Enabling Software Process Improvement:
An Investigation of the Importance of Organizational Issues

by

Tore Dyba

Doctoral Dissertation

Submitted for the Partial Fulfillment of the Requirements for the Degree of

Doctor Ingenior

Department of Computer and Information Science
Faculty of Physics, Informatics and Mathematics
Norwegian University of Science and Technology

Trondheim, November 5, 2001

Copyright © 2001 by Tore Dyba

All rights reserved. No part of this publication may be reproduced or transmitted,
in any form or by any means, without permission of the Author.

ISSN 0802-6394
ISBN 82-471-5371-8

For questions about this publication, please contact:

Tore Dyba

SINTEF Telecom and Informatics
N-7465 Trondheim

Norway

tore.dyba@sintef.no

IDI Report 7/01
NTNU 2001:101

Printed in Norway by
Tapir Trykkeri, Trondheim, November 2001.

To the Memory of My Father

Per Torbjorn Dybad
9th April 1936 - 12t September 2000

Abstract

Software development and maintenance involves organizational as well as technical issues.
While software engineering has been offered as a way of resolving the intrinsic technical
problems, the organizational problems need another approach. Still, the typical response to
the persistent problems in software development has been to apply even more rigorously the
principles of engineering. Organizational issues are often ignored or not properly addressed in
much of the recent literature, with only a handful of studies being reported.

To help fill this gap, this doctoral study was initiated to explore the relative importance of
organizational issues in software process improvement. The position taken is strongly
influenced by socio-technical theory with its central conception that organizations are both
social and technical systems, and that the core of the software organization is represented
through the interface between the technical and human (social) system. The fundamental
assumption is that process improvement is a socially constructed learning process and that a
commitment to learning rather than to “best practice” models is needed to accomplish
improvements in software development.

The research presented in this dissertation is based on several empirical studies
performed within the context of the European Systems and Software Initiative and the
Norwegian software process improvement projects SPIQ and PROFIT.

The overall research design for the study was a sequential, mixed method design
consisting of two major phases: first, a qualitative model-building phase, then a quantitative
model-testing phase. The model-building phase was grounded in prior consulting experience
in software development, in observations done in a pilot case study as well as in a multiple
case study of twelve organizations, and in an extensive literature review. The model-testing
phase focused on testing the associations between the key factors for success and the outcome
variable by a quantitative survey among 120 software organizations.

The findings from the investigations suggest that the key to successful learning is a
continuous and simultaneous dialectic interplay between the knowledge that the organization
has established over time, and the knowing of the organization’s members in their respective
contexts. Also, the findings indicate that success depends critically on six organizational
factors. Finally, the findings show that there are important differences between small and
large software organizations, specifically in the ways in which they react to unstable and
changing stimulus situations.

The conclusion on the research problem is that process improvement cannot be managed,
but only enabled through the space in which the software organization creates the possibilities
for sensemaking, knowledge creation, and purposeful action.

The main contribution of the dissertation is to increase the understanding of the influence
of organizational issues by empirically showing that they are at least as important as
technology for succeeding with software process improvement. This suggests that software
organizations that want to prosper in the 21% century should synergistically combine
technology with social collaboration to become learning software organizations.

Acknowledgements

I am in great debt to several persons who have provided help, support, and encouragement
throughout my work with the doctoral studies during the last four years. First of all, I would
like to thank my advisors Reidar Conradi and Tor Stalhane for their extensive comments,
stimulating discussions, and long-lasting cooperation. I would also like to thank you for not
giving up on me during my periods of drifting between software engineering and organization
development.

SINTEF Telecom and Informatics has remained a firm foundation and an encouraging
employer. Thanks to Aage Thunem, Eldfrid Ovsti Qvstedal, and Mette Vestli for giving me
this opportunity. I also acknowledge the Research Council of Norway for their financial
support of my work through grant no. 118206/221.

I would like to thank Reidar Palmstrem and Hans Erik Stokke (now Protek Telsoft AS)
for their kind support and cooperation during the pilot study at Nera AS. I also acknowledge
and thank all informants of the case studies and all respondents of the survey investigations
for their willingness to participate in my inquiries.

Furthermore, I acknowledge and thank all my research colleagues and industrial partners
in the SPIQ and PROFIT programs for their cooperation and useful discussions. A special
thanks goes to Nils Brede Moe, Geir Kjetil Hanssen, and Kari Juul Wedde (now Clustra AS)
at SINTEF, Torgeir Dingseyr and Maria Letizia Jaccheri at NTNU, Dag Sjoberg and Magne
Jorgensen at the Simula Research Laboratory, and Tor Ulsund at Bravida Geomatikk.

I would also like to acknowledge my family. A specific thanks goes to my mother and
father for supporting and believing in me during all years. Sadly, my father died of cancer
before this work was finished. It was hard to see him struggle with such bravery during these
years — and lose. I miss you.

Finally, I would like to thank Trude and our children Sondre, Erlend, and Vilde for
keeping up with me during these important years of our lives. I put a heavy burden on you all,
but most of all on Trude. I am deeply grateful for your enduring support and understanding
for why I couldn’t always participate in family activities, social gatherings, and vacations.
Thank you.

NTNU, November 5, 2001

Tore Dyba

— Vil —

Contents

ABSTRACT \4
ACKNOWLEDGEMENTS vii
CHAPTER1 INTRODUCTION 1
1.1 Background to the Research...........cccooiiiiiiiiiiiiiee 1

1.1.1 Problems in software developmentccccererieniniesienenenne. 2

1.1.2 The importance of organizational issues in SPI............ccccccceeeeeee. 3

1.2 Research CONLEXTecvieiiieiieiieiiieere ettt eve et e reesaeesreessseesveeseens 4

1.3 Research Problem and QUESLIONS........c..covevueeiieeireeerieeeeeee et 6

1.4 Claimed COntribULIONScc.eeevieiuieeeiieiieecieeeeeere et eeteeereereeeveesveeeaeeareens 8

1.5 Research Method........cccoocuieiiiiiiiiiciieeceee e 9

1.6 Outline 0f the TRESISeccvevieieieieieeetee et 11

PART 1 STATE OF THE ART AND STATE OF THE PRACTICE 15
CHAPTER2 APPROACHES TO SOFTWARE PROCESS IMPROVEMENT 15
2.1 SOFtWAIE PrOCESS ...ccviiiviieeiierieetie ettt ettt 16

2.1.1 Process MOAELScceeevieiuiieiieiriecie ettt 17

2.1.2 Process InfrastruCturecoveeveeeeievieecieeeie e 18

2.1.3 Process MEaSUICMENTcccueerreerureerieeneeenneesreereenseesneenseenseennns 19

2.2 Software Process ASSESSIMENtcceevueeivieiierieiereereeieesee e e esree e 21

2.2.1 Assessment PrinCiplesooeeeereeieriesieiiesieeiese e 21

2.2.2 Assessment MOdElS.........cocuievvieiiiiiieiieeecee e 23

2.2.3 Assessment SUCCESS faCtOrScceiiviieiieiiiiiie e 25

2.3 Software Process Improvement...........cceecveeveevieeneenieseeenieesee e 26

2.3.1 Improvement PrinCiples........cceoerierereeiieneeieneneere e 26

2.3.2 Improvement MOdelS........cccoevieiirieniinieieneeieeeee e 28

2.3.3 Improvement SUCCESS FACIOTS......eeueeriiruieieriieieieeee e 31

2.4 Software Process INNOVation........c.ecvevierciieciienierre e 34

2.4.1 Innovation PrinCiples.......cccceieviereereersieesieesieseeeieeseesneeseennens 34

2.4.2 Innovation MOdelSccvvereiiviienieiie et 35

2.4.3 Innovation sUCCESS fACtOTS.......ccvevierirriiierieerie e et sre e eaeees 38

2.4.4 Process improvement Versus process innovation........................ 39

2.5 Chapter SUMMATY........cceccierieeieieiieciesteeieieseteresseeeesesseessesseessessesssenses 40

— X —

CONTENTS

CHAPTER3 APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH 43
3.1 Empirical Software Engineering Researchccoccoevevvevieniicieniennnnn. 44

3.1.1 Dimensions of empirical software engineering research............. 44

3.1.2 Fundamentals of research designcccoovecverinienieieenieneennn, 47

3.1.3 General threats to Validityccoccvecierieeierienieieneeieie e 48

3.1.4 Guidelines for increasing validitycccocveeverercieresieienieennnn, 49

3.2 Empirical Research Approachescccceceviiiieniiieninieeceeeeene, 49

3.2.1 Experimental researchccocoevevinieiiniecieeee e 50

3.2.2 SUIVEY TESCAICHeuviiiuieiieiieiiei ettt 54

3.2.3 Case study reSearchcccecueereririinienienieieeeeeseseeeeeneeees 58

3.2.4 AcCtion reSEarch.........cccuevieeiiiiiieciieeie e 60

3.3 Comparison of Research Approachesccooeiiniiiinininieiiecece, 64

3.4 Chapter SUMMAIY.......cccccveeruiereierieereestieseesresseesseesssesseeseesseesssessessses 65

PARTII THEORETICAL FRAMEWORK 67
CHAPTER4 FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATIONccceerueeneenees 67
4.1 Social Learningcccoeeeierieierieieeiesieeeie sttt 68

4.1.1 The rationalistic traditionccceeveeiieiireciieceecee e 68

4.1.2 Software development as reality construction............c.ccecueeueeneee 70

4.1.3 The learning software organization.............ccecereeeeseeeeeseeseennns 73

4.2 SenSeMAKING.......c.eeeierieiiieriiesieete et esteesreereesteesseeesbeesseessaessseenseeseenens 75

4.2.1 The concept of senSemMakingcccceveereeneriienenienesienieseeeens 76

4.2.2 Organizational processes of sensemaking............ccceeceveevereennens 76

4.2.3 Shared aSSUMPLONSeeueriieieieiieie ettt ee e 77

4.3 Knowledge Creation..........ccceeeeereeeerieenienieeieeniee e sreereesnesneeseesseesens 79

4.3.1 Organizational knowledge...........cccceevieriiriiinciieiienie e 80

4.3.2 Individual knowledge creationccceceeveerieeceeneeereereeneeenees 82

4.3.3 Organizational knowledge creation............cccecvvevverveeveesreennnenne. 83

4.3.4 Enabling cONditionsScceevuierieriieriieniesieeveesreeseeeve e seee e 85

4.4 Purposeful ACHION.....c.cciiieiieiieieee ettt 87

4.4.1 Theories Of @CtIONc.cccvecviiiieieieeieie ettt ee e 88

4.42 Models of planned change...........cccoeverievieneeiieniecienecieie e 90

4.4.3 Improvisational change models............ccoevvrievieriecierieierie e, 91

4.4.4 Organizational KNOWINGccoeveiieviierienieniieieenee e 93

4.5 Chapter SUMMATY........cceecteriieierieeieeiiesteeiesie st eeeseeeee e eseeeesseensesseeneeneas 94

CHAPTERS A DYNAMIC MODEL OF SOFTWARE PROCESS IMPROVEMENTcoouerueennennee 95
5.1 INtrOAUCHION ...oeceviiiiieiieeie ettt ve e sae e e ebeesaeeeabeenreas 96

5.2 Organizational CONtEXTcccveeeriereeriireiieiieeteeieeseeseeeereesseesenesnseensees 98

5.2.1 Environmental turbulencecccocveeierierciiecienieeieeeeeee 100

5.2.2 Organizational SIZ€...........cceeereervereeeirieneeseeereeieeseesveeseennns 100

CONTENTS

5.3 Learning CyYClecooviviiiiiiiieiieiie ettt 101

5.3.1 Local KNOWING......cceeviieiiieiieiieee ettt 101

5.3.2 Generating explicit knowledge........c.cccveveervieciieneenieeieeeeee, 104

5.3.3 Organizational MEMOTYccceeveereiecreereerreereeieeseeeveeneenes 107

5.3.4 Collectively interpreting the knowledgecccceveneriiinincens 110

5.4 SPISUCCESS .vveeeiieiieiieeie ettt ettt ettt st seneenaeenseens 113

5.4.1 Organizational performance............cceecvereereeeciiereenieeieeneenne 114

5.4.2 Perceived level of SUCCESSccvvvvieriieiieiecieeieeeere e 117

5.5 Facilitating FactorsS.......cccoecueviirieiecieieseeee e 118

5.5.1 BuSINess OrieNtationccecuervieierierieseesienseesieseesseseesesseennens 118

5.5.2 Involved leadershipcccceeeeerirenenieieeieeeeeeeeeeeee 120

5.5.3 Employee partiCipation.........cccccveeverrereerueseesueseessessensessesseennens 121

5.5.4 Concern for MEASUrEMENtccververrerrereerierresresreseessesseenens 123

5.5.5 Learning Strate@yccceceeereveeereeseerereieesseeseeeeeeseesneesnseeseennes 125

5.5.6 Joint contribution of facilitating factors............ceccevveevecieniennnns 127

5.6 Chapter SUMMATYcccieieriieiieieriieieesteeteie et ste et eteseeensesseeneeneesaeenes 127

PART III EMPIRICAL INVESTIGATION 129

CHAPTER6 RESEARCH METHODOLOGY 129

6.1 Justification for the Methodologyccccevvivieviiniiicieiicieie e 129

6.2 Research Desi@n......cccccieieiiiiieiiiieieieeee et 138

6.3 Population and Sample..........cceceriiiiiiiniiii e 141

6.4 Variables and MEASUIESc.ccevvieierieeienieeiieienieesesseeeeseseeessesseesnenns 145

6.5 Data Collection Procedureccceverieniirienienieieieeeee e 147

6.6 Data Analysis TEChNIQUES.........cccvevieriiiiieiierie e 150

6.7 Procedure for Hypothesis TeSting.........cccovverievierieecienieeieiesierenie e 155

6.8 Chapter SUMMATYcccueririeiieriieierie ettt et 161
CHAPTER7 AN INSTRUMENT FOR MEASURING THE KEY FACTORS OF SUCCESS IN

SOFTWARE PROCESS IMPROVEMENT 163

7.1 TEOAUCHION ...ttt st 164

7.2 Key Factors of SPT SUCCESS.....ccevieiiriiiieiieiieiesie et 165

7.3 THEM CrEAtION...c.eietieieieeeieieeiteie ettt ettt ettt entesaeeneeneeeneenes 169

7.4 Construction of Measurement Scales..........cccecererienenieienenienenenn 169

7.5 Pilot Test of Measurement Scales..........cevvervevierieecienienierieseeresieeenenns 171

7.6 Subjects and Instrument AdminiStration...........cccceeeeerereeriereeesieseneens 171

7.7 Reliability of Measurement Scales...........ccecvereeriieieeneenieeieesee s 172

7.8 Detailed Item ANAlYSiS.......ceccverieriecierieeieieeieiesie et ere e 174

7.9 Validity of Measurement Scalescoceririereneiienenieie e 175

7.9.1 Content Validitycccceeierierieieieeiesieeee e 175

—xXi—

CONTENTS

CHAPTER 8

CHAPTER 9

7.9.2 Construct Validityccccevuererieninieniineeeseeeeeee e
7.9.3 Criterion Validityccocceveririieninieinceeeeeeeee e
7.10 Chapter SUMMATYcccveriieierrerrieresieeiesseseessessesssessesssessesseessessesseenns
EMPIRICAL RESULTS
8.1 Case Study A: Experience with Goal-Oriented Measurement..............
8.1.1 Defining GQM gO0alScccccvieeriirieriierierie e
8.1.2 Defining the measurement plan...........cccoeeeevevreciiereeneenieeneenne.
8.1.3 Data collection and validation............cccevceevenininnineniienennns
8.1.4 Data analySiS......c.cevvievrierieeiiereereeeee e ere e
8.1.5 Feedback SESSIONS.cc.eeieriiiieriieiieiesieeie et
8.1.6 Lessons learnedcccceoeiieieiinieniiiieeeeee e
8.2 Case Study B: Experience with Participative Software Process
ASSESSIMENT ..c.nveeneiiiiieiieiteeie ettt ettt e siee ettt st e e e e saee e
8.2.1 Assessment methodccceeceeririininiiiininieeeeeene
8.2.2 Lessons learnedccceveviriiniinieniinieieneeecteeeee e
8.3 Case Study C: Exploring the Utility of Formal Routines to Transfer
Knowledge and EXPerience..........c.cecceevererenienieinininenenieseeeeeeeenens
8.3.1 Knowledge of TOULNESeccvervieeieiiriieieseeiee et
8.3.2 USE OF TOULINES......eoveeeiiieieiieeeeieste e e
8.3.3 Updating of TOULINESccvevvieieriieieieiieieseeieie e e eenens
8.3.4 Routines as a medium for transfer of knowledge and
EXPETICIICE. ... cvtenteetenteritentesteetenbeeatenteebeetesbeeabeste et ebesaeeneenbeeanen
8.4 Main Survey: The Key Factors of Success in SPIccoceveviecnnnenn
8.4.1 Evaluation of analytical asSUMPHONSccevverriererierieieriiennnns
8.4.2 Testing individual relationshipscccceveeereninenenienninenn
8.4.3 Testing overall relationshipscoceeeveereeereneneneneneceeenenne
8.4.4 Examining individual contributions to the variate
8.4.5 Exploring the effects of environmental conditions
8.4.6 Exploring the effects of organizational Size........c.cceeevevvrreeennnns
8.4.7 Exploring the relationships between organizational context
and modes of 1arningccceeveverererieneeeeeeeeseeeeeeee
8.4.8 Exploring the effects of other organizational characteristics....
8.4.9 Exploring the effects of the respondents’ characteristics..........
8.5 Chapter SUMMALY.......cccectviririerieieieieeesese ettt e
DISCUSSION AND IMPLICATIONS
9.1 The Learning Processes in SPL.........ccccoooiiiiiiiiiiiieeee e
9.1.1 FOUNAAIONSeiutiiieieieieieeie ettt st
9.1.2 Communities Of PraCtiCeecvereerierrierierieeierieeeerieeeeeeeeeeeneas
9.1.3 Living organizational Memoryc.ccecceveereereerieniesceneeneeenn
9.2 The Key Factors of Success in SPI........cccooeiieviiiiiieieeeceeeeeees
9.2.1 BUSINESS OTIENTAtIONeueiniiriieieriieiieicete et
9.2.2 Involved leadershipccceeevierieeiieiieeeeieee e
9.2.3 Employee participation.cccceeeereeierereenieneeieneeeeneeeeeenees

—Xxii —

CONTENTS

9.2.4 Concern for MeasUremMentccueeeveereereeesreereeseeesreesseesnens 232

9.2.5 Learning StrateZycccvveevveerreereesieeireeseeseeesreesseesseessesssessseenns 233

9.3 The Effects of Organizational COntextcceevevvecuerreecveriereerrenreennenns 234

9.3.1 Environmental turbulenceccoeveeverierverienieienie oo 234

9.3.2 Organizational SIZE............cceevverreeieriieierieniieresieeeessesesesesseesnes 235

9.4 Implications for TREOTY........ccoecirieiieriiieieeeeee e 237

9.4.1 The tacit — eXpliCIt NEXUS.....cccuerueeeiereieeieiesieeiesieeeeieeeeeee e 237

9.4.2 The local — global NEXUS.......ccevieieriieiieierieieeeeee e 239

9.4.3 The knowledge — aCtion NEXUSecvervreriereieieeriieieieeeieeeeeeeneas 241

9.4.4 The exploration — exXploitation NEXUSccceververeereerieeeenennens 242

9.5 Implications for Methodology.........ccceereerinirniinieieeee e 244

9.5.1 The rigor — relevance NEXUSceceeeeriereeierereenieseeeeeneeeneas 244

9.5.2 The convergence — diVergence NeXUS.........ccecverveeeereerueeneenreennas 245

9.5.3 The process — Practice NEXUS.......ceeruerreeruerueereeriereeseesaeeneesseeneas 247

9.6 Implications for PractiCeccecuvrvieriieciieiierie e 249

9.6.1 Building a learning software organizationccecceevvveennenns 249

9.6.2 Performance managementc.eecveerueerveeereerueeseeesreeseesseens 251

9.6.3 Leading organizational learning and SPIccccoeeeenennns 253

9.6.4 The responsibilities of organizational members........................ 255

9.7 Chapter SUMMATY.......c.ccccverierieeieeseereeereereessresseeseesseessnesseessesssnenns 256

PART IV CONCLUSIONS 257
CHAPTER 10 CONCLUSIONS 257
10.1 Conclusions on the Research Problem and Questions...........ccccue....... 257

10.2 CONIIDULIONSvieiieeieeeiieieeree e et e seteereebeeseeeseeeesseeseessneesseeseesnnenns 260

10.2.1 Theoretical cONtribULIONS........ccceecveeevierierieere e 261

10.2.2 Methodological contributions.............cccueeeereirerieeneesveereereenees 261

10.2.3 Practical contributions...........cccueeeveeeveerienienieeieesee e eveevee e 262

10.3 EVAIUALION ...eieiiiieeiieieiceieie ettt saesaeennens 262

10.4 LIMItatiOnS ...cccveevveeeieeiieiieeeieeereesieeeeeereesteesreeseseeseesseessseesseesseesseeessens 266

10.5 Further ReSearchccocveviieiieiieciececeeeee e 268

10.6 Final RemMArKscooevuiiiuiieiiiciiecieceteeee ettt et et e 269

PART V___ APPENDICES 271
APPENDIX A TERMINOLOGY 271
ALl ADDIEVIALIONS ...ocuviiiiieiieeieceteeete ettt ettt et eveeereeeaeeenveas 271

A2 DefINItIONS....cccviiiviieeiieieeieecteee ettt sre e st eebeesbeeesaeeseaes 273

APPENDIX B INTERVIEW GUIDE 279

— xiil —

CONTENTS

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

REFERENCES

EXAMPLE OF RESULTS FROM AN EXPLORATORY STUDY IN CX.......cccceueeeee. 281
ORIGINAL LIST OF FACILITATING FACTORS AND INDICATORSccceeenuneeee 285
MEASUREMENT INSTRUMENT 287
QUESTIONNAIRE 289
SURVEY DATA 293

299

— X1V —

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:

Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 5.1:
Figure 5.2:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:

List of Figures

Overall research deSIZN.c.eevieiuieeiiriieiee ettt 10
Degrees of process change for different intervention strategies.cc.cceeeuuene. 16
Relationship between process, context, and OUtCOME.cccervereerereeereeseennenne 17
The relationship between the Experience Factory and the Project Organization
as implemented at NASA/GSFC.......ooiiiiiiieeeieeee et 19
GQM hierarchical StIUCTUIE.cocvieeiiiiieiieciiie ettt svee e 20
The context of software process asseSSMENL.cccereeeereeiererieieeeeeeeneeeeene 21
Model-based aSSESSIMENT PIrOCESS.vvevverrerererrerreerersearessessressesseessessesssessessesssenns 22
An overview of the ISO/IEC 15504 two-dimensional architecture..................... 25
The Shewart improvement CYCIe..........oocveririeriieieriesieieieeeee e 26
The IDEAL vI.1 MOdel. ..cc.ooiiiiiiiiiiiiiiieeceeeeeet e 29
The Quality Improvement Paradigm...........ccccoririeiiniiiienieieeeee e 30
Davenport’s approach to process iNNOVAtion.ccuervererecrereeienieseeneeneennenns 37
Pfleeger’s technology transfer Process.ccoeeveererienieneesieneeiene e 38
Process improvement and process iNNOVALION.eecververeeecierreeienieseeeseeneeenens 40
A high-level proposal for successful SPI that integrates process definition,
process assessment, process improvement, and process innovation................... 41
Inductive and deductive approaches to research.cc.ccooeevererieneneenienenenn 46
Threats to experimental Validity.ccoccevireierieiieiereeieeeee e 54
The Cogenerative Action Research Model.ccoeveiviiiciieniiiiicieeeee s 62
The use of alternative ESE research approaches in the process of theory
building, testing, and eXtENSION.cceiiruieriireeierieiee et 65
The construction of social reality..........cccevireieririeiirieieeeee e 71
Alternative definitions of organizational learning.ccccceeeveevreeneerveeveennen. 73
The epistemological and ontological dimensions of knowledge. 80
Kolb’s experiential learning cycle.ccvevveviirieiienieieniiiieiesieeieie e 83
Organizational knowledge creating process.ceoceveeeereeieneneeneseesieseeeene 84
The general form of a theory of aCtion.ccceverererienieiininieeeeeeeee 88
Theories of action within the context of SPL.........ccccooiiiininiiiiii 89
Single-loop and double-100p learning............cccoeeeeerieeienenienieieee e 90
An improvisational model of change.cc.occvevieriecieniinieiececee e 92
A dynamic model of software process improvement.............cceceeceevereeneeneennene 97
The organizational performance dimension of SPI success.........ccocvrvevvennnnen. 116
Lee’s model for integrating positivist and interpretive approaches................... 134
Overall research deSi@N.c.eevueiieiieriieieieeee et 138
Process for developing and justifying the hypotheses.ccccccvevverciircivenenne. 141
Conceptualization and operationaliZation.ceceeeereereeienencenie e 145
Overall SPI success of top-third versus bottom-third software organizations.. 155
Conceptual research model for the quantitative part of the study..................... 156

— XV —

LIST OF FIGURES

Figure 6.7:

Figure 7.1:
Figure 7.2:
Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:
Figure 8.5:

Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:

Statistical power and the probability of Type I and Type II error in testing a
directional hypothesis.cocieriiieiiirieiee e 158
Instrument development PrOCESS........ccuerieieriereeiierieeieieeeereseeeeereseeesseeseeneas 166
Scree plot for the EXploration Scale.cceccveeiiereerieniieieerie e 178
Part of Nera’s GQM IEe.c.vveeuvierierieieie ettt ettt et 184
Participative asseSSIMENt PrOCESS.......veverrieierreereerrerreeressessressesseesessesssessesseesnes 190
Typical question format from the questionnaire.cccceeeeerereerereenienennen. 191
Example of an illustration of preliminary findings.ccoccvvvvevieriecieniennnnen. 192
Improvement strategy versus organizational size and environmental turbulence
for (a) exploitation and (b) exploration in small and large organizations......... 218
Different types of knowledge in SPL........cccooiiiiiiiiiiiiieeeen 240
The impact of ability and reliability on performance.c.cccoeceevvrveniennennen. 243
The Osborn-Parnes five-stage creative process model.cccceceeviireencnenen. 246
SPI performance management model.cccoooeeiiirieiiininieii e 252

— XVl —

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 3.1:
Table 3.2:
Table 3.3:

Table 4.1:
Table 4.2:
Table 4.3:

Table 5.1:
Table 5.2:
Table 5.3:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:

Table 6.6:

Table 6.7:

Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4:
Table 7.5:
Table 7.6:
Table 7.7:
Table 8.1:
Table 8.2:
Table 8.3:
Table 8.4:

List of Tables

Model-based vs. participative approach to process assessment..................c....... 23
Key Process Areas in the SW-CIMM.cccccecvieiiiiieniieiieee e 24
Benchmarking approach versus analytical approach.cccceoeiinieiencnenne 27
Perspectives on quality Management.cc.ecveeverreeeieriereeireseeresseseessesseesnenns 32
Facilitating factors identified in software process improvement. 32
Facilitating factors and barriers t0 SPL..........ccoociiiiiiiiininieecee e 33
Process improvement versus process inNOVation.............ccvevverveecveereesveeveennens 39
Purpose of T€SEArCh.cc.ieuiiiiiiieieie e e 45
Principles for interpretive field research...........cccccevvvcierincieienieiee e, 61
A summary of the key features, strengths, and weaknesses of alternative

ESE research approaches.ccveoveeiieoiienieiiieieereesee et 66
“Best practice” approach vs. learning software organization.cccceeueneee. 75
Organizational sensemaking PrOCESSES. ...covrrrrrrrerverrereerrerreeiresresressessaessessessenns 77
Enabling conditions identified in organizational learning and knowledge
CTEALIONL. 1.ttt ettt ettt ettt bt e e sb et e bt et e bt eat e bt eat et e s bt enbesb e et enbesaeenee 87
Memory categories and examples of typical elements.ccccerireenrnnennen. 108
Exploitation versus eXplOration.ccccvecverueeeeriesieeciesieeeesiesseesessessessesseesnes 126
Research hypotheses.ccuoreiieiiiiiee e 128
Comparison among the major research paradigms.ccceceveecieniereenienneennn. 135
Characteristics of the pilot and multiple case studies.ccceevervvreriereervennnen. 139
Characteristics of the survey sample..........ccoceriiierinieieneeeee e 144
Stevens’ levels of MEASUTEMENL.cveveieiririiriirieieeece e 152
Ways of being correct or making an error when choosing between two
competing hyPOtheSEs.coueruiiriiriiiiriieie s 156
Effect-size indexes and their values for small, medium, and large effects

for tests used in this STUAY. ..c.cereiieiieiieiee e 159
N for small, medium, and large effect sizes at power = 0.80 for oo = 0.05

ANA 010, 1.ttt 160
Key factors 0f SPI SUCCESS. ..oviiiiiiriiiieiecieieett ettt essesbe s s esaennes 168
Leadership involvement Scale.cccoierieriniiiieniiieecee e 170
Classification of reliability estimation methods..........ccccevveeierincienirieieenen. 173
Reliability analysis results for the key factors of SPI success.c..coceevuenenee. 174
Three basic types of validity in measurement instruments.c.ccceceeennnen. 175
Corrected item-scale correlation MatriX.........coevveruereeieieererenienieneeeeeeeees 176
Summary of factor matrices for each construct.cccooevieeiiiieniiienieneee 179
GQM abstraction sheet for goal reliability.ccceoevieinininininieeiercee, 185
Metrics definition template.ccveeiereiiiciieiierie e 186
Knowledge of company rOUtINESccceeeerieriieiieriieieieeieeie st 195
Degree of involvement during introduction of routines............ccceeveveeveeenennenn 196

— XVvii —

LIST OF TABLES

Table 8.5:
Table 8.6:

Table 8.7:

Table 8.8:
Table 8.9:

Table 8.10:

Table 8.11:

Table 8.12:
Table 8.13:
Table 8.14:
Table 8.15:
Table 8.16:
Table 8.17:
Table 8.18:
Table 8.19:
Table 8.20:
Table 8.21:
Table 8.22:
Table 8.23:

Table 8.24:
Table 8.25:
Table 8.26:
Table 8.27:
Table 8.28:
Table 8.29:
Table 8.30:

Table 9.1:

Table 10.1:
Table 10.2:

Alternative media for knowledge transfer.cocoeverinieiininieniieeeee, 197
Do you regard written routines as an efficient medium for transfer of

knowledge and eXPeriencCe?covveiereeienieeieierieeieie et e ettt 198
Degree of involvement vs. assessment of formal routines as an efficient

medium for transfer of knowledge and experience............cceevervevverrercvesrennnennn. 198
Tests for normality of the independent and dependent variables...................... 199
Tests of homogeneity Of Variances.........ccoocveeveeeeierieneerienieeieseeeeie e 200
Tests for linearity of the relationship between the dependent and

independent Variables.coccveriiiiecieriieiere ettt enaes 201
Item means, standard deviations and correlations among the independent
VATTADIES. ..e.eeiiiiiiiiiitee ettt 202
Tests for multicollinearity between the independent variables......................... 203
Tests of hypotheses H1 — HO6.ccevuieieniiiieiieieieceeeeeie e 204
Multiple regression model summary using all independent variables............... 210
Multiple regression analysis of variance using all independent variables. 210
Multiple regression between all independent and dependent variables............. 210
Stepwise regression model summary — final model.............ccoocoeviiiiiniinnnnn. 212
Stepwise regression analysis 0f VArIANCE.c.ocveeverieriecienieeienieeeeieseeeesieeenens 212
Stepwise regression COEffICIENtS.eeoveriiieriiieie e 213
Results of assessing the study’s research hypotheses.cccoceveveveneenennnn 213
Stable versus turbulent envVironmMent.ccecereeriereriienenieneseereseeieseeeene 214
Level of turbulence in large versus small software organizations..................... 214
Level of turbulence in successful versus less successful software

OTZANMIZATIONS. 1..euveueeneenienietietertertertet et ettt ettt sttt e te e esteseeb e bt sbe s esententeneeneeaesees 215
Large versus small software organizations.cceeevereervrevieeneeseeeveesveenees 216
Large successful versus large less successful software organizations............... 216
Small successful versus small less successful software organizations. 217
Large successful versus small successful software organizations. 217
Successful versus less successful software organizations...........cceceecveevereeeennne 220
Successful versus less successful software organizations...........c.cccoeevvveeevennnen. 221
Successful versus less successful software organizations...........cccceeeeceererenene 221
Characteristics of local and global knowledge.ccecveviercrvicieiierieeiee, 239
Evaluation Of TIZOT. ...ccuoiuieiiiieiee ettt 262
Evaluation of relevance.coevueieieiriniiereeee e 265

— XViil —

CHAPTER 1

Introduction

“The scientist is not a person who gives the right answers,
he is one who asks the right questions.”

— Claude Levi-Strauss

In this chapter, the background to the research is explained by focusing on the persistent
problems in software development and the importance of organizational issues in improving
the software process. Furthermore, the chapter describes the research context, the research
problem and questions, the claimed contributions, and the research method. Finally, the
outline of the thesis is described.

1.1 Background to the Research

Software is the new infrastructure of the 21* century. It pervades our society, and is becoming
increasingly critical for businesses as well as for leisure time and entertainment. Software is
being used in more and more sensitive applications, ranging from nuclear reactors, airplanes,
and air-traffic control to telecommunication networks, banking, and automobiles. It is
fundamental to economic success, scientific and technical research, and national security. At
the same time, there is a growing perception that software quality is as vulnerable as Achilles’
heel in developing high-quality products. The chronic “software crisis”, that software is
(almost) always later than expected, more expensive than planned, and with less or even
wrong functionality, has become even more critical as software pervades our day-to-day lives.

Despite impressive technological advances, the exponentially increasing demands,
complexity of the problems, and scale of work addressed by software, seem to outpace our
ability to develop and maintain software. Thus, in addition to being used in increasingly more
sensitive applications, software is also becoming larger and more complex. Larger
applications, with a greater volume of code means increased risk of error unless we
dramatically improve the error rates of software. At the same time, the increasing complexity
of industrial software systems make them progressively more difficult to test. In combination,

—1-

CHAPTER 1

these trends expose us to even greater risks of software failures and corresponding disasters as
we use software in increasingly critical applications.

1.1.1 Problems in software development

Since the term “software engineering” was first coined at the historic NATO Conference in
Garmisch-Partenkirchen in 1968 (Naur and Randell, 1969), there has been a widespread
consensus that there are problems with the development and maintenance of software. These
problems were later discussed by Brooks (1975, 1995) in his classic book The Mythical Man-
Month, and the term “software crisis” was coined to embrace the problems in software
development — they were seen as a werewolf that needed slaying with a “silver bullet”
(Brooks, 1987).

Following Aristotle, Brooks (1987) distinguished between the essential and the accidental
problems in software development. The essential problems are the difficulties inherent in the
nature of software, which we have to learn to live with as long as we continue to develop
software. The accidental problems, on the other hand, are those difficulties that attend
software development because of the historical progress of our practice. They are not inherent
and can be removed if we can identify and understand their causes.

More recently, Gibbs (1994) wrote a widely cited article in Scientific American entitled
Software s Chronic Crisis, focusing on a wide range of problems in software development:

Studies have shown that for every six new large-scale software systems that are put into
operation, two others are cancelled. The average software development project over-
shoots its schedule by half; larger projects do worse. And some three quarters of all large
systems are ‘operating failures’ that either do not function as intended or are not used at
all (ibid., pp. 72-73).

Also, the PITAC report (Joy and Kennedy, 1999) singled out the problems with software
quality and software development as a key obstacle for the way we live, learn, work, and play
in the 21" century. Similar to the above passage from Gibbs (1994), the PITAC report quotes
figures from the Standish Group stating that 73 percent of software projects are late,
substantially over budget, canceled, or outright failures.

The term “software engineering” was coined at the NATO conference as an answer to the
problems in software development. It was deliberately provocative, implying the need for
software development to be based on the principles and practices seen in engineering. Thus,
the point of departure for most of the subsequent efforts in addressing the problems in
software development has been to treat the entire task of software development as a process
that can be improved through engineering methods.

Hoare (1984), for example, considered the “rise of engineering” and the use of
“mathematical proof” in software development as a promise to “transform the arcane and
error-prone craft of computer programming to meet the highest standards of a modern
engineering profession.” (ibid., p. 8). Likewise, Lehman (1989) focused on reducing
uncertainty in the development process through the “engineering of software”, while Basili
(1996) put the case for a scientific approach to software development, stating that “Sofiware
engineering is a laboratory science” (ibid., p. 443, emphasis in original).

Humphrey (1989) recognized that the key problems in software development are not
technological, but managerial in nature. Consequently, he developed a framework for

INTRODUCTION

managing and improving the software process, which was later known as “The Capability
Maturity Model for Software” (CMM) (Paulk et al., 1995). This framework reflects the
underlying premise of software process improvement (SPI), that “the quality of a software
product is largely governed by the quality of the process used to develop and maintain it.”
(ibid., p. 8). Consistent with the views of software engineering, the CMM is rooted in the
engineering tradition, emphasizing predictability and improvement through the use of
statistical process control. Humphrey (1989) formulated his fundamental view in this way: “If
the process is not under statistical control, sustained progress is not possible until it is” (ibid.,
p- 3).

As these examples, from some of the most influential academic leaders within the
software community, show, software development and software process improvement are
strongly rooted in the rationalistic traditions of engineering. Indeed, most of the writings to
date can be seen to have antecedents in the industrial models devised by Frederic Winslow
Taylor and Henry Ford, and also in the notion of bureaucracy described by Max Weber. As a
result, the move toward improvements in software development processes has remained
technology driven.

However, software development and software process improvement involves organiza-
tional as well as technical issues. While software engineering has been offered as a way of
resolving the intrinsic technical problems, the organizational problems need another approach.
However, both classes of problems need to be jointly resolved to improve the process of
software development — i.e. they are co-producers of the outcome. It is, therefore, my
contention that we cannot expect to succeed with the practice of SPI if we continue to
approach SPI research with one eye closed.

1.1.2 The importance of organizational issues in SPI

Concern with the relationship between the problems in software development and
organizational issues is not a new phenomenon. More than 25 years ago, Lucas (1975) wrote a
classic book on why information systems fail, suggesting that “the primary cause for system
failure has been organizational behavior problems.” (ibid., p. 3). There is, however, an
increasing amount of evidence to suggest that organizational issues are now more important,
and will become even more critical, to the successful improvement of software development
than they were when Lucas (1975) wrote his book (Bennetts ef al., 1999; Bjerknes, Dahlbom
et al., 1990; Dahlbom and Mathiassen, 1993, 1997; Doherty and King, 1998a; Kawalek and
Wastell, 1999). This was also the focus of the October 1993 issue of Communications of the
ACM and the May/June 2001 issue of IEEE Software, which had a focus on organizational
change.

Despite this increasingly recognized importance of organizational issues within the SPI
community, the typical response to the persistent problems in software development has been
to apply even more rigorously the principles of engineering (e.g. Florac and Carleton, 1999).
Organizational issues are often ignored or not properly addressed in much of the recent
literature, with only a handful of studies being reported (e.g. E1 Emam et al., 1999, 2001;
Goldenson and Herbsleb, 1995; Guinan et al., 1998; Sawyer and Guinan, 1998). Furthermore,
organizational issues are only treated implicitly, or in many cases not at all, even by managers
who perceive organizational issues to be of more importance than technical issues in
determining the successful outcome of systems development projects (Doherty and King,

—3_

CHAPTER 1

1998b). There is, therefore, a pressing need for empirical research to investigate the impor-
tance of organizational issues in SPIL.

The position taken in this thesis regarding organizational issues is strongly influenced by
socio-technical theory (Trist and Bamforth, 1951; Trist 1981). Its central conception is that
organizations are both social and technical systems, and that the core of the software
organization is represented through the interface between the technical and human (social)
system. Thus, I define organizational issues within the context of SPI as any distinct area on
the interface between the technical system and the social system, which can enable sofiware
process improvements. This definition encompasses a wide range of organizational issues that
need to be addressed in SPI, which others have classified as managerial (Humphrey, 1989,
1997), behavioral (Curtis ef al., 1988), human (Wastell, 1999), or people (DeMarco and
Lister, 1999) issues.

From a software engineering perspective, the world is composed of problems whose
existence is distinct from the methods, tools, and techniques of software engineering. The
technical rationality behind this worldview emphasizes “objective truths” and global “best
practices”, at the expense of local context and expertise. An important aspect of socio-
technical theory, however, is the belief that there may be many optimal solutions — or best
ways — to a specific problem, since the “joint optimization” of a particular technical and hu-
man system can be implemented in several ways that can be equally efficient. This position is
particularly relevant for SPI because, as I already have argued, of the intimate interde-
pendence between technical and organizational issues.

In addition to “joint optimization”, socio-technical theory also emphasizes the principles
of “minimum critical specification”, “autonomous work groups”, and “co-determination”
(Trist, 1981). Instead of a search for global best practices, therefore, the thesis points to the
importance of context-sensitive learning (Walz et al., 1993) and to follow the rules suggested
by the situation at hand (Robinson ef al., 1998). Furthermore, I envisage software
development largely as a human based intellectual activity (Weinberg, 1971, 1998) that
involves constant negotiation and renegotiation among and between the social groups shaping
the software.

Thus, the fundamental assumption behind the investigation presented in this thesis is that
software process improvement is a socially constructed learning process and, consequently,
that a commitment to learning rather than to “best practice” models is needed to accomplish
improvements in software development. Therefore, the thesis focuses on studying these
learning processes and the key factors that enable improvements in organizational perform-
ance.

1.2 Research Context

The research presented in this thesis has, for the most part, been performed within the context
of the following three projects:

TELMET (Telecommunications Metrics Approach) was a Process Improvement Experiment
(PIE) within Nera AS supported by the European Systems and Software Initiative (ESSI) that
lasted from April 1996 to April 1998. The overall goal of TELMET was to improve the
quality and productivity of telecommunication software systems development by introducing

INTRODUCTION

metrics in the testing and inspection processes. In addition, the project acted as the first step in
Nera’s effort to advance from qualitative to quantitative goal setting. The technical objectives
were: (1) to identify and define software metrics to improve product quality; (2) to analyze
the effect of quantitative goal setting and measurement; and (3) to validate the chosen metrics
in order to implement post PIE actions.

I was part of the PIE team, with a general responsibility for training and methodology
support during all phases of the measurement program. Specifically, I had responsibility for
developing measurement plans according to ami and GQM (see Chapter 2) and performing
statistical data analysis as data became available (see Dyba et al., 1997; Stalhane et al.,
1997b).

SPIQ (Software Process Improvement for better Quality) was a large National SPI program,
partly funded by the Research Council of Norway, which lasted for three years from January
1997 to December 1999. The objective of SPIQ was to increase the competitiveness and
profitability of Norwegian IT-industry through a systematic and continuous approach to
process improvement. The goal of SPIQ was twofold: (1) to establish an environment for
process improvement in the software organizations associated with SPIQ, and (2) to transfer
and diffuse the knowledge gained to the remaining [T-industry in Norway through training,
seminars, and conferences.

The twelve software companies that actively participated in SPIQ covered organizations
of different sizes with a wide range of products and markets, developing either software or
combined software and hardware products. Some companies belonged to the traditional
electronics based IT-industry, while others belonged to the new dot-com industry. Besides
SINTEF, the Norwegian University of Science and Technology (NTNU), and the University
of Oslo made up the research partners in the program.

I was one of three Ph.D. fellows in SPIQ. My main role was to assist the member
organizations with measurement based improvement of their software development processes
relative to company-specific quality goals (see Conradi and Dyba, 2001; Dyba, 2000c, d;
Dyba and Moe, 1999; Stalhane ef al., 1998). In addition, I also had the editorial responsibility
for the SPIQ Methodology Handbook (see Dybéa, 2000e).

PROFIT (Process improvement for IT industry) is a National SPI program partly funded by
the Research Council of Norway, which started in March 2000, and will continue throughout
2002. The overall goal of PROFIT is to “increase the competitiveness and profitability of the
Norwegian IT-industry through focusing on learning and process improvement in the
continuously changing environment of the software business”. Like SPIQ, PROFIT involves
twelve software companies, with SINTEF, NTNU, and the University of Oslo as the research
partners.

Focus areas for PROFIT are software process improvement under uncertainty and
change. PROFIT tries to deal with these issues by focusing on helping small and medium-
sized software-intensive companies create learning software organizations. As in SPIQ, the
software companies participating in PROFIT run improvement projects according to the ESSI
model, with an improvement project as a layer on top of a real development project.

As in TELMET and SPIQ, my role in PROFIT is to help software organizations in im-
proving their software development processes relative to company-specific quality goals

CHAPTER 1

while at the same time contributing to the body of knowledge within SPI (see Dyba, 2000a,
b).

Additionally, my personal experience from 15 years of software development and consulting
for a wide range of customer and supplier organizations in industry and government has
strongly influenced both the content and the approach of the present investigation.

1.3 Research Problem and Questions

In this section, the research problem and questions are explained. Although it has partially
been covered by the discussion in Section 1.1, I comment on the title of the thesis first to
reveal some of the most important assumptions.

Thesis Title:

Enabling Sofiware Process Improvement:
An Investigation of the Importance of Organizational Issues

The title of the thesis has four main parts, which are informally explained below:

o Enabling: The perspective taken in this thesis is a recognition of the need to enable
software process improvement rather than trying to control it. Therefore, the focus is on
enabling SPI rather than on efforts to manage it.

o Software Process Improvement: The fundamental assumption of SPI taken in this thesis
is that changes to the process cause changes in the outcome. Thus, rather than being
interested in the process itself, the thesis is more concerned about the process outcomes.

o Investigation: The thesis includes a substantial theoretical investigation with an
extensive literature review of more than 600 references. The empirical investigation
includes 13 qualitative case studies as well as the main, quantitative survey of 120
software organizations.

e Importance of Organizational Issues: The aim of the thesis is to investigate
organizational issues that have a substantial importance in enabling SPI. The thesis
focuses on two classes of such issues: (1) the socially constructed learning processes, and
(2) the key factors that facilitate improvements in organizational performance.

Despite the increasingly recognized importance of organizational issues within the SPI
community, few empirical studies have been reported. To help fill this gap, the doctoral study,
reported in this thesis, was initiated to explore the relative importance of organizational issues
by investigating the learning processes and key factors for success in SPI.

INTRODUCTION

Thus, the problem addressed in this thesis is:

Research Problem:

How can sofiware organizations enable sofiware process improvement?

Essentially, I argue that SPI cannot be managed, but only enabled through the space in which
the software organization creates the possibilities for sensemaking, knowledge creation, and
purposeful action.

To narrow the focus of the investigation, the research problem addressed by this thesis can be
summarized by the following three questions:

Research Questions:
Q1: What are the key learning processes in successful software organizations?

The first question focuses on identifying the key processes that are part of a
successful software organization’s learning cycle. A theoretical investigation
and a set of qualitative case studies answer the question.

Q?2: What are the key factors of success in sofiware process improvement?

The second question focuses on identifying the key factors for success in SPI.
A theoretical investigation and a quantitative survey answer the question.

Q3: What are the relationships between organizational context and modes of
learning in software organizations?

The third question focuses on finding the relationships between the two major
modes of learning, exploitation and exploration, and the software organiza-
tions’ context. The question is answered by the quantitative survey.

Taken together, the answers to these questions constitute the main contributions of this thesis.
These contributions are put forward in the next section.

CHAPTER 1

1.4 Claimed Contributions

The objective of the thesis is to investigate the importance of organizational issues in SPI.
Based on this objective and the answers provided to the research questions posed in the
previous section, I claim that the thesis contributes with unique theoretical, methodological,
and practical knowledge. The main contributions are:

An increased awareness of the importance of organizational issues in SPI. For the
most part, SPI has been preoccupied with technical issues at the expense of
organizational issues. The overall contribution of the thesis, therefore, is to empirically
show that organizational issues are, indeed, important for succeeding with SPL.

A dynamic model of SPI. Based on my personal experience and observations, and the
extensive literature review, I have developed a dynamic model of SPI. The model is
inspired by social constructivism and open systems theory, and it consists of the
following four major elements: organizational context, learning cycle, facilitating factors,
and organizational outcome. The model is presented in Chapter 5 and answers research
question Q1.

Key factors for success in SPI. As an important part of the dynamic model of SPI, I
defined a set of key factors for success. The factors are theoretically justified and defined
in Chapter 5, empirically justified in Chapter 7, and validated in Chapter 8, providing the
answer to research question Q2.

An improvisational approach to SPI. The results of my investigations showed that
there are important differences in the way large successful and small successful organi-
zations react to environmental conditions and how they deal with SPI. Consequently, I
propose an approach to SPI in small organizations based on improvisation. The approach
is described in Chapter 9, and provides the answer to research question 03.

Moreover, several papers have been published during the period of the doctoral studies with
additional contributions to the national and international body of knowledge in SPI:

Journal articles:

Dyba, T. (2000a) An Instrument for Measuring the Key Factors of Success in Software
Process Improvement, Empirical Sofiware Engineering, Vol. 5, No. 4, December, pp.
357-390.

Dyba, T. (2000b) Improvisation in Small Software Organizations, /EEE Software, Vol.
17, No. 5, September-October, pp. 82-87.

Dyba, T. (1999) Assessment-based Software Process Improvement, Telektronikk, Vol.
95, No. 1, pp. 37-47.

Dyba, T. and Skogstad, @. (1997) Measurement-Based Software Process Improvement,
Telektronikk — Special Issue on Software Quality, Vol. 93, No. 1, pp. 73-82.

Books and book chapters:

Dyba, T. (Ed.) (2000e) SPIQ — Software Process Improvement for better Quality:
Methodology Handbook (in Norwegian), IDI Report 2/2000, Trondheim, Norway:

_8—

INTRODUCTION

Norwegian University of Science and Technology (NTNU), Faculty of Physics,
Informatics and Mathematics.

e Dyba, T. (2000c) Planning Organizational Improvement Programs, in T. Dyba (Ed.),
SPIQ — Software Process Improvement for better Quality: Methodology Handbook (in
Norwegian), IDI Report 2/2000, Trondheim, Norway: NTNU.

e Dyba, T. (2000d) Planning Process Improvement Experiments, in T. Dyba (Ed.), SPIQ —
Software Process Improvement for better Quality: Methodology Handbook (in
Norwegian), IDI Report 2/2000, Trondheim, Norway: NTNU.

Conference papers:

e Conradi, R. and Dyba, T. (2001) An Empirical Study on the Utility of Formal Routines to
Transfer Knowledge and Experience, Proceedings of the 8" European Software
Engineering Conference (ESEC’'2001), Vienna, Austria, 10-14 September.

e Dyba, T. and Moe, N.B. (1999) Rethinking the Concept of Software Process Assessment,
Proceedings of the European Sofiware Process Improvement Conference (EuroSPI’99),
Pori, Finland, 25-27 October.

o Stalhane, T., Wedde, K.J., and Dyba, T. (1998) Data Driven Improvement for SMEs,
Proceedings of the European Sofiware Process Improvement Conference (EuroSPI’98),
Gothenburg, Sweden, November 16-18.

e Dyba, T. Stalhane, T., and Palmstreom R. (1997) Experience of Goal-Oriented
Measurement using ami and GQM, Proceedings of the 8th European Sofiware Control
and Metrics Conference (ESCOM’97), Berlin, Germany, 26-28 May.

e Stalhane, T., Dyba, T., and Palmstrom, R. (1997) Experience of Introducing Goal-
Oriented Measurement, Proceedings of the 8™ International Workshop on Sofiware
Technology and Engineering Practice (STEP97), London, July 14-18.

1.5 Research Method

The overall research design for the study is shown in Figure 1.1. It is a sequential, mixed
method design consisting of two main phases: first, a qualitative model-building phase, then
the main, quantitative model-testing phase. The model-building phase was grounded in my
prior, personal experience as a consultant, in my observations in the case studies, and in the
extensive literature review. The model-testing phase focused on testing the associations
between the key factors for success and the outcome variable, SPI success, by a quantitative
survey.

Together, these two phases combine “process research” with “factor research” (Newman
and Robey, 1992), which can be seen as two major approaches to SPI research with
antecedents in MIS (Management Information System) research. Process research is typically
focused on the dynamics of individual projects using qualitative methods such as interviews
and participant-observations. Factor research, on the other hand, is typically focused on
assessing the relationships between key causal and outcome variables by collecting survey
data from a large number of organizations.

CHAPTER 1

Pilot
Case Study
(Ch. 8.1)
Personal 1 Literature
experience review

Multiple
Case Study
(Ch. 8.2-8.3)

l

Foundations of the Learning Software Organization
(Ch. 4)

Phase I:
Model building 1

Dynamic Model of SPI:
(Ch. 5)

] Organizational]
/ Memory

Generating Facilitating Interpreting
E> Knowledge <+ Factors [Knowledge E>

Local
— Knowing —

Phase II: 1

Model testing

Organizational Context
SPI Success

Facilitating R SPI
Factors Success

Quantitative .
Organizational
research model: Context
(Ch. 6)
Instrument and Survey: 1
(Ch.7) (Ch. 8.4)
g ! P ¢
o=0.05
p>0
\ 1-p=0.80 pr z
' F

Figure 1.1: Overal research design consisting of a qualitative model-building phase followed
by a quantitative model-testing phase.

— 10—

INTRODUCTION

The unit of analysis, from which original data observations were obtained, was the software
organization, which was defined as a whole company or an independent business unit inside a
larger company that has sofiware development as its primary business.

The process research approach in the model-building phase included a single,
exploratory, in-depth pilot case study (Case study A: TELMET, Section 8.1), followed by a
more explanatory, cross-case analysis of twelve software organizations (Case studies A and B:
SPIQ, Sections 8.2- 8.3; and Dybéa, 2000e). Collectively, these case studies had a considerable
influence on the model ultimately measured and tested by the following survey. Together with
the literature review and my prior experience as a consultant, the experience gained and data
collected during this phase of the research provided the foundations (Chapter 4) for develop-
ing the dynamic model of SPI, which is described in Chapter 5.

The hypotheses regarding the key factors of success in SPI developed in the model-
building part of the study were tested using an explanatory, cross-sectional, field survey
design (see Section 8.4). It involved 120 software organizations, investigating to what extent
the identified practices were implemented and what impact they had on SPI success. In this
main part of the study, I used a mailed questionnaire as the data collection instrument (see
Appendix F). The instrument was developed specifically for this study and results of
reliability and validity analyses showed that the instrument has desirable psychometric
properties (see Chapter 7).

The primary intent of the survey was to test the existence of statistical associations
among the identified factors and SPI success, thus providing quantitative evidence for the
importance of organizational issues in SPI, and the generalizability of results.

In addition to the extensive literature review, my personal experience, and general obser-
vations in TELMET, SPIQ, and PROFIT, the investigation included eight empirical studies:

(1) A pilot case study on goal-oriented measurement (Case A4, Section 8.1).

(2) A multiple case study on participative software process assessment (Case B, Section 8.2).

(3) A multiple case study on the utility of formal routines to transfer knowledge and experi-
ence (Case C, Section 8.3).

(4) An exploratory study on SPI success factors (Case D, Section 7.2).

(5) An expert review of proposed factors (Section 7.2).

(6) The development of a measurement instrument (Sections 7.3-7.4; 7.6-7.9).

(7) A pilot test of the measurement scales and the overall instrument (Section 7.35).

(8) The main quantitative survey (Section 8.4).

1.6 Outline of the Thesis

The thesis is organized in five parts, which reflects the phases of the research outlined in the
previous section.

Part I, State of the Practice and State of the Art, contains two chapters related to the
theoretical investigation of the current practices and research in SPI:

—11-

CHAPTER 1

o Chapter 2: Approaches to Software Process Improvement. This chapter surveys the major
approaches taken to SPI. Model-based approaches are compared with analytical
approaches, key factors for success are reviewed, relevant terms are defined, and the
relationships between SPI and organizational outcome are examined.

o Chapter 3. Approaches to Empirical Software Engineering Research. This chapter sur-
veys and compares the major research approaches in empirical software engineering. In
addition, the chapter presents an overview of some of the most important research
initiatives in SPI.

Part II, Theoretical Framework, contains two chapters about the model resulting from the
model building phase of the investigation: the theoretical foundations and the overall model
including a number of hypotheses regarding the key factors for success in SPI:

o Chapter 4. Foundations of the Learning Sofiware Organization. This chapter describes
the underlying assumptions and foundations of the learning software organization, which
form the basis upon which the dynamic model of SPI is constructed. The following foun-
dations are described: Social learning, which is focused on SPI as a social, collaborative
activity within the context of a learning software organization. Sensemaking, which is
aimed at constructing meaning and expressing the basic assumptions and values that are
vital to the software organization and its members. Knowledge creation, which is aimed
at generating new knowledge and new competencies that enable or broaden the software
organization’s potential range of actions. Purposeful action, which is aimed at using the
new interpretations and new knowledge to construct improved courses of action.

o Chapter 5: A Dynamic Model of Sofiware Process Improvement. This chapter proposes a
dynamic model of SPI for examining a software organization’s learning capability and
the processes that facilitate sensemaking, knowledge creation, and purposeful actions
within the context of a learning software organization. Furthermore, the chapter describes
the justification, conceptualization, and definition of each of the facilitating factors in the
model and develops a number of hypotheses regarding their associations with SPI
success. The model is grounded in my personal experience and observations in the case
studies, related to the extensive literature review, and focused on the three research
questions posed in Section 1.3.

Part III, Empirical Investigation, contains the details of the research methodology, the
development of the measurement instrument used in the survey, the results of testing the
hypotheses in the model, and a discussion of the results:

o Chapter 6: Research Methodology. This chapter describes the justification for and the
assumptions behind the research approach used in this study, as well as the details of the
methods used to develop the theory, operationalize the measures, collect the data, test the
hypotheses, and answer the research questions.

o Chapter 7: Measurement Instrument. This chapter details the research method further and
describes the design of the instrument used to measure the key factors of success in SPI.
The chapter provides a synthesis of the prescriptions for success found from the literature
review, which was also confirmed by empirical studies among both researchers and
practitioners. The results of reliability and validity analyses show that the instrument has
desirable psychometric properties.

—12-

INTRODUCTION

o Chapter 8: Empirical Results. This chapter reports on the results of using the measure-

ment instrument to test the hypotheses regarding the key factors for success in SPI and
explore the relationships between the success factors and a set of contextual variables.
Additionally, the chapter reports on three separate studies regarding (1) the experience
with goal-oriented measurement, (2) the experience with participative software process
assessment, and (3) the utility of formal routines to transfer knowledge and experience.

Chapter 9: Discussion and Implications. This chapter contains the discussion of the
results of the investigations in the thesis. The discussion is related to the learning
processes in SPI, to the key factors of success, and to the effects of organizational
context. Furthermore, the implications for theory and methodology are discussed using a
dialectical approach. Finally, the implications for practice are discussed in terms of
practical recommendations for successful SPI.

Part IV, Conclusions, summarizes the major findings of the thesis.

Chapter 10: Conclusions. This chapter presents the conclusions on the research problem
and questions and states the claimed contributions of the thesis. Furthermore, it includes
an evaluation of the thesis with respect to both rigor and relevance. Finally, the
limitations to the study are described along with recommendations for further research.

Part V, Appendices, contains additional material that has not been included in the other parts
of the thesis.

Appendix A: Terminology. This appendix provides a list of abbreviations and definitions
of the most central terms used in the thesis.

Appendix B: Interview Guide. This appendix contains the interview guide used in five of
the qualitative case studies regarding the utility of formal routines to transfer knowledge
and experience.

Appendix C: Example of Results from an Exploratory Study in CX. This appendix
includes the results from one of the four exploratory studies that were conducted to
validate the literature-derived factors enabling SPI success.

Appendix D: Original List of Facilitating Factors and Indicators. This appendix contains
the original list of facilitating factors and indicators based on the literature review and the
exploratory studies in the SPIQ companies.

Appendix E: Measurement Instrument. This appendix includes the instrument developed
to measure the key factors of success in software process improvement.

Appendix F: Questionnaire. This appendix contains the survey questionnaire used in the
quantitative part of the investigation based on the measurement instrument. Also, it con-
tains questions regarding the characteristics of the respondent, and the respondent’s
company.

Appendix G: Survey Data. This appendix contains the raw survey data collected from the
120 software organizations answering the questionnaire used in the quantitative survey.

Finally, the thesis includes a list of all references cited throughout the thesis. For stylistic
reasons, I will use the term “we” instead of “I” in the rest of the thesis.

— 13-

CHAPTER 2

Approaches to
Software Process Improvement

“Evolgato imperii arcano — for now had been divulged that secret of the empire, that
emperors could be made elsewhere than at Rome.”

— Publius Cornelius Tacitus

Understanding the “quality revolution” is an important prerequisite for understanding
software process improvement (henceforth SPI). However, quality management is often
obscured by both confusion and misunderstanding. This potential for misunderstanding is
partly related to quasi-religious and sectarian controversies, and partly related to the most
important feature of modern quality management: it directs attention to the improvement of
production processes, and not simply to the characteristics of the product. In this respect,
modern quality management opposes the original quality control principles of assuring that
the characteristics of the end product fall within preassigned tolerance limits.

Along with traditional engineering, the quality management tradition focuses primarily
on the manufacturing of material structures and their physical effects. However, software
development is strikingly different, mainly concerned with flexible symbolic structures and
their cognitive effects. In addition to computer instructions, software can also include a
corresponding set of instructions for humans. To have a meaningful discussion of SPI we need
to be clear about the characteristics of software, its usage, and the software development
process (henceforth the software process).

In this chapter, therefore, we first describe the concepts related to the software process.
Based on these concepts, we describe three intervention strategies or approaches to change the
software process in order to bring about improvements in organizational performance. In
Figure 2.1, the degrees of change to the software process are shown for each of these
approaches.

First, process assessment is an intervention strategy that involves an appraisal or review
of an organization’s software processes without changing them. Second, process improvement

—15-

CHAPTER 2

is an intervention strategy that involves continuous or incremental change to the organization
and its processes. Finally, process innovation is an intervention strategy that involves radical
change to the organization with entire or partial replacement of its processes.

A A A
() (] Q
()] ()] ()]
c C [
© © ©
< < <
O O O
[} [} 1]
[72] [72] 7]
Q Q Q
(] (] o
< < e
a a [on
| . B »
Time Time Time
Process Assessment Process Improvement Process Innovation

Figure 2.1: Degrees of process change for different intervention strategies.

2.1 Software Process

The software process defines the way in which software development and maintenance is
organized, managed, measured, supported, and improved (Feiler and Humphrey, 1993;
Montangero, 1999). Davenport (1993), for example, defined process as “a structured,
measured set of activities designed to produce a specific output for a particular customer or
market.” (ibid., p. 5), while Fuggetta (2000) defined a software process as “a coherent set of
policies, organizational structures, technologies, procedures, and artifacts that are needed to
conceive, develop, deploy, and maintain a sofiware product” (ibid., p. 28, italics in original).
Furthermore, Dowson (1993) noted that “All process work is ultimately directed at ‘software
process assessment and improvement.’” (ibid., p. 57).

Consequently, software organizations have gradually come to realize that the key to
successful delivery (with expected quality, on time, and on budget) lies in the effective
management of their software processes. This is also reflected in modern quality management
and in the underlying premise of software process management, that “the quality of a software
product is largely governed by the quality of the process used to develop and maintain it”
(Paulk et al., 1995, p. 8). This relationship between process and outcome (e.g. time-to-market,
cost, or customer satisfaction) can be explicitly expressed by the causal relation:

Quality (Process) = Quality (Outcome) 2.1

However, the same change to a process does not always lead to a similar change in outcome.
The relationship depends on the particular context (e.g. experience, organizational size, or
environmental turbulence).

Figure 2.2 shows a path diagram with this relationship between process, context, and
outcome. In general, we are not really interested in the process itself; rather, we are most
concerned about the process outcomes. But, in order to achieve the desired outcomes, we
have to implement the appropriate process (see Section 4.4.1 and the path diagram in Figure
4.6 for a general form of this theory of action).

—16 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Process > Outcome

Context

Figure 2.2: Relationship between process, context, and outcome.

2.1.1 Process models

Process models help us to become aware of and gain an increased understanding of the
software process, they facilitate human understanding and communication, and provide
process guidance (Conradi ef al., 1992; Curtis et al., 1992; Madhavji, 1991). They focus on
the stages, activities, and dynamics of software development by providing abstract
descriptions of the tasks of software development, their interdependencies, and the resulting
artifacts.

Overall, the value of a process model is in defining the phases and activities that lend
structure to the apparent chaos that characterizes the software process (Parnas and Clements,
1986). By clarifying the activities, routines, and dynamic factors that determine the timing
and trajectory of the development process, process models provide a framework by which
software organizations can better manage the dynamic nature, and the introduction of new or
improved methods, tools, and techniques. A limitation of these models, however, is that they
hide important process details that are crucial for the success of software projects (Madhavji,
1991).

Software processes can be represented at various levels of granularity and precision (e.g.
generic life-cycle models, organization specific models, project specific models), from several
perspectives (e.g. functional, behavioral, organizational, or informational), and different
degrees of scriptiveness (e.g. descriptive, prescriptive, or normative) (Derniame et al., 1999;
Finkelstein ef al., 1994). Also, they represent different philosophies toward practice, e.g. “do-
it-right-the-first-time” vs. “fail-fast” (Sotirovski, 2001).

Traditional examples of process models include the waterfall model (Royce, 1970), the
iterative enhancement model (Basili and Turner, 1975), the transformational model (Balzer,
1981), and the spiral model (Boehm, 1988). Comparisons of these models are provided in
(e.g. Davis et al., 1988). More recent examples of process models are the Rational Unified
Process (Kruchten, 2000), eXtreme Programming (Beck, 1999), the Dynamic Systems
Development Method (Stapleton, 1997), and Scrum (Schwaber and Beedle, forthcoming).

Also, the International Organization for Standardization (ISO) has developed a model for
software life cycle processes (ISO/IEC 12207: 1995) and process assessment (ISO/IEC CD
15504: 2001). Moreover, the recent revision of the ISO 9000 family of standards encourages
the adoption of a process approach to quality management and improvement, which is also
reflected in the proposed revision of the guidelines for the application of ISO 9001:2000 to
software (ISO/IEC WD 9000-3: 2001). Additionally, Bechtold (1996) provides a guidebook
on how to improve the software process through process definition and modeling.

—17 -

CHAPTER 2

2.1.2 Process infrastructure

An appropriate process infrastructure in terms of resources and responsibilities is a necessary
prerequisite for process management and improvement. Two types of infrastructures have
been widely described in the literature: the Experience Factory (Basili and Rombach, 1991;
Basili et al., 1994a) and the Sofiware Engineering Process Group (Fowler and Rifkin, 1990).
Furthermore, the Software Engineering Laboratory’s SPI Guidebook (Jeletic et al., 1996), the
Software Engineering Institute’s IDEAL Handbook (McFeeley, 1996), the SPIQ Handbook
(Dyba, 2000e), and the PROFES User Manual (PROFES, 1999) provide good descriptions of
infrastructure for process improvement in general.

2.1.2.1 Software Engineering Process Group

The Software Engineering Process Group (SEPG) is meant to be a central force for process
improvement within an organization. Its role is to maintain the overall view of current SPI
efforts and to facilitate these efforts on a continuing basis by fostering collaboration among
everyone in the organization who is involved with SPI.

The SEPG typically has the following ongoing activities (Fowler and Rifkin, 1990):

¢ Obtains and maintains the support of all levels of management.
o Facilitates software process assessments.

¢ Works with line managers, whose projects are affected by changes in software
engineering practice, providing a broad perspective of the improvement effort and
helping them set expectations.

e Maintains collaborative working relationships with software engineers, especially to
obtain, plan for, and install new practices and technologies.

o Arranges for any training or continuing education related to process improvements.
o Tracks, monitors, and reports on the status of particular improvement efforts.

o Facilitates the creation and maintenance of process definitions, in collaboration with
managers and engineering staff.

e Maintains a process database.

¢ Provides process consultation to development projects and management.
The SEPG is not part of product development but is, nevertheless, staffed by practitioners
who have expertise in software engineering. It may also have, and at any rate should develop,

expertise in process definition, organizational change, and technology related to improving or
measuring quality.

2.1.2.2 Experience Factory

The Experience Factory (EF) is an organization that supports reuse of experience and
collective learning within a software organization. The focus of the EF is on collecting data
and lessons learned from projects and experiments, and then analyzing these data and

— 18 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

packaging them into guide books, models, and training courses that can be spread to all areas
of the development organization (Basili, 1989). The EF is different from the Project
Organization, which focuses on the development and maintenance of applications. Their
relationship is depicted in Figure 2.3.

In addition to the Software Engineering Laboratory (SEL), further examples of
operational EFs include the Software Experience Center (SEC) setup by Fraunhofer IESE in
Kaiserslautern and the Fraunhofer Center for Experimental Software Engineering in
Maryland.

2.1.3 Process measurement

Evaluation of changes to the software process requires measurement. A number of practical
guides for such measurement are available, e.g. the ami Handbook (Pulford et al., 1996), the
GQM Method (Briand et al., 1996a; Gresse et al., 1995; van Solingen and Berghout, 1999),
the Software Measurement Guidebook (Gaffney ef al., 1995), the Goal-driven Measurement
Guidebook (Park et al., 1996), the Guide to Practical Software Measurement (McGarry,
1998), and the Practical Software Measurement Guidebook (Florac et al., 1997).

Common to these guides is that they are based on goal-oriented measurement (Basili et
al., 1994b), which helps ensure adequacy, consistency, and completeness of the measurement
plan and the data collection procedures.

Goal-Question-Metric (GQM) is a pragmatic approach for goal-oriented measurement in
software projects to select and implement relevant measures and indicators (Basili and Weiss,
1984; Basili and Rombach, 1988). It represents an approach for tailoring and integrating goals
with models of the software processes, products, and quality perspectives of interest, based
upon the specific needs of the project and the organization.

Project Organization:
Develop Applications

\ Experience Factory:

| Capture, Analyze, and
| Package Experiences
\
\

Data Base
Personnel

Metrics &
Lessons
Learned

\

Researchers

Mission
Analysts

Packagers

-~
~—
-

Application
Developers

Guide books
Models N
Training NS

Application
Testers

@&NO

Application

Figure 2.3: The relationship between the Experience Factory and the Project Organization as
implemented at NASA/GSFC (Basili ef al., 1997, p. 284).

— 19—

CHAPTER 2

The GQM model has three levels (Basili et al., 1994b):

(1) Conceptual level (goal): A goal is defined with respect to various models of quality,
from various points of view, relative to a particular environment. Typical objects of
measurement are products, processes, and resources.

(2) Operational level (question): A set of questions is used to characterize the way the
assessment/achievement of a specific goal is going to be performed, based on some
characterizing model. Questions try to characterize the object of measurement with
respect to a selected quality issue, and to determine its quality from the selected
viewpoint.

(3) Quantitative level (metric): A set of data is associated with every question in order to
answer it in a quantitative way. The data can be either objective or subjective.

A GQM model is a hierarchical structure starting with a goal as shown in Figure 2.4. The goal
is subsequently refined into a set of questions, and each question is then refined into metrics.
The metrics reflect the actual data needed to answer the questions. The same metric can be
used in order to answer different questions under the same goal.

As an aid in the process of defining the goals, questions, and metrics, the CEMP-project has
provided a process model and a series of useful templates (Gresse et al., 1995).

A practical text on establishing a measurement program has been made by the Software
Engineering Laboratory (Bassmann et al., 1995). Furthermore, the ISO Software Measure-
ment Process Framework (ISO/IEC CD 15939:2001) defines a generic measurement process.
Texts that present experience with the implementation of measurement in software
organizations include (Fenton and Pfleeger, 1996; Grady, 1992; Grady and Caswell, 1987;
Kitchenham, 1996; Moéller and Paulish, 1993).

Experience with goal-oriented measurement using the Balanced Scorecard (BSC) is
presented in (Kaplan and Norton, 1996, 2000). In the next section, we look at a specific form
of process measurement that has become increasingly popular: software process assessment.

Question

Metric I Metric I Metric I Metric I Metric I Metric I

Figure 2.4: GQM hierarchical structure (Basili et al., 1994b).

Question Question Question Question

—20-—

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Process

is
examined
by

identifies
capability
and risk of

identifies
changes to

A

Process
Assessment

leads to leads to

Process

d
-
Improvement motivates

Figure 2.5: The context of software process assessment (ISO/IEC TR 15504-1:1998).

Capability
Determination

2.2 Software Process Assessment

A software process assessment (henceforth SPA) is an appraisal or review of a software
organization to advice its management and professionals on how they can improve their
operation (Humphrey, 1989). It can be used for process improvement or capability
determination, as shown in Figure 2.5. General introductory overviews of process assessment
are provided in (Humphrey, 1989; Zahran, 1998), an extensive empirical review is provided in
(E1 Emam and Goldenson, 2000), and an overview of the application to SPI is provided in
(Dyba, 1999).

2.2.1 Assessment principles

Basically, there are three ways in which a software organization can make an assessment of its
software processes:

¢ Benchmark against other organizations.
¢ Benchmark against “best practice” models.

o Assessment guided by the specific goals and needs of the organization.

The first way of doing an assessment is a traditional benchmark exercise used to gain an
outside perspective on practices and to borrow or “steal” ideas from best-in-class companies.
This type of benchmarking can be seen as an ongoing investigation and learning experience
that ensures that best practices are uncovered, analyzed, adopted, and implemented. An
introductory overview of benchmarking is provided in (Camp, 1993). Also, the September/
October 2001 issue of IEEE Sofiware had a focus on benchmarking of software organizations.

The second way of performing an assessment is to benchmark the company against one
or more of the “best practice” models on the market (see next section for an overview). These
models focus on different aspects of the software process and the organization, and they are

—-21 -

CHAPTER 2

all associated with specific strengths and weaknesses. Specifically, they have been criticized
for being artificially derived and based on idealized lists of unvalidated practices (Fayad and
Laitinen, 1997, Gray and Smith, 1998). They are associated with both statistical and
methodological problems (Bollinger and McGowan, 1991), and they emphasize an
improvement approach based on Statistical Process Control (SPC), which has been criticized
by several authors (e.g. Dyba, 2000b; Ould, 1996).

During the 1990s, “software process assessment” has become synonymous with the
model-based approach. The most well known method for performing such assessments is the
CMM Based Appraisal for Internal Process Improvement (CBA IPI) (Dunaway and Masters,
1996). This method focuses on assessments for the purpose of process improvement using the
Capability Maturity Model for Software (SW-CMM) (Paulk et al., 1995). More recently, the
Standard CMMI Assessment Method for Process Improvement (SCAMPI) (SEIL, 2000a) has
been developed for assessments relative to one or more of the CMM Integration (CMMI)
models (e.g. SEI, 2000b, ¢). Furthermore, ISO/IEC CD 15504-2 (2001) provides guidance on
how to perform a model-based assessment process according to the emerging standard (see
Figure 2.6).

The third way of performing an assessment is with a participative approach tailored to the
specific needs of the company, focusing on what is unique to each company and how this
uniqueness can be exploited to gain competitive advantage. This approach is less time-
consuming than the traditional benchmark approach, and it is clearly more relevant and valid
than the model-based approach (Dyba and Moe, 1999).

Process Reference Model Measurement Framework
= Process Purpose = Capability Levels
= Process Outcomes = Process Attributes

= Rating Scale

Conformant Process
Assessment Model

INPUTS ASSESSMENT PROCESS OUTPUTS

= Sponsor Plannin = |dentification of
Purpose Data Collecgtion Evidence
Scope = Assessment

Data Validation
Process Rating
Reporting

Approach taken
= Process Profiles

Constraints
Assessment Team

Roles and Responsibilities
= Sponsor

= Competent Assessor

= Assessor

Figure 2.6: Model-based assessment process (ISO/IEC CD 15504-2: 2001).

—22 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Table 2.1: Model-based vs. participative approach to process assessment (Dyba and Moe,

1999).

Feature

Model-based Approach

Participative Approach

Focus areas and
criteria from

Data collected from

Data reported to

Role of researcher
or consultant

“Best practices” according to the
reference model.

Selected group of managers and
representatives from specific
projects.

Sponsor (top management and
department managers).

Administration of questionnaires,
documenting findings and
recommendations.

Tailor made to the needs of the
organization.

Everyone in the organization or
department.

Everyone who participated
(including management).

Obtain agreement on assessment
approach, joint design and
administration of questionnaire,

design of workshops.

Action planning Teams at all levels.

done by

Top management.

Probable extent of Low.
change and SPI

High.

The participative approach to software process assessment is part of the methodological basis
used in SPIQ (Dyba, 2000e). The objective of this approach is to focus on the necessity of
participation and tailoring in process assessment for SPI to take place. Basically, there are
three reasons for this: (1) developers and managers alike must accept the data from the
assessment as valid, (2) they must accept responsibility for the problems identified, and (3)
they must start solving their problems (see Section 8.2 for an overview of the approach and
lessons learned from its use).

A summary and comparison of the model-based approach and the participative approach to
software process assessment is given in Table 2.1.

2.2.2 Assessment models

The most commonly used assessment models in the software community is the SW-CMM
(Paulk et al., 1995) and the emerging international standard ISO/IEC 15504 (ISO/IEC CD
15504:2001). ISO/IEC 15504 is also known as SPICE — the name of the project developing
the standard (El1 Emam et al., 1998). Both of these initiatives had as their objective to improve
the selection criteria’s for potential software contractors to the U.S. and U.K. military, respec-
tively, in order to reduce the risks associated with software projects and improve the quality of
the delivered software.

Other notable examples of assessment models include ISO 9001 (2000) and its applica-
tion to software (ISO/IEC WD 9000-3: 2001), TickIT (BSI, 2001), the EFQM Excellence
Model (EFQM, 1999), Bootstrap (Kuvaja et al., 1994), and Trillium (Coallier et al., 1994).

—23 —

CHAPTER 2

Tingey (1996) compares and contrasts the Malcolm Baldridge national quality award, ISO
9000, and the CMM for software.

There is also a number of special purpose maturity models available, such as for systems
engineering (Bate, 1995), software acquisition (Cooper et al., 1999), people management
(Curtis et al., 1995), requirements engineering (Sommerville and Sawyer, 1997), testing
(Burnstein et al., 1999), maintenance (Drew, 1992), measurement (Budlong and Peterson,
1995), and reuse (Karlsson, 1995). The applicability of assessment models to small organiza-
tions is addressed in (Johnson and Brodman, 1999; Sanders, 1998).

The architecture of “best practice” models can be classified as either staged or continuous
(Paulk and Konrad, 1994). A staged architecture, like that of the SW-CMM, is uni-
dimensional since it defines a set of Key Process Areas (KPAs) at each maturity level, except
level 1 (see Table 2.2). A maturity level is defined in terms of satisfaction of the goals of the
KPAs within the current (and the underlying) level.

The continuous architecture, on the other hand, like that of the ISO/IEC 15504, is two-
dimensional (see Figure 2.7). One dimension consists of the processes that are actually
assessed, while the second dimension consists of the capability scale that is used to assess
process capability. Thus, capability levels apply to an organization’s process-improvement
achievement for each process area, while maturity levels apply to an organization’s overall
process capability and organizational maturity.

Table 2.2: Key Process Areas in the SW-CMM (Paulk ef al., 1999).

Level Focus Key Process Areas
5 Continual process Defect Prevention
Optimizing improvement Technology Change Management
Process Change Management
4 Reduce process variation Quantitative Process Management
Managed Software Quality Management
3 Standard engineering Organization Process Focus
Defined processes Organization Process Definition

Training Program

Integrated Software Management
Software Product Engineering
Intergroup Coordination

Peer Reviews

2 Basic project management Requirements Management
Repeatable Software Project Planning
Software Project Tracking and
Oversight

Software Subcontract Management
Software Quality Assurance
Software Configuration Management

1 Competent people and None
Initial individual effort

—24_

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

CAPABILITY
A
Continuous Improvement Level 5
Process Change
Process Control Level 4
Process Measurement
Process Resource Level 3
Process Definition
Work Product Management
Performance Management } Level 2
Process Performance } Level 1 PROCESS

Customer
Supplier
Engineering
Support
Management
Organization

Figure 2.7: An overview of the ISO/IEC 15504 two-dimensional architecture (El Emam and
Birk, 2000, p. 548).

Current work in the Software Engineering Institute’s CMMI project aims to harmonize the
two architectures, so that CMMI models can have both staged and continuous representations
(e.g. SEI, 2000b, c).

2.2.3 Assessment success factors

While reliability and validity are necessary conditions for successful process assessment (El
Emam and Birk, 2000; Fusaro ef al., 1998; Simon et al., 1997), they are by no means
sufficient (Dyba, 1999). Humphrey (1989), for example, identified a competent team, sound
leadership, and a cooperative organization as the basic requirements for successful process
assessments. Furthermore, he emphasized the need for a process model as a basis for the
assessment, the requirement for confidentiality, senior management involvement, an attitude
of respect for the views of the people in the organization being assessed, and, finally, an
action orientation.

Also, based on a review of the SPA literature (e.g. Kuvaja et al., 1994; Olson et al., 1989;
Paulk ef al., 1995; Pressman, 1988), Zahran (1998) mentioned the following critical success
factors: Sponsorship and owner commitment, motivation, action orientation, confidentiality,
relevance, credibility, and team building.

However, assessment alone does not create process change or improvement (see Figure
2.1). Tt just makes it possible and supports it. Therefore, to have effect beyond mere
exploration, an assessment must be directed toward action. In this context, assessments can
only be considered successful if they contribute to successful process improvement.

25—

CHAPTER 2

2.3 Software Process Improvement

A broad definition of SPI would include activities to (1) define and model a software process,
(2) to assess the process, (3) to refine the process, and (4) to innovate a new process (see
Figure 2.1). The fundamental assumption is that changes to the process cause improvements
in the outcome. However, the term “process improvement” is ambiguous. Referring to the
path diagram in Figure 2.2, it could mean either improvements in the process or improve-
ments in the outcome.

General introductory overviews and guidelines for SPI are given in (e.g. Briand et al.,
1999; Cassidy and Guggenberger, 2000; Dyba, 2000e; Grady, 1997; Humphrey, 1989; Jeletic
et al., 1996; PROFES, 1999; Sanders, 1998; Zahran, 1998). Collections of theoretical and
experiential SPI articles are provided in (El Emam ef al., 1998; El Emam and Madhavji, 1999;
Hunter and Thayer, 2001; Messnarz and Tully, 1999).

Overviews on the evaluation of SPI and corresponding examples of empirical studies can
be found in (El Emam and Briand, 1999; Goldenson et al., 1999a; Jones, 1999; Kitchenham,
1996/1998; Krasner, 1999). A more pragmatic look at what can be achieved from such
evaluation studies is provided by (Herbsleb, 1998).

2.3.1 Improvement principles

The Plan-Do-Check-Act (PDCA) cycle (Figure 2.8), developed by Walter Shewhart in the
1920s, provides the basic philosophy for a disciplined, cyclical approach to continuous
improvement. PDCA is also referred to as the “scientific method” and the “Shewhart cycle”.
The cycle was later introduced by William Edwards Deming in his work with the Japanese
industry after World War I1.

While there are important differences, the ideas of quality or process improvement is just
as applicable to software development as they are to manufacturing. However, quality
management, as a discipline, is deeply rooted in the manufacturing process. The challenge,
therefore, is to apply these general principles to a “development environment” instead of a
“production environment” (Basili and Caldiera, 1995).

P — Plan activities, i.e. define the problem and

state the improvement objectives. PLAN
D — Implement the plan, i.e. identify possible
problem causes, establish baselines and test
changes. ACT DO

C — Check the result, i.e. collect and evaluate
data. ; C
A —

Improve the process, i.e. implement system
change and determine effectiveness.

Figure 2.8: The Shewart improvement cycle (Deming, 1986).

—26 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Table 2.3: Benchmarking approach versus analytical approach (adapted from Jeletic ef al.,

1996, p. 27).
Area Benchmarking Approach Analytical Approach
Goals Focus on improving process Focus on improving product

Initial Baseline

Initial Analysis

Generalized goal (get to level 5)
Domain independent

Common measure of success
(higher level)

Perform assessment of process

Common yardstick
(what is the maturity level?)

Change process to advance to a
higher level, reassess process

Goals vary across organizations
Domain dependent

Measures of success vary from
organization to organization

Understand process and product

Change process to improve product,
reassess process and product

i i ?
(what is the maturity level now?) Organization specific, no way to

Can compare across organizations? compare across organizations

Improvement Process based Product based
Approach . . L .
Common yardstick drives change Organizational experience and goals

drive change

Two basic approaches to SPI have emerged. Card (1991) referred to these approaches as the
“benchmarking” and the “analytic” approach, while Thomas and McGarry (1994) used the
terms “top-down” and “bottom-up” process improvement, respectively (see Table 2.3 for a
comparison).

The benchmarking approach compares an organization’s process with one of the “best
practice” assessment models (see Section 2.2.1). Process improvement is then the elimination
of differences between the existing process and the standard process. The assumption is that,
once the process is changed the generated products will be improved — or at least the quality
risks of generating new software will be reduced. The most well known benchmarking
approach to SPI is the IDEAL model (McFeeley, 1996), which is based on transitioning the
CMM into an organization’s practice (Peterson, 1995).

In contrast to the benchmarking approach, the analytic approach assumes that the
organization’s individual goals, characteristics, product attributes, and experiences must drive
process change; that change is defined by a local domain instead of a universal set of “best
practices”. For example, an organization whose primary goal is improving time to market may
take a significantly different approach to process change than one whose primary goal is to
produce defect-free software. The most prominent example of the analytic approach to SPI is
the Quality Improvement Paradigm (QIP) (Basili, 1989; Basili and Caldiera, 1995).

—27 —

CHAPTER 2

2.3.2 Improvement models

The most commonly used SPI models in the software community are the already mentioned
IDEAL model and QIP. Other examples include the ami method (Pulford et al., 1996), the
project planning and development process (PADRE) (Rettig and Simons, 1993), and Grady’s
(1997) spiral model for process improvement adoption, which combines the Shewhart cycle
with Boehm’s (1988) spiral model of software development and enhancement. Also the SPIQ
project (Dyba, 2000e) developed an improvement model based on the Shewhart cycle, while
the PROFES project (PROFES, 1999) developed a model based on QIP.

Furthermore, the new part 4 of the ISO/IEC 15504 document set (ISO/IEC WD 15504-
4:2001) provide guidance on utilizing process assessment for the purpose of process
improvement and capability determination. It replaces the old ISO/IEC TR 15504-7:1998 and
ISO/IEC TR 15504-8:1998. The guidance provides an eight-step process for continuous
improvement, but does not presume specific organizational structures, management
philosophies, software life cycle models, or software development methods.

Of the improvement models, IDEAL most clearly locates specific learning activities in
the last phase — the learning phase. However, it is our contention that learning should not
reside in one phase, as an after-the-fact reflection. Rather, learning should be recognized as an
integral part of all phases of the improvement cycle (see Chapters 4, 5, and 9).

2.3.2.1 The IDEAL model

The SEI’s recommended framework for software process improvement is the IDEAL model
(McFeeley, 1996) shown in Figure 2.9. The IDEAL model was developed in order to present
a consistent view of the activities of an improvement program based on transitioning the
CMM into an organization’s practice (Peterson, 1995).

The IDEAL approach consists of the following five phases (Gremba and Myers, 1997):

(1) Inmitiating (the improvement program). The Initiating phase establishes the business
reasons for undertaking a software process improvement effort. It identifies high-level
concerns and business goals that can be the stimulus for addressing various aspects of
quality improvement. Communication of these concerns and business perspectives is
needed during the Initiating phase in order to gain executive commitment and
sponsorship at this very early part of the improvement effort.

(2) Diagnosing (the current state of practice). The Diagnosing phase builds on the initiating
phase to develop a common understanding of the strengths and weaknesses of the current
processes of the organization, and to help identify priorities for improving the software
processes. This diagnosis is based on the CMM model and the SCAMPI method.

(3) Establishing (the plans for the improvement program). The Establishing phase finalizes
the strategy and supporting plans for the software process improvement program. It sets
the direction and guidance for short-term and long-term improvement, including strategic
and tactical plans for SPI.

—28 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Learning

Analyze
and
Validate

Propose
Future
Action

Implement
Solution

Refine
Solution

Stimulus Set Build
Chart
for Change Context Sponsorship |nf;SterLcture

Acting

Pilot/Test
Solution

Inltlatlng Characterize
Current &
Desired States
Create
Devel Solution
H H evelop
Diagnosing Recomman.

dations

Plan
Actions

Set
Priorities

Develop
Approach

Establishing

Figure 2.9: The IDEAL v1.1 model (Gremba and Myers, 1997).

(4) Acting (on the plans and recommended improvements). The Acting phase takes action to
effect changes in organizational systems that result in improvements in these systems.
These improvements are made in an orderly manner and in ways that will cause them to
be sustained over time. Techniques used to support and institutionalize change include
defining software processes and measurements, pilot testing, and installing new processes
and measurements throughout the organization.

(5) Learning (from the lessons and the business results of the improvement effort). The
Learning phase completes the process improvement cycle. Lessons learned from the pilot
projects and improvement efforts are documented and analyzed in order to improve the
process improvement program for the future. The business needs that were determined at
the beginning of the cycle are revisited to see if they have been met. Sponsorship for the
program is revisited and renewed for the next cycle of software process improvement.

2.3.2.2 The Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) developed by Basili e al. (Basili, 1989; Basili and
Rombach, 1991; Basili and Caldiera, 1995; Basili ef al., 1994a), is the result of the application
of the Shewhart cycle to the problem of software quality improvement.

—29 —

CHAPTER 2

QIP consists of the following six steps:

(M

2

3

“)

®)

(6)

Characterize. Understand the environment based upon available models, data, intuition,
etc. Establish baselines with the existing business processes in the organization and
characterize their criticality.

Set goals. On the basis of the initial characterization and of the capabilities that have a
strategic relevance to the organization, set quantifiable goals for successful project and
organization performance and improvement. The reasonable expectations are defined
based upon the baseline provided by the characterization.

Choose process. On the basis of the characterization of the environment and of the goals
that have been set, choose the appropriate processes for improvement, and supporting
methods and tools, making sure that they are consistent with the goals that have been set.

Execute. Perform the processes constructing the products and providing project feedback
based upon the data on goal achievement that are being collected.

Analyze. At the end of each specific project, analyze the data and the information
gathered to evaluate the current practices, determine problems, record findings, and make
recommendations for future project improvements.

Package. Consolidate the experience gained in the form of new, or updated and refined,
models and other forms of structured knowledge gained from this and prior projects, and
store it in an experience base so it is available for future projects.

Corporate Learning

Package and .
store experience Characterize
and understand

Analyze
results Set goals

I Execute

Provide process
with feedback

Choose processes,
methods, tools,
and techniques

Project
Learning

Analyze
results

Figure 2.10: The Quality Improvement Paradigm (Basili and Caldiera, 1995, p. 58).

—-30-—

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

QIP implements two feedback cycles (see Figure 2.10), which were also used in SPIQ (Dyba,
2000e):

¢ The project feedback (or control) cycle is the feedback that is provided to the project
during the execution phase. It provides analytic information about project performance at
intermediate stages of development by comparing project data with the nominal range for
similar projects.

e The corporate feedback (or capitalization) cycle is the feedback that is provided to the
organization. Its purpose is to understand what happened, by capturing experience across
application domains and to accumulate reusable experience in the form of experience
packages.

The GQM approach, as discussed in the previous section, is the mechanism used by QIP for
defining and evaluating a set of operational goals using measurement. In addition to the GQM
approach, QIP uses the Experience Factory organization for building software competencies
and supplying them to projects.

2.3.3 Improvement success factors

The current state-of-the-art in quality management has more than anything else been shaped
by quality gurus such as William Edwards Deming (1982, 1986), Joseph M. Juran (1992;
Juran and Godfrey, 1999), Philip Crosby (1979, 1984, 1996), and their quality frameworks.
Table 2.4 summarizes Deming’s 14 principles, the Juran trilogy, and Crosby’s 14 quality
steps. These and other authors (e.g. Ahire ef al., 1996; Black and Porter, 1996; Feigenbaum,
1991; Garvin 1983, 1984; Ishikawa, 1986, 1990; Powell, 1995; Saraph et al., 1989; Taguchi,
1986; Taguchi ef al., 1989; Yusof and Aspinwall, 1999) repeatedly discuss the importance of
critical factors such as leadership involvement, employee participation, measurement, and
process management to improve the quality performance in organizations. For a more detailed
review of these, and other empirical studies of the factors for success in quality management,
organizational learning, and SPI, see (Dyba, 2000a).

Within SPI, Humphrey (1989) identified six basic principles of software process change.
Zahran (1998) proposed ten critical factors for successful implementation of software process
improvement. Basili and Caldiera (1995) focused on reuse of experience and learning by
using QIP for developing core competencies, and by supporting the QIP process with goal-
oriented measurement using GQM and with an organizational infrastructure based on EF.
Table 2.5 summarizes these concepts.

Goldenson and Herbsleb (1995) conducted a survey of 138 individuals from 56 organiza-
tions in the United States and Canada to evaluate organizational factors that were believed to
promote or hinder successful SPI after a CMM-based assessment. The factors that were found
to be statistically significant in their study are summarized in 7able 2.6.

El Emam et al. (2001) made a reanalysis of Goldenson and Herbsleb’s (1995) study,
using multivariate analysis instead of the simple statistical analytic methods used in the initial
report. Based on this reanalysis, they identified focused SPI effort, commitment to SPI,
politics, respect, and turnover as the key factors.

—-31 -

CHAPTER 2

Table 2.4: Perspectives on quality management.

Deming’s 14 principles’

The Juran Trilogy?

Crosby’s 14 quality steps®

1.
2.
3.

® N o o

9.

Constancy of purpose
Adopt the new philosophy

Cease dependence on
inspection

Don’t award business on
price

Constant improvement
Institute training on the job
Institute leadership

Drive out fear

Break down barriers

10.Eliminate slogans

11.Eliminate work standards

12.Pride of workmanship

13.Education and retraining

14.Take action

Quality Planning
Establish quality goals

Identify customers and their
needs

Develop products and
processes

Quality Control

Evaluate performance
Compare to goals and act
Quality Improvement
Establish infrastructure

Identify improvement projects
and teams

Provide resources and
training

Establish controls

9.

© N o g b~ w0 b=

Management commitment
Quality improvement teams
Quality measurement

Cost of quality evaluation
Quality awareness
Corrective action
Zero-defects committee
Supervisor training

Zero-defects day

10.Goal-setting

11.Error cause removal

12.Recognition

13.Quality councils

14.Do it over again

Sources: 1Deming (1986), 2Juran (1992), 3Clrosby (1979).

Table 2.5: Facilitating factors identified in software process improvement.

Humphrey’s six principles1

Zahran’s 10 CSFs®

Basili’s paradigm®

Major changes to the soft-
ware process must start at
the top

Ultimately, everyone must
be involved

Effective change is built on
knowledge

Change is continuous

Software process changes
won'’t stick by themselves

Software process improve-
ment requires investment

1.

Alignment with the business
strategy and goals

Consensus and buy-in from
all stakeholders

3. Management support

4. Dedicated resources

o

2 © ©®» N o

Sensitivity to the organiza-
tional context

Management of change
Prioritization of actions
Support infrastructure

Monitoring the results of SPI

0.Learning from the feedback

results

Acquisition of core compe-
tencies through (1) a control
cycleand (2) a
capitalization cycle

Goal-oriented measurement

Experience reuse and or-
ganizational sharing

Sources: lHumphrey (1989), *Zahran (1998), *Basili and Caldiera (1995).

—-32 -

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Table 2.6: Facilitating factors and barriers to SPI (Goldenson and Herbsleb, 1995).

Organizational Factors Barriers

e Senior management monitoring of SPI e Discouragement about SPI prospects

e Compensated SPI responsibilities

SPI gets in the way of “real” work

e SPI goals well understood e “Turf guarding” inhibits SPI

e Technical staff involved in SPI e Existence of organizational politics

e SPI people well respected e Assessment recommendations too ambitious

o Staff time/resources dedicated to process o Need guidance about how to improve
improvement

e Need more mentoring and assistance

Within the SPICE Trials, a similar study to that of Goldenson and Herbsleb (1995) was
conducted by El Emam ef al. (1999) with 18 organizations in Europe, Canada, and Australia
that had performed assessments using the ISO/IEC 15504 standard for software process
assessment. In their study, three types of independent variables were tested: “organizational
factors,” “process factors,” and “barriers”.

Results of the bivariate relationship analysis showed that none of the identified barriers
were related to success in addressing the findings from an assessment. Of the organizational
factors, only “SPI goals being well understood” and “Technical Staff involvement in SPI”
were found to be critical for addressing the findings from an assessment. Finally, only one
process factor, “Creating process action teams”, was found to be statistically significant in
addressing the assessment findings.

Stelzer et al. (1996) identified the following key success factors in their study of software
process improvement via ISO 9000: (1) definition and documentation of the status quo, (2)
identification of best practices, (3) identification of business processes, (4) simplification of
routine procedures, (5) internal audits, (6) impetus and incentive, (7) team spirit, (8)
workshop and regular meetings, (9) definition of a common language, and (10) customer
perception surveys.

Furthermore, Stelzer and Mellis (1998) analyzed published experience reports and case
studies of 56 software organizations that had implemented an ISO 9000 quality system or that
had conducted a CMM-based SPI initiative. The result of this meta-analysis was a set of ten
factors that affect organizational change in SPI. In rank order, these factors were: (1)
management commitment and support, (2) staff involvement, (3) providing enhanced un-
derstanding, (4) tailoring improvement initiatives, (5) managing the improvement project, (6)
change agents and opinion leaders, (7) stabilizing changed processes, (8) encouraging
communication and collaboration, (9) setting relevant and realistic objectives, and (10)
unfreezing the organization.

Moreover, in a survey of 87 projects from different organizations, Deephouse et al.
(1996) assessed the effectiveness of software processes on project performance. The results
from this study showed that certain practices, such as project planning and cross-functional
teams, were consistently associated with favorable outcomes, while other practices such as
process training, stable environment, user contact, design reviews, and prototyping had little
impact on project outcomes.

—33 —

CHAPTER 2

Finally, ISO/IEC WD 15504-4: 2001 highlight cultural issues as fundamental to succeed
with software process improvement and organizational change. The standard argues that SPI
should be strongly supported by leadership, communication, and motivation throughout the
whole organization and that the major problems found in software processes often arise from
cultural issues. Consequently, cultural issues should be one of the factors considered in
prioritizing improvement actions.

2.4 Software Process Innovation

Process improvement strategies, as implemented by the SPI approaches described in the
previous section, represent relatively small, evolutionary, or incremental changes, in the
organization’s products, procedures, or services. They are new to the organization but reflect
an adaptation or simple adjustment of existing practices, and their implementation rarely
requires changes in organizational structures or processes. In contrast, process innovation
strategies represent larger changes in organizational products, procedures, or services. They
reflect broader shifts in perspective and reorientation of existing practices and often require
major or radical changes in organizational structures or processes to implement.

The distinction between incremental and radical change is also consistent with a
characterization of learning strategies ranging from adaptive to innovative. Organizations with
adaptive styles work within existing structures to make incremental changes and “do things
better”. In contrast, organizations with innovative styles treat current structures as part of the
problem and make more radical changes by “doing things differently”.

A review of innovation research can be found in (Gopalakrishnan and Damanpour, 1997).
An integrated set of studies of the innovation process in organizations, which resulted from
the Minnesota Innovation Research Program, is provided by (Poole ef al., 2000; van de Ven et
al., 1999; van de Ven et al., 2000). More management oriented overviews and guidelines on
the innovation process can be found in (Leifer et al., 2001; Leonard-Barton, 1995; Nonaka
and Takeuchi, 1995). Furthermore, technological innovation as an evolutionary process is
provided by (Ziman, 2000).

General guidance on the diffusion of innovations can be found in Rogers’ (1995) classic
text on the subject. Software engineering books and articles that discuss the diffusion of
innovations include (Ardis and Marcolin, 2001; Pfleeger, 1999b; Pfleeger and Menezes, 2000;
Raghavan and Chand, 1989). Also, Kautz and Larsen (2000) described a European-wide
project for the dissemination of quality management and SPI innovations.

Furthermore, various theoretical perspectives have described the nature of the
relationship between adaptation and innovation from an organizational learning perspective
(e.g. Argyris and Schon, 1996; Fiol and Lyles, 1985; Lant and Mezias, 1992; March, 1999;
Senge, 1990; Tushman and Romanelli, 1985).

2.4.1 Innovation principles

The common thread that runs through the literature on innovation is “newness”; on the most
basic level, innovation means “something new” (Gopalakrishnan and Damanpour, 1997).
Building on the organizational learning literature (e.g. Argyris and Schon, 1996), process

—34 -

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

innovation can be defined as higher-level learning that results in new work practices as well
as a restructuring of norms, strategies, and assumptions governing these practices.

Such process innovations can also be seen in business process reengineering (BPR) and
redesign projects (Davenport, 1993; Hammer, 1990). Hammer and Champy (1993), for exam-
ple, described the principle behind “reengineering” as “the fundamental rethinking and radical
redesign of business processes to achieve dramatic improvements in critical, contemporary
measures of performance, such as cost, quality, service, and speed.” (ibid., p. 32).

Davenport (1993), preferring the term “process innovation”, stated that “Reengineering is
only part of what is necessary in the radical change of processes; it refers explicitly to the
design of the new process. The term process innovation encompasses the envisioning of new
work strategies, the actual process design activity, and the implementation of the change in all
its complex technological, human, and organizational dimensions.” (ibid., p. 2).

Based on our review of the innovation, reengineering, and organizational learning
literature, the following principles can be seen as fundamental to process innovation:

(1) Process. The distinctive element is business process or work practice. Referring to the

software engineering domain, processes can be categorized as “primary”, “supporting”,
or “organizational” (ISO/IEC 12207: 1995).

(2) Transformation. The typical promise of process innovation is that a quantum leap in
organizational performance is available and that the organization will have to identify or
create suitable innovations to achieve this goal (e.g. Earl, 1996; O’Neill and Sohal, 1999).

(3) Enabling conditions. The classic texts on BPR have focused on information technology
(IT) as the most important enabler for radical change. However, autonomy, diversity,
flexibility, and the ability to question established “truths” have also been noted as
primary drivers in creating the dynamics of innovation (e.g. Argyris and Schoén, 1996;
Nonaka and Takeuchi, 1995)

(4) Change management. A key challenge in process innovation is change management,
which includes the people, technology, norms, assumptions, and strategy, along with
planning, structuring, and evaluation of process innovations (e.g. Grover, 1999).

Furthermore, van de Ven (1986) focused on the social dynamics of innovation, noting that:

Innovation is not the enterprise of a single entrepreneur. Instead, it is a network-building
effort that centers on the creation, adoption, and sustained implementation of a set of ideas
among people who, through transactions, become sufficiently committed to these ideas to
transform them into ‘good currency’ (ibid., p. 601).

2.4.2 Innovation models

Innovation models typically rely on a series of stages from broader, general ideas that become
more formalized and specialized to form a specific innovation. Marquis (1988), for example,
modeled the successful process of innovation as a series of six steps ranging from recognition
to utilization and diffusion. Similarly, Rogers (1995) defined the innovation-development
process as the decisions and activities that occur from recognition of a need or a problem,
through research, development, and commercialization, through diffusion and adoption of the
innovation by users, to its consequences.

—-35—

CHAPTER 2

Another body of literature expresses the innovation process less as a set of sequential
stages, but more as an iterative “nonlinear” approach. Lynn et al. (1996), for example,
described a “probe-and-learn” process for opportunity analysis of innovations. Others have
stated that innovations are born of chaotic, nonlinear processes with no set stages (e.g.,
Jelinek and Schoonhoven, 1990; Kline, 1985; Quinn, 1985).

Furthermore, van de Ven ef al. (1999) presented the results of the Minnesota Innovation
Research Program, a major longitudinal study that examined the process of innovation from
concept to implementation of new technologies, products, and processes. According to their
findings, the innovation journey is neither sequential and orderly, nor is it a matter of random
trial and error. Rather it is best characterized as a nonlinear dynamic system. This system
consists of a cycle of divergent and convergent activities, which was found to be the
underlying dynamic that explained the development of corporate cultures for innovation.

Similarly, based on a case study on the introduction of innovative organizational
processes, Presley et al. (2000) recommended an approach for product and process innovation
based on the Soft-Systems Methodology (Checkland, 1981, 1999).

In the following subsections, we present Davenport’s (1993) general approach to process
innovation and Pfleeger’s (1999b) approach to the diffusion of innovations in software
engineering.

2.4.2.1 Davenport’s approach to process innovation

Davenport’s (1993) approach to process innovation combines the adoption of a process view
of the business with the application of innovation to key processes in order to create radical
change. The process innovation approach consists of five major steps (see Figure 2.11):

(1) Identifying processes for innovation. Process innovation begins with identifying the
processes that are candidates for innovation, assessing their strategic relevance, and
establishing the boundaries of the processes that are to be addressed.

(2) Identifying change levers. Change lever analysis relies on both knowledge and creative
thinking about how IT and innovative organizational/human resource approaches might
be applied to the process under analysis. This requires knowledge about the latest state
and likely future capabilities of key technologies or human enablers of change, and
knowledge about the ways these change enablers have been or could be applied to the
target process.

(3) Developing process visions. Developing a worthwhile process vision relies on a clear
understanding of organizational strengths and weaknesses, coupled with an understanding
of market structure and opportunity. Also, it requires knowledge about innovative
activities undertaken by competitors and other organizations.

(4) Understanding existing processes. Understanding existing processes are important
before designing a new one. It facilitates communication among participants in the
innovation initiative, it helps ensure that existing problems are not repeated in the new
process, and it provides a measure of the value of the proposed innovation.

—36 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

Identifying Processes for Innovation

Identifying Change Levers

Developing Process Visions

Understanding Existing Processes

Designing and Prototyping the New Process '

Figure 2.11: Davenport’s approach to process innovation (Davenport, 1993, p. 25).

(5) Designing and prototyping the new process. The design process begins by building on
the high-level process concept developed during the visioning stage, shifting toward a
detailed process design. Prototyping enables design possibilities to be presented,
approved, and/or modified by users before the organization has invested much effort in
detailed design and implementation.

2.4.2.2 Pfleeger’s approach to technology transfer in software engineering

Most innovation models, like Davenport’s (1993) approach outlined above, is only the first
step toward full-scale implementation of new processes. The diffusion and implementation of
innovation, which is also called “technology transfer”, is best seen in the work of Rogers
(1995) who viewed innovations in the broader context of organizational change, focusing on
how they can be successfully adopted.

Based on Rogers’ work on the diffusion of innovations, Pfleeger (1999b) defined a model
of technology transfer in software engineering. In this model, “technology” means any
method, technique, tool, procedure, or paradigm used in software development or main-
tenance.

The technology transfer process consists of five steps (see Figure 2.12):

(1) Technology creation. Technology creation begins with a business need and asks whether
a technology exists that might address it. Such technology might exist and be in use
somewhere else, it might exist but is untried on this problem, or it might not exist and
must thus be created.

(2) Technology evaluation: preliminary. Once a candidate technology is found, the next
step is a preliminary investigation to determine whether there is evidence that the
technology will work in practice.

—37 —

CHAPTER 2

> Techn:?logy Is there a technology that might solve this problem?
creation
Business Technol
: echnology . I . .
g:gglcehmmcal evaluation: Is there evidence that it will work in practice?
preliminary

Technology Is the body of evidence convincing/sufficient

evaluation: for any situation?
advanced

Technology Is the technology ready for

packaging and commercial use?
support

Technology Is the technology being 3
diffusion used by those who need it?

Technology as
standard practice

Figure 2.12: Pfleeger’s technology transfer process (Pfleeger, 1999b, p.116).

(3) Technology evaluation: advanced. Once the evidence indicates that the technology has
worked in practice, the next step is a more thorough evaluation of the body of evidence.
Issues of interest to this step include the situations in which the technology worked and
the methodological nature of the studies.

(4) Technology packaging and support. If the technology continues to look promising, the
next step is to look at tools and other packaging and support to aid the technology’s use.

(5) Technology diffuison. Once there is convincing evidence of the effectiveness of the new
technology, plus appropriate packaging and support, the technology can be transferred to
a wider audience.

2.4.3 Innovation success factors

Rogers (1995) has shown that the rate of adoption of an innovation is determined by the
characteristics of an innovation as perceived by the potential adopter, and not whether it has
produced any advantages for competitors. His research has shown that the diffusion of inno-
vations depends on the following five factors:

(1) Relative advantage — the degree to which an innovation is perceived as being better than
the idea it supersedes.

(2) Compatibility — the degree to which an innovation is perceived as consistent with the
existing values, past experience, and needs of potential adopters.

—38 —

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

(3) Complexity — the degree to which an innovation is perceived as relatively difficult to
understand and use.

(4) Trialability — the degree to which an innovation may be experimented with on a limited
basis.

(5) Observability — the degree to which the results of an innovation are visible to others.

Furthermore, diffusion of innovation models emphasize the importance of homophily, which
Rogers (1995) defined as the degree to which the innovator and the potential adopter are
similar in certain attributes such as objectives, beliefs, norms, experience, and culture.
Heterophily is the opposite of homophily, and, according to Rogers (1995), “one of the most
distinctive problems in the diffusion of innovations is that the participants are usually quite
heterophilous.” (ibid., p. 19, italics in original). Hence, vital differences between innovators
and potential adopters act as key barriers to imitation (Powell, 1995).

Finally, there is an increasing recognition that successful innovation and technology
transfer requires an orientation toward organizational learning and knowledge creation (e.g.
Levin, 1997; Nonaka and Takeuchi, 1995). This is also, as we shall see, the position taken in
this thesis regarding process improvement and process innovation in software organizations.

2.4.4 Process improvement versus process innovation

There are important similarities as well as differences between process improvement and
process innovation. These similarities and differences can be illustrated by comparing TQM
with BPR. During the 1990s we have witnessed an intense debate between the two schools of
organizational change. Table 2.7 shows the main differences between TQM (process improve-
ment) and BPR (process innovation), as pointed out by Davenport (1993).

Table 2.7: Process improvement versus process innovation (Davenport, 1993, p. 11).

Process Improvement Process Innovation
Level of Change Incremental Radical
Starting Point Existing process Clean slate
Frequency of Change One-time/continuous One-time
Time Required Short Long
Participation Bottom-up Top-down
Typical scope Narrow, within functions Broad, cross-functional
Risk Moderate High
Primary Enabler Statistical control Information technology
Type of Change Cultural Cultural/structural

-39 —

CHAPTER 2

(]
(2]
c
©
£
3
b=
[}
o
ﬁ Q — Quality Program
8 R — Reengineering
a Q
>
Time

Figure 2.13: Process improvement and process innovation (Hammer, 1996, p. 83).

Although, process improvement and process innovation strategies are clearly different, they,
nevertheless, share important similarities — a fact that the founders of BPR have always
stressed (Davenport, 1993; Hammer and Champy, 1993; Hammer, 1996). Also, process
innovation was encouraged by the early quality experts (e.g. Juran, 1964). Both approaches
focus on processes, both start with the customer’s needs and work backwards from there, and
both recognize the importance of teamwork and cultural change. In a similar vein, Brown and
Duguid (1991) emphasized a unified view of working, learning, and innovation.

Figure 2.13 illustrates how process improvement and process innovation fit together over
time in the life-cycle of a process. First, the process is enhanced until its useful lifetime is
over, at which point it is reengineered. Then, enhancement is resumed and the entire cycle
starts again (Hammer, 1996). It is important to note, here, that improvement and innovation
are complementary approaches to SPI, and that both forms are necessary for software
organizations (Dyba, 2000b). This situation, which requires the management of both stability
and change, has also been described with a punctuated equilibrium model (Tushman and
Romanelli, 1985; Lant and Mezias, 1992).

From this perspective, we propose a high-level approach for SPI that encompasses
process definition, process assessment, process improvement, and process innovation (see
Figure 2.14). The major features of this approach are an appropriate understanding, definition,
and selection of processes, either for improvement or innovation, according to the organiza-
tion’s vision and goals, with feedback based on the measurement or assessment of results.

2.5 Chapter Summary

We started this chapter by describing the concepts of software process. Based on these
concepts, we then described three intervention strategies or approaches to change the software
process in order to bring about improvements in organizational performance. First, process
assessment was described as an intervention strategy that involves an appraisal or review of
an organization’s software processes without changing them. Second, we described process
improvement as an intervention strategy that involves continuous or incremental change to the
organization and its processes. Finally, we described process innovation as an intervention
strategy that involves radical change to the organization with replacement of its processes.

—40 -

APPROACHES TO SOFTWARE PROCESS IMPROVEMENT

A p| Define strategies
and assumptions

v
i »| Analyze/define

current processes

\ 4

Select
process

Need radical
change?

A 4 \ 4
Process Process
improvement innovation
A 4
Measure/assess
performance

< v
|

Figure 2.14: A high-level proposal for successful SPI that integrates process definition,
process assessment, process improvement, and process innovation.

In the next chapter, we take a closer look at empirical software engineering research and the
major research approaches that are applicable for investigations in SPI. Four classes of such
approaches are reviewed: experimental research, survey research, case study research, and
action research. In addition, the chapter presents a comparison of the key features, strengths,
and weaknesses of each of these research approaches.

—41 -

CHAPTER 3

Approaches to Empirical
Software Engineering Research

“I believe that the present fashion of applying the methods of physics
to human life is not only a mistake but heinous.”

— Albert Einstein

In the previous chapter, we described the concepts of software process and three intervention
strategies or approaches to SPI. First, process assessment was described as an intervention
strategy that involves an appraisal or review of an organization’s software processes without
changing them. Second, we described process improvement as an intervention strategy that
involves continuous or incremental change to the organization and its processes. Third, we
described process innovation as an intervention strategy that involves radical change to the
organization with replacement of its processes. Finally, we made a high-level proposal for
successful SPI that integrates process definition, process assessment, process improvement,
and process innovation.

From our point of view, there is a close relationship between approaches to SPI,
specifically those that are based on the scientific method, and approaches to empirical
software engineering (henceforth ESE) research. Both are concerned with the investigation of
software practice and both are concerned with improving it. The main difference is that the
SPI approaches primarily are used by practitioners, while the ESE research approaches
primarily are used by researchers.

In this chapter, therefore, we take a closer look at ESE research and the major approaches
that are relevant for investigations in SPI. Four classes of such research approaches will be
reviewed: experimental research, survey research, case study research, and action research. In
addition, the chapter presents a comparison of the features, strengths, and weaknesses of each
of these approaches.

—43 -

CHAPTER 3

3.1 Empirical Software Engineering Research

ESE research can be defined as analysis based on the investigation of actual practice for the
purpose of discovering the unknown or testing a hypothesis. It involves an investigator
gathering data and performing analysis to determine the meaning of the data. Rather than
empirical research, however, computer scientists generally tend to adhere to a more “ad-hoc”
evaluation of their research, advocating and publishing ideas with little or no scientific
assessment (Basili, 1996; Fenton et al., 1994; Fuggetta, 1999; Glass, 1994; Potts, 1993; Tichy,
1998).

Tichy et al. (1995), for example, made a survey of 400 computer science research papers
published by the ACM to investigate their rigor. Considering those papers whose claims
required empirical evaluation, they found that 40 percent of these papers had no empirical
support at all. In software-related journals, the fraction was 50 percent. For comparison, in the
other disciplines that were considered, the figure was merely 15 percent.

The study by Zelkowitz and Wallace (1998) found similar results. In their study of 562
software engineering research papers published by the IEEE, they found that the most
prevalent validation models were lessons learned and case studies, each at a level of about 10
percent. About a third of the papers, however, had no empirical validation. Furthermore,
Zelkowitz and Wallace (1998) observed that the authors often failed to state their goals clearly
or to point out the value of their methods and tools to the empirical validation, that they often
failed to state how they validated their hypotheses, and that they often used terms very
loosely.

ESE research seeks to address this deficiency by encouraging a more scientific and, in
our view, reflective approach to software engineering, which allows us to investigate and
understand new technologies and their applications to practice.

A growing interest in ESE research is also reflected by the number of initiatives devoted
specifically to the role of empirical studies as a means for improving software engineering
research and practice, e.g.:

o An international research network, called “International Software Engineering Research
Network (ISERN)”, which was established in 1993 (see www.iese.fhg.de/ISERN).

o An international journal, entitled “Empirical Software Engineering: An International
Journal”, which was launched by Kluwer Academic Publishers in 1996 with Victor R.
Basili and Warren Harrison as the editors-in-chief (see kapis.www.wkap.nl/kapis/CGI-
BIN/WORLD/journalhome.htm?1382-3256).

o An international conference, called “Empirical Assessment in Software Engineering
(EASE)”, which was created at Keele University, U.K. and held for the first time in 1997
(see www.keele.ac.uk/depts/cs/ease).

o A center for empirically based software engineering, called CeBASE, which was
organized in 2000 (see www.cebase.org).

3.1.1 Dimensions of empirical software engineering research

ESE research comes in several shapes and sizes. Before a study begins, the researcher must
make several decisions, such as deciding the purpose of the study, the main approach to be

—44 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

taken, whether it should be based on qualitative or quantitative methods, and how the time
dimension should be treated. By understanding these dimensions of ESE research, the
software researcher will be better prepared to make decisions about the conduct of his or her
investigation.

3.1.1.1 The purpose of the study

The main purpose of a study can be organized into three groups based on what the researcher
is trying to accomplish. That is, either to explore a new topic, to describe a phenomenon, or to
explain why something occurs (see Table 3.1).

Table 3.1: Purpose of research (Neuman, 2000, p. 22).

Exploratory Descriptive Explanatory
o Become familiar with the ¢ Provide a detailed, highly e Test a theory’s predictions
basic facts, setting, and accurate picture or principle
concerns ¢ Locate new data that ¢ Elaborate and enrich a
o Create a general mental contradict past data theory’s explanation
: f o .
picture of conditions o Create a set of categories e Extend a theory to new
e Formulate and focus ques- or classify types issues or topics
tions for future research .
¢ Clarify a sequence of steps e Support or refute an
e Generate new ideas, con- or stages explanation or prediction
j h h N . .
ectures, or hypotheses e Document a causal process ¢ Link issues or topics with
o Determine the feasibility or mechanism a general principle
f conducti h . .
of conducting researc ¢ Report on the background ¢ Determine which of several
o Develop techniques for or context of a situation explanations is best

measuring and locating
future data

3.1.1.2 The theory-building-and-testing dimension

The building and testing of theories in ESE research can be approached from two directions
(see Figure 3.1). The inductive approach begins with detailed observations of the world,
moving toward abstract generalizations and theories, and eventually to the formulation of
hypotheses. An example of such an inductive approach to theory building is grounded theory
(Strauss and Corbin, 1998).

The other, deductive, approach begins with an abstract, logical relationship among
concepts, formulated as a hypothesis, and then moves toward concrete empirical evidence by
testing the hypothesis. The evidence can either lead to a confirmation or falsification of the
hypothesis and, subsequently, to refinements to the theory. This hypothetico-deductive
approach is at the heart of all experimental research (e.g. Wohlin et al., 2000). In practice,
however, most ESE research projects use both approaches during the study.

— 45—

CHAPTER 3

_ - > HYPOTHESIS -—-=_
Induction _~ ~ o Deduction
7
4 N N
/ \

/ \

1 \
1 v

. Confirmation
Observations or falsification

Figure 3.1: Inductive and deductive approaches to research.

3.1.1.3 The qualitative-quantitative dimension

Closely linked to the theory-building-and-testing dimension of ESE research, a distinction can
also be made between qualitative and quantitative research. For the most part, qualitative
research consists of studies that cannot be meaningfully quantified. These studies are
typically in-depth analyses of one or a few observations, involving unstructured questioning
or observation of the respondents. Overviews of the many facets of qualitative research can be
found in (Denzin and Lincoln, 2000).

Quantitative research, on the other hand, typically uses larger samples and involves
structured questioning or observations, which is subsequently numerically and statistically
analyzed. A noted “bible” of quantitative research is (Cook and Campbell, 1979), while
approaches that are more applicable for the general business situation can be found in (Cooper
and Schindler, 1998; Davis, 1996).

Although there is often a heated debate between those who do qualitative research and
those who do quantitative research (Reichardt and Rallis, 1994), it is our contention that ESE
researchers should seek interplay between qualitative and quantitative methods. These issues
are discussed in more detail in Section 6.1 as part of the justification for and the assumptions
behind the research approach used in this study.

3.1.1.4 The time dimension

Another dimension of ESE research is the treatment of time, which basically takes two forms
(Davis, 1996):

¢ Cross-sectional research. In cross-sectional research designs, the measurements on the
variables of interest are taken at one point in time. In essence, such designs provide the
researcher with a snapshot of variables at one instant in time. Cross-sectional designs
limit causal inferences because the study is conducted at one point in time and temporal
priority is difficult to obtain.

¢ Longitudinal research. In longitudinal research designs, measures of the same sample or
population are taken repeatedly (at least twice) through time. Typical longitudinal
research types include time-series analysis, panel studies, and cohort studies. Panel
studies involve the collection of data from the same respondents over a period of time.
Cohort studies involve the collection of data about the same specific population over
time, but a new sample is drawn from the population at every data collection point.

— 46—

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

3.1.2 Fundamentals of research design

The primary purpose of a research design is to guide the researchers in their quest to answer
the research question and solve the problems under study. This is accomplished through the
careful construction of a research design so that the results obtained are as free of errors as
possible. This is a complex undertaking, because of the numerous sources of potential errors
that may affect the results of any investigation (see Section 3.1.3).

3.1.2.1 Types of variables

The variables in ESE research can be classified into one of four categories depending on their
presumed relation to the phenomenon under study (Davis, 1996):

¢ Independent variable. The independent variable in a study is the presumed cause of the
presumed effect. The independent variable is “independent of” prior causes that act on it.
It produces a change in the dependent variable and is the one (or more, in the case of
multivariate models) that the researcher believes precedes and affects the dependent
variable.

o Dependent variable. The dependent variable in a study is the variable that is the effect or
outcome of the independent variable. The dependent variable “depends on” the cause. In
other words, the changes in the dependent variable are what the researcher try to predict,
understand, or explain by using the independent variable.

¢ Moderating variable. A moderating variable is one that has a strong effect on an
independent-dependent relationship. An example here is, as we discussed in the previous
chapter, the influence of context on the process-outcome relationship in SPI (see Figure
2.2).

¢ Intervening variable. An intervening variable is one that emerges as a function of the
independent variable operating in a situation and helps to explain the influence of the
independent variable on the dependent variable.

3.1.2.2 Types of designs

There are several ways to classify ESE research designs. Broadly speaking, they can be
divided into ex post facto and experimental designs (Campbell and Stanley, 1963). The
distinction between these types is largely concerned with the researchers’ control over the
independent variables chosen in the study.

o Ex post facto designs. In ex post facto designs, the researcher does not attempt to
manipulate the independent variable, because it is not manipulable for some reason or
another.

o Experimental designs. In experimental designs, the researcher manipulates or in some
way controls the independent variable and then measures the effect on the dependent
variable of interest.

As we shall see in Section 3.2. 1, experimental designs can be further divided into several sub-
groups.

— 47—

CHAPTER 3

3.1.3 General threats to validity

Validity has to do with limiting research error in order to produce accurate and useable results.
A fundamental question concerning empirical research, therefore, is how valid the results are.
There are different classification schemes for different types of threats to validity in empirical
research. Campbell and Stanley (1963), for example, defined two types: threats to internal
validity and threats to external validity. Cook and Campbell (1979) extended the list to four
threats to validity: statistical conclusion validity, internal validity, construct validity, and
external validity.

The specific threats to validity for the different research approaches are discussed later in
this chapter, in the sections describing each particular approach. Here, however, we give an
overview of the most basic types based on Campbell and Stanley’s (1963) classification.

3.1.3.1 Threats to internal validity

Internal validity is the sine qua non of a research design, and can be defined as the degree of
confidence that the results are true given the study situation. Without internal validity there
can be no confidence that the relationships identified in the investigation are really justifiable.
A difficulty, however, comes in assessing internal validity, because it is never fully
measurable. There are simply too many sources of invalidity to measure, or even identify, in
the software engineering research environment. The major classes of variables that may affect
a study’s internal validity include (Campbell and Stanley, 1963):

o History, the specific events occurring between the first and second measurement in
addition to the experimental variable.

e Maturation, processes within the respondents operating as a function of the passage of
time per se, including growing older, growing hungrier, growing more tired, and the like.

o Testing, the effects of taking a test upon the scores of a second test.

¢ Instrumentation, in which changes in the calibration of a measuring instrument or
changes in the observers or scorers used may produce changes in the obtained
measurements.

o Statistical regression, operating where groups have been selected on the basis of their
extreme scores.

o Selection, biases resulting in differential selection of respondents for the comparison
groups.

¢ Mortality, or differential loss of respondents from the comparison groups.
o Selection-maturation interaction, etc., which in certain experimental designs might be

mistaken for the effect of the experimental variable.

These are by no means all the threats to internal validity (see e.g. Cook and Campbell, 1979),
but they do represent the major classes of variables that have been known to affect a study’s
results.

—48 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

3.1.3.2 Threats to external validity

External validity can be defined as the degree to which the study’s results can be generalized
across populations, settings, and other similar conditions. However, a study cannot have
external validity without evidence of internal validity. The major classes of variables that may
affect a study’s external validity include (Campbell and Stanley, 1963):

o Testing interaction, in which a pretest might increase or decrease the respondent’s
sensitivity or responsiveness to the experimental variable, making the results obtained for
a pretested population unrepresentative of the effects of the experimental variable.

¢ Selection interaction, in which the effect that the type of respondents has on a study’s
results may limit its generalizability.

¢ Setting interaction, in which the artificial effects that are created by the specific setting
of the study may not be replicated in other situations.

e Multiple-treatment interference, which is likely to occur whenever multiple treatments
are applied to the same respondents, because the effects of prior treatments are not
usually erasable.

3.1.4 Guidelines for increasing validity

In an attempt to increase the validity of empirical software engineering research, Kitchenham
et al. (forthcoming) have offered a set of preliminary guidelines that can be used to improve
the quality of on-going and proposed empirical studies and to encourage critical assessment of
existing studies (see Tuble 10.1).

Furthermore, general guidelines for conducting and presenting empirical software
engineering can be found in (Fenton, 2001) and for applying software engineering research
results in (Pfleeger, 1997). A set of principles for conducting and evaluating interpretive field
studies in information systems (IS) is presented in (Klein and Myers, 1999), while specific
recommendations for increasing the relevance of IS research can be found in (Benbasat and
Zmud, 1999) (see Table 10.2). Finally, guidelines for reporting experimental software
engineering results based on the American Psychological Association’s (APA) Publication
Manual can be found in (Singer, 1999).

The adoption of such guidelines will not only improve the quality of individual studies, it
will also increase the likelihood that we can use meta-analysis to combine the results of
related studies.

3.2 Empirical Research Approaches

Three methods of investigation tend to dominate ESE research: formal (or laboratory)
experiments, case studies, and surveys (Fenton and Pfleeger, 1996; Kitchenham, 1996/1998;
Pfleeger, 1994/1995; Wohlin et al., 2000). In this section, we describe the features and
applicability of each of these approaches. In addition, we describe two additional approaches
that we consider of specific relevance for SPI: field experiments and action research.

—49 —

CHAPTER 3

3.2.1 Experimental research

An experiment is an empirical inquiry that investigates explanatory relations. It is especially
well suited for answering questions about how and why (Yin, 1994). Experiments are
launched when the investigator wants control over the situation, with direct, precise, and
systematic manipulation of behavior (Wohlin et al., 2000).

All experiments involve at least a treatment, an outcome measure, units of assignment,
and some comparison from which change can be inferred and (hopefully) attributed to the
treatment. Randomized (or true) experiments are characterized by the use of initial random
assignment for inferring treatment-cause change. Quasi-experiments, on the other hand, also
have treatments, outcome measures, and experimental units, but they do not use random
assignment to create the comparisons from which treatment-caused change is inferred.
Instead, the comparisons depend on nonequivalent groups that differ from each other in many
ways other than the presence of a treatment whose effects are being tested. The task of
interpreting the results from a quasi-experiment is, thus, basically one of separating the effects
of a treatment from those due to the initial non-comparability between the average units in
each treatment group, since only the effects of the treatment are of research interest (Cook and
Campbell, 1979).

Experimental research is known as the standard method for empirical study in sciences
such as physics, chemistry, and biology, but it is also an important part of disciplines such as
medicine and psychology (see e.g. Anastasia and Urbina, 1997).

The need for experimentation in software engineering was first emphasized by Basili et
al. (1986). Victor R. Basili has since then been one of the most prominent experimentalists in
software engineering (see e.g. Basili, 1993, 1996; Basili and Selby, 1991). Others have also
argued for an experimental approach to software engineering (e.g. Tichy, 1998; Zelkowitz and
Wallace, 1998).

While experiments can help with induction, their most important application is in testing
theories and hypotheses according to the hypothetico-deductive approach. In ESE,
experiments are typically used to confirm the claims of theories or “conventional wisdom”, to
explore relationships among data points describing one variable or across multiple variables,
to evaluate the accuracy of models, or to validate measures (Fenton and Pfleeger, 1996). Since
experiments must be carefully controlled, they are often small in scale: “research-in-the-
small” (Kitchenham et al., 1995).

General guidelines for experimental design and analysis can be found in (Campbell and
Stanley, 1963; Cook and Campbell, 1979). An introduction to statistics for experimenters is
provided by (Box et al., 1978). Specific guidelines for conducting software engineering
experiments can be found in (Basili ef al., 1986; Fenton and Pfleeger, 1996; Pfleeger, 1994/
1995). Furthermore, Wohlin et al. (2000) have written a pragmatic and short introductory
textbook on experimentation in software engineering. Overviews of published software
engineering experiments and their results can be found in (Basili ef al., 1986; Zendler, 2001).

3.2.1.1 Experimental models

In contrast to the analytic paradigm, which Basili (1993) illustrated by the mathematical
method of model manipulation, he discussed three experimental models, or versions of the
experimental paradigm in software engineering:

— 50—

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

o The scientific method, which is an approach to model building; an inductive paradigm
that might best be used when trying to understand the software process, product, people,
or environment. It attempts to extract from the world some form of model which tries to
explain the underlying phenomena, and, by measurement and analysis, evaluate whether
the model is representative for the phenomenon being observed.

¢ The engineering method, which is also referred to as the evolutionary paradigm, is an
improvement-oriented approach that assumes that we already have models of the
software process, product, people, and environment. Based on observations of these
models, better solutions are suggested, developed, and tested in an iterative manner until
no more improvements seem possible. This is similar to the improvement approach
described in the previous chapter.

e The empirical method, which is also referred to as the revolutionary paradigm, is an
improvement-oriented approach that begins by proposing a new model, not necessarily
based upon an existing model, and attempts to study the effects of the process or product
suggested by the model. Similar to the innovation approach described in the previous
chapter, observations or current solutions are not the basis for the model proposal.
Wohlin et al.’s (2000) model of the experimental process, which builds on Basili ef al.’s
(1986) framework for experimentation in software engineering, is an example of the
empirical method.

Common to these models is that they are guided by some rational for collecting data on either
the software process or the resulting product. That is, they require an experimental design,
observation, data collection, and validation on the process or product being studied.

3.2.1.2 Experimental designs

There are three general principles that guide experimental designs (Fenton and Pfleeger, 1996;
Wohlin et al., 2000):

¢ Randomization. Randomization is the random assignment of subjects to groups or of
treatments to experimental units, so that independence (and thus validity) of results can
be assumed. This is one of the most important experimental design principles, since all
statistical methods used for analyzing the data require that the observations are from
independent random variables. By randomly assigning treatments to experimental units,
treatment results will be less likely to be biased by sources of variation outside the
control of the experiment.

¢ Blocking. Blocking is the allocation of experimental units to blocks or groups so the
units within a block are relatively homogeneous. The blocks are designed so that the
predictable variation among units has been confounded with the effects of the blocks.
That is, the experimental design captures the anticipated variation in the blocks by
grouping like varieties, so that the variation does not contribute to the experimental error.
In this way, we increase the precision of the experiment.

o Balancing. Balancing is the blocking and assignment of treatments so that an equal
number of subjects is assigned to each treatment, wherever possible. Balancing is

—51 -

CHAPTER 3

desirable because it simplifies the statistical analysis of the data, but it is not necessary.
Experimental designs can range from completely balanced to little or no balance.

In experiments investigating only one factor, blocking and balancing play important roles. If
the design includes no blocks, then it must be completely randomized. If one blocking factor
is used, subjects are divided into blocks and then randomly assigned to each treatment. In
such randomized block designs, balancing is essential for analysis, and they are therefore
often referred to as complete balanced block designs. If units are blocked with respect to two
different variables and then assigned at random to treatments so that each blocking variable
combination is assigned to each treatment an equal number of times, then balancing is
mandatory for correct analysis. Such designs are called Latin Square designs.

However, all experimental designs can be seen as variations of the classic, pretest-
posttest control group design. This design has random assignment, a pretest and a posttest, an
experimental group, and a control group. Using Campbell and Stanley’s (1963) notational
system, the design can be represented as:

R O X 0
0s 04 G.1)

where O refers to a measurement or observation of the dependent variable being taken on
some individual, group, or object. X represents the exposure of a test group to an experimental
treatment (independent variable), such as the introduction of a new method, tool, or
technique. R means that individuals or groups have been selected and assigned at random for
the study’s purposes.

A simplified version of the pretest-posttest control group design, is the posttest-only
control group design, which can be represented as:

R X 0O
R 0 (3.2)

This design is useful in situations in which pretests are unavailable, inconvenient, or likely to
be reactive. The primary strength of this design is ensured by the randomization of groups. A
third, but less used experimental design is the Solomon four-group design, which is a
combination of design (3.7) and (3.2) described above.

3.2.1.3 Types of experiments

Several taxonomies have been proposed to classify software experiments. Basili er al. (1986),
for example, characterized experiments by the number of different projects analyzed and the
number of teams replicating each project. This classification resulted in four classes of
experiments: single project, replicated project, multi-project variation, and blocked subject-
project. Blocked subject-project and replicated project experiments represent what Campbell
and Stanley (1963) called true experimental designs, while multi-project variation and single
project experiments represent quasi-experimental or pre-experimental designs.

—52 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

Kitchenham (1996/1998) differentiated between qualitative and quantitative experiments,
while Zelkowitz and Wallace (1998) defined four types of experiments: replicated
experiment, synthetic environment experiments, dynamic analysis, and simulation.

For our purposes, however, we find it more useful to differentiate between the degree of
realism in the research setting (Basili, 1996; Galliers, 1992):

o Laboratory experiments — also called in vitro experiments. The key feature of
laboratory experiments is the identification of the precise relationships between variables
in an isolated, controlled setting using quantitative analytical techniques. The idea is to
make generalizable statements from the laboratory applicable to real world situations.

The primary strength of the laboratory experiment is that the researcher has almost
complete control of the study situation. However, the artificiality of the research setting
may actually generate changes in the dependent variable that might not happen in the real
world. Also, the artificiality of the experimental process may actually change the
behavior of the subjects in the experiment (Davis, 1996). A famous example is the
Hawthorne Studies, where it has been argued that it was the experimentation procedures
themselves that changed the behavior of the workers (Carey, 1967).

¢ Field experiments — also called in vivo experiments. Field experiments are an extension
of laboratory experiments into the real world of organizations; they are run in the field
under normal conditions. The idea is to construct an experiment in a more realistic
environment than is possible in the artificial, sanitized laboratory situation.

The primary strengths of a field experiment are that (1) the study situation is usually
highly realistic, allowing the effects of the independent variables to be accurately
assessed, and (2) compared with ex post facto research, a stronger inference can be made
about the relationship between the variables under study. However, the realistic
environment can also be a weakness, because it may be too costly or impossible to
manipulate an independent variable or to randomize treatments in real life.

The European Commission sponsored more than 300 SPI field experiments through the
European Systems and Software Initiative (ESSI) during the 1990s, which is probably the
single largest SPI effort undertaken anywhere. A review of results from these experiments can
be found in (Consolini and Fonade, 1997), while a library of actual results is contained in the
VASIE Library (see www.esi.es/VASIE).

3.2.1.4 Threats to experimental validity

Four criteria are commonly used to judge the quality of experimental designs (Cook and
Campbell, 1979):

o Statistical conclusion validity, which is concerned with issues that affect the ability to
draw the correct statistical conclusion about relationships between the treatment and the
outcome of an experiment. Threats to statistical conclusion validity include low statistical
power, violated assumptions of statistical tests, the error rate problem, the reliability of
measures, the reliability of treatment implementation, random irrelevancies in the
experimental setting, and random heterogeneity of respondents (see (1) in Figure 3.2).

—53 —

CHAPTER 3

Experiment objective

Theory / \

Cause-effect construct
Cause > Effect

construct @ construct

Observation | (3) ®

Treatment-outcome

construct
Treatment > Outcome

® |G

Independent variable Dependent variable
Experiment operation

Figure 3.2: Threats to experimental validity (Wohlin ef al., 2000, p. 64).

o Internal validity, which is concerned with influences that can affect the independent
variable with respect to causality, without the researcher’s knowledge. The internal
validity threats are sometimes sorted into three categories: single group threats, multiple
group threats, and social threats (see (2) in Figure 3.2).

o Construct validity, which is concerned with generalizing the results of the experiment to
the concept or theory behind the experiment. Threats to construct validity include
inadequate preoperational explication of constructs, mono-operation and mono-method
bias, hypothesis guessing within experimental conditions, evaluation apprehension,
experimenter expectancies, confounding constructs and levels of constructs, interaction of
different treatments, interaction of testing and treatment, and restricted generalizability
across constructs (see (3) in Figure 3.2).

o External validity, which is concerned with conditions that limit the researcher’s ability
to generalize the results of the experiment to industrial practice. Threats to external
validity include interaction of selection and treatment, interaction of setting and
treatment, and interaction of history and treatment (see (4) in Figure 3.2).

There are potential conflicts between some of the types of threats to validity in an
experimental design. Prioritizing among them is, therefore, an optimization problem, given
the purpose of the experiment. Compared with laboratory experiments, field experiments are
generally weaker in terms of control of extraneous variables that can threaten validity. Also,
the different subtypes of experimental designs focus on different threats to validity.

3.2.2 Survey research

A survey is a retrospective study of a situation that investigates relationships and outcomes. It
is useful for studying a large number of variables using a large sample size and rigorous
statistical analysis. By combining the advantages of experiments (replication that minimizes

— 54—

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

the problems of unusual results) with those of case studies (applicability to real-world
projects), a survey is a particularly useful empirical strategy (Fenton and Pfleeger, 1996).

Surveys conducted for research purposes have three distinct characteristics (Pinsonneault
and Kraemer, 1993). First, the purpose of the survey is to produce quantitative descriptions of
some aspects of the studied population. Second, the main way of collecting data is by asking
people structured and predefined questions. Third, data is generally collected about a fraction
of a study population — a sample — but it is collected in such a way as to be able to generalize
the findings to the population. Usually the sample is large enough to allow extensive
statistical analysis.

Surveys are especially well suited for answering questions about what, how much, and
how many as well as questions about how and why (Pinsonneault and Kraemer, 1993). They
are used when control of the independent and dependent variables is not possible or not
desirable, when the phenomena of interest must be studied in their natural setting, and when
the phenomena of interest occur in current time or the recent past.

Survey research is a standard method of empirical study in disciplines such as marketing,
medicine, psychology, and sociology. There is also a long tradition for the use of surveys as
an intervention strategy for organizational change (e.g. Baumgartel, 1959; Neff, 1966; Kraut,
1996). In ESE, surveys usually poll a set of data from an event that has occurred to determine
how the population reacted to a particular method, tool, or technique, or to determine trends
or relationships. They try to capture what is happening broadly over large groups of projects:
“research-in-the-large” (Kitchenham et al., 1995). The most common forms of ESE surveys
are based on distributing questionnaires to elicit opinions about the benefits of technology, or
to assess the effects of process changes throughout an organization.

Together with experimental research, survey research is a traditional “hard-science”
approach that is supported by a rich literature describing how to design and administer it. A
general review of survey research from the vantage point of psychology is provided by
(Krosnick, 1999). General introductions and guidelines for survey research can be found in
(Davis, 1996; Fink and Kosecoff, 1998; Neuman, 2000), while an assessment of survey
research in management information systems can be found in (Pinsonneault and Kraemer,
1993). Details regarding instrument design and scale development is given in (Carmines and
Zeller, 1979; DeVellis, 1991; Spector, 1992). An example of the construction of an instrument
for ESE survey research can be found in Chapter 7 and also in (Dyba, 2000a).

3.2.2.1 Survey designs

Survey designs may be distinguished as cross-sectional or longitudinal, depending upon
whether they exclude or include explicit attention to the time dimension (Pinsonneault and
Kraemer, 1993):

o Cross-sectional design. A cross-sectional design is used when the researcher’s aim is to
describe a population or document and test differences in subsets of the population at one
point in time. The classic cross-sectional survey design collects data at one point in time
from a sample selected to represent the population of interest at that time.

¢ Longitudinal design. A longitudinal design is used when the question or problem of
interest is the examination of a dynamic process that involves change over time and
understanding of the sources and consequences of a phenomenon. The -classic

— 55—

CHAPTER 3

longitudinal survey design collects data for at least two points in time. The underlying
principle of longitudinal designs, like that of the one-group pretest-posttest design
(Campbell and Stanley, 1963), is to measure some dimensions of interest of a given entity
before and after an intervening phenomenon to determine whether or not the phenomenon
has some effects.

Another critical issue in survey research design is determining the unit(s) of analysis. It may
be an individual, group, department, or organization, or it may be an application, system,
software project, or any of the processes of a software project. There can also be more than
one unit of analysis in a survey. The point is that the chosen unit relates to the questions and
hypotheses in the research.

Yet another issue is data collection, which can be either passive or active. Passive data
collection involves the observation of characteristics, by human or computerized means, of
the elements under study. Active data collection, on the other hand, involves the querying of
respondents, by personal or nonpersonal means, using such methods as personal interviewing
or mailed questionnaires.

A final issue is data analysis. When exploration or description is the aim of the survey,
analysis frequently involves no more than developing the marginal and cross-tabulations for
the variables, using simple descriptive statistics. When explanation is the aim, analysis
includes the testing of hypotheses with cross-sectional data. This requires that the researcher
designs the survey to include data on the independent and dependent variables and on such
antecedent variables as theory would suggest might explain the expected original relation.

3.2.2.2 Sampling design

Sampling is concerned with drawing individuals or entities from a population in such a way
as to permit generalization about the phenomena of interest from the sample to the population.
A good sample has the following general characteristics (Davis, 1996):

o [t enables the researcher to make decisions concerning what sample size to take to obtain
the answers desired.

o [t identifies the chance, or probability, that any primary unit of analysis will be included
in the final study sample.

o It enables the researchers to quantify the accuracy and imprecision (errors) in choosing a
sample, rather than taking a complete canvas of the population (a census).

e It enables the researchers to quantify the degree of confidence that can be placed in
population estimates made from sample statistics.

These characteristics are applicable only for probability designs, which are designs in which
each element in the population has a known, nonzero chance of being selected for inclusion in
the study sample. In nonprobability designs, on the other hand, the chance of each element
being selected is not known.

The most critical element of the sampling process is the selection of the sampling frame
(Davis, 1996), because if the chosen sampling frame does not adequately represent the unit of
analysis, the generalizability of the results of the study will be questionable.

—56 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

3.2.2.3 Instrument design

Instrument design is very much an art (Payne, 1951). Difficulties do not only include the
phrasing of questions, but also the determination of what to include and exclude. Formally, we
can define instrument design as the process of developing the data collection device (usually a
questionnaire) in order to define and obtain relevant data for a given research question
(Dyba, 2000a).

There are many reasons why researchers in SPI should pay closer attention to
instrumentation. First, concerns about instrumentation are closely connected with concerns
about rigor in ESE research. Second, greater attention to instrumentation permits
confirmatory, follow-up research to use tested instruments, hence, promoting cooperative
research efforts (Hunter and Schmidt, 1990). Third, closer attention to instrumentation brings
greater clarity to the formulation and interpretation of research questions (Straub, 1989).
Finally, lack of validated measures in confirmatory research raises serious questions about the
trustworthiness of the findings of the study.

Measurement of research constructs is neither simple nor straightforward. However, in-
strumentation techniques are available that allow us to construct research instruments that
constitutes acceptable levels of reliability and validity. An example of a process for
developing a research instrument for SPI based on generally accepted psychometric principles
can be found in (Dyb4a, 2000a) and also in Chapter 7 of this thesis.

3.2.2.4 Threats to survey validity

Four criteria are commonly used to judge the quality of survey research designs (Carmines
and Zeller, 1979; DeVellis, 1991; Spector, 1992):

¢ Reliability, which refers to the consistency and stability of a score from a measurement
scale. Basically, four methods are available for estimating the reliability of survey
instruments: the test-retest method, the alternative form method, the split-halves method,
and the internal consistency method.

o Content validity, which refers to the degree to which the items in the measurement
instrument represent the domain or universe of the processes under study. Content
validity is built into the instrument from the outset through the choice of appropriate
items, which can be achieved by literature reviews, exploratory studies, expert reviews,
and pilot tests.

o Construct validity, which refers to the degree to which the measurement instrument
represents and acts like the processes being measured. Construct validity of the scales in a
measurement instrument is normally assessed with factor analysis and item analysis
based on Nunnally’s method (Nunnally, 1978; Nunnally and Bernstein, 1994).

o Criterion-related validity, which refers to the degree to which the measurement
instrument is able to predict a variable that is designated a criterion. The criterion-related
validity of a measurement instrument can, thus, be found by assessing the effect size and
significance level of the (multiple) correlation between the independent and dependent
variables.

—57 —

CHAPTER 3

3.2.3 Case study research

A case study is an empirical inquiry that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between phenomenon and context are not
clearly evident (Yin, 1994). So, while an experiment deliberately divorces a phenomenon
from its context and a survey’s ability to investigate the context is limited, the case study
deliberately aims at covering the contextual conditions.

Generally, the most important application of case studies is to explain the causal links in
real-life interventions that are too complex for the survey or experimental approaches.
Another application is to describe an intervention and the real-life context in which it
occurred. Furthermore, case studies can be used to illustrate certain topics within an
evaluation or to explore those situations in which the intervention being evaluated has no
clear, single set of outcomes. Finally, a case study may be a “meta-evaluation” — a study of an
evaluation study (ibid.).

Case study research is a standard method of empirical study in management, but also in
related disciplines such as organization development and information systems research. In
ESE, case studies usually look at what is happening on a typical project: “research-in-the-
typical” (Kitchenham et al., 1995).

Yin (1994) noted that a case study has a distinct advantage when “a ‘how’ or ‘why’
question is being asked about a contemporary set of events over which the investigator has
little or no control.” (ibid., p. 9). For software engineering, case studies are also useful in
answering a “which is better” question (Kitchenham et al., 1995).

Standard texts on case study research include (Stake, 1995; Yin, 1994). A discussion of
the case research strategy in studies of information systems can be found in (Benbasat et al.,
1987). A scientific methodology for management information system (MIS) case studies is
provided by (Lee, 1989), while the process of building theories from case study research is
covered by (Eisenhardt, 1989). Guidelines and checklists for case studies in software
engineering can be found in (Glass, 1997; Kitchenham, 1996/1998; Kitchenham ef al., 1995).

3.2.3.1 Case study designs

In general, case study designs can be single-case or multiple-case studies, and they can
involve a single unit (holistic) or multiple units (embedded) of analysis (Yin, 1994). There
are, thus, four general designs for case studies: (1) single-case, holistic design, (2) single-case,
embedded design, (3) multiple-case, holistic design, and (4) multiple-case, embedded design.

In software engineering, case studies are particularly important for industrial evaluation
of software engineering methods and tools because they can avoid the scale up problems that
often are associated with experiments. To avoid bias and ensure internal validity, it is
necessary to identify a valid basis for assessing the results of the case study. Basically, there
are three ways of designing a software engineering case study to facilitate this (Kitchenham et
al., 1995):

¢ Company baseline case studies. This design can be used if the software organization
gathers data from its projects as a standard practice and makes them available to the rest
of the organization. With this design, the response variable values from the case study
project are compared with the corresponding variables from previous projects or a subset
of similar projects.

— 58 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

o Sister project case studies. A sister project design comprises (at least) two projects: one
using the new method, and the other using the current method. Each project should be
typical for the organization, having similar characteristics according to the chosen state
variables. The projects are run in parallel and the response variables from each are
compared.

A special kind of sister project design is the replicated product design, which can be
used in situations in which a product is developed a second time using a different
development method.

¢ Within project component comparison case studies. In this design, components (e.g.
modules or subsystems) in a single project are assigned at random to each of the
treatments. In this case, the case study resembles a formal experiment, since the
replicated values and standard statistical methods can be used to analyze the response
variables. However, since the projects are not drawn at random from the population of all
projects, this design is not a true, formal experiment.

3.2.3.2 Threats to case study validity

Four criteria are commonly used to judge the quality of case study research designs (Yin,
1994):

¢ Construct validity, which is concerned with establishing correct operational measures
for the concepts being studied. Critics of case study research often point to insufficiently
operational sets of measures and to the subjective judgements often used to collect the
data. However, three tactics are available to increase construct validity in case study
research: using multiple sources of evidence, establishing a chain of evidence, and having
the draft case study report reviewed by key informants.

e Internal validity, which is concerned with establishing causal relationships as
distinguished from spurious relationships, thus minimizing the effects of confounding
factors. The requirements for internal validity, which are only applicable for explanatory
case studies, can be met by the use of pattern-matching, explanation-building, and time-
series analysis.

o External validity, which is concerned with establishing the domain to which a study’s
findings can be generalized. Critics typically state that single cases offer a poor basis for
generalizing. In contrast to survey research that relies on statistical generalization, case
study research relies on analytical generalization using replication logic in multiple case
studies.

o Reliability, which is concerned with demonstrating that the operations of the study can
be repeated, with the same results. For case study research, the emphasis here is on doing
the same case over again, not on “replicating” the results of one case by doing another
case study. The goal of reliability is, thus, to minimize the errors and biases in a study,
which can be achieved by the use of a case study protocol and a case study database.

In discussing bounded rationality and organizational learning, the 1978 winner of the Nobel
Prize in Economics, Herbert A. Simon made the following comment regarding the validity of
case study data:

—59 —

CHAPTER 3

If we are concerned about the imprecision of case studies as research data, we can console
ourselves by noting that a man named Darwin was able to write a very persuasive (perhaps
even correct) book on the origin of species on the basis of a study of the Galapagos Islands
and a few other cases. To the best of my recollection, there are no statistics in Darwin’s book
(Simon, 1991).

3.2.4 Action research

Action research is particularly focused on combining theory and practice (Greenwood and
Levin, 1998, 2000). It attempts to achieve practical value to the client organization while
simultaneously contributing to the generation of new theoretical knowledge (Galliers, 1992).
It can be characterized as “an iterative process involving researchers and practitioners acting
together on a particular cycle of activities, including problem diagnosis, action intervention,
and reflective learning.” (Avison et al., 1999, p. 94, emphasis added). The major strength of
action research is, thus, the in-depth and first hand understanding the researcher obtains. On
the other hand, the weakness is the potential lack of objectivity stemming from the
researchers in effecting a successful outcome for the client organization (Benbasat et al.,
1987).

General introductions to action research and its varieties can be found in (Elden and
Chisholm, 1993; Greenwood and Levin, 1998). A general discussion on the applicability of
action research to IS research is provided by (Avison et al., 1999; Mathiassen, 1998), specific
frameworks for action research in IS is presented by (Baskerville and Wood-Harper, 1998;
Lau, 1999), while a critical perspective on action research as a method for IS research can be
found in (Baskerville and Wood-Harper, 1996).

In our view, action research is a highly underrated strategy for ESE research. In contrast
to the other empirical approaches described in this chapter, the action researcher is not a
neutral observer, detached from practice. Rather, the action researcher takes active part in the
organization’s change process. This is also an important part of the industry’s motivation to
participate in ESE research projects — that the researchers actively participate with relevant
knowledge and experience to help the organizations improve themselves (see Chapter 9).

Also, unlike the other empirical approaches described in this chapter, which for the most
part, rests in the positivist paradigm, action research rests in an interpretive philosophical
framework (Galliers, 1992). In Chapter 6, we discuss the relationship between this framework
and the positivist framework, and how they are mixed to form a pragmatic research design for
this study. At this point, however, it could be useful to describe the basic principles for
interpretive field research.

3.2.4.1 Principles for interpretive field research

In discussing the conduct and evaluation of interpretive research in IS, Klein and Myers
(1999) proposed a set of seven principles along with their philosophical rationale (see Table
3.2). Furthermore, they illustrated the usefulness of these principles by evaluating three
published interpretive field studies drawn from the IS research literature.

— 60—

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

Table 3.2: Principles for interpretive field research (Klein and Myers, 1999).

1. The Fundamental Principle of the Hermeneutic Circle

This principle suggests that all human understanding is achieved by iterating between
considering the interdependent meaning of parts and the whole that they form. This principle of
human understanding is fundamental to all other principles.

2. The Principle of Contextualization

Requires critical reflection of the social and historical background of the research setting, so that
the intended audience can see how the current situation under investigation emerged.

3. The Principle of Interaction Between the Researchers and the Subjects

Requires critical reflection on how the research materials (or “data”) were socially constructed
through the interaction between the researchers and participants.

4. The Principle of Abstraction and Generalization

Requires relating the idiographic details revealed by the data interpretation through the
application of principles one and two to theoretical, general concepts that describe the nature of
human understanding and social action.

5. The Principle of Dialogical Reasoning

Requires sensitivity to possible contradictions between the theoretical preconceptions guiding the
research design and actual findings (“the story which the data tell”) with subsequent cycles of
revision.

6. The Principle of Multiple Interpretations

Requires sensitivity to possible differences in interpretations among the participants as are
typically expressed in multiple narratives or stories of the same sequence of events under study.
Similar to multiple witness accounts even if all tell it as they saw it.

7. The Principle of Suspicion

Requires sensitivity to possible “biases” and systematic “distortions” in the narratives collected
from the participants.

3.2.4.2 Action research models

Three distinct types of models can be seen in action research (Baskerville and Wood-Harper,
1998):

o Iterative models, which involve a repeating sequence of activities, typically cycling
between action activities and problem diagnosis activities (e.g. Checkland and Scholes,
1990, 1999; Susman, 1983).

¢ Reflective models, which are necessarily iterative, but focus more on reflective analysis
of theory-in-use versus espoused-theory (see Section 4.4.1 for an overview). A reflective
process model, thus, concentrates on the discovery of differences between the two
theories (e.g. Greenwood and Levin, 1998; Naur, 1983).

¢ Linear models, which do not involve iteration, but a single sequence of activities such as
engage, diagnose, unfreeze, change, freeze, and disengage (e.g. Mumford, 1983).

—61 -

CHAPTER 3

/ Problem definition \

Insider Outsider

A Communicative A
action in arenas

Mutual reflection
and learning

Reflection Reflection
A 4

Solving problem
through acting

A 4

Creation of
opportunities for
learning and
reflection in and
on actions

Figure 3.3: The Cogenerative Action Research Model (Greenwood and Levin, 1998, p. 116).

As an example of an action research model, Figure 3.3 shows Greenwood and Levin’s (1998)
Cogenerative Action Research Model. This is a reflective model, which identifies two main
groups of actors: the insiders and the outsiders of the organization. The insiders are the focal
point of the action research; they “own” the problem. The outsiders, on the other hand, are the
professional researchers who seek to facilitate a colearning process aimed at solving local
problems.

o Problem definition. The problem definition process is the first step in a mutual learning
process between insiders and outsiders. A first working definition of the problem under
study comes out of a discourse where knowledge held by insiders and outsiders
cogenerates a new, mutual understanding through communication with each other.

¢ Communicative action in arenas. Central to the cogenerative process is its ability to
create contexts, or arenas, that allow communicative actions to take place. Examples of
such arenas include various forms of meetings, team building sessions, and search
conferences.

e Mutual reflection and learning. The initial problem focus suggests a design for an arena
for discourse. The subsequent communication produces understandings that help move
toward problem solutions, creating new experiences to reflect on for both insiders and
professional researchers.

¢ Solving problem through acting. The struggle to solve important local problems shapes
the ground for new understandings, hence the double feedback loops in Figure 3.3.
Actions taken to solve local problems come as a result of the cogenerative process,
through which the participants learn new things about the problems they are facing. The
outcome of this collective process of action and reflection support the creation of new
shared understanding.

—62 —

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

o Reflection. The feedback loops are similar for both insiders and outsiders, but the
interests and effects can be quite different. For insiders, it might be central to improve
their action-knowledge capabilities, whereas the outsiders may focus more on producing
meaning (through publications) to the research community. Both of these reflective
processes are then fed back into the communicative process, shaping the arenas for new
dialogues aimed at either redefining the initial problem statement or improving the local
problem-solving capacity.

3.2.4.3 Threats to action research validity

Rather than the traditional concepts of reliability and validity, action researchers argue that
action research should be judged according to its credibility, which Greenwood and Levin
(1998) defined as “the arguments and the processes necessary for having someone trust
research results.” (ibid., p. 80). Two types of credibility can be distinguished:

¢ Internal credibility, which is concerned with the credibility of knowledge to the group
generating it. This type of credibility is fundamentally important to action research
because of the collaborative character of the research process. Members of communities
or organizations are unlikely to accept as credible the “objective” theories of outsiders if
they cannot recognize the connection to the local situation, or because local knowledge
makes it clear that the frameworks are either too abstract or simply wrong for the specific
context.

o External credibility, which is concerned with convincing someone who, did not
participate in the inquiry, that the results are believable. This is a difficult challenge,
however, since action research depends on the conjugation of reflection and action and
the cogeneration of new knowledge in specific contexts.

While conventional research methods focus on validity through statistical or analytical
generalization, action research believes that only knowledge generated from and tested in
practice is credible. This involves (at least) three challenges (ibid.):

e Workability. This credibility challenge relates to the solution of the action research
question under examination locally, and whether the actions taken during the research
process result in a workable solution to the problem.

¢ Sensemaking. The second and complementary challenge is making sense out of the
tangible results of the action research process, finding ways of integrating the outcome in
a sensemaking process that creates new knowledge. Examples of such processes include
Habermas’s (1984) ideal speech situation and Gadamer’s (1989) hermeneutics.

¢ Transcontextual credibility. Action research does not generalize through abstraction
and the loss of history and context. Rather, meanings created in one context are examined
for their credibility in another situation through a conscious reflection on similarities and
differences between contextual features and historical factors. They are moved from the
original context through a collaborative analysis of the situation where the knowledge
might be applied. Based on historical and contextual analyses, judgements are made
about the possibility of applying knowledge from one situation in another.

—63 —

CHAPTER 3

3.3 Comparison of Research Approaches

The diversity in ESE research approaches applicable to SPI is, as we have seen, considerable.
This is useful, since the complexity and dynamics of the software engineering problems under
study often require that multiple approaches be applied. This diversity is, unfortunately,
combined with a number of institutionalized specializations with rather little exchange
between them (Mathiassen, 1998). First, research concerned with SPI is divided into two
research communities: sofiware engineering, which is practiced within computer science and
engineering departments, and information systems development, which is mainly practiced as
part of information and management sciences. A notable exception is NTNU, where the two
communities have been merged into one cooperative research department: Department of
Computer and Information Science.

Second, two different research traditions have emerged: a positivist, which is primarily
occupied with structured, quantitative approaches based on observations and an interpretivist,
which uses less structured, more qualitative approaches based on interpretations and
intervention. For the most part, ESE research has been concerned with positivist approaches
such as laboratory experiments. This bias toward and idealization of positivist approaches is
most visible through the choice of terminology. In fact, several of the leading ESE researchers
seem to mix the term “empirical” with “experimental”. Zelkowitz and Wallace (1998), for
example, classified a number of research approaches as “experimental models”, which in our
view has nothing do to with experiments (e.g. project monitoring, assertion) or even with
empirical research (e.g. literature review).

Finally, there are considerable differences in what is considered the primary outcome of
research: one group is focusing primarily on concepts, methods, and tools fo support practice,
and another is striving to develop theories and frameworks to improve our understanding of
practice.

Each of the related communities have developed strong and relevant positions, and one of
the key challenges in advancing ESE research is to improve the dialogue between them.

Rather than arguing for the general supremacy of one research approach or search for a
synthesis or common ground for the “best way” of doing research, we argue that the
researcher must engage in a reflective process, actively examining the research problem and
the environment in which it will be studied. Based on such reflection, ESE researchers should
take responsibility for making intelligent choices about the approach or combination of
approaches they adopt and the ends they serve in each specific situation.

From an academic point of view, the ultimate criterion for making such choices is
scientific rigor, which is often linked to the reliability of the instruments for data collection
and analysis used in the research, and to the internal and external validity of the research
findings. However, in an applied discipline such as SPI, relevance is at least as important as
rigor. In our opinion, therefore, it is necessary that the ESE research community values the
diversity in available research approaches, actively trying to understand and improve them to
better serve both researchers and practitioners.

As will become more evident throughout the thesis, we consider the topic of SPI as a
socio-technical subject, not simply a technical one. It is because of this that we have
undertaken the present investigation of the importance of organizational issues in enabling
SPI. Consequently, one might call into question the appropriateness of the biased focus on

— 64—

APPROACHES TO EMPIRICAL SOFTWARE ENGINEERING RESEARCH

positivist approaches in present ESE research. In our view, ESE researchers should cooperate
with practitioners and undertake more research with a pragmatic philosophy, combining
positivist and interpretive approaches in real-world situations, rather than emphasizing
experimental elegance in the sanitized environment of the laboratory (see Chapters 6 and 9).

The key features of the ESE research approaches described in this chapter, which are
summarized in 7able 3.3 together with their major strengths and weaknesses, can be seen as a
step toward familiarizing ESE researchers with some of the approaches available for their
research. Possible ways of combining these approaches in the process of building, extending,
and testing theory is presented in Figure 3.4.

Case study/action research Research question
Research question Survey research
Theory building Theory building
Theory testing ¢ Case study/
(laboratory experiment) action research
Theory testing Theory testing
(field experiment) (field experiment)
Theory extension — — Theory extension

Figure 3.4: The use of alternative ESE research approaches in the process of theory building,
testing, and extension (Galliers, 1992, p. 161).

3.4 Chapter Summary

In this chapter, we have described the role of ESE research as one of encouraging a more
scientific and reflective approach to software engineering, which allows us to investigate and
understand new technologies and their applications to practice. Furthermore, four ESE
research approaches that seeks to address this were identified and reviewed: experimental
research, survey research, case study research, and action research. Finally, we made a
comparison of the main features, strengths, and weaknesses of each of these approaches.

The next chapter introduces the model building phase of the present investigation by
describing the underlying assumptions and foundations of the learning software organization,
which form the basis upon which our dynamic model of SPI is constructed.

— 65—

CHAPTER 3

Table 3.3: A summary of the key features, strengths, and weaknesses of alternative ESE
research approaches (adapted from Galliers, 1992, pp. 150-152).

Approach

Key Features

Strengths

Weaknesses

Laboratory
experiments

Field
experiments

Surveys

Case
studies

Action
research

Identification of precise
relationships between
chosen variables via a
designed laboratory situa-
tion, using quantitative
analytical techniques, with
a view to making gener-
alizable statements appli-
cable to real-life situations.

Extension of laboratory
experiments into the real-
life situation of organiza-
tions and/or society.

Obtaining snap shots of
practices, situations or
views at a particular point
in time (via questionnaires
or interviews) from which
inferences are made (us-
ing quantitative analytical
techniques) regarding the
relationships that exist in
the past, present and fu-
ture.

An attempt at describing
the relationships which
exist in reality, usually
within a single organization
or organizational grouping.

Applied research where
there is an attempt to ob-
tain results of practical
value to groups with whom
the researcher is allied,
while at the same time
adding to theoretical
knowledge.

The solution and control of
a small number of vari-
ables which may then be
studied intensively.

Greater realism; less
artificial/sanitized than the
laboratory situation.

Greater number of vari-
ables may be studied than
in the case of experimental
approaches. Description of
real world situations. More
easy/appropriate generali-
zations.

Capturing “reality” in
greater detail and analyz-
ing more variables than is
possible using any of the
above approaches.

Practical as well as theo-
retical outcomes most

often aimed at emancipa-
tory outcomes. Biases of
researcher made known.

The limited extent to which
identified relationships
exists in the real world due
to oversimplification of the
experimental situation and
the isolation of such situa-
tions from most of the
variables that are found in
the real world.

Finding organizations pre-
pared to be experimented
on. Achieving sufficient
control to enable replica-
tion, with only the study
variables being altered.

Likely that little insight
obtained regarding the
causes/processes behind
the phenomena being
studied. Possible bias in
respondents (cf. self-se-
lecting nature of question-
naire respondents), the
researcher, and the mo-
ment in time which the
research is undertaken.

Restriction to a single
event/organization. Diffi-
culty in generalizing, given
problems of acquiring
similar data from a statisti-
cally meaningful number of
cases. Lack of control of
variables. Different inter-
pretations of events by
individual researchers/
stakeholders.

Similar to case study re-
search, but additionally
places a considerable
responsibility on the re-
searcher when objectives
are at odds with other
groupings. The ethics of
the particular research are
a key issue.

— 66 —

CHAPTER 4

Foundations of the
Learning Software Organization

“Reality is merely an illusion, albeit a very persistent one.”

— Albert Einstein

In this chapter, we describe the underlying assumptions and foundations of the learning soft-
ware organization, which form the basis upon which our dynamic model of SPI is constructed
(see Chapter 5). These foundations originate from our experience and observations, which led
us to an emphasis on SPI as organizational learning — as a collective ability expressed in and
through the organizations’ product- and service-oriented practices related to software devel-
opment. Furthermore, it led us to emphasize a more adaptive and active view of knowledge
rather than the traditional static and passive view. The following premises are identified:

¢ Social learning, which is focused on SPI as a social, collaborative activity within the
context of a learning software organization (see Section 4.1).

¢ Sensemaking, which is aimed at constructing meaning and expressing the basic
assumptions and values that are vital to the software organization and its members (see
Section 4.2).

¢ Knowledge creation, which is aimed at generating new knowledge and new competen-
cies that enable or broaden the software organization’s potential range of actions (see
Section 4.3).

o Purposeful action, which is aimed at using the new interpretations and new knowledge
to construct improved courses of action (see Section 4.4).

In the rest of this chapter we describe the theoretical foundations for each of these premises,
which lie behind our dynamic model of the learning processes and the key factors for success
in SPI. Finally, we summarize the chapter by linking these foundations to the dynamic model
of SPI, which is defined in the next chapter.

— 67—

CHAPTER 4

4.1 Social Learning

Anyone engaged in constructing an environment for SPI is faced with the question of the
proper kind of overall perspective to choose as a guideline. According to Morgan (1997), such
perspectives can be created through the use of metaphors. He invites and challenges us to
recognize and cope with the idea that all theories of organization and management are based
on implicit images of metaphors that persuade us to see, understand, and imagine situations in
partial ways. He argued that metaphors both create insight and distort at the same time by
highlighting particular facets and obscuring others. Morgan’s (1997) main argument was that
once we have learned how to generate, integrate, and use the insights of competing
metaphors, they could be used to understand and shape the situation that we are seeking to
organize and manage.

In this section, we first take a closer look at the rationalistic perspective that dominates
technology development today, and the consequences that this perspective has on SPI. Then
we propose an alternative perspective, that software development and SPI can be seen as a
social construction of reality, and argue that this is a necessary perspective for a meaningful
conception of the learning software organization.

Rather than the narrow definitions of technology found within engineering, we adopt
MacKenzie and Wajcman’s (1985) three-level definition of technology as (1) physical objects
or artifacts, (2) activities or processes, and (3) knowledge or potential actions. In this respect,
both software, software development, and software process improvement can clearly be
regarded as technology. Moreover, this definition also makes an important connection
between technology and human activity.

4.1.1 The rationalistic tradition

Today, the dominant perspective on software development is rooted in the “best practice”
paradigm, promoting a product-line approach to software development with a standardized,
controllable, and predictable sofiware engineering process. Within the “best practice”
paradigm, we find that standardized routines and automation replace human reasoning, and
that the whole process is aimed at an economical optimization of re-production.

The chief symbol of the rationalistic approach to management was Frederick Winslow
Taylor, and his principles of scientific, or “task”, management. Taylor’s (1911) project was to
maximize productivity in factory operations, by (1) externalizing the workers knowledge
through observation and measurement, (2) separate planning from task execution, and (3) in-
troducing specific control mechanisms. The idea was to have complete knowledge of each
task, and to prepare detailed instructions about the work to be done before it was started. This,
then, would free the workers from thinking about past experience — all they needed to do was
to follow managerial directions. This view has also been forcefully claimed within software
development (e.g. Roetzheim, 1988).

Furthermore, Max Weber observed the parallels between the mechanization and
specialization of work in industrial settings and the proliferation of bureaucratic forms of
organization. However, Weber (2000) also perceived bureaucracy as a power instrument, and
he was concerned that the efficiency of bureaucratic organizations could all too easily lock us
into an “Iron Cage” of machine-like existence.

March and Simon (1958, 1993) denied the possibility of finding an objective, theoretical

— 68 —

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

“best way” in practice, and they attacked the unbound rational model of organizations.
Consequently, they argued that the objective, practical goal was not to find the optimal
solution, but to find one that is good enough. The central theme in March and Simon’s (1958,
1993) work is the idea of limited, consequential rationality, which has become more or less
standard in modern theories of decision making. Their main argument was that because of the
limits in human understanding and decision-making, organizations will never be fully rational
or be able to adapt completely to their environments.

Translating the notions of the rationalistic tradition into the domain of software develop-
ment, yields the following set of assumptions (Winograd and Flores, 1986; Floyd, 1992):

¢ Software engineering is concerned with the production of software on the basis of fixed
requirements that can be separated from its use and that can be obtained by analyzing the
facts of a given reality.

o The essential task of software developers is to find a correct solution, in the form of
software, to the problems defined in the models representing that reality.

e The production process is independent of individuals and, hence developers should be
interchangeable. That is, different developers should be able to arrive at the same results.

¢ Subject to technical feasibility, any desired parts of the production process can be auto-
mated.

One of the great contributions of the rationalistic approach was the practice of clarifying and
making the concepts of task management and organizational structure operational, so that
managers could put it into action. Also, the view of software development reflected in these
assumptions has been instrumental in bringing about impressive advances in software and
software development methods. It allows us to understand important aspects of software
development prior to initiation of the development process, to assess more or less completed
projects, or to “fake” a rational design process as suggested by Parnas and Clements (1986).

Despite these advances, the rationalistic approach to software development has severe
limitations. First, the fragmentation and authoritarian control systems are inflexible and can
have great difficulty in adapting to changing circumstances. Second, it can have
dehumanizing effects upon employees leading to group defense (Trist and Bamforth, 1951),
alienation and loss of freedom, initiative, and creativity (Blauner, 1964). Third, the
rationalistic approach remains a myth in two respects (Brunsson 1985): (1) it rests on
simplifying assumptions that ignore the range of legitimizing functions which decisions can
fulfil and (2) it presumes a causal link between ideas and action that is usually missing in
practice. Fourth, the rationalistic approach fails to offer any help in understanding an actual
software development process in a given situation. Finally, the “best practice” view of
software development is neglecting the inherent social character of software development,
and that the development environment is socially constructed through processes of
communication in which individual developers define their situations.

Consequently, it follows from the above argumentation that the realization of an objective
“best way” to software development is not a practical possibility. However, questioning the
rationalistic approach necessarily involves examining alternative approaches. We have chosen
an approach were we perceive software development as reality construction. To understand
this position we must enter into the constructivist discourse.

—69 —

CHAPTER 4

4.1.2 Software development as reality construction

A software developer analyzing an organization in order to develop a software system to sup-
port its business processes, is, according to the rationalistic approach, normally encouraged to
start from the “real world” to abstract and to elaborate a correct model that can be
manipulated by the computer. While this may be difficult to do, the task itself — discovering
the correct description — is supposed to be clearly defined and independent of the software
developer as an individual. This picture changes drastically, however, when we acknowledge
our active role in bringing about what we hold for real, which is the key to constructivist
thinking.

Constructivism is a theory, which differs from the traditional view that knowledge exists
independently of the individual — the view that the mind is a tabula rasa, a blank tablet upon
which a picture can be painted. A fundamental premise of constructivism is that software
developers actively construct their knowledge. Rather than simply absorbing ideas spoken at
them by others, constructivism posits that software developers actually invent their ideas.
They assimilate new information to simple, pre-existing notions, and modify their
understanding in light of new data. In the process, their ideas gain in complexity and power,
and with appropriate support they develop critical insight into how they think and what they
know about the world as their understanding increases in depth and detail. Constructivism
emphasizes the careful study of the processes by which individuals and groups create and
develop their ideas. Its SPI applications lie in creating a learning environment that match —
but also challenge — software developers’ understanding, fostering further growth and
improvement of their work.

Our particular interest has been to apply the social construction perspective within the
context of software development and SPI. Several authors may be said to hold a similar view.
Winograd and Flores (1986), for example, inquired into the processes of computer and
software design using a constructivist approach. Similarly, Floyd ef al. (1992) discussed how
software development could be seen as reality construction, while Gjersvik (1993) studied the
social construction of information systems in organizations. Also, Baetjer (1998), Bennetts et
al. (1999), Krogstie (1995), Messnarz (1999a), and Siddigi (1994) have relied on a
constructivist approach in their software research. Furthermore, there is also a large body of
literature regarding the social construction of technology in general (e.g. Bijker ef al., 1987,
Latour, 1987; MacKenzie and Wajcman, 1985).

Peter Berger and Thomas Luckmann’s The Social Construction of Reality is probably the
most influential source for recent constructivist ideas. Berger and Luckmann (1966) placed
the sociology of knowledge, i.e. the study of the social conditions of knowledge, at the core of
sociological theorizing: “The basic contentions of the argument of this book are ... that reality
is socially constructed and that the sociology of knowledge must analyze the process in which
this occurs.” (p. 13).

According to Berger and Luckmann (1966), the construction of social reality is a
dialectical process between externalization of individual subjective realities, through action,
resulting in objective reality, and the internalization of this objective reality, through
sensemaking, into subjective reality. In the context of software development, we find it more
helpful, though, to use Gjersvik’s (1993) terms “local” and “organizational reality” instead of
Berger and Luckmann’s (1966) concepts of “subjective” and “objective reality”, as shown in
Figure 4.1.

—70 -

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

ORGANIZATIONAL
REALITY
EXTERNALIZATION INTERNALIZATION
(Action) (Sensemaking)
LOCAL
REALITY

Figure 4.1: The construction of social reality (adapted from Gjersvik, 1993, p. 37).

Local reality is the way an individual or a group of individuals perceive the world in which
they live. It is a kind of knowledge about how the different parts of the world fit together,
what is related to what, and how to interpret actions and events (Gjersvik, 1993). Local reality
is the knowledge that shows up in action, or what we might characterize as “knowing”.

There are several social groups within a software organization that share knowledge and
that may be identified as having a distinct local reality. Examples of such groups are formal
project teams and informal groups of software developers and managers. The group’s local
reality can be seen as a way of acting in relationship to the rest of the organization. The
strength of such local realities as with all socially constructed knowledge, comes from the
“we-feeling” created by shared experience (Lysgaard, 1961).

This gives rise to the important point that, since social groups define the problems of
software development, there is flexibility in the way software is designed. Hence, there is not
just one possible way or one best way of designing a software product or defining its scope.

Externalization is the enactment of local reality. It is the process of creating organizational
institutions, systems, and routines by taking action and using language to express oneself to
the external world. It can be seen as a process of creating social order (Berger and Luckmann,
1966).

[Slocial order is a human product, or, more precisely, an ongoing human production. It is
produced by man in the course of his ongoing externalization ... Social order is not part of
the ‘nature of things’, and it cannot be derived from the ‘laws of nature’. Social order exists
only as a product of human activity (ibid., pp. 69-70).

Thus, through the process of externalization, organizational members construct organizational
reality.

Organizational reality is the social order or institution that exists because everybody relates

to it in their actions. It is, typically, perceived to have an existence apart from our interpreta-
tions and meanings. “Institutions generally manifest themselves in collectivities containing

71 -

CHAPTER 4

considerable numbers of people.” (Berger and Luckmann, 1966, p. 73). Institutions both
enable and limit what is possible to do depending on their history and degree of control.

Institutions always have a history, of which they are the products. It is impossible to
understand an institution adequately without an understanding of the historical process in
which it was produced. Institutions also, by the very fact of their existence, control human
conduct by setting up predefined patterns of conduct, which channel it in one direction as
against the many other directions that would theoretically be possible (ibid., p. 72).

Thus, the more conduct is institutionalized, the more predictable and thus the more controlled
it becomes.

Internalization is the process by which individuals or groups of individuals give meaning to
organizational reality, making it part of their own local reality. Whereas externalization can be
seen as the way that the individual produces society, internalization can be seen as the way
that the social world acts back upon its producer: “Society is a human product ... Man is a
social product.” (Berger and Luckmann, 1966, p. 79, italics in original).

Berger and Luckmann (1966) considered two different phases of internalization: primary
socialization and secondary socialization. Primary socialization is about how the child adopts
his or her world while secondary socialization is about “the internalization of institutional or
institution-based ‘sub-worlds.”” (ibid., p. 158). Within the context of this thesis, we are only
concerned with the latter phase of internalization.

As can be seen from Figure 4.1, the social construction of reality is a simultaneous and
continuous process of construction and reconstruction. It is a dialectic interplay between local
and organizational reality, which is simultaneously characterized by externalization and
internalization.

Constructivist thinking in software development leads to an emphasis on the observer
constituting the way he or she sees reality and inventing a suitable description, rather than
mapping a given reality. Thus, the software developer is portrayed as making choices in an
open situation, where there is more than one possibility. When developing a software product,
we make choices in selecting the aspects we consider relevant for modeling, in making
available modes of interaction with the computer, in determining the software system’s
architecture, and in the way we use the technical resources for implementing the system.
Moreover, we make choices in anticipating how the computer will be embedded in its use
context and in creating facilities and constraints for users and other concerned parties. And
finally, we make choices in how we conduct the development process itself, often deviating
from pre-made plans.

Only a small part of these choices are made explicitly, more often they are implied by the
course of action we take, or as Schon (1983) argued: “our knowing is in our action.” (p. 49).
Furthermore, each practitioner treats his or her case as unique, and consequently cannot deal
with it by applying standard theories or techniques, hence, the practitioner “must construct an
understanding of the situation as he finds it.” (ibid., p. 129). Also, our choices are constrained
by our interactions with others. When seen in these terms, the task of software development
clearly involves reference to the individual software developer.

Software development is, in accordance with the above argumentation, largely a human
based intellectual activity (Weinberg, 1971, 1998) that involves constant negotiation and
renegotiation within and between the social groups shaping the software. Software products

72 —

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

emerge as the outcome of complex social processes, which serve to establish a common
understanding of the problems to be dealt with and to anticipate meaningful solutions in the
software’s intended use context. Thus, we argue that software development is a socially
constructed process where the developers construct the process of development, the product,
and the possibilities for its use through their collective choices and actions. Furthermore,
since a group of developers acquire the know-how necessary to carry out the collective task of
software development, we contend that organizational learning takes place as part of the
practice.

4.1.3 The learning software organization

So far we have argued for a perspective on software development as reality construction. In
this section, we argue that this perspective requires a commitment to learning rather than to
“best practice” models to accomplish improvements in software development processes. The
basic premise for such improvements is that we expect to be able to understand why and how
we do what we do in software development, so that we can do it deliberately and repeatedly in
diverse and novel situations. Moreover, we want to be able to externalize our understanding of
the development practice to be able to share it with others and to work with it directly to
improve it.

Concordant to the rationalistic approach, the “best practice” perspective to SPI is to
compare an organization’s process with some generally accepted ideal or standard of best
practices — the one best way. According to this perspective then, process improvement is the
mere elimination of differences between the existing process and the ideal model. The as-
sumption is that, once the process is changed to fit the prescribed model the generated prod-
ucts will be improved, or at least the quality risks of developing new software will be reduced
(see Chapter 2).

Organizations are seen as learning by encoding inferences from history into routines that
guide behavior (Levitt and March, 1988, p. 320).

An entity learns if, through its processing of information, the range of its potential behaviors
is changed (Huber, 1991, p. 89)

Organizational learning means the process of improving actions through better knowledge
and understanding. (Fiol and Lyles, 1985, p. 803).

Organizational learning is defined as increasing an organization’s capacity to take effective
action (Kim, 1993, p. 43).

Organizational learning occurs through shared insights, knowledge, and mental models ...
[and] builds on past knowledge and experience — that is, on memory (Stata, 1989, p. 64).

We define organizational learning as a process in which an organization’s members actively
use data to guide behavior in such a way as to promote the ongoing adaptation of the
organization (Edmonson and Moingeon, 1998, p. 12).

We define organizational learning as the capacity or processes within an organization to
maintain or improve performance based on experience (Nevis et al., 1995, p.73).

Figure 4.2: Alternative definitions of organizational learning.

—73 —

CHAPTER 4

As we argued in Chapter 2, and also in (Dyba and Skogstad, 1997), such model-based
improvement can be contrasted with the use of improvement processes that are more
concerned with the contingent characteristics of individual markets and organizations. Hence,
we argue that process improvements can hardly be claimed unless process effectiveness is
closely related to the specific circumstances, needs, and business goals of the organization.
Furthermore, we concur with Nicolini and Meznar’s (1995) view on organizational learning
as a social construction, and argue that soffware process improvement is a socially constructed
learning process. However, in order to understand how software organizations may become
learning organizations we must first understand what organizational learning is.

Argyris and Schon (1978) introduced the concept of organizational learning in the 1970s.
However, learning is basically an individualistic concept drawn directly from psychology,
and, as can be seen from Figure 4.2, there is considerable disagreement among the most
influential scholars concerning a good definition of what it means for an organization to learn.

Some authors, like Huber (1991), Kim (1993), and Nevis et al. (1995), claim that new
ways of thinking are enough for an organization to learn. However, without accompanying
change in the way that work gets done, only the potential for improvement exists. Argyris and
Schon (1996) addressed this important aspect when they defined instrumental learning as “an
organization’s improvement of its task performance over time.” (p. 4), and when they asserted
that “change in behavior is a [necessary] condition for learning” (p. 33). Within the context of
SPI, we hold that the role of organizational learning is to provide a framework for improved
actions. Therefore, we adopt Fiol and Lyles’ (1985, p. 803) problem-solving approach to
organizational learning, and define organizational learning within the context of SPI as the
process of improving actions through better knowledge and understanding.

The learning sofiware organization offers an alternative to the pervasive factory view
rooted in Weber’s (2000) description of bureaucracy, Taylor’s (1911) concept of scientific
management, and the mechanistic notions of “best practice”. Rather, the learning organization
perspective is based on socio-technical principles (Trist, 1981; Trist and Bamforth, 1951) and
participatory learning processes (Greenwood and Levin, 1998). The emphasis is on
supporting individual activities by employing appropriate tools and techniques as the basis for
cooperation between “multi-skilled” developers. What’s more, the work of the software
developers in the learning software organization can be characterized by teamwork and
cooperation based on “optimum task grouping” and “minimum critical specification” (Trist,
1981). Of course, there is a division of labor and specialization, but still, there seems to be
little chance of arriving at an overall state of routinized and mechanized work, based on
established standards for software “best practice” and the “one best way”.

The learning software organization can be characterized by its integration of intellectual
work, coordination, and design. It is a collective of “semiautonomous groups” that brings
planning, design, and construction activities together under the same roof, making it suitable
for coping with individual requirements. Furthermore, its flexible forms of organization
promote attunement to individual customer needs and wishes, securing “co-determination” —
the direct participation of developers and users in decisions about what should best be done at
their own level. The best practice approach, on the other hand, is suitable for reproductive
working processes, geared at economical reproduction of a maximum number of goods that
are specified in detail beforehand.

Since planning, developing, and coordination are the central tasks in software
development — and not the mass production of goods — the learning software organization

—74 —

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

may be considered a proper metaphor for the working environment of software developers.
The crucial aspect here is the close relationship between design, production, and evaluation:
activities that bear the imprint of both individual and cooperative work.

To summarize, the “best practice” approach stands for replacing human labor by
machinery and routinization. The learning software organization, on the other hand, promotes
experience and the use of technology to enhance the skills of the developers rather than to
deskill them (Corbett, 1992) — to “informate” rather than to “automate” tasks (Zuboff, 1988).
Table 4.1 summarizes the relationship between the “best practice” and the learning
perspectives of software organizations.

Based on the insights of the preceding section, the rest of this chapter describes the
remaining three foundations for the learning software organization that eventually shaped our
dynamic model of SPI: sensemaking, knowledge creation, and purposeful action.

4.2 Sensemaking

In today’s increasingly turbulent and unpredictable environments, software organizations have
to make sense out of what is happening in their surroundings in order to develop shared
interpretations that can guide their actions. Thus, contrary to the emphasis in radical
constructivism, our focus is not on the meaning-making activity of individuals, but on the
collective generation of meaning as shaped by conventions of language and other social
processes.

Table 4.1: “Best practice” approach vs. learning software organization.

Feature “Best practice” Approach Learning Software Organization

System perspective Technological Socio-technical
Man as an extension of the machine

— an expendable spare part

Human perspective Man as complementary to the
machine — a resource to be

developed

SKkill Maximum task breakdown, simple
narrow skill — “automate”

Optimum task grouping, multiple
broad skill - “informate”

Power External control (supervisors, Internal control (self-regulating
specialist staffs, procedures) subsystem)
Configuration Hierarchical organization Flat organization

Leadership style
Social system

Purpose

Risk

Autocratic
Competition, gamesmanship

Organization’s only

Low risk-taking

Participatory
Collaboration, collegiality

Organization’s, member’s and
society’s

Innovation

—75 -

CHAPTER 4

We will first focus on the concept of sensemaking itself. Then we introduce the main
organizational processes of sensemaking. Finally, we examine the concept of shared
assumptions, which is vital for coordinated and purposeful action in software organizations.

4.2.1 The concept of sensemaking

The concept of organizational sensemaking is to be understood literally — it means the making
of sense (Weick, 1995). Thomas et al. (1993), for example, described sensemaking as “the
reciprocal interaction of information seeking, meaning ascription, and action.” (ibid., p. 240).
March and Olsen (1976) saw sensemaking as part of experiential learning in which
“individuals and organizations make sense of their experience and modify behavior in terms
of their interpretations.” (ibid., p. 56). Starbuck and Milliken (1988) observed that “sense-
making has many distinct aspects — comprehending, understanding, explaining, attributing,
extrapolating, and predicting” (ibid., p. 51).

Based on his comprehensive review and discussion of the research literature, Weick
(1995) identified seven properties of sensemaking understood as an organizational process,
which suggests what sensemaking is, how it works, and where it can fail. First, sensemaking
is grounded in identity construction. Thus, what the situation means is determined by the
identity that the individual adopts in dealing with it. Second, and perhaps the most
distinguishing characteristic, is that sensemaking is retrospective: “people can know what they
are doing only after they have done it.” (ibid., p. 24). The main problem here is to select a
plausible meaning from several alternative meanings in order to make sense of past events.
Third, sensemaking is enactive since people in organizations often produce part of the
environment they face, furthering the argument that sensemaking is what keeps action and
cognition together. Fourth, sensemaking is social, since most sensemaking occurs in social
groups of more than one individual. Fifth, sensemaking is ongoing — it never stops, but is
continuous in the flow of organizational activities and projects. Sixth, sensemaking is focused
on and by extracted cues, which provide points of reference or starting nodes from which
ideas may be linked and connected into networks of meaning. Experience packages and their
relationships with the context, which they are extracted from, and the context that they are
interpreted into are examples of such cues. Finally, sensemaking is driven by plausibility
rather than accuracy. Thus, organizational members behave pragmatically, as when a project
deadline makes software developers trade off functionality for time.

An essential insight from the concept of sensemaking is that it can be seen as a bridge
between theory and practice in SPI — much like Isenberg (1984) emphasized that managerial
thinking and action are not separate or sequential activities, or like Schon (1983) emphasized
the concept of “reflection-in-action”. Consequently, we consider the concept of sensemaking
as critically important for successful SPI.

4.2.2 Organizational processes of sensemaking

Weick (1995) described the ways in which organizational members link their thoughts and
interpretations together to make collective action possible in terms of belief-driven and
action-driven processes for organizational sensemaking (see Table 4.2).

—76 —

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

Table 4.2: Organizational sensemaking processes (Choo, 1998, p. 78).

Belief-Driven Processes Arguing: Creating meaning by connecting the contradictory.

Expecting: Creating meaning by connecting the similar.

Committing: Creating meaning to justify actions high in choice,
visibility, and irrevocability.

Action-Driven Processes Manipulating: Creating meaning to explain actions taken to
make things happen.

Sensemaking can begin with beliefs and take the form of arguing and expecting. Or
sensemaking can begin with actions and take the form of committing or manipulating. In all
four cases, people make do with whatever beliefs or actions they start with. Sensemaking is
an effort to tie beliefs and actions more closely together as when arguments lead to
consensus on action, clarified expectations pave the way for confirming actions, committed
actions uncover acceptable justifications for their occurrence, or bold actions simplify the
world and make it clearer what is going on and what it means. In each of these cases,
sensemaking involves taking whatever is clearer, whether it be a belief or an action, and
linking it with that which is less clear. These are fundamental operations of sensemaking.
Two elements, a belief and an action, are related. The activities of relating are the
sensemaking process. The outcome of such a process is a unit of meaning, two connected
elements. And the connected elements are beliefs and actions tied together by socially
acceptable implications (Weick, 1995, p. 135).

Belief-driven processes are those in which people construct meaning by relating past moments
of socialization to present moments of experience, or cues. When such cues seem to match
each other, as well as the existing frames of reference, the sensemaking process is likely to be
based on “expecting”. On the other hand, when cues and beliefs create a mismatch, the
sensemaking process is more likely to be based on “arguing”.

Action-driven processes are those in which people construct meaning around their
actions. Two kinds of action can drive sensemaking: behavioral “commitment” and
“manipulation”. In both cases, sensemaking starts with action. The primary difference is that
the commitment process is focused on single action, whereas manipulation is focused on
multiple simultaneous actions.

Both beliefs and actions are potential reference points for sensemaking in software
organizations. Because they are interrelated, sensemaking can start at any point in the figure
in Table 4.2. Thus, the generation of new understandings and new actions, in whatever order
they evolve, are important enablers for the contextual change necessary for successful SPI.

4.2.3 Shared assumptions

Sensemaking in organizations creates a context of shared beliefs and assumptions, which
enables coordinated action to take place. Indeed, the consensual sharing of beliefs and
behavior among members of a group is regarded as the essence of organizational “culture”.
Although the term culture first and foremost have been brought into widespread use by
anthropologists (Wagner, 1981), it is also frequently used within the context of organizational
learning. Schein (1992), for example, defined organizational culture as the set of shared,

- 77 —

CHAPTER 4

taken-for-granted implicit assumptions that a group holds and that determines how it
perceives, thinks about, and reacts to its various environments. Furthermore, he asserted that
culture manifests itself at three levels: the level of deep tacit assumptions that are the essence
of the culture, the level of espoused values that often reflect what a group wishes ideally to be
and the way it wants to present itself publicly, and the day-fo-day behavior that represents a
complex compromise among the espoused values, the deeper assumptions, and the immediate
requirements of the situation (Schein, 1996¢).

Within an organizational framework of shared beliefs and assumptions, software
developers can continuously make sense of and adapt to the external environment, and
continuously develop and maintain internal relationships among themselves. Peters and
Waterman (1982), for example, emphasized that successful organizations build cohesive
cultures around common sets of norms, values, and ideas that create an appropriate focus for
doing business. However, many software organizations have short turn-around times for
software developers and fragmented cultures, with multiple local realities in which shared
assumptions often are based on organizational members’ similar organizational experience or
similar educational background.

Martin (1992) proposed three interpretive perspectives to explain organizational culture:

o The integration perspective, which resembles Schein’s (1992) conceptualization of
culture as organization wide consensus, is defined by organizational members
experiencing a high level of consensus, consistency, and clarity.

e The differentiation perspective assumes that organizations consist of a number of
subcultures based on differences in power, areas of interest, and work or professional
practice. Its defining feature is that consensus only exists locally within subcultures and,
thus, that collective action based on consensus is most likely to happen within local
subcultures.

o The fragmentation perspective sees organizations as “webs of individuals” who are
loosely and sporadically connected as “new issues come into focus, different people and
tasks become salient, and new information becomes available.” (Martin, 1992, pp. 150-
151).

Additionally, in many organizations, there are typically three subcultures that have grown out
of their respective occupational communities (Schein, 1996a, 1996¢):

e The operator culture is based on human interaction, and typically involves the line
managers and workers who make and deliver products and services to fulfill the
organization’s basic mission. In most software organization, these operations are
congruent with the work of software developers, project leaders, and first line software
managers.

¢ A key theme in the engineering culture is the design of the technology underlying the
work of the organization. Typically, the engineers have a preference for designing
humans out of the system rather than into them. This drives them toward automation and
routinized solutions that often ignore the social realities of the workplace (Kunda, 1992;
Thomas, 1994). As seen from the vantage point of SPI, quality managers and members of
SEPGs would be representatives of the engineering culture.

—78 —

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

e The executive culture is “the set of tacit assumptions that CEOs and their immediate
subordinates share worldwide.” (Schein, 1996¢, p. 15), and the essence of this role is
financial accountability to the owners of the company. The executive culture and the
engineering culture both tend to see people as impersonal resources that generate
problems rather than solutions:

One consequence is that when the operator culture attempts to improve effectiveness by
building learning capacity, which requires time and resources, the executives disallow the
proposed activities on the grounds that the financial returns cannot be demonstrated or that
too many exceptions are involved that would undermine the control system. Executives thus
unconsciously collude with the engineers in wanting to minimize the human factor. In effect,
all of the research findings about the importance of teamwork, collaboration, commitment,
and involvement fall on deaf ears, because in the executive culture, those are not the
important variables to consider (Schein, 1996a, p. 238).

Often, it is this lack of alignment among the three cultures that causes the failures of
organizational learning and SPI. Against this background, we can more easily understand the
preference of formal routines within the SPI community as espoused by quality managers or
members of SEPGs (see Conradi and Dyba, 2001 and Section 8.3). Likewise, managers will
rather put emphasis on rules, procedures, and instructions than on dialog, discussion, and
employee participation. Therefore, shared beliefs and assumptions are important for software
organizations’ ability to relate and evaluate their actions and results.

Based on the preceding discussion, we argue that all aspects of software organizations and the
relationships with their environments — whether structures, technologies, or routines —
embody social constructions and meanings that are crucial for understanding and improving
the software organizations’ processes. Ultimately, it is the organizations’ shared systems of
meaning that govern their actions and interpretations and, therefore, their ability to learn.

As we will see in Section 4.4.1, software organizations must also be able to continuously
assess the validity of their basic beliefs and assumptions, balancing the need for consensus
and stability with diversity and experimentation. Therefore, as well as changing structures,
technologies, and routines, successful SPI also depends on changes in the basic assumptions
and values that are to guide action — first order change in formal systems are just not enough.
Therefore, we claim that sensemaking and organizational culture is a foundation for the
learning sofiware organization that can either hinder or enable successful SPI.

4.3 Knowledge Creation

Within the context of SPI we are primarily concerned with organizational knowledge that
enables or results in improved products, services, processes, and actions. We are particularly
interested in the processes that create and diffuse knowledge since knowledge creation is a
social as well as an individual process. In this section, we first examine more closely the
concept of organizational knowledge itself. Then we take a closer look at individual
knowledge creation processes before we examine the important features of organizational
knowledge creation. Finally, we examine various enabling conditions that are important for
effective knowledge creation and SPI.

—79 —

CHAPTER 4

4.3.1 Organizational knowledge

Knowledge is the most decisive factor in software development. Therefore, SPI strategies
depend on learning, i.e. the creation of new knowledge. However, to understand and make
sense of the processes of such learning we must also understand the concept of knowledge
(see Dierkes et al., 2001, for an overview).

To understand learning fully, we must understand the nature and forms of human knowledge
and the processes whereby this knowledge is created and recreated (Kolb, 1984, p. 99).

Knowledge is both similar to and different from information. Consequently, some authors use
the words “information” and “knowledge” interchangeably (e.g. Huber, 1991). Shannon and
Weaver (1949) defined information as a reduction in uncertainty, or as Bateson (1979) put it,
“information consists of differences that make a difference.” (ibid., p. 5). The view of
knowledge taken by many software engineers and software engineering researchers closely
resembles these definitions of information (e.g. Basili ef al., 1994a). Thus, within the software
engineering (and also the artificial intelligence) community, knowledge is most often seen as
being of one kind — something tangible — something that can be acquired, shared, and
distributed.

However, this tendency to treat knowledge as being of one kind severely limits both the
theoretical and practical potential of SPI. Theoretically, it fails to recognize important aspects
of the distinction between tacit and explicit knowledge, and between individual and collective
knowledge — aspects that we consider of vital importance for understanding and improving
the processes of software development. Practically, the conception of knowledge as something
explicit and quantifiable draws a problematic distinction between knowledge as a tangible
good and the use of that good in practice, hence limiting our ability to support practitioners in
solving their real world problems.

A
Proprietary knowledge Shared knowledge
Explicit
Codified experience Formal routines
. Uncodified experience Informal routines
Tacit Mental models Shared mental models
Individual practice/skills Organizational practice

\ >

Individual Collective

Figure 4.3: The epistemological and ontological dimensions of knowledge.

— 80—

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

Since we are most concerned with an understanding of knowledge that has a clear link to
SPI and practical work situations, we conceptualize knowledge along two dimensions (see
Figure 4.3). The first dimension is the degree of tacit or explicit knowledge, while the second
dimension relates to whether the knowledge resides in individuals, groups, or the organization
as a whole. Nonaka (1994; Nonaka and Takeuchi, 1995) termed these dimensions as the
“epistemological” and the “ontological” dimensions respectively.

Our understanding of the epistemological dimension is based on Polanyi’s (1966)
distinction between tacit and explicit knowledge. His conjecture was that “we can know more
than we can tell” (ibid., p. 4, italics in original), and that knowledge that can be expressed in
words and numbers only represents the tip of the iceberg of the entire body of knowledge. For
example, we can recognize a person’s face among thousands, but usually we cannot tell how
we recognize a face that we know. Thus, explicit knowledge refers to knowledge that can be
codified and expressed formally using a system of symbols, and can therefore be easily
communicated or diffused (Nonaka and Takeuchi, 1995). Tacit knowledge, on the other hand,
refers to implicit and uncodified knowledge, which is deeply rooted in personal experience
and skills and, therefore, difficult to diffuse.

Tacit knowledge involves both cognitive and technical elements (Nonaka, 1994). The
cognitive elements center on what Johnson-Laird (1983) and others (e.g. Senge, 1990) have
called “mental models”, which includes values, beliefs, viewpoints, and perspectives that help
individuals to perceive and define their world. Conversely, the technical elements of tacit
knowledge cover the concrete know-how and skills that applies to specific contexts.

Just as there is a tendency within the software engineering community to favor the
explicit over the tacit, we see a similar tendency to favor the individual over the group. This is
reflected, for example, by Simon (1991) who insists that all learning take place inside the
heads of individuals, and also by Argyris (1999) and Argyris and Schon (1996). However,
there has been a tendency toward treating groups and organizations in their own right. This is
seen in the organizational literature on e.g. “communities of practice” (Brown and Duguid,
1991; Lave and Wenger, 1991; Orr, 1996; Wenger, 1998), “core competencies” (Prahalad and
Hamel, 1990), “learning organization” (Senge 1990), “thinking organization” (Hunt and
Buzan, 1999), “knowing organization” (Choo, 1998), “knowledge-creating company”
(Nonaka and Takeuchi, 1995), and on the pursuit of “organizational intelligence” (March,
1999).

Similar to the explicit/tacit distinction, individuals and groups each do epistemic work
that the other cannot (Cook and Brown, 1999). So, for example, while individual software
developers have a sense of how a particular sub-module of a large program works, it is a
group of developers that collectively possess the knowledge of the total system. Thus, similar
to a soccer team, the body of knowledge of a software development group is possessed by the
group as a whole. This leads to the contention that the organization’s knowledge is not the
sum of the knowledge of its individuals, but is something more and something different (Fiol
and Lyles, 1985; Walsh and Ungson, 1991).

Based on the preceding discussion, we follow traditional Platonian epistemology and
define knowledge as justified true belief (Nonaka, 1994; Nonaka and Takeuchi, 1995).
Similarly, we emphasize “belief” and “justification” rather than “truth”, as we regard
knowledge as a social construction of reality rather than something that is true in any absolute
sense. The creation of knowledge is thus not simply a matter of compiling facts; it is rather a
dynamic human process that is related to the practice of individuals and groups.

—81-

CHAPTER 4

4.3.2 Individual knowledge creation

Basically, there are two ways by which individuals acquire knowledge:

(1) Verbal transfer (by other individuals or by books, articles etc.).

(2) Direct experience (through the receipt of sensory data).

The creation of new individual knowledge through verbal transfer corresponds to the
traditional educational way of learning which view knowledge as something that originates in
the environment surrounding the learner. It is worth noting, however, that there is a world of
difference between transmitting information (e.g. teaching) and creating knowledge
(learning). So, while teachers, books, manuals, colleagues, or business partners can transmit
information or help in arranging the conditions required for learning to take place, they cannot
provide knowledge. This is also at the heart of autopoietic theory (Maturana and Varela,
1980), that knowledge cannot be imported: it can only be created.

Therefore, in order to create new valid knowledge from verbal transfer, the individual
software developer must commit him or herself to actively engage in a learning process,
combining the externally transmitted information with previous knowledge and intelligence.
However, an important insight from several studies (e.g. Pfeffer and Sutton, 2000) is that
knowledge acquired through experience is much more likely to be turned into action than
knowledge acquired by reading or listening. Indeed, “The most powerful learning comes from
direct experience.” (Senge, 1990, p. 23).

Among the most influential theorists who have explored the central role that experience
plays in the learning process are John Dewey, Kurt Lewin, and Jean Piaget. They inspired the
work of later theorists such as Gregory Bateson, David Kolb, Chris Argyris, and Donald
Schon. We have found Kolb’s (1984) model of experiential learning useful in summarizing
the ideas of these theorists and in explaining the process of individual learning. Kolb (1984)
defined learning as “the process whereby knowledge is created through the transformation of
experience.” (ibid., 1984, p. 38, italics in original). What’s more, he emphasized the
importance of critical reflection in learning.

Kolb’s (1984) theory of experiential learning summarizes the individual learning process
by a cycle consisting of four stages (see Figure 4.4). The cycle begins with actual or
“concrete experience” that deals with immediate human situations in a personal way. Next is
the individuals’ ability to reflect on and observe their experiences from many perspectives and
develop these observations into collections of related ideas in a process, which Kolb (1984)
called “reflective observation”. The third stage in the learning cycle is making sense of our
experiences. Kolb (1984) called this stage in which we construct models to define and explain
or predict what we observe for “abstract conceptualization”. In the final stage we seek to test
our ideas in new situations through “active experimentation” (trying something new). The
outcome of such an experiment becomes concrete experience and thus a spiraling cycle of
experiential learning becomes apparent.

— 82—

FOUNDATIONS OF THE LEARNING SOFTWARE ORGANIZATION

Concl
Exper

rete
ience

A

Grasp

ing via

APPREHENSION

Active Transformation Transformation Reflective
Experimentation via EXTENSION via INTENSION Observation
Grasping via
COMPREHENSION
v
Abstract

Conceptualization

Figure 4.4: Kolb’s (1984) experiential learning cycle (p. 42).

As shown in Figure 4.4, there are two dimensions in Kolb’s (1984) learning cycle: the
prehension dimension and the transformation dimension, each representing two dialectically
opposed adaptive orientations where both ends can be present at the same time. The
prehension dimension represents the abstract/concrete dialectic and says something about how
individuals are grasping or taking hold of experience in the world. The transformation
dimension represents the active/reflective dialectic and says something about how the
experiences are given meaning. Although experience is essential to learning, it is not enough;
one has to do something with it to construct knowledge. The two basic dimensions of the
learning process reflect this and, according to Kolb (1984), knowledge results from the
combination of grasping and transforming experience.

Direct experience is also connected to processes of sensemaking, since the combination
of a past moment, a connection, and a present moment of experience is what creates a
meaningful definition of the present situation (Weick, 1995). Thus, experiential learning has
in common with sensemaking that it requires three things: two elements and a relation.

4.3.3 Organizational knowledge creation

While Kolb’s (1984) theory of experiential learning is individual-oriented, we are primarily
interested in knowledge creation theory in a group and organizational context. Although the
terminology varies, the same basic steps to knowledge creation appear in virtually all studies
of organizational learning. For example, Daft and Weick (1984) described the process in
terms of scanning, interpretation, and learning. Wikstrom and Normann (1994) distinguished
between the generative, productive, and representative knowledge processes. Leonard-Barton
(1995) identified four main activities carried out in the course of developing new products and
processes through which an organization builds its knowledge and extends or creates new

— 83 —

CHAPTER 4

capabilities: (1) shared, creative problem solving; (2) implementing and integrating new
methodologies and tools; (3) experimentation and prototyping; and (4) importing knowledge
from the outside. In a similar vein, Garvin (2000) made a distinction between acquiring,
interpreting, and applying information in order for an organization to learn.

Today, Nonaka and Takeuchi’s (1995) work on the knowledge-creating company has be-
come widely accepted as state-of-the-art in organizational knowledge creation. Based on their
analysis of how Japanese companies create the dynamics of innovation, they proposed a five-
phase model of the organizational knowledge creation process (see Figure 4.5).

Nonaka and Takeuchi’s (1995) knowledge creating process starts with the sharing of tacit
knowledge. This is a phase where individuals typically interact with each other through face-
to-face dialogue in self-organizing teams in order to achieve a common goal and develop
shared mental models. In the second phase, creating concepts, the team members collectively
reflect on their shared tacit knowledge, and articulate it through further dialogue to verbalize
the model into explicit concepts. In the third phase, justifying concepts, the newly created
concepts are evaluated at the organizational level to determine whether they are in line with
the organization’s intention and, thus, whether they are truly worthy of pursuit. In the fourth
phase, buildi