
A TRANSACTION
PROCESSING SYSTEM
FOR SUPPORTING MOBILE
COLLABORATIVE WORKS

Thesis for the degree philosophiae doctor

Trondheim, October 2006

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

Hien Nam Le

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Thesis for the degree philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Hien Nam Le

ISBN 82-471-8059-6 (printed version)
ISBN 82-471-8058-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2006:147

Printed by NTNU-trykk

To my wife ANH THU and son TAC TRI

 3

Preface

This is a doctoral thesis submitted to the Department of Computer and Information
Science (IDI), Norwegian University of Science and Technology (NTNU), in partial
fulfillment of the degree of Doktor Ingeniør (PhD). The work has been carried out at the
Database Systems Group in the years 2001-2005. The doctoral thesis was done in the
context of the MObile Work Across Heterogeneous Systems (MOWAHS) project. The
MOWAHS project is sponsored by the Norwegian Research Council’s IKT 2010
programme and the Department of Computer and Information Science, NTNU.

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Mads Nygård for the
enormous time and effort that he spent with me during my PhD study. This work could
not have been done without his excellent guidance, advice, encouragements and
inspirations.

I would also like to thank the members of the MOWAHS project: Professor Reidar
Conradi, Heri Ramampiaro, Carl-Fredrik Sørensen, and Alf Inge Wang for their valuable
comments and helpful discussions on my research. I would further like to thank
graduated students Rune Høivik and Gunnar Gauslaa Bergem for their contributions to
the implementation of the mobile data sharing system.

I would even like to thank all the colleagues at the Database Systems group for
supporting my work and research. I would further like to thank the technical and the
administrative staffs at IDI for providing essential assistance.

I would finally like to thank my family, especially my father, for their constant
encouragement. And last but not least, I express my deepest thanks to my wife Anh Thu
and our son Tac Tri for their great love and inspiration.

July 2006
Hien Nam Le

 4

 5

Abstract

The theme of this research is mobile transaction processing systems, focusing on versatile
data sharing mechanisms in volatile mobile environments.

The rapid growth of wireless network technologies and portable computing devices has
promoted a new mobile working environment. A mobile environment is different from
the traditional distributed environment due to its unique characteristics: the mobility of
users or computers, the frequent and unpredictable disconnections of wireless networks,
and the resource constraints of mobile computing devices.

On the one hand, the mobile environment promotes a new working model, i.e., people
can carry out their work while being on the move. The environment for accessing and
processing information is changing rapidly from stationary and location dependent to
mobile and location independent. On the other hand, these unique characteristics of the
mobile environment pose many challenges to mobile transaction processing systems,
especially in terms of long delaying periods, data unavailability and data inconsistency.

Many research proposals that focus on supporting transaction processing in mobile
environments have been developed. However, there are still major issues that have not
been completely solved. One of the problems is to support the sharing of data among
transactions in volatile mobile environments. Our solution is to provide the mobile
transaction processing system with flexible and adaptable data sharing mechanisms that
can cope with the dynamic changes of the surrounding environmental conditions while
ensuring data consistency of the database systems.

The results of our research consist of three important contributions:

• The first contribution is a versatile mobile data sharing mechanism. This is achieved

by the concepts of the mobile affiliation workgroup model that focuses on supporting
mobile collaborative work in the horizontal dimension. The mobile affiliation
workgroup model allows mobile hosts to form temporary and dynamic mobile
workgroups by taking advantage of wireless communication technologies, i.e., the
ability of direct communication among nearby mobile hosts. The data sharing
processes among transactions at different mobile hosts are carried out by shared
transactions, called export and import transactions. These shared transactions interact
through a mobile sharing workspace, called an export-import repository. Data

 6

consistency of the database systems is assured by either serialization of transactions
or applying user-defined policies. Our mobile data sharing mechanism provides an
adaptable way for increasing data availability, while taking into account all the
important characteristics of mobile environments, which are: the mobility of
computing hosts, the frequent and unpredictable disconnections of wireless networks,
and the resource constraints of mobile computing devices. Therefore, it has the ability
to increase the throughput of mobile transaction processing systems.

• The second contribution is a data conflict awareness mechanism that supports mobile

transactions to be aware of conflicts among database operations in mobile
environments. The data conflict awareness mechanism is developed based on the
concepts of the anchor transaction that plays the role of a proxy transaction for local
transactions at a disconnected mobile host. With the support of the data conflict
awareness mechanism, the mobile transaction processing system has the capacity to
minimize delay of transaction processes and to enforce consistency of the database
systems.

• The third contribution is a mobility control mechanism that supports the mobile

transaction processing system to efficiently handle the movement of transactions in
mobile environments. We distinguish two types of transaction mobility in accordance
with: (1) the movement of mobile hosts through mobile cells, and (2) the movement
of mobile hosts across mobile affiliation workgroups. The mobility of transactions
through mobile cells is handled by movement of the anchor transaction. While the
mobility of transactions across mobile affiliation workgroups is controlled by the
dynamic structure of export and import transactions.

We have developed a mobile transaction processing system for MOWAHS. Especially,
we have successfully designed, implemented, and tested several important system
components such as the mobile locking system and the mobile data sharing system.

 7

Table of Contents

Preface ...3

Abstract ...5

Table of Contents ..7

List of Figures..13

List of Tables ...17

PART I BACKGROUND and ORIENTATION...19

Chapter 1 Introduction ...21

1.1 Motivation ...21

1.1.1 An application example ..21
1.1.2 Challenges of transactions in mobile environments23

1.2 Research questions...24
1.3 Research approach ...25

1.3.1 Research methodology ...25
1.3.2 Research plans of this thesis...25

1.4 Research environments ..26
1.5 Requirements ...26

1.6 Publications ...27
1.7 Research contributions ...29

1.8 Organization of the thesis...30

Chapter 2 Transaction Processing..33

2.1 Database and transaction concepts ...33

 8

2.1.1 Database transactions ..33
2.1.2 The ACID properties ..34

2.1.3 Concurrency control of transactions...35
2.1.4 Recovery concepts ..41

2.2 Transaction processing systems..43
2.2.1 Essential components of a transaction processing system43

2.2.2 Distributed transaction processing systems ..45
2.3 Summary ...47

Chapter 3 Requirements for Mobile Transaction Processing Systems49

3.1 Introduction ...49

3.2 Characteristics of mobile environments..50
3.2.1 Mobile hosts...50

3.2.2 Wireless networks...51
3.2.3 Computing devices ...52

3.2.4 The behavior of mobile hosts in mobile environments.............................53
3.3 Transaction processing in mobile environments ...56

3.4 Architecture of mobile transaction environments..57
3.5 Characteristics of mobile transactions ..59

3.6 Requirements of transactions in mobile environments61
3.7 Summary ...64

Chapter 4 State-of-the-Art Survey ...67

4.1 Introduction ...67

4.2 Traditional transaction models ...67

4.2.1 Flat transaction model ...68

4.2.2 Nested transaction model ...68
4.2.3 Multilevel transaction model ..69

4.2.4 Sagas transaction model...70
4.2.5 Split and Join transaction model ..71

4.3 Mobile transaction models ...72
4.3.1 Reporting and Co-transaction model..72

4.3.2 Pro-motion transaction model ..73

 9

4.3.3 Two-tier transaction model...75
4.3.4 Weak-Strict transaction model..75

4.3.5 Pre-write transaction model ...76
4.3.6 Pre-serialization transaction model..77

4.3.7 Kangaroo transaction model ..79
4.3.8 Moflex transaction model ...80

4.3.9 Adaptable mobile transaction model...82
4.4 Issues related to mobile transaction processing systems83

4.4.1 Mobile database replication ...83
4.4.2 Advanced transaction commitment protocols..84

4.4.3 Mobile data sharing mechanisms ...85
4.5 Survey of commercial products..85

4.5.1 Microsoft SQL Server CE ...86
4.5.2 Oracle Lite ...86

4.5.3 IBM DB2 Everyplace..87
4.6 Conclusions ...88

PART II CONCEPTS, MODELS and FORMALIZATION....................................91

Chapter 5 Mobile Transaction Processing System: Concepts and Models93

5.1 Introduction ...93
5.2 Extending the support for mobile collaborative works....................................94

5.2.1 Motivating scenario..95
5.2.2 Interesting observations ...98

5.3 Mobile affiliation model for supporting mobile collaborative works.............100
5.3.1 Extending workgroup model for mobile work environments.................. 101

5.3.2 Mobile affiliation workgroups ..103
5.3.3 Mobile sharing workspaces ..104

5.3.4 Export and import transactions ..105

5.4 Discussions of mobile transaction properties ..110

5.4.1 Domains of data consistency ..110
5.4.2 Shared transactions..111

5.4.3 Standard transactions...115

 10

5.5 Management of mobile data sharing mechanisms...120
5.5.1 Operational model of the mobile transaction processing system120

5.5.2 The anchor transaction...121
5.5.3 Distinguishing between sharing data states and sharing data status124

5.5.4 Sharing data states...126
5.5.5 Sharing data status...127

5.5.6 Recursive sharing...130
5.6 Management of mobile sharing workspaces ...131

5.6.1 Managing the physical distribution of the export-import repository......131
5.6.2 Data management in the export-import repository................................132

5.7 Management of transaction execution behavior ..133
5.7.1 Managing the execution dependency ..134

5.7.2 Managing the structural dependency..136
5.7.3 Managing the mobility of transactions..137

5.8 Conclusions ...139

Chapter 6 Formalizing the Mobile Transaction Processing System141

6.1 Introduction ...141

6.2 Management of mobile transaction dependencies ...143

6.2.1 The transaction dependencies...145
6.2.2 The execution constraint...147

6.2.3 Managing transaction dependencies and execution constraints148
6.3 Data hoarding stage..149

6.3.1 Data caching modes ...149
6.3.2 Shared data in a mobile environment ...153

6.3.3 Caching algorithm for the anchor transaction154

6.3.4 Supporting conflict awareness..158

6.4 Mobile data sharing stage...160
6.4.1 Management of sharing data states ..160

6.4.2 Management of sharing data status ..171
6.4.3 Redirect sharing operations ...181

6.5 Disconnected transaction processing stage ...183
6.5.1 Constraint and non-constraint cached data ..183

 11

6.5.2 Local transactions operate on non-constraint cached data184
6.5.3 Local transactions operate on constraint cached data185

6.5.4 The aborts of delegator transactions ..190
6.6 Transaction integration stage..191

6.6.1 Handling the abortion and abort dependencies of transactions.............193
6.6.2 Synchronizing lock sets and conflict awareness records195

6.6.3 Checking transaction dependencies and execution constraints198
6.7 Managing dynamic transaction structure and transaction mobility202

6.7.1 Supporting dynamic restructuring of transactions202
6.7.2 Supporting mobility of transactions ..203

6.8 Conclusions ...203

PART III IMPLEMENTATION and EVALUATION...205

Chapter 7 Implementation of the Mobile Transaction Processing System207

7.1 Introduction ...207

7.2 Abstract architecture of the MOWAHS system ..208
7.2.1 Transaction specification environment ...209

7.2.2 Transaction processing environment ..210
7.2.3 Data management environment ..210

7.2.4 Mobile collaboration environment..211
7.3 Architecture of the MOWAHS prototype ...211

7.4 The mobile locking system...213
7.4.1 The design of the mobile locking system ...213

7.4.2 The implementation of the mobile locking system216
7.5 The mobile data sharing system ...217

7.5.1 The design and implementation of the mobile data sharing system218

7.5.2 The physical distribution of mobile sharing workspaces219

7.6 Summary ...220

Chapter 8 Discussion and Evaluation...223

8.1 Discussion ...223
8.1.1 Dealing with the challenging characteristics of mobile environments ...223

8.1.2 Comparison with related works ..224

 12

8.2 Evaluation..227
8.2.1 Fulfilling the requirements ...227

8.2.2 Answering the research questions...230
8.2.3 Limitations ...232

Chapter 9 Conclusion and Future Work..233

9.1 Research achievements ..233

9.2 Future research ..234

References..237

Notations..247

 13

List of Figures

Figure 1.1: The mobile IT support system..22
Figure 2.1: Transactional programming model ..34
Figure 2.2: Concurrency problems...35
Figure 2.3: Serial schedules ...36
Figure 2.4: Conflict serializable and non-conflict serializable schedules37
Figure 2.5: Serialization graph...38
Figure 2.6: View serializable schedule...38
Figure 2.7: The validation procedure of a transaction...40
Figure 2.8: Undo logging against redo logging ..42
Figure 2.9: Recoverability versus serializability...43
Figure 2.10: A cascading abort scenario ..43
Figure 2.11: Dataflow of transaction-oriented database systems44
Figure 2.12: Transaction processing system components ...44
Figure 2.13: Distributed transaction processing systems ..45
Figure 2.14: Local and global transactions...46
Figure 3.1: Behavior model for mobile hosts ...54
Figure 3.2: Transaction processing in mobile environments...57
Figure 3.3: Mobile transaction environments ...58
Figure 3.4: Transaction life-time in non-mobile and mobile environments.....................60
Figure 4.1: Flat transaction model ...68
Figure 4.2: Nested transaction model...69
Figure 4.3: Compensating and contingency transactions ..70
Figure 4.4: A successful Sagas ..70
Figure 4.5: An unsuccessful Sagas...71
Figure 4.6: Split and Join transaction model ..71
Figure 4.7: Reporting and Co-transaction ..73
Figure 4.8: Compacts as objects ..73
Figure 4.9: Pro-motion transaction architecture ...74
Figure 4.10: Two-tier transaction model ..75
Figure 4.11: Weak-Strict transaction model ...76
Figure 4.12: Pre-write transaction model ...77
Figure 4.13: Pre-serializable transaction model..78
Figure 4.14: Kangaroo transaction model ..79
Figure 4.15: Moflex transaction model ..81

 14

Figure 4.16: The architecture of the MTS ..82
Figure 4.17: Life cycle of mobile databases ...83
Figure 4.18: Microsoft SQL CE architecture..86
Figure 4.19: Oracle Lite architecture ...87
Figure 4.20: IBM DB2 Synchronize from mobile hosts to fixed hosts............................88
Figure 4.21: IBM DB2 Synchronize from fixed hosts to mobile hosts............................88
Figure 5.1: Mobile IT-support scenario..95
Figure 5.2: States of mobile tasks ..96
Figure 5.3: Extending collaborative work model in mobile environments102
Figure 5.4: Mobile affiliation model ..103
Figure 5.5: Standard and shared transactions ... 106
Figure 5.6: Adaptive mobile data sharing mechanism..107
Figure 5.7: The physical distribution of the export-import repository...........................108
Figure 5.8: A general data sharing scenario ...109
Figure 5.9: Domains of data consistency in horizontal dimension111
Figure 5.10: Behavior of export and import transactions..112
Figure 5.11: Access privilege of a delegatee transaction to imported data114
Figure 5.12: Dependencies between delegatee and import transactions118
Figure 5.13: Dependencies between parent and children's shared transactions118
Figure 5.14: Data sharing stage between delegator and delegatee transactions119
Figure 5.15: An anchor transaction in a mobile transaction processing system.............122
Figure 5.16: An anchor transaction acts as a proxy transaction122
Figure 5.17: Anchor transactions support conflict awareness123
Figure 5.18: Conflict awareness caused by mobile data sharing123
Figure 5.19: Sharing data status versus sharing data state ..125
Figure 5.20: Mobile data sharing variants ..125
Figure 5.21: Sharing data states among transactions at different mobile hosts..............127
Figure 5.22: Sharing data status...128
Figure 5.23: Sharing locks between standard transactions..129
Figure 5.24: Downgrading and upgrading locks...130
Figure 5.25: Recursive sharing ..130
Figure 5.26: Management of a mobile sharing workspace..131
Figure 5.27: Static transaction dependencies..135
Figure 5.28: Dynamic transaction dependencies ..135
Figure 5.29: Mobility of transactions across mobile cells...138
Figure 5.30: Mobility of transactions across mobile affiliation workgroups139
Figure 6.1: Stages of mobile transaction processes ..142
Figure 6.2: Interactions of standard and shared mobile transactions144
Figure 6.3: Transaction dependencies ..144
Figure 6.4: Multiple abort dependency ..147
Figure 6.5: Read-write conflict mode...150
Figure 6.6: Write-read conflict mode ...152
Figure 6.7: Properties of shared data in a mobile environment153
Figure 6.8: Algorithm for data caching stage ...156
Figure 6.9: Conflict awareness of transactions ...158
Figure 6.10: Sharing data states ...161

 15

Figure 6.11: Shared data states in the export-import sharing space...............................161
Figure 6.12: Share original data states ...166
Figure 6.13: Share modified data state ...167
Figure 6.14: Upgrade data state in the local workspace..169
Figure 6.15: Sharing data status...172
Figure 6.16: Sharing data status between mobile hosts...172
Figure 6.17: Delegating locks ..176
Figure 6.18: Upgrading locks ..179
Figure 6.19: Downgrading locks..180
Figure 6.20: Redirect sharing of data ...182
Figure 6.21: Redirect sharing of sub-transactions...182
Figure 6.22: Disconnected transaction processing with accessing conflict....................185
Figure 6.23: Effects of shared data on transactions ..185
Figure 6.24: Execution constraint of sharing original value with read lock...................187
Figure 6.25: Execution constraint of sharing original value with write lock187
Figure 6.26: Execution constraint of sharing updated value with write lock188
Figure 6.27: Transaction dependencies with constraint cached data189
Figure 6.28: Abort of delegator transactions ..190
Figure 6.29: The role of the pseudo-delegator transaction..191
Figure 6.30: The effect of the order of transaction termination requests192
Figure 6.31: Procedures for the transaction integration stage193
Figure 6.32: Steps of handling the abortion and abort dependencies of transactions194
Figure 6.33: Handling the abortion and abort dependencies of transactions..................194
Figure 6.34: Abortion of delegatee transactions ...195
Figure 6.35: Conflicting locks at the anchor transactions ...195
Figure 6.36: Lock and conflict awareness synchronization...197
Figure 6.37: Checking trans. dependencies of each locally committed transaction199
Figure 6.38: Verifying transaction dependencies of a locally committed transaction199
Figure 6.39: Committing transactions accessing non-constraint cached data201
Figure 6.40: Committing transactions accessing constraint cached data202
Figure 7.1: MOWAHS system architecture..208
Figure 7.2: Architecture of the MOWAHS prototype...212
Figure 7.3: The system components selected for implementation.................................213
Figure 7.4: Lock sharing operations...216
Figure 7.5: Mobile locking prototype architecture ...216
Figure 7.6: Mobile data sharing prototype architecture ..218

 16

 17

List of Tables

Table 2.1: Lock compatibility matrix...40
Table 3.1: Wireless communication technologies ..52
Table 3.2: Personal digital assistant devices...53
Table 3.3: Distributed environments versus mobile environments..................................56
Table 3.4: Requirements of mobile transaction processing systems................................62
Table 4.1: Hand-over control rules of sub-transactions ..81
Table 4.2: Execution models of adaptive mobile transaction..83
Table 5.1: Mobile task characteristics requiring transactional support............................96
Table 5.2: Collaboration dimensions and consistency domains111
Table 5.3: Behavior of shared transactions...112
Table 5.4: Properties of shared transactions ...113
Table 5.5: Relaxing the isolation property of import transactions.................................115
Table 5.6: Properties of standard transactions ..116
Table 5.7: Locks and equivalent shared data state of delegator transactions126
Table 5.8: Lock sharing ...128
Table 5.9: Management of a mobile sharing workspace...131
Table 5.10: Management of shared data items in a mobile sharing workspace133
Table 5.11: Management of transaction behavior...136
Table 5.12: Management of transaction mobility ...138
Table 6.1: Transaction abort-dependencies ..145
Table 6.2: Transaction multiple-abort-dependencies ..146
Table 6.3: Transaction commit-dependencies ..147
Table 6.4: Non-conflict sharing mode..150
Table 6.5: Read-write conflict mode..151
Table 6.6: Write-read conflict mode ..152
Table 6.7: Locks and conflict awareness among mobile hosts......................................159
Table 6.8: Management of mobile data sharing..160
Table 6.9: Locks and data conflict awareness of sharing data state scenarios162
Table 6.10: Data structure for exporting shared data states...163
Table 6.11: Data structure for importing shared data states ..164
Table 6.12: Sharing data state scenarios...165
Table 6.13: Locks and awareness of sharing original data states167
Table 6.14: Locks and awareness of sharing modified data states169
Table 6.15: Locks and awareness of upgrading data states...171
Table 6.16: Locks and data conflict awareness of sharing data status scenarios............173

 18

Table 6.17: Data structure for exporting data status ...174
Table 6.18: Data structure for importing data status...175
Table 6.19: Sharing data status scenarios ...176
Table 6.20: Locks and awareness of delegating locks ..178
Table 6.21: Locks and awareness of upgrading locks...180
Table 6.22: Locks and awareness of downgrading locks ..181
Table 7.1: Lock matrix of mobile databases...214
Table 8.1: The MOWAHS transaction processing system features...............................225

 19

PART I

BACKGROUND and ORIENTATION

 20

 21

Chapter 1

Introduction

The theme of this thesis is transaction processing in mobile and heterogeneous
environments. The main focus of this thesis is on developing a mobile transaction
processing system that has the ability to support mobile data sharing and to cope with the
dynamic changes of mobile environments. This chapter presents the motivation of the
research, states the research questions, and remarks the important contribution results. At
the end of the chapter, we outline the organization of the thesis to serve as a guide for the
reader.

1.1 Motivation

At present, many types of mobile computing devices such as laptops and personal digital
assistants (PDA) are available. The computing capacities of these mobile devices become
more and more powerful in terms of processing speed, storage capacity and operating
time. As a result, these mobile computing devices are becoming the essential work
equipments. At the same time, many wireless network technologies are also developed
and deployed, for example Bluetooth, wireless USB, wireless LAN or Universal Mobile
Telecommunications System (UMTS).

The rapid expansion of both the wireless network technologies and the capacity of mobile
computing devices has created a new work environment. With the support of wireless
networks and mobile computing devices, people can carry out their work while being on
the move. The environment for accessing and processing information is rapidly changing
from stationary to mobile and location independent. This new work environment, called
the mobile work environment, provides people a flexible and efficient work environment.

1.1.1 An application example

To illustrate the advantages of the mobile work environment, we will present and discuss
a mobile IT (Information Technology) support system. The mobile IT support system is a
cooperative work system in which IT officers help users to deal with computer problems
such as fixing a hardware problem or upgrading a software application (see Figure 1.1).
The objective of the mobile IT support system is to solve as many computer problems as
quickly as possible.

 22

Figure 1.1: The mobile IT support system

Users report computer problems by sending enquiries to the IT help desk. These
computer problems will be handled by IT officers. An IT officer has to prepare in
advance all the necessary data and tools to solve a computer problem. The IT officer also
has to move around to specific locations like offices or computer labs where the
computers and equipments are located. While handling a computer problem, an IT officer
may need to contact the user, who submitted the inquiry, to clarify the problem. For
example, to prepare necessary equipments for a multimedia lecture, the IT officer needs
to know what types of computers and applications are used. Furthermore, when working
on a difficult problem, an IT officer may also want to consult other colleagues for
additional support. For each computer problem, a logbook is written to keep track of its
progress. When a computer problem is solved, its logbook will be archived in the IT help
desk system for future reference.

Traditionally, all the contact among IT officers and users must be carried out through the
IT help desk system. The users must connect the IT help desk system to report computer
problems. The IT officers must connect the IT help desk system from stationary and
wire-connected computers to cooperate with users or other IT officers, and to update
logbooks. There are several disadvantages of this work environment when the IT officer
is unable to connect the IT help desk system. First, the IT officer is not able to update
logbooks to keep the status of computer problems up-to-date. Therefore, the number of
unsolved computer problems in the IT help desk system may incorrectly increase, and it
is difficult to manage the progress of these enquiries. Second, if the description of a
computer problem, which is handled by the IT officer, is modified, the IT officer will not
be aware of it. Consequently, the IT officer is not well prepared to work efficiently on the
computer problem.

With the support of mobile computing devices and wireless network technologies, the
mobile IT support system can be extended to attack the above disadvantages and improve
its performance. First, the logbook of a computer problem, which an IT officer is
currently working on, can be first updated in the mobile computer of the IT officer. The
logbook will also be saved in the IT help desk system via the wireless networks. This
way, the mobile IT support system can effectively manage the user enquiries. Second, the
IT officer can contact the IT help desk system to retrieve the up-to-date information of
computer problems, and communicate with other colleagues while they are on the move.

 23

Consequently, the IT officer is well prepared to solve the computer problems. Third, the
IT help desk system can be informed about the current location of the IT officers.
Computer problems, whose locations are nearby the location of an IT officer, can be
assigned to this IT officer, i.e., saving the traveling time of the IT officer. As a result,
more computer problems can be solved in shorter time.

There are many challenges in mobile work environments. The wireless networks can be
disconnected while an IT officer is working on a computer problem. Therefore, the status
of this computer problem, which is currently stored in the mobile computer, can be
different with the one stored in the IT help desk system. The mobile computers may not
have the required capacity to support the IT officer to solve an enquiry. Consequently,
some of the work may be delayed or suspended. Moreover, the collaborative activities
among the IT officers and users can be carried out directly, i.e., without going through
the IT help desk system. This leads to the demand for a new collaborative work model.

1.1.2 Challenges of transactions in mobile environments

Traditionally, database transactions with ACID (Atomicity, Consistency, Isolation, and
Durability) properties have been used to enforce the integrity constraints of database
systems in centralized or distributed environments [GR93]. However, due to the
challenging characteristics of the mobile environments such as the mobility of mobile
computers, the frequent disconnections of wireless networks and the limited processing
power of mobile computers [PS98, Mad+02], the traditional database transactions may
not be able to efficiently support transactions in volatile mobile environments.

There are many new transaction models [SRA04, Hir+01, Bar99] that have been
developed to support transactions in mobile environments. One common approach is to
provide for the transaction processing systems adaptability [Rak98] to deal with different
environment conditions and to cope with the constraints of mobile computing resources.
However, there are still several major limitations. For example, the architecture of mobile
transaction environments [Mad+02] relies too much on the mobile support stations; a few
research works focus on mobile transactions that are distributed among mobile hosts
[SRA04]. The ability to support both the disconnection and mobility is still a major
challenge for mobile transaction models [Hir+01]. In this thesis, we focus our research on
two main issues – that are: (1) improving the data availability in mobile environments,
and (2) supporting the mobility of transactions in mobile environments.

1.1.3 The MOWAHS project

This thesis is carried out as a part of the MObile Work Across Heterogeneous Systems
(MOWAHS) project. The MOWAHS project is sponsored by the Norwegian Research
Council’s IKT 2010 programme. The project is jointly carried out by the Software
Engineering and Database Technology research groups, at the Department of Computer
and Information Science, Norwegian University of Science and Technology.

 24

The two main goals of the MOWAHS project are [Con+01]:
• G1. Helping to understand and to continuously assess and improve work processes in

virtual organizations.
• G2. Providing a flexible, common mobile work environment to execute and share real

work processes and their artifacts.

The main objective of this thesis is to achieve the second goal of the MOWAHS project.
The theme of the thesis is transaction processing in mobile and heterogeneous
environments. We must deal with a variety and heterogeneity of electronic devices,
equipments (e.g., laptops, PDAs, mobile phones) and database models. In addition, the
mobility of mobile devices and the lack of connectivity of these mobile devices must also
be taken into account.

1.2 Research questions

The rationale of this thesis is:

To be able to support a transaction processing system to efficiently deal with
different surrounding conditions that are contextualized by the characteristics of
the mobile environments.

The main research question of this thesis is:

How can we furnish a transaction processing system so that it can cope with the
constraints of mobile resources and the variations of operating conditions in
mobile environments?

In order to be able to answer the research question, we define a set of refinement
questions that direct the development of this work:

Q1: Current situation.

• What are the current ideas and concepts that have been developed to answer the
main research question or to address part of it?

Q2: Characteristics and requirements of mobile transactions.

• What are the challenging characteristics of transactions in mobile environments?
• What are the requirements of a mobile transaction processing system that

accomplishes the main research question?

Q3: Approach and solutions.

• What are the concepts and foundations for developing the required mobile
transaction processing system?

• How should we design and implement the required mobile transaction processing
system?

 25

Q4: Evaluation.
• How well do the research results fulfill the requirements of the mobile transaction

processing system?
• How do the research results compare with previous related works?

1.3 Research approach

The previous section presents the rationale and research questions for this thesis. Now,
we need to identify a research methodology, and make research plans so that our research
activities are effectively organized and coordinated.

1.3.1 Research methodology

Research methodology determines the system and the different stages in which the
research is carried out [BCW95]. [PP00] categorized research into three types:
exploratory, testing out and problem solving. Exploratory research focuses on handling
new problems by either developing new concepts or conducting empirical studies.
Testing out research uses the limitations of previous research as the starting point, and
develops new theories to solve the problem. Problem solving research is finding a new
methodology to solve a defined problem. Our research approach in this thesis is identified
as the testing out research.

1.3.2 Research plans of this thesis

First, we approached the problem by studying new challenges that are the results of the
changes of the transaction processing environments from centralized, via distributed to
mobile environments. Then, we surveyed and analyzed existing transaction models and
transaction processing systems that have been developed to attack these challenges. We
addressed in detail the limitations of these reviewed transaction models. The first part of
the thesis, which includes Chapters 1 (this chapter), 2, 3 and 4, is the results of this
research phase.

Second, we proposed the concepts of mobile affiliation workgroups that focus on
supporting data sharing among transactions at mobile hosts in a volatile mobile
environment. Using this model as a starting point, we began developing a data sharing
mechanism for mobile transactions and then formalized our mobile transaction
processing system. The results of this research phase are presented in Chapters 5 and 6 of
the second part of this thesis.

Next, we started designing and implementing the MOWAHS mobile transaction
architecture that plays a role as a proof of concept of our theoretical research. We have
selected and implemented two important system components of the MOWAHS mobile
transaction architecture - that are: (1) the mobile locking system to deal with the
disconnections of mobile hosts, and (2) the mobile data sharing mechanism to support
sharing of data among mobile transactions. These practical works are addressed in
Chapter 7 in the third part of this thesis.

 26

Finally, the evaluation of our research results is presented in Chapter 8. Our research
results are assessed based on: (1) the applicability of the mobile transaction processing
system in mobile environments; (2) the consolidated advantages with other related works;
and (3) the accomplishment of the main research question (see Section 1.2). Chapter 9
concludes our main research achievements and suggests several topics for the future
work.

1.4 Research environments

The work conducted in this thesis is entirely carried out at the Department of Computer
and Information Science, Norwegian University of Science and Technology. This thesis
is part of the MOWAHS project that is jointly funded by the Norwegian Research
Council’s IKT 2010 programme for the first three years (2001 to 2004) and by the
Department of Computer and Information Science for the forth year (2004 to 2005).

1.5 Requirements

In order to evaluate the research results (presented in Chapter 8), we have initiated a list
of requirements for our mobile transaction processing system. These requirements will be
further discussed in more detail in Section 3.5 of this thesis. Here, we briefly identify and
describe nine requirements that a mobile transaction processing system must have in its
capacity. These nine requirements are categorized into four groups: the mobility of
transactions, the wireless networks and limited mobile resources, the customization of
transaction properties, and the recovery of transactions.

The mobility of transactions

R1. The mobile transaction processing system must be able to effectively handle the
hand-over control of transactions. Mobility is one of the main qualities of mobile
transactions, and can be described in terms of hand-over processes [DHB97]. Therefore,
the mobile transaction processing system must be able to capture and control these hand-
over processes.

R2. The mobile transaction processing system must support interactions among
transactions at different mobile hosts. Ad-hoc communication and collaborative activities
can happen when mobile hosts are on the move. Therefore, the peer-to-peer interactive
support is essential, especially for the sharing of data among transactions at different
mobile hosts.

The wireless networks and limited mobile resources

R3. The mobile transaction processing system must support disconnected transaction
processing. Due to long disconnection periods in communication between mobile hosts
and database systems, the mobile transaction processing system must be able to support
transaction processing in disconnected environments.

 27

R4. The mobile transaction processing system must support distributed transaction
execution among mobile hosts and stationary hosts. Due to the limitation of computing
resources of mobile devices, the mobile transaction processing system must be able to
move the execution of transactions from one mobile host to other non-mobile or mobile
hosts.

The customization of transaction properties

R5. The mobile transaction processing system must have the ability to customize the
atomicity property of transactions. The standard atomicity property of transactions may
be too strict in mobile environments, especially for long-lived transactions. Therefore, the
mobile transaction processing system must provide mechanisms to customize the
atomicity property of transactions.

R6. The mobile transaction processing system must support sharing partial states and
status among transactions. Here, we also customize the isolation property of transactions.
This is to avoid long blocking periods among on-going mobile transactions, especially
when the mobile hosts are disconnected from the database servers.

R7. The mobile transaction processing system must assure the durability property of
transactions. In mobile environments, transactions are disconnectedly executed and
locally committed at the mobile hosts, and globally committed at the database servers.
Thus, the mobile transaction processing system must provide different methods to safely
archive information in accordance with the commits of transactions.

The recovery of transactions

R8. The mobile transaction processing system must provide efficient recovery strategies.
In mobile environments, the execution of transactions can be disrupted due to many
factors, for example the disconnections of wireless networks or the exhaustion of battery
energy. The transaction processing system must support different recovery methods to
deal with the disruptions.

R9. The mobile transaction processing system must support temporary data and
transaction management. The execution processes of transactions are performed at
different computing (mobile or non-mobile) hosts that can be asynchronously connected
or disconnected. Therefore, the non-permanence of data and transactions behavior must
be managed. The temporary management must also take care of conflicting operations
among transactions at different mobile hosts.

1.6 Publications

The research results of this thesis have already been published at several conferences.
The published papers are presented in the order of importance.

 28

1. Hien Nam Le and Mads Nygård: Mobile Transaction System for Supporting Mobile
Work, International Workshop on Database and Expert Systems Applications
(DEXA), IEEE Computer Society, 2005, pp 1090-1094.

This paper presents the export and import transaction model that supports peer-to-
peer sharing of data among transactions at different mobile hosts. This paper
contributes to Chapter 5 and 6 of this thesis.

2. Hien Nam Le and Mads Nygård: A Mobile Affiliation Model for Supporting Mobile

Collaborative Work, Ubiquitous Mobile Information and Collaboration Systems
(UMICS), CAiSE Workshop, FEUP Edições, 2005, pp 649-659.

This paper presents a mobile affiliation workgroup model to support mobile
collaborative work among mobile users. The paper discusses the concepts of vertical
and horizontal collaboration among mobile users. This paper contributes to Chapter 5
of this thesis.

3. Hien Nam Le, Mads Nygård and Heri Ramampiaro: A Locking Model for Mobile
Databases in Mobile Environments, International Conference on Database and
Applications (DBA), ACTA press, 2004, pp 49-55.

This paper discusses a locking model for mobile databases, which is a part of the
mobile transaction processing system, to deal with disconnections and long locking
periods. The mobile locking model supports cooperative operations and conflict
awareness in mobile working environments. The paper presents the design and
implementation of prototypes. This paper contributes to Chapter 7 of this thesis.

4. Carl-Fredrik Sørensen, Alf Inge Wang, Hien Nam Le, Heri Ramampiaro, Mads
Nygård, and Reidar Conradi: Using the MOWAHS Characterisation Framework for
Development of Mobile Work Applications, International Conference on Product
Focused Software Process Improvement (PROFES), Lecture Notes in Computer
Science 3547, 2005, pp 128-142.

This paper describes an evaluation of the MOWAHS characterisation framework to
analyse mobile work scenarios in order to make corresponding mobile software
systems. This paper partly contributes to Chapter 5 of this thesis.

5. Heri Ramampiaro, Alf Inge Wang, Carl-Fredrik Sørensen, Hien Nam Le, Mads
Nygård: Requirement Indicators for Mobile Work: The MOWAHS Approach,
IASTED International Multi-Conference on Applied Informatics (AI), ACTA
Press, 2003, pp 1153-1160.

This paper describes the requirement indicators derived from the MOWAHS mobile
work characterization framework (MWCF). The requirement indicators are used to
reveal the complexity of the different parts of a mobile support system (software and
hardware). Further, these indicators can be a help to prioritize the non-functional and

 29

functional requirements of the mobile system. This paper partly contributes to
Chapter 5 of this thesis.

6. Carl-Fredrik Sørensen, Alf Inge Wang, Hien Nam Le, Heri Ramampiaro, Mads
Nygård, and Reidar Conradi: The MOWAHS Characterisation Framework for Mobile
Work, IASTED International Multi-Conference on Applied Informatics (AI),
ACTA press, 2002, pp 258-264.

This paper describes a framework used to characterize mobile work scenarios in order
to elicit functional and non-functional requirements for a mobile process support
system. The framework is a tool for specifying and analyzing mobile scenarios in
detail, resulting in a characterization of the mobile work scenarios. This paper partly
contributes to Chapter 5 of this thesis.

1.7 Research contributions

The main contributions of the thesis are summarized as follows:

• Providing fundamental concepts that extend and support mobile collaborative

workgroup models for mobile users, called horizontal collaboration.

To our knowledge, there is no similar concept to the horizontal collaboration that
supports collaborative work in mobile ad-hoc environments. The horizontal
collaboration supports mobile users (that are currently being disconnected from the
database servers) to dynamically form temporary mobile workgroups, called mobile
affiliation workgroups, so that they can continue to carry out their collaborative
operations. The concept of the mobile affiliation workgroup is presented in Chapter 5.

• Providing concepts and models to support data sharing among mobile transactions in
mobile environments, without any support from the database systems.

Mobile data sharing operations among transactions at different mobile hosts are
carried out by the means of export and import transactions through a mobile sharing
workspace, called export-import repository, that belongs to a mobile affiliation
workgroup. These concepts and formalization of mobile data sharing are presented in
Chapters 5 and 6 of this thesis, respectively.

• Supporting conflict awareness among mobile transactions in mobile environments.

Conflict awareness among mobile transactions in mobile environments is supported
by the concept of an anchor transaction. The anchor transaction plays the role of a
proxy transaction for local transactions that are disconnectedly processed at
disconnected mobile hosts. The anchor transaction also keeps track of conflicting
database operations among mobile transactions in both the data hoarding and
transaction integration stages. The concept of the anchor transaction is discussed in

 30

Chapter 5, and the conflict awareness mechanism is presented in Chapter 6 of this
thesis.

• Supporting mobility of transactions in mobile environments.

The mobility of transactions in mobile environments is categorized into two types in
accordance with the movement of mobile hosts: (1) mobility across mobile cells, and
(2) mobility across mobile affiliation workgroups. The mobility of mobile
transactions across mobile cells is captured by the movement of the anchor
transactions; while the mobility of mobile transactions across mobile affiliation
workgroups is taken care of via the dynamic structure of the export and import
transactions. The mobility of transactions is addressed in Chapters 5 and 6 of the
thesis.

• Providing a new multiple-abort-dependency rule for mobile transactions in mobile

environments.

The multiple-abort-dependency rule presents a flexible way to describe the
dependencies among transactions in mobile environments. This rule is addressed in
Chapter 6.

• Designing and implementing a mobile transaction processing system prototype that

supports mobile collaborative work.

We have chosen to design and implement two important system components of our
mobile transaction processing system: (1) the mobile locking system, and (2) the
mobile data sharing system. The mobile locking system supports mobile transactions
to cope with disconnections and long locking periods. The mobile data sharing
system supports data sharing among transactions at different disconnected mobile
hosts. These designs and implementations of these two system components are
presented in Chapter 7.

1.8 Organization of the thesis

This thesis consists of nine chapters that are divided into three parts, outlined as follows:

Part 1. Setting of the thesis, providing background concepts of transaction processing,
and surveying the state-of-the-art of mobile transaction models and processing systems.

• Chapter 1 (this chapter) contains the introduction of the thesis. The chapter outlines

the goals and the achievements of this research.

• Chapter 2 reviews the basic transaction concepts and the architecture of transaction

processing systems.

 31

• Chapter 3 discusses in detail the characteristics of mobile environments and the
impacts of these characteristics on mobile transactions. The characteristics of
transactions in mobile environments and the requirements of the mobile transaction
processing system are investigated and addressed in detail.

• Chapter 4 is the literature review chapter. The chapter surveys existing traditional and

mobile transaction models and transaction processing systems that are related to the
theme of this thesis. The limitations of the related research also have been addressed.

Part 2. Discussing the concepts of horizontal collaboration, introducing new concepts
and models for mobile transaction processing systems.

• Chapter 5 presents the fundamental concepts of our mobile transaction processing

system that includes the mobile affiliation workgroup, the export-import repository,
the export and import transactions, and the anchor transaction. The mobile data
sharing models are also presented in this chapter.

• Chapter 6 formalizes the theoretical proposals of our mobile transaction processing

system.

Part 3. Designing and implementing the MOWAHS mobile transaction processing
system, and evaluating the research results.

• Chapter 7 discusses the design and the current stage of the implementation of the

MOWAHS mobile transaction processing system.

• Chapter 8 evaluates the research results. This chapter discusses how the requirements

of the mobile transaction processing system are achieved, and answers the main
research question.

• Chapter 9 concludes the main achievements of our research, and discusses topics for

future works.

Further, the notations used in this thesis are listed and explained in a separate entry after
the references entry.

 32

 33

Chapter 2

Transaction Processing

In this chapter, we first revisit the basic concepts of database transactions, and discuss
how these concepts are achieved in practical systems. Next, we briefly go through the
architecture of transaction processing systems in the centralized and the distributed
environments.

2.1 Database and transaction concepts

A database is a collection of data items that is gathered over a period of time, and safety
stored for further examination or analysis [GUW01]. A database is usually accompanied
by a data structure and a set of constraint rules that specify what information a data item
represents. For example, in an employee database, the employee age is an integer number
and must be greater than eighteen and less than sixty five. A database state is a collection
of all the stored data values of all the data items in the database at a specific time
[Elm+92]. A consistent state of a database is a database state in which all the data values
fulfill all the constraint rules of the database. A set of operations is usually provided to
support users in retrieving or modifying data items in the database. These provided
operations can be simple, for example read and write operations, or more complex
operations, for example deletion or modification operations. To assist users to perform
much more complex operations rather than reading from and writing to the database, a
piece of specialized software called a database management system (DBMS) is
accommodated to the database. In general, a DBMS not only provides an easy-to-use and
friendly interface to users for accessing and manipulating the database, but also manages
all the database operations. In addition, the DBMS also protects the database from
unauthorized users.

2.1.1 Database transactions

Users can interact with the database by one or many database operations. The database
operations can be gathered together to form a unit of execution program that is called a
transaction [GR93]. In other words, a transaction is a logical execution unit of database
operations. A transaction transforms the database from one consistent state to another
consistent state. Figure 2.1 presents a programming model of a transaction.

 34

Figure 2.1: Transactional programming model

A transaction program starts from an initial consistent state of the database by invoking a
Begin_transaction method call. After that, one or a set of database operations of the
transaction program are executed. When these database operations are completed, i.e., a
new consistent database state is established as designed, the transaction program saves
this new consistent state into the database by calling the Commit_transaction method.
The Commit_transaction call ensures that all the database operations of the transaction
program are successfully executed and the results of the transaction are safely saved in
the database. If there is any error during the execution of the transaction program, the
initial consistent state of the database is re-established by the Abort_transaction call. The
Abort_transaction call indicates that the execution of the transaction program has failed
and this execution does not have any effect on the initial consistent state of the database.
The transaction is said to be committed if it has successfully executed the
Commit_transaction call, otherwise it is aborted. A transaction is called a read-only
transaction if all of its database operations do not alter any database state.

2.1.2 The ACID properties

In a database system, there may be a large number of transactions that are executed
concurrently, i.e., the shared data items in the database are read and possible written by
many transactions at the same time. Each transaction must ensure that it always preserves
the consistency of the database system. In order to retain and to protect the consistency of
the database system, transactions will have the following ACID (Atomicity, Consistency,
Isolation, and Durability) properties [GR93]:

• Atomicity. Either all database operations of a transaction program are successfully

and completely executed, or none of the database operation of this transaction
program is executed.

• Consistency. A transaction must always preserve and protect the consistency of the

database, i.e., it transforms the database from one consistent state to another. In other
words, the result of a transaction that has committed fulfills the constraints of the
database system.

• Isolation. An on-going transaction must not interfere with other concurrent

transactions, or be able to view intermediate results of other concurrent transactions.

Begin_transaction (initial_consistent_state)
 One or more database operations

if (reach new_consistent_state) then
Commit_transaction (new_consistent_state)
else
Abort_transaction (initial_consistent_state)

 35

In other words, a transaction is executed as if it is the only existing execution program
on the database system at any given time.

• Durability. The result of a transaction that has successfully committed is permanent

in the database. The consistent state of the database is always survived despite any
type of failures.

The ACID properties of a transaction ensure that: (1) a transaction always keep the
database in a consistent state, (2) a transaction does not disturb other transactions during
their concurrent execution processes, and (3) the consistent state of the database system
that is established by a committed transaction withstands software or hardware failures.
In order to achieve the ACID properties, normally, two different sets of protocols named
concurrency control protocols and recovery protocols are needed [Elm+92].

2.1.3 Concurrency control of transactions

In this section, we discuss the problems that can occur in a database system in which
there are many transactions being executed concurrently. In other words, we answer the
question of why there is a need of concurrency control in the database system. We also
review different techniques that ensure the correctness of transaction execution.

To illustrate and to simplify the analyses without losing generality, we assume that each
transaction possesses the following characteristics:
• Transaction Ti starts by a Begin_transaction call that is denoted by Bi.
• A database operation Opi(X) on a data item X is either a read operation Ri(X) or a

write operation Wi(X). In general, more complex operations on a database system can
be modeled via read and write operations.

• Transaction Ti ends by either a Commit_transaction call denoted by Ci, or an
Abort_transaction call denoted by Ai.

Some typical problems which are caused by the concurrent execution of transactions are:
lost update, dirty read, and unrepeatable read [GR93]. These problems are presented in
Figure 2.2.

Figure 2.2: Concurrency problems

 36

First, the lost update occurs when two transactions T1 and T2 try to write the same data
item X. In the figure, transaction T2 overwrites the value of data item X that was prior
written by transaction T1. The dirty read occurs when transaction T2 reads the value of
data item X that is written by transaction T1 before the transaction T1 commits. If the
transaction T1 aborts, the transaction T2 has been operating on an invalid data value.
Finally, the unrepeatable read happens if a transaction executes the same read operation
at different times, and obtains different data values. In Figure 2.2, the read operations of
transaction T2 return two different values of X: before and after the write operation of
transaction T1.

The concurrency problems can be solved if the DBMS can schedule these database
operations of transactions in an execution order in which no transaction interferes with
other, i.e., fulfills the isolation property of transactions. The execution order that
sequentially contains all the database operations of all concurrent transactions is called
the schedule or history of transactions [BHG87]. The order of database operations of one
transaction must be retained in the schedule of all transactions. A schedule is a serial
schedule if, for any pair of transactions, all the database operations of one transaction
follow all the database operations of another transaction. In other words, the isolation
property of transactions is ensured in a serial schedule. Figure 2.3 (we omit the
commitment and the abortion operations of transactions in the schedule) presents the
possible serial schedules of transactions T1 and T2.

R1(X) W1(X) R1(Y) W1(Y) R2(X) R2(X) W2(X)

T1 T2

Schedule S1

T1T2

Schedule S2 R2(X) R2(X) W2(X) R1(X) W1(X) R1(Y) W1(Y)
Figure 2.3: Serial schedules

The main disadvantage of the serial schedule is that transactions must be executed
serially, i.e., the concurrent execution of transactions does not exist in a serial schedule.
This may decrease the performance of the database system. To deal with this drawback,
the concept of serializable schedule [BHG87] is normally used. A schedule is serializable
if it is equivalent to a serial schedule. The remaining question is how to determine if a
schedule is a serializable schedule. In other words, we need to clarify the “equivalent”
term. Two examples of the equivalent serializability are: conflict serializability and view
serializability [GUW01].

Conflict serializability

The conflict serializability is based on the concepts of conflicting operations. The idea
behind the conflicting operations is that: for two sequentially executed operations Op1
and Op2 that belong to two transactions T1 and T2, respectively, if their order is
interchanged, i.e., Op2 Op1, the results of at least one of the involved transactions will
possibly be changed. In other words, two database operations that belong to two different
transactions are conflicted if they access the same data item in the database and at least

 37

one of them is a write operation [GUW01]. Two consecutive operations, which are not in
conflict, can be swapped or interchanged in a schedule without any effect on the
transaction behavior. Two schedules are said to be conflict equivalent if one can be
turned into another by swapping the pairs of non-conflict operations [GUW01]. A
schedule is conflict serializable if it is conflict equivalent to a serial schedule. Figure 2.4
illustrates some conflict serializable (CS) schedules. Both the schedules CS1 and CS2 (in
Figure 2.4) are conflict serializable with the serial schedule S1 (in Figure 2.3), while the
schedule non-CS3 is not conflict serializable. Moreover, the schedule CS1 can be turned
into the schedule CS2 by sequentially swapping pairs of non-conflict operations
(W2(X),R1(Y)), (W2(X),W1(Y)), and (R2(X),R1(Y)).

Figure 2.4: Conflict serializable and non-conflict serializable schedules

Verify conflict serializable

A schedule S can be validated if it is conflict serializable by analyzing a serialization
graph [BHG87]. A serialization graph (SG) is a directed graph that is constructed in two
steps as follows:

1. Each node labeled Ti in the SG represents an equivalent transaction Ti in the schedule

S.
2. For any pair of operations, Opi and Opj, that are conflict in the schedule S, and Opi

precedes Opj, add an edge from Ti to Tj in the SG.

The schedule S is conflict serializable if the constructed SG has no cycles [BHG87]. In
Figure 2.5, the serialization graphs of schedules CS1, CS2 and non-CS3 (in the Figure 2.4)
are constructed. For schedules CS1 and CS2, the corresponding SG do not contain any
cycle, i.e., the schedules are conflict serializable. On the other hand, the SG of the
schedule non-CS3 does contain a cycle T1→T2→T1, i.e., it is not conflict serializable.

 38

Figure 2.5: Serialization graph

View serializability

View serializablity is a weaker condition that guarantees that a schedule is serializable.
Two schedules S1 and S2 are said to be view equivalent if the following conditions hold:
(1) any read operation in either schedule returns the same data value, and (2) if a write
operation Wi(X) is the last operation on data item X in S1, Wi(X) must also be the last
operation on X in S2 [GUW01]. Thus, the view equivalent conditions ensure that (1) all
the transactions read the same data values, and (2) the final database states are identical.
If a schedule is view equivalent to a serial schedule, it is said to be view serializable.

Figure 2.6 illustrates a view serializable schedule. The serial schedule S1 presents the
sequential order schedule of transactions T1, T2, and T3. The schedule VS2 is not a conflict
serializable schedule because of conflict operation pairs ((W1(X), R2(X)) and ((W2(Y),
W1(Y)). However, the schedule VS2 is a view serializable schedule because: (1) all the
read operations R1(Y), R2(X) and R3(X) return the same data values of data items Y and X
as in the serial schedule S1; and (2) all the write operations W1(X) and W3(Y) are the last
write operations on the data items X and Y as in the serial schedule S1. The main
disadvantage of view serializability is that, verifying view serializable schedule problem
has been shown to be a NP-complete problem, i.e., it is not likely that a polynomial time
algorithm for this problem will be found [EN00].

Figure 2.6: View serializable schedule

Concurrency control protocols

To assure that a schedule S is serial equivalent, the database system must keep track of
conflict operations in the schedule S, constructs the SG of the schedule S, and checks for
a cycle in the constructed SG. This process repeats every time when a new database

 39

operation arrives to the database system, and requires a lot of computing resources and
processing time. Due to the overhead of checking serialization graphs, one normally
requires that a completion of the execution schedule of all committed transactions is
available before the verifying algorithm can be carried out. This is not true in real-world
transaction processing systems where transactions are dynamically and continuously
submitted to the transaction processing system. Concurrency control protocols, in fact, do
not check for serializability, but are used to ensure that a sequence of executable database
operations submitted from on-going transactions can form a serializable schedule.

There are two main approaches for concurrency control protocols [GUW01]: pessimistic
(also called guard-before) and optimistic (also called guard-after). For the pessimistic
approach, a database operation is checked if it could cause a non-serializable schedule
before it is executed. The database operation is rejected, i.e., the transaction is aborted, if
it may potentially lead a schedule into a non-serializable schedule. For the optimistic
approach, the submitted database operation is immediately executed as if there is no
conflict between this database operation and database operations of other transactions.
When a transaction begins to commit, a certification process, in which the transaction
will be validated against other transactions, is carried out. If none of the database
operations of this transaction breaks the serializability, the transaction is allowed to
commit, otherwise the transaction is aborted.

Locking and timestamp ordering protocols are two common concurrency control
protocols that are mostly used in the pessimistic approach. Concurrency control by the
locking protocol requires that a transaction must request an appropriate lock on a data
item before its database operation can be accepted for executing. In other words, a lock
plays a role as an execution license for the database operation. One usually applies two
types of lock: shared (read) and exclusive (write) [GR93]. A shared lock can be granted
to many transactions at the same time, while an exclusive lock can only be assigned to
one transaction at a time (see Table 2.1 for the lock compatibility matrix which shows
what kind of lock combination are allowed or not). Serializability among transactions can
be guaranteed by a 2-phase locking (2PL) protocol [BHG87]. The 2PL protocol requires
that a transaction must obtain all its locks (in growing phase) before it can release any
lock (in shrinking phase). Strict 2PL is a locking protocol that only allows a transaction
to release exclusive locks after it has committed or aborted.

Concurrency control by using timestamp ordering guarantees serializability among
transactions based on the following time quantities: (1) the starting time or timestamp of
each transaction TS, and (2) the read and write timestamp values for each data item X,
denoted by Read_TS(X) and Write_TS(X) respectively. These read or write timestamp
values correspond to the timestamp value of the latest transaction that successfully reads
or writes the data item X. A timestamp can be a computer system clock or any logical
counter maintained by the database system. When a transaction submits a database
operation on a data item X, the timestamp TS of the transaction will be checked against
the current read Read_TS(X) and write Write_TS(X) timestamp values of the data item.
The outcome of this timestamp checking procedure is either the database system accepts

 40

the submitted database operation and the new timestamp value is updated for X, or the
transaction is aborted.

Table 2.1: Lock compatibility matrix

The optimistic approach for concurrency control was first proposed in [KR81]. There are
several methods to carry out the certification process of a transaction, for example the
serialization graph testing (SGT) [BHG87] or the validation [Har84]. The SGT method
dynamically builds a serialization graph SG between transactions when a conflicting
operation is carried out. When a transaction Ti requests to commit, the SGT method
checks if the transaction Ti belongs to a cycle of the SG. If it does, the transaction Ti is
aborted; otherwise the transaction Ti passes the certification procedure and will be
allowed to commit. The validation method is based on the concepts of conflicting
operations to ensure that the scheduling of a transaction Ti is serializable in relation to all
other overlapping transactions Tj, which have not committed when the transaction Ti
begins [CDK00]. Figure 2.7 illustrates a validation process of transaction T3 (time
proceeds from left to right). When transaction T3 requests to commit, the validation
process will check to ensure that the database operations of transaction T3 do not conflict
with the database operations of transactions T1, T2 and T4.

Figure 2.7: The validation procedure of a transaction

Every concurrency control protocol has disadvantages. Transactions in a database system
that uses locking protocols can suffer from deadlocks or long blocking periods [GUW01].
Timestamp ordering protocols could have decreased the performance of the transaction
processing system if there is a high conflict among transactions [Zha+99], i.e., many
transactions must abort or roll back. For guard-after approach, works that have been done
and system resources might be wasted if transactions are aborted. Concurrency control in
a database system can apply either one or a combination of these concurrency control
protocols.

 41

2.1.4 Recovery concepts

The objective of recovery protocols is to enforce the atomicity and durability properties
of transactions [Elm+92]. The atomicity property requires that either all or none of the
database operations of a transaction is carried out. The durability property refers that the
results of committed transactions, i.e., consistent database states, survive any kind of
failure. In this section, we first study different types of failures that could happen in a
database system. Later, we review different recovery techniques that allow the database
system to recover from failures.

Type of failures

Normally, databases are stored on non-volatile media systems like magnetic or optical
disks, and are further backed-up by one or more safe storage systems [EN00]. During the
execution of transactions, data items are loaded and temporarily stored in computer
memory that is volatile storage.

There are two main types of failures of a database system: catastrophic and non-
catastrophic [GUW01]. A catastrophic failure happens when there is a breakdown in data
storage systems, for example a hard disk crashes. A catastrophic failure can be recovered
if there is a sufficient database system backup. Non-catastrophic failures do not affect the
non-volatile database storage system, i.e., only data in the volatile storage such as
memory is lost. The non-catastrophic failures include transaction and computer system
malfunctions. Failures of transactions might be caused by logical faults of data or
transaction programs or by the database system. Computer system malfunctions could be
caused by errors in the operating systems or applications. A recovery support system will
keep track of and record the progress of the execution of transactions by periodically
writing important information like data modifications, commitments or abortions of
transactions to a logbook, which is stored in the non-volatile storage system. These log
records will be used to re-establish a consistent database state if any failure occurs.

Undo versus redo approaches

There are two main recovery techniques that are undo and redo [BHG87]. These two
approaches support the database systems to reconstruct consistent database states when
there is any failure in the database systems. However, they are different in logging
strategies. The undo logging strategy records in the non-volatile logs the former
consistent database states before these database states are changed by a transaction. The
redo logging writes to the non-volatile logs the new consistent database states that the
database systems will have after the updated transaction commits. Figure 2.8 compares
these two logging strategies.

The undo technique supports the database systems to reconstruct the previous consistent
database states when a transaction fails. The database system behaves as if none database
operation of the aborted transaction has been executed. In other words, the undo
technique is used to clean up the presence of data values of uncommitted transactions in

 42

the database system. For the undo approach, the new database states must be written to
the database systems after the undo logs have been written to the non-volatile storage
[GR93]. Redo technique endorses the database system to re-produce the database states
that are the results of successfully committed transactions. The redo approach, therefore,
will ignore any uncompleted transaction. Before the new data values are written to the
database systems, all the redo log records must be written to the non-volatile storage
[GR93]. A recovery support system can combine (which is also the normal case) both
undo and redo approaches so that it can decrease the work lost by failures.

Figure 2.8: Undo logging against redo logging

In Figure 2.8, for the undo approach, if transaction T1 aborts after it has modified the
value of data item Y, the recovery system can re-establish the initial database states by
two logging records <T1,X,10> and <T1,Y,20>. For the redo approach, if a failure occurs
after transaction T1 has committed, the database system will re-produce the committed
values of transaction T1 based on two logging records <T1,X,20> and <T1,Y,10>.

If a new failure happens when the database system is being recovered from previous
failures, the recovery procedure has to be able to restart as many times as needed. This
feature is called idempotent [GR93], i.e., the results of the re-executed recovery
procedure are independent of the number of times that they are repeatedly executed.

Recoverability and cascading abort of transactions

When a transaction is aborted, its effect on the database system will be rolled back. If a
transaction commits, its results are permanent by the durability property. In other words,
a committed transaction does not rollback. A schedule S is said to be recoverable if no
transaction T in S commits until all transactions T’ that have updated data items that T
reads have committed or aborted [BHG87]. A serial schedule is, therefore, always
recoverable. Note that a serializable schedule does not forbid a transaction Ti to read from
a data item X that is modified by an uncommitted transaction Tj (see Figure 2.2, dirty
read problem). Recovery techniques make no attempt to support the serializability of
transactions [GUW01]. Figure 2.9 illustrates the recoverable against serializable
schedules. Schedule S3 is a recoverable schedule because the transaction T2 that reads
new value of data item X modified by the transaction T1 commits after the transaction T1
has committed. Schedule S4 is a serializable but non-recoverable schedule because
transaction T2 commits before T1 commits.

 43

Figure 2.9: Recoverability versus serializability

In a recoverable schedule S, a transaction Ti reads data values that are written by an
uncommitted transaction Tj, if transaction Tj aborts, Ti must also abort. The abortion of
transaction Ti could subsequently cause other transaction Tk to abort if the transaction Tk
has been reading data values that are modified by the transaction Ti. This abortion could
recursively happen to many other transactions. This phenomenon is called cascading
abort and is illustrated in Figure 2.10. Unfortunately, recoverable schedule does not
prevent the cascading abort problem. Therefore, a stronger condition that only allows a
transaction to read data values, which are modified by committed transactions, is needed.
An avoid cascading abort schedule only allows a transaction to read data values that are
written by a committed transaction. Furthermore, a strict schedule only allows a
transaction to read or write data items that are modified by committed transactions
[BHG87].

Figure 2.10: A cascading abort scenario

2.2 Transaction processing systems

In this section, we will first discuss the basic and essential components of a transaction
processing system that manages the execution of transactions on a transaction-oriented
database system. Later, we review the architecture of distributed transaction processing
systems.

2.2.1 Essential components of a transaction processing system

A transaction processing system plays a role as a mediator that accepts transaction
requests from users, dispatches these requests to the database system, coordinates the
execution of the involved transactions, and forwards transaction results to the original
acquirers. Figure 2.11 illustrates an interaction model for a transaction-oriented database
system.

The common programming model for a transaction-oriented database system is the
client-server model [GR93, JHE99]. Users or clients interact with the database system by
submitting their transaction processes that consist of one or many database operations to

 44

the transaction processing system. The transaction processing system will coordinate and
manage the execution of these transaction processes by subsequently sending these
database operations to the database system. The database system will carry out the actual
execution of the submitted database operations. Finally, the transaction results that reflect
the consistent states of the database system are returned to the clients.

Figure 2.11: Dataflow of transaction-oriented database systems

To protect the integrity constraint of the database system, the transaction processing
system must ensure that the ACID properties of transactions are fulfilled. In order to
achieve this, a set of essential components that includes a transaction manager, a
scheduling manger and a log manger are deployed [GR93]. Additional components such
as communication manger or other resource managers can also be employed by the
transaction processing system. However, in this section, we will focus our discussion on
the three essential components. Figure 2.12 presents the roles of the transaction
processing system components.

Figure 2.12: Transaction processing system components

The role of each transaction processing component is described as follows:

• Transaction manager. The role of the transaction manager is to orchestrate the

execution of transactions [GR93]. Via the help of the scheduling and log managers
(explained below), the transaction manger takes care of all important operations of
transactions such as begin, read, write, commit, and abort (or rollback). If the
execution of a transaction is distributed to many different resource managers, the
transaction manager will act as the coordinator of the involved participants (explained
in Section 2.2.2).

• Scheduling manager. The scheduling manger manages the order of execution of the

database operations. Usually, the scheduling manager makes use of concurrency

 45

control protocols, for example locking or timestamp protocols, in order to control the
execution of transactions. Thus, the scheduling manger supports the isolation and
consistency properties of transactions. Based on the applied concurrency control
protocol, the scheduling manager will determine an execution order in which the
submitted database operations will be carried out. For example, if a locking protocol
is used, the scheduling manager will decide whether a lock request will be granted to
the acquired transaction, or if a timestamp protocol is applied, the scheduling
manager will assess if a submitted operation will be allowed to be carried out.

• Log manager. The role of the log manager is to support the database system to

recover from failures. The log manager keeps track of the changes of the database
states by recording the history of transaction execution. Depending on the deployed
recovery strategies, for example undo and/or redo, the log manger will record
necessary information in a non-volatile logbook. The log manager ensures the
atomicity and the durability properties of transactions.

The cooperation among the transaction manager, the scheduling manger and the log
manager will assure that the ACID properties of transactions in a transaction-oriented
database system will be fulfilled.

2.2.2 Distributed transaction processing systems

In the previous section, we have discussed the essential components of a transaction
processing system where data is stored in one database system. In this section, we will
consider a distributed database system where data is distributed among different
computers [OV99]. A distributed transaction processing system is a collection of sites or
nodes that are connected by communication networks (see Figure 2.13).

DBMS
Transaction
Manager

Node 1

DBMS
Transaction
Manager

Node 2

DBMS
Transaction
Manager

Node 3

Wired network

Wired
network

Wired network

Figure 2.13: Distributed transaction processing systems

The communication networks are usually reliable and high speed wired networks, like
LANs or WANs. At each node in a distributed system, there is a local database
management system and a local transaction processing system (TPS) that operates semi-
independently and semi-autonomously. An execution of a transaction in a distributed
database system may have to spread to be processed at many sites. The transaction

 46

managers at different sites in a distributed transaction system cooperate for managing the
transaction execution processes.

Transactions in a distributed system can be categorized into two classes: local transaction
and global transaction. Consequently, there are two types of transaction manager in a
distributed transaction processing system: local transaction manager and global
transaction manager [RC96]. Local transactions are submitted directly to local transaction
managers (Figure 2.14). Local transactions only access data at one database system at one
site, and are managed by the local transaction manager. On the other hand, global
transactions are submitted via the global transaction manager. A global transaction can be
decomposed into a set of sub-transactions; each of which will be submitted and executed
as a local transaction at a local database system [DG00, RC96]. Therefore, the execution
of a global transaction can involve accessing data at many sites, and be under control of
many local transaction managers. A successful global transaction must meet both the
integrity constraints of local databases and the global constraints of the distributed
database system.

Figure 2.14: Local and global transactions

Some of the potential advantages of the distributed transaction processing system are: (1)
higher throughput for transaction processing, and (2) higher availability than the
centralized transaction processing system [GR93]. However, the distributed transaction
processing system also introduces many challenging issues, for example disconnections
in communication between computing sites or concurrency control across computing
sites. These problems could cause data inconsistent among database systems, and abort
on-going transactions. Consequently, more complicated concurrency control protocols or
transaction commitment protocols are needed [BHG87], for example distributed 2-phase
locking and 2-phase commit protocols. Moreover, the heterogeneous characteristic of the
distributed system must also be taken into consideration [GR93, CDK00], for example
different database systems or operating systems.

 47

2.3 Summary

In this chapter, we have reviewed the basic concepts of database systems and database
transactions, and discussed the architecture of transaction processing systems in
distributed environments. In Chapter 3, we will shift our focus to transactions and
transaction processing in mobile environments, which possess some unique
characteristics such as the mobility of mobile computing hosts, the limitations of wireless
communications and the resource constraints of mobile computing devices [PS98]. We
will investigate two important topics: (1) how the distinguishing characteristics of the
mobile environments impact transactions and transaction processing systems; and (2)
what new requirements a transaction processing system must have in order to efficiently
support transaction processing in the mobile environments.

 48

 49

Chapter 3

Requirements for
Mobile Transaction Processing Systems

This chapter focuses on the main topic of this thesis: mobile transaction processing
systems. The main objective of this chapter is to identify a set of requirements that must
be fulfilled by a mobile transaction processing system in order to efficiently support
transaction processing in mobile environments. This set of requirements plays a vital role
in our research because: (1) it includes the objectives that must be achieved by our
mobile transaction processing system, and (2) it contributes to the evaluation of our
research results in Chapter 8.

3.1 Introduction

Unlike distributed environments, transaction processing in mobile environments must
take into account three new challenging characteristics of mobile environment – that are:
the mobility of mobile computing hosts, the limitation of wireless communications and
the resource constraints of mobile computing devices [PS98]. These three challenging
characteristics have a strong impact on the processing of transactions in terms of
concurrency control, data availability, and recovery strategies [Mad+02]. Because of
these unique characteristics of the mobile environments, the standard transaction ACID
properties can be too strict to be applied in mobile environments. In other words, we need
to define a set of requirements that broadens these properties in the context of the mobile
environments.

The organization of this chapter is as follows. In Section 3.2, the characteristics of mobile
environments and the behavior of mobile hosts are addressed in detail. Section 3.3
discusses transaction processing in mobile environments. Section 3.4 presents the general
architecture of mobile transaction environments. The characteristics of mobile
transactions are discussed in Section 3.5. Based on these characteristics, a set of
requirements, which must be fulfilled by our mobile transaction processing system, is
identified and addressed in Section 3.6. Finally, Section 3.7 concludes the chapter.

 50

3.2 Characteristics of mobile environments

In this section, we discuss the characteristics of the mobile environments that could have
strong impact on mobile transactions in terms of transaction specification and transaction
processing. There are other important issues like authentication and security; however,
they are not in the scope of this thesis. The main characteristics of the mobile
environments that are addressed in this section include: the mobility of mobile computing
hosts, the limitation of wireless communications and the resource constraints of mobile
computing devices. In this chapter, we will use the mobile transaction terminology for
specifying transactions in mobile environments.

3.2.1 Mobile hosts

Mobility is the main characteristic that distinguishes the mobile environments from the
traditional distributed environments. In traditional distributed environments, computers
are stationary hosts. In mobile environments, mobile computers are continuously moving
from one geographical location to another.

The features of the mobility characteristic are discussed as follows:

• Real-time movement. The mobility of the mobile host is a real-time movement.

Therefore, it is affected by many environment conditions. For example, the pre-
planned travel route of a mobile host can be changed because of traffic jams or
weather conditions. If there is a mobile task whose operations depend on the travel
route of the mobile host, these operations can become invalid, or extra support is
required. For example, a new route-map directory must be downloaded into the
mobile host if the travel course is changed. Moreover, the movement of the mobile
host can also depend on the objective of the mobile task. For example, an ambulance
car wants to arrive at the accident scene by selecting the shortest route with fastest
allowing speed, a bus must follow a strict time table on a bus-route, while a postman
only wants to travel through each road once. During the movement, the mobile host
can stop at some locations for some periods; therefore, the mobility of the mobile host
includes both movement and non-movement intervals.

• Change of locations. The location of a mobile host changes dynamically and

frequently in accordance with the speed and the direction of the movement. The faster
the mobile host moves, the more frequently the location changes. The objective of
mobile tasks can also specify the locations at which the mobile host must be, in order
to carry out the mobile tasks. For example, a computer technician must come to
customer locations to fix computer problems. A mobile support system must provide
the utilities to manage the locations of mobile hosts (this demand is not needed in a
distributed environment). Changes of locations can cause changes in the operating
environments of the mobile hosts, for example network addresses, communication
protocols, mobile services, or location dependent data [Ram+03, DK98].

 51

The mobility of mobile hosts will have strong impact on the execution of transactions.
The real-time movement of mobile hosts could pose timing constraints on the execution
schedule of transactions. Furthermore, if mobile hosts change their locations frequently,
additional time is required to reconfigure transaction application processes to the new
environment conditions. Therefore, additional support is required for mobile transaction
processing systems to cope with these challenges.

3.2.2 Wireless networks

Mobile hosts communicate to other hosts via wireless networks. Compared to wired
networks, wireless networks are characterized by: lower bandwidth, unstable,
disconnections, and ad-hoc connectivity [Sch02]. The characteristics of the wireless
networks are described as follows:

• Lower bandwidth. The bandwidth of a wireless network is lower than a wired

network. The wireless network does not have the capacity as the wired network. For
example, a wireless network has bandwidth in the order of 10Kbps or a wireless local
area network (WLAN) has bandwidth of 10Mbps; while gigabits (Gbps) are common
in wired LAN [Sch02]. Therefore, it can take longer time for a mobile host to transfer
the same amount of information via the wireless network than the wired network.
Consequently, the wireless network introduces more overhead in transaction
processing.

• Unstable networks. A wireless network has high error-rates, and the bandwidth of a

wireless network is variable. Due to errors during data transmission, the same data
packages are required to re-transmit many times, thus, extra overhead in
communication and higher cost. Due to the varying bandwidth, it is hard to estimate
the time required to completely transmit a data package from/to a mobile host. These
problems will affect the data availability at the mobile hosts. As a result, the
execution schedule of transactions at the mobile hosts can be delayed or aborted.

• Disconnections. Wireless networks pose disconnection problems. Disconnections in

communication can interrupt or delay the execution processes of transactions. More
seriously, on-going transactions could be aborted due to a disconnection. The
disconnection in communication is categorized into two types: disconnection period
and disconnection rate.

Disconnection period. The disconnection period indicates how long a mobile host is
disconnected. While being disconnected, the mobile host will not be able to
communicate to other hosts for sharing of data. If the mobile host holds vital shared
data, it can block transaction processes on other hosts. Furthermore, the duration of a
disconnected period of a mobile host is not always as planned, i.e., it can be longer
than expected. The mobile transaction processing system must be able to
continuously support transaction processing while the mobile host is being
disconnected from the database servers by caching the needed data beforehand.

 52

Disconnection rate. The disconnection rate indicates how often the wireless
communication is interrupted within a predefined unit of time. The execution of
transactions on a mobile host can be affected when an interruption occurs. The more
interruptions the many transactions are aborted or rollback. If the transactions on the
mobile host are carrying out collaborative operations with other transactions on other
mobile hosts, these collaborative activities can be suspended or aborted. To cope with
this problem, the mobile transaction processing system must be able to support the
mobile transactions to resume or recover from previous interrupted points.

• Ad-hoc communication. The wireless network technologies introduce a new way to
support direct and nearby communications among mobile hosts, also called any-to-
any or mobile peer-to-peer communication [Sch02, Rat+01]. For example, two
mobile hosts can directly share information with the support of Bluetooth or infra-red
technologies [PLZ05]. The characteristics of this peer-to-peer communication are:
unstructured (i.e., ad-hoc), short-range, and mobility dependent [Rat+01]. Table 3.1
compares the communication ranges and bandwidth of different wireless
technologies.

Table 3.1: Wireless communication technologies1

Wireless technology IEEE standard Range (m) Bandwidth
IrDA2 N/A 0.1-1 100kbps – 16Mbps
Bluetooth IEEE 802.15.1 10-100 1Mbps
Wireless USB IEEE 802.15.33 1-10 2Mbps-480Mbps
Wi-Fi IEEE 802.11 45-90 11Mbps-540Mbps
WiMAX IEEE 802.16 2km-10km 75Mbps

3.2.3 Computing devices

There are many types of mobile computing devices such as mobile phones, laptop
computers, or personal digital assistants (PDAs). Mobile devices are subject to be smaller
and lighter than stationary computers. Consequently, mobile computers have limited
energy supply, less storage capacity, and limited functionality compared to stationary
computers. Furthermore, the mobile computers are easily damaged, i.e., less reliable. The
characteristics of mobile computing devices are elaborated as follows:

• Limited energy supply. The operation of mobile computers heavily depends on the

electrical power of batteries. This limited power supply is one of the major
disadvantages of mobile computing devices. The energy consumption of a mobile
device depends on the power of electronic equipments installed on the mobile device,
for example types of hard disks or CPU. Moreover, the battery life also depends on
the number of applications and the application types that operate on the mobile

1 Sources: www.irda.org, www.bluetooth.org, www.ieee802.org, and www.intel.com
2 IrDA stands for Infrared Data Association
3 Yet to be standard

 53

devices [FS99, KU99]. For example, a mobile phone can live up to five days but a
laptop can only be able to operate for several hours; text processing applications
consume less power than graphical applications. Transaction processes that are being
carried out at a mobile host can be interrupted or re-scheduled if the mobile host is
exhausting its power supply.

• Limited storage capacity. The storage capacity of a mobile computer (i.e., hard

disks or memory) is much less than a stationary computer and is harder to be
expanded. Therefore, a mobile host may not be able to store the necessary data that is
required for its operations in disconnected mode [PS98, Mad+02]. Consequently,
transaction processes on the mobile host will be delayed due to data unavailability, or
require longer processing time due to frequent memory swapping operations.

• Limited functionality. The functionality of mobile devices is also limited in terms of

the graphical user interface, the application functionalities, and the processing power.
Therefore, a mobile host may be unable to perform some of transaction operations, or
requires longer processing time to perform these operations. For example, a small
PDA may only be able to view black and white pictures. Table 3.2 compares the
configurations of several PDA types.

Table 3.2: Personal digital assistant devices4

PDA type Size and weight
(cm, gram)

Screen size
(inch, color bits)

Processor type
(MHz)

HP iPAQ Pocket
PC hx2110

7.7 x 1.6 x 11.9,
164 g

3.5”, 16 bits Intel XScale 312

ASUS MyPal
A620BT

7.7 x 1.3 x 12.5,
141 g

3.5”, 16 bits Intel XScale 400

Fujitsu Siemens
Pocket LOOX 720

7.2 x 1.5 x 12.2,
170 g

3.6”, 16 bits Intel XScale 520

• Unreliable equipments. The data stored at a mobile host can be lost if a catastrophic

failure happens. This could heavily impact the durability property of transactions
because of the losing of the committed results of transactions that are stored at the
mobile host. To avoid this problem, data stored at mobile hosts must be backed-up at
stationary database servers as much and as soon as possible.

3.2.4 The behavior of mobile hosts in mobile environments

In mobile environments, mobile transactions are initiated [DHB97, KK00] and/or
processed [WC99] at mobile hosts. The mobile hosts can participate in the mobile
transaction execution processes in different ways. First, a mobile host can initiate a
mobile transaction, submits the transaction to appropriate (non-mobile or mobile) hosts
for processing, and receives the committed results. In this way, the mobile host plays a

4 Sources http://www.komplett.no

 54

role as a terminal transaction client [GR93]. Second, a mobile host can take part in the
actual transaction execution process, i.e., the entire or part of a mobile transaction is
carried out by the mobile host. The mobile host plays a vital role in the transaction
execution process. Therefore, we need to answer the following question: How do the
characteristics of the mobile environments affect the behavior of the mobile host?

The behavior of mobile hosts in mobile environments is categorized into two dimensions:
movement and operation (see Figure 3.1).

Figure 3.1: Behavior model for mobile hosts

First, the movement of the mobile host is affected by both the requirements of the mobile
tasks and the environmental conditions [DK99, Sør+02]. Second, the operation of the
mobile host depends on its internally designed capacity and externally associative factors.
For example, the performance of computational operations depends on the available
energy of the mobile host’s battery, and the network operations rely on both the
connectivity capacity of the mobile host and the provided network services. The behavior
of mobile hosts is discussed in the following.

Movement of mobile hosts

The movement behavior of a mobile host describes the actual mobility states of the
mobile host. While operating in mobile environments, the mobile host can be either in
stopping or moving state. The two movement states are explained as follows:

• Stopping. A mobile host is said to be in stopping state either when its movement

velocity is zero, or when the location of the mobile host is not considered changing
within a period of time. For example, a bus stops at a bus-stop to pick up passengers,
a salesman is selling products at a shopping centre, or two mobile hosts are always
moving close to each other.

• Moving. A mobile host is in moving state either when its movement velocity has a

value greater than zero, or when the location of the mobile host is considered
changing over time. For example, a bus is moving along a road or a salesperson
travels to several places during the day. While in moving state, the mobile host can
continuously change its velocity and direction of movement.

 55

On the one hand, the movement behavior of a mobile host can affect the mobile tasks that
are carried out by the mobile host, e.g., a public transport vehicle needs to strictly follow
a timetable. On the other hand, the movement of the mobile host can be affected by the
surrounding environment conditions, e.g., traffic jam. The movement behavior of the
mobile host demands additional supports such as location management [MRX03], and
awareness of location dependent data [RD00, DK98].

Operations of mobile hosts

The operation behavior of mobile hosts depends on the availability of mobile resources
such as network connectivity and battery energy. We distinguish two operation modes for
mobile hosts in mobile environments: isolation and interaction. These operation modes
of the mobile hosts are explained as follows:

• Interaction. When a mobile host is sharing data with other hosts, it is said to be in an

interaction mode. The two essential prerequisite conditions for the interaction mode
are: (1) the mobile host is operational, and (2) the network connectivity is available. It
is not necessary that the mobile host always connects to other hosts all the times. This
can help the mobile host to save the battery energy and to reduce communication
cost. However, in an interaction mode, the communication channel between the
mobile host and other hosts must always be available and establish-able whenever it
is needed.

• Isolation. When the communication channel between a mobile host and other hosts is

not available, the mobile host is disconnected from other hosts and is said to be in an
isolation mode. There are many factors that contribute to disconnection of the mobile
host, for example the mobile host moves out of the wireless communication range, or
network services are not available, or the mobile host is running out of its energy. The
isolation mode can be further refined to autonomous and idle sub-modes.

Autonomous. When a mobile host operates by itself, it is said to be in autonomous
mode. In the context of mobile transaction processing, we refer this mode as
disconnected processing mode (see Section 6.5).

Idle. In this mode, the mobile host is not able to operate or has to delay its operations.

The behavior of mobile hosts also illustrates the correlations among the three
characteristics of the mobile environments. Disconnections in communication can be the
results of the mobility of mobile hosts and/or the limitation of mobile resources. When
mobile hosts communicate with others via short-range wireless network technologies,
e.g., infra-red or Bluetooth or wireless LAN, the communication will be disconnected if
the mobile hosts move outside the limited communication range. The mobile hosts can be
disconnected for short periods, i.e., seconds or minutes, and more frequently when they
are moving in and out of the shadow of physical obstructions such as high buildings. The
disconnection period can be long, i.e., hours or days, when the mobile hosts stay in some
locations in which the wireless network service is not available. The mobile hosts can

 56

also volunteer to disconnect if the supplied energy is running out. On the other hand, the
heavy use of network activities can shorten the battery life of the mobile host.

3.3 Transaction processing in mobile environments

The main differences between the mobile environments and distributed environments are:
(1) mobile computing hosts, and (2) wireless networks. Table 3.3 compares the main
different features between the distributed and mobile environments.

Table 3.3: Distributed environments versus mobile environments

 Distributed environments Mobile environments

Computing
hosts

Stationary sites
Powerful computing capacity
Reliable computing hosts

Mobile and non-mobile hosts
Limited computing capacity of
mobile hosts
Less reliable computing hosts

Network
connectivity

Wired and high-speed networks

Reliable networks

Wireless, unstable and low
speed networks
Unreliable, error-prone, frequent
and long disconnection periods

The mobile hosts usually have less computing resources and capacity than stationary
hosts. For example, a laptop computer has lower processing speed and smaller storage
capacity than a desktop computer, and its operation might depend on the limited battery
energy. Consequently, it takes longer time for a transaction to be processed at a mobile
host. Moreover, mobile computers are easily damaged, i.e., less reliable. The results of
committed transactions, which are stored at a mobile computer, can be lost if the mobile
computer is damaged, i.e., the durability property of transactions may not be fully
guaranteed. Therefore, the committed results of transactions in mobile environments
should additionally be saved at the stationary hosts as in distributed environments. The
movement of mobile hosts brings additional requirements and demands that the mobile
transaction processing system must handle, for example hand-over processes [DHB97] or
locally dependent data [DK99]. In distributed environments, these demands do not exist.

Mobile computing hosts communicate with other hosts via wireless networks. Compared
to a wired network, a wireless network is usually less reliable, i.e., disconnections can
occur frequently; has lower bandwidth, i.e., megabits versus gigabits; and is limited in
communication range, i.e., mobile hosts must stay within limited distance to be
connected. Because of these unique features of wireless networks, it can take longer time
to download necessary data into the local storage devices at the mobile hosts; or due to
disconnections, the mobile hosts will not be able to obtain the needed data. Consequently,
transactions in mobile environments may experience long blocking periods and
inconsistent data.

In mobile environments, transaction processing systems consist of both mobile and non-
mobile hosts [SRA04], and can be divided into two different layers (see Figure 3.2). The

 57

distributed transaction processing layer corresponds to the execution of mobile
transactions that are carried out on non-mobile hosts. The mobile transaction processing
layer corresponds to the execution of mobile transactions that are carried out on a mobile
host or distributed among mobile hosts. Due to the above distinguishing and challenging
characteristics of mobile environments, transaction processing in mobile environments is
more difficult than in distributed environments, especially in terms of concurrency
control, data availability, and recovery mechanisms [Mur01]. These characteristics of
mobile transactions will be discussed in Section 3.5.

Figure 3.2: Transaction processing in mobile environments

3.4 Architecture of mobile transaction environments

In this section, we discuss the architecture of the mobile transaction environments. In
general, the mobile transaction environments include three different components: mobile
hosts (MH), mobile support stations (MSS) and fixed hosts where database servers (DB)
reside [SRA04, Hir+01]. Figure 3.3 illustrates the mobile transaction environments.

A mobile environment is a geographical territory. The geographical territory is divided
into a collection of areas called mobile cells. Wireless communications in each mobile
cell is provided by a single low-power transmitter-receiver [Sch02]. There might be some
areas in the mobile environments in which the wireless communication is not available.
This could be caused by the limited service of the wireless communication providers or
the structural of physical objects in the areas, for example concrete tunnels or remote
islands. The geographical mobile environment, therefore, can be considered as a
collection of mobile cells that are separated or overlapped with others. The size of mobile
cells is not necessarily equal, due to the differences of operational power of the
transmitter-receiver devices.

The wireless technologies that are provided in each mobile cell can be different, for
example wireless LAN or wireless USB. As a consequence, network bandwidth, network
latency, communication protocols and covered ranges are different among mobile cells.
In each mobile cell, there is a special computing host called the mobile support station.
The role of the mobile support station is to provide additional computing services to all
the mobile hosts that currently reside in the mobile cell.

 58

Figure 3.3: Mobile transaction environments

Mobile hosts are portable mobile computing devices which have the capability to cache a
limited amount of information. Database servers are stationary computers that are
connected via high speed wired-networks, and play roles as permanent data storage
repositories. Shared data is distributed on these database servers. Mobile support stations
(also called base stations) are stationary or mobile computers. Mobile support stations
have higher processing power and data storage capacity than the mobile hosts. The role
of the mobile support stations is to support mobile hosts communicating with other
mobile hosts or database servers. Mobile hosts communicate with the mobile support
stations via the wireless networks. Communications between the database servers and the
mobile support stations are via wired networks or dedicated wireless connections.

Mobile hosts move in mobile environments while carry out mobile tasks. While being in
a mobile cell, a mobile host can be either connected or disconnected with the mobile
support station of this mobile cell. The mobile host may only connect to the mobile
support station when there is a need for sharing of data. This will help to save the limited
energy of the mobile host and to reduce the communication cost. On the other hand,

 59

because of the limitations of wireless networks, a mobile host may not always be able to
establish a communication channel with the mobile support station. If a mobile host is in
the area that is an intersection of two or more mobile cells, it can connect to any mobile
support station.

The mobile hosts can move within one mobile cell or across a large area covered by
several mobile cells. When a mobile host is leaving a mobile cell and entering a new
mobile cell, the communication channel and other related information between the
mobile host and the previous mobile support station will be transferred to the next mobile
support station. This process is called hand-over or hand-off process [SRA04]. The new
mobile support station at the new mobile cell will continue carrying out the support to the
mobile host. However, it is not necessary that hand-over processes must happen every
time the mobile host enters a new mobile cell. For example, the mobile host can operate
in an autonomous mode when the wireless network is not supported in the new mobile
cell. Furthermore, a mobile host does not have to disconnect from the old mobile support
station before it can connect to the new mobile support station. As shown in [CP98,
TLP99], a mobile host can connect to a new mobile support station while connecting to
the old mobile support station. The hand-off process can be planned beforehand if the
travel route of the mobile host is known in advanced and strictly followed. Otherwise, the
hand-off process can only be carried out after the mobile host has established a
connection with the new mobile support station, i.e., after the new destination of the
mobile host is known.

In Figure 3.3, there are four mobile cells in the mobile environments. Mobile cells one
and two are separated, while mobile cells three and four are overlapped. A mobile host
moves from position A in mobile cell one to position B in mobile cell four. The travel
route of the mobile host passes through mobile cells two and three. When the mobile host
is leaving cell one, it will enter a disconnected interval in the area between the mobile
cells one and two. While in the mobile cell two, the mobile host will be supported by the
mobile support station that is a dedicated mobile host. When the mobile host is in the
mobile cell three, it may not connect to the mobile support station all the time. In the
intersection region of the mobile cells three and four, the mobile host can connect to the
mobile support station of either mobile cell three or mobile cell four. The hand-over
processes occur when the mobile host moves from one mobile cell to another along the
travel route.

3.5 Characteristics of mobile transactions

Transactions in mobile environments possess many challenging characteristics due to the
characteristics of the mobile environments. In this section, we will discuss the
characteristics of mobile transactions. The characteristics of mobile transactions are
described as follows:

• Mobility of transactions. The execution of transactions in mobile environments is

tightly coupled with the behavior of the mobile hosts. A mobile host can initiate
mobile transactions or participate in the transaction execution processes. When a

 60

mobile host moves from one location to another, all the transactions that are being
carried out at that mobile host will also move. Consequently, many computing
activities associated with these transactions are moved or changed, for example
handling hand-over processes, establishing new communication channels, or updating
the routing tables. In other words, the mobility of transactions causes the movement
of related transaction resources, controls, and services.

• Long-lived transactions. Transactions in mobile environments have longer life (i.e.,

long-lived) than traditional ACID transactions. This is due to the overheads that are
caused by two aspects: the data availability and the execution interruptions (see
Figure 3.4).

Figure 3.4: Transaction life-time in non-mobile and mobile environments

Data availability. In mobile environments, the data availability at a mobile host can
be affected by many factors. First, the movement of the mobile host causes the
movement of related information. This will cause additional overhead to the
transaction execution time. Second, the bandwidth of wireless networks is limited;
therefore it will take longer time to obtain the necessary data. Third, the mobile
computing devices have limitations in storage capacity; therefore, the mobile host
may not able to cache the required information to support disconnected transaction
processing. In addition, due to the unexpected disconnections of the wireless
networks, a transaction will not be able to release the controls on shared data to
transactions at other hosts as scheduled; this means that this transaction blocks the
execution of other transactions.

Execution interruptions. The execution of transactions can be interrupted while being
carried out at the mobile host. The interruptions can be caused by either the
surrounding environment conditions or the limitation of computing capacity of the
mobile host. For example, a wireless network disconnection suddenly occurs during
the execution of transactions, or the performance of the mobile host is slowing down
due to heavy computing load. The interruptions can happen frequently and cause
transactions to be suspended or aborted.

• Adaptive transaction processing. Due to the real-time movement of the mobile

hosts, the limitations of the wireless networks, and the variation of the mobile
resources, the execution plan of a transaction in mobile environments may not be as
scheduled. Therefore, the mobile transaction processing system must have the ability
to support adaptive transaction processing that includes: distributed and disconnected
transaction processing.

 61

Distributed transaction processing. Due to the limitations of processing capacity and
resources, mobile hosts require additional support from other hosts to carry out
transactions. For example, a transaction, which is initiated by a mobile host and
accesses a large data set that is not cached at the mobile host, could be moved to
stationary hosts for executing. This could reduce transaction processing time and
avoid transferring a large amount of data through a slow wireless network, i.e.,
achieving higher throughput for the transaction processing system. Furthermore, the
portable computing devices are easily damaged; therefore, the results of committed
transactions must be saved at stationary database servers.

Disconnected transaction processing. A mobile host can be disconnected from the
database servers for long periods; therefore, transactions that are executed at the
mobile host may suffer from long blocking if the necessary data is not available at the
mobile host. To deal with this problem, the mobile transaction processing system
should have the capacity to cache enough data so that it can carry out the transactions
while being disconnected from the database servers.

• Temporary data inconsistency. Due to long disconnection periods, shared data
among different mobile hosts may not be fully consistent all the time. For example, a
transaction at a disconnected mobile host can modify a shared data item that is
currently being read-only cached in a local storage of another disconnected mobile
host. Data synchronization processes will be carried out when the disconnected
mobile hosts reconnect to the database systems so that the data consistency of the
database systems will be achieved.

• Heterogeneous processing. Many types of mobile devices can be involved in

transaction execution processes. Interactions or communications among participating
parties are carried out via the support of different types of wireless network
technologies and protocols. Furthermore, different database systems are accessed
during the execution of mobile transactions. All these factors contribute to the
heterogeneous processing characteristic of mobile transactions.

3.6 Requirements of transactions in mobile environments

In this section, we address in detail the requirements of a mobile transaction processing
system that have been briefly mentioned in the Section 1.5 of this thesis. Because of the
challenging characteristics of mobile transactions, the ACID properties of transaction are
too strict to be applied in the mobile environments. More relaxing transaction properties
have been introduced to support transaction processing in the mobile environments. A
common approach is that the atomicity and isolation properties could be relaxed, while
the consistency and durability properties must be preserved [RC96, SRA04].

In this thesis, in relation to the transaction properties, we will apply the same approach.
However, we also propose additional requirements that take into account the
characteristics of mobile transactions like the mobility of transactions, and the
heterogeneous and adaptive transaction processing. In order to achieve the objectives, we

 62

identify nine requirements that a mobile transaction processing system must have. The
requirements are based on four categories: mobility of transactions (R1 and R2), wireless
networks and limited mobile resources (R3 and R4), customization of transaction
properties (R5, R6, and R7), and recovery of transactions (R8 and R9). The requirements
are summarized in Table 3.4.

Table 3.4: Requirements of mobile transaction processing systems

Categories Requirements
R1. The mobile transaction processing system must be able
to effectively handle the hand-over control of mobile
transactions. Mobility of transactions
R2. The mobile transaction processing system must support
interactions among transactions at different mobile hosts.

R3. The mobile transaction processing system must support
disconnected transaction processing.

Wireless networks and
limited mobile resources R4. The mobile transaction processing system must support

distributed transaction execution among mobile hosts and
stationary hosts.

R5. The mobile transaction processing system must have
the ability to customise the atomicity property of
transactions.

R6. The mobile transaction processing system must support
sharing partial states and status among transactions.

Customization of
transaction properties

R7. The mobile transaction processing system must assure
the durability property of transactions.

R8. The mobile transaction processing system must provide
efficient recovery strategies.

Recovery of transactions
R9. The mobile transaction processing system must support
temporary data and transaction management.

The above requirements are elaborated as follows:

R1. The mobile transaction processing system must be able to effectively handle the
hand-over control of mobile transactions. Mobility of hosts is one of the main
challenging characteristics of mobile environments that cause the mobility of
transactions. The mobility of a mobile transaction can be described in terms of hand-over
processes that occur during the execution of the mobile transaction. Therefore, the mobile
transaction processing system must be able to capture and control these hand-over
processes. This can be achieved if the mobile transaction processing system is able to

 63

identify (1) when a hand-over process occurs, and (2) which information is needed to
move or to modify in accordance with the mobility pattern of mobile transactions.

R2. The mobile transaction processing system must support interactions among
transactions at different mobile hosts. While being on the move and disconnected from
the database servers, mobile hosts can directly communicate with others by using short-
range and peer-to-peer communication technologies, for example infra-red, Bluetooth or
wireless LAN. The mobile transaction processing system must be able to support direct
interactions among transactions at different mobile hosts, i.e., without any support from
the mobile support stations or the database servers.

R3. The mobile transaction processing system must support disconnected transaction
processing. In mobile environments, the mobile hosts are frequently disconnected from
the database servers. Therefore, the mobile transaction processing system must support
disconnected transaction processing, i.e., to deal with the disconnections of the wireless
networks, especially long disconnection periods. This will allow the mobile hosts to
continue processing transactions in isolation mode and, hence, reducing the delay of local
transactions.

R4. The mobile transaction processing system must support distributed transaction
execution among mobile hosts and stationary hosts. Due to the limited computing
resources of mobile devices, the mobile transaction processing system must be able to
distribute the execution of transactions among available computing hosts. For example, if
a mobile transaction requires a lot of processing capacity or the amount of requested data
of the mobile transaction is large, the mobile transaction should be transferred to fixed
hosts to be processed there. This approach, in addition, will avoid the problem of
transferring a large amount of data from the database servers to the mobile host on the
low bandwidth and frequently disconnecting wireless networks.

R5. The mobile transaction processing system must have the ability to customise the
atomicity property of transactions. The standard atomicity property of transactions is too
strict in mobile environments, especially for long-lived transactions. Therefore, the
mobile transaction processing system must provide mechanisms to customize the
atomicity level of transactions. In other words, the mobile transaction processing system
must support transactions to partially roll back when failures occur. For example, a
transaction will be partially rolled back (i.e., not totally aborted) due to a failure caused
by the exhausting power supply at the mobile host or the disconnection of wireless
networks. The mobile transaction can be continued when these mobile resources become
available. Customizing the atomicity property of transaction also avoids losing of useful
work done due to the failures of the mobile hosts.

R6. The mobile transaction processing system must support sharing partial states and
status among transactions. Sharing partial results is essential in mobile environments.
For example, if a shared data object is only accessible after the transaction that is being
executed at a mobile host has finally committed at the database servers; other transactions
can suffer long blocking periods. Furthermore, mobile transactions are long-lived

 64

transactions, therefore, the mobile transaction processing system must allow partial
results of on-going transactions to be shared.

R7. The mobile transaction processing system must assure the durability property of
transactions. In mobile environments, mobile transactions are executed and locally
committed at the mobile hosts, and globally committed at the database servers. Mobile
computing devices are easily damaged; therefore, the results of committed transactions
saved at mobile hosts can be lost if failures happen. Thus, the mobile transaction
processing system must provide different methods to safely archive information in
accordance with the commitment (i.e., locally or globally) of mobile transactions.

R8. The mobile transaction processing system must provide efficient recovery strategies.
When a transaction fails, the recovery techniques support the database systems to restore
consistent states. In mobile environments, failures are common due to many factors, for
example the disconnections of wireless communications or the exhausting of the battery
energy. Furthermore, cascading abort can happen if a transaction aborts after sharing their
partial results to other transactions. Therefore, the transaction processing system must
support different recovery methods to deal with different transaction failure situations.
For example, if a transaction that shares consistent data to other transactions aborts, those
transactions that have read the shared consistent data should not be aborted (see the
concepts of shared transactions in Section 5.5 for more detail).

R9. The mobile transaction processing system must support temporary data and
transaction management. The execution processes of mobile transactions can happen at
different computing (mobile or non-mobile) hosts that can be asynchronously connected
or disconnected. For example, a transaction at a disconnected mobile host reads a shared
data object that is being modified at another mobile host. Therefore, the non-permanency
of data and transactions behavior must be managed. The temporary management must
also handle conflicts among transactions at different mobile hosts.

3.7 Summary

Because of the unique characteristics of the mobile environments (that are: the mobility
of the mobile hosts, the limitations of wireless networks, and the resource constraints of
the mobile computers), mobile transactions are very different from traditional
transactions.

In [GR93], Jim Cray and Andreas Reuter gave a definition of transaction as:

“A transaction is a collection of one or more operations on the database that must
be executed atomically”.

Serrano-Alvarado et al. [SRA04] defined a mobile transaction as:
“A mobile transaction is a transaction where at least one mobile host takes part in
its execution”.

 65

The focus has moved from the transaction design to where and how transactions are
executed. Mobile transactions are more complicated than traditional transactions in both
specification and execution, due to, for example disconnection in communications or
hand-over processes. In order to support the development of our mobile transaction
processing system, we have addressed and discussed the requirements that a mobile
transaction processing system must face. These requirements not only focus on
customizing the transaction properties, but also take into account other challenging
characteristics of mobile transactions such as mobility of transactions, and disconnected
and distributed transaction processing.

There are many mobile transaction models, analyzing tools and transaction processing
systems [SRA04, Hir+01] that have been proposed and developed to support mobile
transaction processing. However, there are still major limitations, especially to support
both the disconnected processing and the mobility of transactions. These limitations will
be investigated in Chapter 4.

 66

 67

Chapter 4

State-of-the-Art Survey

In this chapter, we survey existing mobile transaction models to answer the research
question: What are the current ideas and concepts that have been developed to answer
the main research question or to address part of it? Therefore, the objective of this
chapter is to analyze what have been done and find out what are the limitations in the
field of mobile transaction processing, focusing on both academic and practical research.

4.1 Introduction

In this chapter, we survey several selected transaction models and transaction processing
systems that have been purposely developed to support transaction processing in mobile
environments. We will also recap some traditional transaction models whose features
could be used in the mobile environments. Based on the characteristics and requirements
of mobile transactions that have been addressed in Chapter 3, we will comment on the
implications, usefulness as well as the limitations of these models and systems.

The chapter is organized as follows. Traditional transaction models are reviewed in
section 4.2. We discuss why they are important, and how these models can be used in
mobile environments. Mobile transaction models and mobile transaction processing
systems that are recently developed are surveyed and commented in section 4.3. Other
related issues to mobile transactions like mobile databases, transaction commitment
protocols, and data sharing workspaces will be considered in section 4.4. In section 4.5,
we will look into some available commercial transaction systems. This is to find out what
the gap between theoretical and practical research is. Summary of the literature review is
given in section 4.6.

4.2 Traditional transaction models

As the transaction environment evolves from the centralized environment to distributed
and mobile environments, the properties and the structure of transactions change.
However, several basic transaction models are indispensable. In other words, they are
still useful and applicable in the new mobile environments. In this section, we will review
the following transaction models:

 68

• Flat transaction model [Gra81, GR93]
• Nested transaction model [Mos85]
• Multilevel transaction model [Wei91, Elm+92]
• Sagas transaction model [GMS87]
• Split and Join transaction model [PKH88]

For each transaction model, we briefly describe the transaction model, the properties and
discuss how the features of the transaction model could be used in the mobile
environments.

4.2.1 Flat transaction model

Description. The flat transaction model [Gra81, GR93] presents the simplest transaction
structure that fully meets the ACID properties. Figure 4.1 illustrates the structure of a flat
transaction. The building block of a flat transaction, between Begin and Commit /Abort
operations, contains all the database operations that are tightly coupled together as one
atomic database operation. The flat transaction begins at one consistent database state,
and either ends in another consistent state, i.e., the transaction commits, or remains in the
same consistent state, i.e., the transaction aborts.

Figure 4.1: Flat transaction model

Transaction properties. The flat transaction model fully meets the standard ACID
properties. The flat transaction is fully isolated during its execution, and any failure
causes the whole transaction to abort. The results of a committed flat transaction are
durable and permanent.

Usefulness for mobile environments. Due to the strict ACID properties, the flat
transaction model is not suitable in mobile environments. However, the flat transaction
model plays an important role for building more advanced transaction models. For
example, a complicated transaction model can consist of a set of smaller flat transactions.
The flat transaction model can be easily supported at the application programming level.

4.2.2 Nested transaction model

Description. The nested transaction model [Mos85] defines the concepts and the
mechanisms for breaking up the large building block of a flat transaction into a set of
smaller transactions, called sub-transactions. Thus, the nested transaction model has a

 69

hierarchical tree structure that includes a top-level transaction and a set of sub-
transactions (either parent or children transactions). Sub-transactions at the leaf level of
the transaction tree are flat transactions.

Figure 4.2: Nested transaction model

Transaction properties. The nested transaction model has the following characteristics.
First, children transactions are flat transactions. Second, the children transactions start
after their parent have started, and can autonomously commit or abort. However, the
results of the committed children transactions do not take effect until their parent
transactions commit. In other words, the nested transaction only commits when the top-
level transaction commits. And third, when a child transaction commits, its results
become visible to its parent transaction. If a parent or the top-level transaction aborts, all
the sub-transactions must abort, regardless of their states.

Usefulness for mobile environments. The concept of the nested transaction model can be
applied in mobile environments, especially for decomposing a large transaction into sub-
transactions which can be carried out concurrently.

4.2.3 Multilevel transaction model

Description. The multilevel transaction model [Wei91, Elm+92] is looser than the nested
transaction model in terms of the relationship between parent and children transactions.
Sub-transactions in the multilevel transaction can commit or abort independently of their
parents. This is supported by the concepts of compensating transactions. We will briefly
discuss the concept of compensating transactions, and its opposed contingency
transactions (see Figure 4.3).

Compensating transactions [GR93] are designed to undo the effect of the original
transactions that have aborted. The compensating transactions are triggered and started
when the original transactions fail. Otherwise, the compensating transactions are not
initiated. Once a compensating transaction has started, it must commit. In other words,
the compensating transactions can not abort. If a compensating transaction fails, it will be
restarted.

Contingency transactions [Elm+92] are designed to replace the task of the original
transactions that have failed. Contingency transactions are also triggered by the failures

 70

of the original transactions. Note that it is not always possible to specify the
compensating or contingency transactions for an original transaction.

Figure 4.3: Compensating and contingency transactions

Transaction properties. The isolation property is relaxed in multilevel transaction model.
The committed results of sub-transactions are visible to other transactions. The atomicity
property is ensured by the means of compensating transactions.

Usefulness for mobile environments. The multilevel transaction model is applicable in
mobile environments. Multilevel transaction model not only relaxes the isolation property
of transactions but also provides a flexible recovery mechanism by the means of the
compensating and contingency transactions.

4.2.4 Sagas transaction model

Description. The Sagas transaction model [GMS87] also makes use of the concept of
compensating transactions to support transactions whose execution time is long. A Sagas
transaction consists of a consecutive chain of flat transactions Si that can commit
independently. For each flat transaction Si, there is a compensating transaction CPi that
will undo the effect of the transaction Si if the transaction Si aborts. A compensating
transaction CPi in the Sagas chain is triggered by the associated transaction Si or the
compensating transaction CPi+1. If the Sagas transaction commits, no compensating
transaction CPi is initiated (see Figure 4.4), otherwise the chain of compensating
transactions is triggered (see Figure 4.5).

Figure 4.4: A successful Sagas

 71

Figure 4.5: An unsuccessful Sagas

Transaction properties. The unit of control of a Sagas transaction is the whole
transaction chain. Sagas relaxes the isolation property by allowing component
transactions Si to commit. The atomicity property of Sagas is achieved by the
commitment of the last transaction component Sn in the chain or by the backward
execution of the compensating transaction chain.

Usefulness for mobile environments. The Sagas transaction model is useful in mobile
environments because of its ability for supporting transactions which are long-lived. The
isolation property is also compromised. Therefore, the concept can be used to support
sharing of data during the execution of mobile transactions. Moreover, it is possible to
modify the Sagas model so that we can minimize the losing of useful work when a
component transaction Si aborts, for example by deploying contingency transactions
instead of compensating transactions. The main drawback of Sagas is the sequential
execution of component transactions in the chain.

4.2.5 Split and Join transaction model

Description. The Split and Join transaction model [PKH88] was proposed to support the
open ended activities that associate with transactions. The Split and Join transaction
model focuses on activities that have uncertain duration, uncertain developments, and are
interactive with other concurrent activities. The main idea is to divide an on-going
transaction into two or more serializable transactions, and to merge the results of several
transactions together as one atomic unit. In other words, the Split and Join transaction
model supports reorganizing the structure of transactions (as illustrated in Figure 4.6).

Transaction properties. The Split and Join transaction model divides the accessed data
set of a transaction into different subsets that will be used by newly created and
serializable transactions. The goal is to commit part of the original transaction and to
make committed results or resources available to other transactions.

Figure 4.6: Split and Join transaction model

Usefulness for mobile environments. The Split and Join transaction model benefits
transactions in mobile environments in terms of dynamic re-structuring of transactions.

 72

4.3 Mobile transaction models

We have reviewed several traditional transaction models whose features are still useful in
mobile environments. The traditional transaction models, however, do not have the
ability to deal with other challenging requirements of mobile transactions, such as
supporting the mobility of transactions and coping with disconnections. Consequently,
there are many advanced transaction models that have been developed to particularly
support mobile transactions. In this section, we will review several selected mobile
transaction models that have the ability to efficiently support mobile transactions. The
follows mobile transaction models will be surveyed:

• Report and Co-transaction model [Chr93]
• Pro-motion transaction model [WC99]
• Two-tier transaction model [Gra+96]
• Weak-Strict transactions model [PB99]
• Pre-write transaction model [MB98b, MB01]
• Pre-serialization transaction model [DG00]
• Kangaroo transaction model [DHB97]
• Moflex transaction model [KK00]
• Adaptable mobile transaction model (MTS) [Ser02]

For each model, we describe the transaction model and its properties, then we address
how the model: (1) handles the mobility of transactions, (2) deals with disconnections,
and (3) supports distributed transaction execution among mobile and non-mobile hosts.

4.3.1 Reporting and Co-transaction model

Description. Reporting and Co-transactions transaction model [Chr93] is based on a two-
level nested transaction model (see Figure 4.7). A reporting transaction TR shares its
partial results to top-level transaction S by delegating its operations. The delegation
process can happen at any time during the execution of transaction TR. A co-transaction is
a reporting transaction but it cannot continue executing during the delegation process.
Thus, the co-transaction behaves as a co-routine, and resumes execution when the
delegation process is completed.

Transaction properties. The top-level transaction is the unit of control, and atomic sub-
transactions are compensable transactions. A Reporting transaction that is compensatable
does not have to delegate all of the committed results to the top-level transaction when it
commits. Sub-transactions that are non-compensable delegate all of their operations to
the top-level transaction when it commits.

Mobility. The locations of mobile hosts are determined via the identification of mobile
support stations. However, the model does not mention explicitly what happens when
mobile hosts move from one mobile cell to another.

 73

Figure 4.7: Reporting and Co-transaction

Disconnection. Delegation operations require a tight connectivity between the delegator
(i.e., Report and Co-transaction) transactions and the delegatee transaction (i.e., the top-
level transaction). Therefore, disconnection is not supported in this model.

Distributed execution. The model supports distributed transaction processing among
mobile hosts and fixed hosts where the network connectivity among these hosts is
assumed to be available when it is needed.

4.3.2 Pro-motion transaction model

Description. The Pro-motion transaction model [WC99] is a nested transaction model.
The Pro-motion model focuses on supporting disconnected transaction processing based
on the client-server architecture. Mobile transactions are considered as long and nested
transactions where the top-level transaction is executed at fixed hosts, and sub-
transactions are executed at mobile hosts. The execution of sub-transactions at mobile
hosts is supported by the concept of compact objects (see Figure 4.8).

Figure 4.8: Compacts as objects

Compact objects are constructed by compact manager at database servers. Necessary
information is encapsulated within a compact object. The compact objects are co-
managed by the compact managers (resided at the database servers), the mobility
managers (at the mobile support stations), and the compact agents (at the mobile hosts).
The compact object plays a role as a contractor that supports data replication and
consistency between mobile hosts and database servers. When a mobile host is
disconnected, the compact agent takes responsibility for managing all local database
operations of mobile transactions at the mobile host. When the mobile host reconnects to
database servers, the compact objects are verified against global consistency rules before
the locally committed mobile transactions are allowed to commit. Figure 4.9 shows the
architecture of the Pro-motion transaction model. Transaction processing consists of four
phases: hoarding, disconnected, connected, and resynchronization. Shared data is
downloaded to the mobile host in the hoarding phase. When the mobile host is

 74

disconnected from the fixed host, transactions are disconnectedly executed at the mobile
host. If the mobile host connects to the fixed database, the transactions are carried out
with the support of the compact manager. When the mobile host reconnects to a fixed
host, the results of local transactions are synchronised with the database.

Transaction properties. The Pro-motion transaction model supports ten different levels
of isolation. Transactions are allowed to locally commit at mobile hosts; the committed
results of these transactions are made available to other local transactions. However, the
local committed results must be validated when the mobile hosts reconnect to the
database servers. Therefore, the durability property of transaction is only ensured when
the transaction results are finally reconciled at the fixed database.

Figure 4.9: Pro-motion transaction architecture

Mobility. Though the mobility manager supports communications between the mobile
host and the database servers, how the Pro-motion transaction model supports transaction
mobility is not explicitly discussed.

Disconnection. Pro-motion transaction model supports disconnected transaction
processing via the support of compact objects. When the mobile host is disconnected
from the fixed database, the sub-transactions are split and executed at the mobile host
(these split sub-transactions are not joined when the mobile host reconnects to the fixed
database). Disconnected transaction processing is a dominant transaction processing
mode in Pro-motion even when the mobile hosts are able to connect to the database
server. Therefore, the Pro-motion transaction model requires high-capacity mobile
resources at the mobile hosts.

Distributed execution. Transactions are mostly executed at mobile hosts and the results
are reconciled at the database servers. Therefore, the distributed transaction processing is
not strongly supported by the model.

 75

4.3.3 Two-tier transaction model

Description. The two-tier (also called Base-Tentative) transaction model [Gra+96] is
based on a data replication scheme. For each data object, there is a master copy and
several replicated copies. There are two types of transaction: Base and Tentative. Base
transactions operate on the master copy; while tentative transactions access the replicated
copy version. A mobile host can cache either the master or the copy versions of data
objects. While the mobile host is disconnected, tentative transactions update replicated
versions. When the mobile host reconnects to the database servers, tentative transactions
are converted to base transactions that are re-executed on the master copy. If a base
transaction does not fulfill an acceptable correctness criterion (which is specified by the
application), the associated tentative transaction is aborted. The two-tier transaction
model is shown in Figure 4.10.

Transaction properties. Tentative transactions locally commit at the mobile host on
replicated copies, and the committed results are made visible to other tentative
transactions at that mobile host. The final commitments of those tentative transactions are
performed at the database servers.

Figure 4.10: Two-tier transaction model

Mobility. Two-tier transaction model does not support the mobility of transactions.

Disconnection. While the mobile hosts are disconnected from the database servers,
tentative transactions are locally carried out based on replicated versions of data objects.

Distributed execution. Two distinct transaction execution modes are supported:
connected and disconnected. Transactions are tentatively carried out at disconnected
mobile hosts, and re-executed as base transactions at the database servers.

4.3.4 Weak-Strict transaction model

Description. The Weak-Strict (also called Clustering) transaction model [PB99] consists
of two types of transaction: weak (or loose) and strict. These transactions are carried out
within the clusters that are the collection of connected hosts which are connected via
high-speed and reliable networks. In each cluster, data that is semantically related is
locally replicated. There are two types of a replicated copy: local consistency (weak) and
global consistency (strict). The weak copy is used when mobile hosts are disconnected or
connected via a slow and unreliable network. Weak and Strict transactions access weak

 76

and strict data copies, respectively. Figure 4.11 presents the architecture of this
transaction model. When mobile hosts reconnect to database servers, a synchronization
process reconciles the changes of the local data version with the global data version.

Transaction properties. Weak transactions are allowed to commit within its cluster, and
results are made available to other local weak transactions. When mobile hosts are
reconnected, the results of weak transactions are reconciled with the results of strict
transactions. If the results of a weak transaction do not conflict with the updates of strict
transactions, weak transactions are globally committed; otherwise they are aborted.

Mobility. The concept of transaction migration is proposed to support the mobility of
transactions, and to reduce the communication cost. When the mobile host moves and
connects to a new mobile support station, parts of the transaction that are executed at the
old mobile support stations are moved to the new one. However, no further details about
the design or implementation are given.

Disconnection. The Weak-Strict transaction model supports transaction processing in
disconnected and weakly connected modes via weak transactions.

Figure 4.11: Weak-Strict transaction model

Distributed execution. Transaction execution processes can be distributed between the
mobile host and the database servers within a cluster that the mobile host participates in.
However, the distributed transaction processing among mobile hosts in a cluster is not
discussed.

4.3.5 Pre-write transaction model

Description. The Pre-write transaction model [MB98b, MB01] was proposed to increase
data availability in mobile environments. Mobile transactions are transactions that are
initiated at the mobile host. Pre-write transaction model aims to increase the data
availability at mobile hosts. This is achieved by allowing a transaction on a mobile host
to submit pre-write operations that write the updated data values, and then issue a pre-

 77

commit state to the mobile support station. After that, the rest of the mobile transaction
can be carried out and finally committed at fixed hosts. The small variation, which is
specified by the applications, between the pre-committed result and the final committed
result is acceptable. Pre-committed data values are accessible to other transactions via
pre-read operations. Two different types of lock, which are the pre-read and pre-write,
are introduced to support the new operations. Mobile transactions are not allowed to abort
after they have submitted pre-commit operations to the mobile support station. This
mobile transaction model can be used to support mobile hosts which have little or no
capacity for transaction processing.

Transaction properties. After a mobile transaction submits a pre-commit request, the
pre-write values of the mobile transaction are made available to transactions. And the
pre-committed mobile transaction is not aborted in any case. The final commitments of
mobile transactions will be carried out by fixed hosts. The final committed and the pre-
committed data values may not be identical.

Mobility. The roles of the mobile support station are to accept and to process pre-write
and pre-commit operations submitted from the mobile host. When moving into a new
mobile cell, a mobile transaction connects to the mobile support station in order to submit
its pre-write and pre-commit operations.

Figure 4.12: Pre-write transaction model

Disconnection. Disconnected transaction processing is supported in the Pre-write
transaction model. The mobile transaction is executed at the mobile host until the pre-
commit state is reached.

Distributed execution. The major part of the mobile transaction is migrated to the fixed
hosts via the mobile support station to be executed there. The mobile host partly takes
part in the execution process until the pre-commit states of the mobile transaction are
achieved. After this, the mobile host plays no role in the execution of the mobile
transaction.

4.3.6 Pre-serialization transaction model

Description. Pre-serialization transaction model [DG00] is built on top of local database
systems. Mobile transactions (also called global transactions) are submitted from mobile

 78

hosts through the global transaction coordinators that reside at the mobile support
stations. The mobile transaction is entirely processed at local database systems (see
Figure 4.13). At each node (or site), there is a site manager that administrates all the
transactions executed at that node. When a global transaction is prepared to commit, a
global transaction coordinator will carry out an algorithm, called Partial Global
Serialization Graph algorithm, that detects any non-serializable schedule among the
mobile transactions. If there is a cycle in the graph, i.e., the schedule is non-serializable,
the mobile transaction is aborted.

Transaction properties. Each sub-transaction of a global transaction is managed by the
local transaction manager. The global serializable graph of transactions is constructed by
collecting sub-graphs from the local sites. The atomicity property of the global
transaction is relaxed by the concepts of vital and non-vital sub-transactions. If a vital
sub-transaction aborts, its parent transaction must abort. However, the parent transaction
does not abort if a non-vital sub-transaction aborts. When a sub-transaction commits at
the local database system, the results are made visible to other transactions at this local
database system.

Mobility. The global transaction coordinators that reside at the mobile support stations
support the mobility of mobile transactions. This is done by transferring the global data
structure from one global transaction coordinator to another as the mobile host moves
from one mobile cell to another.

Mobile Hosts

Mobile Support
Station

Fixed Database
Server

Global transaction
submission

Local
DB

Global coordinator layer

Site manager layer

Global transaction
coordinator

Service interface

Site transaction
manager

Global transaction
mnager

Figure 4.13: Pre-serializable transaction model

Disconnection. Mobile transactions are submitted from a mobile host, and sub-
transactions are executed at local database servers. When the mobile host is disconnected,
the global transaction is marked as disconnected if the disconnection is known and
planned. The execution of the global transaction is still carried out at the local database
servers. On the other hand, if the disconnection is unplanned, the global transaction is
suspended. The global transaction is resumed when the mobile host reconnects to the
mobile support station.

 79

Distributed execution. Mobile transactions are submitted from mobile hosts, and the
entire transactions are distributed among local database servers through the support of
mobile support stations. The mobile hosts do not take part in the execution processes.

4.3.7 Kangaroo transaction model

Description. The Kangaroo transaction model [DHB97] is designed to capture the
movement behavior and the data behavior of transactions when a mobile host moves
from one mobile cell to another. This transaction model is built based on the concepts of
global and split transactions in a heterogeneous and multi-database environment. The
global transaction is split when the mobile host moves from one mobile cell to another,
and the split transactions are not joined back to the global transaction. The Kangaroo
transaction model assumes that the mobile transactions may start and end at different
locations. The characteristics of the Kangaroo transaction model are (see Figure 4.14 for
the architecture of Kangaroo transaction model):
• Mobile transactions that include a set of sub-transactions called global and local

transactions are initiated by mobile hosts. These mobile transactions are entirely
executed at the local database servers that reside on the fixed and wired connected
networks.

• The execution of a Kangaroo sub-transaction in each mobile cell is supported by a
Joey transaction that operates in the scope of the mobile support station. The Joey
transaction plays role of a proxy transaction to support the execution of the sub-
transactions of the Kangaroo transaction in the mobile cell.

• The movement of the mobile host from one mobile cell to another is captured by the
splitting of the on-going Joey transaction at the old mobile support station and the
creating of new Joey transaction at the new mobile support station. The execution of
the Joey transaction is supported by the Data Access Agents (DAA) that act as the
mobile transaction managers at the mobile support stations.

Figure 4.14: Kangaroo transaction model

Transaction properties. The Kangaroo transaction is the basic unit of computation in
mobile environments. The serializability of mobile transactions is not guaranteed, and
there is no dependency among Joey transactions, i.e., each Joey transaction can commit
independently. Two transaction processing modes, which are compensating and split

 80

modes, are supported by the model. For compensating mode, when a failure occurs, the
entire Kangaroo transaction is undone by executing compensating transactions for all
those Joey transactions. For split mode, the local DBMS takes responsibility for aborting
or committing sub-transactions.

Mobility. The Kangaroo transaction model keeps track of the movement of mobile hosts
via the support of the DAA that operates at the mobile support station. In other words, the
mobility of mobile hosts is captured on the condition that the mobile hosts always may
communicate with the mobile support stations. While mobile hosts move from one
mobile cell to another, the hand-off processes are carried out by the DAAs.

Disconnection. Disconnected transaction processing is not considered in Kangaroo
transaction model. The processing of Kangaroo transactions is entirely moved to the
fixed database servers for executing.

Distribution. The mobile transactions are initiated at the mobile hosts, and entirely
executed at fixed hosts. Transaction results are forwarded back to the mobile hosts. The
Kangaroo transaction model has shown that the structure of mobile transactions at the
specification and execution phases (with the dynamic support of Joey transactions) can be
different because of the mobility behavior, i.e., fast or slow movements, of the mobile
host.

4.3.8 Moflex transaction model

Description. The Moflex transaction model [KK00] is an extension of the Flex
transaction model [Elm+90] to support mobile transactions. The Moflex model is built on
top of multi-database systems and based on the concepts of split-join transactions. The
main characteristics of a Moflex transaction are:
• A Moflex transaction that consists of compensable or non-compensable sub-

transactions is initiated by the mobile host. These sub-transactions are submitted to
the mobile transaction manager (MTM) that resides at the mobile support station.
The MTM will send these sub-transactions to the local execution monitor (LEM) at
local database systems for executing. Figure 4.15 presents the architecture of Moflex
transaction model.

• Each Moflex transaction T is accompanied by a set of success and failure transaction
dependency rules, hand-over control rules (see Table 4.1), and acceptable goal states.
Dependent factors that include the execution time, cost and execution location of
transactions are also specified in the definition of the Moflex transaction.
Furthermore, joining rules are provided to support the join of the split sub-
transactions (sub-transactions are split when the mobile host moves from one mobile
cell to another).

Transaction properties. The mobile transaction managers make use of the two-phase
commit protocol to coordinate the commitment of the Moflex transaction. The Moflex
transaction commits when its sub-transactions that are managed by MTM have reached
one of the acceptable goal states, otherwise it is aborted. A compensable sub-transaction

 81

is locally committed, and the results are made visible to other transactions. For non-
compensable sub-transactions, the last mobile transaction manger, which corresponds to
the end location of the mobile host, plays the role as the committing coordinator.

Figure 4.15: Moflex transaction model

Mobility. The mobility of transactions is handled by splitting the sub-transaction, which
is executed on the local database at the current mobile cell, as the mobile host moves
from one mobile support station to another (with the support of the mobile transaction
manager). Hand-over control rules must be specified for each sub-transaction (see Table
4.2). If a sub-transaction is compensable and location independent, it will be split into
two transactions; one will continue and commit at the current local database, the second
will be resumed at the new location. If the sub-transaction is location dependent, at the
new location, the sub-transaction must be restarted. If a sub-transaction is non-
compensable, the sub-transaction is either restarted as a new one in the mobile cell if it is
location dependent, or continued if it does not depend on the location of the mobile host.

Table 4.1: Hand-over control rules of sub-transactions

 Compensable Non-compensable
Location-independent split_resume continue
Location-dependent restart, split_restart restart

Disconnection. Moflex transaction model does not support disconnected transaction
processing. The Moflex transaction model requires network connectivity between the
mobile host and the mobile support stations during the execution process.

Distributed execution. The execution of a Moflex transaction is transferred to local
database systems at fixed hosts to be carried out there. Moflex transaction model provides
a framework to specify the execution of transactions in mobile environments. The main
drawback of the Molex transaction model is that the specification of mobile transactions
must be fully specified in advance, therefore, the Moflex transaction model may not have
the capacity to deal with un-expected or un-planned situations.

 82

4.3.9 Adaptable mobile transaction model

Description. An adaptable mobile transaction model and a mobile transaction service
(MTS) [Ser02] are proposed to support the adaptability of mobile transaction execution.
The MTS architecture is a three-tier client/agent/server one in which the clients are
mobile hosts, the agents reside at mobile support stations, and the servers are fixed
database servers (see Figure 4.16). The main goal of the MTS is to adapt the transaction
execution to different environment conditions. The adaptive mobile transaction consists
of component transactions Ti, compensating transactions CTi and the execution strategy
ES. The execution strategy is a list of execution alternatives comprised of environment
descriptors ED and component transactions. Changes of environment conditions are
captured via an event notification service.

Figure 4.16: The architecture of the MTS

Transaction properties. Only one execution alternative of the adaptive mobile
transaction is executed at any moment. The component transactions are ACID
transactions which can belong to one or more execution alternatives. Changes in the
execution alternatives may result in the abortion of the component transactions. If a
component transaction belongs to different execution alternatives, the component
transaction is continued with the new execution alternative.

Mobility. The mobility of transactions is not defined by the adaptable mobile transaction.
However, the hand-off process is treated as a change of environment conditions via an e-
hand-off event.

Disconnection. The disconnected processing of mobile transactions is specified in
execution alternatives, and is applied when an e-disconnection event occurs.

Distributed execution. The mobile transaction service defines five different execution
modes (see Table 4.2) that specify how a mobile transaction could be executed among the
fixed database servers and the mobile hosts.

The adaptable mobile transaction takes into account dynamic changes of mobile
environments, and supports different execution alternatives in accordance with the

 83

environment conditions. The main disadvantage of the model is that the execution
alternatives must be specified in advance.

Table 4.2: Execution models of adaptive mobile transaction

Modes Distributed execution
1 Entirely at database servers
2 Entirely at the mobile host
3 At one mobile host and several DB
4 At several mobile hosts
5 At several mobile hosts and DBs

4.4 Issues related to mobile transaction processing systems

In this section, we discuss issues that are related to mobile transaction processing
systems. The three issues are: mobile database replication, advanced transaction
commitment protocols, and mobile data sharing mechanisms. These three issues
contribute in a vital way to the performance of transaction processes in mobile
environments.

4.4.1 Mobile database replication

In mobile environments, to cope with the disconnections of the wireless networks, the
mobile hosts must be able to cache necessary data to support disconnected transaction
processing. A database portion that is cached at a mobile host is called the mobile
database [HAA02]. Mobile databases offer higher level of data availability at
disconnected mobile hosts; thus, enhance the performance of mobile transaction
processing systems. Figure 4.17 illustrates an example of the life cycle of mobile
databases. Before the mobile hosts are disconnected from the database servers, shared
data is cached at the mobile host. When the mobile host is disconnected from the
database servers, cached data is modified. When the mobile hosts reconnect to the
database server, shared data that has been modified at the local cache will be reconciled
with the original versions.

Figure 4.17: Life cycle of mobile databases

 84

Keeping data consistency among these copies all the time is difficult. Therefore, the main
issue is how to avoid or be aware of data inconsistency among such copies. This can be
achieved by several ways, for example an advanced locking protocol [MB01] or sign-
off/check-in/check-out operations [HAA02]. The pre-write lock [MB01] is an additional
lock layer that is deployed at the mobile support station to support mobile transactions to
access shared data, i.e., without connecting to the database server. Transactions can
connect to either the database server or the mobile support station to access shared data.
If a shared data is modified, it will first be stored at the mobile support station before
being updated in the database server. For sign-off/check-in/check-out operations
[HAA02], consistent shared data is downloaded from the database server to mobile hosts
via the support of a proxy-transaction (called a pseudo-transaction) to support
disconnected transaction processing. When the mobile hosts reconnect to the database
server, mobile transactions will be checked to ensure that they are serializable with other
transactions at the database server.

The mobile databases must be able to support mobile hosts to cope with different types of
disconnections. There are two forms of disconnection: planned and unplanned. For
planned disconnections, the mobile hosts inform the database servers about the
disconnections so that the mobile databases can be well prepared. The strict mobile
database replication model uses the standard shared and exclusive lock modes (see Table
2.1) for controlling conflicting database operations among replicated copies. Relaxed
mobile database replication model allows transactions to concurrently access replicated
database portions at different mobile hosts as long as there is an acceptable execution
schedule among involved transactions. For example, check-out with mobile read, check-
out with system read, or relaxed check-out modes [HAA02]. To our knowledge, there is
no mobile database model that supports mobile databases to deal with unplanned
disconnections (which will be dealt with in our mobile transaction processing system).

4.4.2 Advanced transaction commitment protocols

The standard 2PC protocol [Esw+76] may not be appropriate in mobile environments
because it is a possibly blocking protocol and requires many messages. There are more
advanced transaction commitment protocols that have been proposed.

The Timeouts Protocol is proposed in [Kum+02]. The transaction coordinator that resides
at the mobile support station will decide to commit or abort transactions based on a
timeout value. The timeout value is the total of execution timeout and shipping timeout. A
mobile transaction will be allowed to commit if all of the updates of sub-transactions are
received by the coordinator before the timeout value is expired; otherwise the transaction
is aborted. The timeout commit protocol requires that mobile hosts always connect to the
mobile support station and the database servers. The main drawback of this protocol is
that it is hard to define or estimate the execution and shipping timeout values in mobile
environments.

The Unilateral Commit Protocol [AC04] is proposed to support transaction commitment
in disconnected mode. This protocol reduces the number of exchanged messages by

 85

removing the second voting phase of the standard 2PC protocol (thus, this protocol is also
called a one-phase commit protocol). If a mobile transaction reaches the prepare-to-
commit phase, it will commit. There are other commit protocols that are developed by
taking into account the special characteristics of mobile transactions. Some examples are
the commitment of read-only transactions [GW82] that are carried out separately from
updating transactions [KLH03, CLL03, LLK01] (by exploring the special consistency
requirements of read-only transactions), and the pre-commit protocol [MB01] (by
tolerating the difference between pre-committed and committed results which is specified
by applications).

4.4.3 Mobile data sharing mechanisms

In this section, we address the mechanisms that support sharing of data in mobile
environments. In general, shared data is stored at dedicated non-mobile database servers.
Mobile hosts need to connect to these database servers to access shared data. However,
due to the disconnections in communication, the mobile hosts may not always be able to
connect to the database servers. This leads to the demand of a temporary sharing
workspace that is stored at dedicated hosts. Existing models that have been designed to
support sharing data in distributed environments, for example the common-local
workspaces model [Ram01] or the sharing tuple space [PMR00], will not be suitable for
mobile environments due to the static configuration and the lack of mobile and dynamic
workgroup supports.

Recently, there are many research proposals that focus on supporting data sharing among
mobile hosts in mobile environments. The two essential components that contribute to the
mobile data sharing are: (1) the dynamic mobile workgroup management, and (2) the data
access mechanisms. The dynamic mobile workgroup management [BCM05] focuses on
the organization and management of temporary mobile workgroups that are the collection
of mobile hosts. The data access mechanisms are based on either the client-server [BF03]
or the peer-to-peer [PMR00] architecture. The Accessing Mobile Database (AMDB)
architecture [BF03] is based on the concepts of mobile agents and the client-server
model. The main idea is to form a Mobile Database Community (MDBC) in which
mobile clients access mobile databases that are stored at dedicated mobile hosts. The
LIME (Linda in Mobile Environments) [PMR00] architecture makes use of mobile agent
technology to support sharing of data among different mobile hosts.

4.5 Survey of commercial products

In section 4.3, we have reviewed several mobile transaction models that are mostly used
for academic research purposes. There is little information about how these mobile
transaction models are deployed in real application products. In this section, we review
mobile transaction processing in commercial products. The following products are
surveyed: Microsoft SQL Server CE [Mic], Oracle Lite [Ora], and IBM DB2 Everyplace
[IBM]. We focus on describing in detail how these commercial products support mobile
transactions and how data consistency is achieved.

 86

4.5.1 Microsoft SQL Server CE

Description. The Microsoft SQL Server CE (SSCE) [Mic] is a client-agent-server
architecture that supports database applications on mobile hosts (see Figure 4.18). The
database on a mobile host is a small replicated portion of the main database. When
mobile hosts are disconnected, transactions are processed locally at the mobile hosts.
When mobile hosts reconnect to the database server, synchronization processes are
carried out to reconcile information. The client agent at the mobile host connects to the
server agent through the Internet Information Server (IIS) that resides on the database
server. This means that the role of mobile support stations is not an issue in SSCE
systems.

Figure 4.18: Microsoft SQL CE architecture

Transaction properties. The Microsoft SQL Server CE supports both flat and nested
transactions at mobile hosts. Sub-transactions only reveal committed results to the parent
transaction. When the top-level transaction commits, the results are visible to local
transactions at the mobile host. Transactions at mobile hosts are executed sequentially.

Data consistency. When the mobile host reconnects to the database server, a
synchronization process is performed to reconcile information. The client agent sends all
changes in the local database to the server agent. The server agent, then, writes the
updates to a new input file and initiates a reconciliation process at the SQL Server
Reconciler. The reconciliation process will detect and resolve conflicts. Different conflict
resolutions are supported in the SSCE system, for example priority based or user defined.
When the reconciliation process completes, it will inform the SQL Server Replication
Provider to finally write the successful updates to the database server. When there are
updates at the database server, an inverse process is carried out to propagate these
updates to the mobile host.

4.5.2 Oracle Lite

Description. Oracle Lite [Ora] is a client-server architecture that makes use of a
replicated copy of the main database (which is called a snapshot) to support disconnected
transaction processing at mobile hosts (see Figure 4.19). Oracle Lite does not include
mobile support stations in its architecture. The replicated database system at the mobile
host is called a snapshot that can be read-only or updatable. When the mobile host is

 87

disconnected from the database server, transactions are processed locally. The snapshot is
synchronized with the master copy at the database server when the mobile host
reconnects.

Transaction properties. The Oracle Lite only supports flat transactions at mobile hosts.

Figure 4.19: Oracle Lite architecture

Data consistency. When the mobile host connects to the database server, a refresh
process will be performed to synchronize the snapshot with the master copy. If the
snapshot is modified, the updates will be sent to the database server. All local
transactions at the mobile host will be validated at the database server in the same order
as they were executed at the mobile host. The refresh process is a blocking process. This
means that no database operations will be allowed at the mobile host during the
reconciliation process.

4.5.3 IBM DB2 Everyplace

Description. IBM DB2 Everyplace [IBM] is an architecture that consists of a relational
database at mobile hosts and a mid-tier on fixed hosts. The mid-tier system supports data
synchronization between the mobile databases that reside at the mobile hosts with the
source databases on the fixed database servers. When mobile hosts are disconnected,
transactions are processed locally at the mobile hosts. When mobile hosts reconnect to
the database server, synchronization processes are carried out to reconcile data. As
Microsoft SQL Server CE and Oracle Lite, IBM DB2 Everyplace does not discuss mobile
support stations. Data synchronization processes are carried out directly between the
mobile hosts and the fixed database servers.

Transaction properties. The IBM DB2 Everyplace only supports flat transactions.

Data consistency. When the mobile host connects to the database server, a
synchronization process will be performed to synchronize data between the mobile hosts
and the source database. IBM DB2 Everyplace differentiates the data synchronization
processes between the mobile host and the source database. The data synchronization
from the mobile host to the source database is illustrated in Figure 4.20. The
synchronization request is submitted from the mobile host and placed in the input queue
at the fixed database server. If the synchronization request is allowed to proceed, the data
at the mobile host is temporarily saved in the Staging table then the Mirror table. If there

 88

is any conflict, it will be resolved in the Mirror table. After this, the changes are stored in
the DB2 log and sent to the source database through a Change Data table. For the data
synchronization from the source database to the mobile host, an inverse process is
performed (as illustrated in Figure 4.21). The main difference between these two data
synchronization processes is that the data from the source database is immediately
processed and transferred to the mobile host without any delay, i.e., without passing
through the Staging table and Administration control.

Figure 4.20: IBM DB2 Synchronize from mobile hosts to fixed hosts

DB2 Everyplace
table

Mobile Hosts Fixed Database
Server

Input queue

Mirror table

DB2 log
Change
database

Source database

Sync req

Mid-tier system
Source system

Mirror database

Figure 4.21: IBM DB2 Synchronize from fixed hosts to mobile hosts

4.6 Conclusions

In this chapter, we have reviewed several traditional transaction models that were
developed to support transaction processing in centralized and distributed environments.
These transaction models still benefit transactions in mobile environments in term of
customized isolation property (e.g., Multi-level and Sagas transactions), and dynamic
structure (e.g., Split and Join transactions). For dealing with other challenging
requirements like mobility and disconnections, a number of advanced mobile transaction
models have also been developed. The more general characteristics of these mobile
transaction models are:

 89

• Mobile transaction models are developed based on the concepts of nested and split-
join transaction models. These models have the ability to relax the atomicity and
isolation properties. The commitment of mobile transactions consists of two states:
(1) local commit at the mobile hosts, and (2) final commit at the database servers.
When a mobile transaction commits at a disconnected mobile host, its committed
results are made available to other local transactions at the same mobile host. When
the mobile host reconnects to the database server, these results of local transactions
will be validated against the ones at the database server. If there is any inconsistency,
some of the locally committed transactions are aborted.

• In order to capture the mobility of mobile transactions, when the mobile hosts move

from one mobile cell to another, the mobile hosts must be able to connect to the
mobile support stations of these mobile cells. Hand-off or hand-over processes are
performed to transfer the transaction controls from one mobile support station to
another.

• To cope with the limited computing capacity of mobile hosts, a part of or an entire

mobile transaction that is initiated by a mobile host, is moved to fixed database
servers for processing.

A part from these features, there are still major limitations:

• The lack of some fundamental support for mobile transactions is an issue. There are

different views what a mobile transaction is. Many models consider mobile
transactions as transactions that are submitted to or initiated from the mobile hosts
[DHB97, KK00]. Other models require that mobile hosts must take part in the
execution of mobile transactions [MB01]. These different attitudes cause
incompatibility and incoherence between mobile transaction processing systems.

• The common architecture of mobile transaction environments relies heavily on the

mobile support stations that are stationary and wired connected with the database
servers. A difficulty is to extend the capacity of mobile transaction processing
systems. For example, the bottleneck problem can occur when there are many mobile
hosts within a mobile cell (one IEEE 802.11 WAP can support thirty wireless client
systems within a radius of 100 meters 5); and the distribution of the transaction
processes among mobile hosts must be carried out through the mobile support
stations.

• Sharing partial results among mobile transactions is not fully dealt with. The existing

approaches like delegation operations [Chr93, Ram01] that support sharing of data
among transactions may not be adequate because it requires a tight cooperation
between delegator and delegatee transactions. Furthermore, the issue of distributed
transaction execution among mobile hosts [SRA04] has not been addressed.

5 Source http://www.wifiguide.org/

 90

There is also a big gap between academic research and commercial products on mobile
transactions. In academic research, the mobile support stations play very important roles
in the processing of mobile transactions. While in commercial products, mobile hosts and
database servers communicate directly, i.e., the role of the mobile support stations does
not exist. Moreover, commercial products mainly focus on disconnected transaction
processing, while the mobility of mobile hosts is not taken into consideration.

 91

PART II

CONCEPTS, MODELS and
FORMALIZATION

 92

 93

Chapter 5

Mobile Transaction Processing System:
Concepts and Models

This chapter presents a method of approach and fundamental concepts of our mobile
transaction processing system. The main focus is to support sharing of data and database
operations among mobile transactions at different mobile hosts in mobile environments.
This is achieved by the adaptable mobile data sharing mechanism via the support of
export and import transactions, which operate in a mobile sharing workspace, called the
export-import repository, which belongs to a temporary and dynamic workgroup of
mobile hosts, named the mobile affiliation workgroup.

5.1 Introduction

In Chapter 4, we have reviewed several mobile transaction models that have been
developed to support transaction processing in mobile environments. We also discussed
the limitations of these mobile transaction models. The main disadvantage is the lack of
adaptable support for mobile transactions to continue or to adjust their operations to
different operating conditions. For example, the architecture of the mobile transaction
environment requires that in order to contact other mobile hosts or database servers, a
mobile host must connect to the mobile support station of the mobile cell in which the
mobile host currently resides [SRA04]. In other words, in this restricted architecture of
the mobile transaction environment, if a mobile host is not able to connect to a mobile
support station, the mobile host has no means to interact with other hosts, and therefore
on-going transactions at this mobile host may not be carried out.

Furthermore, the advantages of mobile computing devices and communication
technologies are not fully exploited by the existing mobile transaction models. For
example, the ability of wireless networks that support nearby and peer-to-peer
communication among mobile hosts has not been taken into consideration. If this ability
had been taken into account, it is possible to support the distributed transaction execution
among mobile hosts. Furthermore, this new communication technology can also be used
to enhance the data availability in mobile environments. For example, in stead of
connecting to the database servers (via the mobile support stations) to obtain necessary

 94

information, a mobile host can contact other nearby mobile hosts for replicated
information.

In order to sufficiently and efficiently support a mobile transaction processing system, we
must take into account not only all the challenging characteristics of mobile environments
(see Section 3.5), but also the advanced mobile technologies. For example, to cope with
disconnections in communication, the mobile transaction processing system must be able
to support asynchronous, non-blocking and presumable interactive operations. Sharing of
data or database operations must be carried out in accordance with the availability of
wireless network resources. For example, a large chunk of shared data must be divided
into a set of smaller chunks for transmitting when the wireless bandwidth is low and the
connection time is short. The usage of mobile computing resources and the mobility
behavior of the mobile hosts must also be taken into consideration. For example, a mobile
host that has a large storage capacity should be configured to play a role as a temporary
mobile proxy server to other nearby mobile hosts.

In this chapter, we present our method of approach and fundamental concepts that lead to
the development of our mobile transaction processing system. The main objective is to
develop a versatile mechanism to support the sharing of data and database operations
among transactions at different mobile hosts. This is achieved by allowing mobile hosts
to form temporary and dynamic workgroups, called the mobile affiliation workgroups, by
taking advantage of wireless communication technologies, i.e., the ability of direct
communication among mobile hosts within a limited range. For example, two mobile
hosts can directly exchange data by using Bluetooth or wireless USB technologies. The
sharing of data and database operations among transactions at different mobile hosts is
carried out by the means of export and import transactions through a mobile sharing
workspace, called the export-import repository, which belongs to a mobile affiliation
workgroup.

This chapter is organized as follows. In Section 5.2, we illustrate our method of approach
via a motivating mobile IT (Information Technology) support scenario and discuss
several interesting observations. This leads to a new mobile collaborative work model for
mobile environments called horizontal collaboration that is introduced in Section 5.3.
The concepts and model of the mobile affiliation workgroup, the export-import sharing
workspaces as well as the export and import transactions are also discussed in this
section. Section 5.4 addresses the properties of two different types of mobile transactions,
called shared and standard transactions. Section 5.5 focuses on the mobile data
consistency and the mobile data sharing mechanism. The issues related to the
management of mobile sharing workspaces and the management of transaction execution
behavior are discussed in Section 5.6 and 5.7 respectively. Finally, the important
contributions of our mobile transaction processing system are summarized in Section 5.8.

5.2 Extending the support for mobile collaborative works

Mobile environments change the way in which people carry out their works. The
environment for accessing and processing information is changing rapidly from

 95

stationary to mobile and location independent. This leads to the demand for new
organization and management models to support collaborative work in mobile
environments. In this section, we discuss and analyze the characteristics of a mobile IT-
support scenario. We also present several interesting observations that lead a new mobile
collaborative work model called horizontal collaboration (presented in Section 5.3.1).

5.2.1 Motivating scenario

In the following, we discuss a mobile IT support scenario that has been studied
thoroughly in our MOWAHS project [Sør+02, Ram+03, Sør+05] (this mobile IT support
scenario was also briefly presented in Section 1.1). The mobile IT support scenario (see
Figure 5.1) will be used as to exemplify our mobile transaction processing system.

Figure 5.1: Mobile IT-support scenario

The mobile IT support system is a mobile collaborative support system in which IT
officers work and collaborate to help users dealing with computing problems. The IT
officers are equipped with mobile computers, and handle requests from users at different
locations. The goal is to solve as many computer problems as quickly as possible. When
a user encounters a computer problem, he or she will send a description of the problem to
an enquiry system that consists of distributed database servers. The submitted enquiries
from users may or may not fully describe the problem. This problem description is called
an enquiry, and will be stored in the database servers. Each newly arrived enquiry will be
assigned a state named new (see Figure 5.2). The IT officers regularly check the enquiry
database for unsolved problems. An IT officer can self-select or be assigned (by the
system administrator) an enquiry to work on. When a problem is selected to be solved, its
state is changed to active, and is called a mobile task. The IT officer who takes the
responsibility for a mobile task can contact the users who submitted the enquiry for
further details; or other officers for additional consultations and discussions about the
problem. When a mobile task is solved, it is saved in a complete state for future
references.

To avoid work collision among IT technicians, one mobile task is allocated to one IT
officer at any time. However, an IT officer can be assigned many mobile tasks.
Furthermore, to prevent conflicts among database operations of mobile tasks that could

 96

concurrently manipulate shared data, a part of or an entire mobile task must be covered
by a transaction.

Figure 5.2: States of mobile tasks

The characteristics of the mobile tasks that require transactional support are summarized
in Table 5.1.

Table 5.1: Mobile task characteristics requiring transactional support

Characteristics Descriptions

Pre-planned To what degree is the mobile task planned beforehand?

Data synchronization When is the updated data of the mobile task
synchronized with other tasks?

Data exchange rate How often will the mobile task exchange data with
other tasks within its lifetime?

Event-triggered Is the mobile task triggered by an event?

Task resumption Can the mobile task be halted for later to be resumed
from where it left off without restart?

Task lifetime What is the expected lifetime of the mobile task?

Location constraint Is the mobile task executed at a specific location?
Time constraint Is the mobile task executed at a specific time?

Temporary coordination Is the mobile task timed with other activities?

The above characteristics of the mobile tasks are as follows:

• The pre-planned characteristic describes to what degree a mobile task is planned

beforehand. A mobile task can be well-planned in detail or partially planned before
being executed. In some extreme cases, a mobile task can not be planned at all. For
example, in the mobile IT support scenario, the pre-planned characteristic of a mobile
task depends on the knowledge of the user who submits the enquiry. A mobile task
can be well pre-planned if it is described in detail, for example the yellow cartridge of
a laser printer must be replaced. If the cause of a computer problem is not clear or a
user has little knowledge about it, the description of the problem can be more general,
for example a wireless connection in the lecture theatre has failed. Consequently, this
mobile task is partially pre-planned.

 97

• The data synchronization specifies when a mobile task has to synchronize or merge
the updated data with other tasks. For a simple and short mobile task, data
synchronization is not necessary or not required. However, a complicated and long
mobile task can require data synchronization during its execution process. For
example, a mobile task that installs a client application at a remote computer requires
data synchronization with the server application in order to obtain the operational
license.

• The data exchange rate specifies how often the data exchange between the current

mobile task and other tasks takes place. During its execution process, a mobile task
can require one or many interactions with other tasks. For example, a mobile task that
installs an operating system at a remote computer demands many upgrading or bug
fixing phases.

• The event-triggered characteristic decides whether a mobile task is triggered by an

event or not. The execution of a mobile task can be affected when a resource or a
service becomes accessible or inaccessible. The triggering event can cause re-
scheduling or re-planning of the mobile task. For example, a network disconnection
event causes the upgrading process of an application to be aborted or re-scheduled at
later time; and the suspended process can resume executing when a connection event
occurs.

• The task resumption characteristic describes if a mobile task can halt, and then later

resume from where it left off, i.e., it is not required that the mobile host must
completely restart. For example, a mobile task that upgrades a client application via
wireless networks can be suspended if a network disconnection occurs. This mobile
task can resume executing when the network connectivity becomes available. On the
other hand, a mobile task may not have the ability to resume executing, i.e., this
mobile task must always begin from scratch. For example, a network security
scanning task must always start freshly to avoid missing any malicious bug. For
mobile tasks that can be resumed at some specific states, additional services are
required, for example check-point or logging services.

• The task lifetime describes the expected lifetime of a mobile task. If a mobile task is

simple and well planned in advance, it is possible to estimate an approximate
execution time. On the other hand, the task lifetime of a difficult mobile task can not
be accurately estimated. For example, changing the ink cartridge of a printer can take
minutes to complete; however, configuring a network service could take several
hours.

• The location constraint specifies to what degree a mobile task must strictly follow a

specific travel route or be executed at a specific location. For example, an IT
technician must be in a specific room to repair a network connection. The location
constraint characteristic also affects the pre-planned characteristic of the mobile task,
for example the travel route must be well planned beforehand.

 98

• The time constraint describes if a mobile task must be executed at a specific time or
within a specific time interval. For example, a storage service upgrading task must be
performed between 19:00 hours and 21:00 hours to avoid interrupting normal
everyday work of employees. Those mobile tasks that must follow a time constraint
must also be carefully planned.

• The temporary coordination identifies if a mobile task must be coordinated with other

tasks. The temporary coordination characteristic has a strong impact on the execution
of related mobile tasks. For example, a mobile task that replaces a network router of a
wired network must be strictly executed after a re-direct router configuration task has
been completed in order to avoid losing network connections. If the re-configuration
of the routing table is not carried out as planned, the router replacement task will be
delayed.

5.2.2 Interesting observations

In this section, we discuss several interesting observations of the mobile IT-support
scenario in order to illustrate how we shall develop a mobile transaction processing
system that meets all the requirements described in Chapter 3. These observations are not
only applicable to this mobile IT-support scenario, but also applicable to other mobile
work applications such as traveling salesmen, mobile learning and report production
[Ram+03].

Observation 1: Encourage mobile works without support from database servers or
mobile support stations

IT officers work in a mobile environment, and use wireless networks to communicate
with the database servers and other IT officers. While working in the mobile
environment, IT officers may have to travel to different locations to fix computer
problems. The mobile IT support system must have the ability to support the movement
of the IT officers so that their activities will not be disrupted. This means that
requirement R1 - the mobile transaction processing system must be able to effectively
handle the hand-over control of mobile transactions – must be fulfilled.

Furthermore, while working in mobile environments, IT officers can experience long
disconnection periods, for example when they are working in a location in which the
wireless network services are not available. The mobile IT support system must have the
capacity to support the IT officers to continue carrying out the work while being
disconnected from the database server for a long period of time. This means that
requirement R3 - the mobile transaction processing system must support disconnected
transaction processing – must be fulfilled.

Furthermore, when an IT officer completes a mobile task, the states of the mobile task
will be temporarily saved at the mobile computer, and must be archived in the database
servers later. This means that the mobile IT support system must provide a mechanism to
safely record the states of a mobile task. In other words, requirement R7 - the mobile

 99

transaction processing system must assure the durability property of transactions - must
be fulfilled.

Due to the disconnections of wireless networks and the constraint of mobile computing
resources, an on-going mobile task can be disrupted or suspended. In order to support the
recovery of the mobile task when the wireless networks or mobile resources become
available, the mobile IT support system must provide a mechanism to record the previous
activities of the mobile task. This means that requirement R9 - the mobile transaction
processing system must support temporary data and transaction management – must be
fulfilled. Moreover, the temporary data and transaction management also supports IT
officers to know which activities have been carried out or what data has been modified
while they are disconnected from the database servers.

Observation 2: Cultivate additional support among co-mobile workers

While working on a mobile task, an IT officer could experience unplanned
disconnections in communication. For example, the IT officer may be outside the area
covered by the wireless networks, or may be moving behind shadowing objects like
buildings. In these situations, the IT officer will not be able to contact the database
servers, and the mobile work will be interrupted. However, the IT officer can
communicate with other nearby mobile workers, i.e., within a limited communication
range, via ad hoc wireless networks, for example Bluetooth or wireless USB. This way
the IT officer can ask for support from other nearby workers. For example, an IT officer
who is fixing a printer problem can ask for an electronic version of the printer manual
which is available from a nearby colleague. In order to support collaborative work in this
situation, the mobile IT support system must support interactions among nearby mobile
hosts. This means that requirement R2 - the mobile transaction processing system must
support interactions among transactions at different mobile hosts – must be fulfilled. To
achieve this, our mobile transaction processing system allows disconnected mobile hosts
to form temporary and dynamic workgroups, called mobile affiliation workgroups (see
Section 5.3.2), so that they can continue carrying out collaborative operations while being
on the move and disconnected from the database servers.

A mobile host can, at the same time, be able to connect to a mobile support station via a
wireless LAN connection and to other nearby mobile hosts via short-range wireless
technologies. Therefore, this mobile host can be dynamically configured to play the role
of an additional mobile support station to other mobile hosts. It can act as a mobile relay
host or a temporary mobile database server to support other mobile hosts that are
currently unable to directly connect the mobile support station. In other words, the mobile
IT support system must fulfill requirement R4 - the mobile transaction processing system
must support distributed transaction execution among mobile hosts and stationary hosts.
This way the mobile transaction processing system can cope with the limited computing
capacity of mobile hosts, and avoid relying heavily on the support from mobile support
stations.

 100

Observation 3: Demand an adjustable collaborative work technique

Due to the complexity and difficulty of a mobile task, it may take longer time and more
effort to carry out the mobile task. While being carried out, the mobile task can suffer
from disruptions or failures, for example a mobile computer is running out of battery
energy or parts of the mobile work are cancelled. Therefore, the mobile IT support
system must provide a mechanism to prevent losing useful work that has been done, for
example rolling back previously achieved parts. This means that requirement R5 - the
mobile transaction processing system must have the ability to customise the atomicity
property of transactions – must be fulfilled.

Additionally, the mobile IT support system must also support the recovery of a mobile
task that has been affected by disruptions, i.e., providing the ability to adjust and continue
from previously disrupted points. For example, a disconnected IT officer must be able to
recover from a previously disconnected state when the communication channel is re-
established at a later time, or part of the mobile task must be changed to be consistent
with other parts. This means that requirement R8 - the mobile transaction processing
system must provide efficient recovery strategies – must be fulfilled.

Furthermore, a mobile task may not always be carried out as planned. This can happen
when the mobile task is complicated and requires more collaborative support from
several IT officers. For example, an IT officer who currently works on a difficult mobile
task should allow other IT officers the opportunity to share their expertise in the problem
or to take over the task. This means that requirement R6 - the mobile transaction
processing system must support sharing partial states and status among transactions –
must be fulfilled. This way the problem has a higher chance of being solved in the
shortest possible time, i.e., achieving higher throughput for mobile works. Note that in
volatile mobile environments, the existing mechanisms that support sharing of data
among transactions, for example altruistic locking protocols [SGS94], delegation
operations [CR94, Ram01], or prewrite locking protocols [MB01] might not be adequate.
This is due to two reasons: (1) these mechanisms require a tight cooperation among the
participants, and (2) network connectivity is assumed to be available when it is needed. A
mobile data sharing mechanism, therefore, must be able to handle unexpected events that
are caused by variations in the surrounding environmental conditions, for example the
varying network bandwidth or uncertain connection periods.

5.3 Mobile affiliation model for supporting mobile collaborative works

In this section, we propose a new workgroup model that focuses on supporting mobile
collaborative works, called the horizontal collaboration (explained in Section 5.3.1). The
fundamental idea behind the horizontal collaboration model is that it takes advantage of
nearby communication technologies to encourage mobile users to form temporary and
dynamic workgroups. By this way, mobile users can continuously carry out collaborative
operations while being disconnected from the database servers. We focus our discussion
on three important properties of the horizontal collaboration - that are: the mobile
affiliation workgroups (Section 5.3.2), the mobile sharing workspace called export-

 101

import repository (Section 5.3.3), and the mobile data sharing mechanism by the means
of export and import transactions (Section 5.3.4).

5.3.1 Extending workgroup model for mobile work environments

There are many research proposals that have been developed to support collaborative
work in distributed environments [RN99, Ram01]. Among these proposals, the common-
private workgroup model has been widely applied. In this workgroup model, an
organization consists of one or many workgroups each of which consists of one or many
members. Each member can work independently and/or cooperate with other members to
achieve designed goals. Users work on their own local workspaces, and share a pre-
defined common sharing workspace (the common workspace can also be defined at
different nested levels, see Figure 5.3). Information is first updated in the local
workspace, and then propagated into the common workspace. The local workspaces can
be stored at mobile computers or fixed computers. The common workspaces are usually
stored together with the database servers or at specific computers. Shared data can be
temporarily inconsistent across different local workspaces. In the common workspace,
shared data must always be consistent. In the mobile IT support scenario (Section 5.2),
while dealing with mobile tasks, an IT officer first works on the local workspace at the
mobile computer, and then integrates the results into the common workspace at the
database servers.

The private-common workspace model has the capacity to support both synchronous and
asynchronous communication among collaborative workers. Users can share their data,
and obtain needed information by accessing the common workspace via predefined
operations like sign-off, check-in and check-out. However, the organization of the private-
common workgroup model (we shall call this workgroup model the vertical
collaboration) may not be suitable in mobile environments. This is due to the static
configuration of the common workspaces, and the strictness of the communication paths
between the private and common workspaces (see Figure 5.3 for illustration).
Consequently, there is a need to expand the existing workgroup organization model so
that it can exploit the benefits of the new mobile work environment (we shall call this
expansion the horizontal collaboration). The extended workgroup model takes into
account the mobility characteristic of mobile hosts and the wireless communication
technologies.

From a collaborative work perspective, the collaboration among mobile users can be
carried out in two dimensions: vertical and horizontal. These collaboration dimensions
are illustrated in Figure 5.3 and elaborated as follows:

• Vertical collaboration. Collaborative work among mobile users, who belong to static

and pre-defined workgroups, is called vertical collaboration. Each workgroup has its
own group workspace that is predefined, organized and allocated. Collaborative
operations among users must strictly follow the pre-defined hierarchical
communication paths.

 102

• Horizontal collaboration. Collaborative work of a temporary and dynamic mobile
workgroup that is formed from a collection of mobile hosts that belong to one or
many pre-defined mobile workgroups is called horizontal collaboration. Nearby and
peer-to-peer communication is the main characteristic of the horizontal collaboration.
To our knowledge, there is no similar concept (in relation to mobile workspace
sharing) that has been defined for this type of collaboration.

Figure 5.3: Extending collaborative work model in mobile environments

Figure 5.3 illustrates the collaboration work in both dimensions. For vertical
collaboration, IT-officers are divided into two main groups: one and two. Group one is
divided into sub-groups 1.1 and 1.2. Group 1.1 is further partitioned into sub-groups 1.1.1
and 1.1.2. Group 1.1.1 consists of IT-officer 1 and 2; and IT-officer 3, 4 and 5 are the
members of group 1.1.2. Updates by IT-officer 1 are first integrated into the sub-
workspace of group 1.1.1, then group 1.1, then the common workspace of group 1. After
that, these updates can be downloaded into the sub-workspace of group 1.2, and can be
accessed by IT-officer 6. For horizontal collaboration, IT-officer 2 and IT-officer 3 can
form a dynamic mobile affiliation workgroup so that updated data by IT-officer 2 can be
made available to IT-officer 3 without being integrated through the common workspace
of group 1.1. Interactions between these two IT-officers in the mobile affiliation
workgroup will be supported through an export-import repository (explained in Section
5.3.3) and export and import transactions (addressed in Section 5.3.4).

The extended workgroup model in the horizontal collaboration dimension promotes the
benefits of mobile work environments by allowing direct data sharing among mobile
hosts. This work model increases the data availability at mobile hosts that can not

 103

connect to the database servers or the common workspace to obtain needed data.
Furthermore, as explained in the next subsections, this work model also takes into
account the mobility characteristic of mobile hosts, and utilizes the advantages of
wireless network technologies.

5.3.2 Mobile affiliation workgroups

An affiliation workgroup is a dynamic group of mobile and non-mobile computing hosts
that agree to form a temporary workgroup so that they can exchange information or
support each other. A computing host in an affiliation workgroup must be able to
communicate with other hosts in the workgroup. A mobile affiliation workgroup (MA) is
an affiliation workgroup where all hosts are mobile hosts. Figure 5.4 illustrates the
mobile affiliation groups.

A mobile host will be removed from the mobile affiliation workgroup if it is disconnected
from other hosts that are the members of the mobile affiliation workgroup. This could be
caused by the disconnections of wireless networks, the exhaustion of battery energy, or
the mobile host moves outside the communication range of the mobile affiliation
workgroup. A mobile host can participate in more than one mobile affiliation workgroup.
A mobile host in a mobile affiliation workgroup can also connect to a mobile support
station or database servers. For example, in Figure 5.4, the mobile host MH1 connects to
the mobile support station MSS2, and joins two different mobile affiliation workgroups
MA1 and MA2.

Figure 5.4: Mobile affiliation model

 104

The advantageous characteristics of the mobile affiliation workgroup model are as
follows:

• Represent temporary and dynamic workgroups. The mobile affiliation workgroup

is created when a group of mobile hosts, which are disconnected from the database
servers and whose locations are nearby each other, need to collaborate or share data.
These mobile hosts will utilize short-range wireless technologies to establish a
temporary mobile workgroup. One mobile host can initiate a mobile affiliation
workgroup, and a varying number of mobile hosts can join the mobile affiliation
workgroup. A mobile host can join or leave the mobile affiliation workgroup at any
moment. When the cooperative activities among mobile hosts are completed, the last
mobile host in the mobile affiliation workgroup will dispose of the mobile
workgroup. This means that there is no central management of the mobile affiliation
workgroup, and the disconnection of a mobile host will not destroy the mobile
affiliation workgroup.

• Capture the mobility of mobile hosts. In a mobile affiliation workgroup, a mobile

host uses wireless technologies to connect with nearby mobile hosts. If a mobile host
wants to join a mobile affiliation workgroup, it must be within the communication
range of the other members. In other words, the distance between mobile hosts
impacts their connectivity ability. Therefore, the movement of mobile hosts has a
strong impact on the mobile affiliation organization. The mobile affiliation
workgroup model also provides a level of mobility transparent to mobile users or
applications. A group of mobile hosts can be considered as a group of non-movement
hosts as long as they belong to one mobile affiliation workgroup, i.e., their relative
distances always comply with the scope of the communication range. For example, if
a group of mobile hosts is always moving closely together, it would appear to a
mobile user or a mobile application that there is no change in the group organization
and surrounding environments.

• Take into account the constraints of mobile resources. While participating in a

mobile affiliation workgroup, a mobile host interacts with other mobile hosts. This
means that the operation mode of the mobile host is the interaction mode. As we have
discussed in Section 3.2.4, the behavior of mobile hosts depends on the availability of
mobile resources. For example, when a mobile host is running out of battery energy,
it can disable its network connectivity and leave the mobile affiliation workgroup.
Thus, the mobile affiliation workgroup model takes into consideration the constraints
of the mobile resources.

5.3.3 Mobile sharing workspaces

An export-import (EI) repository is a dynamically configurable mobile sharing
workspace that belongs to a mobile affiliation workgroup. The mobile sharing workspace
provides a means for transaction processes at mobile hosts to share data while being on
the move and disconnected from the database servers (see Figure 5.4 above). The
advantageous characteristics of the export-import repository are as follows:

 105

• Dynamic sharing workspace. The export-import repository is created when there is
a need for sharing of data among transactions at different mobile hosts. A transaction
Ti

k at the mobile host MHi will initiate an export-import repository if it reaches the
synchronous point (at which there is a need for exchanging shared data) before its
associated transaction Tj

l that is being executed at the mobile host MHj. Otherwise,
the export-import repository can also be initiated by the transaction Tj

l. An export-
import repository is initiated by a transaction at a mobile host, but a varying number
of transactions at different mobile hosts can join the mobile sharing workspace for
different purposes, for example sharing or obtaining necessary data. When the data
sharing activities among transactions at different mobile hosts are completed, the
export-import repository will be disposed.

• Temporary persistent sharing workspace. The export-import repository is

dynamically created to support the data sharing, which could be partial state (see
Section 5.5.4) or status (see Section 5.5.5), among transactions at different mobile
hosts. The shared data in the mobile sharing workspace will eventually be integrated
into the database servers by the participating transactions. Therefore, its content must
be saved in a persistent storage. Moreover, this information can also be used to
support recovery processes if there is any failure or conflict among the participating
transactions (see Section 6.7).

• Distributed sharing workspace. The export-import repository is dynamically

allocated and distributed among the mobile hosts in the mobile affiliation workgroup.
For example, in Figure 5.4, the export-import repository EI2 can be entirely allocated
at the mobile host MH1, or distributed among three mobile hosts MH1, MH3, and
MH4. This also enhances the scalability of the export-import repository and the
availability of shared data in the mobile environment. If a mobile host is exhausting
its energy and going to be disconnected from the mobile affiliation workgroup, the
shared data in the mobile sharing workspace partition that is currently allocated at this
mobile host will be reallocated to other available mobile hosts so that this shared data
is still available to other transactions. For example, if the mobile host MH1 is going to
be disconnected from the mobile affiliation workgroup MA2, the shared data that is
currently stored at the mobile host MH1 can be moved to either the mobile host MH3
or MH4.

A mobile host can participate in more than one mobile affiliation workgroup.
Consequently, a transaction at the mobile host can join and access more than one export-
import repository. In Figure 5.4, transactions at the mobile host MH1 can access both
export-import repositories EI1 and EI2, while transactions at the mobile host MH3 can
only access the export-import repository EI2.

5.3.4 Export and import transactions

In this section, we present a flexible and adjustable mechanism to support the sharing of
data among transactions at different mobile hosts, which are the members of a mobile
affiliation workgroup. The idea behind our data sharing mechanism is: using separate

 106

transactions to support data sharing among transactions at different mobile hosts. The
data sharing among transactions in mobile environments is autonomously carried out by
special transactions (called shared transactions – as discussed below) that interact through
an export-import repository. By this, the data sharing can be carried out in both a
synchronous and an asynchronous manner, i.e., coping with the volatile environmental
conditions.

We differentiate two types of transaction: standard transaction and shared transaction
(see Figure 5.5). A standard transaction that shares data to or obtains data from other
transactions is called a delegator or delegatee transaction, respectively. In some cases, a
standard transaction can play roles as both delegator and delegatee transaction. Shared
transactions include export and import transactions that support the delegator and
delegatee transactions to share data (from now, we assume that the delegator and
delegatee transactions belong to different mobile hosts). Export transactions interact with
import transactions in export-import repositories. We also differentiate two types of data
sharing: sharing data state and sharing data status. Sharing data state of data item X
between a delegator and a delegatee transaction means that the delegator transaction
shares the value VX of data item X to the delegatee transaction. For sharing data status, the
delegator transaction shares the lock (which is either a read XR or write XW lock – see
more details in Section 5.5.3) on data item X to the delegatee transaction. To ease the
discussion, we use the following notations: Ti

k denotes a transaction Tk at mobile host
MHi; an export transaction and an import transaction of a standard transaction Ti

k are
denoted by Ti

k.E and Ti
k.I respectively.

Figure 5.5: Standard and shared transactions

The roles of the export and import transactions are as follows:

• Export transaction. The role of an export transaction Ti

k.E is to support a delegator
transaction Ti

k: (1) to share its partial or committed results with delegatee
transactions; (2) to transfer locks on shared data to delegatee transactions; and (3) to
save partial results, i.e., avoid losing useful work due to failures of mobile hosts. The
delegator transaction will initiate one or more export transactions when it wants to
share information with other delegatee transactions. The correlation between a
delegator transaction and its export transaction is an abort-dependency [CR94], see
Section 6.2 for further discussion.

 107

• Import transaction. An import transaction Ti
k.I supports a delegatee transaction Ti

k at
a mobile host to obtain needed information that can be either data states or data status
from other delegator transactions. The delegatee transaction can initiate one or more
import transactions to acquire the necessary information from other transactions. The
correlation between a delegatee transaction and its import transactions is either an
abort-dependency [CR94] or a multiple-abort-dependency. These transaction
dependencies will be discussed in detail in Section 6.2.

Note that the idea of this mobile data sharing mechanism is not completely unknown in
other research fields, like operating systems or parallel processing systems. For example,
a process may use different threads to handle inputs and outputs or to communicate with
other processes. The Linda parallel computing system [PMR00] also applied transaction
concepts to support data sharing among parallel processes. However, there is a crucial
difference: in our model, shared transactions are not strictly under control of the original
standard transactions, i.e., the shared transactions can independently continue executing
even if the original standard transactions fail.

The export and import transactions provide a flexible and adaptive mechanism to support
mobile data sharing. This data sharing mechanism has the ability to deal with the
dynamic changes of surrounding mobile environmental conditions and the constraints of
mobile resources. The mobile data sharing mechanism also has several qualities that are
as follows:

• Cope with interruptions of synchronous data sharing. The sharing of data among

standard transactions Ti
k and Tj

l can be carried out in a synchronous manner if these
two transactions are simultaneously connected to each other. In mobile environments,
however, interruptions can happen any time during the synchronous data sharing
process. Thus, the data sharing mechanism must have the ability to recover from the
interruptions to ensure that the data sharing process is correctly carried out.

Figure 5.6: Adaptive mobile data sharing mechanism

In Figure 5.6(a), during the synchronous data sharing between two transactions T1

1
and T2

1, an export transaction T1
1.E and an import transaction T2

1.I are initiated and
executed as back-up shared transactions in parallel with the transactions T1

1 and T2
1.

 108

If a disconnection occurs, the data sharing process (via the export and import
transactions) between the transactions T1

1 and T2
1 can continue in an asynchronous

manner (see discussed below). In other words, the data sharing mechanism has the
ability to withstand failures of connectivity.

• Support asynchronous data sharing. Due to the disconnections and interruptions in

communication, asynchronous data sharing mechanisms must be supported. Pairs of
export and import transactions are used to support asynchronous data sharing among
disconnected standard transactions. In Figure 5.6(b), two standard transactions T1

1
and T2

1 are disconnected; however, the delegator transaction T1
1 can connect to the

export-import repository and share data item X to the delegatee transaction T2
1 via its

export transaction T1
1.E. Asynchronously, the delegatee transaction T2

1 can connect to
the export-import repository to obtain this data item via its import transaction T2

1.I.

Mobile host MH1

T1
1

EI-repository

T1
1.E

Mobile host MH2

T2
1

T2
1.I

(a)

Mobile host MH1

EI-repository

Mobile host MH2

(b)

Mobile host MH1

EI-repository

Mobile host MH3

(c)

Mobile host MH2

Mobile host MH1
EI-repository

Mobile host MH3

(d)

Mobile host MH2

T1
1 T1

1.E

T2
1

T2
1.I

T1
1 T1

1.E
T2

1T2
1.I

T1
1

T1
1.E

T2
1

T2
1.I

Figure 5.7: The physical distribution of the export-import repository

Note that the export-import repository illustrated in Figure 5.6 is a logical mobile
sharing workspace. As we have discussed in Section 5.3.3, the real physical export-
import repository can be allocated among different mobile hosts. The distribution of
the physical mobile sharing workspace among mobile hosts is illustrated in Figure

 109

5.7. In the figure, the delegator transaction T1
1 and the delegatee transaction T2

1 are
executed at the mobile hosts MH1 and MH2, respectively. If the export-import
repository is allocated at either mobile host MH1 or MH2, in order to share data, either
the import transaction T2

1.I must connect to the export-import repository at the mobile
host MH1 (see Figure 5.7 (a)) or the export transaction T1

1.E must connect to the
export-import repository at the mobile host MH2 (see Figure 5.7 (b)). In other words,
connectivity between these two mobile hosts MH1 and MH2 is required. However, if
the export-import repository is allocated at other hosts, e.g., the mobile support
station MH3 (see Figure 5.7 (c)), synchronous connectivity between the mobile hosts
MH1 and MH2 is not necessarily required. If the export-import repository is physically
distributed among mobile hosts (see Figure 5.7 (d)), the shared transactions can
connect to any partition of the export-import repository to share data. When the
export-import repository is physically allocated among different mobile hosts, there is
a need for support management of the mobile sharing workspace and the shared data
(see Section 5.6 for further discussion).

• Separate data sharing processes from the main transaction processes. The data

sharing processes are separated from the main transactions that might be large and
long-lived. Furthermore, a large shared data amount can be divided into smaller sets
and shared via a number of shared transactions. By this way, the mobile data sharing
mechanism can deal with the low bandwidth and short connection time of the
wireless networks. For example, in Figure 5.8, a delegator transaction T1

2 uses two
export transactions T1

2.E1 and T1
2.E2 to share data items Y and Z in the export-import

repository. These sharing processes can be carried out by one export transaction if
both the data items are ready to be shared at the same time, and both the network
bandwidth and connection time are suitable for the data transmission.

Figure 5.8: A general data sharing scenario

• Provide a flexible mobile data sharing system. Via the support of export and import

transactions, the data sharing among transactions through an export-import repository
is flexible. One delegator transaction can share information with one or many
delegatee transactions, many delegator transactions can share data with one delegatee
transaction, and even recursive data sharing is possible (explained in Section 5.5.6).
For example, in Figure 5.8, a delegator transaction T1

1 shares the data object X to both
delegatee transactions T2

1 and T2
2 via one export transaction T1

1.E; the delegatee
transaction T2

2 can obtain shared data from both delegator transactions T1
1 and T1

2;
and the transaction T1

1 plays roles as both delegator and delegatee transaction.

 110

• Support the mobility of transactions. During their execution processes, standard
transactions can participate in more than one export-import repository when the
mobile host joins many mobile affiliation workgroups. The dynamic structure of
shared transactions (see Section 5.7.3) will support the mobile transaction processing
system to handle the mobility of standard transactions across many export-import
repositories.

5.4 Discussions of mobile transaction properties

In the previous section, we have presented our proposal to extend the collaborative work
model in the horizontal dimension in order to support mobile collaborative work. This
extension leads to the development of an adaptable mobile data sharing mechanism
among standard transactions at different mobile hosts via the support of shared
transactions. In this section, we first discuss the domain of data consistency related to
collaborative work in mobile environments. Then, we discuss the transaction properties
of the shared and standard transactions.

5.4.1 Domains of data consistency

For a mobile information system that supports mobile collaborative work, there are four
domains of data consistency: (1) local consistency, (2) group consistency, (3) mobile
affiliation consistency, and (4) global consistency. The local consistency is applied for
data objects that reside in a private (or local) workspace. This means that in mobile
environments, the local consistency is applied to data that is being cached at a mobile
host. For the vertical collaboration dimension, the group consistency [Ram01] represents
the consistency of shared data items in the group workspace. The states of these shared
data items are the results of the integration of local workspaces into the static group
workspace. For the horizontal collaboration dimension, the mobile affiliation consistency
is applied for data items which are shared by the standard transactions. In other words,
the mobile affiliation consistency represents the consistency of data items that are shared
in the export-import repository. Finally, when shared data items in local workspaces,
group workspaces and mobile sharing workspaces are successfully integrated into the
database servers, these data items are said to be in the global consistency domain.

For the vertical collaboration dimension, only three domains of data consistency are
applied: the local consistency, the group consistency, and the global consistency.
However, for the horizontal collaboration dimension, all the four domains of data
consistency are used. The group consistency is applied for the horizontal collaboration
when several mobile hosts that belong to one mobile affiliation workgroup are statically
organized into sub-workgroups, i.e., vertical collaboration within a horizontal
collaboration. Table 5.2 summaries the correlation between the collaboration dimensions
and the domains of data consistency.

There are many research works that have been focusing on achieving data consistency in
the vertical collaboration dimension [Ram01]. These works usually support collaborative
work in non-mobile environments, thus, they may not be adequate for mobile

 111

Table 5.2: Collaboration dimensions and consistency domains

Data consistency
 Local Group Mobile

affiliation
Global

Vertical Relevant Relevant N/A Relevant Collaboration
Dimension Horizontal Relevant Partial

relevant Relevant Relevant

environments. For example, the mobility of mobile hosts and the limitations of network
connectivity have not been taken into consideration. For the rest of the thesis, we will
concentrate our research on the three main data consistency domains in the horizontal
collaboration dimension, i.e., without the group consistency. Figure 5.9 illustrates the
relationship among the domains of data consistency in the horizontal collaboration
dimension.

Figure 5.9: Domains of data consistency in horizontal dimension

As discussed in the previous section, the main objective of the horizontal collaboration is
to enhance the data availability at disconnected mobile hosts via the support of the
adaptable mobile data sharing mechanism. The local consistency is achieved through a
data hoarding stage with the assistance of anchor transactions and a mobile data sharing
stage with the support of shared transactions (see Sections 6.3 and 6.4). The mobile
affiliation consistency is assured via the support of shared transactions (described in
Sections 5.4.2 and formalized in Section 6.4), while the global consistency is
accomplished through a transaction integration stage (see Section 6.6).

5.4.2 Shared transactions

In this section, we discuss the ACID properties of shared transactions. To recap, the
shared transactions are export and import transactions that support the mobile data
sharing among standard transactions through an export-import repository. For the shared

 112

transactions, the important events [CR94] are begin, commit, and abort. Table 5.3
summaries the behavior of export and import transactions in relation to the important
events.

Table 5.3: Behavior of shared transactions

Event Export transaction Import transaction
Begin Initiated by a delegator

transaction from local workspace
Initiated by a delegatee
transaction from local workspace

Commit Committed in the export-import
repository

Committed in the local
workspace

Abort Aborted or restarted Aborted or restarted

An export transaction Ti

1.E is initiated by the delegator transaction Ti
1 to share data in the

export-import repository. This means that the export transaction Ti
1.E is initiated from the

local workspace, and commits in the mobile sharing workspace (see illustration in Figure
5.10). If there is any failure during the execution of the export transaction, either the
export transaction will be restarted based on the log records in the local workspace (see
Section 6.4 for further discussion), or if the delegator transaction has disconnected from
the export-import repository, the export transaction will be aborted. Furthermore, if the
delegator transaction wants to withdraw its shared data, the corresponding export
transaction will also be aborted by the delegator transaction. If the corresponding export
transaction has committed, it will be compensated.

Figure 5.10: Behavior of export and import transactions

An import transaction Ti

2.I is initiated by the delegatee transaction Ti
2 to obtain shared

data from delegator transactions through the export-import repository. The import
transaction is initiated from the local workspace, collects shared data from the export-
import repository, and finally commits in the original local workspace. In other words,
the execution of the import transaction involves both the mobile sharing workspace and
the local workspace. If the delegatee transaction decides that the wanted shared data is no
longer needed, the import transaction will be aborted. On the other hand, if there is a
failure during the execution of the import transaction and the delegatee transaction still
connects to the export-import repository, the import transaction will be restarted.

The following discussion addresses in detail the properties of the export and import
transactions. Table 5.4 summaries the properties of export and import transactions.

 113

Table 5.4: Properties of shared transactions

Properties Export transaction Import transaction

Atomicity Fulfillment in the export-
import repository

Relaxation in the local
workspace

Consistency Fulfillment in the export-
import repository

Fulfillment in the local
workspace

Isolation Fulfillment in the export-
import repository

Relaxation in the local
workspace

Durability Fulfillment in the export-
import repository

Fulfillment in the local
workspace

Atomicity property

The export transaction fulfills the standard atomicity property. This fulfillment ensures
that information is either successfully shared or no information is shared. The export
transaction has the ability to unilaterally commit or abort. When the export transaction
commits, the shared data is successfully written into the export-import repository so that
other import transactions can start reading these shared data. If the export transaction is
aborted due to execution errors, then no information is shared.

The import transaction relaxes the atomicity property. The import transaction obtains
shared data from the export-import repository. If there is a failure during the execution of
an import transaction, the import transaction can partially roll back and some of the
already collected shared data can be saved in the local workspace. This relaxation can
help the delegatee transaction to make use of some needed data, especially if the
collected data is read-only and consistent. For example, a delegatee transaction Tj

l
initiates an import transaction Tj

l.I to collect a set of read-only shared data. The import
transaction Tj

l.I will continuously read the needed data from the export-import repository
and save these shared data in the local workspace. If the import transaction Tj

l.I fails, it
should be allowed to partially roll back, i.e., some of the collected data can be saved in
the local workspace.

Consistency property

The standard consistency property means that committed transactions will transfer a
database from a consistent state to another consistent state. In our mobile transaction
processing system, the shared transactions support the standard transactions to carry out
the mobile data sharing processes across different local workspaces. In terms of data
consistency, this means that when a shared transaction commits, the shared data is
consistent across the local workspaces and the mobile sharing workspace.

The export transaction fulfills the consistency property within the scope of the export-
import repository. This means that when an export transaction commits, the state of the
shared data written into the mobile sharing workspace is consistent with the state of this
shared data in the local workspace in which the delegator transaction is being executed. If
the delegator transaction aborts after the export transaction has committed, the export

 114

transaction will be compensated so that the invalid shared data will be withdrawn from
the export-import repository. If there is an import transaction that has read this invalid
shared data, the mobile transaction processing system must provide mechanisms to
correct the problem. This can be done by explicitly defining abort-dependency rules
[CR94] between the standard and shared transactions (see Sections 5.4.3 and 6.2 for more
detail).

For import transactions, the consistency property is fulfilled within the scope of the local
workspace at the mobile host. This means that when an import transaction commits, the
state of the collected shared data written into the local workspace is consistent with the
state of this shared data currently owned by the delegator transactions. In other words, the
shared data is consistent across the local workspaces in which the delegator and the
delegatee transactions are being carried out. If the shared data being read by an import
transaction is invalidated (i.e., the delegator transaction aborts and the export transaction
is compensated), the import transaction will be compensated. Consequently, delegatee
transactions that also have read invalid shared data (in the local workspace) must be
aborted.

Isolation property

For export transactions, the standard isolation property is fully met. In other words, any
related import transactions can only gain access to shared information after the export
transaction has committed in the export-import repository. To assure this, strict two-
phases locking can be applied or explicit commit-begin-dependency [CR94] rules may be
defined by the mobile transaction processing system.

For import transactions, the isolation property is relaxed. The relaxed isolation property
of import transactions avoids blocking of data availability in the local workspace if the
commitment of the import transaction is being postponed. This can happen due to the
disconnection of wireless networks or the mobility of the delegatee transaction. So, it
should be feasible for the import transaction to reveal intermediate results to the
delegatee transaction before its commitment. Note that the intermediate results of the
import transaction may only be visible to the original delegatee transaction. In Figure
5.11, the delegatee transaction T1

1 must have the right to access shared data item X that is
collected by its import transaction T1

1.I before a local transaction T1
2.

Figure 5.11: Access privilege of a delegatee transaction to imported data

 115

The remaining question is how the relaxation of isolation property is achieved. The
answer depends on the structure of the delegatee transaction, i.e., flat or nested structure
(see Table 5.5).

If the delegatee transaction has a flat structure, either the import transaction can be
merged into the structure of the delegatee transaction by the concepts of Split-Join
transactions [PKH88], or the import transaction can delegate its partial results to the
delegatee transaction by the concepts of Reporting and Co-transactions [Chr93]. This can
be done because the import and delegatee transactions are tightly coupled in the local
workspace. If the delegatee transaction has a nested structure, the import transaction can
be adopted as a sub-transaction of the delegatee transaction (see Section 5.7.2 for further
discussion).

Table 5.5: Relaxing the isolation property of import transactions

Structure of delegatee
transaction

Relaxation mechanism

Flat structure Merge or delegate the import transaction
results to the delegatee transaction.

Nested structure Adopt the import transactions as sub-
transactions of the delegatee transaction.

Durability property

The standard durability property safeguards the results of committed transactions so that
these results will be recovered when failures occur. When an export transaction commits,
the shared data is persistent in the export-import repository of the mobile affiliation
workgroup. The export-import repository will be disposed when the mobile affiliation
workgroup is no longer existing. Therefore, the delegator transaction must log the
information associated with its export transaction in the local workspace at the mobile
host before dispatching the export transaction to the mobile sharing workspace (see
Section 6.4 for further detail and formalization). This means that the durability property
of export transactions is assured by the delegator transaction.

When an import transaction commits, the collected shared data is durable in the local
workspace. The durability of shared data is assured by the logging facility that is
provided by the transaction manager at the mobile host. Furthermore, related information
such as the identification of the delegator and export transactions will also be recorded in
the local log at this mobile host.

5.4.3 Standard transactions

In this section, we discuss the properties of standard transactions. To recap, the standard
transactions are delegator or delegatee transactions that are executed locally within the
scope of the local workspace at a mobile host. Standard transactions are normally long-
lived transactions, with a complex structure; and demands additional support such as

 116

disconnected and distributed transaction processing (see Section 3.5). Due to these
characteristics, the standard ACID properties may be too strict for the standard
transactions. For example, the atomicity property requires that either all transaction
operations or no operation must be completed. For long-lived transactions, this standard
atomicity property may waste useful work that has been done. The standard isolation
property prevents an on-going transaction to share the available information with others;
therefore it could block the execution processes of other transactions.

Transactions in mobile environments require less strict properties, and this is the
approach that has been applied in many mobile transaction models [SRA04]. For
example, relaxing the atomicity property allows transactions to partially rollback when
there is a failure. Relaxing the isolation property makes it possible for the immediate
results of an on-going transaction to be accessible to other concurrent transactions. This
way, these transactions have an opportunity to be executed faster. For the consistency
property, it is important that database states must be consistent at specific domains and
time. For example, before a mobile host is disconnected, the data, which is cached in the
local workspace, must be consistent with the one at the database servers so that local
transactions at the mobile host can be performed correctly in the disconnected mode.
During the disconnected transaction processing stage, the cached data at the mobile host
could have been modified and thus, be different from the one stored at the database
servers or at other mobile hosts. When the mobile host reconnects to the database servers,
these different data states will have to be reconciled to achieve a global consistent state.
For the durability property, the results of a committed transaction must be durable only
after the transaction has committed at the database servers.

The remaining question is: how much relaxation of the transaction properties could a
mobile transaction processing system support? The following analysis of the properties
of standard transactions will answer this question (see Table 5.6).

Table 5.6: Properties of standard transactions

Properties Standard transaction
Atomicity Relaxation in local and global workspaces
Consistency Fulfillment in the global workspace

Isolation Relaxation in local and across local
workspaces

Durability Fulfillment in the global workspace

To ease the following analysis, we recap the important characteristics of our mobile
transaction processing system:
• There is no constraint in roles and structure of a standard transaction at the mobile

host, i.e., a standard transaction can have a flat or nested structure, and can play role
as either a delegator transaction or a delegatee transaction or both.

• The execution process of a standard transaction involves a local workspace and a
global workspace. This means that a standard transaction could have either (1) first

 117

committed in the local workspace and then in the global workspace; or (2) committed
directly to the global workspace.

• During its execution process, a standard transaction can involve one or many export-
import repositories (i.e., the mobile host can join one or many mobile affiliation
workgroups) with corresponding export and import transactions.

The following discussion addresses in detail the properties of the standard transactions.

Atomicity property

The atomicity property of standard transactions must be relaxed. This allows local
transactions at a mobile host to partially rollback when failures occur. In mobile
environments, the relaxation of the atomicity property is essential because: (1) it supports
transactions to cope with interruptions, for example disconnections of wireless networks
or exhausting battery energy; and (2) it prevents losing useful work done under the
constraints of mobile resources, especially for long-lived transactions.

In non-mobile environments, there are several approaches to support customizing the
atomicity property of transactions. For transactions with a flat structure, the relaxation of
atomicity property can be achieved by save points or allowing transactions to partially
commit [GR93]. For nested transactions, this can be achieved by explicitly defining
abort-dependency rules among related transactions [Ram01]. These approaches can also
be applied in our mobile transaction processing system to support the relaxation of the
atomicity property of local transactions in the scope of the local workspace at the mobile
host and in the global workspace (i.e., when the local transactions are integrated to the
database server).

In our mobile transaction processing system, shared transactions are used to support the
data sharing among standard transactions that are carried out in different workspaces. A
delegator transaction initiates export transactions to share or save partial results in an
export-import repository. When a delegator transaction aborts (in the local workspace or
global workspace), it is not necessary that all export transactions must also be aborted
(because the export transactions have shared consistent data – see Section 5.5.4 for
further discussion). Therefore, a delegator transaction can partially rollback and restart
when failures occur.

A delegatee transaction initiates import transactions to collect necessary data from the
export-import repository. If a delegatee transaction aborts in the local workspace, its
import transactions can still be carried out so that the collected data can still be used
either when the delegatee transaction recovers from failures or by other local transactions
at the mobile host. If a delegatee transaction is aborted when it is integrated in the global
workspace, it is not necessary that all the associated import transactions must also be
aborted. For example, in Figure 5.12, if the delegatee transaction T1

1 aborts, two of its
import transactions T1

1.I2 and T1
1.I3 are aborted, but not the import transaction T1

1.I1. The
relaxed atomicity property can be achieved by defining abort-dependency rules between
a standard transaction and its shared transactions (see Section 6.2 for more detail).

 118

Figure 5.12: Dependencies between delegatee and import transactions

Furthermore, if the standard transaction has a nested structure, the relaxed atomicity can
also be achieved by defining an abort-dependency between the parent transaction and
shared transactions of children sub-transactions. For example, in Figure 5.13, if the sub-
transaction T1

21 aborts, the export transaction T1
21.E and the import transaction T1

21.I will
not be aborted. These shared transactions of the sub-transaction T1

21 will only be aborted
if the parent transaction T1

2 aborts. Similarly, the import transaction T1
1.I is only aborted

when the root transaction T1
0

 aborts.

Figure 5.13: Dependencies between parent and children's shared transactions

Consistency property

The execution of standard transactions involves two workspaces: (1) the local (or private)
workspace at the mobile hosts, and (2) the global workspace at the database servers.
When the mobile hosts are disconnected from the database servers, the standard
transactions are locally executed within the scope of the local workspace at the mobile
host. The consistency in the domain of a local workspace is ensured by the correctness
criterion of local transactions, i.e., a serializable schedule of local transactions.

The data consistency, however, is not always guaranteed among different local
workspaces at different mobile hosts. In our mobile transaction processing system, the
data conflict awareness among standard transactions in different local workspaces is
supported by the concept of anchor transactions (see Section 5.5.2 for description).
When the mobile hosts reconnect to the database servers, transaction integration
processes are carried out to determine the global execution order of local transactions. If

 119

a global serializable schedule is achieved, the local transactions are finally committed at
the database servers and global consistency is achieved (see Section 6.6 concerning the
transaction integration stage).

Isolation property

In our mobile transaction processing system, the isolation property of standard
transactions is relaxed in both local and across local workspaces. Relaxing the isolation
property allows standard transactions to share their intermediate results to others. It
would not be a problem if the transaction will never abort. However, if a standard
transaction whose intermediate results have been shared aborts, we have to ensure that
these shared intermediate results will not cause data inconsistency problems, i.e., those
transactions that have read the invalid shared data must be aborted too.

Local transactions are tightly coupled together in the local workspace at a mobile host.
Therefore, within the scope of the local workspace, a local transaction can share its
partial results to other local transactions via existing data sharing mechanisms, for
example delegation operations [CR94, Ram01]. For standard transactions that are
executed in different workspaces, the intermediate results of a standard transaction can be
shared via export and import transactions through the export-import repository. The data
sharing process among standard transactions at different local workspaces consist of three
phases (see Figure 5.14): (1) between the standard delegator and export transactions, (2)
between export and import transactions in the export-import repository, and (3) between
the import and delegatee transactions. The mobile transaction processing system must
ensure that all these three steps are taken into consideration when the delegator
transaction aborts. In other words, it is necessary to explicitly define abort-dependency,
commit-dependency or multiple-abort-dependency (see Section 6.2) rules among the
involved transactions for each of the three data sharing phases. For example, if a
delegator transaction aborts and withdraws the shared data, its export transactions must
be aborted or compensated. Consequently, the import transactions that have read the
shared data from the export transaction have to abort too. The abortion of an import
transaction may lead to the abortion of the associated delegatee transaction (see Section
6.2 for detailed discussion). The dependency between a delegator and a delegatee
transaction in the global workspace, then, will be transitively determined via the
intermediate transaction dependencies.

Figure 5.14: Data sharing stage between delegator and delegatee transactions

However, it is not practical that all the intermediate transaction dependencies must be
defined at the beginning of the mobile data sharing process. This is due to several

 120

reasons: (1) information related to shared transactions is not known in advance and (2)
the mobile data sharing processes might not be carried out as planned. For example, the
delegator and export transactions do not know about the import or delegatee transactions
that will read the shared data. The actual transaction dependencies may be dynamically
injected to or withdrawn from the mobile transaction processing system in accordance
with the actual interactions among the participating shared and standard transactions.
Dynamic transaction dependencies are adequate for transactions in mobile environments
because these transactions are normally long-lived and interactive transactions (as
discussed in Section 3.5).

Durability property

In mobile environments, the commitment of a transaction is divided into two stages: local
commit in the local workspace, and final commit at the global workspace. A local
transaction that has committed in the local workspace at the mobile host could be aborted
when it is integrated at the database servers due to conflicting with other transactions. If
there is no conflict, the locally committed transactions are finally committed in the global
workspace, and global durability is enforced. Moreover, if a local transaction is carried
out at the disconnected mobile host with consistent data (see Section 6.5), this transaction
must be guaranteed to finally commit in the global workspace when the mobile host
reconnects to the database servers.

5.5 Management of mobile data sharing mechanisms

One of the main limitations of the existing mobile transaction models is the lack of
customizable mechanisms to support the mobile data sharing in accordance with the
changes of the mobile environmental conditions and the behavior of mobile hosts. In this
section, we address the issue of mobile data sharing among standard transactions at
different mobile hosts via the support of shared transactions. First, we present the
operational model of the mobile transaction processing system (Section 5.5.1). Second,
we present the concept of an anchor transaction (Section 5.5.2) that supports conflict
awareness among different local workspaces. Next, in Section 5.5.3, we argue that it is
necessary to differentiate between sharing data state and sharing data status. We focus
our discussion on the mobile data sharing mechanism that includes sharing of data states
(Section 5.5.4) and data status (Section 5.5.5). Finally, in Section 5.5.6, we discuss the
issue of recursive data sharing.

5.5.1 Operational model of the mobile transaction processing system

Formally, our mobile transaction processing system consists of a large database DB that
is distributed among several fixed and wire-connected database servers Si. Database
operations can be performed at any database server, and the results are immediately
propagated to other servers via the eager replication protocol [CDK00].

We also distinguish two classes of transactions in mobile environments: online
transaction and offline transaction. An online transaction is a transaction that directly

 121

accesses data at the fixed database servers. In other words, an online transaction directly
interacts with the transaction manager at the fixed database servers to perform read or
write operations on shared data. An offline transaction is a transaction that is executed in
the local workspace and managed by the mobile transaction manager at the disconnected
mobile host.

For online transactions, the transaction and database management systems at fixed
database servers make use of standard lock modes, i.e., read and write locks, and the two
phase locking protocol (2PL) [BHG87] to enforce data consistency, i.e., by a serializable
execution schedule of transactions. An offline transaction that is executed at a
disconnected mobile host can acquire read or write locks on shared data with the help of
an proxy transaction, called an anchor transaction (informally, an anchor transaction is
an online transaction that is never aborted, see further explanation in Section 5.5.2). The
transaction manager at a mobile host also makes use of standard 2PL to ensure data
consistency in the local workspace, i.e., by a serializable execution of local (offline)
transactions.

Transactions at a mobile host can connect to any database server to acquire consistent
data or to synchronize data that is asynchronously modified. The database servers grant
read or write locks on shared data items that are requested by the anchor transaction,
which represents offline transactions which are going to be executed at the mobile hosts.

In the following sections, lock and unlock actions on shared data item X are denoted by lX
and ulX. The read and write locks on shared data item X are denoted by XR and XW,
respectively. RX and WX represent the read and write operations on the shared data item X.
Furthermore, to distinguish transactions that belong to different mobile hosts, Ti

k
represents a local transaction Tk at the mobile host MHi.

5.5.2 The anchor transaction

Before a mobile host disconnects from the database servers, shared data is cached in the
local workspace at the mobile host to support the disconnected processing of local
transactions. The shared data item can be cached for read-only or updating. At the same
time, these shared data can also be acquired by transactions at other mobile hosts;
therefore, there is a potential conflict among shared data items that are cached in different
local workspaces. For example, a shared data item X is modified by an offline transaction
at the mobile host MHi while it is being cached as read-only in the local workspace at the
mobile host MHj.

For each mobile host MHi, there is a special online transaction called the anchor
transaction Ti

A that plays role as a proxy transaction to local (i.e., offline) transactions at
this mobile host (see Figure 5.15). The anchor transaction will be managed by the
transaction manager at fixed database servers. The anchor transaction of a mobile host
will: (1) request and hold all the granted locks of the shared data items that are being
cached in the local workspace at the mobile host, and (2) keep track of the potential
conflicting operations and dependencies among transactions in mobile environments.

 122

Figure 5.15: An anchor transaction in a mobile transaction processing system

The following discussion explains the operations of the anchor transaction Ti

A.

• Requesting and holding locks. Before the mobile host MHi is disconnected, the
anchor transaction Ti

A sends lock action requests to a database server Si to acquire
read or write locks on the set of shared data items that are needed for the
disconnected transaction processing of local transactions Ti

j. If these lock requests
are granted by the database server, the corresponding shared data items are cached
in the local workspace at the mobile host. The set of granted locks will be held by
the anchor transaction Ti

A. When the mobile host is disconnected from the
database servers, the granted lock set will be replicated in the local workspace at
the mobile host. A local transaction at the disconnected mobile host will acquire
the corresponding read or write lock on a shared data item before its read or write
operation on the shared data is carried out. Figure 5.16 illustrates this role of the
anchor transaction. The local offline transactions Ti

1 and Ti
2 at the mobile host

MHi are considered sub-transactions of the anchor transaction Ti
A. For these local

transactions, the transaction manager at the mobile host makes use of standard
2PL to ensure data consistency of the local workspace. Transactions Ti

1 and Ti
2

acquire the needed read and write locks, which are held by the anchor transaction
at the database servers, before accessing the cached data item X. Note that the
local transaction Ti

k can be either planned in advance or dynamically created.

Figure 5.16: An anchor transaction acts as a proxy transaction

• Keeping track of potential conflicting operations. The anchor transaction is

executed at the database server, and is managed by the fixed transaction manger at
the database servers. The anchor transaction will not be forced to abort in any
circumstance. This can be achieved by writing a log record for each anchor
transaction at the database server, and if an anchor transaction fails, it will be
restarted. While the mobile host is disconnected from the database server, the
anchor transaction will keep track of potential conflicting operations that occur
among transactions at different mobile hosts (i.e., read and write conflicting

 123

operations). In Figure 5.17, before the mobile host MHi is disconnected from the
database servers, the anchor transaction Ti

A holds a read lock XR on shared data
item X. After this, the anchor transaction Tj

A of the mobile host MHj acquires a
write lock XW on the data item X. Both anchor transactions Ti

A and Tj
A will keep

track of the conflicting operations on shared data item X among transactions that
are executed in the local workspaces at mobile hosts MHi and MHj. At this time,
the local transaction Ti

1 at the being disconnected mobile host MHi will not be
aware of the conflict because this conflict occurs after the mobile host MHi is
disconnected from the database server. On the other hand, the local transaction Tj

1
at the mobile host MHj will be aware of this conflict because this conflict occurs
before the mobile host MHj is disconnected from the database server. When the
mobile host MHi reconnects to the database servers, the transaction Ti

1 will be
notified about the conflict via the conflict record held by the anchor transaction
Ti

A. By this, the anchor transaction supports conflict awareness for offline
transactions (see Section 6.3.4 for conflict awareness) by notifying the offline
transactions about these potential conflicts when the mobile host reconnects to the
database server.

Figure 5.17: Anchor transactions support conflict awareness

Conflicting database operations can also happen when transactions at different
disconnected mobile hosts share data status with each other. In Figure 5.18,
before the disconnections of the mobile hosts, there is no conflict between the
anchor transactions Ti

A and Tj
A. While being disconnected from the database

servers, the delegator transaction Ti
1 at the mobile host MHi shares the write lock

XW on the data item X to the delegatee transaction Tj
1 at the mobile host MHj (see

Section 5.5.5 for sharing data status). Therefore, the lock sets at the disconnected
mobile hosts are changed and different from the initial lock sets held by the
anchor transactions.

Figure 5.18: Conflict awareness caused by mobile data sharing

 124

When the mobile hosts MHi and MHj reconnect to the database servers, the initial
lock set hold by the anchor transactions Ti

A and Tj
A will be synchronized with the

lock set at the mobile hosts to resolve any newly conflicting operations (it is not
necessary that both the mobile hosts reconnect to the database servers at the same
time, see Section 6.6). After this, the results of local transactions Ti

1 and Tj
1 will

be integrated to the database servers. When the transaction integration stage is
completed, the anchor transaction will commit.

The concept of proxy transactions (or pseudo-transactions) have been introduced and
applied in mobile databases [HAA02]. However, our anchor transaction is different.
There are four main differences between our anchor transaction and proxy transaction.
First, the set of locks held by an anchor transaction can be modified when the mobile host
disconnects from the database servers. Second, it is not necessary that an anchor
transaction of a mobile host must always be created before the mobile host is
disconnected from the database server (the proxy transaction must always be created
before the disconnection of the mobile host). The reason is that this mobile host does not
hold any shared data from the database servers at the beginning, but only receives shared
data from other mobile hosts through the mobile sharing workspace (while being
disconnected from the database servers). Third, the anchor transaction keeps track of
potential conflicting operations among transactions at different local workspaces, i.e.,
supports conflict awareness among transactions in mobile environments. And fourth, the
anchor transaction can support the mobility of transactions (explained in Section 5.7.3).

5.5.3 Distinguishing between sharing data states and sharing data status

In Chapter 4, we have surveyed several mobile transaction models that have been
developed to support transaction processing in mobile environments. These mobile
transaction models do not fully support the mobile data sharing among transactions at
different mobile hosts (that are currently being disconnected from the database servers).
For example, the mechanisms that support the sharing of data among transactions in
mobile environments mainly focus on the sharing of data status (i.e., locks) via delegation
operations [Chr93, Ram01] or additional lock modes [MB01]. We argue that a mobile
transaction processing system must differentiate and support the sharing of both data state
and data status.

In Figure 5.19, at the mobile host MH1, the shared data item X is cached with read lock
XR. Local transaction T2

1 at the mobile host MH2, which cooperates with the transaction
T1

1, wants to read the shared data item X (the shared data item X is not cached at the
mobile host MH2). If the transaction T1

1 is the only local transaction at the mobile host
MH1 to access the shared data item X (see Figure 5.19(a)), this transaction T1

1 can
delegate the read lock XR of the shared data item X to transaction T2

1, and the transaction
T2

1 will take control over the delegated lock XR. However, if there is another transaction
T1

2 at the mobile host MH1 that also needs to access the shared data item X (see Figure
5.19(b)), the transaction T1

1 cannot delegate the read lock XR on the shared data item X to
the transaction T2

1. Instead, the transaction T1
1 can only let the transaction T2

1 to view the
state (i.e., the value VX) of the shared data item X. The transaction T2

1 can read the shared

 125

data item X without holding the actual read lock XR (we call this a pseudo-read
operation). In other words, the anchor transaction T2

A of the mobile host MH2 does not
hold a read lock on the shared data item X, but the local transactions at the disconnected
mobile host MH2 can perform read operations on this data item. This way, blocking of
transactions at mobile host MH2 is minimised.

Figure 5.19: Sharing data status versus sharing data state

In mobile environments, we distinguish two types of mobile data sharing mechanisms
(see Figure 5.20): (1) sharing data state and (2) sharing data status.

Figure 5.20: Mobile data sharing variants

For sharing data state, the shared value of the shared data item depends on the behavior
of the delegator transaction (i.e., read-only or updating transaction) and the type of shared
data item (i.e., with a read lock or write lock at the mobile host). If a delegator transaction
is a read-only transaction or a shared data item is read locked at the mobile host, the
delegator transaction can only share an original data value (i.e., non-modified) to a
delegatee transaction. On the other hand, if a delegator transaction is an updating
transaction, it can either share the original data value (i.e., before it is going to modify
this shared data) or the updated data value (i.e., after it has modified the shared data) of a
shared data item to a delegatee transaction.

For sharing data status, a delegator transaction can delegate locks on the shared data item
to a delegatee transaction. Furthermore, we differentiate two sub-categories of sharing
locks between transactions. First, the delegator transaction can completely relinquish its
locks to the delegatee transaction. This means that the delegator transaction no longer
holds any authority over the shared data, and the delegatee transaction will take full
responsibility for the control of this shared data. Second, the delegator transaction can
carry out a downgrading lock process to diminish its control over the shared data item

 126

from a write to a read-only level. And the delegatee transaction can perform an
upgrading lock process to raise the access right on the shared data item from the read to
write permission. A detailed discussion on these types of mobile data sharing is presented
in the following Sections 5.5.4 and 5.5.5.

5.5.4 Sharing data states

In this section, we focus on the issue related to sharing data state among transactions at
different local workspaces.

For sharing data values, only the value of a shared data item is revealed to other delegatee
transactions. The delegator transaction (to recap, the delegator transaction is a standard
transaction that shares data to other delegatee transactions at different workspaces) must
hold the lock of the shared data item. When a delegator transaction Ti

k at mobile host MHi
wants to share the value VX of the data item X, it will initiate an export transaction Ti

k.E
that writes the value VX into the export-import repository on behalf of transaction Ti

k. The
export transaction Ti

k.E is said to write on “behalf” of the delegator transaction because
the transaction Ti

k still holds the read or write locks on the original data item. Delegatee
transactions Tj

l at other mobile hosts MHj are only allowed to read these shared values via
corresponding import transactions. In other words, sharing data states are read-only.

A delegator transaction can share either an original unmodified data state or an updated
data state. Table 5.7 summaries these sharing data state options.

Table 5.7: Locks and equivalent shared data state of delegator transactions

Lock on X
Read Write

Original value VX Relevant Relevant Shared
data state Modified value VX’ N/A Relevant

If a delegator transaction Ti

k at mobile host MHi holds a read lock on a data item X, the
shared data value VX will be identical to the value cached at the mobile host, i.e., the
original data state is shared. However, if the delegator Ti

k at mobile host MHi holds a
write lock on data item X, the shared value VX can be either an old value VX (i.e., before
the delegator transaction updates X) or an updated value VX’ (i.e., after the delegator
transaction has updated X). The shared data values that are exchanged between the
delegator and delegatee transactions contribute to the transaction dependencies and
execution constraints (see Section 6.5 for detail). Moreover, the delegatee transaction can
either obtain the shared data value as a new shared data item; or, if it has already held the
original data value VX, it can modify its cached data to the up-to-date value VX’.

A delegatee transaction can obtain the shared data value from the export-import
repository via its import transactions. When the import transaction commits in the local
workspace at the mobile host MHj, the newly collected shared value VX is read-only
available to local transactions at this mobile host. A read operation on the shared value VX
in the local workspace at the mobile host MHj is called a pseudo-read operation to

 127

distinguish it from the “real” read operation that is preceded by a real read lock. This
means that the database servers and the anchor transaction Tj

A of this mobile host do not
know about these imported read-only data and pseudo-read operations until the mobile
host reconnects to the database servers. A pseudo-read operation, therefore, allows an
offline transaction to read a shared data before it can acquire the corresponding real read
lock from the database server. This is one of the novel advantages of our mobile data
sharing mechanism to increase the data availability in mobile environments.

To illustrate, Figure 5.21 presents a sharing data value scenario among three transactions
at mobile hosts MH1, MH2 and MH3. Data item X is acquired by a transaction T1

1 at the
mobile host MH1. The value VX is updated to VX’ by this transaction and temporarily
saved at this mobile host. The transaction T1

1
 shares this new value VX’ to the export-

import repository via an export transaction T1
1.E. Similarly, delegator transaction T2

1 at
mobile host MH2 shares the value VY via its export transaction T2

1.E. Transaction T2
1 at

mobile host MH2 also imports the shared data value VX’ via its import transaction T2
1.I.

This means that transaction T2
1 plays roles as both delegator and delegatee transactions.

Delegatee transaction T3
1

 at mobile host MH3 obtains the shared data values VX’ and VY
via its import transactions T3

1.I1 and T3
1.I2, respectively. The number of import

transactions of transaction T3
1

 depends on the availability of the shared data items and
mobile resources. For example, if both data items X and Y are available at the same time
and the network bandwidth is adequate, one import transaction can be used to obtain both
data values. Delegatee transaction T3

1 and other local transactions at mobile host MH3 can
then pseudo-read these shared data values, i.e., without requesting corresponding read
locks from the database server.

Figure 5.21: Sharing data states among transactions at different mobile hosts

5.5.5 Sharing data status

For sharing data status, a delegator transaction shares its locks on shared data to a
delegatee transaction. Sharing lock is performed when a delegator transaction Ti

k at a
mobile host MHi wants to delegate its own read or write locks to a delegatee transaction
Tj

l at a mobile host MHj. The delegatee transaction Tj
l will take the responsibility to

control the shared data.

 128

In Section 5.2, we have illustrated the motivating mobile-IT scenario in which an IT-
officer will try to solve a mobile task. In order for the mobile task to be performed, the
artifacts related to the mobile task must be available to the IT officer. If the artifacts are
not accessible, the IT-officer will not be able to carry out the mobile task. A mobile task
can be considered a local transaction that is carried out in the local workspace at the
mobile computer of the IT-officer. The shared artifacts are equivalent to the shared data
items. In order for the local transaction to be carried out at the mobile host, the needed
data must be available in the local workspace. In Figure 5.22, transaction T1

i at mobile
host MH1 is in need of shared data item X, which is not cached in the local workspace.
The data item is currently being cached and manipulated by the transaction T2

j in the
local workspace at mobile host MH2. Transaction T2

j, which holds the write lock XW on X
in the local workspace at mobile host MH2, can delegate the access right of data item X,
i.e., its write lock on X, to the transaction T1

i.

Figure 5.22: Sharing data status

Table 5.8 summaries the sharing of locks.

Table 5.8: Lock sharing

Delegator transaction Ti
k shares

 Lock type Read Write

Read Allowed N/A Delegatee
transaction
Tj

l requests Write N/A Allowed

If the delegator Ti

k at the mobile host MHi holds a read lock on the data item X, the export
transaction Ti

k.E will transfer the read lock into the export-import sharing workspace. A
delegatee transaction Tj

l
 at the mobile host MHj is allowed to obtain this delegated read

lock.

The sharing of write locks can be further categorised into two sub-cases: (1) a delegator
transaction delegates a write lock on a shared data item to a delegatee transaction; (2) a
delegator transaction relinquishes only its write access right to a delegatee transaction but
retains the read access right, i.e., downgrading the lock. A delegatee transaction can
obtain this shared write lock as a new write lock in the local workspace. If this shared
data is already cached read-only in the local workspace, the delegatee transaction can
obtain this shared write lock to upgrade the access right of the shared data from read-only
to updating, i.e., upgrading the lock.

 129

If delegator transaction Ti
k at mobile host MHi holds a write lock on data item X and

wants to delegate this write lock, an export transaction Ti
k.E will transfer the write lock on

the data item on behalf of transaction Ti
k. A delegatee transaction Tj

l at mobile host MHj
can acquire the write permission on the shared data item by executing an import
transaction Tj

l.I. There can be more than one delegatee transactions that compete for this
write access right; however, only one delegatee transaction can successfully obtain the
shared write lock on X. This condition ensures that the shared data item is only
modifiable at one mobile host at any time. Note that the sharing data status among
transactions occurs while the mobile hosts are disconnected from the database servers.
This means that at the database servers the anchor transactions do not know about this
sharing data status, i.e., the lock sets held by the anchor transactions and at the mobile
host are inconsistent. When the mobile hosts reconnect to the database servers, the
inconsistent lock sets will be reconciled (see Section 6.6.2). Because the delegator
transaction Ti

k
 does not hold a write lock on the shared data item, the delegatee

transaction Tj
l, which takes control over the shared data item, must take responsibility to

finally integrate this shared data item into the database servers.

In Figure 5.23, delegator transaction T1

1 at mobile host MH1 shares the write permission
on data item X to the export-import repository, and allows a delegatee transaction at
another mobile host to continue updating this data item. In this case, export transaction
T1

1.E
 releases the ownership on behalf of transaction T1

1
 on data item X. After this,

delegatee transaction T2
1 at mobile host MH2 successfully obtains data item X with write

lock via import transaction T2
1.I, updates it to the new value VX’, and finally integrates this

value VX’ into the database servers. Note that at this time at the database server, anchor
transaction T1

A of the mobile host MH1 still holds the write lock on X, and anchor
transaction T2

A of the mobile host MH2 does not hold this write lock on X. In other words,
both anchor transactions T1

A and T2
A do not know about the sharing of write lock on X

until the mobile hosts reconnect to the database servers. If mobile host MH2 reconnects to
the database server before mobile host MH1, and the transaction T2

1 is integrated, there
will be a conflict. The reason is that both the anchor transaction T1

A of mobile host MH1
and the transaction T2

1 at mobile host MH2 hold write locks on data item X (see Section
6.6.2 for more detail of handling the conflicts).

Figure 5.23: Sharing locks between standard transactions

If shared data item X is cached with write lock at the mobile host MH1, but local
transactions at this mobile host do not perform any updating operations (i.e., not

 130

following execution plans), the write lock on shared data item X should be released so
that a transaction at another mobile host can be carried out.

A delegator transaction carries out a downgrading lock procedure to diminish its control
over the shared data item from a write to a read-only level. This means that the delegator
transaction will relinquish its write permission on X but retains a read permission on X.
This downgrading lock procedure allows another transaction to gain write access to the
shared data item, i.e., reducing blocking time. Similarly, if delegatee transaction Tj

l
already holds a read permission on shared data item X, it can upgrade its access right by
obtaining a write lock on X from the delegator transaction (see Figure 5.24). Again, the
anchor transactions are not aware of these upgrade or downgrade lock procedures at the
disconnected mobile hosts. Therefore, in both cases, the corresponding lock conflicts
must be taken care of (in Section 6.6.2 we will address how to handle these conflicting
situations).

Figure 5.24: Downgrading and upgrading locks

5.5.6 Recursive sharing

A delegatee transaction Tj

l, which has successfully obtained a lock on a shared data item
X from a delegator transaction Ti

k, can share data state VX or a corresponding lock again
with other transactions Tn

m. This sharing scenario is called recursive sharing. Moreover,
such recursive sharing can happen in different export-import repositories, i.e., when the
mobile host has participated in more than one mobile affiliation workgroup. Figure 5.25
illustrates a recursive sharing scenario. After standard transaction T2

1 obtains a write lock
on data item X from delegator transaction T1

1 through the export-import repository EI1, it
updates the data item and shares the modified data item X (with the updated value VX’)
either back to the original repository EI1 or to a new repository EI2. In this case, standard
transaction T2

1 plays roles as both delegator and delegatee transaction.

Figure 5.25: Recursive sharing

 131

5.6 Management of mobile sharing workspaces

Sharing of data among mobile hosts in a mobile affiliation workgroup is carried out
through the export-import repository. Shared data items are stored in a mobile sharing
workspace that is distributed among mobile hosts (see Section 5.3.3). The management of
the export-import sharing workspace consists of two parts as illustrated in Figure 5.26:
(1) management of the physical export-import repository, and (2) management of the
shared data in the mobile sharing workspace.

Figure 5.26: Management of a mobile sharing workspace

5.6.1 Managing the physical distribution of the export-import repository

An export-import repository is a mobile sharing workspace that supports data sharing
among transactions at different mobile hosts that belong to a mobile affiliation
workgroup. As we described in Section 5.3, this mobile sharing workspace is
dynamically created, reconfigurable, and physically distributed among the involved
mobile hosts. The management of the export-import repository structure includes the
following functions as summarized in Table 5.9.

Table 5.9: Management of a mobile sharing workspace

Functions Descriptions
Creating Initiating a new mobile sharing workspace
Disposing Destroying the current mobile sharing workspace
Expanding Adding more storage capacity into the existing sharing

workspace
Shrinking Reducing the storage capacity of the sharing workspace
Merging Joining export-import sharing workspaces into a larger one
Partitioning Dividing a sharing workspace into several sub-workspaces

The above functions are elaborated as follows:

• Creating a new mobile sharing workspace. When a group of mobile hosts that belong

to a mobile affiliation workgroup is in need of sharing data, a mobile sharing
workspace is created. After this, an export-import repository is created, and standard
transactions (i.e., delegator and delegatee transactions) at different mobile hosts can
join the mobile sharing workspace and start sharing information.

 132

• Disposing an existing export-import repository. When the collaborative work or the
data sharing process among standard transactions is completed, the export-import
repository of the mobile affiliation workgroup will be destroyed.

• Expanding the storage capacity of the existing export-import repository. As described

in Section 5.3.4, the physical mobile sharing workspace is distributed among mobile
hosts of the mobile affiliation workgroup. Therefore, the storage capacity of the
export-import repository depends on the contribution of the involved mobile hosts.
When a mobile host decides to contribute more storage space to the workgroup, this
new storage space will be added to the current capacity of the export-import
repository. The mobile sharing workspace can now accommodate more shared data
items.

• Shrinking the current capacity of the existing export-import repository. A mobile host

can withdraw its contributory sharing workspace from the mobile affiliation
workgroup when it is leaving the mobile workgroup or it needs to scale down its
operations due to the constraints of mobile resources. Thus, the sharing workspace
capacity of the mobile affiliation workgroup is reduced, i.e., decreasing its storage
capacity. This can have impact on the execution of current database operations that
are accessing shared data items stored in this partition because these shared data items
need to be re-allocated from the mobile sharing workspace (see Section 5.6.2).

• Merging several export-import repositories into a larger one. This procedure is

performed when several collaborative mobile affiliation workgroups join together to
form a larger mobile affiliation workgroup. The individual mobile sharing
workspaces of each mobile affiliation workgroup will be combined together to benefit
the mobile collaborative work, for example by allowing more shared data items in a
larger export-import repository.

• Partitioning an existing export-import repository into smaller mobile sharing

workspaces. This procedure is the inverse of the merging procedure described above.
If a sub-group of mobile hosts that belong to a mobile affiliation workgroup is going
to be temporarily disconnected from the original workgroup (and these mobile hosts
will continue to collaborate), the existing mobile sharing workspace will be
partitioned into several smaller sharing workspaces for the new sub-workgroups.

5.6.2 Data management in the export-import repository

Due to the changes in capacity (i.e., expanding and shrinking) and in organization (i.e.,
merging and partitioning) of an export-import repository, the management of shared data
that resides in the mobile sharing workspace consists of following functions: adding,
removing and moving (see Table 5.10 for a summarization).

 133

Table 5.10: Management of shared data items in a mobile sharing workspace

Functions Descriptions
Adding Placing new shared data items into the sharing workspace
Removing Withdrawing shared data items from the sharing

workspace
Moving Changing the storage location of shared data items

The following discussion explains the management functions of the shared data items in a
mobile sharing workspace:

• Adding new shared data items into the mobile sharing workspace. The adding

function provides an interface to an export transaction to place a new shared data item
into the mobile sharing workspace. The adding function can also replicate shared data
items in an export-import repository to increase the level of data availability. For
example, the shared data items can be duplicated when more storage workspace is
available (i.e., when the capacity of the export-import repository is expanded) or
when the export-import repository is split into sub-workspaces (i.e., when the mobile
affiliation workgroup is partitioned into sub-workgroups).

• Removing shared data items from the mobile sharing workspace. A shared data item

that is currently stored in an export-import repository will be removed in several
circumstances. First, the shared data item is removed when it is no longer needed
(i.e., the mobile data sharing is completed). Second, when a delegator transaction
wants to withdraw its shared data, the shared data item will be removed from the
mobile sharing workspace. Third, the shared data item may be removed when the
export-import repository does not have storage capacity to accommodate all the
shared data items. Removing may also be carried out when the capacity of the export-
import repository is decreased, i.e., shrinking.

• Moving the physical storage location of shared data items to a new location. When the

capacity or the organization of the export-import repository is changed or
reconfigured, some of the shared data items in the mobile workspace will be re-
allocated among mobile hosts. For example, when a mobile host is about to
disconnect from the mobile affiliation workgroup, the shared data items that are
currently stored in its sharing workspace partition will be moved to other available
locations (at other mobile hosts) in the mobile affiliation workgroup. This will avoid
interrupting the execution of transactions that are accessing these shared data items.
Moving includes two sequential steps: (1) adding the shared data item to a new
storage location, and (2) removing the shared data item from the old storage location.

5.7 Management of transaction execution behavior

Our mobile transaction processing system includes two types of transaction: standard
transaction and shared transaction. Standard transactions (i.e., delegator and delegatee
transactions) are executed in the local workspaces at the mobile hosts and integrated in

 134

the global workspace. Shared transactions (i.e., export and import transactions) are
initiated by standard transactions to support mobile data sharing among these standard
transactions. Both standard and shared transactions can be either planned in advance or
generated at runtime (see the discussion of the mobile task characteristics in Section
5.2.1). The behavior of shared transactions determines the successfulness of the mobile
data sharing among standard transactions. For example, if either an export or import
transaction fails, the mobile data sharing process between the delegator and the delegatee
will not be carried out. Furthermore, due to the movement of the mobile host from one
mobile cell to another, the mobile transactions which are executed at the mobile hosts are
also moved. To support and manage the execution of transactions in mobile
environments, the management of the transaction execution behavior in our mobile
transaction processing system contains three parts: execution dependency, structural
dependency and mobility manager.

• Execution dependency. Control and manage the effects of the termination of

transactions on other transactions, for example the abortion or commitment effect of
the delegator transactions upon the delegatee transactions.

• Structural dependency. Control and manage the init, commit and abort operations of

transactions; and support transaction restructuring operations like split, join and
adopt.

• Mobility manager. Control and manage the mobility of transactions when mobile

hosts are moving across mobile cells or participating in different mobile affiliation
workgroups.

The following sub-sections discuss the management of the transaction execution
behavior.

5.7.1 Managing the execution dependency

The execution dependency among transactions consists of two types of dependencies:
static dependency and dynamic dependency. The static dependencies support the mobile
transaction processing system to enforce the strict relationships among transactions. The
dynamic transaction dependencies allow the mobile transaction processing system to
dynamically determine the dependencies between transactions in accordance with their
interactions and execution progress.

Static dependency

A static dependency can be either planned beforehand or initiated at runtime, and cannot
be changed. There are two categories of static transaction dependencies: (1) abort
dependency, and (2) commit dependency. An abort dependency identifies what
transactions must be aborted when a related transaction is aborted. For example, if a
delegator transaction Ti

k that shares an intermediate data value aborts, those delegatee
transactions Tj

l that have read the shared data values must be aborted. On the other hand,

 135

when a transaction commits, a commit dependency determines the commitment order that
the involved transactions must follow to assure consistency of the data.

Figure 5.27: Static transaction dependencies

In Figure 5.27, delegator transaction T1

1 at mobile host MH1 shares the updated data
value VX’ to delegatee transaction T2

1 at mobile host MH2. At a later time, transaction T1
2

at mobile host MH1 continues to update this shared data item X to new value VX’’. In this
scenario, transaction T2

1 must be scheduled after T1
1 and before T1

2. Such strict schedules
can only be guaranteed by the support of an explicit static dependency between the
transactions T1

1 and T2
1. Note that transaction T2

1 at mobile host MH2 does not know
about transaction T1

2 at mobile host MH1 until both the mobile hosts synchronize their
local transactions at the database servers.

Dynamic dependency

A dynamic dependency is modifiable at runtime. Dynamic dependencies are essential to
transactions in mobile environments in order to cope with long disconnections and
unexpected termination of related transactions. The dynamic dependencies among
transactions are also used when it is necessary to change a transaction execution
schedule.

Figure 5.28: Dynamic transaction dependencies

In Figure 5.28, read-only delegator transaction T1

1 at mobile host MH1 shares the original
data value VX to delegatee transaction T2

1 at mobile host MH2. At a later time, transaction
T1

2 at mobile host MH1 modifies this shared data item X. In this case, transaction T2
1 must

be scheduled after T1
1 and before T1

2. When transaction T1
1 aborts (and due to the

disconnection between the two mobile hosts, transaction T2
1 does not know about this

abortion until the transaction integration stage – see Section 6.7), the commit dependency

 136

between the transactions T1
1 and T2

1 is no longer valid. However, the transaction T2
1

should not be aborted because it has not read an inconsistent data value from the
transaction T1

1, i.e., VX is consistent. As a result, the mobile transaction processing system
must provide mechanisms to deal with an unexpected abortion of transaction T1

1. In this
case, a new dynamic transaction dependency between transactions T2

1 and T1
2 will be

defined so that transaction T2
1 can commit and be scheduled before transaction T1

2.

5.7.2 Managing the structural dependency

Shared transactions are initiated on demand of the data sharing among standard
transactions. The execution behavior of shared transactions depends on the structure (i.e.,
flat or nested) of the standard transactions (as discussed in Section 5.4.2). Furthermore,
participation of a mobile host in many mobile affiliation workgroups leads to
involvement of transactions across several mobile sharing workspaces. Consequently, the
execution of shared transactions will be affected when their corresponding standard
transactions move from one mobile sharing workspace to another. Therefore, the mobile
transaction processing system must handle both primitive transaction operations such as
initiate, commit or abort [CR94], and transaction re-structuring operations like split, join,
or adopt (see Table 5.11).

Table 5.11: Management of transaction behavior

Operations Descriptions
Initiate Setting up a new shared transaction
Commit/Abort Triggering the execution or termination of related transactions
Split Breaking up shared transactions into sub-transactions
Join Merging a shared transaction into another shared or standard

transaction
Adopt Integrating a shared transaction as a sub-transaction in a

nested standard transaction

As discussed in Section 5.4.3, the structure of a standard transaction has a strong impact
on the creation of shared transactions. If a standard transaction is a flat transaction, it can
initiate a new export transaction. If a standard transaction is a sub-transaction of a nested
transaction, it can ask the parent transaction to initiate an export transaction (see Section
6.4.3 for more detail).

An export transaction supports a delegator transaction to share data via an export-import
repository. When the export transaction commits, related import transactions, which are
waiting for the shared data, will be triggered and start executing (the export transaction
fulfills the isolation property of transactions as we have addressed in Section 5.4.2). If the
shared data is withdrawn and the export transaction is compensated, these related import
transactions will be aborted (if they have not committed) or compensated (if they have
committed). Due to the relaxation of the isolation property of import transactions, the
shared data, which is obtained by an import transaction from the export-import
repository, will be made available to all local transactions at the mobile host before the

 137

import transaction commits in the local workspace. However, the original delegatee
transaction that initiated this import transaction may impose restrictions on these shared
data so that the collected data will be accessed by the delegatee transaction before by any
other local transaction. For example, if the delegatee transaction has a flat structure, the
import transaction must be joined into the delegatee transaction; and the shared data is
available to local transactions after the delegatee transaction commits. If the delegatee
transaction has a nested structure, the import transaction will be adopted as a sub-
transaction of the delegatee transaction. In this case, the collected shared data is available
to other local transactions after the top-level transaction of the hierarchical structure
commits. When standard transactions are integrated to the database servers, the
commitment or abortion of a delegator transaction can trigger the commitment or
abortion of related delegatee transactions (see Section 6.6 for further detail).

Due to the availability of shared data items, the structure of a shared transaction can be
dynamically changed. For example, if a delegatee transaction wants to obtain a set of
shared data, it can issue an import transaction to carry out this job. However, all the
needed information might not be available at that time or not be accessible in one mobile
sharing workspace. Instead of waiting for these shared data items to be available, the
import transaction can be split into several (sub)-import transactions that can collect the
different shared data items in the mobile sharing workspaces.

Furthermore, during the execution of shared transactions, a mobile host can change from
one mobile affiliation workgroup to another. This results in changes of the mobile sharing
workspaces that the mobile host is participating in. Consequently, a shared transaction
changes its operating environment, i.e., from one export-import repository to another. For
example, if a delegatee transaction moves to a new mobile sharing workspace, the current
active import transaction in the old mobile sharing workspace will be split into two sub-
import transactions. The first sub-import transaction can either (1) continue executing in
the old mobile sharing workspace if it has not completed its assigned operations, or (2)
commit in the local workspace and make the already collected shared data visible to local
transactions. The second sub-import transaction will start operating in the new mobile
sharing workspace. If the delegatee transaction later re-joins back to the previous export-
import repository, the split sub-import transactions will be joined together.

5.7.3 Managing the mobility of transactions

In this section, we discuss how our mobile transaction processing system supports the
mobility of transactions. We differentiate two mobility patterns in relation to the
movement of mobile hosts: (1) the mobile hosts are moving across different mobile cells;
and (2) the mobile hosts are moving across different mobile affiliation workgroups. The
main distinguishing characteristic between these two mobility patterns is: the standard
hand-off or hand-over processes [SRA04] do not happen when the mobile host is moving
across mobile affiliation workgroups. The movement of the anchor transaction supports
the mobility of local transactions across different mobile cells; while the shared
transactions assist the mobility of standard transactions across different mobile sharing

 138

workspaces when the mobile host is moving across different mobile affiliation
workgroups (see Table 5.12).

Table 5.12: Management of transaction mobility

Mobility patterns of the mobile host Handling the mobility of transactions
Across mobile cells By the movement of anchor transactions
Across mobile affiliation workgroups By the dynamic re-structuring of shared

transactions

Mobility of transactions across mobile cells

The location of the mobile host is identified by the identity of the mobile cell the mobile
host stays within. In the new mobile cell, the mobile host must be able to contact the
mobile support station MSSID of the mobile cell in order to determine its new location and
to communicate with other hosts (see the architecture of the mobile transaction
environment in Section 3.4). In our mobile transaction processing system, the anchor
transaction of each mobile host will support the movement of the mobile hosts. The
anchor transaction resides at the wired network, i.e., at the mobile support stations or at
the database servers. These mobile support stations or database servers are the anchor
points of the anchor transactions. When the mobile host moves into a new mobile cell, a
hand-over process will be performed so that the anchor transaction will be moved from
the previous anchor point to the new one. In Figure 5.29, when mobile host MHi moves
from the mobile cell MCn to the new mobile cell MCm, the hand-over process will move
the anchor transaction Ti

A from the mobile support station MSSn to MSSm. The anchor
transaction Ti

A will keep track of the mobile support stations that it is moving across, i.e.,
MSSn and MSSm, and therefore, support the mobility of transactions across different
mobile cells.

Figure 5.29: Mobility of transactions across mobile cells

Compared to other hand-over mechanisms [DHB87, KK00, MB01], our hand-over
mechanism has two main advantages. First, the hand-over process is actively initiated by
the mobile host. As we have discussed in Chapter 3, the hand-over process is not
necessary if the transactions are local and processed entirely at the mobile host. In other
words, in our mobile transaction processing system, the hand-over process is only
performed when it is needed. Second, a mobile host can be aware of the movement of the
neighbouring mobile hosts. The residence of anchor transactions at an anchor point
represents the mobile hosts that are currently staying in the same mobile cell. When a

 139

mobile host moves to a new mobile cell, it can inform other mobile hosts about its new
location.

Mobility of transactions across mobile affiliation workgroups

When being disconnected from the database servers, a mobile host can participate in
several mobile affiliation workgroups MAi. Consequently, standard transactions at the
mobile host share data through several export-import repositories EIi. When a standard
transaction is leaving an old export-import repository and joining a new export-import
repository, the associated shared transactions of this standard transaction will be
transferred to the new export-import repository.

By keeping track of the mobile affiliation workgroups MAID and the export-import
repositories EIID, the mobile transaction processing system can handle the movement of
standard transactions across different export-import repositories. The transfer of shared
transactions across different export-import repositories is achieved by applying the split
and join operations described in Section 5.7.2. In Figure 5.30, when mobile host MHi
moves from mobile affiliation workgroup MAk to MAl, import transaction Ti

k.I of standard
transaction Ti

k will be moved from the mobile sharing workspace EIk to EIl. The import
transaction Ti

k.I will be split into two sub-import transactions Ti
k.I1 and Ti

k.I2. The sub-
import transaction Ti

k.I1 will continue executing in the export-import repository EIk, while
the sub-import transaction Ti

k.I2 will start executing in the new export-import repository
EIl. When mobile host MHi is re-joining the mobile affiliation workgroup MAk, the two
sub-import transactions Ti

k.I1 and Ti
k.I2 will be joined together.

Figure 5.30: Mobility of transactions across mobile affiliation workgroups

5.8 Conclusions

In this chapter, we have presented our approach to develop a mobile transaction
processing system. The main contribution is the new horizontal collaboration model to
support collaborative work in mobile environments. The fundamental idea is to support
disconnected mobile hosts to form dynamic mobile affiliation workgroups by taking
advantage of wireless communication technologies. This way the mobile hosts can
continue carrying out their cooperative work while being on the move and without any
support from non-mobile database servers. Our data sharing mechanism enhances the
data sharing in mobile environments by supporting different types of data sharing:
sharing data states and sharing data status. The mobility of transactions is handled via the
movement of anchor transactions and the dynamic restructuring of shared transactions.

 140

Moreover, the anchor transactions also support the mobile transaction processing system
in handling conflict awareness among transactions at different mobile hosts.

Our mobile transaction processing system is appropriate for mobile environments
because it takes into account the mobility of computing hosts (via mobile affiliation
workgroups), the low bandwidth and disconnections of wireless networks (by separating
shared transactions from standard transactions), and the limitation of mobile computing
resources (via the distribution of export-import repositories).

 141

Chapter 6

Formalizing the Mobile Transaction
Processing System

In this chapter, we formalize the mobile transaction processing system that has been
presented in Chapter 5. We formally describe in detail the operations of the mobile
transaction processing system that includes four different stages: (1) the data hoarding
stage, (2) the mobile data sharing stage, (3) the disconnected transaction processing stage,
and (4) the transaction integration stage. We also formalize operations that manage the
mobility and the dependency of transactions in mobile environments.

6.1 Introduction

Chapter 5 has presented and discussed the mobile transaction processing system that
focuses on supporting mobile data sharing among transactions at different mobile hosts.
This chapter formally addresses in detail the operations of the mobile transaction
processing system.

The lifespan of a mobile transaction process can be divided into four main stages: (1) the
data hoarding, the mobile data sharing, the disconnected transaction processing, and the
transaction integration (see Figure 6.1). These four different stages of the mobile
transaction processes are not necessarily to be carried out in that sequential order. When
the mobile host is disconnected from the database servers, transactions are locally
executed in the local workspaces at the mobile hosts. The mobile host can also join
mobile affiliation workgroups and share data with other mobile hosts. When the mobile
hosts connect to the database servers, the mobile hosts can perform either the data
hoarding or the transaction integration or both. The data hoarding and the mobile data
sharing stages support the disconnected processing stage. The transaction integration
stage assures the data consistency in global workspace after the disconnected transaction
processing stage.

Data hoarding stage. In order to support the disconnected transaction processing, before
the mobile host is disconnected from the database servers, necessary data must be cached
in the local workspace at the mobile host. During the data hoarding phase, consistent
shared data that is stored at the database servers is downloaded into the local storage of

 142

the mobile host with the support of the anchor transaction (to recap, the anchor
transaction plays a role as a proxy transaction to all local transactions that are
disconnectedly processing in the local workspace of the mobile host). The amount of
information that can be stocked in the local storage at the mobile hosts depends on
several factors. First, the storage capacity of a mobile host determines the upper bound of
the amount of information that could be locally stored at the mobile host. Second, the
actual amount of information that can be downloaded is also affected by the bandwidth of
the wireless networks and the connection period of the data hoarding phase. If the data
hoarding interval is short, the mobile host may not be able to fully cache the needed data
(because the amount of transferred data from the database servers to the mobile host is
proportional to the network bandwidth and the connection time). Third, the most
interesting issue of this data hoarding stage is which shared data items are allowed to be
cached at the mobile host without causing any data inconsistency with other mobile hosts.
In other words, we have to answer the question: how to avoid or be aware of conflicts
among transactions at different disconnected mobile hosts.

Figure 6.1: Stages of mobile transaction processes

Mobile data sharing stage. While being disconnected from the database servers, a
mobile host can join mobile affiliation workgroups and directly share information with
other mobile hosts. This means that the database servers are not aware of these mobile
data sharing processes. The mobile data sharing operations are carried out through the
export-import repositories with the support of the export and import transactions. The
sharing of mobile information includes both sharing data states (i.e., data values) and data
status (i.e., locks). Shared data can be either consistent cached data or partial results of
locally committed transactions.

Disconnected transaction processing stage. When the mobile host is disconnected from
the database servers, local transactions at the mobile host are carried out based on the
cached data. The locally cached data can be either the original consistent data that is
hoarded at the data hoarding stage, or the exchanged data that is obtained in the mobile
data sharing stage. Therefore, the cached data can be either fully consistent or
temporarily inconsistent. Local transactions are allowed to locally commit in the local
workspaces at the mobile hosts, and the locally committed results will be made available
to other local transactions.

 143

Transaction integration stage. When the mobile hosts reconnect to the database servers,
integration processes are performed to ensure that the global data consistency is fulfilled.
In this stage, the locally committed transactions will be evaluated against other
transactions to determine the global transaction execution schedule (that can be
serializable schedule or user defined schedule). If there is a conflict that cannot be
resolved, one or more locally committed transactions will be aborted; otherwise the
locally committed transactions will be allowed to finally commit at the database servers.

The rest of this chapter is organized as follows. Section 6.2 formalizes the concept of
mobile transactions and the management of mobile transaction dependencies. The
operations of the mobile transaction processing system that includes the data hoarding
stage, the mobile data sharing stage, the disconnected transaction processing stage, and
the transaction integration stage will be formalized in Section 6.3, 6.4, 6.5 and 6.6,
respectively. In Section 6.7, we formalize operations that manage the mobility and the
dependency of transactions in mobile environments. Section 6.8 concludes the chapter.

6.2 Management of mobile transaction dependencies

In this section, we present the concepts of mobile transactions and formalise the
management of transaction dependencies among mobile transactions. To recap, we
distinguish two types of mobile transactions: (1) the standard transaction, and (2) the
shared transaction. The standard transactions, i.e., delegator and delegate transactions, are
transactions that are locally executed in the local workspaces at the disconnected mobile
hosts. The shared transactions, i.e., export and import transactions, are transactions that
support the standard transactions to share information. To ease the following discussion,
in this section, let TDor, TDee, TE, and TI denote the delegator, delegatee, export and import
transactions, respectively.

Definition (transaction). A transaction Ti is a partially ordered set with a partial
order relation <i where:

• Ti ⊆ {RX, WX | X is a shared data item} ∪ {c,a}
• ∀ RX, WX ∈ Ti, either RX <i WX or WX <i RX
• c ∈ Ti iff a∉ Ti
• ∀ Op ∈ Ti, Op ∉ {c,a}, either Op <i a or Op <i c

Definition (mobile transaction). A mobile transaction is a tuple of (ℑE, TM, ℑI)
where:

• TM is the transaction that is being locally performed at the mobile host.
• ℑE is the set of export transactions TE associated with the standard

transaction TM.
• ℑI is the set of import transactions TI associated with the standard

transaction TM.

A delegator transaction TDor is a mobile transaction that only exports its shared data to
other transactions, i.e., ℑE ≠ ∅ ∧ ℑI = ∅. A delegatee transaction TDee is a mobile
transaction that only obtains data from other transactions, i.e., ℑE = ∅ ∧ ℑI ≠ ∅.

 144

The export and import transactions are initiated by the delegator and delegatee
transactions, respectively. The shared transactions can be specified in advance or created
during the execution of the standard transactions. Figure 6.2 illustrates the possible
interactions among these shared and standard transactions. To recap, the export
transaction fully meets the standard ACID transaction properties; hence, the associated
import transaction is triggered when the export transaction commits in the mobile sharing
workspace. The isolation property of the import transaction can be relaxed, i.e., the
delegatee transaction can view the intermediate results of the import transaction.

Figure 6.2: Interactions of standard and shared mobile transactions

We differentiate two types of transaction dependency: (1) structural transaction
dependency, and (2) execution constraint dependency. The structural transaction
dependency focuses on the effect of the abortion of one transaction on others; while the
execution constraint dependency focuses on the execution order of committed
transactions. Figure 6.3 illustrates the possible dependencies among transactions.

Figure 6.3: Transaction dependencies

[CR94] defined the ACTA transactional framework for reasoning about and synthesising
the dependencies among transaction. In our mobile transaction processing system, we
will reuse the commit-dependency and the abort-dependency rules from the ACTA
transactional framework. In addition, we define a new structural transaction dependency

 145

rule, called multiple-abort-dependency, which provides a flexible way to characterize the
structural transaction dependency among mobile transactions. The following sub-sections
discuss these two types of transaction dependency and the operations for managing the
dependencies among mobile transactions.

6.2.1 The transaction dependencies

There are two types of abort dependency among mobile transactions: the abort-
dependency and the multiple-abort-dependency. The following discussion will address
the usage of these transaction abort dependencies:

• Abort-Dependency (Ti AD Tj): if transaction Ti aborts and transaction Tj has not

committed, then Tj aborts. If transaction Tj has committed then it is compensated.

The usages of the abort-dependency rule are summarized in Table 6.1. The
transaction abort dependencies can be categorised into three parts: (1) the dependency
between delegator and delegatee transactions in the global workspace (rule AD1), (2)
the dependency between the standard transaction and the associated shared
transactions in the local workspace (rules AD2 and AD3), and (3) the dependency
between shared transactions in the mobile sharing workspace (rule AD4). Depending
on the actual interactions between standard and shared transactions (see discussion in
Section 5.4.3), the abort-dependency between each pair of interactive transactions
must be explicitly defined.

Table 6.1: Transaction abort-dependencies

Rules Relation of Ti and Tj Descriptions
AD1 TDor AD TDee

 Abort dependency between delegator and
delegatee transactions in the global
workspace

AD2 TDor AD TE Abort dependency between the delegator
and its export transactions

TDee AD TI
 AD3

TI AD TDee

Abort dependency between the delegatee
and its import transactions in the local
workspace

AD4 TE AD TI Abort dependency between shared
transactions in mobile sharing workspaces

The above four abort-dependency rules represent the abort dependency among
transactions in the horizontal collaboration dimension (see Section 5.4.1). The first
rule AD1 specifies the correlation between a delegator transaction and a delegatee
transaction in the global workspace. If the delegator transaction aborts, the delegatee
transaction that has read shared data from this delegator transaction must also abort.
However, the abortion of the delegatee transaction could be delayed until the
transaction integration stage due to the disconnections of the mobile hosts (see
Section 6.6). Therefore, when a delegator transaction aborts, the mobile host will

 146

have to keep the records of the aborted delegator transaction so that this information
can be propagated to the associated delegatee transactions at later time (see Section
6.5.4).

The rule AD2 specifies the correlation between the delegator transaction and its
export transactions. If the delegator transaction aborts, and the data shared by this
delegator transaction can become invalid, hence, the associated export transactions
must be aborted. If these export transactions had committed in the mobile sharing
workspace, they will be compensated to ensure that no invalid information is shared.
It is not necessary that all the correlated export transactions must be aborted because
the delegator transaction could have shared consistent data, for example consistent
read-only data. Therefore, the abort-dependency between the delegator and each of its
export transactions must be explicitly defined.

The rule AD3 specifies the relationship among the delegatee transaction and its
import transactions. And there are two applicable instances of this rule: (TDee

 AD TI)
and (TI AD TDee). For the first instance, if the delegatee transaction aborts, its import
transactions will abort because the shared data is no longer needed. For the second
instance, if the import transaction aborts, the delegatee transaction will abort because
the obtained data is invalid.

The rule AD4 defines the association between the export transaction and the import
transactions that have read the shared data written by the committed export
transaction in the mobile sharing workspace. If the export transaction is compensated
due to the invalidation of the shared data (see rule AD2), these import transactions
must be aborted. If these import transactions had committed, they are compensated.

• Multiple-Abort-Dependency (ℑi MD Tj): if a set of transactions ℑi = {Ti, i>1}
aborts, then transaction Tj aborts.

The usages of the multiple-abort-dependency rule are summarized in Table 6.2.

Table 6.2: Transaction multiple-abort-dependencies

Rules Relation of ℑi and Tj Descriptions
MD1 {TDor} MD TDee Abort dependency between a set of

delegator transactions and a delegatee
transaction in the global workspace

MD2 {TI} MD TDee Abort dependency between a set of import
transactions and a delegatee transaction in
the local workspace

The two multiple-abort-dependency rules support the mobile transaction processing
system to avoid the problem of unnecessary aborts of delegatee transactions. For
example, a delegatee transaction can initiate many import transactions to obtain
shared data items in many export-import repositories. The delegatee transaction can

 147

develop abort dependencies with many delegator transactions. However, an abortion
of a delegator transaction or an import transaction must not cause the entire delegatee
transaction to abort. In Figure 6.4, the delegatee transaction T3 is only aborted if both
delegator transactions T1 and T2 are aborted. The main difference between these rules
is that: (1) the multiple-abort-dependency between the standard transactions, i.e., rule
MD1, is applied in the global workspace and is evaluated at the transaction
integration stage (see Section 6.6); and (2) the multiple-abort-dependency between a
delegatee transaction and its import transactions, i.e., rule MD2, is applied in the local
workspace at the disconnected mobile host.

Figure 6.4: Multiple abort dependency

The abort-dependency and multiple-abort dependency allow the mobile transaction
processing system to specify the correlation among the standard and shared transactions
in accordance with their interactions. In the transaction integration stage, the abort-
dependency will be checked before the multiple-abort-dependency (see Section 6.6.2).

6.2.2 The execution constraint

The transaction execution constraint dependency is applied when the mobile transactions
are preparing to commit in the global workspace. To ensure that the states of the database
are fully consistent and recoverable, the mobile transaction processing system must
enforce the order of transaction commitments:

• Commit-Dependency (Ti CD Tj): if both transactions Ti and Tj commit, then Ti must

commit before Tj.

The usage of the commit-dependency rule is summarized in Table 6.3.
Table 6.3: Transaction commit-dependencies

Rules Relation of Ti and Tj Descriptions
CD1 TDor CD TDee Commit dependency between the

delegator and delegatee transactions in
the global workspace

 148

The rule CD1 specifies the order of commitment between the delegator and delegatee
transactions. When a delegator transaction shares an updated data state to a delegatee
transaction, the delegator transaction must commit before the delegatee transaction in
order to achieve recoverability.

6.2.3 Managing transaction dependencies and execution constraints

The usage of the mobile transaction dependencies depends on the progress of the
execution processes and the interactions among mobile transactions. Therefore, the
mobile transaction processing system must provide the following operations to support
the management of the transaction dependencies. When a transaction dependency or an
execution constraint is defined, an appropriate operation will be executed to register the
specified rule in the mobile transaction processing system. These operations are described
as follows:

• CreateDependency(Ti, Tj, dependency_rule, dependency_type): This method

initiates a new transaction dependency_rule between two transactions Ti and Tj. This
newly created transaction dependency rule can be either an abort-dependency or a
commit-dependency. The dependency_type is either static or dynamic dependency
(see Section 5.7.1).

• RemoveDependency(Ti, Tj, dependency_rule): This method removes an existing

transaction dependency_rule between two transactions Ti and Tj. This allows the
mobile transaction processing system to dynamically define the correlations among
mobile transactions that are being executed at the mobile hosts. If the
dependency_rule is a static rule, it cannot be removed unless the involved
transactions are aborted.

• TemporaryDisableDependency(Ti, Tj, dependency_rule): This method

deactivates an active transaction dependency_rule between two transactions Ti and Tj.
This operation is used in a mobile data sharing scenario in which a mobile transaction
does have many options to interact with other mobile transactions (see illustration in
Figure 5.8).

• ReEnableDependency(Ti, Tj, dependency_rule): This method re-enables a

previously temporary disabled transaction dependency_rule between two transactions
Ti and Tj. This operation is used when a transaction Ti finally determines its
relationship with a transaction Tj.

• CreateMultipleAbortDependency(ℑi, Tj): This method initiates a new multiple-

abort-dependency between the set of transactions ℑi and the transaction Tj. ℑi is either
a set of delegator transactions or a set of import transactions; and Tj is the associated
delegatee transaction.

 149

6.3 Data hoarding stage

In this section, we formalize the data hoarding phase that will support the disconnected
transaction processing stage by caching necessary data into the local workspaces at the
mobile hosts. First, we present three different caching modes of mobile data. Second, we
describe the data hoarding algorithm, and finally we show how our mobile transaction
processing system supports the conflict awareness among transactions at different mobile
hosts via the conflict awareness property of shared data.

6.3.1 Data caching modes

As described in Section 5.5.2, for each mobile host MHi, there is an anchor transaction

A
iT that plays a role as a proxy transaction for all (offline) local transactions Ti

k at the
mobile host MHi. During the data hoarding stage, the anchor transaction (on behalf of
local transactions) will try to acquire all the needed data items from the database servers.
When an anchor transaction sends its lock action requests to the database servers, these
lock requests have to compete with other lock requests that are coming from other online
transactions or anchor transactions. For online transactions, the standard write and read
locks [GR93] are applied. However, for offline transactions, these standard locks seem
too strict to be applied in the mobile environments, i.e., only allowing non-conflict data
caching mode (addressed below). Consequently, the mobile transaction processing
system provides two additional data caching modes, called read-write conflict and write-
read conflict. These conflict data sharing modes allow offline transactions to obtain
conflict locks on shared data items. First, we present the basic definitions that will lead to
our discussion on the conflict sharing modes:

Definition (conflicting operations [GUW01]). Two database operations Opi and
Opj of two transactions Ti and Tj are in conflict if they are: (1) accessing the same
data item, (2) one of them is a write operation. The conflict of database
operations is denoted by Conflict(Opi,Opj).

Definition (directly conflicting transactions). Two transactions Ti and Tj are in
direct conflict, denoted by j

d
i TCT , if there is an operation Opi of transaction Ti

that conflicts with an operation Opj of transaction Tj.

Definition (indirectly conflicting transactions). Two transactions Ti and Tj are
in indirect conflict, denoted by j

id
i TCT , if there is a transaction Tk that Ti either

develops a direct conflict or an indirect conflict with, and Tk develops either a
direct conflict or an indirect conflict with Tj, i.e.,

j
id

i TCT if)()(, j
id

kj
d

kk
id

ik
d

ik TCTTCTTCTTCTT ∨∧∨∃

In our mobile transaction processing system, there are three different data caching modes:
non-conflict, read-write conflict and write-read conflict. These mobile data caching
modes are discussed below.

 150

Non-conflict data caching mode

For non-conflict data sharing mode, the database servers make sure that no conflict lock
request is allowed during data caching phase. The standard exclusive (i.e., write) and
inclusive (i.e., read) locking matrix is applied (see Table 6.4). The database servers grant
only non-conflict locks to the lock requests from the anchor transaction A

iT , and the
shared data that is cached at the local mobile host is fully consistent.

Table 6.4: Non-conflict sharing mode

Online transaction Tk or
anchor transaction A

iT holds
 Lock type Read Write

Read No conflict Conflict Online transaction Tp
or anchor transaction

A
jT requests Write Conflict Conflict

Note that in non-conflict data caching mode, a mobile host starts with no conflicts in
shared data before disconnection from the database servers. However, the mobile host
may end up with conflicts on locks on shared data if the mobile host carries out mobile
data sharing with other mobile hosts while being disconnected from the database servers
(see Section 6.4.2).

Read-write conflict data caching mode

In mobile environments, the non-conflict data sharing mode above seems to be too
restricted to be useful. Figure 6.5 illustrates the scenario. Suppose that an online
transaction T1

i at connected mobile host MH1 is holding a read lock XR on a shared data
item X, and an offline transaction T2

j at mobile host MH2 requests a write lock XW on this
shared data. The write lock request can be granted to the offline transaction T2

j because
the write operation WX by transaction T2

j
 is not immediately carried out at the database

servers, even after the online transaction T1
i has committed. And the transaction T1

i is
scheduled to execute before transaction T2

j, i.e., T1
i→ T2

j
 (the execution constraints are

discussed in Section 6.5).

Figure 6.5: Read-write conflict mode

To handle this limitation, the mobile transaction processing system will allow these
conflict lock requests to be compatible:

 151

Definition (read-write conflict). If an online transaction Tk or an anchor
transaction A

iT holds a read lock on data item X, and an anchor transaction
A

jT requests a write lock on data item X, the database server grants the write lock
to A

jT . We call this conflict mode a read-write (RW) conflict and denote it
XRW(Tk, A

jT) or XRW(A
iT , A

jT).

The lock table for the read-write conflict is presented in Table 6.5.

Table 6.5: Read-write conflict mode

Online transaction Tk or anchor
transaction A

iT holds
 Lock type Read Write

Read No conflict Conflict Anchor
transaction

A
jT requests Write Allowed rw-conflict Conflict

Our read-write conflict mode focuses on supporting offline transactions at the
disconnected mobile hosts. The read-write conflict provides the mobile transaction
processing system the ability to avoid blocking of the execution of an offline updating
transaction, i.e., if the shared data item X is read locked by an online transaction Tk or an
anchor transaction Ti

A, the write lock request from anchor transaction Tj
A will be granted.

In Figure 6.5, when the mobile host MH2 reconnects to the database servers, the write
(offline) transaction T2

j will be converted to an online transaction (i.e., with online write
lock on the shared data item X) so that the updated data value VX’ will be integrated into
the database servers. At this time, any on-going online transaction Tp that currently holds
read lock on the shared data item X is either allowed to commit (given that the final
commitment of the transaction T2

j will be delayed) or aborted (see Section 6.6 for further
detail).

Write-read conflict data caching mode

In read-write conflict data caching mode, a write lock request on the shared data item of
an offline transaction is granted even if the shared data is currently being read lock by
other transactions. On the other hand, an online transaction or an offline transaction can
be allowed to read a shared data item while another offline transaction holds a write lock
on the same shared data item, as long as these transactions can be serialized with the
offline updating transaction.

Figure 6.6 illustrates the write-read conflict scenario. The offline transaction T2

j at
disconnected mobile host MH2 holds a write lock XW on the shared data item X. However,
this data item is not being immediately modified at the database servers because the
mobile host MH2 that executes transaction T2

j is currently being disconnected. When an
(online or offline) transaction T1

i at mobile host MH1 requests a read lock XR on the data
item X, this read lock will conflict with the write lock on X held by transaction T2

j. In this

 152

case, the database server can grant a read lock on X (and consequently allow the read
operation to be executed) for transaction T1

i, given the original value VX of the data item
X is returned (this value might be inconsistent with the value of X that is stored and being
modified at the disconnected mobile host MH2). In fact, at the database servers, the
original data value VX is the most up-to-date and consistent data. Consequently, to ensure
that the involved transactions are serializable, transaction T1

i must be scheduled before
transaction T2

j, i.e., T1
i → T2

j. Note that the offline transaction T2
j may not know about

this conflict that is happening at the database servers.

Figure 6.6: Write-read conflict mode

To handle this limitation, the mobile transaction processing system will allow these
conflict lock requests to be compatible:

Definition (write-read conflict). If an anchor transaction A
iT holds a write lock on

data item X, and an online transaction Tk or an anchor transaction A
jT requests a

read lock on data item X, the database server grants the read lock request and
the un-modified value of X is returned. We call this conflict mode a write-read
(WR) conflict and denote it XWR (A

iT ,Tk) or XWR (A
iT , A

jT).

The lock table for the write-read conflict is presented in Table 6.6.

Table 6.6: Write-read conflict mode

 Transaction A
iT holds

 Lock type Read Write

Read No conflict Allowed wr-conflict Online transaction Tk
or anchor transaction

A
jT requests Write Conflict Conflict

The write-read conflict mode allows read operations to be executed when there is a write
operation that is being executed at the disconnected mobile host, i.e., avoids blocking of
the execution of the read operations on the shared data item. In Figure 6.6, when the
mobile host MH2 reconnects to the database servers, the write (offline) transaction T2

j
will be converted to an online updating transaction with an online write lock on the
shared data item X so that the updated data value VX’ will be integrated into the database
servers. At this time, any on-going online transaction Tp that currently holds a read lock
on the shared data item X is either allowed to commit (given that the final commitment of
the transaction T2

j will be delayed) or aborted (see Section 6.6 for further detail).

 153

6.3.2 Shared data in a mobile environment

The properties of a shared data item are: value, conflict awareness and dependency
awareness (see Figure 6.7).

Figure 6.7: Properties of shared data in a mobile environment

The properties of a shared data item X, which is cached in the local workspace at a
mobile host MHi, are explained as follows:

• The value VX is the actual value of the shared data item X in the local workspace.

• The conflict awareness XCA is a set of conflict records whose structure is

Xconflict_mode (A
iT ,Tc)conflict_type or Xlock_type(Tc,shared_mode).

The record Xconflict_mode (A

iT ,Tc)conflict_type is explained as follows:
o The conflict_mode denotes the conflict data caching mode between the anchor

transaction A
iT and the transaction Tc

 on the shared data item X. Therefore, the
conflict_mode is either a read-write conflict (RW) or a write-read conflict
(WR).

o A
iT is the anchor transaction of the mobile host MHi.

o The transaction Tc can be either:
 An anchor transaction A

jT of the mobile host MHj. The conflict record
implies that there is a local transaction Ti

k at the mobile host MHi that
is conflict with a local transaction Tj

l at the mobile host MHj. This
conflict awareness occurs in the data hoarding stage, and the actual
identifications of the local transactions Ti

k and Tj
l are not to be known

until the transaction integration processes are carried out.
 A local transaction Tj

l or a set of local transactions ℑj
 at mobile host

MHj. The conflict record means that there is a conflict between a local
transaction Ti

k at the mobile host MHi with one or many local
transactions Tj

l at the mobile host MHj. This conflict awareness occurs
in the transaction integration stage where the identification of the local
transaction(s) Tj

l is known (see Section 6.6).
o The conflict_type is either an Active conflict or a Passive conflict. The active

conflict is a conflict that occurs in the data hoarding stage and before the
mobile host is disconnected. This means that both the anchor transaction

A
iT and local transactions Ti

k at the mobile host MHi are aware of these
conflicts. The passive conflict is a conflict that occurs after the mobile host is

 154

disconnected from the database servers. Therefore, only the anchor transaction
A

iT is aware of the conflict, and the local transaction Ti
k at the disconnected

mobile host MHi is not aware of the conflict. The active and passive conflicts
are denoted by the superscripts A and P, respectively.

The record Xlock_type(Tc,shared_mode) is explained as follows:

o The lock_type can be either a read lock (R), or a write lock (W) or a pseudo-
read lock (Rp). The pseudo-read lock is used when a delegator transaction
shares a data state to a delegatee transaction.

o Tc is the delegator transaction that shares data item X.
o The shared_mode can be either Original, Updated or Status. The original or

updated mode is applied with sharing data states and corresponds with the
pseudo-read lock, while the status mode is used with sharing data status.

• The dependency awareness XDA is a set of dependency rules whose structure is:

X(Ti
k,dependency_rule), where:
o Ti

k is the transaction that manipulated the shared data item X.
o The dependency_rule can be either an Abort-dependency or a Commit-

dependency (see Section 6.2). For example, the dependency awareness
X(Ti

k,AD) indicates that any transaction Tj
l that accesses the shared data item X

will develop an abort-dependency with the transaction Ti
k.

The properties of a shared data item can be dynamically modified by local transactions at
a mobile host. The usages of these properties will be presented in the following sub-
sections.

6.3.3 Caching algorithm for the anchor transaction

In this section, we present the data caching algorithm that allows consistent data to be
granted to a mobile host for supporting disconnected transaction processing. Before going
into detail of the algorithm, we need to define several notations:

• j

iT denotes a local transaction Tj at the mobile host MHi that will be carried out when
the mobile host is disconnected.

• Wj

i
Rj

i
j

i DDD ∪= denotes the accessed data set associated with the local transaction j
iT ,

where Rj
iD and Wj

iD are the read and write data sets respectively required by the
transaction j

iT when the mobile host is disconnected. The data set Wj
i

Rj
i

j
i DDD ∪= that

is needed for the local transaction j
iT will be cached in the local workspace at the

mobile host. A shared data item exclusively belongs either to a read data set or a write
data set, i.e., ∅=∩ Wj

i
Rj

i DD .

• ℑi denotes the set of local transactions j

iT at the mobile host MHi , i.e.,
ℑi = { j

iT , j > 0}).

 155

• W
i

R
ii DDD ∪= denotes the accessed data set, which is associated with the local

transaction set ℑi, that need to be cached at a mobile host MHi for disconnected
transaction processing. R

iD and W
iD denote the read data set and write data set

respectively of all the transactions belonging to the mobile host MHi. Thus,

U
n

j

Wj
i

W
i DD

1=
= ∧ U

n

j

Rj
i

R
i DD

1=
=

• XR and XW denote the read and write lock associated with the data item X,

respectively. Let iL be the set of locks associated with the data set iD , i.e.,
iL contains all the read and write locks of cached data at the mobile host MHi.

W
i

R
ii LLL ∪= where R

iL is the read lock set of the read data set R
iD , and

 W
iL is the write lock set of the write data set W

iD .

The read lock set R

iL and the write lock set W
iL might be intersecting with each other, i.e.,

∅≠∩ W
i

R
i LL . This is due to the overlap of accessed data sets of local transactions at the

mobile hosts, i.e., ∅≠∩ R
i

W
i DD . Consequently, this may cause redundant lock requests

from the anchor transaction. For example, the anchor transaction may request both read
lock and write lock for a modifiable data item. Hence, we define the actual needed
caching data and lock sets:

AW
i

AR
i

A
i DDD ∪= ∧ ∅=∩ AW

i
AR

i DD
 where W

i
AW

i DD = ∧ W
i

R
i

AR
i DDD \=

AW

i
AR

i
A
i LLL ∪= ∧ ∅=∩ AW

i
AR

i LL
 where AR

iL is the read lock set of the actually needed read data set AR
iD ,

 AW
iL is the write lock set of the actually needed write data set AW

iD .

For example, if a transaction Ti

1 requests a read data set },,{1 cbaD R
i = and a write data

set },,{1 fedD W
i = , and transaction Ti

2 requests a read data set },,{2 edaD R
i = and a write data

set },,{2 fcbD W
i = , the actual read data set AR

iD and write data set AW
iD , which will be

requested to be cached at the mobile host MHi, and the associated read lock set AR
iL and

write lock set AW
iL will be:

 },,,,{21 fedcbDDDD W

i
W

i
W
i

AW
i =∪==

},,,,{21 edcbaDDD R
i

R
i

R
i =∪=

}{},,,,{\},,,,{\ afedcbedcbaDDD W
i

R
i

AR
i ===

},,,,{}{ WWWWW
AW

iR
AR

i fedcbLaL =∧=

The anchor transaction A
iT is considered as a root transaction that will request all the

locks of the lock set Li
A associated with the actually needed data set Di

A for a set of local

 156

transactions ℑi at the mobile host MHi. The procedure of granting locks on shared data
items for anchor transactions depends on the caching modes which are deployed by a
mobile transaction processing system. The default caching mode in our mobile
transaction processing system is to allow both read-write and write-read conflicts.

Note that during the data hoarding stage, the anchor transaction might not successfully
obtain all shared data items in the actually needed data set Di

A due to conflicts with other
online or anchor transactions. For example, the database server will not grant any lock
request on a shared data item that is being modified by an online transaction. Therefore,
the granted access data set GW

i
GR

i
G
i DDD ∪= and the granted lock set GW

i
GR

i
G
i LLL ∪= can be

different from the actually needed data set Di
A and the associated lock set Li

A,
respectively. When the data hoarding stage is completed, the anchor transaction will hold
the granted access data set GW

i
GR

i
G
i DDD ∪= and the granted lock set GW

i
GR

i
G
i LLL ∪= . Figure

6.8 presents the data caching algorithm of the anchor transaction A
iT of the mobile host

MHi.

Figure 6.8: Algorithm for data caching stage

The above data caching algorithm of the anchor transaction A

iT of the mobile host MHi is
explained as follows:

(1) The granted access data sets and lock sets are initially empty.

(1) Initially: ∅=∪= GW
i

GR
i

G
i LLL

Initially: ∅=∪= GW
i

GR
i

G
i DDD

(2) For each lock request XW in the lock set AW
iL

 Request the write lock XW with the default caching mode
 If the write lock XW is granted
 Add XW to the granted write lock set, i.e., }{ W

GW
i

GW
i XLL ∪=

 Add X to the granted write data set, i.e., }{XDD GW
i

GW
i ∪=

If there are read-write conflicts
 Add these read-write conflicts to the conflict awareness XCA
(3) Else If XR is in the read lock set R

iL
 Request the read lock XR with the default caching mode
 If the read lock XR is granted

 Add XR to the granted read lock set, i.e., }{ R
GR

i
GR

i XLL ∪=
 Add X to the granted read data set, i.e., }{XDD GR

i
GR

i ∪=
 If there are write-read conflicts

Add these write-read conflicts to the conflict awareness XCA
(4) Replicate a copy of the granted lock set and the granted data set to the local

workspace at the mobile host

 157

(2) The anchor transaction A
iT will first try to obtain the needed write locks, i.e., those are

in the actually needed write lock set AW
iL , by submitting write lock requests to the

database servers. If these write lock requests are granted by the database servers, the
locks will be added to the granted write lock set GW

iL . The data items are downloaded
into the local cache of the mobile host, and the local transactions Ti

j at the mobile host
have the right to modify these shared data items. The anchor transaction A

iT will hold
these write locks and any read-write conflict associated on these shared data items
(see Sections 6.3.2 and 6.3.4 for conflict awareness).

(3) If a write lock request of a shared data item X is rejected, the anchor transaction will

check if there is any other local transaction Ti
j that wants to read this shared data item

X, i.e., X R
iD∈ and XR R

iL∈ . If it is true, then the anchor transaction will try to request
the read lock of the shared data item X. If the read lock request is granted by the
database servers, the read lock XR will be added to the granted read lock set GR

iL . The
data items are downloaded into the local cache of the mobile host as read-only, i.e.,
the local transactions Ti

j at the mobile host MHi can only read these shared data items.
The anchor transaction A

iT will hold the read lock and any write-read conflict
associated on the shared data item (see Sections 6.3.2 and 6.3.4 for conflict
awareness).

(4) The granted lock set GW

i
GR

i
G
i LLL ∪= and the granted access data set GW

i
GR

i
G
i DDD ∪= will

be locally replicated on the mobile host, denoted by GRW
i

GRR
i

GR
i LLL ∪= and

GRW
i

GRR
i

GR
i DDD ∪= . This replica of the granted lock set GR

iL will be used by the
transaction manager at the mobile host to support the concurrency control of local
transactions.

At the end of the data hoarding stage, the anchor transaction A

iT will hold the granted
access data set GW

i
GR

i
G
i DDD ∪= and the granted lock set GW

i
GR

i
G
i LLL ∪= . If the actually

needed data set is not fully cached in the local workspace, i.e., Di
G ⊂ Di

A and Li
G ⊂ Li

A,
the mobile host will try to obtain more shared data from other mobile host (see Section
6.4 for mobile data sharing stage) while being disconnected from the database servers.
Therefore the local replicated lock set GR

iL at the mobile host can be modified and
temporarily inconsistent with the originally granted lock set G

iL held by the anchor
transaction A

iT . These inconsistencies will be reconciled at the transaction integration
stage.

When mobile host MHi reconnects to the database servers, the original lock set G

iL held by
anchor transaction A

iT will be synchronised with the replicated local lock set GR
iL . The lock

synchronization process is performed at the database servers and can cause the anchor
transaction A

iT to have to synchronize conflict locks with other anchor transactions
(discussed in Section 6.6.2). If the conflicts are resolved, the locally committed
transactions Ti

j will be finally committed at the database servers. Otherwise these local
transactions will be aborted. Finally, the anchor transaction A

iT releases all the locks and
commits.

 158

6.3.4 Supporting conflict awareness

When conflict data caching modes are allowed, local transactions that are planned for
disconnected processing at the mobile hosts must be aware of conflicts of their database
operations. These conflicts can either happen in the data hoarding stage or after the
mobile hosts are disconnected from the database servers. The anchor transactions that
reside at the fixed database servers will support the local transactions at the mobile hosts
to be aware of these conflict operations. For each cached data item, the conflict
awareness identifies the potential conflicts between transactions at different mobile hosts.

Figure 6.9 illustrates the awareness support of anchor transactions during the data
hoarding stage. Time proceeds from left to right. At the time t1, the anchor transaction AT1
of the mobile host MH1 holds a read lock and a write lock on shared data items X and Y,
respectively. At this time, there is no conflict on the system and all local transactions at
the mobile host MH1 are not aware of any database conflict. At the time t2, when the
mobile host MH1 has been disconnected from the database servers, the anchor transaction

AT2 of the mobile host MH2 requests a write offline lock on the shared data item X. The
database servers grant this lock request. Both anchor transactions AT1 and AT2 are aware of,
and will modify the conflict awareness XCA of the shared data item X with read-write
conflict XRW(T1

A,T2
A). For the mobile host MH1, this is a passive conflict awareness,

denoted by the XRW(T1
A,T2

A)P. This means that the local transactions at the disconnected
mobile host MH1 do not know about this conflict. For the mobile host MH2, this is an
active conflict awareness, denoted by the XRW(T1

A,T2
A)A. At the time t3, the anchor

transaction AT3 requests both read locks on the shared data items X and Y, and the
database servers grant these conflicting locks. Anchor transactions AT1 , AT2 and AT3 are
aware of these new conflicts. The anchor transactions AT1 modifies the conflict awareness
YCA of the shared data item Y with a passive write-read conflict YWR(T1

A,T3
A)P, the anchor

transaction AT2 modifies the conflict awareness XCA of the shared data item X with a
passive write-read conflict XWR(T2

A,T3
A)P, and the anchor transaction AT3 will modify the

conflict awareness of both Y and X as active write-read conflict YWR(T1
A,T3

A)A and
XWR(T2

A,T3
A)A , respectively.

Figure 6.9: Conflict awareness of transactions

Table 6.7 indicates the locks and conflict awareness records held by the anchor
transactions and in the local workspace at the disconnected mobile hosts. For the mobile

 159

hosts MH1 and MH2, the conflict awareness records held by the anchor transactions are
inconsistent with the ones in the local workspace at the disconnected mobile hosts. These
conflict awareness records will be used in the transaction integration stage to determine
the final execution schedule of transactions.

Table 6.7: Locks and conflict awareness among mobile hosts

 MH1 MH2 MH3
Anchor transaction XR;YW XW XR;YR Locks
Local workspace XR;YW XW XR;YR

Anchor transaction XRW(T1
A,T2

A)P;
YWR(T1

A,T3
A)P

XRW(T1
A,T2

A)A;
XWR

 (T2
A,T3

A)P
XWR(T2

A,T3
A)A;

YWR(T1
A,T3

A)A Conflict
awareness

 Local workspace None XRW(T1
A,T2

A)A XWR(T2
A,T3

A)A;
YWR(T1

A,T3
A)A

The operations for managing conflict awareness

The conflict lock requests (at the database servers) can happen any time during the data
hoarding stage or when the mobile hosts are being disconnected. The mobile transaction
processing system, thus, provides the following operations to support the anchor
transaction A

iT to manage the conflict awareness:

• AddConflict(shared_data, conflict_transaction, conflict_mode, conflict_type).

This operation adds a new conflict awareness record on a shared_data X to the
conflict awareness record set XCA that is held by the anchor transaction A

iT . The
conflict_transaction can be either an anchor transaction or a standard transaction. The
conflict_mode is either a read-write conflict or write-read conflict between the anchor
transaction A

iT and the conflict_transaction. If the mobile host is still connected to the
database servers at the time that the conflict lock occurs, the conflict_type is an active
conflict; otherwise, it is a passive conflict.

• RemoveConflict(shared_data, conflict_transaction). This operation removes the

conflict awareness record between the anchor transaction A
iT and the

conflict_transaction from the conflict awareness record set XCA of shared_data X.
This operation is invoked when the conflict_transaction is no longer involved in the
shared data item.

• ModifyConflict(shared_data, anchor_transaction, new_conflict_transaction).

This operation allows an anchor transaction Ti
A to modify a conflict awareness record

when a mobile transaction finally commits at the database servers. The conflict
awareness record on the shared data between the transaction pair (A

iT , A
jT) will be

replaced by the conflict transaction pair (A
iT ,Tj

l) where Tj
l is the identification of the

standard conflicting mobile transaction (see Section 6.6 for further detail).

 160

6.4 Mobile data sharing stage

In this section, we formalize the mobile data sharing process among transactions at
different disconnected mobile hosts. To recap, we distinguish two main mobile data
sharing types: sharing data states and sharing data status. The mobile data sharing
operations between the standard delegator and delegatee transactions are carried out with
the support of the export and import transactions (from now, we will assume that the
delegator and delegatee transactions belong to different mobile hosts). Table 6.8
summaries the management of mobile data sharing between the delegator and delegatee
transactions.

Table 6.8: Management of mobile data sharing

 Delegator transaction Delegatee transaction
Sharing data
states

Exports original or updated
data states

Imports data states as new
data states
Upgrades data states

Sharing data
status

Delegates read or write locks

Downgrades write locks

Imports read or write locks
as new locks
Upgrades write locks

6.4.1 Management of sharing data states

In this section, we will formalize the sharing of mobile data states (i.e., data values)
among standard transactions at different mobile hosts. For sharing values, only the values
of shared data items that are being cached at a mobile host are revealed to other
transactions at different mobile hosts.

The delegator transaction Ti

Dor will export shared data values to the export-import
repository together with any conflict awareness or dependency awareness related to these
shared data values. The delegator transaction Ti

Dor still holds the responsibility (i.e.,
locks) of the shared data items. As discussed in Section 5.5.4, depending on status of the
shared data (i.e., read or write lock) that is cached in the local workspace, the delegator
transaction Ti

Dor can share either the original data value or the updated data value (see
Figure 6.10). Furthermore, the delegator transaction does not need to be aware of the
states of the associated delegatee transactions. In other words, it is not necessary for the
delegator transaction to know about what delegatee transactions that will obtain its shared
data states. The delegatee transaction Tj

Dee can either obtain the shared data state as a new
data item or upgrade its local cached data (see Figure 6.10). If the shared data item is not
cached in the local workspace, the delegatee transaction will import it as a newly cached
data. On the other hand, if the shared data item is already being cached in the local
workspace, the delegatee transaction can use this opportunity to upgrade the value of the
shared data item to the most up-to-date value.

 161

Figure 6.10: Sharing data states

Figure 6.11 illustrates an example for mobile data sharing states among mobile
transactions at two mobile hosts MH1 and MH2. The example will be used to illustrate our
analysis in the rest of this section. The anchor transaction T1

A of the mobile host MH1
holds a non-conflict read lock on the shared data item X, and an active read-write conflict
YRW(T2

A,T1
A)A on shared data item Y (i.e., with a write lock on Y) with the anchor

transaction T2
A of the mobile host MH2. At the same time, the anchor transaction T2

A of
the mobile host MH2 holds a passive read-write conflict YRW(T2

A,T1
A)P on shared data

item Y (i.e., with a read lock on Y) and a write lock on the shared data item Z. During the
mobile data sharing stage, delegator transactions at the mobile host MH1 share both the
original value of X, i.e., VX, and the modified value of Y, i.e., VY’, into the mobile sharing
workspace. Delegator transactions at the mobile host MH2 share both the original and
updated value of data item Z, i.e., VZ and VZ’. A delegatee transaction at the mobile host
MH1 will sequentially obtain both the shared data values of the shared data item Z. And, a
delegatee transaction at the mobile host MH2 will import the shared data value of X as a
new cached data, and upgrade its local cache on the shared data item Y to the most up-to-
date value VY’.

Figure 6.11: Shared data states in the export-import sharing space

The locks and conflict awareness records held by the anchor transactions at the database
servers and in the local workspaces at the disconnected mobile hosts, as well as the
mobile data sharing states are summarized in Table 6.9.

 162

Table 6.9: Locks and data conflict awareness of sharing data state scenarios

 MH1 MH2
Anchor transaction XR;YW YR;ZW Locks
Local workspace XR;YW YR;ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P Conflict

awareness Local workspace YRW(T2
A,T1

A)A None
Exported data states VX, VY’ VZ, VZ’ Mobile data

sharing Imported data states VZ, VZ’ VX, VY’

Conditions of sharing data states

As we have discussed in Section 5.5.4, in order to be able to share the data state of the
shared data item X, which is either an original state or an updated state, a delegator
transaction Ti

Dor at mobile host MHi must hold the appropriate lock on the shared data
item X. This means that the following conditions must be met:

(1) For sharing of an original data state of the data item X: the data item X is cached
(with read lock or write lock) in the local workspace at the mobile host MHi, and
the data item X is in the accessed data set of the delegator transaction Ti

Dor, i.e.,
(lX ∈ Li

GR) ∧ (X ∈Di
Dor)

Note that the delegator transaction Ti
Dor can be either a read-only transaction or an

updating transaction. If the delegator transaction is a read-only transaction, then
the data item X is in the read data set. Otherwise, the data item X is in the write
data set of the updating delegator transaction Ti

Dor (i.e., XW GRW
iL∈), however, the

value of X is not modified by Ti
Dor yet.

(2) For sharing of an updated data state of the shared data item X: the data item X is

cached with write lock in the local workspace at the mobile host MHi, and the
data item X is in the write data set of the updating delegator transaction Ti

Dor, i.e.,
(XW GRW

iL∈) ∧ (X ∈ Di
Dor)

Operations of sharing data states

When the delegator transaction Ti

Dor
 at the mobile host MHi shares the value of the data

item X, the procedure of exporting shared data states is implemented as follows:

(1) The delegator transaction Ti
Dor initiates an export transaction Ti

Dor.E that will
export the shared data state into the export-import repository.

(2) For each shared data item X, attach all associated information to the export

transaction Ti
Dor.E (see Table 6.10). The associated information of the export

transaction is also logged in the local workspace at the mobile host MHi.

(3) The export transaction Ti
Dor.E is dispatched to be executed in the export-import

repository.

 163

Table 6.10: Data structure for exporting shared data states

Attribute Description
ItemID The identification of the shared data item
ItemValue The shared value of the shared data item
TypeOfState The type of sharing data state is either original or updated data

state
DelegatorID The identification of the delegator transaction
TypeOfShare The type of data sharing is share_state (i.e., read-only here)
ItemDepend The dependency awareness related to the shared data item
ItemConflict The conflict awareness related to the shared data item

The data structure of the shared data state that is exported by the delegator transaction
contains all the necessary information that describes the correlation between the delegator
transaction and the shared data item. When a delegatee transaction imports this shared
data state, the information will be used as a means to set the relationship between the
delegator and delegatee transactions. Furthermore, the attached information is associated
with individual shared data items, and therefore, supports different versions of a data item
to be shared in the mobile sharing workspaces. These shared data items are independent
of each other. Consequently, the delegatee transactions can select which shared data
items to be obtained.

When a delegatee transaction Ti

Dee
 at the mobile host MHi wants to obtain shared data, the

delegatee transaction Ti
Dee will initiate an import transaction Ti

Dee.I that will try to collect
the shared data from the export-import repository. The delegatee transaction must clearly
specify what type of shared data it wants to import, i.e., read-only or modifiable. To
recap, the imported data states are read-only; therefore, if the delegatee transaction wants
to obtain modifiable shared data, it must try to import the data status (see Sections 5.5.4
and 6.4.2). Moreover, the delegatee transaction does not know what shared data is
available or how the shared data is shared in the export-import repository (i.e., share
states or share status). The actual result of the import transaction indicates whether the
collected data is a shared state or a shared status. In this section, we focus on obtaining
the shared data state, i.e., read-only shared data. When the wanted data item is obtained,
the delegatee transaction will also be aware of and handle any conflict related to the
shared data.

When the delegatee transaction Ti

Dee
 at the mobile host MHi imports the value of the

shared data item X, the procedure of importing shared data state is implemented as
follows:

(1) The delegatee transaction Ti
Dee initiates an import transaction Ti

Dee.I that will
import the needed shared data from the export-import repository to the local
workspace.

 164

(2) All necessary information related to the needed shared data (see Table 6.11) is
attached to the import transaction Ti

Dee.I. This information is also written to a log
in the local workspace.

(3) The import transaction Ti

Dee.I is dispatched to the export-import repository.

Table 6.11: Data structure for importing shared data states

Attribute Description
ItemID The identification of the shared data item
TypeOfShare The type of data sharing is share_state (i.e., read-only here)
TransDepend The transaction dependency between the delegatee and the

import transaction(s) (i.e., abort-dependency or multiple-
abort-dependency)

The import transaction will select and read from the export-import repository the most
equivalent shared data item (if there are many different versions of the data item in the
export-import repository). After that, the import transaction writes the obtained data into
the local workspace at the mobile host and commits. For sharing data states, the obtained
data values are read only to local transactions.

Before the collected shared data state VX of the shared data item X is made available to
other local transactions, the following procedure is carried out:

(1) The newly obtained data value is added to the local cache as a new read-only
shared data. If the shared data is already being read-only cached, its value will be
updated to the most up-to-date value.

(2) A pseudo-read lock XRp of shared data item X will be added to the replicated read

lock set GRR
iL . All database operations at the mobile host that read this new

obtained data value are marked as pseudo-read operations. This is to distinguish
between the actual read operations that are protected by a read lock at the anchor
transaction, and the pseudo-read operations that read the imported shared data not
being read locked by the anchor transaction. In other words, the pseudo-read
operation allows transactions to read a shared data item without connecting to the
database servers to obtain the appropriate read lock.

(3) The conflict awareness XCA and dependency awareness XDA are modified in

accordance with the properties of the shared data value obtained, explained as
follows:

o If a delegator transaction Ti

Dor shares an original data state, a conflict
awareness XRp(Ti

Dor,original) is added to XCA.
o If a delegator transaction Ti

Dor shares an updated data state, the following
conflict awareness and dependency awareness records will be added to XCA
and XDA:

 165

 A conflict awareness XRp(Ti
Dor,updated) is added to XCA.

 An abort-dependency X(Ti
Dor,AD) is added to XDA: this indicates that if

the delegator transaction Ti
Dor aborts, transactions Tj

l that have read X
will be aborted, i.e., Ti

DorAD Tj
l.

 A commit-dependency X(Ti
Dor,CD) is added to XDA: this indicates that

if a transaction Tj
l has reads X, it will commit after transaction Ti

Dor has
committed, i.e., Ti

Dor CD Tj
l.

o If there are other conflict awareness or dependency awareness records
associated with X (indicated via ItemConflict and ItemDepend records – see
Table 6.10), these records will be added to XCA and XDA respectively.

In the following illustrations, we address in detail what actually happens when sharing of
data states takes place. There are four different sharing data state scenarios that are
grouped into three different cases (see Table 6.12). These examples build on those in
Figure 6.11.

Table 6.12: Sharing data state scenarios

Case Delegator transaction Delegatee transaction
Holds read lock and exports original
data value

Imports the shared data value as a
new shared data

1
Holds write lock and exports original
data value

Imports the shared data value as a
new shared data

2 Holds write lock and exports updated
data value

Imports the shared data value as a
new shared data

3 Holds write lock and exports updated
data value

Imports the shared data value as an
updated shared data

Case 1: The delegator transaction shares an original data state and the delegatee
transaction imports the shared data state as a new shared data.

Figure 6.12 illustrates examples of sharing the original data states between transactions at
mobile hosts MH1 and MH2. The delegator transaction T1

i at the mobile host MH1 holds a
read lock on the shared data item X and shares the original data value VX to the delegatee
transaction T2

j at the mobile host MH2. And the delegator transaction T2
k at the mobile

host MH2 that holds a write lock on the shared data item Z shares the original data value
VZ to the delegatee transaction T1

l at the mobile host MH1.

The conditions for sharing of data states of two delegator transactions T1

i and T2
k are:

• For the delegator transaction T1
i: (XR GRRL1∈) ∧ (X ∈ D1

i)
• For the delegator transaction T2

k: (ZW GRWL2∈) ∧ (Z ∈ D2
k)

As described above, these conditions are fulfilled. Note that the delegator transaction T2

k
has not modified the value of data item Z yet.

 166

Figure 6.12: Share original data states

The following information is attached to the export transactions T1

i.E and T2
k.E and logged

in the local workspaces before these export transactions are dispatched to the export-
import repository:
• For the export transaction T1

i.E: (X,VX,original, T1
i, share_state, none, none)

• For the export transaction T2
k.E: (Z,VZ,original, T2

k, share_state, none, none)

Note that there is no conflict awareness or dependency awareness related to these shared
data states. The shared data states of the data items X and Z are consistent with the ones
in the database server. Therefore, if the delegator transaction aborts, the export
transaction can still commit.

The delegatee transactions T1

l and T2
j will obtain these shared data states via the import

transaction T1
l.I and T2

j.I. The following information is attached to the import transactions
T1

l.I and T2
j.I and logged in the local workspaces before these import transactions are

dispatched to the export-import repository:
• For the import transaction T1

l.I: (Z,read_only, none)
• For the import transaction T2

j.I: (X,read_only, none)

There is no transaction dependency between the delegatee and import transactions. This
means that the import transactions can commit in the local workspaces regardless of the
state of their delegatee transactions.

When these import transactions commit in the local workspaces, the following
procedures are carried out:
• At mobile host MH1:

o A pseudo-read lock ZRp is added to the granted read lock set, i.e.,
GRRL1 := GRRL1 ∪ {ZRp}

o The shared data value VZ is added as a new data item, i.e.,
GRRD1 := GRRD1 ∪ {Z}

o A conflict awareness record ZRp(T2
k,original) will be added to the conflict

awareness set ZCA of data item Z, i.e.,
ZCA := ZCA ∪ {ZRp(T2

k,original)}
• At mobile host MH2:

o A pseudo-read lock XRp is added to the granted read lock set, i.e.,
GRRL2 := GRRL2 ∪ {XRp}

o The shared data value VX is added as a new data item, i.e.,
GRRD2 := GRRD2 ∪ {X}

 167

o A conflict awareness record XRp(T1
i,original) will be added to the conflict

awareness set XCA of data item X, i.e.,
XCA := XCA ∪ {XRp(T1

i,original)}

The conflict awareness records will be used to determine the execution schedule between
the delegator and delegate transactions. In Section 6.5 we will further formalize this
execution schedule.

After these operations are completed, the collected shared data states are made accessible
to the delegatee and other local transactions as if they are cached data. All the local read
operations related to these shared data items will be marked as pseudo-read operations
RP. Table 6.13 summaries the states of cached data in the local workspaces and at the
anchor transactions after this mobile data sharing.

Table 6.13: Locks and awareness of sharing original data states

 MH1 MH2
Anchor transaction XR;YW YR;ZW Locks
Local workspace XR;YW;ZRp XRp;YR;ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P

Conflict
awareness Local workspace YRW(T2

A,T1
A)A

ZRp(T2
k,original)

XRp(T1
i,original)

Case 2: The delegator transaction shares an updated data state and the delegatee
transaction imports the updated data state as a new shared data.

In Figure 6.13, the delegator transaction T2

j at the mobile host MH2 updates the data item
Z in the local workspace. After this, the delegator transaction T2

j shares this modified data
state VZ’ of the shared data item Z to the delegatee transaction T1

i at the mobile host MH1.
Because this shared data item Z is not cached in the local workspace at the mobile host
MH1, the delegatee transaction T1

i imports this updated value VZ’ of the data item Z as a
new shared data item.

Figure 6.13: Share modified data state

The conditions for sharing of data state of the delegator transaction T2

j at the mobile host
MH2 are:

(ZW GRWL2∈)∧ (Z ∈ D2
j)

 168

Before the export transactions T2
j.E is dispatched to the export-import repository, the

following information is attached to it and logged in the local workspace:
(Z,VZ’,modified, T2

j, share_state, Z(T2
j,AD), none)

Note that there is an abort-dependency between the delegator transaction T2

j and the
delegatee transactions that will read the modified data state of data item Z. In other
words, if the delegator transaction T2

j aborts, the shared data value VZ’ will become
invalid. Therefore, if the delegator transaction T2

j aborts, the export transaction T2
j.E must

abort or be compensated, consequently the delegatee transactions that have read VZ’ will
be aborted. The abort-dependency is transferred via the dependency awareness record
Z(T2

j,AD) of data item Z.

The delegatee transaction T1

i will initiate an import transaction T1
i.I to obtain the shared

data state VZ’ from the export-import repository. The following information is attached to
the import transactions T1

i.I and logged in the local workspace before the import
transaction is dispatched to the export-import repository:

(Z,read_only, none)

When the import transaction T1

i.I commits in the local workspace, the following
procedure is carried out at the mobile host MH1:
• A pseudo-read lock ZRp is added to the granted read lock set, i.e.,

GRRL1 := GRRL1 ∪ {ZRp}
• The shared data value VZ’ is added as a new data item, i.e.,

GRRD1 := GRRD1 ∪ {Z}
• A conflict awareness record ZRp(T2

j,updated) is added to the conflict awareness set
ZCA of data item Z, i.e.,

ZCA := ZCA ∪ {ZRp(T2
j,updated)}

• A dependency awareness record Z(T2
j,AD) is added to the dependency awareness set

ZDA of data item Z, i.e.,
ZDA := ZDA∪ {Z (T2

j,AD)}
This dependency awareness record indicates that local transactions T1

p at the mobile
host MH1 that read data item Z will have an abort-dependency with transaction T2

j,
i.e., T2

j AD T1
p.

• A dependency awareness record Z(T2
j,CD) is further added to the dependency

awareness set ZDA of data item Z, i.e.,
ZDA := ZDA∪ {Z (T2

j,CD)}
This dependency awareness record indicates that local transactions T1

p at the mobile
host MH1 that read data item Z will have a commit-dependency with transaction T2

j,
i.e., T2

j CD T1
p.

After these operations are completed, the collected shared data state VZ’ is made
accessible to other local transactions as if it is cached data. All the local read operations
related to these shared data items will be marked as pseudo-read operations Rp. Any local
transactions T1

i at the mobile host MH1 that read this shared data item Z will develop: (1)
an abort-dependency T2

j AD T1
i with the delegator transaction T2

j at the mobile host MH2,
i.e., if the delegator transaction T2

j aborts, the local transactions T1
i must also abort

 169

because these transactions have read an invalid data value VZ’; (2) a commit-dependency
T2

j CD T1
i with the delegator transaction T2

j, i.e., the delegator transaction T2
j must

commit before transactions T1
i. Table 6.14 summaries the states of cached data in the

local workspaces of the mobile hosts and at the anchor transactions after this mobile data
sharing.

Table 6.14: Locks and awareness of sharing modified data states

 MH1 MH2
Anchor transaction XR;YW YR;ZW Locks
Local workspace XR;YW;ZRp YR;ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P

Conflict
awareness Local workspace YRW(T2

A,T1
A)A

ZRp(T2
j,updated)

None

Anchor transaction None None
Dependency
awareness Local workspace Z (T2

j,AD)
Z (T2

j,CD)
None

Case 3: The delegator transaction shares an updated data state and the delegatee
transaction upgrades its local cache to the most up-to-date value.

In Figure 6.14, the delegator transaction T1

i at the mobile host MH1 updates the data item
Y in the local workspace. After this, the delegator transaction T1

i shares this modified data
state VY’ of the shared data item Y to the delegatee transaction T2

j at the mobile host MH2.
Because this shared data item Y is already cached in the local workspace at the mobile
host MH2, the delegatee transaction T2

j imports this updated value VY’ of the data item Y
to upgrade its local cache to the most up-to-date value.

{Y*W}

MH1 MH2

T2
j.I{VY’}

Export-import repository

{VY’} {YR}T1
i T2

jT1
i.E

Figure 6.14: Upgrade data state in the local workspace

The conditions for sharing of data state of the delegator transaction T1

i at the mobile host
MH1 are:

(YW GRWL1∈) ∧ (Y ∈ D1
i)

The following information is attached to the export transaction T1

i.E and logged in the
local workspace at the mobile host MH1 before the export transaction is dispatched to the
export-import repository:

(Y,VY’,modified, T1
i, share_state, Y(T1

i,AD),YRW(T2
A, T1

A)A)

 170

As in case 2, if the delegator transaction T1
i aborts, the shared data value VY’ will become

invalid. Therefore, there is an abort-dependency between the delegator transaction T1
i and

the delegatee transactions that will read the modified data state of data item Y. The abort-
dependency is transferred by the export transaction T1

i.E via the dependency awareness
record Y(T1

i,AD) of data item Y. Furthermore, there is an active read-write conflict
YRW(T2

A, T1
A)A on the shared data item Y at the mobile host MH1. This conflict

information must also be passed to the delegatee transaction T2
j that will read the updated

value VY’ of the shared data item Y. Note that the delegator transaction T1
i does not know

about the delegatee transaction T2
j at the mobile host MH2.

The delegatee transaction T2

j at the mobile host MH2 will initiate an import transaction
T2

j.I to obtain the shared data state VY’ from the export-import repository. The following
information is attached to the import transaction T2

j.I and logged in the local workspace
before it is dispatched to the export-import repository:

(Y,read_only, none)

When the import transaction T2

j.I commits in the local workspace, the following
procedure is carried out at the mobile host MH2:
• As the mobile host MH2 is already holding a read lock on the data item Y, no pseudo-

read lock will be added to the granted read lock set GRRL2 .
• The data value VY of the shared data item Y in the read data set GRRD2 is updated with

the new value VY’.
• A conflict awareness record YR(T1

i,updated) is added to the conflict awareness set YCA
of data item Y, i.e.,

YCA := YCA ∪ {YR(T1
i,updated)}

• A conflict awareness record YRW(T2
A, T1

A)A will also be added to the conflict
awareness set YCA of data item Y, i.e.,

YCA := YCA∪ {YRW(T2
A, T1

A)A}
• A dependency awareness record Y(T1

i,AD) is added to the dependency awareness set
YDA of data item Y, i.e.,

YDA := YDA∪ {Y (T1
i,AD)}

This dependency awareness record indicates that local transactions T2
p at the mobile

host MH2 that read data item Y will have an abort-dependency with transaction T1
i,

i.e., T1
i AD T2

p. Note that the locally committed transactions T2
k at the mobile host

MH2 that have read the original value VY will not be affected by this abort-
dependency.

• A dependency awareness record Y(T1
i,CD) is further added to the dependency

awareness set YDA of data item Y, i.e.,
YDA := YDA∪ {Y (T1

i,CD)}
This dependency awareness record indicates that local transactions T2

p at the mobile
host MH2 that read data item Y will have a commit-dependency with transaction T1

i,
i.e., T1

i CD T2
p. Note that the locally committed transactions T2

k at the mobile host
MH2 that have read the original value VY will not be affected by this commit-
dependency.

 171

The new conflict awareness and dependency awareness records have the following
meanings: (1) any local transaction T2

p at the mobile host MH2 that reads the upgraded
shared data item Y will develop an abort-dependency (T1

i AD T2
p) with the delegator

transaction T1
i at the mobile host MH1; (2) the local transactions T2

p will also develop a
commit-dependency (T1

i AD T2
p) with the delegator transaction T1

i; and (3) the local
transactions T2

p must be aware that it can conflict with other local transactions Tl
l at the

mobile host MH1 (for example, the local transaction Tl
l at the mobile host MH1

subsequently modifies the shared data item Y after the delegator transaction T1
i). These

transaction dependencies and execution constraints (explained in Section 6.5) will be
reconciled at the transaction integration stage (see Section 6.6).

Table 6.15 summaries the states of cached data in the local workspaces of the mobile
hosts and at the anchor transactions after this mobile data sharing. Note that the conflict
awareness on the shared data item Y is an active conflict at the disconnected mobile host
MH2, while the anchor transaction T2

A at the database servers is still holding a passive
conflict awareness.

Table 6.15: Locks and awareness of upgrading data states

 MH1 MH2
Anchor transaction XR;YW YR; ZW Locks
Local workspace XR;YW YR; ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P

Conflict
awareness Local workspace YRW(T2

A,T1
A)A YR(T1

i,updated)
YRW(T2

A,T1
A)A

Anchor transaction None None
Dependency
awareness Local workspace None Y(T1

i,AD)
Y(T1

i,CD)

6.4.2 Management of sharing data status

In this section, we will formalize the sharing of mobile data status (i.e., locks) among
standard transactions at different mobile hosts. For mobile sharing status, a delegator
transaction Ti

Dor shares its locks to a delegatee transaction Tj
Dee. The sharing of data status

means that the delegator transaction Ti
Dor no longer holds the responsibility of the shared

data items. The delegator transaction Ti
Dor at the mobile host MHi carries out a mobile

data sharing status procedure when it wants to delegate the locks on shared data items
and allows the delegatee transactions Tj

Dee at the mobile host MHj to take over the control
of the delegated locks.

Figure 6.15 summaries the mobile data sharing status between a delegator and a delegatee
transaction. As discussed in Section 5.5.5, depending on status of the shared data (i.e.,
read or write lock) that is cached in the local workspace, the delegator transaction Ti

Dor
can delegate either the read or the write lock on the shared data to the delegatee
transaction Tj

Dee. Furthermore, if a shared data item is originally write locked in the local

 172

workspace, the delegator transaction can delegate this write lock but keep the read lock
on the shared data item, i.e., the delegator transaction performs the downgrading lock
operations. For the delegatee transaction Tj

Dee, it can obtain the delegated lock as a new
lock in the local workspace. If a shared data item is already cached with read lock at the
mobile host, and the delegator transaction Tj

Dor delegates the write lock on this shared
data item, the delegatee transaction Ti

Dee can upgrade the control of the shared data item
from read lock to write lock.

Figure 6.15: Sharing data status

Figure 6.16 illustrates an example for mobile data sharing operations among mobile
transactions at two mobile hosts MH1 and MH2. The example will be used to illustrate our
analysis of the mobile data sharing status in this section.

Figure 6.16: Sharing data status between mobile hosts

In the example, the anchor transaction T1

A of the mobile host MH1 holds a non-conflict
read lock XR on the shared data item X, and an active read-write conflict YRW(T2

A,T1
A)A on

the shared data item Y (i.e., with a write lock YW on Y) with the anchor transaction T2
A of

the mobile host MH2. The anchor transaction T2
A of the mobile host MH2 holds a passive

read-write conflict YRW(T2
A,T1

A)P on data item Y (i.e., with a read lock YR on Y) and a
write lock ZW on data item Z. During the mobile data sharing status, a delegator
transaction T1

i at the mobile host MH1 will delegate the read lock XR and the write lock
YW on the shared data items X and Y, respectively. A delegator transaction T2

j at the

 173

mobile host MH2 will delegate the write lock ZW on the shared data item Z, but the read
lock ZR on this data item will be retained at this mobile host. At the same time, a
delegatee transaction Tl

l at the mobile host MH1 will obtain the delegated write lock ZW
on the shared data item Z as a new lock. At the mobile host MH2, a delegatee transaction
T2

k imports the read lock XR on the shared data item X as a new lock and the write lock
YW on the shared data item Y as an upgraded lock.

The locks and conflict awareness records held by the anchor transactions at the database
servers and in the local workspaces at the disconnected mobile hosts, as well as the
mobile data sharing states are summarized in Table 6.16.

Table 6.16: Locks and data conflict awareness of sharing data status scenarios

 MH1 MH2
Anchor transaction XR;YW YR;ZW Locks
Local workspace XR;YW YR;ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P Conflict

awareness Local workspace YRW(T2
A,T1

A)A None

Exported data status XR, YW ZW (delegate and
downgrade) Mobile data

sharing
Imported data status ZW XR, YW (upgrade)

Conditions of sharing data status

In order to be able to delegate the data status of the shared data item X, a delegator
transaction Ti

Dor at the mobile host MHi must fulfill the following conditions:

(1) For sharing the read lock XR
o The shared data item X must be cached at the mobile host with a read lock XR

(the pseudo-read lock XRp can not be shared), i.e., XR GRR
iL∈ .

o There is no other local transaction Ti
k that accesses the data item X when the

delegator transaction Ti
Dor shares this read lock, i.e.,

∀Ti
k, Ti

Dor≠ Ti
k, (X∈ Di

Dor) ∧ (X∉ Di
k)

If there is another transaction Ti
k that holds the read lock XR on the shared data

item X, the exporting read lock process will be delayed or redirected (see
Section 6.4.3).

(2) For sharing the write lock XW

o The shared data item X must be cached at the mobile host with a write lock,
i.e., XW GRW

iL∈ .
o Data item X belongs to the write data set of the delegator transaction Ti

Dor, i.e.,
X∈ Di

Dor. This means that there is no other transaction Ti
k that is concurrently

accessing this data item X.
o All local transactions Ti

k that have updated data item X must be aborted. These
aborts can lead to the abortion of local transactions that have accessed the

 174

updated data item X. However, in case of downgrading locks, the local
transactions Ti

k, which have read the original data value VX of the data item X,
will not be aborted. These transactions will develop a read-write conflict with
a delegatee transaction Tj

Dee at the mobile host MHj that (later) imports the
shared write lock XW.

Operations of sharing data status

When the delegator transaction Ti

Dor
 at the mobile host MHi relinquishes the lock of the

data item X, the procedure of exporting shared data status is implemented as follows:

(1) The delegator transaction Ti
Dor initiates an export transaction Ti

Dor.E that will
export the shared data status into the export-import repository.

(2) The cached data set and the replicated granted lock set at the mobile host MHi will

be updated. If this sharing status operation is a downgrading lock operation, the
delegator transaction Ti

Dor will modify the lock status of the shared data item X in
the local workspace from XW to XR.

(3) For each shared data item X, attach all associated information to the export

transaction Ti
Dor.E (see Table 6.17). The associated information of the export

transaction Ti
Dor.E is also logged in the local workspace at the mobile host MHi.

(4) The export transaction Ti

Dor.E is dispatched to the export-import repository.

Table 6.17: Data structure for exporting data status

Attribute Description
ItemID The identification of the shared data item
ItemValue The shared value of the shared data item
TypeOfStatus The type of sharing data status is either read or write lock
DelegatorID The identification of the delegator transaction
ItemDepend The dependency awareness related to the shared data item
ItemConflict The conflict awareness related to the shared data item

The data structure for the shared data status contains all the correlated information.
Again, the attached information is associated with individual shared data items.
Therefore, the mobile data sharing status mechanism allows different status of the shared
data item to be shared in the mobile sharing workspaces. As a result, the delegatee
transactions can select which shared data status to be obtained, i.e., read or write status.

When a delegatee transaction Ti

Dee
 at the mobile host MHi wants to take the control of a

shared data item, the delegatee transaction Ti
Dee will initiate an import transaction Ti

Dee.I
that will obtain the status of the shared data from the export-import repository. The
delegatee transaction must specify what type of status of a shared data item that it wants

 175

to import, i.e., read or write lock. When the wanted data status is obtained, the delegatee
transaction will also be aware of and handle any data conflicts related to the shared data.

When the delegatee transaction Ti

Dee
 at the mobile host MHi imports the status of the

shared data item X, the procedure of importing shared data status is implemented as
follows:

(1) The delegatee transaction Ti
Dee initiates an import transaction Ti

Dee.I that will
import the control of the needed shared data from the export-import repository to
the local workspace.

(2) All necessary information related to the wanted shared data (see Table 6.18) is

attached to the import transaction Ti
Dee.I. This information is also written to a log

in the local workspace.

(3) The import transaction Ti
Dee.I is dispatched to the export-import repository.

Table 6.18: Data structure for importing data status

Attribute Description
ItemID The identification of the shared data item
TypeOfShare The type of data sharing is either read or write lock
TransDepend The transaction dependency between the delegatee and

the import transaction(s) (i.e., abort-dependency or
multiple-abort-dependency)

StructDepend The structural dependency between the delegatee and the
import transaction(s) (merge or adopt)

The import transaction Ti

Dee.I will retrieve from the export-import repository the wanted
data item. When the needed data is completely obtained, depending on the structural
dependency between the delegatee and the import transactions, the import transaction can
either commit or merge with or be adopted into the delegatee transaction (see Section
5.4.2).

Before the collected shared data item X is made available to other local transactions, the
following procedure is carried out:

(1) If the obtained shared data item is not cached in the local workspace, this shared
data item is added to the local cache as a new data.

(2) If the status of the shared data item is read lock, a read lock XR will be added to

the replicated granted read lock set GRR
iL .

(3) If the status of the shared data item is write lock, and the shared data item is a

newly cached data, a write lock XW will be added to the replicated granted write

 176

lock set GRW
iL . If this shared data is already cached with a read lock, i.e., XR ∈ GRR

iL
at the mobile host, the read lock will be upgraded to the write lock.

(4) If there is any conflict awareness or dependency awareness related to the obtained

data status, the conflict awareness or dependency awareness records will be added
to the conflict awareness set XCA and the dependency awareness set XDA,
respectively.

Depending on how the delegator transaction delegates locks to the delegatee transaction
(relinquishing locks or downgrade locks), and how the delegatee transaction imports
these shared locks (as new locks or upgraded locks), there are four different sharing data
status scenarios that are grouped into three different cases (see Table 6.19). These
examples build on those in Figure 6.16. Note that for sharing data status, dependency
awareness does not occur.

Table 6.19: Sharing data status scenarios

Case Delegator transaction Delegatee transaction
Holds and delegates read lock Imports the shared read lock as a new lock

4 Holds and delegates write lock Imports the shared write lock as a new
lock

5 Holds and delegates write lock Imports the shared write lock as an
upgraded lock

6 Holds write lock and
downgrades to read lock

Imports the shared write lock as a new or
an upgraded lock

Case 4: The delegator transaction shares a read lock or a write lock, and the
delegatee transaction imports the shared lock as a new lock.

Figure 6.17 illustrates examples of sharing data status between local transactions at
mobile hosts MH1 and MH2. The delegator transaction T1

i at the mobile host MH1 holds a
read lock XR on the shared data item X and shares this read lock to the delegatee
transaction T2

j at the mobile host MH2. The delegator transaction T2
k at the mobile host

MH2 holds a write lock ZW on the shared data item Z and shares this write lock to the
delegatee transaction T1

l at the mobile host MH1. Both the delegatee transactions T2
j and

T1
l import the shared locks as new locks.

Figure 6.17: Delegating locks

 177

The conditions for sharing of data status of two delegator transactions T1
i and T2

k are:
• For the delegator transaction T1

i: XR GRRL1∈ ∧∀T1
n, T1

i ≠ Ti
n, (X∈ D1

i) ∧ (X∉ D1
n)

• For the delegator transaction T2
k: ZW GRWL2∈ ∧∀T2

m, T2
k ≠ T2

m, (Z∈ D2
k) ∧ (Z∉ D2

m)

The delegator transactions T1

i and T2
k will update the states of the local workspaces at the

mobile host MH1 and MH2 before the shared data status operations are carried out. The
following procedures are performed:
• At mobile host MH1: }{\:}{\: 1111 R

GRRGRRGRRGRR XLLXDD =∧=
• At mobile host MH2: }{\:}{\: 2222 W

GRWGRWGRWGRW ZLLZDD =∧=

After these operations, the shared data items X and Z are not accessible in the mobile
hosts MH1 and MH2, respectively.

The following information is attached to the export transactions T1

i.E and T2
k.E and logged

in the local workspaces at the mobile hosts before these export transactions are
dispatched to the export-import repository:
• For the export transaction T1

i.E: (X, VX, read, T1
i, none, none)

• For the export transaction T2
k.E: (Z, VZ, write, T2

k, none, none)

Note that there is no transaction dependency between the delegator transactions and the
export transactions. The responsibility of the shared data items X and Z are completely
transferred from the delegator transaction to the delegatee transaction via shared
transactions.

The delegatee transactions T1

l and T2
j will obtain these shared data status via the import

transactions T1
l.I and T2

j.I. The import transaction T1
l.I will merge with the delegatee

transaction T1
l (which is a flat transaction – if the delegatee transaction has a nested

structure, the import transaction will be adopted as a sub-transaction) to ensure that the
shared data item Z (with a write lock) will be accessed first by this delegatee transaction.
The import transaction T2

j.I can commit in the local workspace at the mobile host MH2

regardless of the state of the delegatee transaction T2
j because the imported data item X is

read only.

The following information is attached to the import transactions T1

l.I and T2
j.I and logged

in the local workspaces before these import transactions are dispatched to the export-
import repository:
• For the import transaction T1

l.I: (X,read, none, none)
• For the import transaction T2

j.I: (Z,write, none, merge)

When these import transactions commit in the local workspaces, the following
procedures are carried out:
• At mobile host MH1:

o A write lock ZW is added to the granted write lock set, i.e.,
GRWL1 := GRWL1 ∪ {ZW}

 178

o The shared data item Z is added as a new modifiable data item, i.e.,
GRWD1 := GRWD1 ∪ {Z}

o A conflict awareness record ZW(T2
k,status) is added to the conflict awareness

set ZCA of data item Z, i.e.,
ZCA := ZCA ∪ {ZW(T2

k,status)}

• At mobile host MH2:
o A real read lock XR is added to the granted read lock set, i.e.,

GRRL2 := GRRL2 ∪ {XR}
o The shared data item X is added as a new read only data item, i.e.,

GRRD2 := GRRD2 ∪ {X}
o A conflict awareness record XR(T1

i,status) is added to the conflict awareness
set XCA of data item X, i.e.,

XCA := XCA∪ {XR(T1
i,status)}

These conflict awareness records will be used in the transaction integration stage for
synchronizing conflicting locks between anchor transactions (see Section 6.6). After
these operations are completed, the obtained data items are accessible to the delegatee
and other local transactions as if they are cached data. Table 6.20 summaries the states of
cached data in the local workspaces and at the anchor transactions after this mobile data
sharing.

Table 6.20: Locks and awareness of delegating locks

 MH1 MH2
Anchor transaction XR; YW YR; ZW Locks
Local workspace YW; ZW XR; YR
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P

Conflict
awareness Local workspace YRW(T2

A,T1
A)A

ZW(T2
k,status)

XR(T1
i,status)

Case 5: The delegator transaction shares a write lock and the delegatee transaction
imports the shared write lock to upgrade from read lock to write lock.

Figure 6.18 illustrates an example of upgrading the status of a shared data item from a
read lock to a write lock. The delegator transaction T1

i at the mobile host MH1 delegates
the write lock YW on the shared data item Y to the delegatee transaction T2

j at the mobile
host MH2. However, at the mobile host MH2, the shared data item Y is already cached as a
read-only data, i.e., with a read lock YR. Therefore, the delegatee transaction T2

j will
upgrade the status of the shared data item Y from read lock to write lock.

The conditions for sharing of data status of the delegator transaction T1

i are:
YW GRWL1∈ ∧ ∀T1

n, T1
i ≠ T1

n, (Y∈ D1
i) ∧ (Y∉ D1

n)

 179

{Y*W}

MH1 MH2

{YW}

Export-import repository

{YW} {YR YW}T2
j.IT1

i T2
jT1

i.E

Figure 6.18: Upgrading locks

Before the shared data status operations are carried out, the delegator transaction T1

i will
modify the write data set and lock set at mobile host MH1 as follows:

}{\}{\ 1111 W
GRWGRWGRWGRW YLLYDD =∧=

After these operations, the shared data item Y is no longer accessible in the mobile host
MH1.

The following information is attached to the export transaction T1

i.E and logged in the
local workspace before this export transaction is dispatched to the export-import
repository:

(Y, VY, write, T1
i, none, YRW(T2

A,T1
A)A)

Note that in the local workspace at mobile host MH1, there is an active read-write conflict
related to the shared data item Y, i.e., YRW(T2

A,T1
A)A. This conflict awareness must also be

passed to the delegatee transaction T2
j at mobile host MH2.

The delegatee transaction T2

j will obtain the shared data status via the import transaction
T2

j.I. As in case 4, the import transaction T2
j.I will merge with the delegatee transaction T2

j
(which is a flat transaction – if the delegatee transaction T2

j has a nested structure, the
import transaction T2

j.I will be adopted as a sub-transaction) to ensure that the shared data
item Y (with a write lock) will be accessed first by this delegatee transaction.

The following information is attached to the import transaction T2

j.I and logged in the
local workspace before it is dispatched to the export-import repository:

 (Y,write, none, merge)

When the import transaction T2

j.I commits in the local workspace, the following
operations are carried out at the mobile host MH2:
• The read lock YR on the shared data item Y in the granted read lock set is removed. A

new write lock on the data item Y is added to the granted write lock set, i.e.,
∪=∧= GRWGRW

R
GRRGRR LLYLL 2222 :}{\: {YW}

• The shared data item Y is removed from the read data set and added to the write data
set, i.e.,

}{:}{\: 2222 YDDYDD GRWGRWGRRGRR ∪=∧=
• A conflict awareness record YW(T1

i,status) is added to the conflict awareness set YCA
of data item Y, i.e.,

YCA:= YCA ∪ {YW(T1
i,status)}

 180

A conflict awareness record YRW(T2
A,T1

A)A associated with data item Y is not added to the
conflict awareness set YCA because the mobile host MH2 already holds the read lock YR on
the shared data item Y before the sharing data status. However, if the conflict awareness
is related to another anchor transaction T3

A of mobile host MH3, a conflict awareness
record will be added to the conflict awareness set YCA so that the local transactions at the
mobile host MH2 will be aware of conflicts with local transactions at mobile host MH3.

The new conflict awareness record YW(T1

i,status) has the following meaning: the mobile
host MH2 has obtained a write lock YW on the shared data item Y from the mobile host
MH1 via the delegator transaction T1

i. This record will be used at the transaction
integration stage to solve conflicts between anchor transactions of the mobile hosts (see
Section 6.6).

Table 6.21 summaries the states of cached data in the local workspaces and at the anchor
transactions after this mobile data sharing.

Table 6.21: Locks and awareness of upgrading locks

 MH1 MH2
Anchor transaction XR;YW YR; ZW Locks
Local workspace XR YW; ZW
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P Conflict

awareness Local workspace None YW(T1
i,status)

Case 6: The delegator transaction downgrades the status of the shared data item
from write lock to read lock.

Figure 6.19 illustrates an example of downgrading the status of a shared data item from a
write lock to a read lock. The delegator transaction T2

j at the mobile host MH2 delegates
the write lock ZW on the shared data item Z to the delegatee transaction T1

i at the mobile
host MH1. However, the delegator transaction T2

j is holding a read permission on the
shared data item Z. In other words, the delegator transaction T2

j will downgrade the write
lock status on data item Z to read lock status. This may be due to the fact that the
delegator transaction T2

j does not need to read the data item Z, but there may be other
local transactions T2

k at mobile host MH2 that need to read this data item Z. The delegatee
transaction T1

i at the mobile host MH1 can obtain the shared write lock as either a new
lock or an upgraded lock (see Cases 4 and 5 above). Here, we will focus on the changes
in the local workspace at the mobile host MH2.

Figure 6.19: Downgrading locks

The conditions for sharing of data status of the delegator transaction T2

j are:
ZW GRWL2∈ ∧ ∀T2

m, T2
j ≠ T2

m, (Z∈ D2
j) ∧ (Z∉ D2

m)

 181

Before the write lock ZW is placed into the export transaction T2
j.E, the delegator

transaction T2
j will modify the write data set and lock set at the mobile host MH2 as

follows:
• The write lock ZW on the shared data item Z in the granted write lock set is removed.

A new read lock ZR on the data item Z will be added to the granted read lock set, i.e.,
}{:}{\: 2222 R

GRRGRR
W

GRWGRW ZLLZLL ∪=∧=
• The shared data item Z is removed from the write data set and added to the read data

set, i.e.,
}{:}{\: 2222 ZDDZDD GRRGRRGRWGRW ∪=∧=

• A conflict awareness ZRW(T2
A,T1

A)A is added to the conflict awareness set ZCA of data
item Z so that local transactions at the mobile host MH2 will be aware of access
conflicts on the shared data item Z with other local transactions at the mobile host
MH1, i.e.,

 ZCA := ZCA ∪ {ZRW(T2
A,T1

A)A}

After these operations, the shared data item Z is read-only accessible in the local
workspace at the mobile host MH2. Any local transaction T2

n at the mobile host MH2 that
has read the original data value VZ of the shared data item Z will develop a read-write
conflict with the transaction T1

i at the mobile host MH1. The states of cached data in the
local workspace and at the anchor transaction of the mobile hosts MH1 and MH2 after this
mobile data sharing are summarized in Table 6.22. Note that, in general, the locks and
conflict awareness in the local workspace of the mobile host MH1 will have to depend on
whether the delegated write lock is imported as a new lock (Case 4) or as an upgraded
lock (Case 5).

Table 6.22: Locks and awareness of downgrading locks

 MH1 MH2
Anchor transaction XR;YW YR; ZW Locks
Local workspace … YR; ZR
Anchor transaction YRW(T2

A,T1
A)A YRW(T2

A,T1
A)P Conflict

awareness Local workspace … ZRW(T2
A,T1

A)A

6.4.3 Redirect sharing operations

In Section 6.4.2, the condition for sharing locks between mobile transactions requires
that: for a lock to be shared, there must be no other local transaction that is holding the
same lock. When the condition is not met, the delegator transaction will not be able to
share the locks to the delegatee transactions. In other words, the sharing data status will
be delayed. In Figure 6.20, at mobile host MH1, both transactions T1

1 and T1
2 are

accessing the shared data item X. Meanwhile, the delegator transaction T1
1 is also in need

to share the control of the data item X to the delegatee transaction T2
1 at the mobile host

MH2. Until the local transaction T1
2 releases its lock on X, the delegator transaction T1

1
will not be able to share the status of the data item X to the delegatee transaction T2

1. The
question is that: what happens if the delegator transaction T1

1 commits before it can share
the read lock XR on the data item X to the delegatee transaction T2

1?

 182

Figure 6.20: Redirect sharing of data

In order to ensure that the sharing status of the shared data item X will eventually be
carried out, we define a method to redirect the sharing status operations from one
transaction to another. The method

RedirectShare(Tik, Tjl, TransType, ObjSet)
will transfer the responsibility of sharing data status from the delegator transaction Ti

k to
the delegatee transaction Tj

l. The TransType is the type of shared transaction that can be
either an export or an import transaction. The ObjSet is the set of shared data that is
needed to be shared.

The same procedure will be applied for the mobile transactions that have nested structure.
The sharing of data via export or import transactions must be taken care of because other
transactions in the hierarchical structure may be affected. Figure 6.21 illustrates the
scenario of redirect sharing of data in a nested transaction. In this example, sub-
transaction T1

1.1.1 at the mobile host MH1 needs to share data status with transaction T2
1 at

the mobile host MH2; and sub-transaction T1
1.2 needs to share data status with transaction

T3
1 at mobile host MH3.

If the sub-transaction T1

1.2 carries out the export data status operations on shared data
item X, it can impact on the execution of other sub-transactions like T1

1.1. Therefore, the
sharing data status process is redirected to the top-level transaction T1

1 for that to decide
when it will be carried out. If the sub-transaction T1

1.1.1
 wants its imported data status to

be accessible to other sub-transactions like T1
1.1.2, it will redirect the sharing data status

process to its parent transaction T1
1.1.

Figure 6.21: Redirect sharing of sub-transactions

 183

6.5 Disconnected transaction processing stage

In this section, we focus our discussion on the transaction processing at the disconnected
mobile hosts, i.e., disconnected transaction processing. To recap, the anchor transaction
of each mobile host plays a role as top level transaction of an open nested transaction
structure. This means that all other local transactions (i.e., standard transactions) are the
sub-transactions of this anchor transaction, and these local transactions can commit or
abort without any affect in relation to the anchor transaction.

Shared data is cached in the local workspace with all related information - that are: the
state, the status, the conflict awareness and the dependency awareness (see Section 6.3.2).
Local transactions at the disconnected mobile host are carried out like online transactions
are at the database servers. And the transaction manager at the mobile host makes use of
the two-phase locking protocol provided by the lock manager to ensure that local
transactions are serializable. The local lock manager accepts lock requests from local
transactions. If the lock request is legal, the requested lock will be granted to the local
transactions. For example, if a local transaction requests a write lock on a data item that is
read-only cached in the local workspace, the request is denied and this transaction is
aborted.

When a local transaction commits, the locally committed results are visible to all local
transactions. When the mobile host reconnects to the database servers, these locally
committed transactions will be synchronized with other transactions. Depending on the
characteristics of the cached data (explained in Section 6.5.1), the locally committed
transactions are either allowed to finally commit at the database servers, or aborted (see
Section 6.6 for transaction integration stage). The abortion of one local transaction can
lead to abort of other local transactions that have read the results of the aborted
transaction.

6.5.1 Constraint and non-constraint cached data

The disconnected transaction processing at the mobile host is carried out based on the
actual data sets that have been successfully cached during the data hoarding stage or have
been obtained through the mobile data sharing stage. There are two types of cached data
at the local mobile host: non-constraint and constraint.

Definition (non-constraint cached data). A cached data item X is non-
constraint if it does not represent any conflict awareness nor any dependency
awareness, i.e.,

XCA = ∅ ∧ XDA = ∅

Definition (constraint cached data). A cached data item X is constraint if it
represents either some conflict awareness or some dependency awareness, i.e.,

XCA ≠ ∅ ∨ XDA ≠ ∅

 184

The non-constraint cached data is shared data that is being considered by the local
transactions as consistent data, and there is no transaction at other mobile hosts that is
performing conflicting operations on this cached data. In other words, the local
transactions that access non-constraint cached data will not hold any dependency with
other local transactions at other hosts.

The constraint cached data is cached data that will cause execution dependencies among
transactions that access this shared data. In other words, when local transactions access
constraint cached data, they have to be aware that there are other local transactions at
other mobile hosts that are currently accessing and potentially performing conflicting
operations on these shared data.

In the next sub-sections, we will discuss the disconnected transaction processing of local
transactions that operate on non-constraint and constraint shared data that is cached at the
disconnected mobile host.

6.5.2 Local transactions operate on non-constraint cached data

For local transactions that operate on non-constraint cached data and hold no structural
dependency with other local transactions at other mobile hosts, if these transactions
commit, these transactions will eventually be allowed to finally commit at the database
servers.

The mobile host MHi will keep a set LocalCommitted (LCi) of locally committed
transactions (this LocalCommitted set is initially an empty set, i.e., LCi = ∅).

Definition (local committed transaction set). A locally committed transaction
set LCi = {Ti

j
 | Ti

j
 is a locally committed transaction} is a partially ordered set with

a partial order relation <I, i.e.,
∀ Ti

k, Ti
l ∈ LCi, either Ti

k <I Ti
l or Ti

l <I Ti
k

When a local transaction Ti

k, which only accesses non-constraint data, requests to
commit, if none of the operations of this local transaction involves a local conflict within
the scope of the local workspace at the mobile host, the local transaction Ti

k will be
allowed to locally commit at the mobile host. The locally committed transaction Ti

k will
be added to the locally committed transaction set LCi, i.e.,

LCi := LCi ∪ {Ti
k}

In Figure 6.22, initially the local transactions at the mobile host MH1 do not know about
the conflict on the shared data item Y, which is cached with a write lock in the local
workspace, with other transactions at the mobile host MH2. This is because that at the
time the mobile host MH1 disconnects from the database servers the anchor transaction
T1

A does not hold any conflict. Therefore, all the local transactions at the mobile host
MH1 will think that they are operating on the non-conflict data item Y. When these local
transactions commit locally, they will be allowed to finally commit at the database
servers when the mobile host MH1 reconnects to the database servers. The local
transaction manager at the mobile host MH1 will keep track of the order of the locally

 185

committed transactions T1
1, T1

2 and T1
3, i.e., LCi = {T1

1 < T1
2 < T1

3}. If the anchor
transaction T1

A holds any passive conflicts with other transactions at the mobile host
MH2, these conflicts are only known when the mobile host MH1 reconnects to the
database servers. On the other hand, a local transaction T2

1 at the mobile host MH2 is
aware of potential conflicts on shared data item Y. However, the local transaction T2

1 does
not know exactly which transactions in the mobile host MH2 it is conflicting with. When
the local transactions of mobile host MH1 are finally committed in the database servers,
the conflict awareness record YCA held by the anchor transaction T2

A will be modified so
that local transaction T2

1 at mobile host MH2 can be correctly scheduled in the global
workspace, for example T2

1
< T1

1
< T1

2
< T1

3 (this will be explained in Section 6.6).

Figure 6.22: Disconnected transaction processing with accessing conflict

6.5.3 Local transactions operate on constraint cached data

When a local transaction at the disconnected mobile host accesses constraint cached data,
the conflict awareness on shared data will produce execution constraints (discussed
below); while the dependency awareness will produce transaction dependencies (see
Figure 6.23).

Figure 6.23: Effects of shared data on transactions

Local transactions access cached data with conflict awareness

To recap, for a data item X that is cached in the local workspace at the mobile host, the
conflict awareness set XCA keeps track of all the potential conflicts that could occur when
a transaction accesses this data item. Among these conflict records, only the conflict
records associated with the data hoarding stage and sharing data states (i.e., the read-write
conflict, write-read conflict, and the pseudo-read records) will produce execution
constraints among transactions. Other conflict records, i.e., conflicts that occur with
sharing data status (see Section 6.4.2), do not cause any execution constraints.

 186

We define the execution constraint among transactions that access constraint cached data
as follows:

Definition (execution constraint). A transaction Ti is said to be scheduled
before a transaction Tj, denoted by Ti → Tj, if all the conflicting operations Opi of
transaction Ti is executed before the conflicting operations Opj of transaction Tj

 ,
i.e.,

Ti → Tj ⇔ (∀Opi∈ Ti, Opj∈ Tj, Conflict(Opi,Opj) ⇒ Opi → Opj)

The execution constraint rules associated with read-write and write-read conflicts are:

Rule 1 (execution constraint of rw-conflict): If transaction Ti
k develops a read-

write conflict with transaction Tj
l on shared data X, i.e., transaction Tj

l will modify
the shared data X offline after it is being read by transaction Ti

k, transaction Ti
k

will be scheduled before transaction Tj
l, i.e., Ti

k → Tj
l.

Rule 2 (execution constraint of wr-conflict): If transaction Ti

k develops a write-
read conflict with transaction Tj

l on shared data X, i.e., transaction Ti
k will read the

shared data X after it is being modified offline by transaction Tj
l, transaction Ti

k
will be scheduled before transaction Tj

l, i.e., Ti
k → Tj

l.

During the mobile data sharing stage, a delegator transaction shares either the original
data state or the updated data state to the delegatee transaction. These sharing data states
imply an execution constraint between the delegator and the delegatee transactions. The
following rules define these kinds of execution constraints between mobile transactions:

Rule 3 (execution constraint of sharing original data state): If delegator
transaction Ti

k shares an original data state to delegatee transaction Tj
l,

transaction Tj
l must be scheduled before transaction Ti

k, i.e., Tj
l → Ti

k.

This rule describes the mobile sharing data states scenario in which a delegator
transaction Ti

k shares an original data state VX of the data item X to a delegatee transaction
Tj

l. The delegator transaction Ti
k can hold a read lock, or a write lock on the shared data

item but the shared data state has not been modified. In this scenario, both the delegator
Ti

k and delegatee Tj
l transactions read the same value VX of data item X. If the delegator

transaction Ti
k
 reads a consistent data value of X, then the delegatee transaction Tj

l will be
assured to read the same consistent data value as the delegator transaction Ti

k.

If the delegator transaction Ti

k holds a read lock XR on X and there is another transaction
Tx

y (at a different mobile host) with which the delegator transaction Ti
k holds a read-write

conflict or a write-read conflict, i.e., Ti
k → Tx

y, this rule ensures that Tj
l →Ti

k → Tx
y, i.e.,

both transactions Ti
k and Tj

l read consistent data values in relation to the transaction Tx
y.

If the delegator transaction Ti

k holds a write lock XW on X, and there is another transaction
Tx

y (at a different mobile host) with which the delegator transaction Ti
k holds a read-write

conflict or a write-read conflict, i.e., Tx
y → Ti

k, this rule ensures that either Tj
l → Tx

y → Ti
k

or Tx
y →Tj

l → Ti
k, i.e., both transactions Tj

l and Tx
y read consistent data values in relation

to the transaction Ti
k.

 187

In Figure 6.24, an example of sharing original values with a read lock is shown. Time
proceeds from left to right. The delegator transaction T1

1 at the mobile host MH1 holds a
read lock on the shared data item X and shares the value VX to the delegatee transaction
T2

1 at the mobile host MH2. If these two transactions T1
1

 and T2
1

 finally commit when the
mobile hosts reconnect to the database servers, the transaction T2

1 must be scheduled
before the transaction T1

1, i.e., T2
1→ T1

1.

Figure 6.24: Execution constraint of sharing original value with read lock

In Figure 6.25, an example of sharing original values with a write lock is shown. Time
proceeds from left to right. The delegator transaction T1

1
 at the mobile host MH1 holds a

write lock on data item Y and shares the original (i.e., non-modified) value VY to the
delegatee transaction T2

1 at the mobile host MH2. In this case, the final transaction
schedule will again be T2

1→ T1
1.

Figure 6.25: Execution constraint of sharing original value with write lock

When a delegator transaction shares an updated data state to a delegatee transaction, the
following rule is applied:

Rule 4 (execution constraint of sharing updated data state): If delegator
transaction Ti

k shares an updated data state to delegatee transaction Tj
l,

transaction Tj
l must be scheduled after transaction Ti

k and before any transaction
Ti

n that is scheduled - due to another update - after transaction Ti
k in the locally

committed transaction set LCi at the same mobile host, i.e.,
∀Ti

n ∈ LCi, Ti
k ∈ LCi , Ti

k < Ti
n ⇒ Ti

k → Tj
l → Ti

n

This rule is denoted by Ti

k →• Tj
l.

This mobile sharing data states scenario happens when a delegator transaction Ti

k holds a
write lock XW on the shared data item X, and the shared data item has been modified. If
the delegatee transaction Tj

l were only to be scheduled after the delegator transaction Ti
k,

and the shared data item is later modified again by another transaction Ti
n (the transaction

Ti
n is executed at the same mobile host as the delegator transaction and also scheduled

 188

after Ti
k), the execution schedule Ti

k→Ti
n→Tj

l will not be correct. Instead, the correct
execution schedule must be Ti

k→Tj
l→Ti

n, i.e., with the above rule Ti
k→•Tj

l being met.

In Figure 6.26, an example of sharing updated values with a write lock is shown (as an
extension to the one in Figure 6.25). At some time, the transaction T1

1 shares the new
value VY’ to the delegatee transaction T2

1. At mobile host MH1, there is another
transaction T1

2 that later updates it to a new value VY’’. The transaction T1
2 is scheduled

after the transaction T1
1. Rule 4 ensures that the transaction T2

1 will be scheduled between
transactions T1

1 and T1
2. This means that the final global transaction schedule is

T1
1→T2

1→T1
2. When the mobile hosts MH1 and MH2 reconnect to the database servers,

this transaction execution constraint will be used to support the transaction integration
process.

Figure 6.26: Execution constraint of sharing updated value with write lock

Local transactions access cached data with dependency awareness

To recap, for a data item X that is cached in the local workspace at a mobile host, the
dependency awareness set XDA keeps track of all the potential dependencies that could
occur when a transaction accesses this data item. The dependency awareness set XDA
includes abort-dependencies and commit-dependencies.

When a local transaction Ti

k at mobile host MHi access a data item X, whose dependency
awareness set XDA contains an abort-dependency X(Tj

l,AD) and/or a commit-dependency
X(Tj

l,CD), it will develop an abort-dependency (Tj
l AD Ti

k) and/or a commit-dependency
(Tj

l CD Ti
k) with the transaction Tj

l. Furthermore, the local transaction Ti
k can induce a

multiple-abort-dependency with other transactions if it accesses a set of constraint cached
data. The dependencies among transactions are created and can be modified via the
operations for managing transaction dependencies and execution constraints – addressed
in Section 6.2.3.

In Figure 6.27, during the mobile data sharing stage, the delegator transaction T1

1 at the
mobile host MH1 shares the updated data state VY’ of the data item Y to the delegatee
transaction T2

1 at the mobile host MH2. There is an abort-dependency X(T1
1,AD) and a

commit-dependency X(T1
1,CD) related to the shared data item Y (see Case 2 in Section

6.4.1). Later, a local transaction T2
2 also accesses this shared data item Y. In this case,

both the delegatee transaction T2
1 and the local transaction T2

2 at the mobile host MH2
develop abort-dependencies and commit-dependencies with the delegator transaction T1

1
on the shared data item Y, i.e.,

 189

• (T1
1AD T2

1) via the CreateDependency(T1
1, T2

1, AD, static) operation
• (T1

1AD T2
2) via the CreateDependency(T1

1, T2
2, AD, static) operation

• (T1
1CD T2

1) via the CreateDependency(T1
1, T2

1, CD, static) operation
• (T1

1CD T2
2) via the CreateDependency(T1

1, T2
2, CD, static) operation

This means that if transaction T1

1 aborts, then both transactions T2
1 and T2

2 must also
abort. Otherwise both transactions T2

1 and T2
2 must commit after T1

1.

Figure 6.27: Transaction dependencies with constraint cached data

Commit of local transactions that access constraint cached data

When a local transaction Ti

k that operates on a constraint cached data item X commits, the
local transaction manager will add this locally committed transaction to the locally
committed transaction set LCi together with its execution constraints and transaction
dependencies related to the shared data item X. The log record of the locally committed
transaction Ti

k at the mobile host MHi is as follows:
 Ti

k {(execution_constraint | transaction_dependency)} where:
o The execution_constraint is the execution constraint between the transaction

Ti
k and the corresponding transaction Tj that has manipulated data item X.

o The transaction_dependency is the transaction dependency between the
transaction Ti

k and the corresponding transaction Tj that has manipulated data
item X. The transaction dependency can be either an abort-dependency,
multiple-abort-dependency or commit-dependency.

When a local transaction Ti

k that operates on constraint cached data item X requests to
commit, the following steps are carried out:

(1) The conflict awareness and dependency awareness records associated with the
shared data item X are converted to the execution constraints and transaction
dependencies, respectively.

(2) The log record of the locally committed transaction Ti

k is added to the locally
committed transaction set, i.e.,

LCi := LCi ∪ { Ti
k {(execution_constraint | transaction_dependency)}}

In the above example (Figure 6.27), when the local transactions T2

1 and T2
2 commit, the

following log records are added to LC2 at the mobile host MH2:
• For transaction T2

1: T2
1{(T1

1→• T2
1), (T1

1AD T2
1), (T1

1CD T2
1)}

• For transaction T2
2: T2

2{(T1
1→•T2

1), (T1
1AD T2

2), (T1
1CD T2

2)}

 190

6.5.4 The aborts of delegator transactions

During the mobile data sharing stage, the interactions between the delegator and
delegatee transactions produce dependencies and constraints among these transactions. If
there is no abort-dependency between the delegator and delegatee transactions, when the
delegator transaction aborts, the delegatee transaction can commit. On the other hand, if
there is an abort-dependency between the delegator and delegatee transactions, when the
delegator transaction aborts, those delegatee transactions that have read the shared data
from this delegator transaction have to abort. In this case, the mobile transaction
processing system must keep track of the aborted delegator transactions in order to notify
the related delegatee transactions about the abortions.

Figure 6.28 illustrates an abort scenario of the delegator transaction. In the figure, the
delegator transaction T2

1 at the mobile host MH2 shares a data state VZ’ of the data item Z
to the delegatee transaction T1

1 at the mobile host MH1. At the mobile host MH1, local
transaction T1

3 also reads this shared data value VZ’. Both the transactions T1
1 and T1

3
develop abort-dependencies with the delegator transaction T2

1. If these two mobile hosts
are disconnected from each other and the delegator transaction T2

1 aborts, the transactions
T1

1 and T1
3 at the mobile host MH1 will not know about this. Therefore, the mobile

transaction processing system must keep track of the abort of the delegator transaction
T2

1 so that the transactions T1
1 and T1

3 at the mobile host MH1 can be notified and aborted
at later time.

MH2

Mobile data sharing

T2
1

Local transactions

MH1

Initially Sharing

(WZ)

T1
1

T2
1(WZ)ZW

T1
1 T1

3 (RZ)(RZ)

Abort

XR T1
2(RX)

T2
2

(VZ’) (VX)

T1
2(RX)Abort

T2
2(RX)

Figure 6.28: Abort of delegator transactions

Also in the Figure 6.28, the delegator transaction T1

2 at the mobile host MH1 shares the
original data value VX (which is a consistent with the one in the database server) of the
data item X to the delegatee transaction T2

2 at the mobile host MH2. At the mobile host
MH2, therefore, there is an execution constraint T2

2→T1
2 (see Rule 3 in Section 6.5.3)

between the delegator and delegatee transactions. There is no abort dependency between
these two mobile transactions. This means that if the delegator transaction T1

2 later aborts,
the delegatee transaction T2

2 can still commit because it has not read an inconsistent data
value. The question is: what is the execution schedule position of the delegatee
transaction T2

2 in the global workspace when the delegator transaction T1
2 aborts?

The transaction manger at the mobile host MHi will keep a set LocalAbortedDelegator
(LADi) to record the abortions of the delegator transactions. This way, the associated

 191

delegatee transactions will be notified about the abortion of the delegator transaction.
Furthermore, in order to support the database servers to find a correct execution schedule
for delegatee transactions (which commit even when the corresponding delegator
transaction aborts) in the transaction integration stage, the transaction manager at the
mobile host will initiate and immediately commit a pseudo-delegator transaction Ti

PD to
the LocalCommitted (LCi) set. This pseudo-delegator transaction Ti

PD will mark the
position of the actual aborted delegator transaction in the locally committed transaction
set LCi.

When a delegator transaction Ti

k aborts, the following steps will be carried out:

(1) A pseudo-delegator transaction Ti

PD is initiated and immediately committed and
added to the LocalCommitted set in the position of the delegator transaction Ti

k
had it committed, i.e.,

LCi := LCi ∪ {Ti
PD}

(2) The delegator transaction Ti
k is added to the LocalAbortedDelegator set, i.e.,

LADi := LADi ∪ {Ti
k}

Figure 6.29 illustrates how the transaction managers at the mobile hosts handle the
abortion of delegator transactions. The delegator transaction T1

1 at the mobile host MH1
shares the original data state VX of data item X to the delegatee transaction T2

1 at the
mobile host MH2. There is no abort dependency between these two transactions, but there
is an execution constraint T2

1 →T1
1 (see Rule 3 in Section 6.5.3). Suppose that if the

delegator transaction T1
1 were committed at the mobile host MH1, the LocalCommitted

set LCi contains: {T1
n < T1

1< T1
m} and hence T1

n→T1
1→T1

m. When delegator transaction
T1

1 aborts, a pseudo-delegator transaction T1
PD is initiated and committed and inserted in

the position of the actual delegator transaction T1
1, i.e., {T1

n < T1
PD< T1

m} and hence
T1

n→T1
PD→T1

m. This way, in the global workspace, the delegatee transaction T2
1 will be

scheduled before the pseudo-delegator transaction T1
PD, i.e., T1

n→ T2
1→T1

PD→T1
m.

Figure 6.29: The role of the pseudo-delegator transaction

6.6 Transaction integration stage

The transaction integration stage is carried out when the mobile host reconnects to the
database servers. In this stage, locally committed transactions, which have been
disconnectedly processing at the mobile host, will be validated against other transactions
to ensure that the states of the database servers are consistent.

 192

In mobile environments, there is no guarantee that all the mobile hosts will
synchronously connect to the database servers to integrate the locally committed
transactions at the same time. For example, there is no guarantee that a delegator
transaction will be integrated into the database servers before a delegatee transaction or
via versa. Furthermore, a local transaction can play roles as both the delegator and
delegatee transactions. Consequently, the database servers must keep track of the commit
or abort state of both delegator and delegatee transactions in order to determine the effect
of one transaction on the others.

Figure 6.30 presents examples of these effects. In Figure 6.30(a), the delegator
transaction T1

i and the delegatee transaction T2
j, which belong to different mobile hosts

MH1 and MH2 respectively, develop an abort-dependency (T1
i AD T2

j) and a commit-
dependency (T1

i CD T2
j). If the delegator transaction T1

i commits or aborts before the
delegatee transaction T2

j, the final state of the delegatee transaction T2
j can be determined

normally. However, if the delegatee transaction T2
j requests to finally commit before the

delegator transaction T1
i (as shown in Figure 6.30(b)), the final state of the delegatee

transaction T2
j will not be determined until the state of the delegator transaction T1

i is
known. In this case, the commit of the delegatee transaction T2

j will be delayed, i.e.,
resulting in a pending commit.

Figure 6.30: The effect of the order of transaction termination requests

Figure 6.31 presents the procedures related to the transaction integration stage. As we
have discussed in Section 6.5, at a disconnected mobile host MHi, the locally committed
and locally aborted delegator transactions are kept track of by the transaction manager in
two separated set: LocalCommitted (LCi) and LocalAbortedDelegator (LADi).

For locally aborted delegator transactions in the LocalAbortedDelegator (LADi) set, these
aborted transactions will be transferred to and kept track of in the
GlobalAbortedDelegator (GAD) set at the database servers so that the database servers
can inform the associated pending commit delegatee transactions (in the PendingCommit
(PC) set – explained below) about the aborts of delegator transactions.

The locally committed transactions in the LocalCommitted (LCi) set will be validated
against other transactions. First, the anchor transaction Ti

A will synchronise its granted
lock set Li

G with the replicated lock set Li
GR at the mobile host. After that, for each of the

locally committed transactions in the LocalCommitted (LCi) set, the abort dependencies
(that include abort-dependencies and multiple-abort-dependencies) will be verified with
the support of the globally aborted delegator transaction GlobalAbortedDelegator (GAD)
set. If the corresponding delegator transactions have not been integrated yet, the locally

 193

committed transactions will be added to the PendingCommit (PC) set. When the
termination states of the corresponding delegator transactions are known, the abort
dependencies of the transactions in the PendingCommit (PC) set will be verified. For
those transactions that have passed the transaction dependency check, their execution
constraints with other transactions will be checked. If a serializable execution schedule is
found, the transactions will be finally committed in the global workspace and added to
the GlobalCommitted (GC) set. But, some of these transactions may be aborted. If an
aborted transaction is a delegator transaction, which is locally committed in the local
workspace at the mobile host), it will be added to the GlobalAbortedDelegator (GAD)
set.

Figure 6.31: Procedures for the transaction integration stage

Section 6.6.1 presents the algorithm that handles the abortion of delegator transactions
(i.e., moving transactions from the LocalAbortedDelegator (LADi) set to the
GlobalAbortedDelegator (GAD) set); and the abort dependencies of transactions (i.e.,
validating the waiting transactions in the PendingCommit (PC) set). Section 6.6.2
presents the algorithm that synchronizes the granted lock set Li

G held by the anchor
transaction Ti

A with the replicated lock set Li
GR; and the conflict awareness records.

Finally, the checking of transaction dependencies and execution constraints is presented
in Section 6.6.3.

6.6.1 Handling the abortion and abort dependencies of transactions

In this section, we present the algorithm that takes care of the final aborts of the locally
aborted delegator transactions and verifies the abort dependencies of transactions which
are queued in the PendingCommit (PC) set. The algorithm is illustrated in Figure 6.32
and presented in Figure 6.33.

 194

Figure 6.32: Steps of handling the abortion and abort dependencies of transactions

Figure 6.33: Handling the abortion and abort dependencies of transactions

The above algorithm is explained as follows:

(1) Each of the locally aborted delegator transaction Ti

Dor will be added to the GAD set.
This will trigger a separate verification of the abort dependencies of the associated
transactions.

(2) Any transaction Tj

l in the PC set (pending commit transactions are addressed in
Section 6.6.3) holding an abort-dependency with the delegator transaction Ti

Dor will
be aborted. If the aborted transaction Tj

l is a delegator transaction (based on the log of
export transactions in the local workspace at the mobile host), the transaction Tj

l will
be added to the GAD set.

(1) For each Ti
Dor in the LocalAbortedDelegator set, i.e., Ti

Dor ∈ LADi
 Add Ti

Dor to the GlobalAbortedDelegator set, i.e., GAD = GAD ∪ {Ti
Dor}

(2) For each Tj

l in the PendingCommit set that holds an abort-dependency with
transaction Ti

Dor, i.e., (Tj
l ∈ PC) ∧ (Ti

Dor AD Tj
l)

 Abort Tj
l

 If Tj
l is a delegator transaction
Add Tj

l to the GlobalAbortedDelegator set, i.e., GAD = GAD ∪ {Tj
l}

(3) If Ti

Dor belongs to a multiple-abort-dependency with Tj
l in

 the PendingCommit set, i.e., (Tj
l ∈ PC) ∧ (Ti

Dor ∈ ℑi) ∧ (ℑi MA Tj
l)

 Mark Ti
Dor as an aborted transaction in ℑi

 If all transactions in ℑI have aborted, i.e., ∀Ti∈ℑi , Ti ∈GAD
Abort Tj

l
If Tj

l is a delegator transaction
 Add Tj

l to the GlobalAbortedDelegator set, i.e., GAD = GAD ∪ {Tj
l}

 195

(3) If the aborted delegator transaction Ti
Dor belongs to a transaction set ℑi that holds a

multiple-abort-dependency with a pending transaction Tj
l, the transaction Ti

Dor in ℑi
will be marked as aborted. If all the transactions in ℑi are aborted, the transaction Tj

l
will abort. Otherwise, the transaction Tj

l remains in the PC set. If the aborted
transaction Tj

l is a delegator transaction (based on the log of export transactions in the
local workspace at the mobile host), the transaction Tj

l will be added to the GAD set.

As an example of point (2), in Figure 6.34 the transaction T2

1 that is pending will be
aborted when the corresponding delegator transaction T1

1 aborts.

Figure 6.34: Abortion of delegatee transactions

6.6.2 Synchronizing lock sets and conflict awareness records

Before the locally committed transactions at the mobile host MHi are integrated in the
global workspace, the anchor transaction Ti

A synchronizes its locks and the conflict
awareness records of the associated cached data items.

The locks in the granted lock set Li

G held by the anchor transaction must be synchronized
with the granted lock set Li

GR that is replicated at the mobile host. Due to the mobile
sharing data operations, the Li

GR set may be inconsistent with the Li
G set. Furthermore, for

a cached data item X at the mobile host MHi, the conflict awareness XCA set may also be
modified, therefore, it needs to be synchronized with the one held by the anchor
transaction Ti

A.

Figure 6.35: Conflicting locks at the anchor transactions

In Figure 6.35, before the disconnection, the anchor transaction T1

A of the mobile host
MH1 holds a write lock YW on data item Y. During the mobile data sharing stage, the write
lock YW at mobile host MH1 is delegated to mobile host MH2. This means that the granted

 196

lock sets L1
G and L2

G held by the anchor transactions T1
A and T2

A are inconsistent with the
lock sets L1

GR and L2
GR at the mobile hosts. This will cause conflicts when the mobile

host MH2 reconnects to the database servers and anchor transaction T2
A requests an

additional write lock on the shared data item Y. The database servers cannot grant two
write locks on the same data item Y to two different mobile hosts (the first write lock was
granted to the anchor transaction T1

A). Furthermore, the conflict awareness sets YCA can
also be inconsistent, and, therefore, must be reconciled.

Before presenting the synchronization done for the anchor transactions, we recap some
important results of the previous stages.

At the database servers:

• The anchor transaction Ti
A of mobile host MHi holds the set of granted locks, i.e.,

Ti
A holds GW

i
GR

i
G
i LLL ∪= ∧ ∅=∩ GW

i
GR

i LL , where:
GR

iL is the read lock set of the granted read data set GR
iD

 GW
iL is the write lock set of the granted write data set GW

iD
• For each cached data item X, there is associated conflict awareness set XCA which

records the read-write or write-read conflicts. The conflict awareness records can
represent either passive or active conflicts.

At a disconnected mobile host MHi:

• The granted lock set GRW
i

GRR
i

GR
i LLL ∪= may be modified due to the mobile sharing

data operations, i.e., sharing data states and sharing data status. Therefore, the
Li

GR lock set may be inconsistent with the Li
G lock set held by the anchor

transaction Ti
A.

• For each cached data item X, the associated conflict awareness set XCA may be
modified. Therefore, the conflict awareness records of data item X may be
inconsistent with the ones held by the anchor transaction Ti

A.

Based on any differences between the two lock sets GW

i
GR

i
G
i LLL ∪= and GRW

i
GRR

i
GR
i LLL ∪= , the

anchor transaction will request additional read and/or write locks from the database
servers to match the read and/or write locks that are imported by the local transactions at
a mobile host during the mobile data sharing stage. The anchor transaction will also
release locks that have been delegated during the mobile data sharing stage.

An anchor transaction Ti

A will carry out the following operations:
• Requesting an additional read lock set =AR

iL GR
i

GRR
i LL \ ; and an additional write lock

set =AW
iL GW

i
GRW

i LL \ .
• Releasing the delegated read lock set =DR

iL GRR
i

GR
i LL \ ; and the delegated write lock

set =DW
iL GRW

i
GW

i LL \ .

As an example, from the data hoarding stage an anchor transaction Ti

A holds a granted
read lock set GR

iL },{ RR ba= and a granted write lock set GW
iL },{ WW dc= . When a mobile host

MHi is disconnected from the database servers, it imports a read lock eR on data item e
and delegates the read lock bR on data item b, i.e., GRR

iL { }RR ea ,= . The mobile host MHi

 197

also imports a write lock fW on data item f and delegates the write lock dW on data item d,
i.e., GRW

iL { }WW fc ,= .

The additional read lock and write lock sets are:

=AR
iL GR

i
GRR

i LL \ }{},{\},{ RRRRR ebaea ==
=AW

iL GW
i

GRW
i LL \ }{},{\},{ WWWWW fdcfc ==

The delegated read lock and write lock sets are:
 =DR

iL GRR
i

GR
i LL \ }{},{\},{ RRRRR beaba ==

 =DW
iL GRW

i
GW

i LL \ }{},{\},{ WWWWW dfcdc ==

The algorithm for synchronization of locks and conflict awareness records held by the
anchor transaction Ti

A is presented in Figure 6.36.

Figure 6.36: Lock and conflict awareness synchronization

The lock and conflict awareness synchronization algorithm of the anchor transaction

A
iT of the mobile host MHi is explained as follows:

(1) Additional read locks are the results of (1) importing data values from delegator

transactions, i.e., sharing data states; and (2) importing read locks from delegator
transactions, i.e., sharing data status. The anchor transaction Ti

A will request the
additional read locks from the database servers. If there is any conflict, the conflict
awareness records will be used so that the database servers will know about the

(1) For each additionally needed read lock XR
 Request the read lock XR with the current caching mode
 If the read lock XR is granted

Add XR to the granted read lock set, i.e., }{ R
GR

i
GR

i XLL ∪=
 If there are any new write-read conflicts

 Add these write-read conflicts to the current conflict awareness set XCA

(2) For each additionally needed write lock XW
 Request the write lock XW with the current caching mode

 If the write lock XW is granted
 Add XW to the granted write lock set, i.e., }{ W

GW
i

GW
i XLL ∪=

If there are any new read-write conflicts
 Add these read-write conflicts to the current conflict awareness set XCA

(3) For each delegated read lock YR or write lock YW on Y

 Release the lock on Y
 If there is a conflict awareness record CAi ∈YCA

Notify the corresponding anchor transactions Tj
A about CAi so that

the conflict awareness record CAi will be disposed of

 198

delegator transactions that have shared data. For example, a conflict awareness record
YW(T1

1,status) indicates that the write lock YW on data item Y has been delegated by
the delegator transaction T1

1 at the mobile host MH1. If there is an anchor transaction
Tj

A that holds a conflicting write offline lock, the anchor transaction Ti
A will develop

an additional write-read conflict with the anchor transaction Tj
A. A corresponding

conflict awareness record is added to the current conflict awareness set YCA (which is
associated with the cached data Y in the local workspace at the mobile host MHi).

(2) A procedure similar to the one in (1) is carried out for additional write locks on behalf

of anchor transaction Ti
A. There may be a write-write locks conflict between two

anchor transactions Ti
A and Tj

A (as illustrated in Figure 6.35). In accordance with the
conflict awareness records of the cached data item (that includes the identification of
the delegator transaction), the database servers will grant the write lock to the anchor
transaction Ti

A and send notification to the anchor transaction Tj
A to release its write

lock on the shared data item. When the anchor transaction Tj
A receives the release

lock message, it will mark the lock as a delegated lock.

(3) For those read and/or write locks that have been delegated to other mobile hosts, the

anchor transaction will release those locks. The released locks will make the
corresponding data items available to other transactions, i.e., reducing blocking of
transactions. If there is any conflict awareness associated with the data items, the
anchor transaction Ti

A will notify the corresponding anchor transaction Tj
A about it.

The conflict awareness record held by anchor transaction Tj
A will be removed via the

method RemoveConflict(shared_data,conflict_transaction) defined in Section 6.3.4.

After the locks and conflict awareness records held by an anchor transaction have been
synchronized, the corresponding locally committed transactions Ti

k in the
LocalCommitted (LCi) set will be integrated to the global workspace. From this time on,
all the locally committed transactions Ti

k will be considered as online transactions at the
database servers.

6.6.3 Checking transaction dependencies and execution constraints

For each transaction in the LocalCommitted (LCi) set of the mobile host MHi, the
integration process includes the following two steps: (1) transaction dependencies are
checked; and (2) execution constraints are checked.

The following discussion will address each of these steps in detail.

Step 1: Transaction dependencies of locally committed transactions are checked.

The checking of transaction dependencies is only applied for those transactions that hold
abort-dependencies or multiple-abort-dependencies with other transactions. For those
transactions that do not hold any abort dependency, this step is not needed in their
integration processes. The algorithm for checking the abort dependencies of a locally

 199

committed transaction Ti
k, whose final state depends on the final state of a delegator

transaction Tj
Dor, is illustrated in Figure 6.37 and presented in Figure 6.38.

Figure 6.37: Checking trans. dependencies of each locally committed transaction

Figure 6.38: Verifying transaction dependencies of a locally committed transaction

(1) For each abort-dependency (Tj
Dor AD Ti

k)
 If Tj

Dor is in the GlobalAbortedDelegator set, i.e., Tj
Dor∈GAD

 Abort Ti
k

 If Ti
k is a delegator transaction
Add Ti

k to the GlobalAbortedDelegator set, i.e., GAD = GAD ∪ {Ti
k}

 Else If Tj
Dor is not in the GlobalCommitted set, i.e., Tj

Dor ∉ GC
 Add Ti

k to the PendingCommit set, i.e., PC = PC ∪ {Ti
k}

(2) For each multiple-abort-dependency (ℑi MD Ti

k)
 If Tj

Dor is in the ℑI set and Tj
Dor is in the GlobalAbortedDelegator set,

 i.e., (Tj
Dor∈ℑI) ∧ (Tj

Dor∈GAD)
 Mark Tj

Dor as an aborted transaction in ℑi

 If all transactions in ℑi have aborted, i.e., ∀Tm∈ℑi , Tm ∈GAD
 Abort Ti

k

 If Ti
k is a delegator transaction

 Add Ti
k to the GlobalAbortedDelegator set, i.e., GAD = GAD ∪ {Ti

k}
 Else If Tj

Dor is in the ℑi set and Tj
Dor is not in the GlobalCommitted set,

 i.e., (Tj
Dor∈ℑi) ∧ (Tj

Dor∉GC)
 Add Ti

k to the PendingCommit set, i.e., PC = PC ∪ {Ti
k}

 200

The details of the algorithm to verify the transaction dependencies - where the two parts
are mutually exclusive, is explained as follows:

(1) For each abort-dependency between the locally committed transaction Ti

k and a
delegator transaction Tj

Dor, if the delegator transaction Tj
Dor has aborted, the

transaction Ti
k must abort too. Otherwise, if the delegator transaction Tj

Dor has not
reached the transaction integration stage, the locally committed transaction Ti

k will be
added to the PC set. In this case, the abort-dependency will be re-evaluated when the
termination state of the delegator transaction Tj

Dor is known (see point (2) in Figure
6.33).

(2) For each multiple-abort-dependency, and for each corresponding delegator

transaction Tj
Dor, if the delegator transaction Tj

Dor has aborted, mark Tj
Dor as an

aborted transaction. If all the corresponding delegator transactions have aborted, the
transaction Ti

k aborts too. Otherwise, if a delegator transaction Tj
Dor has not reached

the transaction integration stage yet, the locally committed transaction Ti
k will be

added to the PC set. In this case, the multiple-abort-dependency will be re-evaluated
when the termination state of the delegator transaction Tj

Dor is known (see point (3) in
Figure 6.33).

Step 2: Execution constraints of locally committed transactions are checked.

Those locally committed transactions that have passed the transaction dependencies
check (i.e., step 1) will enter the final commit process. During this process, the execution
constraints among transactions will be evaluated. To recap, a locally committed
transaction that operates on non-constraint cached data will be allowed to finally commit
at the database servers. However, this transaction must synchronize itself with
transactions with which it conflicts passively. On the other hand, a local transaction that
operates on constraint cached data, will be validated against other transactions based on
the execution constraints (see Section 6.5.3). If finally committing a locally committed
transaction causes a non-serializable schedule, the transaction will be aborted. The
algorithm for finally committing a locally committed transaction Ti

k that only accesses
non-constraint cached data (in the local workspace at the mobile host MHi) is presented
in Figure 6.39.

This final commit process of a locally committed transaction Ti

k that only accesses non-
constraint cached data is explained as follows:

(1) If there are passive conflicts - which is the only option in this case - related to a

standard transaction Tj
l, which is carried out at the mobile host MHj and has

committed in the global workspace, the execution constraints between transactions
Ti

k and Tj
l will be determined based on Rules 1 and 2 in Section 6.5.3 and evaluated.

If transactions Ti
k and Tj

l end up being non-serializable, a notification will be sent to
transaction manager so that it can be handled separately, e.g., by compensating Tj

l
which must be a transaction accessing constraint cached data. After this, transaction
Ti

k commits and is added to the GC set.

 201

(2) All anchor transactions Tj
A that conflict passively - once more the only option in this

case - with Ti
k will be notified about the commit of transaction Ti

k. Each such anchor
transaction Tj

A will update its conflict awareness record related to the shared data so
that the local transactions Tj

l at mobile host MHj will know about the conflict with Ti
k

when the mobile host MHj reconnects to the database servers. This is done via the
method ModifyConflict (shared_data, anchor_transaction, new_conflict_transaction) defined
in Section 6.3.4.

Figure 6.39: Committing transactions accessing non-constraint cached data

The algorithm for finally committing a locally committed transaction Ti

k that accesses
constraint cached data (in the local workspace at the mobile host MHi) is presented in
Figure 6.40.

This final commit process of a locally committed transaction Ti

k that accesses constraint
cached data - where we may have both active and passive conflicts, is explained as
follows:

(1) This concerns the active conflicts - of which there must be at least one. If the

checking ends up with a non-serializable result, one of the transactions Tj
l and Ti

k
must be aborted. If Tj

l is alive, we have to make a choice between it and Ti
k - which

one depends on the policy to be used in a specific system. But if Tj
l has commited, we

have no choice but to select Ti
k. Finally, if Tj

l has aborted, the non-serializability
check will have ended void. If the aborted transaction Tm is a delegator transaction, it
will be added to the GAD set so that related pending transactions Tp in the PC set may
be re-evaluated.

(2) This concerns the situations where there also are passive conflicts - which is not a

necessity. Hence the same algorithm as in Figure 6.39 is carried out - except that in
this case anchor transactions could conflict both actively and passively with Ti

k.

When all the locally committed transactions in the LocalCommitted (LCi) set have been
integrated at the database servers, the anchor transaction Ti

A of the mobile host MHi will
release all the remaining locks and will then commit.

(1) If there are passive conflicts associated with transaction Ti
k

 For all standard transactions Tj
l that conflict passively with Ti

k
 Check the execution constraints
 If Tj

l and Ti
k are non-serializable

 Notify the transaction manager for manual handling
Commit Ti

k
 Add Ti

k to the GlobalCommitted set

(2) For all anchor transactions Tj

A that conflict passively with Ti
k

 Notify Tj
A about the commit of Ti

k

 202

Figure 6.40: Committing transactions accessing constraint cached data

6.7 Managing dynamic transaction structure and transaction mobility

In this section, we discuss advanced transaction operations that support: (1) dynamic
restructuring of transactions, (2) mobility of transactions.

6.7.1 Supporting dynamic restructuring of transactions

The standard transactions will initiate shared transactions when there is a need of mobile
data sharing. As discussed in Section 6.4.2, the mobile transaction processing system
provides two different methods to generate shared transactions: (1) as a merged
transaction, and (2) as a sub-transaction. These two methods are discussed below:

• MergeImportTrans(TDee, TI). This operation is applied for a flat delegatee

transaction. The operation allows a delegatee transaction TDee to initiate a new import
transaction TI that will be merged into the delegatee transaction when the import
transaction has obtained the needed data items.

• SubImportTrans(TDee, TI). This operation is applied for a nested delegatee

transaction. The operation allows a delegatee transaction TDee to initiate a new import
transaction TI that will be adopted as a sub-transaction of the delegatee transaction

(1) For all transactions Tj
l that represent active conflicts with transaction Ti

k
 Check the execution constraints
 If Tj

l andTi
k are non-serializable

 If Tj
l is Alive

 Choose Tm = Tj
l | Ti

k
 Else

Set Tm = Ti
k

 Abort Tm
 If Tm is a delegator transaction
 Add Tm to the GlobalAbortedDelegator set
 If Tm = Ti

k

 Exit

(2) If there are passive conflicts associated with transaction Ti

k
 For all standard transactions Tj

l that conflict passively with Ti
k

 Check the execution constraints
 If Tj

l and Ti
k are non-serializable

 Notify the transaction manager for manual handling
 Commit Ti

k
 Add Ti

k to the GlobalCommitted set

 For all anchor transactions Tj

A that conflict actively or passively with Ti
k

 Notify Tj
A about the commit of Ti

k

 203

when the import transaction has obtained the needed data items. For example, when a
parent delegatee transaction wants to import shared data, it will initiate a new sub-
shared transaction that imports shared data for the parent transaction.

6.7.2 Supporting mobility of transactions

The execution of mobile transactions at a mobile host depends on the mobility behavior
of the mobile host (see Section 3.5). The mobile host can move to different mobile cells
or be involved in many mobile affiliation workgroups during its operation. Therefore the
standard transactions will also move from one mobile sharing workspace to another. In
Section 5.7.3, we have discussed how the anchor transaction and the shared transactions
can support the mobility of the standard transactions as the mobile host moves. To recap,
the anchor transaction can support the mobility of transactions across mobile cells, while
the shared transactions support the mobility of transactions across mobile sharing
workspaces.

The following methods are provided to handle the mobility of transactions:

• MoveAnchorTrans(MSSi, MSSj) moves the anchor transaction Ti

A of the
mobile host MHi from the old mobile support station MSSi to the new mobile support
station MSSj. This means that the mobile host MHi currently stays in the mobile cell
managed by the mobile support station MSSj and connects to the mobile support
station MSSj. This movement of the anchor transaction is initiated by the mobile host.

• SplitSharedTrans(Tik.S1, Tik.S2)splits the current shared transaction Ti

k.S1
(which can be either an export or import transaction) of a standard transaction Ti

k into
two sub-shared transactions Ti

k.S1 and Ti
k.S2. This happens when the mobile host

moves from one mobile affiliation workgroup to another. The first sub-shared
transaction Ti

k.S1 can continue in the old mobile sharing workspace while the second
sub-shared transaction Ti

k.S2 will operate in the new mobile sharing workspace.

• JoinSharedTrans(Tik.S1, Tik.S2) joins the shared transaction Ti

k.S1 with the
shared transaction Ti

k.S2. This happens when the mobile host moves back to a previous
mobile affiliation workgroup, i.e., the standard transaction joins the previous mobile
sharing workspace. Then the previous split-shared transaction Ti

k.S1 that is executing
in the old mobile sharing workspace, is joined with the on-going sub-shared
transaction Ti

k.S2.

6.8 Conclusions

In this chapter, we have formalized our mobile transaction processing system. The
execution of mobile transactions can be divided into four stages: the data hoarding, the
mobile data sharing, the disconnected transaction processing, and the transaction
integration. In the data hoarding stage, the mobile transaction processing system supports
two different conflict modes for dealing with offline transactions: read-write conflict and
write-read conflict. The conflicts among transactions at different mobile hosts are

 204

handled with the support of anchor transactions that play roles as proxy transactions for
local transactions at the mobile hosts.

When the mobile hosts are disconnected from the database servers, local transactions at
mobile hosts are carried out based on the cached data in the local workspaces. At the
same time, the transactions at different mobile hosts can share their cached data with the
support of export and import transactions through the export-import repository. This
mobile data sharing allows mobile transactions to share data in an asynchronous manner
and without any support from the database servers. Therefore, the mobile data sharing
increases data availability in mobile environments. When the mobile host reconnects to
the database servers, the transaction integration processes are performed. In this stage, the
data that has been manipulated during disconnected periods is integrated to ensure global
data consistency.

 205

PART III

IMPLEMENTATION and EVALUATION

 206

 207

Chapter 7

Implementation of the Mobile
Transaction Processing System

In this chapter, we discuss the abstract architecture of the MOWAHS mobile transaction
processing system. Based on this abstract architecture, we have developed the MOWAHS
prototype architecture that acts as a proof of concept for our theoretical research. We
have chosen two important system components of the MOWAHS prototype architecture,
the mobile locking system and the mobile data sharing system, for prototype designing
and implementation.

7.1 Introduction

In part two of this thesis, we have presented and formalized the mobile transaction
processing system that focuses on supporting mobile data sharing among mobile
transactions at different mobile hosts. In this chapter, we shift our focus from theoretical
research to empirical work. We will discuss how the mobile transaction processing
system is designed, implemented and deployed as a real mobile transaction processing
system.

The main strategy of our practical work is that system components of the MOWAHS
mobile transaction processing system must be designed as added components. This
means that system components of the MOWAHS mobile transaction processing system
can be built and deployed besides the existing transaction processing or database systems.
To achieve this, we first design an abstract architecture for the MOWAHS mobile
transaction processing system. Based on this abstract architecture, we have then
developed a prototype architecture that acts as a proof of concept for our theoretical
research. Due to the constraints of time and resources of the MOWAHS project, the
current MOWAHS mobile transaction processing system is not completely implemented.
However, we have successfully designed, implemented and tested two important system
components of the mobile transaction processing system: (1) the mobile locking model,
which minimizes blocking of mobile transaction processes in mobile environments; and
(2) the mobile sharing data system, which supports data sharing among transactions at
different mobile hosts.

 208

The organization of this chapter is as follows. Section 7.2 describes the overall abstract
architecture of the MOWAHS mobile transaction processing system. Based on this
abstract architecture, the MOWAHS prototype architecture is presented in Section 7.3.
The design and implementation of the mobile locking system and the mobile data sharing
system are presented in Section 7.4 and 7.5 respectively. Section 7.6 summaries the
development of the MOWAHS mobile transaction processing system.

7.2 Abstract architecture of the MOWAHS system

This section will discuss the abstract architecture of the MOWAHS mobile transaction
processing system. An overview of the MOWAHS system is presented in Figure 7.1.

Transaction specification
environment

Transaction processing
environment

Data management
environment

Mobile collaboration
environment

Mobile transaction applications

Structural
specification

Execution
specification

Data access
specification

Transactions

User Interface/XML format

XML parser

Mobility manager

Cache manager Logging services

Mobile workgroup
manager

Mobile sharing
workspace manager

Mobile shared data
manager

Offline transaction
processing

Online transaction
processing

Shared data/
transaction logs

Collaborative
information

Executable format

Figure 7.1: MOWAHS system architecture

The MOWAHS system architecture consists of four different layers: the transaction
specification environment, the transaction processing environment, the data management
environment, and the mobile collaboration environment. These four layers realize all the
system components of our theoretical research results. For example, the mobile

 209

collaboration environment realizes the mobile affiliation workgroups and the mobile
sharing workspaces, while the data management environment enforces the data
consistency in local and global workspaces.

The following sections describe the features and functionalities of each of the
environment layers.

7.2.1 Transaction specification environment

The transaction specification environment provides an interface for the client applications
to submit transactions in mobile environments. The specification information of a mobile
transaction is described in an XML document [HM04] and includes the structure,
execution and data access characteristics of submitted transactions.

Structural specification. The structural specification provides an interface to describe the
structure of transactions. The structure of a transaction specifies (1) if the transaction is a
flat or nested transaction, (2) the type of the transaction, i.e., delegator, delegatee, export
or import transaction. If a transaction has a nested structure, the type of each sub-
transaction must be specified. For example, a submitted transaction Ti

k has a nested
structure that includes two sub-transactions Ti

k.1 and Ti
k.2, where Ti

k.1 is a delegator
transaction while Ti

k.2 is a delegatee transaction.

Execution specification. The execution specification provides an interface to describe the
execution characteristics of a transaction, i.e., how the transaction is to be carried out. A
transaction can be carried out as either an online transaction or an offline transaction (to
recap, the online transactions are transactions that are executed at the fixed database
servers, and the offline transactions are those transactions that are carried out and
managed by the mobile transaction managers at disconnected mobile hosts). If a
transaction is executed as an offline transaction, an anchor transaction will additionally
be specified. An execution specification also describes the dependencies among
transactions, i.e., abort-dependencies, multiple-abort-dependencies or commit-
dependencies. For example, a client application from the mobile host MHi submits a
delegatee transaction Ti

k that will be carried out as an offline transaction and holds an
abort-dependency (Tj

l AD Ti
k) with delegator transaction Tj

l.

Data access specification. The data access specification provides an interface to describe
what shared data will be accessed by a submitted transaction. The accessed data set is
exclusively either read-only or updating. Based on the data access specification, the cache
manager (in the data management environment - see Section 7.2.3) will try to obtain the
needed shared data from the database server (during the data hoarding stage) or from
other mobile hosts (through the mobile data sharing stage).

The transaction specification (i.e., in an XML document) will be parsed through an XML
parser into executable representations, for example SQL queries, before being transferred
to the transaction processing environment.

 210

7.2.2 Transaction processing environment

The transaction processing environment provides the facilities that carry out the
execution of the submitted transactions in accordance with the transaction specification.

Offline transaction processing. The responsibility of the offline transaction component
includes two parts. First, the offline transaction processing administrates the execution of
offline transactions in a local workspace at a mobile host while the mobile host is
disconnected from the database server. The transaction manager at the disconnected
mobile host will make use of the two phase locking protocol (2PL) to ensure data
consistency in the local workspace, i.e., by a serializable execution schedule of local
transactions. Second, the offline transaction processing controls the execution of shared
transactions, i.e., export and import transactions, which carry out the mobile data sharing
among standard transactions through an export-import repository.

Online transaction processing. The online transaction processing component handles the
execution of online transactions that include both normal database transactions and
anchor transactions. The online transaction processing must control the potential conflicts
among transactions due to conflicting cache modes (that are read-write and write-read).
The online transaction processing component also supports the integration of local
transactions, i.e., when the locally committed transactions at mobile hosts are integrated
into the database server.

Mobility manager. The mobility manager provides the facilities to control the movement
of transactions in accordance with the movement of mobile hosts. This means that the
mobility manager must handle not only the movement of anchor transactions, but also the
re-structuring of shared transactions.

7.2.3 Data management environment

The data management environment provides the facilities to support: (1) the management
of mobile shared data in a mobile sharing workspace; (2) the cache manager for
supporting the data hoarding stage, and (3) the logging service for mobile transactions.

Mobile shared data manager. The mobile shared data manager administrates shared data
in the mobile sharing workspaces. While being disconnected from the database servers,
the mobile data sharing mechanism supports transactions at the mobile hosts to share data
through the mobile sharing workspace (i.e., the export-import repository). Therefore, the
mobile shared data manager must provide all the functionalities related to the shared data
items that are currently being stored in the mobile sharing workspace (see Table 5.10).

Cache manager. When a mobile host is carrying out data hoarding operations (to support
disconnected transaction processing), the data management environment must ensure that
cached data in the local workspace is fully consistent. If there is any conflict due to the
conflicting cache modes (i.e., read-write conflict and write-read conflict), the cache
manager must ensure that the involved transactions are fully aware of that. Moreover, the

 211

cache manger must also manage shared data in the local workspace which can be
modified due to the mobile data sharing among standard transactions (i.e., during the
mobile data sharing stage – see Section 6.4)

Logging services. The data management environment must also provide a logging service
to support the mobile transaction processing system to record the asynchronous
interaction and integration of mobile transactions. For example, records of shared data
and shared transactions must be kept in order to support the transaction integration stage.
The mobile transaction processing system must also be supported to keep track of the
abortion and commitment of delegator and delegatee transactions.

7.2.4 Mobile collaboration environment

The mobile collaboration environment provides the facilities that support the
management of the mobile affiliation workgroups and mobile sharing workspaces.

Mobile workgroup manager. The mobile workgroup manager provides necessary services
that support a mobile host to create, join or leave a mobile affiliation workgroup. The
mobile host can create a new mobile affiliation workgroup, and in this case, the mobile
workgroup manager must ensure that the identification of the new mobile workgroup
does not conflict with other existing mobile workgroups. When a mobile host joins a new
workgroup or leaves the current workgroup, the mobile workgroup manager ensures that
the collaborative activities of the mobile workgroup continue normally, i.e., without any
disruption. The mobile workgroup manager also provides communication functionalities
so that each member of the mobile workgroup can notify other members about its
membership status. For example, a mobile host may announce to other members the
approximate time that it intends to be with the mobile affiliation workgroup.

Mobile sharing workspace manager. The mobile sharing workspace manager provides a
directory service to support management of the mobile sharing workspace. The directory
service will handle all the management operations related to the physical distribution of
the mobile sharing workspace (see Table 5.9), for example to create a new mobile sharing
workspace or manage the capacity of the mobile sharing workspace.

7.3 Architecture of the MOWAHS prototype

The MOWAHS prototype architecture consists of two main parts: (1) the mobile
transaction support system that is designed for operating at the mobile host, and (2) the
non-mobile transaction support system that is designed for supporting transaction
processing at the fixed hosts. Figure 7.2 presents the system components of a mobile host
and a fixed host.

At a fixed host, the Global transaction manager (Global TM) is responsible for managing
the submitted online and offline transactions from the mobile hosts. The lock requests
from these online and offline transactions are handled with the support of the Global lock

 212

manager. The Global log manager provides a service to handle the abortion and
commitment of the local transactions in the global workspace.

Fixed hostMobile host

Global TM

Global lock
manager

Global log
manager

DBMSMobile TM

Local lock
manager

Local log
manager

Data sharing
manager

Cache
manager

Workgroup
manager

Figure 7.2: Architecture of the MOWAHS prototype

At a mobile host, the Mobile transaction manager (Mobile TM) takes responsibility for
managing the local transactions at the mobile host. The Local lock manger at the mobile
host manages the local lock requests of local transactions. When a local transaction is
locally committed, the Local log manger provides a logging service to ensure that the
committed results will not be lost. These commit log records will be used to support the
transaction integration processes.

The Cache manager (with the support of the Local lock manager) at the mobile host
manages the shared data that is obtained during the data hoarding and mobile data sharing
stages. The Workgroup manager and Data sharing manager have responsibility for
supporting the mobile data sharing between transactions at different mobile hosts.

Compared to the abstract architecture (see Figure 7.1), the Global and Mobile transaction
managers provide interfaces for client applications to specify and submit transactions,
i.e., corresponding to the transaction specification environment. The Global transaction
manager (with the support of the Global lock and log managers) also takes responsibility
to support online transaction processing and transaction mobility; and the Mobile
transaction manager (with the support of the Local lock and log managers) supports
offline transaction processing. The Local and Global log managers, together with the
Cache and Data sharing managers, constitute the data management environments.
Finally, the Workgroup manager controls to the features of the mobile collaborative
environment.

Due to the constraint of time and resources, the MOWAHS prototype architecture is not
fully implemented. Anyway, there are several related sub-system prototypes that have
been developed and may be co-deployed with our MOWAHS system prototype. For
example, mobile workgroup management in mobile environments has been designed and
implemented in several related research works [BCM05, Liu+05].

 213

We have successfully designed, implemented and tested two important components of the
MOWAHS mobile transaction processing system. The two selected components are: the
mobile locking system and the mobile data sharing system (see Figure 7.3). In the
following Sections 7.4 and 7.5, we describe our design and implementation of these two
components.

Figure 7.3: The system components selected for implementation

7.4 The mobile locking system

In this section, we describe the design and implementation of the mobile locking model
that supports the mobile transaction processing system to cope with disconnections and
support online and offline transactions.

7.4.1 The design of the mobile locking system

The mobile locking system consists of two parts: the lock modes and the lock sharing.

Lock modes

One of the challenging issues with mobile databases is that a shared data item could be
locked at a disconnected mobile host for long periods. In addition, the execution of
mobile transactions can vary due to the constraints of mobile resources, for example
inducing longer processing time. This could also delay the execution of other
transactions. To deal with this problem, we introduce two different types of lock: offline
locks and online locks. Offline locks include read offline and write offline locks that
support offline transactions. Online locks are standard read and write locks and are used
for online transactions.

The compatibility matrix of all the locks is presented in Table 7.1. In the table, the lock
on data item X is denoted Xlock-mode, i.e., the four locking modes are Xroff, Xwoff, Xron and
Xwon. A “Y” in the table indicates that locks are compatible, i.e., the new lock request can
be granted. Otherwise the new lock request is rejected, i.e., “N”.

Note that the mobile lock matrix is an asymmetric table due to the fact that a write online
lock is not compatible with any other locks. In other words, if an online transaction holds

 214

a write online lock on a shared data item, no other transaction will be allowed to access
this shared data item. However, a write online lock request on a shared data item is
allowed even when there is an offline transaction that holds a read offline lock on the
shared data item. This does not lead to any inconsistency problem because the offline
transaction is reading a consistent data.

Table 7.1: Lock matrix of mobile databases

Transaction Ti holds lock
Xroff Xron Xwoff Xwon

Xroff Y Y Y N
Xron Y Y Y N
Xwoff Y Y N N

Transaction Tj
requests lock

Xwon Y N N N

Read locks (i.e., read online and read offline locks) are always compatible to each other.
A read offline or online lock request on a shared data item can be granted when there is a
write offline lock on the same data item. This means that many transactions can request a
read lock on a shared data item which is being modified by an offline transaction at a
disconnected mobile host. This way, the system throughput may be increased in case a
shared data item is write offline locked at a mobile host for a long disconnected period.
On the other hand, a write offline lock request on a data item can also be granted even
when there are read online and offline locks on the data item. This can be done because
the value of data item is not immediately updated at the database servers.

The database servers will keep two lock logs called active and pending lock logs. The
active lock log keeps track of the current active online lock on data items. The pending
lock log stores the current locks on data items whose values are not be modified
immediately at the database servers, i.e., with write offline locks. To support both
synchronous and asynchronous database operations, the locking model will uphold the
following four rules.

• Rule 1: If both Xron and Xroff exist, then the Xron is an active lock while the Xroff is a

pending lock. This means that any write online lock requests on the shared data item
X will be rejected. When the online read operation is completed, the Xroff lock is
changed to the active lock.

• Rule 2: If an Xron exists and mobile host MHj requests an Xwoff, the Xwoff is granted as a

pending lock. The Xron lock remains active. When the online read operation is
completed, the Xwoff lock is moved to the active lock log at the database servers.

The reasons for using rule 2 are two fold. First, the value of the shared data is not
updated immediately at the database servers. Therefore, on-going operations that read
data item X should be allowed to continue executing. Furthermore, offline
transactions that read the shared data item X can be scheduled before the updating
transaction [HAA02]. Second, an updating transaction is first performed offline in the

 215

local workspace of a disconnected mobile host, and data will remain consistent if no
other transaction is allowed to modify the data item.

• Rule 3: If an Xwoff exists and mobile host MHj requests an Xron or an Xroff lock, the Xron

is granted as an active lock, while the Xroff is granted as a pending lock. The un-
modified data value of X is returned for the read operation. If the Xron is granted, then
the Xwoff lock is changed to a pending lock. When the read operation is completed, the
Xwoff lock is changed back to an active lock.

Rule 3 allows other read operations to be executed immediately. On-going
transactions that read the shared data item after the write offline lock will be
scheduled before the updating transaction. Moreover, disconnection periods are
normally unpredictable and could be long lasting; therefore this rule benefits read
only transactions.

• Rule 4: If an Xroff is an existing active lock and mobile host MHj requests an Xwon or

an Xwoff, the Xwon or Xwoff lock is granted as an active lock. The Xroff lock is changed to
a pending lock.

Rule 4 allows an updating transaction to be carried out immediately. On-going offline
transactions that read the shared data item will be scheduled before the updating
transaction. The database server will provide a logging service to record the
modifications on shared data to ensure that the offline transactions will be notified
about such changes when the mobile host reconnects.

The mobile locking model is able to cope with unplanned disconnections. Note that
locking modes at mobile hosts and database servers might be different. For example, an
offline transaction at a disconnected mobile host can hold a read offline lock on a shared
data item, while at the database servers the lock applied on this shared data item can be
either an active write offline lock or an active read online lock or a write online lock.

Lock sharing

In this section, we describe the lock sharing operations that allow a transaction to share
locks with other transactions. There are three types of lock sharing operations: upgrade,
downgrade and delegate. Figure 8.9 illustrates the relationships among locks.

An upgrade lock request is either a take-over or a self-upgrade lock. This can happen
when a mobile host changes its network status from disconnected to connected. When a
mobile host holds a write offline lock on data item X and its network connectivity state
changes from disconnected to connected, a write offline lock will be converted to the
normal write online lock on item X. All other transaction that read the data item X might
be forced to abort [LNR04]. When a mobile host reconnects to the database server, a read
offline lock on item X can be converted to a read online lock if there is not any online
transaction that holds a write online lock on item X. If there is an online transaction that is
modifying this item X, the conversion will be delayed. If a transaction holds a read offline
lock on a shared data item and a write offline lock on the same data item is delegated by a

 216

(delegator) transaction, the transaction can obtain the write offline lock to upgrade its
accessing level, i.e., from read offline to write offline.

Figure 7.4: Lock sharing operations

A mobile host can carry out a downgrade operation to decrease the level of a lock on a
data item. This can happen when a mobile host changes its network status from
connected to disconnected. When mobile host MHi disconnects from the database server
as planned or due to a sudden disconnection, all read online locks held by mobile host
MHj are downgraded to read offline locks and all write online locks are converted to
write offline locks. The write offline lock ensures that offline transactions at the
disconnected mobile host retain the right to update the data item. Furthermore,
downgrading online to offline locks avoids the problem of long lasting locks due to
disconnections by allowing other transactions to gain access to shared data, for example
read online or write offline on shared data.

Furthermore, when a transaction holds a write offline lock on data item X and an update
operation is not carried out as planned after all, the transaction can either downgrade or
delegate the write offline lock on item X to another transaction. This gives other
transactions a chance to carry out their updating operations on the shared data item.

7.4.2 The implementation of the mobile locking system

In this section, we address the implementation of the mobile locking system. The mobile
locking prototype has been implemented in the Java programming language. The
prototype architecture is presented in Figure 7.5.

Figure 7.5: Mobile locking prototype architecture

 217

The system components of the mobile locking system are described below:

• Client transaction applications. Each client transaction is implemented as a thread

in the system. The client transaction (expressed as an SQL query) can have either an
online or offline status, which means that the transaction will be carried out at the
database servers or the disconnected mobile host respectively. The connectivity state
of a mobile host can dynamically change during the execution of a transaction.
Consequently, the state of locks held by each transaction will change in accordance
with the connectivity state of its mobile host.

• Network monitor. For each mobile host, there is a network monitor thread that

monitors the connectivity of the mobile host. When the network connectivity of the
mobile host changes, the network monitor will notify the lock and transaction
mangers so that the states of the corresponding locks at this mobile host will be
changed.

• Transaction manager. The transaction manager creates transaction threads on

demand from client transaction applications. It manages the mapping between a client
and its corresponding transactions. This mapping is essential because the network
monitor only keeps track of the network connectivity of a mobile host, not individual
transactions. The transaction manager manages all the events related to the execution
of the submitted transactions. Furthermore, the transaction manager provides a
method for establishing JDBC-connections and transferring the SQL-queries to the
database servers.

• Lock manager. The lock manger controls the lock requests from the client

transaction applications in accordance with the characteristics of the submitted
transactions, i.e., whether online or offline. The lock manager keeps a lock table
which contains mappings between the locks on shared data and the transactions
holding these locks. Before a lock request is granted, the lock manager checks if there
is any conflicting lock and sets the state of the granted lock as active or pending. The
lock manager also cooperates with the network monitor for managing the lock
changes of the submitted transactions (upgrades, downgrades and delegates).

• The database servers. We use a MySQL database [SM05, Dye05] which has many

built in features that are already implemented, like the online lock modes and the
possibility to switch off the auto-commit functionality. In our implementation, the
MySQL locking model is used without the auto-commit functionality.

7.5 The mobile data sharing system

In this section, we describe the design and implementation of the mobile data sharing
system that supports the mobile transactions at different mobile hosts to share data while
being disconnected from the database servers. The main objective is to increase data
availability in mobile environments. The mobile data sharing system has been designed
and implemented as a master thesis [HB05].

 218

7.5.1 The design and implementation of the mobile data sharing system

The implementation architecture of the mobile data sharing system is presented in Figure
7.6.

Transaction execution
specification

The database servers

JDBC

Transaction execution
manager Export-import repository

XML-
Paser

Figure 7.6: Mobile data sharing prototype architecture

The prototype of the mobile data sharing system only focuses on sharing data states
among transactions. All the components of the mobile data sharing system are described
below:

• Transaction execution specification. The specification of a submitted transaction in

the mobile data sharing system is described by in an XML document. The standard
transactions will have a nested structure, and the shared transactions are initiated and
executed as sub-transactions of these standard nested transactions. Therefore, there
are three types of transactions in the mobile sharing system: the mobile transaction,
the sub-transactions, and the sub-shared transactions. The mobile transaction plays
role as a standard transaction (i.e., delegator or delegatee transaction), the sub-
transactions are the normal sub-transactions in a nested transaction, and the sub-
shared transactions are the shared transactions. The mobile transaction will have the
total control to all of the sub-shared transactions. Consequently, the commitment of
the export and import transactions is carried out within the local workspace and under
control of the standard transaction. Note that this design is not contrasting our mobile
transaction processing system as presented in Part 2. The shared data is still stored at
the mobile sharing workspace. An export transaction can commit in the local
workspace, however, its results are durable only after the delegator transaction has
committed. When an export transaction is partially committed within the scope of the
nested delegator transaction, it will notify the corresponding import transactions. The
export-import repository manager will allow the import transaction to read the shared
data item in the mobile sharing workspace.

• XML-parser. The specification of a submitted transaction is converted into an
internal SQL query representation via an XML parser. We have decided to make use

 219

of the existing XML parser Xerces2 Java Parser6 to support the transformation of
transaction specifications.

• Transaction execution manager. The transaction execution manager takes an SQL

query as input. When an SQL query is received, the transaction execution manger
will submit this to be executed in the database servers (described below) via the
standard JDBC connection. If a shared transaction is received, the transaction
execution manager will carry out the execution of the share transactions via the write()
or read() method of the Java Transaction API.

• Export-import repository. The mobile sharing workspace is designed and

implemented with the Jini and JavaSpace technology [Jini, FHA99]. The mobile
sharing workspace is created by the transaction execution manager when a shared
transaction is initiated by the standard transaction. The mobile sharing workspace is
allocated at one computer due to the limitation of the JavaSpace technology. We will
further discuss the issue related to the mobile sharing workspace in Section 7.5.2.

• The database servers. As mentioned before, we have used a MySQL database which

has many built in features that are already implemented. In this implementation, the
MySQL locking model is used with the standard commit functionality. This does not
contrast with switching off the auto-commit functionality in the mobile locking
system. In the mobile locking system component, the transaction manager manages
both offline and online transactions; therefore, it is possible to integrate both the
mobile data sharing system and the mobile locking system.

The performance of the mobile transaction processing system with the support of the
mobile data sharing system has also been partially tested. The preliminary test results
[RG05], without taking into account the disconnections of mobile hosts from the mobile
affiliation workgroups, have shown a significant improvement in system throughput.

7.5.2 The physical distribution of mobile sharing workspaces

The Jini and JavaSpaces technology is used to construct export-import repositories in
which export and import transactions interact with each other. In relation to the design
and implementation of an export-import repository, there are several engineering
challenges.

The first issue concerns the allocation of the mobile sharing workspace. In our mobile
transaction processing system, the export-import repository is a truly distributed mobile
sharing workspace, i.e., the mobile sharing workspace is distributed over and allocated on
several mobile computing hosts (see Figure 5.7(d)). However, the JavaSpaces technology
is not designed to fully support the physically distribution of a mobile sharing workspace.
The JavaSpaces technology only supports one physical location for a mobile sharing
space, i.e., the mobile sharing workspace is entirely located at and bound to a mobile

6 http://xml.apache.org/xerces2-j/

 220

computing host that provides data sharing services (see Figure 5.7(a, b and c)). Therefore,
JavaSpaces can not fully support the design and implementation of our export-import
repository. Moreover, a single physical location can also cause bottleneck problems in
terms of accessing shared data and single points of failure. Our current solution is to
consider a group of several individual sharing workspaces, which are located at several
different mobile hosts, as one single mobile sharing workspace. Thus, in a mobile
affiliation workgroup, there is a group of mobile sharing workspaces where each of
which belongs to one individual mobile host. However, it is not necessary that every
mobile host in the mobile affiliation workgroup must possess a mobile sharing
workspace.

The second issue concerns the naming service. Service discovery is one of the most
important features of the Jini and JavaSpaces technology, and it is relying on the support
of a naming service. A mobile host will use the discovery service to detect the existing
mobile affiliation workgroup and mobile sharing workspace. The operation of the
discovery service requires the support of a naming service that manages the deployment
of the mobile affiliation workgroup and the export-import repository. The naming service
includes persistent and transient naming services7 (a persistent naming service provides a
permanent naming context of computing hosts, while a transient naming service only
maintains a naming context of computing hosts while it is in active) and is normally
deployed at a non-mobile server. If mobile hosts are disconnected from the non-mobile
naming service provider, it is not possible to apply the discovery service to discover the
mobile affiliation workgroup and mobile sharing workspace. Therefore, in our mobile
transaction processing system, a naming service must also be deployed for each mobile
affiliation workgroup.

The above approach can also be applied to support management of the mobile sharing
workspace (that includes management of the physical distribution of the export-import
repository and data management in the export-import repository - see Section 5.6). For
example, a new mobile sharing workspace can be added to the existing group of mobile
sharing workspaces when a mobile host joins the existing mobile workgroup, and a
shared data item can be copied from one mobile sharing workspace to another. However,
there are several disadvantages with this approach. First, a mobile host has to create and
manage its own mobile data sharing workspace; therefore, more mobile resources are
needed. Second, there is a need for an additional management layer that manages the
organization of the individual mobile sharing workspaces and the naming service of the
mobile affiliation workgroups. This may cause extra overhead, for example with setting
up or accessing the export-import repository, with mobile data sharing operations among
transactions at different mobile hosts.

7.6 Summary

In this chapter, we have presented the abstract and prototype architectures of our
MOWAHS mobile transaction processing system. We have successfully designed and

7 http://java.sun.com/j2se/1.4.2/docs/guide/idl/jidlNaming.html

 221

implemented two essential system components: the mobile locking system and the
mobile data sharing system. All the designed functionalities of these two system
components have been successfully tested. Because of the constraint of time and
resources, the other system components of the MOWAHS prototype architecture have not
been implemented yet.

 222

 223

Chapter 8

Discussion and Evaluation

The objective of this chapter is to discuss and to evaluate our research results. First, we
discuss how our mobile transaction processing system takes into account the challenging
characteristics of mobile environments. We compare our research results with related
works. Second, we evaluate how our research results (1) fulfill the requirements of a
mobile transaction processing system, and (2) answer the main research question.

8.1 Discussion

In this section, we first answer the question: How are the mobile environments
characteristics taken into consideration in our mobile transaction processing system? We
compare our research contributions with related research works. And, we discuss
challenging issues in relation to the design and implementation of the export-import
repository.

8.1.1 Dealing with the challenging characteristics of mobile environments

To recap, the three main characteristics of the mobile environments are: the mobility of
mobile hosts, the limitation of wireless networks, and the resource constraints of mobile
devices (see Section 3.2). Our mobile transaction processing system is appropriate for
mobile environments because it takes into consideration all three characteristics of
mobile environments. The following discussion addresses how our mobile transaction
system takes care of these characteristics:

• The mobility of mobile hosts. The general architecture of the mobile transaction

environment requires that: in a mobile cell, in order to either contact other hosts or
access shared data a mobile host must connect to the mobile support station. This
way, the movement of a mobile host can be managed via the identifications of mobile
support stations which the mobile host has connected to. However, if the mobile host
is not able to connect to the mobile support station, it has no other means to cooperate
with other hosts; and the movement of this mobile host may not be manageable. In
our mobile transaction processing system, the mobility of mobile hosts in mobile
environments is taken into account via the concepts of the mobile affiliation
workgroup. The mobile affiliation workgroup takes advantage of the ability of

 224

wireless communication technologies to support collaborative work among mobile
hosts. The mobile host can join either an affiliation workgroup if it can connect to a
fixed host or a mobile affiliation workgroup if it can link up with nearby mobile
hosts. Via the identifications of mobile affiliation workgroups, the movement of
mobile hosts which are not connecting to a mobile support station, can be managed.
Thus, through the concepts of non-mobile and mobile affiliation workgroups, the
mobility of mobile hosts in mobile environments is taken fully into consideration.

• The limitations of wireless networks. The limitations of wireless networks, for

example low bandwidth, short connection periods and frequent disconnections, affect
data availability in mobile environments and curtail collaborative work among mobile
hosts. To cope with the problems, our mobile transaction processing system provides
a flexible mechanism to support data sharing among mobile hosts. Data sharing
processes are separated from the main transaction processes via the support of shared
transactions. The data sharing processes can be divided into a set of smaller and
recoverable export and import transaction processes. Furthermore, the mobile data
sharing mechanism also takes advantage of close range wireless communication
technologies, for example Bluetooth or wireless USB, so that mobile hosts can utilize
their networking capacity. This way, a mobile host, which is not able to connect to
database servers via a wireless LAN, can obtain shared data from other nearby mobile
hosts, i.e., data availability is enhanced. Finally, the export and import transactions
can deal with the disconnection problems by supporting mobile transactions to share
data in an asynchronous manner.

• The resource constraints of computing devices. The resource constraints of mobile

devices, for example limited storage capacity or slow processing speed, have a strong
impact on the performance of transaction processing systems. To deal with the
problems, our mobile transaction processing system provides a dynamic and
reconfigurable mobile sharing workspace, called the export-import repository. The
export-import repository is physically distributed among mobile hosts (which belong
to a mobile affiliation workgroup), and plays the role of an additional workspace
through which mobile hosts can support each other. Transaction processes can share
or save results in the export-import repository; therefore, the problems of limited
storage capacity or failures of mobile hosts can be dealt with. Furthermore, the shared
transactions also support sharing data status among transactions at different mobile
hosts, i.e., transfer control of shared data from one transaction to another. This means
that the mobile transaction processing system can cope with the limited processing
capacity of mobile hosts by distributing transaction processes among mobile and
stationary hosts.

8.1.2 Comparison with related works

In this section, we compare our research results with other related works. To recap, the
main objective of our mobile transaction processing system is to support mobile
collaborative work by enhancing the level of data availability in mobile environments in
which mobile hosts usually are disconnected from the database servers. We achieve this

 225

objective by (1) allowing disconnected mobile hosts to form temporary and dynamic
mobile affiliation workgroups to support their collaborative work, and (2) providing a
mobile data sharing mechanism that supports sharing of data among transactions at
different mobile hosts. The mobile affiliation workgroups are formed based on short
range and peer-to-peer communication technologies. A mobile host, which is
disconnected from the database servers, can establish a communication channel with
nearby mobile hosts and join mobile affiliation workgroups. This way, collaborative
activities among mobile hosts can be carried out without any support from the database
servers. The mobile data sharing among transactions at different mobile hosts is carried
out through export-import repositories with the support of export and import transactions.
Two types of mobile data sharing are supported by the mobile transaction processing
system: sharing data states and sharing data status. Moreover, our mobile transaction
processing system has the ability to support the mobility of transactions (when a mobile
host moves from one place to another) and to improve data conflict awareness in mobile
environments.

The comparison is divided into five topics - that are: the organization of a mobile
workgroup, the mobile sharing workspace, the mobile data sharing mechanism, the data
consistency and conflict awareness, and the transaction mobility (see Table 8.1).

Table 8.1: The MOWAHS transaction processing system features

Comparison issues Related research Our advantages
Organization of a
mobile workgroup

Mobile workgroup
management [Liu+05,
BCM05].

Mobile affiliation workgroup,
supporting collaborative work
in horizontal dimension

Mobile sharing
workspace

Check-in/Check-out
model [HAA02, Ram01],
LIME [PMR00]

Dynamic, reconfigurable, and
distributed export-import
repository

Mobile data sharing
mechanism

Client-server architecture
[BF03], Delegation
[Chr93, Ram01], Inter-
processes [PRM00]

Peer-to-peer data sharing via
shared transaction, supporting
sharing data state and data
status

Data consistency and
conflict awareness

Compacts in Pro-motion
[WC99], Pseudo-
transaction [HAA02]

Anchor transactions
supporting conflict
awareness, supporting
conflicting cached modes

Transaction mobility Kangaroo transaction
[DHB97], Pre-write
[MB01]

Two types of transaction
mobility: across mobile cells
and across mobile affiliation
workgroups

 226

The advantages of our mobile transaction processing system are as follows:

• Organization of a mobile workgroup. Mobile workgroup management in mobile

environments is an active research field [BCM05, Liu+05]. The objective is to
support mobile users to share resources in a dynamically changing environment that
is affected by the physical locations of mobile hosts and the variations of network
connectivity. According to our knowledge, the concept of a mobile affiliation
workgroup is one of the first attempts to extend the existing collaborative workgroup
models to support mobile collaborative works in mobile environments, especially in
the horizontal dimension. Currently, there are other related approaches [BCM05,
Liu+05] that have been proposed to support the management of dynamic workgroups
in mobile environments.

• Mobile sharing workspace. The private-common workspace model has been widely

applied to support cooperative and collaborative work in distributed environments
[HAA02, Ram01, PMR00]. However, this model is not adequate in mobile
environments due to, for example the static organization of the common workspaces,
and the pre-defined and hierarchical data access paths. Our mobile sharing
workspace, i.e., the export-import repository, is a dynamic and reconfigurable sharing
workspace that focuses on supporting peer-to-peer mobile data sharing. Furthermore,
the export-import repository is a distributed sharing workspace that has capacity to
deal with the dynamic organization of the mobile affiliation workgroups and the
variations of mobile resources. Via the export-import repository, transactions at
different mobile hosts can directly share data without support from the database
servers.

• Mobile data sharing mechanism. Resource sharing in mobile environments plays a

vital role to enhance the performance of mobile work. Existing approaches that
support data sharing such as delegation operations [Chr93, Ram01] or inter-process
interactions [PRM00] do not have the capacity to support mobile data sharing in
mobile environments. These approaches lack the ability to deal with the
disconnections of wireless networks. The AMDB mechanism [BF03] is a client-
server architecture that supports mobile data sharing among mobile hosts. The
limitation of that architecture is that the role of a mobile host is constrained to either
the database server or a database client. Our mobile transaction processing system
supports the mobile data sharing among transactions at different mobile hosts by (1)
separating the data sharing process from the main transaction, and (2) using
transactions to support the data sharing process. The shared transactions (i.e., the
export and import transactions) are neither under control by the original standard
transactions nor the database servers. In other words, the shared transactions can
continue carrying out the mobile data sharing operations even if and when the
original standard transactions fail. The shared transactions also have the ability to
cope with unstable wireless networks by splitting a shared transaction into sub-shared
transactions or joining sub-shared transactions into one shared transaction.
Furthermore, the mobile data sharing mechanism can support both sharing data state
and data status.

 227

• Data consistency and conflict awareness. The common approach to support data
consistency in mobile environments is through reconciliation processes [HAA02,
WC99]. The main disadvantage of that approach is that local transactions at the
mobile hosts are not aware of conflicting database operations. This can result in
extended transaction aborts. Our mobile transaction processing system supports three
different data caching modes – that are non-conflict, read-write conflict and write-
read conflict - that minimize the delay of transactions due to conflicts. Potential
conflicting operations of transactions are alert via anchor transactions that act as
proxy transactions to local transactions at disconnected mobile hosts. When the
mobile hosts reconnect to database servers, the anchor transaction will support the
integration of local transactions. The main advantages of the anchor transactions are:
(1) enhancing conflict awareness among transactions at different mobile hosts, and
(2) supporting temporary data and transaction management in mobile environments
by keeping track of accessed data sets and termination states of mobile transactions.

• Transaction mobility. Existing transaction models can support transaction mobility in

the connected mode [DHB97, MB01]. The hand-over or hand-off processes are
carried out every time the mobile host enters a new mobile cell. Those approaches
can not be applied if there is disconnection in communication during the movement
of the mobile host. Our mobile transaction processing system can support the
mobility of transactions in two different ways: (1) anchor transactions support
handling the mobility of transactions when mobile hosts move across mobile cells,
and (2) shared transactions support controlling the mobility of transactions when
mobile hosts move across mobile affiliation workgroups. Hand-over processes, which
handle the movement of anchor transactions, are initiated by a mobile host when it is
connecting to database servers or mobile support stations, i.e., hand-over processes
are carried out only when they are needed. According to our knowledge, there is no
similar research that has taken the mobility of transactions across mobile affiliation
workgroups into account.

8.2 Evaluation

In this section, we evaluate how our research results fulfill the requirements that are
presented in Section 3.5, and answer the research questions.

8.2.1 Fulfilling the requirements

Our research results fulfill the designated requirements of the mobile transaction
processing system. The fulfillment of each requirement is elaborated as follows:

R1. The mobile transaction processing system must be able to effectively handle the
hand-over control of mobile transactions.

In our mobile transaction processing system, there are two types of transaction mobility
in accordance with the movement of a mobile host: (1) the mobile host is moving across

 228

mobile cells, and (2) the mobile host is moving across mobile affiliation workgroups. The
mobility of transactions across mobile cells is supported by the movement of the anchor
transaction that is the proxy transaction of these transactions. This way, our mobile
transaction processing system handles hand-over processes efficiently, i.e., the hand-over
processes are initiated by the mobile host. As long as mobile transactions can be entirely
carried out in the local workspace of the mobile host, i.e., the execution environment of
the mobile transactions is not changed, it is not necessary to perform hand-over
processes. The mobility of transactions across mobile sharing workspaces (i.e., when the
mobile host is moving across mobile affiliation workgroups) is handled by re-structuring,
i.e., splitting or joining, the export and import transactions.

R2. The mobile transaction processing system must support interactions among
transactions at different mobile hosts.

Execution processes of mobile transactions can be distributed among mobile hosts of a
mobile affiliation workgroup without support from mobile support stations or any non-
mobile hosts, by means of mobile sharing workspaces and shared transactions. The
mobile data sharing mechanism supports both sharing data states and data status among
standard transactions at different mobile hosts. This way, the mobile transaction
processing system solves the problem with transactions on a mobile host heavily relying
on mobile support stations to carry out interaction operations with other transactions at a
different mobile host. As long as the mobile hosts belong to a mobile affiliation
workgroup, standard transactions can interact with each other via the export-import
repository. Furthermore, export and import transactions ensure that the sharing of data
among standard transactions is carried out in a recoverable manner, i.e., the mobile
transaction processing system has the ability to deal with data inconsistency and
execution schedule problems that may occur when a delegator transaction fails.

R3. The mobile transaction processing system must support disconnected transaction
processing.

Disconnected transaction processing at mobile hosts is supported via the data hoarding
and mobile data sharing stages. In the data hoarding stage, consistent data stored at
database servers is downloaded into the mobile hosts with the support of anchor
transactions (with three different data caching modes: non-conflict, read-write conflict
and write-read conflict). Needed data that is not available during the data hoarding stage
can be obtained during the mobile data sharing stage with the support of shared
transactions. Local transactions at disconnected mobile hosts are processed based on
cached data that is either fully consistent or constrained (with the ones in different
workspaces – see Section 6.5.4). Local transactions are allowed to commit locally at the
mobile hosts and the results of local transactions are made accessible to other local
transactions. The locally committed transactions will be validated in the transaction
integration stage to finally commit at the database servers when the mobile hosts
reconnect to them.

 229

R4. The mobile transaction processing system must support distributed transaction
execution among mobile hosts and stationary hosts.

The affiliation workgroup concept provides the means to allow mobile hosts to join non-
mobile and mobile hosts in a workgroup. The distributed execution of transactions among
mobile and non-mobile hosts is carried out via export and import transactions in an
affiliation workgroup.

R5. The mobile transaction processing system must have the ability to customise the
atomicity property of transactions.

The mobile transaction processing system customizes the atomicity property of standard
transactions via the support of shared transactions. The atomicity property of delegator
transactions can be relaxed by means of export transactions. Export transactions support
long-lived transactions by allowing transactions to save their partial results in mobile
sharing workspaces. By supporting mobile transactions to save their partial results while
they are being executed, the model prevents losing useful work done by mobile
transactions upon failure of standard transactions. Import transactions support delegatee
transactions to obtain needed data from the mobile sharing workspaces. If the delegatee
transaction aborts, the results of the import transaction can still be useful to other local
transactions.

R6. The mobile transaction processing system must support sharing partial states and
status among transactions.

To avoid long blocking of transactions in mobile environments due to data unavailability,
mobile data sharing among transactions at different mobile hosts is supported by means
of shared transactions through export-import repositories. Mobile transactions can share
their partial results with others by making data accessible in a mobile sharing workspace.
The mobile data sharing mechanism supports both sharing data states and data status.
Export and import transactions ensure that data sharing processes among mobile
transaction will be atomically executed.

R7. The mobile transaction processing system must assure the durability property of
transactions.

Committing mobile transactions are done in two ways: (1) local commit at the mobile
hosts, and (2) final commit at the database servers. The results of locally committed
transactions are durable only in the local workspace when the mobile host is disconnected
from the database servers. If the local committed transactions have accessed cached data
that is consistent in the local workspace, these transactions will be allowed to finally
commit at the database servers. The full durability of transactions is achieved after the
mobile transactions are finally committed at the database servers.

 230

R8. The mobile transaction processing system must provide efficient recovery strategies.

The mobile transaction processing system provides two different transaction recovery
strategies via (1) the static and dynamic transaction dependencies and (2) the multiple-
abort dependencies. By these dependencies, the relationship among mobile transactions
may be flexibly defined or modified so that when a transaction aborts, the execution of
the related transactions can be adjusted to assure global data consistency.

R9. The mobile transaction processing system must support temporary data and
transaction management.

The execution processes of mobile transactions are carried out at different computing
hosts that can be either connected or disconnected. So, the temporary state of data and
transactions must be managed so that local transactions at a disconnected mobile host
will be aware of what shared data has been modified and what transactions have
committed or aborted. This is achieved by the support of anchor transactions. An anchor
transaction keeps track of the data cached at the mobile host and supports conflict
awareness for local transactions at disconnected mobile hosts. The mobile data sharing
processes among standard transactions at different disconnected mobile hosts are also
kept track of to determine the relationship among these transactions.

8.2.2 Answering the research questions

In this section, we will discuss how the main research questions of this thesis have been
answered.

As stated in Chapter 1, the main research question of this thesis is:

How can we furnish a transaction processing system so that it can cope with the
constraints of mobile resources and the variations of operating conditions in
mobile environments?

The research question has been answered by the development of our MOWAHS mobile
transaction processing system that includes: a thorough study of the characteristics of
mobile transactions, a set of requirements that mobile transaction processing systems
must have, a research approach based on a mobile collaborative work scenario, the
development of a mobile data sharing mechanism, and the design and implementation of
the system prototypes. The mobile transaction processing system has been equipped with
a mobile data sharing mechanism that supports sharing of data among transactions at
mobile hosts that are disconnected from the database servers. This mechanism increases
data availability in mobile environments.

To explain in detail our approach, we will answer the four refined questions that have
directed the development of this work:

 231

Q1: Current situation.
• What are the current ideas and concepts that have been developed to answer the

main research question or to address part of it?

Chapter 4 has surveyed and discussed the related research on mobile transaction models
and mobile transaction processing systems. From this review, we have identified the main
limitations of these mobile transaction models and processing systems. Each mobile
transaction model tries to answer part of the research question, like to support mobility or
support disconnected transaction processing at mobile hosts. However, a complete
solution has not been achieved yet.

Q2: Characteristics and requirements of mobile transactions.

• What are the challenging characteristics of transactions in mobile environments?
• What are the requirements of a mobile transaction processing system that

accomplishes the main research question?

In Chapter 3, we have addressed the challenging characteristics of mobile environments
in detail and studied how these characteristics of mobile environments impact the
behavior of mobile hosts. We have analyzed the characteristics of transactions in mobile
environments. Based on these characteristics, we have proposed a set of requirements that
a mobile transaction processing system must have for it to cope with the constraints of
mobile resources and the variable operating conditions.

Q3: Approach and solutions.

• What are the concepts and foundations for developing the required mobile
transaction processing system?

• How should we design and implement the required mobile transaction processing
system?

Our approach is based on a mobile IT-support scenario. From this scenario, we have
proposed a new collaborative work model for mobile environments, i.e., the horizontal
collaboration. Using this as a starting point, we have developed an adaptive mobile data
sharing mechanism that distinguishes two types of mobile data sharing: sharing data
states and sharing data status. This mobile data sharing mechanism not only enhances
data availability in mobile environments but also takes into account all the challenging
characteristics of mobile environments. We have also chosen to design and implement
two important components of our mobile transaction processing system: the locking
model and the mobile sharing workspace. The mobile locking system supports mobile
transactions to cope with disconnections and long locking periods. The mobile data
sharing system supports data sharing among transactions at different disconnected mobile
hosts.

Q4: Evaluation.

• How well do the research results fulfill the requirements of the mobile transaction
processing system?

• How do the research results compare with previous related works?

 232

This chapter (Chapter 8) has discussed how our research results fulfill the designated
requirements of a mobile transaction processing system, and answered the main research
questions. Furthermore, important parts of the thesis have been published at international
conferences and workshops [Sør+02, Ram+03, LNR04, LN05a, LN05b, Sør+05]. This
allows our research results to be discussed and compared with related research in the
field.

8.2.3 Limitations

We have designed and implemented two important components of our mobile transaction
processing system, which are the mobile sharing workspace with the export and import
transactions, and the locking protocols for sharing mobile data. However, due to the
constraints of time and resources, not all the features of our mobile transaction processing
system have been fully implemented or tested.

 233

Chapter 9

Conclusion and Future Work

This chapter summaries our research achievements and addresses several possible
extensions in future research.

9.1 Research achievements

The main research achievements of this thesis are:

• A new model and concepts to support mobile collaborative work. We have extended

the common hierarchical collaborative work model in the horizontal dimension to
support collaborative work in mobile environments. The horizontal collaborative
work model takes advantage of new mobile technologies, for example mobile
computing devices and wireless networks, to promote and support mobile
collaborative work. This new working model allows mobile users to dynamically
form temporary mobile affiliation workgroups while being on the move and
disconnected from the database servers. The mobile affiliation workgroups are
formed on demand, and can be dynamically configured in accordance with the
behavior of mobile hosts or users. By the support of mobile affiliation workgroups,
mobile hosts can interact and support each other to increase the performance of
mobile works.

• New concepts and models for mobile transaction processing. Our mobile transaction

processing model supports both online, i.e., connected mobile hosts, and offline, i.e.,
disconnected mobile hosts, transaction processing. The model allows both online and
offline transactions to be concurrently carried out and be aware of conflicts via the
support of anchor transactions (to recap, the anchor transactions play roles as proxy
transactions for local transactions at mobile hosts). The anchor transactions and the
shared transactions (i.e., export and import transactions) support the mobile
transaction processing system to handle the mobility of mobile transactions as the
mobile hosts move. We have also proposed a new multiple-abort-dependency rule
that allows the mobile transaction processing system to flexibly define the correlation
among transactions.

• Concepts and models for sharing data among transactions at different mobile hosts in
mobile environments. The mobile data sharing model provides a flexible mechanism

 234

for transactions at disconnected mobile hosts to share data with others, i.e., enhance
data availability and reduce blocking time of transactions. The sharing information
processes are divided into a set of smaller recoverable export or import transaction
processes. This will help mobile hosts to cope with the frequent disconnections and
low bandwidth of the wireless networks. The model also supports mobile transactions
to share data in an asynchronous manner via mobile sharing workspaces in the mobile
affiliation workgroups. Moreover, the mobile sharing workspace within the mobile
affiliation workgroup is fully distributed among connected and highly available
mobile hosts. Therefore, the model can deal with the resource limitation of mobile
hosts. Finally, the mobile data sharing mechanism supports both sharing data state
and data status.

9.2 Future research

There is still work needed to be carried out in our MOWAHS mobile transaction
processing system. The following topics are identified as possible future works in both
the scientific and engineering dimensions.

The scientific dimension includes:

• Mobile transaction agents to enhance the performance of mobile transaction

processing systems. Agents are autonomous programs that have the capacity to adapt
to changing environmental conditions. Mobile agents are agent programs that have
the ability to reallocate themselves among the active computers to carry out their
goals [PRM00, Kan+04]. In our mobile transaction processing system, shared
transactions that carry out the mobile sharing operations must handle the dynamic
changes of the mobile environments and deal with the mobility of transactions across
the mobile sharing workspaces. Therefore, the concepts of mobile agents can be
applied in our mobile transaction system to achieve better performance and enhance
mobility support. The choice of using the JavaSpaces technology to implement the
export-import repository in our mobile transaction processing system can still be
applied because mobile agents may be efficiently implemented using JavaSpaces
technology [WS03].

• Commit protocols for mobile distributed transactions. Our mobile transaction

processing system focuses on the mobile data sharing mechanisms, and the standard
transactions have capacity to autonomously commit or abort in their operating
workspaces (i.e., local commit in the local workspace or final commit at the global
workspace). In mobile environments, the commit or abort of a transaction in the local
workspace at a mobile host might also depend on the states of transactions that are
being executed at other mobile hosts. Therefore, a further work on termination
protocols for mobile distributed transactions in mobile environments will be
beneficial.

 235

• Support of sharing database operations in mobile environments. Our mobile data
sharing mechanism focuses on supporting sharing of data state (i.e., values) and status
(i.e., locks) among transactions at different mobile hosts. For future work, the
mechanism will be extended to support sharing database operations among mobile
transactions.

The engineering dimension includes:

• Integration of all the components into the MOWAHS transaction processing system.

Due to time and resource constraints, we have not been able to carry out a full
integration of our components in the mobile transaction processing system. Therefore,
an important future work is to integrate all these individual components into the
mobile transaction processing system. The integration will further allow us to carry
out a full system testing.

• Thorough performance testing of the mobile transaction processing system. We have

performed preliminary testing on the mobile data sharing mechanism, and the
preliminary results have shown that there is significant improvement in the system
throughput. However, these tests have not been carried out while taking into account
dynamic changes of environmental conditions such as disconnections of mobile hosts
from the mobile affiliation workgroups. Currently, we have only tested the
performance of the individual system components separately.

• Development of a mobile support system for physical allocation of mobile sharing

workspace. This is the engineering challenge related to the physical allocation of the
export-import repository. In our mobile transaction processing system, the mobile
sharing workspace is distributed over and allocated on several mobile computing
hosts. Currently, the JavaSpaces technology is not designed to fully support the
physically distribution of a mobile sharing workspace. Therefore, a possible future
work is to design and develop a mobile support system for physical allocation of a
mobile sharing workspace that matches the designated export-import repository.

 236

 237

References

[AC04] Y. J. Al-Houmaily and P. K. Chrysanthis: 1-2PC: the one-two phase atomic

commit protocol, ACM Symposium on Applied Computing (SAC), 2004, pp
684-691.

[Bar99] D. Barbará: Mobile Computing and Databases - A Survey, IEEE Transactions

on Knowledge and Data Engineering (TKDE), 11(1), 1999, pp 108-117.

[BCM05] D. Bottazzi, A. Corradi and R. Montanari: A context-aware group

management middleware to support resource sharing in MANET
environments, International Conference on Mobile Data Management
(MDM), 2005, pp 147-151.

[BCW95] W. Booth, G. G. Colomb and J. M. Williams: The Craft of Research,

University Of Chicago Press, 1995.

[BF03] A. Brayner and J. d. A. M. Filho: Sharing Mobile Databases in Dynamically

Configurable Environments, 15th International Conference on Advanced
Information Systems Engineering (CAiSE), 2003, pp 724-737.

[Bha03] S. Bhalla: Evolving a model of transaction management with embedded

concurrency control for mobile database systems, Information & Software
Technology, 45(9), 2003, pp 587-596.

[BHG87] P. A. Bernstein, V. Hadzilacos and N. Goodman: Concurrency Control and

Recovery in Database Systems, Addison-Wesley, 1987.

[CC02a] S. Chang and D. Curtis: An Approach to Disconnected Operation in an

Object-Oriented Database, International Conference on Mobile Data
Management (MDM), 2002, pp 19-26.

[CCB02] D. Conan, S. Chabridon and G. Bernaro: Disconnected Operations in Mobile

Environments, International Parallel and Distributed Processing Symposium
(IPDPS), 2002, pp 192-199.

 238

[CDK00] G. H. Coulouris, J. Dollimore and T. Kindberg: Distributed Systems:
Concepts and Design, Pearson Education, 2001.

[Chr93] P. K. Chrysanthis: Transaction Processing in Mobile Computing

Environment, IEEE Workshop on Advances in Parallel and Distributed
Systems, 1993, pp 77-83.

[CLL03] E. Y. M. Chan, V. C. S. Lee and K.-W. Lam: Using Separate Processing for

Read-Only Transactions in Mobile Environment, International Conference on
Mobile Data Management (MDM), 2003, pp 106-121.

[Con+01] R. Conradi, M. Nygård, A. I. Wang and H. Ramampiaro: Mobile Work

Across Heterogeneous Systems, 2001.

[CP98] R. Cáceres and V. N. Padmanabhan: Fast and Scalable Wireless Handoffs in

Support of Mobile Internet Audio, Mobile Networks and Applications
(MONET), 3(4), 1998, pp 351-363.

[CR94] P. K. Chrysanthis and K. Ramamritham: Synthesis of Extended Transaction

Models Using ACTA, ACM Transactions on Database Systems (TODS),
19(3), 1994, pp 450-491.

[DG00] R. A. Dirckze and L. Gruenwald: A pre-serialization transaction management

technique for mobile multidatabases, Mobile Networks and Applications
(MONET), 5(4), 2000, pp 311-321.

[DHB97] M. H. Dunham, A. Helal and S. Balakrishnan: A Mobile Transaction Model

That Captures Both the Data and Movement Behavior., Mobile Networks and
Applications (MONET), 2(2), 1997, pp 149-162.

[DK98] M. H. Dunham and V. Kumar: Location Dependent Data and its

Management in Mobile Databases, Database and Expert Systems
Applications (DEXA) Workshop, 1998, pp 414-419.

[DK99] M. H. Dunham and V. Kumar: Impact of Mobility on Transaction

Management, ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE), 1999, pp 14-21.

[DMW01] Z. Ding, X. Meng and S. Wang: O2PC-MT: A Novel Optimistic Two-Phase

Commit Protocol for Mobile Transactions, Database and Expert Systems
Applications (DEXA), 2001, pp 846-856.

[Dye05] R. J. T. Dyer: MySQL in a nutshell, O'Reilly Media, 2005.

 239

[Elm+90] A. K. Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewicz: A Multidatabase
Transaction Model for InterBase, International Conference on Very Large
Data Bases, 1990, pp 507-518.

[Elm+92] A. K. Elmagarmid: Database Transaction Models for Advanced Applications,

Morgan Kaufmann, 1992.

[EN00] R. Elmasri and S. B. Navathe: Fundamentals of Database Systems, Addison

Wesley, 2000.

[Esw+76] K. P. Eswaran, J. Gray, R. A. Lorie and I. L. Traiger: The Notions of

Consistency and Predicate Locks in a Database System, Communications of
the ACM (CACM), 19(11), 1976, pp 624-633.

[FHA99] E. Freeman, S. Hupfer and K. Arnold: JavaSpaces : principles, patterns, and

practice, Addison-Wesley, 1999.

[FS99] J. Flinn and M. Satyanarayanan: Energy-aware adaptation for mobile

applications, Symposium on Operating Systems Principles (SOSP), 1999, pp
48-63.

[GG00] M. M. Gore and R. K. Ghosh: Recovery of Mobile Transactions, Database

and Expert Systems Applications (DEXA) Workshop, 2000, pp 23-27.

[GMS87] H. Garcia-Molina and K. Salem: Sagas, ACM SIGMOD International

Conference on Management of Data, 1987, pp 249-259.

[GR93] J. Gray and A. Reuter: Transaction Processing: Concepts and Techniques,

Morgan Kaufmann Publishers, 1993.

[Gra78] J. Gray: Notes on Data Base Operating Systems, in (Ed): Advanced Course:

Operating Systems, Springer, 1978, pp 393-481.

[Gra81] J. Gray: The Transaction Concept: Virtues and Limitations, Very Large Data

Bases, 1981, pp 144-154.

[GUW01] H. Garcia-Molina, J. Ullman and J. Widom: Database Systems: The Complete

Book, Prentice Hall, 2001.

[GW82] H. Garcia-Molina and G. Wiederhold: Read-Only Transactions in a

Distributed Database, ACM Transactions on Database Systems (TODS),
7(2), 1982, pp 209-234.

[HAA02] J. Holliday, D. Agrawal and A. E. Abbadi: Disconnection Modes for Mobile

Databases, Wireless Networks, 8(4), 2002, pp 391-402.

 240

[Har84] T. Härder: Observations on optimistic concurrency control schemes,
Information Systems, 9(2), 1984, pp 111-120.

[HB05] R. Høivik and G. G. Bergem: Customizing Isolation Properties for Mobile

Transactions, Dept. of Computer and Information Science, NTNU, Norway,
2005.

[Hir+01] R. Hirsch, A. Coratella, M. Felder and E. Rodríguez: A Framework for

Analyzing Mobile Transaction Models, Journal of Database Management,
12(3), 2001, pp 36-47.

[HM04] E. R. Harold and W. S. Means: XML in a Nutshell, O'Reilly Media, 2004.

[Hof02] Ø. Hoftun: Mobile Nagging Geek Organizer, Master thesis, Dept. of

Computer and Information Science, NTNU, Norway, 2002.

[IBM] IBM DB2 Everyplace, IBM Corporation

http://www-306.ibm.com/software/data/db2/everyplace/.

[JBE95] J. Jing, O. A. Bukhres and A. K. Elmagarmid: Distributed Lock Management

for Mobile Transactions, International Conference on Distributed Computing
Systems (ICDCS), 1995, pp 118-125.

[JHE99] J. Jing, A. Helal and A. K. Elmagarmid: Client-Server Computing in Mobile

Environments, ACM Computing Surveys, 31(2), 1999, pp 117-157.

[Jini] Jini Specifications and API Archive, Sun Microsystems, Inc.

http://java.sun.com/products/jini/.

[Kan+04] T. Kaneda, M. Shiraishi, T. Enokido and M. Takizawa: Mobile Agent Model

for Transaction Processing on Distributed Objects, International Conference
on Advanced Information Networking and Applications (AINA), 2004, pp
506-511.

[KK00] K.-I. Ku and Y.-S. Kim: Moflex Transaction Model for Mobile

Heterogeneous Multidatabase Systems, Research Issues in Data Engineering
(RIDE), 2000, pp 39-46.

[KLH03] S. S. Kim, S. K. Lee and C.-S. Hwang: Using reordering technique for

mobile transaction management in broadcast environments, Data &
Knowledge Engineering, 45(1), 2003, pp 79-100.

[KR81] H. T. Kung and J. T. Robinson: On Optimistic Methods for Concurrency

Control, ACM Transactions on Database Systems (TODS), 6(2), 1981, pp
213-226.

 241

[KTW97] J. Klingemann, T. Tesch and J. Wäsch: Enabling Cooperation among
Disconnected Mobile Users, International Conference on Cooperative
Information Systems (CoopIS), 1997, pp 36-46.

[KU99] E. Kayan and Ö. Ulusoy: An Evaluation of Real-Time Transaction

Management Issues in Mobile Database Systems, The Computer Journal,
42(6), 1999, pp 501-510.

[Kum+02] V. Kumar, N. Prabhu, M. H. Dunham and A. Y. Seydim: TCOT-A Timeout-

Based Mobile Transaction Commitment Protocol, IEEE Transactions on
Computers, 51(10), 2002, pp 1212-1218.

[Liu+05] J. Liu, D. Sacchetti, F. Sailhan and V. Issarny: Group management for mobile

Ad Hoc networks: design, implementation and experiment, International
Conference on Mobile Data Management (MDM), 2005, pp 192-199.

[LLK01] K.-W. Lam, V. C. S. Lee and T.-W. Kuo: Group Consistency for Read-Only

Transactions in Mobile Environments, International Parallel and Distributed
Processing Symposium (IPDPS), 2001, pp 1009-1016.

[LN05a] H. N. Le and M. Nygård: A Mobile Affiliation Model for Supporting Mobile

Collaborative Work, Workshop on Ubiquitous Mobile Information and
Collaboration Systems (UMICS), 2005, pp 649-660.

[LN05b] H. N. Le and M. Nygård: Mobile Transaction System for Supporting Mobile

Work, 7th International Database and Expert Systems Applications (DEXA)
Workshop on Mobility in Databases and Distributed Systems (MDDS), 2005,
pp 1090-1094.

[LNR04] H. N. Le, M. Nygård and H. Ramampiaro: A Locking Model for Mobile

Databases in Mobile Environments, International Conference on Database
and Applications (DBA), 2004, pp 49-55.

[Mad+02] S. K. Madria, M. K. Mohania, S. S. Bhowmick and B. K. Bhargava: Mobile

data and transaction management, Information Sciences, 141(3-4), 2002, pp
279-309.

[MB01] S. K. Madria and B. K. Bhargava: A Transaction Model to Improve Data

Availability in Mobile Computing, Distributed and Parallel Databases, 10(2),
2001, pp 127-160.

[MB98b] S. K. Madria and B. K. Bhargava: A Transaction Model for Mobile

Computing, International Database Engineering and Application Symposium
(IDEAS), 1998, pp 92-102.

 242

[MBB02] S. K. Madria, M. Baseer and S. S. Bhowmick: A Multi-version Transaction
Model to Improve Data Availability in Mobile Computing, International
Conference on Cooperative Information Systems (CoopIS/DOA/ODBASE),
2002, pp 322-338.

[Mic] Microsoft SQL Server CE, Microsoft Corporation

http://msdn.microsoft.com/library/.

[Mil+00] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S. Zhou: Process

migration, ACM Computing Surveys, 32(3), 2000, pp 241-299.

[Mos85] J. E. B. Moss: Nested transactions: an approach to reliable distributed

computing, Massachusetts Institute of Technology, 1985.

[MRX03] R. k. Majumdar, K. Ramamritham and M. Xiong: Adaptive Location

Management in Mobile Environments, International Conference on Mobile
Data Management (MDM), 2003, pp 196-211.

[Mur01] V. K. Murthy: Seamless Mobile Transaction Processing: Models, Protocols

and Software Tools, International Conference on Parallel and Distributed
Systems (ICPADS), 2001, pp 147-156.

[MV00] K. A. Momin and K. Vidyasankar: Flexible Integration of Optimistic and

Pessimistic Concurrency Control in Mobile Environments, Advances in
Databases and Information Systems - Database Systems for Advanced
Applications (ADBIS-DASFAA), 2000, pp 346-353.

[Ora] Oracle Database Lite, Oracle Corporation

http://www.oracle.com/technology/products/lite/index.html.

[OV99] M. T. Özsu and P. Valduriez: Principles of Distributed Database Systems,

1999.

[PB99] E. Pitoura and B. K. Bhargava: Data Consistency in Intermittently Connected

Distributed Systems, IEEE Transactions on Knowledge and Data Engineering
(TKDE), 11(6), 1999, pp 896-915.

[PKH88] C. Pu, G. E. Kaiser and N. C. Hutchinson: Split-Transactions for Open-Ended

Activities., Very Large Data Bases (VLDB), 1988, pp 26-37.

[PLZ05] S. Pradhan, E. Lawrence and A. Zmijewska: Bluetooth as an Enabling

Technology in Mobile Transactions, International Symposium on Information
Technology: Coding and Computing (ITCC), 2005, pp 53-58.

 243

[PMR00] G. P. Picco, A. L. Murphy and G.-C. Roman: Developing mobile computing
applications with LIME, International Conference on on Software
Engineering (ICSE), 2000, pp 766-769.

[PP00] E. M. Phillips and D. S. Pugh: How to get a PhD - A handbook for students

and their supervisors, Open University Press, 2000.

[PR02] C. Pedregal-Martin and K. Ramamritham: Support for Recovery in Mobile

Systems, IEEE Transactions on Computers, 51(10), 2002, pp 1219-1224.

[Pra+04] N. Prabhu, V. Kumar, I. Ray and G.-C. Yang: Concurrency Control in

Mobile Database Systems, International Conference on Advanced
Information Networking and Applications (AINA), 2004, pp 83-86.

[Pre+00] N. M. Preguiça, C. Baquero, F. Moura, J. L. Martins, R. Oliveira, H. J. L.

Domingos, J. O. Pereira and S. Duarte: Mobile Transaction Management in
Mobisnap, Advances in Databases and Information Systems - Database
Systems for Advanced Applications (ADBIS-DASFAA), 2000, pp 379-386.

[PS98] E. Pitoura and G. Samaras: Data Management for Mobile Computing, Kluwer

Academic Publishers, 1998.

[PSP00] S. Papastavrou, G. Samaras and E. Pitoura: Mobile Agents for World Wide

Web Distributed Database Access, IEEE Transactions on Knowledge and
Data Engineering, 12(5), 2000, pp 802-820.

[Rak98] A. Rakotonirainy: Adaptable Transaction Consistency for Mobile

Environments, Database and Expert Systems Applications (DEXA)
Workshop, 1998, pp 440-445.

[Ram01] H. Ramampiaro: CAGISTrans: Adaptable Transactional Support for

Cooperative Work, Dr.ing thesis, Norwegian University of Science and
Teachnology (NTNU), 2001.

[Ram+03] H. Ramampiaro, A. I. Wang, C.-F. Sørensen, H. N. Le and M. Nygård:

Requirement Indicators for Mobile Work: The MOWAHS Approach, IASTED
International Multi-Conference on Applied Informatics, 2003, pp 1153-1160.

[Rat+01] D. Ratner, P. L. Reiher, G. J. Popek and G. H. Kuenning: Replication

Requirements in Mobile Environments, Mobile Networks and Applications
(MONET), 6(6), 2001, pp 525-533.

[RC96] K. Ramamritham and P. Chrysanthis: Advances in Concurrency Control and

Transaction Processing, IEEE Computer Society Press, 1996.

 244

[RK99] P. K. Reddy and M. Kitsuregawa: Speculative Lock Management to Increase
Concurrency in Mobile Environments, International Conference on Mobile
Data Access (MDA), 1999, pp 82-96.

[RN99] H. Ramampiaro and M. Nygård: Cooperative Database System: A

Constructive Review of Cooperative Transaction Models, Database
Applications in Non-Traditional Environments (DANTE), 1999, pp 315-324.

[RRP04] D. Ratner, P. L. Reiher and G. J. Popek: Roam: A Scalable Replication

System for Mobility, Mobile Networks and Applications (MONET), 9(5),
2004, pp 537-544.

[SAE01] R. Sher, Y. Aridor and O. Etzion: Mobile Transactional Agents, International

Conference on Distributed Computing Systems (ICDCS), 2001, pp 73-80.

[Sch02] R. Schneiderman: The Mobile Technology Question and Answer Book A

Survival Guide for Business Managers, American Management Association,
2002.

[Ser02] P. Serrano-Alvarado: Defining an Adaptable Mobile Transaction Service,

Extending Database Technology (EDBT) Workshops, 2002, pp 616-626.

[SGS94] K. Salem, H. Garcia-Molina and J. Shands: Altruistic Locking, ACM

Transactions on Database Systems (TODS), 19(1), 1994, pp 117-165.

[SM05] R. Sheldon and G. Moes: Beginning MySQL, Wiley Pub., 2005.

[Sør+02] C.-F. Sørensen, A. I. Wang, H. N. Le, H. Ramampiaro, M. Nygård and R.

Conradi: The MOWAHS Characterisation Framework for Mobile Work,
IASTED International Conference on Applied Informatics, 2002, pp 258-264.

[Sør+05] C.-F. Sørensen, A. I. Wang, H. N. Le, H. Ramampiaro, M. Nygård and R.

Conradi: Using the MOWAHS Characterisation Framework for Development
of Mobile Work Applications, International Conference on Product Focused
Software Process Improvement (PROFES), 2005, pp 128-142.

[SRA04] P. Serrano-Alvarado, C. Roncancio and M. E. Adiba: A Survey of Mobile

Transactions, Distributed and Parallel Databases, 16(2), 2004, pp 193-230.

[TLP99] C. L. Tan, K. M. Lye and S. Pink: A Fast Handoff Scheme for Wireless

Networks, ACM International Workshop on Wireless Mobile Multimedia
(WOWMOM), 1999, pp 83-90.

[Var03] U. Varshney: Location management for mobile commerce applications in

wireless Internet environment, ACM Transactions on Internet Technology
(TOIT), 3(3), 2003, pp 236-255.

 245

[WC99] G. D. Walborn and P. K. Chrysanthis: Transaction Processing in PRO-
MOTION, ACM Symposium on Applied Computing (SAC), 1999, pp 389-
398.

[Wei91] G. Weikum: Principles and Realization Strategies of Multilevel Transaction

Management, ACM Transactions on Database Systems, 16(1), 1991, pp 132-
180.

[WR96] C. D. Wilcox and G.-C. Roman: Reasoning About Places, Times, and Actions
in the Presence of Mobility, IEEE Transactions on Software Engineering,
22(4), 1996, pp 225-247.

[WS03] A. I. Wang and C.-F. Sørensen: A Comparison of Two Different Java

Technologies to Implement a Mobile Agent System, IASTED International
Conference on Applied Informatics, 2003, pp 1039-1044.

[Xio+02] M. Xiong, K. Ramamritham, J. A. Stankovic, D. F. Towsley and R. M.

Sivasankaran: Scheduling Transactions with Temporal Constraints:
Exploiting Data Semantics, IEEE Transactions on Knowledge and Data
Engineering, 14(5), 2002, pp 1155-1166.

[YAC04] M. Younas, I. Awan and K.-M. Chao: Performance Analysis of Preemptive

Resume Scheduling in Mobile Transactions, International Conference on
Advanced Information Networking and Applications (AINA), 2004, pp 249-
254.

[YHW04] A. Yendluri, W.-C. Hou and C.-F. Wang: Improving Concurrency Control in

Mobile Databases, 9th International Conference on Database Systems for
Advances Applications (DASFAA), 2004, pp 642-655.

[Zha+99] Y. Zhang, Y. Kambayashi, X. Jia, Y. Yang and C. Sun: On Interactions

Between Coexisting Traditional and Cooperative Transactions, International
Journal of Cooperative Information Systems (IJCIS), 8(2-3), 1999, pp 87-
110.

 246

 247

Notations

Symbol Description

 Si a database server

 X a shared data item

 VX the value of shared data item X

 XDA the dependency awareness set on shared data item X

 XCA the conflict awareness set on shared data item X

 lX a lock operation on shared data item X
 ulX an unlock operation on shared data item X
 Xlock_mode a lock applied on shared data item X

 XR a read lock on X

 XW a write lock on X

 XRp a pseudo-read lock on X

 Opi a database operation

 RX a read operation on shared data item X

 WX a write operation on shared data item X

 MHi a mobile host

 Ti a transaction

 Tc a conflicting transaction

 TDor
 a delegator transaction

 TDee
 a delegatee transaction

 TE
 an export transaction

 TI
 an import transaction

 TDor.E an export transaction of delegator transaction TDor

 TDee.I an import transaction of delegatee transaction TDee

 Ti
A the anchor transaction of mobile host MHi

 Ti
k a local transaction Tk at mobile host MHi

 Ti
PD a pseudo-delegator transaction of delegator transaction Ti

Dor

ℑi a set of transactions

 248

Symbol Description

 Di a data set

 Di
R

 a read data set

 Di
W

 a write data set

 Li the lock set corresponding to data set Di

 Li
R the read lock set corresponding to data set Di

R

 Li
W the write lock set corresponding to data set Di

W

 Di
A

 the acquired data set at mobile host MHi
AR

iD the acquired read data set at mobile host MHi

AW
iD the acquired write data set at mobile host MHi

 Li
A the lock set corresponding to data set Di

A
AR

iL the read lock set corresponding to data set AR
iD

AW
iL the write lock set corresponding to data set AW

iD

 Di
G

 the granted (i.e., locked and cached) data set at mobile host MHi
GR

iD the granted (i.e., locked and cached) read data set at mobile host MHi

GW
iD the granted (i.e., locked and cached) write data set at mobile host MHi

 Li
G the lock set corresponding to data set Di

G
GR

iL the read lock set corresponding to data set GR
iD

GW
iL the write lock set corresponding to data set GW

iD
 Di

GR
 the replica of granted data set Di

G
GRR

iD the replica of granted read data set GR
iD

GRW
iD the replica of granted write data set GW

iD

 Li
GR the replica of lock set Li

G
GRR

iL the replica of read lock set GR
iL

GRW
iL the replica of write lock set GW

iL
AR
iL the additional read lock set requested by anchor transaction Ti

A
AW
iL the additional write lock set requested by anchor transaction Ti

A

DR
iL the delegated read lock set released by anchor transaction Ti

A

DW
iL the delegated write lock set released by anchor transaction Ti

A

 Di
j the acquired data set of transaction Ti

j
Rj

iD the acquired read data set of transaction Ti
j

Wj
iD the acquired write data set of transaction Ti

j

 249

Symbol Description

Ti

k → Tj
l transaction Ti

k must be executed before transaction Tj
l

Ti
k →• Tj

l transaction Tj
l must be executed after transaction Ti

k

and before any other updating transaction Ti
n where Ti

k → Ti
n

LADi the locally aborted delegator transaction (LocalAbortedDelegator) set

at mobile host MHi

LCi the locally committed transaction (LocalCommitted) set

at mobile host MHi

PC the pending commit transaction (PendingCommit) set

GAD the globally aborted delegator transaction (GlobalAbortedDelegator) set

GC the globally committed transaction (GlobalCommitted) set

 250

