ζ2) < 1 and w ≥ 0,

which lead to b > 0 and 4bd+ c2 > 0, we obtain

H(t) =
c

2b
+
a

b
Ĥ coth(Ĥt), (3.26)

with Ĥ2 = bd
a2 + c2

4a2 . The age of the universe in this model becomes

t0 =
1

Ĥ
arctanh

(
2aĤ

2bH0 − c

)
, (3.27)

and thus viscosity increases the age of the universe. Hence, assuming that κζ0 � H0 the

increase of the age due to viscosity is roughly Ω2
ζ0 t0.
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Let us return to the solution (3.26) and apply it to the case where the universe does

not contain any matter but only dark energy with w = −1. Moreover, we assume a linear

viscosity (ζ1 = ζ2 = 0) and therefore b = 0. Cataldo et al. [81] found that in this case

Ḣ =
3κζ0

2
H, (3.28)

and thus integration with a(t0) = 1 gives

H(t) = H0 exp

[
3Ωζ0H0

2
(t− t0)

]
, (3.29)

a(t) = exp

{
2

3Ωζ0

[
e

3Ωζ0H0
2

(t−t0) − 1

]}
. (3.30)

Hence, a universe dominated by viscous dark energy with constant viscosity coefficient

expands exponentially faster comparing to the corresponding universe without viscosity.

One may now ask the question how does the introduction of a bulk viscosity confront

with the observed acceleration of the universe. There have been several works dealing with

this issue, for instance see Refs. [82–84]. In the model of Avelino and Nucamendi [84] it

was considered that ζ1 = ζ2 = 0, w = 0, ΩM = 1, ΩΛ = 0, and therefore the scale factor

can be written as

a(t) =

(
1− Ωζ0

Ωζ0

)2/3 (
e

3
2

Ωζ0H0t − 1
)2/3

, (3.31)

which satisfies the boundary conditions a(0) = 0, a(t0) = 1. The age of the universe in this

model becomes

t0 =
4

3Ωζ0H0
arctanh

(
Ωζ0

2− Ωζ0

)
= − 2

3Ωζ0H0
ln(1− Ωζ0). (3.32)

Such a universe model was actually considered earlier, by Brevik and Gorbunova [85, 86]

and by Grøn [87], and is also similar to the model of Padmanabhan and Chitre considered

above [78]. The Hubble parameter reads as

H(t) =
Ωζ0H0

1− e−(3/2)Ωζ0H0t
, (3.33)

and it approaches a de Sitter phase for t � 1/Ωζ0H0, with a constant Hubble parameter

equal to Ωζ0H0. The deceleration parameter is

q =
3

2 exp[(3/2)Ωζ0H0t]
− 1, (3.34)

and its value at present is

q(t0) = (1− 3Ωζ0)/2. (3.35)

Hence

Ωζ0 =
1

3
(1− 2q0). (3.36)
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Assuming that accurate measurements will verify the ΛCDM model, so that q0 = −0.55,

this equation implies that Ωζ0 = 0.7. This means that for the universe model to be realistic,

there must exist a physical mechanism able to produce a viscosity of this magnitude.

The expansion thus starts from a Big Bang with an infinitely large velocity, but decel-

erates to a finite value. As usual, when t = t1 determined by q(t1) = 0 there is a transition

to an accelerated eternal expansion, namely at

t1 =
2 ln(3/2)

3Ωζ0H0
, (3.37)

at which time the scale factor is

a(t1) =

(
1− Ωζ0

2Ωζ0

)2/3

, (3.38)

and the corresponding redshift is

z1 =

(
2Ωζ0

1− Ωζ0

)2/3

− 1. (3.39)

Under the assumption that this model contains a mechanism producing viscosity so that

Ωζ0 = 0.7, this equation gives z1 = 0.8. This is larger than the corresponding value in

the ΛCDM model. Hence the transition to accelerated expansion happens earlier if the

acceleration of the expansion is driven by viscosity than by dark energy.

We deduce that the bulk viscosity must have been sufficiently large, namely Ωζ0 > 1/3,

in order for this transition to have been realized in the past, i.e. at a(t1) < 1. Finally, note

that for this universe model, with spatial curvature k = 0, the matter density is equal to

the critical density, namely

ρ =
3H2

κ
=

3Ω2
ζ0H

2
0

κ
[
1− e−(3/2)Ωζ0H0t

]2 , (3.40)

and thus the matter density approaches a constant value, ρ→ (3/κ)Ω2
ζ0H

2
0 .

In the aforementioned study of Avelino and Nucamendi [84] supernova data were used

in order to estimate the value of Ωζ0, giving the best fit for a universe containing dust

with constant viscosity coefficient. The result was that Ωζ0 = 0.64 had to be several or-

ders of magnitude greater than estimates based upon kinetic gas theory [10]. However,

as an unorthodox idea we may mention here the probability for producing larger viscosity

via dark matter particles decaying into relativistic products [88]. Additionally, the com-

parison between the magnitude of bulk viscosity and astronomical observations were also

performed in a recent paper by Normann and Brevik [70], using the analyses of various

experimentally-based sources [89, 90]. Various ansatzes for the bulk viscosity were ana-

lyzed: (i) ζ =constant, (ii) ζ ∝ √ρ, and (iii) ζ ∝ ρ. The differences between the predictions

of the options were found to be small. As a simple estimate based upon this analysis, we

suggest that

ζ0 ∼ 106 Pa s (3.41)

– 33 –



can serve as a reasonable mean estimate for the present viscosity. WithH0 = 67.7 km s−1 Mpc−1

this corresponds to Ωζ0 = 0.01.

The behavior of a viscous universe in its final stages has been discussed in [85, 86] and

in [81, 91]. Consider first a universe without viscosity and dark energy, containing only a

non-viscous fluid with p = wρ. In this case Eq. (3.24) reduces to

Ḣ = −bH2, (3.42)

where b = 3
2(1 + w). For such a universe there is a Big Rip at

tR0 = t0 +
2

3(1 + w)H0
. (3.43)

On the other hand, in Ref. [81] a fluid was considered to have w < −1 and constant

viscosity coefficient ξ0, implying b < 0 and d = 0. In this case (3.24) reduces to

Ḣ = −3

2
(1 + w)H2 +

3

2
Ωζ0H0H. (3.44)

The Hubble parameter, scale factor and density for this universe are respectively extracted

to be

H =
H0

1+w
Ωζ0

+
(

1− 1+w
Ωζ0

)
e−

3
2

Ωζ0(t−t0)
, (3.45)

a =

[
1− 1 + w

Ωζ0
+

1 + w

Ωζ0

e
3
2

Ωζ0H0(t−t0)

] 2
3(1+w)

, (3.46)

and

ρ =
ρ0[

1+w
Ωζ0

+
(

1− 1+w
Ωζ0

)
e−

3
2

Ωζ0(t−t0)
]2 . (3.47)

Thus, in this case there is a Big Rip singularity at

tR = t0 +
2

3Ωζ0H0
ln

(
1−

Ωζ0

1 + w

)
. (3.48)

Similar models, with variable gravitational and cosmological “constants” have been inves-

tigated by Singh et al. [92, 93]. Furthermore, one can go beyond isotropic geometry and

study viscous fluids in spatially anisotropic spaces, belonging to the Bianchi type-I class.

The interested reader might consult, for instance, the discussion in Ref. [9].

3.2 Inhomogeneous equation of state of the universe: phantom era and sin-

gularities

In this subsection we examine the appearance of singularities in viscous cosmology. It

is well-known that in FRW geometry, when the equation of state modeling the matter

content is a linear equation with an equation of state parameter greater than −1, the

Big Bang singularity appears at early times, where the energy density of the universe

diverges. Moreover, dealing with nonlinear equations of state one can see that other kind

of singularities such as Sudden singularity [94–96] or Big Freeze [51, 97–99] appear.

In fact, the future singularities are classified as follows [51] (see also [100] for a more

detailed classification):
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• Type I (Big Rip): t→ ts, a→∞, ρ→∞ and |p| → ∞.

• Type II (Sudden): t→ ts, a→ as, ρ→ ρs and |p| → ∞.

• Type III (Big Freeze): t→ ts, a→ as, ρ→∞ and |p| → ∞.

• Type IV (Generalized Sudden): t→ ts, a→ as, ρ→ 0, |p| → 0 and derivatives of H

diverge.

Similarly to the future ones, one can define the past singularities:

• Type I (Big Bang): t→ ts, a→ 0, ρ→∞ and |p| → ∞.

• Type II (Past Sudden): t→ ts, a→ as, ρ→ ρs and |p| → ∞.

• Type III (Big Hottest): t→ ts, a→ as, ρ→∞ and |p| → ∞.

• Type IV (Generalized past Sudden): t→ ts, a→ as, ρ→ 0, |p| → 0 and derivatives

of H diverge.

For the simple case of a linear equation of state p = wρ it is well-known that for a

non-phantom fluid (w > −1) one obtains a Big Bang singularity, while for a phantom fluid

(w < −1) [101–105] the singularity is a future Type I (Big Rip). Hence, in order to obtain

the other type of singularities one has to consider phantom fluids modeled by non-linear

equations of state of the form

p = −ρ− f(ρ), (3.49)

where f is a positive function. The simplest model is obtained taking f(ρ) = Aρα with

A > 0. In this case from the conservation equation ρ̇ = −3H(ρ + p) and the Friedmann

equation H2 = κρ
3 one obtains the dynamical equation

ρ̇ =
√

3κAρα+ 1
2 , (3.50)

whose solution is

ρ =


[√

3κA
2 (t− t0)(1− 2α) + ρ

1
2
−α

0

] 2
1−2α

when α 6= 1
2

ρ0e
√

3κA(t−t0) when α = 1
2 .

(3.51)

Furthermore, in order to obtain the evolution of the scale factor we will integrate the

conservation equation, resulting in

a = a0exp

(
1

3

∫ ρ

ρ0

ρ̄dρ̄

f(ρ̄)

)
, (3.52)

which using (3.51) leads to

a =

 a0exp
[

1
3A(1−α)(ρ1−α − ρ1−α

0 )
]

when α 6= 1

a0

(
ρ
ρ0

) 1
3A

when α = 1.
(3.53)

Once we have calculated these quantities, we have the following different situations

(see also [51]):
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1. When α < 0 we have a past singularity of Type II, since the energy density vanishes

for ts = t0 − 2√
3κA

ρ
1
2−α
0

1−2α < t0, implying that the pressure diverges at t = ts.

2. When α = 0 there are no singularities. The dynamics is defined from ts = t0 −
2√
3κA

√
ρ0 (where the energy density is zero) up to t→∞.

3. When 0 < α < 1
2 there are two different cases:

(a) 1
1−2α is not a natural number. One has a past Type IV singularity at ts =

t0 − 2√
3κA

ρ
1
2−α
0

1−2α , since higher derivatives of H diverge at t = ts.

(b) 1
1−2α is a natural number. In that case there are not any singularites and the

dynamics is defined from ts = t0 − 2√
3κA

ρ
1
2−α
0

1−2α to t→∞.

4. When α = 1
2 there are no singularities in cosmic time.

5. When 1
2 < α < 1, one has future Type I singularities, since in this case ρ, p and a

diverge at ts = t0 − 2√
3κA

ρ
1
2−α
0

1−2α > t0.

6. When α = 1 the equation of state is linear, and thus we obtain a Big Rip singularity.

7. When α > 1, the energy density and the pressure diverge but the scale factor remains

finite at t = ts, implying that we have a future Type III singularity.

The remarkable case appears when 0 < α < 1
2 and with 1

1−2α being a natural number.

In this case, from the Friedmann equation H2 = κρ
3 and the solution (3.51) one obtains

H =

√
κ

3

[√
3κA

2
(t− t0)(1− 2α) + ρ

1
2
−α

0

]n
, (3.54)

with n = 1
1−2α . As we have already seen, this solution describes a universe in the expanding

phase driven by a phantom fluid, which is defined from ts = t0− 2√
3κA

ρ
1
2−α
0

1−2α (where H = 0)

up to t→∞. However, solution (3.54) could be extended analytically back in time. There

are two different cases: When n is odd, this extended solution describes a universe driven

by a phantom field that goes from the contracting to expanding phase, bouncing at time

ts. On the contrary, when n is even the universe moves always in the expanding phase,

and before ts it is driven by a non-phantom field, while after ts the universe enters in a

phantom era. We will explain this phenomenon in more detail in the next subsection.

Motivated by the introduction of bulk viscous terms in an ideal fluid one can consider

a subclass of the general equation of state of (1.15) of the form

p = −ρ− f(ρ) +G(H). (3.55)

Then, the conservation equation becomes ρ̇ = 3H[f(ρ)−G(H)], and using the Friedmann

equation (1.12) in the expanding phase leads to

ρ̇ = 3H

[
f(ρ)−G

(√
κρ

3

)]
≡ 3HF (ρ), (3.56)
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which reveals that this formalism is equivalent with considering a fluid with an effective

equation of state given by

p = −ρ− F (ρ) = −ρ− f(ρ) +G

(√
κρ

3

)
. (3.57)

It is clear that, in general, the equation of state (3.55) does not lead to a universe

crossing the phantom barrier. A simple way to obtain transitions from the non-phantom

to the phantom regime is to explicitly consider an inhomogeneous equation of state of the

form F (ρ, p,H) = 0, for example [12, 73]

(ρ+ p)2 − C0ρ
2

(
1− H0

H

)
= 0, (3.58)

with C0 and H0 some positive constants. Inserting this into the square of the equation

Ḣ = −κ
2 (ρ+ p), one obtains the bi-valued dynamical equation

Ḣ2 =
9

4
C0H

4

(
1− H0

H

)
. (3.59)

From this equation, since there are two square roots and the effective equation of state

parameter is given by weff ≡ −1− 2Ḣ
3H2 , one can see that there are two different dynamics:

one which corresponds to the branch with Ḣ < 0 describing a universe in a non-phantom

regime, and one corresponding to the branch Ḣ > 0 describing a universe in the phantom

era. In fact, (3.59) can be integrated as

H(t) =
16

9C2
0H0(t− t−)(t+ − t)

, (3.60)

where we have introduced the notation t± = ± 4
3C0H0

. It is easy to check that H(t) is

only defined for times between t− and t+, since at t± the Hubble function H diverges (we

obtain a Big Bang at t− and a Big Rip at t+). Moreover, it is a decreasing function for

t ∈ (t−, 0) and an increasing one for t ∈ (0, t+), implying that at t = 0 the universe crosses

the phantom divide (it passes from the non-phantom to the phantom era).

Another interesting example arises from the equation of state

(ρ+ p)2 +
16H1

κ2t20
(H0 −H) ln

(
H0 −H
H1

)
= 0, (3.61)

where t0, H0, H1 are parameters satisfying H0 > H1 > 0. The corresponding bi-valued

dynamical equation is

Ḣ2 = −4H1

t20
(H0 −H) ln

(
H0 −H
H1

)
, (3.62)

which has two fixed points, namely H0 and H0 −H1. As we have already explained, when

Ḣ < 0 (resp. Ḣ > 0 ) the universe is in a non-phantom (resp. phantom) era. When the

universe is in the branch with Ḣ < 0 it moves from H0 to H0−H1, it reaches H = H0 and
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then it enters in the other branch (Ḣ > 0) going from H0 −H1 to H0. In fact, in [12, 73]

the authors found the following solution:

H(t) = H0 −H1exp

(
− t

2

t20

)
, (3.63)

which satisfy all the properties described above.

A final remark is in order: One can indeed consider the more general equation of

state given in (1.15), namely of the form F (ρ, p,H, Ḣ, Ḧ, · · · ) = 0, containing higher order

derivatives of the Hubble parameter. In this case, using the Friedmann equations the

equation of state becomes the dynamical equation

F

(
3H2

κ
,−2Ḣ

κ
− 3H2

κ
, Ḣ, Ḧ, · · ·

)
= 0. (3.64)

A non-trivial example is the following equation of state [12, 73]:

p = wρ−G0 −
2

κ
Ḣ +G1Ḣ

2, (3.65)

where G0 and G1 are constant. Then, the dynamical equation becomes

− 3H2(1 + w)

κ
= −G0 +G1Ḣ

2. (3.66)

We look for periodic solutions of the form H(t) = H0 cos(Ωt) depicting an oscillatory

universe. Inserting this expression into (3.66) we obtain the algebraic system:

G0 = G1Ω2H2
0 , G0 =

3H2
0 (1 + w)

κ
, (3.67)

whose solution is given by

H0 =

√
κG0

3(1 + w)
, Ω =

√
3(1 + w)

κG1
, (3.68)

provided that G0(1 +w) > 0 and G1(1 +w) > 0. On the other hand, when G1(1 +w) < 0,

one can look for solutions of the form H(t) = H0 cosh(Ωt), obtaining

H0 =

√
κG0

3(1 + w)
, Ω =

√
−3(1 + w)

κG1
. (3.69)

3.3 Unification of inflation with dark energy in viscous cosmology

In this subsection we analyze how one can describe in a unified way the early (inflationary)

and late time acceleration, in the framework of viscous cosmology. The simplest way to

unify early inflationary epoch with the current cosmic acceleration is by using scalar fields

[106]. Starting with the action

S =

∫
d4x
√
−g
{

1

2κ
R− 1

2
ω(φ)∂µφ∂

µφ− V (φ)

}
, (3.70)
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where ω and V are functions of the scalar field φ, and focusing on flat FRW geometry, one

obtains the following dynamical equation

ω(φ)φ̈+
1

2
ω′(φ)φ̇2 + 3Hω(φ)φ̇+ V ′(φ) = 0. (3.71)

The relevant fact, is that given a function f(φ) the equation (3.71) has always the solution

φ = t and H = f(t), provided that (for details see [12, 73])

ω(φ) = −2

κ
f ′(φ), (3.72)

V (φ) =
1

κ

[
3f2(φ) + f ′(φ)

]
. (3.73)

An interesting example is obtained when one considers the function

f(φ) = H0

(
φs
φ

+
φs

φs − φ

)
, (3.74)

where H0 and φs are the two positive parameters of the model. In this case one has

ω(φ) =
2H0φ

2
s(φs − 2φ)

κφ2(φs − φ)2
, (3.75)

V (φ) =
H0φ

2
s

κφ2(φs − φ)2
(3H0φ

2
s − φs + 2φ), (3.76)

whose dynamics is given by

H =
H0t

2
s

t(ts − t)
, a = a0

(
t

ts − t

)H0ts

, (3.77)

where we have introduced the notation ts = φs. Since H diverges at t = 0 and t = ts, the

dynamics is defined in (0, ts). In fact at t = 0 one has a = 0, which means that we obtain

a Big Bang singularity, while at t = ts the scale factor diverges, implying that we have a

Big Rip singularity. On the other hand, the derivative of the Hubble parameter reads as

Ḣ =
H0t

2
s

t2(ts − t)2
(2t− ts), (3.78)

that is the universe lies in the non-phantom regime when 0 < t < ts/2, while it lies in the

phantom phase for ts/2 < t < ts. Hence, we conclude that this model could describe the

current cosmic acceleration.

In order to examine the behavior at early times, we note that near t = 0 one can

make the approximation a = a0

(
t
ts

)H0ts
, and thus its second derivative at early times is

approximately

ä = a
H0ts(H0ts − 1)

t2
. (3.79)

From this we deduce that if one chooses H0ts > 1 the universe will have an early period of

acceleration.
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Another example is to consider

f(φ) = H0 sin(νφ), (3.80)

with H0 and ν positive parameters. A straightforward calculation leads to

ω(φ) = −2H0ν

κ
cos(νφ) (3.81)

V (φ) =
2

κ

[
H0ν cos(νφ) +H2

0 sin2(νφ)
]
. (3.82)

In this case one obtains a non-singular oscillating universe, whose dynamics is given by

H = H0 sin(νt), (3.83)

a = a0exp

[
−H0

ν
cos(νt)

]
. (3.84)

This solution depicts a universe that bounces at time t = nπ
ν where n is an integer, and since

Ḣ = H0ν cos(νt) one can easily check that the universe lies in the phantom regime when
π
ν

(
−1

2 + 2n
)
< t < π

ν

(
1
2 + 2n

)
, while it is in the non-phantom phase when π

ν

(
1
2 + 2n

)
<

t < π
ν

(
3
2 + 2n

)
.

We proceed by considering viscosity, taking Λ = 0 and w = 1 in (3.11). Based on the

equivalence between bulk viscous and open cosmology, where isentropic particle production

is allowed [107], we choose the following viscosity coefficient [108]:

ζ(H) =
1

κ

(
−ξ0 + 2H +

ξ2
0

8H

)
, (3.85)

where ξ0 > 0 is a constant. Hence, the second Friedmann equation (3.11) becomes

Ḣ = −3

2
Hξ0 +

3

16
ξ2

0 , (3.86)

which only has H = ξ0
8 as a fixed point. If one considers the dynamics in the domain

ξ0
8 ≤ H ≤ ∞, it is easy to check that the effective equation of state parameter is greater

than −1, which implies that the Hubble parameter varies from infinity to ξ0
8 . Moreover,

since

weff = −1 +
ξ0

H
− ξ2

0

8H2
, (3.87)

weff ∼= −1 at early (H � ξ0) and late (H ∼= ξ0
8 ) times, from which we deduce that this

viscous fluid model unifies inflation with the current cosmic acceleration. Additionally, weff

is positive when ξ0

√
2−1

2
√

2
< H <

√
2+1

2
√

2
, having the maximum value weff = 1 at H = ξ0

4 .

Thus, in summary, in the scenario at hand the universe starts from an inflationary epoch,

it evolves through a Zel’dovich fluid (weff = 1), radiation- (weff = 1/3) and matter-

(weff = 0) dominated epochs, and finally it enters into late-time acceleration tending

towards a de Sitter phase.
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The solution of equation (3.86) is

H =
ξ0

8

(
e−

3
2
ξ0t + 1

)
, (3.88)

and the scalar field that induces this dynamics, if one chooses ω(φ) ≡ 1, has the following

Higgs-style potential (for details see [108]):

V (φ) =
27ξ2

0κ

256

(
φ2 − 2

3κ

)2

. (3.89)

We stress here that this unified model for inflation and late-time acceleration leads to

inflationary observables, namely the spectral index, its running and the ratio of tensor

to scalar perturbations, that match at 2σ Confidence Level with the observational data

provided by Planck 2015 announcements [5] (for a detailed discussion see [108, 109]).

We close this section by considering a very simple quintessential-inflation potential

which unifies inflation with late time acceleration, namely [110]

V (φ) =

{
9
2

(
H2
E −

Λ
3

) (
φ2 − 2

3κ

)
for φ ≤ φE

Λ
κ for φ ≥ φE ,

(3.90)

where φE ≡ −
√

2
3κ

HE√
H2
E−

Λ
3

, and with HE > 0 the parameter of the model. This model

leads to the following dynamics

Ḣ =

{
−3H2

E + Λ for H ≥ HE

−3H2 + Λ for H ≤ HE ,
(3.91)

whose solution has the following expression

H(t) =

{ (
−3H2

E + Λ
)
t+ 1 t ≤ 0√

Λ
3

3HE+
√

3Λ tanh(
√

3Λt)

3HE tanh(
√

3Λt)+
√

3Λ
t ≥ 0,

(3.92)

with the corresponding scale factor

a(t) =

 aEe

[
(−3H2

E+Λ) t
2

2
+t

]
t ≤ 0

aE

[
3HE√

3Λ
sinh(

√
3Λt) + cosh(

√
3Λt)

] 1
3
t ≥ 0.

(3.93)

We mention that this dynamics arises also from a universe filled with a fluid with the simple

linear equation of state of the form

p =

{
−ρ+ 2ρE − 2Λ

κ ρ ≥ ρE
ρ− 2Λ

κ ρ ≤ ρE ,
(3.94)

where ρE =
3H2

E
κ . Equivalently it can arise from a viscous fluid, since effectively, choosing

w = 1 and the following viscosity coefficient

ζ =

{
2
κ

(
H − H2

E
H

)
H ≥ HE

0 H ≤ HE ,
(3.95)
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and inserting it into (3.11) one obtains the dynamics (3.91). Finally, for this model the

effective equation-of-state parameter is given by

weff =

{
−1 + 2

3H2

(
3H2

E − Λ
)
H ≥ HE

1− 2Λ
3H2 H ≤ HE ,

(3.96)

which shows that for H � HE one has weff (H) ∼= −1 (early quasi - de Sitter period).

When H ∼= HE , the equation-of-state parameter satisfies weff (H) ∼= 1 (deflationary period

dominated by a Zel’dovich fluid), and lastly for H ∼=
√

Λ
3 one also acquires weff (H) ∼= −1

(late quasi - de Sitter period).

3.4 Generalized holographic dark energy with a viscous fluid

In this subsection we investigate the cosmological scenario of holographic dark energy

with the presence of a viscous fluid. Holographic dark energy [111, 112] is a scenario in the

direction of incorporating the nature of dark energy using some basic quantum gravitational

principles. It is based on black hole thermodynamics [113] and the connection of the

ultraviolet cut-of of a quantum field theory, which induces the vacuum energy, with the

largest distance of this theory [114]. Determining suitably an IR cut-off L, and imposing

that the total vacuum energy in the maximum volume cannot be greater than the mass of

a black hole of the same size, one obtains the holographic dark energy, namely

ρDE =
3c2

κL2
, (3.97)

with κ the gravitational constant, set to κ = 1 in the following for simplicity, and c a

parameter. The holographic dark energy scenario has interesting cosmological applications

[73, 115–118]. Concerning the ultraviolet cut-off one uses the future event horizon Lf

Lf = a

∫ ∞
t

dt

a
. (3.98)

However, one can generalize the model using the quadratic Nojiri-Odintsov cut-off L defined

as [73, 119]
c

L
=

1

Lf

(
α0 + α1Lf + α2L

2
f

)
(3.99)

with c, α0, α1 and α2 constants, or the generalized Nojiri-Odintsov cut-off defined in

Refs. [73] and [120].

In this subsection we will consider the scenario in which generalized holographic dark

energy interacts with a viscous fluid, following [121]. In particular, we consider a dark

matter sector with a viscous equation of state of the form

pDM = −ρDM + ραDM + χHβ, (3.100)

where ρDM and pDM are respectively the dark matter energy density and pressure, and

with α, χ and β the model parameters. Furthermore, we allow for an interaction between

viscous dark matter and holographic dark energy:

ρ̇DE + 3HρDE(1 + wDE) = −Q, (3.101)
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ρ̇DM + 3HρDM (1 + wDM ) = Q, (3.102)

with wDE and wDM respectively the equation-of-state parameters of the dark energy and

dark matter sectors, and where Q is a function that determines the interaction. One can

impose the following form for Q [121]

Q = 3Hb(ρDE + ρDM ), (3.103)

where b is a constant, although more complicated forms could also be used [122]. Finally,

the first Friedmann equation reads as

H2 =
1

3
ρeff , (3.104)

where the effective (total) energy density is given by ρeff = ρDE + ρDM .

We start our analysis by investigating the non-interacting scenario, that is setting

Q (i.e. b) to zero. In this case, using (3.97),(3.98),(3.100) and (3.104), the deceleration

parameter q ≡ −1− Ḣ/H2 is found to be

q =
−2
√

ΩdeL̇f (α1 + 2α2Lf )− q̂0

2H2Lf
, (3.105)

where q̂0 = HΩde(L̇f + 1) + Lf
(
H2 + pDM

)
. Moreover, the evolution of the dark matter

density parameter ΩDM is determined by the differential equation

Ω′DM =
2Ω

3/2
DEL̂f − 2

√
ΩDEL̂f − Â0

H2Lf
, (3.106)

with L̂f = L̇f (α1+2α2Lf ) and Â0 = ΩDE [H(L̇f +1)+LfpDM ]+HΩ2
DE(L̇f +1), and where

primes denote differentiation with respect to N = ln a. Finally, for the non-interacting case

(3.97) and (3.101) lead to

wDE = −1 +
2L̇

3HL
= −1 +

2L̇f
3HLf

1−
Lf (α1 + 2α2Lf )(
α0 + α1Lf + α2L2

f

)
 . (3.107)

As one can see, the deceleration parameter q starts from positive values, it decreases, and it

becomes negative marking the passage to late-time accelerated phase [121]. The role of the

viscosity parameter χ is significant, since larger positive χ leads the transition redshift ztr
(from deceleration to acceleration) to smaller values and the present deceleration parameter

to negative values closer to zero. Hence, the larger the fluid viscosity is the more difficult

it is for the universe to exhibit accelerated expansion. Lastly, an important feature is that

the dark energy equation of state parameter can exhibit the phantom divide-crossing, as

can be seen from (3.107) [73, 121, 123]. In Tables 2 and 3 we present the various calculated

values for different choices of the model parameters, where the features described above

are obvious.
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Table 2. The present-day values of the deceleration parameter q, of the dark energy equation-of-

state parameter wDE and its derivative w′DE , the statefinder parameters (r, s) and the value of the

transition redshift ztr, for the non-interacting model, for several values of the viscosity parameter

χ in (3.100), and with α = 1.15, α0 = 0.15, α1 = 0.2, α2 = 0.25. We have set H0 = 0.7 and

ΩDM = 0.27. From [121].

χ q (w′DE , wDE) (r, s) ztr

−0.25 −0.766 (0.433,−0.952) (1.356,−0.094) 1.21

−0.1 −0.666 (0.487,−0.954) (1.797,−0.228) 0.82

0.0 −0.599 (0.529,−0.953) (2.111− 0.337) 0.67

0.1 −0.533 (0.572,−0.952) (2.441,−0.464) 0.53

0.25 −0.433 (0.635,−0.952) (2.965,−0.701) 0.4

Table 3. The present-day values of the deceleration parameter q, of the dark energy equation-

of-state parameter wDE and its derivative w′DE , the statefinder parameters (r, s) and the value

of the transition redshift ztr, for the non-interacting model, for several values of the parameter

α in (3.100), and with χ = −0.1, α0 = 0.15, α1 = 0.2, α2 = 0.25. We have set H0 = 0.7 and

ΩDM = 0.27. From [121].

α q (w′DE , wDE) (r, s) ztr

0.75 −0.508 (0.587,−0.952) (1.894,−0.296) −
0.85 −0.554 (0.559,−0.952) (1.977,−0.309) −
0.95 −0.595 (0.534,−0.952) (1.967− 0.295) 1.2

1.15 −0.666 (0.487,−0.952) (1.797,−0.227) 0.82

1.2 −0.682 (0.477,−0.952) (1.736,−0.208) 0.82

Let us now study the interacting scenario, i.e. considering a non-zeroQ in (3.101),(3.102).

In this case, using (3.97),(3.98),(3.100) and (3.104), for the deceleration and matter density

parameters we find

q =
L
[
(1− 3b)H2 + pDM

]
− 2
√

ΩDEL̂f −HΩDE(L̇f + 1)

2H2L
, (3.108)

and

Ω′DM =
A1 + 2Ω

3/2
DEL̂f − 2

√
ΩDEL̂f +HΩ2

DE(L̇f + 1)

H2Lf
, (3.109)

with A1 = ΩDE {H[(3b− 1)HLf − 2]− LfpDM}, while for the dark-energy equation-of-

state parameter we obtain

wDE = −
3bH2L+ 2

√
ΩDEL̂f +HΩDE(L̇f + 1)

3H2LfΩDE
. (3.110)

As we observe, the deceleration parameter q exhibits the transition from deceleration to

acceleration, and the role of the positive interaction parameter b in (3.103) is to make ztr
larger and the present value of q more negative [121]. This is expected since larger positive

b implies larger positive Q in (3.101),(3.102) and thus larger energy transfer to the dark
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energy sector. Moreover, the role of the viscosity parameter χ is as in the non-interacting

case, i.e the larger the χ is the more difficult it is for the universe to exhibit accelerated

expansion. Lastly, the dark energy equation-of-state parameter wDE can exhibit the phan-

tom divide-crossing, too. In Table 4 we present the various calculated values for different

choices of the model parameters, where the features described above are obvious.

Table 4. The present-day values of the deceleration parameter q, of the dark energy equation-of-

state parameter wDE and its derivative w′DE , the statefinder parameters (r, s) and the value of the

transition redshift ztr, for the interacting model, for several values of the interaction parameter β

of (3.103), and with χ = 0.1, α = 1.15, α0 = 0.15, α1 = 0.2, α2 = 0.25. We have set H0 = 0.7 and

ΩDM = 0.27. From [121].

b q (w′DE , wDE) (r, s) ztr

0.0 −0.533 (0.572,−0.952) (2.441,−0.465) 0.54

0.01 −0.548 (0.572,−0.966) (2.342,−0.427) 0.58

0.03 −0.578 (0.572,−0.993) (2.152,−0.356) 0.65

0.05 −0.608 (0.568,−1.021) (1.972,−0.292) 0.72

0.07 −0.634 (0.561,−1.048) (1.800,−0.234) 0.82

In summary, as we saw, one can study the scenario of generalized holographic dark

energy in the framework of viscous cosmology, allowing additionally for an interaction term

between viscous dark matter and holographic dark energy. As one can show, the role of

viscosity is to make the the transition to late-time acceleration more difficult, while the

role of interaction has the opposite effect. Lastly, the scenario at hand allows for the

phantom-divide crossing, which can be an additional advantage revealing its capabilities.

4 Special topics

In this section we discuss various topics of viscous cosmological theory, focusing on inves-

tigations in which the present authors have taken part. As a brief remark to the material

covered below we think it is appropriate to underscore the great power of the hydrody-

namical formalism when applied to quite different problems in cosmology. The formalism

robustness is in general striking. Definitely, in view of the considerably large activity in the

field of viscous cosmology, there are many aspects that cannot be discussed here. For in-

stance, instead of assuming a one-component fluid model, one might consider an extension

of the model in order to encompass two different fluid components. We may here mention

the recent study of Ref. [124], where the cosmic fluid was considered to be constituted of

a dark matter component endowed with a constant bulk viscosity, and a non-viscous dark

energy component. In other related works [72, 125], viscous coupled-fluid models were in-

vestigated when the equation of state was assumed to be inhomogeneous. Furthermore, in

[126] the authors studied the important self-reproduction problem of the universe, namely

the graceful exit from inflation, where it was shown how inflation without self-reproduction

can actually be obtained by imposing restrictions on the value of the thermodynamic pa-

rameter in the equation of state. Finally, we mention the very different approach which
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consists in applying particle physics theory and the relativistic Boltzmann equation in order

to derive expressions for the bulk and the shear viscosities, and the corresponding entropy

production, in the specific lepton-photon era, where the temperature dropped from 1012 K

to 1010 K. Calculations of this kind were recently given in Ref. [127], [128] and [129].

4.1 Estimate for the present bulk viscosity and remarks on the future universe

A significant amount of research has been spent in order to study the behavior of the cosmic

fluid in the far future. In such an examination, and as we discussed in detail in subsection

3.2 above, there may appear various kinds of singularities: the Big Rip [60, 61], the Little

Rip [66, 130, 131], the Pseudo-Rip [132], the Quasi-Rip [133], as well as other kinds of soft

singularities (for instance the so-called type IV finite time singularities [134]).

In the framework of viscous cosmology, the value of the (effective) bulk viscosity at

present time is naturally an important ingredient of such investigation. Recent observations

from the Planck satellite have given us a better ground for estimating the bulk viscosity

value ζ = ζ0 at present time t = t0. As discussed already in the previous Sections, referring

to [70], as well as to several other theoretical and experimental manuscripts, the estimate

ζ0 ∼ 106 Pa s (4.1)

was suggested as a reasonable (logarithmic) mean value. However, the corresponding un-

certainty is quite large; there have appeared proposals ranging from about 104 Pa s to

about 107 Pa s, depending on analyses of different sources.

We will follow the discussion of [124], in which two different cosmological models were

analyzed: (1) a one-component dark energy model where the bulk viscosity ζ was associated

with the cosmic fluid as a whole, and (2) a two-component model where ζ was associated

with a dark matter component ρm only, the latter component assumed to be non-viscous.

For convenience, we focus on the one-component scenario.

We assume the simple equation of state p = wρ, with w = const., and hence the two

viscous Friedmann equations acquire the usual form, namely

3H2 = κρ, 2Ḣ + 3H2 = −κ[p− 3Hζ(ρ)], (4.2)

and the energy conservation equation reads as

ρ̇+ 3H(ρ+ p) = 9H2ζ(ρ). (4.3)

Solving this equation in the regime around w = −1, i.e expanding as w = −1 + α and

assuming that α is small, we obtain

t =
1√
3κ

∫ ρ

ρ0

dρ

ρ3/2[−α+
√

3κ ζ(ρ)/
√
ρ]
, (4.4)

where t0 = 0, and the integration extends into the future. For the bulk viscosity we will

consider the form adopted in the literature, namely

ζ = ζ0

(
H

H0

)2λ

= ζ0

(
ρ

ρ0

)λ
, (4.5)
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with λ a constant. In the following we examine two options for the value of λ, which are

both physically reasonable.

• Case (i): λ = 1/2 (ζ ∝ √ρ).

In this case, from Eq. (4.4) we obtain

t =
2

3H0X0

(
1− 1√

Ω

)
, (4.6)

where for convenience we have introduced the dimensionless quantities

X0 = Ωζ0 − α, Ω =
ρ

ρ0
. (4.7)

The point that worths attention here is that even if the fluid is initially in the

quintessence region α > 0 at t = 0 it will, if X0 > 0, inevitably be driven into a

Big Rip singularity (ρ→∞) after a finite time [68, 70, 85, 86]

ts =
2

3H0X0
, (ζ ∝ √ρ). (4.8)

If on the other hand the combination of equation-of-state parameter α and viscosity

ζ0 is such that X0 < 0, then the cosmic fluid becomes gradually diluted as ρ ∝ 1/t2

in the far future.

• Case (ii): λ = 0 (ζ = ζ0 = const.).

In this case we obtain the solution

t =
2

3Ωζ0H0
ln

[
X0

−α+ Ωζ0/
√

Ω

]
, (ζ = ζ0), (4.9)

which implies an energy density of the form

Ω =
ρ

ρ0
=

{
Ωζ0

α+ (Ωζ0 − α) exp [−(3/2)Ωζ0H0t]

}2

. (4.10)

Hence in the far future ρ → const., which implies H → const., which is just the de

Sitter solution. Let us denote the limiting value of the density by ρdS. Then

ρdS = ρ0

(
Ωζ0

α

)2

=
3κζ2

0

α2
. (4.11)

From this expression we deduce that both α and X0 are important for the future fate

of the cosmic fluid.

Thus, this case may be defined as a pseudo-Rip in accordance with the definition

given by Frampton et al. [132], since the limiting value of the density reached after

an infinite span of time is finite.
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We close this subsection by providing some values for the inflationary observables, in

order to compare with the 2015 Planck observations. In particular, from Table 5 of [5] we

have w = −1.019+0.075
−0.080. Thus, α = 1 + w will be lying within two limits, i.e. between

αmin = −0.099, αmax = +0.056. (4.12)

As mentioned above, we took ζ0 = 106 Pa s, i.e. Ωζ0 = 0.01, to be a reasonable mean value

of the present viscosity. Then, according to (4.7) we have

X0(αmax) = −0.046, X0(αmin) = +0.109. (4.13)

Hence, we recover the cases 2 and 3 above: the future de Sitter energy density will become

lower than ρ0.

4.2 Is the bulk viscosity large enough to permit the phantom divide crossing?

This subsection is a continuation of the previous one, and is motivated by the following

question: is the value of ζ0, as inferred from the analysis of recent observations, actually

large enough to permit the crossing of the phantom divide, i.e. the transition from the

quintessence region to the phantom region? To analyze this question we have to consider

more carefully the uncertainties in the data found from different sources. We will present

some material discussing this point, following the recent work [68].

Assume that the bulk viscosity varies with energy density as ζ ∝ √ρ. The condition

for phantom divide crossing, as noted above, is that the quantity X0 defined in Eq. (4.7)

has to be positive. In the analysis of Wang and Meng [89] various assumptions for the bulk

viscosity in the early universe were considered, and the corresponding theoretical curves

for H = H(z) were compared with a number of observations. The detailed comparison is

quite complicated, but for our purpose it is sufficient to note that the preferred value of

the magnitude Ωζ0 is (compare also with the discussion in [70]):

Ωζ0 = 0.5, (4.14)

corresponding to

ζ0 ∼ 5× 107 Pa s, (4.15)

which is a rather high value. In this context, we may compare with the formula for the

bulk viscosity in a photon fluid [15], namely

ζ = 4aradT
4τf

[
1

3
−
(
∂p

∂ρ

)
n

]2

, (4.16)

where arad = π2k4
B/15~3c3 is the radiation constant and τf the mean free time. If we esti-

mate τf = 1/H0 (the inverse Hubble radius), we obtain ζ ∼ 104 Pa s, which is considerably

lower. In summary, it seems that one has to allow for a quite wide span in the value of the

present bulk viscosity. All suggestions in the literature can be encompassed if we write

104 Pa s < ζ0 < 107 Pa s, i.e. 10−4 < Ωζ0 < 0.1. (4.17)
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We can now rewrite the condition for phantom divide crossing as

ζ0 >
H0

κ
α = (1.18× 108)α, (4.18)

where we have inserted H0 = 67.80 km s−1 Mpc−1 = 2.20 × 10−18 s−1. As noted above,

from the observed data we derive the maximum value of α to be αmax = 0.056. This yields

ζ0 >
H0

κ
αmax = 6.6× 106 Pa s, or Ωζ0 > 0.066. (4.19)

Thus, comparison between (4.17) and (4.19) implies that, on the basis of available data, a

phantom divide crossing is actually possible even if α = αmax.

4.3 Bounce universe with a viscous fluid

In this subsection we investigate the realization of bouncing solutions in the framework of

viscous cosmology following [135] (see also [136]). Bouncing cosmological evolutions offer

a solution to the initial singularity problem [137]. Such models have been constructed in

modified gravity constructions, such as in the Pre-Big-Bang [138] and in the Ekpyrotic

[139] scenarios, in f(R) gravity [140–142], in f(T ) gravity [143], in braneworld scenarios

[144, 145], in loop quantum cosmology [146, 147] etc. Additionally, non-singular bounces

can be obtained using matter forms that violate the null energy condition [148, 149].

In order to be more general, in the following we will allow also for a spatial curvature,

and hence the two Friedmann equations write as

H2 +
k

a2
=
κ2ρ

3
(4.20)

−(2Ḣ + 3H2)

κ2
= p , (4.21)

with k = −1, 0, 1 corresponing to open, flat or closed geometry. Additionally, concerning

the fluid’s equation of state we will consider a general inhomogeneous viscous one of the

form (1.15), namely

p = w(ρ)ρ−B(a(t), H, Ḣ...) , (4.22)

where w(ρ) can depend on the energy density, but the bulk viscosity B(a(t), H, Ḣ...) is

allowed to be a function of the scale factor, and of the Hubble function and its derivatives.

Thus, the fluid stress-energy tensor writes as

Tµν = ρuµuν +
[
w(ρ)ρ+B(ρ, a(t), H, Ḣ...)

]
(gµν + uµuν) , (4.23)

with uµ = (1, 0, 0, 0) the four velocity. Hence, the standard conservation law ρ̇+3H(ρ+p) =

0 leads to

ρ̇+ 3Hρ(1 + w(ρ)) = 3HB(ρ, a(t), H, Ḣ...) (4.24)

We now proceed to the investigation of simple bounce solutions in the above framework,

and we discuss the properties of the viscosity of the fluids that drive such solutions. A first

example is the bounce with an exponential scale factor of the form

a(t) = a0eα(t−t0)2n
(4.25)

H(t) = 2nα (t− t0)2n−1 , (4.26)
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with n a positive integer and a0 , α positive parameters. We consider t0 > 0 to be the

bounce point, i.e. for t < t0 we have a contracting universe and when t > t0 expansion

takes place. We mention that if n is non-integer then singularities may arise, while the

simplest case n = 1/2 corresponds to just the Sitter solution H(t) = const. (in general for

n = m/2, with m an odd integer, the bounce is absent). Finally, note that for the ansatz

(4.26) we have

ä

a
= H2 + Ḣ = 2nα(t− t0)2(n−1)

[
2nα(t− t0)2n + (2n− 1)

]
, (4.27)

and hence we obtain (early-time) acceleration after the bounce, which is a significant

phenomenological advantage.

Inserting the bouncing scale factor (4.26) into (4.20) we acquire

ρ =
3

κ2

[
4n2α2(t− t0)2(2n−1) +

k

a2
0e2α(t−t0)2n

]
. (4.28)

Since for k = −1 the above quantity might become negative, we focus on the k = 0 and

k = +1 cases where it is always positive definite. As we observe, in the flat case ρ decreases

in the contracting phase, it becomes zero at t = t0, and it increases in the expanding regime.

On the other hand, for k = +1, and when n > 1, there is a region around the bouncing

point where ρ increases in the contracting phase, it reaches the value ρ = 3/(a0κ
2) at

t = t0, and then it decreases (these can be seen by examining the derivatives of (4.28)).

However, for t � t0, the energy density starts to increase. This behavior may have an

important effect on the cosmological parameter Ω = 1+ k
a2H2 , which for the bouncing scale

factor (4.26) becomes

Ω = 1 +
k

a2
0α

2(t− t0)2(2n−1) e2α(t−t0)2n , (4.29)

and thus it exhibits a decreasing behavior. Such a post-bounce acceleration, with the

simultaneous decrease of ρ and of Ω may be compatible with the inflationary phenomenol-

ogy, in which at the end of inflation Ω is very close to 1. Definitely, in order to stop the

aforementioned early-time acceleration we need to add additional fluids that could become

dominant and trigger the transition to the matter era.

Let us now analyze what kind of fluids with equation of state given by (4.22) can

produce the bouncing solution (4.26). We first consider an inhomogeneous but non-viscous

fluid, namely we assume B(a(t), H, Ḣ...) = 0. In this case, for the flat geometry, equations

(4.20) and (4.22) lead to

p = −ρ− ρ
(n−1)
(2n−1)

[
3

κ2
(2nα)2

] 2n
4n−2

(
2n− 1

3nα

)
, (4.30)

and thus to

w(ρ) = −1− ρ
−n

(2n−1)

[
3

κ2
(2nα)2

] 2n
4n−2

(
2n− 1

3nα

)
. (4.31)

As we mentioned earlier, if the exponent of ρ in (4.31) is negative then we obtain the

bounce realization, however if it is positive then we have the appearance of a singularity.
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As a second example we switch on viscosity, considering

B(a(t), H, Ḣ...) = 3Hζ(H) , (4.32)

with ζ(H) > 0 the bulk viscosity, and for simplicity and without loss of generality we

consider w = −1. In this case, for the flat geometry, equations (4.20) and (4.22) lead to

p = −ρ− 3Hζ(H) ,

ζ(H) =

(
3

κ2

) 2n−1
2n−1

(2nα)
1

2n−1

(
2n− 1

3

)
H−

1
2n−1 . (4.33)

Nevertheless, for k = +1 the equation of state for the fluid becomes complicated and

therefore it is necessary to go beyond (4.32) and consider a viscosity that depends on the

scale factor too. Such a case could be

p = −ρ− 3Hζ(H, a(t)) , (4.34)

which then leads to

ζ(H, a(t)) =

(
3

κ2

) 2n−1
2n−1

(2nα)
1

2n−1

(
2n− 1

3

)
H−

1
2n−1 − 2k

(3H)κ2a(t)2
. (4.35)

As we can see, and as expected, for large scale factors the above relation coincides with

(4.33), and therefore we can treat the closed geometry as the flat one.

Since we have analyzed the exponential bounce, we now proceed to the investigation

of other bouncing solutions. In particular, we will focus on the power-law bouncing scale

factor of the form

a(t) = a0 + α(t− t0)2n , (4.36)

H(t) =
2nα(t− t0)2n−1

a0 + α(t− t0)2n
, (4.37)

with n a positive integer, a0 , α positive parameters, and t0 > 0 the bounce point. This

relation leads to
ä

a
=

2n(2n− 1)α(t− t0)2(n−1)

a0 + α(t− t0)2n
, (4.38)

which implies that the post-bounce expansion is accelerated. Inserting (4.37) into the first

Friedmann equation (4.20) we acquire

ρ =
3

κ2 [a0 + α(t− t0)2n]

[
4n2α2(t− t0)4n−2 + k

a0 + α(t− t0)2n

]
. (4.39)

Since for the open universe case ρ can become negative (in particular, ρ = −3/(a0κ)2 at

t = t0), we focus on the k = 0 and k = +1 cases, where ρ is positive definite. Taking the

derivative of (4.39) we find

ρ̇ = −4n(t− t0)2n−3α[2n(t− t0)2nα(a0(1− 2n) + (t− t0)2nα) + k(t− t0)2]

3(a0 + α(t− t0)2n)3
κ2 , (4.40)
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thus near the bounce point we have

ρ̇(t→ t0) ' 8n2(t− t0)4n−3α2(2n− 1)

3a2
0

κ2 , (4.41)

from which we deduce that the energy density decreases in the contracting phase before

the bounce and increases immediately after it. Nevertheless, for |t| � t0 we have

ρ̇(|t| � t0) = −4n(t− t0)−4n−3[2n(t− t0)4nα2 + k(t− t0)2]

3α2
κ2 , (4.42)

which implies that after a suitable amount of time in the expanding phase ρ starts decreas-

ing again. Finally, the cosmological parameter Ω = 1 + k
a2H2 behaves as

Ω = 1 +
k

4n2α2(t− t0)4n−2
, (4.43)

and therefore it exhibits a decreasing behavior. Hence, similarly to the case of the expo-

nential bounce analyzed earlier, such behaviors could be interesting for the description of

the post-bouncing universe and the correct subsequent thermal history, since it will leave

a universe with Ω very close to 1 and a decreasing ρ.

Lastly, let us investigate what kind of fluids with equation of state given by (4.22) can

produce the power-law bouncing solution (4.37). Considering an inhomogeneous viscous

fluid with equation of state

p = −ρ
3
− 3Hζ(a(t), H) , (4.44)

and inserting (4.37), we find the bulk viscosity as

ζ(a(t), H) =
(2n− 1)a(t)

3n(a(t)− a0)κ2
. (4.45)

Note that away from the bouncing point, namely when a(t) � a0, the bulk viscosity

becomes

ζ(H, a(t)� a0) ' (2n− 1)

3nκ2
= const. . (4.46)

Hence, if 0 < ζ < 2/3, which corresponds to n > 1/2, then the bounce can be realized. On

the other hand if 2/3 < ζ then, as we mentioned earlier, singularities might appear.

In summary, in this subsection we saw that viscous fluids can offer the mechanism

to violate the null energy condition, which is the necessary requirement for the bounce

realization. Hence, various bouncing solutions can be realized, driven by fluids with suitably

reconstructed viscosity. As specific examples we studied the exponential and the power-law

bounces, which are also capable of describing the accelerated post-bouncing phase, with

the additional establishment of the spatial flatness. These features reveal the capabilities

of viscosity.
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4.4 Inclusion of isotropic turbulence

In this subsection we discuss turbulence issues in the framework of viscous cosmology. From

hydrodynamics point of view the inclusion of turbulence in the theory of the cosmic fluid

seems most natural, at least in the final stage of the universe’s evolution when the fluid

motion may well turn out to be quite vigorous. The local Reynolds number must then

be expected to be very high. On a local scale this brings the shear viscosity concept into

consideration, as it has to furnish the transport of eddies over the wave number spectrum

until the local Reynolds number becomes of order unity, marking the transfer of kinetic

energy into heat. Due to the assumed isotropy in the fluid, we must expect that the type

of turbulence is isotropic when looked upon on a large scale. According to standard theory

of isotropic turbulence in hydrodynamics we then expect to find a Loitziankii distribution

for low wave numbers (energy density varying as k4), whereas for higher k we expect an

inertial subrange in which the energy distribution is

E(k) = αε2/3k−5/3, (4.47)

where α denotes the Kolmogorov constant and ε is the mean energy dissipation per unit

mass and unit time. When k reaches the inverse Kolmogorov length ηK , i.e.

k → kL =
1

ηL
=
( ε
ν3

)1/4
, (4.48)

with ν the kinematic viscosity, then the dissipative region is reached.

In the following we will consider a dark fluid developing into the future from the

present time t = 0, when turbulence is accounted for. We will perform the analysis in

two different ways: either assuming a two-fluid model with one turbulent constituent, or

assuming simply a one-component fluid, following [9, 67, 150, 151].

We start by considering a two-component model, where the effective energy is written

as a sum of two parts, namely

ρeff = ρ+ ρturb, (4.49)

with ρ denoting the conventional energy density. Taking ρturb to be proportional to the

scalar expansion θ = 3H, and calling the proportionality factor τ , we acquire

ρeff = ρ(1 + 3τH). (4.50)

Additionally, the effective pressure peff is split in a similar way as

peff = p+ pturb. (4.51)

For both components we assume homogeneous equations of state, namely

p = wρ, pturb = wturb ρturb, (4.52)

The Friedmann equations can thus be written (recall that κ = 8πG) as

H2 =
1

3
κρ(1 + 3τH), (4.53)
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2ä

a
+H2 = −κρ(w + 3τHwturb), (4.54)

leading to the following governing equation for H:

(1 + 3τH)Ḣ +
3

2
γH2 +

9

2
τγturbH

3 = 0, (4.55)

where we used the standard notation

γ = 1 + w, γturb = 1 + wturb. (4.56)

Finally, when the energy dissipation is assumed to be

ε = ε0(1 + 3τH), (4.57)

the energy balance may be written as

ρ̇+ 3H(ρ+ p) = −ρε0(1 + 3τH). (4.58)

In summary, the input parameters in this model are {w,wturb, τ}, all of them assumed

to be constants. In the following we analyze the cases of two specific choices for w and

wturb.

• The case wturb = w < −1

This assumption implies that we equalize the ordinary and turbulent components as

far as the EoS is concerned. From Eq. (4.55) we acquire

H =
H0

Z
, Z = 1 +

3

2
γH0t. (4.59)

Hence, we have a Big Rip singularity after a finite time

ts =
2

3|γ|H0
, (4.60)

and we obtain correspondingly

a = a0Z
2/3γ , ρ =

3H2
0

κ

1

Z

1

Z + 3τH0
. (4.61)

In the vicinity of ts, using that Z = 1− t/ts, we find

H ∼ 1

ts − t
, a ∼ 1

(ts − t)2/3|γ| , (4.62)

ρ ∼ 1

ts − t
,

ρturb

ρ
∼ 1

ts − t
, (4.63)

which reveal the same kind of behavior for H and a as in conventional cosmology,

nevertheless the singularity in ρ has become more weak. The physical reason for this

is obviously the presence of the factor τ .
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It is interesting to see how these solutions compare with our assumed form (4.58)

for the energy equation. The left hand side of Eq. (4.58) can be calculated, and

we obtain in the limit t → ts (details omitted here) the following expression for the

present energy dissipation:

ε0 =
1

2

|γ|
τ
. (4.64)

This result could hardly have been seen without calculation; it implies that the

specific dissipation ε0 is closely related to the EoS parameter γ and the parameter τ .

• The case w < −1, wturb > −1

In general, the turbulent component is accordingly not only a passive component

in the fluid. The assumption of the present case, namely w < −1, wturb > −1,

encompasses the region −1 < wturb < 0, in which the turbulent pressure will be

negative as before. However, it also covers the region wturb > 0, where the turbulent

pressure becomes positive as in ordinary hydrodynamics.

The governing equation (4.55) can be solved with respect to t as

t =
2

3|γ|

(
1

H0
− 1

H

)
− 2τ

|γ|

(
1 +

γturb

|γ|

)
ln

[
|γ| − 3τγturbH

|γ| − 3τγturbH0

H0

H

]
, (4.65)

showing that the kind of singularity encountered in this case is of the Little Rip type.

As t→∞, the Hubble function H approaches the finite value

Hcrit =
1

3τ

|γ|
γturb

. (4.66)

Physically, γturb plays the role of softening the evolution towards the future singular-

ity.

We close this subsection by investigating the case of a one-component scenario. In

particular, instead of assuming the fluid to consist of two components as above, we can

introduce a one-component model in which the fluid starts from t = 0 as an ordinary viscous

non-turbulent fluid, and then after some time, marked as t = t∗, it enters a turbulent state

of motion. This picture is definitely closer to ordinary hydrodynamics.

Let us follow the development of such a fluid, assuming as previously that w < −1, in

order for the fluid to develop towards a future singularity. After the sudden transition to

turbulent motion at t∗, we have that w → wturb and correspondingly pturb = wturb ρturb.

Similarly to the two-component scenario, we assume wturb > −1, and for simplicity we

assume that ζ is a constant.

We can now easily solve the Friedmann equations, requiring the density of the fluid to

be continuous at t = t∗. It is convenient to introduce the “viscosity time”, namely

tc =

(
3

2
κζ

)−1

. (4.67)

Hence, for 0 < t < t∗ we obtain [85, 86]:

H =
H0 e

t/tc

1− 3
2 |γ|H0tc(et/tc − 1)

, (4.68)
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a =
a0[

1− 3
2 |γ|H0tc(et/tc − 1)

]2/3|γ| , (4.69)

ρ =
ρ0 e

2t/tc[
1− 3

2 |γ|H0tc(et/tc − 1)
]2 , (4.70)

whereas for t > t∗ we acquire:

H =
H∗

1 + 3
2γturbH∗(t− t∗)

, (4.71)

a =
a∗[

1 + 3
2γturbH∗(t− t∗)

]2/3γturb
, (4.72)

ρ =
ρ∗[

1 + 3
2γturbH∗(t− t∗)

]2 . (4.73)

Thus, the density ρ at first increases with time, and then decreases again until it goes to

zero as t−2 when t → ∞. Note that in the turbulent region, p∗ = wturb ρ∗ will even be

greater than zero in the case where wturb > 0.

As a final remark of this subsection, we mention that the presence of turbulence may

alternatively be dealt with in terms of a more general equation of state of the form (1.15),

admitting inhomogeneity terms too.

4.5 Viscous Little Rip cosmology

As discussed in detail in subsection 3.2 above, it is well known that there exist several theo-

ries for singularities in the future universe [51, 100]. Amongst them, the Little Rip scenario

proposed by Frampton et al. [130, 131] (for nonviscous fluids) is an elegant solution, which

we will consider in more detail in this subsection, generalized to the case of viscous fluids.

The essence of the original model, as well as of its viscous counterpart, is that the dark

energy is predicted to increase with time in an asymptotic way, and therefore an infinite

span of time is required to reach the singularity. This implies that the equation-of-state

parameter is always w < 1, but w → −1 asymptotically. In the following we will survey

the essentials of this theory, as were developed by Brevik et al. [66]. In most cases the

appearance of a bulk viscosity turns out to promote the future singularity.

For concreteness we assume an equation of state of the form

p = −ρ−A√ρ− ξ(H), (4.74)

where A is a constant and ξ(H) a viscosity function (not the viscosity itself). This is an

inhomogeneous equation of state. Assuming a spatially flat FRW universe the first and

second Friedmann equations write as

H2 =
κ

3
ρ,

ä

a
+

1

2
H2 =

κ

2
[ρ+A

√
ρ+ ξ(H)], (4.75)

while the conservation equation for energy, namely T 0ν
;ν = 0, becomes

ρ̇− 3A
√
ρH = 3ξ(H)H. (4.76)

Let us study separately the non-viscous and viscous cases.
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• (I) Non-viscous case.

For comparison, we start from the non-viscous case ξ(H) = 0 [130]. Setting the

present scale factor a0 equal to one, we obtain

t =
1√
3κ

1

A
ln

ρ

ρ0
. (4.77)

This relation reveals the Little Rip property: the singularity ρ→∞ is not reached in

a finite time. Additionally, the density ρ can be expressed as a function of the scale

factor as

ρ(a) = ρ0

(
1 +

3A

2
√
ρ0

ln a

)2

. (4.78)

Using the first Friedmann equation we can also express a as a function of t, namely

a(t) = exp

{
2
√
ρ0

3A

[
exp

(√
3κ

2
At

)
− 1

]}
. (4.79)

• (II) Viscous case.

Let us now switch on the viscous term in (4.74). In this case the second Friedmann

equation, as well as the energy conservation equation, will change. We shall consider

here only the simplifying ansatz where the viscosity function is constant, namely

ξ(H) ≡ ξ0 = const. (4.80)

This choice is motivated mainly from mathematical reasons. Then, from the govern-

ing equations above, it follows that

t =
2√
3κ

1

A
ln

ξ0 +A
√
ρ

ξ0 +A
√
ρ0
. (4.81)

Inverting this equation we acquire

ρ(t) =

[(
ξ0

A
+
√
ρ0

)
exp

(√
3κ

2
At

)
− ξ0

A

]2

. (4.82)

Hence, the state ρ → ∞ can indeed be reached, however it requires an infinite time

interval. This is precisely the Little Rip characteristic, now met under viscous condi-

tions. The term ξ0/A multiplying the exponential tends to promote the singularity,

as mentioned. The influence from the last term ξ0/A becomes negligible at large

times.

4.6 Viscous cosmology and the Cardy-Verlinde formula

In this subsection we will discuss the connection of viscous cosmology with thermody-

namics. The apparent deep connection between general relativity, conformal field theory

(CFT), and thermodynamics, has aroused considerable interest for several years. In the

following we will consider one specific aspect of this subject, namely to what extent the
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Cardy-Verlinde entropy formula remains valid if we allow for bulk viscosity in the cosmic

fluid. For simplicity we will assume a one-component fluid model, and we assume the bulk

viscosity ζ to be constant. For more details, the reader may consult Refs. [85, 86, 152–154],

and additionally the related Ref. [155].

We start with the Cardy entropy formula for an (1+1) dimensional CFT:

S = 2π

√
c

6

(
L0 −

c

24

)
, (4.83)

where c is the central charge and L0 the lowest Virasoro generator [156, 157]. Comparing

with the first Friedmann equation for a closed universe (k = +1) when Λ = 0, namely

H2 =
8πG

3
ρ− 1

a2
, (4.84)

we deduce (as pointed out by Verlinde [158]) that formal agreement is achieved if we choose

L0 →
1

3
Ea, c→ 3

π

V

Ga
, S → HV

2G
, (4.85)

where E = ρV is the energy in the volume V . One noteworthy fact is evident already at

this stage: the correspondence is valid also if the fluid possesses viscosity, since there is no

explicit appearance of viscosity in the first Friedmann equation. Moreover, the equation of

state for the fluid is so far not involved.

In order to highlight the physical importance of the formal substitutions (4.85), let us

consider the thermodynamic entropy of the fluid. As is known, there exist several defini-

tions, the Bekenstein entropy, the Bekenstein-Hawking entropy, and the Hubble entropy.

We will consider only the last quantity here, called SH . Its order of magnitude can be

easily estimated by observing that the holographic entropy A/4G (A is the area) of a black

hole with the same size as the universe may be written in the form

SH ∼
H−2

4G
∼ HV

4G
, (4.86)

since A ∼ H−2 and hence V ∼ H−3. Various arguments have been provided to assume the

universe’s maximum entropy to be identified with the entropy of a black hole having the

same size as the Hubble radius [159–162]. Nevertheless, more precise arguments of Verlinde

[158] lead to the replacement of the factor 4 in the denominator with a factor 2, that is

SH ∼
HV

2G
. (4.87)

Therefore, one can see that this relation coincides with the last relation of (4.85), indicating

that the formal substitutions above have a physical basis.

Consider now the Casimir energy EC , defined in this context to be

EC = 3(E + pV − TS). (4.88)

We may make use of scaling arguments for the extensive part EE and the Casimir part

EC that make up the total energy E. These arguments finally give (details omitted here)
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E(S, V ) = EC(S, V ) + 1
2EC(S, V ). An essential point is the property of conformal invari-

ance, that the products EEa and ECa are volume independent and depend only on S.

Hence, we acquire

EE =
α

4πa
S4/3, EC =

β

2πa
S2/3, (4.89)

where α, β are constants. Their product arises from CFT arguments as
√
αβ = 3 for n = 3

spatial dimensions. From the formulae above we obtain

S =
2πa

3

√
EC(2E − EC), (4.90)

which is the Cardy-Verlinde formula. With the substitutions Ea→ L0 and EC → c/12 it is

seen that expressions (4.89) and (4.83) are in agreement, apart from a numerical prefactor.

This is caused by our assumption about n = 3 spatial dimensions instead of the n = 1

assumption in the Cardy formula.

The above arguments were made for a radiation dominated, conformally invariant,

universe. Hence, the question that arises naturally is whether the same arguments apply

to a viscous universe too. The subtle point here is the earlier pure entropy dependence of

the product Ea, which is now lost. To analyze this question we may consider the following

equation, holding for a k = 1,Λ = 0 universe with EoS p = ρ/3, namely

d

dt
(ρa4) = 9ζH2a4. (4.91)

This is essentially an equation for the rate of change of the quantity Ea. Let us compare

this relation with the entropy production formula

nσ̇ =
9H2

T
ζ, (4.92)

where n is the particle number density and σ the entropy per particle. As we observe, both

time derivatives in (4.92) and (4.91) are proportional to ζ. If ζ is small we can insert the

usual solution for the scale factor of the nonviscous case, namely a(t) =
√

(8πG/3)ρina4
in sin η,

with η the conformal time (“in” denotes the initial time). As the densities ζ−1ρa4 and

ζ−1nσ can then be regarded as functions of t (recall that ζ =constant), we conclude that

ρa4 can be regarded as a function of nσ. This implies in turn that Ea can be regarded as

a function of S. This property, originally based upon CFT, can thus be carried over to the

viscous case too, assuming that the viscosity is small.

At this stage we should pay attention to the following conceptual point. The specific

entropy σ in (4.92) is a conventional thermodynamic quantity, whereas the identification

S → HV/(2G) in (4.85) is based on the holographic principle. The latter entropy is

identified with the Hubble entropy SH , and thus we can set nσH = H/(2G), with σH the

specific Hubble entropy. The quantity σH is holography-based, whereas the quantity σ is

not.

Finally, note that the same kind of arguments can be also applied in the more general

situation where the EoS has the form

p = (γ − 1)ρ, (4.93)
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with γ a constant. For the non-viscous case this analysis was performed by Youm [163],

with the result

S =

[
2πa3(γ−1)

√
αβ

√
EC(2E − EC)

] 3
3γ−1

. (4.94)

Lastly, in this case the application to weak viscosity can also be performed as in [85, 86, 152],

and when γ = 4/3 the radiation dominated result is recovered.

5 Conclusions

From a hydrodynamicist’s point of view the inclusion of viscosity concepts in the macro-

scopic theory of the cosmic fluid seems most natural, as an ideal fluid is after all an

abstraction (unless the fluid is superconducting). Modern astronomical and cosmological

observations permit us to look back in history, evaluating the Hubble parameter up to a

redshift z of about 2. Armed with such observational data, and having at one’s disposal the

formalism of FRW cosmology with bulk viscosity included, one would like to extrapolate

the description of the universe back in time up to the inflationary era, or go to the opposite

extreme and analyze the probable ultimate fate of the universe, which might well be in

the form of a Big Rip singularity. In the present review we have undertaken this quite

extensive program.

After fixing the notation in subection 1.1, we began in Section 2 with a presentation of

the theory of the inflationary epoch, covering cold as well as warm inflation in the presence

of bulk viscosity. We investigated in detail the viscosity effects on the various inflationary

observables, showing that they can be significant. A point to be noted in this context is

that viscous effects may be represented by a generalized and inhomogeneous equation of

state.

In Section 3 we turned to viscous theory in the late universe. We considered the

phantom era with its characteristic singularities. Additionally, we discussed how one can

describe in a unified way the inflationary and late-time acceleration in the framework of

viscous cosmology. The simplest way to achieve this task is to introduce scalar fields.

Moreover, we investigated the cosmological scenario of holographic dark energy in the

presence of a viscous fluid, a subject which is related to black hole thermodynamics.

In the final Section 4 of our review we dealt with specific topics. We classified various

options for the ultimate fate of the universe. We gave an analysis of whether the magnitude

of bulk viscosity derived from observations is sufficient to drive the cosmic fluid from the

quintessence into the phantom region. Numerical estimates indicated that such a transition

might well be possible. Furthermore, we investigated viscous bounce cosmology, and we

made use of isotropic turbulence theory from hydrodynamics to describe the late cosmic

fluid. Moreover, we discussed the Little Rip occurrence in the presence of viscosity. Finally,

we examined how viscosity influences the Cardy-Verlinde formula, which is a topic that

relates cosmology with thermodynamics, and falls within the emergent gravity program.

Mostly, this review is based on a theoretical approach. We have however provided

information concerning quantities related to observations, giving estimations on the infla-

tionary observables, as well as on the magnitude of the current bulk viscosity itself.
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In summary, from the above analysis one can see the important implications and

the capabilities of the incorporation of viscosity, which make viscous cosmology a good

candidate for the description of Nature.
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