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Preface

This master thesis concludes the final work of the Masters program at the Norwegian University

of Science and Technology, Department of Engineering Cybernetics. Discussing, testing and

implement method’s for attitude estimation of a underwater steering device. The master the-

sis is conducted in collaboration with Kongsberg Seatex AS. This collaboration where motivated

by interning at Kongsberg Seatex, working with sensor calibration of the underwater steering

device. Studying these aspects evolved to further investigation of the system and attitude esti-

mation.

The knowledge of classical physics such as kinetics and kinematics are useful to understand

the thesis. Knowledge of SNAME notation and terminology of describing motion and reference

frames would also be helpful.

Marius Hjertaker

Trondheim, May 22, 2015
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Summary

The accuracy of seismic surveys are vital in order obtain accurate and good analysis of the gath-

ered data. This can be done using seismic cable control, where underwater steering devices

guides and stabilizes the cables. In order for these underwater steering devices to have as accu-

rate control as possible are a attitude observer beneficial. The orientation of the seismic cables

would also help correcting and interpreting data gathered under the seismic surveys.

The industry standard observer for attitude estimations have for decades been the extended

Kalman filter. However, extensive research the recent years on non-linear observers are chang-

ing this. Enabling a smaller footprint on the embedded system, and by fusing low-cost inertial

sensors.

The main objective of this thesis are to implemented and experimentally test - with both

simulated and experimental collected data - attitude observers integrating inertial measure-

ments obtained from a inertial measurement unit (IMU). Enhancing their benefits and disad-

vantages.

A extensive literature study looking for different methods for attitude estimation, aspects

related to attitude representation and current attitude observers solutions for seismic cables are

presented. The main aspects of the selected observers are presented, with a further uncompli-

cated full overview and tuning properties.

By merging different properties, from two different papers, have the author proposed a new

locally exponentially stable attitude observer, witch will globally decoupling of the roll and pitch

estimates from yaw and magnetometer measurements. Moreover, all the observers are com-

pared and given a clear overview of their estimation performance. Where their heading (yaw)

estimation capabilities are emphasized.

A simulation model capable of simulating the IMU data from a dynamic model governed by

angular velocities or input torques are also made. Calibration procedures of the raw experimen-

tal sensor measurements, using a batch based iterative calibration, are also presented.
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Sammendrag

Nøyaktigheten til seismiske undersøkelser er avgjørende for oppnå nøyaktig og god analyse av

de innsamlede dataene. Dette kan gjøres ved hjelp av seismiske kabelen kontroll, der under-

vannsstyringsenheter guider og stabiliserer kablene. For at disse undersjøiske styringsenhetene

skal ha så nøyaktig kontroll som mulig, er en attityde observatør gunstig. Orienteringen av de

seismiske kabler vil også bidra til å korrigere og tolke data innsamlet under de seismiske under-

søkelsene.

Bransjestandar observatøren for attityde estimater har i flere tiår vært Extrended Kalman fil-

ter. Men omfattende forskning de siste årene på ikke-lineære observatører endrer dette. Mulig-

gjøring av et mindre «footprint» på den innebygde system, og ved å fusjonere lav-kost treghetssen-

sorer.

Hovedmålet med denne avhandlingen er å implementere og eksperimentelt teste - med

både simulert og eksperimentelle innsamlede data - attityde observatører som integrerer treghetsmålinger

hentet fra en treghets måleenhet (IMU). Og framheve fordeler og ulemper ved disse.

En omfattende litteraturstudie på jakt etter forskjellige metoder for attityde estimering, as-

pekter knyttet til attityde representasjon og nåværende attityde observatører løsninger for seis-

miske kabler presenteres. De viktigste aspektene ved de utvalgte observatører presenteres, med

en påfølgende ukomplisert og oversiktlig total oversikt.

Ved å slå sammen ulike egenskaper, fra to forskjellige artikkler, har forfatteren foreslått en

ny lokalt eksponentielt stabil attityde observatør, hvor yaw og magnetometermålinger globalt

dekobles fra rull- og pitch estimater. Videre er alle observatørene sammen gitt en klar oversikt

over deres estimerings ytelser. Hvor deres yaw estimering vektlegges.

En simuleringsmodell i stand til å simulere IMU data fra en dynamisk modell, styrt av vinkel-

hastigheter eller moment er også gjort. Kalibreringsprosedyrer av rå – sensor - data blir også

presentert, dette ved hjelp av en batch basert iterativ kalibrering.
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Chapter 1

Introduction

The master thesis is presented in this chapter, its background and motivation explained and the

problem formulation stated. The most relevant literature which has been studied and used is

discussed. The thesis contributions is also presented, as is the structure of the rest of the thesis.

1.1 Background

The used of two-dimensional (2D) and three three-dimensional (3D) marine seismic surveys has

been used for decades by the oil and gas industry. Enabling mapping of the geological structures

of the seabed. Towed cables equipped with seismic receivers are dragged through the water,

recording acoustic (sound) waves reflected by the seabed. Sound waves that are generated by

bursting air-guns (Davies et al., 2004).

A 3D seismic survey provide a static picture of the earth. This technology uses multiple

closely separated towed cables that provide an detailed data array about the geological features

(Davies et al., 2004). In doing so do the risk of crossing the towed cables appear. Which may

cause severe damage to the towed equipment. One solution would be to have a sufficient gape,

separating the towed cables. However, the data acquisition detail increases with the decrease

of separation. It would therefore be beneficial to have as small separation as possible. Utiliz-

3
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ing multiple control/steering devices along the cables streamers, so-called birds, can the towed

cables be more closely separated. Enabling dynamic positioning (DP) of the cables streamers.

Which again would enable precise 3D seismic survey. Furthermore, precise 4D seismic surveys

could be conducted. This is repeatable 3D survey, providing time structural changes in the geo-

metric topology (Davies et al., 2004).

As part of achieving this are accurate bird (steering device) attitude and heading needed,

together with position control. The focus of this thesis lies on the attitude estimation of these

birds. Using on-board bird sensors - an internal measurement unit (IMU) - to estimate the atti-

tude and heading.

1.2 Problem Formulation

The purpose of this master thesis is to design, implement and experimentally test a robust atti-

tude estimators for a underwater steering device (bird). Since the bird used in this study has a

limited processing capacity, would it be preferable with lightweight but precise attitude estima-

tor.

Opposed to a statistical (e.g Extended Kalman filter) approach do a non-linear estimator

provide a smaller footprint on the processor. It would therefore be preferable to use a non-

linear estimator. However, to verify or at least provide a benchmark of the non-linear observer

estimation will a Multiplicative Extended Kalman Filter (MEKF) be considered. Due to the pro-

cess capacity on the bird, will simulations and algorithm tests be made on a computer. Where

the algorithms will be subjected to both simulated and experimental collected data.

The data are collected using a IMU, consisting of three-axis accelerometer, three-axis gyro-

scope and three-axis magnetometer. Ferromagnetic objects near the IMU, infecting the mag-

netic measurements, are a great concern in the embedded system, and must be considered.

Moreover, to obtain a good attitude estimate are precise inertial measurements are needed.

Calibration routines are therefore needed. Although, calibration partially goes out of the scope
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of this thesis are some calibration aspects also considered.

1.3 Literature Survey

The appropriate material that was discovered during the literature survey will are summarized

briefly in the following sections.

1.3.1 Attitude Representation

In order to understand and be able to design methods for attitude estimation are knowledge of

mathematical notation, their properties and advantages beneficial. There are numerous meth-

ods of representing the orientation of an object. Shuster (1993) provide a comprehensive study

on the most known parametrizations, and their advantages and disadvantages. A total of twelve

different attitude representation parametrizations are presented. Varying from vector space

representation to Euler angles and Quaternions. Vectors using both three and four parameters,

as well as different size matrices.

1.3.2 Attitude Estimation

This is a widely explored subject. However, researcher are still trying to improve methods with

theoretical analysis and experiments, as well as producing new methods. For decades have the

Kalmen filter (KF), and extensions(e.g extended Kalman filter), been the estimation method of

choice. The Kalman filter was first introduced in the 1960 (Kalman, 1960), and has later gotten

multiple extension. A comprehensive overview can be seen in Crassidis et al. (2007). Moreover,

Crassidis et al. (2007) states that the KF encounters difficulties when it comes to non-linearities,

and stability proofs. This has motivated researchers to look for new attitude estimation methods

(Nijmeijer and Fossen, 1999). Attitude filters utilizing the non-linear structures of the system.

Resulting in beneficial theoretical analysis, proving robustness and stability convergence.
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The last decade has a number of such non-linear attitude observers been introduced. Vik

and Fossen (2000) proposed a non-linear attitude observer using linearly mapped measure-

ments in a quaternion based observer. Where static inertial measurements are required. Ma-

hony et al. (2005) introduced attitude observes based passivity and inertial vector measure-

ments. Resulting in better stability properties and locally exponential stability. However, sta-

tionary reference vectors and unbiased gyro rate measurements where assumed.

The work of Mahony et al. (2005) greatly inspired Bonnabel et al. (2008) to introduce theory

for so called symmetry preserving observers. The symmetries(invariance) of a system has been

greatly used in control theory for feedback design, not so much in observer design (Bonnabel

et al., 2008). Utilizing these system symmetries did Martin and Salaün (2007) propose invariant

observers, governed by direct input of inertial measurements. Martin and Salaün (2007) also

considers the drawbacks of this approach. Where the error variable coupling are a major con-

cern, mainly the coupling of attitude and the earth magnetic field. Which in practice would

mainly affect the heading estimation.

Integration of GNSS velocity measurements with non-stationary reference vector where then

later introduced by ?, which resulted in a semi-global exponential stability. Using projection

were Grip et al. (2011) able to propose a semi-global estimator for a time varying reference vec-

tor and with biased internal measurements.

Global stability convergence however has been rather difficult to prove. Since confining the

attitude dynamics on the unit sphere and SO(3) leads to unwinding and topological obstruc-

tions (Bhat and Bernstein, 2000). This means that a locally designed system, such as SO(3), are

not able to globally stabilize the system to a rest configuration. In light of this did were Grip et al.

(2012a) able to design a globally exponential stable observer using a larger state space formula-

tion that converges to SO(3), and integration of GNSS and inertial measurements. Batista et al.

(2012b) follows that same approach but considers a stationary reference vector. Furthermore,

a newly released paper where the main work of Batista et al. (2012b); Grip et al. (2011, 2012c)

are considered, are presented by Grip et al. (2015). Presenting a globally exponentially stable

observer using GNSS and inertial measurements and gyro bias estimation.
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Hua et al. (2014b) on the other hand have designed a almost globally asymptotically stable

observer. Where the observer is aided by velocity measurements in the body-frame. Moreover,

the attitude (roll, pitch) are globally decoupled from magnetometer measurements.

Attitude estimation using only single vector measurements can also be found in the litera-

ture Batista et al. (2012a); Mahony et al. (2009) to mention a few. However, this requires persis-

tent excitation (PE) to be possible. Meaning that the attitude of the object being estimate has

to have "rich enough" excitation. This PE condition can also be utilized for to obtain a attitude

estimate, in presence of magnetic distortion or temporarily loss of vector measurements (Grip

et al., 2015).

Applications

Many comparison and application driven studies can also be found in the literature. Utstumo

and Gravdahl (2013) provide a comparison of the MEKF and the complementarity filter of Ma-

hony et al. (2008) for agricultural robotics. Borup et al. (2014) uses theory from Grip et al. (2012c)

for designing a depth-observer, using a pressure sensor and inertial measurements, for a AUV.

Bryne et al. (2014) expands the work of Grip et al. (2013) for translation motion, using time-

varying gains for a dynamic positioning. Using a quadrotor helicopter do Hua et al. (2014a)

present an observer, that globally decouples the attitude (roll, pitch) from the heading (yaw)

estimation. This to only present a few.

1.3.3 Attitude Estimation for Seismic Cables

A survey for existing seismic cable observers show only the study of Nguyen and Egeland (2004).

However, this observer consider a towed seismic cable attached to a one depth controller at end

and with a pre-described motion at the other.
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1.3.4 Calibration

The literature are full of calibration routines for inertial measurement sensors. Both online, us-

ing batch like methods, both linear and non-linear approaches, to offline calibration procedures

using external measurements and references. Alonso and Shuster (2002); Foster and Elkaim

(2008); Vasconcelos et al. (2011); Crassidis et al. (2005) represent some of these approaches.

1.4 Objectives

The main objectives of this master thesis are to

• Study existing method’s of attitude estimation and attitude representation. Its imperative

that observers are able to estimate the attitude by only using IMU collected data.

• Design and implement the non-linear observer’s in MATLAB, and the MEKF for bench-

mark purposes.

• Verification of the attitude observers using a small simulator, able of producing IMU data.

• Test the observers on both simulated and real data

• Test plausible error scenarios

1.5 Limitations

The objectives described in Section 1.4 are limiting factors. Moreover, there a several limiting

factors concerning attitude estimation of this system. One of the main limitations are the lack

of multiple measurement sources. As only inertial measurements are available for determining

the attitude, would these at least need to be precise.

A system model and model coefficients are not known. Resulting in multiple assumption

and inaccuracies. The lack of a system model also limits the possibility of making model based
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and/or model aided observers. Bird simulations would thereby also be very approximated.

The bird itself have some constraints. This could be both beneficial and a disadvantage. The

overall system are fairly limited to roll motions, pitch motions are small and yaw motions are

quite slow. On the contrary do other parts of the system has fairly large roll, pitch, yaw motions.

Although, dynamic roll motion are complex itself; consisting of a rigid-body rotation in a fluid,

do pitch and yaw dynamics take this even more complex level; including dynamics in both pitch

and roll in a non-rigid body.

With regard to the attitude estimation could the geographical wideness of a seismic survey

introduce limitations, as the knowledge of local measurement references may be time-varying.

1.6 Thesis Contributions

The main thesis contributions and aspects are as follows:

• Development of a new attitude observer

• Comparison of the attitude observer of Grip et al. (2015) and Batista et al. (2014b) with

MEKF, QUEST and a Developed algorithm. With a corresponding clear overview of the

attitude observers. The angular velocity observer of Magnis and Petit (2015b) are also

clearly present.

• MEKF attitude error representation comparison. Unit quaternion versus Gibbs vector rep-

resentation.

• A simplified model of external roll forces acting on the system

• Experimental testing, on data collected during system field test

• Implementation and test of a batch based IMU-measurement calibration routine for bias,

scale factor and orthogonality errors.

• IMU and system simulation model, developed in Simulink.
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• Object-oriented MATLAB code, including corrector-predictor formulation of the non-linear

observers.

• A extensive literature study. Including, attitude observers, attitude representation, sensor

calibration and modeling.

1.7 Structure of the Report

The rest of the report are organized as follows:

• Part I gives an introduction to theory and methods used in the thesis. Attitude represen-

tation, reference frames and coordinate transformations for navigational purposes, intro-

duction of the concepts of the attitude observers studied and sensor modeling.

• Part II includes descriptions of the system and approximations utilized for simulation of

the system.

• Part III a short presentation of the Simulink simulation model

• Part IV presents a overview of the implemented and studied observers. Some implemen-

tation aspects are also found.

• Part V includes simulation study and experimental test results.

• Part VI include a general discussion relating the overall thesis and results.

• Part VII presents a short summary and conclusions of the main results in the thesis. Rec-

ommendations for further work are also found here.

• Part VIII contains the thesis appendix. Where acronyms, assumptions, additional results

and bibliography are found.
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Background and Theory
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Chapter 2

System Dynamics and Kinematics

This chapter gives introduction of the theory and background material used in the rest of the

master thesis. Including different and relevant notations and definitions, such as reference

frames, some relevant attitude representations, coordinate transformations and some kinemat-

ics.

2.1 Reference Frames

Geodetic coordinate system: The geodetic coordinate system is a widely used in GPS-based

navigation. This coordinate system are defined near the earth surface in terms of the longitude,

latitude and height, denoted (l ,µ,h) respectively.

ECI: Earth-centered inertial reference frame {i } = (xi , yi , zi ) is a global coordinated system

with the origin Oi in the center of the earth. This is a non-accelerating, fixed, reference frame

with its origin in the center of the earth.

ECEF: Earth-centered earth fixed reference frame {e} = (xe , ye , ze ) is a global coordinated

system with its origin equal to the ECI, Oe = Oi . This frame is is rotating relative to the ECI, ro-

tating with a rotational rate ωe ≈ 7.2921e−5 rad/sec. For a vehicle moving at relative low speeds,

this frame can be seen as inertial.

13
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Figure 2.1: The Geodetic(l ,µ,h), ECI(xi , yi , zi ), ECEF(xe , ye , ze ), NED(xn , yn , zn) and body /
Bird(xb , yb , zb) coordinate systems.
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NED: Local north-east-down reference frame {n} = (xn , yn , zn) is a local reference frame with

origin On , often used to get better resolution of the area of interest. Its coordinate frame is fixed

to the earth’s surface, based on the World Geodetic System 84 (WGS84) ellipsoid. The z-axis

points downwards perpendicular to the plane tangent to the ellipsoid, the x-axis points towards

true north and the y-axis points towards east. Guidance and navigation are normally carried out

in this frame. The location {n} relative to {e} determined by the longitude and latitude. For a

vehicle operating in a local area, approximately constant longitude and latitude, can we assume

{n} as inertial, so that newtons laws apply.

It is also worth mentioning that we also have a vehicle carried NED frame. This reference

frame is associated with the moving vehicle. However, operations in small regions with low

speed result in that the directional difference being completely neglectable. Which is the case

for this thesis.

Body: The body reference frame {b} = (xb , yb , zb) is a local reference frame that is fixed to

the vehicle at a predefined point on the vehicle. Where axes are usually chosen so that xb points

in the forward direction, yb points to the right side and zb points downward.

2.2 Attitude Representation

An object’s orientation in the space it’s in, can be described using several techniques. Euler an-

gles, Gibbs vector, Euler-Rodrignes, rotations vector and quaternions just to mention a few. The

most common being Euler angels and the more complex quaternions. Although the Euler an-

gles is the most know and has obvious advantages of representing coordinate transformations

and mathematical identities is the more complex quaternions a more preferable choice in atti-

tude representation (Shuster, 1993). A small elaboration of Euler angles, the Unit quaternions

the Gibbs vector is presented.

Firstly, a three-dimensional rigid body rotation can be described by a rotation matrix R

which is an element of the special orthogonal group of order 3, SO(3). Where SO(3) is defined
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as

SO(3) := {R|R ∈ R3×3,RT R = I,detR = 1} (2.1)

The group SO(3) is a set of all orthogonal matrices of order 3.

2.2.1 Euler Angels

Euler angels is a widely used representation, providing the possibility of formulating attitude

representations as a sequence of single axis rotations. Where Each parameters provide a in-

tuitive representation of the single-axis rotation. For navigational purposes are these angels

known as roll, pitch and yaw (written θ,φ andψ, respectively) and represent the rotation around

x-, y-, and z-axis respectively. The rotation matrix R of these three simple rotations can be ob-

tained by (Fossen, 2011)

Rn
b (Θnb) =


cos(ψ)cos(θ) −si n(ψ)cos(θ)+ cos(ψ)si n(θ)si n(φ) si n(ψ)si n(θ)+ cos(ψ)si n(θ)cos(φ)

si n(ψ)cos(θ) cos(ψ)cos(θ)+ si n(φ)si n(θ)si n(ψ) −cos(ψ)si n(θ)+ si n(θ)si n(ψ)cos(θ)

−si n(θ) cos(θ)si n(φ) cos(θ)cos(φ)


(2.2)

where Θnb = [φ,θ,ψ] is the Euler angles between the {b} and {n} frames. The Euler angels kine-

matics is found by (Fossen, 2011)

Θ̇nb = TΘ(Θnb)ωb
b/n (2.3)

where

TΘ (Θnb) =


1 si n(φ)t an(θ) cos(φ)t an(θ)

0 cos(φ) −si n(φ)

0 si n(φ)/cos(θ) cos(φ)/cos(θ)

 θ 6= ±90◦ (2.4)

and ωb
b/n = [p, q,r ] is the angular velocity of point Ob with respect to the {n} frame represented

in the {b} frame. This representation is non-global as it introduces singularities for θ 6= ±90◦.
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This in not unique for Euler angels but present in all other three-parameter representations (e.g

Rotation vector) (Shuster, 1993).

2.2.2 Unit Quaternions

Unit quaternions or Euler parameters presents another representation. Using four parameters

to represent the rotation matrix instead of three. Avoiding the singularities associated with the

three-parameter parameterizations.

The set of unit quaternions is defined as (Fossen, 2011)

Q := {q|qqT = 1,q = [η,εT ]T ,ε ∈R3 and η ∈R} (2.5)

where η := cos(β/2) and ε = [ε1,ε2,ε3]T := λsi n(β/2) is the real scalar part and the imaginary

vector part, respectively. Furthermore, β is the quaternion rotation angle and λ= [λ1,λ2,λ3]T a

unit vector satisfying λ =±ε/
p
εεT if

p
εεT 6= 0. The rotation matrix represented using quater-

nions are defined as

Rn
b (q) := I3×3 +2ηS(ε)+2S2(ε) (2.6)

where S(•) is the skew symmetric matrix

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 (2.7)

Opposed to the three parameter, non-linear, Euler angle kinematics representation can the

kinematics of the quaternion be found using a linear representation (Shuster, 1993). Where the

kinematics can be seen as

q̇ = Tq (q)ωb
b/n (2.8)
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where

Tq (q) = 1

2



−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

= 1

2

 −εT

ηI3×3 +S(ε)

 (2.9)

using Fossen (2011) representation, or by using the more compact notation of Egeland and

Gravdahl (2002)

q̇ = 1

2
q⊗

 0

ωb
b/n

 (2.10)

where the quaternion product, ⊗ is utilized, or alternatively using

q̇ = 1

2
Ω(ωb

b/n)q (2.11)

whereΩ(ωb
b/n) are defined by the 4D skew symmetric matrix

Ω(ωb
b/n) =

 0 −ωb
b/n

ωb
b/n −S(ωb

b/n)

 (2.12)

Advantages using the quaternion product can also be utilized in preforming successive rota-

tions of multiple quaternions (Egeland and Gravdahl, 2002). Given a arbitrary three-dimensional

column vector v, can (2.6) be written as

 0

Rv

= q⊗
0

v

⊗q−1 (2.13)

where q−1 is the inverse unit quaternion, defined as the quaternion conjugate q−1 = [η,−ε]T . We

also have the quaternion corresponding to the rotation identity matrix, qi d = [1,0]T . Further-
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more, the quaternion product of two unit quaternions is a unit quaternion (2.14)

q := q1 ⊗q2 =
 η1η2 −εT

1 ε2

η1ε2 +η2ε1 +S(ε1)ε2

 (2.14)

In practice, may numerical integration of the quaternion introduce accumulated of numer-

ical round-off errors, which may affect the orthogonality of the rotation matrix. Where the de-

viation of the rotation matrix orthogonality can be seen as the q length deviation from unity

(Shuster, 1993). Normalization procedures may help with such errors. For instance by direct

normalization (2.15) (Egeland and Gravdahl, 2002). Seen Section 6.1 for more on numerical in-

tegration of the quaternion.

q = q√
qT q

(2.15)

2.2.3 Gibbs Vector

The Gibbs vector or Rodrigues parameters is closely related to the quaternion, and can be seen

as a gnomonic projection1 of the quaternion space onto the three-dimensional euclidean space

(Markley, 2003). Where the three parameters are defined as follows

g =ε
η
= λsi n(β/2)

cos(β/2)
=λt an

(
β

2

)
(2.16)

The rotation matrix has the following Gibbs representation

Rn
b (g ) = I3×3 + 2

1+|g |2
[
S(g)+S2(g)

]
(2.17)

The Gibbs vector become infinite for β=π, meaning that 180◦ rotations cannot be represented.

However, this infinite representation are beneficial in error representation, e.g in MEKF to ob-

tain better margins for large attitude errors (Markley, 2003).

1Gnomonic projection. Each surface point of the sphere is projected onto the tangent plane through the center
of the sphere to the tangent plane (WIKIPEDIA, 2015)
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2.2.4 Topological Obstructions and Unwinding

A important issue to consider when working with attitude estimation as well as attitude control,

is problem of locally defined parameterizations in estimation/control schemes.

The Euler rotation matrix are the subject to six constraints, while the unit quaternions have

one constraint, see the above sections. The Euler angles introduce topological obstructions,

singularities for certain orientations, while the unit quaternions enables two different represen-

tations, with opposite signs, of the same orientation.

Using unit quaternion to enlighten this issue, can it be shown that a global result is not pos-

sible with this local parametrization (Bhat and Bernstein, 2000). Although the unit quaternion

q = [η,0]T and q = [−η,0]T represent the same physical orientation, are these not mathemati-

cally equivalent. q = [−η,0]T represent a unstable equilibria, while q = [η,0]T a stable equilibria.

Meaning that a estimate initially close to q = [−η,0]T would diverge and then converge to the

q = [η,0]T . In a attitude determination case, could this mean that attitude estimate exhibit er-

rors up to 360◦. This phenomena are called unwinding, and is present in all SO(3) designed

attitude or control problems. Consequently, leading to unnecessary motion and increased ware

and tear on the vehicle actuators.

2.3 Coordinate Transformation

Some relevant coordinate transformation are seen in the current section. (Fossen, 2011).

Geodetic and ECEF:. The positions given by the GPS are most often provided as ellipsoidal

coordinates (latitude, longitude and height) based on the World Geodetic System 84 (WGS84)

ellipsoid. In order to convert the GPS measurements to NED do we first need an intermediate
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step converting GPS to ECEF. This can be done in the following way

pe
b/e =


xe

ye

ze

=


(NE +h)cos(µ)cos(l )

(NE +h)cos(µ)si n(l )

[NE (1−e2)+h]si n(µ)

 (2.18)

where e is the eccentricity of the ellipsoid and NE = r 2
e /

√
r 2

e coss(µ)+ r 2
p si n2(µ) is the prime

vertical radius of the curvature, where re is the semi-major axis and rp is the semi-minor axis of

the ellipsoid.

ECEF and NED:. The position transformation from NED to ECEF are defined as follows

ve
b/e = ṗe

b/e = Re
n(Θne )ṗn

b/e (2.19)

where pn
b/e is the position of the point Ob with respect to the {e}-frame represented in the {n}-

frame,Θne = [l ,µ]T and the rotation matrix between ECEF to NED are

Re
n(Θne ) =


−cos(l )si n(µ) −si n(µ) −cos(l )cos(µ)

−si n(l )si n(µ) −cos(µ) −si n(l )cos(µ)

cos(µ) 0 −si n(µ)

 (2.20)

and pe
b/e can be found by integrating 2.19.

Geodetic and NED: The relationship between geodetic position and NED, where the geode-

tic position and the NED velocity are of great interest.


l̇

µ̇

ḣ

=


vn

(NE+h)cos(µ)

un
ME+h

−wn

 (2.21)
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The derivatives of the NED velocities are then given as

Vn
b/n =


u̇n

v̇n

ẇn

=


− v2

n si n(µ)
(NE+h)cos(µ) + un wn

ME+h +amxn

un vn si n(µ)
(NE+h)cos(µ) + un wn

NE+h +amyn

− v2
n

(NE+h) −
u2

n
ME+h + g +amzn

 (2.22)

where g is the gravitational constant and an = [amxn , amyn , amzn ]T is the projection of ab =
[amxb , amyb , amzb ]T (the acceleration measured on the body) onto the vehicle carried NED. The

acceleration ab can typically be measured by a three-axis accelerometer, assuming that the cen-

ter of origin (CO) of the accelerometer coincide with the center of gravity of the vehicle. How-

ever, in the case where accelerometer origin does not coincide with the CG, transformation is

needed.

Body and NED: The kinematic relation between body and NED, this relationship is impor-

tant in modeling and control of a vehicle. This relation can be viewed in Section 2.2, using

different attitude representation.

2.4 Kinematics and Kinetics

Assuming that Bird is rigid and that the {n}-frame is inertial, my the attitude kinematics of the

system be represented trough rotation matrix between the {b}-frame and the {n}-frame. Where

kinematics of Rn
b can be described in the following way

Ṙn
b = Rn

b S(ωb
b/n) (2.23)

and Rn
b satisfies (2.1). Moreover, based on the chosen attitude parametrization do rotation ma-

trix take different forms (Section 2.2). Also recall thatωb
b/n represent the angular velocity of {b}.

In addition to the regular reference frames described in Section 2.1 do the Bird system have

multiple local reference frames. Namely the {bi r d}, {wi ng }, {I MU } frame, see Figure 2.2. This

means that a small rewriting of (2.23) is needed. For notational purposes are the kinematics now
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Figure 2.2: Illustration sketch of the steering device, including frame conventions and place-
ment. The overall steering unit are seen to the left, while on of the steering wings including the
inertial measurement unit are viewed to the right

represented with alternative representation

Ṙn
wi ng =S(ωn

wi ng /n)Rn
wi ng (2.24)

where

Rn
wi ng =Rn

bi r d Rbi r d
wi ng (2.25)

ωn
wi ng /n =ωn

bi r d/n +Rn
bi r dω

bi r d
wi ng /bi r d (2.26)

Although this may be a small over-representation for the attitude estimation scheme - from {n}
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to {wi ng } attitude determination - are it convenient for modeling and simulation purposes. The

(2.23) representation would be sufficient (or the quaternion representation in Section 2.2.2) for

attitude estimation.

As for the translational motion of the system can we assume that v̇ n
bi r d/n ≈ 0 and that v̇ n

wi ng /n

are governed by the centripetal acceleration in the following way

v̇ n
wi ng /n =v̇ n

bi r d/n + (
S(ω̇n

bi r d/n)+S(ωn
bi r d/n)2)r bi r d

wi ng (2.27)

=S(ωn
bi r d/n)2r bi r d

wi ng (2.28)

where r bi r d
wi ng are the level arm andωn

bi r d/n bird angular velocity, the transversal acceleration are

neglected.



Chapter 3

Attitude Observers

The studied attitude observers and their concepts will be presented in the current section. As

the system currently are unable to use aiding measurements (e.g velocity). Will the focus of the

presented observers lie on observers capability of handling only inertial measurements. This

includes the linear mapping and magnetometer tilt compensation method, the MEKF, QUEST

and the non-linear attitude observers of Grip et al. (2015), Batista et al. (2014b), the angular

velocity observer of Magnis and Petit (2015b) and the author developed attitude observer.

For further details relating the implementation of these observer see Chapter 7.

25
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3.1 Linear Acceleration Mapping and Magnetometer Tilt Com-

pensation

Assuming that static inertial reference frame. Can the linear mapped acceleration from a IMU

be used to obtain the roll and pitch angles estimates (Fossen, 2011)1

φ= at an
(

ay

aZ

)
θ = −at an

(
ax√

a2
y+a2

z

)
(3.1)

Using theφ and θ estimates in a magnetometer tilt compensating manner, can the yaw angle be

determined from the horizontal components of the magnetometer.

ψ=at an

(
hy

hx

)
(3.2)

where the horizontal components are

hy =my cos(φ)−mz si n(φ) (3.3)

hx =mxcos(θ)+my si n(φ)si n(θ)+mzcos(φ)si n(θ) (3.4)

It should be noted that the sign of the horizontal components should be taken into considera-

tion. For further details on this see Fossen (2011). The yaw angles can also be determined using

gyroscope measurements using a similar approach (Vik, 2014).

Variation of the earth magnetic field must be taken into considered using such a method.

Since the earth magnetic poles and the earth’s axis of rotation is shifted, and are not at the

same geographical localization. This creates differences between the true north and the mag-

netic north. This difference, called the declination angle, d , is dependent on the localization

of the magnetic measurements. The declination angle can be obtained using the World Mag-

netic Model (WMM)(Ngdc.noaa.gov, 2015b) or equivalent models. The geographical heading

1atan is the inverse tangent function
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can then be found by

ψ=at an

(
hy

hx

)
±d (3.5)

where the declination angle is either added or subtracted depending whether you have a west-

ern or eastern longitude, respectively.

This linear mapping of measurements, can further be used in more complex observer meth-

ods. For instance by using quaternions and complementarity filtering to estimate the attitude

(Fossen, 2011). However, because of the sub-system structure of such a approach, would it not

be beneficial to do this in practice. As significant computational errors sources may be induced

(Mahony et al., 2008).

It should also be noted that these mapping procedures are only applicable in a static en-

vironment. Dynamic behavior would introduce significant errors, as gravitational acceleration

cannot be separated from induced body acceleration. Another source of error using this ap-

proach are noise characteristics of the measurements, and how well-conditioned2 the attitude

resolution are.

3.2 QUEST - QUaternion ESTimator

The QUaternion ESTimator (QUEST), based on Wahblas’ problem (Wahba, 1965), uses quater-

nions and its properties to find the optimal quaternion describing the attitude. Wahbla’s prob-

lem consist of finding a proper orthogonal matrix, A, that minimizes function the

J(A) = 1

2

N∑
i=1

ai |Wi −AVi |2 (3.6)

2How well-conditioned - or alternatively ill-conditioned - the attitude resolution are, depends on how close or
alternatively how separated the measurement vectors (eg. magnetic and gravitational) used in the attitude deter-
mination are. Also see Grip et al. (2012b); Mahony et al. (2008); Hua et al. (2014a) and references therein, for further
discussion on the subject
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where Wi is a set of unit vectors measured in the {b}-frame, Vi the corresponding unit vectors

in the reference frame (e.g {n}) and ai non-negative scalar weighting operators. The QUEST

method builds on the q-method of P. Davenport (1968) (this work was never published (Shuster,

2006)), and was first introduced by Shuster and Oh (1981). Rewriting the Wahblas’ cost function

J(A) =λ0 − trace(AB) (3.7)

where

λ0 =
N∑

i=1
ai B =

N∑
i=1

ai Wi Vi (3.8)

making the minimization problem of the cost function (3.6) to a maximization problem of trace(AB).

Utilizing this rewriting of Wahbla’s problem has many methods (see Markley and Mortari (2000)

for multiple variations) been developed in order to solve Wahbla’s problem. The QUEST based

solution uses this structure to find an optimal quaternion that maximizes trace(AB). One of the

advantages of QUEST is that it do not depend on initial conditions. QUEST is also well-known

as a fast attitude estimation algorithm (Shuster, 2006), utilizing only the vector measurements

of a single time-step. This is also one of the disadvantages of the method. Because it will be very

sensitive to measurement noise and do not include any additional filtering. For details on the

algorithm and it chosen implementation method, there are several, see Section 7.2

3.3 MEKF

The Kalman filter and its extensions has for decades been used as the industry standard for esti-

mation purposes. In light of this will considerations using the Kalman filter for state-estimation

be used. However, mainly as a estimation benchmark for the other more lightweight non-linear

observers. The MEKF uses a quaternion representation, Section (2.2), to estimate the attitude

quaternion, q, and the gyro sensor bias, b. Where the quaternion error govern the quaternion

update. Moreover, due to the constraint on the quaternion would an full representation of the

quaternion lead to singularities in the Kalman covariance matrix. Which again would make the
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filter unstable. The reason being accumulation of round-off errors in an implemented numeri-

cal filter (Shuster, 1993). One method handling this is to reduce dimension of the four parameter

quaternion error (3.9), using only the quaternions vector part, δε, in the error representation.

δq =
δη
δε

= q̂−1 ⊗q (3.9)

Making the state vector of the filter

x =
δε

b

 (3.10)

which results in that the covariance matrix, P, and the other Kalman matrices, K and H are

described without singularities (Shuster, 1993).

There are multiple parameterizations handling this three parameter representation of the

quaternion error and the update of the quaternion estimate (Markley, 2003). Among others

q̂ = q̄⊗


√
1−‖δε‖2

δε

 (3.11)

which is the unit quaternion representation and the most common representation. Or alter-

natively twice of the Gibbs vector, which provide advantage of first defining the unnormalized

quaternion error and then normalizing it

ρ = q̄⊗
 2

δg

 q̂ = ρ√
ρTρ

(3.12)

It is important to note that the quaternion update must have same parametrization as the quater-

nion error. To be more specific do this mean that the unit quaternion parametrization would

have the error representation in (3.9) with the quaternion update of (3.11). The Gibbs vector
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representation would have the error

δg =2
δε

δη
(3.13)

and the quaternion update of (3.12).

The advantage of using the Gibbs vector also come in handy when the largest possible atti-

tude errors occur, 180◦ rotation. Leading to an infinite Gibbs vector - scalar part becomes zero,

see Section 2.2.3 and (3.13). Using the more common representation (3.11), would make the

quaternion error norm equal to 2 under such situations. Leading to an unsensible quaternion

reset and large quaternion estimate errors (Markley, 2003).

When it comes to the state innovation of the MEKF, is this done on the premises that δε

in (3.10) is identically zero. Meaning that the innovation of the state between measurements

do that modify the covariance. Resulting in that the covariance matrix do not become singular

Markley (2003).

See Section 7.3 for further details on the measurement model, update and propagation pro-

cedures.

3.4 Observer Using Single Vector Measurements

The possibility of estimating the attitude using only a single vector measurement would be ben-

eficial in the case of this thesis. The reason being magnetic distortion in the magnetic measure-

ments, as well avoiding the need of magnetometer calibration.

Batista et al. (2012a) introduced a globally exponentially stable observer using a single vec-

tor observation. However, the gyro accumulating and bias drift where not considered. Recently

have the same author introduced two companion papers, Batista et al. (2014a) and Batista et al.

(2014b), that consider this slowly varying error. This by separately estimating that earth velocity

expressed in {bod y}-frame. The Batista et al. (2014b) paper will be considered here. Although,

this method only introduce semi-global results, because of the SO(3) design (see Section 2.2.4),
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are the main interest the ability to estimate the attitude using only a single vector measurement.

Additionally, projection methods enabling SO(3) estimates can be avoided.

A preliminary assumption made, are that obtained measurements of angular velocity mea-

surements are given by a high-grade rate gyros. Making the gyro measurement model

ωb
m =ωb +ωb

e (3.14)

whereωb
e are the angular velocity of the earth, expressed in {b}-frame. Further, assuming that we

have the knowledge of a constant reference vector in inertial-frame, the earth’s angular velocity

in inertial-frame is known and the reference vector and angular velocity i co-linear. Moreover,

the angular velocity and angular acceleration in the {bod y}-frame is bounded. See assumption

B.1 and B.3 in Appendix B.

Then as the plurality of non-linear attitude estimation methods (e.g Mahony et al. (2008);

Grip et al. (2011)), can we obtain an estimate of the angular velocity error using two vectors.

However, here with one real and one artificial. The artificial vector are estimated through a

auxiliary observer. Where the artificial, or auxiliary, vector are defined as

vb(t ) := ab(t )×
[

ab(t )×ωb
e (t )

]
(3.15)

where ab(t ) is the measured vector in the {bod y}-frame and ωb
e (t ) the angular velocity of the

earth. The counterpart in the inertial frame are defined as

vn := an × [
an ×ωn

e

]
(3.16)

where relationship between (3.15) and (3.16) are obtained by the rotation matrix Rn
b . vn is con-

stant and known, where ωn
e represent the angular velocity of the earth around it own axis.

Using (2.23), (3.14) and the rotation matrix relationship, can the dynamics of the measured
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vector and the auxiliary vector be seen as

ȧb =−S
[
ωb −ωb

e

]
ab , v̇b =−S

[
ωb −ωb

e

]
vb (3.17)

Furthermore, using the orthogonal basis in assumption B.1 can the angular velocity of the earth,

in {b}, be written

ωb
e = c1a(t )− c2v(t ) (3.18)

where

c1 := ωn
e ·an

‖an‖2
, c2 := ‖an ×ωn

e ‖2

‖an × (
an ×ωn

e
)‖2

(3.19)

Applying these results to design a auxiliary observer and a attitude observer using (2.8), (3.14)

do Batista et al. (2014b) prove semi-global results. This without the assumption of persistent-

excitation (PE), see Definition B.4 in Appendix B, which are common assumption for attitude

estimation using a single vector observation. For details on the actual estimation scheme see

Section 7.4

3.5 Globally Exponentially Stable Observer

As described in Section 2.2.4 may attitude estimations confined to SO(3) induce topological

obstructions and unwinding. On the contrary, representing the attitude estimation by a full

nine parameter, unconstrained, rotation matrix solves this problem (Grip et al., 2015; Batista

et al., 2014a, 2011). Although this matrix not necessary guaranteed to belong to SO(3), which is

in-fact wanted, can either projection method’s (Batista et al., 2011) or algebraic a formula (Grip

et al., 2015) be utilized to make the estimates converge to SO(3). The method of Grip et al. (2015)

will be considered here.

Under the assumption of a constant gyro bias, see Assumption B.2, and making the used

of Assumption B.1, a common non-linear attitude estimation assumption, do Grip et al. (2015)



3.5. GLOBALLY EXPONENTIALLY STABLE OBSERVER 33

construct the orthogonal basis

An(t ) =
[

an

‖an‖
S(an)mn

‖S(an)mn‖
S2(an)mn

‖S2(an)mn‖
]

(3.20)

Ab(t ) =
[

ab

‖ab‖
S(ab)mb

‖S(ab)mb‖
S2(ab)mb

‖S2(ab)mb‖
]

(3.21)

when two vector measurements are available to design a Globally Exponentially Stable (GES)

attitude observer with gyro bias estimation. Where the attitude estimate are governed by (2.23),

with the injection term

J(t , R̂) =
(
An(t )− R̂Ab(t )

)
Ab(t )T (3.22)

and an adaptive projection3 method for gyro bias estimation. The adaptive parameter projec-

tion PROJ(·,·) are defined as:

Proj(b̂,β) =


(
I− c(b̂)

‖b̂‖2 b̂b̂T
)
β, ‖b̂‖ ≥ Mb , b̂Tβ> 0

β, otherwise
(3.23)

where

c(b̂) =min

(
1,

‖b̂‖2 −M2
b

M2
b̂
−M2

b

)
(3.24)

This is a special case of the gradient projection algorithm, where the adoption gain are Γ = β,

where β is a scalar value.

As stated above, do the attitude estimate using this approach not necessary provide esti-

mates that belong to SO(3). If SO(3) estimates are needed do Grip et al. (2015) proposes to use

3Projection is a method of guaranteeing a bounded parameter estimate.
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the algebraic formula

R̄(R̂) = [r̄2 r̄1 S(r̄1)r̄2]

r̄1 = r̂1
max(‖r̂1‖,µ)

r̄2 = (I−r̄1 r̄ T
1 )r̂2

max(‖(I−r̄1 r̄ T
1 )r̂2‖,µ)

(3.25)

making the estimates converge to SO(3). The convergence transient of these estimates depends

on the tuning of the observer and the choice of µ, where µ ∈ (0,1) are a small constant. r̂1 and r̂2

are the first and second column of the estimated matrix R.

The complete observer algorithm and further details can be seen in Section 7.5.

3.6 Angular Velocity Observer

Opposed to the above observers, which estimates the attitude of the rigid body by employing

vector measurements and rate gyros, do this section introduce a observer that estimates the

angular velocity. These estimates could then be fed through (2.23) to describe the attitude. The

main motivation behind this approach are the relatively noisy and drifting property of the rate

gyros, making attitude determination noisy and a demanding task.

Utilizing Assumption B.1 and B.3 in Appendix B, and by assuming the knowledge of the

inertia matrix and the external forces action on the rigid body have Magnis and Petit (2015b)

recently proposed a fairly simple method of estimating the angular velocity. This by applying

the kinematic relation described by (2.23) where the angular velocity are governed by

ω̇= J−1 (Jω×ω+τ) := E(ω)+ J−1τ (3.26)

where J = diag(J1, J2, J3) are the inertia matrix and τ the external input torque. Moreover, by

using two body fixed vector measurements and there constant counterparts in the inertial frame

can an estimate ω̂ ofω be computed. See details in Section 7.6.

Also make note of that angular velocity estimation are also possible for a single vector ob-
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servation under a certain PE condition (Magnis and Petit, 2015a).

Although the angular velocity observer of Magnis and Petit (2015b) is fairly simple in design,

do it demand some a prior information to work. Namely the rigid body inertia matrix and the

external torque. The inertia matrix can be calculated by using the physical properties of the

bird. Whereas the knowledge of the input torque, τ, from the external disturbances are a more

difficult task. This due to no direct measurement of τ, which is assumed by Magnis and Petit

(2015a), are available for the current system. Nevertheless, making use foil and hydrodynamic

theory could these forces be modelled. See Section 4.4 for further details.

3.7 Developed Attitude Observer

Motivated by the ability of estimating the angular velocity of the system using the approach

of Magnis and Petit (2015b), are the author proposing a SO(3) attitude observer merging this

approach with other known attitude estimation aspects. The Magnis and Petit (2015b) angular

velocity observer has a locally exponential stable error dynamics, making ω̂ → ω. However,

substituting the angular velocity estimates into the kinematics (2.23) would not necessary lead

to a correct - error free - attitude.

Attitude Error

Firstly, the goal of SO(3) attitude estimation are to obtain a estimate such that the attitude error

R̃ := RR̂ → I3. Where R and R̂ are the true and estimated attitude matrix respectively. Further,

the kinematics of attitude error, R̃, can be seen as (Mahony et al., 2008)

˙̃R = ṘR̂T +R ˙̂R
T = RS(ω)R̂T −RS(ω)R̂T = R [S(ω)−S(ω)] R̂ = 0 (3.27)

meaning that the attitude error R̃ would be constant. However, using a injection or correction

term would fix the problem of a constant attitude error. Recent literature presents a wide variety

of such correction terms, see Mahony et al. (2008); Grip et al. (2013); Hua et al. (2014a) among
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others. These papers presents methods using vector measurements to estimate the gyro bias

and the attitude through ˙̂R
n
b = RS(ω̂−b+σ), where σ are the injection term and b the gyro bias.

Now since gyro bias aren’t a problem using the angular velocity estimates obtained from Magnis

and Petit (2015b), are only a injection term needed in order to obtain a error free attitude. The

attitude estimate would then be obtained by

˙̂R
n
b = Rn

b S(ω̂b +σ) (3.28)

,resulting in the dynamics of the attitude error are found by ˙̃R =−RS(σ)R̂T .

Magnetic Disturbances and Coupling

Secondly, in a attitude estimation scheme is it usually desirable for magnetic measurements

to only estimate the heading(yaw) of the system, and not the roll and pitch estimates. This

could theoretically be done using the method in Section 3.1. However, this come with it’s own

problems.

Magnetic disturbances may be a concern in the thesis system, or in any practical application

for that matter. Resulting in inaccurate magnetic measurements. Moreover, it is a known fact

that there are a high coupling between roll, pitch and yaw angles. As a consequence would roll

and pitch error estimates have a additional error effect on the yaw estimates. Using a injection

term that decouples roll and pitch estimates from magnetic measurements would therefore be

preferable. With this in mind have Hua et al. (2014a) designed a decoupling strategy that globally

decouples the roll and pitch estimates from yaw and magnetic measurements.

The injection term are defined as

σ := k1ub × R̂T un +k2ububT
(vb × R̂T vn) (3.29)

where the vectors ub and un are the normalized acceleration in the body and inertial frame
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respectively. vn and vb are auxiliary vectors , defined by

vn = πub m̄n

‖πub m̄n‖ , vb = πun m̄b

‖πun m̄n‖ (3.30)

where πx = ‖x‖2I3×3−xxT are the orthogonal projection of the vector x onto the plan orthogonal

to x. Moreover, m̄n and m̄b represent the normalized magnetic field in the inertial and body

frame respectively. k1 and k2 are positive constant tuning gains.

Moreover, the injection term (3.29) introduce the ability to use non-high gains - more ro-

bust - to obtain fast dynamics even for a ill-conditioned attitude problems ( geomagnetic and

gravitation vector are close to each other). Opposed to using the more standard injection term

σ = ∑n
j=1 k j vb

j ×vn
j , with k j > 0, j = 1, ...,n representing scalar gains and vb

j , vn
j the body mea-

sured and inertial vectors, respectively (See Mahony et al. (2008); Grip et al. (2011, 2013) among

others). Which would result in high gains for a ill-conditioned attitude problem - amplifying the

measurement noise and uncertainties. See Appendix D for some additional results regarding

this subject.

Stability

Knowing that the angular velocity observer of Magnis and Petit (2015b) are proven to be locally

exponentially stable (LES) . Further, from part 2 of theorem 1 in Hua et al. (2014a) can we con-

clude that R̃ are LES with the injection term (3.29). So, by combing these facts can it be stated

that the attitude estimate is LES, with a globally decoupled roll and pitch estimate from yaw and

magnetic measurements.

The observer are presented in full in Section 7.7.
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Chapter 4

Sensors and Sensor Calibration

4.1 Sensors

The IMU provided in this system is a micro-electro-mechanical system (MEMS). The benefit and

applications of the MEMS technology has gain strong interest the last decade. This due to the

small size and low-cost of the MEMS technology. The signal output of a low-cost IMU system,

however, is the subject to high noise levels and time-varying bias terms (Mahony et al., 2008).

Models of the IMU sensors are presented in this section. The IMU model error model presented

consist of a three-axis accelerometer, three-axis gyroscope and three-axis magnetometer and is

based on the paper of Vik and Fossen (2000).

Generally will misalignment1, scale-factors, biases and noise be factor in an IMU error model.

Calibration procedures are always necessary and would enable reduction of these errors. See

Section 4.2 for more on calibration.

A important factor to notice is that the measurement from a IMU is defined with opposite

orientation as opposed to the inertial({n}) and the {b}-frame. Meaning that the positive vertical

axis are pointing upwards, not downwards (NED terminology). Furthermore, are the IMU sen-

sor mounted to the {wi ng }-frame coordinated system. This is situation is called a strapdown

1Including psychical sensor axis misalignment and non-orthogonality between the sensor axis
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system, since the IMU is strapped to the wing. Since the IMU is mounted with a lever arm with

respect to the {wi ng }-frame origin are a transformation needed. However, instead of transform-

ing the measurements to the origin of {wi ng } is it more preferable to do the state estimation in

the measurement frame and the transform the estimated states to {wi ng }. This transformation

are seen given as

 vwi ng
wi ng /n

ω
wi ng
wi ng /n

=
I3×3 S(rwi ng

I MU )

03×3 I3×3

 vwi ng
I MU /n

ω
wi ng
I MU /n

 (4.1)

where rwi ng
I MU = [xI MU , yI MU , zI MU ]T is the lever arm (Fossen, 2011).

4.1.1 Gyroscope

A gyroscope measures the angular velocity about the {I MU }-frames axis, relative to the inertial

frame. Measuring rapid changes in the attitude profile of the object its attached to. This is

generally done using multiple techniques - fiber optic gyro (FOG), a leaser ring gyro (RLG) or

the low cost MEMS technology. Integration of the measured angular velocity can be obtained

in order to get the orientation of the object. However, due to sensor bias and drift which is

present within all gyros’ cannot the gyro be used single-handedly. Conjugating the gyro with

other sensor must therefore always be conducted.

Gyro Error Model

The gyro output model can be seen as (Mahony et al., 2008)

ωi mu =ωb
b/n +bg yr o +wg yr o (4.2)

where bg yr o represent the gyro bias and wg yr o the sensor measurement noise. In addition

should the misalignment and scale factors be included in the model. This can according to
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Vik (2014) be done as follows

ωi mu =[I3×3 +∆(κ,α)]ωb
i b +bg yr o +wg yr o (4.3)

where

∆(s,φ) =


sx φx y φxz

φy x sy φy z

φzx φz y sy

 (4.4)

and s = [sx , sy , sz]T and φ = [φx y ,φxz ,φy x ,φy z ,φzx ,φz y ]T is the scale-factors and misalignment

angles, respectively. These errors models can be described through the first order models

ḃg yr o =−T−1
1 bg yr o +w2 (4.5)

κ̇=−T−1
2 κ+w3 (4.6)

α̇=−T−1
3 α+w4 (4.7)

where w2, w3 and w4 is Gaussian white noise, and T1, T2 and T3 are diagonal time constants.

4.1.2 Accelerometer

Accelerometers measure the gravitational acceleration of the {I MU }-frame and the object its

attached to. In addition to the gravitational will also the centripetal, Coriolis and transversal ac-

celeration be included in the measurements. There are several different types of accelerometers,

among others pendulum, vibrating quartz and vibrating silicone. The quality of accelerometer

measurement are very accurate. Even cheap accelerometers have errors below 10mg and an

output range of ±100g (Vik, 2014).
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Accelerometer Error Model

The accelerometer model can be represented in the same meaner - as the gyro error model -

with respect to the misalignment and scale-factors (Vik, 2014). Using the IMU model of Mahony

et al. (2008) can the complete accelerometer model be seen as

ai mu = [I3×3 +∆(ε,β)]Rn
b (Θnb)(v̇n −gn)+bacc +wacc (4.8)

where ε andβ is the scale-factor and misalignment, respectively. bacc and wacc is the accelerom-

eter bias and measurement noise, respectively. These error will be model in a same fashion as

in (4.5 - 4.7). Furthermore, gn = [0,0,9.81]T is the gravitational acceleration in {n} and v̇n are the

induced acceleration on the {I MU }-frame in the {n}-frame.

4.1.3 Magnetometer

A magnetometer measure the local magnetic field. Where the magnetic field represent the mag-

netic flux density. The magnetic flux density measured by a magnetometer will vary depending

on the geographical localization of the measurements - the scale and direction of these mea-

surements will vary. Near the equator, will the magnetic field lines be almost parallel to the

earth. However, traveling towards one of the poles will make the field lines direction point more

straight into the earth. Another factor when using magnetic sensing is that the magnetic poles

do not consist with the geographical north, the magnetic poles are slightly shifted from the geo-

graphical. This difference is called magnetic declination angle, and can be used to shift between

magnetic bearing or geographical bearing.

Using data from magnetic models such as the World Magnetic model (WMM) or the Inter-

national Geomagnetic Reference Field (IGRF) can the local magnetic field in {n} be calculated.

These models provide a seven component description of the magnetic field based on the geo-

graphical localization on the earth and the distance above WGS84 ellipsoid (sea level). Among

others the horizontal and vertical components and the declination angle. For surface naviga-

tional purposes, will the WMM be the preferable choice. Since is more high resolution model,



4.2. CALIBRATION 43

including magnetic field contributions of the earth crust and so on (Ngdc.noaa.gov, 2015a).

Magnetic distortion and bias is a major concern in magnetic sensing. As other ferromag-

netic material’s influence the measurements. Permanent and non-changing components may

be compensated for in calibration procedures. The time-varying on the other-hand is more dif-

ficult to handle. The motor in the wing and magnetic fields for the seismic cables would be such

error sources.

Magnetometer Error model

The magnetic error model is modelled in the same fashion as gyro model in Section 4.1.1 with

misalignment, scale and bias errors. The Magnetometer error model

mi mu = [I3 +∆(ξ,γ)]Rn
b (Θnb)mn +bmag +wmag (4.9)

where ξ and γ is the scale-factor and misalignment, respectively. bmag and wmag are the mag-

netometer bias and measurement noise, respectively. The local magnetic field mn in this thesis

is retrieved from the WWM at Ngdc.noaa.gov (2015b).

4.2 Calibration

Calibration of the sensors is vital in practical applications. After installing the sensors in it’s

operation device, may errors sources been introduced. Such as orientation misplacement and

nearby objects inflicting the sensor measurements. Factory defects may also be present. These

effects will then cause physical misalignment, scale-factors, biases and orthogonality errors

(Foster and Elkaim, 2008). There are multiple methods of estimating these errors, both online or

offline. However, the offline calibration theory goes out of the scope of this thesis, but calibra-

tion of the sensors are conducted in parallel to this thesis. A small elaboration on the calibration

methods used is therefore included below. Moreover, online calibration - or at least quasi-online

- calibration would be preferable for this system. A batch based quasi-online estimation method
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are therefore presented.

Using a ellipsoid explanation can the bias calibration, so-called hard-iron calibration, be

seen as the centering of the origin of the ellipsoid. The scale-factors as the scaling-size of the

ellipsoid and the orthogonal misalignment as angles between the sensor x-, y- and z-axis and

x-axis, x-z plane and y-z plane, respectively. The calibration of scale factors and orthogonal

between axis is often called soft-iron calibration (Vasconcelos et al., 2011).

4.2.1 Offline Calibration

Offline accelerometer calibration can be done using a six-point tumble test. Rotating the ac-

celerometer to get the positive and negative outer edges for each axis measurement, and com-

paring this to the known gravity direction. Batch measurements of gravity accelerations during

rotation can then be used in a linear least-squares estimation procedure. Offline calibration of

the acceleration in this thesis uses a high performance Motion Reference Unit (MRU) as gravity

reference and a iterative least-squares estimation approach.

In order to calibrate a magnetometer precisely is the knowledge about magnetic direction

important. Using for instance Helmholtz coils to produce the magnetic direction, can a known

magnetic environment be created. The magnetic errors can then be calibrated in the same man-

ner as the accelerometer. However, due to time-varying ferromagnetic object near the sensors

in a practical application will a offline calibration only be valid to some extend - permanent and

constant errors - for the purpose of this system, see further details in Section 4.3. The offline

calibration in this thesis is done using a reference magnetometer, a tumble test and a iterative

least-squares estimation. The tumble test, is done by applying positive and negative magnetic

directions, produced by a three-axis Helmholtz coils, to the stationary IMU. Which is located

inside the Helmholtz coils.

Gyro calibration can be done using a rotating rate table as reference. The rate table rotates

with a known angular rate and the misalignment and scale factors can be calculated using lin-

ear or a non-linear model to get a more precise calibration. The gyro bias is a more difficult
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task, this due to the time varying random walk component, so-called gyro bias drift, that cannot

be compensated for using offline calibration procedures. On-line estimation techniques must

therefore be used to compensate the gyro bias drift (Mahony et al., 2005).

Additionally to misalignment scale-factors and bias, will the IMU sensors outputs drift with

the temperature. Hence, are temperature calibration or some kind of compensating for temper-

ature changes needed.

4.2.2 Online Calibration

Calibration of the accelerometer and magnetometer under operation is preferable. Especially

magnetometer calibration. The reason for this is that additional disturbances may have been

introduced when the bird is mounted onto the seismic cables, plus that the time varying mag-

netic field from the motors will induce errors. A real-time attitude-independent magnetometer

calibration method is presented by Crassidis et al. (2005), where a Kalman filter structure is uti-

lized to estimate the bias, scale factors and orthogonal errors. However, processing limitations

on the embedded system may be a problem.

Methods such as Alonso and Shuster (2002); Foster and Elkaim (2008); Vasconcelos et al.

(2011) enables estimation of bias, scale factors and orthogonality errors. This through a batch

of measurement data and a iterative least squares estimation. Preforming these procedures se-

quentially would then make this a quasi online approach. Furthermore, this could also be done

on a separate computer and thereafter be provide back to the bird embedded system.

Using a attitude independent model of the magnetic field can the Gauss-Newton method

be applied iteratively to estimate the bias, scale factors and non-orthogonal errors (Alonso and

Shuster, 2002; Vasconcelos et al., 2011) (Note that physical misalignment error are not incorpo-

rated. Calibration of such error requires a reference of some kind, see the previous section).

A common method to obtain an attitude independent calibration, are done by transposing
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the terms in (4.9) and squaring the model, yielding

‖mn‖2 = ‖[I3 +∆(ξ,γ)]−1(mi mu −b−w)‖2 (4.10)

Which can be seen as a distorted ellipsoid with a shifted origin. One approach is then to de-

termined the algebraic coefficients of the ellipsoid quadratic surface described by (4.10), and

thereafter algebraically compute the center, radii, rotation of the ellipsoid, see (Vasconcelos

et al., 2011) and references therein. Or alternatively, using the completing of squares to obtain

the quadratic form of (4.10) and determine these coefficient to obtain estimates of the centering,

scale factors and non-diagonal elements describing the model, see Alonso and Shuster (2002)

and references therein.

The method of Alonso and Shuster (2002) are utilized and described in short here. For no-

tational purposes are some quantities first defined:

θ := [
bT DT ]T

(4.11)

D := [ξx ,ξy ,ξz ,γx y ,γxz ,γy z]T (4.12)

E := 2∆(ξ,γ)+∆2(ξ,γ) (4.13)

c := (
I3×3 +∆(ξ,γ)

)
b (4.14)

Kk :=
[

m2
i mux

,m2
i muy

,m2
i muz

,2mi mux mi muy ,2mi mux mi muz ,2mi muy mi muz

]
(4.15)

E := [E11,E22,E33,E12,E13,E23]T (4.16)

where Kk are seen as elements associated with the quadratic form of an general quadratic sur-

face2. Further, forming the attitude independent observation of the measurements through

yk = ‖mi mu‖2 −‖mn‖2 = Lkθ
′ −‖b(θ

′
)‖2 +w (4.17)

2A general quadratic surface are described by Ax2 +B y2 +C z2 +Dx y +E xz +F y z +Gx +H y + I z + J = 0



4.2. CALIBRATION 47

where

Lk =[
2mT

i mu −Kk
]

(4.18)

θ
′ =

[
cT ET

]T
(4.19)

can now a maximum likelihood estimation be utilized in order to determine the unknown pa-

rameters (b,D). The Gauss-Newton method are chosen. Moreover, since model (4.17) are quadratic

do we only need to provide the Jacobian3, J, to preform a Guess-Newton estimation though

θ̂
′
k+1 = θ̂

′
k +αk (JT

k Jk )−1Jk rk (4.20)

where αk is the step length and rk the residual defined by

rk = yk − ŷk (4.21)

ŷk holds the k estimate of (4.17). Moreover, assuming that Theorem 3.5 in Nocedal and Wright

(2006) (Appendix B) is satisfied do then the estimates converge to their true values.

Finally, once the estimates θ̂
′

are found can the estimates θ̂ of (4.11) be determined using

the singular value decomposition of Ê = USUT 4 and the following calculations

W =diag
(
−1+

√
1+ s11, −1+

√
1+ s22, −1+

√
1+ s33

)
(4.22)

∆(ξ̂, γ̂) =UWUT (4.23)

b̂ =[I3 +∆(ξ,γ)]−1ĉ (4.24)

See, section 7.8 for more aspect regarding implementing of the algorithm.

It should be noted that the calibration procedures stated above also is applicable for ac-

celerometer calibration.

3The Jacobian are found by the partial derivative of h(θ
′
) = Lkθ

′ −‖b(θ
′
)‖2 with respect to θ

′
, and can be seen in

Alonso and Shuster (2002)
4U are a orthogonal matrix and S a diagonal
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Figure 4.1: The steering device, courtesy http://www.km.kongsberg.com/

Properties and limitations of the system will be presented in this chapter. However, to avoid

product disclosure are extensive details omitted, as this could be of interest to other manufac-

turers.

4.3 System Properties

The steering system that is utilized in this thesis, provides steering capabilities of the seismic

cables under seismic surveys. Where the steering devices, or birds, are embedded onto/into and

along the seismic cables. Multiple birds are attached to the cables provide a lateral and vertical

positioning of the seismic cables. The bird consist of three rotatable wings and a rotatable center

frame, see Figure 2.2 and 4.1. In addition to the IMU are each wing packed with electronics,

batteries and a motor. Power and signals in the seismic cables passes through the center frame

of the bird in addition to other electronics.

The IMU is located in the wing aft, see Figure 2.2. Which is the least inflicted position with

regard to sensor disturbances. However, IMU sensor disturbances are still present. Especially

magnetic disturbances - magnetic field’s from the motor, batteries and the streamer cables -,

resulting in soft iron errors, see Section 4.2.
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The bird wings has rotatable limitation of ±20◦. The center frame on the other-hand has

a full 360◦ rotation capability. The wing angel and the rotation of the center frame has a close

relationship. As the wing angel and the water inflow determines the position of the center frame

/ bird.

Every bird mounted on the streamers can communicate with a stationary computer lactated

at ship dragging the seismic cables. Information form the birds is not real-time. However, it’s

fast enough to capture the most vital information.

4.4 System Model, Approximations and Simplifications

Since a bird model and accompanying model parameters and coefficients are not known are

some simplifications utilized to derive a simple bird model. On the contrary knowing these

parameters and coefficients would be of great benefit in creating simulation model as well as

a torque model for the Magnis and Petit (2015b) observer. One could then, for instance, make

a of 4 DOF(surge, sway, roll, yaw)5 model or even a 6 DOF model, depending on the known

coefficients. Such models can be found in Fossen (2011).

The approximation and simplifications made are presented below. The reason behind these

simplification are motivated by assumptions of a almost neglectable bird pitching motion, and

a slowly varying yaw. A hydrodynamic roll model from Fossen (2011), and wing foil theory from

Newman (1977) are utilized to create a torque roll model for the bird.

Firstly, the rigid body attitude kinetics are defined as

Iω̇b −S(Iωb)ωb = τ (4.25)

where τ are sum of the external moments acting on the body. I the rigid body inertia matrix and

ωb the angular velocity.

The bird parameters used are presented in Table C.2 in Appendix C.

5Pitching motion are almost neglectable during normal operations for this system
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Figure 4.2: A cubic simplification of the bird wing’s. The bird wing’s hight, width, depth and
mass are specified by h, w , d and m respectively

4.4.1 Rigid Body Inertia

The bird wings are seen as solid cuboid’s of a hight h, width w , depth d and mass m, see Figure

4.2. The wing moment of inertia are thereafter calculated through this approximation, using

(Fossen, 2011)

Ixwi ng =
1

12
m(d 2 +h2) (4.26)

Iywi ng =
1

12
m(w 2 +h2) (4.27)

Izwi ng =
1

12
m(w 2 +d 2) (4.28)

Furthermore, the bird are assumed symmetric yielding that the wing rigid body inertia matrix

are found by I = diag{Ixwi ng , Iywi ng , Izwi ng }. The bird center of origin moment-inertia are calcu-

lated using the parallel-axis theorem (Fossen, 2011). The total bird rigid body inertia including
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three wing’s are then found to be

Ibi r d = 3
(
Iwi ng −mS2(rbi r d

wi ngc
)
)

(4.29)

where rbi r d
wi ngc

= [0, 0, h/2]T are the radial distance to the wing center from the bird center.

4.4.2 Roll Dynamics

As mentioned in the introduction of this chapter are non of the bird parameters or coefficients

known6. However, studies concerning the roll dynamics and the birds external forces have been

conducted by Barheim (2009). As the bird pitch can be assumed neglectable for this system and

that yawing motion of this system incorporates the dynamics of the cable - modeling these dy-

namics are a thesis in itself - are only the bird roll dynamics considered. Note that in a practical

situation should also the pitch and yaw dynamics be considered.

The bird net total roll torque can found by

τ= τr ol l +τr ol l AM +τr ol ldr ag +τr ol lst i f f ness (4.30)

where τr ol l AM are the added mass, created by body moving through the water, τr ol ldr ag are the

rolling drag and τr ol lst i f f ness the restoring force.

4.4.3 Foil Theory

Each bird wings, seen in Figure 4.3, are seen as a foil in a fluid flow with relative angle of attack

α. The total induced force, Fwi ng , on the foil can be decomposition into two forces known as

6These can be obtained by numerical approximations using experimental tests in a water towing-tank
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Figure 4.3: Illustration sketch of bird wing foil. Where α represents the angle of attack, FL , and
FD are the lift and drag components of the total force Fwi ng forces, and are respectively defined
perpendicular and parallel to the in-flow fluid flow velocity vector U

the lift, FL and drag force FD (see for instance (Newman, 1977))

FL = 1

2
ρU 2 ACL(α) (4.31)

FD = 1

2
ρU 2 ACD (α) (4.32)

where ρ is the fluid density, U the undisturbed in-flow fluid velocity, A the wing area and CL and

CD are the lift and drag coefficient respectively. Furthermore, by assuming7 a linear relationship

in the lift8 and drag9 force can equation (4.31)-(4.32) be written as

FL = 1

2
ρU 2 ACLα (4.33)

FD = 1

2
ρU 2 ACD |α| (4.34)

7Barheim (2009) has utilized much of same approximation and simplification to describing the external bird roll
moment and bird forces.

8This are generally only valid for α less then the stall angle. Usually 15-20 deg depending on the inflow fluid
(Newman, 1977)

9The drag coefficient are generally a sum of friction, profile, induced and wave drag coefficients and a function
of both α and the Reynolds number, with a highly non-linear characteristic (Newman, 1977)



56

Further, assuming that these forces are in the same plane can the total force acting on the wing

in the {wi ng }-frame be described as

Fwi ng =
√

F 2
L +F 2

D =
√(

1

2
ρU 2 ACLα

)2

+
(

1

2
ρU 2 ACD |α|

)2

(4.35)

α can in our case be seen as the wing yawing motion expressed in the {bi r d}-frame. To handle

whether Fwi ng are working in the positive or negative direction are the signum operator utilized,

Fwi ng =
√

F 2
L +F 2

D sign(α).

Transforming (4.35) to the {bi r d}-frame yields

Fbi r d = Rbi r d
wi ng Fwi ng =


cos(α) −si n(α) 0

si n(α) cos(α) 0

0 0 1




0

Fwi ng

0

 (4.36)

Utilizing these assumptions can it be seen that (4.35) induces a roll moment on the bird ex-

pressed by

τr ol l = fc Fwi ng cos(α) (4.37)

where fc represent the radial distance from the {bi r d} to the wing’s force center along the z-

axis. (Note that each wing on the bird would induce there separate roll moment on the bird

expressed by (4.37). For further details on force contribution from each wing under different

circumstances, see Barheim (2009).)

4.4.4 Rolling Added Mass, Drag and Restoring

The hydrodynamic moments acting on a rigid body can be modelled as a mass-damper-spring

system (Fossen, 2011). The added mass are modelled as

τr ol l AM = Kφ̇φ̈ (4.38)
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where Kφ̇ are the added mass coefficient. The hydrodynamic drag are modelled as

τr ol ldr ag = Kφφ|φ̇|φ̇+Kφφ̇ (4.39)

where Kφφ and Kφ are the quadratic and linear drag, respectively. Finally, the hydrodynamic

stiffness are modelled as

τr ol lst i f f ness = Ksφ (4.40)

where Ks are the restoring or stiffness coefficient of the system. These models of the hydrody-

namic moments and there coefficients has been proven to be fairly accurate and in accordance

with bird roll dynamics (Torseth et al., 2014).

4.4.5 IMU Centripetal Acceleration Model

The IMU sensor model are described in detail in Section 4.1. Where the centripetal acceleration

on the IMU sensor frame are model accordantly to (2.28). Additionally, the lever arm, r bi r d
wi ng , are

defined as

r bi r d
wi ng =


x

y

z

=


x

−xsi n(|α|)
z

 (4.41)

where the y-axis lever arm are here dependent in the wing angle deflection, α.
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Chapter 5

Simulation model

The simulation model used in the thesis are made in Simulink. The top layer of the simulation

model are seen in Figure 5.1. The model consist of a IMU model; both torque and angular ve-

locity governed, a torque roll model and different input scenarios utilized for various simulation

studies. The mathematical models utilized are described previously in the thesis.

• The IMU model are seen in Section 4.1

• The kinetics and kinematics by (4.25) and (2.8) respectively.

• The torque model as both sine input forces and as described in Section 4.4.2

The sources and sinks, in the model, are illustrated in green and red respectively. The other

sub-systems are viewed in yellow and the manual switching opportunities in orange. See Ap-

pendix E for the subsystem overviews.
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Chapter 6

Algorithm Implementation Aspects

Some relevant and beneficial implementation aspects are shortly presented in a general setting.

Discrete implementation and discrete integration, some common signal processing techniques,

the Kalman filter corrector-predictor concept for handling measurement faults etc. and a ad-

hoc magnetic disturbance handling.

6.1 Discrete Implementation

Implementation of continuous systems in a computer requires numerical methods. Moreover,

the quaternion representation are utilized in almost all of the observers, except from the Grip

observer which a matrix representation. As an example are therefore the discrete integration of

the quaternion presented here.

Discretization using the forward Euler integration of the quaternion estimates are seen as

q̂(k +1) = q̂(k)+h
1

2
Tq

(
q̂(k)

)
ω̂(k) (6.1)

where h are the sampling interval and ω̂0
1 represent the angular velocity estimates. Thereafter

1The angular velocity estimates are computed in several different ways in the thesis, most often by measured
angular rates, bias estimates and/or a injection term
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are the quaternion, at each time step, normalized through (2.15) which minimizes round-off-

errors. However, the normalization procedures of the first-order Euler method could also give

rise to numerical errors (especially for large step sizes), adding to the already present truncation-

error of the first order forward Euler method. See Treven and Saje (2015) and references therein.

On the other-hand, providing a Lie-group integrator, should theoretically avoid the need

of the quaternion normalization resulting in less numerical errors. The first order Crouch-

Grossman (CG) method should ensure the unity length of the quaternion. Using the 4D skew-

symmetric quaternion kinematics representation, (2.11), do the Taylor expansion of the quater-

nion give

q̂(k +1) =
[

cos

(
h‖ω̂0(k)‖

2

)
I4×4 + 1

‖ω̂0(k)‖ si n

(‖hω̂0(k)‖
2

)
Ω̂0(k)

]
q̂(k) (6.2)

Also note that using the more complex higher order methods, such as the Runge-Kutta

method of order 4 (RK4) or Crouch-Grossman of order 4 (CG4), would further increase the accu-

racy. Computational cost would then be a downside. See Treven and Saje (2015), and references

therein, for more on integrating rotational vectors and discretization methods, their benefits

and accuracy capabilities.

6.2 Corrector-Predictor Formulation

In order to handle different measurement sampling rates and enable dead-reckoning2 capabil-

ities are the Kalman filter corrector-predictor formulation advantageous. The general corrector-

predictor formulation for a nonlinear system, ẋ = f (x̂, û) , using Euler discretization are given as

(Fossen, 2011)

Corrector x̂(k) = x̄+K (k)[y(k)− ȳ] (6.3)

Predictor x̄(k +1) = x̂(k)+hf (x̂(k), û(k)) (6.4)

2The case where no measurement updates are available for a period of time (Fossen, 2011)
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where K (k)[y(k)− ȳ] are the injection term. Hence, if a measurement aren’t available or faulty,

do the prediction take the form

x̄(k +1) = x̂(k)+hf (x̂(k), û(k)) (6.5)

Situations where this could be the case are seen in Section 6.3 and 6.4.

6.3 Signal Processing

A low level signal processing module should always be implemented in order to handle typical

signal faults. Increasing the fault-tolerance in the measurements. Faults checks for signal vari-

ance, signal freeze and wild points (Sørensen, 2013). A to high or to low measurement variance

might indicate a inaccurate measurements or faulty sensor. Provided a measurement signal x(k)

can a buffer of historic data

σ2(k) = n

n −1

(
k∑

i=k−(n−1)
x(i )2 −nx̄2

k

)
(6.6)

where n are the size of the buffer containing the historic data and x̄k the moving average, be

used to check whether there might be measurement failure or freeze.

Wild points. Sampled measurements, x(k), that have a considerable deviation from the pre-

vious measurements - outside a certain band about the moving mean average - are rejected for

one sample. Hence, the sample measurement are accepted if it is inside the band

x(k) ∈ [x̄k −aσ, x̄k +aσ] (6.7)

where a are a scalar constant often set to a value between 3−9.
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6.4 Ad-hoc Magnetic Disturbance Handling

As previously mentioned may magnetic distortion affect the accuracy of the measurements. A

real-time calibration method such as Crassidis et al. (2005) could of course be used. However,

as mentioned would the computational footprint be a drawback. On the contrary utilizing a-

prior knowledge of the local magnetic field could a simple check be applied to handle cases of

magnetic distortions.

The norm of the normalized magnetic measurements - in a undisturbed environment - are

equal to one. Applying a simple distortion check based on this knowledge, can a band for ac-

cepted measurements be described as

‖m̄b(k)‖ ∈ [1+d , 1−d ] (6.8)

where m̄b(k) are the normalized measurement, d describe the threshold of acceptance. The

scale of the constant d would be dependent on the accuracy and noise levels of the magnetic

measurements.



Chapter 7

Algorithm Implementation

The algorithms that are studied and tested are implemented in MATLAB. This to simplify al-

gorithm analysis and reduce bug fixing. The MATLAB codes are implemented with a object-

oriented structure, enabling a short transition to a embedded system written in for instance

C++. A MATLAB Workspace structure are enabled for execution of the algorithms. This makes it

easy to shift between simulated and experimental data measurements.

Some preliminaries:

• The observer are implemented using forward Euler discretization. A Crouch-Grossman

(CG) discretization could also be utilized for the SO(3) defined observers, which should

increase the accuracy of the discretization. However, since Grip aren’t locally defined,

SO(3), would it be more beneficial to used consistent discretization method.

• The corrector-predictor representation are implemented on all the non-linear observers.

However, to not complicate notation unnecessary are all the algorithms presented in con-

tinuous time. Furthermore, all of the vector measurements used in the observers, without

exception, represented their normalized vectors.

• All the non-linear observer’s are initialized by QUEST. QUEST are independent of the ini-

tial state, and provide a good initial estimate. For illustration purposes, are the Grip Algo-

rithm utilized to show the significance of QUEST initialization compared to a zero initial-
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ization. See Figure 7.2 and Section 7.5

• The Simulation are obtained at 10Hz. The reason being that the simulation time could

be reduced. Moreover, the data from water test are obtained at 10Hz. The actual IMU

frequency are 256 Hz.

It should also be noted that the algorithms presented, provides attitude estimates in the

{I MU }-frame (strapdown to the {wi ng }-frame ). Converting these estimates to the bird frame

can easily be done using the rotation matrix

Rbi r d
wi ng =


cos(α) −si n(α) 0

si n(α) cos(α) 0

0 0 1

 (7.1)

where α is the wing angle deflection, corresponding to the wing yaw. See Figure 2.2.

7.1 Linear Acceleration Mapping and Magnetometer Tilt Com-

pensation

Some minor implementation considerations of the linear acceleration mapping and magne-

tometer tilt compensating algorithm are presented.

Using the usual inverse tangent function returns angles in the range ±90◦. This would limit

the roll motion of the bird to interval ±90◦ which is undesirable. However, using the two-

argument tangent inverse, At an2(x, y), would enable full range representation, ±180◦ (Spong

et al., 2006). Using the two-tangent inverse function means that a small rewriting on the roll, φ,

mapping is done as follows

φ=At an2
(
ay ,−aZ

)
(7.2)

The heading should also be calculated in a using the At an2 function, or using the sign checking
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procedures of Fossen (2011). Since the bird only will have small pitching motion are the normal

inverse tangent function sufficient to obtain θ. Moreover, due to small pitch angles, are the issue

of a non defined tangent inverse function not an issue1.

The sign of the measured magnetometer z-component should be inverted. This due to the

positive z-axis upwards in the measurement-frame, Figure 2.2.

7.2 QUEST Algorithm

The QUEST algorithm with covariance matrix calculation are the chosen QUEST implementa-

tion method. In addition to the properties mentioned in Section 3.2 are the QUEST algorithm,

or to be more precise the QUEST algorithm with extra futures present. The possibility of cal-

culating the attitude error covariance matrix using the procedures in Shuster (2006) makes the

QUEST algorithm very beneficial as a initialization algorithm. This due to that the attitude er-

ror covariance matrix of the QUEST can be used as the measurement covariance matrix in the

MEKF. Additionally to this could the optimal quaternion for the QUEST be used in the MEKF as

reference quaternion. Further details about MEKF can be found in Section 3.3 and Section 7.3.

The implemented QUEST algorithm are based on Shuster and Oh (1981); Shuster (2006),

using the flow chart of Takahashi et al. (2009) and can be viewed in Table 7.1. The algorithm are

implemented on the premises that only two vector observations are given. Namely the magnetic

and the acceleration vector. The corresponding vector measurement in the inertial frame are

obtained by WWM and the assumption of constant acceleration, see Section 2.4.

Tuning

Additionally to the inertial vector measurements, do we need to specify the vector noise σ =
[σ1 σ2] of these vectors. Where σ2

i is the variance of any component of Ŵi along the axis per-

pendicular to the actual Wi . The extra weighting scalar λ0 must also be provided. Generally, is

1 At an2(x, y) are undefined for (x, y) = (0,0) in some software implementations. This is the case for θ = ±90 in
the horizontal plane
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Description Equation

Compute the

Weight vector 1
σ2

tot
=∑N

i=1
1
σ2

i
ai =λ0

σ2
tot

σ2
i

Attitude profile matrix B =∑N
i=1 ai Ŵi V̂T

i

Quantities S, σ, Z , ∆ and κ
S = B+BT σ= trace(B)

∆= det(S) κ= trace(adj(S))
Z =


B23 −B32

B31 −B13

B12 −B21


Maximum eigenvalue λmax =

√
a2

1 +2a1a2cos(θV −θW )+a2
2

where cos(θV −θW ) = (
V̂1 · V̂2

)(
Ŵ1 ·Ŵ2

)+|Ŵ1 ×Ŵ2||Ŵ1 ×Ŵ2|

Covariance matrix PQQ = 1
4

σ2
tot I+|Ŵ1 ×Ŵ2|−2

(
σ2

2 −σ2
tot

)
Ŵ1ŴT

1 + (
σ2

1 −σ2
tot

)
Ŵ2ŴT

2

+σ2
tot

(
Ŵ1 ·Ŵ2

)(
Ŵ1ŴT

2 +Ŵ2ŴT
1

)



Optimal quaternion X = (

αI+βS+S2
)

q̂opt = 1p
γ+|X|2

γ
X


where α=λ2

max −σ2 +κ β=λmax −σ γ= (λmax +σ)α−∆

Table 7.1: QUEST
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this extra scalar weight chosen as either λ0 = 1 or λ0 = 1/σ2
tot (Shuster, 2006). It is here chosen

as λ0 = 1.

7.3 MEKF Algorithm

The Multiplicative Extended Kalman filter described here are based on the paper of Markley

(2003) and Shuster (2006) using the nice overview presented in Utstumo and Gravdahl (2013).

In addition to the facts presented in Section (3.3) will topics regarding the measurement model

of the MEKF be presented. Furthermore, the complete MEKF algorithm used in the thesis are

seen in Table 7.2.

The measurement model of the MEKF is usually modelled as a m-dimensional measure-

ment function, h, consisting of vector measurements taken in the {bod y}-frame, plus white

noise. Leading to the need for the specification of the measurement sensitivity function, H.

Where H = [Ha 0m×3] represent the linearized measurement function. Additionally do the

measurement covariance matrix, R, need to be specified by tuning. However, by using quater-

nion "measurements" in the MEKF can the manual specification of these be avoided. The sen-

sitivity function Ha can then be taken as the identity matrix, and R can be seen as the covariance

of the error angle form the quaternion measurement (Markley, 2003).

Using the QUEST method in Section 7.2 to produce these quantities would then lead a much

easier observer initialization and design (Crassidis et al., 2007). The initialization would then

only consist the state covariance matrix P and the process covariance matrix Q. Moreover, P can

be partitioned into 3×3 sub-matrices, Pa and Pb along the P diagonal and Pc as the correlation

blocks. Together with Ha do this result in a simplified covariance propagation. The linearized

system matrices can then be computed as showed in Table 7.2 (Markley, 2003). Whereωb are the

gyro-measurement. The implemented MEKF observer with QUEST "measurements" are seen

in Table 7.2.

Since the system described in this thesis would carry out 360◦ rolls, are the importance using

the Gibbs vector error attitude representation imperative, see Section 3.3. This are verified and
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Figure 7.1: Comparing the Gibbs (green) and unit quaternion (magenta) parametrization of the
attitude error in MEKF, during a 360◦ roll motion. Zoom of the transaction between +180◦ to
−180◦ roll

seen in Figure 7.1. Comparing the Gibbs vector error representation with the more common unit

quaternion error. As seen do large shifts in the quaternion error - ‖δε‖ ≈ 2 - result in large errors

using the unit quaternion representation. Whereas the Gibbs error representation handles this

shift smoothly.

Tuning

The tuning of the MEKF are done empirically. Tuning the covariance matrix P and the process

covariance matrix Q.
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Step Equation

Update step

QUEST
[
qQU EST , RQU EST

]= QUEST
(
mn , mb , an , ab , σa , σm

)
Kalman gain K(k) = [

P̄a P̄c
]T [

P̄a +R
]−1

Covariance update P̂(k) = P̄(k)−K(k)
[
P̄a P̄c

]
Attitude error δq(k) = q̄−1(k)⊗qQU EST (k)

Gibbs error δg(k) = 2δε(k)/δη(k)

Innovation x̂(k) = x̄(k)+K(k)δg

State update (Gibbs) q̂(k) = q̄(k)⊗

 2

x̂1:3(k)


Normalize q̂(k) = q̂(k)/|q̂(k)|
Reset x̂1:3(k) = 0

Propagate

Propagate state q̄(k +1) = q̂(k)+ ∆t
2

q̂(k)⊗

 0

ωb(k)− x̂4:6(k)




Linearization F =

−S (ωb − x̂4:6(k)) −I

0 0

 , G =

−I 0

0 I


Propagate covariance P̄(k +1) = P̄(k)+∆t

(
FP+PFT +GQGT

)
Table 7.2: Multiplicative Extended Kalman Filter
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7.4 Batista Algorithm

A overview of the observer presented in Section 3.4 are stated here. Including additional as-

pects and tuning. Table 7.3 presents the overall algorithm. The auxiliary observer and the actual

attitude observer.

The auxiliary observer purpose is to estimate the {bod y}-fixed auxiliary vector, v(t ). More-

over, it also provide a extra future of estimating the measured {bod y}-fixed vector. This ob-

server are obtained by the decomposition of (3.17) using (3.18). The attitude observer are then

designed by substituting (3.18) into (2.23).

The acceleration measurement and corresponding reference vector in {n} is used in the im-

plementation of this thesis, unlike Batista et al. (2014b) how uses magnetic measurements in

their results. Using the assumption in Section 2.4 can we assume say that the gravity accelera-

tion in {n} are constant. Furthermore,

ωn
e = Re

n(Θne )Tωe (7.3)

where ωe = [0,0,7.292115e−5]T are the angular rotation of the earth - corresponding to a earth

rotation about 15◦ per hour around it own axis - are used to obtain (3.16)

Tuning

In the observer in Table 7.3 do αi , i = 1,2.3.4 represent scalar positive tuning gains. As in most

non-linear observer are these tuned empirically. However, Batista et al. (2014b) proposes to

relate the gains α3 and α4 to their related vector noise and norm. The initial state for the body-

fixed vector in the auxiliary observer is set equal to the first measurement of this vector, the

auxiliary vector v0 are set equal to zero. Also note that the a approximated latitude needs to be

provided. This to obtain the vector ωn
e . Batista et al. (2014b) proposes that the gains for the

auxiliary observer are tuned as piecewise constant tuning gains at the initialization phase. This

to ensure the stability at steady-state for the auxiliary estimates.
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Step Equation

Initial estimate

QUEST qQU EST = QUEST
(
mn , mb , an , ab , σa , σm

)
Initial state q̂(0) = qQU EST

Auxiliary observer

Body vector ˙̂a
b = S

[
ωb + c2v̂+α1ab × âb

]
âb

Auxiliary vector ˙̂v = S
[
ωb − c1ab

]
v̂+α2ab × âb

Attitude observer

Vector correction ("bias")
b =−c1ab + c2

ab

‖an‖ ×
(
v̂× ab

‖an‖
)
+α3ab × [

R̂b
nan

]
+α4

[
ab

‖an‖ ×
(
v̂× ab

‖an‖
)]

× [
R̂b

nvn
]

Attitude ˙̂R
n
b (q) = Rn

b (q)S(ω̂b +σ)

Table 7.3: Non-linear attitude observer using single vector measurements

7.5 Grip Algorithm

Attitude estimation, estimating the full nine parameter rotation matrix is presented here. The

algorithm exploits the concepts presented in Section 3.5 to get a global estimation of the rotation

matrix that will converge to SO(3).

The accelerometer and magnetometer are used as vector measurement. The corresponding

vectors in the inertial frame are obtained under the same assumptions as QUEST - an constant

and mn obtained from WWM. Although the algorithm in Table 7.4 converges to the actual at-

titude after some time. Could for instance the QUEST method in Section 7.2 be used to get a

good initial estimate. This would improve the initial convergence of the filter. See a small com-

parison in Figure 7.2 concerning this issue. Here are the observer 7.4 with QUEST initialization

represented in green, while in blue are the observer with the rotation matrix initialization equal

to the identity matrix.
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Notation, Pa(X) = 1
2 (X−XT ) denotes the skew-symmetric part of a square matrix, vex(X) the

vector part of a skew-symmetric matrix, X.

Step Equation

Initial estimate

QUEST qQU EST = QUEST
(
mn , mb , an , ab , σa , σm

)
Initial state R̂(0) = R(qQU EST )

Preliminary calculations

Injection term J(t , R̂) = (
An(t )− R̂Ab(t )

)
Ab(t )T

where
An(t ) =

[
an

‖an‖
S(an )mn

‖S(an )mn‖
S2(an )mn

‖S2(an )mn‖
]

Ab(t ) =
[

ab

‖ab‖
S(ab )mb

‖S(ab )mb‖
S2(ab )mb

‖S2(ab )mb‖
]

Attitude observer

Attitude matrix ˙̂R = R̂S(ωb − b̂)+σKp J(t , R̂)

Bias observer ˙̂b =Proj(b̂,−kI vex(Pa(R̂T Kp J(t , R̂))))

Solution on SO(3)

Attitude SO(3)

R̄(R̂) = [r̄2 r̄1 S(r̄1)r̄2]

r̄1 = r̂1
max(‖r̂1‖,µ)

r̄2 = (I−r̄1 r̄ T
1 )r̂2

max(‖(I−r̄1 r̄ T
1 )r̂2‖,µ)

Table 7.4: GES Non-linear attitude observer using multiple vector observations

Assumed that we have a PE system are also estimation using a single vector observation

possible. Choosing Ab(t ) = [ab/‖ab‖,0,0] and An(t ) = [an/‖an‖,0,0]. However, this are under

the assumption that we have zero gyro bias. In practice could the last gyro bias estimate from

the two vector observation solution be used (Grip et al., 2015). Moreover, the implemented

corrector-predictor structure makes this switch easy.
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Figure 7.2: Comparison using QUEST and not using QUEST to initialize the observer in Table
7.4. The MEKF is used as truth goal. Data from field testing are utilized



80 CHAPTER 7. ALGORITHM IMPLEMENTATION

Tuning

As for the tuning of the observer. This is easily done using three parameters, Kp , ki and σ.

Where Kp ∈R3x3 corresponds to the proportional tuning, the scalar ki the bias tuning - or more

correct the adoption gain of the bias estimate. After tuning these areσ≥ 1 then tuned to achieve

stability of the estimates. Furthermore, the constant Mb > 0 defines the region of attraction of

the bias ‖b‖ and is assumed known. ‖b̂‖ ≤ Mb̂ will then represent the bounded bias estimate.

Provided that the initial condition satisfies ‖b̂(0)‖ ≤ Mb < Mb̂ .

Accordingly to Grip et al. (2015) should choosingµ less then 0.75 ensure estimates on SO(3).

7.6 Angular Velocity Observer Algorithm

The angular velocity observer of Magnis and Petit (2015b) including the roll torque model intro-

duced in Section 4.4.2 are presented. The overall torque model are given by

τ=


τr ol l

0

0

 (7.4)

The author emphasize that this simple torque model only are to display the concept using such

a method as described by Magnis and Petit (2015b). Further analysis of pitch and yaw external

moments are needed to get a full description.

Take the time derivative of the vector measurements given by

ȧb =−S(ωb)Rb
nan = ab ×ωb (7.5)

ṁb =−S(ωb)Rb
nmn = mb ×ωb (7.6)

where ab and mb in this case are the IMU-measured acceleration and magnetic field ( However,

any known vector measurements could be used). Then stacking the body measurements ab , mb
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and ωb , which are governed by (7.5), (7.6) and (3.26) respectively, into the state vector X are the

angular velocity observer in Table 7.5 proposed by Magnis and Petit (2015b).

A easy structure, with a almost easier tuning - two scalar gains.

Step Equation

Preliminary calculations (see Section 4.4.2)

Calculate input torque τ=
[
τr ol l 0 0

]T

Angular velocity Observer

Observer ˙̂X =


ab ×ωb −βk(âb −ab)

mb ×ωb −βk(m̂b −mb)

E(ω̂b)+ J−1τ+k2ab × (âb −ab)+k2mb × (m̂b −mb)


Table 7.5: Angular velocity observer

Tuning

The tuning of the observer is done empirically by the constant tuning parametersβ ∈ (0,2
√

1−p)

and k > 0. Where p is derived under Assumption B.1 and is constant for all time, p := ab T
mb =

an T mn . Moreover, p defines the linear independence of the vector measurements, consequently

the closer p gets to 1, the slower the rate convergence. Moreover, in order to get a locally uni-

formly exponential stable error dynamics do the k > k∗ need to be satisfied. Where k∗ is defined

by (Magnis and Petit, 2015b)

K =

√√√√√√1+ β

2
p

1−p

1− β

2
p

1−p

(7.7)

k∗ =
(p

ln(K )+√
ln(K )+2βK

)2

β2

p
2Kωmax (7.8)
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where ωmax is the maximum rotational rate of the rigid body. The scale of k will also have a

direct impact on the convergence rate and noise sensitivity of the estimates.

7.7 Developed Attitude Observer Algorithm

The author proposed attitude observer from Section 3.7 are given a nice overview in the current

section. The observer are as all the above attitude observers initialized with the quaternion

estimate obtained from QUEST. The developed attitude observer can be seen i Table 7.7.

Step Equation

Initial estimate

QUEST qQU EST = QUEST
(
mn , mb , an , ab , σa , σm

)
Initial state q̂(0) = R(qQU EST )

Preliminary calculations

Injection term σ := k1ub × R̂T un +k2ububT
(vb × R̂T vn)

where
vn = πub mn

‖πub mn‖ , vb = πun mb

‖πun mn‖

un = an

‖an‖ ub = ab

‖ab‖

and
πun = ‖un‖2I3×3 −ununT

πub = ‖ub‖2I3×3 −ububT

Angular velocity observer ω̂b → See Table 7.5

Attitude observer

Attitude ˙̂R
n
b (q) = Rn

b (q)S(ω̂b +σ)

Table 7.6: Proposed attitude observer
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Tuning

Except from the tuning aspects presented for angular velocity observer are k1 and k2 the only

extra tuning parameters. These tuning gains are chosen to best get the best crossover between

accelerometer and magnetometer filtering . As Hua et al. (2014a) describes, are k1 and k2 in

practise chosen such that the gravity direction are emphasized over the geomagnetic field direc-

tion. The reason being that the gravity direction are more reliant compared to the geomagnetic

field direction. Typically are k2 chosen five times smaller than k1.

The scale of k1 and k2 would also depend on the angular velocity observer tuning, α and k.

Where the best crossover emphasis on vector measurement and angular velocity estimates are

made.

7.8 Calibration

This section presents implementation aspects, applied method and additions regarding the cal-

ibration algorithm in Section 4.2.

In order to calibrate the measurements using the Gauss-Newton method in Section 4.2, are

good initial conditions needed. This to satisfy Theorem 3.5 in Appendix B. Failing to do so, may

the algorithm not converge. Using the offline calibration parameters as initial estimates are

a possibility. However, a centering approximation are proposed by Alonso and Shuster (2002)

to fix this problem. This by removing quadratic term ‖b‖2 in (4.17). Resulting in the centered

measurements given by

ȳk = L̄kθ
′
, L̄k = Lk − σ̄2

N∑
k−1

1

σ2
k

Lk (7.9)

Although this approximation do not provide a mathematical correct formulation of the min-

imization problem, are it still statistically correct. For further details see Alonso and Shuster

(2002) and reference therein.
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Implementation of the Gauss-Newton method also require the step length αk to satisfy the

Armijo and Wolfe conditions (Nocedal and Wright, 2006), meaning that minimization are de-

creased at every iteration in the Gauss-Newton method. To ensure this is the Backtracking Line

Search algorithm in Nocedal and Wright (2006) utilized. This is not considered in the original

algorithm of Alonso and Shuster (2002). However, a clear advantage using a Backtracking Line

Search algorithm is observed in terms of the number of iterations needed before convergence.

Finally, the algorithm iterates until the precision criteria is reached. The euclidean norm of

the search direction are utilized, when the new computed search direction is smaller then 10−8

are the algorithm executed.

It should also be noted that the inertial vector are assumed known throughout the hole mea-

surement collection. Where mn are given by WWM, for magnetometer calibration.
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Chapter 8

Preliminary

The simulation and experimental field test results will be presented in the current part. Where

Chapter 9 view the simulation results and Chapter 10 the experimental results of the attitude

estimation. Chapter 11 view calibration results, both verification though simulation and the

estimated calibration parameters obtained by the experimental data.

In order to clarify some of the results, are they given as Root-Mean-Square (errors), which is

a widely used error representation method. RMS are given by

XRMS =
√√√√ 1

N

N∑
n=1

|Xn |2 (8.1)

During the simulation studies are also the error variables

q̃(t ) = q(t )⊗ q̂−1(t ) (8.2)

R̃(t ) = R(t )R̂T (t ) (8.3)

frequently used to present the results.

To not complicate with unnecessary citations are Grip, Batista, Magnis, QUEST, MEKF and

Developed observer refereed to when taking about the algorithms in Table 7.4, 7.3, 7.5, 7.1, 7.2

and 7.6 respectively.
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Chapter 9

Simulations Results

Simulation studies are presented in this chapter. Testing and verifying the algorithms in Section

7. The simulations were conducted using data obtained by the simulation model presented in

Section 5. Where the simulation parameters utilized in the simulations are presented in Table

C.1, C.2 and C.3 located in Appendix C.

In addition to the sensor noise - present in all the simulations - are the observers subjected

to the following scenarios regarding dynamics and faults/errors

• Constant and slow dynamic behavior

• Fast dynamics

• Initialization errors

• Accelerometer and magnetometer sensor bias - hard iron effects

• Gyro bias

• Sensor misalignment and scale factor error - soft iron effects

Results of these scenarios are presented and discussed and compared against the benchmark

made by the MEKF. Where the emphasis is place on their attitude(roll, pitch) and heading(yaw)

accuracy. This Chapter is organized as follows
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• Section 9.1: Linear mapping and magnetometer tilt compensation

• Section 9.2: Observers using single vector measurements

• Section 9.3: Developed Attitude Observer and Angular Velocity Estimation

• Section 9.4: SO(3) confined vs Global stable observer

• Section 9.5: Comparison of the attitude observers, including time varying inertial mag-

netic field and magnetic distortions

9.1 Linear Mapping and Magnetic Tilt Compensation

The main concern of this section are the impact of the vector measurement errors on the Euler

attitude estimates. Using the linear mapping and magnetic tilt compensation method as testing

algorithm. Since this are a direct mapping of the vector measurements and not considers the

system dynamics or provide any extra filtering would this be a good method for purpose of this

section.

Firstly, by assuming small roll and pitch angles, can the following expressions be derived

(Vik, 2014)

δφ≈ −δ fy

g
(9.1)

δθ ≈ δ fx

g
(9.2)

It is then seen that a 4 mg accelerometer error1 results in roll and pitch error about 0.23◦. Fur-

thermore, using (3.5) and the magnetic field at Trondheim would this result in a static yaw error

of 0.8 degrees. Variations in the earth’s magnetic field - varying with the geographical localiza-

tion - would of course affect the scale of yaw error. The knowledge of the magnetic declination

angle would also contribute to this error.

1Based on the provided IMU accelerometer noise performance
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Figure 9.1: Linear mapping. Roll, pitch and yaw error when subjected to magnetic distortion.
Simulation using small roll and pitch angles (±2◦)

Temperature effects and changes may also be a factor concerning the heading error. For

instance, a accelerometer temperature change of 0.02%/◦C (Obtained by IMU data specs) will

contribute to yaw error ≈ 1◦ as a worst case scenario.

Magnetic distortion would contribute significantly. Figure 9.1 presents result of simulation

subjected to general sensor noise, temperature effect and magnetic scale and misalignment er-

rors. It can be seen that these contributions are significant in terms of yaw error. Sensor bias

are not considered in this simulation. However, this would further contribute on the estimation

error.

Another factor of concern are the accelerometer outputs. An accelerating IMU sensor frame
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Figure 9.2: Centripetal acceleration contribution. Worst case scenario, maximum wing deflec-
tion, 20◦, and bird roll angular velocity up to 25◦/s

would contribute to a yaw error by introducing wrong tilt compensation. Figure 9.2 show the

centripetal acceleration contribution of a bird roll subjected to roll rates close to it’s system lim-

its - 25◦/s - and with maximum wing angle at 20◦. Although this is a worst case scenario, can it

be seen that such a rapid bird roll motion will contribute to noticeable errors.

Discussion

As viewed by the results above, are there several error contributions influencing the accuracy of

both the vector measurements and the Euler attitude estimation. Most significant would prob-

ably be the magnetic distortion. This enhances that calibration of the sensors are vital to ensure
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proper measurements, some soft-iron effects would still be present. Moreover, the centripetal

acceleration during high rolling rates are noticeable. Not significant, but noticeable. Such ac-

celeration errors can only be removed by velocity or position aiding. However, for most of the

time would such accelerations not be present, or its effect will only last for a short moment.

Based on this knowledge and the fairly small acceleration contribution, is it therefore assumed

in the rest of the simulations that v̇n
wi ng /n ≈ 0.

Moreover, summing all these can it be stated that the accuracy of the measurements in itself,

are a important issue to be considered.

Although this method only direct map the vector measurements, and do not introduce any

attentional filtering or dynamics, would it still be able to determine the attitude to some extend.

But a noisy estimate of the attitude.

9.2 Observers using Single Vector Measurements

The presented results in this section are of the observers using a single vector observation.

Namely the observers in Table 7.4 and 7.3. Both of the observers are subjected to the same

error scenarios.

Simulations assuming noisy and non-biased measurements are presented. The reason for

this assumption are that the single vector estimation of Grip are assuming that the bias are

known, or more precisely it obtain by the least estimate form the two-vector-solution. Single

vector estimation using the Grip method are thereby only possible for some time, depending on

drifting property of the gyro. Batista on the other hand assumes a higher grade gyro, with the

possibility of measuring the earth’s rotation, typically a FOG or a RLG. The gyro bias are therefore

assumed to be known, or at least minimal, in this section.

Another factor concerning attitude estimation using a single vector observation, are the

presence of the PE (See Appendix B Definition B.4), at least for the Grip observer. In order to

ensure the feasibility of estimating the attitude with a single vector observation, the accelerom-
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Figure 9.3: Sensor data. Complex maneuver.

eter in this case, are a complex attitude maneuver used to meet the PE requirement made by

Grip. The attitude are governed by

ωb(t ) =


5 π

180 si n
( 2π

180 t
)

π
180 si n

(2π
60 t

)
−3 π

180 si n
( 2π

300 t
)
 (rad/s) (9.3)

producing the measurements in Figure 9.3

Both observers are initialized with the quaternion estimate obtained by QUEST and should

therefore be fairly close to the truth (but not the truth!). Tuning of the Batista observer are view

in Table 9.1, which show the gain-initialization phase. The other observer gains are set to
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Time interval α1 α2

[0,300] 9.5 1
[300,420] 5.5 0.5
[420,600] 2.5 0.25
[600,∞] 0.5 0.001

Table 9.1: Batista gains

α3 = 0.5 (9.4)

α4 = 0.02

‖an × (
an ×‖ωe‖[cos(10.3733),0,−si n(10.3733)]T

)‖2
(9.5)

where α4 are a combination of the initial vector and the measurement noise. The Grip observer

have fixed gains, set as

Kp = diag(5, 5, 5) (9.6)

ki = 0.03 (9.7)

Figure 9.4 and 9.5 presents the quaternion estimate and Euler angle attitude estimate, re-

spectively. As seen are both observers able to estimate the attitude. However, taking a closer

look at the Euler attitude error in Figure 9.6, can it be seen that there actually are noticeable

estimated error. The roll and pitch angle are estimated nicely by Batista, the heading estimate

on the other hand have a mean estimate error of 2.5◦. Moreover, the Grip estimate error actually

seams to increase as time go.

Batista are also utilizing auxiliary estimates prior to the attitude estimate. Figure 9.7 presents

the normalized acceleration estimate obtained from this procedure. Where it can be seen that

the estimates are slightly deviating after some time. Figure 9.8 views the auxiliary vector esti-

mate v̂.

Now, utilizing a more plausible attitude maneuver. Where the attitude are now governed

by the angular velocity in Table 9.2. Seen this not necessary satisfy the PE condition, which

are required for Grip method, are the Grip algorithm not able to estimate the attitude nor the

heading. On the contrary Batitsta seems to produce a fairly good estimate, with an mean yaw
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Figure 9.4: Quaternion estimate using a single vector observation. The actual or real Euler angles
in red, the estimated Grip and Batista quaternion in blue and cyan respectively
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Figure 9.5: Euler estimate using a single vector observation. The actual or real Euler angles in
blue, the estimated Grip and Batista Euler in blue and cyan respectively
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Figure 9.6: Euler estimate error using a single vector observation. Grip and Batista illustrated
with blue and cyan respectively
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Figure 9.7: The actual and estimated X-, Y- and Z-axis normalized acceleration. Obtained by the
Batista using a single vector
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Figure 9.8: The actual and estimated X-, Y- and Z-axis normalized auxiliary vector v̂(t ). Obtained
by the Batista using a single vector
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error of only 2.5 degree. See the results in Figure 9.9.

Time interval ωb(t ), (r ad/s)

[0,360] [3.5π/180si n(2π/180), 0.1π/180si n(2π/60), 0]T

[360,600] [0, ,0, ,0]T

[600,1200] [0.1π/180si n(2π/180), 0.001π/180si n(2π/60), π/180si n(2π/600)]T

Table 9.2: Angular velocity input

Discussion

From the results above, can one argue that applying a single vector observation are possible.

Although only to some extend. Moreover, the gyro bias drift are assumed known or at least min-

imal. Introducing MEMS grade gyro bias drift wouldn’t give any usable results and are therefore

omitted. However, utilizing a higher grade gyro, a RLG, FOG or possibly more expensive MEMS

gyro - less drift and noise - may help with this issue. On the other hand, the Grip method us-

ing single vector observation for short periods show promising results. The reason being that

this observer makes it easy to switch between using two or one vector observation. For instance

utilizing the single vector solution in cases of magnetic distortion and the two vector solution

elsewhere. Batista give on the contrary better overall result when using a single vector observa-

tion under the assumptions discussed above.

The initialization error from the QUEST algorithm are fairly small. An Euler angle error

of [φer r or ,θer r or ,ψer r or ]T = [−0.3393,0.1652,−1.3392]T . Although this initialization error are

small do non of the algorithms seems to be able to correct this error in the heading estimates.

But are instead fluctuating around this initialization error. Assuming a prefect initialization

could on the contrary reduce the mean yaw error to less then 1 degree for the Batista observer.

The acceleration estimates of Batista are slightly deviating. The reason being somewhat

strange in a "fixed" gain observer. Providing a piecewise constant gain sequence to ensures good

steady-state performance should fix this problem accordantly to Batista et al. (2014b). How-
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Figure 9.9: Euler estimate error using a single vector observation undergoing slow dynamics.
Grip and Batista illustrated with blue and cyan respectively



9.3. DEVELOPED ATTITUDE OBSERVER AND ANGULAR VELOCITY ESTIMATION 103

ever, in practice are this method cumbersome. As tedious simulation are needed to produce

a good gain-initialization phase. Moreover, the significance on the overall attitude estimation

of this initialization phase are minimal. Nevertheless, a better analysis and tuning of the gain-

initialization could produce smaller errors.

9.3 Developed Attitude Observer and Angular Velocity Estima-

tion

In order for the Magnis and the Developed attitude observer in Section 7.7 to be tested in a

practical application are multiple unknown bird coefficients needed. As these not are available

are a pure simulation study used to make a prof of concept for this observer on the current

system. However, for a more general tests on the Developed attitude observer see Section 9.5.

The Magnis angular velocity observer tuning used in the simulation where chosen as

k = 0.5 (9.8)

β= 1.8
√

1−p = 0.3425 where p = an T

‖an‖
mn

‖mn‖ (9.9)

Where the norm of the vector measurements in the inertial frame are used to derive p, as sug-

gested by Magnis and Petit (2015b). As in the reset of the thesis are the inertial vector measure-

ments for the magnetometer retrieved from the WWM and the inertial acceleration are assumed

constant. The initial condition of the observer where set to

X0 = [0, 0, 0, 0, 0, 0, 0.1, 0.1, −0.1]T (9.10)

which corresponds to an angular velocity error of ω0 = [5.7, 5.7, −5.7]T deg/s and zero ac-

celeration and magnetic field.

Simulation are conducted assuming that only one wing are contributing to the wing mo-
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Figure 9.10: Wing deflection. Sourced from data collected during water test

ment2, the two other wings have zero wing deflection. The wing angle, Figure 9.10, used as

inputs are sourced from data collected from one wing during water test (See Section 10 for more

information). Furthermore, the accelerometer and magnetometer measurements are assumed

calibrated and known. Figure 9.11, 9.12 and 9.13 presents the angular velocity estimates, the

normalized vector estimates of the acceleration and magnetic field, respectively. As one can

observe do the estimates converge nicely to there true values.

The angular velocity estimates from Magnis are then governed thorough the kinematic rela-

tion of (2.23) to obtain the attitude estimate, seen in Figure 9.14 (illustrated in red). It’s observed

that the estimates converges, however not the true value!

As described in Section 3.7 where the author motivated by the ability of the Magnis ap-

proach of estimating the angular velocity to propose a attitude observer enabling locally expo-

nentially stable attitude estimates. The tuning gains for the Developed observer are chosen

k1 = 1, k2 = 0.3 (9.11)

2There are no controller contributing to ensure stability
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Figure 9.11: Gyroscope estimate.
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Figure 9.12: Normalized acceleration estimate.
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Figure 9.13: Normalized magnetic field estimate.
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Figure 9.14: Euler angles estimates. The actual estimates(blue), the Developed attitude ob-
server(green) and the Magnis estimate(red)

In Figure 9.14 can it be seen the significance on attitude estimates (green) using the injection

(3.29) to derive the attitude through (3.28). The estimates converges nicely to there true values.

Additional results concerning the Developed attitude observer - decoupling of the roll and pitch

estimates from yaw and magnetic measurements, measurement noise handling etc. - are seen

in Section 9.5.

Discussion

The angular velocity as well as the acceleration and magnetic estimates are seen to converge

nicely after some settling time. Where the transient behavior of the settling time are strongly
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influenced by the initial estimate of the angular velocity as well tuning and aggressiveness (gain

scale) of the observer. Additionally, are this observer highly dependent on the torque, τ, input

model. Nevertheless, results presented above motivates to further investigate the external forces

and moments acting on the bird in order to make a more detailed and accurate torque input

model. Including external forces contributions on both pitch and yaw moment. In the rest the

simulation study are τ assumed known without any restrictions.

Another interesting aspect using such as approach are that the noisy measurements as well

as the drift property of low cost MEMS rate gyros utilized in this system can be replaced with

these less noisy estimates. Moreover, the Magnis observer’s ability of estimating all the body-

fixed measurements show that even the magnetometer and accelerometer measurements could

be substituted by their estimates in the attitude determination of the Developed observer. Fur-

ther investigation of the aspects of this approach are therefore advised.

9.4 SO(3) Confined vs Globally Defined Observer

A small comparison between a attitude estimation on SO(3) and a global attitude estimation

are presented. In order to get fairly comparable results are the algorithms of Grip et al. (2013)

and Grip et al. (2015) used in the comparison. Although these estimation schemes presents

different approaches in estimating the attitude, are they still very comparable. Both observers

introduces the same approach in gyro bias estimation , a two vector measurement observation

for computing the attitude and both observers presents the opportunity of a SO(3) solution.

More precisely a SO(3) solution (Grip et al., 2013) and a solution that converges to SO(3) (Grip

et al., 2015).

The comparison are made by looking at the quaternion error estimate of both observers.

Where the quaternion error angle β3 (See section 2.2.2) are utilized to present the result.

Assuming measurements governed by discontinuous angular roll velocity, p = 20π/180square(2π/60),

and a roll initialization error of 180◦, can it clearly be seen by Figure 9.15 that the SO(3) defined

3This angle is also known as θ in the Euler axis/angle attitude representation
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Figure 9.15: Comparison of globally defined and SO(3) confined attitude estimation. Repre-
sented by the quaternion error angle

estimation endures some unwinding as well a higher initial transient compared to the globally

defined estimation.

Discussion

The result above emphasizes the role of a globally defined attitude estimation when it come to

accuracy. Where discontinuity of the angular velocities measurements cause the unwinding of

the quaternion. This may be the case of a slow sampling rate or temporally loss of measure-

ments. The slow sampling rate situation and unwinding are seen using the experimental data,

which are obtained at 10Hz, resulting in that the locally defined observers endures some small

unwinding. However, it is believed that quaternion unwinding problem are a bigger issue for

attitude control case. See Section 2.2.4 and Bhat and Bernstein (2000) for more details.
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9.5 Comparison of the Attitude Observers

This section presents a comparison of the non-linear observers Grip, Developed and the de-

terministic MEKF filter and the QUEST algorithm. The algorithms heading estimate accuracy

are emphasized, since this is the main concern for the purpose of this system. Nevertheless,

other important aspects or abilities of the observers will also be presented - eg. magnetic distur-

bances. The simulated data are governed by the angular velocity in Table 9.2. Moreover, noisy

measurements and biased gyro are used.

The tuning of the Developed observer are seen in Section 9.3. The Grip tuning in Section

9.2, where the Grip bias parameter bounds are chosen as

Mb = 0.30 Mb̂ = 0.31 (9.12)

which will ensure a parameter projection, ‖b̂‖ ≤ 0.31[r ad/s] . The MEKF are tuned as follows

P̄a0 = diag(0.1, 0.1, 0.1) P̄c0 = 1e−3diag(1, 1, 1) (9.13)

Q = diag(5e−8, 5e−8, 5e−8, 1e−13, 1e−13, 1e,−13 ) (9.14)

and the QUEST tuning are

σ1 = 0.06905 σ2 = 0.1753 (9.15)

Figure 9.16 presents the quaternion estimates of all the algorithms. The Euler angle error

can be seen in Figure 9.17. It can be seen that all of the observer estimate the attitude correctly.

The estimates are quit noisy, which are also expected regarding the high measurement noise.

The Developed attitude observer stands out in noise performance, this are of course due to the

ability to omit the noisy gyro measurement and use the estimates instead. The RMS of the Euler

angle error for all the algorithms are seen in Table 9.3.

The bias estimation of MEKF and Grip can be seen in Figure 9.18. As seen are both methods
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Figure 9.16: Quaternion estimates. Comparing the algorithms of Grip(purple), QUEST(striped,
red), MEKF(striped, yellow) and the developed(green) attitude observer. The actual attitude in
blue

Observer RMS roll error [deg] RMS pitch error [deg] RMS yaw error [deg]
QUEST 0.37◦ 0.25◦ 1.76◦

MEKF 0.34◦ 0.25◦ 1.56◦

Grip 0.27◦ 0.23◦ 1.03◦

Developed 0.18◦ 0.12◦ 0.45◦

Table 9.3: Root-mean-square Euler angle error. Comparing of Grip, QUEST, MEKF and the De-
veloped attitude observer.
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Figure 9.17: Euler angle error. Comparing the algorithms of QUEST(striped, blue),
MEKF(striped, red), Grip(yellow) and the Developed(purple) attitude observer
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Figure 9.18: Grip(striped, yellow) and MEKF(striped, red) Gyro bias estimation compared
against the actual bias. Both methods converge to the actual gyro bias

estimating the drifting gyro bias nicely. As the rest of the estimates are these quit noisy, due to

the high noise level in the estimates. Furthermore, the noise level of the gyro bias estimation are

highly dependent on the scale of ki (Grip) and P̄c (MEKF).

Magnetic Distortions

Now introducing magnetic distortion in the magnetometer measurements, so-called soft iron

effects - orthogonality and scale factor errors. The magnetic distortion are turned on after 100

seconds and turned off after 300 seconds.
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Figure 9.19: Euler angle estimate error. Magnetic misalignment and scale factor are introduced
at 100 seconds and turned off after 300 seconds

Figure 9.19 presents the results of the algorithms ability to handle cases of magnetic distor-

tion. It is observed that the both Grip and the Developed observer have the ability decoupling

the roll and pitch estimates form magnetometer readings making the roll and pitch estimates

unaffected by the magnetic distortion. It is however evident that magnetic disturbance impact

on the yaw estimate are significant for all of the observers.

Now utilizing the corrector-predictor implementation of the observers and the ad-hoc mag-

netic distortion check in Section 6.2 and 6.4, respectively. The threshold constant d are chosen

d = 0.0015. From Figure 9.20 can it be seen that the corrector-predictor formulation and the

ad-hoc magnetic distortion introduce decreases the heading error. However, the roll and pitch
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Figure 9.20: Grip and Developed with As-hoc magnetic disturbance handling, Euler angle esti-
mate error. Magnetic misalignment and scale factor are introduced at 100 seconds and turned
off after 300 seconds

errors increases for Grip. The heading error are reduced with almost 1◦. Grip are able to keep a

fairly constant heading error during the disturbance.

Time Varying Local Magnetic Field

Another factor of concern are the knowledge of the local magnetic field. Although, this is easily

obtained by the WMM, are the knowledge of the current geographical localization (latitude and

longitude) needed. Which aren’t necessarily known, as the bird do not have a GPS.
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Take for instance the example of a seismic operation, mapping the sea floor from Trondheim

and one day straight north at 4 knots. Which certainly could been a case.

Traveling at 4 knots for 24 hours are equivalent to a travel distance of 178 km. Moreover,

a meridian length4 of one degree latitude shift correspond to traveling distance of 111.2 km

on the earth sphere (Osborne, 2013). Which mean that the local magnetic field would change

from mn
f r om = [13772, 604, 49823]T to mn

to = [12907, 589, 50478]T witch corresponded to

a latitude change of 1.5◦.

On the other-hand travelling same distance west at a constant latitude. Where the length of

one longitude degree are given by (Osborne, 2013)

∆Long i tude ≈
π

180
re cos(µ) (9.16)

where re = 6378137m andµ are the current latitude. Seen as Trondheim has a latitude of 63.4297◦,

would this give a longitude change of approximately 3.5 degrees. Resulting in that the local local

magnetic field would change to mn
to = [13624, 247, 49863]T .

The heading error RMS using a local magnetic field of mn
f r om when we are actually have mn

to

are seen in Table 9.4. Where it clearly can is seen that this would affect the heading estimation.

Moreover, traveling north would mainly affect the pitch estimates whereas a longitudinal shift

would have substantial yaw estimate impact5.

Discussion

Looking at the Euler angle errors in Table 9.3 is it seen that the Developed observer has the small-

est RMS and Grip following right behind. Although, improvements could be made with better

tuning, could it be argued that a RMS less or approximately equal to 1◦ are not bad concerning

the high noise levels in the measurements.

A important issue regarding the Developed observer in this section are that the bird are now

4Meridian length is the distance between two points with the same longitude. See Figure 2.1
5The geographical localization would of course be a factor
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Observer RMS Heading (yaw) error [deg]

1.5◦ latitude shift 3.5◦ longitude shift

QUEST 1.90◦ 2.32◦

MEKF 1.58◦ 2.10◦

Grip 1.13◦ 1.81◦

Developed 0.52◦ 1.54◦

Table 9.4: Root-mean-square heading error impact using wrong local magnetic field. Compar-

ing the performance of QUEST, MEKF, Grip and developed attitude observer. The observer as-

sume the local magnetic field at Trondheim. Although the actual operation area are 178 km

north and west from Trondheim

only governed by angular velocity rates and not by external forces acting on the bird. Conse-

quently, the external forces τ are zero, and the bird are seen as a free-rotating rigid body by the

angular velocity observer. Applying external input forces to the system would of course result in

the needed of torque model or measured quantity in order for the observer to work.

The bias estimation of both MEKF and Grip are satisfactory, since both are able to converge

to the drifting gyro bias. Where a trade-off between convergence speed and estimate variance

are made.

Introducing magnetic distortions has a significant impact on the yaw accuracy as seen by

Figure 9.19. In addition are it verified that the Developed algorithm are decoupling the roll and

pitch estimates from the magnetic measurements. This are also seen for the Grip observer.

Utilizing the predicted states during magnetic disturbances decreases the heading estimate

errors, the roll and pitch errors on the other hand increases for Grip. A fairly constant heading

error are obtained by Grip during the disturbance - the gyro bias are kept constant during the

disturbance. Further, the switching criterion (6.8) are highly dependent on the noise scale of the

magnetic measurements. A smaller d could be used with less noisy measurement. Resulting in

a tighter band and that magnetic disturbances are detected more easily and earlier.
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As expected, are the effect of a time varying local magnetic field contributing in the heading

estimation accuracy. The results in Table 9.4 view that approximately 1◦ increase in the heading

error for all the observers. Although these results would be time varying in it self, depending on

the geographical localization, are the errors nevertheless noticeable. On the contrary using GPS

obtained localization at the boat or the tail-buoy, could WMM magnetic field values be passed

to the bird on a semi-regular basis. Increasing the accuracy.

Regarding sensor noise and the resulting noisy estimates. The noise levels are quite high,

and no filtering of the measurement are applied. The reason being the interest in the perfor-

mance of the algorithms on the raw data from the provide IMU. In practise would low pass

filtering and/or a less noisy IMU be preferable.



120 CHAPTER 9. SIMULATIONS RESULTS



Chapter 10

Experimental Tests / Water Tests

The following sections presents results related to the estimation algorithms on real data. Raw

data collected during two days of experimental water tests with the bird. Different motions,

orientations and and speeds where tested. A total of 1.60 kilometer of seismic streamer cable

and six birds were used under the tests. The bird data presented here are from a bird mounted

on the seismic streamer approximately 400 meters from the aft of the boat. The raw IMU data are

presented in Figure 10.2 and 10.3, representing day one and two respectively. A fairly constant

heading were keep during the first day, apart from a 180◦ turn, and Bird rolling and wing yawing

were the main test concern. The main focus on the second day where turning or yawing of the

bird. This was done by large boat circle turns.

The data collected were uncalibrated raw data, so some calibration of the data where there-

fore necessary. The results of this calibration are presented in Chapter 11. Another factor where

the sampling of the data. The sampled data were logged on a computer onboard the boat. Al-

though the sampling in the embedded system is quite fast, were the computer sampling quite

slow. Providing samples approximately at 10Hz. Moreover, due to no-consistent sample periods

- handshake problems and such - were the samples clocked with the computer clock providing

a dynamic sample period. Another issue related to the slow sample rate are the reliability of the

gyro samples, since fast dynamics may be lost. Comprehensive and detailed conclusions could

therefore not be made. Nevertheless, results regarding the observer’s performance on this data

121
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Figure 10.1: Field test. Tail-buoy in left photo (mounted on the aft of the cable), the Bird
mounted on the cable in the up-right photo and the seismic cable winch in the down-right
photo.
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Figure 10.2: Experimental test, day one. Obtained raw sensor data

- calibrated - can be seen in Section 10.1.

10.1 Attitude Estimation

Results related to attitude estimation using the observers presented in Chapter 7 will be pre-

sented here.

The same inertial vectors are used under these tests as for the simulation studies, the local

magnetic field at Trondheim - obtained from WWM - and a constant acceleration. This should

be sufficient for the purpose of this section. However, see Section 9.5 for details concerning time

varying local magnetic field.

Since much of the dynamic behavior are lost due to the slow sample period. Would for

instance the PE condition, which are thought to be present, be lost. The basis of this PE as-
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Figure 10.3: Experimental test, day two. Obtained raw sensor data

sumption are made on the premises of bird vibration in a fluid flow and constantly shifting wing

angle. Single vector observer results will still be presented. The Developed observer would also

be influenced by the loss of dynamic behavior, as the roll torque model(4.30) are highly affected

by the system dynamics1 (see Section 4.4.2). As previously mentioned, unknown coefficients

do also contribute to the accuracy of the method, and the method are therefore omitted in this

section.

Figure 10.4 and 10.5 present the results regarding the attitude estimation capability of the

linear mapping and tilt compensation(LinearMapping), QUEST, MEKF and the Grip algorithm.

As one can observe do non-linear Grip method stand out, producing good filtering capabilities

and accurate estimation compared to the MEKF. The LinearMapping and QUEST introduces

no filtering and this is clearly seen by the artifices in the estimates. Taking a closer look at the

standard deviation (std), when yaw is fairly constant, are it seen that QUEST and LinearMapping

has std of 2.75◦, MEKF 1.19◦ and Grip 0.97◦.

1Pitch and yaw would of course have to have a separate torque model to get an full attitude estimation.
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Figure 10.4: Field test Midøy day 1. Euler angle estimation, LinearMapping(striped, blue),
QUEST (striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure 10.5: Field test Midøy day 1 zoom. Euler angle estimation, LinearMapping(striped, blue),
QUEST(striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure 10.6: Field test Midøy day 1. Gyro bias estimation, MEKF(striped, red) and Grip(blue)

The bias estimates of MEKF and Grip are seen in Figure 10.6. One can observe that these

estimates do not coincide. However, this is though to be due to the loss of dynamic behavior.

Now looking at the results concerning single vector estimation. The Batista method are

benchmarked against the MEKF solution, in Figure 10.7. The roll and pitch estimates are nicely

estimated. Heading on the other hand are not estimated correctly. The most plausible reason

being the loss of dynamics and the noisy drifting gyro measurements.

Additional result’s, such as RMS Euler angles, quaternion estimates and estimation using

data from the second day are seen in Appendix D.
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Figure 10.7: Field test Midøy day 1. Euler angle estimation using single vector observation,
MEKF(striped, yellow) and Batista(striped, light blue)
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Discussion

As described in the introduction for this chapter would a comprehensive and detailed conclu-

sion nor analysis be made due to the slow sample rates. However, some aspects are still avail-

able for discussion. Namely the validity of the implemented algorithms and challenges related

to these.

Firstly some observations that may be of interest. From Figure 10.2 it is observed that the

angular velocity actually excised the limits - ωmax = 30 deg/s - of a stable system. This situation

are seen when the bird undergoes rapid roll motions. It’s also seen, by looking at Figure 10.2,

that during the 180◦ heading shift that fairly large roll motions occur. Which are probably due

to that the bird are trying to stabilize itself, as the water-current angle of attack changes.

Another factor concerning the data are that no signal processing are utilized, only raw data.

However, in a practice should some low level signal processing be utilized. See Section 6.3 for

common signal processing techniques.

The LinearMapping are again verified as the most noisy and deviating method. Significant

estimate errors occur during high angler velocity, producing large heading errors. Although

much smaller, are heading errors in cases of high angular velocity also seen in the QUEST, and

consequently the MEKF, method. The reason being the high state coupling, leading to that roll

and pitch errors influencing the heading estimates. Grip do not suffer from this coupling, as

verified in Section 9.5, and produces yaw estimates unaffected by the roll and pitch estimates.

Moreover, Grip has the smallest heading std at 0.97◦.

The Batista observer aren’t preforming satisfactory. Roll and pitch estimates works fine, yaw

not so much. Again, loss in fast dynamics my be a problem. Increasing the sample rate and

running more tests would be of great interest.

It is also worth mentioning, that using the calibrated data, including bias scale and non-

orthogonal errors, significantly reduces the errors in the estimates compared to calibrated data

using only bias and scale error correction. See Section 11 for further discussion.
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Chapter 11

Calibration

The following sections presents results and discussion related to the online calibration proce-

dures from Section 4.2. Both by simulation - verification - and on the experimental collected

data.

11.1 Calibration Simulation

In order to validate the calibration method for data collected during realistic bird behavior, are

some simulations conducted. Due to the constraints on the bird orientation under operation

will a full six point tumble test not be possible. However, 360◦ bird roll and ±20◦ wing yaw

is possible. A magnetometer calibration are utilized to verify the calibration procedures. The

measurements are subjected to constant bias, scale factor and orthogonal errors and measure-

ment noise. The results of the calibration compared to their true values are seen in Table 11.1.

As seen from table are the scale-factors and non-orthogonal errors estimated nicely. The

bias estimates by and bz are also determined. However, the estimation of bx are seen highly

dependent on the scale of the pitching, and do not give consistent estimates. A solution would

of course be to utilize a more complex maneuver. Although this could be difficult in practise.
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bx by bz ξx ξy ξz γx y γxz γy z

True 80 30 600 3.0000 0.0700 0.8900 0.1000 0.0500 0.0500

Estimate 90.7925 29.9849 600.1781 0.3006 0.0701 0.8902 0.1000 0.0500 0.0500

Table 11.1: Magnetometer calibration estimates, compared to their true values. Using ring
formed data, 360◦ rolling and pitch less then 15◦

On the contrary, preforming multiple calibrations on the same data set to get an average of

the bx estimates could be a more suitable solution. Since the estimation converges so rapidly

shouldn’t this be a problem. Only three iterations are needed for the estimates to converge on

the simulated data set.

Moreover, the inclusion of the Backtracking Line Search algorithm into the Alonso and Shus-

ter (2002) method, introduce a significant reduction in the convergence rate - the number of

iterations.

11.2 Calibration of Experimental Data

The Gauss-Newton method in Section 4.2 are applied to the batch of logged experimental data.

Were the bird is rotated and some wing yawing is done (Raw Data from the first day). Multiple

calibrations are conducted and the mean calibration parameters are seen in Table 11.2 Further,

bx [µT] by [µT] bz [µT] ξx ξy ξz γx y γxz γy z

Estimate -0.0395 -1.7003 2.2985 1.2225 1.3153 1.2355 -0.0084 -0.0103 0.0024

Table 11.2: Magnetometer calibration estimates, experimental data.

a average of three iterations where used to obtain an estimate. The calibrated magnetometer

measurements with the raw measurements are seen in Figure 11.1. Where one can clearly see

the calibration centering and re-scaling of the measurements.

Calibration of the accelerometers are also conducted. The calibration are done using the

gravity vector as reference. Producing the calibration parameters in Table 11.3. A total of 17
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iterations where required to obtain the desired accuracy.

bx by bz εx εy εz βx y βxz βy z

Estimate -0.0740 0.1664 0.7028 0.9948 0.9931 -0.0069 -0.0028 -0.0182 0.0022

Table 11.3: Accelerometer calibration estimates, experimental data.

Discussion

As verified in Section 11.1 do the calibration method presented in Section 4.2 produce reliable,

fast and accurate estimates of the bias, scale factors and non-orthogonal errors in the measure-

ments. Moreover, as briefly discussed in Section 10.1 do the attitude estimation using calibrated

data - bias, scale and orthogonal - significantly reduce the noise levels and deviations in the

estimates. Which indicates that the estimated errors in Table 11.2 and 11.3 are quite correct.

Inclusion of the Backtracking Line Search are also seen advantageous.

Although calibration of the sensor not are the main issue of this thesis are allot of work put

into the implementation and verification of the calibration. As this proved itself to be more cum-

bersome than first anticipated. Especially the calibration of the non-orthogonal errors. Initially

where the method of Vasconcelos et al. (2011) attempted - at least the scale and bias part - since

this was initially thought to be a more intuitive method. Although the calibration of the bias

and scale factor using this approach was quite straightforward, did the inclusion of the non-

orthogonal error not give satisfiable results (this could of course be some implementation faults

made by the author). Nevertheless, calibration of the sensor measurements using the a ellipsoid

model are interesting. For instance: Magnetic distortion could maybe be detected through the

obtained ellipsoid model. By checking at each measured sample whether the sample lie on the

surface of the estimated ellipsoid, deviations would then mean a magnetic distortion!
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Figure 11.1: Calibrated magnetometer measurements (dotted, red) compared to the raw mag-
netic measurement(dotted, yellow). The estimated IMU-sensor axis in black, magenta and
green.
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Chapter 12

Overall Discussion

Sensor Calibration, Faults and Handling

Assumptions regarding the knowledge of the local magnetic field are evident in all the non-

linear observes. Where the WWM are used to get these quantities. However, the geographical

localization are needed to obtain the WWM magnetic field. Mahony et al. (2008) are presenting

a method of estimating the direction of the local magnetic field. However, this method are not

a proven robust method for obtaining the magnetic field. Increased attitude and heading error

could then be a issue. It are therefore recommended to have a semi-regular update of the local

magnetic field from the WWM. Either by storing the WWM in the bird and give longitude and

latitude updates or by supplying magnetic field updates directly. The geographical localization

could be obtained by the ship dragging the seismic cables, or a tail-buoy mounted GPS.

The IMU measurement accuracy are a major concern for the accuracy of the attitude and

heading estimates. Providing a higher grade gyro (eg. FOG) or even a more accurate and ex-

pensive MEMS gyro would enable the use of the Batista method, using only a single vector to

estimate the attitude. Which again will mean that the magnetic disturbances wouldn’t be a prob-

lem. However, increasing the IMU-sensor accuracy would contribute to substantial overall cost

of such a bird system - numerous birds are mounted at the seismic cable -, making this to a

undesirable solution?
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Calibration of the sensor measurements would of course reduce error sources. However,

some time-varying magnetic disturbances would still be present. One could of course regularly

calibrate the magnetic measurements by the method in Section 4.2, which are proven to be

a robust and reliable calibration method. On the other-hand using a real-time method such

as Crassidis et al. (2005) to update the magnetometer calibration error could be beneficial. A

drawback would then be the computational burden. (Moreover, it should be a short transition

from the batch based method in section 4.2 to the real-time Crassidis et al. (2005) method, as

these are made under the same assumptions and use the same error model.) Contrary, keeping

with a batch based method, for instance a ellipsoid fitting method could maybe be exploited to

check for magnetic distortions. See further discussion in Section 11.

Utilizing the corrector-predictor formulation are advantageous. During measurement loss

or magnetic disturbances as well as measurement synchronization. For instance during mag-

netic disturbances, using the switching-criterion (6.4) to turn on and off the estimate correction.

However, the results of the (6.4) handling did not give substantial benefits. Noise levels and un-

certainty in the measurements was a major contributor. Further analysis of a switching criterion

are advised.

Both the Grip and the Developed observers have clear advantages in term’s of their decou-

pling abilities. Since good roll and pitch estimation are obtained independently from magnetic

disturbances, can a robust bird stability be obtained and additional heading errors be avoided.

MEKF and the Non-Linear Observers

As verified do the Gibbs vector error representation compared to the unit quaternion error rep-

resentation give a more robust solution for the MEKF. Further, the overall MEKF algorithm may

be more robust, or equivalent methods using time-varying gains. However, the computational

burden of solving the Ricatti equations and similar equation are tremendous compared to a

fixed gain non-linear observer. Utstumo and Gravdahl (2013) view this by comparing the non-

linear Mahony et al. (2008) observer with the MEKF, resulting in that the non-linear Mahony

observer were running more than ten times faster then the MEKF.
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The global property of the Grip method have proven itself to give excellent performance.

Enabling good filtering and accurate estimates. Easy to tune and enables both a single and

multiple vector observations. Although the single vector solution only are applicable under PE

and for small periods.

The Developed attitude observer show promising results regarding attitude estimation and

accuracy. Producing accurate estimates, even with a low-cost IMU. The main reason being the

omission of the noisy and biased gyro measurements. However, a measurement or a model

of the external torques are evident. The Magnis angular velocity observer’s ability of also esti-

mating all the body-fixed measurements even show that the magnetometer and accelerometer

measurements could be substituted by their estimates in the attitude determination. Further

stability analysis of substituting these estimates into the injection term of the Developed ob-

server( or a equivalent method) are then needed.

A detailed system model would be preferable, both in simulation and for testing of the De-

veloped observer. Moreover, considering a robust attitude solution could also a system model

contribute to a more fault-tolerant design. Fusing and switching between using a model based

approach and a measurement fusion approach.
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Chapter 13

Conclusion

Attitude observers using IMU-sensor fusion have been considered in this master thesis. Multiple

observer’s and strategies are tested and studied, looking for a suitable and accurate attitude

observer for an underwater steering device. Fault cases and situation are emphasized.

To get as accurate results as possible with the current system. Are accuracy subjects rang-

ing from attitude representations, discretization method’s, signals processing, fault handling,

calibration and different attitude observer also considered.

All the attitude observers that are studied are discretized and implemented, using a corrector-

predictor formulation and a object-oriented implantation structure in MATLAB. A good and

broad simulation model are developed in Simulink. Providing multiple test scenarios and differ-

ent input strategies. Comparison of several non-linear attitude observer are made and bench-

marked against the MEKF. Different error representations in the MEKF are also compared. Veri-

fications and tests of the algorithms are done, both with simulated and experimental data.

The author have also proposed a new - SO(3) confined - attitude observer. By fusing a an-

gular velocity observer and a attitude correction term. Obtaining a locally exponential stable

attitude observer.

A simple system roll model are designed and tested. Utilizing general fluid dynamics and

foil theory.
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As for the conclusion of a robust and accurate attitude observer. Is it advised to fuse a bird

model with the Developed attitude observer and/or the Grip observer. Seen their decoupling

abilities are evident in a robust bird stabilization. Furthermore, the corrector-predictor formula-

tion, the single and multiple vector fusing ability of Grip are also advantageous in a fault-tolerant

design.



Chapter 14

Further Work

• Investigate stability of fusing estimated body vector measurements - obtained by the Mag-

nis alg. - into the Developed attitude observer’s correction term.

• Investigate and further develop a model of the external forces acting on the bird. Con-

tributing to a more accurate torque input model for the Developed attitude observer. Bet-

ter fault-tolerance could also be obtained, through a switching mechanism between the

IMU sensor fusion and a Bird model in fault cases.

• Implement and test the observer on the Bird embedded system.

• Investigate PE assumption related to a real bird motion. If PE, could a single vector obser-

vation be utilized.

• Investigate calibration methods to obtain a estimate of the measurement ellipsoid. Which

could be the basis of a magnetic distortion switching criterion. Moreover, further investi-

gate magnetic distortion compensation methods and/or switching criteria.
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Appendix A

Acronyms

NTNU Norges Teknisk Naturvitenskapelige Universitet - Norwegian University of Science and

Technology

EoM Equations of Motion

PE Persistent Excitation

AUV Autonomous Underwater Vehicle

SO(3) Special Orthogonal group of order 3

GNSS Global Navigation Satellite System

INS Internal Navigation System

KF Kalman Filter

EKF Extended Kalman Filter

MEKF Multiplicative Extended Kalman Filter

QUEST QUaternion ESTimator

PE Persistent-Excitation
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GES Globally exponentially stable

LES Locally exponentially stable

CG Crouch-Grossman

RK Runge-Kutta

RMS Root-Mean-Square

std Standard deviation

3D Three-dimensional

2D Two-dimensional

DP Dynamic Positioning



Appendix B

Assumptions, Definitions

The following appendix contains assumptions and attentional aspects related to the different

observers and the calibration procedures.

B.1 Assumption 1

There exist a constant cobs > 0 such that ‖w n
i ×w n

j ‖ ≥ cobs , i , j ∈ 1, ..,k for each t ≥ 0. Further-

more, w represent a arbitrary vectors. Under this assumption do the set

[
w i

1

‖w i
1‖

S(w i
1)w i

2

‖S(w i
1)w i

2‖
S2(w i

1)w i
2

‖S2(w i
1)w i

2‖

]
(B.1)

where i ∈ {n,b}, provides an orthogonal basis in R3. (Grip et al., 2015; Batista et al., 2014b).

B.2 Assumption 2

The gyro bias b is constant, and there exist a known Mb > 0 such that ‖b‖ ≤ Mb . (Grip et al.,

2015)
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B.3 Assumption 3

The gyro ωb(t ) and its derivative ω̇b(t ) are bounded for all time. (Batista et al., 2014b; Magnis

and Petit, 2015b)

B.4 Definition 1

The definition of persistent excitation (PE). A signal that is satisfying

∫ t+T

t
u(τ)u(τ)T dτ≥ εI ∀t ≥ 0 (B.2)

for some ε, T ≥ 0. Is said to be PE. This is a widely used criterion in adaptive schemes were

parameter convergence is one of the objects.

B.5 Theorem 3.5 in (Nocedal and Wright, 2006)

Suppose that f is twice differentiable and that the Hessian ∇2 f (x) is Lipschitz continuous(see

(A.42)) in a neighborhood of a solution x at which the sufficient conditions (Theorem 2.4) are

satisfied. Consider the iteration xk+1 = xk +pk , where pk is given by (3.30). Then

(i) if the starting point x0 is sufficiently close to x∗, the sequence of iterates converges to x∗ ;

(ii) the rate of convergence of {xk } is quadratic; and

(iii) the sequence of gradient norms {∇ fk } converges quadratically to zero.



Appendix C

Simulation Parameters

Simulation parameters utilized in the simulation are presented here. The magnetic, acceleration

and angular rate specifications is based on the IMU data specs of the provided IMU and typical

parameter errors retrieved from Vik (2014). The bird parameters are based on parameters given

in the master thesis of (Barheim, 2009) and project report of Torseth et al. (2014). Furthermore,

the lift and drag coefficients are given on the basis of typical values given in (Newman, 1977)

with Reynolds number Rn < 106

Initial conditions

latitude (Trondheim) 63.4297 [◦]

longitude (Trondheim) 10.3933 [◦]

Sampling time fs = 10 [Hz] ⇒ ts = 0.1 [s]

Earth angular rate (WGS-84) ωe = 7.292115e−5

Quaternion attitude q0 = [1, 0, 0, 0]T

Water density ρ = 1025 [Kg/m3]

Water in-flow velocity U = 4 [knots] ≈ 2.0576 [m/s]

Table C.1: Initial simulation parameters
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Bird parameters

Mass m = 10 [Kg]

Wing length l = 0.4 [m]

Inertia Ix = 1/2ml 2 [kg m2]

Projected wing area A = 0.12 [m2]

Lift coefficient CL = 0.5

Drag coefficient CD = 0.00

Max angular rate ωmax = 30 [deg/s]

Hydrodynamic Quadratic drag coefficient Kφφ = 47

Hydrodynamic Linear drag coefficient Kφ = 40

Hydrodynamic restoring coefficient Ks = 0.07

Added mass Kφ̇ = 40

Lever arm rbi r d
wi ng = [−0.15,−0.15si n(|α|),0.15]T [m]

Table C.2: Bird simulation parameters
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Accelerometer

Local gravity vector an = [0, 0, 9.81]T [m/s2]

Measurement noise (from IMU spec) w1 = 4e−3

Bias dot noise w2 = 1e−6

Scale factor error noise w3 = 1e−6

Misalignment error noise w4 = 1e−6

Initial scale factor error ε= 1e−6

Initial misalignment error angles β= 1e−6

Initial bias bacc = 1e−3

Gyroscope

Initial angular rate ωb = [0, 0, 0]T

Measurement noise (from IMU spec) w1 = 0.005pi /180

Bias dot noise w2 = 1e−6

Scale factor error noise w3 = 1e−6

Misalignment error noise w4 = 1e−6

Initial scale factor error κ= 1e−6

Initial misalignment error angles α= 1e−6

Initial bias bg yr o = 1e−3

Magnetometer

Local magnetic field mn = [13772, 604, 49823]T [nT]

Measurement noise (from IMU spec) w1 = 8e−3

Bias dot noise w2 = 1e−7

Scale factor error noise w3 = 1e−5

Misalignment error noise w4 = 1e−5

Initial scale factor error ξ= 1e−2

Initial misalignment error angles γ= 1e−2

Initial bias bmag = 10e−3

Table C.3: IMU simulation parameters
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Appendix D

Additional Results

D.1 Developed observer - Correction Term Comparison

In the Developed observer are the correction term (3.29) utilized. Although, the more standard

correction termσ=∑n
j=1 k j vb

j ×vn
j could also be applied. However, a ill-condition attitude prob-

lem would greatly benefit of using (3.29). To clarify this are a small comparison presented.

A ill-conditioned attitude problem, would be when the vectors utilized in the attitude de-

termination have almost the same direction. Assuming that the gravitational and geomag-

netic vector are utilized, are Trondheim a good candidate for a ill-conditioned problem - m̄ ≈
[0.2664,0.0117,0.9638]T and ā = [0,0,1]T .

The simulated data are governed by the angular velocity in Table 9.2. Both correction terms

are provided with the same non-high gains (k1 = 1,k2 = 0.3) to make to results comparable. As

seen from Figure D.1 are yaw error much higher for the standard correction term. Increasing the

gains for the standard correction term (k1 = 7,k2 = 7) would of course help, however amplifying

the estimate variance → more noise sensitive.
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Figure D.1: Comparison of different injection terms in the Developed observer.
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D.2 Additional Field Test Results

Results from day two and additional results from the field test during day one are presented.

First Day

Conversion of the Euler angles estimates to the {bi r d}-frame are seen in Figure D.2. The attitude

estimates, using quaternion, are given in Figure D.3, whereas the RMS Euler representation are

viewed in Figure D.4. The estimates from the auxiliary body vector observer, of Batista, gave the

normalized acceleration estimates seen in Figure D.5

Second Day

Quaternion estimates are given in Figure D.7, whereas the Euler angle estimates and RMS Euler

angle and {bi r d}-frame euler angles are shown in Figure D.6 and D.9 respectively. MEKF and

Grip gyro bias estimation are viewed in Figure D.10
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Figure D.2: Field test Midøy day 1. Euler angle estimation, converted to the Bird frame, linear
mapping(striped, blue), QUEST(striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure D.3: Field test Midøy day 1. Quaternion estimation, QUEST(striped, blue), MEKF(striped,
red), Grip(yellow) and Batista(striped, green)
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Figure D.4: Field test Midøy day 1. Euler angle estimation RMS, linear mapping(striped, blue),
QUEST(striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure D.6: Field test Midøy day 2. Euler angle estimation, LinearMapping(striped, blue),
QUEST (striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure D.7: Field test Midøy day 2. Quaternion estimation, QUEST(striped, blue), MEKF(striped,
red), Grip(yellow) and Batista(striped, green)
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Figure D.8: Field test Midøy day 2. Euler angle estimation RMS, linear mapping(striped, blue),
QUEST(striped, red), MEKF(striped, yellow) and Grip(purple)
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Figure D.9: Field test Midøy day 2. Euler angle estimation, converted to the Bird frame, linear
mapping(striped, blue), QUEST(striped, red), MEKF(striped, yellow) and Grip(purple)
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Simulink Model

Overviews over the Simulink simulation model are presented. Figure E.1 show the IMU model.

The gyro model, Figure E.2, are governed by the bird angular velocity, sensor noise, bias, scale

factor and misalignment angles. The magnetometer model, Figure E.3, governed by the quater-

nion attitude and a constant magnetic field, then adds sensor noise, bias, scale factor and mis-

alignment angles. The same goes for the accelerometer model, Figure E.2, are governed by the

quaternion attitude, gravitational acceleration and centripetal acceleration, and adds sensor

noise, bias, scale factor and misalignment angles. The kinetic, Figure E.5, and kinematic, Figure

E.6, model produce the quaternion attitude by input torque and angular velocity. The rest of

model subsystems are omitted to to space.
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Figure E.1: IMU model.

Figure E.2: Accelerometer model
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Figure E.3: Magnetometer model

Figure E.4: Gyroscope model

Figure E.5: Kinetic model
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Figure E.6: Kinematic model.
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