
Load Balancing of Pseudo-random
Workloads on Heterogeneous Systems

Anders Wenhaug

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Jan Christian Meyer, IDI

Department of Computer Science

Submission date: August 2017

Norwegian University of Science and Technology

Problem description

Pseudo-random workloads and branch divergence present load balancing challenges

to heterogeneous systems using GPUs as accelerators. A method to partition an ir-

regular workload between host system processors and accelerators should be devel-

oped, and compared to conventional load balancing methods from the literature.

1

2

Abstract

Heterogeneous computing systems using one or more graphics processing units

(GPUs) as accelerators present unique load balancing challenges due to the archi-

tecture of the GPUs. Assigning a part of the workload proportional to the throughput

of the GPU is unlikely to achieve the peak theoretical performance of the GPU, partly

because of branch divergence. Additionally, for workloads depending on pseudo-

random numbers, the branch divergence may appear unpredictable, making it hard

to work around.

In this thesis we present an approach for reorganizing pseudo-random work-

loads before execution on the GPU, with the goal of reducing the branch divergence.

In our experiments, the method achieves a speedup in kernel execution time of up

to 1.45 on a real application. We also show that the method may be faster even if

the overhead of it is accounted for. Additionally, a method for estimating the result-

ing reduction in execution time is developed, which can be used for determining

whether or not to apply the reorganization.

A graph based method for task balancing is also presented, which is able to select

the optimal task sequence in over 96% of the tested cases. This task graph doubles as

a model for the throughput of the GPU, and the estimates are used by a load balancer

3

4

to partition the workload between the central processing unit (CPU) and GPU.

Sammendrag

Heterogene systemer som bruker grafikkprosessorer (GPUer) som akseleratorer med-

fører unike problemer med tanke på lastbalansering på grunn av arkitekturen til

GPUer. Å tildele en mengde arbeid som er proposjonal med ytelsen til en GPU fører

sjelden til at man oppnår optimal ytelse på GPUen, noe som delvis skyldes ytelsestap

på grunn av tråddivergens. Arbeidslaster som er avhengige av pseudo-tilfeldige tall

er spesielt vanskelige, fordi tråddivergensen kan være tilsynelatende tilfeldig, noe

som gjør det vanskelig å redusere tråddivergensen.

I denne oppgaven presenterer vi en metode for å omorganisere pseudo-tilfeldige

arbeidslaster før de kjører på GPUen, med mål om å redusere tråddivergens. Våre

eksperimenter viser at metoden medfører en ytelsesøkning på opptil 1.45 for en ekte

applikasjon. Vi viser også at metoden kan være raskere selv om tiden som brukes til å

omorganisere lasten er tatt med. I tillegg til dette utvikler vi en metode for å estimere

reduksjonen i kjøretid, som kan brukes for å bestemme om omorganiseringen skal

gjøres eller ikke.

En graf-basert metode for balansering av oppgaver blir også presentert. Denne

metoden velger den optimale rekkefølgen av oppgaver i 96% av tilfellene som ble

testet. Denne oppgavegrafen fungerer også som en modell for ytelsen til GPUen, og

5

6

estimatene blir brukt av en lastbalanserer for å dele arbeidslasten mellom proses-

soren (CPUen) og GPUen.

Acknowledgements

I would like to thank my supervisor Anne Cathrine Elster and my co-supervisor Jan

Christian Meyer for their support and guidance throughout this thesis. Our discus-

sions have been very interesting.

To my parents, Kristin and Geir, I am eternally grateful for your emotional and

unconditional support.

I would also like to thank my girlfriend and family, Silje, Marius, Vilde, Øystein,

Marie, Ola, Kjersti and Milo. I am very lucky to have you as my girlfriend, family

and step dog.

A special thanks to my grandparents, Oddrun, Steinar, Eli and Sverre. I am very

lucky to have you as my grandparents.

Last, but not in the slightest least, I would like to express my sincere appreciation

to my friend Bjarne Grimstad. Your friendship, guidance and knowledge have had

an immensely positive impact on my life. I am truly grateful.

7

8

Table of Contents

Problem description 1

Abstract 3

Sammendrag 5

Acknowledgements 7

Table of Contents 9

List of Tables 15

List of Figures 19

List of Source Code 21

List of Abbreviations and Nomenclature 23

1 Introduction 27

1.1 Motivation . 28

1.2 Thesis scope . 30

9

10 TABLE OF CONTENTS

1.2.1 Assumptions . 30

1.2.2 Research question . 31

1.3 Structure of the thesis . 31

2 Background 33

2.1 Pseudo-random number generators . 34

2.2 CUDA . 35

2.2.1 GPU topology . 35

2.2.2 Grid, thread block and warp . 36

2.2.3 Memory hierarchy . 37

2.3 Branch divergence on GPUs . 38

2.4 Irregular workloads . 40

2.5 Bootstrap . 41

2.5.1 The stationary bootstrap . 42

2.6 Splines . 45

2.6.1 The penalized spline (P-spline) . 46

2.7 Related work . 49

2.7.1 Static load balancing approaches 49

2.7.2 Dynamic load balancing approaches 51

3 Methodology 53

3.1 Performance modelling . 55

3.2 Partitioning of workload in the GPU . 56

3.2.1 Irregular workload in stationary bootstrap 57

3.2.2 Reorganization of workload . 59

3.2.3 Generation of seed to iteration count mapping 60

3.3 Task graph . 61

TABLE OF CONTENTS 11

3.3.1 Optimal execution path . 62

3.4 CPU and GPU workload partitioning . 64

4 Implementation 69

4.1 Tools and hardware . 70

4.2 Measuring execution time . 71

4.3 The bootstrap program . 72

4.3.1 Program flow . 73

4.3.2 Command line arguments . 73

4.3.3 Recorded statistics . 74

4.3.4 Histogram of iteration counts . 75

4.4 Stationary bootstrap implementations 75

4.4.1 General optimizations . 75

4.4.2 GPU kernels . 77

4.4.3 CPU implementation . 80

4.4.4 Sources of branch divergence in the GPU kernels 81

4.5 CPU bootstrap module . 82

4.6 GPU bootstrap module . 82

4.6.1 Warp-friendly and non warp-friendly bootstrap 82

4.6.2 Implemented operations of the task graph 83

5 Test cases 89

5.1 Reorganization of the workload . 91

5.1.1 Warp execution efficiency . 91

5.1.2 Execution time . 91

5.1.3 Seeds to iterations file load time 93

5.2 Task graph . 94

12 TABLE OF CONTENTS

5.2.1 Execution path selection . 94

5.2.2 Determining optimal execution path time 94

5.3 Load balancer . 94

5.3.1 Optimization time . 95

5.3.2 Estimated execution time . 96

5.3.3 Actual execution time . 96

5.3.4 Actual and estimated ratios . 96

5.3.5 Balanced and unbalanced execution time 97

6 Results 99

6.1 Reorganization of the workload . 100

6.1.1 Warp execution efficiency . 100

6.1.2 Execution time . 103

6.1.3 Seeds to iterations file load time 112

6.2 Task graph . 112

6.2.1 Execution path selection . 112

6.2.2 Determining optimal execution path time 113

6.3 Load balancer . 114

6.3.1 Optimization time . 114

6.3.2 Estimated execution time . 115

6.3.3 Actual execution time . 115

6.3.4 Actual and estimated ratios . 116

6.3.5 Balanced and unbalanced execution time 117

7 Discussion 119

7.1 Quality of the method . 120

7.2 Comparison to other approaches . 121

TABLE OF CONTENTS 13

7.2.1 Reorganization of workload . 121

7.2.2 Task graph . 122

7.2.3 Load balancer . 123

7.3 Reorganization of workload . 124

7.3.1 Warp execution efficiency . 124

7.3.2 Execution time . 125

7.3.3 Overhead of the warp-friendly bootstrap 125

7.3.4 Feasibility of reorganizing the workload 129

7.4 Task graph . 130

7.4.1 Execution path selection . 130

7.4.2 Time usage . 131

7.5 Load balancer . 131

7.5.1 Optimization time and load balancing result 131

7.5.2 Actual execution time . 133

7.6 Estimating the reduction in execution time 134

8 Conclusion 139

9 Future work 141

9.1 Static seeds . 141

9.2 Persistent seeds to iterations mapping on GPU 142

9.3 Force uniform workload per warp . 142

9.4 Other applications . 143

9.5 Compression of seeds to iteration counts file 143

9.6 Scheduling large workloads on the CPU 143

9.7 Load balancer improvement . 144

14 TABLE OF CONTENTS

Bibliography 144

Appendices 151

A Figures 153

B Source code listings 159

C Running the bootstrap program 167

C.1 Compilation . 167

C.2 Running . 168

List of Tables

4.1 Hardware configuration #1 . 70

4.2 Hardware configuration #2 . 70

4.3 Hardware configuration #3 . 71

4.4 Some of the command line arguments of the bootstrap program. 74

4.5 Table of all operations. 83

6.1 Load seeds to iterations file timings with 32 GiB of memory. 112

6.2 Load seeds to iterations file timings with 16 GiB of memory. 112

6.3 Optimal and selected paths statistics 1/2. 113

6.4 Optimal and selected paths statistics 2/2. 113

6.5 Determine optimal execution path timings. 113

6.6 Balanced and unbalanced execution time 1/2. 117

6.7 Balanced and unbalanced execution time 2/2. 117

15

16 LIST OF TABLES

List of Figures

1.1 Example of flow rate before and after closing a well. 29

2.1 CUDA grid, thread block and threads [NVI17c]. 36

2.2 Comparison of regular and irregular workloads 41

2.3 Original time series. 43

2.4 One of the possible resampled time series. 44

2.5 Example of a B-spline overfitting a data set. 47

2.6 Fitting the same data set with a penalized spline. 48

3.1 The estimator for the operation Initialize PRNG 2 after 40 executions. . 56

3.2 Workload distribution for l ∈ [12000,20000] and p ∈ {0.001,0.005,0.01}. 57

3.3 Workload distribution as a function of the time series length and p. . . 58

3.4 Thread activity before and after reorganization of workload. 60

3.5 Constructed example of load balancer objective function. 66

4.1 High level structure of the bootstrap program. 72

6.1 Warp execution efficiency and coefficient of variation as a function of l . 100

6.2 Warp execution efficiency and coefficient of variation as a function of p.101

17

18 LIST OF FIGURES

6.3 Warp execution efficiency and coefficient of variation as a function of n.102

6.4 Kernel execution times with and without reorganization, vs l 103

6.5 Kernel execution times with and without reorganization, vs p. 104

6.6 Kernel execution times with and without reorganization, vs n. 105

6.7 Kernel execution times and overheads as l is increased. 105

6.8 Kernel execution times and overheads as p is increased. 106

6.9 Kernel execution times and overheads as n is increased. 106

6.10 Most time consuming operations vs. l . 107

6.11 Most time consuming operations vs. p. 107

6.12 Most time consuming operations vs. n. 108

6.13 Total execution time vs l . 108

6.14 Total execution time vs p. 109

6.15 Total execution time vs n. 109

6.16 Speedup of reorganization vs. l . 110

6.17 Speedup of reorganization vs. p. 111

6.18 Speedup of reorganization vs. n. 111

6.19 Load balancer time and number of iterations for each run. 114

6.20 Load balancer estimated execution time. 115

6.21 Load balancer actual execution time. 115

6.22 Load balancer estimated and actual ratios. 116

6.23 The CPU bootstrap estimator before and after the first run. 116

A.1 Complete task graph of the bootstrap program. 154

A.2 Execution path 1/4. 155

A.3 Execution path 2/4. 156

A.4 Execution path 3/4. 157

LIST OF FIGURES 19

A.5 Execution path 4/4. 158

20 LIST OF FIGURES

List of Source Code

2.1 Branch divergence example 1. 39

2.2 Branch divergence example 2. 40

3.1 Load balancer optimization. 67

B.1 Bootstrap kernel using shared memory 160

B.2 Bootstrap kernel for long time series . 162

B.3 Kernel for getting iteration counts . 163

B.4 Generate seeds on the GPU . 164

B.5 C++ implementation of the stationary bootstrap 165

21

22 LIST OF SOURCE CODE

List of Abbreviations and

Nomenclature

23

24 LIST OF SOURCE CODE

Abbreviations

CPU = Central processing unit

GPU = Graphics processing unit

FLOPS = Floating point operations per second

KiB = Kibibyte (1024B)

MiB = Mibibyte (1024KiB)

GiB = Gibibyte (1024MiB)

PRNG = Pseudo-random number generator

WF = Warp-friendly

NWF = Non warp-friendly

DAG = Directed acyclic graph

WEE = Warp execution efficiency

PCI = Peripheral Component Interconnect

LIST OF SOURCE CODE 25

Nomenclature

l = Time series length

p = p-parameter of the geometric distribution

n = Number of resamplings

Warp-friendly = When stationary bootstrap is run using reorganized workload

Non warp-friendly = When stationary bootstrap is run without reorganization

26 LIST OF SOURCE CODE

Chapter 1

Introduction

Heterogeneous systems composed of multi-core central processing units (CPU) and

accelerators such as graphics processing units (GPU) are becoming increasingly pop-

ular for data-parallel applications. GPUs were originally produced for accelerating

demanding graphical tasks, but is now being used for general purpose computing

because of the high performance it offers relative to the CPU. Programming toolkits

such as CUDA1 [NVI17c] have been developed to make it easier to develop and run

programs on GPUs. However, achieving the best performance on a heterogeneous

system requires the workload to be partitioned such that the devices get a workload

relative to their performance. This remains a main challenge.

In this thesis, we will look at how data-parallel applications can be partitioned

across the CPU and GPU. A system for determining the optimal partitioning of a spe-

cific application with irregular workloads (workloads where the amount of work per

work unit varies) will be implemented. Additionally, a novel method for balancing

1CUDA used to be an abbreviation for Compute Unified Device Architecture, but was later renamed to
just CUDA.

27

28 CHAPTER 1. INTRODUCTION

the workload internally in the GPU is also presented, implemented and studied.

Load balancing is the process of determining the portions of the total workload

to run on each device. Typically, it is desired to minimize the total execution time

of the program. To achieve this, each device must be assigned a workload such that

the execution time of all devices are equal, and finish computing at the same time.

Failing to find a good partition means that the devices that finish first must wait for

the slowest to finish, effectively wasting the computational resources of the devices

that must wait.

1.1 Motivation

In subsea oil production, there are typically a number of wells where oil and gas is

extracted from. These wells are often connected to a single large pipe that the oil

and gas are transported through to the oil platform or production ship at the top-

side. The result of this is that only the cumulative production of all wells is known

by measuring the rate of flow at the top-side, and the production of each individual

well is unknown. For optimizing the valve settings with the objective of maximizing

the oil and gas rates, it is very useful to know the production of each well.

One of the commonly used methods for determining the production of a single

well is to fully close the valves on the well. Then, the delta in cumulative production

is measured at the top-side. Because of noise and oscillations in the flow, the well

must remain closed for a period of time until the true production of the well can be

known with a certain confidence. Each second the well is closed leads to lower total

production and therefore less income for the oil production company. It is therefore

important to be able to determine the production of the well as fast as possible, so

that the valve choke can be reopened and the full production potential regained.

1.1. MOTIVATION 29

Figure 1.1: Example of flow rate before and after closing a well.

Figure 1.1 shows a fictional example of a drop in the total flow rate when one well

is closed at t=700.

A method called stationary bootstrap can be applied to give an estimate of the

mean production of the well. The time series of the rate of flow is resampled many

times and the arithmetic mean of each resampling can be used to build a histogram

of means, which in turn can be used to compute a confidence interval for the true

mean of the time series. It is imperative for the method to be fast, so that the well

can be reopened as soon as possible. In this project we will look at methods for

achieving this.

30 CHAPTER 1. INTRODUCTION

1.2 Thesis scope

The scope of this thesis is to develop a method for partitioning irregular pseudo-

random workloads on heterogeneous systems using GPUs as accelerators. Work-

load partitioning is traditionally interpreted as determining a partition of the work-

load that minimizes execution time when run on a heterogeneous system. In this

thesis, we will include the partitioning of the workload internally in the GPU, that is,

between the cores of the GPU, as part of the study.

The scope is thus divided into two main parts: Developing a method for parti-

tioning the total workload between the CPU and GPU, and developing a method for

partitioning the workload internally in the GPU. The methods will be compared to

traditional methods found in the literature.

We focus our attention to applications that execute a single data-parallel kernel

with pseudo-random irregular workloads. Pseudo-random irregular workloads are

applications where the workload of each data point is partially determined by the

output of a pseudo-random number generator (PRNG).

1.2.1 Assumptions

• A single GPU will be used for all test cases. Both the approach taken for par-

titioning the workload between the CPU and GPU, and the approach for the

workload partitioning internally in the GPU should be valid for multi-GPU se-

tups as well. Multi-GPU setups is therefore considered to be out of scope for

this thesis.

• The majority of the workload per data point occurs in a loop, and the number

of iterations of the loop must be partially determined by the output of a PRNG.

1.3. STRUCTURE OF THE THESIS 31

1.2.2 Research question

Determine the feasibility of reorganizing the workload to increase the perfor-

mance of GPUs on irregular pseudo-random workloads, and if so, for which

cases one can expect decreased execution time.

1.3 Structure of the thesis

The thesis is organized into nine chapters. The first chapter gives a brief introduc-

tion to heterogeneous systems and load balancing, motivates the work done in this

thesis, and defines the scope of the thesis. Chapter 2 aims to provide the reader with

the theoretical background that is necessary to follow the rest of the thesis, along

with a review of existing load balancing approaches that are found in the literature.

In Chapter 3, we describe the methods we have developed for workload partition-

ing. Chapter 4 gives a detailed description of the implementation of our methods,

followed by Chapter 5 where the experiments and metrics we use are described. In

Chapter 6, the results of the experiments are presented, and then discussed in Chap-

ter 7. Finally, we present our conclusions in Chapter 8, and provide recommenda-

tions for further research in Chapter 9.

32 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The purpose of this chapter is to provide an overview of the key concepts and tech-

nologies that is used in this thesis. To fully understand the rest of the thesis, it is

necessary to understand the concepts described here.

We start with a description of pseudo-random number generators, followed by

a brief overview of the GPU programming toolkit called CUDA. An introduction to

branch divergence on GPUs is then given, and followed by a short description of

regular and irregular workloads. Next, the application that is used for evaluating

our methods, the stationary bootstrap, is introduced. We then provide an overview

of splines, which are used for building regression models. Finally, an overview of

existing workload partitioning approaches that we found interesting and relevant to

this thesis is presented.

33

34 CHAPTER 2. BACKGROUND

2.1 Pseudo-random number generators

Generation of random numbers in computers is often done using pseudo-random

number generators (PRNGs). The "pseudo" in the name stems from the fact that

the sequence of generated numbers is not really random, but designed so that it will

seem random to any external observers [Mon94].

PRNGs consist of an internal state, a state transition function and an output

function [Mon94]. When a random number is to be generated, the internal state

of the generator is computed by the state transition function, with the current state

as input. The output function is then used, with the new state as input. The output

of this function is the random number.

xn+1 = (axn +b)modm,0 ≤ x0 < m,n ≥ 0 (2.1)

A simple example of a random number generator is the linear recursive congruen-

tial method [Hef86]. Here, the internal state is the variable x, the state transition

function is the congruence in Equation (2.1), and the output function is the identity

function.

A very important property of PRNGs is that both the state transfer and output

functions are deterministic. Therefore, given an initial state x0, the entire sequence

of numbers generated is predictable. This initial state is called the seed. For exam-

ple, using Equation (2.1) with parameters a = 73, b = 87, m = 93, and setting the

initial state (seeding the generator) x0 = 59, these are the first ten pseudo-random

numbers: 23, 92, 14, 86, 41, 11, 53, 50, 17, 26. There is no more input to the PRNG

than the parameters and the seed, so the exact same sequence will be generated for

those same initial conditions.

A consequence of this determinism is that, while providing sufficient random-

2.2. CUDA 35

ness for many use cases, the use of PRNGs make experiments reproducible. As long

as the initial seed is known, any experiment that depend on a PRNG for randomness

will be reproducible, assuming the rest of the experiment is deterministic.

2.2 CUDA

CUDA is NVIDIA’s general purpose programming model for GPUs. It was introduced

in 2006 [NVI17c], and features a compiler, library and runtime to enable developers

to create programs to be executed on NVIDIA GPUs. One of the programming lan-

guages used by CUDA is C++, with a few extensions. Programs written for CUDA are

first compiled using NVIDIAs compiler, nvcc, which separates the GPU specific code

from the rest and compiles it. The CPU specific code is compiled using a standard

C++ compiler, and the results combined into the same binary.

CUDA programs typically mix normal serial CPU code with code that runs on

the GPU. Special directives are used for marking functions that can be run on the

GPU or CPU, or both. These functions are called kernels. Running a kernel is called

launching it, and a special syntax element has been added to the normal function

call syntax to enable some additional configuration parameters.

2.2.1 GPU topology

NVIDIA GPUs consist of a number of streaming multiprocessors (SM). In each SM,

there is a number of CUDA cores. The amount of CUDA cores and SMs differ be-

tween GPU generations, and also between GPUs of the same generation. For in-

stance, the Pascal generation NVIDIA GTX 1080 Ti has 128 CUDA cores in each of

the 28 SMs, for a total of 3584 CUDA cores.

Each streaming multiprocessor on the GPU has one instruction unit per 32 CUDA

36 CHAPTER 2. BACKGROUND

cores. The CUDA cores are simple and relatively slow compared to a CPU core. They

feature no out-of-order or speculative execution, and there is no branch prediction.

2.2.2 Grid, thread block and warp

Figure 2.1: CUDA grid, thread block and threads [NVI17c].

When a CUDA kernel is launched, a specified number of threads are spawned. Each

thread executes the same kernel with the same parameters, except for a few implicit

parameters that can be used to calculate the threads unique id. The threads are

organized into thread blocks (sometimes just called blocks), which can be 1, 2 or 3-

dimensional. The blocks are organized into a grid of blocks, which can also be 1, 2

or 3-dimensional. Figure 2.1 shows an example of a 2-dimensional block of threads

2.2. CUDA 37

in a 2-dimensional grid of blocks.

Each block is assigned to a single SM, and each SM can have multiple blocks as-

signed to it. When executing, groups of 32 threads from the same block are executed

simultaneously. These groups of 32 threads are called warps. Because there is only

one instruction unit per 32 CUDA cores, threads that belong to the same warp must

always execute the same instruction at any time.

2.2.3 Memory hierarchy

There are several types of memories in CUDA GPUs. The fastest, and smallest, are

located on the GPU chip, while the largest and slowest are located off the chip.

Registers

Registers are the fastest type of memory in CUDA. They are used for thread local

storage, and are located in each SM. There are typically thousands of registers per

SM.

Shared memory

Each SM has a fast memory type that is called shared memory. Shared memory is lo-

cal to each thread block, and the amount of shared memory is configurable. Shared

memory can typically store on the order of tens of kibibytes.

L1 cache

Similarly to shared memory, there is an L1 cache in each SM. The amount is config-

urable per kernel, so the amount of L1 cache can be increased at the expense of less

shared memory, and vice versa.

38 CHAPTER 2. BACKGROUND

L2 cache

L2 is the largest memory that is located on chip, at a few mibibytes of size. It is used

for caching accesses to local or global memory.

Texture memory

Texture memory is located off chip in global memory, but has a special cache on the

chip that optimizes for spatial locality accesses.

Local memory

Local memory is also located off chip in global memory, and is used for storing

thread local data that does not fit in the registers of a thread.

Constant memory

Constant memory is used for read only data, and has a special cache associated with

it in each SM. Data can only be written to constant memory from the CPU. It is lo-

cated off chip in global memory.

Global memory

Global memory is the largest of the memory types in CUDA GPUs. It can be both

read from and written to, but is very slow compared to on chip memories. The size

of the global memory may be tens of gibibytes.

2.3 Branch divergence on GPUs

GPUs implement the single instruction, multiple threads (SIMT) architecture. In

this architecture, there is only one instruction unit per n cores (n = 32 in newer

2.3. BRANCH DIVERGENCE ON GPUS 39

CUDA cards). Statements that may cause threads to execute different control flows

is therefore an issue, as the threads no longer will share instruction stream. This is

called branch divergence.

1 __global__ branch_divergence_if () {

2 int id = blockDim.x * blockIdx.y + blockIdx.x;

3 if (id % 2) {

4 // Do one thing

5 } else {

6 // Do something else

7 }

8 }

Listing 2.1: Branch divergence example 1.

In listing 2.1, a CUDA kernel which exhibits branch divergence is shown. Threads

with odd ids will enter the true part of the if statement, while threads with an even

id will enter the false part. Because of the restriction of only one instruction per

warp at a time, the GPU may solve this by first executing the true part with only the

relevant threads marked active, and then doing the opposite for the false part. The

result of this is that the total execution time becomes the sum of the execution times

in both branches, as opposed to being the maximum of the two had there been two

(or more) instruction units.

40 CHAPTER 2. BACKGROUND

1 __global__ branch_divergence_for () {

2 int id = blockDim.x * blockIdx.y + blockIdx.x;

3 for (int i = 0; i < id; i++) {

4 // Do useful work

5 }

6 }

Listing 2.2: Branch divergence example 2.

Listing 2.2 shows another type of branch divergence, which is when the number of

iterations in a loop is not equal for all threads. In this example the loop condition is

what causes this, but it could just as well had been something else, like the amount

the induction variable i is incremented each iteration. In this particular example,

the id’s of the threads of a warp will be strictly increasing by one from the lowest id

to the highest. The number of iterations of the loop will match the id of a thread, so

for each iteration, one less thread will be executing, and waiting instead. The end

results is that approximately half of the "thread-time" will have been spent waiting

for the other threads to finish (assuming 0 ≤ i d ≤ 31 for all id’s).

2.4 Irregular workloads

Parallel workloads can be divided into regular and irregular workloads [She+13].

Regular workloads are applications where all the work units are approximately of

the same size, i.e. they take approximately the same amount of time to finish on the

same hardware. Irregular workloads does not have this property, and the amount of

work per work unit may vary by a lot.

2.5. BOOTSTRAP 41

(a) Regular workload (b) Irregular workload

Figure 2.2: Comparison of regular and irregular workloads

Figure 2.2a shows an example of an application with a regular workload. Such

applications may perform well without modifications when run on the GPU. An ex-

ample of a regular workload is (dense) matrix multiplication.

Figure 2.2b shows an example of an application with an irregular workload. If

run on a GPU without modifications, one can expect to see a large fraction of inac-

tive threads to active threads, due to some threads being assigned a very time con-

suming workload compared to the other threads in the same warp. An example of

an irregular workload is ray tracing [She+13], where each ray represents a work unit.

The work unit size per ray may differ because of a variable time step, which may be

dependent on simulation conditions.

2.5 Bootstrap

Statistical bootstrap [Efr79] is a method of estimating properties of the sampling dis-

tribution of a random sample. Such properties may be the mean, variance and me-

dian or higher order moments. In this work, the arithmetic mean is of particular

42 CHAPTER 2. BACKGROUND

interest, so the method will be described with a focus on it, yet the same method

applies to the other properties as well.

Given a random sample X = (x0, x1, ...xm), the mean can be estimated using the

bootstrap method as follows: A new sample X1 is generated by sampling with re-

placement from X m +1 times, such that X1 is of the same size as X . The statistic of

interest is then computed from the new random sample X1. This process is repeated

n times, for sufficiently large n. The results from those computations are n means,

which can be grouped into bins to form a histogram. This histogram is the resulting

estimate of the mean, and can be used to compute such values as the confidence

interval of the mean.

2.5.1 The stationary bootstrap

The stationary bootstrap is a special case of the bootstrap, introduced by D. Politis

and J. Romano [NP94]. It attempts to address the issue that regular bootstrap fails

to capture the dependency between adjacent samples in the data, if there is such a

dependency. The stationary bootstrap is applicable to stationary, weakly dependent

time series [ECO]. The stationary property means that the sampling distribution is

static, and the weakly dependent property means that the correlation between two

samples tends to 0 sufficiently quickly as the distance between them (in time) grows.

The stationary bootstrap differs from the regular bootstrap in how it resamples

the data. To capture the dependence between samples, it does not draw samples

one-by-one, but selects all samples that fall within some window. The start of this

window is drawn from a uniform distribution, and the size of the window is drawn

from a geometric distribution (with parameter p). If the start of the window, plus

the size of it, should exceed the size of the time series, the windows wraps around

and continues from the beginning of the time series. This process is continued until

2.5. BOOTSTRAP 43

the new time series is the same size as the original. If a window is selected such that

the size of the new time series will be larger than the original time series, the size of

the window is shrunk until this is no longer the case.

Figure 2.3: Original time series.

44 CHAPTER 2. BACKGROUND

Figure 2.4: One of the possible resampled time series.

Figure 2.3 shows an example of a time series. The red parts are two examples

of windows that were selected for "transfer" to the new, resampled time series. In

Figure 2.4, the same windows of samples have also been marked red, to make them

easier to identify. Note that the entire resampled time series is made up of such

windows, but only two of those are marked in red. The first red part from the original

time series can be found near the end in the resampled time series, where it has also

been marked red. The other red part, which can be found in the original time series

at 50 < Time < 80, appears in the resampled time series at 30 < Time < 60.

2.6. SPLINES 45

2.6 Splines

Splines are mathematical functions defined by piecewise continuous polynomials.

They have a high degree of smoothness, meaning that, for all x at the interval bounds

of the piecewise functions fi , the sum

n−1∑
i=0

(f ′
i (x)− f ′

i+1(x))2 (2.2)

is minimized.

Splines can be defined for multivariate functions f :Rm →Rn , but in this project

only the univariate spline with a single output is needed (f : R→ R), so this expla-

nation will focus on the univariate spline. In particular the basis spline (B-spline),

which defines splines using a recurrence relation, will be presented here.

A B-spline is defined in terms of a vector of basis functions, with a coefficient for

each basis function which adjusts the contribution from each basis function. Math-

ematically a spline f can be defined as follows [GS16]:

f (x) =
n∑

i=0
ci bi (x), (2.3)

where b is the vector of basis functions, and c are the coefficients. Two of the pa-

rameters to the basis functions have been skipped here; The interval it is defined on

(t), and its degree p. All basis functions, except those of degree p = 0, are defined in

terms of two other basis functions of degree one less than itself. The basis functions

b can thus be defined by a recurrence relation (p parameter included, t being im-

plicit):

bi ,p = x − ti

ti+p − ti
bi ,p−1(x)+ ti+1+p −x

ti+1+p − ti+1
bi+1,p−1(x) (2.4)

46 CHAPTER 2. BACKGROUND

with the special case for basis functions of degree p = 0:

bi ,0 =

1, if ti ≤ x < ti+1.

0, otherwise.
(2.5)

The vector t is often called the knot vector of the spline. Each basis function of

degree p = 0 is 1 inside one such interval, and 0 everywhere else. This local sup-

port property of the p = 0 degree basis function means that the basis function that

is defined in terms of the zero degree basis function also has local support, but on

one additional interval. So, for a p = 3 degree basis function, it is defined in terms

of p +1 = 4 zero degree basis functions, and by extension p +1 = 4 intervals. Spline

implementations on computers can exploit this property to only evaluate the basis

functions that contribute to the value of the spline at each point, for example by us-

ing de Boor’s algorithm [Boo72]. Because the basis functions are defined as a convex

combination, the evaluation of a spline is numerically stable.

2.6.1 The penalized spline (P-spline)

There are several ways of fitting a spline to a data set, one of which is to minimize

Equation (2.6) to get an interpolating spline.

n∑
i=0

(yi − f (xi))2 (2.6)

The coefficients and knot vector of interpolating splines are chosen so as to min-

imize Equation (2.6), while retaining the smoothness property of the spline. For

some datasets, minimizing Equation (2.6) may lead to a phenomenon known as

overfitting, where the spline ends up fitting noise instead of capturing the informa-

2.6. SPLINES 47

tion in the data. Interpolating splines may therefore have suboptimal performance

on regression problems.

Penalized splines (P-splines) may reduce the problem of overfitting. When build-

ing a P-spline, a term is added to Equation (2.6) (resulting in Equation (2.7)) to pe-

nalize large second derivatives of the spline.

n∑
i=0

(yi − f (xi))2 +λ
∫ xi+1

xi

f ′′(x)2dx (2.7)

The parameter λ ∈ [0,∞) controls the amount to penalize large f ′′(x). A λ = 0

yields an interpolating spline, while λ=∞ will yield behaviour equal to linear least

squares regression.

Figure 2.5: Example of a B-spline overfitting a data set.

48 CHAPTER 2. BACKGROUND

Figure 2.6: Fitting the same data set with a penalized spline.

Figures 2.5 and 2.6 demonstrate how a B-spline may overfit a data set, and how

a penalized spline may be used to capture the underlying information in the data

better. In this case, the underlying function is a third degree function with Gaus-

sian noise (µ = 0,σ = 70) applied to the 30 samples that were used for building the

splines. λ = 1.0 were used for building the P-spline. At x = 0 we see the worst case

of overfitting, the actual value of the function is f (0) = 7, but due to the noisy sam-

ple, the B-spline predicts a value of around −100. The P-spline has a far better pre-

diction, at around −40. Fitting the sample at x = 0 would require a large second

derivative at the local minimum, which would add a large penalty to the spline, and

is therefore avoided.

2.7. RELATED WORK 49

2.7 Related work

In the literature, there is a division of load balancing methods into static and dy-

namic load balancing. Static load balancing is when the balance is determined once

- typically based on performance models - and is not changed during computation.

Dynamic load balancing is when the balance may change during execution, for ex-

ample as a consequence of observing the relative performance of the devices. The

types of load balancers are further divided into balancing data-parallel and task-

parallel applications. We focus our study on data-parallel load balancers as they

fit our scope, but include an interesting approach to task-parallel load balancing

that may be used for data-parallel applications with minor changes, and another

approach to task-parallel load balancing using a task graph.

2.7.1 Static load balancing approaches

In static load balancing approaches, a performance model of the devices is often

used to predict their relative performance [She+13; She+16; FE16], and then select-

ing a partition based on the estimated throughput of each device.

Workload reshaping

[She+13] introduced an approach to static load balancing of irregular workloads that

is applicable to applications with kernels consisting of one or more loops. The work-

load distribution is sampled, where the output from the samples is the number of

iterations of these loops. They then apply a technique they call workload reshaping,

in which they build a model of the workload distribution using the samples, and sort

the workloads by the number of iterations of the loops. The distribution is then an-

alyzed to determine the shape of it, e.g. find flat areas and areas with peaks. Using

50 CHAPTER 2. BACKGROUND

execution times from previous runs, a partition point that minimizes the difference

between the CPU and GPU execution times is determined. Flat areas are scheduled

to run on the GPU, and areas with peaks are scheduled to run on the CPU. The rea-

soning for this scheduling is that flat areas is thought to have less branch divergence.

Machine learning based models

[FE16] proposed an approach to static load balancing of regular workloads based

on machine learning. In their method, a device is selected to be the main device.

Then, for each additional device, a model is built using machine learning that takes

hardware counters from the main device as input, and the throughput of another

device as output. The models are trained in an offline phase by running the pro-

gram with many different parameters. At run time, a small input is run on the main

device, and the hardware counters used as input for all the models. The output is

then used as an estimate for the execution time of each additional device, and the

workload is distributed so that each device gets a workload that is proportional to

their estimated throughput.

Linear regression models

[She+16] proposes two approaches for modelling the throughput of the devices. The

first uses offline profiling, where the throughput of each device, and the transfer

time from CPU memory to GPU memory, are recorded for different input sizes. The

throughputs are then used to build linear regression models for each device and the

data transfer. They divide the problem range into several sets, where each set fits

into a different physical memory type. This means that they build one linear regres-

sion model for problem sizes that fit in L1 cache memory, one regression model for

problems that fit in L2 cache memory, etc. For online profiling, they run a very small

2.7. RELATED WORK 51

input on each device and record the throughputs and data transfer time. Similarly

to [She+13], they apply workload reshaping to facilitate division of the workload into

flat and peak areas. In this method, however, the programmer is required to manu-

ally model the shape of the workload.

2.7.2 Dynamic load balancing approaches

Increasing chunk size

[Boy+13] developed a dynamic load balancer that works by initially assigning a small

workload, called chunks, to each device. As the devices finish computing the initial

chunks, a new, larger chunk is assigned to them. When all devices have finished

executing a set number of chunks, γ, the throughputs of the previous runs are used

to partition the remaining work into n chunks, where n is the number of devices.

Persistent kernel

[Che+10] offers an interesting approach to balance task-parallel applications. They

launch one persistent kernel with B thread blocks for each GPU, where B can be

as large as the maximum number of concurrently executing thread blocks on each

device. One or more task queues are created, to which the CPU thread submits tasks.

One thread in each thread block polls the queue(s) for a task to execute. When a task

is received by the thread, the thread block executes the task. This process continues

until a special HALT task is submitted to the queue(s), causing the kernel(s) to halt

execution.

We argue that this approach can be used for balancing data-parallel applications

by splitting the input into many small tasks, and submitting these to the task queue

for processing by the GPU(s).

52 CHAPTER 2. BACKGROUND

Task graph

StarPU is a runtime system introduced by [Aug11]. Tasks are submitted by the ap-

plication to the StarPU scheduler, which selects the next task to run and on which

device, based on a scheduling policy. Each task has a codelet, which contains an im-

plementation of the functionality of the task for one or more devices. When a task is

selected for execution, the scheduler uses the estimated execution time of running

the codelet on each device to determine the device the codelet should be run on.

The tasks in StarPU may have dependencies on other tasks. StarPU automati-

cally builds a task graph from these dependencies, and handles transfer of the input

and output data from and to each device. Special functions called filters can be used

to partition the data into blocks. A task is generated for each block of data, and the

data is combined to the final result when all the tasks have finished executing.

Chapter 3

Methodology

The purpose of this chapter is to provide a description of the methods used for par-

titioning the workload both between the CPU and GPU, and internally in the GPU.

Throughout this chapter and the following chapters, the variables l , p and n will

be used extensively. Where not specified otherwise, they are meant to denote the

length of the time series, the p-parameter of the geometric distribution used in the

stationary bootstrap, and the number of resamplings to perform, respectively. ncpu

and ng pu are used to denote the number of resamplings assigned to the CPU and

GPU, respectively.

The structure of the chapter is as follows: First, the method used for modelling

the execution time of different processes is described. Then, a presentation of the

methodology for reducing branch divergence in the GPU kernels is provided, along

with a short review of the irregularity of the workload in stationary bootstrap. A

method for automatically determining the optimal execution path of the GPU pro-

cess is then presented, and finally our method for workload partitioning across the

53

54 CHAPTER 3. METHODOLOGY

CPU and GPU is described.

3.1. PERFORMANCE MODELLING 55

3.1 Performance modelling

The execution time of different processes are modelled by a one dimensional P-

spline of degree 3 with λ = 0.1, or, in the case of the model of the CPU execution

time, λ = 0.001. Every time the process is executed, the execution time is recorded

and used to update the spline with the new data. The execution time of most pro-

cesses depend on 3 variables: l , p and n. The version of SPLINTER [Gri+15] we use

require the samples to form a regular grid. This means that building a spline with

multiple input dimensions require a number of samples that is exponential in the

number of dimensions, and can therefore quickly become very large. To avoid hav-

ing to sample the input space in many points, the dimensionality has been reduced

to 1 by constructing a new spline for each pair of l and p.

A P-spline of degree 3 requires at least 4 unique samples to be built. For inputs

where the number of unique samples is less than this number, the estimate is re-

ported as 0. The same is also true for n that lie outside of the estimator support,

which limits the use of the estimator to interpolation, and avoids extrapolation.

At program exit the splines are saved to disk. When estimates for some pair of l

and p is required, the relevant splines are loaded and used.

56 CHAPTER 3. METHODOLOGY

Figure 3.1: The estimator for the operation Initialize PRNG 2 after 40 executions.

Figure 3.1 shows the recorded data points and the spline estimate for a range of

values of n. We can see that the penalty of the P-spline ensures that the spline does

not overfit by interpolating the sample at n ≈ 2,500,000.

3.2 Partitioning of workload in the GPU

Our approach to partition the workload on the GPU aims to reduce the branch di-

vergence of the kernels, and thereby achieve a reduction in the execution time of the

kernel by spending less time in divergent branches.

We start by providing a short analysis of the irregularity of the workload in sta-

tionary bootstrap, which is followed by a description of the method we use to reduce

branch divergence.

3.2. PARTITIONING OF WORKLOAD IN THE GPU 57

3.2.1 Irregular workload in stationary bootstrap

Distribution of workload

The stationary bootstrap uses a geometric distribution for selecting the sizes of the

windows. The geometric distribution has a parameter, p ∈ (0,1]. The expected value

of the distribution is µgeometric distribution = 1
p . For a time series of size l , the expected

number of windows to be drawn is therefore µ#windows = l
µgeometric distribution

= l p. In

this thesis, we use the term number of windows or number of iterations extensively

to denote the number of windows that must be selected to fully resample a time

series, which is equivalent to the number of iterations of the loop that performs the

resampling. This metric is our measure of the workload of each resampling.

(a) Workload distribution for l = 12000. (b) Workload distribution for l = 20000.

Figure 3.2: Workload distribution for l ∈ [12000,20000] and p ∈ {0.001,0.005,0.01}.

Figure 3.2a shows the frequency of each iteration count / number of windows

for l = 12000 and three different values of p. Figure 3.2b shows the distribution of

the same ps for l = 20000. We can see that as p is increased, the expected number

of windows increases, but so does the variation. The workload also increases as l is

58 CHAPTER 3. METHODOLOGY

increased. The workloads appear to be approximately normally distributed for all

sets of parameters, with a worse fit for when the expected value is low.

Coefficient of variation

The coefficient of variation is a metric for showing the relative variation of a popu-

lation with respect to the expected value. It is defined as

cv = σ

µ
(3.1)

The metric proves to be a very useful metric for determining the speedup that

is achievable by reorganizing the workload. In the figures below we show how the

coefficient of variation varies for the stationary bootstrap as l or p is changed.

Figure 3.3: Coefficient of variation, mean and variance as a function of the time
series length and p, separately.

We can see that the mean and variance of the workload distribution grows as l

or p is increased, while the coefficient of variation decreases.

3.2. PARTITIONING OF WORKLOAD IN THE GPU 59

3.2.2 Reorganization of workload

In our implementation of the stationary bootstrap on the GPU, each thread per-

forms one resampling of the time series. There is a separate PRNG for each thread,

and each PRNG is seeded with a randomly drawn seed. Taking inspiration from the

workload reshaping of [She+16], we apply a sorting of the PRNG seeds based on the

resulting main loop iteration count. Figure 3.4a shows a fictional example of the

workloads per work unit, divided into warps of size 12 (for illustrative purposes).

The green bars are where a thread is active, and the red bars are where a thread is

marked inactive, thus wasting resources. Because of branch divergence, the longest

green bar determines the execution time of each warp. The bigger the variation in

work unit size, the more thread-time is wasted by threads waiting for the thread with

the largest work unit to finish. Figure 3.4b shows the exact same workload as figure

3.4a, but where the work units are sorted based on their size. The amount of wasted

thread-time has been reduced from 338 to 62, or from 24% of the total execution

time to 6% of the total execution time. There is even a warp where no thread is

marked inactive at all.

60 CHAPTER 3. METHODOLOGY

(a) Before reorganization. (b) After reorganization.

Figure 3.4: Thread activity before and after reorganizing the workload by the amount
of work per work unit.

PRNG seed as predictor for iteration count

In some problems, such as the stationary bootstrap described later, the seed of the

PRNG is a perfect predictor for the number of iterations of the main loop in the

kernel. The PRNG that implements the geometric distribution is a deterministic

function of the seed, which makes the sequence of window sizes deterministic, and

therefore the number of iterations needed by the loop to reach the stopping con-

dition. When saying that a seed uniquely determines the size of a work unit, it is

implied that l and p are not varied.

3.2.3 Generation of seed to iteration count mapping

To be able to sort the seeds based on their respective workloads, a mapping from

all possible PRNG seeds to the iteration counts they result in is needed. Mathemat-

ically, there is an infinite number of different seeds to the PRNG, which renders this

task impossible. Due to technical constraints, however, there is a finite set of seeds.

3.3. TASK GRAPH 61

On some systems, the seed is represented by a 32-bit integer, which can represent

232 different values. A mapping from 232 different seeds to iteration counts may be

represented by an array where the index is the seed, and the value is the resulting it-

eration count if the PRNG is seeded with that seed. Assuming the values need to be

represented by a 32-bit integer, this array would take 232×4B= 16 GiB of memory. To

be able to load this array into memory for fast access, we have halved the amount of

seeds we generate, by not computing the mapping for seeds where the most signifi-

cant bit is 1. Our mapping is therefore a mapping from 231 seeds to iteration counts,

and occupies 8GiB on disk / memory.

Section 3.2.2 notes that the iteration counts depends on the PRNG seed in addi-

tion to l and p. Therefore, we precompute and store the mappings each time a new

unique pair of l and p is encountered.

3.3 Task graph

The GPU bootstrap process is represented by a set of operations. An operation is a

function that operates on some input, and has either side effects or outputs, or both.

Each operation has some preconditions that must be true before it can execute, and

postconditions that must be true after its execution. The postconditions of some op-

erations are the preconditions of other operations, so that each operation has one or

more operations that must be executed before it itself can be executed. An operation

is statically assigned to either the GPU or the CPU at compile time. The execution

time of each operation is modelled using the method presented in Section 3.1.

A task graph of the program is then made by constructing a directed acyclic

graph (DAG) of the operations. The nodes in the DAG represents an operation, and

an edge from node A to node B represents that the operation represented by node

62 CHAPTER 3. METHODOLOGY

A must be executed before the operation represented by node B. If a node has more

than one ancestor, one and only one of the operations represented by the ancestor

nodes must be executed before it. The complete task graph of the program can be

seen in figure A.1 in the appendix.

The task graph has a single top node (source) and a single leaf node (sink), where

both represent null operations. Executing all operations along a path from the source

to the sink results in a valid execution of the program. The possible paths of the task

graph can be seen in figures A.2, A.3, A.4 and A.5 in the appendix.

The underlying function of an operation is not necessarily unique. As in the case

of the Initialize PRNG 1 and Initialize PRNG 2 operations, they are distinct opera-

tions but the underlying function is the same. This makes it possible to distinguish

between the two in the task graph, which is important as the two have different pre-

conditions. As an example, one of the preconditions of the Initialize PRNG 1 is that

the seeds are reorganized so that the iteration counts are monotonically increasing,

which is one of the postconditions of the sorting operations. The Initialize PRNG 2

does not have this precondition.

Resources may be allocated in an operation, and not released by the same op-

eration. An operation later in the task graph will handle the release of the resource.

Memory leaks and segmentation faults are avoided by carefully inspecting the pre-

and postconditions of each operation. For example, the precondition of an opera-

tion may be that memory has been allocated for a variable, which is a postcondition

of an earlier operation.

3.3.1 Optimal execution path

At run time, the task graph is used with the execution time models of each operation

to determine the optimal path through the program. Using the estimated time of

3.3. TASK GRAPH 63

each operation, we find the path that is estimated to take the least amount of time

to execute.

The task graph is used directly for finding the shortest path. The weight of each

edge is defined to be the estimate of the operation at the end of the edge. A shortest

path algorithm is then used for finding the optimal execution path, and returns it as

a linked list of the operations. Because the operations have estimators that depend

on the set of inputs to the program (see 3.1), the optimal path through the program

depends on these parameters as well. If there exists some point in the parameter

space where the optimal path changes, then the program will automatically change

execution path to that path, assuming perfect estimators.

It is useful to be able to force execution through one path, for example if we want

to compare one execution path to another. To achieve this, the estimator of an oper-

ation can be forced to report a large negative number. Because of this, the Bellman-

Ford algorithm [Shi54] is used for finding the shortest path, because it works cor-

rectly with negative edge weights. Introducing negative edges can lead to negative

cycles, which is not handled correctly by the algorithm. This is not an issue, as there

are no cycles in the task graph. This knowledge of no (negative) cycles has been ex-

ploited to optimize the Bellman-Ford algorithm, by removing the check for negative

cycles.

A new and untrained task graph will have operations where no estimators have

been built yet. When the program has selected the same path 4 times, the estima-

tors of the operations in that path will be built. The path will then have a non-zero

estimate, while the other paths still estimates 0 execution time, except for the oper-

ations they have in common with the "trained" path. This will force the program to

select one of the paths that has not yet been tested sufficiently to build a model. The

same is true if parameters outside the support of the underlying splines are selected.

64 CHAPTER 3. METHODOLOGY

3.4 CPU and GPU workload partitioning

We treat load balancing between the CPU and GPU as an optimization problem,

where the objective is to minimize the total execution time of the program. The

execution time is defined to be the maximum of the execution time of the CPU and

the GPU. The objective function to be minimized is therefore

max(tcpu(n fcpu), tgpu(n fgpu)) (3.2)

where

tcpu(x) is the estimated execution time of running x resamplings on the CPU,

tgpu(x) is the estimated execution time of running x resamplings on the GPU,

fcpu is the fraction of the total amount of resamplings to be run on the CPU,

fgpu is the fraction of the total amount of resamplings to be run on the GPU,

n is the total number of resamplings.

The optimization is subject to the constraint

fcpu + fgpu = 1 (3.3)

There are two decision variables in this optimization problem: fcpu and fgpu.

Rewriting the constraint in Equation (3.3), we can eliminate one of the decision vari-

ables:

fcpu = 1− fgpu (3.4)

The objective function then becomes

3.4. CPU AND GPU WORKLOAD PARTITIONING 65

max(tcpu(n fcpu), tgpu(n(1− fcpu))) (3.5)

with the original constraint in Equation (3.3) replaced by

0 ≤ fcpu ≤ 1 (3.6)

For clarity, the optimization problem is presented in its entirety below.

min
fcpu

tcpu(n fcpu), tgpu(n(1− fcpu))

s.t. 0 ≤ fcpu ≤ 1

(3.7)

The objective function is minimized using gradient descent [Rud16]. The gradi-

ent descent is started at f 0
cpu = 0.5, and in each iteration x, tcpu(n f x

cpu) and tgpu(n(1−
f x

cpu)) are computed. The derivative of the max function is the derivative of the larger

of its arguments, so if tcpu(n f x
cpu) is larger than tgpu(n(1− f x

cpu)), f x+1
cpu is updated ac-

cording to Equation (3.8). If tgpu(n(1− f x
cpu)) is the larger of the two values, f x+1

cpu is

updated according to Equation (3.9).

f x+1
cpu = f x

cpu −γ
∂tcpu(n f x

cpu)

∂n
, (3.8)

f x+1
cpu = f x

cpu −γ
∂tgpu(n(1− f x

cpu))

∂n
, (3.9)

In our experiments, we have found that γ = 0.7 balances the trade-off between

convergence rate and accuracy well. The optimization continues while the number

of iteration is less than 100 and Inequality (3.10) is true. In the optimal point, the

66 CHAPTER 3. METHODOLOGY

left-hand side of Inequality (3.10) is equal to 1.

min(tcpu(n f x
cpu), tgpu(n(1− f x

cpu)))

max(tcpu(n f x
cpu), tgpu(n(1− f x

cpu)))
< 0.99 (3.10)

The gradient descent algorithm is started at a single point, rather than multiple,

because the execution time models have been experimentally verified to be mono-

tonically increasing, and therefore have no local minima - except the global mini-

mum - that the algorithm can get stuck in. The discontinuity of the derivative of the

objective function in the optimal point is not a problem, because the optimization

terminates at that point.

Figure 3.5: Constructed example of load balancer objective function.

3.4. CPU AND GPU WORKLOAD PARTITIONING 67

Figure 3.5 shows a synthetic example of the behaviour of the tcpu and tgpu func-

tions. The max function of the two functions would be equal to tgpu from fcpu = 0 to

fcpu ≈ 0.33, and equal to tcpu from fcpu ≈ 0.33 to fcpu = 1, in this case. The derivative

of the max of these functions is therefore equal to the derivative of the larger of the

two.

Algorithm 3.1: Load balancer optimization.

1 input : i n t n

2 output : f l o a t fcpu , f l o a t fgpu

3 begin

4 fcpu ← 0.5

5 i ← 0

6 γ← 0.7

7 while i < 100 and
min(tcpu(n fcpu),tgpu(n(1− fcpu)))
max(tcpu(n fcpu),tgpu(n(1− fcpu))) < 0.99 do

8 i f tcpu(n fcpu) > tgpu(n(1− fcpu)) then

9 fcpu ← fcpu −γ ∂tcpu(n fcpu)
∂n

10 e l s e

11 fcpu ← fcpu −γ ∂tgpu(n(1− fcpu))
∂n

12 fgpu ←1−fcpu

13 i← i +1

14 return fcpu , fgpu

15 end

Algorithm 3.1 shows the pseudocode of the load balancer optimization process.

68 CHAPTER 3. METHODOLOGY

Chapter 4

Implementation

In this chapter we present a detailed description of the program that was imple-

mented to evaluate our methods. Of the sections in this chapter, only Section 4.4

and 4.6.1 are required reading to be able to follow the rest of the thesis. The other

sections describe implementation details which are included for the sake of repro-

ducibility.

The chapter starts with an overview of the program, followed by a description of

the program flow. Next, an overview of some command line parameters, followed by

a note on the statistics that are recorded during execution. The different stationary

bootstrap implementations are then presented, along with a general optimization

that is applied to all implementations. Finally, a short presentation of the CPU and

GPU modules. The description of the GPU module includes a short description of

each of the implemented operations of the task graph.

69

70 CHAPTER 4. IMPLEMENTATION

4.1 Tools and hardware

Program code is written in C++11 and CUDA C, and is compiled using nvcc v8.0.61

with GCC version 5.4.0 as the back-end compiler used by nvcc. SPLINTER version

3-0 [Gri+15] is used for constructing, evaluating, saving and loading splines, and

nlohmann::json [Loh17] is used for outputting statistics and results to the JSON for-

mat, which is easy for humans to parse as well as for machines. Python 3.5.1 is used

for analyzing stats and, using matplotlib version 2.0.0, generating figures. All exper-

iments have been run on Ubuntu 16.04 with Linux kernel 4.10.

The hardware configurations used are listed below:

CPU AMD Ryzen 1800x

GPU NVIDIA GTX 1080 Ti 11GiB

Motherboard ASUS Crosshair VI Hero

Memory 16 GiB

Storage Samsung 750 EVO 232 GiB SSD

Table 4.1: Hardware configuration #1

CPU AMD Ryzen 1800x

GPU NVIDIA GTX 480 1.5GiB

Motherboard ASUS Crosshair VI Hero

Memory 16 GiB

Storage Samsung 850 EVO 232 GiB SSD

Table 4.2: Hardware configuration #2

4.2. MEASURING EXECUTION TIME 71

CPU AMD Ryzen 1800x

GPU NVIDIA GTX 480 1.5GiB

Motherboard ASUS Crosshair VI Hero

Memory 32 GiB

Storage Samsung 850 EVO 232 GiB SSD

Table 4.3: Hardware configuration #3

During testing, all machines had two GPUs installed, even though only one was

used at a time. With a single GPU installed, the motherboard sets the PCI Express

operation mode to x16 on the port that is connected to the GPU [INC17], but with

two GPUs, both ports are in x8 operating mode, effectively halving the bandwidth

available to the GPU, compared to using a single card.

Hardware configuration 3 is the same machine as hardware configuration 2, but

with extra memory installed for testing the effect of increased memory in one exper-

iment.

4.2 Measuring execution time

Execution time is measured using the std::chrono::steady_clock library [Ref17a] of

C++11. The clock is guaranteed to be monotonically increasing, which means that

even if the system clock is adjusted, the clock will always represent the correct amount

of physically elapsed time since some point in time.

For timing portions of the program running on the CPU, the timer is started be-

fore execution and stopped when finished. For threaded CPU execution, the timer is

started before any threads are launched, and stopped when all threads are finished.

For timing GPU kernels, a call to cudaDeviceSynchronize is made before starting

the timer. This is done to ensure all operations on the GPU has finished, so that the

72 CHAPTER 4. IMPLEMENTATION

timer does not account for other operations in addition to the one we want to time.

Similarly, a second call to cudaDeviceSynchronize is made before stopping the timer,

to force the CUDA driver to wait for the kernel execution to finish. Kernel launches

are asynchronous by default, and stopping the timer after launch would not yield

the desired result.

4.3 The bootstrap program

A program has been implemented for performing workload partitioning, task graph

optimization and running the stationary bootstrap on both the CPU and GPU at the

same time. The program contains all the functionality required for generating the

mapping from seeds to iterations, loading the file, and reorganizing the workload

before bootstrap is run.

Figure 4.1: High level structure of the bootstrap program.

The overall structure of the program can be seen in figure 4.1. The purpose of the

4.3. THE BOOTSTRAP PROGRAM 73

task graph is to determine the optimal execution path of the GPU bootstrap process,

and is therefore located in the GPU bootstrap module.

4.3.1 Program flow

At program launch, the command line arguments are parsed. Then, if the seeds

to iterations counts mapping of the specified pair of l and p does not exist, it is

generated and saved to disk. A time series of length l is generated using a PRNG,

which is used as a synthetic input for the program.

The input time series to the program is always drawn from a uniform integer

distribution. The size of it is specified as a command line argument, but the values

themselves are always randomly generated. This is because none of the methods

tested in this program depends on the values of the data, but rather the size of the

time series and the other parameters. The result of bootstrapping is discarded, be-

cause it is of no interest to this thesis.

The load balancer is run and partitions the work between the CPU bootstrap

module and the GPU bootstrap module. The CPU bootstrap module spawns addi-

tional threads for distributing the workload over additional CPU cores, with an equal

amount of work assigned to each core. The GPU bootstrap analyses the task graph

and the performance models to find the optimal sequence of operations to perform,

and executes that sequence. At last, the results of both modules are combined to

form the final result.

4.3.2 Command line arguments

There are numerous options that can be specified on the command line, of which

the most important are listed here:

74 CHAPTER 4. IMPLEMENTATION

Name Description

-l Time series size

-p p-parameter to the geometric distribution

-n Number of resamplings

–gpu-fraction Override load balancer, force gpu fraction

–force-path Force execution through an operation

–device-id Use the GPU with this id (as reported by CUDA)

–output-file Path to output the statistics to (in JSON format)

–generate-iter-histogram Generate a histogram of the iteration counts

Table 4.4: Some of the command line arguments of the bootstrap program.

The –gpu-fraction parameter can be used to override the load balancer and set

the amount of resamplings for the GPU, and by extension the CPU. The –force-path

parameter can be used to force execution through a specific operation of the task

graph.

4.3.3 Recorded statistics

The program records a number of different statistics from its execution. The devices

used (CPU, GPU) is recorded, along with the time each of the device used for execut-

ing the stationary bootstrap. Statistics from the load balancer, such as the estimated

CPU and GPU cost, and the final ncpu and ngpu, are recorded. The time used for

optimization, and the estimated cost of each device at each step is also recorded.

For the CPU, the number of resamplings per thread is recorded. For the GPU,

the selected optimal execution path and the time used for finding it is part of the

output, and the actual execution time of each operation.

The statistics are formatted using the nlohmann::json library [Loh17] and output

to a specified output file, or discarded if no such file has been specified.

4.4. STATIONARY BOOTSTRAP IMPLEMENTATIONS 75

4.3.4 Histogram of iteration counts

If the –generate-iter-histogram command line parameter is specified, the program

generates a histogram of iteration counts using the seeds to iteration counts file. The

bucket size is one, so the frequency of each iteration count is preserved with no loss

of information. The histogram is output to the value specified with the –generate-

iter-histogram parameter in JSON format using the nlohmann::json library.

4.4 Stationary bootstrap implementations

The bootstrap program implements the stationary bootstrap for both the CPU and

the GPU. For the CPU, C++11 is used, and for the GPU, CUDA C++ is used.

4.4.1 General optimizations

Each iteration of the loop in the bootstrap method needs to calculate the sum of the

values in the window that was randomly selected. The naïve method of doing this is

looping over all the numbers in the window, adding each number to the sum. The

goal is to create a new time series of equal length to the original, which means that

we need to add l total numbers, making the method O(nl), l being the length of the

original time series, and n is the number of resamplings.

By precomputing a cumulative sum of the original time series, a large speedup is

achieved, while also transforming the problem from a regular problem to an irregu-

lar one. Defining

c(n) =
n−1∑
i=0

t (i) (4.1)

and

76 CHAPTER 4. IMPLEMENTATION

c(0) = 0 (4.2)

and precomputing c for i ∈ [0,n]. Then, computing the sum of a window leaves us

with this operation:

c(end+1)− c(start) =
end∑
i=0

t (i)−
start−1∑

i=0
t (i) (4.3)

which is the same as the original operation, because

end∑
i=start

t (i) =
end∑
i=0

t (i)−
start−1∑

i=0
t (i) (4.4)

Running bootstrap without this optimization results in a regular problem. If

each thread is assigned with resampling the time series once, then n threads are

spawned, where each thread must calculate the sum of l numbers after resampling,

and divide the sum by l . Running bootstrap with the cumulative sum optimization

and assigning each thread with performing one resampling, means that each thread

must compute i subtractions and additions, and the final division by l . The number

i is dependent the bootstrap window sizes, which are drawn from a geometric distri-

bution. To avoid each thread ending up with resampling the time series in the exact

same way due to the deterministic nature of PRNGs, each thread uses a separate

PRNG which is seeded with a unique number. Because each thread uses a separate

PRNG, the number of windows drawn, i , is therefore not the same for all threads,

causing an irregular workload.

This method of creating a cumulative sum of the input time series has a potential

problem, if the values of the time series is represented using floating point numbers.

Because the precision of floating point numbers decreases as the number it repre-

4.4. STATIONARY BOOTSTRAP IMPLEMENTATIONS 77

sents grows larger, the result of adding two numbers of very different magnitude

may end up being equal to the larger of the two operands:

a +b = a (for a >> b)

This problem may be triggered by two conditions, or the combination of both:

• Very large time series

• Time series with values of very different magnitude

Consider an original time series of size l , where all the values are of the same mag-

nitude. Starting at the first number, and adding each subsequent number to that,

will eventually (for large enough l) end up having the temporary sum being so large

that adding the next number to it will have no effect, as the answer will be rounded

down to what the temporary was before the addition.

To avoid this problem, the precomputation uses a temporary variable with higher

precision than the points of the data series. I.e., assuming the time series data is

represented by IEEE 754 [IEE08] binary32 format, then the temporary will be repre-

sented using IEEE 754 binary64 format.

4.4.2 GPU kernels

Geometric distribution

cuRAND [NVI17a] is used for generating random numbers on the GPU. The station-

ary bootstrap depends on numbers drawn from both uniform and geometric distri-

butions, but cuRAND only provides an implementation for the uniform distribution.

Therefore, we have implemented a function that takes a uniformly distributed ran-

dom number as input, and transforms it into a geometrically distributed number

[Knu97]. Assuming U is a uniformly distributed number on [0,1], then N will be

78 CHAPTER 4. IMPLEMENTATION

geometrically distributed with parameter p by Equation (4.5).

N = d ln(U)

ln(1−p)
e (4.5)

Using GPU shared memory

Listing B.1 shows the implementation of the bootstrap kernel for time series that fit

entirely in GPU shared memory. The parameters of the kernel are, in order:

• cumulativeInput: Pointer to an array of the cumulative sum of the input time

series.

• cumulativeInputSize: Size of the cumulative sum array, and therefore 1 larger

than the original time series.

• out: Pointer to the start of the output result array.

• nBootstrapIterations: The number of resamplings to perform.

• states: Pointer to the array of PRNG states.

• p: The probability of success parameter to the geometric distribution.

Each thread performs exactly one resampling of the time series, and calculates

exactly one arithmetic mean. The out-array is therefore of sufficient size to hold

nBootstrapIterations results. Because of the need to map from PRNG seed to num-

ber of iterations of the main loop at line 27 in B.1, each thread has its own PRNG

state, which is stored in the states array. This array is therefore large enough to store

nBootstrapIterations PRNG states.

The unique id of each thread is first calculated. Then the cumulative sum of the

input time series is loaded into a variable that resides in shared memory. The size of

4.4. STATIONARY BOOTSTRAP IMPLEMENTATIONS 79

this variable is specified at kernel launch time. The threads in the thread block are

then synchronized to ensure that all threads have finished loading their part of the

cumulative sum into the shared memory variable.

The loop at line 27 performs the actual resampling of the time series. Each it-

eration selects a window, and sums the values inside the window as shown in sub-

section 4.4.1 and adds it to the temporary sum. The loop runs until the sum of the

window sizes is equal to the size of the original time series, so that the resampled

time series is identical in size to the original.

At the very end, the sum of the resampled time series is divided by the size of

the time series to obtain the arithmetic mean of the resampled time series, which is

then stored in the output array.

Without GPU shared memory

Each point of the cumulative sum of the time series are stored using 4 bytes of mem-

ory. The maximum amount of shared memory per block is 48 KiB [NVI17c] for all

hardware configurations tested. This amount of shared memory means the maxi-

mum size of the time series is 48·1024/4 = 12288 (minus one because the cumulative

sum of the time series is one element larger than the time series). To support larger

time series than this, a version of the kernel using global memory for storing the cu-

mulative sum of the time series has been implemented, called the global memory

kernel. See listing B.2 for the implementation.

The global memory kernel differs from the shared memory kernel in two ways.

First, there is no code for loading the time series into shared memory, and second,

the cumulativeInput array is read directly when computing the sum of the values

in a window, instead of reading from shared memory. Everything else, including the

parameters of the kernel, and the logic for selecting the start and size of the windows

80 CHAPTER 4. IMPLEMENTATION

are identical.

CUDA enabled GPUs have some amount of memory that can be configured as

either shared memory or L1 cache memory. Because shared memory is not used in

this kernel, the GPU is configured to use this memory as L1 cache memory by setting

the cache config for the kernel to cudaFuncCachePreferL1.

Mapping seeds to iteration counts

A special kernel for generating the mapping from PRNG seed to iteration count has

been implemented, as seen in listing B.3. The kernel is very similar to the global

memory kernel, but instead of calculating the sum of the elements of the windows

it selects, it counts the number of iterations required by the main loop to finish re-

sampling. The output of the kernel is this iteration count, instead of the average of

the resampled time series.

4.4.3 CPU implementation

The CPU implementation of the stationary bootstrap is written in C++11. The im-

plementation can be seen in listing B.5.

The random number generator used is the standard template library implemen-

tation of a Mersenne Twister (MT) [98] PRNG. A specific instantiation of the MT

PRNG, called std::mt19937 [cpl17], is used for generating random numbers. Ran-

dom numbers generated by the MT are transformed into uniformly and geometri-

cally distributed numbers by std::uniform_int_distribution [Ref17d] and

std::geometric_distribution [Ref17c] respectively.

The CPU implementation is very similar to the GPU implementations, because

of CUDA C’s similarity to C++. The main difference is that each CPU thread performs

4.4. STATIONARY BOOTSTRAP IMPLEMENTATIONS 81

multiple resamplings of the time series, whereas each GPU thread performs exactly

one resampling.

4.4.4 Sources of branch divergence in the GPU kernels

There are three sources of branch divergence in the shared memory bootstrap ker-

nel, and two in the global memory bootstrap kernel.

The first, which is not present in the global memory bootstrap kernel, is the con-

ditional statement in the loop where the loading of the time series into shared mem-

ory happens. The worst case of branch divergence is that 31 threads will be inactive

for one iteration of this very short loop, which is negligible to the divergence intro-

duced by the main loop.

The conditional that ensures the correct number of resamplings is performed

also results in a maximum of 31 idle threads, but for a longer amount of time than

the previously discussed case. The amount is, however, still negligible to the amount

of idle thread-time in the main loop.

The main loop is the main source of branch divergence. Each thread must wait

(is set inactive) until the thread with the largest workload (largest number of itera-

tions) has finished. All threads which have a workload less than the largest workload

in the warp is therefore idling, and wasting computational resources. The amount

of idling depends on the variance of the sizes of the workloads. If all workloads are

identical in size, no threads will spend time waiting, and no time will be wasted. On

the other hand, if all workloads have a size of 1, except one of size wmax , then 31

of the threads will spend wmax -1 iterations waiting for the thread with the largest

workload to finish, wasting 31
32 ≈ 96.9% of the computational resources of that warp

while the threads are idling.

82 CHAPTER 4. IMPLEMENTATION

4.5 CPU bootstrap module

The CPU bootstrap module implements stationary bootstrap on the CPU. It consists

of the procedure for performing stationary bootstrap, and a performance model

used by the load balancer.

The CPU implementation is parallelized by launching m threads, where each thread

is assigned
ncpu

m resamplings. m is static and always selected to be 2 less than the

number of threads the CPU can execute concurrently. Threads are launched and

managed by using the C++11 feature std::async [Ref17b]. This allows for one thread

to be dedicated to launching kernels and communicating with the GPU, and one

thread to spare to avoid threads being preempted by the operating system for other

tasks.

The performance model of the CPU bootstrap module is a P-spline with λ = 0.001.

Every time the module is run, the time used is recorded and used to update the

spline. The spline is saved to disk at program exit, and loaded each time it is needed.

4.6 GPU bootstrap module

4.6.1 Warp-friendly and non warp-friendly bootstrap

To facilitate discussion on the topic, we distinguish between warp-friendly (WF)

bootstrap and non warp-friendly (NWF) bootstrap. We say that non warp-friendly

bootstrap is when one of the bootstrap kernels in Section 4.4.2 is executed without

performing any reorganization of the threads beforehand. Warp-friendly bootstrap

is when the seeds to the PRNGs are reorganized as described in Section 3.2.2. We

expect less branch divergence in each warp than if the workload had not been reor-

ganized, and therefore name it warp-friendly.

4.6. GPU BOOTSTRAP MODULE 83

Even though we distinguish between the two, and talk about them as if they were

different kernels, they are the same kernels, but with additional preprocessing of

seeds in the case of warp-friendly bootstrap. Note that the overhead of reorganizing

the workload before execution by the warp-friendly kernel is timed and executed

separately from the warp-friendly kernel.

4.6.2 Implemented operations of the task graph

ID Operation name Device

1 Initialize Both

2 Generate seeds CPU CPU

3 Generate seeds GPU GPU

4 Get iteration counts 1 CPU

5 Get iteration counts 2 CPU

6 Initialize PRNG 1 GPU

7 Initialize PRNG 2 GPU

8 Sort seeds on the CPU CPU

9 Sort seeds on the GPU GPU

10 Copy seeds from GPU to CPU Both

11 Copy seeds from the CPU to GPU Both

12 Copy iteration counts from CPU to GPU Both

13 Copy seeds and iteration counts from CPU to GPU Both

14 Warp-friendly bootstrap GPU

15 Non warp-friendly bootstrap GPU

16 Copy result from GPU to CPU Both

17 Finalize Both

Table 4.5: Table of all operations.

84 CHAPTER 4. IMPLEMENTATION

Table 4.5 lists all the implemented operations, along with the device the operation

executes on. Some operations have the device listed as both, which is either because

the operation involves memory transfer between the CPU and GPU, or because the

operation executes partly on each device. The operation named Initialize, for ex-

ample, allocates memory on both the CPU and the GPU, and is therefore listed as

both.

Below follows a description of all the implemented operations and the underly-

ing functions.

Initialize

On the CPU, Initialize allocates memory for the seeds, iteration counts, and the re-

sult of the bootstrap. These three are C++ vectors of type int, int and float, respec-

tively, and all three have space for n elements, where n is the number of resamplings.

On the GPU, two arrays of size n are allocated: The first to store the PRNG seeds,

the second to store the state of the PRNGs. A third array of type float is also allo-

cated, which is of size l +1, to store the cumulative sum of the input time series.

Finally, the cumulative sum of the time series is copied from CPU memory to the

GPU memory that was just allocated.

Generate seeds CPU

Generate seeds CPU generates n numbers to be used for seeds for the PRNGs on

the GPU. It uses a Mersenne Twister [98] with C++s std::uniform_int_distribution

[Ref17d] to draw random numbers in the range [0,231], and store them in a C++

vector. The memory for the vector is not allocated by this operation, but by the

4.6. GPU BOOTSTRAP MODULE 85

Initialize operation.

Generate seeds GPU

Generation of random seeds on the GPU is done by first drawing a single random

number, called the global seed, from the Mersenne Twister on the CPU. The gen-

erate seeds kernel (see listing B.4) is then executed with that random number as a

parameter. Each thread calculates its own unique id, and initializes a PRNG with

the sum of the global seed and the unique id as seed. A random number is then

drawn from the PRNG and stored in the output array.

After the seeds are drawn, they are sorted in ascending order in order to achieve

better spatial locality in the Get iteration counts 1 & 2 operations. Note that this

optimization was implemented very late in the project, and there was not enough

time to implement it for the Generate seeds CPU operation.

Get iteration counts 1 & 2

Get iteration counts 1 and Get iteration counts 2 have the same underlying function.

For all seeds in the seed vector, the corresponding iteration count is loaded from

the seeds to iteration counts mapping and stored in a vector that has previously been

allocated.

The seeds array must exist in CPU memory and the seeds must have been gen-

erated when this operation is executed.

Initialize PRNG 1 & 2

Initialize PRNG 1 and Initialize PRNG 2 have the same underlying function.

Each thread calculates its unique id. The PRNG state of the thread is loaded from

86 CHAPTER 4. IMPLEMENTATION

the array of PRNG states, and seeded with the threads unique seed, which is in the

seeds array.

Sort seeds on the CPU

Two of the preconditions of this operation is that the seeds has been drawn and exist

in CPU memory, and that the iteration counts corresponding to the seeds has been

loaded into CPU memory. The maximum value of the iteration counts array is de-

termined, and an array, called m, of that size is allocated. Each element of that array

is itself a vector, with no preallocated memory. Then, assuming s is the seed, and i

is the iteration corresponding to that seed, s is appended to the vector at position i

in m. Lastly, m is flattened and stored in the seeds array, which is now sorted.

The algorithm is a linear sort similar to counting sort. Counting sort could not

have been used directly, because even though the iteration counts would be correct,

the sizes of the windows drawn would not have been correct.

Sort seeds on the GPU

Both the seeds array and the associated iteration counts array must exist in GPU

memory when this operation is executed. thrust::sort_by_key [NVI17d] is used for

sorting the seeds according to the iteration counts, and the iteration counts array

memory is released after sorting.

Copy seeds from GPU to CPU

The array of PRNG seeds are copied from GPU memory to CPU memory. Generate

seeds GPU must have been executed beforehand.

4.6. GPU BOOTSTRAP MODULE 87

Copy seeds from the CPU to GPU

The array of seeds are copied from CPU memory to GPU memory. Generate seeds

CPU must have been executed beforehand.

Copy iteration counts from CPU to GPU

The array of iteration counts are copied from CPU memory to GPU memory. Get

iteration counts 1 or 2 must have been executed beforehand so that the iteration

counts array are populated with the iteration counts corresponding to the seeds.

Copy seeds and iteration counts from CPU to GPU

Both the seeds array and the iteration counts array are copied from CPU memory to

GPU memory.

Warp-friendly bootstrap

The bootstrap kernel is run. The PRNGs must have been seeded with reorganized

seeds before the operation is executed. The result of the resamplings are stored in

the output array.

Non warp-friendly bootstrap

The bootstrap kernel is run. The PRNGs must have been seeded with the generated

seeds before the operation is executed. The result of the resamplings are stored in

the output array.

88 CHAPTER 4. IMPLEMENTATION

Copy result from GPU to CPU

The output array is copied from GPU memory to CPU memory. Either of the boot-

strap operations must have been run before this operation is executed.

Finalize

Memory allocated on the GPU is released, which includes the input cumulative time

series, the output array, PRNG states array, seeds array and iteration counts array.

Memory that has already been released will not be released again.

The allocated CPU memory is allocated on the stack and therefore released au-

tomatically at a later point in the program.

Chapter 5

Test cases

In this chapter we present our experiments. The chapter is divided into three main

sections. The first section describes the experiments for evaluating our method of

reorganizing the workload before execution on the GPU. The second section presents

the experiments that was performed to evaluate the task graph method. Finally, the

experiments for evaluating our approach for partitioning the workload between the

CPU and GPU is described.

For many of the experiments, similar program arguments were used. For the

time series length, l , the value 12000 was often used. This is approximately the max-

imum number that allows for the shared memory kernel to be used. Larger values

means the time series does not fit in the shared memory of a thread block, and the

global memory kernel must be used. The shared memory kernel exhibits bigger dif-

ference between the warp-friendly and non warp-friendly bootstraps, which is why

the shared memory kernel was preferred for many experiments.

Because of insufficient global memory on the GTX 480, the approximate maxi-

89

90 CHAPTER 5. TEST CASES

mum value of n is 20,000,000. To compare the hardware configurations, this value

is therefore often used because it maximizes the execution time while being able to

run on all configurations.

5.1. REORGANIZATION OF THE WORKLOAD 91

5.1 Reorganization of the workload

5.1.1 Warp execution efficiency

Warp execution efficiency (WEE) is a "ratio of the average active threads per warp to

the maximum number of threads per warp supported on a multiprocessor expressed

as percentage" [nvp17]. In other words, it is the ratio between the sum of the green

bars in Figure 3.4a divided by the sum of the green and red bars in the same figure.

The metric is defined on the interval (0.0,1.0]. A ratio close to 0.0 means most of the

execution time is spent with most threads deactivated, while a ratio of 1.0 means

no thread was deactivated during the execution, and therefore no thread time was

wasted. The metric is very useful in validating that warp-friendly bootstrap uses the

GPU resources better than non warp-friendly bootstrap.

The metric was computed for these cases:

• l ∈ [100,20000], p = 0.01, n = 20000000

• l = 12000, p ∈ [0.001,0.2], n = 20000000

• l = 12000, p = 0.1, n ∈ [1000,20000000]

The warp execution efficiency was computed for both the warp-friendly and non

warp-friendly bootstrap in all cases.

5.1.2 Execution time

To evaluate the performance of warp-friendly (WF) bootstrap compared to non warp-

friendly (NWF) bootstrap, a set of metrics was collected during execution of the ker-

nels. The execution time of the WF and NWF kernels, along with the execution time

92 CHAPTER 5. TEST CASES

of the overhead of WF are important, as the main motivator for performing warp-

friendly bootstrap in this thesis is to achieve a lower execution time overall.

The following metrics were all collected for the same set of parameters. The ex-

periment was run on hardware configurations 1 and 2. Execution path 3 (A.4) was

used for recording metrics for warp-friendly bootstrap, as it was found to be the

faster of the three WF paths for all inputs except very low n. The load balancer was

manually overridden to delegate all work to the GPU.

Kernel including overheads

The total execution time of the GPU bootstrap module was recorded for both WF

and NWF bootstrap. Inputs where this metric is lower for WF bootstrap than NWF

bootstrap benefit from workload reorganization. Note that the metric does not in-

clude the time to load the seeds to iterations file.

Kernel time

The execution time of the warp-friendly and non warp-friendly kernels is a useful

metric for determining whether or not the reorganization of the workload leads to

better performance of the kernel.

WF kernel and overheads ratio of total execution time

The execution times of the bootstrap kernel along with the 3 operations that con-

tributed the most to the total execution time of WF bootstrap was recorded. This is

useful to identify operations that are time consuming and may be subject to opti-

mizations.

5.1. REORGANIZATION OF THE WORKLOAD 93

Total execution time

The time from program start to end was recorded, therefore also including the time

to load the seeds to iterations file.

Speedup of the WF kernel over the NWF kernel

The speedup of a process t1 over a process t2 is defined as

rspeedup = t2

t1
(5.1)

The metric is useful for determining how much faster one process is over another.

For example, a speedup of 2 for process 1 over process 2, means process 1 finishes

in half the time of process 2.

The speedup as measured is compared to the speedup as estimated by dividing

the warp execution efficiency (WEE) of WF bootstrap over the WEE of NWF boot-

strap.

5.1.3 Seeds to iterations file load time

The files containing the mapping from seeds to iteration counts are very large (8

GiB), and loading them from disk into memory may increase the total time of the

program by a non-trivial amount.

We distinguish between two different metrics. The first is called "hot loading",

which is when the program was very recently run, and then started again. It is ex-

pected for hardware configurations with sufficient memory available, that the pages

containing the file are still resident in main memory, and that fewer disk accesses

are necessary. The other metric is called "cold load", which is when the entire file

94 CHAPTER 5. TEST CASES

must be read from disk.

To measure hot load times, we first performed a warm-up run to load the file

into memory. Then, the program was restarted a number of times with the same pa-

rameters. To measure cold load times, two unique sets of parameters were chosen,

and the program was started with these parameters alternating.

5.2 Task graph

5.2.1 Execution path selection

It is important that the task graph optimizer is able to select an execution path that

minimizes the execution time. Over 40 executions of the program for each of hard-

ware configurations 1 and 2, the execution path selected by the task graph optimizer

was compared to the actual optimal execution path.

5.2.2 Determining optimal execution path time

The time for finding the optimal execution path was recorded over 40 program ex-

ecutions for hardware configurations 1 and 2. It is important that the time used for

finding the optimal execution path is low, because it must be found in each iteration

of the load balancer. Even if the load balancer is not run, the optimal execution path

must be found at least once, assuming the GPU is assigned any resamplings at all.

5.3 Load balancer

The performance of the load balancer is crucial to achieving good performance of

the overall program. If the load balancer is unable to find a good balance between

5.3. LOAD BALANCER 95

the CPU and GPU, or if it uses a very long time to find such a balance, it will be

detrimental to the performance of the entire program.

It is important to note that the load balancers ability to find a fraction fcpu that

minimizes the objective function in (3.5) is of importance, and not the actual re-

sult of the execution. The reasoning is that if the load balancer finds a fraction that

balances the estimated execution time of the CPU and GPU well, but the actual exe-

cution suffers from poor balance, that means that the performance models yielded

poor estimates of the execution time. The load balancer is therefore evaluated on its

ability to find a fraction that minimizes the difference in estimated execution times,

and not the actual execution times.

The first four metrics were collected as such: For hardware configurations 1 and

2, the performance models was minimally trained for l = 12000 and p = 0.1, mean-

ing the execution path was forced through each path 4 times, to allow the estimators

to be built. Then, using the same values of l and p, the program was run using 4

values of n. The values of n will depend on the specific GPU, due to memory limita-

tions. The ns will not be the same as the ns used for training the estimators, so that

they will have to estimate the execution time for unseen values of n. The process is

repeated 10 times for each n, for a total of 40 runs per hardware configuration.

For hardware configuration 1, n = 80,000,000, n = 40,000,000, n = 20,000,000

and n = 10,000,000 were used. For hardware configuration 2, n = 20,000,000, n =
10,000,000, n = 5,000,000 and n = 2,500,000 were used.

5.3.1 Optimization time

The time used by the load balancer has a direct impact on the execution time of the

program. Finding a perfect balance is only worthwhile if the time saved by balancing

the load is larger than the time used for finding the balance point.

96 CHAPTER 5. TEST CASES

5.3.2 Estimated execution time

The estimated execution times of each device after load balancing was recorded. If

the load balancer finished before reaching the maximum number of iterations, it

was able to find a good partitioning of the workload. This metric is therefore not

very useful by itself, but compared to the actual execution times it can be used to

determine the quality of the estimators.

5.3.3 Actual execution time

The actual execution times of the devices for each execution was recorded. If the

execution time of each device is equal, it means that either both the estimators and

the load balancer performed fine, or a lucky combination of poor performance by

both lead to good results.

5.3.4 Actual and estimated ratios

The ratio of the minimum and maximum of the CPU and GPU execution times

is used to determine how well the load balancer were able to balance the work-

load. Equation (5.2) shows the metric, which has a range of [0,1]. r = 1 means

tcpu(f n
cpu) = tg pu(1− f n

cpu), which is a perfect balance. r = 0 means one of the de-

vices was assigned all of the workload, while the other device is left idle, yielding the

poorest balance of the workload.

r =
min(tcpu(f n

cpu), tg pu(1− f n
cpu))

max(tcpu(f n
cpu), tg pu(1− f n

cpu))
(5.2)

5.3. LOAD BALANCER 97

The estimated and actual ratios were recorded. The estimated ratio is the ratio of

the estimated CPU and GPU execution times, while the actual ratio is the ratio of

the actual execution times of the devices.

5.3.5 Balanced and unbalanced execution time

Dividing the total workload across devices is done to achieve better performance. It

is therefore crucial that performance is actually improved by performing load bal-

ancing. To evaluate this, the execution time of assigning all of the work to the CPU

or GPU, and the execution time when balancing the workload between the devices,

was measured. This was done for hardware configurations 1 and 2, with the param-

eters l = 12000, p = 0.1 and n = 20000000 for all executions. The experiment was re-

peated 10 times by executing the entire workload on the CPU, 10 times by executing

the entire workload on the GPU, and 10 times by executing with the load balancer

enabled.

98 CHAPTER 5. TEST CASES

Chapter 6

Results

This chapter present the experimental results. The chapter layout mirrors the lay-

out of Chapter 5, where the methodology and parameters of each experiment is out-

lined.

Many of the test cases involve experiments on hardware configurations 1 and 2.

In these cases, the result of running the experiment on the hardware configuration

with the NVIDIA GTX 1080 Ti is presented in the left-hand figure, and the results

of running the experiment on the other hardware configuration is presented in the

right-hand figure.

The results are discussed in Chapter 7.

99

100 CHAPTER 6. RESULTS

6.1 Reorganization of the workload

6.1.1 Warp execution efficiency

Figure 6.1: Warp execution efficiency and coefficient of variation as a function of l .

The warp-execution efficiency is improved to a perfect score of 100% by reorganiz-

ing the workload for all values of l . When not reorganizing the workload, the warp

execution efficiency seems to be negatively correlated with the coefficient of varia-

tion.

The Pearson correlation coefficient [Lin89] for the warp execution efficiency of

NWF and the coefficient of variation is -0.962 for this data set.

6.1. REORGANIZATION OF THE WORKLOAD 101

Figure 6.2: Warp execution efficiency and coefficient of variation as a function of p.

The warp execution efficiency is also improved to a perfect score of 100% for all

p. For NWF bootstrap, the warp execution efficiency is negatively correlated with

the coefficient of variation, as in the previous figure.

The Pearson correlation coefficient for the warp execution efficiency of NWF and

the coefficient of variation is -0.981 for this data set.

102 CHAPTER 6. RESULTS

Figure 6.3: Warp execution efficiency and coefficient of variation as a function of n.

The warp execution efficiency is improved from around 94.5% to a perfect score

of 100% for n above n ≈ 400,000. Note that the warp execution efficiency was mea-

sured from n = 1000 to n = 20,000,000 in increments of approximately 400,000, and

then linearly interpolated to generate the figure. The warp execution efficiency is

therefore not necessarily linear between n = 1000 and n = 400,000 (or between any

other points), even if it appears so in the figure.

The Pearson correlation coefficient for the warp execution efficiency of NWF and

the coefficient of variation is 0 for this data set.

6.1. REORGANIZATION OF THE WORKLOAD 103

6.1.2 Execution time

WF and NWF times with overheads

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.4: Execution times of the WF and NWF kernels including overheads as the
time series length is increased.

At l = 12000 we can see the increase in execution time as the global memory kernel

is used instead of the shared memory kernel.

104 CHAPTER 6. RESULTS

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.5: Execution times of the WF and NWF kernels including overheads as p is
increased.

The dotted vertical line in the right-hand plot is the point where the total exe-

cution time of the WF kernel with overhead is less than the total execution time of

the NWF kernel with overhead. As we can see, at p = 0.05, the optimal path changes

from non warp-friendly bootstrap to warp-friendly bootstrap. Note that this does

not include the time to load the seeds to iteration counts file.

6.1. REORGANIZATION OF THE WORKLOAD 105

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.6: Execution times of the WF and NWF kernels including overheads as n is
increased.

WF and NWF kernel time

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.7: Kernel execution times and overheads as l is increased.

The switch from the shared memory kernel to the global memory kernel can be seen

at l = 12000, where the execution time of both WF and NWF bootstrap increases

drastically.

106 CHAPTER 6. RESULTS

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.8: Kernel execution times and overheads as p is increased.

The dotted vertical line is the point where the total execution time of the WF

kernel with overhead is less than the total execution time of the NWF kernel with

overhead. As we can see, at p = 0.05, the optimal path changes from non warp-

friendly bootstrap to warp-friendly bootstrap. Note that this does not include the

time to load the seeds to iteration counts file.

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.9: Kernel execution times and overheads as n is increased.

6.1. REORGANIZATION OF THE WORKLOAD 107

WF kernel and overheads ratio of total execution time

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.10: The execution time of the most time consuming operations as a ratio of
the total execution time in execution path #3 as the time series length is increased.

The sudden increase in execution time of the warp-friendly bootstrap operation at

l = 12000 is due to the change from the shared memory kernel to the global memory

kernel.

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.11: The execution time of the most time consuming operations as a ratio of
the total execution time in execution path #3 as p is increased.

108 CHAPTER 6. RESULTS

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.12: The execution time of the most time consuming operations as a ratio of
the total execution time in execution path #3 as n is increased.

Total execution time

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.13: Total execution time from program start to finish as a function of time
series length. Note that the time to load the seeds to iterations file is included.

6.1. REORGANIZATION OF THE WORKLOAD 109

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.14: Total execution time from program start to finish as a function of p.
Note that the time to load the seeds to iterations file is included.

(a) NVIDIA GTX 1080 Ti. (b) NVIDIA GTX 480.

Figure 6.15: Total execution time from program start to finish as a function of n.
Note that the time to load the seeds to iterations file is included.

110 CHAPTER 6. RESULTS

WF speedup over NWF

(a) NVIDIA GTX 1080 Ti. Pearson correlation
coefficient for l ∈ [700,12000]: 0.74.

(b) NVIDIA GTX 480. Pearson correlation
coefficient for l ∈ [700,12000]: 0.98.

Figure 6.16: Speedup of the WF kernel over the NWF kernel and the coefficient of
variation as the time series length is increased.

The Pearson correlation coefficient of the estimated speedup and the speedup is

shown for the interval l ∈ [700,12000]. For l ∈ [0,700], it is expected that the time

to load the time series into the shared memory dominates the resampling time, and

was therefore excluded. The interval l ∈ [12000,20000] was also excluded because it

was out of the range of the shared memory kernel. For time series of length larger

than approximately 12000, the global memory kernel is used instead of the shared

memory kernel. In these figures, this can be seen by the sudden drop in the speedup.

6.1. REORGANIZATION OF THE WORKLOAD 111

(a) NVIDIA GTX 1080 Ti. Pearson correlation
coefficient: 0.98.

(b) NVIDIA GTX 480. Pearson correlation
coefficient: 0.97.

Figure 6.17: Speedup of the WF kernel over the NWF kernel and the coefficient of
variation as p is increased.

(a) NVIDIA GTX 1080 Ti. Pearson correlation
coefficient: 0.

(b) NVIDIA GTX 480. Pearson correlation
coefficient: 0.

Figure 6.18: Speedup of the WF kernel over the NWF kernel and the coefficient of
variation as n is increased.

112 CHAPTER 6. RESULTS

6.1.3 Seeds to iterations file load time

Configuration Min Max Median Stddev

Hot loads 2401.55ms 2449.79ms 2430.74ms 15.32ms

Cold loads 16742.70ms 16870.29ms 16776.42ms 46.28ms

Table 6.1: Load seeds to iterations file timings with 32 GiB of memory.

Configuration Min Max Median Stddev

Hot loads 16974.46ms 16995.96ms 16986.19ms 6.20ms

Cold loads 17138.63ms 17178.11ms 17146.86ms 12.46ms

Table 6.2: Load seeds to iterations file timings with 16 GiB of memory.

The hardware configuration with 32 GiB memory is much faster at hot loading the

seeds to iterations file than the configuration with 16 GiB of memory.

6.2 Task graph

6.2.1 Execution path selection

The column titles of the following tables have the following meaning:

• noptimal: Number of times the path was the optimal path.

• ncorrectly selected: Number of times the path was the optimal path and was se-

lected by the task graph optimizer.

• nincorrectly selected: Number of times the path was selected when it was not the

optimal path.

6.2. TASK GRAPH 113

Path noptimal ncorrectly selected nincorrectly selected

1 1 0 0

2 0 0 0

3 0 0 0

4 58 58 1

Table 6.3: Optimal and selected paths statistics. Run with hardware configuration 1.

The task graph optimizer is able to select the optimal execution path in all but one

of the cases, leading to an accuracy of 98.3%.

Path noptimal ncorrectly selected nincorrectly selected

1 1 1 0

2 0 0 0

3 33 32 1

4 25 24 1

Table 6.4: Optimal and selected paths statistics. Run with hardware configuration 2.

The task graph optimizer was able to select the optimal path with an accuracy of

96.6%.

6.2.2 Determining optimal execution path time

Hardware configuration Min Max Median Stddev

Ryzen 1800x and GTX 1080 Ti 11.02ms 14.40ms 12.43ms 0.69ms

Ryzen 1800x and GTX 480 9.17ms 17.14ms 11.89ms 1.58ms

Table 6.5: Time used for determining the optimal execution path over 40 runs for
each hardware configuration.

114 CHAPTER 6. RESULTS

6.3 Load balancer

6.3.1 Optimization time

(a) Ryzen 1800x and GTX 1080 Ti. (b) Ryzen 1800x and GTX 480.

Figure 6.19: Load balancer time and number of iterations for each run. The vertical
dotted lines represent where n was changed.

6.3. LOAD BALANCER 115

6.3.2 Estimated execution time

(a) Ryzen 1800x and GTX 1080 Ti. (b) Ryzen 1800x and GTX 480.

Figure 6.20: Load balancer result for each run. Times are the estimated execution
time of each device. The vertical dotted lines represent where n was changed.

6.3.3 Actual execution time

(a) Ryzen 1800x and GTX 1080 Ti. (b) Ryzen 1800x and GTX 480.

Figure 6.21: Actual execution time for each run. The vertical dotted lines represent
where n was changed.

116 CHAPTER 6. RESULTS

6.3.4 Actual and estimated ratios

(a) Ryzen 1800x and GTX 1080 Ti. (b) Ryzen 1800x and GTX 480.

Figure 6.22: Estimated and actual ratio of minimum to maximum execution time for
the devices. The vertical dotted lines represent where n was changed.

As evidenced by the low actual ratio, the load balance was poor in the first execution

of both cases. The load balancer performs much better in subsequent executions.

(a) CPU bootstrap estimator before the first
run.

(b) CPU bootstrap estimator after first run.

Figure 6.23: The CPU bootstrap estimator before and after the first run.

6.3. LOAD BALANCER 117

In Figure 6.23a we see the estimated execution time of the CPU bootstrap mod-

ule as a function of n. In Figure 6.23b we can see that the estimate in the inter-

val [0,5000000] has been updated with the new measurement of the CPU bootstrap

module execution time. Although hard to see, the estimate in that interval seems to

have been too high, thus leading to the poor balance seen in Figure 6.22b and Figure

6.22a.

6.3.5 Balanced and unbalanced execution time

Configuration Min Max Median Stddev

All CPU 133403ms 142355ms 135150ms 2308ms

All GPU 563ms 586ms 578ms 7ms

Balanced 584ms 639ms 608ms 16ms

Balanced incl. optimization 597ms 653ms 622ms 16ms

Table 6.6: Ryzen 1800x and GTX 1080 Ti (Hardware configuration 1)

The speedup of the All GPU configuration over the All CPU configuration using the

median execution times is 233.79.

Configuration Min Max Median Stddev

All CPU 133085ms 135466ms 134503ms 743ms

All GPU 4310ms 4317ms 4316ms 2ms

Balanced 4289ms 4433ms 4316ms 43ms

Balanced incl. optimization 4304ms 4450ms 4342ms 52ms

Table 6.7: Ryzen 1800x and GTX 480 (Hardware configuration 2)

The speedup of the All GPU configuration over the All CPU configuration using

the median execution times is 31.16.

118 CHAPTER 6. RESULTS

Chapter 7

Discussion

In this chapter we discuss the results of our experiments. We start with a discussion

of the quality of our experimentation methodology. Next, we identify the similarities

and differences of our approach to workload partitioning with existing approaches

found in the literature. Then, the results of our experiments are discussed. The dis-

cussion of the experiments start with the discussion of the reorganization of work-

load, followed by a discussion of the task graph approach, and then a discussion of

our method of workload partitioning between the CPU and GPU. Finally, we pro-

pose a method for estimating the reduction in execution time that is achieved by

reorganizing the workload.

119

120 CHAPTER 7. DISCUSSION

7.1 Quality of the method

Each unique pair of l and p requires the program to generate the seeds to iterations

mapping before any experiments involving reorganization of the workload can be

run. Additionally, the mapping must be loaded into memory, which takes a lot of

time compared to the overall process. This makes sampling the parameter space of

l and p very slow, and as a consequence of this, much of the parameter space has

been left unexplored. For many of our experiments, we fixed two of the parameters

while varying the third, to see how the different metrics were affected by the changes

to that parameter. To cover more of the parameter space, random sampling could

have been used instead. The drawback then would be that it would be harder to see

how the metrics change as a function of each variable.

In the task graph experiments, it was shown that two of the execution paths were

never the optimal path, except for in a single case. The evaluation of the quality of

the method of using a task graph would be more interesting if there were more viable

execution paths.

Both the CPU and GPU modules have execution times that are approximately

linear in n. As a result of this, the objective function of the load balancer is piece-

wise linear. Such functions are relatively easy to find the optimal point of, as com-

pared to non-linear functions, because there are no local minima that is not the

global minimum.

7.2. COMPARISON TO OTHER APPROACHES 121

7.2 Comparison to other approaches

7.2.1 Reorganization of workload

The workload reshaping approach described in Section 2.7.1 inspired our work on

reorganization of the workload based on the seeds to the PRNGs. Their approach

focuses on kernels consisting of one or more loops, and they map the data point

to the number of iterations of the loops. This is very similar to our mapping from

PRNG seed to the number of iterations of the loop in the bootstrap kernels. As in our

approach, they perform a sorting of the workloads so that data points with similar

number of iterations end up in the same warp.

In their approach, they perform a sampling of the workload and uses that to

build a model of the workload. The reorganization of the data points is then done

using this model. Our method exhaustively samples the input (the seeds), and then

sort the seeds using this mapping. The approach taken by [She+13] would not work

for reorganizing the seeds, as they assume that data points that are close have similar

workloads. This is not true for the seeds.

After the reorganization is done, their approach identifies regions that are suit-

able for execution on the CPU and GPU. In our approach, this is not feasible. While

it is possible to identify seeds that lead to high iteration counts, running those same

seeds on the CPU would not have the same results as if they were run on the GPU.

This is because a different PRNG is used in the CPU bootstrap than in the GPU ker-

nels.

122 CHAPTER 7. DISCUSSION

7.2.2 Task graph

StarPU (see Section 2.7.2) uses a task graph to represent the work that must be done,

and the dependencies of one task to another. There are a number of similarities

to our approach. The StarPU task is analogous to our operation, and their codelet

is analogous to the underlying function of our operation. However, in StarPU each

codelet may have several implementations it can run. This is not true for the opera-

tions of our task graph. In our approach, implementations for different devices are

represented by different operations.

Both approaches uses a task graph to represent dependencies between tasks/op-

erations. Additionally, both approaches model the execution time of the codelet/un-

derlying function. In StarPU, the execution time may be modelled in a number of

ways. One is history based, which records the execution time for a single input,

and whenever that exact input is seen again, the recorded execution time is used

as an estimate. Another model they use is regression based, like ours. The regres-

sion model they use is of the form a ∗nb + c, which is a polynomial of degree b. As

is discussed by [Sch07], spline regression is a more flexible regression method than

single polynomial regression, so our spline-based approach should be able to better

estimate the execution times than StarPU’s method of using a single polynomial.

The main difference between our and StarPU’s approach is our methods abil-

ity to select the optimal execution path. In StarPU, all tasks that are submitted are

executed. To our knowledge, there is no functionality in StarPU to implement the

same function in different ways as we do with our sequence of operations, and have

it select the sequence of tasks/operations that is expected to minimize the overall

execution time. Even if each path was represented by a different implementation in

a codelet, each implementation is for a single device, and must therefore be run on

7.2. COMPARISON TO OTHER APPROACHES 123

that device. In our approach, the path selected may run some operations on one

device and then the next operation on another device, which is not possible with a

codelet.

StarPU also offers the ability to model the energy consumption of each imple-

mentation of a codelet, and to optimize for lower energy efficiency instead of lower

execution time. While not currently implemented in our task graph, this could eas-

ily be implemented by adding a secondary estimator to each operation, and train it

using a measure of the energy consumption instead of the execution time. The task

graph optimizer would then use the energy consumption models for determining

the optimal execution path instead of the execution time models.

7.2.3 Load balancer

Our load balancer is a static load balancer which uses models to guide the optimiza-

tion process. Similarly to the approach taken by [She+13] and the offline profiling of

[She+16], our approach uses the execution times of previous runs as estimates of the

execution time of each device. This differs from the machine learning approach by

[FE16] and the online-profiling part of [She+16], where a small sample of the input

data is run and the results of that run is used as an estimate for the throughput of

the devices. The latter approach incurs a performance penalty as the small sample

is executed, which is avoided by our method of using historical data modeled using

splines.

In the offline profiling of [She+16] they build one linear regression model for

each interval of input sizes that fit in different memories. This approach is not very

flexible. First of all, the execution time in each interval is not necessarily linear in

the input size, and second, if executed on a device with an extra layer of caching, the

application code must be changed to build a model for that interval as well. Our ap-

124 CHAPTER 7. DISCUSSION

proach of using splines for the execution time models would be able to capture the

different execution times automatically, with no programmer intervention required.

7.3 Reorganization of workload

7.3.1 Warp execution efficiency

In Section 6.1.1 we saw that the coefficient of variation seems to be a good predictor

for the warp execution efficiency. In Figure 6.1 and Figure 6.2, the Pearson coeffi-

cient of correlation is very near -1, which suggests that the two metrics are negatively

correlated. In the third case, in Figure 6.3, the Pearson coefficient of correlation is 0.

However, this is because the coefficient of variation is invariant to n, resulting in a

straight line with a derivative of 0. The correlation coefficient of two sets of samples

is defined in terms of the covariance of the samples, which is 0 when all samples in

one or both of the sets have the same value.

The reorganization of the workload improved the warp execution efficiency to

100% in all cases except for very low n. When n decreases, the amount of warps that

will be scheduled also decreases. For n ≤ 32, a single warp will be scheduled. In

this case, no matter how the seeds are reorganized they will always be executed by

threads of the same warp, resulting in the same warp execution efficiency as if the

seeds were not reorganized.

We can see that the warp execution efficiency of non warp-friendly bootstrap is

increased as l or p is increased. This can be explained by looking at the associated

coefficient of variation. As the coefficient of variation decreases, the amount of idle

thread time is dominated by the total thread time, leading to a higher warp execution

efficiency. The total amount of absolute idle thread time may still increase, however.

7.3. REORGANIZATION OF WORKLOAD 125

7.3.2 Execution time

In Section 6.1.2 we can see that in all but one case, the warp-friendly bootstrap is

slower than the non warp-friendly bootstrap, if the overhead is included in the tim-

ing. The execution time of the overhead of WF bootstrap, which is dominated by the

Get iteration counts 2 operation (see Section 6.1.2), is larger than the time gained by

reorganizing the workload.

In the interval l ∈ [0,12000] in Figure 6.4b, the difference between the WF and

NWF bootstrap seems to decrease as l is increased. This suggests that there exists

an l for which the WF bootstrap is faster than the NWF bootstrap, if the GPU had

sufficient shared memory. This seems to also be the case for Figure 6.4a. However,

in that case, the difference in execution times seems to decrease at a lower rate. For

the global memory kernel (l larger than approximately 12000), the execution times

of both the WF and NWF kernel is increasing at a similar rate, suggesting that reor-

ganizing the workload will never be faster for a larger l and the same p and n.

7.3.3 Overhead of the warp-friendly bootstrap

The overhead of warp-friendly bootstrap, as seen in Section 6.1.2, seems to be of the

same magnitude for both hardware configurations. The hardware of both hardware

configurations are identical except for the GPUs and storage, which suggests that

operations that run on the CPU should take approximately the same time for both

configurations. The overhead operation that contribute the most to the execution

time of the total overhead, the Get iteration counts 2 operation, runs on the CPU.

The second most time consuming overhead operation, the Initialize operation, per-

forms memory allocation and memory copy on the GPU. We don’t expect memory

allocation time to vary a lot between the two GPUs, and the memory copy is lim-

126 CHAPTER 7. DISCUSSION

ited by the bandwidth of the peripheral component interconnect (PCI) express bus,

which is the same for both configurations.

The warp-friendly bootstrap execution time entirely depends on the throughput

of the GPU. As the overhead is approximately the same for both hardware configu-

rations, the ratio of the overhead to the total execution time is therefore a lot higher

for faster GPUs.

Seeds to iterations file load time

The loading of the seeds to iterations file may or may not be counted in the total

execution time of the bootstrap program. For a use case where p and the length of

the time series are the same for every execution, the seeds to iterations mapping can

be kept in memory while the program waits for more input. If this is not the case,

loading the file is so time consuming that none of our experiments showed that the

total time was lower for WF bootstrap than NWF bootstrap. There is a significant

benefit of increasing the memory of the computer with respect to hot loads1, as seen

in Table 6.1. However, the total overhead would still be larger than the reduction in

bootstrap kernel time for all our experiments.

Kernel execution time

For hardware configuration 2, the WF kernel is faster than the NWF kernel in all

cases. It is also the true that the WF kernel execution time increases at a slower rate

than that of the NWF kernel, with the exception of when the global memory kernel

is used, where the execution times seem to grow at a similar pace. This is confirmed

by the figures showing the speedup of the WF kernel over the NWF kernel, where the

1Hot loads, as defined in Chapter 3, is when the program has very recently been run with the same l
and p, providing an opportunity for the operating system to reuse already existing memory pages that
contain the seeds to iterations file.

7.3. REORGANIZATION OF WORKLOAD 127

speedup is positive in almost all cases, except for a few outliers when the speedup

is measured against varying n. The speedup, when measured against varying l , is

close to 1 in the interval where the global memory kernel is used, confirming that

the execution times of the WF and NWF kernel in that interval increase at a similar

rate.

The results from the same experiments on hardware configuration 1 shows sim-

ilar behaviour in the shared memory interval when varying l , and in the very begin-

ning where p is varied. The speedup has a similar shape, and, in the experiment

where l is varied, is of approximately the same magnitude. However, as p is in-

creased, the speedup of WF over NWF quickly converges to 1.

For hardware configuration 1, the WF execution time as function of n oscillates

a lot starting at n ≈ 3,000,000. This is also shown in the associated speedup figure

(6.18a. It is therefore hard to tell whether or not the WF kernel time is faster than the

NWF kernel in this case. The oscillations seem to stem from the WF kernel execution

time, as it oscillates more than the execution time of the NWF kernel.

Slowdown of WF over NWF in the global memory kernel

In the global memory kernel interval of Figure 6.7a, we can see that the WF kernel

is slower than the NWF kernel over the entire interval, and the difference seems to

be constant as l is increased. As a consequence of the seeds being reorganized, the

memory access pattern of the WF kernel differs from the NWF kernel, which can

lead to different cache behaviour.

Experimental testing revealed that if sufficient time had passed since the last ex-

ecution of the NWF kernel, running the NWF kernel resulted in the execution time

being larger than that of the WF kernel. As an example, the first time the NWF ker-

nel was run using l = 20000, p = 0.01 and n = 20,000,000, it finished executing in

128 CHAPTER 7. DISCUSSION

749.68ms. When running it again immediately after, the execution time of the ker-

nel was 685.08ms. Using the same method for WF bootstrap results in 747.69ms and

743.81ms respectively. Note that the entire application was run in all cases, not just

the kernels.

Because the seeds to iterations file must be loaded when WF bootstrap is run,

there is a much longer time between the subsequent WF kernel executions than be-

tween the NWF executions. If the caches of the GPU are cleared in the time it takes

to load the seeds to iterations file, the behaviour we see may occur. This may also be

the reason NWF bootstrap is slower the first time it is run after some time. However,

we have been unable to confirm that this is actually the case.

Workload distribution as a predictor for speedup

The speedup of WF over NWF is shown together with the coefficient of variation and

the speedup as estimated by dividing the warp execution efficiency of WF over the

warp execution efficiency of NWF. The speedup and estimated speedup have the

same shape when plotted as a function of p, and the Pearson correlation coefficient

reflects that. For the case of varying l , in the interval where the shared memory

kernel is used, the correlation coefficient is very high in the case of hardware con-

figuration 2, and a bit lower in the case of hardware configuration 1. The speedup

of the latter seems to have been affected by noise, and we suspect that the underly-

ing function has the same shape as for the other hardware configuration, and thus a

higher correlation coefficient.

As was discussed in Section 7.3.1, the coefficient of variation seems to be a good

predictor for the warp execution efficiency of the NWF kernel. Further, dividing the

warp execution efficiency of the WF kernel by the warp execution efficiency of the

NWF kernel seems to be a good predictor for the resulting speedup when the shared

7.3. REORGANIZATION OF WORKLOAD 129

memory kernel is used. Assuming that the previous statements hold true, then by

the transitive property of equality, the coefficient of variation of the workload is a

good predictor for the speedup that can be achieved by reorganizing the workload.

7.3.4 Feasibility of reorganizing the workload

Figure 6.9b shows a dotted vertical line that represents the point where the execution

time of the WF kernel including overhead is equal to the execution time of the NWF

kernel including overhead. For l = 12000, n = 20,000,000 and p > 0.05 the total

execution time is therefore decreased by reorganizing the workload before execution

on the GTX 480, if the time to load the seeds to iterations file is disregarded. If the

load time is included, there is no benefit from reorganizing the workload.

None of the experiments that were ran on the hardware configuration with the

GTX 1080 Ti resulted in a speedup in the total execution time by reorganizing the

workload. As noted previously, the overhead of reorganizing the workload is mostly

invariant to the performance of the GPU. The absolute reduction in the execution

time of WF over NWF decreases as the performance of the GPU increases, while

the overhead is more or less the same. This means that as a faster GPU is used,

the higher the coefficient of variation of the workload must be for the reduction in

execution time to exceed the overhead of reorganizing the workload.

For workloads with a higher coefficient of variation a larger speedup is expected,

as seen in Section 6.1.2. The absolute difference in execution time increases as the

execution time of the kernels increases, so it is expected that for workloads that have

a high coefficient of variation, sufficient execution time for each data point, and suf-

ficiently low overhead ratio, that reorganizing the workload is beneficial with respect

to the total execution time.

130 CHAPTER 7. DISCUSSION

7.4 Task graph

7.4.1 Execution path selection

Table 6.3 and 6.4 show that the task graph optimizer is able to select the optimal

path with an accuracy of over 96% for both hardware configurations. Although a

very high accuracy, the results must be seen in the light of the total execution times

(see Section 6.1.2). For hardware configuration 1, the time of the kernels including

the overhead shows that the execution time of the warp-friendly bootstrap is much

larger than the execution time of the non warp-friendly bootstrap. Only for very low

n does the absolute value of the difference seem to be small. Because the difference

is so large for most parameters, selecting the optimal path should be trivial.

For both hardware configurations, execution path 1 was the optimal path when

l = 12000, p = 0.1 and n = 1000. The measured (not estimated by the task graph)

execution times for path 1 for those parameters were 2.72ms and 4.24ms for hard-

ware configuration 1 and 2, respectively. The execution times of path 3 were 4.34ms

and 4.51ms. Execution path 1 is clearly the faster path for both hardware configura-

tions. We suspect, since the correct path was selected by hardware configuration 2,

that the initial training of the task graph of hardware configuration 1 may have been

subject to noise.

In the case of hardware configuration 2, the task graph optimizer is able to select

the optimal path in 96.6% of the executions. The one time it selected path 3 when

it was not the optimal path, was for the parameters l = 12000 and p ≈ 0.043. At that

point, the execution times are very similar, as shown in Figure 6.8b, so selecting the

wrong path does not have a large impact on the overall execution time. The other

failure was when path 3 was the optimal but path 4 was chosen, for the execution

with p = 0.2. In this case, the measured execution time were 8372.63ms for path 3

7.5. LOAD BALANCER 131

and 8518.82ms for path 4. The difference in execution times is so large that we would

expect the task graph optimizer to be able to select the optimal path. The optimizer

was able to select the optimal path correctly for all tested values of p ∈ [0.05,0.19],

so it is reasonable to expect that an error at selecting the optimal path for p = 0.2 -

which should have an even larger difference in execution times (see Figure 6.14b) -

is because of a noisy sample when the task graph was trained.

7.4.2 Time usage

The time used for determining the optimal execution path is in most cases very low.

For hardware configuration 2, the maximum time is almost double that of the min-

imum time, suggesting a high variation in the time used for finding the optimal ex-

ecution path. In some circumstances this can be bad, as having a predictable exe-

cution time is useful when determining whether to run the task graph optimizer to

find the best path, or to avoid the overhead and simply run an execution path that is

known to have decent performance for all inputs (if such a path exists).

7.5 Load balancer

7.5.1 Optimization time and load balancing result

The time used by the load balancer for each of the 40 executions it was tested on can

be seen in Section 6.3.1. The number of iterations of the optimizer is well below the

maximum number of iterations for all executions. This means that the load balancer

was able to find a partitioning that reduced the optimization gap to less than the

threshold. This is also shown in Figure 6.20 and 6.22.

In Section 6.3.5 the execution times with and without load balancing between

132 CHAPTER 7. DISCUSSION

the CPU and GPU is shown. With a speedup of up to 233.79 for the GPU over the

CPU, it is very important that the partitioning is extremely precise so that the CPU is

not assigned too much work, thus increasing the execution time instead of lowering

it. For each extra workload∆n that is assigned to the CPU, the increase∆tcpu is much

larger than the ∆tgpu for the same increase of workload to the GPU. In Table 6.6,

we can see that the minimum, maximum and median execution time when using

the load balancer is greater than the execution time of just using the GPU. This is

because the CPU was assigned too much work, thus increasing the total execution

time. Including the time used by the load balancer yields even worse results.

A good strategy to combat this problem would be to overestimate the execution

time of the slower device on purpose, to ensure that it will not become the bottle-

neck of the execution. Assigning a larger workload than the optimal to the device

with the most performance will only lead to a slight increase in the execution time.

Doing the same for the slower device will have a much larger impact, especially

when the speedup of the faster device over the slower is as large as in this case.

For hardware configuration 2, the minimum execution time of balanced execu-

tion including the load balancer overhead is less than that of the All GPU configu-

ration. The speedup of the GPU over the CPU in this case is much lower than in the

previously discussed case, so transferring work from the GPU to the CPU has a larger

effect on the GPU execution time. The speedup of the Balanced incl. optimization

configuration over the All GPU configuration is 4310.31
4304.35 = 1.001, or an absolute dif-

ference of less than 6ms. The maximum and median of the balanced execution is

in both cases larger than that of the All GPU configuration, and the variability of

balanced execution is much larger than that of the All GPU configuration. This in-

creased variability is a result of the large variability of the CPU execution time and

the variability of the partitioning as found by the load balancer. We conclude that

7.5. LOAD BALANCER 133

running the load balancer may have a slight benefit, but is likely to increase the over-

all execution time.

7.5.2 Actual execution time

The goal of the load balancer is to find a partitioning that results in a good balance of

the estimated execution times of each device. If the estimates are perfect, this would

lead to a good balance of the actual execution as well. The figures in Section 6.3.4

show that this is not always the case. The first execution of both hardware config-

urations show a particularly bad balance, with a ratio of approximately 0.6 in both

cases. To explain this result, two figures of the estimator of the CPU bootstrap mod-

ule was included in the results. The first figure shows the state of the estimator when

it was used by the load balancer to get an estimate of the execution time of the CPU

module, and the second shows the state after it has been updated with the result

of the execution. We can see that the estimator overestimated the execution time,

which lead to the load balancer finding a partitioning that resulted in unbalanced

execution times.

As a result of the CPU bootstrap estimator being updated with the new sample,

the estimator provides a much better estimate for the second execution, and the

load balancer is able to achieve an actual ratio of 0.95 or better for both hardware

configurations. For subsequent executions, the ratio is above 0.9 for all but 3 execu-

tions using hardware configuration 1, and at or above 0.95 for all but 2 executions

using hardware configuration 2. At execution 31 for both configurations, we see the

same problem as in the first execution, only this time it was the estimators of the

task graph that overestimated the execution time of the GPU. The estimators are

then updated, and a better result is seen in the subsequent executions.

134 CHAPTER 7. DISCUSSION

7.6 Estimating the reduction in execution time

We propose a method for estimating the absolute difference in execution times of

the WF and NWF kernels based on the distribution of the workload. Here, we assume

that n is constant and very large, to ensure that the warp execution efficiency of the

WF kernel is close to 100%, as discussed in Section 7.3.1. Based on the observation

of the correlation between the coefficient of variation and the speedup, we assume

that the following relation is true:

s(l , p) = acv(l , p) = a
σiter(l , p)

µiter(l , p)
, (7.1)

where a is a coefficient that is dependent on the performance of the device used,

and cv is the coefficient of variation of the workload. µiter is the expected number

of windows that must be drawn to fully resample the time series, or the number of

iterations of the loop in the bootstrap kernel, and σiter is the standard deviation. We

then define

tnwf(l , p) = cµnwf(l , p), (7.2)

and

twf(l , p) = cµwf(l , p), (7.3)

where c is the execution time of each iteration in the loop in the bootstrap kernel

and therefore device dependent, and tnwf(l , p) is the average number of iterations

for the NWF kernel, including inactive threads. µnwf will be larger than µ because

the number of iterations of a warp is equal to the number of iterations of the thread

with the most iterations. As shown in Section 3.2.2, µwf will be equal to µnw f or

lower. When the warp execution efficiency is 100%, µwf = µiter because no thread is

idle.

7.6. ESTIMATING THE REDUCTION IN EXECUTION TIME 135

The difference in execution times is defined as

∆t (l , p) = tnwf(l , p)− twf(l , p) (7.4)

Using the assumption in Equation (7.1) and the definition of speedup, we get the

following equation:
tnwf(l , p)

twf(l , p)
= a

σiter(l , p)

µiter(l , p)
(7.5)

By separating twf in Equation (7.5) and inserting into Equation (7.4), we get

∆t (l , p) = (a
σiter(l , p)

µiter(l , p)
−1)twf(l , p) (7.6)

∆t (l , p) = ca
σiter(l , p)µwf(l , p)

µiter(l , p)
− cµwf(l , p) (7.7)

Now, assuming that the warp execution efficiency is 100%, which, as seen in Sec-

tion 7.3.1 should be a reasonable assumption, we set µwf(l , p) =µiter(l , p):

∆t (l , p) = caσiter(l , p)− cµiter(l , p) (7.8)

Replacing the constant product ca by introducing a new constant, c:

∆t (l , p) = cσiter(l , p)− cµiter(l , p) (7.9)

We now have two constants that are dependent on the device used, c and c. To

determine the values of these constants, we need to measure the difference in ex-

ecution time for two different values of l or p. To be able to compare our estimate

to the actual difference, we keep one of the parameters fixed while letting the other

vary. We add a subscript i to the functions to denote that the variable is the value

136 CHAPTER 7. DISCUSSION

of the function in point i , where i represent a pair of l and p. E.g., µi,iter means the

expected number of windows in point i . Then, by measuring ∆t for two i , we get

∆t1 = cσ1,iter − cµ1,iter (7.10)

∆t2 = cσ2,iter − cµ2,iter (7.11)

We now have two equations with two unknowns, and can solve for c and c:

c =
t2 − t1µ2

µ1

σ2 − σ1µ2
µ1

(7.12)

c = cσ1 − t1

µ1
(7.13)

To evaluate this approach, we compare the estimate from Equation (7.9) to the

experimental results of hardware configuration 2.

(a) Estimated and actual difference in
execution time vs. l.

(b) Estimated and actual difference in
execution time vs. p.

We can see that Equation (7.9) provides a very good estimate of the difference

in execution times. The good fit of the estimate indicates that our assumption in

7.6. ESTIMATING THE REDUCTION IN EXECUTION TIME 137

Equation (7.1) may be correct. This estimate can be used in conjunction with the

overhead estimates to determine whether or not to reorganize the workload, using

only two samples and knowledge of the distribution of the workload.

138 CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

In this thesis we have shown that reorganization of irregular pseudo-random work-

loads with the goal of reducing branch divergence may lead to lower execution times

of kernels on the GPU, for all but very small workloads (n ≤ 32). We have also shown

that the overhead of doing so in some cases is less than the difference in execution

times of the kernels, providing an overall speedup even if the overhead is accounted

for. The coefficient of variation was shown to be correlated with the speedup that

can be achieved, but only when the shared memory of the GPU is used. Addition-

ally, a relation between the mean and standard deviation of the workload and the

reduction in execution time of the kernel has been established. The relation pro-

vides very good estimates of the reduction in execution time by only sampling two

points.

Using an exhaustive mapping from the seeds of pseudo-random number gen-

erators to the associated workload proved to be slow. In particular, loading the file

from disk was very slow compared to the overall execution. However, adding addi-

139

140 CHAPTER 8. CONCLUSION

tional memory to the hardware leads to significantly reduced load times when the

file has been loaded very recently. Loading the workload associated with each seed

in the mapping was also shown to be slow, and was in all cases the operation that

contributed the most to the overall overhead of reorganizing the workload, not in-

cluding the time to load it from storage.

We have shown that dividing a program into logical parts, providing different

implementations for the parts, and using a task graph for selecting the optimal se-

quence of implementations to run, may work well. However, for small workloads the

overhead of selecting this sequence proved to be large, making it unsuitable for such

workloads. Further, the application this method was tested on proved to have few

viable distinct paths, which warrants further research into more complex programs.

For the application and hardware configuration used in this thesis, it was shown

that partitioning the workload between the CPU and GPU requires a fast load bal-

ancer and very accurate estimators to reduce the execution time. Because of the very

high performance of the GPUs relative to the CPU, scheduling a workload greater

than the optimal to the CPU leads to an increase in the execution time, rather than

a decrease.

Chapter 9

Future work

This project has done the groundwork for reorganizing the workload of PRNGs to

achieve higher performance on GPUs. While some topics have been covered, there

are still a lot of opportunities for further research into the area. Some of the di-

rections that has been discovered, but not covered in this project due to resource

limitations, are described here.

9.1 Static seeds

In this work, the seeds to the PRNG number generators is selected randomly each

time the program is run. The overhead of loading the seeds to iteration counts file,

sorting the seeds based on the associated iterations, and transferring the seeds to the

GPU can be very time consuming. Using the same set of seeds, that has been reorga-

nized beforehand, will avoid this overhead and potentially lead to a large speedup.

The downside of this method is that the statistical properties of the program will be

141

142 CHAPTER 9. FUTURE WORK

changed, and possibly yielding an invalid bootstrap implementation.

Analyzing the statistical properties of using fixed seeds for the PRNGs in sta-

tionary bootstrap implementations is important for determining if this is a viable

method or not.

9.2 Persistent seeds to iterations mapping on GPU

The overhead of generating random seeds on the GPU, transferring them to CPU

memory, loading corresponding iteration counts and transferring them to GPU mem-

ory is, in all test cases in this thesis, high. Current GPUs have a lot of global memory.

For instance, the GTX 1080 Ti has 11 GiB of memory, and the NVIDIA Tesla P100

[NVI17b] has 16 GiB of memory. For the latter, 8 GiB could be used for persistently

storing the seeds to iterations mapping in the same format as in this project, leaving

8 GiB for other uses. The overhead of reorganizing seeds would then be reduced to

generating the seeds and sorting them on the GPU / accelerator1, which could yield

better performance than the method used in this project.

9.3 Force uniform workload per warp

As seen in figure 3.4b, the method for reorganizing the workload used in this project

may still lead to branch divergence. There is another approach, which is group-

ing threads into warps so that all threads in a warp have the same amount of work.

Doing this may lead to some threads being completely deactivated, and additional

warps to be scheduled, but it may lead to greater performance if the original amount

of warps is low, or if the variance of the work load in the warp is large enough.

1The NVIDIA Tesla series are GPUs without outputs for computer displays.

9.4. OTHER APPLICATIONS 143

9.4 Other applications

In this project only the stationary bootstrap application has been used for exper-

imentation. Testing applications with workloads that have a larger coefficient of

variation would be interesting to validate the results of reorganizing the workload in

this project.

Another interesting approach would be to implement the task graph for an ap-

plication where the operations are highly non-linear. Especially use cases where the

optimal execution path changes frequently with respect to the inputs would be in-

teresting to analyze for validating the approach of using a task graph to optimize the

execution path.

9.5 Compression of seeds to iteration counts file

The seeds to iterations mapping in this project uses a fixed size of 32 bits per ele-

ment. This wastes a lot of disk and memory space, especially when all the iteration

counts are small enough to be represented by half, or even a quarter, the number

of bits. The iteration counts can be analyzed and a smaller data type can be used

if applicable, which should lead to significant savings in both disk and memory us-

age, but also disk load and iteration counts load time. Sophisticated compression

algorithms could also potentially be useful, to shrink the size even more.

9.6 Scheduling large workloads on the CPU

If the same PRNG with the exact same parameters had been used on the CPU and

GPU, seeds that lead to a large workload could be scheduled for execution on the

CPU rather than the GPU. This could lead to better performance due to threads not

144 CHAPTER 9. FUTURE WORK

having to wait on the large workloads to finish. In this project, we have been unable

to do so because of different PRNGs being used on the devices.

This method of cherry picking seeds that lead to large workloads for execution on

the CPU could potentially be used without reorganizing the workload. Generating

the seeds, and for each group of 32 consecutive seeds picking seeds that contribute

the most to the variance within that warp and executing them on the CPU, could

lead to better performance without having to sort the seeds.

9.7 Load balancer improvement

Currently, the load balancer starts at the same point every time. This could be im-

proved by keeping track of previous solutions to similar inputs, and using that as a

heuristic to achieve a better initial point.

The gradient descent solver that is currently implemented is vulnerable to local

minima. For optimization problems with a higher degree of non-linearity than the

one featured in this thesis, other solvers may be more able to find a good solution.

Bibliography

[98] “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator”. In: ACM Transactions on Modeling and Com-

puter Simulation 8.1 (1998), pp. 3–30. URL: http://portal.acm.org/

citation.cfm?doid=272991.272995.

[Aug11] Cedric Auggonet. “Scheduling Tasks over Multicore machines enhanced

with Accelerators : a Runtime System’s Perspective”. In: (2011).

[Boo72] Carl de Boor. “On Calculating with B-Splines”. In: Journal of Approxi-

mation Theory 6 (1972), pp. 50–62. URL: http://ac.els-cdn.com/

0021904572900809/1-s2.0-0021904572900809-main.pdf?%7B%

5C_%7Dtid=9bccff60-4b6c-11e7-8de2-00000aacb35f%7B%5C&

%7Dacdnat=1496831730%7B%5C_%7Ddc5fa88116cd9dff9ac480646aa2d52e.

[Boy+13] Michael Boyer et al. “Load balancing in a changing world: dealing with

heterogeneity and performance variability.” In: Cf (2013), p. 1. DOI: 10.

1145/2482767.2482794. URL: http://www.cs.virginia.edu/%7B~%

7Dmwb7w/publications/CF%7B%5C_%7D13%7B%5C_%7Dload%7B%5C_

%7Dbalancing.pdf%7B%5C%%7D5Cnhttp://dl.acm.org/citation.

cfm?doid=2482767.2482794.

145

http://portal.acm.org/citation.cfm?doid=272991.272995
http://portal.acm.org/citation.cfm?doid=272991.272995
http://ac.els-cdn.com/0021904572900809/1-s2.0-0021904572900809-main.pdf?%7B%5C_%7Dtid=9bccff60-4b6c-11e7-8de2-00000aacb35f%7B%5C&%7Dacdnat=1496831730%7B%5C_%7Ddc5fa88116cd9dff9ac480646aa2d52e
http://ac.els-cdn.com/0021904572900809/1-s2.0-0021904572900809-main.pdf?%7B%5C_%7Dtid=9bccff60-4b6c-11e7-8de2-00000aacb35f%7B%5C&%7Dacdnat=1496831730%7B%5C_%7Ddc5fa88116cd9dff9ac480646aa2d52e
http://ac.els-cdn.com/0021904572900809/1-s2.0-0021904572900809-main.pdf?%7B%5C_%7Dtid=9bccff60-4b6c-11e7-8de2-00000aacb35f%7B%5C&%7Dacdnat=1496831730%7B%5C_%7Ddc5fa88116cd9dff9ac480646aa2d52e
http://ac.els-cdn.com/0021904572900809/1-s2.0-0021904572900809-main.pdf?%7B%5C_%7Dtid=9bccff60-4b6c-11e7-8de2-00000aacb35f%7B%5C&%7Dacdnat=1496831730%7B%5C_%7Ddc5fa88116cd9dff9ac480646aa2d52e
http://dx.doi.org/10.1145/2482767.2482794
http://dx.doi.org/10.1145/2482767.2482794
http://www.cs.virginia.edu/%7B~%7Dmwb7w/publications/CF%7B%5C_%7D13%7B%5C_%7Dload%7B%5C_%7Dbalancing.pdf%7B%5C%%7D5Cnhttp://dl.acm.org/citation.cfm?doid=2482767.2482794
http://www.cs.virginia.edu/%7B~%7Dmwb7w/publications/CF%7B%5C_%7D13%7B%5C_%7Dload%7B%5C_%7Dbalancing.pdf%7B%5C%%7D5Cnhttp://dl.acm.org/citation.cfm?doid=2482767.2482794
http://www.cs.virginia.edu/%7B~%7Dmwb7w/publications/CF%7B%5C_%7D13%7B%5C_%7Dload%7B%5C_%7Dbalancing.pdf%7B%5C%%7D5Cnhttp://dl.acm.org/citation.cfm?doid=2482767.2482794
http://www.cs.virginia.edu/%7B~%7Dmwb7w/publications/CF%7B%5C_%7D13%7B%5C_%7Dload%7B%5C_%7Dbalancing.pdf%7B%5C%%7D5Cnhttp://dl.acm.org/citation.cfm?doid=2482767.2482794

146 BIBLIOGRAPHY

[Che+10] Long Chen et al. “Dynamic Load Balancing on Single- and Multi-GPU

Systems”. In: Ipdps (2010). ISSN: 1530-2075. DOI: 10.1109/IPDPS.2010.

5470413.

[cpl17] cplusplus.com. mt19937 - C++ Reference. http://www.cplusplus.

com/reference/random/mt19937/. Accessed: 2017-06-28. 2017.

[ECO] ECON 370. “More Time Series Analysis”. In: (), pp. 1–10. URL: http://

people.stfx.ca/tleo/econ370term2lec6.pdf.

[Efr79] Bradley Efron. “Bootstrap Methods: Another Look at the Jackknife”. In:

7.1 (1979), pp. 1–26. URL: http://www.jstor.org/stable/2958830.

[FE16] Thomas L Falch and Anne C Elster. “ImageCL: An Image Processing Lan-

guage for Performance Portability on Heterogeneous Systems”. In: (2016),

pp. 1–16. DOI: 10.1109/HPCSim.2016.7568385. arXiv: arXiv:1605.

06399v1.

[Gri+15] Bjarne Grimstad et al. SPLINTER: a library for multivariate function ap-

proximation with splines. http://github.com/bgrimstad/splinter.

Accessed: 2017-04-20. 2015.

[GS16] Bjarne Grimstad and Anders Sandnes. “Global optimization with spline

constraints: a new branch-and-bound method based on B-splines”. In:

Journal of Global Optimization 65.3 (2016), pp. 401–439. ISSN: 1573-2916.

DOI: 10.1007/s10898-015-0358-4.

[Hef86] Statistische Hefte. “Statistische Hefte Statistical Papers 9”. In: 6 (1986).

[IEE08] IEEE. IEEE Standard 754-2008 for Floating-Point Arithmetic. Vol. 2008.

August. 2008, pp. 1–58. ISBN: 9780738157528. DOI: 10.1109/IEEESTD.

2008.4610935. URL: http://ieeexplore.ieee.org/xpl/freeabs%

http://dx.doi.org/10.1109/IPDPS.2010.5470413
http://dx.doi.org/10.1109/IPDPS.2010.5470413
http://www.cplusplus.com/reference/random/mt19937/
http://www.cplusplus.com/reference/random/mt19937/
http://people.stfx.ca/tleo/econ370term2lec6.pdf
http://people.stfx.ca/tleo/econ370term2lec6.pdf
http://www.jstor.org/stable/2958830
http://dx.doi.org/10.1109/HPCSim.2016.7568385
http://arxiv.org/abs/arXiv:1605.06399v1
http://arxiv.org/abs/arXiv:1605.06399v1
http://github.com/bgrimstad/splinter
http://dx.doi.org/10.1007/s10898-015-0358-4
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://ieeexplore.ieee.org/xpl/freeabs%7B%5C_%7Dall.jsp?arnumber=4610935%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/servlet/opac?punumber=4610933

BIBLIOGRAPHY 147

7B%5C_%7Dall.jsp?arnumber=4610935%7B%5C%%7D5Cnhttp://

ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[INC17] ASUSTeK COMPUTER INC. CROSSHAIR VI HERO. http://dlcdnet.

asus.com/pub/ASUS/mb/SocketAM4/CROSSHAIR-VI-HERO/E12601_

CROSSHAIR_VI_HERO_UM_V3_WEB.pdf. Accessed: 2017-06-22. 2017.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):

Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1997. ISBN: 0-201-89684-2.

[Lin89] Lawrence I-Kuei Lin. “A Concordance Correlation Coefficient to Evaluate

Reproducibility”. In: Biometrics 45.1 (1989), pp. 255–268. DOI: 10.1002/

0471667196.ess0146.pub2. URL: http://www.jstor.org/stable/

2532051.

[Loh17] Niels Lohmann. nlohmann::json: JSON for Modern C++. https://github.

com/nlohmann/json. Accessed: 2017-06-22. 2017.

[Mon94] Universitd De Montreal. “Uniform random number generation”. In: 53

(1994), pp. 77–120.

[NP94] Dimitris N. Politis and Joseph P. Romano. “The Stationary Bootstrap”. In:

Journal of the American Statistical Association 89.428 (1994), pp. 1303–

1313.

[NVI17a] NVIDIA. cuRAND :: CUDA Toolkit Documentation. https://developer.

nvidia.com/curand. Accessed: 2017-06-28. 2017.

[NVI17b] NVIDIA. NVIDIA® TESLA® P100 GPU ACCELERATOR. http://images.

nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.

pdf. Accessed: 2017-07-02. 2017.

http://ieeexplore.ieee.org/xpl/freeabs%7B%5C_%7Dall.jsp?arnumber=4610935%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/xpl/freeabs%7B%5C_%7Dall.jsp?arnumber=4610935%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/xpl/freeabs%7B%5C_%7Dall.jsp?arnumber=4610935%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://dlcdnet.asus.com/pub/ASUS/mb/SocketAM4/CROSSHAIR-VI-HERO/E12601_CROSSHAIR_VI_HERO_UM_V3_WEB.pdf
http://dlcdnet.asus.com/pub/ASUS/mb/SocketAM4/CROSSHAIR-VI-HERO/E12601_CROSSHAIR_VI_HERO_UM_V3_WEB.pdf
http://dlcdnet.asus.com/pub/ASUS/mb/SocketAM4/CROSSHAIR-VI-HERO/E12601_CROSSHAIR_VI_HERO_UM_V3_WEB.pdf
http://dx.doi.org/10.1002/0471667196.ess0146.pub2
http://dx.doi.org/10.1002/0471667196.ess0146.pub2
http://www.jstor.org/stable/2532051
http://www.jstor.org/stable/2532051
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://developer.nvidia.com/curand
https://developer.nvidia.com/curand
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf

148 BIBLIOGRAPHY

[NVI17c] NVIDIA. Programming Guide :: CUDA Toolkit Documentation. http://

docs.nvidia.com/cuda/cuda- c- programming- guide/index.

html. Accessed: 2017-06-28. 2017.

[NVI17d] NVIDIA. Thrust :: CUDA Toolkit Documentation. http://docs.nvidia.

com/cuda/thrust/index.html. Accessed: 2017-06-29. 2017.

[nvp17] NVIDIA. nvprof metrics reference. 2017. URL: http://docs.nvidia.

com/cuda/profiler-users-guide/index.html#metrics-reference.

[Ref17a] CPP Reference. Date and time utilities. http://en.cppreference.

com/w/cpp/chrono. Accessed: 2017-06-29. 2017.

[Ref17b] CPP Reference. std::async. http://en.cppreference.com/w/cpp/

thread/async. Accessed: 2017-06-28. 2017.

[Ref17c] CPP Reference. std::geometric_distribution. http://en.cppreference.

com/w/cpp/numeric/random/geometric_distribution. Accessed:

2017-06-28. 2017.

[Ref17d] CPP Reference. std::uniform_int_distribution. http://en.cppreference.

com/w/cpp/numeric/random/uniform_int_distribution. Ac-

cessed: 2017-06-28. 2017.

[Rud16] Sebastian Ruder. “An overview of gradient descent optimization algo-

rithms ”. In: (2016), pp. 1–14. arXiv: arXiv:1609.04747v2.

[Sch07] Larry L Schumaker. Spline Functions: Basic Theory. 3rd ed. Cambridge

University Press, 2007. ISBN: 9780521705127.

[She+13] Jie Shen et al. “Glinda : A Framework for Accelerating Imbalanced Ap-

plications on Heterogeneous Platforms”. In: Proceedings of the ACM In-

ternational Conference on Computing Frontiers - CF ’13 May (2013), p. 1.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/thrust/index.html
http://docs.nvidia.com/cuda/thrust/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/thread/async
http://en.cppreference.com/w/cpp/thread/async
http://en.cppreference.com/w/cpp/numeric/random/geometric_distribution
http://en.cppreference.com/w/cpp/numeric/random/geometric_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://arxiv.org/abs/arXiv:1609.04747v2

BIBLIOGRAPHY 149

DOI:10.1145/2482767.2482785. URL:http://dl.acm.org/citation.

cfm?doid=2482767.2482785.

[She+16] Jie Shen et al. “Workload Partitioning for Accelerating Applications on

Heterogeneous Platforms”. In: IEEE Transactions on Parallel and Dis-

tributed Systems 27.9 (2016), pp. 2766–2780. ISSN: 10459219. DOI: 10.

1109/TPDS.2015.2509972.

[Shi54] Alfonso Shimbel. “Structure in communication nets”. In: Proceedings of

the symposium on information networks. Vol. 4. 1954.

http://dx.doi.org/10.1145/2482767.2482785
http://dl.acm.org/citation.cfm?doid=2482767.2482785
http://dl.acm.org/citation.cfm?doid=2482767.2482785
http://dx.doi.org/10.1109/TPDS.2015.2509972
http://dx.doi.org/10.1109/TPDS.2015.2509972

150 BIBLIOGRAPHY

Appendices

151

Appendix A

Figures

153

154 APPENDIX A. FIGURES

Figure A.1: Complete task graph of the bootstrap program.

155

Figure A.2: Execution path 1/4.

156 APPENDIX A. FIGURES

Figure A.3: Execution path 2/4.

157

Figure A.4: Execution path 3/4.

158 APPENDIX A. FIGURES

Figure A.5: Execution path 4/4.

Appendix B

Source code listings

159

160 APPENDIX B. SOURCE CODE LISTINGS

1 __global__ void _bootstrap_block(float *cumulativeInput , int

cumulativeInputSize , float *out , int nBootstrapIterations ,

curandState_t *states , float p) {

2 int block_id = blockIdx.y * gridDim.x + blockIdx.x;

3 int id = block_id * blockDim.x * blockDim.y + threadIdx.y *

blockDim.x + threadIdx.x;

4

5 extern __shared__ float c[];

6

7 int inputSize = cumulativeInputSize - 1;

8 int n_threads_block_dim_x = min(blockDim.x,

nBootstrapIterations);

9 int n = cumulativeInputSize / n_threads_block_dim_x;

10 if (cumulativeInputSize % n_threads_block_dim_x != 0) {

11 n++;

12 }

13 for (int i = 0; i < n; ++i) {

14 int idx = threadIdx.x + n_threads_block_dim_x*i;

15 if (idx < cumulativeInputSize) {

16 c[idx] = cumulativeInput[idx];

17 }

18 }

19

20 __syncthreads ();

21

22 curandState_t *randState = &states[id];

23

24 if (id < nBootstrapIterations) {

25 float sum = 0.0f;

26

27 for (int available = inputSize; available > 0;) {

28 int start = _uniform(randState , 0, inputSize);

29 int block_length = min(_geometric(randState , p),

161

available);

30 available -= block_length;

31 int end = start + block_length;

32 int end_clamped = min(end , inputSize);

33 int end_wrapped_around = max(0, end - inputSize);

34 sum += c[end_clamped] - c[start] + c[

end_wrapped_around];

35 }

36 out[id] = sum / inputSize;

37 }

38 }

Listing B.1: Bootstrap kernel using shared memory

162 APPENDIX B. SOURCE CODE LISTINGS

1 __global__ void _bootstrap_block_long(float *cumulativeInput ,

int cumulativeInputSize , float *out , int

nBootstrapIterations , curandState_t *states , float p) {

2 int block_id = blockIdx.y * gridDim.x + blockIdx.x;

3 int id = block_id * blockDim.x * blockDim.y + threadIdx.y *

blockDim.x + threadIdx.x;

4

5 int inputSize = cumulativeInputSize - 1;

6 curandState_t *randState = &states[id];

7

8 if (id < nBootstrapIterations) {

9 float sum = 0.0f;

10

11 for (int available = inputSize; available > 0;) {

12 int start = _uniform(randState , 0, inputSize);

13 int block_length = min(_geometric(randState , p),

available);

14 available -= block_length;

15 int end = start + block_length;

16 int end_clamped = min(end , inputSize);

17 int end_wrapped_around = max(0, end - inputSize);

18 sum += cumulativeInput[end_clamped] -

cumulativeInput[start] + cumulativeInput[

end_wrapped_around];

19 }

20 out[id] = sum / inputSize;

21 }

22 }

Listing B.2: Bootstrap kernel for long time series

163

1 __global__ void _bootstrap_block_iteration_counts(int

cumulativeInputSize , int *out , int nBootstrapIterations ,

curandState_t *states , float p) {

2 int block_id = blockIdx.y * gridDim.x + blockIdx.x;

3 int id = block_id * blockDim.x * blockDim.y + threadIdx.y *

blockDim.x + threadIdx.x;

4

5 int inputSize = cumulativeInputSize - 1;

6 curandState_t *randState = &states[id];

7

8 if (id < nBootstrapIterations) {

9 int iter = 0;

10 for (int available = inputSize; available > 0; iter ++) {

11 int start = _uniform(randState , 0, inputSize);

12 int block_length = min(_geometric(randState , p),

available);

13 available -= block_length;

14

15 // Note to reader: Removing these next three lines

results in the iteration count being wrong. We

suspect an incorrect compiler optimization to be

the culprit. The lines are left here for the

sake of reproducibility

16 int end = start + block_length;

17 int end_clamped = min(end , inputSize);

18 int end_wrapped_around = max(0, end - inputSize);

19 }

20 out[id] = iter;

21 }

22 }

Listing B.3: Kernel for getting iteration counts

164 APPENDIX B. SOURCE CODE LISTINGS

1 __global__ void _generate_seeds(int global_seed , int *out , int

n_iterations) {

2 int block_id = blockIdx.y * gridDim.x + blockIdx.x;

3 int id = block_id * blockDim.x * blockDim.y + threadIdx.y *

blockDim.x + threadIdx.x;

4

5 if (id < n_iterations) {

6 curandState_t rand_state;

7 // Intentional unsigned integer under/overflow

8 curand_init ((unsigned int) (global_seed + id), 0, 0, &

rand_state);

9 out[id] = (int) (curand (& rand_state) / 2);

10 }

11 }

Listing B.4: Generate seeds on the GPU

165

1 std::vector <float >

2 CpuDevice ::run(std::vector <float > cumulativeInput ,

3 int nIterations ,

4 float p) {

5 int inputSize = (int) cumulativeInput.size() - 1;

6

7 auto avgs = std::vector <float >((unsigned long) nIterations);

8 std:: uniform_int_distribution <int > uniformIntDistribution

(0, inputSize - 1);

9 std:: geometric_distribution <int > geometricDistribution(p);

10

11 for (int i = 0; i < nIterations; i++) {

12

13 float tot = 0;

14 for (int available = inputSize; available > 0;) {

15 // Draw interval start

16 int start = uniformIntDistribution(randomGenerator);

17 // Draw interval length

18 int blockLength = std::min(available ,

geometricDistribution(randomGenerator));

19 // Calculate interval end

20 int end = start + blockLength;

21 // Clamp at input size

22 int endClamped = std::min(end , inputSize);

23 // The portion that would be wrapped around

24 int endWrappedAround = std::max(0, end - inputSize);

25 // Interval is now [start , endClamped) + [0,

endWrappedAround)

26 available -= endClamped - start + endWrappedAround;

27 tot += cumulativeInput[endClamped] - cumulativeInput

[start] + cumulativeInput[endWrappedAround];

28 }

29 avgs[i] = tot / inputSize;

166 APPENDIX B. SOURCE CODE LISTINGS

30 }

31 return avgs;

32 }

Listing B.5: C++ implementation of the stationary bootstrap

Appendix C

Running the bootstrap program

C.1 Compilation

Dependency name URL

Ubuntu 16.04 ubuntu.com

CUDA v8.0 nvidia.com

SPLINTER @ d473e6 github.com

Download Ubuntu and CUDA using the provided URLs, and install Ubuntu 16.04.

Then, to install the required C++11 toolchain, and git (for downloading SPLINTER),

run:

sudo apt-get update

sudo apt-get install build-essential git cmake

Install CUDA by running

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb

sudo apt-get update

167

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-desktop-amd64.iso
https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64-deb
https://github.com/bgrimstad/splinter.git

168 APPENDIX C. RUNNING THE BOOTSTRAP PROGRAM

sudo apt-get install cuda

Install SPLINTER by running

git clone https://github.com/bgrimstad/splinter.git

cd splinter

git checkout d473e6

mkdir build

cd build

cmake .. -DCMAKE_BUILD_TYPE=release

make -j$(nproc)

sudo make install

In the directory containing the Makefile of the bootstrap program, run

export PATH=$PATH:/usr/local/cuda/bin/

make -j$(nproc)

An executable called bootstrap will be created in the current directory. If you get an

error saying libsplinter-3-0 cannot be found when running it, run

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

and try again.

C.2 Running

You should now be able to run the bootstrap program, assuming you have a CUDA

enabled device.

Examples:

./bootstrap -l=12000 -p=0.1 -n=40000000 –device-id=0 –output-file=1.json

./bootstrap -l=12000 -p=0.1 -n=40000000 –gpu-fraction=1.0 –output-file=2.json

C.2. RUNNING 169

./bootstrap -l=1000 -p=0.01 -n=20000000 –force-path=warp_friendly

For initially training the estimators, train_bootstrap.py can be used. This is only

necessary if you want the task graph to have good estimates to begin with. Remem-

ber to update the path to the bootstrap program and the l and p parameters. Run

./bootstrap -l=$l -p=$p -n=1

before running train_bootstrap.py, so the seeds to iterations mapping can be gener-

ated.

	Problem description
	Abstract
	Sammendrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Source Code
	List of Abbreviations and Nomenclature
	Introduction
	Motivation
	Thesis scope
	Assumptions
	Research question

	Structure of the thesis

	Background
	Pseudo-random number generators
	CUDA
	GPU topology
	Grid, thread block and warp
	Memory hierarchy

	Branch divergence on GPUs
	Irregular workloads
	Bootstrap
	The stationary bootstrap

	Splines
	The penalized spline (P-spline)

	Related work
	Static load balancing approaches
	Dynamic load balancing approaches

	Methodology
	Performance modelling
	Partitioning of workload in the GPU
	Irregular workload in stationary bootstrap
	Reorganization of workload
	Generation of seed to iteration count mapping

	Task graph
	Optimal execution path

	CPU and GPU workload partitioning

	Implementation
	Tools and hardware
	Measuring execution time
	The bootstrap program
	Program flow
	Command line arguments
	Recorded statistics
	Histogram of iteration counts

	Stationary bootstrap implementations
	General optimizations
	GPU kernels
	CPU implementation
	Sources of branch divergence in the GPU kernels

	CPU bootstrap module
	GPU bootstrap module
	Warp-friendly and non warp-friendly bootstrap
	Implemented operations of the task graph

	Test cases
	Reorganization of the workload
	Warp execution efficiency
	Execution time
	Seeds to iterations file load time

	Task graph
	Execution path selection
	Determining optimal execution path time

	Load balancer
	Optimization time
	Estimated execution time
	Actual execution time
	Actual and estimated ratios
	Balanced and unbalanced execution time

	Results
	Reorganization of the workload
	Warp execution efficiency
	Execution time
	Seeds to iterations file load time

	Task graph
	Execution path selection
	Determining optimal execution path time

	Load balancer
	Optimization time
	Estimated execution time
	Actual execution time
	Actual and estimated ratios
	Balanced and unbalanced execution time

	Discussion
	Quality of the method
	Comparison to other approaches
	Reorganization of workload
	Task graph
	Load balancer

	Reorganization of workload
	Warp execution efficiency
	Execution time
	Overhead of the warp-friendly bootstrap
	Feasibility of reorganizing the workload

	Task graph
	Execution path selection
	Time usage

	Load balancer
	Optimization time and load balancing result
	Actual execution time

	Estimating the reduction in execution time

	Conclusion
	Future work
	Static seeds
	Persistent seeds to iterations mapping on GPU
	Force uniform workload per warp
	Other applications
	Compression of seeds to iteration counts file
	Scheduling large workloads on the CPU
	Load balancer improvement

	Bibliography
	Appendices
	Figures
	Source code listings
	Running the bootstrap program
	Compilation
	Running

