
Distributed Agent-Based
Web Service Selection,
Composition and Analysis
through Partial Deduction

Doctoral thesis
for the degree of doktor ingeniør

Trondheim, July 2006

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

Peep Küngas

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Doctoral thesis
for the degree of doktor ingeniør

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

© Peep Küngas

ISBN 82-471-7783-8 (printed version)
ISBN 82-471-7781-1 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2006:21

Printed by NTNU-trykk

Abstract

In order to facilitate agile business and support online partnership formation, many
modern information systems are designed to support interoperability. This tendency
has become mainstream with advancements in distributed systems and is supported by
the Internet and industrial standards (or standard proposals) like XML, WSDL, SOAP
and BPEL. However, increasing complexity of distributed information systems puts
forward requirements to high adaptivity of distributed information systems.
Alternative technologies have been proposed in academia for supporting adaptiv-

ity in information systems. These technologies include cooperative problem solving,
agent technology, Web service composition, the Semantic Web and P2P networks.
Despite the high potential of such technologies, only few efforts have been made to
integrate them into commercial applications.
The main aim of this thesis is to investigate and determine to what extent auto-

mated Web service composition can be applied in practice. We have implemented
a tool, which exploits symbolic negotiation for distributed Web service composition.
While applying our approach to automated Web service composition we demonstrate
that automated composition methods are useful for analysing Web service domains.
More specifically, potential interactions and synergy between different Web services’
domains can be discovered by using automated composition.
The main contributions of the thesis are the following. First, it formalises par-

tial deduction for linear logic. Also soundness and completeness of the formalism is
proved. Second, it formalises symbolic negotiation with respect to partial deduction
and identifies relations between cooperative problem solving and symbolic negotia-
tion. Third, a multi-agent system, utilising the developed formal methods, is designed
and implemented. Moreover, the multi-agent system is extended with P2P capabili-
ties. Fourth, a distributed Web service composition tool is described and implemented.
Finally, automated Web service composition is evaluated over a set of existing govern-
mental and commercial Web services.

To Õnnela

Contents

Preface xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 Logics . 2
1.2.2 Multi-agent systems . 3
1.2.3 The Semantic Web . 4
1.2.4 Automated Web service composition 4

1.3 Research questions . 5
1.4 Proposed solutions . 5

1.4.1 Formalisation of partial deduction 6
1.4.2 Formalisation of symbolic negotiation 7
1.4.3 MAS architecture . 8
1.4.4 P2P extension of MAS . 8
1.4.5 Automated Web service composition 9
1.4.6 Implementation . 9
1.4.7 Applicability of automated Web service composition 10

1.5 Contributions . 11
1.6 Outline . 11

2 State of the Art 13
2.1 Related formalisms . 13
2.2 Linear logic and planning . 15
2.3 Web services and intelligent agents 16
2.4 Automated Web service composition 17
2.5 Automated Web service annotation 21
2.6 Automated software synthesis . 21
2.7 P2P-based Web service composition 24
2.8 Semantics and P2P networks . 25
2.9 Multi-agent systems . 27

2.9.1 Negotiation . 27
2.9.2 Coalition formation and teamwork 28

iii

iv CONTENTS

2.9.3 Agent coordination . 29
2.10 Linear logic in agent systems . 30
2.11 Summary . 31

I Formal Foundations 33

3 Partial Deduction 35
3.1 Linear logic . 35
3.2 Basics of partial deduction . 36

3.2.1 Partial deduction and LL . 36
3.2.2 Basic definitions . 37
3.2.3 PD steps . 38
3.2.4 Derivation and PD . 41

3.3 A motivating example . 41
3.4 Soundness and completeness of PD in ILL 43

3.4.1 PD steps as inference figures in ILL 43
3.4.2 Soundness and completeness 46

3.5 Partial deduction strategies . 48
3.5.1 Selection criteria . 48
3.5.2 Stopping criteria . 49

3.6 Summary . 50

4 CPS and Symbolic Negotiation 51
4.1 Agent representation . 52
4.2 Agent coalitions . 53
4.3 The cost of participating in coalitions 56
4.4 Symbolic negotiation . 57
4.5 An example of symbolic negotiation 58
4.6 Summary . 61

II Distributed Semantic Web Service Composition 63

5 Semantic Web Service Representation 65
5.1 Semantic Web services in LL . 65

5.1.1 Functionalities . 67
5.1.2 Non-functional attributes . 67
5.1.3 An example of representation 68

5.2 Mapping WSDL documents to LL 69
5.2.1 WSDL structure . 69
5.2.2 From WSDL to LL . 71

5.3 Summary . 71

CONTENTS v

6 Agent System Architecture 73
6.1 The symbolic negotiation process 74
6.2 The architecture . 75
6.3 Inter-agent communication protocol 75
6.4 An example . 77
6.5 Summary . 80

7 P2P-Based MAS 81
7.1 Distributed composition with P2P 82
7.2 P2P network layer . 84
7.3 Integrating P2P into MAS . 85
7.4 Elaboration of the example . 87
7.5 Empirical and analytical evaluation 88
7.6 Summary . 91

III Applications and Evaluation 93

8 Agent System Implementation 95
8.1 The implementation architecture . 95
8.2 Agents . 96

8.2.1 Database agent . 96
8.2.2 Monitoring agent . 97
8.2.3 Negotiator agent . 97
8.2.4 GUI agent . 97
8.2.5 Mediator agent . 98
8.2.6 Testbed agent . 98

8.3 Security . 98
8.4 Supporting infrastructure . 99
8.5 Summary . 99

9 Web Service Composition Tool 101
9.1 Tool description . 101
9.2 Tool usage scenario . 105
9.3 Comparison with other tools . 107
9.4 Summary . 109

10 Detection of Missing Web Services 111
10.1 Generic method description . 111
10.2 LL Web service representation . 112
10.3 Partial deduction and gap detection 114
10.4 Gap detection heuristics . 115

10.4.1 The proposed heuristics . 116
10.4.2 Analytical evaluation of the proposed heuristics 118

vi CONTENTS

10.5 Query expansion and ontologies . 118
10.5.1 Query expansion . 119
10.5.2 Ontologies . 119

10.6 Summary . 120

11 Applicability of Automated Composition 121
11.1 Structural analysis of data types . 122
11.2 Annotating Web services . 124
11.3 Challenges of annotation . 126
11.4 Commercial vs. governmental Web services 130
11.5 Analysis of the Web services roadmap 132

11.5.1 The effect of ontologies . 132
11.5.2 Available Web services . 133
11.5.3 Synergy between commercial and governmental Web services 134
11.5.4 Most common semantic data 134

11.6 Automated composition for analysis 135
11.7 Experimental results . 138

11.7.1 Commercial Web services 138
11.7.2 Governmental Web services 139
11.7.3 Merged commercial and governmental Web services 142
11.7.4 Synergy between commercial and governmental Web services 144

11.8 Summary . 144

IV Synopsis 147

12 Conclusions 149
12.1 Summary of results and contributions 149

12.1.1 Partial deduction for linear logic 149
12.1.2 Symbolic negotiation . 149
12.1.3 MAS architecture . 150
12.1.4 P2P for symbolic negotiation 150
12.1.5 Gap detection . 150
12.1.6 Implementation of an automated composition tool 151
12.1.7 Applicability of automated composition 151

12.2 Answers to research questions . 152
12.3 Future work . 153

12.3.1 Partial deduction and symbolic negotiation 153
12.3.2 Symbolic negotiation in P2P networks 153
12.3.3 Web services descriptions 154
12.3.4 Automated Web service annotation 154

A Abbreviations 157

CONTENTS vii

B Logic Rules 159
B.1 Rules of intuitionistic LL . 159

viii CONTENTS

List of Figures

1.1 Research topic roadmap. 12

3.1 The result of symbolic negotiation. 44

6.1 General symbolic negotiation model. 74
6.2 Multi-agent system architecture. 76
6.3 Agent interaction protocol. 76
6.4 The example architecture. 77

7.1 The P2P system architecture. 82
7.2 A Chord network example. 84
7.3 Example P2P network topology. 87
7.4 The composite Web service. 89
7.5 Minimum solution length 3. 90
7.6 Minimum solution length 5. 91
7.7 Problem solving complexity. 92

8.1 Agent system architecture. 96

9.1 Login window. 102
9.2 Web service annotation window. 103
9.3 Automated composition window. 104
9.4 Composite Web service solution window. 105
9.5 Composite Web service execution window. 106
9.6 Composite Web service execution progress dialog. 107
9.7 Interactive execution dialog. 107
9.8 Input to our program. 108
9.9 A constructed composite Web service. 109

10.1 The generic composition process. 112
10.2 Available value-added services. 114
10.3 The core service for buying skis. 115
10.4 The required service for buying skis. 115
10.5 The final service structure for buying skis. 116
10.6 Constructed partial composite Web service. 117

ix

x LIST OF FIGURES

11.1 Data structure examples. 123
11.2 Data type complexity in terms of size. 124
11.3 Roadmap of commercial Web services. 127
11.4 Roadmap of governmental Web services. 128
11.5 Roadmap of all annotated Web services. 129
11.6 General Web services’ domain structure. 130
11.7 Domain-specific Web services’ domain structures. 131
11.8 Automated Web service composition for analysis. 136
11.9 Solution lengths. 139

List of Tables

2.1 Comparison of automated software synthesis approaches. 24

7.1 Routing table of node 27 in Figure 7.2. 85
7.2 Keys and mediators of literals. 88

9.1 Comparison of major Web services tools. 108

11.1 Uniqueness of data structures. 123
11.2 Annotation overview. 125
11.3 Domain overview before removing isolated Web service operations. . 132
11.4 Domain overview after removing isolated Web service operations. . . 132
11.5 Most applicable commercial Web service operations. 140
11.6 Most popular data in commercial composite Web services. 140
11.7 Most popular data in governmental composite Web services. 141
11.8 Most applicable Web service operations in the merged domain. 142
11.9 Most popular data of composite Web services in the merged domain. . 143
11.10Commercial services, which were applicable with governmental ones. 145

A.1 Abbreviations used in the thesis. 157

xi

xii LIST OF TABLES

Preface

This thesis is submitted to the Norwegian University of Science and Technology in
partial fulfillment of the requirements for the degree doktor ingeniør. This work has
been conducted at the Department of Computer and Information Sciences (IDI), Nor-
wegian University of Science and Technology (NTNU), Trondheim, Norway, under
the supervision of Professor Mihhail Matskin. Part of this work was conducted while I
was a visiting researcher at the Department of Microelectronics and Information Tech-
nology, Royal Institute of Technology, Stockholm, Sweden. This work was partially
supported by the Norwegian Research Foundation in the framework of Information
and Communication Technology (IKT-2010) program through the ADIS project.

Acknowledgments
First and foremost, I would like to thank my supervisor Professor Mihhail Matskin for
his expert guidance, constant encouragement and enduring patience duringmy doctoral
studies. I am grateful for the opportunity to work and study at IDI, which provided an
excellent environment to cross-fertilise research ideas.
I would like to thank all people at IDI, among them my former colleague Jinghai

Rao for discussions on automated Web services composition. Sari Hakkarainen, Yun
Lin, Jennifer Sampson and Csaba Veres provided useful hints on the Semantic Web
and ontologies. Xiaomeng Su was of great help while introducing me information re-
trieval, document classification and ontology mapping techniques. Several discussions
over semantics in P2P networks were held together with Hao Ding. Arne Sølvberg pro-
vided general guidance and support during my employment and studies at IDI. They
all contributed indirectly to the content of this thesis.
Additionally I would like to thank my former master students Terje Olsen and

Aanund Austrheim at IDI, NTNU for implementing the GUI of ADIS tool, which was
used throughout experiments. My master students from Royal Institute of Technology,
Kista, Sweden, Shenghua Liu and Magnus Wallin contributed also to the ADIS tool.
Shenghua implemented JXTA message transportation protocol for JADE and Magnus
experimented with automated Web service classification and semantic Web service
annotation. Both results have been incorporated into the ADIS tool.
The evaluation part of this thesis was supported by X-Road project team members

including Ahto Kalja from Tallinn University of Technology and others. Their as-

xiii

xiv PREFACE

sistance greatly simplified collection of governmental Web services’ descriptions and
allowed thus to compare commercial Web services with governmental ones.
Finally, I would like to thank my family, especially my beloved wife Õnnela for

her enduring support and endless love.

Peep Küngas
May 31, 2006

Chapter 1

Introduction

Web services are revolutionising the way industry and public sector operate. As the
Web evolves into the Semantic Web, the myriad of available Web services are being
described such that their automated processing is possible. Machine-understandable
descriptions enable automatic discovery, use, and composition of Web services.
Automated Web service composition is a methodology for constructing composite

Web services from already existing ones with minimal developer intervention. The
methodology enhances reuse of existing Web services and thereby reduces time plus
man hours devoted to manual Web service development. Given requirements for a new
Web service, the methodology provides methods to either construct the Web service
automatically or to identify that the Web service has to be implemented from scratch.
Some methods even facilitate construction of partial solutions, by determining speci-
fications for new Web services whose implementation would render a partial solution
complete.
Traditionally automated Web service composition has been applied in centralised

configuration. It means that all available atomic Web services are known prior to the
composition. Furthermore, the composition process has been usually performed by a
single program. We, in contrary, consider automated composition in a distributed en-
vironment, where composition is performed by multiple agents simultaneously. Fur-
thermore, we assume that each agent has knowledge only about a fraction of available
Web services. Thus, in order to compose a required Web service, agents may have to
collaborate.
In this chapter we explain what initiated our interest into the subject and identify

some related technologies. We also specify research problems under consideration,
describe our contribution and present the organisation of the thesis.

1.1 Motivation
In order to facilitate agile business and to support dynamic partnership formation,
modern Information Systems (IS) are designed to facilitate interoperability between
themselves. This tendency has become mainstream with advancements in distributed

1

2 CHAPTER 1. INTRODUCTION

systems. In particular, the Internet and industrial standard proposals like XML, WSDL
and BPEL have contributed to this progress. However, increasing maintenance costs
of distributed IS-s have created the need for more adaptive information systems.
Simultaneously to industrial efforts, alternative technologies have been proposed

for automating information system integration in academia. The technologies include
multi-agent systems, cooperative problem solving mechanisms, automated Web ser-
vice composition, the Semantic Web and P2P networks. Anyway, despite of the po-
tential of the mentioned technologies, only few efforts have been made to embed them
into commercial applications.
Therefore, one aim of this thesis is to help bridge the gap between industrial and

academic efforts by evaluating the applicability of automated Web service composi-
tion. Although several articles have proposed methods for automated Web service
composition, according to author’s knowledge, none of the methods have been evalu-
ated in industrial settings so far.
In order to provide the evaluation we first propose a formal framework for encod-

ing and solving automating Web service composition problems. Then we design an
architecture for facilitating distributed Web service composition. Finally, we evaluate
our implemented automated composition method over a set of commercial and gov-
ernmental Web services. In this way we demonstrate how formal methods could be
applied in practical cases. Furthermore, our evaluation results indicate settings and
applications where automated Web service composition could be useful. We combine
both theoretical and empirical results in order to answer the proposed research ques-
tions.

1.2 Background
As stated previously, we are interested in determining applicability of automated (dis-
tributed) Web service composition in industrial settings. Given the inter-disciplinary
nature of the problem, efforts and results in different fields impacted the content of
this thesis. There are four research areas, which influenced the material in this thesis.
First of all we were inspired by research in logics and their applications. We strongly
believe that fixed semantics of an input language leads to better results in automation.
Additionally, we were motivated by research in agents and multi-agent systems. Given
the distributed nature of our problem, agents would provide us with communication
primitives and the degree of proactivity, which is required for distributed Web service
composition. Finally, our work is supported by the achievements in the Semantic Web
initiative and the current progress in automated Web service composition.

1.2.1 Logics
Traditionally, logics have been studied as a branch of philosophy. Since the mid-1800s
logics have been commonly studied in mathematics, and, even more recently, in com-

1.2. BACKGROUND 3

puter science. As a science, logic investigates and classifies the structure of statements
and arguments, and devises schemata by which these are codified. The scope of logics
is therefore very large, including reasoning about probability and causality, time and
resources, etc.
Logics are extensively applied in the fields of artificial intelligence and computer

science since these fields provide a rich source of problems in formal logic. In the
1950s and 1960s, researchers predicted that when human knowledge could be ex-
pressed using logic with mathematical notation, it would be possible to create a ma-
chine that reasons, or Artificial Intelligence (AI). This turned out to be more difficult
than expected because of the complexity of human reasoning.
Anyway, nowadays all kinds of applications of logic in computer science are stud-

ied under the framework of computational logic [162]. Computational logic centers
around the famous definition:

Algorithm = Logic+Control.
According to this view, algorithms consist of a problem description (the logic part)

along with a strategy to carry out useful computations on this description (the control
part). Computational logic is devoted to the ideal of a programmer who concentrates
solely on the description of the problem and spends no time at all on the actual com-
putation mechanism. This unique paradigm of “declarative programming” leads to
programs that are fast and simple to develop and easy to understand and maintain.
Moreover, the rigorous use of logic revolutionises the whole field of software verifi-
cation. Instead of having to undergo a test phase, which necessarily cannot give more
than just some confirmation that a program will do what it is supposed to do, the de-
velopment of programs and systems that are guaranteed to be correct is the second
ideal of computational logic. Therefore we are going to apply a computational logic
for describing how our computational machinery is supposed to function.

1.2.2 Multi-agent systems
The study of Multi-Agent Systems (MAS) focuses on systems where many intelligent
agents interact with each other. The agents are considered to be autonomous entities,
such as software programs or robots. Their interactions can be either cooperative or
self-interested. That is, the agents can share a common goal (e.g. an ant colony), or
they can pursue their own interests (as in the free market economy).
Progress in MAS has resulted in communications languages, interaction protocols,

and agent architectures that facilitate the development of multi-agent systems. Re-
search in MAS has drawn ideas from many disciplines outside of AI, including biol-
ogy, sociology, economics, organization and management science, complex systems,
and philosophy. Several attempts have been made in order to formalise Cooperative
Problem Solving (CPS) (see Chapter 2). Most of them are based on classical or modal
logics. In particular, Wooldridge and Jennings [199] provide a formalisation of CPS
process where a multi-modal logic is used as a formal specification language.

4 CHAPTER 1. INTRODUCTION

However, since the multi-modal logic lacks a strategy for generating constructive
proofs of satisfiability, the formalisation does not lead to direct execution of specifica-
tions. Moreover, since modal logics (like classical logic) lack the mechanism for keep-
ing track of resources, it is not possible for agents reason about resources. Therefore
we take advantage of a resource-conscious logic to formalise CPS and agent negotia-
tion.
It has been indicated in [77] that negotiation is the most fundamental and powerful

mechanism for managing inter-agent dependencies at run-time. Negotiation may be
required both for self-interested and cooperative agents. It allows to reach a mutually
acceptable agreement on some matter by a group of agents.
Anyway, in order to implement a MAS, a suitable MAS architecture is required.

This is another issue, which we have to resolve. Combination of a MAS architecture
together with a computational logic would naturally lead into an adaptive system.

1.2.3 The Semantic Web
The Semantic Web [15] provides a common framework that allows data to be shared
and reused across application, enterprise, and community boundaries. It is a collab-
orative effort led by W3C with participation from a large number of researchers and
industrial partners. It is based on the Resource Description Framework (RDF), which
integrates a variety of applications using XML for syntax and URIs for naming. Gen-
erally speaking, the Semantic Web is an extension of the current Web in which infor-
mation is given well-defined meaning, better enabling computers and people to work
in cooperation [15].
Therefore, efforts in the Semantic Web are directly beneficial to automated Web

service composition. Practical and efficient Web services selection, provision and
composition requires more detailed descriptions of Web services compared to those
provided by WSDL documents and tModels in UDDI. These additional descriptions
should facilitate discovery, integration and composition of Web services in a more effi-
cient way than it is supported now. The Semantic Web project has resulted in initiatives
(see [32] for a short overview of approaches to model the Semantic Web services) like
WSMO, SWSO, OWL-S and WSDL-S, which are designed to model and describe
the meanings and intended usage of Web services more precisely than it is currently
supported by industrial standards.

1.2.4 Automated Web service composition
Automated Web service composition is about taking a set of Web service descriptions
plus requirements for a newWeb service and transforming them into a workflow, which
implements a required composite Web service. In order to do that, composition algo-
rithms should be sustained by machine-readable descriptions of Web services. More-
over, these descriptions should unambiguously indicate the semantics of associated
Web services.

1.3. RESEARCH QUESTIONS 5

With the increased interest in the Web services paradigm, composition of Web ser-
vices has become of primary importance. Several languages for describing Web ser-
vices and their composition are currently being defined and seek to become standards.
The current leading proposals are the Web Service Description Language (WSDL) and
the Business Process Execution Language for Web Services (BPEL4WS), an industry-
developed flow language. These industrial efforts are extended by academic efforts like
WSMO, SWSO, OWL-S and WSDL-S as mentioned already.
By now many methods have been proposed for composing Web services automat-

ically from existing OWL-S and WSML-like Web service descriptions. The methods
range from AI planning [132, 172, 200] to automated theorem proving [134, 160, 194]
and graph search algorithms. For a more comprehensive review of published methods
see Chapter 2.

1.3 Research questions
The overall research question is the following:

How can automated Web service composition be applied in practice, and
to what extent?

In order to answer this general question, we have to answer to the following more
detailed research questions:

RQ1 How could we automate Web service composition?

RQ2 How to distribute automated Web service composition?

RQ3 How to extend Web services to support automated Web service composition?

RQ4 Which problems in industry can be solved through automated Web service com-
position?

RQ5 What are the limitations of automated Web service composition?

1.4 Proposed solutions
In order to answer the proposed research questions we first formalise partial deduc-
tion (PD) for linear logic (LL) and prove its completeness and soundness. Based on
the PD formalisation we formalise cooperative problem solving (CPS) and symbolic
negotiation in such a way that multiple PD threads could be run simultaneously.
Then we design and implement a multi-agent system (MAS) for applying the

CPS/symbolic negotiation formalisation. Additionally we extend the MAS with P2P
capabilities. Finally the MAS is applied for automated distributed Web service com-
position and experiments are conducted.

6 CHAPTER 1. INTRODUCTION

The experiments indicate applicability of automated Web service composition in
certain cases. They also determine which supporting technologies are required to in-
crease the degree of applicability or to make automated Web service composition ap-
plicable at all. Moreover, the results help us to propose some novel applications of
automated composition.

1.4.1 Formalisation of partial deduction

Partial Deduction (PD) (or partial evaluation of logic programs, which was first in-
troduced by Komorowski [89]) is known as one of optimisation techniques in logic
programming. Given a logic program, PD derives a more specific program while pre-
serving the meaning of the original program. Since the program is more specialised, it
is usually more efficient than the original program.
For instance, let A, B, C and D be propositional variables and A → B, B → C

and C → D computability statements in a logical framework. Then possible partial
deductions are A→ C, B→ D and A→ D. It is easy to notice that the first corresponds
to forward chaining (from facts to goals), the second to backward chaining (from goals
to facts) and the third could be either forward or backward chaining or even their
combination.
Although the original motivation behind PD was deduction of specialised logic

programs with respect to a given goal, our motivation for PD is a bit different. Namely,
it turns out that PD could be applied to find partial solutions of problems written as
logical formalisms. In our case, given a formal specification of a problem, if we fail to
solve the entire problem, we apply PD to generate partial solutions for it. These partial
solutions can be used for analysing why no solutions were found.
As a logical formalism for application of PD we use Linear Logic [56]. LL has been

advocated [82] to be a computation-oriented logic. Although PD has been formalised
for several frameworks, including fluent calculus [111], normal logic programs [120],
etc., it turns out that there is no work considering PD for LL. Our goal is to fill this gap
by providing a formal foundation of PD for LL.
As a part of the formalisation we define PD steps as inference figures in LL. While

using those inference figures instead of basic LL rules, we can achieve higher efficiency
during proof search. Multiple examples are presented to demonstrate application of
PD.
Although LL provides a rich formalism for representing resources and agent capa-

bilities, it still lacks a construction for specifying another important aspect of dynamic
systems, namely time. Therefore we extend the proposed PD formalisation with the
notion of time through usage of temporal LL (TLL). This approach gives us an op-
portunity to go beyond barely resource-oriented problem solving and to solve a larger
class of problems than LL would alone.

1.4. PROPOSED SOLUTIONS 7

1.4.2 Formalisation of symbolic negotiation

Symbolic negotiation is regarded in the field of computer science as a process, where
parties try to reach an agreement on the high-level means for achieving their goals
by applying symbolic reasoning techniques. Formalisation of symbolic negotiation
contributes both to the studies of human behaviour and multi-agent systems. In the
former field the rational part of human reasoning can be modelled, while in the latter
field self-organising systems with adaptive behaviour can be implemented.
Until nowmainly game theoretical negotiation has been applied in multi-agent sys-

tems. The latter is based on a numerical utility function, which is applied to choose
a negotiation strategy. However, game theoretical negotiation has shortcomings in
three areas. First, a negotiation strategy is chosen before negotiation starts and can-
not be changed during negotiation. Second, the participating agents cannot hide their
internal states from each-other, since the states are used to define the utility function.
And third, the negotiation process is based on numerical information, which is hardly
interpretable by humans. Thus human participants may not be able to follow the ne-
gotiation process by their own and thus cannot evaluate the validity of the results. The
last disadvantage is one of the reasons why human users may not trust their software
agents.
Symbolic negotiation in contrast is based on logical formalisms and thus over-

comes the previously mentioned disadvantages. It means that encapsulation of agent
preferences, resources and goals is supported. Additionally, the negotiation process
and the result of the process is declarative and thus more easily interpretable than
numerical information. And finally, agents are allowed to dynamically adjust their
negotiation strategies during negotiation as well.
We believe that distributed theorem proving is a natural metaphor for symbolic

negotiation. Therefore we formalise CPS through PD and then extend the CPS frame-
work with symbolic negotiation rules. Initial ideas for applying LL for symbolic multi-
agent negotiation have been presented in [65]. We regard symbolic negotiation as inter-
leaved CPS and plan modification. We also formalise coalition formation process and
analyse its effect to CPS and symbolic negotiation. Regarding other previously pro-
posed coalition formation methods, which are oriented to task allocation, our method
could be described as goal-oriented.
We would like to underline that from a computational point of view, we can re-

gard CPS as AI planning and symbolic negotiation as plan reuse/repair. It has been
shown [142] that from problem solving point of view in general neither planning from
scratch nor plan repair has an advantage over eachother. Therefore we expect both
CPS and symbolic negotiation to be computationally equivalent. Moreover, both CPS
and symbolic negotiation lead to the same results as we prove in this thesis.
However, compared to CPS, symbolic negotiation provides a more human-like way

of problem solving, which can be more naturally followed by human participants. In
addition, symbolic negotiation may encode a sort of search heuristics, which would
make CPS computationally less demanding. These heuristics, however, are not dis-

8 CHAPTER 1. INTRODUCTION

cussed in this thesis.
The cooperative problem solving has been considered to consist of four steps [199]:

• recognition of potential for cooperation

• team formation

• plan formation

• plan execution

An important feature of our approach is that we do not separate team and plan
formation into different processes and that negotiation is embedded into the reasoning.
Although this approach does not preserve the accepted structure of CPS, we think that
it may be more natural for representing computational aspects of CPS, where team and
plan formation processes interact with each other.

1.4.3 MAS architecture
In order to implement the formalised symbolic negotiation procedure, we first have to
construct a MAS architecture for it. The architecture identifies the main entities, which
would participate in symbolic negotiation. Also agent communication protocols are
determined.
We take advantage of the AGORA multi-agent environment [127], which was de-

veloped with the intention to support cooperative work between agents. The system
consists of 2 types of components (nodes)—agents and agoras. Agoras are cooperative
nodes which facilitate agent communication, coordination and negotiation. An agora
node contains default agents and registered agents. In our scenario, the default agents
are Agora Manager and Negotiator. Agora Manager implements general agora func-
tions, such as service matchmaking and agent/service registration, while Negotiator
applies symbolic negotiation. Registered agents represent Web service providers and
requesters.

1.4.4 P2P extension of MAS
The increasing popularity of P2P systems (such as Overnet, Kazaa and Gnutella) for
file sharing, indicates general interest in resource sharing. However the current P2P
systems suffer at least from two drawbacks. First, they are mostly designed for sharing
either data or CPU power, but not both in the same system. Moreover, in the case of
CPU sharing, the executable computational processes are expected to be known a pri-
ori for each participant (like in SETI@Home). Second, the current P2P network nodes
still lack a degree of proactivity, which would provide higher degree of autonomy,
rationality and fairness.
In contrary, MAS-s still seem to lack enough capabilities to reorganise themselves

in dynamic environments. In particular, despite of the intelligent behaviour assigned

1.4. PROPOSED SOLUTIONS 9

to agents, MAS architectures are currently mostly designed manually. Therefore com-
bining MAS-s and P2P networks would extend the capabilities of both architectures.
We shall exploit a structured P2P network to self-organise MAS infrastructure for

efficient resource discovery. Structured P2P networks allow more efficient resource
discovery compared to non-structured topologies, where the network is flooded with
messages in order to locate a resource. We take advantage of Chord algorithm, which
manages structured P2P networks.
Despite of the promotion of cross-fertilisation of peers and agents, we take more

conservative position by deciding that P2P- and agent-related issues should not be
mixed. While P2P handles issues related to indexing and efficient location of resources,
agents are those who initiate the actions on P2P networks. Thus MAS would be a
control layer for P2P networks, whereas P2P network is just another communication
medium for MAS.

1.4.5 Automated Web service composition
Due to its expressiveness we choose LL for describing Web services and Web service
composition problems, as proposed by Rao et al [160]. Therefore it is natural to apply
our PD framework for automating Web service composition. Moreover, by regarding
distributedWeb service composition as symbolic negotiation we are able to exploit the
previously proposed MAS architecture as a platform for Web service composition in
distributed environments.
While LL allows us to describe Web services in a natural way, having PD as a basis

for automated Web service composition has other advantages. Namely, by using PD
for automated Web service composition, we can determine the reasons for not finding
a solution for a requested composite Web service. Since PD allows partial solutions,
compared to all-or-nothing capability of pure LL theorem proving, we can collect a
set of partial solutions and look deeper into them. Thereby we can determine some
new Web services, which have to be implemented in order to get a composite solu-
tion. Moreover, analysis of partial solutions may also indicate inconsistencies within
existing descriptions of Web services.
It should be noted that in order to apply automated composition as proposed by Rao

et al [160], Web services must be semantically annotated. Thus WSDL descriptions of
Web services should be accompanied with OWL-S or WSML documents, which allow
the semantics of Web services to be described. However, annotation languages are out
of the scope of this thesis, since we consider only the formal aspect of automated Web
service composition.

1.4.6 Implementation
Since we are interested in experimental analysis of our symbolic negotiation method,
we implemented the proposed PD mechanism and the corresponding agent architec-
ture. The MAS is built using the JADE agent development environment and integrates

10 CHAPTER 1. INTRODUCTION

PD into the proposed symbolic negotiation framework. We also implemented a tool
for automated and distributed Web service composition. By combining automated rea-
soning, multi-agent systems and Web services, the tool inherently provides flexibility,
which would not have been achieved by using these technologies individually.
The tool supports semantic annotation and automated composition ofWeb services.

CompositeWeb services are graphically displayed and can be exported into BPEL4WS
documents. The tool also supports teamwork by allowing collaborative composition
of Web services by remote users of the same tool.

1.4.7 Applicability of automated Web service composition

Recently the field of Web services has gained focus both in industry and academia.
While industry has been mostly interested in standardisation and promotion of the
technology, academia has been looking for ways to fit the technology into other frame-
works, such as the Semantic Web. Web services’ research in the Semantic Web context
varies from automated annotation [31,70,71,150,163] and ontologies [9] to automated
Web service composition [132,134,172,186,200]. While automated annotation intends
to provide methods to extract semantics from existingWeb services, research related to
ontologies and Web services has focused to the modelling of Web services. The latter
has led to initiatives like WSMO, SWSO, OWL-S and WSDL-S.
Efficient selection and integration of inter-organisational and heterogeneous Web

services at runtime is an important requirement for Web services provision. For in-
stance, if no single Web service satisfies the required functionality, existing Web ser-
vices could be combined together to fulfill the request. This aspect of Web services
provision is supported by automated Web service composition methodology. Several
methods for dynamic composition of Web services have been proposed in recent years.
Despite the increased academic and commercial interest to Web services, there is

currently no case study analysing the applicability of automated Web service composi-
tion in commercial applications. Neither is there any publication about methodologies
for identifying most relevant and potent Web services. Moreover, according to authors’
knowledge, there is no publicly available study analysing the structure and potential
synergy between commercial and governmental Web services.
We cover this shortcoming by applying automated composition for analysing the

applicability of currently available Web services. We define the applicability of a Web
service as the property to have theWeb service in compositeWeb services. We propose
a method for measuring the applicability of Web services with respect to existing Web
services. Additionally, we propose a methodology for identifying most applicableWeb
services and demonstrate it on a case study. We also analyse interaction and potential
synergy between commercial and governmental Web services.

1.5. CONTRIBUTIONS 11

1.5 Contributions
The main contribution of the thesis is a study of applicability of automatedWeb service
composition. More specific contributions, which paved the way to the main contribu-
tion include both theoretical and empirical research. These contributions of the thesis
are the following.

1. The thesis formalises PD for LL. Moreover, we prove the soundness and com-
pleteness of the formalism. The application of PD in explained through a number
of examples.

2. The thesis formalises symbolic negotiation using PD. Additionally symbolic ne-
gotiation is positioned according to cooperative problem solving and similarities
between these two ideologies are identified. It turns out that symbolic negotia-
tion is a special case of cooperative problem solving.

3. The thesis proposes a multi-agent system architecture. The system is imple-
mented using JADE and evaluated in an application for distributed automated
Web service composition.

4. A distributed Web service composition tool is described and implemented. The
tool demonstrates our vision of automated Web service composition.

5. Applicability of automated Web service composition is evaluated based on cur-
rently available commercial and governmental Web services. The analysis deter-
mines also the data, which is most common in inputs and outputs of today’s Web
services. The results are supported by a methodology for systematic analysis of
Web services domains.

1.6 Outline
This thesis is divided into 4 parts. These parts are further divided into 12 chapters
and 2 appendices. Part I presents the formal foundation of our automated computation
framework. Part II describes the proposed multi-agent system, extends it with P2P
capabilities and explains how it is going to be applied for distributed automated Web
service composition. Part III describes the implemented tool and evaluates applicabil-
ity of automatedWeb service composition. Finally, Part IV underlines the main results,
concludes the thesis and discusses future work.
The general structure of the thesis is depicted in Figure 1.1. The figure shows

relations between different topics covered in this thesis and indicates in which parts
they are covered. In order to understand the upper-level topics in the figure at least
partial understanding of lower-level topics is required.
Results in this thesis have been partially presented already in the following publi-

cations:

12 CHAPTER 1. INTRODUCTION

Linear Logic

Symbolic Negotiation

Partial Deduction for Linear Logic

MAS Architecture

P2P Network

Linear Logic for Service Composition
CPS

Distributed Composition of Semantic Web ServicesComposition Applicability

Composition Tool

Gap Detection

Part II, Multi−Agent System
Part III, Applications and Evaluation

Part I, Theory

Figure 1.1: Research topic roadmap.

1. PD and symbolic negotiation have been formalised in [96, 97, 102, 103],

2. LL theorem proving for automated Web service composition has been explored
in [159–161],

3. symbolic negotiation for distributed automated Web service composition has
been clarified in [93, 106],

4. ideas about PD for gap detection have been explored in [92, 99–101],

5. symbolic and non-symbolic negotiation for composition have been combined
in [98],

6. a larger picture of agent-based Web service composition has been compiled
in [129],

7. P2P indexing for a MAS and distributedWeb service composition has been anal-
ysed in [95],

8. Web services and data roadmap has been presented in [105],

9. abstraction as a PD strategy has been analysed in [91],

10. JXTA message transportation protocol implementation for JADE has been pub-
lished in [119],

11. first steps to formalise temporal extension of symbolic negotiation have been
taken in [94],

12. the methodology for evaluating automated Web service composition has been
presented in [104].

Chapter 2

State of the Art

In this chapter we review the literature related to our technology. The related areas
include linear logic, agent systems, P2P networks, the Semantic Web, automated Web
service composition, etc. Many of the reviewed articles cross multiple areas.
For a quite general overview of basics, architectures and languages of agents and

agent systems the reader is forwarded to [198]. Some agent-based applications are
broadly reviewed in [78].
Considering that LL has been applied for Artificial Intelligence (AI) planning, and

AI planning is employed in agent systems, we review also connections between AI
planning and agent technologies. We put special emphasis to such agent activities as
negotiation, team formation and coordination, since they are strongly related to the
foundations of our work.

2.1 Related formalisms

Although PD was first introduced by Komorowski [89], Lloyd and Shepherdson [120]
were the first ones to formalise PD for normal logic programs. They showed PD’s
correctness with respect to Clark’s program completion semantics. Since then several
formalisations of PD for different logic formalisms have been developed. Lehmann and
Leuschel [111] developed a PD method capable of solving planning problems in the
fluent calculus. A Petri net reachability checking algorithm is used there for proving
completeness of the PD method. However, they do not consider how to handle partial
plans.
Analogically Leuschel and Lehmann [113] applied PD of logic programs for solv-

ing Petri net coverability problems while Petri nets are encoded as logic programs.
De Schreye et al [42] presented experiments related to the preceding mechanisms by
Lehmann and Leuschel, which support evaluation of certain PD control strategies.
Matskin and Komorowski [128] applied PD to automated software synthesis. One

of their motivations was debugging of declarative software specification. The idea of
using PD for debugging is quite similar to our application of PD for symbolic agent

13

14 CHAPTER 2. STATE OF THE ART

negotiation. In both cases PD helps to determine computability statements, which
cannot be solved by a system.

Tammet [181] proposes a set of theorem proving strategies for speeding up LL
theorem proving. He also presents experimental results, which indicate a good per-
formance of the proposed strategies. Some of his strategies remind the usage of our
PD inference figures. Thus some LL theorem proving strategies are already implicitly
handled in our PD framework.

There are some similarities between abduction and PD. However, while abduction
is about finding a hypothesis to explain given results, then PD achieves the hypothesis
as a side-effect. The latter could be explained by stating that in our case the given re-
sults are a part of a program and PD is about program transformation, not about finding
an hypothesis. By taking into account the preceding, abduction could be implemented
through PD. Given the simplification that induction is abduction together with justifi-
cation, PD relates to induction as well. An overview of inductive logic programming
(ILP) s given by Muggleton and de Raedt [139].

Forward and backward chaining for linear logic have been considered by Harland
et al [64] in the logic programming context. In this article we define backward and
forward chaining in PD context. Indeed, the main difference between our work and the
work by Harland et al could be characterised with a different formalism for different
purposes.

Some researchers have enriched LL with modalities from modal logics. Kanovich
et al [83] introduced time to LL on the first order level. However, the encoding is
not flexible enough to handle several problems in agent systems. Hirai [72] proposes
a framework, which is based on timed Petri nets and embodies both LL and modal
logic S4 for time modalities. Thus both, formulae in S4 and LL are provable in this
logic. Its main contribution compared to the work of Kanovich and Ito [81] is that full
intuitionistic LL is considered, instead of the fragment of LL without modality !. The
latter has the important feature from negotiation point of view—with ! also unbounded
access to resource could be offered. Another approach for describing temporal LL
through timed Petri nets is given in [182]. However, it lacks completeness theorem for
timed Petri nets as stated in [72].

In [18] LL has been enriched with modalities for distribution and mobility. There
also locations and movements of resources are considered and it is speculated to have
applications in distributed systems and security protocols. This approach has connec-
tions to mobile ambients calculus [33] (MAC) and spatial logics.

MAC is an extension of π-calculus. While in π-calculus movements of processes
can be described, in MAC it is possible to characterise also contexts (called ambients)
of processes and their movements. Ambients can become parts of other ambients, if
it is decided that they should move to an (another) ambient. Processes are described
there as agents. This formalism is suitable for describing mobile agents (mobile code)
in mobile environments (ambients). Security issues may be specified as well.

2.2. LINEAR LOGIC AND PLANNING 15

2.2 Linear logic and planning

Several authors [29, 38, 60, 76, 84, 126] have emphasised the contribution LL could
have for AI planning. LL enriches problem domains with resource consciousness and
allows to represent nondeterminism emerging from interaction with an environment.
There exist [72, 81] even work extending LL with certain features of temporal logic.
Therefore LL provides a comprehensive formalism for expressing most of the rigorous
aspects of planning problems—resources, time, nondeterminism, etc.
Usage of LL, similarly to other logics, provides sound and complete AI planning

mechanism. Soundness means that plans found by applying LL inference rules are
correct with respect to initial problem specifications. Completeness guarantees that if
there is a solution, it will be found. Moreover, by fixing the fragment of LL for plan-
ning, we determine computational complexity of planning as well, since complexities
of different LL fragments have been already studied [82, 84, 117].
One merit of LL deductive planning is said [60] to consist in its ability to solve

the technical frame problem [131] without the need to state frame axioms explicitly
and provides thus a natural way for representing causal relations between actions and
resources.
While considering AI planning within LL, one of intriguing issues is how to rep-

resent planning domains and problems. We take advantage of a resource-oriented rep-
resentation of STRIPS-like operators as adopted by [17] for Transition Logic and [60,
76, 84, 126] for LL framework, where planning operators are encoded as extra-logical
axioms and planning problem as a sequent which correctness has to be proved.
The first of LL planners was presented in [126], where a demonstration of robot

planning system has been given. Influenced by [126], LL theorem proving has been
used by Jacopin [76] as an AI planning kernel for STRIPS-like problem presentations.
In [38] a formalism has been proposed for deductively generating recursive plans in
LL. This advancement is a step further to more general plans, which are capable of
solving instead of a single problem a class of problems. Another approach to deductive
planning in a resource-conscious logic (Transition Logic) is given in [17]. The list of
other deductive planners includes [16, 19, 59, 63].
Since it has been proven [46] that the Horn fragment of LL [82] can be presented

with Petri nets, we list in the following some Petri net planners as well. There are some
domain-independent planners, which use Petri net representation and corresponding
analysing methods in a certain stage of planning. TokenPlan [50] for instance utilises
colored Petri nets. First a PDDL description is translated to a colored Petri net, so
that every place in the net represents a predicate from problem description and every
transition corresponds to an planning operator. Then the flow of tokens inside this net
is analysed and based on that information another graph is generated. This graph is
then analysed in a way Graphplan does.
In Petriplan [173] a marriage of Graphplan [20] and Petri net submarking reacha-

bility problem solving is proposed. The Graphplan is used there for generating a plan
graph for an initial AI planning problem and thus for reducing the search space. Then

16 CHAPTER 2. STATE OF THE ART

the plan graph is converted into an acyclic Petri net representation and thus Petri net
reachability or coverability checking tools become available for plan construction.
In manufacturing automation Petri nets have been used for assembly, disassembly

and task sequence planning. Anyway Petri nets used there have specific properties
and do not support domain-independent planning. An overview of Petri net usage
in manufacturing automation is given in [138]. In [141] general Predicate/Transition
nets were used for AI planning. However, while using Place/Transition nets, like in
PNPlanner, we are able to recognise and reuse subplans. A survey of Petri nets is [140],
where an overview of basic concepts and extensions and subclasses of Petri nets may
be found. Propositional planning with Petri nets or within our LL fragment may be
viewed as multiset rewriting. Rewriting has been proposed for AI planning in [192].
State-of-the-art domain-independent planners include Graphplan [20], SATPLAN

[86], Blackbox [87] and their derivates. SATPLAN and Blackbox use propositional
SAT encodings for representing planning problems and therefore fast algorithms for
satisfiability testing can be applied to solve AI planning problems. Further advance-
ments include HSP, HSP-R [23] and FF [73]. In [45] it has been shown that compiling
the Graphplan planning graph into CSP yields additional advancements.
FF, HSP and HSP-R are based on “planning as heuristic search” paradigm, where

heuristic information is derived from the specification of the planning instance and
used for guiding the search through the search space. Both time and consumable/renew-
able resources have been embedded [68] to heuristic planning to combine expressive-
ness and performance.

2.3 Web services and intelligent agents
Gibbins et al [55] are probably the first ones who demonstrated, through an implemen-
tation, the usage of DAML-S Web service descriptions within agents. They separate
the intentional meaning of messages (whether it is a request or an assertion, for in-
stance) from their application domain specific content within DAML-S. That conforms
with multi-agent systems (MASs), where intent of messages is given through an agent
communication language (ACL) and domain specific content is given by means of
domain-specific ontologies. That approach reduces the brittleness of a system. Their
agents embody DAML-S descriptions of services and agent communication is man-
aged through FIPA ACL.
Another step towards incorporating Web services into agents is proposed by Ardis-

sono et al [8]. Their main contribution is support for more rigorous service execution
protocols compared to currently prevalent 2-step protocols. These current protocols
mainly consider sending input data and then collecting results from services. However,
if we consider MASs, we have to support also other aspects than simple remote exe-
cution. One example is agent negotiation protocols, which have more refined structure
than the simple remote procedure call supported by WSDL, for instance. In the paper
also several shortcomings of WSDL, like inability to describe interaction protocols and

2.4. AUTOMATED WEB SERVICE COMPOSITION 17

sequences of executions in complex services, are identified. To overcome these diffi-
culties it is proposed that the service provider guides the consumer by specifying at
each step of the interaction the set of eligible turn customers may perform. This could
be done, in limited extent, through WSFL-like interaction flow specification.
We go beyond that approach by allowing a server agent to compose a sequence

of action for a service consumer such that a required sequence of service command
executions is constructed automatically at server side and the consumer can provide
all details once. If that is not possible or does not suit for the consumer, the solution
at server side could be partial as well, or the server may engage other servers as well,
given consumer requirements. That would lead us to automatic service composition,
which can be easily automated, if enough semantic information about user require-
ments and accessible Web services is available.
Dickinson and Wooldridge [44] are strongly motivated in writing agent applica-

tions for the Semantic Web. They adopt BDI approach as an underlying mechanism
for agents. Message passing and agent directory are provided by JADE agent plat-
form. Messages are encoded in FIPA ACL and agents’ internal states are presented
in AgentSpeak(L) [157]. However, authors do not consider non-agent standards for
knowledge representation for accessing non-agentised services.
A comparison of 2 currently prevalent agent communication languages, KQML

and FIPA ACL, is presented in [108]. Although they both have different origins, they
both are almost identical with respect to their basic concepts. The main difference lies
in their underlying semantic frameworks.
All the mentioned approaches are supplement to each-other and cover different as-

pects of agent-based Web services. We are trying bring these efforts together under a
framework, which takes advantages of both agents and the Semantic Web languages
languages. Agent specific aspects provide Web services with proactivity, reactivity,
social ability and autonomy, while the usage of the Semantic Web services languages,
FIPA ACL and application domain specific ontologies provide a standardised medium
for Web service deployment. Usage of DAML-S allows publishing semantically en-
riched specifications of Web services and thus fits well to the Semantic Web vision.
Agents together with semantic description of Web services allow hiding complex in-
teractions of Web service invocation. A nice introduction to usage of ontologies and
Web services in multi-agent systems is given in [69].

2.4 Automated Web service composition
Web services’ research in the Semantic Web context varies from automated annotation
and ontologies [9] to automated Web service composition. While automated annota-
tion intends to provide methods to extract semantics from existing Web services, re-
search related to ontologies andWeb services has focused to the modelling of Web ser-
vices. The latter has led to such initiatives as WSMO, SWSO, OWL-S and WSDL-S.
Some existing Web services standards and related technologies are reviewed in [187].

18 CHAPTER 2. STATE OF THE ART

Several methods for dynamic composition of Web services have been proposed in
recent years. Most of them fall into one of the following two categories: methods
based on pre-defined workflow model and methods based on AI planning.
For the methods in the first category, the user should specify the workflow of the re-

quired composite service, including both nodes and the control flow and the data flow
between the nodes. The nodes are regarded as abstract services that contain search
recipes. The concrete services are selected and bound at runtime according to the
search recipes. This approach is widely adopted by members of the Information Sys-
tems community (in particular, see [34] and [169]).
The second category includes methods related to AI planning and automated the-

orem proving. They are based on the assumption that each Web service is an action
which alters the state of the world as a result of its execution. Since Web services (ac-
tions) are software components, the input and the output parameters of Web services
act as preconditions and effects in the planning context. After a user has specified
inputs and outputs required by the composite service, a process (plan) is generated
automatically by AI planners without the knowledge of predefined workflows.
A strong interest to automated Web service composition from AI planning com-

munity could be explained roughly by similarity between DAML-S and PDDL [133]
representations. PDDL is widely recognised as a standardised input for state-of-the-art
planners. Moreover, since DAML-S has been strongly influenced by PDDL language,
mapping from one representation to another is straightforward (as long as only declar-
ative information is considered). When planning for automated Web service compo-
sition is required, DAML-S descriptions can be translated to PDDL without any user
intervention. Then different planners could be exploited for further Web service com-
position.
In [134] a modification of Golog [115] programming language is used for auto-

matic construction of Web services. Golog is built on top of situation calculus and
has been enriched with some extra-logical constructions like if, while, etc. Golog
also provides an efficient way to handle equivalence relations. Therefore, it is argued
that Golog provides a natural formalism for automatically composing services on the
Semantic Web.
However, one disadvantage of Golog origins from its logical foundations. Since

Golog is based on situation calculus, frame axioms have to be specified, or some
higher-order constructions have to used as has been proposed in [115]. Frame axioms
specify fluents, which remain unaffected, if an action is applied in situation calculus.
Anyway, construction of frame axioms is a comprehensive task for Web services de-
velopers.
Although non-monotonicity of situation calculus allows Golog tomodel state changes

in a world, theorem proving with situation calculus is still based on truth values of liter-
als. Therefore it is not possible in Golog to present and reason about multiple copies of
literals in world states. Due to the latter problem some services may not be describable
within Golog, or extra efforts and logic programming tricks are required.
Waldinger [194] proposes initial ideas for another deductive approach. The ap-

2.4. AUTOMATED WEB SERVICE COMPOSITION 19

proach is based on automated deduction and program synthesis and has its roots in the
work presented in [123]. First available services and user requirements are described
with a first-order language, related to classical logic, and then constructive proofs are
generated with S [175] theorem prover.
Although some authors [109] have considered service synthesis with propositional

logics, first-order logics provide richer semantics. Additionally, the usage of first-order
logics allows to shrink the size of ontologies used in Web service composition. The
latter in turn affects directly the performance of discovery and exploitation of available
Web services.
Lämmermann [109] takes advantage of disjunctions in classical logic to describe

exceptions, which could be thrown during service invocations. We take advantage
of disjunctions for more general purpose—to represent exclusive outputs of services,
which could be exceptions as well as other results provided by services.
Hashemian and Mavaddat [67] combine breadth-first graph search and interface

automata [41] for automating Web service composition. While graph search is used
for finding a path with minimum length from identified input nodes to identified out-
put nodes, interface automata is applied for composing paths into a composite Web
services. Graph search operates over a directed graph, where edges represent available
Web services and nodes represent inputs/outputs of particular Web services.
Mao et al [124] apply Dijkstra’s shortest path search algorithm for first composing

a service and then distributing the constructed workflow over a physical network. The
path search operates over graphs, which represent sets of available services and physi-
cal network nodes. Although Mao et al [124] do not consider semantics and currently
prevalentWeb services standards, the paper is one of the earliest contributions focusing
directly to Web service composition in a general sense.
Usually in AI planning closed world assumption is made, meaning that if a lit-

eral does not exist in the current world, its truth value is considered false. In logic
programming this approach is called negation as failure. The main trouble with the
closed world assumption, from Web services perspectives, is that purely with truth lit-
erals we cannot express that new information has been acquired. For instance, one
might describe that after sending a message to another agent, an identity number to
the message will be generated. Thus during later communication the identity number
could be used.
McDermott [132] considers this problem in AI planning in composing Web ser-

vices. He introduces a new type of knowledge, called value of an action, which persists
and which is not treated as a truth literal. However, while using resource-conscious log-
ics, like LL or transition logic, this problem is treated implicitly and there is no need to
distinguish informative and truth values. Since LL is not based on truth values, we can
view generated literals as references to informative objects. Thus, if a new literal is
inserted into the world model, new piece of information will be available. Therefore,
LL provides an elegant framework for modeling incomplete knowledge—although be-
fore plan execution only partial knowledge is available, during execution more details
would be revealed.

20 CHAPTER 2. STATE OF THE ART

Sirin et al [174] propose a semiautomatic Web service composition scheme for in-
teractively composing new Semantic Web services. Each time a user selects a new
Web service, all Web services, that can be attached to inputs and outputs of the se-
lected service, are presented to the user. In this way a lot of manual search is avoided.
Anyway, the process could be fully automated by applying our methodology and if
user requirements to the resulting service are known a priori.
Paolucci et al [145] evaluate a broker for constructing OWL-S Web services. They

also identify some drawbacks of the current OWL-S specification and propose a work-
around for the problem. Advantages of applying the broker architecture, like anonymi-
sation, trusted intermediary and communication facilitation, are emphasised there.
Sycara et al [178] describe a methodology for constructing compositeWeb services

written in DAML-S. Also DAML-S semantics is reviewed there (a formalisation). Ad-
ditionally the implemented DAML-S virtual machine is evaluated there. Still, the two
preceding articles consider service composition as matching suitable atomic compo-
nents. Similarly, the preceding articles view service advertisements as service tem-
plates, which describe the inputs/outputs and preconditions/effects of particular ser-
vices. The concept of advertisements could be significantly extended with domain-
specific knowledge.
SWORD [154] is a developer toolkit for building compositeWeb services. SWORD

does not deploy the emerging service-description standards such asWSDL and DAML-
S, instead, it uses Entity-Relation (ER) model to specify the inputs and the outputs of
Web services. As a result, reasoning is based on the entity and attribute information
provided by an ER model.
Thakkar et al. [184] consider dynamic composition of web services using media-

tor architecture. The mediator takes care of user queries, generates wrappers around
information services and constructs a service integration plan.
Triana [121] is another graphical toolkit for Web service composition and execu-

tion. Atomic Web services are either discovered through a UDDI repository or are
exported from WSDL files. New Web services are composed manually. The main ad-
vantage of the framework, over other similar tools, is its ability to facilitate distribution
of composed workflows and their execution across a P2P or a Grid network. A frame-
work for automating Web service composition in Triana and possibly in other systems
has been proposed by Majithia et al [122]. A simple backward-chaining algorithm is
used for composing workflows, while matchmaking instantiates these workflows.
Hull and Su [75] present a short overview of tools and models for Web service

composition. The models include OWL-S, the Roman model [14] and the Mealy ma-
chine [30]. While OWL-S includes a rich model of atomic services and how they inter-
act with an abstraction of the “real world”, the Roman model and the Mealy machine
use a finite state automata framework for representing process flows.
Gómez-Pérez et al [57] describe another interesting tool for Semantic Web ser-

vice composition. The resulting service can be exported to an OWL-S specification.
In [200] SHOP2 planner is applied for automatic composition of DAML-S services.
Other planners for automatic Web service construction include [152, 153, 172, 186].

2.5. AUTOMATED WEB SERVICE ANNOTATION 21

The list is constantly growing.
Semantic matchmaking could be seen as a form ofWeb service composition. Paolu-

cci and Sycara [146] propose that UDDI tModels could be exploited to encapsulate
DAML-S descriptions within UDDI repositories. That would provide us semantic
matchmaking, while still preserving usage of UDDI repositories.

2.5 Automated Web service annotation
It has to be mentioned that the full power of automated composition cannot be har-
nessed before Web services are annotated semantically. Hence, given the huge number
of Web services available, there is a need for automated annotation methods. Sev-
eral aspects of automated Web service annotation have been considered by research
groups. Patil et al [150] present METEOR-S Web service annotation framework. The
framework implements new constructs for embedding semantic annotations into ex-
isting industry standards. Four kinds of semantics is considered: data, functional,
execution and QoS semantics. This contrasts with our approach where we consider
just data semantics and embed functional semantics into data semantics. For mapping
Web service data types to each-other, initially corresponding XML Schemas are trans-
formed into SchemaGraphs. Then linguistic and structural similarity is computed to
evaluate the best mapping between existing ontologies and elements in SchemaGraps.
Similarity is measured statistically.
Sabou et al [164] present a case study of using DAML-S ontology for annotating

semantically Web services. They identify difficulties of writing DAML-S services.
Since programmers are assumed to have knowledge about WSDL, SOAP and DAML,
the language is too comprehensive and knowledge-demanding for human users. This
result inherently applies also to successors of DAML-S (OWL-S) and other XML-
based languages. Thus the degree of automation should be increased to reduce the
complexity of annotation.
Sabou [163] proposes a semi-automatic method for extracting semantics from soft-

ware API documentations. The intuition is that, if particular API implements a Web
service, then the semantics of API corresponds to the semantics of the Web service.
Heß et al [70, 71] employ the Naive Bayes and SVM machine learning algorithms to
classify WSDL documents according to predefined semantic taxonomies. They allow
classification ofWeb services, their domains and data types. Burstein [31] is concerned
with construction of ontology mappings between terms in different Semantic Web ser-
vices. It is argued that since Web service providers do not use a shared ontology for
describing semantically their Web services, automated ontology mapping is required.

2.6 Automated software synthesis
Automatic software construction reduces the amount of time and other resources spent
for software coding. While identifying possibly reusable fragments of software, logical

22 CHAPTER 2. STATE OF THE ART

approaches may be used for software composition. Thereby software coding is reduced
to software specification. Since the resulting software is generated automatically using
semantically correct rules, the resulting software is error-free with respect to its formal
specification.
Simultaneously with software synthesis there is another field, which is concerned

with software correctness—software verification. In contrast to software synthesis,
software verification is concerned with looking for inconsistency in already generated
programs. Since programming and programs may be viewed as theorem proving and
theorem proof, respectively, automatic software construction seems more natural than
verification, because the code generated is already correct by means of the initial spec-
ification.
Through declarative description of programs, introspection property is provided for

programs. The declarative programming way also makes a written (specification) code
simpler to modify and understand, thereby reducing the risk of introducing software
bugs. It is emphasised [21] that while directly manipulating with concepts of an appli-
cation, programs become more understandable. One role of declarative programming
is thus to bridge the gap between mental concepts and program symbols.
Structural Synthesis of Programs [188] (SSP) is concerned with generating new

software from predefined methods. Every method is annotated with a logical axiom
A � B, where A and B are sets of literals for denoting input and output variables of
a method, respectively. Given a sequent defining initialised variables (literals in the
antecedent) and variables to be computed (literals in the succedent), theorem prov-
ing within propositional intuitionistic logic is employed for software synthesis. This
method has been applied in NUT [189] programming environment.
For efficient proof search [130] forward search is performed to generate an initial

proof. This proof possibly includes redundant steps, because any applicable axiom
may be included to the proof. The redundant inference steps are removed by backward
pass, where a set W of needed variables is used for checking appropriateness of every
axiom. InitiallyW includes only variables of the goal. When an axiom is classified to
be useful and kept in the proof, its input variables are included into W and its output
variables are excluded from W.
Partial deduction has been discussed for SSP in [128]. The main idea is to specify

the goal only partially or not at all. This contrasts with widely adapted goal-directed
proof search and computation in logic programming. The main reason for partial de-
duction is to ease up specifying goals—users only specify most import results of com-
putation they are interested in. Or they do not specify anything at all, but later inspect
whether anything interesting was produced. With partial deduction a theorem prover
generates all possible results for a given domain.
Manna and Waldinger [123] propose a first-order theorem proving methodology

for generating programs. Theorem proving is based on resolution rules and substitu-
tion. One advantages of this framework is that mathematical induction to resolution
framework is introduced—induction is handled as a deduction rule. For more efficient
proof search, (sub)formulae are polarised to indicate when certain inference rules may

2.6. AUTOMATED SOFTWARE SYNTHESIS 23

be applied to them.
Software specifications are given with first-order input-output relations. There is

a need to define assertions, goals and how the output of a function to be synthesised
depends on inputs. While assertions (preconditions) are in forms A and A&B, goals
are constrained to forms A, A ∨ B and A→ B, where A and B are first-order formulae.
As a result of theorem proving a code for implementing a function is generated. By

theorem proving termination of recursive calls is ensured. Additionally construction
of subfunctions is considered.
Darlington [39] proposes a first-order recursion equation language for software

synthesis based on transformation. Initial functions are described in the recursive way.
For instance, one may write fact(0)⇐ 1 and f act(n + 1)⇐ (n + 1) ∗ f act(n) to define
the traditional factorial function.
The underlying transformational system enables to convert normal recursive forms

of a program to iterative forms. The system is intended for making programs more
efficient by means of program transformations. Program transformation is performed
through interaction with a user. The user is required to provide instantiations of left
hand side base cases and recursive branches of a program during interaction. The
system then proposes new transformed program clauses and the user either accepts or
rejects them.
Also subfunctions can be generated with the help of a user. For instance, if a proof

could be constructed, given that a new function can be defined, then the user is asked to
provide the implementation of that function and proof search continues. Thereby the
system can decompose programs or functions into smaller pieces. Thus programming
is redefined as interaction between a human and a machine. The methodology allows
also generating inverse functions. For example, if a function is defined as f (x) = 2 ∗ x,
then its inverse function is f −1(y) = y/2.
However, it seems that, if software description gets large, users are overwhelmed

with answering to rigorous questions. Anyway, the approach may be one of the first
steps toward a new possible programming paradigm—interactive programming.
Another approach, based also on transformation rules, is proposed by Broy and

Pepper [28]. There every transformation rule is determined by preconditions (P),
which should hold before a transformation is applied. Also a matched clause (A) and
its replacement (B) has to be given. Thus transformation A ⇒ B can be applied, if P
holds. Thereby previously applied transformations can bias the following ones. The
resulting program is correct by construction.
Likewise the approach of Darlington, the purpose of this approach is program op-

timisation (and partial implementation), since given rules represent either optimisation
techniques or particular implementations. The transformational system can be seen as
macro-processing in imperative languages like C.
Summers [177] considers automatic LISP program construction from examples.

Examples are represented with input-output pairs of lists. Recursive LISP programs are
synthesised from these examples consisting of primitive LISP functions car, cdr, cons
and atom. First all possible subexpressions of examples’ inputs are enumerated and

24 CHAPTER 2. STATE OF THE ART

Table 2.1: Comparison of automated software synthesis approaches.

Method Language Purpose Techniques Problem representation Automatic

SSP [130]
intuitionistic
propositional
logic

structural
software
compositions

theorem proving axioms define
procedures yes

Summers [177] LISP (car,
cdr, cons, atom) induce a program generalisation input-output pairs yes

Darlington [39] FO recursion
equation language optimisation transformation recursive definition

of functions
inter−
active

Manna and
Waldinger [123] FO language low− level program

construction
deduction
math. induction

assertions, goal,
function output yes

Broy and
Pepper [28] FO language

optimisation
partial
implementation

transformation original code
transformation rules yes

ILP Horn clauses induction of predicates
and clause definitions

generalisation
specialisation

positive and
negative examples
of predicates

yes

combined to form outputs. Then inputs are transformed to a normal form representing
only the structure of inputs. Generated structures in turn allow to order input examples
by their structural complexity and inspect how an hypothetical program behaves on
input data. Finally generalisation is applied and programs are induced.
The approach is a step towards inductive logic programming [110] (ILP). ILP is

a research area at the intersection of machine learning and logic programming. We
can classify ILP robustly into empirical and interactive. While empirical ILP is con-
cerned with learning a single target relation from a large collection of possibly noisy
examples, interactive ILP systems attempt to learn multiple relations, which may be in-
terdependent, from a small set of correct examples. Learning in the latter subdiscipline
is incremental.
Basic ILP techniques involve generalisation and specialisation [110, p. 39]. Given

a possibly empty set of negative and a nonempty set of positive examples, through
generalisation more general logic programming language expressions are derived as
long the more general clauses do not cover any negative example. Specialisation works
in the reverse order—given a set of general clauses covering also negative examples,
the general clauses are specialised until they do not cover any of the negative examples.
Linear logic (LL) has been used for prototyping multi-agent systems [24]. Because

of fixed semantics of LL, formal method tools can be used for checking whether the
system functions just as intended. Although the prototype LL program is executable,
it is still too abstract to produce a final agent-based software. Thus another language is
used for building final software.
The reviewed approaches to automatic software synthesis or optimisation are sum-

marised in Table 2.1.

2.7 P2P-based Web service composition
Verma et al [193] consider a P2P infrastructure for publishing and discovering seman-
tically enriched descriptions of Web services. Anyway, they still use UDDI mecha-
nism for publishing Web services, whereas UDDI structures are used for storing se-

2.8. SEMANTICS AND P2P NETWORKS 25

mantic information about inputs and outputs of Web services similarly to Paolucci et
al [144]. Our approach allows to bypass usage of centralised services for service dis-
covery though we do not neglect their possible usage, if they could provide semantic
content as well. In their paper also current state-of-the-art of service advertisement,
discovery, invocation and orchestration are reviewed. Some of these standards have
definitely place in our architecture as well.
Arpinar et al [9] apply similarly to us automated Web service composition over

a P2P network. In their P2P architecture peers are organised into communities such
that each community involves peers, which represent the same domain. DAML-S is
used for describing Web services and queries (composite Web service interfaces). The
major difference between our ideology and the one presented by Arpinar et al is that
they try to determine links between Web services at publishing time, while we do
it at composition time. While our approach is more flexible and suits better to highly
dynamic networks with a moderate amount of queries, their approach is definitely more
suitable for more stable networks with massive amounts of queries. Anyway, their
method does not consider the non-monotonicity of Web services, which is handled by
our methodology.
Paolucci et al [147] implement a P2P service discovery mechanism through the us-

age of Gnutella P2P network. Discovery process is based on reasoning over DAML-S
descriptions of Web services. Java Expert System Shell (JESS) is applied as a DAML-
S inference mechanism and is engaged to determine whether a service satisfies a query.
The approach is suitable in cases where atomic Semantic Web services are known a
priori and semantically equivalent or similar services have to be discovered. Anyway,
during automated composition it is not known, which atomic services would be in-
cluded in the a resulting composite service. Thus their approach is not particularly
suitable for automated composition as we consider it here.
Similarly to us have Ermolayev et al [47] proposed cooperative agent-based Se-

mantic Web service composition. They exploit OntoServ.NET environment as a P2P
network. However, in this paper service composition is handled as an instantiation of
an existing workflow, while our approach both constructs a workflow and instantiates
it as well.
Benatallah et al [13] consider P2P provision of Web services. However, their ser-

vice composition process is static and the main contribution is a study of distributed,
decentralised service execution. Some essential issues in decentralised Web service
provision have been addressed by Papazoglou et al [148].

2.8 Semantics and P2P networks
Broekstra et al [27] consider semantic-based P2P systems. Their main focus is placed
on knowledge representation and management in query processing in P2P networks.
Due to heterogeneous nature of knowledge in P2P networks certain conventions have
to be introduced to semantic reasoning process.

26 CHAPTER 2. STATE OF THE ART

Crespo and Garcia-Molina [37] consider the construction of semantic overlay net-
works for P2P systems. Their contribution is a method for automatic clustering of
P2P networks to semantic overlay networks according to agent properties given by the
semantics of their content. A peer may belong to several overlay networks if it encap-
sulates data with different semantics. Such a clustering allows query routing according
to its content. Since the message is sent directly to affected parties the number of
messages for resource location is significantly decreased.
Schmidt and Parashar [168] propose a P2P indexing mechanism and associated

P2P storage, which supports large-scale real-time search capabilities. The novelty of
the system is that it supports location of data sources identified by a query consist-
ing of partial keywords and wildcards. The system is largely based on the Chord
indexing schema with an extension that queries can be more complex. Hilbert space
filling curves (HSFC) are applied for mapping an n-dimensional keyword space to 1-
dimensional hash value space. HSFCs are locality preserving are characterised by dig-
ital causality property. While the former means that points, which are close in 1-dim
space, are close in n-dim space as well, the latter implies that indices in the same index
space sub-cube have the same prefix for keywords. Related to the previous source,
Andrzejak and Xu [5] use the same function (Hilbert SFC), but in a reverse manner
(unlike Schmidt and Parashar [168]), to map resources to peers.
Tang et al [183] consider semantics in P2P systems. They adopt Latent Seman-

tic Indexing (LSI) for information retrieval in Content-Addressable Networks (CAN).
The semantics of a document is described with a set of keywords. Instead of LSI some
other information retrieval algorithm [155] could be applied as well for computing a
unique value to a particular set of keys. Another way to discover semantics in dis-
tributed systems is proposed by Guha [62], who concerned with semantic negotiation
for determining the meaning of concepts according to shared keys, which describe the
concepts.
Bawa et al [11] propose a P2P network topology, where the network is clustered

into segments by topics. In this case short distance links connect peers sharing the same
topic, while long distance links connect peers at different segments. For each topic a
centroid is constructed, which represents a centerpoint for a topic. In our network
a centroid is represented with a literal. Thus each literal in the system represents a
centroid. Peers may be connected to several centroids simultaneously. Thus although
we apply Chord [176] ideology and protocols for managing our P2P network, we have
a subnetwork for each literal. Each peer may have several identification codes—one
for each subnetwork.
Adjiman et al [2] implemented a P2P network for distributed theorem proving over

propositional classical logic clauses. The underlying network is based on small world
topology [74], where each peer has a list of other peers, who share the same literals
(parts of a theory) as the agent does. Small world paradigm as an extension to struc-
tured P2P networks has been proven [74] to provide efficient access to popular objects
if the network content is highly clustered. In our case we are interested in finding a
literal carrier from the network and this makes DHT-s more suitable for us. We still

2.9. MULTI-AGENT SYSTEMS 27

apply some techniques from small world ideology.
Peer-Serv [195] is a framework for exploiting Web services in a P2P environment.

Peer-Serv exploits a Web service broker federation, while each peer is assigned to a
particular broker. P2P mechanism is used for Web service execution, publishing and
querying. The proposed architecture could be seen as a federation of UDDI registries,
where queries are handled through a P2P medium. Another mechanism for Web ser-
vice discovery through structured P2P networks is proposed by Kaffille et al [79].
Another mechanism for resource discovery in structured P2P networks is discussed

by Antonopoulos et al [6, 7]. Their P2P network structure is based on Chord and
organises indexes in multiple Chord rings. A more thorough analysis of major P2P
approaches has been published by Milojicic et al [137].

2.9 Multi-agent systems
Since the literature for agent systems is abundant we review here only these for-
malisms, which mostly relate to our work and have inspired it in the beginning.

2.9.1 Negotiation
As it has been indicated in [77] negotiation is the most fundamental and powerful
mechanism for managing inter-agent dependencies at run-time. Negotiation may be
required both for self-interested and cooperative agents. It allows to reach a mutually
acceptable agreement on some matter by a group of agents.
Rahwan et al [156] review existing argumentation-based approaches to negotia-

tion. They review issues like challenges, negotiation protocols plus mechanisms for
argument construction, selection and evaluation.
Davis and Smith [40] seem to be the first to point out the usage of negotiation

as a metaphor for distributed problem solving. They see negotiation as a basis for a
protocol for organising problem solving activity. Negotiation is applied in matching
problem solvers and tasks whereas Contract Net [40] protocol is applied for negoti-
ation. Anyway, it was PUP6 [112] system to suggest first that interaction between
software system entities could be viewed as a discussion between interested parties.
Kraus et al [90] give a logical description for negotiation via argumentation for BDI

agents. They classify arguments as threats and promises, which are identified as most
common arguments in human negotiations. In our case only promises are considered,
since in order to figure out possible threats to goals of particular agents, agents’ beliefs,
goals and capabilities should be known in advance to the persuader. We assume, that
our agents do not explicitly communicate about their internal state. Thus, our agents
can provide higher degree of privacy in agent applications compared to particular BDI
agents.
Parsons et al [149] defined negotiation as interleaved formal reasoning and argu-

ing. Arguments and counterarguments are derived using theorem proving while taking

28 CHAPTER 2. STATE OF THE ART

into consideration agents’ own goals. While Parsons et al [149] perform reasoning
in classical logic, it is possible to infer missing clauses needed for achieving a goal.
The situation gets more complicated, when several instances of formulae are available
and, moreover, the actions performed by agents or resources they spend can be inter-
dependent. Thereby, inference in LL is not so straightforward, since some clauses are
“consumed” while inferring other clauses. Due to the aforementioned reasons we ap-
ply PD to determine missing parts of a proof. Then the missing part is announced to
other possibly interested agents.
Fisher [51] introduced the idea of distributed theorem proving in classical logic as

agent negotiation. In his approach all agents share the common view to the world and
if a new clause is inferred, all agents would sense it. Inferred clauses are distributed
among agents via broadcasting. Then, considering the received information, agents
infer new clauses and broadcast them further again. Although agents have a common
knowledge about inferred clauses, they may hold different sets of inference rules. Dis-
tribution of a collection of rules between agents means that different agents may have
different capabilities and make different inferences. The latter implies that different
agents contribute to different phases of proof search. Our approach differs from that
work mainly in 2 aspects (in addition to usage of another logic): (1) our agents do not
share a common view of a world and (2) inference results are not broadcasted.
Sadri et al [165] propose an abductive logic programming approach to automated

negotiation, which is built on Amgoud et al [3] work on argumentation. The work
of Sadri et al is more specialised and detailed than the work by Amgoud et al. That
allows deeper analysis of the reasoning mechanism and the knowledge required to
build negotiation dialogues.

2.9.2 Coalition formation and teamwork
One of the first formalisations of cooperative problem solving is given by Wooldridge
and Jennings [199] (other approaches presented so far are also reviewed there). One
of the earliest implemented general models of teamwork is described in [180], which
is based on joint intentions theory and on shared plans theory.
An advancement to Bratman’s theory of intention [25] is presented in [158], where

relations between beliefs, goals and intentions are given and for the first time belief,
goal and intention revision process is captured. The main idea is that an agent can have
only those goals, which she believes to be achievable and only those intentions, which
lead to goals.
This approach differs from that of Cohen and Levesque [35] in that it treats in-

tentions as a basic attitude and shifts the emphasis of future commitment from the
definition of intention to the process of intention revision. Semantically, this approach
differs in that it distinguishes between the choice available to the agent in choosing her
actions and her beliefs about which worlds are possible. In addition interrelationship
between beliefs, goals and intentions is specified there.
The joint intentions theory [36] determines the means how agents should act to

2.9. MULTI-AGENT SYSTEMS 29

fulfill joint goals, when they should exchange messages, synchronise between them-
selves, leave the team, etc. It also determines when the joint goal is considered to be
achieved or when and how to break up commitment to it, if it should, for instance, turn
out that one agent is not able anymore to perform its task(s).
Decision making about whether a goal has been achieved, is not achievable or

there is no need to achieve it anymore, is based on consensus—every agent can initiate
a discussion through which consensus is (presumably) achieved. Then everybody acts
as stated by the consensus. However, it is not stated how joint goals are formed through
negotiation or other processes.

2.9.3 Agent coordination
Our approach could be viewed as distributed planning similarly to the work in [52].
Case-based planning has been applied for coordinating agent teams in [54]. The plan-
ner generates a so called shared mental model of the team plan. Then all agents adapt
their plans to the team plan. This work is influenced by the joint intentions [36, 114]
and shared plans [61] theory.
In [179] agent coordination is performed through task agents by planning. First

problem solving goals are raised, then solutions satisfying these goals are computed
and finally these plans are decomposed and coordinated with appropriate task or other
agents for plan execution, monitoring and result collection. Other agents are informa-
tion and interface agents, for information collection and interfacing with a human user,
respectively.
While task agents have a model of the task domain in advance, information agents

are allowed additionally to seek for additional information during problem solving
(anyway problem solving is not so sophisticated there as is in task agents).
According to [22] our theorem proving methodology is characterised with par-

allelism at the search level. The approach relates by theorem proving methodology
mostly to the successors of Team-Work [53]. Fuchs [53] describes an approach, where
distribution of facts and sub-problems is organised on request—that is the basic mech-
anism behind our methodology as well. However, Fuchs considers first-order logic
with equality, which is somehow different from LL.
De Weerdt et al [43] applied a resource logic for multi-agent plan merging. The

general idea is to optimise already existing plans of agents through cooperation. Given
that each agent has a plan, which solves its task, the plans still may produce some extra
resources, which are not required by agents themselves. Therefore, while exchanging
the extra resources, agents may discard some steps in their plans and joint efficiency
is achieved. In our case we consider online plan construction rather than merging
complete individual plans.
Kakas et al [80] present a logical framework, which integrates planning, negotia-

tion and control of operation. Computational logic is used for describing these pro-
cesses. Although similar processes have been integrated for instance in the CPS model
by Wooldridge, the biggest advantage of this framework arises from executability of

30 CHAPTER 2. STATE OF THE ART

logical specifications. Governatori et al [58] apply defeasible logic for automated ne-
gotiation.
Van der Krogt et al [191] proposed a resource-based framework for planning and

re-planning. Their formalism seems to encapsulate some similar aspects as our frame-
work although in the AI planning domain.
Finally there are several works considering task allocation via agent coalition for-

mation, for instance [167, 170, 171, 185]. Anyway, while these methods tend to focus
on task allocation to particular agents and coalitions, we assume that each agent has
a task already assigned to it. Thus our agents have to figure out whether and when
to form coalitions by themselves. Moreover, while other methods are mostly about
task decomposition, our method could be seen as composite task construction through
coalition formation.

2.10 Linear logic in agent systems
LL contributions to agent technologies are based mainly on its resource consciousness
and both internal and external nondeterministic choices, which cannot be expressed
in classical logic. In classical and modal logic, for instance, all derived formulae last
literally speaking forever, meaning that if an agent is spending money, it never runs
out of it despite of the amount traded for goods or services. LL in contrary allows to
determine when and how resources are consumed.
During the recent decade significant improvements in linear logic [56] (LL) and

agent technologies have been made. Both disciplines have witnessed a shift from the-
ory to applications. Although in agent technologies other logics like situation calculus,
classical and modal logic (ML) have been applied for both, theoretical and practical
purposes, LL has been out of interest focus so far. However, since LL provides several
advantages, like resource consciousness and differentiation between disjunctions, over
other logics explored in agent technologies by now, first attempts have been made to
find usage for LL in agent systems.
In [24] LL has been used for prototyping multi-agent systems at conceptual level.

Because of the fixed semantics of LL, it is possible to verify whether a system functions
as intended at conceptual level. Although the prototype LL program is executable,
it is still too high level to produce a final agent-based software. Thus another logic
programming language is embedded to compose the final software.
Harland and Winikoff [66] address the question of how to integrate both proactive

and reactive properties of agents into LL programming framework. They use for-
ward chaining to model the reactive behaviour of an agent and backward chaining to
model the proactive behaviour. This type of computation is called as mixed mode
computation, since both forward and backward chaining are allowed. The theoretical
background to mixed mode computation is given in [64].
Harland and Winikoff [65] also presented the first ideas of applying LL theorem

proving for agent negotiation. The main advantages of LL over classical logic are its

2.11. SUMMARY 31

resource-consciousness and existence of two kinds of nondeterminism. Both internal
and external nondeterminism in negotiation rules can be represented. In the case of
internal nondeterminism a choice is made by resource provider, whereas in the case
of external nondeterminism a choice is made by resource consumer. For instance,
formula Dollar5 � Beer ⊕ Soda (at the offer receiver side) means that an agent can
provide either some Beer or Soda in return for 5 dollars, but the choice is made by the
provider agent. The consumer agent has to be ready to obtain either a beer or a soda.
The formula Dollar � Tobacco&Lighter (again at the offer receiver side) in contrary
means that the consumer may select which resource, either Tobacco or Lighter, s/he
gets for a Dollar.
The main idea is to describe agents’ abilities and expectations with LL formulae.

For instance, formula Apple⊗Apple� Paint⊕Pencilmeans that an agent can provide
you either with some Paint or a Pencil in return for two apples, but the choice is made
by the agent. Thus the consumer agent has to be ready for both cases—it may obtain
either paint or a pencil as well. The formula Dollar � Tobacco&Lighter in contrary
means that the consumer may select by itself which resource, Tobacco or Lighter, it
gets for a Dollar. When initial resources owned by agents and expected negotiation
result has been specified we can use LL theorem proving for negotiation. Generated
proofs embed solutions for achieving defined goals.
In [196] a framework for embedding both declarative and procedural aspects of

agents’ goals is proposed. Declarative description of a goal defines the state of the
world which is sought and procedural description gives a set of actions which are ex-
ecuted in order to achieve the goal. While declarative information allows detecting
and solving goal conflicts, procedural information is needed to specify how the agent
should achieve the goal. Such a goal presentation brings us closer to goal-oriented
logic programming, because the declarative and the procedural part of a goal represent
the head and the body of a logic program clause respectively. Such kind of representa-
tion reminds also ideas from reactive and partial order planning.

2.11 Summary

Although the work reviewed in this chapter covers a plethora of aspects related to au-
tomating several tasks in information systems, there is still a plenty of room for further
research. For instance, in the field of automated Web service composition there is still
no consensus on how to describe composition problems. Moreover, it is not even clear
how expressive languages or formalisms are required for describing the problems. The
similar issue applies to the Semantic Web in general—it is not clear which properties
of objects constitute their semantics and therefore should be expressed. Since the re-
quirements for a language are not known, it is also unclear whether and which existing
(logical) formalisms are sufficient to describe the semantics of data objects and Web
services.
There is also need for understanding the characteristics of search space of Web

32 CHAPTER 2. STATE OF THE ART

service composition tasks with respect to AI planning tasks. It seems that while general
AI planning problems generate a deep search tree with small branching factor, Web
service composition generates a shallow search tree with huge branching factor. This in
turn means that specialised heuristics are required for solvingWeb service composition
problems as specialised AI planning problems.
Anyway, in order to apply automated Web service composition, Web services have

to be annotated semantically first. However, due to the constantly increasing number of
published WSDL documents, automated annotation methods are required. Although
there are some efforts to automateWeb service annotation, there is still no study, where
automated annotation has been applied to a significant number of Web services. Nei-
ther seems to be there any initiative, which would allow to compare accuracy and other
properties of proposed automated annotation methods. Hence a systematic evaluation
of existing annotation methods would help to facilitate automated Web service com-
position.
Web service discovery through P2P networks requires extending existing P2P net-

work topologies such that full services’ structure could be mapped into particular P2P
networks. Then efficient discovery methods, considering both structural and QoS prop-
erties of required Web services, can be designed. Moreover, it is desired that the new
topology would allow to locate both data and services in the unified way.
Finally, there are many opportunities for contributions in the field of multi-agent

systems. For example, game-theoretic negotiation has been extensively studied within
the agent community. However, symbolic reasoning as negotiation is a methodology,
which just recently has received focus. Although some approaches have been pro-
posed for symbolic negotiation, the suitability of many more logics has yet to be eval-
uated. Moreover, limitations and advantages of symbolic negotiation have not been
completely revealed.

Part I

Formal Foundations

33

Chapter 3

Partial Deduction

In this chapter we formalise Partial Deduction (PD) for intuitionistic fragment of Lin-
ear Logic [56] (ILL). ILL gives a resource-oriented basis for encoding non-monotonic
computational problems. One instance of these computational problems is automated
Web service composition. The proposed PD formalism is used to formalise CPS and
symbolic negotiation in Chapter 4.
We encode PD steps as ILL inference figures, which allow us to simplify proof

search in our fragment of LL. While using those inference figures instead of basic
LL rules, we can achieve higher efficiency during proof search compared to generic
theorem proving. Moreover, PD gives us a freedom to control automated theorem
proving according to determined strategies.

3.1 Linear logic
LL is a refinement of classical logic introduced by J.-Y. Girard to provide means for
keeping track of “resources”. In LL two assumptions of a propositional constant A are
distinguished from a single assumption of A. This does not apply in classical logic,
since there the truth value of a fact does not depend on the number of copies of the
fact. Indeed, LL is not about truth, it is about computation.
In the following we are considering intuitionistic fragment of LL (ILL) consisting

of multiplicative conjunction (⊗), additive disjunction (⊕), additive conjunction (&),
linear implication (�) and “of course” operator (!). In terms of resource acquisition
the logical expression A ⊗ B � C ⊗ D means that resources C and D are obtainable
only if both A and B are obtainable. After the sequent has been applied, A and B are
consumed and C and D are produced.
The expression A � B ⊕C in contrast means that, if we have resource A, we can

obtain either B orC, but we do not know which one of those. The expression A&B � C
on the other hand means that while having resources A and Bwe can choose, which one
of them to trade for C. Therefore it is said that ⊕ and & represent respectively external
and internal choice. While implication A � B as a computability statement clause
in ILL could be applied only once, !(A � B) may be used an unbounded number of

35

36 CHAPTER 3. PARTIAL DEDUCTION

times. When A � B is applied, then literal A becomes deleted from and B inserted to
the current set of literals. If there is no literal A available, then the clause cannot be
applied. To increase the expressiveness of formulae, we use the following abbreviation
an = a ⊗ . . .⊗ a︸������︷︷������︸

n
, for n > 0.

In order to illustrate the above-mentioned features let us consider the following LL
sequent from [116]:

(D ⊗ D ⊗D ⊗ D ⊗D) � (H ⊗C ⊗ (O&S)⊗!F ⊗ (P ⊕ I)),

which encodes a fixed price menu in a fast-food restaurant: for 5 dollars (D) you
can get an hamburger (H), a coke (C), either onion soup O or salad S depending,
which one you select, all the french fries (F) you can eat plus a pie (P) or an ice cream
(I) depending on availability (restaurant owner selects for you). The formula !F here
means that we can use or generate a resource F as much as we want—the amount of
the resource is unbounded.
Lincoln [117] summarises complexity results for several fragments of LL. Proposi-

tional multiplicative additive LL (MALL) is indicated to be PSPACE-complete, whilst
first-order MALL is at most NEXPTIME-hard. If we would discard additives ⊕ and
& from MALL, we would get multiplicative LL (MLL). Both, propositional and first-
order MLL, are NP-complete. According to Lincoln these complexity results do not
change, if respective intuitionistic fragments of LL are considered. These results hint
that for practical computations either MLL or propositional MALL (or their intuition-
istic variants MILL and MAILL (IMALL), respectively) might be applied.

3.2 Basics of partial deduction
In this section we present definitions of the basic concepts of partial deduction for ILL.
The names of introduced concepts are largely influenced by the computation-oriented
nature of our applications, where we intend to apply the framework.

3.2.1 Partial deduction and LL
Partial deduction (PD) (or partial evaluation of logic programs first introduced in [89])
is known as one optimisation technique in logic programming. Given a logic program,
partial deduction derives a more specific program while preserving the meaning of the
original program. Since the program is more specialised, it is usually more efficient
than the original program, if executed. For instance, let A, B, C and D be propositional
variables and A � B, B � C and C � D computability statements in LL. Then
possible partial deductions are A � C, B � D and A � D. It is easy to notice that
the first corresponds to forward chaining (from initial states to goals), the second to
backward chaining (from goals to initial states) and the third could be either forward
or backward chaining.

3.2. BASICS OF PARTIAL DEDUCTION 37

Although the original motivation behind PD was to deduce specialised logic pro-
grams with respect to a given goal, our motivation for PD is a bit different. We are
applying PD for determining subtasks, which cannot be performed by a single agent,
but still are possibly closer to a solution than an initial task. This means that given a
state S and a goal G of an agent we compute a new state S ′ and a new goal G′. This
information is forwarded to another agent for further inference. From PD point of view
this means that the program Γ � S ′ � G′ would be derived from Γ � S � G. Then the
derived program is sent to other entities, who modify it further.
Lloyd and Shepherdson [120] considered completeness and soundness issues of

PD for classical logic programs. Recently a PD formalisation for fluent calculus was
proposed by Lehmann and Leuschel [111]. Anyway, it turns out that there is no work
considering PD for LL. This gap would be filled in this paper by providing a formal
foundation of PD for LL as a framework for CPS. We also consider completeness and
soundness of PD for LL in this paper.

3.2.2 Basic definitions
Definition 1 A program stack is a multiplicative conjunction

n⊗
i=1
Ai,

where Ai, i = 1 . . . n is a ILL formula.

Definition 2 Mapping from a multiplicative conjunction to a set of conjuncts is defined
as follows: 

n⊗
i
Ai

 = {A1, . . . , An}

Definition 3 Consumption of formula Ai from a program stack S is a mapping

A1 ⊗ . . .⊗ Ai−1 ⊗ Ai ⊗ Ai+1 ⊗ . . .⊗ An 	→S,Ai A1 ⊗ . . .⊗ Ai−1 ⊗ Ai+1 ⊗ . . .⊗ An,

where A j, j = 1 . . . n could be any valid formula in ILL.

Definition 4 Generation of formula Ai to a program stack S is a mapping

A1 ⊗ . . .⊗ Ai−1 ⊗ Ai+1 ⊗ . . .⊗ An 	→S,Ai A1 ⊗ . . .⊗ Ai−1 ⊗ Ai ⊗ Ai+1 ⊗ . . .⊗ An,

where A j, j = 1 . . . n and Ai could be any valid formulae in ILL.

Definition 5 A Computation Specification Clause (CSC) is a ILL sequent

� I � f O,

where I and O are multiplicative conjunctions of any valid ILL formulae and f is a
function, which implements the computation step. I and O are respectively consumed
and generated from the current program stack S , when a particular CSC is applied.

38 CHAPTER 3. PARTIAL DEDUCTION

It has to be mentioned that a CSC can be applied only, if [I] ⊆ [S]. Although
in ILL CSCs are represented as linear implication formulae, we represent them as
extra-logical axioms in our problem domain. This means that an extra-logical axiom
� I � f O is basically equal to ILL formula !(I � f O).

Definition 6 A Computation Specification (CS) is a finite set of CSCs.

Definition 7 A Computation Specification Application (CSA) is defined as

Γ; S � G,

where Γ is a CS, S is the initial program stack and G the goal program stack.

Definition 8 Resultant is a CSC

� I �λa1,...,an. f O, n ≥ 0,

where f is a term representing a function, which generates O from I by applying po-
tentially composite functions over a1, . . . , an.

CSA determines which CSCs could be applied by PD steps to derive resultant
� S �λa1,...,an. f G, n ≥ 0. It should be noted that resultants are derived by applying PD
steps to the CSAs, which are represented in form A � B. The CSC form is achieved
from particular programs stacks by implicitly applying the following inference figure:

� A� B
A � A Id B � B Id
A, A� B � B L�

A � B Cut

While resultants encode computations, program stacks represent computations’
pre- and postconditions.

3.2.3 PD steps
This section defines all PD steps, which are used in our formalism.

Basic propositional steps

Definition 9 Forward chaining PD step R f (Li) is defined as a rule

B ⊗C � G
A ⊗C � G R f (Li)

where Li is a labelling of CSC � A�Li B. A, B, C and G are ILL formulae.

3.2. BASICS OF PARTIAL DEDUCTION 39

Definition 10 Backward chaining PD step Rb(Li) is defined as a rule

S � A ⊗C
S � B ⊗C Rb(Li)

where Li is a labelling of CSC � A�Li B. A, B, C and S are ILL formulae.

PD steps R f (Li) and Rb(Li), respectively, apply CSC Li to move the initial program
stack towards the goal stack or vice versa. In theRb(Li) inference figure formulae B⊗C
and A ⊗C denote respectively an original goal stack G and a modified goal stack G′.
Thus the inference figure encodes that, if there is an CSC � A �Li B, then we can
change goal stack B ⊗C to A ⊗C. Similarly, in the inference figure R f (Li) formulae
B ⊗C and A ⊗C denote, respectively, an original initial stack S and its modification
S ′. And the inference figure encodes that, if there is a CSC � A �Li B, then we can
change initial program stack A ⊗C to B ⊗C.

PD steps for managing unbounded resources

In order to manage access to unbounded resources, we need PD steps RCl , RLl , RWl
and R!l(n). The inference figures reflect directly LL rules !C, !L and !W.

Definition 11 PD step RCl is defined as a rule

!A⊗!A ⊗ B � C
!A ⊗ B � C RCl

where A, B and C are ILL formulae.

Definition 12 PD step RLl is defined as a rule

A ⊗ B � C
!A ⊗ B � C RLl

where A, B and C are ILL formulae.

Definition 13 PD step RWl is defined as a rule

B � C
!A ⊗ B � C RWl

where A, B and C are ILL formulae.

Definition 14 PD step R!l(n), n > 0 is defined as a rule

!A ⊗ An ⊗ B � C
!A ⊗ B � C R!l(n)

where A, B and C are ILL formulae. An = A ⊗ . . .⊗ A︸�������︷︷�������︸
n

, for n > 0.

40 CHAPTER 3. PARTIAL DEDUCTION

First-order PD steps

Considering the first-order ILL we have to replace PD steps R f (Li) and Rb(Li) with
their respective first-order variantsR f (Li(x)) and Rb(Li(x)). Other PD steps can remain
the same. We also require that the initial and the goal program stack are ground.

Definition 15 First-order forward chaining PD step R f (Li(x)) is defined as a rule

B ⊗C � G
A ⊗C � G R f (Li(x))

Definition 16 First-order backward chaining PD step Rb(Li(x)) is defined as a rule

S � A ⊗C
S � B⊗C Rb(Li(x))

In the above definitions A, B,C are ILL formulae and Li(x) is defined as � ∀x(A′ �Li(x)
B′). Additionally we assume that a def= a1, a2, . . . is an ordered set of constants, x

def
=

x1, x2, . . . is an ordered set of variables, [a/x] denotes substitution, and X = X′[a/x].
When substitution is applied, elements in a and x are mapped to each other in the order
they appear in the ordered sets. These sets must have the same number of elements.

PD step for constructing nondeterministic resultants

Nondeterministic resultants can be generated basically in two ways. First, there may
exist a particular CSC having nondeterministic effects. Second, there is an internal
mechanism for creating such resultants from scratch. Since in the first case nondeter-
ministic resultants are achieved via basic PD forward and backward steps, we consider
here only the second case.

Definition 17 Forward chaining PD step Branch is defined as a rule

k
&
i=1
Ai � B1 . . .

n
⊕
i=l
Ai � Bm

n
⊗
i=1
Ai �

m
⊗
i=1
Bi

Branch

where 1 ≤ l, k ≤ n, n > 1.

This step generates multiple nondeterministic interdependent resultants at once. It
means that the set of derived resultants should be considered as a single problem—a
solution to the original resultant is found if and only if solutions to all derived resultants
are found.

3.3. A MOTIVATING EXAMPLE 41

3.2.4 Derivation and PD
Definition 18 (Derivation of a resultant) Let R be any predefined PD step. A deriva-
tion of a resultant R0 is a finite sequence of resultants: R0 ⇒R R1 ⇒R R2 ⇒R . . .⇒R
Rn, where⇒R denotes an application of PD step R.

Definition 19 (Partial deduction) Partial deduction of a CSA Γ; S � G is a set of all
resultants Ri derivable from CSC � S � G.

It is easy to see that this definition of PD generates the set of all proof trees for CSA
Γ; S � G. Due to the non-monotonicity of LL we need a sort of backtracking mecha-
nism in our formalism for preserving completeness. Therefore we need backtracking
ability, which is achieved by keeping the all the proof trees encountered.

Definition 20 A CSA Γ; S � G is executable, iff given Γ as a CS, resultant � S �λa1,...,an. f
G, n ≥ 0 can be derived such that derivation ends with resultant Rn, which equals to
� A� A, where A is a program stack.

3.3 A motivating example
To illustrate the PD process in the symbolic negotiation context, let us consider the
following example. Let us have 3 agents representing a musicianM, a writerW and
an artistA. They all have personal goals they would like to achieve. We would like to
emphasise that this example is supposed to demonstrate syntactical and computational
aspects only and no pragmatic issues are considered here. More practical examples
have been considered in the field of automated Web service synthesis [159]. These
examples involve more extra-logical axioms and longer proofs. They are, however, not
so sophisticated from formal point of view.
The musician would like to go out with her husband and therefore needs 2 concert

tickets. Unfortunately the concert, she is interested in, has been sold out and therefore
the only way to acquire the tickets is to ask them from other agents. In return she can
grant a certain book and unlimited access to digital version of her albums. Thus

GM = {Ticket2},

SM = {!MP3⊗ Book}

and

ΓM = ∅.

The artist has promised to perform at a conference and thus needs 2 hours of back-
ground music and an MP3 player. Since the performance takes place at the same time
as the concert he can give away its concert ticket. Formally,

42 CHAPTER 3. PARTIAL DEDUCTION

GA = {Perf },

SA = {Ticket}

and

ΓA = {� MP32 ⊗MP3Player �perform Perf }.

The writer wants to relax and this can be achieved by reading a book and listening
to music. He has both—a CD player and an MP3 player. Additionally he can write
CDs from MP3 files. He also has a ticket to the same concert with the artist. However,
he prefers staying at home this time. Thus formally this is described as follows:

GW = {Relaxed},

SW = {Ticket ⊗CDPlayer ⊗MP3Player},

ΓW =

� CD ⊗CDPlayer �playCD Music,
� MP3 ⊗MP3Player �playMP3 Music,
� Music⊗ Book�relax Relaxed,
� MP3�burnCD CD.

Let us describe now how PD can be applied in the symbolic negotiation process
between these 3 agents. Since we have not formalised yet the symbolic negotiation
process, we only show the PD part of the process. The negotiation is initiated by
agents M and W. Agent M is unsure whether anyone has two tickets left to the
concert. Therefore she decides to propose 2 separate offers (resultants) instead of a
single one:

!MP3 ⊕ Book � Ticket

and

!MP3&Book � Ticket

Offers !MP3 ⊕ Book � Ticket and !MP3&Book � Ticket were achieved from SM
and GM by applying inference figure Branch in the following manner:

!MP3 ⊕ Book � Ticket !MP3&Book � Ticket
!MP3 ⊗ Book � Ticket2

Branch

While !MP3 ⊕ Book � Ticket gives a receiver an opportunity to choose between
!MP3 and Book, !MP3&Book � Ticket states that the receiver would get either !MP3 or
Book, but the choice is made by the receiver of !MP3 ⊕ Book � Ticket. This is intuitive

3.4. SOUNDNESS AND COMPLETENESS OF PD IN ILL 43

since the second receiver has no idea whether the first receiver would choose either
!MP3 or Book.
The resultants describe internal and external choices in LL and are represented with

operators & and ⊕ respectively. While ⊕ from the sender’s point of view gives choice
to the receiver, & is the opposite—the sender makes the decision of which resource to
deliver.
AgentW sends out the following resultant:

Ticket ⊗MP3Player � MP3 ⊗ Book,
which means that he can trade a ticket and anMP3 player for an hour of MP3 music

and a book. The resultant was achieved in the following way:

Ticket ⊗MP3Player � MP3 ⊗ Book CDPlayer � CDPlayer Id

Ticket ⊗CDPlayer ⊗MP3Player � MP3 ⊗CDPlayer ⊗ Book L⊗,R⊗

Ticket ⊗CDPlayer ⊗MP3Player � CD⊗CDPlayer ⊗ Book Rb(burnCD)

Ticket ⊗CDPlayer ⊗MP3Player � Music⊗ Book Rb(playCD)

Ticket ⊗CDPlayer ⊗MP3Player � Relaxed Rb(relax)

After applying the full symbolic negotiation process (see Chapter 4) the result,
depicted in Figure 3.1, is achieved. Circles denote there resource exchange events
between agents, formalised later as symbolic negotiation primitives, while rounded
rectangles represent execution of agents’ capabilities determined through PD. The ver-
tical arrows between circles and rectangles represent ordering of activities, which was
achieved through symbolic negotiation. The horizontal arrows represent which re-
sources are exchanged at particular time points.

3.4 Soundness and completeness of PD in ILL

3.4.1 PD steps as inference figures in ILL
In this section we prove that PD steps are inference figures in ILL.

Proposition 1 Forward chaining PD step R f (Li) is sound with respect to ILL rules.

Proof The proof in ILL follows here:

A ⊗C � A ⊗C Id � (A�Li B)
Axiom

A ⊗C � A ⊗C ⊗ (A�Li B)
R⊗

C � C Id

A � A Id B � B Id
A, (A�Li B) � B

L�

A ⊗ (A�Li B) � B
L⊗

C, A ⊗ (A�Li B) � B⊗C
R⊗

A ⊗C ⊗ (A�Li B) � B⊗C
L⊗ B⊗C � G

A ⊗C ⊗ (A�Li B) � G
Cut

A ⊗C � G Cut

44 CHAPTER 3. PARTIAL DEDUCTION

burnCD

playCD

relax

perform

AMW

Book

Ticket Ticket

!MP3

MP3Player

MP3

Figure 3.1: The result of symbolic negotiation.

Proposition 2 Backward chaining PD step Rb(Li) is sound with respect to ILL rules.

Proof The proof in ILL follows here:

S � A ⊗C � (A�Li B)
Axiom

S � A ⊗C ⊗ (A�Li B)
R⊗

C � C Id

A � A Id B � B Id
A, (A�Li B) � B

L�

A ⊗ (A �Li B) � B
L⊗

C, A ⊗ (A �Li B) � B⊗C
R⊗

A ⊗C ⊗ (A �Li B) � B ⊗C
L⊗

S � B ⊗C Cut

Proposition 3 PD step RCl is sound with respect to ILL rules.

Proof The proof in ILL follows here:

!A �!A Id !A �!A Id
!A, !A �!A⊗!A R⊗

!A �!A⊗!A C! B � B Id
!A, B �!A⊗!A ⊗ B R⊗

!A ⊗ B �!A⊗!A ⊗ B L⊗ !A⊗!A ⊗ B � C
!A ⊗ B � C Cut

Proposition 4 PD step RLl is sound with respect to ILL rules.

3.4. SOUNDNESS AND COMPLETENESS OF PD IN ILL 45

Proof The proof in ILL follows here:

A � A Id
!A � A L! B � B Id
!A, B � A ⊗ B R⊗

!A ⊗ B � A ⊗ B L⊗ A ⊗ B � C
!A ⊗ B � C Cut

Proposition 5 PD step RWl is sound with respect to ILL rules.

Proof The proof in ILL follows here:

B � B Id
!A, B � B W!

!A ⊗ B � B L⊗ B � C
!A ⊗ B � C Cut

Proposition 6 PD step R!l is sound with respect to ILL rules.

Proof The proof in ILL follows here:

!A ⊗ An ⊗ B � C
....

!A ⊗ A ⊗ B � C
!A⊗!A ⊗ B � C RLl
!A ⊗ B � C RCl

Proposition 7 First-order forward chaining PD step R f (Li(x)) is sound with respect
to first order ILL rules.

Proof The proof in ILL is the following

A⊗C � A⊗C Id � ∀x(A′ �Li(x) B′)
Axiom

A⊗C � A⊗C ⊗ (∀x(A′ �Li(x) B′))
R⊗

C � C Id

A � A Id B � B Id

A, (A�Li(a) B) � B
L�

A⊗ (A�Li(a) B) � B
L⊗

C, A⊗ (A�Li(a) B) � B⊗C
R⊗

A⊗C ⊗ (A�Li(a) B) � B⊗C
L⊗

A⊗C ⊗ (∀x(A′ �Li(x) B′)) � B⊗C
L∀ B⊗C � G

A ⊗C ⊗ (∀x(A′ �Li(x) B′)) � G
Cut

A⊗C � G Cut

Proposition 8 First-order backward chaining PD step Rb(Li(x)) is sound with respect
to first order ILL rules.

46 CHAPTER 3. PARTIAL DEDUCTION

Proof The proof in ILL is the following

S � A ⊗C � ∀x(A′ �Li(x) B′)
Axiom

S � A ⊗C ⊗ (∀x(A′ �Li(x) B′))
R⊗

C � C Id

A � A Id B � B Id
A, (A�Li(a) B) � B

L �

A ⊗ (A �Li(a) B) � B
L⊗

C, A ⊗ (A�Li(a) B) � B ⊗C
R⊗

A ⊗C ⊗ (A�Li(a) B) � B ⊗C
L⊗

A ⊗C ⊗ (∀x(A′ �Li(x) B′)) � B ⊗C
L∀

S � B ⊗C Cut

Proposition 9 Forward chaining PD step Branch is sound with respect to ILL rules.

Proof The proof of forward chaining PD step Branch is the following

....
n
⊗
i=1
Ai � (

k
&
i=1
Ai) ⊗ . . . ⊗ (

n
⊕
i=l
Ai)
Rewrite

k
&
i=1
Ai � B1

n
⊕
i=l
Ai � Bm
....

. . .⊗ (
n
⊕
i=l
Ai) �

m
⊗
i=2
Bi

(
k
&
i=1
Ai), . . .⊗ (

n
⊕
i=l
Ai) �

m
⊗
i=1
Bi

R⊗

(
k
&
i=1
Ai) ⊗ . . .⊗ (

n
⊕
i=l
Ai) �

m
⊗
i=1
Bi
L⊗

n
⊗
i=1
Ai �

m
⊗
i=1
Bi

Cut

where 1 ≤ l, k ≤ n, n > 1. Additionally, the number of nondeterministic branches
cannot be larger than n, since we have only n formulae. Moreover, the number of
⊕-resultants is not greater than n/2. The latter derives from 2 assumptions: (1) for a
choice at least 2 formulae are needed and (2) ⊕-resultants must not overlap. Generally,
we assume that we can insert as many constants 1 as needed to enlarge m, since m has
to be greater than or equal to the number of branches, which is limited by n.

While the right branch of that inference figure generates multiple nondeterministic
offers at once, the left branch ensures consistency of the offers. Rewrite indicates that
the right hand side of a sequent is transformed to disjunctive normal form with respect
to the & operator.

3.4.2 Soundness and completeness
Soundness and completeness are defined via executability of CSAs.

Definition 21 (Soundness of PD of a CSA) A CSC � S ′ � G′ is executable, if a CSC
� S � G is executable in a CSA Γ; S � G and there is a derivation � S � G ⇒R
. . .⇒R� S ′ � G′.

3.4. SOUNDNESS AND COMPLETENESS OF PD IN ILL 47

Completeness is the converse:

Definition 22 (Completeness of PD of a CSA) A CSC � S � G is executable, if a
CSC � S ′ � G′ is executable in a CSA Γ; S ′ � G′ and there is a derivation � S �
G ⇒R . . .⇒R� S ′ � G′.

Our proofs of soundness and completeness are based on proving that derivation of
a resultant is a derivation in a CSA using PD steps, which were defined as inference
figures in ILL. However, it should be emphasised that soundness and completeness of
PD as defined here have no relation with respective properties of LL.

Lemma 1 A CSC � S � G is executable, if there is a proof of Γ; S � G in ILL.

Proof Since the derivation of a resultant is based on PD steps, which represent par-
ticular inference figures in ILL, then if there is a ILL proof for Γ; S � G, based on
inference figures in Section 3.4.1, then the proof can be transformed to a derivation of
resultant � S � G.

Lemma 2 Resultants in a derivation are nodes in the respective ILL proof tree and
they correspond to partial proof trees, where leaves are other resultants.

Proof Since each resultant � A � B in a derivation is achieved by an application of
a PD step, which is defined with a respective ILL inference figure, then it represents a
node A � B in the proof tree, whereas the derivation of � A � B represents a partial
proof tree.

Theorem 1 (Soundness of propositional PD) PD for LL in propositional ILL is sound.

Proof According to Lemma 1 and Lemma 2 PD for LL in propositional ILL is sound,
if we apply basic propositional PD steps, steps for managing unbounded resources
and Branch step. The latter derives from the fact that, if there exists a derivation
� S � G ⇒R . . . ⇒R� S ′ � G′, then the derivation is constructed by PD in a
formally correct manner.

Theorem 2 (Completeness of propositional PD) PD for LL in propositional ILL is
complete.

Proof When applying PD with propositional PD steps, we first generate all possible
derivations until no derivations could be found, or all proofs have been found. If CSC
� S ′ � G′ is executable then according to Lemma 1, Lemma 2 and Definition 20
there should be a path in the ILL proof tree starting with CSC � S � G, ending with
� A � A and containing CSC � S ′ � G′. There is no possibility to have a path from
CSC � S ′ � G′ to � A � A without having a path from CSC � S � G to CSC
� S ′ � G′ in the same HLL proof tree.
Then according to Lemma 1 and Lemma 2, derivation � S � G ⇒R . . .⇒R� S ′ �

G′ would be either discovered or it will be detected that there is no such derivation.
Therefore PD for LL in ILL is complete.

48 CHAPTER 3. PARTIAL DEDUCTION

Theorem 3 (Soundness of PD of a first-order CSA) PD for LL in first-order ILL is
sound.

Proof The proof follows the pattern of the proof for Theorem 1, with the difference
that instead of applying PD steps Rb(Li) and R f (Li), we apply their first-order counter-
parts Rb(Li(x)) and R f (Li(x)).

Theorem 4 (Completeness of PD of a first-order CSA) PD for LL in first-order ILL
is complete.

Proof The proof follows the pattern of the proof for Theorem 2, with the difference
that instead of applying PD steps Rb(Li) and R f (Li), we apply their first-order counter-
parts Rb(Li(x)) and R f (Li(x)).

3.5 Partial deduction strategies
The practical value of PD is very limited without defining appropriate PD strategies.
These are called tactics and refer to selection and stopping criteria. Successful tac-
tics depend generally quite much on a specific logic application. Therefore we only
list some possible tactics here. From agent negotiation point of view the strategies
represent to some extent agents’ policies—they determine which offers are proposed
next.
Tammet [181] proposes a set of theorem proving strategies for speeding up LL

theorem proving. He also presents experimental results, which indicate a good per-
formance of the proposed strategies. Some of his strategies remind the usage of our
inference figures. Thus some LL theorem proving strategies are already implicitly
handled in our PD framework.
We also would like to point out that by using LL inference figures instead of basic

LL rules, PD, as we defined it here, could be more efficient than pure LL theorem
proving. The latter is due to the smaller search space, which emerges through the
usage of inference figures.

Definition 23 Length l of a derivation is equal to the number of the applications of
PD steps R in the derivation.

Definition 24 Two derivations are computationally equivalent, regardless of the length
of their derivations, if they both start and end with the same resultant.

3.5.1 Selection criteria
Selection criteria define which formulae and PD steps should be considered next for
derivation of a resultant. We consider the following selection criteria.

3.5. PARTIAL DEDUCTION STRATEGIES 49

• Mixed backward and forward chaining—a resultant is derived by interleaving
backward and forward chaining.

• Different search methods—depth-first, breadth-first, iterative deepening, etc could
be used. While breadth-first allows discovering shorter derivations faster, depth-
first requires less computational overhead, since less memory is used for storing
the current search status.

• Prefer resultants with smaller derivation length—the strategy implicitly leads to
breadth-first search.

• Apply only one PD step at time.

• Combine several PD steps together. The approach is justified, if there is some
domain knowledge available, which states that certain CSCs are executed in se-
quence.

• Priority-based selection—some literals have a higher weight, which is deter-
mined either manually by the user or calculated by the system according to
predefined criteria. During PD literals/resultants having higher weights are pre-
ferred.

We would like to emphasise that the above criteria are not mutually exclusive but
rather complementary to each other.

3.5.2 Stopping criteria
Stopping criteria define when to stop derivation of resultants. They could be com-
bined with the above-mentioned selection criteria. We suggest the following stopping
criteria:

• The derived resultant is computationally equivalent to an already derived one—
since the resultant was already derived and used in other derivations, proceeding
PD again with the same resultant would not yield any new resultants, which
would be computationally not equivalent compared to already derived ones.

• A generative cycle is detected—if we derived a resultant � A � B ⊗C from a
resultant � A � C, then by repeatedly applying PD steps between the former
resultants we end up with resultants � A � Bn ⊗ C, where n > 1. There-
fore we can skip the PD steps in further derivation and reason analytically how
many instances of literal B we need. The approach is largely identical to Karp-
Miller [85] algorithm, which is applied for state space collapsing during Petri
net reachability checking. A similar method is also applied by Andreoli et al [4]
for analysing LL programs.

50 CHAPTER 3. PARTIAL DEDUCTION

• Maximumderivation length l is reached—given that our computational resources
are limited and the time for problem solving is limited as well, we may not be
able to explore the full search space anyway. Then setting a limit to derivation
length helps to constrain the search space.

• A resultant is equal to the goal—since we found a solution to the problem, there
is no need to proceed further, unless we are interested in other solutions as well.

• Stepwise—the user is queried before each derivation in order to determine, which
derivations s/he wants to perform. This stopping criterion could be used during
debugging, since it provides the user with an overview of the derivation process.

• Exhaustive—derivation stops, when no new resultants are available.

3.6 Summary
In this chapter we formalised PD for ILL. We formalised the PD process and intro-
duced PD steps, which could be considered as a specialisation of theorem proving for
a specific application domain. The application domain in our case is fixed to reason-
ing about executable processes. The specialisation allows us to gain some extra speed
while applying PD to solve problems in the domain.
We also analysed soundness and completeness of the proposed formalism. It turns

out that, given a certain PD procedure, PD for ILL is sound and complete.
Finally some PD heuristics were described, which determine strategies of applying

PD. The strategies included selection and stopping criteria. While selection criteria
determine which resultants to derive next, stopping criteria determine when to stop
derivation of new resultants. These strategies allow to specialise PD for different ap-
plications. One of the applications is described in Chapter 10.

Chapter 4

CPS and Symbolic Negotiation

In this chapter we formalise cooperative problem solving (CPS) and symbolic negoti-
ation process as PD for LL, which was defined in Chapter 3. In heterogeneous multi-
agent systems interoperability between agents cannot be taken for granted. Indeed,
since agents may enter and leave a system at their will, there should exist a mechanism
for automatically adjusting agents’ behaviours and goals in order to keep the system in
balance. Automatic negotiation and CPS are regarded as mechanisms for granting that
sort of on-the-fly system integration and management.
Several attempts have been made in order to formalise CPS (see Chapter 2). Most

of them are based on classical or modal logics. In particular, Wooldridge and Jen-
nings [199] provide a formalisation of CPS process where a multi-modal logic is used
as a formal specification language. However, since the multi-modal logic lacks a strat-
egy for generating constructive proofs of satisfiability, the formalisation does not lead
to direct execution of specifications. Moreover, since modal logics (like classical logic)
lack the mechanism for keeping track of resources, it is not possible for agents neither
to count nor dynamically update the number of instances of the same object belonging
to their internal states. In order to overcome the mentioned shortages of classical and
modal logics we use a fragment of LL for CPS.
The cooperative problem solving has been considered to consist of four steps [199]:

recognition of potential for cooperation, team formation, plan formation and plan exe-
cution. An important feature of our approach is that we do not separate team and plan
formation into different processes and that negotiation is embedded into the reasoning.
Although this approach does not preserve the accepted structure of CPS, we think that
it may be more natural for representing computational aspects of CPS, where team and
plan formation processes interact with each other.
Basically, we are applying PD for generating constructive proofs summarising the

first 3 steps of CPS: recognition, team and plan formation. Negotiation is reformulated
as distributed PD. Then a solution, summarising the first 3 steps of CPS process, is
extracted from a proof and can be executed.
In CPS models it is often implicitly expected that agents have knowledge about

sequences of actions, whose execution leads them to their goals, while the sequence

51

52 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

construction process is not explicitly explained. Our CPS model is more planning-
centric. Initially an agent tries to find a plan that allows achieving its goals. Then
the agent may discover that either this is not possible or it is more efficient to involve
other agents into problem solving process. Since other agents may be self-interested,
they may propose their offers and start a negotiation process. The process lasts until
a (shared) plan has been found. The plan determines agents’ commitments and takes
into account requirements determined during the negotiation.
In order to stimulate cooperation, agents should have a common goal [199]. We

assume that all agents have a common meta-goal: as much agents as possible should
become satisfied during run-time. All agents ask for minimum they need and provide
maximum they can, during negotiation. This is biased with distributed theorem proving
strategies. During negotiation the offers are derived using Partial Deduction (PD) in
LL. PD allows determining missing links between proof fragments.
Finally we extend the proposed CPS formalism with plan modification operators

and then analyse symbolic negotiation as a whole. We also formalise the coalition
formation process and analyse its effect to CPS and symbolic negotiation. Regard-
ing other previously proposed coalition formation methods, which are oriented to task
allocation, our method could be described as goal-oriented.
We would like to underline that from a computational point of view, we can re-

gard CPS as AI planning and symbolic negotiation as plan reuse/repair. It has been
shown [142] that from problem solving point of view in general neither planning from
scratch nor plan repair has an advantage over each-other. Therefore we expect both
CPS and symbolic negotiation to be computationally equivalent. Moreover, both CPS
and symbolic negotiation lead to the same results as we prove in this paper.
However, compared to CPS, symbolic negotiation provides a more human-like way

of problem solving, which can be more naturally followed by human participants. In
addition, symbolic negotiation may encode a sort of search heuristics, which would
make CPS computationally less demanding. These heuristics, however, are not dis-
cussed in this paper.
Our approach supports detection of subgoals during problem solving. If a single

agent fails to solve a problem, PD is applied to solve the problem partially. As a result
subproblems are detected, which could be solved further by other agents. This would
lead to a distributed problem solving mechanism, where different agents contribute to
different phases in problem solving—each agent applies PD to solve a fragment of the
problem and forwards the modified problem to others. As a result the problem becomes
solved in the distributed manner. Usage of PD in such a way provides foundations for
advanced interactions between agents.

4.1 Agent representation

An agent is presented with the following CSA:

4.2. AGENT COALITIONS 53

Γ; S � G,

where Γ is a set of CSCs representing agent’s capabilities, S is the initial state and
G is the goal state of the agent. Both S and G are multiplicative conjunctions of ILL
formulae. Every element of Γ has the form

� I � O,

where I andO are formulae which are, respectively, consumed and generated when
a particular capability is applied. It has to be mentioned that a capability can be applied
only, if conjuncts in I form a subset of conjuncts in S . It should be also underlined that
in order to achieve their goals, agents have to construct (and then execute) the following
plan from the elements of Γ:

� S � G.

Each agent is assumed to have a single task only. Whenever in an application
an agent is supposed to have several task, it would be modelled in our framework as
several agents, each having a single task.

Definition 25 Agent’s task is a resultant in PD.

Modifications of an agent’s task are derived through PD. We consider all possible
derivations of a task as instances of the same task. Moreover, we constrain an agent
to consider only one derivation at time during distributed CPS. This would ensure that
instances of the same task would not be solved concurrently.

Definition 26 Agent’s initial task is a CSA with Γ ≡ ∅ in PD.

We model agent task solving as resource generation. This means that agents’
tasks specify which resource they have and which resources they would like to obtain.
Agents’ capabilities are applied for producing new resources by consuming existing
ones.

Definition 27 Resource is defined as a formula in the underlying PD formalism.

4.2 Agent coalitions
It may happen, that in order to solve a problem, agents should form coalitions. Let us
consider a situation, where agent A possesses 50 dollars and agent B possesses 500
dollars. Agent A would like to obtain a radio and agent B would like to obtain a TV.
A third agent C has a special offer for 550 dollars, if someone would buy both a TV
and a radio. However, in the current situation none of the agents is able to fill their
tasks individually. In order to perform their tasks, agentsA and B have to first form a

54 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

coalition, then combine their resources and after the purchase task has been performed,
they would divide the resulting resources as they agreed before forming a coalition.
Thus the purpose of agent coalitions is to merge several tasks into a larger one.

Then agents become able to perform tasks, which they would not have been able to
perform individually. Thereby coalition formation could be seen as a way to optimize
problem solving globally.

Definition 28 Agent coalition C is a structure 〈A,T ,R, �, []〉, where A is a set of
participating agents, T is a coalition task and R is a set of resources shared between
agents. � is a mapping from agents to resources (� : A×A → R∗), which one agent
would deliver to another if a solution for a coalition task is found. Finally, [] is a
mapping from a coalition task to agents in the coalition ([] : T → A+), which agreed
to solve the task together by sharing their resources.

We interpret a coalition as an agreement between agents to solve their tasks to-
gether. In a coalition agents can also exchange resources directly between themselves.
Hence mapping � identifies a possibly empty set of resources, which one agent is re-
quired to transfer to another. Mapping [], however returns a non-empty set of agents,
which have agreed to participate in CPS.
It should be emphasised that we model tasks as (composite) actions consuming and

producing resources. Coalitions are formed by applying rule merge.

Definition 29 (Coalition formation rule) Coalition formation rule merge is defined
as follows:

� A ⊗ B� C ⊗D
� A� C � B� D

merge

Rule merge combines 2 tasks X and Y to create a task with the intended meaning:
“task X could be performed by one agent, if another agent performs task Y” and vice
versa. From a distributed theorem proving point of view it means that tasks X and
Y are combined together and their search spaces are merged. If a coalition includes
all agents of a system, then problem solving is seen as solving a single task in a dis-
tributed manner. This contrasts with our general case, where multiple tasks are solved
concurrently in a distributed way.
In the beginning of a problem solving session there is one coalition for each agent.

These coalitions consist only of the agent itself. The rule merge can be applied only
once by the same agent during each problem solving session. If agents would merge
several instances of the same task or its derivations, it would mean that some tasks
would occur several times in the same coalition task. Then again the coalition is re-
quired to spend more resources than necessary and would achieve more resources than
required. Finally, there may not be a solution for such a redundant task, since LL is
resource-conscious.
Similarly an agent cannot belong to multiple coalitions with the same task at the

same time. This would mean that an agent would agree to exchange particular re-
sources with multiple parties. However, after exchanging it with one agent, it cannot

4.2. AGENT COALITIONS 55

exchange it with others anymore. Neither can an agent participate in the same coalition
with multiple instances of the same task. To summarise, new coalition can be formed
through merge only if the following holds:

([T1]∩ [T2]) ≡ ∅,

where T1 and T2 are tasks of particular coalitions, which are considered for merg-
ing. This means that new coalitions are formed in 3 ways:

1. Between agents not belonging to any coalition

2. Between a coalition and an agent not belonging to any coalition

3. Between coalitions, whose members do not overlap (actually they cannot, since
we constrain an agent to belong to maximum one coalition only)

Proposition 10 Solution of a coalition taskT , which was achieved through PD, solves
the tasks of all coalition members [T].

Proof Since the coalition task T is composed from the individual tasks of its mem-
bers, then after a coalition task solution has been found through PD, agents share the
achieved resources between themselves. Additionally, resources between coalition
members are exchanged such that agent A would give to agent B resources A � B.
This means that coalition members would exchange resources, which were not used
for solving a coalition task, but still are required by participating agents.

Definition 30 (Soundness of coalition formation) If a solution of coalition task T
solves the tasks of all participating agents [T], then coalition formation is sound.

Proposition 11 Coalition formation is sound with respect to PD.

Proof According to Proposition 10 and Definition 30 coalition formation is sound.

Coalition formation could be seen from problem solving point of view as merg-
ing several tasks into one. Thus instead of solving multiple tasks concurrently, with
coalitions we would solve a composed task.

Proposition 12 If a set of tasks included in a coalition task is solvable through PD
independently, then so is the composed coalition task.

Proof Let us assume that all tasks are solvable independently and for any agent A
and B from the coalition A � B ≡ ∅. Then the coalition task solution would be a
concatenation of solutions of individual tasks. However, if there are agents A and
B such that A � B � ∅, then some resources do not have to be spent and achieved
by the coalition task. Therefore the coalition task solution would be shorter than the
concatenation of solutions of all individual tasks and yet achievable.

56 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

If the tasks of agents are solvable independently, then so are they after joining a
coalition. Since during coalition formation particular search spaces are merged, the
overall search space would include the search spaces of individual tasks. The reverse
of the proposition does not hold, since there may exist resources, which cannot be
achieved by any task, but which could be exchanged between agents in a coalition.

Definition 31 (Completeness of coalition formation) If agents’ tasks were solvable
individually and their coalition task is solvable as well, then coalition formation is
complete.

Proposition 13 Coalition formation is complete with respect to PD.

Proof According to Proposition 12 and Definition 31 coalition formation is complete.

Definition 32 A coalition task is implicitly solved, if no PD steps are required to solve
the coalition task.

This is the case in the following example where we have 2 agents. Agent A pos-
sesses resource A and would like to obtain resource B. Symmetrically, agent B pos-
sesses resource B and would like to obtain resource A. Their tasks are thus respectively
� A � B and � B � A. After they have formed a coalition, the coalition task would
be � A ⊗ B� A ⊗ B. Thus no PD steps are required to solve the coalition task and the
task is implicitly solved. Anyway, in order to solve their individual tasks, agents still
need to exchange their resources. They do it by following the following operations:
A �B = {A} and B �A = {B}.

4.3 The cost of participating in coalitions
In this section we evaluate analytically the cost of participating in coalitions. We show
that in the worst case individual task solving outperforms coalition task solving. How-
ever, in the best case coalition task solving is more efficient.

Proposition 14 The computational complexity of solving coalition tasks is in the worst
case exponential with respect to solving individual tasks.

Proof Given that we have n agents with tasks � Ai � Bi, i = 1 . . . n in a coalition then
their collective task would be � A1 ⊗ . . .⊗ An � B1 ⊗ . . .⊗ Bn. This is how collective
tasks are formed. Given additionally that for solving an individual task a plan with
m steps is required, then the length of collective plan would be n ∗ m. Although the
branching factor b of search space would be the same for individual and collective
tasks, the search space depth d would be n times larger for collective plans. This means
exponential growth since the search spaces for solving individual tasks and a coalition
task consisting the individual tasks consist respectively of n ∗ bd and bn∗d nodes.

4.4. SYMBOLIC NEGOTIATION 57

Therefore it makes sense to form coalitions if the following inequality holds: n ∗
bd ≥ bn∗d/k, where k is a synergy factor. This factor determines how much the length
of a coalition task solution shrinks if agents join a coalition. However, in the best case,
for solving a coalition task, no PD steps have to be applied at all. This is the case,
when the coalition task is solved implicitly.

4.4 Symbolic negotiation
In this section we define the symbolic negotiation process with respect to PD. We de-
fine also symbolic negotiation rules for operating over forward (Θ f) and backward
chaining (Θb). Additionally some other negotiation-specific definitions are given. Fi-
nally, we prove that symbolic negotiation is sound and complete.

Definition 33 Negotiation rule Θ f (ak/ai) is defined as the following operational rule

� ((((I \O(ai)) ∪ I(ai)) \ I(ak))∪O(ak))�a1,...,ai−1,ak,ai+1,...,an O
� I �a1,...,ai−1,ai,ai+1,...,an O I(ak) ⊆ I(ai) O(ai) ⊆ O(ak)

Θ f (ak/ai)

Definition 34 Negotiation rule Θb(ak/ai) is defined as the following operational rule

� I �a1,...,ai−1,ak,ai+1,...,an ((((O \ I(ai))∪O(ai)) \O(ak)) ∪ I(ak))
� I �a1,...,ai−1,ai,ai+1,...,an O I(ak) ⊆ I(ai) O(ai) ⊆ O(ak)

Θb(ak/ai)

I(a) and O(a) in the preceding rules represent respectively resources required to
apply and achieved by applying capability a. I represents resources available for solv-
ing a task while O represents resources, which must be achieved by the task. The
preceding negotiation rules replace a PD step application of ai in a task derivation with
an application of ak. Rule Θ f (ak/ai) replaces forward chaining steps while Θb(ak/ai)
replaces backward chaining steps. The symbolic negotiation rules replace a capability
in the derivation with another capability which consumed the same amount or less and
generated the same amount or more resources than the previous capability. Therefore
negotiation rules allow to optimise a task of agent X by agent Y . This means that some
PD steps of agent X in its task can be substituted by Y , if associated capabilities are
more efficient in terms of resource consumption and generation.

Definition 35 (Symbolic negotiation) Symbolic negotiation is PD with coalition for-
mation and symbolic negotiation rules.

Definition 36 (CPS) Cooperative problem solving is PD with coalition formation.

Definition 37 (Computational equivalence) Two processes are computationally equiv-
alent with respect to PD, if they would construct the same set of resultants.

Theorem 5 CPS and symbolic negotiation are computationally equivalent.

58 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

Proof The only difference between symbolic negotiation and CPS is the usage of sym-
bolic negotiation rule(s) in symbolic negotiation. These rules, however, only guide the
search procedure of PD and do not construct resultants, which would not be achieved
by PD. Moreover, given that the same backtracking mechanism is applied with the
symbolic negotiation rules as with PD, all resultants of PD would be achieved by sym-
bolic negotiation as well. Therefore symbolic negotiation and CPS are computationally
equivalent.

According to Theorem 5 symbolic negotiation could be view as a special case of
CPS, where PD is guided at operational level.

Definition 38 Symbolic negotiation is sound, if it is sound with respect to PD, and all
resultants achieved through symbolic negotiation are achievable through CPS.

Definition 39 Symbolic negotiation is complete, if it is complete with respect to PD,
and all resultants achieved through CPS are achievable through symbolic negotiation.

Theorem 6 (Soundness of symbolic negotiation) Symbolic negotiation is sound.

Proof According to Theorem 5, Proposition 11 and Definition 38 symbolic negotia-
tion is sound.

Theorem 7 (Completeness of symbolic negotiation) Symbolic negotiation is complete.

Proof According to Theorem 5, Proposition 13 and Definition 39 symbolic negotia-
tion is complete.

Soundness and completeness of our CPS formalism are directly derived from Propo-
sition 11, Proposition 13 and completeness/soundness results of PD presented in Chap-
ter 3.

4.5 An example of symbolic negotiation
The following example is a scenario from Küngas et al [96]. However, the symbolic
negotiation rules were applied there implicitly. Here we apply the rules explicitly.
In that scenario two students, John and Peter, are looking for ways to relax after

long days of studying and a final successful examination. John has a CD and he wants
to listen to music:

GJohn = {Music}.

Unfortunately, his CD player is broken and this makes his goal unachievable. John
has to visit also a library to return books and this gives him possibility to return also
books of other students when this may be useful for him. John has 10 USD for covering

4.5. AN EXAMPLE OF SYMBOLIC NEGOTIATION 59

all his expenses, related to relaxing. Considering that he has a broken CD player and a
CD, his initial state is as follows:

S John = {Dollar10 ⊗CD ⊗ BrokenCDPlayer}

and his capabilities are:

ΓJohn =
�John Books�returnBooks BooksReturned
�John CDPlayer ⊗CD�playMusic Music

Peter is skilled in electronics and can repair the CD player. He has decided to
spend his day in a park with his girlfriend. However, he has to return books to the
library. Since he has to take a taxi to reach the library, he has to spend 10 USD to
cover his transportation expenses. This does not match well with his goals, because
of he has only 15 USD while he needs 25 USD for food, drinks and attractions in the
park. Therefore he lacks 20 USD to achieve his goals. Peter’s initial state, goal and
capabilities are described as follows:

S Peter = {Dollar15 ⊗ Books},

GPeter = {BooksReturned ⊗ Beer},

ΓPeter =
�Peter Dollar10 ⊗ Books�returnBooks BooksReturned
�Peter BrokenCDPlayer �repairCDPlayer CDPlayer
�Peter Dollar25 �buyBeer Beer

The sets of extra-logical axioms ΓJohn and ΓPeter represent capabilities of John
and Peter, respectively. We write �X to indicate that a capability is provided by X,
�Y labels a capability with name Y . The internal state of John is described by the
following sequent:

ΓJohn;Dollar10 ⊗CD ⊗ BrokenCDPlayer �John Music.

This means that John has 10 USD, a CD and a broken CD player. His goal is to
listen to music. Peter’s state and goal are described by another sequent:

ΓPeter;Dollar15 ⊗ Books �Peter BooksReturned ⊗ Beer.

In the following we write B, BR, BE, CD, P, BP, M and D to denote Books, Book-
sReturned, Beer, CD, CDPlayer, BrokenCDPlayer, Music and Dollar respectively.
Given John’s and Peter’s capabilities and internal states, both agents start individually
with theorem proving. Initially they fail, since they are unable to reach their goals
individually. Then PD in LL is applied to the same set of formulae and new subtasks
are derived. These subtasks indicate problems, which could not be solved by agents
themselves and need cooperation with other agents. In particular, John has to ask help
for solving the following sequent, which is derived by PD:

60 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

D10 ⊗ BP �John P.

The sequent is produced by applying the backward chaining PD step as follows (to
allow shorter proof, we write here � instead of �John):

D10 ⊗ BP � P
D10 ⊗ BP ⊗CD � CD⊗ P

normalise

D10 ⊗ BP ⊗CD �John M
Rb(playMusic)

where normalise is another LL inference figure, which reduces the number of lit-
erals in a given sequent:

A � A Id B � C
B, A � C ⊗ A R⊗

B⊗ A � C ⊗ A L⊗

Since Peter can repair the CD player, he agrees partially with the proposal. How-
ever, because he needs USD 20 for achieving its goals, Peter combines modified John’s
resultant with his own. The following is John’s resultant after Peter extended it:

D10 � 1
D10 ⊗ BP � BP

normalise

D10 ⊗ BP � P
Rb(repairCDPlayer)

Peter’s own resultant is the following:

� D20
D5 ⊗ BR � BR⊗D25

normalise

D15 ⊗ B � BR⊗D25
R f (returnBooks)

D15 ⊗ B � BR⊗ BE
Rb(buyBeer)

These 2 tasks are now merged:

D10 � D20
1 � D20 D10 � 1

merge

By exploring the partial plan of this resultant, John discovers that both his and
John’s goals would be reached, if he delivers Peters’ books to the library and Peter
repairs the CD player for 10 USD.

D10 � D10
Id

D10 � D20
Θb(returnBooksJohn/returnBooksPeter)

Peter accepts the offer.

4.6. SUMMARY 61

4.6 Summary
This chapter formalised CPS and symbolic negotiation. By extending results from
Chapter 3, we formalised symbolic negotiation and CPS with respect to partial deduc-
tion. We also sketched soundness and completeness proofs for these formalisations.
Additionally we formalised the process of coalition formation and analysed its ef-

fect on symbolic negotiation and CPS. The analysis emphasises that coalition forma-
tion should be considered with great care. Moreover, coalitions should be avoided in
the general case, if agents can solve their problems alone.

62 CHAPTER 4. CPS AND SYMBOLIC NEGOTIATION

Part II

Distributed Semantic Web Service
Composition

63

Chapter 5

Semantic Web Service Representation

In this chapter we describe how we represent Web service operations with extra-logical
axioms of LL. LL, as a resource-conscious logic, enables us to capture the essential
features of Web services, such as input/output parameters, states and non-functional
attributes, formally. After Web service operations have been presented as extra-logical
LL axioms, PD or symbolic negotiation can be applied to the encoded domain. Then
composite solutions can be extracted from particular PD derivations. A method for
extracting Web service compositions from LL proofs has been already proposed by
Rao et al [161]. The latter approach is based on results of Milner [136], Abramsky [1],
Bellin and Scott [12].
There are several advantages of LL over other formalisms while encoding Web

service operations. Since LL is a resource-conscious logic, we can distinguish infor-
mation transformation and state change effects of Web services. Moreover, we can
encode both qualitative and quantitative non-functional attributes of Web services. Be-
cause of soundness of our PD formalism, correctness of constructed composite Web
services is guaranteed with respect to the initial specifications and no further verifi-
cation of the composite Web service is required. Symmetrically, completeness of the
formalism ensures that a composable solution would be found, if there is any at all.

5.1 Semantic Web services in LL
There are by now several languages and ontologies available for representing Web
services in the Semantic Web context, including WSML, WSMO, OWL-S, etc. Fur-
thermore, a mapping from DAML-S to a LL representation has been described by Rao
et al [161]. Thus there exist some activities for binding LL and the Semantic Web
services. In this section we only describe how the semantics of Web services can be
presented in LL. No references to specific representation languages are made. We
specify available Web service operations with extra-logical LL axioms and a requested
Web service as a LL theorem to be proven.
In general, LL provides us with the following features for presenting useful prop-

erties of Web services that are hard or even impossible to present in other formalisms:

65

66 CHAPTER 5. SEMANTIC WEB SERVICE REPRESENTATION

1. Propositional LL enables us to present quantities of consumable resources in
Web services, such as price, time and the size of cache.

2. The “of course” modality (!) enables us to distinguish two aspects of the ser-
vice functionalities: information transformation and state change, which is trig-
gered by the execution of a service. Information transformation is presented
by input/output parameters of a Web service operation. Since that information
is reusable, the input values are not consumed after the execution of a service.
Reusability is determined by using the “of course” modality. State change, in
contrary, is modelled through resource manipulation: some elements of the ini-
tial state are consumed and the new elements are generated. Hence, the state
variables are presented by propositions without “of course” modality.

3. LL can be used to represent concurrent processes that are used for modeling
composite Web services. In particular, a translation from proofs in LL into Mil-
ner’s π-calculus [136] has been extensively studied in [1, 12, 135]. For example,
multiplicative conjunction (⊗) can represent composition in π-calculus while ad-
ditive disjunction (⊕) can represent choice, and the “of course” modality (!) can
present replication.

Web service operations are described in terms of functionalities and non-functional
attributes. The functionalities include inputs, outputs, preconditions, effects and excep-
tions. The non-functional attributes are classified, according to Rao et al [161], into
three categories: consumable quantitative attributes, qualitative constraints and quali-
tative results. Generally, a required composite Web service can be expressed with the
following LL formula

(Γc, Γv);∆c � ((I ⊗ P)� (O ⊗ E)⊕ F) ⊗ ∆r,

where both Γc and Γv are sets of extra-logical axioms representing respectively
available value-added Web services and core Web services. ∆c is a multiplicative
conjunction of non-functional constraints. ∆r is a multiplicative conjunction of non-
functional results. We shall explain these two concepts later.
I ⊗ P � (O ⊗ E) ⊕ F is a functionality description of the required Web service.

Both I and O are multiplicative conjunctions of literals with “of course” modality.
While I represents a set of input parameters of the service, O represents output pa-
rameters returned by the service. P and E are respectively multiplicative conjunctions
of preconditions and effects, while F is an additive disjunction representing possible
exceptions.
Intuitively, the formula can be explained as follows: given a set of available Web

services and non-functional attributes, try to find a combination of services that com-
putes O from I as well as changes the world state from P to E. If the execution of the
required Web service fails, an exception in F is thrown. Every element in Γc and Γv is
in form

5.1. SEMANTIC WEB SERVICES IN LL 67

∆c � ((I ⊗ P)� (O ⊗ E)⊕ F) ⊗ ∆r,

where meanings of ∆c, ∆r, I, P, O, F and E are the same as described above.

5.1.1 Functionalities
There are two kind of functionalities of Web services: information transformation and
state change produced by the execution of the service. Information transformation is
represented as a transformation from Web service operation’s input parameters to its
output parameters. State change, however, describes what the Web service actually
does and how execution of a Web service operation changes the computational en-
vironment. Therefore it is modeled as transformation from the preconditions to the
effects.
A typical example for a state change is aWeb service for logging into aWeb site. Its

input parameters are user name (Username) and password (Password), and its output
is a confirmation message (LoginOk). After the execution, the state of environment
changes from “not logged in” (NotLoggedIn) to “logged in” (LoggedIn). The latter
Web service operation is represented as follows

�!Username⊗!Password ⊗NotLoggedIn�login!LoginOk ⊗ LoggedIn

5.1.2 Non-functional attributes
Non-functional attributes are useful in evaluating and selecting Web services when
there are several services having the same functionalities. In service presentation, the
non-functional attributes are specified as results and constraints. We classify the non-
functional attributes into the following three categories:

• Consumable Quantitative Attributes: these attributes limit the amount of re-
sources that can be consumed by a composite service. For instance, the price of
a composite service is the sum of prices for all included existing services. This
kind of attribute could represent total cost, total execution time, etc.

• Qualitative Constraints: attributes which can not be expressed by quantities
are called qualitative attributes. Qualitative constraints are qualitative attributes
which specify requirements to Web service execution. For example, some ser-
vices may respond only to some authorised calls.

• Qualitative Results: another kind of qualitative attributes (such as Web ser-
vice type, service provider or geographical location) , which specify the results
regarding services’ context.

68 CHAPTER 5. SEMANTIC WEB SERVICE REPRESENTATION

The different categories of non-functional attributes have different presentation in
LL. As it was mentioned before, the non-functional attributes can be described either
as constraints or results and they can be presented as follows:

• Constraints for a service

∆1 = Consumablex⊗!Constraint

• Results produced by a service

∆2 = !Fact

5.1.3 An example of representation
To illustrate the LL presentation of Web services, let us consider the following ex-
ample. The example is adapted from Chapter 10 and demonstrates both the usage of
functionalities and non-functional attributes. We write PL, SL, BR, MO, HC, WK,
LC, LI, PU and PN to refer respectively to PRICE LIMIT , SKILL LEVEL, BRAND,
MODEL, HEIGHT CM, WEIGHT KG, LENGTH CM, LENGTH IN , PRICE USD
and PRICE NOK .
The available services, both value-added and core services, are specified as follows:

Γ =

NOK10 � PL ⊗ SL�selectBrand BR
� HC ⊗WK �selectModel LC ⊗MO
NOK20 � LC �cm2inch LI
CA MICORSOFT � PU �USD2NOK PN
� LI ⊗ BR⊗MO�selectSki PU ⊗ LOC NORWAY

NOK10 in the preceding means that 10 NOK are consumed by executing select-
BrandWeb service operation. Web service operation cm2inch costs 20 NOK. It is also
specified that the currency exchange operation USD2NOK only responds to the exe-
cution requests which have been certificated by Microsoft. The selectSki operation is
located in Norway.
The required composite service is specified by the following formula

(Γc, Γv);∆1 � (PL ⊗ SL ⊗HC ⊗WK � PN)⊗ ∆2

Constraints for the composite service are as follows

∆1 = NOK35⊗!CA MICROSOFT
∆2 = !LOC NORWAY

The constraints determine that we would like to spend at most 35 NOK for execut-
ing the composite service. The composite service consumer requires that all location-
aware services are located within Norway (!LOC NORWAY) and it has a certificate

5.2. MAPPING WSDL DOCUMENTS TO LL 69

from Microsoft (!CA MICROSOFT). We consider quantitative constraints (for exam-
ple, price) as regular resources in LL. If the total number of resources required by
services (which is determined by functionality attributes) is less than or equal to the
number of available resources, the services can be included into composite service.
Otherwise, if, for example, the selectBrand service would require 20 NOK for execu-
tion then the total required amount would be 40 NOK and the composition would not
be valid.
For qualitative constraints (for example, location), a service uses a literal (for ex-

ample, LOC NORWAY) to present its value, and we can determine in the set of require-
ments ∆1 whether a service meets the requirement. However, if there is no such literal
in a service description, the constraint is not applied to this service at all.

5.2 Mapping WSDL documents to LL
In this section we briefly describe how WSDL documents can be mapped into a LL
representation. Indeed, we are using the same method later in Chapter 11 within our
empirical research while constructing LL representations of Web service operations.

5.2.1 WSDL structure
The most essential elements, from mapping point of view, in WSDL are portType,
operation, message and types. Generally speaking, element portType defines a set of
operations, which have input and output messages. While input messages represents
operation’s input parameters, output messages encapsulate data returned by operations.
Based on the structured information in these XML nodes, LL descriptions can be

easily constructed. However, the most crucial aspect is mapping information in mes-
sage and type definitions. The latter is due to the ambiguity of interpreting this infor-
mation. For example, if you consider the following WSDL document example, you
can see that in type definitions of GeoIP and GetGeoIP, there are elements called re-
spectively IP and IPAddress, which refer to the same concept, but have different names.

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://www.webservicex.net"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://www.webservicex.net"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>

<s:schema elementFormDefault="qualified" targetNamespace="http://www.webservicex.net">

<s:complexType name="GeoIP">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="IP" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="CountryCode" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="CountryName" type="s:string" />

70 CHAPTER 5. SEMANTIC WEB SERVICE REPRESENTATION

</s:sequence>

</s:complexType>

<s:element name="GetGeoIP">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="IPAddress" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="GetGeoIPResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="GetGeoIPResult" type="tns:GeoIP" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

<wsdl:message name="GetGeoIPSoapIn">

<wsdl:part name="parameters" element="tns:GetGeoIP" />

</wsdl:message>

<wsdl:message name="GetGeoIPSoapOut">

<wsdl:part name="parameters" element="tns:GetGeoIPResponse" />

</wsdl:message>

<wsdl:portType name="GeoIPServiceSoap">

<wsdl:operation name="GetGeoIP">

<wsdl:input message="tns:GetGeoIPSoapIn" />

<wsdl:output message="tns:GetGeoIPSoapOut" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="GeoIPServiceSoap" type="tns:GeoIPServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

<wsdl:operation name="GetGeoIP">

<soap:operation soapAction="http://www.webservicex.net/GetGeoIP" style="document" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="GeoIPService">

<wsdl:port name="GeoIPServiceSoap" binding="tns:GeoIPServiceSoap">

<soap:address location="http://www.webservicex.net/geoipservice.asmx" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Thus there are cases where it is not possible to automatically map Web service op-
erations in a WSDL document into knowledge-richer representation in LL. Therefore
mapping from WSDL to LL is currently done mostly manually. See Chapter 11 for
more detailed discussion in this matter.

5.3. SUMMARY 71

5.2.2 FromWSDL to LL
Generally, Web service operations in WSDL documents can be encoded as follows:

� input msg� output msg

For instance, the WSDL document in Section 5.2.1 can be represented as the fol-
lowing LL specification

� IPAddress�GetGeoIP CountryName⊗ ISO3166CountryCode⊗ IPAddress,

where CountryName, ISO3166CountryCode and IPAddress refer to particular con-
cepts in an ontology. The LL specification contains a single operation. As one can
see we have manually renamed some elements in the WSDL to map them into our
ontology—CountryCode to ISO3166CountryCode and IP to IPAddress.
The preceding encoding could be seen as an optimised version of the encoding. An

alternative encoding, which represents the structure of the operation in a more detailed
way, is the following

� GetGeoIP�GeoIPServiceSoap GetGeoIP GetGeoIPResponse

� IPAddress� GetGeoIP

� GetGeoIPResponse� GeoIP

� GeoIP� CountryName ⊗ ISO3166CountryCode⊗ IPAddress

The encoding represents more closely the structure of data types defined in the
WSDL document. However, since the encoding includes more computability state-
ments, it is computationally more demanding at composition time.

5.3 Summary
In this chapter we explained how to represent Web services as LL formulae. We pre-
sented a general LL sequent structure which can encapsulate most of the properties
related to Web services. Moreover, we proposed some guidelines on how to transform
Web service operations in WSDL documents into the LL form. After Web service
operations have been encoded in LL, PD or symbolic negotiation can be applied for
automated Web service composition.

72 CHAPTER 5. SEMANTIC WEB SERVICE REPRESENTATION

Chapter 6

Agent System Architecture

This chapter presents an architecture and a methodology for agent-based Web service
discovery and composition. We assume that Web services are described with declar-
ative specifications like OWL-S or WSML documents. Based on the declarative in-
formation about particular Web services, symbolic negotiation is applied for dynamic
Web service discovery and composition.

Symbolic negotiation, as we defined earlier, is a mixture of distributed planning
and information exchange. Therefore, by using symbolic negotiation for automated
service composition, we support information collection and integration during service
composition. The latter aspect has been largely neglected in automated service com-
position until now.

Several articles address automatic composition ofWeb services [134,172,184,200].
However, they all require existence of a central directory of Web service specifica-
tions, which contrasts largely to the dynamic nature of the Web. In the Web the set of
available Web services changes rapidly—new Web services are created, old ones are
modified or removed. Keeping track of all these changes is a huge burden for a cen-
tralised directory. Some essential issues in decentralised Web service provision have
been addressed by Papazoglou et al [148].

Another disadvantage of centralised approaches is that it only allows service re-
questers to locate services, while service providers lack an ability to attract potential
customers. The agent-based architecture, we propose here, gives service providers a
more proactive role in the service composition process. Our service provision archi-
tecture is based on the multi-agent system AGORA [127], which provides an infras-
tructure, where service providers and requesters can meet each-other’s goals.

We propose that symbolic agent negotiation could be used as a mechanism for
discovering available Web services and composing new ones automatically. If no ser-
vice, satisfying user’s requirements, is found, symbolic negotiation between agents is
initiated and a new composite Web service is constructed dynamically.

73

74 CHAPTER 6. AGENT SYSTEM ARCHITECTURE

6.1 The symbolic negotiation process
In our applications we consider mainly self-interested cooperative agents. This means
that agents cooperate with each other as long as it does not prevent them achieving
their own goals. To understand how agents are supposed to apply symbolic negotiation
during problem solving, we present in this section our general symbolic negotiation
model.
We define messages as instances of the following structure:

(idreq, S,R, T),

where idreq, S , R and T denote respectively a message identifier, its sender, its
receiver and a task itself in a declarative language. The message identifier is needed
to keep track of different symbolic negotiation threads. The sender and the receiver
are identifiers of participating agents and the offer content is represented with a LL
formula.
While naming message identifiers, we apply the following conventions:

• if agentA sends out an initial task, then a is its message identifiers name

• if a represents a task, then a′ represents another task derived from it

• if an agent A sends out more than one task, then their messages are indexed as
a1, a2, . . .

LL Theorem Proving

Partial Deduction

Collect Answers

Distribute Subproblems

Agent 2

CA

LL Theorem Proving

Partial Deduction

Collect Answers

Distribute Subproblems

Agent 1

Figure 6.1: General symbolic negotiation model.

Our general symbolic negotiation model is presented in Figure 6.1. In this model
each agent initially tries to solve its problem alone. If the agent cannot find a solution
then subproblems are generated. The subproblems are distributed among the partners
and they are treated as subtasks to other agents. In other words, they present what

6.2. THE ARCHITECTURE 75

an agent can provide and what it expects to get in return. If it should happen that an
agent dies during symbolic negotiation, then possibly some negotiation steps should
be cancelled or revised. CA in Figure 6.1 denotes to Communication Adapter, which
facilitates agent communication and discovery.

6.2 The architecture
The AGORA multi-agent environment [127] was developed with the intention to sup-
port cooperative work between agents. The system consists of 2 types of components
(nodes)—agents and agoras (see Figure 6.2). Agoras are cooperative nodes which
facilitate agent communication, coordination and negotiation. Moreover, agoras en-
capsulate a method for (partial) service composition. An agora node contains default
agents and registered agents. In our scenario, the default agents are Agora Manager
and Negotiator. Agora Manager implements general agora functions, such as service
matchmaking and agent/service registration, while Negotiator applies symbolic nego-
tiation.
Service matchmaking basically involves finding an atomic service, which satisfies

agent requirements for a service. Negotiator applies symbolic negotiation for compos-
ing new services automatically. Negotiation is applied, if Agora Manager fails to find
an atomic service satisfying agents’ requirements.
Service provider agents register their services at specific agoras according to their

service domains. For example agents providing services for selling, buying and manag-
ing hardware register themselves and available services at agoras devoted to hardware.
Specific agoras may represent also coalitions of service providers.
Service requester agents, however, register requests for services at the central agora.

Then the central agora negotiates with specific agoras to find services satisfying re-
quester agents’ requirements. The central agora also mediates information exchange
between different requester agents. Moreover, the central agora might also form re-
quester agent coalitions, if it is needed for certain services. It may happen for instance
that a (composite) service requires input from more that one service requester agent.
A specific service composition architecture can be specified through refinement and

instantiation of the generic architecture described above. An instance of the generic
architecture is elaborated in Section 6.4 and depicted in Figure 6.4.

6.3 Inter-agent communication protocol
Figure 6.3 presents the proposed interaction protocol in Agent UML notation. This
protocol uses the FIPA (The Foundation for Intelligent Physical Agents) reserved com-
municative acts, allowing thus interoperability with other FIPA compliant agent sys-
tems. The agent interaction process is summarised in the following.
The central agora is a search control point for requester agents’ queries. Specific

agoras are cooperative nodes gathering agents who provide the same sort of services.

76 CHAPTER 6. AGENT SYSTEM ARCHITECTURE

� � � � 	 � � � � 	

�
 � � � �

� � � � � �
 �

�
 � � � �

� � � � � �
 �

�
 � � � �

�
 � �
 �
 �

! ! !

�
 � � � �

� � � � � �
 �

�
 � � � �

� � � � � �
 � ! ! !

 % 	 � & � �
 (�
) + - / 0 1 0 4 0 + 6 /

7 6 + - 9 : 0 9 - /

 % 	 � & � �
 (�
) + - / 0 1 0 4 0 + 6 /

7 6 + - 9 : 0 9 - /

�
 � � � �

�
 � �
 �
 �

�
 � � � �

�
 � �
 �
 �

�
 � � � �

�
 � �
 �
 � ! ! !! ! !

Figure 6.2: Multi-agent system architecture.

> @ A C D E @
G @ I J @ L M @ A

O @ Q M A R S T V W A R
X R Q R V @ A

[\] ^ \ _ `

a b d e f

g

h i j k m n

o [p o p _ \

[\] ^ \ _ `

q r s r t u

v f x d b y
z | } ~ � f

> � @ E D � D E T V W A R
X R Q R V @ A

> @ A C D E @
� A W C D � @ A

� � � � � � �

o [p o p _ \
� � � � � � � � � � � � � � �

� � � � � �

o [p o p _ \

� � � � � � �

� \ o ` ¡ o [p o p _ � ¢
� � £ ¤ � � �

¥ ¦ § p [¨

v f © r t � f b

v f © r t � f b
« f } f ¬ �

­ © d b ~

® ¯ ¯ ° ± ² ³ ± ´ µ ± µ ¶ ® ·v f © r t � f b

¥ ¦ § p [¨

« f } f ¬ �
­ © d b ~

� ¹ � º
q ~ r }

Figure 6.3: Agent interaction protocol.

6.4. AN EXAMPLE 77

� � � � � �

 �
 � � � � � � �
 �
 � �

� � �
�

�
 �
� � �

�
 "

�
�
 �

� � �
�

 %
&

� ' � � � * �
�

, , ,
&

�
� �

�
�

�
�

"
� /

�
�

�
*

 �
� 1 * �2 3 4 6 7 8 7 9 7 3 ; 6

< ; 3 4 ? @ 7 ? 4 6

"
� /

�
�

�
*

 �
� 1 * �2 3 4 6 7 8 7 9 7 3 ; 6

< ; 3 4 ? @ 7 ? 4 6

� 1 *

� � �

 �
 � �

"
� /

�
�

�
*

 �
� 1 * �2 3 4 6 7 8 7 9 7 3 ; 6

< ; 3 4 ? @ 7 ? 4 6

� � � � �&
� ' � � � * �

�

� � � � �
�

�
 �
� � �

�

Figure 6.4: The example architecture.

Specific agoras register themselves to the central agora. After receiving the registration
request from a service provider agent, the central agora locates a specific agora where
the service provider could register itself. In our case, the service providers registered
to the same specific agora provide services in the same domain.
Service requester agents register themselves to the central agora. Additionally they

publish their requirements in a declarative language. After that the central agora tries
to locate an atomic service satisfying the requirements. However, if no suitable atomic
service is found, symbolic negotiation is initiated. During symbolic negotiation the
central agora contacts specific agoras to receive a composite service for satisfying the
particular requirements.
It might happen that services from different agoras are needed for a composition.

In that case the central agora receives a partial composition from one specific agora
and forwards it to another specific agora for further composition. The process is called
symbolic negotiation—the central agora negotiates with specific agoras to compose a
solution for a service requester agent. Finally a composite service is constructed and
returned to the requester agent, who initiated the symbolic negotiation.

6.4 An example

In this section we demonstrate the usage of symbolic negotiation in a distributed prob-
lem solving scenario. It should be noted that distributed Web service composition is
an instance of distributed problem solving. Hence the example presented here explains
also how we are going to apply distributed Web service composition.
The particular system architecture and its components are depicted in Figure 6.4.

In our scenario we have two requester agents—R1 and R2. The goal of R1 is to listen a

78 CHAPTER 6. AGENT SYSTEM ARCHITECTURE

music (Music). Initially R1 has a book (Book), a broken CD player (BrokenCDPlayer)
and 5 dollars (Dollar5). Goals, resources and capabilities of R1 are described in LL
with the following formulae.

GR1 = {Music}, S R1 = {Book ⊗ BrokenCDPlayer ⊗Dollar
5}, ΓR1 = ∅.

Another query agent R2 is looking for a book (Book) and is in possession of 10 dol-
lars (Dollar10). Goals, resources and capabilities of the query agent R2 are described
in LL with the following formulae.

GR2 = {Book}, S R2 = {Dollar
10}, ΓR2 = ∅.

In addition we have several service provider agents. However, since they published
their services through particular agoras and these agoras take care of advertising the
services, we do not list here the internal states of the service provider agents. Instead
we present the internal states of agoras. Although agoras may have their own resources
and goals, which determine their policies, we consider here only a simple case, where
agoras take advantage of registered services/capabilities only.
According to the literals service providers can “produce”, the providers are aggre-

gated into two agoras—one for music and another for electrical appliances. In the
Music Agora M, three agents, MusicProvider, CDProvider and MP3Provider, can
provide services related to music. Services playCD and playMP3 provide respectively
knowledge about requirements for playing CD-s and MP3-s. Services buyMP3 and
buyCD provide means for ordering particular music media.

ΓM =

�MusicProvider CD⊗CDPlayer �playCD Music,
�MusicProvider MP3 ⊗MP3Player �playMP3 Music,
�CDProvider Dollar5 �buyCD CD,
�MP3Provider Dollar3 �buyMP3 MP3.

The agora E is an aggregation of the agents who can provide electrical appliances.
It only advertises one service repair from agent Repairer. The service description
declares that the agent can repair a CD player by charging 10 dollars.

ΓE = �Repairer Dollar10 ⊗ BrokenCDPlayer �repair CDPlayer.

Let us look now how symbolic negotiation is applied for constructing dynamically
services, which satisfy users’ goals. Initially the query agent R1 sends out a query to
agoraM for finding a service satisfying its requirements:

(o1,R1,M,Book ⊗ BrokenCDPlayer ⊗Dollar5 � Music).

The query would be satisfied by a service

� Book ⊗ BrokenCDPlayer ⊗Dollar5 � Music.

6.4. AN EXAMPLE 79

Unfortunately the service requirement is too specific and no matching Web service
is found. However, agoraM modifies the received offer and sends back the following
offers:

(o2,M,R1,Book ⊗ BrokenCDPlayer � CDPlayer)

and

(o3,M,R1,Book ⊗ BrokenCDPlayer ⊗Dollar2 � MP3Player),

which were deduced through PD in the following way:

Book ⊗ BrokenCDPlayer � CDPlayer
Book ⊗ BrokenCDPlayer ⊗Dollar5 � Dollar5 ⊗CDPlayer

normalise

Book ⊗ BrokenCDPlayer ⊗Dollar5 � CD ⊗CDPlayer
Rb(buyCD)

Book ⊗ BrokenCDPlayer ⊗Dollar5 � Music
Rb(playCD)

Book ⊗ BrokenCDPlayer ⊗Dollar2 � MP3Player
Book ⊗ BrokenCDPlayer ⊗Dollar5 � Dollar3 ⊗MP3Player

normalise

Book ⊗ BrokenCDPlayer ⊗Dollar5 � MP3 ⊗MP3Player
Rb(buyMP3)

Book ⊗ BrokenCDPlayer ⊗Dollar5 � Music
Rb(playMP3)

where normalise is another LL inference figure, which reduces the number of lit-
erals from a particular sequent:

A � A Id B � C
B, A � C ⊗ A R⊗

B⊗ A � C ⊗ A L⊗

Agent R1 chooses the offer o2 and forwards it to the electrical appliance agora E:

(o4,R1,E,Book ⊗ BrokenCDPlayer � CDPlayer).

Agora E modifies the offer further and ends up with the following counteroffer:

(o5,E,R1,Book � Dollar10),

which was derived in the following way:

Book � Dollar10
Book ⊗ BrokenCDPlayer � Dollar10 ⊗ BrokenCDPlayer

normalise

Book ⊗ BrokenCDPlayer � CDPlayer Rb(repair)

80 CHAPTER 6. AGENT SYSTEM ARCHITECTURE

Since no service provider can produce the Dollar literal, the message is sent to
the central Agora, which has an overview of requester agents’ requirements. Fortu-
nately, it turns out that agents R1 and R2 can satisfy mutually their requirements such
that requester R1 gets 10 dollars and requester R2 gets a book. The resulting service
composition can be translated to a process description languages like BPEL4WS.

6.5 Summary
This chapter described an agent architecture for distributed automated composition of
Web services. Agent-specific aspects provide Web service composition with proactiv-
ity, reactivity, social ability and autonomy, while usage of FIPA ACL and application
domain specific ontologies provide a standardised medium for Web service deploy-
ment.
We assume that Web services are represented in a OWL-S or WSML like declar-

ative language. Then these descriptions can be translated to LL formulae for internal
agent reasoning. A possible mapping mechanism for DAML-S is presented in [161].
Given such representation, agents can employ symbolic agent negotiation, as proposed
in Chapter 4, for composing new Web services according to their requirements. This
approach leads to distributed composition of Web services.

Chapter 7

P2P-Based MAS

The increasing popularity of P2P systems (such as Overnet, Kazaa and Gnutella) for
file sharing, indicates general interest in resource sharing. However the current P2P
systems suffer at least from two drawbacks. First, they are mostly designed for sharing
either data or CPU power, but not both in the same system. Moreover, in the case of
CPU sharing, the executable computational processes are expected to be known a pri-
ori for each participant (like in SETI@Home). Second, the current P2P network nodes
still lack a degree of proactivity, which would provide higher degree of autonomy,
rationality and fairness.
In contrary, multi agent systems (MAS) still seem to lack enough capabilities to re-

organise themselves in dynamic environments. In particular, despite of the intelligent
behaviour assigned to agents, MAS architectures are currently mostly designed manu-
ally. Therefore combining MAS-s and P2P networks would extend the capabilities of
both architectures.
Recently many articles, related to automated composition of (Semantic) Web ser-

vices [134,200], agent technologies and P2P networks [2,11,27,37,137] (see Chapter 2
for a review) have been published. Although many of them [9, 13, 47, 106, 147] dis-
cuss a combined approach, to the best of our knowledge there are currently no systems
available, which apply agent technologies to distributed composition of Semantic Web
services over structured P2P networks.
Our goal is to construct a system, which would allow users to seamlessly integrate

the available Web services and to support data exchange. Emergence of the Semantic
Web has resulted in a uniform view to data and computational resources. Describing
both data and Web services as semantic objects allows to move from data sharing and
service sharing to resource sharing in a unified infrastructure. We are going to exploit
this unified view while discovering required resources, data and Web services, in our
system.
In this chapter we describe an implementation of a MAS where agents coopera-

tively apply distributed symbolic reasoning for discovering and composing Semantic
Web services. A structured P2P network is used to self-organise MAS infrastructure
for efficient resource discovery.

81

82 CHAPTER 7. P2P-BASED MAS

Using Web service descriptions in a semantic-rich language significantly increases
the amount of semantic information available for discovering requested services. In
addition, if no services satisfying user requirements are found, then cooperative prob-
lem solving (CPS) or symbolic negotiation is applied for dynamic construction of new
composite Web services. The general structure of our system, supporting Semantic
Web services composition, is depicted in Figure 7.1.

P2P network

Translator

LL PD Engine
Domain

Ontology

MAS for CPS

Internet

LL proof LL formulae

Web service composition

Workflow

Semantic Web Service
Descriptions

Figure 7.1: The P2P system architecture.

Our Web service composition process reads in available atomic Semantic Web ser-
vices and the requested one, transforms it into Linear Logic (LL) formulae and applies
Partial Deduction (PD) to find (partial) solutions for a request. During PD attached
domain ontologies are used to reason over the semantics of Web services’ inputs and
outputs. Partial solutions can be extended through our symbolic negotiation frame-
work until a complete solution has been found. Complete solutions are returned to the
requester.
This approach allows exploitation of Web services in a MAS, which is expected

to be distributed over the Internet. The usage of agent technologies allows us to take
advantage of agent communication languages, which are well-suited for delivering
semantic information. Additional agent techniques could be used as means for con-
trolling access to Web services and other resources that agents possess.

7.1 Distributed composition with P2P
In Chapter 6 we proposed a mediator-based architecture for automated distributedWeb
service composition. However, we did not explain how Web service provider agents

7.1. DISTRIBUTED COMPOSITION WITH P2P 83

select mediators where to register themselves and how new mediator agents are se-
lected and organised. In this chapter we extend the former framework and show how
new mediators are selected and organised in P2P manner. We also show that P2P ap-
proach gives greater scalability of the system with many nodes compared to a manual
approach of setting up mediators.
In order to understand better how we map Semantic Web services, agents’ goals

into a P2P network, let us consider a scenario, where we have two agents—a traveller
(T) and a flight company (F). The scenario would we used throughout this chapter.
Let S ,G and Γ denote respectively available resources, goals and capabilities (Seman-
tic Web services) of agents. Available resources and goals represent respectively the
inputs and outputs of a (composite) Web service, which is required by an agent.
The goal of T is to make a booking (Booking) for a specific itinerary. Initially

T knows only its starting (From) and final (To) location. Additionally the agent has
2 local Web services running, findSchedule and getPassword, for finding a sched-
ule (Schedule) for a journey and retrieving a password (Password) from its internal
database for a particular Web site (Site).
Goals, resources and capabilities of agent T are described in LL with the following

formulae.

GT = {Booking}, S T = {From⊗ To},

ΓT =
� From⊗ To�findSchedule Schedule,
� Site�getPassword Password.

For booking tickets, traveller agent T should contact an airline company. The
airline company F does not have any explicit declarative goals (which is common for
companies). The only fact that F exposes, is a reference to the company Web site
(Site). Since the fact is unbounded it can be delivered to customers any number of
times (this is denoted by ! in the example).
Agent F has 2 local Web services running—bookFlight for booking a flight, and

login for identifying customers and creating secure channels for information trans-
fer. We assume that a customer has created a personal profile at the airline company
including customer’s credit card information. Therefore the customer does not have
to provide this information explicitly. Goals, resources and capabilities of the airline
company F are described in LL with the following formulae.

GF = {1}, S F = {!Site},

ΓF =
� SecureChannel ⊗ Schedule�bookFlight Booking,
� Password �login SecureChannel.

84 CHAPTER 7. P2P-BASED MAS

7.2 P2P network layer
Since we assumed that in our application we can map each resource to an integer
key, we chose to take advantage of a structured P2P network, namely Chord [176].
Structured P2P systems provide scalable resource-location mechanism compared to
non-structured networks, where the network is flooded with messages in order to locate
resources.
Generally, the Chord protocol consist of a consistent hashing function to provide

unique key assignments for each node/object in the network. With the key’s value each
node can determine its logical position in the system. In Chord the logical position of a
node is a point in a circular key space. For example, Figure 7.2 presents an instance of
a Chord network topology for a key space with length 32. Black dots represent nodes
in the network and white dots represent keys that are not used.

31 0

4

18

22

27
28

Figure 7.2: A Chord network example.

In order to maintain the ring structure of the network, each node constantly up-
dates its predecessor and successor nodes in the network. These are the nodes which
immediately precede or succeed, respectively, a node in the circular key space. As
long as predecessors and successors of all nodes are updated, nodes are guaranteed to
be found in the network. Thus if one node has to locate a peer holding a particular
key, a message could be sent either to its successors or predecessors in the circular key
space until it reaches the correct location. This process is made more efficient by using
routing tables, which allow to bypass many nodes at once when forwarding a message
to its destination.
Each node in the network maintains its personal routing table with N records for

7.3. INTEGRATING P2P INTO MAS 85

Table 7.1: Routing table of node 27 in Figure 7.2.

Index Key Node
1 27 + 20 = 28 28
2 27 + 21 = 29 31
3 27 + 22 = 31 31
4 27 + 23 = 3 4
5 27 + 24 = 11 18

2N key space. Each record points to a successor of a key, which is at distance of
2i, i = 0 . . .N − 1 from the key, which identifies the node. A routing table of node 27
of Chord network in Figure 7.2 is represented for example in Table 7.1. Now, if peer
with key 27 wants to deliver a message to the peer with key 22, then according to this
routing table the message would be sent initially to a peer with key 18 (the peer with
a closest preceding key to 22) and the peer with key 18 would forward the message
further.
In order to apply Chord network and its object location mechanism for Semantic

Web service composition, we have to implement a mapping from objects to indices. In
this article we consider objects to be the names of inputs and outputs of Semantic Web
services. Additionally we assume that agents share the same ontology. Thus we can
just apply a hash function from an object name to an integer key such that the objects
with the same intended meaning would have the same key.
However, in large P2P networks different agents tend to use different ontologies.

Therefore we recognise the need for a function, which would transform concepts from
different ontologies, but with the samemeaning, to the same key or to similar keys. One
way to overcome this problem might be to annotate all concepts with sets of keywords.
Then Latent Semantic Indexing or some other information retrieval algorithm [155]
could be applied for computing a unique value to a particular set of keys.
Alternatively, if objects have been annotated with keywords, Hilbert space fill-

ing curves (SFC) could be applied for mapping an n-dimensional keyword space to
1-dimensional hash value space. The latter approach has been used by Schmidt and
Parashar [168] for locating Web services at Chord P2P network. Unfortunately we
could not apply their results directly in our system, since Schmidt and Parashar de-
scribed Web service classificationwith keywords, while we need to annotate the inputs
and outputs of Web services.

7.3 Integrating P2P into MAS
Our MAS architecture is designed as a layer on top of Chord P2P network. While P2P
handles issues related to indexing and efficient location of resources, agents initiate
these actions in P2P networks. In our case agents use the P2P network for discover-

86 CHAPTER 7. P2P-BASED MAS

ing other agents, whose Web service descriptions include particular literals (names of
inputs and outputs). Thus our MAS could be seen as an application layer of a P2P
network, whereas P2P network is just another communication medium for MAS.

In order to facilitate efficient location of related agents, one agent per each literal is
designated to mediate access to other agents interested in particular literals. Since an
agent specification usually includes more than one literal, a single agent may mediate
several keys. When an agent joins the network, it first determines whether there are
already agents mediating some of its keys. If there is no mediator for particular keys,
the agent joins the network as a mediator for these keys. In the case there exists a key
mediator, the agent registers itself at the particular mediator. Mediators are organised
according to Chord algorithm.

A mediator could be seen as a kind of super-peer, which facilitates communication
between agents sharing a particular key. In order to apply Chord P2P network for
our purposes, literals in Web service specifications are transformed into integer keys,
where a key is the result of the mapping from a literal (concept name). An instance
of our network topology is presented graphically in Figure 7.3. The inner circle there
represents mediators in the Chord network while auxiliary nodes represent mediated
agents.

If an agent has to send a task to other agents, then literals in the task are identi-
fied, transformed to keys and the task would be delivered to mediators taking care of
particular keys. Then these mediators shall multicast the message to agents, which are
registered at these mediators. If the mediated agents would like to deliver a message
to other mediators, then they first send a message to their mediator and this mediator
shall forward the message to other mediators. If an agent has registered itself at several
mediators, then the messages would be sent to the most preceding mediator of a partic-
ular key. In this case multicast is implemented on top of a P2P network. If a mediator
considers leaving the system, then it delegates its tasks to one of the agents which is
registered at this mediator. However, if a mediator does not have any agents registered
at itself, then the key disappears from the network.

Since the network of agents and the set of literals is constantly evolving, we would
not be able to manually set up mediators, unless we would designate a single agent for
mediating all others. The manual approach could work in small or static systems but
not in large and dynamic ones.

One disadvantage of P2P networks is that extra efforts are needed to keep them
stable and consistent. A Chord network is defined to be stable if successors and pre-
decessors of all nodes are correct. If a network is not stable, then it may break into
clusters and there is no guarantee anymore that required resources will be located.

In order to keep the network stable, we would still like to preserve some degree of
centralisation in future. Namely, we envisage that there are entities, which monitor the
evolution of the network and try to detect and resolve anomalies. Anyway, indexing
and search would be still organised in the distributed manner.

7.4. ELABORATION OF THE EXAMPLE 87

Figure 7.3: Example P2P network topology.

7.4 Elaboration of the example
Let us consider again the agent/service specifications from Section 7.1. The speci-
fications of agents T and F form a domain, which consists of 7 literals—From, To,
SecureChannel, Booking, Schedule, Site and Password. The 4 last literals are shared by
both agents. This means that they shall compete for the right to mediate these literals.
Let us assume that these 7 literals are mapped to keys 0, 4, 18, 22, 27, 28 and 31,

respectively. To demonstrate the interaction between agent- and P2P-related concepts
we additionally assume that agent T would mediate keys 0, 4, 22 and 28, while F
would mediate 18, 27 and 31. This configuration is summarised in Table 7.2.
Given its specification, agent T derives and sends out the following task (see [106]

for how this and the following tasks were derived):

Schedule � Booking.
This task would be sent to mediators of literals Schedule and Booking, which are

Chord nodes 27 and 22. These mediators would start solving the task and also multicast

88 CHAPTER 7. P2P-BASED MAS

Table 7.2: Keys and mediators of literals.

Literal Key Mediator
From 0 T

To 4 T

SecureChannel 18 F

Booking 22 T

Schedule 27 F

Site 28 T

Password 31 F

the task to registered agents. Since we have currently only 2 agents in the network, then
the message would be sent only to agent F .
Agent F merges the task with its current state !Site � 1 and as a result achieves task

!Site⊗ Schedule � Booking. Since F cannot satisfy the proposal, it derives a new task
and forwards it to agent T :

Site � Password.
Agent T deduces the task further and constructs the final composite Web service.

Thereby T produces, with help of F , a composite service, whose execution achieves
the goal of agent T . The resulted composite service is graphically represented in Fig-
ure 7.4. The service composition is finally translated to a process description languages
like OWL-S process model or BPEL4WS. The exact translation process is described
in [160].

7.5 Empirical and analytical evaluation
In order to evaluate our architecture and the CPS method, we chose to measure the
number of messages, which were sent by agents until all agents solved their problems
(each agent had to compose a Web service). We considered 4 different methods for
message distribution:

1. multicast—each agent delivers its messages through a mediator to agents, whose
domain includes any of the literals in a derived partial solution

2. broadcast—each agent delivers its messages to all other agents in the system

3. simple P2P—before delivering each message, the mediators of potentially inter-
ested agents are located and then the message is delivered to them

4. P2P with caching—the same as simple P2P with the only difference that the
location of each mediator is discovered only once per runtime and is cached for
further use

7.5. EMPIRICAL AND ANALYTICAL EVALUATION 89

getPassword

findSchedule

login

bookFlight

Password

Schedule

Booked

Site

Agent T Agent F

Figure 7.4: The composite Web service.

While data for multicast and broadcast was acquired through experiments, the re-
sults for the P2P versions are estimated analytically. For analytical evaluation we as-
sumed that our P2P architecture performs equally with the mediator-based agent ar-
chitecture with a difference that extra messages should be sent to discover particular
mediators. Additionally we assumed that our key space is 1024 to accommodate 1000
concepts. This implies that in order to discover a mediator, generally log21024 = 10
messages should be sent in Chord network. Therefore, to evaluate the maximum cost
of P2P, we multiplied the number of messages, exchanged during multicast, by 10.
However, if we assume that each peer applies caching, then we could use a function
max(N ∗ A +m, p) to evaluate the message burden. N, A, m, p in the formula represent
respectively the numbers of concepts, agents, multicast messages and worst case P2P
communication messages sent. This function reflects that in the worst case each peer
has to discover and cache the locations of all keys/concepts in the systems. We do not
consider the number of stabilisation messages, while evaluating the cost of using P2P.
Experiments with multicast and broadcast were performed with 10, 20, 50 and 100

agents. With each set of agents the same set of service and task specifications was
used with both broadcast and multicast. We ran each experiment with each set of
agents 5 times. The overall domain, where the names of services’ inputs and outputs
were randomly selected, consisted of 1000 concepts. We made experiments with 2
configurations:

1. each agent published 4 Web services, a required composite Web service con-
sisted of at least 3 Web services

90 CHAPTER 7. P2P-BASED MAS

2. each agent published 5 Web services, a required composite Web service con-
sisted of at least 5 Web services

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

M
es

sa
ge

s

Agents

multicast
broadcast
P2P, est.

P2P with caching, est.

Figure 7.5: Minimum solution length 3.

The results of configuration 1 and 2 are respectively summarised in Figure 7.5
and Figure 7.6. Both figures show how many messages in average were sent during
problem solving, before all agents found their solutions. Figure 7.7 demonstrates the
exponential complexity of the problem solving methodology (with 10 agents), which
is bound to the complexity of LL. Although there exist logics with polynomial com-
plexity [109] for solving the similar problem, their expressive power is far behind LL.
Figure 7.5 and Figure 7.6 show clearly that with few agents in a network (less than

50 in Figure 7.5) broadcast is generally better than P2P topology. However, if the
number of agents and services increases, P2P with caching becomes a better choice
than broadcast. Moreover, both figures show a tendency that while the number of
agents and services grows in the network, the difference between P2P with caching and
multicast becomes proportionally smaller. Therefore we conclude that if the number of
concepts in the network is constant and the number of peers approaches infinity, P2P is
almost as good as multicast, if we do not consider the number of messages sent during
Chord stabilisation procedure. Anyway, the assumption that the number of concepts is
fixed and the number of agents grows, could be interpreted as that in small networks
several concepts should be clustered together to achieve higher efficiency. The smaller
concept space would mean less mediators and less messages for mediator discovery.

7.6. SUMMARY 91

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

M
es

sa
ge

s

Agents

multicast
broadcast
P2P, est.

P2P with caching, est.

Figure 7.6: Minimum solution length 5.

7.6 Summary
In this chapter we described P2P extension of MAS, which was presented in Chap-
ter 6, for distributed composition of Semantic Web services. The MAS applies this
P2P extension for reorganising and configuring its mediators. The main purpose of the
mediators is to group agents which share a part of a domain. From service composition
point of view these are agents, whose services’ inputs or outputs include a common ob-
ject (literal at the formalisation level). If agents have been gathered in such a way, their
location over a distributed system is more efficient and reliable than in non-structured
distributed systems.
Although MAS in Chapter 6 can function without the P2P architecture, we believe

that P2P would give some added value, especially when it comes to balancing message
load between agents. In fact, our empirical/analytical results show that in a system
with an increasing number of Semantic Web services and agents, our P2P approach
would mean almost the same message load as a system with mediator-based multicast.
However, with P2P architecture message load between agents is balanced more evenly
compared to a system with multicast, where all messages are routed through a central
mediator. Additionally, the usage of P2P would eliminate the central point of failure
in the whole system.

92 CHAPTER 7. P2P-BASED MAS

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10

M
es

sa
ge

s

Solution length

multicast

Figure 7.7: Problem solving complexity.

Part III

Applications and Evaluation

93

Chapter 8

Agent System Implementation

This chapter explains our multi-agent system architecture, which was presented in
Chapter 6, from the implementation point of view. The architecture was constructed
to support distributed Web service composition, as described earlier, and to facilitate
user interaction. The architecture has been implemented in Java by using JADE agent
development environment.
JADE (Java Agent DEvelopment framework) is a platform built to help devel-

opers implementing multi-agent systems and it is compliant with the FIPA specifi-
cation. It is written in Java, and is free software. The copyright holder is TILAB
which also distributes it as open source software under the terms of the LGPL (Lesser
General Public License Version 2). More information about JADE can be found at
http://jade.tilab.com/.

8.1 The implementation architecture
The general implementation architecture of our multi-agent system (MAS) is presented
in Figure 8.1. The architecture consists of a mediator agent, a database agent, a testbed
agent, a monitoring agent and a number of negotiator and graphical user interface
(GUI) agents. Additionally there is a Web server for bootstrapping the agent system,
database for storing operational information and GUIs. The GUI part of the system is
described in a more detailed way in Chapter 9.
The aim of the architecture is to make the system easily reconfigurable. For in-

stance, it is possible to determine, which JADEmessage transportation protocols (MTP)
agents use for communication. Furthermore, new agents with specific capabilities can
be added as long as they conform to the overall communication protocol. For instance,
we can remove the mediator agent and extend negotiator agents with P2P capabilities
to eliminate centralised communication. Instead of a monitoring agent we can also use
a testbed agent during performance evaluation and testing.
The negotiator agents can operate without a database and GUI agents. Anyway, a

GUI agent can be attached to any negotiator agent, given that it passes the introduced
security measures. For system evaluation, testbed agent can simulate GUI agents.

95

96 CHAPTER 8. AGENT SYSTEM IMPLEMENTATION

Log filesLog files Log files

Agent
Database

Agent
Monitoring

Agent
Negotiator

Agent
GUI

Mediator
Agent

Agent
Negotiator

Web Server

Agent
Testbed

Figure 8.1: Agent system architecture.

The proposed architecture can be seen as an implementation of AGORA [127],
which provides an infrastructure, where service providers and requesters can meet with
each-other. An instance of AGORA system is depicted in Figure 6.2.

8.2 Agents
In this section we describe the agents, which participate in the proposed agent system.
While some agents are application-specific, like the database agent and GUI agents,
others, like the mediator agent and negotiator agents, are part of the general agent
system.

8.2.1 Database agent
The database agent receives requests from a GUI agent, and facilitates access to the
user database. The agent allows the creation of new users, sending forgotten passwords
to previously identified e-mail addresses. In addition, the database agent handles regis-
tration and removal of negotiator agents from the global agent directory. Through that
directory GUI agents can find available agents where to connect.
Moreover, Web services’ annotations, found gaps and Web service composition

8.2. AGENTS 97

queries are stored there. The database agent also allows registered users to determine
their friend users. Friends can monitor the progress of each-other’s agents and share
solutions found by their agents.

8.2.2 Monitoring agent

The monitoring agent constantly receives status messages from other participating
agents and tries to resolve potential abnormalities in the network. It also measures the
efficiency of the system and tries to detect information flow bottlenecks. The received
status messages include messages exchanged between agents and statistics about agent
operations.
The monitoring agent is especially useful, if negotiator agents participate in a P2P

network. In order to keep the network stable, sometimes the monitoring agent should
bias the reorganisation of the system. However, the monitoring agent should not be-
come a new potential bottleneck.
The monitoring agent can be replaced with a testbed agent, if the agent system is

under evaluation. Furthermore, the testbed agent could be seen as a monitoring agent
with extended capabilities.

8.2.3 Negotiator agent

Negotiator agents are the main cooperative problem solving entities of the agent sys-
tem. They apply symbolic negotiation for solving their declarative tasks. Commands
and new problems can be sent to negotiator agents either through a testbed or a GUI
agent.
In order to attach GUI agents to negotiator agents, GUI agents have to register

themselves at a database agent as trusted parties for particular negotiator agents. Then
the database agent would notify the affected negotiator agents about the GUI agent.
Additionally, a GUI agent can be connected to a negotiator agent directly, if it knows
appropriate user name/password combination.
It should be noted that any number of GUI agents can be attached to each negotiator

agent. In this case all of them can control a particular negotiator agent concurrently.
Similarly, all results achieved by the negotiator agent are delivered to all registered
GUI agents.
Negotiator agents can distribute their messages to each-other either through a me-

diator agent or a P2P network. In the latter case the mediator agent can be removed
from the system.

8.2.4 GUI agent

GUI agents link together the agent system and its applications with GUI-s. They trans-
form user requests to the format internally applied by negotiator agents for problem

98 CHAPTER 8. AGENT SYSTEM IMPLEMENTATION

solving. Symmetrically, they interpret answers from other agents according to an ap-
plication logic and display them according to the attached GUI. In other words, GUI
agents transforms GUI events to ACL messages used in JADE for agent communica-
tion and vice versa.
A GUI agent can only relate to one GUI component and a GUI component can

only relate to only one GUI agent. Moreover, each GUI agent can only interact with
one negotiator agent. Additionally GUI agents interact with the database agent. Thus
the database cannot be accessed directly from the application. Although GUI agents
cannot communicate with several negotiator agents at any given time, they can attach
themselves to any negotiator agent.

8.2.5 Mediator agent

The purpose of the mediator agent is to mediate messages between negotiator agents.
In order to do it, all negotiator agents are required to register themselves at the mediator
agent. The negotiator agents would register their contact addresses and their interests
at the mediator agent.
The mediator implements two modes of message distribution—broadcast and mul-

ticast. While broadcast forwards a message to each known negotiator agent of the agent
system, multicast inspects the content of the message and delivers it only to interested
parties. It must be noted that the mediator agent is not used together with negotiator
agents, which communicate in a P2P fashion.

8.2.6 Testbed agent

Testbed agent is intended for measuring system’s performance. It generates test cases
for problem solving and initiates a required number of negotiator agents. If required, a
mediator agent is spawned as well. After that the testbed agent distributes the generated
test cases between spawned negotiator agents and initiates distributed problem solving.
Finally, it collects achieved results from participating negotiator agents and measures
agent system performance according to collected statistics and results.
The testbed agent interacts with negotiator agents as a GUI agent. However, in

contrary to GUI agents, it can communicate with all negotiator agents simultaneously.
Also a GUI can be attached to the testbed agent to visualise experimentation results.

8.3 Security

Not every GUI agent can connect to any negotiator agent. There are two ways for GUI
agents to register at negotiator agents. The simplest way is to use a password and a
user name, which is set when a negotiator agent is spawned. Then a GUI agent uses
these credentials to connect to the negotiator agent.

8.4. SUPPORTING INFRASTRUCTURE 99

A more sophisticated way is use a database agent to notify particular negotiator
agents about trusted GUI agents. These GUI agents would access the negotiator agents
without authentification. Anyway, in order to use the database agent, application users
must create a user account at the database. The credentials associated with the account
are given to a GUI agent for further operations, if an application is started. Then, if
a negotiator agent is created by the GUI agent, the GUI agent registers the negotiator
agent at the database, and the agent is associated with the particular user.
After that, knowing the credentials, any GUI agent can access the negotiator. More-

over, the users associated as friends to a particular user can attach their GUI agents to
user’s negotiator agents. The friends are created through the end-application by a GUI
agent and through the database agent.

8.4 Supporting infrastructure
In order to support the agent system a number of software components in addition
to JADE is required. JADE currently supports the following message transportation
protocols (MTP) for inter-agent communication:

• FIPA Mailbox by Owen Cliffe

• JXTA by Shenghua Liu

• IIOP by JADE team

• HTTP by JADE team

While JADE IIOP and HTTP allow agent communication over the Internet, they
cannot handle firewalls and network address translation (NAT). However, most of the
mainstream Internet community is affected by these technologies. Anyway, FIPAMail-
box and JXTA MTP allow to overcome these issues. Therefore, by using the latter
MTP-s, the agent system can be exploited over the Internet without restrictions.
Finally we set up a MySQL server for maintaining the database and a Web doc-

ument for bootstrapping the agent system. The document describes the locations of
a mediator and a database agent. If negotiator agents interact in a P2P manner, then
another document describes the location of P2P nodes which are required for boot-
strapping the network.

8.5 Summary
In this chapter we described general implementation details of the MAS described in
Chapter 6. We identified the key technologies required to set up the MAS. Moreover,
we presented the implemented MAS architecture.
The architecture consists of a mediator agent, a database agent, a testbed agent,

a monitoring agent and a number of negotiator and GUI agents. Additionally there

100 CHAPTER 8. AGENT SYSTEM IMPLEMENTATION

is a Web server for bootstrapping the agent system, database for storing operational
information and graphical user interfaces (GUI).

Chapter 9

Web Service Composition Tool

Recent progress in the field of Web services has made it practically possible to publish,
locate, and invoke applications across the Web. This is a reason why more and more
companies and organizations now implement their core business process and outsource
other application services over the Internet. Unfortunately this process relies heavily
on the human factor—initially essential Web services are located manually, then busi-
ness leaders negotiate over the terms of integrating the services and finally program-
mers integrate the Web services. Due to the low performance of humans (compared to
machines), the process is slow and expensive.
Based on the technologies and architectures described in previous chapters we de-

veloped a software tool, which automates Web service discovery, composition and
integration. The system gets from its user the specification of a required service and
a set of conditions, which have to be satisfied in order to integrate the service. Then
the system automatically composes the composite Web service. A composite Web ser-
vice expresses a business process, which captures a particular intra or inter enterprise
workflow. In this way the required amount of human efforts is reduced significantly.
The tool is connected to a Web service provision network, where both, service

providers and requesters, can proactively negotiate over their Web services’ require-
ments. The Web service provision network is based on the previously described agent
system, which facilitates automated Web service composition in a distributed manner.
The tool is targeted generally to Web service developers and IT managers. They both
would benefit from tools, which would assist them during Web service deployment
and suggest potential Web service compositions. Moreover, since the tool hides most
of the technical details related to Web services standards, it requires less technical
competence to operate.

9.1 Tool description

In order to apply the tool you have to first log into the Web service provision network
either by using local or global authentification as shown in Figure 9.1.

101

102 CHAPTER 9. WEB SERVICE COMPOSITION TOOL

Figure 9.1: Login window.

After you have logged in, a GUI is spawned, which allows you to annotate seman-
tically existing Web services and publish the annotations into the network through the
underlying MAS such that others could use the annotations as well. The annotation
window is depicted in Figure 9.2. During annotation, a developer has to specify the
location of a WSDL document and press “Parse” button. If the entered URL repre-
sents a valid WSDL document, the document is parsed and the developer can annotate
semantically operations described in the document. By annotation we mean giving
logical/symbolic names for input and output fields of available Web service opera-
tions. In the current state we do not use any tool to manage ontologies explicitly. Thus
the developer has to be careful when introducing new logical names, which refer to
particular concepts.
Finally, the developer can determine, whether an operation is a core service or

not. This piece of information is applied during gap detection, when no solution for
a required composite Web service is found. Our gap detection process is described in
Chapter 10.
The tool allows developers to specify requirements for composite Web services in

terms of required inputs and outputs as depicted in Figure 9.3. Furthermore, gap de-
tection heuristics can be chosen for the case there is no solution for the determined
requirements. Additionally user and system context can be inserted into the require-
ments.
While user context determines a set of user-defined logical name/value pairs for

inputs of a required composite Web service, system context queries the operating sys-
tem (OS) for values of specified parameters (logical names). System context includes
for instance computer’s IP address, OS type, developer’s e-mail address, geographical
location, current time, etc. Values in contexts are used later during solution execution.
Finally “Restrict Search” mode can be chosen, which would constrain that found

solutions would have only the specified inputs and outputs. Solutions, which would

9.1. TOOL DESCRIPTION 103

Figure 9.2: Web service annotation window.

have other outputs as a side-effect, would be discarded. Thus “restricted” search ap-
plies symbolic negotiation as formalised in Chapter 4, while “non-restricted” search is
biased towards practicality and deviates a bit from the proposed formalism.
After button “Search” is pressed, automated Web service composition is initiated.

Results are graphically depicted as shown in Figure 9.4. The developer can select
between different views for the solution. Currently available views include operational
and logical ones. While operation views show data flows from the computation point
of view, logical views represent the flow from formal point of view. The developer can
also experiment with different graph layout structures to get a better understanding of
composed solutions.
Finally, solutions can be executed, if they do not include gaps. Figure 9.5 shows the

main execution pane. One can select from the pane a solution and execute it by pressing
“Execute” button. The execution engine first looks through the specified contexts for
identifying input values of the composite solution. If an input value is not found from
the contexts, a dialog is spawned where the user can set it. SOAP messages, which are
sent and received during execution, are displayed in the “Execution Result” text area.
Execution progress is displayed as in Figure 9.6.
It often happens that a Web service operation outputs a list of values, while the

workflow determines that only a single value should be forwarded to another operation.

104 CHAPTER 9. WEB SERVICE COMPOSITION TOOL

Figure 9.3: Automated composition window.

In these cases a dialog is spawned like in Figure 9.7 and the user is asked to select a
value from the list, which would be applied for further computation.
Advantages of the tool are the following:

• users can share search results

• agents can be controlled remotely

• if no complete solution according to requirements can be found, partial ones are
proposed

• graphical display of composite Web services

• embeds a full development process starting with annotation and ending with
execution plus a BPEL4WS description of the solution

• flexible communication between agents—JXTA, HTTP, IIOP or FIPA Mailbox
protocols can be used for communication during agent interaction

• detection of required and missing Web services

Anyway, there are disadvantages of the tool as well. Some of them are listed in the
following:

9.2. TOOL USAGE SCENARIO 105

Figure 9.4: Composite Web service solution window.

• specifying requirements for a composite Web service is not user-friendly

• composite solution execution can be improved

• collaboration environment could provide more options, like sharing annotations
between participating entities

• annotation is done currently manually

9.2 Tool usage scenario
In order to illustrate usage of the tool and how the main functionality of our software
could be applied, let us consider the following example. The example would be refined
further and described in greater depth in Chapter 10. It should be mentioned that this
example only considers a fragment of the functionality provided by our software and
services. We assume that a developer has to construct a composite Web service for
selling skis. The service should take as input the body height measured in centimeters
(cm), the body weight measured in kilograms (kg), user’s skill level and the price limit.
The composite service would return a price of recommended pair of skis in Norwegian
krone (NOK).

106 CHAPTER 9. WEB SERVICE COMPOSITION TOOL

Figure 9.5: Composite Web service execution window.

The core service selectSkis accepts the ski length measured in inches, ski brand, ski
model and gives the ski price in US dollars (USD). The available value-added services
are the following:

• selectBrand—given a price limit and a skill level, provides a brand

• selectModel—given body height in cm and body weight in kg, provides ski
length in cm and a ski model

Developer’s view to the composition task under consideration is presented in Fig-
ure 9.8. The publishing part represents the available Web services, while the goal part
represents requirements for the expected Web service. Currently there are only 3 Web
services available. However, in real cases there would be thousands of Web services.
After a developer presses the “Search” button, potential solutions are computed.
A solution for the Web service composition, proposed by our system, is presented

in Figure 9.9. The figure shows a workflow, which represents a compositeWeb service,
which would compute the price of a pair of skis from identified inputs. GAP0 and
GAP1 in the solution identify new Web services, which have to be implemented in
order to exploit the composite Web service. GAP0 is a converter from centimeters to
inches, while GAP1 represents a currency converter from USD to NOK. After these
converters are implemented, the compositeWeb service can be integrated to company’s

9.3. COMPARISON WITH OTHER TOOLS 107

Figure 9.6: Composite Web service execution progress dialog.

Figure 9.7: Interactive execution dialog.

business process by means of exported WSDL and BPEL documents, which describe
the proposed workflow. WSDL and BPEL documents are exported automatically from
proposed workflows. The gap detection method is described in Chapter 10.
This scenario demonstrated the following functionality of our software:

• automated construction of compositeWeb services (workflows, business process
fragments)

• automated customisation of business processes and Web services

• detection of additional Web services, which have to be implemented, in order to
compose and exploit a required Web services

The demonstrated functionality would allow developers to save a lot of time while
looking for suitable compositions. Although we demonstrated here a case with 3 Web
services only, the real advantage of our software would be perceived in real cases when
there are hundreds or even thousands of Web services available.

9.3 Comparison with other tools
A selection of current major Web services tools are presented in Table 9.1. As it can be
seen, none of the mentioned tools really provide automated Web service composition

108 CHAPTER 9. WEB SERVICE COMPOSITION TOOL

Figure 9.8: Input to our program.

or customisation. Thus our tool and accompanied services would significantly improve
these processes through automation. Our tool is most closely related to VCAB from
Vergil, which is targeted to IT managers and business analysts. Anyway, our technol-
ogy would provide an automated approach for solving the similar problem as VCAB
does in a goal-oriented way. Therefore we would ease up the task of business analysts,
IT-managers and programmers even more than VCAB does.
Web services market is a rapidly expanding market, where tools, which would fa-

cilitate easy integration and creation of Web services are urgently required. Although
there is already a number of tools available for supporting Web services development,
analysis, integration and verification, there are only few commercial tools for facilitat-
ing the composition of Web services without writing a single line of code. These tools

Company Product Composition Testing Managing Cost (USD)
Mindreef SOAPScope no yes no 99
Empirix e-Test Suite no yes no 9,995
Collaxa Collaxa 2 manual ??? yes 20,000
Infravio Ensemble manual ??? yes 50,000
Digital Evolution Management Server no ??? yes 150,000
Flamenco Networks Flamenco WSM no ??? yes 100,000
Blue Titan Software Network Director no ??? yes 150,000
Vergil VCAB manual ??? ??? 24,000

Table 9.1: Comparison of major Web services tools.

9.4. SUMMARY 109

Figure 9.9: A constructed composite Web service.

would allow business analysts and IT managers to design their business processes and
incorporate required Web services into the processes. In the simplest case the whole
business process would consist of Web services only, which are orchestrated according
to business needs. Our tool tries to follow this principle.

9.4 Summary
This chapter describes a tool, which we used to experiment with distributed Web ser-
vice composition in an automated way. The tool implements the symbolic negotiation
framework, which was proposed in Chapter 4. In order to distribute the composition,
MAS architecture, described in Chapter 6 and Chapter 8, was deployed.
As a result the tool is connected to a Web service provision network, which brings

together users over the Internet. The set of users consists of both, service providers and
requesters. Since the tool hides most of the technical details related to Web services
standards, it requires minimal technical competence to operate. However, understand-
ing of the basics of semantic Web services is required.

110 CHAPTER 9. WEB SERVICE COMPOSITION TOOL

Chapter 10

Detection of Missing Web Services

Many methods have been recently proposed, including ours, for composing automati-
cally Web services from existing ones. The methods range from AI planning to auto-
mated theorem proving and graph search algorithms. However, the practical usability
of these methods is greatly affected by two assumptions. Firstly, it is assumed that
developers provide consistent declarative descriptions of Web services. Secondly, it is
assumed that there exists a sufficient set of atomic Web services, which would facil-
itate the composition of all other Web services. Unfortunately these assumptions are
not always satisfied in practice.
In this chapter we propose a method to assist automated composition, if these two

assumptions do not hold. In particular, we apply partial deduction for identifying pos-
sible inconsistencies inWeb service descriptions. Ourmethod also determines possibly
missing atomic Web services, which should be implemented in order to compose a re-
quested composite Web service. The method would assist automated composition in
situations where theorem proving or any other method would not lead to any compo-
sition.

10.1 Generic method description

The generic Web services composition process, involving detection of missing Web
services, is presented in Figure 10.1. First, it assumes that descriptions of existing
Semantic Web services are translated into extra-logical axioms of LL, and the require-
ments to the composite service are specified in form of a LL sequent to be proven. Then
LL theorem proving is applied to determine whether a composition can be found. If no
composition is found then PD and heuristics for detecting missingWeb services (gaps)
are applied iteratively. While PD generates the set of all possible gaps, heuristics are
applied to reduce this set in order to help finding practically useful missing services.

111

112 CHAPTER 10. DETECTION OF MISSING WEB SERVICES

Web service
specification

Theorem Proving

Partial Deduction

Gap Detection

Composite Web service

(OWL−S,WSML)

(LL formulae)

(PD rules in LL)

(Heuristics)

(BPEL4WS,OWL−S)

Figure 10.1: The generic composition process.

10.2 LL Web service representation
Generally, we represent the requirements for a composite Web service, as proposed by
Rao et al [160], with the following LL sequent:

(Γv, Γc);∆ � I � O

where both Γv and Γc are sets of extra-logical axioms representing available value-
addedWeb services and core services respectively,∆ is a conjunction of non-functionality
constraints. The constraints could be used either for specifying quantitative or qualita-
tive attributes of required services. I � O is a functionality description of the required
composite service. Both I and O are conjunctions of literals. While I represents the
set of inputs of the service, O represents the set of outputs produced by the service.
Intuitively, the formula can be explained as follows: given a set of available atomic
services and the constraints, try to find a combination of services that computes O
from I. Every element in Γv and Γc is in form ∆ � I � O, where meanings of ∆, I and
O are the same as described above.
Here, we illustrate the LL presentation with an example adapted from [159]. The

example considers composition of a ski buying service. We assume that a user provides
her body height measured in centimeters (LENGTH CM), body weight measured in
kilograms (WEIGHT KG), skill level (SKILL LEVEL) and a price limit (PRICE LIMIT).
The user would like to get a price of recommended pair of skis in Norwegian krone
(PRICE NOK). The core service selectSkis accepts ski length measured in inches
(LENGTH INCH), ski brand (BRAND), ski model (MODEL) and gives the ski price in

10.2. LL WEB SERVICE REPRESENTATION 113

US dollars (PRICE USD).
The available value-added services are the following:

• selectBrand—given price limit (PRICE LIMIT) and skill level (SKILL LEVEL),
provides a brand (BRAND)

• selectModel—given body height in cm (LENGTH CM) and body weight in kg
(WEIGHT KG), provides ski length in inches (LENGTH INCH) and a ski model
(MODEL)

• cm2inch—given ski length in cm (LENGTH CM) provides ski length in inches
(LENGTH INCH)

• USD2NOK—given ski price in USD (PRICE USD) provides ski price in NOK
(PRICE NOK)

The available value-added services are specified as follows (here we omit the step
corresponding to translation of the Web service description from OWL-S to LL):

Γv =

� PRICE LIMIT ⊗ SKILL LEVEL�selectBrand BRAND

� HEIGHT CM ⊗WEIGHT KG�selectModel LENGTH CM ⊗MODEL

� LENGTH CM �cm2inch LENGTH INCH

� PRICE USD�USD2NOK PRICE NOK

The core service is specified as the following sequent:

Γc = � LENGTH INCH ⊗ BRAND⊗MODEL� PRICE USD

The constraints for the composite service are empty, since we would like to keep
the example simple: ∆ = ∅.
Finally, the requirements for the composite service are specified as follows:

(Γv, Γc);∆ � HEIGHT CM ⊗WEIGHT KG ⊗ PRICE LIMIT
⊗ SKILL LEVEL� PRICE NOK

Using LL prover the required service can be proven to be composable (and then
extracted from the proof) from the specification of available value-added services and
the core service. The services can be graphically depicted as circles with input and
output arcs as it is presented in Figure 10.2, Figure 10.3 and Figure 10.4.

114 CHAPTER 10. DETECTION OF MISSING WEB SERVICES

selectModel

WEIGHT_KG
HEIGHT_CM MODEL

LENGTH_CM

selectBrand

SKILL_LEVEL
PRICE_LIMIT

BRAND

USD2NOK

PRICE_USD PRICE_NOK

LENGTH_CM LENGTH_INCH

cm2inch

Figure 10.2: Available value-added services.

10.3 Partial deduction and gap detection

In order to demonstrate our gap detection technique, let us continue the example from
Section 10.2. Given the above-described Web services we would have a solution de-
picted in Figure 10.5. However, if we would discard unit conversion services cm2inch
and USD2NOK, there would be no solution available, which would satisfy user’s re-
quirements. By discarding these services we assume a situation where these services
have not been implemented yet or there are errors in descriptions of these services.
At the same time, by applying PD we would be able to discover these missing Web

services. PD is known as one of optimisation techniques in logic programming. Al-
though the original motivation behind PD was to deduce specialised logic programs
with respect to a given goal, we apply PD for determining potentially missing Web
services. Similar approach has been applied in [128] for automatic software synthe-
sis. One of the motivations there was debugging of declarative software specification.
In our work we apply similar technique for debugging and analysing Web services’
descriptions.
We formalised PD for LL already in Chapter 3 and proved its soundness and

completeness. However, the applicability of PD is relatively limited without domain-
dependent heuristics. These heuristics are presented in Section 10.4.

10.4. GAP DETECTION HEURISTICS 115

selectSkis

PRICE_USD

LENGTH_INCH

MODEL

BRAND

Figure 10.3: The core service for buying skis.

PRICE_NOK
WEIGHT_KG

SKILL_LEVEL

PRICE LIMIT

HEIGHT_CM

Figure 10.4: The required service for buying skis.

If we return to our example then a partial solution for the Web service composition
task is presented in Figure 10.6. GAP0 and GAP1 identify in the figure new Web
services, which have to be implemented in order to achieve a compositeWeb service. It
may be also possible that GAP0 and GAP1 represent SemanticWeb service description
parts, which have to be modified. It could be possible that the developers, who wrote
the semantic descriptions of particular Web services, introduced some mistakes into
the descriptions.
While constructing the solution in Figure 10.6 initially through PD the following

partial solution was deduced:

� LENGTH CM ⊗ BRAND ⊗MODEL� PRICE NOK

The partial solution represents the solution fragments outside the black box in Fig-
ure 9.9. Since the core Web service selectSkis does not exist in the partial solution,
we place it between the head and the tail of the partial solution constructed through
PD. This is done according to a chosen gap detection heuristic, which in the current
case is based on differentiation of core and value-added Web services. Anyway, it
turns out that additional Web services (represented with GAP0 and GAP1) should be
implemented in order to finalise the solution.

10.4 Gap detection heuristics

In this section we propose and evaluate heuristics for gap detection to be used together
with PD.

116 CHAPTER 10. DETECTION OF MISSING WEB SERVICES

selectModel

WEIGHT_KG
HEIGHT_CM MODEL

LENGTH_CM LENGTH_INCH

cm2inch

selectBrand

SKILL_LEVEL
PRICE_LIMIT

BRAND

selectSkis

PRICE_USD

USD2NOK

PRICE_NOKMODEL

BRAND

Figure 10.5: The final service structure for buying skis.

10.4.1 The proposed heuristics
We propose the following heuristics for gap detection:

• Heuristic 1: Construct all possible combinations of Web services. Between each
twoWeb services, there may be a gap. Any number of instances of a Web service
may exist in a solution. PD is not used in this heuristic.

• Heuristic 2: Construct all possible partial solutions using PD. Each solution in-
cludes one gap between the head and the tail of a partial solution.

• Heuristic 3: Select the longest partial solutions from the set of all possible partial
solutions constructed using Heuristic 2. Since longer partial solutions are more
specific, they may most precisely describe a desired solution. A developer can
always cut it shorter or modify further.

• Heuristic 4: Place core Web service(s) into partial solution gaps. A developer
can describe core Web services, which must be included in solutions. If the
core Web service(s) are not included in a partial solution, we try to place them
between the head and the tail of the partial solution.

The heuristics can be extended with the following techniques:

• Measuring the lexical similarity between input/output names. Since a developer
might have made syntactical mistakes while describing Web services, just uni-
fying the names might help.

• Using ontologies for deducing subtypes/supertypes and generalising/specialising
Web service descriptions on-the-fly.

These techniques would significantly help to debug declarative specifications of
Web services and extend the usability of the proposed strategies. For instance, consider
a case where a user wants to compose a Web service, which returns temperature at a
particular location. However, with PD we find a solution, which computes weather.
Fortunately, temperature would be a field in the computed weather record. Thus after
weather has been computed, temperature would be extracted from it by applying an
ontological knowledge.

10.4. GAP DETECTION HEURISTICS 117

Figure 10.6: Constructed partial composite Web service.

118 CHAPTER 10. DETECTION OF MISSING WEB SERVICES

10.4.2 Analytical evaluation of the proposed heuristics
Heuristic 1

All possible permutations of Web services sequences are generated without applying
PD. Between each instance of a Web services in a sequence, there may be a gap,
which has to be filled. From practical point of view it really would not make sense
to apply this method. We listed it just as the worse case strategy in our hierarchy of
partial solution construction methods. Given that we have n Web services, there are
n! possible combinations for constructing sequences of these Web services. Therefore
the construction of all possible partial solutions without PD has factorial complexity.

Heuristic 2

In this case all partial solutions are constructed by applying forward and backward
steps of PD. Each solution includes only one gap. The gap exists between the head
and the tail of each partial solution. This method suits well for domains with a small
number of Web services. In this case the number of partial solutions would be small
as well and thereby yet feasible for developers to investigate. Since all possible PD
resultants should be constructed, the complexity is the same as for PD itself, which is
exponential. The same computational complexity applies to all other heuristics involv-
ing PD.

Heuristic 3

The set of all possible partial solutions constructed by Heuristic 2 can be significantly
reduced if only the longest solutions are selected. Since longer solutions tend to be
more specific, they give a developer better overview of existing options. Compared to
the method of exposing all partial solution achieved through PD, this method returns
less results to a developer. Therefore, the method suits for larger domains as well.

Heuristic 4

Heuristic 3 can be further specialised by inspecting whether partial solutions already
include core Web services. After longest solutions have been selected, core Web ser-
vices are inserted into gaps. Then new potential gaps between core services can be
further detected. The method is especially useful, if there exists only a single core
Web service in a solution as in our example in previous sections.

10.5 Query expansion and ontologies
The previously described heuristics were proposed to help discovering gaps in potential
composite services. However, sometimes it would be practically useful to modify
users’ queries in order to get better results or any results at all before detecting gaps

10.5. QUERY EXPANSION AND ONTOLOGIES 119

and filling them with potentially missing services. For this, we use ontologies and
query expansion techniques during automated composition.

10.5.1 Query expansion
As emphasised already in the introduction, proposing the right queries is a difficult task
even for experienced users. Query expansion is a mechanism, which allows users to
express partial queries. During composition these queries are automatically expanded
to grant better results. To explain the mechanism, let us consider the following case.
We assume that there exists a Web service for the Internet search. The service has 2

inputs—LicenseKey and SearchString. Additional inputs could be search parameters,
restrictions, etc. The output is called SearchResult. Since a user is looking for a Web
service for a generic search, s/he specifies only SearchString for input and SearchResult
for output. Anyway, s/he might have no idea about additional inputs and outputs,
since there are many different search operations available with different input/output
signature.
Query expansion takes the original query as an input, looks for potential Web ser-

vice operations, which partially match the service, and extends the query in such way
that particular Web services would be discovered and used during composition. The
procedure extends the input part of the query with these input names of Web service
operations, which cannot be reached through PD from the initial query in forward-
chaining manner.
Symmetrically the output part of the query is extended with output names of Web

service operations, which cannot be reached in backward-chaining manner. This mech-
anism is especially useful in the configuration where a composite Web service, rather
than an atomic service, has to be discovered. The query expansion can be also con-
sidered as filling gaps by adding parameters into the query rather than adding new
services.

10.5.2 Ontologies
In order to demonstrate the usage of ontologies during composition and gap detec-
tion procedure, we slightly modify an example from the previous subsection. We as-
sume that there exists a Web service for Google search. The service has 2 inputs—
LicenseKeyGoogle and SearchString. The output is called GoogleSearchResult. Since
the user is looking for aWeb service for general search (not for specific Google search),
s/he specifies SearchString and LicenseKey for input and SearchResult for output.
However, there is no service available that matches this particular query. Therefore
an ontology can be used for making the generic queries more specific.
In the current case our ontology may contain subtyping/specialisation relations be-

tween LicenseKeyGoogle and LicenseKey as well as between GoogleSearchResult and
SearchResult. Then the initial query can be modified to have LicenseKeyGoogle and
SearchString as input and GoogleSearchResult as output. By using ontologies in such

120 CHAPTER 10. DETECTION OF MISSING WEB SERVICES

a way during automated composition we can use generic templates for matching se-
mantically similar Web service operations. This approach is especially useful, when
there are many semantically similar Web service operations available.

10.6 Summary
In this chapter we applied partial deduction for determining possible missing Web ser-
vices and for identifying possible inconsistencies in Web service descriptions. These
issues, despite being important for practical systems, have not yet been described in
the literature of automated Web service composition.
The heuristics described here can be applied also in a more generic setting. Namely,

for analysing which Web services in a particular domain could have large potential for
exploitation but have not been implemented yet. This information would be especially
useful for Web services provision companies, since it identifies new market opportuni-
ties. A case study regarding this issue is presented in Chapter 11.
In order to apply our composition and gap detection methods to “non-semantic”

Web services (for example, described in WSDL), we have to annotate existing Web
services with semantic information. Until now it has been done manually. However,
alternative methods are required to extract semantics automatically from WSDL doc-
uments.

Chapter 11

Applicability of Automated
Composition

Recently the field of Web services has gained attention both in industry and academia.
While industry has been mostly interested in standardisation and promotion of the
technology, academia has been looking for ways to fit the technology into other frame-
works, such as the Semantic Web. Anyway, despite of the increased academic and
commercial interest to Web services, there are currently only few case studies avail-
able about Web services in the Semantic Web context. Moreover, according to au-
thors’ knowledge, there is no publicly available study analysing which data is currently
mostly provided/required by Web services and which Web service domains are avail-
able. Neither is there any case study regarding applicability of automated Web service
composition.
In this chapter we target these shortcomings by providing a case study of seman-

tically annotated commercial and governmental Web services. We analyse interaction
and potential synergy between commercial and governmental Web services. Also the
role of ontologies for semantic integration of Web services is analysed. Moreover, we
identify the most common data exploited by current Web services.
Automated Web services composition has been largely seen as a methodology for

constructing new Web services from existing ones. We propose that there are other
applications of automated Web services composition than those considered tradition-
ally. This chapter demonstrates that, even, if automated composition might not be a
killer application of software engineering, it helps to analyse and package existingWeb
services.
The roots of the work presented in this chapter are strongly related to our previous

and current work on automated Web service composition [106,160]. After developing
a system for automated Web service composition, we wanted to evaluate its perfor-
mance and applicability in a “real-world” configuration. While performing the eval-
uation we became interested in the current Web services roadmap. More specifically,
we wanted to identify which kind of Web services are available and which are the
most common inputs and outputs of current Web services. A special focus was set to

121

122 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

analysis of potential interactions between commercial and governmentalWeb services.

11.1 Structural analysis of data types
Before the full power of automated Web service composition could be harnessed, a
methodology for mapping existing Web service descriptions in WSDL into semanti-
cally enriched ones should be developed. This methodology would provide a bridge
between academic and industrial efforts. In this light it is important to understand in
which extent existing Web services annotations can be reused. Since the number of
available Web services is rapidly growing, reuse becomes a central issue in annotation.
In this section we try to estimate upper and lower bounds for the reuse of Web services’
annotations.
Kim and Rosu [88] are similarly to us concerned with determining generic proper-

ties of Web services. However, their main emphasis is set to learn which basic types
are mostly used in WSDL descriptions, while we focus here to measuring reusability
of data types. Based on that statistics they estimate average size of SOAP messages,
which are delivered during Web service execution. They also measure average Web
service execution time from two different servers.
For analysing the general commercial Web services’ and data type structures, we

first used Google search engine to collect a set of WSDL URLs. Altogether we col-
lected 1276 URLs containing 13398 operations. Then we extracted data type struc-
tures from WSDL document operation descriptions. This resulted in 26796 WSDL
message definitions including both input and output messages of available operations.
These message definitions contain data structure trees starting with the part element of
WSDL and ending with basic types such as int, string, etc. as leaf nodes.
Given these trees, we analysed the overlapping of data structures. Basically, we

measured how many data structures are unique, strictly unique, structurally unique
and strictly structurally unique. These properties are defined as follows:

• uniqueness—a data structure is unique, if there is no other data structure match-
ing its data field names and corresponding data field types from the root node
down to the leaf nodes

• strict uniqueness—a data structure is strictly unique, if all complex types, that it
includes, are unique with respect to all complex types of all other data structures

• structural uniqueness—a data structure is structurally unique, if there is no other
data structure matching its data field types from the root node down to the leaf
nodes

• strict structural uniqueness—a data structure is strictly structurally unique, if all
complex types, that it includes, are structurally unique with respect to complex
types of all other data structures

11.1. STRUCTURAL ANALYSIS OF DATA TYPES 123

Table 11.1: Uniqueness of data structures.

Data structures % of all data structures
Unique 17950 67
Structurally unique 11562 43
Strictly unique 13639 51
Strictly structurally unique 3659 14

To illustrate these properties, let us consider Figure 11.1. All data structures in
this figure are unique. However, data structures in Figure 11.1(b) and Figure 11.1(c)
are not strictly unique, since they share a common complex type. Data structures in
Figure 11.1(a) and Figure 11.1(b) are not structurally unique since they have a common
structure, if we consider only type information. Finally, none of the data structures
is strictly structurally unique. We should mention that the order of elements in data
structures is not relevant when measuring uniqueness.

UserId :int

LicenseKey :string

Address :Address

PostalCode :string

ApartmentNumber :int

HouseNumber :int

Street :string

Town :string

Country :string

(a)

UserId :int

Address :ResidentalAddress

Country :string

City :string

Street :string

ApartmentNo :int

HouseNo :int

ZIPCode :string

AccessCode :string

(b)

City :string

ZIPCode :string

Street :string

HouseNo :int

ApartmentNo :int

Country :string

(c)

Figure 11.1: Data structure examples.

From 26796 data structures 17950were unique and 11562 were structurally unique.
From 17950 unique data structures 4311 were partially overlapping, which means that
13639 were strictly unique. From 17950 data structures 14291 were partially struc-
turally overlapping, which means that only 3659 data structures were strictly struc-
turally unique. The results are summarised in Table 11.1.
The statistics in Table 11.1 allows to evaluate the degree of reusability of existing

semantical descriptions during annotation. While uniqueness gives the higher bound-
ary for data types, which should be annotated in the worst case, partial uniqueness
shows in which extent existing annotations could be partially reused. Structural and
strictly structural uniqueness could be viewed as a measure for potential improvement,
which would be achieved through automated annotation. Thus in the best case only
14% of all data structures should be annotated manually when automated annotation is
applied.
Figure 11.2 depicts statistics about data structure sizes. The size is measured in

124 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

terms of the overall number of leaf nodes in a data structure. The leaf nodes represent
basic types in type definitions. While most of the data structures include only few leaf
nodes, there are a few structures, which include about 200 leaf nodes. Some types are
even recursive. However, we count recursive types only once and do not follow their
recursive branches.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

O
cc

ur
ra

nc
e

Simple types in a complex type

Data type analysis

Figure 11.2: Data type complexity in terms of size.

11.2 Annotating Web services
In order to analyse available Web services with our automated composition method,
we first annotated semantically Web service operations under consideration. By an-
notating we mean a process of giving logical names to inputs and outputs of Web
service operations. These logical names refer to particular concepts in an ontology
and represent the semantics of data, which is exploited by Web services. In the rest
of this chapter, when counting the number of relations in developed ontologies, we
state explicitly only the number of relations, which represent subclass/superclass rela-
tions. Relations, which represent links between Web service operations and data, are
not counted.
Although there are some tools available, which allow semi-automatic annotation

of Web services, our annotations were constructed manually. The reason is that the

11.2. ANNOTATINGWEB SERVICES 125

Table 11.2: Annotation overview.

Domain Operations Concepts Ontology size
X-Road 96 595 128
Commercial 493 578 189
Merged 589 1149 317

current annotation tools are not flexible and mature enough for general usage. Addi-
tionally we had to develop new ontologies for describing data structures and relations
between their fields.
Commercial Web services’ WSDL documents were retrieved through the list at

SalCentral.com in March 2005. From the list of available Web services we annotated
most of the available operations, whose semantics was clear. Altogether we annotated
493 commercial Web service operations. Additionally we developed an ontology for
commercial Web services, which consists of 189 relations. The overall commercial
Web services domain contains 578 concepts.
For governmental Web services we chose the services from X-Road [143] project,

which was initiated by Estonian government. X-Road is a middle-tier data exchange
layer enabling government databases to communicate with their clients. The system
allows officials, as well as legal and natural persons, to search data from national
databases over the Internet within the limits of their authority. The system ensures
sufficient security for the treatment of inquiries made to databases and responses re-
ceived.
X-Road project was initiated in 2001 and by March 2005 X-Road had already 41

databases providing services plus 354 institutions and companies using the services.
The overall number of available Web service operations was 687. We annotated 96 of
them. The domain and the developed ontology consists of 595 concepts and 128 rela-
tions. The reason of having a larger ontology for commercial Web services (compared
to governmental services) is potentially due to the larger heterogeneity of data in this
domain. While governmental Web services are centered around queries about citizens
and companies, commercial Web services provide a wider set of Web services.
After merging X-Road and commercial Web service domains, the merged domain

consisted of 1149 concepts and 589 operations. 24 concepts were shared between
the domains. These concepts represent potential interactions between commercial and
governmental services. Table 11.2 summarises the number of annotated Web service
operations, concepts and relations in developed ontologies.
In order to visualise Web services roadmaps for commercial and X-Road Web ser-

vices, we constructed graphs showing potential data flows. The roadmaps of commer-
cial Web services, governmental Web services and the domain containing them both
are depicted respectively in Figure 11.3, Figure 11.4 and Figure 11.5. Nodes in the
graphs represent concepts and edges represent potential data flows implemented by

126 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Web services. The size of a node shows proportionally its importance in the domain—
larger nodes are used by a larger number of Web service operations.
Surprisingly the topologies of the roadmaps have a similar structure like the Web

itself [10, 26]. There are tubes, tendrils, disconnected components and strongly con-
nected components. The graphs identify strict inputs (which appear only as inputs of
Web service operations) strict outputs (which appear only as outputs of Web service
operations) and intermediary data objects (which appear both as inputs and outputs of
the operations).

11.3 Challenges of annotation
While annotating Web services and building ontologies we encountered a number of
challenges, which either limited our efforts or made in some cases annotation even
impossible. A very important factor is the usage of a wide variety of languages in
WSDL files. Although most of the WSDL files were documented in English and the
same language was used for naming inputs and outputs, many services contain data in
other languages as well. This naturally complicates the extraction of semantics from
WSDL files.
Moreover, there is often too little or even misleading information available about

Web services and data fields. For instance data field name countrymay refer to a coun-
try name in a particular language or represent a country code according to any related
standard. There is a general bias not to document data fields in commercial Web ser-
vices. While X-Road services had mostly data fields commented, only one percent of
all available commercial Web services had comments for data fields. Anyway, the sit-
uation for service and operation documentation in commercial Web services was much
better. In particular, 127 of 404 available Web services and 2443 of 3764 operations
were documented.
Data with the same meaning is encapsulated in different data types. For instance,

an address may be represented with a string or a data type containing fields for each
element of an address. Furthermore, sometimes an address contains a country name
while in other cases it represents only a street name and house/apartment number.
In summary, the main challenges are as follows:

• different languages

• lack of documentation in WSDL documents

• different data structures with the same meaning

• dynamically changing WSDL documents

• availability of WSDL documents

Therefore, in order to facilitate automated annotation and further usage of anno-
tated Web services, it is desirable to look for alternative descriptions of Web services,

11.3. CHALLENGES OF ANNOTATION 127

Figure 11.3: Roadmap of commercial Web services.

128 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Figure 11.4: Roadmap of governmental Web services.

11.3. CHALLENGES OF ANNOTATION 129

Figure 11.5: Roadmap of all annotated Web services.

130 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

like their source code, as done by Sabou [163], or UDDI tModels. Additionally, online
dictionaries likeWordNet could be exploited to cope with a variety of languages which
are used to document WSDL documents. The latter of course requires that there is a
way to identify natural languages, which are used within WSDL documents.

11.4 Commercial vs. governmental Web services
Our case study identifies the general Web services domain structure as depicted in
Figure 11.6. The structure was extracted from a previously constructed data flow graph
including all annotated Web services. There are 3 components of the domain:

• strict input data

• strict output data

• intermediary data

Strict
Inputs

Strict
Outputs

Inter−
mediary

Data

Figure 11.6: General Web services’ domain structure.

Strict input data is the data, which only serves as input to any Web service, while
strict output data serves solely as output of any Web service. Intermediary data is
presented both in inputs and outputs of Web services. From automated Web services
composition point of view strict input and output data can exist respectively only in
the inputs and outputs of composite Web services. However, intermediary data is the
most crucial for the composition—intermediary data allows to compose multiple Web
services into a required workflow.
To clarify what we mean by strict inputs, strict outputs and intermediary data, let us

consider the Web services domain consisting of the following Web service operations:

� IPAddress�getGeoIP CountryName ⊗ ISO3166CountryCode,
� CountryName�getCapitalCity CityName,

� CityName�getPopulationCount CityPopulationCount,
� CityName�getWeather Weather,

� CurrencyCode�getRate CurrencyRate.
In this domain we have 8 concepts, which are in the following roles:

11.4. COMMERCIAL VS. GOVERNMENTALWEB SERVICES 131

• strict input data—IPAddress, CurrencyCode

• strict output data—ISO3166CountryCode, CityPopulationCount, Weather, Cur-
rencyRate

• intermediary data—CountryName, CountryCode

One may argue here that the concept of strict inputs/outputs is too restrictive since
data structures’ roles change in time and depend on particular contexts. However, the
concept allows to measure the maximum length of automatically composable work-
flows and to evaluate limitations and applicability of automated Web service composi-
tion algorithms.
Our case study identified a fundamental difference between commercial and gov-

ernmental Web services domains. While governmental Web services tend to have rela-
tively simple data types for input and more complex data types in outputs, commercial
Web services have rather complex data types as inputs and much simpler ones as out-
puts. This tendency is depicted in Figure 11.7. The tendency could be explained by
considering the main aims of Web services in these domains. Governmental Web ser-
vices mostly facilitate access to databases and thus return rich data objects according to
simple queries. Commercial Web services, however, are more computation-oriented.
They accept rich data structures as input and return compact results of particular com-
putations.
Understanding this difference between commercial and governmentalWeb services

is crucial while developing applications involving Web services from both domains.
Furthermore, composite Web services with simple inputs and outputs can be com-
posed by combining Web services from both domains. However, these composite Web
services would involve a heavy data transfer between them. Symmetrically compos-
ite Web services with rich inputs and outputs can be composed under similar condi-
tions. Anyway, these compositeWeb services would involve less data transfer between
atomic Web services compared to preceding composite Web services.

Strict
Inputs

Strict
Outputs

Inter−
mediary

Data

(a) Commercial Web services.

Strict
Inputs

Strict
Outputs

Inter−
mediary

Data

(b) Governmental Web services.

Figure 11.7: Domain-specific Web services’ domain structures.

132 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Table 11.3: Domain overview before removing isolated Web service operations.

Data Commercial X-Road Merged
Strict input data 201 20 208
Strict output data 129 205 332
Intermediary data 66 65 123

Table 11.4: Domain overview after removing isolated Web service operations.

Data Commercial X-Road Merged
Strict input data 156 18 162
Strict output data 97 197 293
Intermediary data 66 65 123

By analysing graph structures in Figure 11.3, Figure 11.4 and Figure 11.5 repre-
senting potential data flow between Web services, we removed respectively 81, 14 and
90 isolated Web service operations from commercial, X-Road and the merged domain.
Isolated Web services have only strict inputs and strict outputs, respectively for inputs
and outputs. For instance getRate, from our preceding domain example, is an iso-
lated operation, since its only input CurrencyCode is a strict input and its only output
CurrencyRate is a strict output.
Since these services are not engaged with data flows, they would not be a part

of composite Web services anyway. However, isolated Web services may indicate
potential missing Web services, which have to be implemented in order to place them
into composite Web services. Table 11.3 and Table 11.4 summarise the number of
strict input data, strict output data and intermediary data respectively before and after
removing isolated Web service operations from considered domains.

11.5 Analysis of the Web services roadmap
In this section we analyse the Web services domains presented in Figure 11.3, Fig-
ure 11.4 and Figure 11.5.

11.5.1 The effect of ontologies
The usage of ontologies allows us to reduce the number of isolated Web services in
a domain. While ontologies had no effect on X-Road domain itself, they allowed to
bind commercial Web service operations to X-Road operations. Moreover, the usage
of ontologies allowed to reduce the number of isolated commercial Web service op-

11.5. ANALYSIS OF THE WEB SERVICES ROADMAP 133

erations from 46 to 22. The ontologies had no effect to X-Road operations because
governmental Web services are more homogeneous compared to commercial ones.

11.5.2 Available Web services
Generally governmental and commercialWeb services provide different services. Over-
lapping areas are related to queries about companies/businesses and contact informa-
tion for persons and businesses. However, governmental Web services in that area
facilitate access to more sensitive information and have therefore limited access.

Available commercial Web services

Most common commercialWeb services are currently related to yellow pages services—
locating and finding information about businesses, persons and Internet hosts. Also
services for measuring distance between physical locations are included in this cate-
gory. The second category of services deals with communication—instant messaging,
sending e-mails, faxes and SMS-es. Third category of services is devoted to financial
sector—fetching stock exchange information, market news and performing currency
conversions are the key services here.
Naturally, there are services for general Internet search and text translation. Related

to this group are services dealing with data conversion, such as mapping documents
from one format to another. Some services have been implemented for getting weather
forecasts, airport and travelling information. There are also some services for arith-
metics, statistics and encryption. Services for direct e-commerce and e-business are
still in minority—there exist only few services for product search, processing credit
cards and package tracking. Finally a couple of services have been published for gen-
erating graphs, charts and bar codes.

Available governmental Web services

From the overall set of Web services in X-Road we enlist here only Web services,
which might be accessible for public usage. They include Web services for checking
validity of particular documents, such as driving licenses, passports, diplomas and cer-
tificates, which have been assigned by participating institutions. Services for providing
contact information for particular persons, companies and other organisations are also
important. Finally, there are Web services for checking ownership of real estate prop-
erties and vehicles. By making these services public, citizens would become able to
check information related to buying/selling real estate and vehicles without intermedi-
aries.
Governmental Web services are characterised by high redundancy. There are many

Web services exploiting similar data, both in inputs and outputs. However, a slight
variation in inputs and outputs mainly arises from regulations identifying which data
should be accessible to specific parties.

134 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

11.5.3 Synergy between commercial and governmental Web ser-
vices

Given the restrictions associated with accessing governmentalWeb services, theseWeb
services could be viewed mostly as core services, while commercial Web services
could serve as value-added services. In other words, due to the heterogeneity of the
commercial Web services domain, these Web services could be applied for customis-
ing governmental Web services. Governmental Web services could also be used for
accessing particular persons or companies while commercial Web services could pro-
vide generic statistical functions for facilitating this process.
Most of the currently available commercial Web services could be used for cus-

tomising governmental Web services. For example, instant messaging could be ex-
ploited as an alternative medium for accessing citizens and officials. Internet search
and translation can be applied for fetching more information about companies and
persons and facilitating thereby more adequate decision making.
There is still a lot of space for additional Web services. X-Road, for instance,

could provide Web services for fetching statistics, which is essential for businesses
and decision-making. There is a strong need for commercial Web services, which
would take generic person or company data, such as name and birth/foundation date,
and return some useful information about them.
There could also exist governmental Web services for delivering information, such

as warnings to the citizens travelling in a particular region. This information can be
also delivered to travellers by travel agents themselves. Thus there are a lot potential
for new Web services combining governmental and commercial Web services.

11.5.4 Most common semantic data
In this section we analyse, which kind of data is most commonly exploited in the
currently available Web services. We consider X-Road and commercial Web service
domains and the domain resulting from merging these two domains.

X-Road domain

From 595 concepts in X-Road domain, 25 concepts were involved in 10 or more op-
erations either as inputs or outputs. The most important concepts were national iden-
tification code, first name and last name. Other concepts include different dates (birth
date, event occurrence date, etc.), business registry code, address, e-mail address, street
name, postal code, country name and code, company name and various messages.

Commercial Web services domain

From 578 concepts in commercial services domain, 40 concepts were involved in 10
or more operations. The most important ones were user name and password followed
by ZIP code, date, license key, city name, postal code and e-mail address. User name,

11.6. AUTOMATED COMPOSITION FOR ANALYSIS 135

password and license key are currently most important mechanisms for controlling
access to commercial Web services. While governmental Web services handle authen-
tication at system level, commercial Web services limit access by expecting users to
provide user names, passwords, license keys, access/account codes, etc.
Additional important concepts were country name, currency, stock symbol, mes-

sage content (for instance messaging, SMS and e-mails), search string, name, IP ad-
dress, URL and words to be translated. Other concepts include weather, (US) state
name, interest rate type, location, country codes, date, distance, postal address and
delivery tracking numbers.

Merged domain

From 1149 concepts in the merged services domain, 64 concepts were involved in
10 or more operations. Most important of them were user name, password, national
identification code, first name, last name, ZIP code, date, e-mail address, postal code,
license key, city name, country name and message content.
24 of 1149 concepts were overlapping between X-Road and commercial services

with ontologies. These concepts represent the data, which can be currently directly
passed between commercial and governmental Web services. With other words, these
concepts represent intersection between these two domains.
The overlapping concepts are birth date, city name, company name, country code/name,

county, currency, date, day, e-mail address, fax number, first name, last name, gen-
der, IP address, message content, mobile phone number, month, name, phone number,
postal code, street name, year and a general string. In general, these concepts are
mostly related to everyday communication.

11.6 Automated composition for analysis
In this section we describe how we applied an implementation of our method [160]
for automated Web service composition to analyse the semantically annotated subset
of Web service operations. Our aim is to figure out whether automated Web service
composition (in particular, our implementation) is applicable for industrial applica-
tions. Furthermore, we would also like to figure out whether the methodology could
be applied for analysing existing Web services domains for industrial and academic
purposes.
We applied our automated composition method in the following manner. First we

included all strict inputs and intermediary data nodes into inputs of the required com-
posite Web service. For each element from strict outputs and intermediary nodes we
applied automated composition such that the output of the required composite Web
service consisted of the selected element. An intermediary node in the input part was
deleted, if it also existed in the output part. The pseudocode of the algorithm is pre-
sented in Figure 11.8.

136 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Algorithm AnalyseDomain(ops, I,M,O)
begin

results ← ∅
for ∀output ∈ M ∪O

inputs ← I ∪M \ output
results ← results ∪ compose(ops, inputs, output)

end for

analyseCompositeServices(results)
end AnalyseDomain

Figure 11.8: Automated Web service composition for analysis.

The algorithm takes a set of annotated Web service operations ops, strict inputs I,
intermediary nodes M, strict outputs O as an input. Then all possible compositions
are computed through compose, which refers to our composition method, and then
analysed further by analyseCompositeServices. Method analyseCompositeServices
basically analyses, which composition problems were solved (and which not), which
compositions included Web service operations from different domains and which Web
service operations mostly occurred in compositions. Additionally composition lengths
are analysed. According to that knowledge one can derive which Web service opera-
tions are most popular, which are possible interaction points between different domains
and which Web service operations do not belong to any composition.
To illustrate the algorithm, let us consider the same domain from Section 11.4.

Given that getRate was removed from the domain, since it was an isolated operation,
we have the following domain topology:

• strict input data—IPAddress

• strict output data—ISO3166CountryCode, CityPopulationCount,Weather

• intermediary data—CountryName, CountryCode

According to the algorithm we have to apply automated composition to the follow-
ing Web service descriptions:

� IPAddress ⊗CountryName ⊗CityName�s1 ISO3166CountryCode,

� IPAddress ⊗CountryName⊗CityName�s2 Weather,
� IPAddress ⊗CountryName⊗CityName�s3 CityPopulationCount,

� IPAddress ⊗CountryName�s4 CityName,
� IPAddress ⊗CityName�s5 CountryName,

A selection of possible compositions for description s2 are represented by the fol-
lowing operation sequences:

11.6. AUTOMATED COMPOSITION FOR ANALYSIS 137

1. getWeather

2. getCities;getWeather

3. getGeoIP;getCities;getWeather

We have to emphasise that none of the inputs of the required Web service is manda-
tory for the required service and they serve as a list of potential inputs for a composite
Web service. However, the identified output is mandatory. The composite Web service
could have other outputs besides the mandatory one. Thus constructed composite Web
services typically involve much less inputs and more outputs than identified initially.
From constructed plans, redundant operations were removed. Redundant opera-

tions are operations, which do not contribute to achieving a determined output. They
are typically included into composite Web services as side-effects. An example of re-
dundant operations is a Web service operation, which does not have any inputs, but
returns current date, for instance. Moreover, the current date is not used as an input to
other Web service operations. Due to our composition method, redundant operations
are often included in resulting composite Web services.
We repeated the procedure, both in forward- and backward-chaining manner, for

3 domains: commercial Web services, X-Road Web services and the merged domain
consisting both former domains. While separate analysis of commercial and X-Road
Web services allowed to analyse the general characteristics of governmental and com-
mercial Web services, analysis of the merged domain allowed to analyse interactions
and potential synergy between commercial and governmental Web services.
The analysis should answer to the following questions:

1. which composite Web services can be composed

2. which Web service operations are most popular in possible composite Web ser-
vices

3. which Web service operations are not included in any potential composite Web
service

4. which Web service operations from two different domains exist together in com-
posite Web services

5. what is the maximum, the average and the mean length of possible compositions

6. which data is most common for inputs and outputs of composite Web services

7. which outputs are achievable through composition

These questions help to answer for instance to the following questions in industry:

1. whether to implement a newWeb service from scratch or to construct a compos-
ite one

138 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

2. which Web services are currently most applicable

3. which new Web services could be developed

4. how to increase the applicability of existing Web services

5. which commercial Web services could be useful for governmental Web services

6. which governmental Web services could be useful for commercial Web services

7. which data is currently most popular/easily available

8. how long workflows could be constructed automatically

After the experiments were conducted, we analysed them to answer to previously
listed questions. The analysis and results are presented in Section 11.7.

11.7 Experimental results
In this section we analyse, which semantic data types were most popular for inputs and
outputs of constructed composite Web services. While most popular inputs represent
data, which is mostly required for computing the requested output, most common out-
puts represent data, which is computed usually as a side-effect to the requested output.
We also identify, which Web service operations were most popular in composite

solutions. This determines currently most applicable Web services. Additionally we
summarise average, mean and the longest length of constructed composite Web ser-
vices.
It has to be mentioned that due to the depth-first search and limited composition

time (maximum 10 seconds for each required Web service specification), Web service
operations with smaller sequence index may have been preferred in composite solu-
tions during automated Web service composition. Anyway, despite of this nuance, the
results presented in this section still give an approximate estimation of most popular
Web services.

11.7.1 Commercial Web services
For 163 Web service specification 678 solutions were found. The longest composite
Web service involved 5Web service operations. Average composition length was 1.95,
mean length was 2. Composite solution lengths are summarised in Figure 11.9.
Most popular Web service operations returned a location according to computer’s

IP address and handled geographical information. Next came operations designed for
verifying and determining postal codes. Interestingly, there was also an operation tak-
ing a site address and returning a password for accessing this site. Top 10 of most pop-
ular commercial Web service operations are listed in Table 11.5. In the table columns
“Inputs” and “Outputs” list respectively inputs and outputs of a particular Web service

11.7. EXPERIMENTAL RESULTS 139

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

So
lu

tio
ns

Length

commercial
governmental

merged

Figure 11.9: Solution lengths.

operation. Column “No.” represents the number of composite Web services where an
operation was presented.
Most commonly used input data was user name and password, since they are cur-

rently used to control access to Web services. Additionally license keys are used to
control access to Web services. Table 11.6 summarises and orders data, which oc-
curred in inputs and outputs of constructed composite Web services. We should em-
phasise that data names do not refer to any specific data structure—the names refer to
the semantics of particular data.

11.7.2 Governmental Web services

For 262 Web service specification 20247 solutions were found. A reason for such
a huge number of solutions, compared to the commercial Web service domain, is that
governmentalWeb services are more homogeneous and thus can be combined in larger
extent. The longest composite Web service involved 8 Web service operations. Aver-
age composition length was 5.02, mean length was 5. Composite solution lengths are
summarised in Figure 11.9.
Most commonly used input data was national identification code. Additionally

location-related data was important. Table 11.7 summarises and orders data, which
occurred in inputs and outputs of constructed composite Web services.

140 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Table 11.5: Most applicable commercial Web service operations.

Inputs Outputs No.
IPAddress, LicenseKey CountryCode 87
CountryCode CountryName 84
CountryName CityNames 66
URL Password 29
PostalCode, Radius PostalCode 28
PostalCode, Radius, PlaceName PostalCode 28
CityName, County, PostalCode AddressValidity 23
— Date, Time 22
CityName, StateCode PostalCode 22
CityName PostalCode 19

Table 11.6: Most popular data in commercial composite Web services.

Input name No. Output name No.
Password 159 CountryName 50
Username 127 PostalCode 38
PostalCode 125 OMSResult 37
IPAddress 87 MessageSent 30
LicenseKey 87 Time 28
Date 84 Rate 25
CityName 66 AddressValidity 23
Radius 61 CityName 21
StockSymbol 45 Distance 17
SiteId 41 Chart 17
Value 39 LocationInfo 16
URL 39 Weather 15
Currency 38 NetPresentValue 14
StateCode 34 TimeZoneCode 13
RateType 33 CreditCardProc 12
County 31 USAreaCode 12
PlaceName 30 Location 11
Name 28 InterestRate 11
EmailAddress 28 ZIPCodeInfo 10
Distance 27 IndexQuote 10

11.7. EXPERIMENTAL RESULTS 141

Table 11.7: Most popular data in governmental composite Web services.

Input name No. Output name No.
NationalIdCode 23128 Year 418060
NumberOfAnswers 6680 Day 250578
CityName 6651 Month 248717
PersonRole 5741 Language 124243
OwnerIdCode 5674 StudyForm 86386
PersonStatus 5567 StudyProgram 85382
LandRegistryIndication 4959 School 82146
EmailAddress 4787 FinancingSource 82146
CompanyName 4347 LastName, BusinessName 76575
EHAKParishCode 3765 PropertyOwner 73282
EHAKCountyCode 3739 PostalCode 72164
AdministrativeUnitName 3450 ApartmentNumber 71181
Place 3341 StreetName 68959
RegistryIdCode 2319 HouseNumber 68959
AdministrativeUnit 2244 CountryName 68518
QueryType 2213 County 44681
DrivingLicenseNumber 1971 Gender 44006
DocumentType 1769 HighSchoolLastClass 43266
DocumentSerie 1672 GroundSchoolLastClass 43266
MaxAnswers 1627 Citizenship 42051

142 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

Table 11.8: Most applicable Web service operations in the merged domain.

Inputs Outputs No.
IPAddress, LicenseKey CountryCode 100
CountryCode CountryName 98
13 inputs 60 outputs 47
— Time, Year, Month, Day 40
— Year, Month, Day 35
PostalCode, Radius, PostalCode 34
PlaceName
PostalCode, Radius PostalCode 34
PostalCode, Distance PostalCode 33
17 inputs 64 outputs 30
CountryName CityNames 29

11.7.3 Merged commercial and governmental Web services

For 416 Web service specification 889 solutions were found. The longest composite
Web service involved 6Web service operations. Average composition length was 1.81,
mean length was 2. Composite solution lengths are summarised in Figure 11.9.
The maximum length of 6 and mean length of 2 operations in a composite Web

service could be due to several factors:

1. small domain size

2. large amount of partially identical Web service operations

3. limitations of the composition algorithm

4. limitations of automated Web service composition in general

Most popular Web service operations considered either geographical or postal in-
formation. Next came operations designed for verifying a postal address and some
governmental Web service operations providing company information. Additionally
there were operations for fetching e-mail, processing credit cards and general Inter-
net search. Top 10 of most popular commercial Web service operations are listed in
Table 11.8. Web service operations at positions 3 and 9 were database queries to the
national business registry. Since the number of inputs and outputs to governmental
Web service operations is large, we only identified the number of inputs and outputs.
Most commonly used input data were postal code, names and registry codes, while

date-related data was the most popular output. Table 11.9 summarises and orders data,
which occurred in inputs and outputs of constructed composite Web services.

11.7. EXPERIMENTAL RESULTS 143

Table 11.9: Most popular data of composite Web services in the merged domain.

Input name No. Output name No.
PostalCode 250 Year 1106
LastName, BusinessName 238 Day 1012
RegistryIdCode 214 Month 1004
ApartmentNumber 171 LastName, BusinessName 353
PropertyOwner 155 PostalCode 314
StreetName 154 ApartmentNumber 245
HouseNumber 150 StreetName 224
CityName 137 HouseNumber 220
Year 134 PropertyOwner 218
Password 128 RegistryIdCode 189
Username 124 CountryName 152
Month 124 PropertyValue 142
Day 101 Message 125
IPAddress 100 OwnerNationalIdCode 108
LicenseKey 100 BusinessStatus 106
NumberOfAnswers 84 CityName 105
PersonRole 79 BusinessArea 104
Radius 72 LegalForm 102
EmailAddress 70 Currency 102
OwnerNationalIdCode 65 AdministrativeUnitLevel 98

144 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

11.7.4 Synergy between commercial and governmental Web ser-
vices

Throughout our experiments we recorded commercial Web service operations that
were used together with governmental ones in composite Web services. Altogether
25 out of 493 commercial Web service operations were applied together with govern-
mental Web service operations. These operations are summarised in Table 11.10.

11.8 Summary
In this chapter we analysed the general structure of Web services. The analysis gave a
rough estimation to the reusability of existing semantic annotations. Additionally we
analysed general differences between commercial and governmental Web services. It
turns out that governmental Web services are more data-intensive compared to com-
mercial ones. Having an overview of general characteristics of Web services would
greatly improve design of new annotation methods, while knowledge of the presented
challenges would contribute to the design of annotation environments.
Then we extracted and analysed the most important semantic data objects in the

available Web services. We also provided an overview of the available Web services.
Although the analysed Web services operations and concepts are quite representative,
we reviewed only a limited number of Web services compared to what is currently
available on the Web. More thorough analysis needs advanced automated methods for
Web services’ annotation and analysis.
We also presented a methodology for analysing Web services’ domains through

automated Web service composition. The methodology also allows to analyse interac-
tions between Web services’ domains and individual Web services. The methodology
provides methods for evaluating uniqueness, applicability and other properties of Web
services. While our representative set of governmentalWeb services was selected from
X-Road [143] project, commercial Web services were retrieved through Google API.
By applying this methodology we analysed interaction and potential synergy be-

tween commercial and governmental Web services using Web service composition
approach. The main conclusion is that although most of the Web services were de-
veloped independently of eachother there is great opportunity for their composition.
Such a composition is possible not only within commercial or governmental services
but also across the border in a merged domain.
Another conclusion is that composition methods are fruitful for Web services anal-

ysis. They provide a set of options for further analysis employing deeper domain
knowledge. The analysis may suggest which new services should be implemented
to take advantage of currently available ones, or how to extend the usage of existing
services.
There are yet no common guidelines for evaluating Web services composability

within a domain. This chapter suggests some aspects of composition and also how to

11.8. SUMMARY 145

Table 11.10: Commercial services, which were applicable with governmental ones.

Inputs Outputs
IPAddress, LicenseKey CountryCode
CountryCode CountryName
CountryName CityNames
PostalCode, Distance PostalCodes
EncodedString String
PostalCode, Radius PostalCodes
PostalCode, Radius, PostalCodes
PlaceName
Username, Password, Message
MessageNumber, POP3Server,
POP3ServerPort
PostalCode CityName
HostName IPAddress
— Time, Year, Month, Day
— Year, Month, Day
— CountryNames
CityName, StateCode PostalCode
Username, Password Message
Username EmailAddress, Username
CityName, StateName PostalCode
CityName PostalCode
Year Year, Month, Day
County, StateCode PostalCodes
USAreaCode PostalCodes
TimeZoneCode PostalCodes
CityName, StateCode PostalCodes
Location PostalCode
Currency CountryName

146 CHAPTER 11. APPLICABILITY OF AUTOMATED COMPOSITION

measure them. Anyway, a set of common guidelines would allow deeper analysis of
Web services’ domains and composition algorithms.

Part IV

Synopsis

147

Chapter 12

Conclusions

12.1 Summary of results and contributions

The main contributions of this thesis are summarised in the following sections.

12.1.1 Partial deduction for linear logic

In this thesis we formalised PD for LL. More specifically, we introduced PD steps for
basic forward-/backward-chaining, handling nondeterministic choices and unbounded
access to resources. We also extended the framework with first-order PD steps and thus
increased expressiveness of offers. As a result, the proposed formalism allows reason-
ing about resource dependencies and thus makes it possible to describe distributed
rational systems.
We defined PD steps as special LL inference figures. While applying these infer-

ence figures during proof search instead of basic LL rules we can gain higher efficiency
compared to pure LL theorem proving. Indeed, our inference figures could be seen as a
sort of domain-dependent search heuristics. Finally we proved that our PD formalism
is sound and complete.

12.1.2 Symbolic negotiation

We formalised symbolic negotiation and cooperative problem solving (CPS) with re-
spect to partial deduction. We also sketched soundness and completeness proofs for
these formalisations. Additionally we formalised the process of coalition formation
and analysed its effect to symbolic negotiation and CPS. The analysis emphasised that
coalition formation should be considered with great care. Moreover, coalitions should
be avoided in the general case, if agents can solve their problems alone.

149

150 CHAPTER 12. CONCLUSIONS

12.1.3 MAS architecture

In order to apply our symbolic negotiation formalisation, we described a MAS archi-
tecture. The MAS determines the protocol for agent communication. It also provides
an environment to plug in new agents and communication protocols for ensuring scal-
ability and correct functioning of the MAS.
We also implemented the MAS, by applying a previously implemented linear logic

planner, RAPS, within symbolic negotiation for constructing new offers. The agent
system is based on JADE and has been applied to automated distributed Web service
composition.

12.1.4 P2P for symbolic negotiation

In order to increase scalability of the proposed MAS, we extended it with Chord P2P
algorithms. The MAS applies P2P networking for reorganising and configuring its
mediators. The main purpose of the mediators is to group agents which share a part of
a domain described with a set of objects (literals). FromWeb service composition point
of view these are agents, whose services’ inputs or outputs include a common object
(literal at the formalisation level). If agents have been gathered in such a way, their
location over a distributed system is more efficient and reliable than in non-structured
distributed systems.
Anyway, we still preserve some degree of centralisation—there are peers, which

monitor the evolution of the network and try to detect and resolve anomalies and also
for providing services for security and trust. Anyway indexing and search is organised
in distributed manner. We also have mediators, which are Chord network nodes, which
mediate messages to interested parties. Anyway, the mediators may change during P2P
network evolution—a mediator peer may leave or a peer with better characteristics
would be chosen for a new mediator.
Although our system can function without the P2P architecture, we believe that P2P

would give some added value to our MAS, especially when it comes to balancing mes-
sage load between agents. In fact, our empirical/analytical results show that in a system
with an increasing number of Semantic Web services and agents, our P2P approach
would mean almost the same message load as a system with mediator-based multicast.
However, with P2P architecture message load between agents is balanced more evenly
compared to a system with multicast, where all messages are routed through a central
mediator. Additionally, the usage of P2P would eliminate the central point of failure
in the whole system.

12.1.5 Gap detection

We also applied partial deduction for determining possible missing Web services and
for identifying possible inconsistencies in Web service descriptions. These issues,

12.1. SUMMARY OF RESULTS AND CONTRIBUTIONS 151

despite of being important for practical systems, have not yet been considered in the
literature of automated Web service composition.
The described gap detection heuristics can be applied also in a more generic set-

ting. Namely, for analysing which Web services in a particular domain could have
large potential for exploitation but have not been implemented yet. This information
would be especially useful for Web services provision companies, since it identifies
new market opportunities.

12.1.6 Implementation of an automated composition tool

In order to analyse better the limitations and advantages of automated Web service
composition, we implemented a tool, which demonstrates partially our vision of au-
tomated Web service composition. Given that the semantics of Web services is repre-
sented with OWL-S or WSMO-like ontologies, their descriptions are first translated to
LL formulae. As the next step the descriptions are forwarded to agents. Then agents
employ symbolic negotiation for composing new Web services according to their re-
quirements. This approach leads to distributed composition of Web services.

12.1.7 Applicability of automated composition

In this thesis we analysed the general structure of Web services. The analysis gave
a rough estimation of the reusability of existing semantic annotations. Additionally
we analysed general differences between commercial and governmental Web services.
While our representative set of governmental Web services was selected from X-
Road [143] project, commercial Web services were retrieved through Google API.
Furthermore, we extracted and analysed most important semantic data objects in

the currently available Web services and provided an overview of the currently avail-
able Web services. It turns out that governmental Web services are more data-intensive
compared to commercial ones. Having an overview of general characteristics of Web
services would greatly improve design of new annotation methods.
We also presented a methodology for analysingWeb services’ domains through au-

tomated Web service composition. By using this methodology we analysed interaction
and potential synergy between commercial and governmentalWeb services. Moreover,
applicability of particular Web services was measured by using Web service composi-
tion approach. The analysis may suggest which new services should be implemented
to take advantage of current Web services, or how to extend the usage of existing ser-
vices.
The main conclusion is that although most of the Web services were developed

independently of eachother there is a great opportunity for their composition. Such a
composition is possible not only within commercial or governmental services but also
across the borders in a merged domain.

152 CHAPTER 12. CONCLUSIONS

12.2 Answers to research questions
Our main research question was to determine how can automated Web service com-
position be applied in practice, and to what extent? In order to answer this general
question, we tried to answer to the following research questions:

• How could we automate Web service composition? In Chapter 3 we defined
PD as a computational formalism. In Chapter 5 we described how to represent
Web services in LL. If all Web services, both existing and required ones, are
described in LL, LL theorem proving or our PD formalism can be applied for
automated composition.
In this thesis we demonstrated that the usage of formal logics with high ex-
pressive power (such as LL) together with reasoning methods (PD, automated
theorem proving) leads to a practical solution for automated Web service com-
position. Although there are other ways to automate Web service composition,
our approach combines strong formal properties and high expressiveness of LL
with efficient problem solving heuristics.

• How to distribute automated Web service composition? For distributing au-
tomated Web service composition we defined symbolic negotiation in Chapter 4
and presented a MAS in Chapter 6 for encapsulating the proposed symbolic ne-
gotiation formalism. While symbolic negotiation determines how to apply PD in
distributed environments, the MAS determines supporting entities and protocols
for implementing symbolic negotiation. Therefore, if PD can be applied for au-
tomated composition, symbolic negotiation together with a MAS can be applied
for distributed automated composition.

• How to extend Web services to support automated Web service composi-
tion? As already discussed in Chapter 11 and Chapter 5, industrial standards
like WSDL do not directly support automated composition. We also have to
have mappings from syntax-oriented WSDL to semantic-oriented description
languages in order to apply automated composition. Initial efforts addressing
this issues have led to WSDL-S standard, which allows to attach semantic anno-
tations into WSDL documents.
Another issue, which would significantly enhance the usage of automated com-
position, is related to modelling effects of Web services to the environment. Cur-
rently in WSDL documents only inputs and outputs of Web service operations
are described. However, preconditions and effects of Web service operations are
not described. Hence, if preconditions and effect would be described, composite
Web services with higher quality could be developed. Fortunately, these issues
can be solved by using WSMO/WSML for modelling Web services.

• Which industrial problems automated Web service composition can solve?
The initial goal of automated composition was to provide methods for dynamic

12.3. FUTURE WORK 153

reconfiguration of information systems. However, as demonstrated in Chap-
ter 10, automated composition can be used for generating proposals for new
Web services, which have not been implemented yet. Moreover, as it has been
demonstrated in Chapter 11, automated composition can be applied for analysing
which kind of data and Web services are most relevant in particular domains.

• What are the limitations of automated Web service composition? As sum-
marised in Chapter 11, automated composition constructs relatively short and
simple solutions. This finding is supported by Estublier and Sanlaville [49], who
argue that composite Web services can express only simple business processes.
Hence the main disadvantage of automated composition, as we consider it in this
thesis, is that it constructs too simple workflows.

12.3 Future work
Future research may include extending our method for service composition to also
exploit business models, which specify additional relationships between services. Fu-
ture work related to partial deduction, symbolic negotiation, P2P networks and Web
services are enlisted in the following sections.

12.3.1 Partial deduction and symbolic negotiation
It has been indicated [125] that modal logic S4 has a direct translation to LL. This
result leads us to question whether current BDI-theories could be embedded into our
symbolic negotiation framework. Embedded BDI theories may help to specify explic-
itly agent negotiation strategies.
In future work we would also like to study different properties of symbolic nego-

tiation. Moreover, we would like to introduce additional symbolic negotiation rules.
Then, by considering symbolic negotiation rules as PD strategies, we are interested in
determining efficient strategies for various PD tasks.
In the framework of Contract Net protocol [40] we could apply symbolic nego-

tiation for task decomposition and Contract Net itself for non-symbolic negotiation.
Embedding non-symbolic negotiation into symbolic negotiation is appealing since it
may combine the advantages of both frameworks while reducing the effect of their
disadvantages. This is also one way to implement hybrid negotiation systems.

12.3.2 Symbolic negotiation in P2P networks
Our P2P architecture assumes currently that there exists a function for transforming se-
mantic concepts, like concepts in ontologies, to unique keys such that the concepts with
the same meaning have the same key. In the current implementation this is achieved
by constraining the agents to use the same ontology. Anyway, we recognise need to

154 CHAPTER 12. CONCLUSIONS

an interaction between different ontologies, since in large P2P networks different com-
munities tend to use different ontologies.
In order to facilitate semantic reasoning during the composition process, we would

like to design a function, which would map objects with the similar meaning to a sim-
ilar integer key. This would allow us to be sure that the objects/concepts with the
same meaning are in the same neighborhood. One possible solution has been pro-
posed by Tang et al [183] who consider semantics in P2P systems. They adopt Latent
Semantic Indexing (LSI) for information retrieval in Content-Addressable Networks
(CAN). The semantics of documents (which could represent concepts in ontologies)
is described with sets of keywords. Instead of LSI possibly some other information
retrieval algorithm [155] could be applied as well.
Alternatively, if objects have been annotated with keywords, Hilbert space filling

curves [166] (SFC) could be applied for mapping an n-dimensional keyword space
to 1-dimensional hash value space. This approach has been used by Schmidt and
Parashar [168] for locating Web services at Chord P2P network. Unfortunately we
could not apply their results in our system, since Schmidt and Parashar described Web
service classification with keywords, while we need to annotate the inputs and outputs
of Web services. Nonetheless, there may be another use for SFC-s within our research.
Finally, we are also considering options for mapping the entire structure of LL

formulae to P2P networks instead of literals only. Such a method would obviously
allow us to exploit richer structural semantics of Web services already at P2P level.

12.3.3 Web services descriptions

Web services standards are currently far from perfect. For instance, Van der Aalst et
al [190] evaluate the expressiveness ofWeb service composition languages BPEL4WS,
XLANG, WSFL, BPML and WSCI using both workflow and communication patterns.
An in-depth analysis of BPEL4WS language and its control structures is performed by
Wohed et al [197]. Both studies identify that there is room for further progress in Web
services orchestration standards. Some tools related to Web services’ orchestration are
reviewed by Peltz [151].
Kuno and Sahai [107] on the other hand state the agents’ inability to use UDDI

registries due to the static content of the latter and most importantly, lack of machine-
readable semantic information. It is also emphasised that in the Semantic Web con-
text agents should be able to discover services that are appropriate given customer’s
preferences and requirements. Therefore, our future work could be focused towards
embedding semantics into UDDI registries.

12.3.4 Automated Web service annotation

Although the set of Web services’ operations and concepts analysed in this thesis is
quite representative, we reviewed only a limited number of Web services compared to

12.3. FUTURE WORK 155

what is currently available on the Web. More thorough analysis to determine more ad-
vanced automated methods for Web services’ annotation and analysis should be under-
taken. Therefore our future research focus is biased towards providing such automated
methods and tools.
We are looking forward to explore further the research by Lister et al [118] and

Ernst et al [48], who aim to extract the semantics of inputs and outputs of Web services
from the data produced by particular Web services. By combining descriptions of Web
services in WSDL documents with data, which they produce, annotations of higher
quality may be constructed automatically.
In the future we would like to implement a method for automated annotation of

Web services. The method would take into account general results presented in this
thesis and encountered challenges to provide an efficient and user-friendly environment
for annotation. Finally, the method would be incorporated into our annotation tool to
facilitate higher productivity and efficiency of the analysis process.

156 CHAPTER 12. CONCLUSIONS

Appendix A

Abbreviations

Table A.1: Abbreviations used in the thesis.

Abbreviation Full name
ACL Agent Communication Language
AI Artificial Intelligence
API Application Program Interface
BPEL Business Process Execution Language
BPEL4WS BPEL for Web Services
CPS Cooperative Problem Solving
DAML DARPA Agent Markup Language
DHT Distributed Hashtables
FIPA Foundation for Intelligent Physical Agents
GUI Graphical User Interface
LL Intuitionistic Linear Logic
IS Information System
KQML Knowledge Query and Manipulation Language
LL Linear Logic
MAS Multi-Agent System
OWL Web Ontology Language
OWL-S OWL-based Web service ontology
P2P Peer to Peer
PD Partial Deduction
QoS Quality of Service
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SOAP Simple Object Access Protocol
SSP Structural Synthesis of Programs

157

158 APPENDIX A. ABBREVIATIONS

SWSO Semantic Web Services Ontology
UDDI Universal Description, Discovery and Integration
URI Uniform Resource Identifiers
W3C World Wide Web Consortium
WSDL Web Service Description Language
WSDL-S WSDL Semantics
WSML Web Service Modeling Language
WSFL Web Services Flow Language
WSMO Web Service Modeling Ontology
XML eXtensible Markup Language

Appendix B

Logic Rules

B.1 Rules of intuitionistic LL
Logical axiom and Cut rule:

A � A (Axiom)
Γ � A,∆ Γ

′
, A � ∆′

Γ, Γ
′

� ∆,∆
′ (Cut)

Multiplicative connectives:

Γ, A, B � ∆
Γ, A ⊗ B � ∆ (L⊗)

Γ � A,∆ Γ
′
� B,∆′

Γ, Γ
′

� A ⊗ B,∆,∆′
(R⊗)

� 1 R1
Γ � A
Γ, 1 � A L1

Σ1 � A B,Σ2 � C
Σ1, (A� B),Σ2 � C

L�
Σ, A � B
Σ � (A� B) R�

Additive connectives:

Γ, A � ∆ Γ, B � ∆
Γ, A ⊕ B � ∆ (L⊕) Γ � A,∆

Γ � A ⊕ B,∆ (R⊕)(a)
Γ � B,∆
Γ � A ⊕ B,∆ (R⊕)(b)

No R0 rule Γ, 0 � A L0

Γ, A � ∆
Γ, A&B � ∆ (L&)(a)

Γ, B � ∆
Γ, A&B � ∆ (L&)(b)

Γ � A,∆ Γ � B,∆
Γ � A&B,∆ (R&)

159

160 APPENDIX B. LOGIC RULES

Γ � �
R� No L� rule

Rules for the exponential !:

Γ � ∆
Γ, !A � ∆ (W!)

Γ, A � ∆
Γ, !A � ∆ (L!)

Γ, !A, !A � ∆
Γ, !A � ∆ (C!)

Rules for quantifiers:

Γ, A[a/x] � ∆
Γ,∀xA � ∆ L∀

Γ � ∆, A[t/x]
Γ � ∆,∀xA R∀

Γ, A[t/x] � ∆
Γ,∃xA � ∆ L∃

Γ � A[a/x],∆
Γ � ∃xA,∆ R∃

where t is not free in Γ and ∆.

Bibliography

[1] S. Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5–9,
1994.

[2] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon. Distributed
reasoning in a peer-to-peer setting. Technical report, LRI, Université Paris Sud,
France, 2004.

[3] L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue and negotiation.
In Proceedings of 14th European Conference on Artificial Intelligence, Berlin,
Germany, August 20–25, 2000, pages 338–342. IOS Press, 2000.

[4] J.-M. Andreoli, R.Pareschi, and T. Castagnetti. Static analysis of linear logic
programming. New Generation Computing, 15:449–481, 1997.

[5] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid informa-
tion services. In Proceedings of the Second IEEE International Conference on
Peer-to-Peer Computing (P2P 2002), Linköping, Sweden, September 5–7, 2002,
pages 33–40. IEEE Computer Society Press, 2002.

[6] N. Antonopoulos and J. Salter. Efficient resource discovery in grids and P2P
networks. Internet Research, 14(5):339–346, 2004.

[7] N. Antonopoulos, J. Salter, and R. Peel. A multi-ring method for efficient multi-
dimensional data lookup in P2P networks. In Proceedings of the 2005 Interna-
tional Conference on Foundations of Computer Science (FCS’05), Monte Carlo
Resort, Las Vegas, Nevada, USA, June 27–30, 2005, 2005.

[8] L. Ardissono, A. Goy, and G. Petrone. Enabling conversations with Web ser-
vices. In Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2003, July 14–18, 2003,
Melbourne, Victoria, Australia, pages 819–826. ACM Press, 2003.

[9] I. B. Arpinar, B. Aleman-Meza, R. Zhang, and A. Maduko. Ontology-driven
Web services composition platform. In Proceedings of IEEE International Con-
ference on E-Commerce Technology, CEC’04, San Diego, California, USA, July
6–9, 2004, pages 146–152. IEEE Press, 2004.

161

162 BIBLIOGRAPHY

[10] A.-L. Barabasi. Linked: How Everything Is Connected to Everything Else and
What It Means. Plume, 2003.

[11] M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search enhanced by topic seg-
mentation. In Proceedings of 26th Annual International ACM SIGIR Conference
(SIGIR 2003), Toronto, Canada, July 28–August 1, 2003, pages 306–313. ACM
Press, 2003.

[12] G. Bellin and P. J. Scott. On the pi-calculus and linear logic. Theoretical Com-
puter Science, 135(1):11–65, 1994.

[13] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu. Declarative compo-
sition and peer-to-peer provisioning of dynamic Web services. In Proceedings
of the 18th International IEEE Conference on Data Engineering, ICDE’02, San
Jose, USA, February 2002, pages 297–308, 2002.

[14] D. Berardi, D. Calvanese, G. de Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic composition of e-services that export their behavior. In Proceedings
of the First International Conference on Service-Oriented Computing, ICSOC
2003, Trento, Italy, December 15–18, 2003, volume 2910 of Lecture Notes in
Computer Science, pages 43–58. Springer-Verlag, 2003.

[15] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, 284(5):34–43, 2001.

[16] W. Bibel. A deductive solution for plan generation. NewGeneration Computing,
4:115–132, 1986.

[17] W. Bibel. Let’s plan it deductively. Artificial Intelligence, 103:183–208, 1998.

[18] N. Biri and D. Galmiche. A modal linear logic for distribution and mobility
(abstract). In Proceedings of International Workshop on Linear Logic, Copen-
hagen, Denmark, July 2002, 2002.

[19] S. Biundo, D. Dengler, and J. Koehler. Deductive planning and plan reuse in
a command language environment. In Proceedings of the 10th European Con-
ference on Artificial Intelligence, Vienna, Austria, August 1992, pages 628–632,
1992.

[20] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300, 1997.

[21] D. G. Bobrow and M. J. Stefik. Perspectives on Artificial Intelligence program-
ming. Science, 231(4741):951–956, 1986.

[22] M. P. Bonacina. A taxonomy of parallel strategies for deduction. Annals of
Mathematics and Artificial Intelligence, 29(1–4):223–257, 2000.

BIBLIOGRAPHY 163

[23] B. Bonet and H. Geffner. Planning as heuristic search: New results. In S. Bi-
undo and M. Fox, editors, Recent Advances in AI Planning. Proceedings of
the 5th European Conference on Planning (ECP’99), Durham, UK, September
1999, volume 1809 of Lecture Notes in Artificial Intelligence, pages 360–372.
Springer-Verlag, 2000.

[24] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic pro-
gramming & multi-agent systems: a synergic combination for applications and
semantics. In The Logic Programming Paradigm: a 25-Year Perspective, pages
5–32. Springer-Verlag, 1999.

[25] M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, 1987.

[26] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, and J. W.
R. Stata, A. Tomkins. Graph structure in the Web. Computer Networks, 3:309–
320, 2000.

[27] J. Broekstra, M. Ehrig, P. Haase, F. van Harmelen, A. Kampman, M. Sabou,
R. Siebes, S. Staab, H. Stuckenschmidt, and C. Tempich. A metadata model for
semantics-based peer-to-peer systems. In Proceedings of the WWW’03 Work-
shop on Semantics in Peer-to-Peer and Grid Computing. Budapest, Hungary,
May 20, 2003, 2003.

[28] M. Broy and P. Pepper. Program development as a formal activity. IEEE Trans-
actions on Software Engineering, 7(1):14–22, 1981.

[29] S. Brüning, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher.
Disjunction in resource-oriented deductive planning. Technical Report AIDA-
93-03, Technische Hochschule Darmstadt, Germany, 1994.

[30] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach
to design and analysis of e-service composition. In Proceedings of 12th In-
ternational World Wide Web Conference (WWW’03), Budapest, Hungary, May
20–24, 2003, pages 403–410, 2003.

[31] M. Burstein. Ontology mapping for dynamic service invocation on the Semantic
Web. In AAAI Spring Symposium on Semantic Web Services, Palo Alto, March,
2004, 2004.

[32] L. Cabral, J. Domingue, E. Motta, T. Payne, and F. Hakimpour. Approaches
to Semantic Web services: An overview and comparisons. In Proceedings of
the First European Semantic Web Symposium (ESWS2004), Heraklion, Crete,
Greece, May 10–12, 2004, volume 3053 of Lecture Notes in Computer Science,
pages 225–239. Springer-Verlag, 2004.

164 BIBLIOGRAPHY

[33] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[34] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and
dynamic service composition in eFlow. In Proceeding of 12th Int. Conference on
Advanced Information Systems Engineering (CAiSE 2000), Stockholm, Sweden,
June 5–9, 2000, volume 1789 of Lecture Notes in Computer Science, pages 13–
31. Springer-Verlag, 2000.

[35] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213–261, 1990.

[36] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[37] A. Crespo and H. Garcia-Molina. Semantic overlay networks for P2P systems.
Technical report, Department of Computer Science, Yale University, 2002.

[38] S. Cresswell, A. Smaill, and J. Richardson. Deductive synthesis of recursive
plans in linear logic. In Proceedings of the Fifth European Conference on Plan-
ning (ECP’99), Durham, United Kingdom, September 8–10, 1999, pages 252–
264, 1999.

[39] J. Darlington. An experimental program transformation and synthesis system.
Artificial Intelligence, 16:1–46, 1981.

[40] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem
solving. Artificial Intelligence, 20:63–109, 1983.

[41] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the
8th European Software Engineering Conference held jointly with 9th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, ESEC
2001, Vienna, Austria, September 10–14, 2001, pages 109–120. ACM Press,
2001.

[42] D. de Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H.
Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and
experiments. Journal of Logic Programming, 41(2–3):231–277, 1999.

[43] M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. A resource logic for multi-
agent plan merging. Annals of Mathematics and Artificial Intelligence, 37(1–
2):93–130, 2003.

[44] I. Dickinson and M. Wooldridge. Towards practical reasoning agents for the
Semantic Web. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2003, July 14–18, 2003,
Melbourne, Victoria, Australia, pages 827–834. ACM Press, 2003.

BIBLIOGRAPHY 165

[45] M. B. Do and S. Kambhampati. Planning as constraint satisfaction: Solving the
planning graph by compiling it into CSP. Artificial Intelligence, 132:151–182,
2001.

[46] U. Engberg and G. Winskel. Completeness results for linear logic on Petri nets.
Annals of Pure and Applied Logic, 86:101–135, 1997.

[47] V. Ermolayev, N. Keberle, O. Kononenko, S. Plaksin, and V. Terziyan. Towards
a framework for agent-enabled Semantic Web service composition. Interna-
tional Journal of Web Services Research, 1(3):63–87, 2004.

[48] M. D. Ernst, R. Lencevicius, and J. H. Perkins. Detection of Web service substi-
tutability and composability. In Proceedings of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006), Palermo, Sicily, Italy, June 9,
2006, pages 123–135, 2006.

[49] J. Estublier and S. Sanlaville. Business processes and workflow coordination
of web services. In Proceedings of 2005 IEEE International Conference on
e-Technology, e-Commerce, and e-Services, EEE’2005, Hong Kong, China, 29
March–1 April, 2005, pages 85–88. IEEE Computer Society, 2005.

[50] P. Fabiani and Y. Meiller. Planning with tokens: An approach between satis-
faction and optimisation. In Proceedings of the 14th Workshop “New Results
in Planning, Scheduling and Design” (PuK2000), Berlin, August 21–22, 2000,
in conjunction with 14th European Conference on Artificial Intelligence (ECAI
2000), August 20–25, 2000, Berlin, Germany, pages 26–35, 2000.

[51] M. Fisher. Characterising simple negotiation as distributed agent-based
theorem-proving—a preliminary report. In Proceedings of the Fourth Interna-
tional Conference on Multi-Agent Systems, Boston, MA, July 10-12, 2000, pages
127–134. IEEE Press, 2000.

[52] M. Fisher and M. Wooldridge. Distributed problem-solving as concurrent the-
orem proving. In Proceedings of 8th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, Ronneby, Sweden, May 13-16, 1997,
volume 1237 of Lecture Notes in Computer Science, pages 128–140. Springer-
Verlag, 1997.

[53] D. Fuchs. Requirement-based cooperative theorem proving. In Proceedings of
JELIA-1998, Dagstuhl, Germany, October 12–15, 1998, volume 1489 of Lec-
ture Notes in Artificial Intelligence, pages 139–153. Springer-Verlag, 1998.

[54] J. A. Giampapa and K. Sycara. Conversational case-based planning for agent
team coordination. In Proceedings of the Fourth International Conference on
Case-Based Reasoning, ICCBR 2001, Vancouver, BC, Canada, 30 July–2 Au-
gust, 2001, volume 2080 of Lecture Notes in Artificial Intelligence, pages 189–
203. Springer-Verlag, 2001.

166 BIBLIOGRAPHY

[55] N. Gibbins, S. Harris, and N. Shadbolt. Agent-based Semantic Web ser-
vices. In Proceedings of the Twelfth International World Wide Web Conference,
WWW2003, Budapest, Hungary, May 20–24, 2003, pages 710–717. ACM Press,
2003.

[56] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[57] A. Gómez-Pérez, R. González-Cabero, and M. Lama. A framework for design
and composition of Semantic Web services. In Proceedings of the First Interna-
tional Semantic Web Services Symposium, AAAI 2004 Spring Symposium Series,
March 22–24, 2004, pages 113–120. AAAI Press, 2004.

[58] G. Governatori, A. H. M. ter Hofstede, and P. Oaks. Defeasible logic for auto-
mated negotiation. In Proceedings of the 5th CollECTeR Conference on Elec-
tronic Commerce, Brisbane, Australia, December 13–14, 2000. Deakin Univer-
sity, 2000. On CD-ROM.

[59] C. Green. Application of theorem proving to problem solving. In Proceedings of
First International Joint Conference on Artificial Intelligence (IJCAI-69), Wash-
ington, DC, May 7–9, 1969, pages 219–239, 1969.

[60] G. Grosse, S. Hölldobler, and J. Schneeberger. Linear deductive planning. Jour-
nal of Logic and Computation, 6:232–262, 1996.

[61] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Artificial
Intelligence, 86:269–357, 1996.

[62] R. Guha. Semantic negotiation: Co-identifying objects across data sources. In
Proceedings of the First International Semantic Web Services Symposium, AAAI
2004 Spring Symposium Series, March 22–24, 2004, pages 7–12. AAAI Press,
2004.

[63] M. Harf and E. Tyugu. Algorithms of structured synthesis of programs. Pro-
gramming and Computer Software, 6:165–175, 1980.

[64] J. Harland, D. Pym, and M. Winikoff. Forward and backward chaining in lin-
ear logic. In Proceedings of the CADE-17 Workshop on Proof-Search in Type-
Theoretic Systems, Pittsburgh, June 20–21, 2000, volume 37 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2000.

[65] J. Harland and M.Winikoff. Agent negotiation as proof search in linear logic. In
Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2002), July 15–19, 2002, Bologna, Italy,
pages 938–939, 2002.

BIBLIOGRAPHY 167

[66] J. Harland and M. Winikoff. Language design issues for agents based on linear
logic (extended abstract). Electronic Notes in Theoretical Computer Science,
70(5), 2002. Proceedings of the Workshop on Computational Logic in Multi-
Agent Systems (CLIMA’02), Copenhagen, Denmark, August 1, 2002.

[67] S. V. Hashemian and F. Mavaddat. A graph-based approach to Web services
composition. In Proceedings of 2005 IEEE/IPSJ International Symposium on
Applications and the Internet, SAINT 2005, Trento, Italy, January 31–February
4, 2005, pages 183–189. IEEE Computer Society, 2005.

[68] P. Haslum and H. Geffner. Heuristic planning with time and resources. In
Proceedings of the Seventeenth International Joint Conference on Artificial In-
telligence (IJCAI-01) Workshop on Planning with Resources, 2001.

[69] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–
37, 2001.

[70] A. Heß, E. Johnston, and N. Kushmerick. Assam: A tool for semi-automatically
annotating semantic web services. In Proceedings of the 3rd International Se-
mantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004.

[71] A. Heß and N. Kushmerick. Learning to attach semantic metadata to web ser-
vices. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proceedings of the
2nd International Semantic Web Conference, number 2870 in Lecture Notes
in Computer Science, pages 258–273, Sanibel Island, Florida, USA, 2003.
Springer-Verlag.

[72] T. Hirai. Propositional temporal linear logic and its application to concurrent
systems. IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, E83-A(11):2219–2227, 2000. Special Section on
Concurrent Systems Technology.

[73] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–
302, 2001.

[74] K. Y. K. Hui, J. C. S. Lui, and D. K. Y. Yau. Small world overlay P2P networks.
In Proceedings of the Twelfth IEEE International Workshop on Quality of Ser-
vice (IWQoS 2004), Montreal, Canada, June 7–9, 2004, pages 201–210. IEEE
Communications Society, 2004.

[75] R. Hull and J. Su. Tools for composite Web services: A short overview. SIG-
MOD Record, 34(2):86–95, 2005.

[76] É. Jacopin. Classical AI planning as theorem proving: The case of a fragment of
linear logic. In Proceedings of AAAI Fall Symposium on Automated Deduction
in Nonstandard Logics, pages 62–66. AAAI Press, 1993.

168 BIBLIOGRAPHY

[77] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and
M. Wooldridge. Automated negotiation: Prospects, methods and challenges.
International Journal of GroupDecision and Negotiation, 10(2):199–215, 2001.

[78] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, 1:275–306,
1998.

[79] S. Kaffille, K. Loesing, and G. Wirtz. Distributed service discovery with guar-
antees in peer-to-peer networks using distributed hashtables. In Proceedings of
the 2005 International Conference on Parallel and Distributed Processing Tech-
niques and Applications, PDPTA 2005, Las Vegas, Nevada, USA, June 27–30,
2005, 2005.

[80] A. C. Kakas, P. Torroni, and N. Demetriou. Agent planning, negotiation and
control of operation. In Proceedings of the 16th European Conference on Ar-
tificial Intelligence, ECAI 2004, Valencia, Spain, August 22–27, 2004, pages
28–32. IOS Press, 2004.

[81] M. Kanovich and T. Ito. Temporal linear logic specifications for concurrent
processes (extended abstract). In Proceedings of the Twelfth Annual IEEE Sym-
posium on Logic in Computer Science, Warsaw, Poland, June 29–July 2, 1997,
pages 48–57. IEEE Computer Society Press, 1997.

[82] M. I. Kanovich. Linear logic as a logic of computations. Annals of Pure and
Applied Logic, 67:183–212, 1994.

[83] M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state
systems in linear logic. In Proceedings of the 2nd International Workshop on
Constraint Programming for Time-Critical Applications and Multi-Agent Sys-
tems (COTIC’98), Nice, France, September 7, 1998, volume 16 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1998.

[84] M. I. Kanovich and J. Vauzeilles. The classical AI planning problems in the mir-
ror of Horn linear logic: Semantics, expressibility, complexity. Mathematical
Structures in Computer Science, 11(6):689–716, 2001.

[85] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer
and Systems Sciences, 3(2):147–195, 1969.

[86] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the
10th European Conference on Artificial Intelligence (ECAI-92), pages 359–363,
1992.

BIBLIOGRAPHY 169

[87] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of
theorem proving to problem solving. InWorking notes of the Workshop on Plan-
ning as Combinatorial Search, held in conjunction with AIPS-98, Pittsburgh,
PA, June 1998, pages 58–60, 1998.

[88] S. M. Kim and M. C. Rosu. A survey of public Web services. In Proceedings of
5th International Conference on E-Commerce and Web Technologies, EC-Web
2004, Zaragoza, Spain, August 31–September 3, 2004, volume 3182 of Lecture
Notes in Computer Science, pages 96–105. Springer-Verlag, 2004.

[89] J. Komorowski. A Specification of An Abstract Prolog Machine and Its Appli-
cation to Partial Evaluation. PhD thesis, Department of Computer and Infor-
mation Science, Linkoping University, Linkoping, Sweden, 1981.

[90] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through argumen-
tation: A logical model and implementation. Artificial Intelligence, 104(1–2):1–
69, 1998.

[91] P. Küngas. Abstraction within partial deduction for linear logic. In Proceedings
of 7th International Conference on Artificial Intelligence and Symbolic Com-
putation, AISC 2004, RISC, Castle of Hagenberg, Austria, September 22–24,
2004, volume 3249 of Lecture Notes in Artificial Intelligence, pages 52–65.
Springer-Verlag, 2004.

[92] P. Küngas. Analysing ai planning problems in linear logic—a partial deduction
approach. In Proceedings of XVII Brazilian Symposium on Artificial Intelli-
gence, SBIA 2004, Sao Luis, Maranhao, Brazil, September 29–October 1, 2004,
volume 3171 of Lecture Notes in Artificial Intelligence, pages 52–61. Springer-
Verlag, 2004.

[93] P. Küngas. Dynamic web service discovery and exploitation through symbolic
agent negotiation. In Proceedings of the 2nd European Starting AI Researcher
Symposium, STAIRS 2004, Valencia, Spain, August 23–24, 2004, collocated
with 16th European Conference on Artificial Intelligence, ECAI’04, Valencia,
Spain, August 22–27, 2004, pages 247–252. IOS Press, 2004.

[94] P. Küngas. Temporal linear logic for symbolic agent negotiation. In Proceedings
of the 8th Pacific Rim International Conference on Artificial Intelligence, PRI-
CAI 2004, Auckland, New Zealand, August 9–13, 2004, volume 3157 of Lecture
Notes in Artificial Intelligence, pages 23–32. Springer-Verlag, 2004.

[95] P. Küngas and M. Matskin. Semantic web service composition through a p2p-
based multi-agent environment. In Proceedings of the Fourth International
Workshop on Agents and Peer-to-Peer Computing (in conjunction with AAMAS
2005), AP2PC 2005, Utrecht, Netherlands, July 26, 2005, Lecture Notes in
Computer Science. Springer-Verlag. To appear.

170 BIBLIOGRAPHY

[96] P. Küngas andM.Matskin. Linear logic, partial deduction and cooperative prob-
lem solving. In Proceedings of the First International Workshop on Declara-
tive Agent Languages and Technologies (in conjunction with AAMAS 2003),
DALT’2003, Melbourne, Australia, July 15, 2003, volume 2990 of Lecture
Notes in Artificial Intelligence, pages 263–279. Springer-Verlag, 2004.

[97] P. Küngas and M. Matskin. Symbolic negotiation with linear logic. In Proceed-
ings of the Fourth International Workshop on Computational Logic in Multi-
Agent Systems, CLIMA IV, Fort Lauderdale, FL, USA, January 6-7, 2004. Re-
vised Selected and Invited Papers, volume 3259 of Lecture Notes in Computer
Science, pages 71–88. Springer-Verlag, 2004.

[98] P. Küngas and M. Matskin. Combining symbolic and non-symbolic negotiation
for agent-based web service composition. In Proceedings of the 2005 Interna-
tional Conference on Artificial Intelligence, ICAI’05, Las Vegas, Nevada, USA,
June 27–30, 2005, pages 513–519. CSREA Press, 2005.

[99] P. Küngas and M. Matskin. Detection of missing web services: The partial
deduction approach. In Proceedings of International Conference on Next Gen-
eration Web Services Practices, NWeSP’05, Seoul, Korea, August 22–26, 2005,
pages 339–344. IEEE Computer Society Press, 2005.

[100] P. Küngas and M. Matskin. Detection of missing web services: The partial de-
duction approach. International Journal of Web Services Practices, 1(1–2):133–
141, 2005.

[101] P. Küngas and M. Matskin. Partial deduction for assisting automated semantic
web service composition. In Proceedings of the Workshop on Exploring Plan-
ning and Scheduling for Web Services, Grid and Autonomic Computing held in
conjunction with The Twentieth National Conference on Artificial Intelligence,
(AAAI 2005), Pittsburgh, Pennsylvania, USA, July 9–10, 2005, volume WS-05-
03 of AAAI Technical Report, pages 43–45. AAAI Press, 2005.

[102] P. Küngas and M. Matskin. Partial deduction for linear logic—the symbolic
negotiation perspective. In Proceedings of the Second International Workshop
on Declarative Agent Languages and Technologies (in conjunction with AAMAS
2004), DALT’2004, New York, USA, July 19, 2004, volume 3476 of Lecture
Notes in Artificial Intelligence, pages 35–52. Springer-Verlag, 2005.

[103] P. Küngas and M. Matskin. Symbolic negotiation revisited. In Proceedings of
Fifth International Joint Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS’06, Future University-Hakodate, Japan, May 8–12, 2006.
ACM Press, 2006.

[104] P. Küngas and M. Matskin. Web services analysis: Making use of Web service
composition and annotation. In Proceedings of the First Asian Semantic Web

BIBLIOGRAPHY 171

Conference, ASWC’06, Beijing, China, September 3–7, 2006, Lecture Notes in
Computer Science. Springer-Verlag, 2006. To appear.

[105] P. Küngas and M. Matskin. Web services roadmap: The Semantic Web perspec-
tive. In Proceedings of International Conference on Internet and Web Applica-
tions and Services, ICIW’06, Guadeloupe, French Caribbean, February 23–25,
2006. IEEE Computer Society Press, 2006.

[106] P. Küngas, J. Rao, and M. Matskin. Symbolic agent negotiation for Semantic
Web service exploitation. In Proceedings of the Fifth International Conference
on Web-Age Information Management, WAIM’2004, Dalian, China, July 15–
17, 2004, volume 3129 of Lecture Notes in Computer Science, pages 458–467.
Springer-Verlag, 2004.

[107] H. Kuno and A. Sahai. My agent wants to talk to your service: Personalizing
Web services through agents. In B. Burg, J. Dale, T. Finin, H. Nakashima,
L. Padgham, C. Sierra, and S. Willmott, editors, Agentcities: Challenges in
Open Agent Environments. Springer-Verlag, 2003.

[108] Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The current
landscape. IEEE Intelligent Systems, 14(2):45–52, 1999.

[109] S. Lämmermann. Runtime Service Composition via Logic-Based Program Syn-
thesis. PhD thesis, Department of Microelectronics and Information Technol-
ogy, Royal Institute of Technology, Stockholm, 2002.

[110] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

[111] H. Lehmann and M. Leuschel. Solving planning problems by partial deduction.
In Proceedings of the 7th International Conference on Logic for Programming
and Automated Reasoning, LPAR’2000, Reunion Island, France, November 11–
12, 2000, volume 1955 of Lecture Notes in Artificial Intelligence, pages 451–
467. Springer-Verlag, 2000.

[112] D. B. Lenat. Beings: Knowledge as interacting experts. In Proceedings of the
Fourth International Joint Conference on Artificial Intelligence, Tbilisi, Geor-
gia, USSR, September 3–8, 1975, pages 126–133, 1975.

[113] M. Leuschel and H. Lehmann. Solving coverability problems of Petri nets by
partial deduction. In Proceedings of the 2nd International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, PPDP’2000,
Montreal, Canada, September 20–23, 2000, pages 268–279. ACM Press, 2000.

172 BIBLIOGRAPHY

[114] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, AAAI-
90, Boston, Massachusetts, July 29–August 3, 1990, pages 94–99. AAAI Press,
1990.

[115] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. Golog: A
logic programming language for dynamic domains. Journal of Logic Program-
ming, 31(1–3):59–83, 1997.

[116] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, 1992.

[117] P. Lincoln. Deciding provability of linear logic formulas. In J.-Y. Girard, Y. La-
font, and L. Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Note Series, pages 109–122. Cambridge Univer-
sity Press, 1995.

[118] K. Lister, L. Sterling, and K. Taveter. Reconciling ontological differences by
assistant agents. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-06), Future University,
Hakodate, Japan, May 8–12, 2006, pages 943–945. ACM Press, 2006.

[119] S. Liu, P. Küngas, and M. Matskin. Agent-based web service composition with
jade and jxta. In Proceedings of the 2006 International Conference on Semantic
Web and Web Services, SWWS’06, Las Vegas, Nevada, USA, June 26-29, 2006.
CSREA Press, 2006. To appear.

[120] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217–242, 1991.

[121] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A graphical Web
service composition and execution toolkit. In Proceedings of the Second IEEE
International Conference on Web Services (ICWS’04), San Diego, California,
USA, June 6–9, 2004, pages 514–521. IEEE Computer Society, 2004.

[122] S. Majithia, D. W. Walker, and W. A. Gray. A framework for automated ser-
vice composition in service-oriented architectures. In Proceedings of the First
European Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece,
May 10–12, 2004, volume 3053 of Lecture Notes in Computer Science, pages
269–283. Springer-Verlag, 2004.

[123] Z. Manna and R. J. Waldinger. A deductive approach to program synthe-
sis. ACM Transactions on Programming Languages and Systems, 2(1):90–121,
1980.

[124] Z. M. Mao, R. H. Katz, and E. A. Brewer. Fault-tolerant, scalable, wide-area in-
ternet service composition. Technical Report CSD-01-1129, Computer Science
Division, University of California, Berkeley, California, USA, 2001.

BIBLIOGRAPHY 173

[125] S. Martini and A. Masini. A modal view of linear logic. Journal of Symbolic
Logic, 59(3):888–899, 1994.

[126] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic I–II.
Theoretical Computer Science, 113:349–375, 1993.

[127] M. Matskin, O. J. Kirkeluten, S. B. Krossnes, and Ø. Sæle. Agora: An infras-
tructure for cooperative work support in multi-agent systems. In T. Wagner and
O. F. Rana, editors, International Workshop on Infrastructure for Multi-Agent
Systems, Barcelona, Spain, June 3–7, 2000, Revised Papers, volume 1887 of
Lecture Notes in Computer Science, pages 28–40. Springer-Verlag, 2001.

[128] M. Matskin and J. Komorowski. Partial structural synthesis of programs. Fun-
damenta Informaticae, 30:23–41, 1997.

[129] M. Matskin, P. Küngas, J. Rao, J. Sampson, and S. A. Petersen. Enabling web
services composition with software agents. In Proceedings of the Ninth IASTED
International Conference on Internet and Multimedia Systems and Applications,
IMSA 2005, Honolulu, Hawaii, USA, August 15–17, 2005, pages 93–98. ACTA
Press, 2005.

[130] M. Matskin and E. Tyugu. Strategies of structural synthesis of programs and its
extensions. Computing and Informatics, 20:1–25, 2001.

[131] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of Artificial Intelligence. In B. Meltzer, D. Michie, and M. Swann, editors,
Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press,
1969.

[132] D. McDermott. Estimated-regression planning for interaction with Web ser-
vices. In Proceedings of the 6th International Conference on AI Planning and
Scheduling, Toulouse, France, April 23–27, 2002. AAAI Press, 2002.

[133] D. McDermott. The formal semantics of processes in PDDL. In Proceedings of
ICAPS Workshop on PDDL, 2004.

[134] S. McIlraith and T. C. Son. Adapting Golog for composition of Semantic Web
services. In Proceedings of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse, France, April 22–25, 2002,
pages 482–493. Morgan Kaufmann, 2002.

[135] D. Miller. The pi-calculus as a theory in linear logic: Preliminary results. In
Proceedings of the Third International Workshop on Extensions of Logic Pro-
gramming, ELP’92, Bologna, Italy, February 26–28, 1992, volume 660 of Lec-
ture Notes in Computer Science, pages 242–264. Springer-Verlag, 1993.

174 BIBLIOGRAPHY

[136] R. Milner. The polyadic pi-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, Computer Science Department, University of Edinburgh, 1991.

[137] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-peer computing. Technical Report HPL-2002-57,
Hewlett-Packard, 2002.

[138] K. E. Moore and S. M. Gupta. Petri net models of flexible and automated man-
ufacturing systems: A survey. International Journal of Production Research,
34:3001–3035, 1996.

[139] S. Muggleton and L. de Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19/20:629–679, 1994.

[140] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
IEEE, 77(4):541–580, 1989.

[141] T. Murata, P. C. Nelson, and J. Yim. A predicate-transition net model for multi-
ple agent planning. Information Sciences, 57–58:361–384, 1991.

[142] B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical and
empirical analysis. Artificial Intelligence, 76:427–454, 1995.

[143] I. Odrats, editor. Information Technology in Public Administration of Estonia,
yearbook 2004. OÜ Piltkiri, 2005.

[144] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the Semantic
Web in UDDI. In Proceedings of the CAiSE 2002 International Workshop on
Web Services, E-Business, and the Semantic Web, WES 2002, Toronto, Canada,
May 27-28, 2002, Revised Papers, volume 2512 of Lecture Notes in Computer
Science, pages 225–236. Springer-Verlag, 2002.

[145] M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. A broker for OWL-S
Web services. In Proceedings of the First International Semantic Web Services
Symposium, AAAI 2004 Spring Symposium Series, March 22–24, 2004, pages
92–99. AAAI Press, 2004.

[146] M. Paolucci and K. Sycara. Autonomous Semantic Web services. IEEE Internet
Computing, 7(5):34–41, 2003.

[147] M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan. Using DAML-S for
P2P discovery. In Proceedings of the First International Conference on Web
Services, ICWS’03, Las Vegas, Nevada, USA, June 23–26, 2003, pages 203–
207. CSREA Press, 2003.

BIBLIOGRAPHY 175

[148] M. P. Papazoglou, B. J. Krämer, and J. Yang. Leveraging Web-services and
peer-to-peer networks. In J. Eder and M. Missikoff, editors, 15th International
Conference on Advanced Information Systems Engineering, CAiSE 2003, June
16–18, 2003, Klagenfurt, Austria, volume 2681 of Lecture Notes in Computer
Science, pages 485–501. Springer-Verlag, 2003.

[149] S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

[150] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web service
annotation framework. In Proceedings of the 13th International Conference on
World Wide Web (WWW ’04), New York, NY, USA, May 17–22, 2004, pages
553–562. ACM Press, 2004.

[151] C. Peltz. Web services orchestration: A review of emerging technologies, tools,
and standards. Technical report, Hewlett Packard, Co., 2003.

[152] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
monitoring web service composition. In Proceedings of the 11th International
Conference on Artificial Intelligence, Methodologies, Systems, and Applications
(AIMSA04), Varna, Bulgaria, September 2–4, 2004, volume 3192 of Lecture
Notes in Computer Science, pages 106–115. Springer-Verlag, 2004.

[153] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis of
composite BPEL4WSWeb services. In Proceedings of 2005 IEEE International
Conference on Web Services (ICWS05), Orlando, Florida, USA, July 11–15,
2005, pages 293–301, 2005.

[154] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for Web service
composition. In Proceedings of The Eleventh World Wide Web Conference (Web
Engineering Track), Honolulu, Hawaii, USA, May 7–11, 2002, pages 83–107,
2002.

[155] P. Raghavan. Information retrieval algorithms: A survey. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
Louisiana, United States, January 5–7, 1997, pages 11–18. SIAM, 1997.

[156] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and
L. Sonenberg. Argumentation-based negotiation. The Knowledge Engineering
Review, 18(4):343–375, 2004.

[157] A. Rao. BDI agents speak out in a logical computable language. In Proceedings
of Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW’96), pages 42–55. Springer-Verlag, 1996.

176 BIBLIOGRAPHY

[158] A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-
architecture. In Proceedings of the Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’91), Cambridge, Mas-
sachusetts, USA, April 22–25, 1991, pages 473–484, 1991.

[159] J. Rao, P. Küngas, and M. Matskin. Application of linear logic to Web ser-
vice composition. In Proceedings of the First International Conference on Web
Services, ICWS 2003, Las Vegas, Nevada, USA, June 23–26, 2003, pages 3–9.
CSREA Press, 2003.

[160] J. Rao, P. Küngas, and M. Matskin. Logic-based Web services composition:
From service description to process model. In Proceedings of the Second In-
ternational Conference on Web Services (ICWS 2004), San Diego, California,
USA, July 6–9, 2004, pages 446–453, 2004.

[161] J. Rao, P. Küngas, andM.Matskin. Composition of semantic web services using
linear logic theorem proving. Information Systems, 31(4–5):340–360, 2006.

[162] J. A. Robinson. Computational logic: Memories of the past and challenges for
the future. In Proceedings of the 1st International Conference on Computational
Logic, CL 2000, Imperial College, London, UK, July 24–28, 2000, volume 1861
of Lecture Notes in Artificial Intelligence, pages 1–24. Springer-Verlag, 2000.

[163] M. Sabou. From software APIs to Web service ontologies: a semi-automatic
extraction method. In Proceedings of the Third International Semantic Web
Conference (ISWC2004), Hiroshima, Japan, November 7–11, 2004, 2004.

[164] M. Sabou, D. Richards, and S. van Splunter. An experience report using DAML-
S. In Proceedings of the Twelfth International World Wide Web Conference
Workshop on E-Services and the Semantic Web, 2003.

[165] F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: An
abductive approach. In Proceedings of the Symposium on Information Agents
for E-Commerce, Artificial Intelligence and the Simulation of Behaviour Con-
vention (AISB-2001), York, UK, March 21–24, 2001, 2001.

[166] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[167] T. W. Sandholm and V. R. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94:99–137, 1997.

[168] C. Schmidt and M. Parashar. A peer-to-peer approach to Web service discovery.
World Wide Web Journal, 7(2):211–229, June 2004.

[169] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and
composing service-based and reference process-based multi-enterprise pro-
cesses. In Proceeding of 12th Int. Conference on Advanced Information Systems

BIBLIOGRAPHY 177

Engineering (CAiSE 2000), Stockholm, Sweden, June 5–9, 2000, volume 1789
of Lecture Notes in Computer Science, pages 247–263. Springer-Verlag, 2000.

[170] O. Shehory and S. Kraus. Task allocation via coalition formation among au-
tonomous agents. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-95), Montréal, Québec, Canada, August
20–25, 1995, pages 655–661, 1995.

[171] O. Shehory and S. Kraus. Methods for task allocation via agent coalition for-
mation. Artificial Intelligence, 101(1–2):165–200, 1998.

[172] M. Sheshagiri, M. desJardins, and T. Finin. A planner for composing services
described in DAML-S. In Proceedings of the AAMASWorkshop onWeb Services
and Agent-based Engineering, 2003.

[173] F. Silva, M. Castilho, and L. A. Künzle. Petriplan: A new algorithm for plan
generation (preliminary report). In M. C. Monard and J. S. Sichman, editors,
Advances in Artificial Intelligence. Proceedings of International Joint Confer-
ence 7th Ibero-American Conference on AI 15th Brazilian Symposium on AI,
IBERAMIA-SBIA 2000, Atibaia, SP, Brazil, November 19–22, 2000, volume
1952 of Lecture Notes in Computer Science, pages 86–95. Springer-Verlag,
2000.

[174] E. Sirin, B. Parsia, and J. Hendler. Composition-driven filtering and selection
of Semantic Web services. In Proceedings of the First International Semantic
Web Services Symposium, AAAI 2004 Spring Symposium Series, March 22–24,
2004, pages 129–136. AAAI Press, 2004.

[175] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. De-
ductive composition of astronomical software from subroutine libraries. In
A. Bundy, editor, Proc. of CADE’94, Nancy, France, 1994, volume 814 of Lec-
ture Notes in Artificial Intelligence, pages 341–355. Springer-Verlag, 1994.

[176] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings
of ACM SIGCOMM 2001, San Diego, California, USA, August 27–31, 2001,
pages 149–160. ACM Press, 2001.

[177] P. D. Summers. A methodology for LISP program construction from examples.
Journal of the ACM, 24(1):161–175, 1977.

[178] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discov-
ery, interaction and composition of Semantic Web services. Journal of Web
Semantics, 1(1):27–46, September 2003.

178 BIBLIOGRAPHY

[179] K. Sycara and D. Zeng. Coordination of multiple intelligent software agents.
International Journal of Intelligent and Cooperative Information Systems, 5(2–
3):181–211, 1996.

[180] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83–124, 1997.

[181] T. Tammet. Proof strategies in linear logic. Journal of Automated Reasoning,
12:273–304, 1994.

[182] M. Tanabe. Timed petri nets and temporal linear logic. In Proceedings of 18th
International Conference on Application and Theory of Petri Nets (ICATPN’97),
Toulouse, France, June 23–27, 1997, volume 1248 of Lecture Notes in Com-
puter Science, pages 156–174. Springer-Verlag, 1997.

[183] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In Proceedings of ACM SIGCOMM’03,
Karlsruhe, Germany, August 25–29, 2003, pages 175–186. ACM Press, 2003.

[184] S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically com-
posing Web services from on-line sources. In Proceeding of 2002 AAAI Work-
shop on Intelligent Service Integration, Edmonton, Alberta, Canada, 2002.

[185] G. Tidhar, A. S. Rao, and E. A. Sonenberg. Guided team selection. In Proceed-
ings of Second International Conference on Multi-Agent Systems, ICMAS-96,
Kyoto, Japan, pages 369–376, 1996.

[186] P. Traverso and M. Pistore. Automated composition of semantic web services
into executable processes. In Proceedings of 3rd International Semantic Web
Conference, ISWC 2004, Hiroshima, Japan, November 7–11, 2004, volume
3298 of Lecture Notes in Computer Science, pages 380–394. Springer-Verlag,
2004.

[187] A. Tsalgatidou and T. Pilioura. An overview of standards and related technology
in Web services. Distributed and Parallel Databases, 12:135–162, 2002.

[188] E. Tyugu. The structural synthesis of programs. In Algorithms in Modern Math-
ematics and Computer Science, volume 122 of Lecture Notes in Computer Sci-
ence, pages 290–303. Springer-Verlag, 1981.

[189] T. Uustalu, U. Kopra, V. Kotkas, M. Matskin, and E. Tyugu. The NUT language
report. Technical Report TRITA-IT R 94:14, Department of Teleinformatic,
Royal Institute of Technology, Stockholm, Sweden, 1994.

[190] W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Web service
composition languages: Old wine in new bottles? In 29th Euromicro Confer-
ence (EUROMICRO’03), Belek-Antalya, Turkey, September 1–6, 2003, pages
298–307. IEEE Press, 2003.

BIBLIOGRAPHY 179

[191] R. van der Krogt, M. de Weerdt, and C. Witteveen. A resource based framework
for planning and replanning. In Proceedings of the IEEE/WIC International
Conference on Intelligent Agent Technology, IAT-03, Halifax, Canada, October
13–16, 2003, pages 247–253. IEEE Computer Society, 2003.

[192] S. A. Vere. Relational production systems. Artificial Intelligence, 8:47–68,
1977.

[193] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEORSWSDI: A scalable P2P infrastructure of registries for semantic pub-
lication and discovery of Web services. Journal of Information Technology and
Management, 6(1):17–39, 2005.

[194] R. Waldinger. Web agents cooperating deductively. In Proceedings of FAABS
2000, Greenbelt, MD, USA, April 5–7, 2000, volume 1871 of Lecture Notes in
Computer Science, pages 250–262. Springer-Verlag, 2001.

[195] Q. Wang, Y. Yuan, J. Zhou, and A. Zhou. Peer-Serv: A framework of Web ser-
vices in peer-to-peer environment. In Proceedings of 4th International Confer-
ence on Advances in Web-Age InformationManagement, WAIM 2003, Chengdu,
China, August 17–19, 2003, volume 2762 of Lecture Notes in Computer Sci-
ence, pages 298–305. Springer-Verlag, 2003.

[196] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and pro-
cedural goals in intelligent agent systems. In Proceedings of the Eighth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR2002), April 22–25, 2002, Toulouse, France, pages 470–481. Morgan Kauf-
mann, 2002.

[197] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analy-
sis of web services composition languages: The case of bpel4ws. In Proceedings
of 22nd International Conference on Conceptual Modeling (ER 2003), Chicago
IL, USA, October 13–16, 2003, volume 2813 of Lecture Notes in Computer Sci-
ence, pages 200–215. Springer-Verlag, 2003.

[198] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[199] M. Wooldridge and N. R. Jennings. The cooperative problem-solving process.
Journal of Logic and Computation, 9(4):563–592, 1999.

[200] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web
services composition using SHOP2. In Proceedings of the 2nd International
Semantic Web Conference, ISWC 2003, Sanibel Island, Florida, USA, October
20–23, 2003, 2003.

180 BIBLIOGRAPHY

