
Simon Thoresen

An efficient solution to
inexact graph matching

with application to
computer vision

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

NTNU Trondheim
Norges Teknisk-Naturvitenskapelige Universitet
Institutt for Datateknikk og Informasjonsvitenskap
Doktor ingeniøravhandling 2007

ISBN 978-82-471-3604-1 (electronic)
ISBN 978-82-471-3599-0 (printed)

ISSN 1503-8181 (Doktoravhandlinger ved NTNU)

Abstract

Graph matching is considered the recognition step in computer vision. Our work
uses attributed relation graphs (ARG’s) for image representation and analysis,
a structural description that we enhance with the complete and coherent spatial
knowledge of the source image.

In chapter 1 we reveal a trend where researchers are slowly incorporating more
and more spatial knowledge into relational graphs. The ultimate realization
of such knowledge in graphs is what we term a “spatially coherent attributed
relational graph” whose connectivity is such that any degree of connectivity can
be derived from any other. We argue that selective pruning or thresholding of
connectivity in a graph is therefore the projection of a solution into a problem
instance. This is our first contribution.

This trend degenerates most popular matching methods since these rely on graphs
being sparsely connected, and typically collapse as connectivity increases.

In part 1 we introduce our second contribution; an inexact graph matcher whose
performance increases with the connectivity of the graphs. Although the method
is designed for our spatially coherent graphs, early research shows that it can
even be applied to more traditional relational graphs as well. Our graph matcher
extends the ideas of semilocal constraints to hold as global constraints. To solve
intermediate instances of the assignment problem, we propose a very simple two-
pass method that performs with sufficient accuracy.

We present all runtimes in the number of comparisons that are performed on
vertices and edges in a problem instance, since this measurement is separate from
processor-time – a number biased by implementation skill, processor architecture
and operating system. Our method runs by the least possible amount of vertex
comparisons, and a tiny fraction of the upper-bound edge comparisons. It has a
memory footprint that scales effortlessly with graph sizes.

Finally, in part 2 we present our third and last contribution; an object matcher
capable of combining a set of graph matching results derived from multiple vision
domains.

iii

iv

Acknowledgements

First of all I would like to thank Richard E. Blake for accepting the responsibilities
as my supervisor and for his assistance. I would like to thank the Norwegian
University of Science and Technology for their financial support – it has been
greatly appreciated and put to good use.

Dr Anderson at the University of Reading gets my highest praise for the incredible
support and guidance he gave me while I was visiting for 6 months during 2006,
without his help I would not have managed to put this thesis into words. I wish
him the best of luck with all of his continued work.

I would like to thank friends and family, especially my parents, Erik and Torunn,
my brother Chris and his girlfriend Siv, their soon-to-be son Vetle, my brother
Ole-Jørgen, my sister Sara and her husband Ronny Støbakk, and their three
wonderful children Majka, Sigurd and Gustav, for their love, understanding,
encouragement and belief in me during my work with this thesis.

The images that appear in figure 1.1 is copyright [1], figure 1.2 is copyright [2],
figures 1.3, 1.4, and 1.8 are copyright [3], and figure 1.12 is copyright [4].

v

vi

Contents

1 Introduction 1
1.1 Intention and milestones . 1
1.2 Approaches to computer vision . 3
1.3 Vision by inexact graph matching 8
1.4 The complexity of inexact graph matching 12
1.5 Problem instances in computer vision 19
1.6 Approximations to the optimization problem 28

1.6.1 Algorithm overview . 30

I An efficient solution to inexact graph matching 37

2 Graph matcher algorithm 39
2.1 Initialization . 39
2.2 Recursion . 40
2.3 The domain expert explained . 43

3 Graph matcher illustration 45
3.1 Details of a perfect match . 47
3.2 Details of a subgraph match . 57
3.3 Details of a stochastic mismatch 66
3.4 Details of a syntactic mismatch . 68

4 Graph matcher results 75
4.1 Overview . 75

4.1.1 A note on the figures . 76
4.2 Improving runtimes . 78

4.2.1 Unrestricted . 78
4.2.2 Depth threshold . 79
4.2.3 Depth- and association threshold 80
4.2.4 Depth- and association threshold, restricted local recursions 81
4.2.5 Depth- and association threshold, restricted local and global

recursions . 82

vii

viii CONTENTS

4.3 Performance under noise . 83
4.3.1 Spatial noise . 83
4.3.2 Pattern noise . 89
4.3.3 Vertex noise . 95
4.3.4 Combinations of noise . 101

5 Conclusion, part 1 111

II Application to computer vision 115

6 Object definition 117

7 Object extractor 119
7.1 Image acquisition . 119
7.2 Preprocessing . 120

7.2.1 Colour pixel classification 120
7.2.2 Image segmentation . 121
7.2.3 Region thresholding . 123
7.2.4 Object cropping . 123

7.3 Graph extraction . 123
7.3.1 Domain 1: Region mass . 124
7.3.2 Domain 2: Region colour 125
7.3.3 Domain 3: Region moments 125
7.3.4 Domain 4: Dominant lines 126

8 Object matcher algorithm 129

9 Object matcher illustration 133
9.1 Illustration 1 . 137
9.2 Illustration 2 . 142
9.3 Illustration 3 . 143

10 Object matcher results 145
10.1 Overview . 145
10.2 Improvement by domains . 147

10.2.1 25% centroid-, pattern-, and vertex noise 147
10.2.2 No noise . 148

10.3 Performance under noise . 149
10.3.1 Scale noise . 149
10.3.2 Pose noise . 155
10.3.3 Roll noise . 161
10.3.4 Combinations of noise . 167

11 Conclusion, part 2 177

CONTENTS ix

A Source code 179
A.1 Graph matcher . 179

x CONTENTS

List of Figures

1.1 Identification of armored vehicles at short range using infrared
images. This example is a reprint from [1]. 3

1.2 Scene recognition by local features using nearest neighbour meth-
ods. All detected features are marked in both images. This exam-
ple is a reprint from [2]. 5

1.3 This example is a reprint from [3]. 6
1.4 An example of a complex scene that can be matched against the

ARG in figure 1.3 to identify the wrench. This example is a reprint
from [3]. 9

1.5 Upper bound for MINIMUM COST SUBGRAPH ISOMORPHISM. 17
1.6 Undistorted image and corresponding graph. 19
1.7 Distorted image and corresponding graph. 20
1.8 Graphs as they appear in [3]. 21
1.9 A prototype object (a) and a candidate object (b), both made up

of primitive parts. 22
1.10 Various spatially coherent descriptions of figure 1.9. 25
1.11 Improved upper bound in β for MINIMUM COST SUBGRAPH

ISOMORPHISM. 27
1.12 Semi local constraints; neighbours of the point have to match and

angles have to correspond. This example is a reprint from [4]. . . . 29
1.13 Improved upper bound for MINIMUM COST SUBGRAPH ISO-

MORPHISM in α. 31
1.14 Runtime of depth-limited search. 34

3.1 The complete content of our example graph library. 46
3.2 Graphs that perfectly match. 47
3.3 Graphs that contain a perfect subgraph match. 57
3.4 Graphs that do not match stochastically. 66
3.5 Graphs that do not match syntactically. 68

4.1 Unrestricted match. 78
4.2 Match with depth threshold. 79

xi

xii LIST OF FIGURES

4.3 Improvement by depth threshold. 79
4.4 Match with depth- and association threshold. 80
4.5 Improvement by depth- and association threshold. 80
4.6 Match with depth- and association threshold, restricted local re-

cursions. 81
4.7 Improvement by depth- and association threshold, restricted local

recursions. 81
4.8 Match with depth- and association threshold, restricted local and

global recursions. 82
4.9 Improvement by depth- and association threshold, restricted local

and global recursions. 82
4.10 Match with 10% spatial noise. 84
4.11 Match with 25% spatial noise. 85
4.12 Match with 50% spatial noise. 86
4.13 Match with 75% spatial noise. 87
4.14 Match with 95% spatial noise. 88
4.15 Match with 10% pattern noise. 90
4.16 Match with 25% pattern noise. 91
4.17 Match with 50% pattern noise. 92
4.18 Match with 75% pattern noise. 93
4.19 Match with 95% pattern noise. 94
4.20 Match with 10% vertex noise. 96
4.21 Match with 25% vertex noise. 97
4.22 Match with 50% vertex noise. 98
4.23 Match with 75% vertex noise. 99
4.24 Match with 95% vertex noise. 100
4.25 Match with 10% spatial and vertex noise. 102
4.26 Match with 10% pattern and vertex noise. 103
4.27 Match with 10% spatial and pattern noise. 104
4.28 Match with 10% spatial, pattern and vertex noise. 105
4.29 Match with 25% spatial and vertex noise. 106
4.30 Match with 25% pattern and vertex noise. 107
4.31 Match with 25% spatial and pattern noise. 108
4.32 Match with 25% spatial, pattern and vertex noise. 109

5.1 Improvements by real instances, see chapters 1.5 and 1.6. 112
5.2 Improvements by pruning, see chapters 1 through 4. 113

6.1 Hypothetical runtime comparison. 118

7.1 Image classification by YUV space. 120
7.2 Image segmentation by labeling. 121
7.3 Detail of region thresholding. 122
7.4 Details of object cropping. 123

LIST OF FIGURES xiii

7.5 Example of graph illustration. 124

9.1 Object P1. 134
9.2 Object P2. 134
9.3 Object P7. 135
9.4 Object P8. 135
9.5 Object P3. 136
9.6 Object P4. 136
9.7 Object P5. 137
9.8 Object P6. 137
9.9 Object P9. 138
9.10 Object P10. 138
9.11 Object P11. 139
9.12 Object P12. 139
9.13 Object P13. 140
9.14 Object P14. 140
9.15 Object P15. 141
9.16 Object P16. 141
9.17 Object P17. 141
9.18 Object P18. 142
9.19 Object P19. 143

10.1 Example of an ARG extracted from a rendered house. 146
10.2 Match with 25% centroid-, pattern-, and vertex noise. 147
10.3 Match with no noise. 148
10.4 Example of an ARG extracted under scale noise. 149
10.5 Match with 10% scale noise. 150
10.6 Match with 25% scale noise. 151
10.7 Match with 50% scale noise. 152
10.8 Match with 75% scale noise. 153
10.9 Match with 95% scale noise. 154
10.10Example of an ARG extracted under pose noise. 155
10.11Match with 10% pose noise. 156
10.12Match with 25% pose noise. 157
10.13Match with 50% pose noise. 158
10.14Match with 75% pose noise. 159
10.15Match with 95% pose noise. 160
10.16Example of an ARG extracted under roll noise. 161
10.17Match with 10% roll noise. 162
10.18Match with 25% roll noise. 163
10.19Match with 50% roll noise. 164
10.20Match with 75% roll noise. 165
10.21Match with 95% roll noise. 166
10.22Example of an ARG extracted under a combination of noise. . . . 167

xiv LIST OF FIGURES

10.23Match with 10% pose and scale noise. 168
10.24Match with 10% roll and pose noise. 169
10.25Match with 10% roll and scale noise. 170
10.26Match with 10% roll, pose and scale noise. 171
10.27Match with 25% pose and scale noise. 172
10.28Match with 25% roll and scale noise. 173
10.29Match with 25% roll and pose noise. 174
10.30Match with 25% roll, pose and scale noise. 175

List of Algorithms

1 An overview of our approximation method 30
2 Graph matcher, initialization . 40
3 Graph matcher, recursion . 41
4 Extended connected-component labeling 122
5 Object matcher . 130
6 Object matcher, step 8 . 131
7 Object matcher, step 9 . 131

xv

xvi LIST OF ALGORITHMS

Listings

A.1 Graph matcher in C# . 179

xvii

xviii LISTINGS

Chapter 1

Introduction

1.1 Intention and milestones

Our supervisor, Professor Richard E. Blake at the Norwegian University of Sci-
ence and Technology (NTNU), has over the course of many years developed a
complete and working system for computer vision. It is a complex network of
small programs and shell scripts that employs a nonlinear approach to graph
matching similar to relaxation labeling (see [5]).

His system can be viewed in two parts; 1) a feature extractor, and 2) an inexact
graph matcher. The feature extractor builds a candidate relational graph from a
color image (see [6]) which the matcher then determines to which, if any, of all
known relational graphs it is the most similar.

Papers such as [3] and [7] detail complete vision systems that deal with NP-
completeness by constraining the problem instances such that matching can be
done by exhaustive or heuristic searches through state-space. In [8] and [9] the
authors deal exclusively with inexact graph matching, and demonstrate their
algorithms using random and synthetic structures.

In our thesis we investigate how these approaches to an inherently intractable
problem are able to solve it so efficiently. Most vision systems do not avoid the
NP-completeness of the graph matching problem, instead they deal with it by
employing “smart” context-specific feature extractors.

Furthermore there is a lack of research done in the application of dynamic pro-
gramming techniques to problems such as graph matching. This is likely due to
the fact that graph problems do not transform well into corresponding numerical
problems, but we investigate this transformation in light of the “smart” feature

1

2 CHAPTER 1. INTRODUCTION

extractors and the goal of suboptimal solutions.

We also consider the choice of primitives used for the structural descriptions of
a problem. Primitives such as points and lines imply a large description and
a complex matching process, whereas more general primitives allow for smaller
descriptions and simpler matching.

Finally, the feature extractor in [6] implicitly suggests an improved resolution on
the edge-attributes when compared to the original graphs in [10], but there are
no published thoughts or comments on this. What resolution on attribute detail
is sufficient for an object description, and what effects does improved resolution
imply? How and when, if at all, can the original resolution be used?

The research goal of our thesis is:

To develop a solution to subgraph isomorphism that manages sufficient accuracy
in lower time-complexity than other published methods, and which can be applied
to computer vision.

The goal is achieved through the following milestones:

1. Investigate how graph extraction is performed in previous litterature; con-
sider trends and their ultimate impact on other proposed methods (achieved
in chapter 1.5).

2. Look for a general graph matching distance measurement and its applica-
tion (this effort spawned the “domain expert” explained in chapter 2).

3. Investigate how ideas in dynamic programming can be applied to solving
subgraph isomorphism in pseudo-polynomial time (discussed in chapter 1.6,
and contained in the algorithm in chapter 2).

4. Develop an algorithm to solve subgraph isomorphism in light of the result
of the previous milestones (achieved in chapter 2).

This chapter introduces the problem area, the underlying litterature and proposes
our solution. Part I contains a detailed description of our algorithm, it introduces
our measures of success, and demonstrates the efficiency of the method on ran-
dom graphs. Finally, part II describes and demonstrates the application of the
algorithm to computer vision.

1.2. APPROACHES TO COMPUTER VISION 3

(a) Short range infrared image. (b) Examples of searched details.

Figure 1.1: Identification of armored vehicles at short range using infrared images.
This example is a reprint from [1].

1.2 Approaches to computer vision

Computer vision is the study and application of methods which allow computers
to “understand” image content or content of multidimensional data in general.
The term “understand” means here that specific information is being extracted
from the image data for a specific purpose: either for presenting it to a human
operator (e.g., if cancerous cells have been detected in a microscopy image), or for
controlling some process (e.g., an industry robot or an autonomous vehicle). The
image data that is fed into a computer vision system is often a digital gray-scale
or colour image, but can also be in the form of two or more such images (e.g., from
a stereo camera pair), a video sequence, or a 3D volume (e.g., from a tomography
device). In most practical computer vision applications, the computers are pre-
programmed to solve a particular task, but methods based on learning are now
becoming increasingly common.

In biological vision and visual perception real vision systems of humans and
various animals are studied, resulting in models of how these systems are imple-
mented in terms of neural processing at various levels. Computer vision, on the
other hand, studies and describes technical vision system which are implemented
in software or hardware, in computers or in digital signal processors. There is
some interdisciplinary work between biological and computer vision but, in gen-
eral, the field of computer vision studies processing of visual data as a purely
technical problem in the environment of computer devices.

The field of computer vision can be characterized as immature and diverse. Even
though earlier work exists, it was not until the late 1970’s that a more focused
study of the field started when computers could manage the processing of large
data sets such as images. However, these studies usually originated from various
other fields, and consequently there is no standard formulation of the “computer

4 CHAPTER 1. INTRODUCTION

vision problem.” Also, and to an even larger extent, there is no standard formu-
lation of how computer vision problems should be solved. Instead, there exists
an abundance of methods for solving various well-defined computer vision tasks,
where the methods often are very task specific and seldom can be generalized
over a wide range of applications. Many of the methods and applications are still
in the state of basic research, but more and more methods have found their way
into commercial products, where they often constitute a part of a larger system
which can solve complex tasks (e.g., in the area of medical images, or quality
control and measurements in industrial processes).

One of the most prominent application fields is medical computer vision or medi-
cal image processing. This area is characterized by the extraction of information
from image data for the purpose of making a medical diagnosis of a patient. Typ-
ically image data is in the form of microscopy images, X-ray images, angiography
images, ultrasonic images, and tomography images. An example of information
which can be extracted from such image data is detection of tumours, arterioscle-
rosis or other malign changes. It can also be measurements of organ dimensions,
blood flow, etc. This application area also supports medical research by provid-
ing new information (e.g., about the structure of the brain, or about the quality
of medical treatments).

A second application area in computer vision is in industry. Here, information
is extracted for the purpose of supporting a manufacturing process. One ex-
ample is quality control where details or final products are being automatically
inspected in order to find defects. Another example is measurement of position
and orientation of details to be picked up by a robot arm.

Military applications are probably one of the largest areas for computer vision,
even though only a small part of this work is open to the public. The obvious
examples are detection of enemy soldiers or vehicles and guidance of missiles to a
designated target. More advanced systems for missile guidance send the missile
to an area rather than a specific target, and target selection is made when the
missile reaches the area based on locally acquired image data. Modern military
concepts, such as “battlefield awareness,” imply that various sensors, including
image sensors, provide a rich set of information about a combat scene which can
be used to support strategic decisions. In this case, automatic processing of the
data is used to reduce complexity and to fuse information from multiple sensors
to increase reliability.

Computer vision is by some seen as a subfield of artificial intelligence where
image data is being fed into a system as an alternative to text based input for
controlling the behaviour of a system. Some of the learning methods which
are used in computer vision are based on learning techniques developed within
artificial intelligence.

A second field which plays an important role is neurobiology, specifically the

1.2. APPROACHES TO COMPUTER VISION 5

(a) Known scene as it exists in database. (b) Unknown scene to be recognized.

Figure 1.2: Scene recognition by local features using nearest neighbour methods.
All detected features are marked in both images. This example is a reprint from
[2].

study of the biological vision system. Over the last century, there has been an
extensive study of eyes, neurons, and the brain structures devoted to processing
of visual stimuli in both humans and various animals. This has led to a coarse,
yet complicated, description of how “real” vision systems operate in order to
solve certain vision related tasks. These results have led to a subfield within
computer vision where artificial systems are designed to mimic the processing
and behaviour of biological systems, at different levels of complexity.

Yet another field related to computer vision is signal processing. Many existing
methods for processing of one-variable signals, typically temporal signals, can
be extended in a natural way to processing of two-variable signals or multi-
variable signals in computer vision. However, because of the specific nature of
images there are many methods developed within computer vision which have
no counterpart in the processing of one-variable signals. A distinct character
of these methods is the fact that they are non-linear which, together with the
multi-dimensionality of the signal, defines a subfield in signal processing as a part
of computer vision.

Many of the related research topics can also be studied from a purely mathe-
matical point of view. For example, many methods in computer vision are based
on statistics, optimization or geometry. Pattern recognition uses various meth-
ods to extract information from signals in general, mainly based on statistical

6 CHAPTER 1. INTRODUCTION

(a) An image of a model object (b) Attributed relation graph representa-
tion for the single-object image (a).

Figure 1.3: This example is a reprint from [3].

approaches, and a significant part of this research is devoted to applying these
methods to image data.

Pattern recognition aims to classify data (patterns) based on either a priori knowl-
edge or on statistical information extracted from the patterns. The patterns to
be classified are usually groups of measurements or observations, defining points
in an appropriate multidimensional space.

A complete pattern recognition system consists of a sensor that gathers the ob-
servations to be classified or described; a feature extraction mechanism that
computes numeric or symbolic information from the observations; and a classifi-
cation or description scheme that does the actual job of classifying or describing
observations, relying on the extracted features.

The classification or description scheme is usually based on the availability of a
set of patterns that have already been classified or described. This set of patterns
is termed the training set and the resulting learning strategy is characterised as
supervised learning. Learning can also be unsupervised, in the sense that the
system is not given an a priori labelling of patterns, instead it establishes the
classes itself based on the statistical regularities of the patterns.

Consider a classical m-class pattern recognition problem. When we consider
each pattern as a single entity we can use a set of n characteristic measurements
(features) to represent each pattern under study. In such a case, each pattern is
represented by an n-dimensional feature vector and the recognition of patterns
can be accomplished by applying various techniques in discriminant analysis and
statistical decision theory. Such an approach is often called decision-theoretic or
statistical approach. However, when the patterns under study are very complex
or when the number of pattern classes m is very large the number of features n

1.2. APPROACHES TO COMPUTER VISION 7

required for recognition could also become very large. Consequently, the classical
decision-theoretic approach often becomes ineffective or computational infeasible
in solving this kind of problems.

One way to approach this kind of problem is to represent a complex pattern
by its simpler subpatterns and hope that we can treat each simpler subpattern
as a single entity and use decision-theoretic methods for the subpatterns (see
[11] and [12]). Of course, the relations among subpatterns must be taken into
consideration. If each subpattern is again very complex, we may represent each
subpattern by even simpler subpatterns, until we are sure that the simplest sub-
patterns, named “pattern primitives” by [13], can be easily treated by simple
decision-theoretic methods.

In [10] the authors illustrate how weighted graphs can be used to formulate a
structural description of an object. Such descriptions have been further enhanced
with parametric information and represented by attributed relation graphs (ARG,
see [3]). Such graphs are capable of describing and relating the pattern primitives
in an elegant and efficient structure. See figure 1.3 as an example on how graphs
can be used to express the content of an image. Graphs matching is traditionally
used for man made objects that contain sharp edges, basic colors and controlled
lighting since these are properties that allow for less ambigous graphs.

In the following sections we examine how such graphs are used in computer vision,
and what problems they pose.

8 CHAPTER 1. INTRODUCTION

1.3 Vision by inexact graph matching

Let us first introduce the concept of vision by inexact graph matching.

A database contains a set {Mk} of models. Each model Mk is defined by the
graphs {Gj} extracted from model images. During the storage process, each
graph Gj is added to the database with a link to the model k for which it has
been extracted. Formally, the simplest database is a table of pairs (Gj , k).

Recognition consists of finding the model Mk which corresponds to a given query
image I; that is the model which is the most similar to this image. A graph Gl

is extracted from the image, then compared to every graph Gj in the database
by computing their “distance” by a function d(Gl, Gj).

The model associated with the “closest” graph is then selected as the best match.
The dictionary definition (see [14]) of the verb “match” is to “1; agree almost
exactly. 2; be comparable or equivalent in character or form.” When one speak of
two objects matching, it is often assumed that matching is a symmetric process;
A matches B if and only if B matches A. The use of the term “inexact matching”
is to stress the asymmetric nature of our method; we are looking for the model
in the database that is the least different from the unknown one.

In [10], the authors formulate a structural description D of an object as a pair
D = (P,R). P = {P1, ···, Pn} is a set of primitives, one for each of the n primitive
parts of the object. Each primitive Pi is a binary relation Pi ⊆ A×V where A is a
set of possible attributes and V is a set of possible values. R = {PR1, · · ·, PRK}
is a set of named N -ary relations over P . For each k = 1, · · ·,K. PRk is a
pair (NRk,Rk) where NRk is a name for relation Rk, and for some positive
integer Mk, Rk ⊆ PMk. Thus, set P represents the parts of an object, and set
R represents the interrelationships among the parts. Note that the elements of
any relation Rk may include as components primitives, attributes, values and
any symbols necessary to specify the given relationship.

Through [3] and [15] this description is realized as an attributed relation graph
(ARG). This ARG is defined as a 6-tuple G = (V,E, AV , AE , αV , αE) where V
and E are respectively the sets of the vertices and the edges of the ARG; AV and
AE are the sets of vertex- and edge-attributes, while αV and αE the functions
associating to each vertex or edge the corresponding attributes.

The attributes of a node or an edge have the form t(p1, ..., Pkt
), where t is a

type chosen over a finite alphabet T , and (p1, ..., pkt) are a tuple of parameters,
also from finite sets P ′

1, ..., P
′
kt

. Both the number of parameters, kt, and the sets
they belong to depend on the type of the attribute, and for some type kt may be
equal to 0, i.e. the attribute has no parameters. The type information is used to
discriminate among different kinds of nodes (or edges), while the parameters carry
the information which characterizes the nodes (or edges) of a given type. Usually

1.3. VISION BY INEXACT GRAPH MATCHING 9

(a) An image of overlapping objects. (b) Attributed relation graph representa-
tion for the multi-object image (a).

Figure 1.4: An example of a complex scene that can be matched against the
ARG in figure 1.3 to identify the wrench. This example is a reprint from [3].

the nodes of the graphs are used to represent the primitives of the structural
descriptions, and the edges to represent the relations between the primitives; but
the availability of different node or edge types allows us to use ARG’s as very
general descriptors.

The database of models and the distance measurement above hold equally well
under these descriptors as it holds for simpler graphs.

For readability we will express ARG’s only by its vertices and edges, such as
G = (V,E). The attribute alphabet, values and associations are implicitly given
by the context in which these graphs appear. If needed for clarity, these elements
will be referenced using the above notation.

One way the structural descriptions are used is to define “prototype” models.
The structural descriptions of prototype models are used as part of the knowl-
edge base of the recognition system. Such a system inputs “candidate” images,
computes their structural descriptions, and tries to identify each candidate with a
stored model. Thus, instead of asking whether two structural descriptions match
each other, we only ask whether a candidate structural description matches a
prototype structural description.

However, the methods for the automatic generation of the prototypes from a suit-
able set of ARG’s standing as examples are very complex.

There are mainly three different approaches to the problem.

10 CHAPTER 1. INTRODUCTION

The first approach relies on the assumption that an expert of the domain defines
by hand the prototypical descriptions of the classes. This approach cannot ne-
glect the problem of the definition of a suitable deformation model allowing the
recognition of noisy and distorted samples. To this concern some authors (see
[16]) define by hand the deformation model, while others (see [17]) use a training
set for tuning its parameters. The main advantage of this approach is that it does
not require a large training set. On the other hand, the inadequacy of human
knowledge to find, for each class, a set of prototypes really representative of a
given class, significantly increase the risk of confusion among different classes,
especially in noisy domains.

The second approach is based on the use of a large set of patterns, possibly
containing a large variety of distorted samples; the advocates of this approach
say that any pattern may be recognized if enough data is collected (see [18]). The
main advantage of this approach is that no a priori knowledge is required, and
the classification system is relatively simple. On the other hand, these systems
usually exhibit a limited capability of recognizing a pattern different from those
in the reference set, making their use critical when data are not sufficient to build
a reference set containing all the variants which may occur in a class.

The third approach (see [19], [15]) considers the determination of the class pro-
totypes as a symbolic machine learning problem, formulated as follows: given a
suitably chosen set of input data, and possibly some background domain knowl-
edge, the goal is to discover a description of each class which is more general
than the bare enumeration of the training samples, but still retains the ability of
discerning objects belonging to different classes. One of the advantages of this
approach is that the descriptions obtained are usually explicit and easily inter-
pretable by humans, so allowing an expert to validate or to improve them, or to
achieve a better understanding of what has gone wrong in case of errors. While
this approach is promising and appealing for the extreme generality of the found
prototypes, its major drawback is the computational cost, which is fairly high so
limiting the applicability in complex applications.

In [20] a pattern deformational model is proposed. A class of structure-preserving
deformations, i.e., deformations which change only the values of the attributes
of nodes and branches of the ARG is defined. The corresponding ARG matching
algorithm, called “Error-Correcting Isomorphism,” is consequently based on a
graph isomorphism for the syntactic part of the ARG. This algorithm, though
powerful enough for some practical applications, reveals to be not adequate when
the object to be recognized is partially occluded, or greatly distorted in some of
its parts. In [21], a generalization of [20] is proposed that includes the possibility
of deletion of nodes and branches. However, when severe variations among the
members of the same class are possible, even this last model is not effective.

These ideas are extended in [22] where the authors propose an ARG inexact
matching algorithm. The inexactness implies that the sample graph is consid-

1.3. VISION BY INEXACT GRAPH MATCHING 11

ered matchable with one of the prototypes if a set of syntactic and semantic
transformations (selected among those applicable to the considered prototype)
can be found. such that the transformed graph sample is isomorphic to the graph
of the prototype.

Our method belongs to the second approach above, supported by the claims in
[18] (any pattern may be recognized if enough data is collected). Our knowledge
base consists of a large variety of samples for each model, and we have no need to
find the most general prototype for each model. Our decisions are made simply on
the grounds of which of the stored descriptors that most resembles the candidate
one. This means that our method requires no preprocessing of the database,
there is no search for a partitioning of a complex hyperspace. This has the added
benefit of allowing new models to be added to the knowledgebase in real time,
thus allowing learning systems to use our method with ease.

The complexity of our method is given solely by the complexity of the subgraph
isomorphism problem, a problem that other methods, such as [22], contain as
subproblems. Let us in the next section consider the difficulty of this problem.

12 CHAPTER 1. INTRODUCTION

1.4 The complexity of inexact graph matching

In this section we introduce the complexity of the inexact matching of two graphs.
We briefly discuss the theory of NP-completeness and how this applies to our
problem. We comment on other research that expresses the complexity of sim-
ilar problems, and conclude with a formal description of our problem and its
intractability.

Let us say that a function f(n) is O(g(n)) whenever there exists a constant c such
that |f(n)| ≤ c · |g(n)| for all values of n ≥ 0. A polynomial time algorithm is
defined to be one whose time complexity function is O(p(n)) for some polynomial
function p, where n is used to denote the input length. Any algorithm whose
time complexity function cannot be so bounded is called an exponential time
algorithm. We shall refer to a problem as intractable if it is so hard that no
polynomial time algorithm can possibly solve it.

The foundations for the theory of NP-completeness were laid in [23].

The paper emphasizes the significance of “polynomial time reducibility,” that is,
reductions for which the required transformation can be executed by a polynomial
time algorithm. If there is a polynomial time reduction from one problem to
another, then any polynomial time algorithm for the second problem can be
converted into a corresponding polynomial time algorithm for the first problem.

It also focuses attention on the class NP of decision problems, problems whose
solution is either “yes” or “no”, that can be solved in polynomial time by a nonde-
terministic computer. Most of the apparently intractable problems encountered
in practice, when phrased as decision problems, belong to this class.

The author of [23] proves that one particular problem in NP, called the “satisfia-
bility” problem, has the property that every other problem in NP can be polyno-
mially reduced to it. If the satisfiability problem can be solved with a polynomial
time algorithm, then so can every other problem in NP, and if any problem in NP
is intractable, then the satisfiability problem also must be intractable. The sat-
isfiability problem is thus the “hardest” problem in NP. It is also suggested that
other problems in NP might share with the satisfiability problem this property
of being the “hardest” member of NP. Subsequently, Richard Karp presented a
collection of results (see [24]) proving that indeed the decision problem versions of
many well known combinatorial problems, including the traveling salesman prob-
lem, are just as “hard” as the satisfiability problem. Since then a wide variety of
other problems have been proved equivalent in difficulty to these problems, and
this equivalence class has been labeled the class of “NP-complete problems”. As
a matter of convenience, the theory of NP-completeness is designed to be applied
only to decision problems. Abstractly, a decision problem Π consists simply of a
set DΠ of instances and a subset YΠ ⊆ DΠ of yes-instances. However, most deci-
sion problems of interest possess a considerable amount of additional structure,

1.4. THE COMPLEXITY OF INEXACT GRAPH MATCHING 13

and we adopt the format of [25] to emphasizes this structure. The format consists
of two parts, the first part specifying a generic instance of the problem in terms
of various components, which are sets, graphs, functions, numbers, etc., and the
second part stating a yes-no question asked in terms of the generic instance. The
way in which this specifies DΠ and YΠ should be apparent. An instance belongs
to DΠ if and only if it can be obtained from the generic instance by substituting
particular objects of the specified types for all the generic components, and the
instance belongs to YΠ if and only if the answer for the stated question, when
particularized to that instance, is “yes.”

Among the 21 original NP-complete problems is CLIQUE, given as:

CLIQUE
INSTANCE: A graph G = (V,E) and a positive integer J ≤ |V |.
QUESTION: Does G contain a clique of size J or more, that is, a
subset V ′ ⊆ V such that |V ′| ≥ J and every two vertices in V ′ are
joined by an edge in E?

The principle technique used for demonstrating that two problems are related is
that of “reducing” (denoted by “∝”) one to the other, by giving a constructive
transformation that maps any instance of the first problem into an equivalent
instance of the second. Such a transformation provides the means for converting
any algorithm that solves the second problem into a corresponding algorithm for
solving the first problem.

Transformed from CLIQUE by [23] the problem of SUBGRAPH ISOMORPHISM
has been proven to lie in NPC:

SUBGRAPH ISOMORPHISM
INSTANCE: Graphs G = (V1, E1), H = (V2, E2).
QUESTION: Does G contain a subgraph isomorphic to H, i.e., a
subset V ⊆ V1 and a subset E ⊆ E1 such that |V | = |V2|, |E| = |E2|,
and there exists a one-to-one function f : V2 → V satisfying {u, v} ∈
E2 if and only if {f(u), f(v)} ∈ E?

Let this be a first approximation to our problem. As such, it is NP-complete.

There is no known polynomial time algorithm for solving this problem. However,
suppose someone claimed, for a particular instance of this problem, that the
answer is “yes.” If we were sceptical about this claim, we could demand that
they supplied us with a subgraph isomorphism from graph H to graph G. It
would then be a simple matter to verify the truth or falsity of their claim by
applying this isomorphism to map the vertices in H to those in G, and then
comparing the implied edge-associations. This verification procedure could be

14 CHAPTER 1. INTRODUCTION

specified as a general algorithm that has time complexity bound polynomially by
the size of Π.It is this notion of polynomial time “verifiability” that the class NP
is intended to isolate. Notice that polynomial time verifiability does not imply
polynomial time solvability. A problem that can not be solved in polynomial time
by a nondeterministic computer means that even checking a solution for validity
is an intractable problem. Such a problem lies outside NP, and is therefore
more difficult than any NP-complete problem.Any decision problem Π, whether
a member of NP or not, to which we can transform an NP-complete problem will
have the property that it cannot be solved in polynomial time unless P=NP. We
might say that such a problem Π is “NP-hard,” since it is, in a sense, at least
as hard as the NP-complete problems. Any decision problem Π which we can
transform to some problem in NP, will have the property that it can be solved in
polynomial time if P=NP and hence can be “no harder” than the NP-complete
problems. This type of problem Π is “NP-easy,” since it is just as easy as the
hardest problems in NP. A standard example of a problem that is NP-hard and
that may not be as easy as the NP-complete problems is the following from [26]
and [27].

MINIMUM EQUIVALENT EXPRESSION
INSTANCE: A well-formed Boolean expression E involving literals
on a set V of variables, the constants T (true) and F (false), and the
logical connectives ∧ (and), ∨ (or), ¬ (not), and → (implies), and a
nonnegative integer K.
QUESTION: Is there a well-formed Boolean expression E′ that con-
tains K or fewer occurrences of literals such that E′ is equivalent to
E, that is, such that for all truth assignments to V the truth values
of E′ and E agree?

This problem is NP-hard since SATISFIABILITY is reducible to it. However,
no one has been able to show that an oracle for SATISFIABILITY (or for any
problem in NP) would enable us to solve it in polynomial time, therefore it is
not NP-easy.

Enumeration problems provide natural candidates for the type of problem that
might be intractable even if P=NP. In a search problem Π, each instance I ∈ DΠ

has an associated solution set SΠ(I), and, given I, we are required to find one
element of SΠ(I) (the corresponding decision problem asks whether or not SΠ(I)
is empty). The enumeration problem based on the search problem Π is “Given
I, what is the cardinality of SΠ(I), that is, how many solutions are there?”

The enumeration problems associate with NP-complete problems are clearly NP-
hard, since if we know the cardinality of SΠ(I) we can easily tell whether or not
SΠ(I) is empty. Even if P=NP, and we could tell in polynomial time whether
an arbitrary graph contains a Hamiltonian circuit, it is not apparent that this

1.4. THE COMPLEXITY OF INEXACT GRAPH MATCHING 15

would enable us to count how many Hamiltonian circuits are contained in G in
polynomial time.

Consider the following problem: Given a bipartite graph G, how many distinct
perfect matching does it contain? (Recall that a bipartite graph G = (V,E) is
one in which the vertex set V is partitioned into two sets V1 and V2, and no edge
has both endpoints in the same set. A perfect matching is a set of edges E′ ⊆ E
such that every vertex in V is included in exactly one edge in E′.) The underlying
search problem is well known, since it is just the “marriage problem”, which can
be solved in polynomial time. Nevertheless, in [28] the enumeration problem is
proved to be complete in a class of problems outside NP (namely #P-complete).

Let us now return to our problem and show how its complexity appears to lie
outside NP. In [8] the authors define “the weighted graph matching problem” as
follows: Given two undirected graphs G and g which may be sparse and whose
edges may take values in R1, find the match matrix M such that the following
objective function is minimized.

Ewg(M) = −1
2

A∑
a=1

I∑
i=1

A∑
b=1

I∑
j=1

MaiMbjCaibj (1.1)

subject to ∀a
∑I

i=1 Mai ≤ 1, ∀i
∑A

a=1 Mai ≤ 1, ∀aiMai ∈ 0, 1.

Graphs G and g have A and I vertices respectively. {Caibj} is defined by:

Caibj =

{
0, if either Gab or gij is NULL;
c(Gab, gij) otherwise.

(1.2)

{Gab} and {gij} are the adjacency matrices of the graphs, whose elements may
be in R1 or NULL. These matrices are symmetric with NULL elements along the
diagonal (because the graphs are non-reflexive). So, Gab is the weight of the edge
between vertices a and b of graph G. The matrix M indicates which vertices in
the two graphs match:

Mai =

{
1, if node a in G corresponds to vertex i in g;
0, otherwise.

(1.3)

The function c(·, ·) is chosen as a measure of compatibility between the edges
of the two graphs. This function is similar to the compatibility functions used
within the relaxation labeling framework in [29], [30] and [31]. By explicitly
defining C to be 0 when an edges is missing we are ensuring that C will also be
sparse when the graphs are sparse.

16 CHAPTER 1. INTRODUCTION

The authors of [8] claim that “the weighted graph matching problem” is NP-
complete since it contains the problem LARGEST COMMON SUBGRAPH as a
special case. By their reference, that problem is formulated as:

LARGEST COMMON SUBGRAPH
INSTANCE: Graphs G = (V1, E1), H = (V2, E2), positive integer K.
QUESTION: Do there exist subsets E′

1 ⊆ E1 and E′
2 ⊆ E2 with

|E′
1| = |E′

2| ≥ K such that the two subgraphs G′ = (V1, E
′
1) and

H ′ = (V2, E
′
2) are isomorphic?

This is a problem proven to lie in NPC by transformation from CLIQUE by [25].
It should be noticed, however, that the authors of [8] seemto have misinterpreted
this as a problem of finding the largest possible K for any two graphs. A decision
problem, such as LARGEST COMMON SUBGRAPH, can be derived from an
optimization problem, such as “the weighted graph matching problem”. If the
optimization problem asks for a structure of a certain type that has a minimum
“cost” among all such structures, we can associate with that problem thedecision
problem that includes a numerical bound B as an additional parameter and that
asks whether there exists a structure of the required type having costno more
than B. Decision problems can be derived from maximization in an analogous
way, simply by replacing “no more than” by “at least.”The key point to ob-
serve about this correspondence is that, so long as the cost function is relatively
easy to evaluate, the decision problem can be no harder than the correspond-
ing optimization problem. Clearly, if we could find a minimum cost structure in
polynomial time, then we could also solve the associateddecision problem in poly-
nomial time. All we need to do is find the minimum cost structure, compute its
cost, and compare that cost to the given bound B. Thus,if we could demonstrate
that the decision problem is NP-complete (as indeed it is), we would know that
the optimization problem is at least as hard.Even if LARGEST COMMON SUB-
GRAPH is NP-complete, the optimization problem need only be NP-hard.Let us
now reformulate “the weighted graph matching problem” as the optimization
problem it in fact is. Instead of searching for a common subgraph, we require all
vertices of the smaller graph be associated with vertices in the larger. The cost
to be minimized is expressed by the functions Ev(vi, vj)and Ee(ek, el), where
edge-associations are implied by the vertex-associations. Associating vertices v1

and v2 in graph G to vertices v3 and v3 in graph H respectively, implies that an
edge (v1, v2) in graph G is associated with the edge (v3, v4) in graph H.

MINIMUM COST SUBGRAPH ISOMORPHISM
INSTANCE: Given graphs G = (V1, E1), H = (V2, E2) where |V1| ≤
|V2|, a vertex cost metric Ev(vi, vj) for associating a vertex vi ∈ V1

to a vertex vj ∈ V2, and an edge cost metric Ee(ek, el) for associating
an edge ek ∈ E1 to an edge el ∈ E2.

1.4. THE COMPLEXITY OF INEXACT GRAPH MATCHING 17

(a) α component of upper bound. (b) β component of upper bound.

Figure 1.5: Upper bound for MINIMUM COST SUBGRAPH ISOMORPHISM.

QUESTION: Under these metrics, what is the minimum cost sub-
graph isomorphism from graph G to graph H?

This problem does not simply require the cardinality of SΠ(I), but it requires
an evaluation of each YΠ ∈ SΠ(I) under the metrics Ev(vi, vj) and Ee(ek, el).
The problem is NP-hard because the derivable decision problem is SUBGRAPH
ISOMORPHISM, and it is a candidate for the #P-complete class of [28] by the
required enumeration.

Methods such as [32], [22], [8], and [15] present methods to find approximate so-
lutions to variations of this problem. Those methods all rely on the connectivity,
or rather the lack thereof, of the graphs G and H in the problem instances. They
use missing connectivity as a heuristic for associating vertices from one graph
to vertices in the other. These methods perform well under the demonstrated
conditions, but by complexity bound to |E1| and |E2| they quickly degenerate as
the connectivity of either graph grows.

In the next section we argue that every relation graph in computer vision should,
in fact, be fully connected. Let us, therefore, discuss what impact such graphs
have. By connectivity alone they constitute the worst-case problem instances.
If the graphs are also directed and reflective, they contain |V1|2 and |V2|2 edges
respectively. There are no “missing” edges in these graphs, so the previously
mentioned methods have no syntactic information that they can use to prune
unlikely vertex-associations, and they are forced to try every single association.

The cardinality of the set containing every possible subgraph isomorphism from
graph G to graph H is:

|V2|!
(|V2| − |V1|)!

(1.4)

For each of these isomorphisms it is necessary to evaluate the associations they

18 CHAPTER 1. INTRODUCTION

contain. Let us define α to be the time required for the function Ev(vi, vj) to
evaluate one vertex-association, and β to be the time required for the function
Ee(ek, el) to evaluate one edge-association. Because an isomorphism associates
every vertex in the smaller graph G to some vertex in the larger graph H, an
isomorphism implicitly also associates every edge in graph G to some edge in
graph H. The number of vertex-associations in an isomorphism therefore equals
the number of vertices in graph G, and likewise the number of edge-associations
equals the number of edges in graph G. Evaluation of a single isomorphism thus
requires (α|V1|+ β|E1|) time, which can be expressed by the number of vertices
in the smaller graph alone; (α|V1|+ β|V1|2).

This gives us an upper bound on the time required to evaluate every possible
subgraph isomorphism from graph G to graph H, by the equation:

(α|V1|+ β|V1|2) ·
|V2|!

(|V2| − |V1|)!
(1.5)

This bound on MINIMUM COST SUBGRAPH ISOMORPHISM is shown in
figures 1.5(a) and 1.5(b). Since there is no necessary relation between the values
of α and β, they are drawn in separate figures. Although the β component is
larger than the α component by a magnitude of |V1|, this is not readily available
from the figures since these are drawn using a logarithmic vertical axis. The
logarithmic scale is needed, however, to contain the exponential growth of both
components.

Having underlined the inherent difficulty of the problem at hand, let us in the
next sections discuss our problem instances and propose an approximate solution
to these.

1.5. PROBLEM INSTANCES IN COMPUTER VISION 19

1.5 Problem instances in computer vision

In this section we present our first contribution; we demonstrate that all problem
instances of MINIMUM COST SUBGRAPH ISOMORPHISM in computer vision
contain graphs G and H that are fully connected. Traditional approximation
methods are therefore unsuitable to solve these problems. This achieves milestone
1; investigating the trends in graph extraction research.

Observe the image in figure 1.6(a). By context, the reader will undoubtedly
relate the shapes in the image by their spatial layout and apparent clustering or
cliques. A commonly extracted graph is shown in figure 1.6(b). Such extraction
is intuitive, and it has been thoroughly strengthened by examples in pattern
recognition literature such as [33], [32], [10], [13], [3], [8].

There is, however, an inherent problem with this extraction. Let us illustrate
this by introducing noise to the image in figure 1.6(a). The simple distortion
illustrated in figure 1.7(a) produces the dissimilar graph in figure 1.7(b) by ap-
plying the same scheme for connectivity. It is quite possible to counter noise and
distortions by preprocessing the image using applicable filters (see [6]), but this
does not necessarily solve the problems altogether. As the size of the problem
instance increases, the distinguishing between random noise and image elements
becomes more difficult.

Any labeling or connectivity scheme can be broken by introducing tailored noise,
therefore, these schemes should not be considered reliable for ordering vertices
or edges. See how labeling vertices by order of encounter in left-to-right, top-to-
bottom scan is broken by distortion in figures 1.7. See also how nearest-neighbour
connectivity is broken by the same distortion. Note that the demonstrated dis-
tortion it atypical (caused by a faulty camera or by object occlusion), it serves
simply to illustrate the fragile nature of the connectivity schemes.

(a) (b)

Figure 1.6: Undistorted image and corresponding graph.

20 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.7: Distorted image and corresponding graph.

In [20], a pattern-deformation model is proposed, while a generalization of the
method, including the possibility of deleting nodes and branches, is discussed in
[21]. The algorithm, though powerful enough for some practical applications, is
not effective when large variations among the members of a class may exist. This
is analogous to the discussion of noise above.

Two decades after the publication of [20], [22] proposes an ARG inexact matching
algorithm; the inexactness implies that the candidate graph is considered match-
able with one of the prototypes if a set of syntactic and semantic transformations
(selected among those applicable to the prototype) can be found such that the
transformed graph candidate is isomorphic to the graph of the prototype. As will
become evident throughout this section, because of its dependency on syntactic
information, it will degenerate as the connectivity of the graphs increases.

In one experiment outlined in [3], attributed relation graph matching was used
to locate an object within a multiobject scene. ARG’s were produced from real
images using a multilayer graph transducer scheme. An ARG produced from an
image of a wrench (see figure 1.3) was matched against an ARG produced from
an image of a number of overlapping objects which included the wrench (see
figure 1.8(a). The multiple attributes on the nodes were line segment length, arc
segment length, arc segment span and contour length. The multiple link types
were joint, intersection and facing features. The nodes in figure 1.8(b) that match
to figure 1.8(a) have been highlighted.

The graphs in figures 1.3 and 1.4 are clearly sparse, a characteristic that has car-
ried through graph matching research for several decades by publications such
as [33], [32], [10], [13], [3], [34] and [8]. As illustrated in the previous section
on complexity, the subgraph isomorphism problem becomes progressively more
difficult as the connectivity of the graphs increases. This unyielding increase
of complexity may be the reason why researchers have used sparser graphs for

1.5. PROBLEM INSTANCES IN COMPUTER VISION 21

(a) Graphical representation of a wrench. (b) Graphical representation of a scene with
a number of overlapping machine parts.

Figure 1.8: Graphs as they appear in [3].

demonstrating their methods. Consequently, the information carried by connec-
tivity has not enjoyed the attention it deserves.

In section 1.3, we introduce the notions of “pattern primitives,” as in [13]. In
the very idea of building complex patterns by combining these pattern primitives
lies the notion of relating these patterns to each other. These pattern primitives,
features, feature points, or whatever name is used to label them, all exist at some
spatial position in the image from which they are being extracted. Regardless of
the shape or spatial extent in which these primitives appear they will individually
have a spatial centroid. This holds for any dimensionality of the source image.
By this rationale, every pattern primitive will have a spatial relationship to all
other pattern primitives in the same image.

Graph matching methods used in computer vision often make no use of these
readily available, coherent and pervasive spatial relations among the pattern prim-
itives. It is disconcerting to see how often graphs of primitives have been pruned
to make them sparse, when the images from which they are generated are by
definition, spatially interrelated.

Please observe again the graphs in figures 1.3 and 1.4. Even though the rendering
of vertices corresponds to how the underlying primitives appear in the original
image, many vertices remain unconnected to more than a few neighbours. The
existence of the wrench is blatantly obvious by connectivity alone. This scheme
is repeated in [8] by hand-crafting an ARG from a prototype image, and then

22 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.9: A prototype object (a) and a candidate object (b), both made up of
primitive parts.

“discovering” that prototype as a subgraph in another hand-crafted ARG.

Consider the prototype object and candidate object shown in figure 1.9. Given
below are a structural Description Dp for the Prototype object and a structural
Description Dc for the Candidate object, expressed using the syntax of [10].

Dp = {P,RP}
P = {P1, P2, P3, P4, P5}

RP = {(Left, Left P), (Above, Above P)}
Left P = {(P1, P4), (P4, P3)}

Above P = {(P2, P4), (P4, P5)}
P1 = {(shape, rectangular), (colour, white)}
P2 = {(shape, triangular)}
P3 = {(shape, rectangular)}
P4 = {(shape, circular)}
P5 = {(colour, black)}

1.5. PROBLEM INSTANCES IN COMPUTER VISION 23

Dc = {C,RC}
C = {C1, C2, C3, C4, C5}

RC = {(Left, Left C), (Above, Above C)}
Left C = {(C1, C4), (C4, C3)}

Above C = {(C2, C4), (C4, C5)}
C1 = {(shape, rectangular), (colour, white)}
C2 = {(shape, triangular), (colour, white)}
C3 = {(shape, rectangular), (colour, black)}
C4 = {(shape, circular)}
C5 = {(shape, triangular), (colour, black)}

Relational attributes such as Left and Above in these descriptions have domi-
nated the graph matching community in computer vision. Problems arise when
one is to evaluate the compatibility of such attributes. Since there is no numeri-
cal value associated with the attributes, one is left with a binary compatibility –
two edges either agree or disagree. The expression of compatibility becomes even
more difficult as the conceptual content of these keyword- attributes increase; in
[34] we see relations Above Left, Above Right, Touches and others.

Four years after introducing those advanced relations, the same authors propose
in [35] to express the spatial relationship between pattern primitives using a single
character hexadecimal direction code in the range [0..f]. This attribute allows for
a compatibility function that is able to discern similarity by numerical difference.
There is no reasoning on this seemingly arbitrary decision on resolution, and these
attributes still do not express the spatial distance of the underlying image.

We propose the use of an n-dimensional vector ~d as edge-attribute, where n is the
number of spatial dimensions in the original image and thus the dimensionality of
the spatial centroids of the pattern primitives. Although we comment on higher
orders of spatial dimensionality, our work is based exclusively on experiments
that process 2-dimensional images. To attribute an edge e that connects vertex
v1 to v2, simply assign to it the vector ~d = ~c2 − ~c1, where ~c1 and ~c2 are the
centroids of vertex v1 and v2 respectively.

An astonishing characteristic of graphs that represent the spatial relationship of
its vertices by such attributed edges, is that the spatial content can be coherently
and completely expressed using any degree of connectivity, as long as there are
no disconnected vertices.

To demonstrate this we need some formal definitions.

For a graph G = (V,E) with vertex set V and edge set E, a simple circuit in G is

24 CHAPTER 1. INTRODUCTION

a sequence < v1, v2, ..., vk > of distinct vertices from V such that (vi, vi+1) ∈ E
for 1 ≤ i < k and such that (vk, v1) ∈ E. A Hamiltonian circuit in G is a simple
circuit that includes all the vertices of G.

A fully connected graph H = (V ′, E′) is one in which every two vertices in V ′

are joined by an edge in E′.

Let us now detail the addition of edges to a Hamiltonian circuit G = (V,E) until
every two vertices in V are joined by an edge, and G appears as a fully connected
graph. Again we stress that the edges of E must be spatially coherent.

Initialize a vector ~c of dimensionality equal to that of the spatial relations of the
edges in E. We refer to this vector as the “cursor,” since it serves to hold a
current spatial position. Traverse the vertices of G in the order they appear in
the circuit < v1, v2, ..., vk >. For every vertex vi, associate the current value of
the cursor ~c as its spatial centroid. For each edge traversed (vi, vi+1) ∈ E, add
the spatial relational vector of that edge to the cursor ~c. When this traversal
is completed, every vertex in G has been assigned a spatial centroid. Now add
new edges to E, in any order, until every two vertices in V are joined by an
edge; using the difference of the vertices’ spatial centroid as that edge’s spatial
relational vector.

This traversal is simplified by application to an Hamiltonian circuit, but it can
be easily extended to cover any graph of any connectivity. As long as the edges
convey a coherent spatial layout of the vertices, it is simply a matter of traversing
the existing edges until all vertices have been associated with a centroid.

Note that this method simultaneously proves that any graph G = (V,E) can have
its edges pruned until one finds the smallest E′ ⊆ E such that every vertex v ∈ V
belongs to at least one e ∈ E′, and still convey the same spatial information for
the pattern described by G.

This fact warrants a reconsideration of how methods that operate on graphs in
computer vision should be implemented. The methods of [32], [34], [22], [8],
[15], and any method that uses syntactical information of the graphs to guide
the match, as applied to these graphs, will fail catastrophically. By reducing
connectivity to that of a Hamiltonian circuit, complexity becomes trivial. The
syntactic information given by connectivity of each vertex is now non-existent
since all vertices have 2 connected edges. Similarly, by increasing connectivity
until the graph becomes fully connected, the syntactic information is again lost
since every vertex has the same amount of connected edges.

Furthermore, any intermediate degree of connectivity can be achieved by selec-
tive pruning of edges from a fully connected graph. It seems apparent to the
authors that such subjective observation of the patterns is deliberate; anyone
is able to fabricate spatially coherent graphs whose layout best conforms to the
method to be demonstrated. By applying method-knowledge to the construction

1.5. PROBLEM INSTANCES IN COMPUTER VISION 25

(a) (b) (c)

(d) (e) (f)

Figure 1.10: Various spatially coherent descriptions of figure 1.9.

of the graph one is effectively projecting a solution into the problem instance.
Figure 1.10 demonstrates how different graphs can express the exact content of
figure 1.9(a). Similarly, the descriptions Dp and Dc from [10] given with figure
1.9 clearly illustrates how candidate graphs can be constructed to be obviously
compatible with some prototype graph.

By evaluation of the criticized methods on instances of Hamiltonian circuits and
cliques, all that effectively remains for these is the stochastic information con-
tained in the attributes of the vertices. The application of the proposed methods
conforms to searching for a nearest neighbour in a hyperspace whose dimension-
ality is given by the pattern primitives.

In [6] the authors describe a feature extractor that is able to produce an at-
tributed relation graph from any 2-dimensional image. The graphs produced are
fully connected, similar to ours. Until self-cited in [36], the work has interestingly
enough not been commented on in any major publication seen by us. The cita-
tion in [36] relates a matching method for model-based computer vision to these
graphs. The proposed method is a non-deterministic, suboptimal search that
employs time-scheduling at both model- and graph-levels. Because that paper is
primarily concerned with scheduling, no direct results are given.

By the realization of these spatial relationships and their imposed requirement of
spatial coherency, we propose that all graphs in computer vision should be un-
reflective, directed, and that there are no disconnected vertices. There should be
no reflection because the edges contain the difference of the connected vertices, a

26 CHAPTER 1. INTRODUCTION

measurement that is meaningless under reflection. The edges should be directed
since the spatial difference only has meaning under direction. However, two sep-
arate edges connecting the same two vertices are redundant since one edge can
be reversed to obtain the other. Finally, there should be no disconnected vertices
since that makes the graph spatially incoherent.

The number of edges in any graph G = (V,E), under these constraints, is in the
range from |V | − 1 to 1

2 |V |(|V | − 1). This limitation on the number of edges
yields a vastly improved upper bound in β for MINIMUM COST SUBGRAPH
ISOMORPHISM in chapter 1.4, as shown in figures 1.11(a) and 1.11(b).

Our method relies on every graph being fully connected; any missing connectivity
is derived using the method described above. All recorded runtimes should, as
such, be compared to that of figure 1.11(b). However, since the least connected
graphs contain the same information as the fully connected ones, we find it more
appropriate that our recorded runtimes are compared to that of brute-forcing
the smaller graphs. Therefore; all further comments and illustrations relating
runtimes in β to that of “brute-force” implies these smaller values.

The improved upper bound on MINIMUM COST SUBGRAPH ISOMORPHISM
is thus:

(α|V1|+ β(|V1| − 1)) · |V2|!
(|V2| − |V1|)!

(1.6)

The difference between the α and the β component in this equation, as opposed
to equation 1.5, has effectively vanished; the β component has gone from being
tremendously larger than the α component to being slightly smaller.

Let us end this section by commenting that the reviewed methods and publica-
tions in this chapter retain their viability by not applying them to the attributed
relation graphs described here, graphs that capture the very nature of the pattern
primitives and their relations. Applied to hand-crafted ARG’s ([10], [13], [37],
[3], [8], [15]) or random synthetic structures ([8], [38]), such methods have been
proven to achieve high accuracy at low computational cost.

1.5. PROBLEM INSTANCES IN COMPUTER VISION 27

(a) Magnitude of β component over corresponding bound in figure 1.5(b) when |E| = |V |−1.

(b) Magnitude of β component over corresponding bound in figure 1.5(b) when |E| =
1
2
|V |(|V | − 1).

Figure 1.11: Improved upper bound in β for MINIMUM COST SUBGRAPH
ISOMORPHISM.

28 CHAPTER 1. INTRODUCTION

1.6 Approximations to the optimization problem

This section informally describes our method of solving any instance of MIN-
IMUM COST SUBGRAPH ISOMORPHISM. We demonstrate how fully con-
nected graphs, as derived in the previous section, can be used to strengthen the
solution rather than allow it to degenerate the algorithm’s runtime.

By the realization that traditional methods to solve subgraph isomorphism in
computer vision are reduced to search through stochastic compatibility of nodes
in the graphs, let us begin by considering the analogous techniques of nearest
neighbour classification and hyperspace partitioning.

In [39] the authors describe shape-indexing as the process to recover from the
index the most similar model shapes to a given image shape. In terms of feature
vectors, or points in a feature space, this corresponds to finding a set of nearest
neighbours (NN) to a query-point. A lot of previous indexing approaches in
model-based vision [40], [41], [42], [43], [44], [45], [46] have used hash tables for
this task. This is somewhat surprising since it is well-known in other communities
(e.q. pattern recognition, algorithms) that tree structures do the job much more
efficiently.

In large part this oversight can be explained by the fact that indexing techniques
are generally applied in low-dimensional spaces, where hash table search can be
quite efficient. Such spaces are adequate when the number of objects is small,
but higher-dimensional feature vectors are essential when the model database
becomes large, because they provide a much greater degree of discrimination.
Unfortunately, nearest-neighbour search times depend exponentially on the di-
mension of the space.

One data structure that has been used recently for NN lookup is the k-d tree
[47]. While the “curse of dimensionality” is also a problem for k-d trees, the
effects are not as severe. Hash table inefficiency is mainly due to the fact that
bin sizes are fixed, whereas those in a k-d tree are adaptive to the local density
of stored points. Thus, in some cases (high-density region), a hashing approach
will have to do a long linear search through many points contained in the bin
in which the query point lands; in other cases (low-density), an extensive search
through adjacent bins may be required before the best nearest neighbour can be
determined. In addition, there is the difficulty of choosing an appropriate bin
size.

Both [39] and [7] demonstrate fast and accurate lookups using a modified k-d
tree algorithm called the “best-bin-first” search method. However, images in [7]
generate on the order of 1,000 feature vectors, of which only 3 need to agree on a
class for the method to propose the solution. By their experiments, they are able
to use a cut-off for examining at most 200 neighbours in a probabilistic best-bin-
first search of 30,000 feature vectors with almost no loss of performance compared

1.6. APPROXIMATIONS TO THE OPTIMIZATION PROBLEM 29

Figure 1.12: Semi local constraints; neighbours of the point have to match and
angles have to correspond. This example is a reprint from [4].

to finding an exact solution. By the enormous redundancy in the feature vectors,
given by the fact that 3 out of 1,000 vectors suffice as evidence, a performance
gain of 1 to 150 is considerably devaluated.

Instead of simply optimizing the traversal of a k-d tree, [4] proposes the use of
local shape configurations, as in figure 1.12. In order to increase the recognition
rate, a geometric constraint is added. This constraint is based on the angle
between neighbour points, and it requires that these angles have to be locally
consistent, for example the angles α1 and α2 in figure 1.12. Semi local constraints
have previously been used in [48] and [49].

These constraints are what our method carries across into the inexact matching
of attributed relation graphs. The idea itself is to augment the measurement
of vertex- compatibility by the implications of the current associations. Just
as [4] deduces the angles α1 and α2, the association of two vertices from one
graph to two vertices in another implies the association of the connecting edges.
Instead of simply comparing the connectivity of vertices, our method refines
vertex-compatibility by the implied edge-associations.

By the nature of our refinements we evaluate every possible vertex-associations
between the two graphs G and H only ever once. This has an enormous impact
on the upper bound in α for MINIMUM COST SUBGRAPH ISOMORPHISM in
both equation 1.5 and 1.6, as shown in figures 1.13(a) and 1.13(b), and obvious
in its equation:

α(|V1| · |V2|) + β(|V1| − 1) · |V2|!
(|V2| − |V1|)!

(1.7)

30 CHAPTER 1. INTRODUCTION

Notice that the α component has been completely disconnected from the expo-
nential; effectively making its contribution to the runtime approach zero as the
number of vertices in the graphs increases. This improvement is so profound
that we will, for the rest of this thesis, simply disregard the α component of the
runtime. Any further references to runtimes, unless explicitly stated otherwise,
will imply only the β component.

Although this improvement may seem like a trivial and immediate result of our
method, it makes for an enormous leap in bounding the solution runtime.

1.6.1 Algorithm overview

Algorithm 1 is a rough description of our approach to finding an approximate
solution to any instance of MINIMUM COST SUBGRAPH ISOMORPHISM.
This is intended as an overview that relates each step of the algorithm to other
research – the formal and complete description is given in chapter 2.

Algorithm 1 An overview of our approximation method
1: Allocate a cost matrix C of size |V1| × |V2|.
2: Assign to cij the stochastic cost of associating vi ∈ V1 to vj ∈ V2.
3: A← ∅
4: cA ←∞
5: for the n most compatible associations (vk, vl) by C do
6: Apply the syntactic cost implied by the association (vk, vl) to every element

cpq ∈ C and store in C ′.
7: :
8: (possibly recurse steps 5-16 by C ′)
9: :

10: Solve the assignment problem by C ′ and store in A′.
11: Sum elements of C ′ that are part of A′ as cA′ .
12: if cA′ < cA then
13: A← A′

14: cA ← cA′

15: end if
16: end for
17: Return A as minimum cost subgraph isomorphism.

Steps 1 and 2 construct a matrix C to hold the compatibility of any vertex vi ∈
V1 to any vertex vj ∈ V2. This is analogous to the compatibility coefficients, Caibj ,
in [8], but vastly more efficient. For example, two 200 node undirected graphs
with 10% connectivity would need a million element list of floating point numbers
along with associated book-keeping in memory by [8], whereas our method only
requires a matrix of 200× 200 numbers for any connectivity.

1.6. APPROXIMATIONS TO THE OPTIMIZATION PROBLEM 31

(a) α component of improved upper bound.

(b) Magnitude of α component over corresponding bound in figure 1.5(a).

Figure 1.13: Improved upper bound for MINIMUM COST SUBGRAPH ISO-
MORPHISM in α.

32 CHAPTER 1. INTRODUCTION

The values of each element cij ∈ C are given by the metric Ev(vi, vj). This
measurement will differ with each problem instance according to what type of
pattern primitives are held by the vertices of the ARG’s.

The set A is a set of vertex-tuples on the form (vi, vj) where vi ∈ V1 and vj ∈ V2.
It is initialized in step 3, and updated in step 13 to always contain the minimum
cost isomorphism between graphs G and H. The variable cA is the sum cost of
the associations in A.

Step 5 constitutes the scheduler of our method. The loop through steps 5-
16 is controlled by this logic, and therefore requires special attention during
implementation. If this step fails to discard any possible association (vk, vl), our
method will traverse the whole search space.

Relaxation matching, as introduced to shape matching in [33] and [32], proposes
the use of an “association graph.” This is a structure that effectively holds the
entire search space, but methods propose ways of pruning this before traversal.
By the memory requirements noted above from [8], this is not an idea that holds
as problem instances grow. We propose instead to evaluate possible associations
in order of decreasing compatibility, as given by the matrix C. Any published
method to prune the “association graph” can be applied in this step, to the same
end.

The authors of [10] term ε-homomorphisms as a morphism between two graphs
whose sum error, or cost, is below a threshold ε. We propose the use a association
threshold ε on the element ckl, that corresponds to the association (vk, vl) being
evaluated, as well as a morphism threshold ε that discards any partial solution
A′ (see below) whose sum cost exceeds it.

In [4] the application of semilocal constraints is coupled with the requirement that
no more than 50 percent of the pattern primitives need to be matched correctly.
In [7] this requirement is lowered to 3 matches out of 1,000 pattern primitives.
This is applied to step 5 by keeping the number n as low as experimental results
allow. This is analogous to the low-level scheduling in [36].

The proposition of a cut-off on the number of total associations examined in
[7] can be implemented by a total number N of associations examined for each
problem instance. Let us emphasize that our logic processes the associations in
order of increasing cost, by N our method will efficiently only be discarding the
least compatible associations.

Step 6 considers syntactic compatibility implied by the assignment (vk, vl). At
this point, the association (vk, vl) is assumed. The element cpq holds the compat-
ibility of vp ∈ V1 and vq ∈ V2, and can therefore be refined by the compatibility
of the edges (vk, vp) ∈ E1 and (vl, vq) ∈ E2, given by the metric Ee.

Contrary to the stochastic compatibility of the vertices that require a unique

1.6. APPROXIMATIONS TO THE OPTIMIZATION PROBLEM 33

implementation for every possible type of pattern primitive, the attributes of our
edges have been argued to always hold the spatial difference of the connected
vertices. By this rational, the cost of associating edges needs simply be the
spatial difference of the two. Let vector ~e1 be the attribute of edge (vk, vp) and
vector ~e2 be the attribute of edge (vl, vq). In the range [0, 1], this measurement
is then given by:

De(~e1, ~e2) =

0, if both edges are missing;
1, if either edge is missing;
1√
d
|~e1 − ~e2|, otherwise.

(1.8)

The denominator
√

d expresses the maximum length possible by a vector in a
unit extent hypercube of dimension d. This expression requires that each vector
element is scaled to a number in the range [0, 1] of the corresponding image
dimension. In any standard 2-dimensional image this is achieved by dividing the
first element of the vector by image width, and the second element by image
height. The denominator would then be

√
2.

This measurement needs to be scaled and transformed by the edge cost metric
Ee, as appropriate for the values of the vertex cost metric Ev.

Steps 7-9 are an abbreviation that expresses the recursive nature of our method.
The algorithm implies a depth-first traversal of all the vertex associations that are
allowed by step 5. The idea is simple; 1) store the current vertex tuple (vk, vl) in
a partial solution P , and 2) run steps 5-16 on the modified compatibility matrix
C ′ supplying P as a partial solution to A′. For each recursion the cost matrix is
progressively refined using the syntactic compatibility as it becomes available by
the implied edge associations. At first recursion, every element c′ij has a single
implied edge by the association in P . The second, deeper recursion implies two
edges for every element c′ij , and so forth.

Because the algorithm only considers the edges implied by the current vertex
association, there will never be more than a single edge implied for any one
element c′ij . Therefore, the syntactic compatibility refinement presented above
can be reapplied without modification.

The recursion is analogous to what [10] terms “looking ahead.” At first recursion
we are “looking ahead by one,” at second recursion we achieve “looking ahead
by two,” and so forth. By the compatibility matrix C we are able to reduce
computational complexity significantly, and we can look ahead by any number of
steps that available memory allows. As opposed to [50], [51] and [8] our method
even allows for negative expressions of compatibility.

As suggested by [4], [39] and [7] it is not necessary for every pattern primitive to
be compatible to constitute a good match; as noted before, [7] is content with even

34 CHAPTER 1. INTRODUCTION

Figure 1.14: Runtime of depth-limited search.

3 out of 1,000 being compatible. By experiments we have found that the accuracy
of our method does not increase notably beyond the first few recursions. A series
of experiments that used simulated annealing to tune controlling parameters
found that even 3 levels of recursion sufficed to yield optimal results for a wide
range of graphs.

By depth-limit alone, even a full traversal of search space now scales elegantly
with increasing instance sizes (see figure 1.14, as compared to figure 1.5(b)).

There is an obvious increase in memory requirements as the depth of recursion
increases, as each recursion requires a duplication of the current compatibility ma-
trix. Fortunately, since our method runs depth-first, there is only linear growth,
and by the limitation to a very shallow recursion depth the memory footprint
remains minimal.

Step 10 requires a solution to “the assignment problem” by C ′. Let us briefly
explain this problem.

Imagine a problem whose objective is to find the maximum assignment given a
square benefit matrix C ′ of numbers. That is, we are given a set of variables c′ij
where c′ij ∈ R1. Then we associate a variable mij ∈ {0, 1} with each cij , such
that ∀j

∑I
i=1 mij = 1 and ∀i

∑J
j=1 mij = 1. Our aim is to find the matrix M

which maximizes the following:

1.6. APPROXIMATIONS TO THE OPTIMIZATION PROBLEM 35

Dm(M) =
I∑

i=1

J∑
j=1

mijc
′
ij (1.9)

This is the assignment problem, a classic problem in combinatorial optimization
(see [52]).

In [50] it is proven that any square matrix whose elements are all positive will con-
verge to a double stochastic matrix just by the iterative process of alternatively
normalizing the rows and columns (a doubly stochastic matrix is a matrix whose
elements are all positive and whose rows and columns all add up to one). This
idea was combined with the “softmax” of [51] to solve the assignment problem
by convergence in [8].

Unfortunately, the softmax is itself based on convergence, and the solution to
the assignment problem becomes a slow multi-layered converging algorithm with
many controlling parameters. Furthermore, the requirement of positive-only costs
carries implications on how the cost metrics Ee and Ev must be implemented;
forcing all cost into non-negativity by [53] requires intimate knowledge on the
behaviour of e and leads to a complicated behaviour of all values. Our method
allows predictable and linear behaviour of cost, considerably simplifying the im-
plementation of any metric.

We propose a fast 2-step approximate solution to the assignment problem.

First, construct an auxiliary matrix C ′′ whose elements c′′ij are the distance of
the corresponding c′ij to the mean values of the i-th row and j-th column of C ′

by:

c′′ij = c′ij −
1
2
(
1
I

I∑
k=1

c′kj +
1
J

J∑
l=1

c′il) (1.10)

Second, traverse the elements c′′ij ∈ C ′′ in order of increasing value. For every
c′′ij , if neither row i or column j is marked, add the corresponding assignment to
the solution. Then mark both row i and column j. This process halts by its own
logic when either all rows or all columns are marked.

Steps 11-15 are simple bookkeeping of the currently best found subgraph iso-
morphism, given by the vertex association tuples in set A.

Step 17 returns A as the minimum cost subgraph isomorphism from graph G to
graph H. By the logic of the loop through steps 5-16, the set of vertex associations
A is, at all times, the currently best found isomorphism.

36 CHAPTER 1. INTRODUCTION

Part I

An efficient solution to
inexact graph matching

37

Chapter 2

Graph matcher algorithm

The graph matcher algorithm we propose in this chapter is our second contribu-
tion. It is a two-part recursive algorithm that consists of an initialization part
(see chapter 2.1) and a recursion part (see chapter 2.2). All controlling parame-
ters of the algorithm are contained in an entity we refer to as a “domain expert”
(see section 2.3). The use and refinement of a matrix of vertex-association costs
is an application of ideas from dynamic programming, and therefore achieves
milestone 3.

A solution to an instance of MINIMUM COST SUBGRAPH ISOMORPHISM is
given by a set of vertex-vertex associations, or vertex tuples, (vi, vj) where vi ∈ V1

and vj ∈ V2, that associates every vertex in the smaller graph G = (V1, E1) to
some vertex in the larger graph H = (V2, E2).

For the sake of brevity in our algorithm descriptions we define a vertex tuple
(vi, ∗) to be any tuple that has vertex vi as its first element, and similarly a tuple
(∗, vj) to be any tuple with vertex vj as its second element.

To resolve any ambiguity in the description below an implementation of the
algorithm has been included in the appendix (see listing A.1).

2.1 Initialization

The initialization part of the algorithm is mostly an implementation detail needed
for any recursive approach to a problem; it is clearly needed as a first step because
recursion is just a series of calls to itself. As noted in chapter 1.6, this is the
only time our algorithm will ever look at stochastic compatibility between the
pattern primitives held by the graph vertices. Recursion is called upon an empty

39

40 CHAPTER 2. GRAPH MATCHER ALGORITHM

isomorphism A, which is complete upon return.

Algorithm 2 Graph matcher, initialization
1: Allocate a cost matrix C of size |V1| × |V2|.
2: for all vi ∈ V1 do
3: for all vj ∈ V2 do
4: cij ← Ev(vi, vj)
5: end for
6: end for
7: Perform recursion for A = ∅ and C.
8: Return A as minimum cost subgraph isomorphism.

Step 1 allocates space for a 2-dimensional matrix C of size |V1| × |V2|. For
every possible association of a vertex vi ∈ V1 to any vertex vj ∈ V2, there is a
corresponding element cij ∈ C to hold the cost of this. This matrix is different
from the traditional goodness coefficients, because it exists at minimum size, and
it is duplicated at every call to algorithm 3. The memory footprint of our method
is limited to |C| · target− depth by depth-first.

Steps 2 - 6 assigns values to each element cij ∈ C by the metric Ev.

Step 7 calls upon the recursion half of the algorithm, using an initial empty set
A and the cost matrix C. As control returns from recursion, the set A contains
the best found subgraph isomorphism from graph G to graph H.

Step 8 terminates the algorithm by returning set A as the solution to the problem
instance.

2.2 Recursion

The recursion part of the algorithm is called repeatedly by itself through steps
13 - 28 until it reaches some target conditions where steps 30 - 36 terminate
and solutions begin to ascend to the initial call. We argue in chapter 1.4 that
the only interesting component of the algorithm runtime is the number of edge-
comparisons performed during a complete run, and therefore trace this count in
every pass through steps 1 - 5.

Our strategy to find a complete match is to allow only sufficiently compatible
graphs to reach target depth, at which point an isomorphism is suggested. By
the sum cost c of each suggested isomorphisms, our algorithm chooses the one
which is the most compatible.

Steps 1 - 5 applies the vertex tuple (vk, vl) that was added to A just prior to
entering this recursion to refine the values of the cost matrix C. The refinements

2.2. RECURSION 41

Algorithm 3 Graph matcher, recursion
1: for all vi ∈ V1 do
2: for all vj ∈ V2 do
3: cij ← cij +Ee((vi, vk), (vj , vl))), where (vk, vl) is the last added tuple in

A.
4: end for
5: end for
6: Allocate a contribution matrix C ′ of size |V1| × |V2|.
7: for i = 0 to |V1| do
8: for j = 0 to |V2| do
9: c′ij ← cij − 1

2 (1
|V1|

∑|V1|
k=1 ckj + 1

|V2|
∑|V2|

l=1 cil)
10: end for
11: end for
12: if |A| < n, where n is target depth then
13: AMin ← ∅
14: cMin ←∞
15: for all c′ij in order of increasing value do
16: if (vi, ∗) /∈ A and (∗, v′j) /∈ A then
17: if (vi, v

′
j) is acceptable then

18: AR ← A + (vi, v
′
j)

19: CR ← C
20: Perform recursion for AR and CR.
21: if cR < cMin then
22: AMin ← AR

23: cMin ← cR

24: end if
25: end if
26: end if
27: end for
28: Return AMin and cMin to calling process.
29: else
30: for all c′ij in order of increasing value do
31: if (vi, ∗) /∈ A and (∗, v′j) /∈ A then
32: A← A + (vi, v

′
j)

33: end if
34: end for
35: c←

∑A
ij cij

36: Return A and c to calling process.
37: end if

42 CHAPTER 2. GRAPH MATCHER ALGORITHM

are done by the metric Ee over the edges implied to equal under this tuple. See
chapter 1.6 for more information on this. On the initial call to recursion the set
A is empty, consequently ignoring this step altogether.

Step 6 allocates space for a 2-dimensional matrix C ′ similar to the cost matrix C.
This is an implementation detail to solve the “assignment problem”, as proposed
in chapter 1.6.

Steps 7 - 11 assigns values to each element c′ij ∈ C ′. Although, as presented,
this appears to have high computational complexity, it is easily reducible to a
two-pass traversal of C by first calculating the sum of each row i and each column
j (see listing A.1). Unlike methods that rely solely on such a solution to perform
graph matching, we regard this as a mere sorting operation on the cost- and
contribution matrix.

Step 12 branches to keep recursion going until we reach some “target depth”
n. The value of n is a controlling parameter of the algorithm, so by design it is
given by the domain expert.

Steps 13 - 14 reserves space for book-keeping the currently best-found solution.
AMin will, at any time, hold the minimum cost subgraph isomorphism found, if
any, and cMin the corresponding sum cost.

Step 15 traverses vertex-vertex associations in the order of which their contri-
bution c′ij to row i and column j in C is minimum.

Step 16 branches to keep recursion off vertices in either graph that has already
been associated by a tuple in A.

Step 17 is a crucial branch in the algorithm; it aims to discard any association
that does not pass some criteria set by a series of controlling parameters. See
chapter 2.3 for a complete discussion of the domain expert.

Step 18 duplicates the current isomorphism A as AR, extending it by adding the
currently accepted vertex tuple (vi, vj). This duplication is necessary to allow
recursions that do not directly alter A.

Step 19 duplicates the refined cost matrix C as CR. Duplication is again neces-
sary to allow recursions that do not alter the cost matrix C.

Step 20 performs the actual recursion on the duplicate AR and CR.

Steps 21 - 24 performs book-keeping on the currently best found subgraph
isomorphism.

Step 28 returns AMin to the recursion level above, eventually returning to the
original call from algorithm 2.

Steps 30 - 34 adds vertex tuples (vi, vj) to A in the order of which their con-
tribution c′ij to row i and column j in C is minimum. Step 31 ensures that the

2.3. THE DOMAIN EXPERT EXPLAINED 43

isomorphism by A stays one-to-one. This is the greatest strength of our algorithm
– we are able to achieve sufficient convergence of C ′ after only a few recursions,
to confidently suggest a complete subgraph isomorphism.

Step 35 calculates the sum cost of the isomorphism by A over the cost matrix
C; this is the sum of the elements cij ∈ C for all vertex tuples (vi, vj) ∈ A.

Step 36 returns the complete subgraph isomorphism given by A and its sum
cost c to the recursion level above.

2.3 The domain expert explained

In order to make our algorithm as general as possible, applicable to any domain
where problems can be expressed as inexact matching of graphs, the controlling
parameters have been segmented into a separate entity. The domain expert is,
as the name implies, considered an expert in the field it belongs to.

The immediate problem with a cost based recursion is that it puts a lot of strain
on the choice of values and value-ranges. If some weights are flawed, either
attenuated or exaggerated, it might have a serious impact on the outcome of the
matcher. To this end the metrics Ev and Ee are key elements of the domain
expert, and their values will never be considered by any entity or parameter
outside the scope of the expert.

In step 35 of algorithm 3 there is a summation of the elements cij ∈ C to
determine the goodness of the chosen isomorphism. Any such summation of
traditional positive-only cost is bound to bias smaller subgraphs, since these
constitute fewer elements to sum. Not only will this inherently prevent the larger
prototype graphs to be chosen as a match, no matter how good, but by the
introduction of noise smaller graphs can match just about any subgraph of a
larger graph. To this end we allow negative cost for both stochastic- and syntactic
compatibility.

As cutting-edge research find new ways to prune traversal in the search of sub-
graph isomorphisms, these results can be applied directly to the domain experts
without any change to the algorithm itself. With every result presented in this
thesis there will be an accompanying description of what parameters were used.

Although the segmentation of controlling parameters is very much an implemen-
tation detail, its purpose is two-fold; 1) it makes the algorithm description a
lot less cluttered, and therefore more readable, and 2) by our object matcher
in chapter 8 it becomes a helpful tool to discriminate between several sets of
parameters.

44 CHAPTER 2. GRAPH MATCHER ALGORITHM

Chapter 3

Graph matcher illustration

In this chapter we introduce an implementation of a domain expert, complete
with vertex- and edge-metrics and a set of controlling parameters for the algo-
rithm. The illustration is done in the domain of coloured regions; each vertex in
our graphs are assigned a 3-byte RGB colour. The four graphs in figure 3.1 make
up the library of known graphs for the purpose of these illustrations.

The vertex metric calculates the sum of differences between each of the three
colour-components in the colours held by the compared vertices vi and vj . Since
each of the components are byte-values, the denominator scales the sum difference
into the range [0, 1]. The constant 1

2 shifts the range to [− 1
2 , 1

2] to achieve negative
costs when the difference is small.

Ev(vi, vj) =
|Ri −Rj |+ |Gi −Gj |+ |Bi −Bj |

3 · 255
− 1

2
(3.1)

The edge metric is, as argued in chapter 1.6, the difference of the spatial relation-
ships ~ei and ~ej , held by the compared edges ei and ej respectively. The constant
1
10 is used to achieve negative refinements when the difference is small.

Ee(ei, ej) = |~ei − ~ej | −
1
10

(3.2)

The target depth in step 12 of algorithm 3 is chosen to be 3, on the grounds given
in chapter 1.6. The number of iterations through the recursion loop in steps 15
- 27 of the same algorithm are limited to 3 by a low-level cut-off, a value chosen
on experience with the algorithm. In addition our domain expert limits the total
number of recursions to 9 by a high-level cut-off.

In step 17 of algorithm 3 our domain expert determines acceptability of the

45

46 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

Figure 3.1: The complete content of our example graph library.

association (vi, vj) by the value of element cij ∈ C. The threshold enforced by
the domain expert is a dynamic value given by the function ε = a|A|+ b, where
a = − 1

10 and b = − 1
2 . The choice of a and b are reasoned from the metrics Ev

and Ee; the chosen b rejects anything but perfectly matched colours, and through
the chosen a it rejects any graph whose edges to not agree perfectly.

In step 36 an additional threshold filters the isomorphisms on the grounds of
the average cost per vertex association in A; c̄ = c/|A|. This threshold ε = − 1

2
ensures that no degeneration of the isomorphism can occur in the loop through
steps 31 - 34.

3.1. DETAILS OF A PERFECT MATCH 47

(a) Graph G (b) Graph H

Figure 3.2: Graphs that perfectly match.

3.1 Details of a perfect match

In this section we illustrate how the algorithm matches a graph to itself. Figure
3.2 is a graphical representation of the graphs.

To better demonstrate program flow we use a recursion identifier r that is printed
as a header before the corresponding paragraphs. These identifiers are assigned
incrementally as the algorithm performs recursions. With each header we also
print the current depth to provide additional information to the reader.

Initialization

The initiation algorithm 2 builds the cost matrix C, below, of naive vertex-vertex
assignments by the metric Ev. Since this is a match to itself, see how the diagonal
through the matrix constitutes the least-cost match.

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.50 -0.50 -0.50 0.00 -0.50
2 -0.50 -0.50 -0.50 0.00 -0.50
3 -0.50 -0.50 -0.50 0.00 -0.50
4 0.00 0.00 0.00 -0.50 0.00
5 -0.50 -0.50 -0.50 0.00 -0.50

The matrix is passed into the recursion (algorithm 3) with an empty assignment
set A = ∅.

48 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Recursion 0, depth 0

Steps 1 - 5 are skipped because A is empty.

Steps 6 - 11 builds the contribution-matrix C ′:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.10 -0.10 -0.10 0.25 -0.10
2 -0.10 -0.10 -0.10 0.25 -0.10
3 -0.10 -0.10 -0.10 0.25 -0.10
4 0.25 0.25 0.25 -0.40 0.25
5 -0.10 -0.10 -0.10 0.25 -0.10

The achievement of this matrix is that it locates the key association (4, 4), even
though the corresponding element cij ∈ C is no different from those of associating
any of the vertices {1, 2, 3, 5} to any other in the same set.

Because c44 = −0.5 passes the threshold ε = − 1
10 ·0−

1
2 , the first recursion occurs

for AR = {(4, 4)}.

Recursion 1, depth 1

The cost matrix C is refined in steps 1 - 8 on the assumption that vertex 4
in graph G equals vertex 4 in graph H. For every element cij ∈ C the edge
metric Ee applies a modification based on its agreement with this association.
As commented in chapter 1.6, reflection makes no sense in our model, so a total
number of |V1 − 1| · |V2 − 1| refinements are applied.

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.60 0.11 -0.10 0.00 0.40
2 0.11 -0.60 -0.10 0.00 0.11
3 -0.10 -0.10 -0.60 0.00 -0.10
4 0.00 0.00 0.00 -0.50 0.00
5 0.40 0.11 -0.10 0.00 -0.60

The contribution matrix C ′ is:

3.1. DETAILS OF A PERFECT MATCH 49

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.56 0.17 0.01 0.07 0.44
2 0.17 -0.50 0.04 0.10 0.17
3 0.01 0.04 -0.42 0.14 0.01
4 0.07 0.10 0.14 -0.40 0.07
5 0.44 0.17 0.01 0.07 -0.56

There is an arbitrary choice of association when two or more elements of C ′ are
equal. In our case, recursion occurs for AR = {(4, 4), (5, 5)}.

Recursion 2, depth 2

Again, the cost matrix C is refined by the implied edge-associations. The same
amount of refinements occur at this point as in the previous recursion, and by
the association (5, 5) the cost of association with vertex 4 in either graph is also
changed.

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.70 0.71 0.30 0.61 0.40
2 0.71 -0.70 0.30 0.90 0.11
3 0.30 0.30 -0.70 0.40 -0.10
4 0.61 0.90 0.40 -0.60 0.00
5 0.40 0.11 -0.10 0.00 -0.60

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.96 0.45 0.15 0.34 0.29
2 0.45 -0.96 0.15 0.64 -0.01
3 0.15 0.15 -0.74 0.25 -0.10
4 0.34 0.64 0.25 -0.86 -0.11
5 0.29 -0.01 -0.10 -0.11 -0.56

Recursion occurs for AR = {(4, 4), (5, 5), (2, 2)}.

Recursion 3, depth 3

The refined cost matrix C is:

50 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.80 0.71 0.70 1.21 1.30
2 0.71 -0.70 0.30 0.90 0.11
3 0.70 0.30 -0.80 0.80 0.30
4 1.21 0.90 0.80 -0.70 0.61
5 1.30 0.11 0.30 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -1.43 0.27 0.26 0.62 0.83
2 0.27 -0.96 0.04 0.49 -0.19
3 0.26 0.04 -1.06 0.39 0.01
4 0.62 0.49 0.39 -1.26 0.16
5 0.83 -0.19 0.01 0.16 -1.02

Since we are now at target depth, steps 30 - 34 complete the isomorphism by
stepping through the elements of C ′ in order of increasing value. If the current
element cij ∈ C ′ does not correspond to an already associated vertex in either
graph G or H, it is added to A.

This completes A as {(4, 4), (5, 5), (2, 2), (1, 1), (3, 3)}.

Step 35 calculates the sum of the isomorphism as c = −3.70, which passes the
isomorphism threshold ε because −3.70/5 < − 1

2 .

The isomorphism A is returned to the recursion level above.

Recursion 2, depth 2

As control returns to step 20 at depth 2, the returned data is compared to
the book-keeping variable cMin. Because −3.70 < ∞, the isomorphism AR =
{(4, 4), (5, 5), (2, 2), (1, 1), (3, 3)} is stored as AMin.

At the second iteration of the loop through steps 15 - 27, the element (1, 1) is
chosen for recursion. Notice that redundancy seems to occur since the association
(1, 1) is included in AMin. This is not the case, however, since the algorithm
knows nothing about what remaining associations will make up the isomorphism
this time around.

Recursion occurs for AR = {(4, 4), (5, 5), (1, 1)}

3.1. DETAILS OF A PERFECT MATCH 51

Recursion 4, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.70 0.71 0.30 0.61 0.40
2 0.71 -0.80 0.70 1.80 0.71
3 0.30 0.70 -0.80 0.80 0.30
4 0.61 1.80 0.80 -0.70 0.61
5 0.40 0.71 0.30 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.96 0.27 0.04 0.16 0.14
2 0.27 -1.43 0.26 1.18 0.27
3 0.04 0.26 -1.06 0.36 0.04
4 0.16 1.18 0.36 -1.32 0.16
5 0.14 0.27 0.04 0.16 -0.96

The isomorphism is completed through steps 30 - 34 as A = {(4, 4), (5, 5), (1, 1), (2, 2), (3, 3)},
and step 35 calculates c = −3.70. This isomorphism is returned to the recursion
level above.

Recursion 2, depth 2

Step 21 compares the cost of the returned isomorphism AR to AMin, and finds
that it is not an improvement. The isomorphism AR is discarded.

Recursion occurs for AR = {(4, 4), (5, 5), (3, 3)}

Recursion 5, depth 3

The refined cost matrix C is:

52 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.80 1.32 0.30 1.21 1.30
2 1.32 -0.80 0.30 1.80 0.71
3 0.30 0.30 -0.70 0.40 -0.10
4 1.21 1.80 0.40 -0.70 0.61
5 1.30 0.71 -0.10 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -1.47 0.65 -0.05 0.55 0.78
2 0.65 -1.47 -0.05 1.13 0.20
3 -0.05 -0.05 -0.74 0.05 -0.30
4 0.55 1.13 0.05 -1.36 0.09
5 0.78 0.20 -0.30 0.09 -1.06

The isomorphism is completed as A = {(4, 4), (5, 5), (3, 3), (2, 2), (1, 1)}, with cost
c = −3.70, and returned to the recursion level above.

Recursion 2, depth 2

Again, the returned isomorphism AR is discarded because it is not an improve-
ment over AMin.

The domain expert now cuts off the recursion by its low-level cut-off parameter,
and AMin is returned to the recursion level above.

Recursion 1, depth 1

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−3.70 <∞, it is stored as AMin.

The association corresponding to the second lowest element c′ij ∈ C ′ is added to
A, (1, 1), and recursion occurs for AR = {(4, 4), (1, 1)}.

Recursion 6, depth 2

The refined cost matrix C is:

3.1. DETAILS OF A PERFECT MATCH 53

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.60 0.11 -0.10 0.00 0.40
2 0.11 -0.70 0.30 0.90 0.71
3 -0.10 0.30 -0.70 0.40 0.30
4 0.00 0.90 0.40 -0.60 0.61
5 0.40 0.71 0.30 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.56 -0.01 -0.10 -0.11 0.29
2 -0.01 -0.96 0.15 0.64 0.45
3 -0.10 0.15 -0.74 0.25 0.15
4 -0.11 0.64 0.25 -0.86 0.34
5 0.29 0.45 0.15 0.34 -0.96

Recursion occurs for AR = {(4, 4), (1, 1), (2, 2)}.

Recursion 7, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.70 0.11 0.30 0.61 1.30
2 0.11 -0.70 0.30 0.90 0.71
3 0.30 0.30 -0.80 0.80 0.70
4 0.61 0.90 0.80 -0.70 1.21
5 1.30 0.71 0.70 1.21 -0.80

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -1.02 -0.19 0.01 0.16 0.83
2 -0.19 -0.96 0.04 0.49 0.27
3 0.01 0.04 -1.06 0.39 0.26
4 0.16 0.49 0.39 -1.26 0.62
5 0.83 0.27 0.26 0.62 -1.43

The isomorphism is completed as A = {(4, 4), (1, 1), (2, 2), (5, 5), (3, 3)}, with cost
c = −3.70, and returned to the recursion level above.

54 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Recursion 6, depth 2

As control returns to step 20 of the initial recursion, the isomorphism AR is
stored as AMin through steps 21 - 24 since at this point cMin =∞.

Recursion occurs for AR = {(4, 4), (1, 1), (3, 3)}.

Recursion 8, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.70 0.71 -0.10 0.61 1.30
2 0.71 -0.80 0.30 1.80 1.32
3 -0.10 0.30 -0.70 0.40 0.30
4 0.61 1.80 0.40 -0.70 1.21
5 1.30 1.32 0.30 1.21 -0.80

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -1.06 0.20 -0.30 0.09 0.78
2 0.20 -1.47 -0.05 1.13 0.65
3 -0.30 -0.05 -0.74 0.05 -0.05
4 0.09 1.13 0.05 -1.36 0.55
5 0.78 0.65 -0.05 0.55 -1.47

The isomorphism is completed as A = {(4, 4), (1, 1), (3, 3), (5, 5), (2, 2)}, with cost
c = −3.70, and returned to the recursion level above.

Recursion 6, depth 2

Step 21 compares the cost of the returned isomorphism AR to AMin, and finds
that it is not an improvement. The isomorphism AR is discarded.

At this point, the only possible next association to add to A is (5, 5). As com-
mented above, the existence of an association in a complete isomorphism does not
necessarily mean that all isomorphisms that include that association have been
exhausted. However, any set of association that the algorithm has previously
recursed are actually exhausted. The addition of (5, 5) to the set {(4, 4), (1, 1)}

3.1. DETAILS OF A PERFECT MATCH 55

would make a set equivalent to {(4, 4), (5, 5), (1, 1)} which has already been re-
cursed. This redundancy is avoided in implementation (see listing A.1) by a
hash-table that stores an ordered representation of every set that has been re-
cursed.

Therefore, no further recursion happens, and AMin is returned to the recursion
level above.

Recursion 1, depth 1

Step 21 compares the cost of the returned isomorphism AR to AMin, and finds
that it is not an improvement. The isomorphism AR is discarded.

Recursion occurs for AR = {(4, 4), (2, 2)}.

Recursion 9, depth 2

At this point we reach the high-level cut-off parameter of the domain expert; no
further recursions are allowed what so ever. Since we are not at target depth, the
algorithm enters the block through steps 13 - 28, and in step 17 every association
is rejected.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 1, depth 1

Step 21 discards the empty isomorphism AR.

The isomorphism AMin is returned to the recursion level above.

Recursion 0, depth 0

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−3.70 <∞, it is stored as AMin.

The domain expert rejects any further recursion, and AMin is returned to step 7
of algorithm 2.

56 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Initialization

The isomorphism A = {(4, 4), (5, 5), (2, 2), (1, 1), (3, 3)}, with cost c = 3.70, is
returned to the calling process as the solution to MINIMUM COST SUBGRAPH
ISOMORPHISM from graph G to graph H.

3.2. DETAILS OF A SUBGRAPH MATCH 57

(a) Graph G (b) Graph H

Figure 3.3: Graphs that contain a perfect subgraph match.

3.2 Details of a subgraph match

In this section we illustrate how the algorithm matches a graph to a subgraph
of itself. Figure 3.3 is a graphical representation of the graphs. Notice that the
only difference between the two graphs is that node 3 in graph H is missing from
graph G.

Initialization

The cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.50 -0.50 0.00 -0.50
2 -0.50 -0.50 0.00 -0.50
3 -0.50 -0.50 0.00 -0.50
4 0.00 0.00 -0.50 0.00
5 -0.50 -0.50 0.00 -0.50

Recursion 0, depth 0

The contribution matrix C ′ is:

58 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4

G
ra

ph
H

1 -0.10 -0.10 0.21 -0.10
2 -0.10 -0.10 0.21 -0.10
3 -0.10 -0.10 0.21 -0.10
4 0.30 0.30 -0.39 0.30
5 -0.10 -0.10 0.21 -0.10

Recursion occurs for AR = {(3, 4)}.

Recursion 1, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.60 0.11 0.00 0.40
2 0.11 -0.60 0.00 0.11
3 -0.10 -0.10 0.00 -0.10
4 0.00 0.00 -0.50 0.00
5 0.40 0.11 0.00 -0.60

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.57 0.18 0.07 0.43
2 0.17 -0.50 0.10 0.17
3 -0.05 -0.01 0.09 -0.05
4 0.07 0.11 -0.39 0.07
5 0.43 0.18 0.07 -0.57

Recursion occurs for AR = {(3, 4), (4, 5)}.

Recursion 2, depth 2

The refined cost matrix C is:

3.2. DETAILS OF A SUBGRAPH MATCH 59

Graph G
1 2 3 4

G
ra

ph
H

1 -0.70 0.71 0.61 0.40
2 0.71 -0.70 0.90 0.11
3 0.30 0.30 0.40 -0.10
4 0.61 0.90 -0.60 0.00
5 0.40 0.11 0.00 -0.60

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.97 0.45 0.34 0.32
2 0.45 -0.97 0.63 0.03
3 0.04 0.04 0.15 -0.17
4 0.35 0.64 -0.85 -0.07
5 0.24 -0.05 -0.15 -0.57

Recursion occurs for AR = {(3, 4), (4, 5), (2, 2)}.

Recursion 3, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.80 0.71 1.21 1.30
2 0.71 -0.70 0.90 0.11
3 0.70 0.30 0.80 0.30
4 1.21 0.90 -0.70 0.61
5 1.30 0.11 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -1.43 0.31 0.62 0.86
2 0.22 -0.97 0.45 -0.20
3 0.10 -0.08 0.24 -0.11
4 0.62 0.53 -1.26 0.20
5 0.78 -0.19 0.12 -1.03

The isomorphism is completed as A = {(3, 4), (4, 5), (2, 2), (1, 1)}, with cost c =
−2.90, and returned to the recursion level above.

60 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Recursion 2, depth 2

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−2.90 <∞, it is stored as AMin.

Recursion occurs for AR = {(3, 4), (4, 5), (1, 1)}.

Recursion 4, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.70 0.71 0.61 0.40
2 0.71 -0.80 1.80 0.71
3 0.30 0.70 0.80 0.30
4 0.61 1.80 -0.70 0.61
5 0.40 0.71 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.97 0.22 0.12 0.13
2 0.31 -1.43 1.17 0.31
3 -0.08 0.10 0.20 -0.08
4 0.21 1.18 -1.32 0.21
5 0.13 0.22 0.12 -0.97

The isomorphism is completed as A = {(3, 4), (4, 5), (1, 1), (2, 2)}, with cost c =
−2.90, and returned to the recursion level above.

Recursion 2, depth 2

Step 21 compares the cost of the returned isomorphism AR to AMin, and finds
that it is not an improvement. The isomorphism AR is discarded.

The isomorphism AMin is returned to the recursion level above.

Recursion 1, depth 1

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−2.90 <∞, it is stored as AMin.

3.2. DETAILS OF A SUBGRAPH MATCH 61

Recursion occurs for AR = {(3, 4), (1, 1)}.

Recursion 5, depth 2

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.60 0.11 0.00 0.40
2 0.11 -0.70 0.90 0.71
3 -0.10 0.30 0.40 0.30
4 0.00 0.90 -0.60 0.61
5 0.40 0.71 0.61 -0.70

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.57 -0.05 -0.15 0.24
2 0.03 -0.97 0.63 0.45
3 -0.17 0.04 0.15 0.04
4 -0.07 0.64 -0.85 0.35
5 0.32 0.45 0.34 -0.97

Recursion occurs for AR = {(3, 4), (1, 1), (2, 2)}.

Recursion 6, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.70 0.11 0.61 1.30
2 0.11 -0.70 0.90 0.71
3 0.30 0.30 0.80 0.70
4 0.61 0.90 -0.70 1.21
5 1.30 0.71 1.21 -0.80

The contribution matrix C ′ is:

62 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4

G
ra

ph
H

1 -1.03 -0.19 0.12 0.78
2 -0.20 -0.97 0.45 0.22
3 -0.11 -0.08 0.24 0.10
4 0.20 0.53 -1.26 0.62
5 0.86 0.31 0.62 -1.43

The isomorphism is completed as A = {(3, 4), (1, 1), (2, 2), (4, 5)}, with cost c =
−2.90, and returned to the recursion level above.

Recursion 5, depth 2

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−2.90 <∞, it is stored as AMin.

The isomorphism AMin is returned to the recursion level above.

Recursion 1, depth 1

Step 21 compares the cost of the returned isomorphism AR to AMin, and finds
that it is not an improvement. The isomorphism AR is discarded.

Recursion occurs for AR = {(3, 4), (2, 2)}.

Recursion 7, depth 2

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.70 0.11 0.61 1.30
2 0.11 -0.60 0.00 0.11
3 0.30 -0.10 0.40 0.30
4 0.61 0.00 -0.60 0.61
5 1.30 0.11 0.61 -0.70

The contribution matrix C ′ is:

3.2. DETAILS OF A SUBGRAPH MATCH 63

Graph G
1 2 3 4

G
ra

ph
H

1 -1.03 0.04 0.35 0.97
2 -0.06 -0.50 -0.09 -0.06
3 0.01 -0.13 0.18 0.01
4 0.34 0.00 -0.79 0.34
5 0.97 0.04 0.35 -1.03

At this point there are only two associations the association threshold ε; (1, 1)
and (4, 5). Adding any of these two associations to A yield isomorphisms that
have already been exhausted. No recursion occurs, so AMin remains empty and
cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 1, depth 1

Step 21 discards the empty isomorphism AR.

The isomorphism AMin is returned to the recursion level above.

Recursion 0, depth 0

Step 21 compares the cost of the returned isomorphism AR to AMin, and because
−2.90 <∞, it is stored as AMin.

Recursion occurs for AR = {(2, 5)}.

Recursion 8, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 0.11 -0.50 1.31 0.98
2 0.40 -0.50 1.48 0.81
3 -0.10 -0.50 1.02 0.52
4 -0.10 0.00 0.11 0.90
5 -0.50 -0.50 0.00 -0.50

The contribution matrix C ′ is:

64 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4

G
ra

ph
H

1 -0.06 -0.44 0.63 0.45
2 0.20 -0.47 0.77 0.26
3 -0.17 -0.34 0.43 0.09
4 -0.17 0.16 -0.47 0.47
5 -0.33 -0.10 -0.34 -0.69

At this point there are no associations that pass the association threshold ε. No
recursion occurs, so AMin remains empty and cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 0, depth 0

Step 21 discards the empty isomorphism AR.

Recursion occurs for AR = {(2, 3)}.

Recursion 9, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.10 -0.50 1.02 0.52
2 0.52 -0.50 1.40 0.52
3 -0.50 -0.50 0.00 -0.50
4 0.40 0.00 -0.10 0.40
5 0.52 -0.50 1.02 -0.10

The contribution matrix C ′ is:

Graph G
1 2 3 4

G
ra

ph
H

1 -0.30 -0.34 0.51 0.32
2 0.22 -0.44 0.79 0.22
3 -0.45 -0.10 -0.27 -0.45
4 0.23 0.18 -0.59 0.23
5 0.32 -0.34 0.51 -0.30

Again, there are no available associations that pass the association threshold ε.
No recursion occurs, so AMin remains empty and cMin =∞.

3.2. DETAILS OF A SUBGRAPH MATCH 65

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 0, depth 0

Step 21 discards the empty isomorphism AR.

The isomorphism AMin is returned to step 7 of algorithm 2.

Initialization

The isomorphism A = {(3, 4), (4, 5), (2, 2), (1, 1)}, with cost c = −2.90, is re-
turned to the calling process as the solution to MINIMUM COST SUBGRAPH
ISOMORPHISM from graph G to graph H.

Note how the summation of negative costs allows the larger isomorphism in the
previous section to achieve a lower minimum cost than this. Had the costs been
required to be all non-negative it would detract from performing larger isomor-
phisms.

66 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

(a) Graph G (b) Graph H

Figure 3.4: Graphs that do not match stochastically.

3.3 Details of a stochastic mismatch

In this section we illustrate how the algorithm attempts to match graphs that
have stochastic differences. Figure 3.4 is a graphical representation of the graphs.
The stochastic information in a graph is given by the attributes of its vertices.
The stochastic difference between graphs G and H are therefore the difference
between the colours assigned to their nodes.

Initialization

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.17 -0.17 -0.17 0.17 -0.17
2 -0.17 -0.17 -0.17 0.17 -0.17
3 -0.17 -0.17 -0.17 0.17 -0.17
4 0.00 0.00 0.00 0.00 0.00
5 -0.17 -0.17 -0.17 0.17 -0.17

Recursion 0, depth 0

The contribution matrix C ′ is:

3.3. DETAILS OF A STOCHASTIC MISMATCH 67

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.05 -0.05 -0.05 0.15 -0.05
2 -0.05 -0.05 -0.05 0.15 -0.05
3 -0.05 -0.05 -0.05 0.15 -0.05
4 0.07 0.07 0.07 -0.07 0.07
5 -0.05 -0.05 -0.05 0.15 -0.05

There are no elements cij ∈ C that pass the association threshold ε. No recursion
occurs, so AMin remains empty and cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to step 7 of algorithm 2.

Initialization

The algorithm has found no solution to MINIMUM COST SUBGRAPH ISO-
MORPHISM from graph G to graph H.

68 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

(a) Graph G (b) Graph H

Figure 3.5: Graphs that do not match syntactically.

3.4 Details of a syntactic mismatch

In this section we illustrate how the algorithm attempts to match graphs that
have syntactic differences. Figure 3.5 is a graphical representation of the graphs.
The syntactic information is traditionally defined by the edges in a graph. Since
our graphs are always fully connected, the syntactic difference is given by the
difference of the attributes of corresponding edges, consequently by the difference
of the spatial layout of the two graphs.

Initialization

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.50 -0.50 -0.50 0.00 -0.50
2 -0.50 -0.50 -0.50 0.00 -0.50
3 -0.50 -0.50 -0.50 0.00 -0.50
4 0.00 0.00 0.00 -0.50 0.00
5 -0.50 -0.50 -0.50 0.00 -0.50

Recursion 0, depth 0

The contribution matrix C ′ is:

3.4. DETAILS OF A SYNTACTIC MISMATCH 69

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.10 -0.10 -0.10 0.25 -0.10
2 -0.10 -0.10 -0.10 0.25 -0.10
3 -0.10 -0.10 -0.10 0.25 -0.10
4 0.25 0.25 0.25 -0.40 0.25
5 -0.10 -0.10 -0.10 0.25 -0.10

Recursion occurs for AR = {(4, 4)}.

Recursion 1, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.11 0.11 -0.60 0.00 0.11
2 0.81 0.40 0.11 0.00 -0.60
3 0.52 0.52 -0.10 0.00 -0.10
4 0.00 0.00 0.00 -0.50 0.00
5 0.98 0.98 0.40 0.00 0.11

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.11 -0.07 -0.55 0.08 0.18
2 0.50 0.13 0.05 -0.02 -0.62
3 0.19 0.23 -0.16 -0.03 -0.14
4 -0.19 -0.15 0.07 -0.40 0.10
5 0.49 0.53 0.17 -0.20 -0.09

Recursion occurs for AR = {(4, 4), (5, 2)}.

Recursion 2, depth 2

The refined cost matrix C is:

70 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.71 0.71 -0.70 0.61 0.11
2 0.81 0.40 0.11 0.00 -0.60
3 1.54 1.54 0.30 0.40 -0.10
4 0.90 1.31 0.61 -0.60 0.00
5 2.46 2.46 1.30 0.61 0.11

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.07 -0.07 -1.01 0.36 0.01
2 0.10 -0.31 -0.13 -0.17 -0.62
3 0.53 0.53 -0.23 -0.07 -0.42
4 0.04 0.45 0.22 -0.92 -0.17
5 1.13 1.13 0.44 -0.19 -0.54

Recursion occurs for AR = {(4, 4), (5, 2), (3, 1)}.

Recursion 3, depth 3

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.71 0.71 -0.70 0.61 0.11
2 2.13 1.30 0.11 0.90 -0.70
3 2.55 2.55 0.30 0.80 0.30
4 1.80 2.63 0.61 -0.70 0.90
5 3.94 3.94 1.30 1.21 0.71

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.54 -0.54 -1.01 0.18 -0.17
2 0.64 -0.19 -0.43 0.24 -1.21
3 0.79 0.79 -0.51 -0.13 -0.48
4 0.16 0.99 -0.08 -1.51 0.24
5 1.72 1.72 0.03 -0.18 -0.53

3.4. DETAILS OF A SYNTACTIC MISMATCH 71

The isomorphism is completed as A = {(4, 4), (5, 2), (3, 1), (1, 3), (2, 5)}, with
cost c = 4.40. The isomorphism A does not pass the threshold ε, and nothing is
returned to the recursion level above.

Recursion 2, depth 2

Step 21 discards the empty isomorphism AR.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 1, depth 1

Step 21 discards the empty isomorphism AR.

Recursion occurs for AR = {(4, 4), (3, 1)}.

Recursion 4, depth 2

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.11 0.11 -0.60 0.00 0.11
2 2.13 1.30 0.11 0.90 -0.70
3 1.54 1.54 -0.10 0.40 0.30
4 0.90 1.31 0.00 -0.60 0.90
5 2.46 2.46 0.40 0.61 0.71

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.58 -0.54 -0.55 -0.10 0.00
2 1.04 0.25 -0.25 0.40 -1.21
3 0.46 0.50 -0.45 -0.10 -0.20
4 -0.06 0.39 -0.23 -0.98 0.52
5 1.08 1.13 -0.25 -0.19 -0.08

There are no elements cij ∈ C that pass the association threshold ε. No recursion
occurs, so AMin remains empty and cMin =∞.

72 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 1, depth 1

Step 21 discards the empty isomorphism AR.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 0, depth 0

Step 21 discards the empty isomorphism AR.

Recursion occurs for AR = {(3, 3)}.

Recursion 5, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.10 -0.10 -0.50 1.02 0.52
2 0.52 -0.10 -0.50 1.02 -0.10
3 -0.50 -0.50 -0.50 0.00 -0.50
4 0.40 1.02 0.00 -0.10 1.02
5 0.52 0.52 -0.50 0.40 -0.10

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.27 -0.27 -0.38 0.70 0.35
2 0.35 -0.27 -0.38 0.70 -0.27
3 -0.38 -0.38 -0.10 -0.03 -0.38
4 0.08 0.70 -0.03 -0.57 0.70
5 0.35 0.35 -0.38 0.08 -0.27

There are no elements cij ∈ C that pass the association threshold ε. No recursion
occurs, so AMin remains empty and cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

3.4. DETAILS OF A SYNTACTIC MISMATCH 73

Recursion 0, depth 0

Step 21 discards the empty isomorphism AR.

Recursion occurs for AR = {(3, 5)}.

Recursion 6, depth 1

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.11 0.11 -0.50 1.48 0.98
2 0.40 -0.60 -0.50 1.31 0.40
3 -0.10 -0.10 -0.50 1.02 0.52
4 -0.10 0.90 0.00 0.40 1.31
5 -0.50 -0.50 -0.50 0.00 -0.50

The contribution matrix C ′ is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.09 -0.09 -0.52 0.84 0.49
2 0.32 -0.68 -0.40 0.79 0.03
3 -0.16 -0.16 -0.38 0.51 0.16
4 -0.33 0.67 -0.05 -0.27 0.79
5 -0.28 -0.28 -0.10 -0.22 -0.57

Recursion occurs for AR = {(3, 5), (2, 2)}.

Recursion 7, depth 2

The refined cost matrix C is:

Graph G
1 2 3 4 5

G
ra

ph
H

1 0.71 0.11 0.40 2.96 2.46
2 0.40 -0.60 -0.50 1.31 0.40
3 0.30 -0.10 -0.10 2.04 1.54
4 -0.20 0.90 0.61 1.30 2.63
5 0.11 -0.50 -0.60 0.61 0.11

The contribution matrix C ′ is:

74 CHAPTER 3. GRAPH MATCHER ILLUSTRATION

Graph G
1 2 3 4 5

G
ra

ph
H

1 -0.08 -0.54 -0.25 1.48 1.08
2 0.17 -0.68 -0.58 0.39 -0.41
3 -0.20 -0.45 -0.45 0.85 0.46
4 -0.86 0.40 0.10 -0.05 1.39
5 0.00 -0.45 -0.55 -0.19 -0.58

There are no elements cij ∈ C that pass the association threshold ε. No recursion
occurs, so AMin remains empty and cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 6, depth 1

Step 21 discards the empty isomorphism AR.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to the recursion level above.

Recursion 0, depth 0

There are no elements cij ∈ C that pass the association threshold ε. No recursion
occurs, so AMin remains empty and cMin =∞.

The isomorphism AMin = ∅, with cost cMin =∞, does not pass the isomorphism
threshold ε, and nothing is returned to step 7 of algorithm 2.

Initialization

The algorithm has found no solution to MINIMUM COST SUBGRAPH ISO-
MORPHISM from graph G to graph H.

Chapter 4

Graph matcher results

4.1 Overview

For our experiments we generate a set of 300 attributed relation graphs, each
containing somewhere between 1 and 100 vertices. Every vertex is assigned
an arbitrary colour and spatial centroid. The colours are 3-byte RGB values.
The centroids are 2-dimensional vectors with each component in the range [0, 1].
Edges are added to the graph to make it fully connected, their spatial relational
vectors are derived from the connected vertices’ centroids. Of the 300 graphs,
200 are copied into the library of prototype graphs.

We use the metrics from chapter 3.

Each experiment matches all 300 candidate graphs against all 200 prototype
graphs, for a total of 60,000 performed matches, under varying conditions. For
each of these 60,000 matches there are 4 different outcomes:

(a) The candidate graph is correctly matched to some prototype graph, we label
these instances “True-Positive.”

(b) The candidate graph is correctly unmatched to any prototype graph in li-
brary, labelled “True-Negative.”

(c) The candidate graph is incorrectly match to some prototype graph, labelled
“False-Positive.”

(d) The candidate graph is incorrectly unmatched to any prototype graph in
library, labelled “False-Negative.”

75

76 CHAPTER 4. GRAPH MATCHER RESULTS

These outcomes are counted using the corresponding variables a, b, c, and d.
From these we derive the following statistics:

• Accuracy – A measure of the absence of error. Also a measure of how close
an estimate is to its true value; it measures the portion of all decisions that
were correct decisions. It is defined as (a+ b)/(a+ b+ c+ d). It falls in the
range [0, 1], with 1 being the best score.

• Error – This measures the portion of all decisions that were incorrect
decisions. It is defined as (c + d)/(a + b + c + d). It falls in the range [0, 1],
with 0 being the best score.

• Precision – The degree of conformity among a set of observations. As
such, precision is a measure of dispersion of the probability distribution
associated with a measurement and expresses the degree of repeatability
of a measurement. This is the portion of the assigned categories that were
correct. It is defined as a/(a + c). It falls in the range [0, 1], with 1 being
the best score.

• Recall – This measures the portion of the correct categories that were
assigned. It is defined as a/(a + d). It falls in the range [0, 1], with 1 being
the best score.

• F1 – This measures an even combination of precision and recall. It is
defined as 2pr/(p + r). In terms of a, b, and c, it may be expressed as
2a/(2a + c + d). It falls in the range [0, 1], with 1 being the best score.

The F1 measure is often the only simple measure that is worth trying to maximize
on its own – consider the fact that you can get a perfect precision score by
always assigning zero matches, or a perfect recall score by always assigning every
match. A truly smart system will assign the correct matches, and only the
correct matches, maximizing precision and recall at the same time, and therefore
maximizing the F1 score.

Sometimes it is worth trying to maximize the accuracy score, but accuracy (and
its counterpart error) are considered fairly crude scores that do not give much
information about the performance of the matcher.

4.1.1 A note on the figures

Each experiment is presented with a graphical representation of their runtimes;
one figure for each of the four outcomes of a match. As explained in chapter 1
we do not present the number of seconds elapsed on some given platform, but
rather the number of refinements performed on the cost matrix during a match
(i.e. the β component of the runtime).

4.1. OVERVIEW 77

Beneath each figure is the value of the corresponding count variable (a, b, c or d),
the average depth inspected by the matcher, the average number of recursions
performed, and the average number of refinements performed.

78 CHAPTER 4. GRAPH MATCHER RESULTS

4.2 Improving runtimes

All our experiments are run using the same set of controlling parameters as the
illustrations in chapter 3. This first section introduces each parameter, in turn, so
that their individual contribution becomes apparent. Although these parameters
reduce actual runtimes to a miniscule fraction of the upper-bound, there is no
loss of accuracy when applied to our set of graphs.

The statistics below hold throughout the improvements applied in these sections:

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

4.2.1 Unrestricted

For reference we begin by running the algorithm without a target depth or any
discrimination of associations at step 17 of algorithm 3. In effect, nothing is
pruned, and the algorithm performs at the upper-bound of runtime.

(a) True-Positive. Count 40,000, depth
50.5, recursions 4.18E+154, refinements
4.09E+156.

(b) True-Negative. Count 20,000, depth
50.5, recursions 4.18E+154, refinements
4.09E+156.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.1: Unrestricted match.

4.2. IMPROVING RUNTIMES 79

4.2.2 Depth threshold

The first pruning technique we apply is target depth; by experiments we have
found depth n = 3 to suffice for most circumstances. This halts all recursions
when the current set of associations A contains 3 vertex tuples. At that point,
steps 30 - 34 traverses the contribution matrix C ′ in order of increasing value to
complete a subgraph isomorphism.

By the logic of our algorithm, this technique can be applied without compro-
mising the results. Each vertex association in A implies an edge association for
every single element cij ∈ C, and even at a low number of associations in A, the
traversal-order of the contribution matrix C ′ (by the refined C) converges.

See figure 4.3 for significant improvement of runtimes over the unrestricted in-
stances. The average number of applied refinements to the cost matrix C is
reduced from 4.09E+156 to 1.35E+9.

(a) True-Positive. Count 40,000, depth
2.99, recursions 3.06E+7, refinements
1.35E+9.

(b) True-Negative. Count 20,000, depth
2.99, recursions 3.06E+7, refinements
1.35E+9.

Figure 4.2: Match with depth threshold.

(a) True-Positive. (b) True-Negative.

Figure 4.3: Improvement by depth threshold.

80 CHAPTER 4. GRAPH MATCHER RESULTS

4.2.3 Depth- and association threshold

By applying a threshold on the association cost at step 17, the algorithm is able
to prune most associations that are not part of a perfect subgraph isomorphism.
The function ε = a|A| + b gives a dynamic threshold that becomes increasingly
severe as depth increases. Reasoned from the metrics; a = − 1

10 and b = − 1
2 .

An additional threshold is applied to the average cost per association, c̄ = c/|A|,
at step 36 to filter isomorphisms that degenerate after reaching the target depth.
This threshold is also reasoned from the metrics; ε = − 1

2 .

At this point, only the perfect matches perform the maximum amount of refine-
ments. All mismatches are pruned without recursion. The number of applied
refinements are down from 1.35E+9 to 1.58E+7.

(a) True-Positive. Count 40,000, depth
0.02, recursions 1.90E+5, refinements
1.58E+7.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

Figure 4.4: Match with depth- and association threshold.

(a) True-Positive. (b) True-Negative.

Figure 4.5: Improvement by depth- and association threshold.

4.2. IMPROVING RUNTIMES 81

4.2.4 Depth- and association threshold, restricted local re-
cursions

The number of iterations through the recursion loop in steps 15 - 27 of algorithm
3, whose association is accepted by step 17, is counted and limited by a low-level
cut-off. By experience we choose to allow 5 iterations; everything beyond the
first 5 accepted associations are rejected. The rationale behind this approach is
that the logic of the algorithm investigates the associations in a best-first fashion.

This method is able to prune away a large amount of the refinements performed
on perfect matches. Refinements are reduced from 1.58E+7 to 2,494.40.

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.71, refinements 2,494.40.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

Figure 4.6: Match with depth- and association threshold, restricted local recur-
sions.

(a) True-Positive. (b) True-Negative.

Figure 4.7: Improvement by depth- and association threshold, restricted local
recursions.

82 CHAPTER 4. GRAPH MATCHER RESULTS

4.2.5 Depth- and association threshold, restricted local and
global recursions

The final pruning technique applied in algorithm 3 is a high-level cut-off that
limits the total number of recursions allowed. As soon as that number of recur-
sions have been performed, step 17 rejects all further associations. By experience
we choose this cut-off to be 50.

In effect; for correct matches we are able to reduce the average number of refine-
ments from 4.09E+156 to 820.96, whereas for correct unassigned matches we are
able to reduce the average number of refinements from 4.09E+156 to 0.

Statistical results remain perfect throughout.

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.24, refinements 820.96.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

Figure 4.8: Match with depth- and association threshold, restricted local and
global recursions.

(a) True-Positive. (b) True-Negative.

Figure 4.9: Improvement by depth- and association threshold, restricted local
and global recursions.

4.3. PERFORMANCE UNDER NOISE 83

4.3 Performance under noise

Using the set of pruning techniques introduced in chapter 4.3.2, the remainder of
this chapter will demonstrate how our method runs under various types of noise.
We define “noise” as some alteration to the candidate graph. Each type of noise
is therefore a separate method of modifying a graph.

For each type of the noise there is also a measure p, whose value is given by the
heading of each experiment. The value of p relates to the amount of noise that
is applied to all candidate graphs before matching. The effect of p is different
for each type of noise, and its meaning is given alongside the introduction of the
noise type.

4.3.1 Spatial noise

By “spatial noise” we mean modifications to the spatial information contained
in the edges E of a graph G = (V,E). Because our method requires spatially
coherent graphs, any noise to a single edge can be smoothed by averaging against
the spatial information contained in the other edges. Furthermore, since our
graphs are fully connected, as the number of vertices in a graph increases, the
number of edges increase exponentially, and the more resilient the graph becomes
to this type of edge noise.

Instead of this simple noise, we apply spatial noise by first altering the spatial
information in a selected edge ei, and then updating all other edges ∀ej ∈ E, ej 6=
ei to be spatially coherent with the modified ei. This is analogous to moving a
pattern primitive in a source image.

The percentage p is a measurement of the amount of noise that is applied to every
single edge of the graph. All components (x, y, z, ..) of the spatial relational vector
~ei (its dimensionality is given by the source image) of edge ei ∈ E are modified
by separate random values. These values are chosen from the range [− 1

2p, 1
2p],

scaled to the extent of the current component (e.g. if the x-component lies in
the range [−50, 75], the scale factor for that component is 125).

In these experiments we use 2-dimensional spatial relations where both the x-
and the y-component lie in the range [0, 1]. The scaling we apply is therefore 1.0
for both components.

By the analogy of moving a pattern primitive in a source image, the measurement
p is the maximum extent, expressed in a percentage of the image dimension, in
which the move occurs.

84 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.24, refinements 820.96.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.10: Match with 10% spatial noise.

10% spatial noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The association
threshold is ε = − 1

2 , the average cost threshold ε = − 1
2 .

All results are perfect. By figure 4.10 it is evident that no time is spent on any
of the matches except for those that give True-Positive results.

4.3. PERFORMANCE UNDER NOISE 85

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.24, refinements 820.90.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.11: Match with 25% spatial noise.

25% spatial noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = 1

10 |A| −
1
2 , the average cost

threshold is ε = 0.

All results are perfect. Again, no runtime is spent investigating anything but
True-Positive instances.

86 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 37,600, depth
0.01, recursions 0.22, refinements 842.69.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. Count 2,400, depth
0.01, recursions 0.06, refinements 180.70.

Figure 4.12: Match with 50% spatial noise.

50% spatial noise

Accuracy Error Precision Recall F1
0.96 0.04 1.00 0.94 0.97

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = 1

10 |A| −
1
2 , the average cost

threshold is ε = 0.

Some candidate graphs that should have been matched to corresponding pro-
totype graphs where determined not to exist among the known graphs. As a
result, the Recall value is not 1.0, and following the value of F1 is also not per-
fect. Some time is now spent on the False-Negative instances, which indicates
that, even though the matcher did determine them unmatched, some time was
spent on the candidate graphs that should have been assigned a match.

4.3. PERFORMANCE UNDER NOISE 87

(a) True-Positive. Count 27,200, depth
0.02, recursions 0.21, refinements 919.13.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. Count 12,800, depth
0.01, recursions 0.12, refinements 387.02.

Figure 4.13: Match with 75% spatial noise.

75% spatial noise

Accuracy Error Precision Recall F1
0.79 0.21 1.00 0.68 0.81

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = 1

10 |A| −
1
2 , the average cost

threshold is ε = 0.

As above, the error that occurs are only False-Negatives. Even at this amount of
spatial noise, Precision remains at 1.0, and F1 is good. No time is spent looking at
instances except for True-Positives and False-Negatives. By comparing the values
in figure 4.13 to those in figure 4.10 we see that the algorithm now requires more
time to decide on a match. This trend seems to carry through the increase of
noise, which is conceptually easy to understand.

88 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 18,000, depth
0.01, recursions 0.21, refinements 953.45.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. Count 22,000, depth
0.01, recursions 0.13, refinements 509.91.

Figure 4.14: Match with 95% spatial noise.

95% spatial noise

Accuracy Error Precision Recall F1
0.63 0.37 1.00 0.45 0.62

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = 1

10 |A| −
1
2 , the average cost

threshold is ε = 0.

Even when the pattern primitives are allowed to move at random across the full
extent of the source image, Precision remains 1.0. However, at this point there
are more cases where candidate graphs are wrongly found not to exist among
the prototype graphs, than there are cases where candidate graphs are correctly
matched. The accuracy at which the algorithm finds instances that are True-
Negatives salvages an impressive F1 even now.

The average amount of time spent on False-Negatives is less than the correspond-
ing time spent on True-Positives, which indicates that the control parameters
might be too restrictive to find the correct match.

4.3. PERFORMANCE UNDER NOISE 89

4.3.2 Pattern noise

By “pattern noise” we mean modifications to the information contained in the
vertices V of a graph G = (V,E). The application of this noise to a single vertex
vi ∈ V is distortion of all numerical values that are used to describe the pattern
primitive of vi.

The percentage p is a measurement of the amount of noise that is applied to every
single vertex of the graph. All components of the pattern primitive of vertex vi

are modified by separate random values. As with spatial noise, these values are
chosen from the range [− 1

2p, 1
2p], scaled to the extent of the current component.

Because the pattern primitives we use in these experiments are 3-byte RGB
values, each of its three components lie in the byte-range [0, 255], and its extent
is therefore 255.

Although it might seem backwards, this noise is actually quite easy to counter
as long as the spatial relations in the edges of the graph remain unchanged.
Although more time is required to find the correct isomorphisms, the refinements
applied to the cost matrix C as the algorithm recurses likely associations will
quickly converge when the first few associations have been correctly guessed. As
the number of vertices in the graph increases, the probability that a necessary few
vertices remain close to unchanged also increases, and consequently the algorithm
can reach target depth with a set of correct associations.

Consider the dynamic threshold function ε = a|A| + b that we use for filtering
possible associations. To cope with pattern noise it is necessary to raise the
value of b, which is the initial threshold applied to the cost matrix before spatial
content of edge-edge associations have been considered, so that not only perfect
associations are accepted. At the same time it is necessary to retain the most
strict a, which expresses the refinement that an edge-edge association must apply
to an association cost, so that the two vertices of an association are required to
be spatially identical.

90 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 39,600, depth
0.49, recursions 1.12, refinements 4,156.72.

(b) True-Negative. Count 20,000, depth
0.47, recursions 0.87, refinements 3,301.05.

(c) False-Positive. None. (d) False-Negative. Count 400, depth 0.18,
recursions 0.21, refinements 0.00.

Figure 4.15: Match with 10% pattern noise.

10% pattern noise

Accuracy Error Precision Recall F1
0.99 0.01 1.00 0.99 0.99

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
9
20 , the average cost

threshold is ε = − 1
2 .

With this little noise applied to the graphs, the results are close to perfect. By
the False-Negatives in figure 4.15 it seems that errors only occur when either of
the two graphs are sufficiently small (there is no plot on the right-hand side of
the diagram). This coincides with the comments on this type of noise above.

4.3. PERFORMANCE UNDER NOISE 91

(a) True-Positive. Count 39,400, depth
0.98, recursions 3.52, refinements 11,654.77.

(b) True-Negative. Count 19,800, depth
0.97, recursions 3.32, refinements 10,882.58.

(c) False-Positive. Count 200, depth 0.72,
recursions 1.54, refinements 98.80.

(d) False-Negative. Count 600, depth 0.71,
recursions 1.63, refinements 240.58.

Figure 4.16: Match with 25% pattern noise.

25% pattern noise

Accuracy Error Precision Recall F1
0.99 0.01 0.99 0.99 0.99

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
8
20 , the average cost

threshold is ε = − 1
2 .

The results are quite similar to that of 10% noise, except that a lot more time
is now spent on all four different outcomes. Both the False-Positives and False-
Negatives in figure 4.16 indicate that errors only occur on smaller graphs.

92 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 36,000, depth
1.34, recursions 5.17, refinements 15,586.38.

(b) True-Negative. Count 20,000, depth
1.33, recursions 4.98, refinements 14,780.52.

(c) False-Positive. None. (d) False-Negative. Count 4,000, depth
1.21, recursions 4.43, refinements 12,425.40.

Figure 4.17: Match with 50% pattern noise.

50% pattern noise

Accuracy Error Precision Recall F1
0.93 0.07 1.00 0.90 0.95

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
7
20 , the average cost

threshold is ε = − 1
2 .

The results remain close to perfect, but again it comes at the cost of increased
time. Keep in mind, however, that even the high ridge through the correct
matches in the True-Positive diagram is still, at most, only a 6-digit number as
opposed to original 156-digit one.

4.3. PERFORMANCE UNDER NOISE 93

(a) True-Positive. Count 35,000, depth
1.92, recursions 9.34, refinements 31,102.34.

(b) True-Negative. Count 19,600, depth
1.93, recursions 9.22, refinements 31,911.27.

(c) False-Positive. Count 800, depth 1.66,
recursions 6.81, refinements 9,625.25.

(d) False-Negative. Count 4,600, depth
1.93, recursions 9.89, refinements 44,514.98.

Figure 4.18: Match with 75% pattern noise.

75% pattern noise

Accuracy Error Precision Recall F1
0.91 0.09 0.98 0.88 0.93

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
5
20 , the average cost

threshold is ε = − 1
2 .

Even at this amount of noise the algorithm is able to come close to perfect results.
The trend of increasing time with increasing noise is now obvious, and the average
number of refinements for all cases is becoming quite large.

94 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 30,000, depth
1.90, recursions 9.04, refinements 29,936.80.

(b) True-Negative. Count 19,600, depth
1.91, recursions 9.01, refinements 30,968.93.

(c) False-Positive. Count 1,200, depth 1.72,
recursions 7.72, refinements 20,024.06.

(d) False-Negative. Count 9,200, depth
1.90, recursions 9.52, refinements 37,207.25.

Figure 4.19: Match with 95% pattern noise.

95% pattern noise

Accuracy Error Precision Recall F1
0.83 0.17 0.96 0.77 0.85

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
5
20 , the average cost

threshold is ε = − 1
2 .

At almost complete distortion of every single pattern primitive in the graph, the
algorithm is still able to achieve an incredible F1 of 0.85. The error is primarily
due to incorrectly unassigned matches that yield a low Recall. The average
amount of refinements in both true outcomes are very similar, while the most
time spent is actually in the False-Negatives. This indicates that the algorithm
was halted by the low- and high-level cut-offs before it was able to find initial
associations that would yield correct traversal of the cost matrix at target depth.

If even more time was allowed for the search it is likely that the algorithm would
be able to solve the current False-Negatives, thereby achieving a higher Recall
and consequently an even higher F1.

4.3. PERFORMANCE UNDER NOISE 95

4.3.3 Vertex noise

By “vertex noise” we mean addition or removal of vertices in the candidate graph.

To add a new vertex v′ to G = (V,E) it requires a new pattern primitive and
a set of |V | new edges. In these experiments, the pattern primitive is a random
3-byte RGB value, found by 3 random values in the byte range [0, 255]. The set
of edges are (v′, vi) and (vi, v

′) for all vi ∈ V . A spatial relational vector is chosen
at random for the first edge, and the others have their vectors derived to keep
the graph spatially coherent (see chapter 1.5).

To remove a vertex vi from G it is simply a matter of removing the vertex from
V and all edges in E that connects to it.

The percentage p is a measurement of how many vertices should be added or
removed. As with spatial noise, this value is chosen from the range [− 1

2p, 1
2p],

scaled to the current experiment. Since our experiments handle graphs that have
1 to 100 vertices, our scale factor is 100.

Because there is no noise to neither the pattern primitives of the vertices, nor the
spatial information in the edges, these instances are very simple for our algorithm
to solve. The original vertices in the candidate graph will be matched correctly
to the corresponding prototype graph; excessive vertices in the candidate is un-
derstood as the prototype graph being a subgraph of the candidate graph, the
opposite is true when vertices have been removed.

The only reasons for a mismatch to occur under this type of noise is if 1) there
exists a prototype graph that is itself a subgraph of another prototype graph,
or 2) all additional vertices are identical, both their pattern primitives and their
spatial relationships, to some vertices in another prototype graph, such that the
new vertices become a larger subgraph to the wrong prototype graph than the
original graph to the correct prototype. Instances where the first may occur
should be remedied by marking both prototype graphs as being equal, whereas
the second is so fantastically improbable that it is not worth considering.

96 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.24, refinements 821.10.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.20: Match with 10% vertex noise.

10% vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
1
2 , the average cost

threshold is ε = − 1
2 .

Results are perfect, with no additional time spent on anything except for the
True-Positive matches.

4.3. PERFORMANCE UNDER NOISE 97

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.23, refinements 820.88.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.21: Match with 25% vertex noise.

25% vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
1
2 , the average cost

threshold is ε = − 1
2 .

Results are perfect at minimum time.

98 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.22, refinements 822.06.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.22: Match with 50% vertex noise.

50% vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
1
2 , the average cost

threshold is ε = − 1
2 .

Again, perfect results at minimum time.

4.3. PERFORMANCE UNDER NOISE 99

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.21, refinements 820.59.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.23: Match with 75% vertex noise.

75% vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
1
2 , the average cost

threshold is ε = − 1
2 .

And again, perfect.

100 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.20, refinements 822.09.

(b) True-Negative. Count 20,000, depth
0.00, recursions 0.00, refinements 0.00.

(c) False-Positive. None. (d) False-Negative. None.

Figure 4.24: Match with 95% vertex noise.

95% vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
1
2 , the average cost

threshold is ε = − 1
2 .

And finally, perfect results even at this amount of noise.

4.3. PERFORMANCE UNDER NOISE 101

4.3.4 Combinations of noise

We show earlier in this chapter how the application of a single type of noise
to a candidate graph can be efficiently resisted by clever manipulation of the
controlling parameters. For perfect results, however, it does requires that we
know the type of noise applied.

In this chapter we apply different combinations of noise, and then investigate
the accuracy of the matcher and the time required. This means that there is no
simple way for the algorithm to solve the matching instances, and the controlling
parameters need to simultaneously accept both noisy vertex-vertex associations
and edge-edge associations.

102 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.53, recursions 1.17, refinements 4,391.61.

(b) True-Negative. Count 19,800, depth
0.52, recursions 0.95, refinements 3,712.77.

(c) False-Positive. Count 200, depth 0.20,
recursions 0.22, refinements 13.87.

(d) False-Negative. None.

Figure 4.25: Match with 10% spatial and vertex noise.

10% spatial and vertex noise

Accuracy Error Precision Recall F1
1.00 0.00 1.00 1.00 1.00

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

20 |A| −
9
20 , the average cost

threshold is ε = − 1
2 .

The results are perfect. This agrees with the observation in chapter 4.3.3 that
vertex noise is close to trivial, the results equal those in chapter 4.3.1.

4.3. PERFORMANCE UNDER NOISE 103

(a) True-Positive. Count 38,600, depth
0.53, recursions 1.18, refinements 4,480.88.

(b) True-Negative. Count 20,000, depth
0.51, recursions 0.90, refinements 3,485.60.

(c) False-Positive. None. (d) False-Negative. Count 1,400, depth
0.16, recursions 0.17, refinements 5.46.

Figure 4.26: Match with 10% pattern and vertex noise.

10% pattern and vertex noise

Accuracy Error Precision Recall F1
0.98 0.02 1.00 0.97 0.98

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

20 |A| −
9
20 , the average cost

threshold is ε = − 1
2 .

The results are close to perfect, although some incorrect unassigned matches
occur. Again, this is similar to the results achieved when disregarding the vertex
noise.

104 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 39,400, depth
0.53, recursions 1.15, refinements 4,358.32.

(b) True-Negative. Count 20,000, depth
0.51, recursions 0.91, refinements 3,520.71.

(c) False-Positive. None. (d) False-Negative. Count 600, depth 0.29,
recursions 0.38, refinements 568.27.

Figure 4.27: Match with 10% spatial and pattern noise.

10% spatial and pattern noise

Accuracy Error Precision Recall F1
0.99 0.01 1.00 0.99 0.99

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

20 |A| −
9
20 , the average cost

threshold is ε = − 1
2 .

These instances are by far the most interesting ones. The spatial content of the
edges in the candidate graph, as well as the pattern primitive data in the vertices,
are distorted by noise. The algorithm is unable to rely on any type of data as
perfect, and the matching becomes far from trivial. Still, the only error that
occurs are a few instances of incorrect unassigned matches. By the low average
depth, recursion and refinement count we assume that these are instances of
smaller graphs.

The results are still very close to perfect.

4.3. PERFORMANCE UNDER NOISE 105

(a) True-Positive. Count 38,200, depth
0.54, recursions 1.17, refinements 4,522.05.

(b) True-Negative. Count 20,000, depth
0.51, recursions 0.91, refinements 3,561.70.

(c) False-Positive. None. (d) False-Negative. Count 1,800, depth
0.21, recursions 0.26, refinements 186.28.

Figure 4.28: Match with 10% spatial, pattern and vertex noise.

10% spatial, pattern and vertex noise

Accuracy Error Precision Recall F1
0.97 0.03 1.00 0.96 0.98

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

20 |A| −
9
20 , the average cost

threshold is ε = − 1
2 .

The results are close to perfect. The vertex noise seems to primarily be effecting
the smaller graphs, an observation supported by comparison to the results of
spatial and pattern noise – the addition of vertex noise only adds a few more
instances of False-Negatives with a low average refinement count.

106 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 40,000, depth
0.01, recursions 0.23, refinements 835.03.

(b) True-Negative. Count 19,200, depth
0.00, recursions 0.00, refinements 0.26.

(c) False-Positive. Count 800, depth 0.02,
recursions 0.08, refinements 180.17.

(d) False-Negative. None.

Figure 4.29: Match with 25% spatial and vertex noise.

25% spatial and vertex noise

Accuracy Error Precision Recall F1
0.99 0.01 0.98 1.00 0.99

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = 1

10 |A| −
1
2 , the average cost

threshold is ε = 0.

Vertex noise does not contribute to much confusion when combined with spatial
noise alone, and the results are very close to perfect.

4.3. PERFORMANCE UNDER NOISE 107

(a) True-Positive. Count 37,600, depth
1.00, recursions 3.62, refinements 12,284.69.

(b) True-Negative. Count 20,000, depth
0.96, recursions 3.26, refinements 10,513.73.

(c) False-Positive. None. (d) False-Negative. Count 2,400, depth
0.66, recursions 1.37, refinements 452.99.

Figure 4.30: Match with 25% pattern and vertex noise.

25% pattern and vertex noise

Accuracy Error Precision Recall F1
0.96 0.04 1.00 0.94 0.97

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The dynamic
association threshold is given by the function ε = − 1

10 |A| −
4
10 , the average cost

threshold is ε = − 1
2 .

Again, the vertex noise does not shift the results from those in chapter 4.3.2.
Precision remains perfect, whereas Recall is down to 0.94, giving a total F1 value
of 0.97.

108 CHAPTER 4. GRAPH MATCHER RESULTS

(a) True-Positive. Count 29,400, depth
1.64, recursions 6.09, refinements 24,034.78.

(b) True-Negative. Count 3,200, depth
1.06, recursions 2.86, refinements 3,971.47.

(c) False-Positive. Count 24,800, depth
1.65, recursions 6.21, refinements 27,045.84.

(d) False-Negative. Count 2,600, depth
0.79, recursions 1.89, refinements 1,957.12.

Figure 4.31: Match with 25% spatial and pattern noise.

25% spatial and pattern noise

Accuracy Error Precision Recall F1
0.54 0.46 0.54 0.92 0.68

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The association
threshold is ε = − 2

5 , the average cost threshold is ε = − 2
5 .

By combining both 25% pattern and 25% spatial noise, the algorithm is up
against its hardest challenge. The runtimes are among the highest recorded
in all our experiments, but the results are very good. In contrast to earlier
results Recall is a lot higher than Precision, which would imply that the combined
noise has been able to push candidate graphs sufficiently far from their original
description into something that more closely resembles another graph in the set
of prototypes.

Keep in mind that every single pattern primitive and every single edge has been
allowed to move around in 25% of its maximum extent. Furthermore, remember
that even the highest peaks of these runtimes are still only a fraction of the
equivalent brute-force runtimes.

4.3. PERFORMANCE UNDER NOISE 109

(a) True-Positive. Count 31,200, depth
1.68, recursions 6.36, refinements 26,257.49.

(b) True-Negative. Count 2,200, depth
1.17, recursions 3.35, refinements 5,037.01.

(c) False-Positive. Count 24,200, depth
1.57, recursions 5.80, refinements 24,609.12.

(d) False-Negative. Count 2,400, depth
0.90, recursions 2.28, refinements 2,410.79.

Figure 4.32: Match with 25% spatial, pattern and vertex noise.

25% spatial, pattern and vertex noise

Accuracy Error Precision Recall F1
0.56 0.44 0.56 0.93 0.70

Target depth is 3, low-level cut-off is 5, high-level cut-off is 50. The association
threshold is ε = − 2

5 , the average cost threshold is ε = − 2
5 .

The results are similar to the instances without the vertex noise; an impressive
F1 at the price of “high” runtimes.

110 CHAPTER 4. GRAPH MATCHER RESULTS

Chapter 5

Conclusion, part 1

This concludes our second contribution. This part illustrates in detail the benefits
of our approach over traditional methods of graph matching. Not only does
our algorithm improve on the increasing size of the graphs involved, but it is
developed in such a way that future heuristics can quickly and easily be deployed
and tested.

Chapter 1 introduces the field of computer vision by a discussion of various
applied methods. The attributed relation graph is introduced, and the problem
at the heart of our thesis is derived:

MINIMUM COST SUBGRAPH ISOMORPHISM
INSTANCE: Given graphs G = (V1, E1), H = (V2, E2) where |V1| ≤
|V2|, a vertex cost metric Ev(vi, vj) for associating a vertex vi ∈ V1

to a vertex vj ∈ V2, and an edge cost metric Ee(ek, el) for associating
an edge ek ∈ E1 to an edge el ∈ E2.
QUESTION: Under these metrics, what is the minimum cost sub-
graph isomorphism from graph G to graph H?

Runtimes are presented as two-fold values (the cost of Ev as α, the cost of Ee as
β), and the remainder of the chapter 1 is used to demonstrate how real instances
of the problem, as available in vision tasks, can be used to deduce bounds on
runtimes which are only a fraction of the originals (see figure 5.1).

In chapter 2 we describe our algorithm for solving instances of MINIMUM COST
SUBGRAPH ISOMORPHISM, and in chapter 3 the algorithm is illustrated with
complete detail. Then, in chapter 4, we present results from a set of 1,380,000
matches performed on random graphs that are distorted using various types
of noise. See figure 5.2 for the incredible improvements achieved by applying

111

112 CHAPTER 5. CONCLUSION, PART 1

(a) Magnitude of α component over original
α.

(b) Magnitude of β component over original
β.

Figure 5.1: Improvements by real instances, see chapters 1.5 and 1.6.

common pruning ideas to our algorithm.

There is almost no loss of accuracy as runtimes are reduced from 158-digit num-
bers to 3-digit ones, even under heavy noise. Still, our results should be regarded
as contemporary, since future techniques and ideas for pruning search space can
be readily added to our algorithm as implementation details.

Although the trend in computer vision research seems to favour other approaches
than graph matching, our algorithm suggests that ARG’s can be used with high
accuracy and speed. Contrary to traditional graph matching, our algorithm
thrives on large, fully-connected graphs, instances that most other graph match-
ing algorithms fail horribly to solve. The accuracy of our method actually in-
creases as the graphs increase in size, while runtimes only gracefully degenerate.

We have achieved milestone 4; to develop a solution to subgraph isomorphism
that manages sufficient accuracy in lower time-complexity than other published
methods. The comparison is obviously biased by the fact that we only trial
spatially coherent graphs – instances that our algorithm thrives on, while other
methods typically avoid to solve them alltogether because of their complexity.
However, in light of the trend that we reveal in chapter 1 this is the only correct
comparison.

Any future work should includes the development of better vertex- and edge-
association heuristics and additional rejection tests.

113

(a) By brute-force. Average number of calls
to Ee is 4.08E+158.

(b) By spatial coherent graphs. Average num-
ber of calls to Ee is 4.09E+156.

(c) By depth limitation. Average number of
calls to Ee is 1.35E+9.

(d) By depth limitation and association
threshold. Average number of calls to Ee is
1.58E+7.

(e) By depth limitation, association threshold
and low-level cut-off. Average number of calls
to Ee is 2,494.40.

(f) By depth limitation, association threshold,
low- and high-level cut-off. Average number of
calls to Ee is 820.96.

Figure 5.2: Improvements by pruning, see chapters 1 through 4.

114 CHAPTER 5. CONCLUSION, PART 1

Part II

Application to computer
vision

115

Chapter 6

Object definition

In part 1 we introduce the attributed relation graph (ARG) and propose an al-
gorithm to solve the MINIMUM COST SUBGRAPH ISOMORPHISM problem.
In this part we apply that solution to a computer vision system.

All papers, as seen by us, detailing nearest neighbour indexing of patterns in
computer vision comment on the “curse of dimensionality” as their feature vectors
(similar to our pattern primitives) grow to hold more and more information. As
more types of pattern primitives are discovered and added to the feature vectors,
the faster these methods break down due to a high-order space that becomes
near impossible to partition efficiently.

Instead of adding more and more pattern primitives to a single-graph description
of an object, we propose the use of a set of graphs that each hold low-complexity
primitives.

Let an object O = (G1, G2, .., GN) be a set of N ARG’s, where N is the number
of different types of pattern primitives available to describe an image of the
object. Each graph Gi is a separate and complete description of the object O
using pattern primitive type i, or rather; the graph Gi describes the object O in
domain i.

By this division of domains the upper-bound complexity of the search space is
effectively limited to the highest-order pattern primitive, but it also requires that
matching has to be performed separately in each domain. As we detail in chapter
4, this graph matching can be done fast and efficiently by our algorithm.

Although the following example is not accurate, it does let us illustrate the idea.

Let the number of known domains N be 4. This gives four separate ARG’s that
each describe the same input image, but over separate domains. For simplicity,

117

118 CHAPTER 6. OBJECT DEFINITION

Figure 6.1: Hypothetical runtime comparison.

let us assume that all domains are based on regions detected in the image, thereby
making all four ARG’s contain the same number of vertices L. Furthermore, let
the number of values required to describe a pattern primitive be 1, 2, 3 and 4 for
the four domains respectively.

Our method needs to run four separate matches; time is then the sum of 4
separate matches, bound by some constant a and the respective complexities:

f(a, L) = a · L1 + a · L2 + a · L3 + a · L4 (6.1)

As opposed to this, an algorithm that combines the corresponding pattern prim-
itives of each domain to a single description is similarly bound by:

g(b, L) = b · L1+2+3+4 (6.2)

See figure 6.1 for the obvious benefits of a function such as f(a, L) over g(b, L).
Only when L is small will g(b, L) outperform f(a, L); however, the runtimes in
such cases are generally so small that they do not matter anyway.

Keep in mind that this is a demonstration of principle, it is not a set
of recorded runtimes.

Chapter 7

Object extractor

In this chapter we present a method of extracting an object (see chapter 6) from
any 2-dimensional image. There is some implementation-specific details included
in the description of our object extractor, relevant only when read alongside the
source-code that accompanies this thesis.

This chapter is based, in part, on the method of feature extraction presented in
[6].

7.1 Image acquisition

Image acquisition is regarded as an implementation detail. This section details
how this is achieved using C# code (a proprietary programming language de-
veloped by Microsoft, see [54]) running in a Microsoft .Net environment (see
[55]).

Loading an image from file uses the Microsoft .Net class System.Drawing.Bitmap
capable of loading most known image file types by passing the filename as ar-
gument to the class’ constructor. Although sampling and quantization has been
performed beforehand, the image is moved into a 24-bit surface.

With native Microsoft Windows code called through a few, simple lines C#
code, it is possible to capture an image from any digital camera connected to the
computer. Both sampling and quantization is determined by the camera, but
again the image is available in a 24-bit surface.

With the release of the first managed version (9.0) of the DirectX API (see
[56]) in December 2002 it is now possible to use it with any CLR-compliant
(see [55] and [57]) language. Even though the OpenGL environment (see [58])

119

120 CHAPTER 7. OBJECT EXTRACTOR

(a) Original image. (b) Classified image.

Figure 7.1: Image classification by YUV space.

boasts platform independence, it does not supply the simplicity of DirectX when
running through Microsoft .Net; the namespace Microsoft.DirectX.Direct3D
supplies the required classes to load and render any .x mesh file (see [59]). To
capture an image of a 3d mesh it is simply a matter of supplying the mesh file
and a viewpoint. Spatial resolution can be arbitrarily chosen by the user, while
quantization is again done in 24 bits.

7.2 Preprocessing

In the preprocessing step, the image is being treated with “low-level”-operations.
The aim of this step is to do noise reduction on the image (i.e. to dissociate
the signal from the noise) and to reduce the overall amount of data. We do
this through (1) colour pixel classification, (2) image segmentation, (3) region
thresholding, and finally (4) object cropping.

7.2.1 Colour pixel classification

The first step to colour vision is to classify each pixel in an image into one of
a discrete number of classes. The approach chosen is to use a set of constant
thresholds to define a colour class as a rectangular block in the colour space
(see [60]). As noted in [61], RGB space is not particularly suited for rectangular
blocks since relations such as “orange” imply a conical volume in that space. In
contrast YUV space encodes colour in Y and U, while intensity is encoded in V,
making it more appropriate for this method.

Even in YUV there might be issues with ill-formed classes that simple blocks fail
to correctly classify. To remedy this issue, each class is instead assigned a hand-

7.2. PREPROCESSING 121

(a) Classified image. (b) Segmented image.

Figure 7.2: Image segmentation by labeling.

picked non-unique RGB value. This RGB value is used as the class identifier,
allowing several blocks in YUV space to identify the same class. Arbitrarily
shaped classification volumes are thus simply a set of one or more rectangular
blocks.

Figure 7.1 shows how this simple, yet powerful classification scheme works.

7.2.2 Image segmentation

Image segmentation is done by scanning the classified image and label each dis-
joint region with a unique label. Since the image is scanned from top to bottom,
left to right, region connectivity might be encountered after already assigning dif-
ferent labels to pixels in the same region. These label equivalences are recorded
at discovery, and every pixel is relabeled in a second pass.

The labeling is performed using an extended implementation of connected-component
labeling (see [62]). The algorithm was originally developed for binary images,
and works by assigning labels to each pixel such that adjacent pixels of the same
class are assigned the same label. The term “adjacency” can be any definable
connectivity. We have chosen to use 4-connectivity as neighborhood scheme.

The image is scanned from top to bottom, left to right. When examining a
particular pixel A, we know that the cell to its left, B, has already been labelled,
as has the cell C directly above A. The steps to label pixel A in a non-binary
image is listed as algorithm 4, a slightly modified version of the binary algorithm
that appears in [62].

By applying connected-component labeling to the classified images, the system
manages to identify any disjoint regions. Figure 7.2 is a pseudo- coloured example
of this segmentation.

122 CHAPTER 7. OBJECT EXTRACTOR

Algorithm 4 Extended connected-component labeling
1: if A class = 0 then
2: Do nothing
3: else if (not B labeled) and (not C labeled) then
4: Increment label numbering
5: Label A
6: else if B xor C labeled then
7: if (B labeled) and (B class = A class) then
8: Copy label to A
9: else if (C labeled) and (C class = A class) then

10: Copy label to A
11: end if
12: else if B and C labeled then
13: if (B class = A class) and (C class = A class) then
14: Copy either B label or C label to A
15: Record equivalence of labels
16: else if (B class = A class) then
17: Copy label to A
18: else if (C class = A class) then
19: Copy label to A
20: else
21: Increment label numbering
22: Label A
23: end if
24: end if

(a) Labeled image. (b) Thresholded image.

Figure 7.3: Detail of region thresholding.

7.3. GRAPH EXTRACTION 123

(a) Thresholded image. (b) Cropped image.

Figure 7.4: Details of object cropping.

7.2.3 Region thresholding

To remove any noise or disjoint residue from previous steps in the preprocessing
we apply thresholding on the labeled regions. Every region is compared to the
largest area in the image, and if it is below some fraction of this it is discarded
as noise. We avoid thresholding against the actual image size since it has not yet
been cropped to the detected object. An example of this thresholding is shown
in figure 7.3.

7.2.4 Object cropping

The final step in our preprocessing is to crop the image to the object. Because
the previous steps remove noise, residue and uninteresting regions from the input
image, the crop is easily able to locate the object. The dimensions after this crop
is referred to as the object-dimensions, and can be used to scale extracted features
to achieve scale-invariance.

7.3 Graph extraction

The aim of feature extraction is to further reduce the preprocessed images to a
set of features. The extraction is run separately for each available domain, and
each domain i produces a separate graph Gi ∈ O.

When presenting an object to the reader, we will use a set of four images similar
to those in figure 7.5. Because three of the four available domains are concerned
with the regions in the image, these three are equally expressed by the first two
images. The spatial relationships perceivable in these images are contained in

124 CHAPTER 7. OBJECT EXTRACTOR

(a) Detected regions. (b) Region graph.

(c) Detected lines. (d) Line graph.

Figure 7.5: Example of graph illustration.

the edges of the graphs (and therefore spatially coherent). Edges are added to
the graphs using a nearest-neighbour scheme until every vertex is connected.

7.3.1 Domain 1: Region mass

The moment of order (p + q) of a discrete function f(x, y) is defined as

mpq =
∑
x,y

xpyqf(x, y) (7.1)

which is a summation over a domain that includes all nonzero values of the
function. To distinguish between the various regions that appear in f(x, y) it
can either (1) be separated into one function per region, or (2) wrapped using a
function g(x, y) defined as

7.3. GRAPH EXTRACTION 125

g(x, y) =

{
1, iff f(x, y) is labeled as region l;
0, otherwise.

(7.2)

where l is implied by context.

The total mass of region is then given by the moment m00. The label of the region
is assumed as context for g(x, y). To achieve a common scale for all regions in the
same image, it is scaled by a constant k given by the image dimensions IWidth

and IHeight as

k =
1

IWidth · IHeight
(7.3)

All regions in the image are represented by separate vertices in the extracted
graph, and the regions’ mass is assigned as attributes to the corresponding ver-
tices (the value k ·m00 by the vertex’s region-label).

The centroid (x, y) for a vertex is

x =
1

m00

∑
xf(x, y) =

m10

m00
(7.4)

y =
1

m00

∑
yf(x, y) =

m01

m00
(7.5)

by that vertex’s region-label.

7.3.2 Domain 2: Region colour

Region colour is retrieved by a single pass over the labeled image; from top to
bottom, left to right. Whenever a new label is encountered, a vertex is added to
the graph, defined by the symbolic colour given by that region’s class. Because
the regions are the same as for mass, the centroid (x, y) is also the same.

7.3.3 Domain 3: Region moments

In [63], the authors describe a method of absolute moment invariants. These ex-
pressions are derived from algebraic invariants applied to the moment generating
function under a rotation transformation. They consist of groups of nonlinear
centralised moment expressions. The result is a set of absolute orthogonal (i.e.
rotation) moment invariants, which can be used for scale, position, and rotation
invariant pattern identification.

126 CHAPTER 7. OBJECT EXTRACTOR

The definition of a discrete centralised moment as described by Hu is:

µpq =
M∑

x=1

N∑
y=1

(x− x)p(y − y)qfxy (7.6)

This is essentially a translated Cartesian moment, which means that the cen-
tralised moments are invariant under translation. To enable invariance to scale,
two dimensional scale-normalised centralised moment are used (see [64]), given
by:

ηpq =
µpq

µγ
00

(7.7)

where

γ =
p + q

2
+ 1 ∀p + q ≥ 2 (7.8)

Hu’s first four absolute moment invariants are computed from normalised cen-
tralised moments up to order three and are shown below:

I1 = η20 + η02 (7.9)
I2 = (η20 − η02)2 + 4η2

11 (7.10)
I3 = (η30 − 3η12)2 + (3η21 − η03)2 (7.11)
I4 = (η30 + η12)2 + (η21 + η03)2 (7.12)

Each vertex in the moment graph contains all of these four moments. Again, the
centroid (x, y) remains the same as for mass.

7.3.4 Domain 4: Dominant lines

Unlike the previous features extracted from the image that relate to the regions
of the image, this domain is concerned with dominant lines. This is done by
(1) edge detection by application of a Sobel operator, (2) transformation of that
edge-image to Hough space, and (3) projection of the peaks of Hough space back
into the original image to retrieve scalable parameters.

The Sobel operator calculates the gradient of the image intensity at each point,
giving the direction of the largest possible increase from light to dark and the
rate of change in that direction. The result therefore shows how “abruptly” or

7.3. GRAPH EXTRACTION 127

“smoothly” the image changes at that point, and therefore how likely it is that
that part of the image represents an edge, as well as how that edge is likely to be
oriented. In practice, the magnitude (likelihood of an edge) calculation is more
reliable and easier to interpret than the direction calculation.

Mathematically, the gradient of a two-variable function (here the image intensity
function) is at each image point a 2D vector with the components given by
the derivatives in the horizontal and vertical directions. At each image point,
the gradient vector points in the direction of largest possible intensity increase,
and the length of the gradient vector corresponds to the rate of change in that
direction. This implies that the result of the Sobel operator at an image point
which is in a region of constant image intensity is a zero vector and at a point on
an edge is a vector which points across the edge, from darker to brighter values.

The operator uses two 3x3 kernels which are convolved with the original image
to calculate approximations of the derivatives – one for horizontal changes, and
one for vertical. These are defined as:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 (7.13)

At each point in the image, the resulting gradient approximations can be com-
bined to give the gradient magnitude, using:

Gxy =
√

G2
x + G2

y (7.14)

The magnitude is evaluated and thresholded separately for the red, green, and
blue component, then combined to yield a binary edge-image. This image is then
transformed into Hough space to fit lines onto it.

A Hough transform is a mapping from an observation space into a parameter
space. In computer vision, observation space could be a digital image, an edge
map etc. Now assume that a certain structure is thought to be present in image
space. For an edge map, this could be a straight line or a circle. The parameters
of the structure define parameter space (gradient and intercept for a line, radius
and centre coordinates for a circle). In a Hough transform, each point in image
space “votes” for that part of parameter space which describes structures which
include the point. A part of parameter space receiving a large number of votes
corresponds to a possible fit.

In the normal Hough transform approach, parameter space is bounded by setting
lower and upper limits on the parameter values, and then divided into blocks in
each direction, and an accumulator assigned to each block. The Hough trans-
form proceeds with each point in image space being transformed to an region

128 CHAPTER 7. OBJECT EXTRACTOR

in parameter space as described in the previous paragraph. When the region
intersects one of the blocks, the corresponding accumulator is incremented. The
block whose accumulator has the most votes can then be taken as the best fit
of the structure to the image points, the values of the parameters usually being
calculated at the centre of the block.

To find the peaks in Hough space we employ a sliding neighborhood that looks
for local maxima. As the neighborhood is moved across the accumulator, a
local threshold is used to avoid marking the borders of the neighborhood as
maxima. The nature of Hough space makes this an important threshold, since
it is common to see ridges through the image leading to more global maxima. A
global threshold is also used to avoid labeling the low-intensity peaks that tend
to exist throughout Hough space.

For each peak found in parameter space, it is projected back into the original
image to find the corresponding line’s entry- and exit point. The fourth image
in figure 7.5 illustrates how these lines transform back in the original image.
The projection is necessary to properly represent the information of the peaks in
Hough space. The two parameters expressed in Hough space alone are not easily
comparable, since the Euclidian distance in Hough space does not necessarily
detail the lines’ relation in the original image.

To achieve scale invariance for these points they are scaled using the larger of the
dimensions of the image; i.e. max(IWidth, IHeight). This has the added benefit
of actually encoding the aspect ratio of the image into the lines.

Each vertex in the line graph contains these scaled entry- and exit points of the
referred line.

Chapter 8

Object matcher algorithm

In this chapter we propose a method of finding the closest match to an unknown
object O = (G1, G2, .., GN) from a set of known objects L.

Algorithm 5 matches the object O to every object Pi = (Hi1,Hi2, ..,HiN) in L
by solving MINIMUM COST SUBGRAPH ISOMORPHISM separately in each
of the N domains. The solution to each subgraph isomorphism problem solved
is stored in a matrix C. Each row i, ci1..ciN , corresponds to an object, and each
column j, c1j ..c|L|j , corresponds to a domain.

When every object Pi ∈ L have been attempted matched to O, each column j
is normalized to the range [0, 1]. This is analogous to constructing a unit-extent
N -dimensional hypercube, in which every object Pi is located by the row-vector
ci1..ciN , and the unknown object O lies at origin. Therefore; the object Pi whose
location lies closest to origin, is the match to O.

This approach to object matching imposes no partitioning or control on the
underlying graph matcher. Complete confidence is given to our inexact graph
matcher (see part 1) – at this point we simply construct a series of instances of
MINIMUM COST SUBGRAPH ISOMORPHISM and record the solutions found
for each.

129

130 CHAPTER 8. OBJECT MATCHER ALGORITHM

Algorithm 5 Object matcher
1: Allocate a cost matrix C of size |L| ×N .
2: for all object Pi ∈ L do
3: for j = 1 to N do
4: Solve MINIMUM COST SUBGRAPH ISOMORPHISM for graph Gj

and Hij , store minimum cost in c′.
5: cij ← cij + c′

6: end for
7: end for
8: Normalize all N columns of C to the range [0, 1].
9: Find row iMin that is the minimum by

√
c2
i1 + c2

i2 + · ·+c2
iN .

10: Return Pi as object match.

Step 1 allocates space for a 2-dimensional matrix C of size |L| × N . For each
known object Pi ∈ L there is a corresponding element cij ∈ C to hold the
minimum cost solution to subgraph isomorphism between graphs Gj and Hij .

Steps 2 - 7 assigns values to each element cij ∈ C, see algorithm 2 for detail.

Step 8 normalizes each of the N columns in C to the range [0, 1], see algorithm
6 for detail.

Step 9 finds the row iMin whose location in the N -dimensional hypercube lies
closest to origin, see algorithm 7 for detail.

Step 10 returns the object PiMin
as the solution.

131

Algorithm 6 Object matcher, step 8
1: for j = 1 to N do
2: cMin ←∞
3: cMax ← −∞
4: for i = 1 to |L| do
5: if cij < cMin then
6: cMin ← cij

7: end if
8: if cij > cMax then
9: cMax ← cij

10: end if
11: end for
12: for i = 1 to |L| do
13: cij ← (cij − cMin)/(cMax − cMin)
14: end for
15: end for

Algorithm 7 Object matcher, step 9
1: cMin ←∞
2: iMin ← −1
3: for i = 1 to |L| do
4: c′ ← 0
5: for j = 1 to N do
6: c′ ← c′ + c2

ij

7: end for
8: c′ ←

√
c′

9: if c′ < cMin then
10: cMin ← c′

11: iMin ← i
12: end if
13: end for

132 CHAPTER 8. OBJECT MATCHER ALGORITHM

Chapter 9

Object matcher illustration

In this chapter we illustrate how the object matcher recognizes an unknown object
O among a set L of prototype objects Pi. We introduce an implementation of
four domain experts, one for each of our known domains (see chapter 7), complete
with metrics and the necessary controlling parameters.

The set L of known objects is created by applying the object extractor (see 7) to
a series of 19 real images of a toy truck that is being rotated 180 degrees around
its vertical axis. The extracted objects are shown in figures 9.1 through 9.19.

For each of the four domains there is a separate expert. Although these cover
different pattern primitives, they share a similar structure and they have a set of
common control parameters. Notice that the values chosen for each parameter is
sufficiently slacked to allow for a somewhat more interesting match; too restrictive
values accept only perfect matching graphs in each domain.

First, the edge-metric is equal for all domains, and is a replica of the metric used
in chapter 3).

Ee(ei, ej) = |~ei − ~ej | −
1
10

(9.1)

Second, all experts enforce a target depth of 3 for step 12 of algorithm 3. As we
do in chapter 3, we refer to chapter 1.6 for the reasoning of this choice.

Third, the number of iterations through the recursion loop in steps 15 - 27 of
algorithm 3 is limited to 3 by a low-level cut-off. Also, the total number of
recursions performed in a single match is limited to 9 by a high-level cut-off.

Fourth, a dynamic threshold is used to either accept or reject associations in step
17 of algorithm 3. The value is given by the function ε = a|A|+ b, but the values

133

134 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Figure 9.1: Object P1.

Figure 9.2: Object P2.

of a and b are separate for each domain.

And finally, an additional threshold ε is employed in step 36 of algorithm 3 to
filter isomorphisms whose average cost per vertex- association in A, c̄ = c/|A|,
exceeds it. The value of ε is separate for each domain.

The implementation and values chosen for each domain is done based on both
experience and knowledge of the algorithms involved.

Domain 1: Region mass

The vertex-metric for mass-domain allows the cost of an association to exist
anywhere in the range [− 1

2 ,∞]. As long as two vertices are reasonably matched,
the metric will assign a reasonable cost to the association, but as the two vertices
begin to differ, the cost increases rapidly.

Ev(vi, vj) =
max(Ai, Aj)
min(Ai, Aj)

− 3
2

(9.2)

The association threshold is given by the parameters a = 0 and b = − 1
4 . This

135

Figure 9.3: Object P7.

Figure 9.4: Object P8.

allows the larger of the two regions to be no more than 125% the size of the
smaller. As for all the other domains, there is no increased restriction as the
recursion depth increases.

The isomorphism threshold for this domain is ε = 0, a very accepting value.

Domain 2: Region colour

The vertex-metric for the colour-domain is covered in chapter 3, and reused here:

Ev(vi, vj) =
|Ri −Rj |+ |Gi −Gj |+ |Bi −Bj |

3 · 255
− 1

2
(9.3)

The association threshold is given by the parameters a = 0 and b = − 9
20 ; this

requires an initial near-match of the region colours, but enforces no further im-
provement in cost based on the regions’ spatial centroids. If there is sufficient
mismatch of spatial relations by an association, it will still be filtered by the
initial threshold.

Again, the isomorphism threshold for this domain is ε = 0.

Domain 3: Region moments

The vertex-metric for the moment-domain finds the Euclidean distance between
the two sets of moments, shifted by the constant 1

4 to bias association of closely
matched vertices.

136 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Figure 9.5: Object P3.

Figure 9.6: Object P4.

Ev(vi, vj) =

√√√√ 4∑
m=1

(Iim − Ijm)2 − 1
4

(9.4)

The association threshold is given by the parameters a = 0 and b = − 1
5 ; which

does not give the matcher too much slack to accept vertex-associations, but there
is no increased restrictions at deeper levels of recursion.

Again, the isomorphism threshold for this domain is ε = 0.

Domain 4: Dominant lines

The vertex-metric for the line-domain is:

Ev(vi, vj) = min((| ~Ai − ~Aj |+ | ~Bi − ~Bj |), (| ~Ai − ~Bj |+ | ~Bi − ~Aj |))−
1
4

(9.5)

The association threshold is given by the parameters a = 0 and b = 0; values
that allow for a large amount of slack for the matcher. The constant in Ev, − 1

4 ,
only assigns negative cost to association where the two end-points ~A and ~B of
the vertices agree sufficiently.

9.1. ILLUSTRATION 1 137

Figure 9.7: Object P5.

Figure 9.8: Object P6.

Again, the isomorphism threshold for this domain is ε = 0.

9.1 Illustration 1

For this illustration, the known object P5 is duplicated as O.

The first part of algorithm 5 creates a cost matrix C that holds the minimum cost
of the solution to the MINIMUM COST SUBGRAPH ISOMORPHISM problem
that corresponds with each element cij ∈ C. The row i refers to an object Pi ∈ L,
and the column j refers to one of the known domains. If there was no solution
found by algorithm 2, the value of cij is not set (indicated by a hyphen in the
following tables).

By the termination of the loop through steps 2 - 7, the elements cij ∈ C that
correspond to MINIMUM COST SUBGRAPH ISOMORPHISM problems that
have solutions, have all been assigned the cost of those solutions. At this point,
the matrix C is:

138 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Figure 9.9: Object P9.

Figure 9.10: Object P10.

Domain
Color Line Moment Size

O
b
je

ct

P1 -0.36 - - -
P2 - - - -
P3 -2.37 - -0.96 -1.29
P4 -3.08 - -1.76 -2.79
P5 -3.70 -3.00 -2.45 -3.70
P6 -3.09 -0.86 -1.71 -2.76
P7 -2.53 - -0.90 -1.83
P8 -1.94 - - -
P9 -1.98 - - -
P10 - - - -
P11 - - - -
P12 -1.17 - - -
P13 - - - -
P14 - - - -
P15 - - - -
P16 - - - -
P17 - - - -
P18 - - - -
P19 - - - -

Notice from this table how the distribution of solutions are different for each
domain. Even by the very unconstrained parameters used for this illustration,
there are not many solutions found beyond the closest neighbours of the actual
object. The line-domain is very effectively narrowing the acceptable objects to
match in L.

9.1. ILLUSTRATION 1 139

Figure 9.11: Object P11.

Figure 9.12: Object P12.

The algorithm 6, run as step 8 of algorithm 5, normalizes each column of C
individually to the range [0, 1]. This process ignores the unset elements of each
column. As control returns to algorithm 5, the matrix C is:

Domain
Color Line Moment Size

O
b
je

ct

P01 1.00 - - -
P02 - - - -
P03 0.40 - 0.96 1.00
P04 0.19 - 0.45 0.38
P05 0.00 0.00 0.00 0.00
P06 0.18 1.00 0.48 0.39
P07 0.35 - 1.00 0.78
P08 0.53 - - -
P09 0.51 - - -
P10 - - - -
P11 - - - -
P12 0.76 - - -
P13 - - - -
P14 - - - -
P15 - - - -
P16 - - - -
P17 - - - -
P18 - - - -
P19 - - - -

The algorithm 7, run as step 0 of algorithm 5, runs through each row i of C,

140 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Figure 9.13: Object P13.

Figure 9.14: Object P14.

and calculates the distance of the vector [ci1, ci2, ci3, ci4] to the origin of the
4-dimensional hypercube, [0, 0, 0, 0], by simple Euclidean distance. As control
returns to algorithm 5, the distance to origin for each row in matrix C is:

Domain Distance
Color Line Moment Size to origin

O
b
je

ct

P01 1.00 - - - -
P02 - - - - -
P03 0.40 - 0.96 1.00 -
P04 0.19 - 0.45 0.38 -
P05 0.00 0.00 0.00 0.00 0.00
P06 0.18 1.00 0.48 0.39 2.05
P07 0.35 - 1.00 0.78 -
P08 0.53 - - - -
P09 0.51 - - - -
P10 - - - - -
P11 - - - - -
P12 0.76 - - - -
P13 - - - - -
P14 - - - - -
P15 - - - - -
P16 - - - - -
P17 - - - - -
P18 - - - - -
P19 - - - - -

9.1. ILLUSTRATION 1 141

Figure 9.15: Object P15.

Figure 9.16: Object P16.

The only two objects that the algorithm accepts from L as possible matches to O
are P5, the object itself, and P6, see figure 9.8. Please take a moment and observe
the likeness of the two objects in figures 9.9 and 9.10. By the measurement of
distance to origin, the matcher returns P5 as the match to O.

Since O is P5, this is a perfect match.

Figure 9.17: Object P17.

142 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Figure 9.18: Object P18.

9.2 Illustration 2

For this illustration, the known object P10 is duplicated as O. At the end of
algorithm 5, the matrix C, including distances to origin, is:

Domain Distance
Color Line Moment Size to origin

O
b
je

ct

P1 - - - - -
P2 - - - - -
P3 - - - - -
P4 - - - - -
P5 - - - - -
P6 - - - - -
P7 0.69 - - - -
P8 0.54 - - 1.00 -
P9 0.19 1.00 0.97 0.34 2.51
P10 0.00 0.00 0.00 0.00 0.00
P11 0.19 - 1.00 0.49 -
P12 0.41 - - 0.97 -
P13 0.56 - - - -
P14 - - - - -
P15 - - - - -
P16 - - - - -
P17 - - - - -
P18 1.00 - - - -
P19 - - - - -

Since O is P10, this is a perfect match.

9.3. ILLUSTRATION 3 143

Figure 9.19: Object P19.

9.3 Illustration 3

For this illustration, the known object P15 is duplicated as O. At the end of
algorithm 5, the matrix C, including distances to origin, is:

Domain Distance
Color Line Moment Size to origin

O
b
je

ct

P1 - - - - -
P2 - - - - -
P3 - - - - -
P4 - - - - -
P5 - - - - -
P6 - - - - -
P7 - - - - -
P8 - - - - -
P9 - - - - -
P10 - - - - -
P11 - - - - -
P12 - - - - -
P13 0.59 - 1.00 1.00 -
P14 0.33 - 0.67 0.67 -
P15 0.00 0.00 0.00 0.00 0.00
P16 0.75 1.00 0.69 0.78 3.22
P17 1.00 - - - -
P18 - - - - -
P19 - - - - -

Since O is P15, this is a perfect match.

144 CHAPTER 9. OBJECT MATCHER ILLUSTRATION

Chapter 10

Object matcher results

10.1 Overview

In this chapter we demonstrate how our matcher is able to recognize objects
under heavy noise. Because our work is more concerned with the inexact graph
matching than the object extraction, we allow ourselves to run the system on
computer-generated images of 3d models. This simplifies the extraction process
(see chapter 7), since there is no noise other than what we deliberately introduce.

For these experiments we use a set of 100 house models. The first 75 of these
are used to build a set of prototype objects by rendering the models without
noise and applying the object extractor to these images. For each experiment
all 100 models are rendered, under noise determined by the experiment, and the
candidate objects are extracted from those images.

In chapter 4 we improve the results of the graph matcher by modifying the
controlling parameters by the knowledge of what noise is applied. In this chapter,
however, we use a single set of parameters for all experiments. Instead of trying
to achieve the best possible statistics for each individual experiment, these results
are intended to show how efficient and robust our approach is under various noise.

The metrics Ee and Ev for each of the four domains are given in chapter 9. For
all domains target depth is 3, low-level cut-off is 10, high-level cut-off is 1000,
and the average cost threshold is ε = 0. The association threshold for region
colour is ε = − 1

2 , for region mass ε = − 1
4 , for region moment invariants ε = − 1

10 ,
and for dominant lines ε = − 1

10 .

By the results in part 1, we know that our inexact graph matcher works better
on larger graphs with no repeated patterns.

145

146 CHAPTER 10. OBJECT MATCHER RESULTS

(a) Detected regions. (b) Extracted region graph.

Figure 10.1: Example of an ARG extracted from a rendered house.

The cost matrix C (see algorithm 3), and the corresponding contribution matrix
C ′, of larger graphs are expected to be less ambiguous because each vertex-
associations implies many more edge-associations. Larger graphs hold a lot more
syntactic information that ultimately converges C ′.

Repeated pattern primitives disrupt this convergence – although the matcher is
likely in its first recursions to attempt the most unambiguous vertex-associations,
it is left to choose haphazardly between the remaining associations. The refine-
ments to C are intended to solve ambiguity by the graph’s spatial relationships,
but when the spatial layout of similar pattern primitives is also similar, even
more ambiguity arises.

Our 3d models are quite simple, giving smaller graphs, and for most houses its
windows are likely produce repeating patterns with very similar spatial layout
(see figure 10.1).

These issues make our 3d models quite a challenge to the matcher, and we expect
to see some mismatches even under very little noise. In fact, when sufficient noise
is introduced some pattern primitives might be distorted just enough to reduce
the number of ambiguous associations, and thereby improve the results.

10.2. IMPROVEMENT BY DOMAINS 147

(a) True-Positive. Count 22,500, depth
0.61, recursions 2.29, refinements 107.48.

(b) True-Negative. Count 6,300, depth
0.47, recursions 1.30, refinements 25.73.

(c) False-Positive. Count 1,200, depth 0.57,
recursions 1.43, refinements 22.99.

(d) False-Negative. None.

Figure 10.2: Match with 25% centroid-, pattern-, and vertex noise.

10.2 Improvement by domains

10.2.1 25% centroid-, pattern-, and vertex noise

Accuracy Error Precision Recall F1
0.96 0.04 0.95 1.00 0.97

The noise applied in this example is equal to that in the last section of chapter
4, where the matcher was able to achieve an F1 value of 0.70. Through the use
of several domains, both Precision and Recall has been significantly raised under
the same noise. Under the very general controlling parameters given above, we
achieve close to perfect results.

These runtimes are different from the corresponding graph matches in chapter
4 because these experiments run on the house models (i.e. smaller, repeating
graphs), not on the random 1- to 100-vertex graphs.

148 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 22,500, depth
0.71, recursions 2.82, refinements 143.05.

(b) True-Negative. Count 3,000, depth
0.53, recursions 1.53, refinements 29.66.

(c) False-Positive. Count 4,500, depth 0.70,
recursions 1.98, refinements 49.41.

(d) False-Negative. None.

Figure 10.3: Match with no noise.

10.2.2 No noise

Accuracy Error Precision Recall F1
0.85 0.15 0.83 1.00 0.91

For reference we include the results from matching the candidate objects com-
pletely undistorted by noise. Although the results are good, one would expect
perfect results when there is no noise. We still accept the controlling parameters
as they are because they perform well under all the noise we apply in this chapter.

The number of average recursions by brute-force is 1.35E+30, whereas our pa-
rameters reduce this to a single digit number. Likewise, the number of average
refinements is down from 3.75E+31 to a 2-3 digit number.

10.3. PERFORMANCE UNDER NOISE 149

(a) Detected regions. (b) Extracted region graph.

Figure 10.4: Example of an ARG extracted under scale noise.

10.3 Performance under noise

10.3.1 Scale noise

By “scale noise” we mean changes to the size of the rendered images of the
3d models. As the scale changes of these images, regions or lines may appear or
disappear. An example of additional regions is illustrated in figure 10.4, where the
left- and right-most windows on the upper floor of the house are now considered
regions instead of noise (see figure 10.1). Similarly, by reducing the size of the
rendered image most windows will be thresholded as insignificant.

The percentage p is a measurement of the applied scaling. The aspect-ratio of
the images are retained, so the noise is determined by a single value chosen at
random from the range [1 − 1

2p, 1 + 1
2p]. Both the width and the height of the

image is scaled by this value before rendering.

This noise is similar to the vertex-noise in chapter 4, and should, therefore, not
be a problem for the matcher. It is an important type of noise to consider because
it is likely to occur in systems that process real images.

150 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 21,900, depth
0.71, recursions 2.53, refinements 107.33.

(b) True-Negative. Count 3,000, depth
0.56, recursions 1.77, refinements 37.59.

(c) False-Positive. Count 4,800, depth 0.72,
recursions 2.16, refinements 51.03.

(d) False-Negative. Count 300, depth 0.57,
recursions 1.40, refinements 21.00.

Figure 10.5: Match with 10% scale noise.

10% scale noise

Accuracy Error Precision Recall F1
0.83 0.17 0.82 0.99 0.90

All controlling parameters are given at the start of this chapter.

The results are close to that of no noise. By figure 10.5 it seems that the mis-
matches occur only on the smaller graphs. As opposed to the results under
no noise, where Recall was perfect, some instances are now also incorrectly un-
matched. Both Recall and Precision is down by 0.01, which forces F1 down by
0.01.

10.3. PERFORMANCE UNDER NOISE 151

(a) True-Positive. Count 22,200, depth
0.70, recursions 2.47, refinements 97.88.

(b) True-Negative. Count 3,600, depth
0.57, recursions 1.67, refinements 32.07.

(c) False-Positive. Count 3,900, depth 0.72,
recursions 2.24, refinements 52.87.

(d) False-Negative. Count 300, depth 0.63,
recursions 2.03, refinements 46.03.

Figure 10.6: Match with 25% scale noise.

25% scale noise

Accuracy Error Precision Recall F1
0.86 0.14 0.85 0.99 0.91

All controlling parameters are given at the start of this chapter.

At more than twice the amount of noise of the previous experiment, results are
better. Although Recall is still not perfect, Precision has increased beyond the
result of the no noise experiment, and F1 equals it. Most of the runtimes equal
those of the first experiment, but for the correct matches less refinements are
applied.

152 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 22,200, depth
0.71, recursions 2.46, refinements 90.13.

(b) True-Negative. Count 3,300, depth
0.57, recursions 1.80, refinements 36.81.

(c) False-Positive. Count 4,500, depth 0.70,
recursions 2.24, refinements 98.35.

(d) False-Negative. None.

Figure 10.7: Match with 50% scale noise.

50% scale noise

Accuracy Error Precision Recall F1
0.85 0.15 0.83 1.00 0.91

All controlling parameters are given at the start of this chapter.

The results are equal to the no noise experiment. The number of refinements
applied in the correct matches is down to almost half of the original, for the
correct unassigned matches it is slightly higher, but for the incorrect matches it
has actually doubled. By figure 10.7 there seems to be some errors even when
the graphs are larger.

10.3. PERFORMANCE UNDER NOISE 153

(a) True-Positive. Count 22,200, depth
0.71, recursions 2.48, refinements 98.47.

(b) True-Negative. Count 4,200, depth
0.57, recursions 1.79, refinements 35.83.

(c) False-Positive. Count 3,300, depth 0.71,
recursions 2.12, refinements 48.15.

(d) False-Negative. Count 300, depth 0.46,
recursions 0.81, refinements 6.17.

Figure 10.8: Match with 75% scale noise.

75% scale noise

Accuracy Error Precision Recall F1
0.88 0.12 0.87 0.99 0.93

All controlling parameters are given at the start of this chapter.

Recall is again down from the perfect results achieved under no noise, but Pre-
cision has increased enough to push F1 beyond the no noise results. The only
runtimes that differ from the other are the correct matches, which are down to
almost half of the original ones. The only explanation of these results is some
combination of 1) ambiguity between prototypes being resolved by the noise,
and 2) the randomness of the noise favouring beneficial values in those instances
where it is critical.

154 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 21,900, depth
0.70, recursions 2.44, refinements 103.83.

(b) True-Negative. Count 3,600, depth
0.56, recursions 1.75, refinements 36.43.

(c) False-Positive. Count 4,200, depth 0.70,
recursions 1.94, refinements 43.35.

(d) False-Negative. Count 300, depth 0.78,
recursions 2.49, refinements 75.65.

Figure 10.9: Match with 95% scale noise.

95% scale noise

Accuracy Error Precision Recall F1
0.85 0.15 0.84 0.99 0.91

All controlling parameters are given at the start of this chapter.

Although runtimes are lower than that of the no noise experiment, the results are
equal. The trend through scale noise has been a reduction in runtimes without
compromising the results. This can partly be explained by the fact that scale
noise would easier remove than add regions, since the original scale is able to
capture most regions – scaling the image up from figure 10.1 to figure 10.4 adds
2 regions, while scaling down is likely to remove all 14 window- regions. By this
rationale the size of the average graph, under this type of noise, goes down, and
therefore also the average runtime.

10.3. PERFORMANCE UNDER NOISE 155

(a) Detected regions. (b) Extracted region graph.

Figure 10.10: Example of an ARG extracted under pose noise.

10.3.2 Pose noise

By “pose noise” we mean a change to the viewpoint used when rendering the 3d
models. Because we only allow the viewpoint to move in a perfect circle around
the model, we are, in fact, only altering the pose of it. As with scale noise, one
should expect to see this noise in systems that process real images – attempting
to always capture images of real objects from some specific pose is in itself a
difficult task.

An example of this type of noise can be seen in the candidate object in figure
10.10, as opposed to the corresponding prototype in figure 10.1. The implications
of this noise is quite severe; many regions have their pattern primitive altered,
some regions disappear, and some new regions appear. In addition, the dominant
lines may change significantly too.

The percentage p is a measurement of how much the viewpoint is allowed to
move. For simplicity, rotation is restricted to occur only around the vertical-axis
of the model itself. Furthermore, rotation beyond 1

2π to either side of the original
is pointless because that will cause all of the original features of the object to
rotate out of view. Rotation is, therefore, determined by a random value in the
range [− 1

2πp, 1
2πp].

156 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 21,000, depth
0.69, recursions 2.37, refinements 98.18.

(b) True-Negative. Count 4,200, depth
0.58, recursions 1.68, refinements 31.09.

(c) False-Positive. Count 3,900, depth 0.69,
recursions 2.05, refinements 59.37.

(d) False-Negative. Count 900, depth 0.70,
recursions 2.05, refinements 55.74.

Figure 10.11: Match with 10% pose noise.

10% pose noise

Accuracy Error Precision Recall F1
0.84 0.16 0.84 0.96 0.90

All controlling parameters are given at the start of this chapter.

This level of pose noise should be expected in a system that processes real images.
Results are close to the instances without noise. Runtimes are also similar, but
since the perfect matches are now less perfect, the average amount of refinement
applied to those cases are down by one third. Recall is down from the perfect
1.0, but Precision is up.

10.3. PERFORMANCE UNDER NOISE 157

(a) True-Positive. Count 19,500, depth
0.69, recursions 2.34, refinements 110.99.

(b) True-Negative. Count 4,200, depth
0.57, recursions 1.47, refinements 29.95.

(c) False-Positive. Count 4,500, depth 0.69,
recursions 1.86, refinements 55.88.

(d) False-Negative. Count 1,800, depth
0.55, recursions 1.53, refinements 39.25.

Figure 10.12: Match with 25% pose noise.

25% pose noise

Accuracy Error Precision Recall F1
0.79 0.21 0.81 0.92 0.86

All controlling parameters are given at the start of this chapter.

Just as 10% pose noise should be expected in real images, one should not expect
more than this level of noise. Both Precision and Recall has dropped as the noise
increased, but the F1 score is still a very good 0.86. With more noise comes some
higher runtimes, but the number of applied refinements are more or less the same
as for 10% noise.

158 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 12,900, depth
0.70, recursions 2.21, refinements 91.75.

(b) True-Negative. Count 3,900, depth
0.53, recursions 1.17, refinements 25.38.

(c) False-Positive. Count 7,200, depth 0.67,
recursions 1.82, refinements 57.76.

(d) False-Negative. Count 6,000, depth
0.52, recursions 1.40, refinements 43.79.

Figure 10.13: Match with 50% pose noise.

50% pose noise

Accuracy Error Precision Recall F1
0.56 0.44 0.64 0.68 0.66

All controlling parameters are given at the start of this chapter.

As pose noise increases to 50% and beyond the distortions to the source image,
and therefore the candidate object, are so severe that the results are mostly
a curiosity. The controlling parameters were chosen to attempt to overcome
this, however, and the results are not disappointing. F1 is an impressive 0.66.
Runtimes are equal to what we have already seen under this type of noise.

10.3. PERFORMANCE UNDER NOISE 159

(a) True-Positive. Count 9,000, depth 0.67,
recursions 2.14, refinements 94.52.

(b) True-Negative. Count 4,800, depth
0.50, recursions 1.02, refinements 25.08.

(c) False-Positive. Count 6,300, depth 0.64,
recursions 1.71, refinements 50.94.

(d) False-Negative. Count 9,900, depth
0.56, recursions 1.47, refinements 45.40.

Figure 10.14: Match with 75% pose noise.

75% pose noise

Accuracy Error Precision Recall F1
0.46 0.54 0.59 0.48 0.53

All controlling parameters are given at the start of this chapter.

Again, results are very good. The step from 25% to 50% noise reduced the F1
value by 0.20, whereas the step from 50% to 75% only reduced it by 0.13. The
system is still able to successfully match half of the distorted candidate objects
to the corresponding prototype objects, but we are seeing a substantial amount
of incorrectly assigned matches (i.e. False-Positives).

160 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 9,000, depth 0.67,
recursions 2.13, refinements 75.44.

(b) True-Negative. Count 5,100, depth
0.57, recursions 1.21, refinements 28.01.

(c) False-Positive. Count 4,800, depth 0.70,
recursions 1.85, refinements 50.11.

(d) False-Negative. Count 11,100, depth
0.51, recursions 1.26, refinements 42.49.

Figure 10.15: Match with 95% pose noise.

95% pose noise

Accuracy Error Precision Recall F1
0.47 0.53 0.65 0.45 0.53

All controlling parameters are given at the start of this chapter.

At 95% pose noise we allow rotations in the range [− 19
40π, 19

40π], which is extremely
close to a full 1

2π in either direction. As noted under the introduction to this type
of noise, at that point the camera is set at either side of the object, removing all
pattern primitives visible in the image processed for the prototype object. (This
is mostly true, but since a few features on some houses actually extend towards
the camera in the prototype, they remain at full rotation as extensions to either
side.)

The results are nothing short of amazing, there is no degeneration from 75%
noise, F1 remains at 0.53. The runtimes are all similar except for the perfect
matches, where the amount of applied refinements are down by one fourth.

10.3. PERFORMANCE UNDER NOISE 161

(a) Detected regions. (b) Extracted region graph.

Figure 10.16: Example of an ARG extracted under roll noise.

10.3.3 Roll noise

By “roll noise” we mean rotation of the rendered image before it is processed by
the object extractor. This is analogous to the camera or the object itself being
rotated around the depth-axis of the camera (see figure 10.16). To some extent
such noise will always appear in real images.

If it is possible to determine the object’s primary axes of elongation in the source
image, this noise can be minimized by rotating the image back to some reference
axes. We consider this minimization a strength of the pre-processor, and not the
matcher itself, and therefore choose not to implement it. These experiments are
intended to research the resilience of our system to this noise.

The percentage p is a measurement of how much the image is allowed to roll.
Rotation beyond π leads to symmetries, and the roll is therefore determined by
a random value in the range [− 1

2πp, 1
2πp].

This noise is similar to the spatial-noise in chapter 4. Although the matcher is
able to overcome that noise by manipulation of the controlling parameters, that
is not an option for these experiments. We expect this noise to be difficult under
our very general parameters.

162 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 19,800, depth
0.63, recursions 1.96, refinements 74.56.

(b) True-Negative. Count 3,900, depth
0.51, recursions 1.39, refinements 36.26.

(c) False-Positive. Count 5,100, depth 0.62,
recursions 1.63, refinements 45.21.

(d) False-Negative. Count 1,200, depth
0.49, recursions 1.16, refinements 30.89.

Figure 10.17: Match with 10% roll noise.

10% roll noise

Accuracy Error Precision Recall F1
0.79 0.21 0.80 0.94 0.86

All controlling parameters are given at the start of this chapter.

At 10% noise the results are good, Recall and Precision are both down from the
experiments without noise, but the overall F1 is only down by 0.05. Runtimes
are also similar, but perfect matches only require half the amount of refinements.

If the pre-processor was allowed to rotate the source image by an objects’ primary
axes of elongation, we expect all roll noise to appear only in this limited extent.

10.3. PERFORMANCE UNDER NOISE 163

(a) True-Positive. Count 12,000, depth
0.54, recursions 1.73, refinements 60.50.

(b) True-Negative. Count 5,400, depth
0.30, recursions 0.71, refinements 20.85.

(c) False-Positive. Count 3,300, depth 0.63,
recursions 1.85, refinements 65.52.

(d) False-Negative. Count 9,300, depth
0.34, recursions 0.98, refinements 35.01.

Figure 10.18: Match with 25% roll noise.

25% roll noise

Accuracy Error Precision Recall F1
0.58 0.42 0.78 0.56 0.66

All controlling parameters are given at the start of this chapter.

At this amount of noise the results starts to rapidly degenerate.

If we were to allow more slack in the spatial relations in the objects, the whole
refinement of C would eventually be void, and one would be better off matching
purely on the vertex-metric Ev. It was possible in chapter 4 because the noise
appeared without any changes to the pattern primitives, whereas this roll modifies
region mass, region moment invariants and dominant lines at the same time.

164 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 6,300, depth 0.52,
recursions 1.62, refinements 57.82.

(b) True-Negative. Count 6,000, depth
0.27, recursions 0.67, refinements 24.01.

(c) False-Positive. Count 2,100, depth 0.49,
recursions 1.06, refinements 35.56.

(d) False-Negative. Count 15,600, depth
0.32, recursions 0.96, refinements 38.12.

Figure 10.19: Match with 50% roll noise.

50% roll noise

Accuracy Error Precision Recall F1
0.41 0.59 0.75 0.29 0.42

All controlling parameters are given at the start of this chapter.

Results degenerate further.

10.3. PERFORMANCE UNDER NOISE 165

(a) True-Positive. Count 4,200, depth 0.54,
recursions 1.73, refinements 60.27.

(b) True-Negative. Count 6,600, depth
0.25, recursions 0.64, refinements 24.11.

(c) False-Positive. Count 1,200, depth 0.45,
recursions 1.22, refinements 24.46.

(d) False-Negative. Count 18,000, depth
0.32, recursions 0.98, refinements 38.26.

Figure 10.20: Match with 75% roll noise.

75% roll noise

Accuracy Error Precision Recall F1
0.36 0.64 0.78 0.19 0.30

All controlling parameters are given at the start of this chapter.

Again, more degeneration of results.

166 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 2,700, depth 0.60,
recursions 1.88, refinements 61.00.

(b) True-Negative. Count 6,900, depth
0.25, recursions 0.63, refinements 25.23.

(c) False-Positive. Count 1,200, depth 0.48,
recursions 1.19, refinements 27.26.

(d) False-Negative. Count 19,200, depth
0.32, recursions 0.96, refinements 39.69.

Figure 10.21: Match with 95% roll noise.

95% roll noise

Accuracy Error Precision Recall F1
0.32 0.68 0.69 0.12 0.21

All controlling parameters are given at the start of this chapter.

And finally, the results are down to the lowest measured F1 at 0.21.

10.3. PERFORMANCE UNDER NOISE 167

(a) Detected regions. (b) Extracted region graph.

Figure 10.22: Example of an ARG extracted under a combination of noise.

10.3.4 Combinations of noise

In chapter 4 the combination of noise was the only changes to the candidate graph
that simultaneously affected both the vertices and the edges, whereas the noise
we apply earlier in this chapter always affect both. By combinations of scale,
pose and roll noise the distortions to the candidate graphs become quite severe.
In this whole chapter we have only used a single set of controlling parameters for
the matcher, and we will here examine how well they hold up under the worst
possible noise.

Figure 10.22 is an example of a candidate graph extracted under a combination
of noise. The scale noise has made all windows of the house dominant enough
to pass the object extractor as separate regions, the pose noise has twisted the
house so that the left side is closer to the camera (noticeable by the skew of the
roof), and the roll noise has rotated the whole image counter-clockwise.

168 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 21,900, depth
0.68, recursions 2.29, refinements 103.26.

(b) True-Negative. Count 3,300, depth
0.62, recursions 1.71, refinements 33.11.

(c) False-Positive. Count 4,800, depth 0.67,
recursions 1.91, refinements 51.49.

(d) False-Negative. None.

Figure 10.23: Match with 10% pose and scale noise.

10% pose and scale noise

Accuracy Error Precision Recall F1
0.84 0.16 0.82 1.00 0.90

All controlling parameters are given at the start of this chapter.

In accordance with the results of pose-only or scale-only noise, these instances
are solved very close to those. As we have seen earlier, the runtimes of perfect
matches are down, whereas the others are about the same. Since the controlling
parameters in use only achieve 0.91 for F1 under no noise, this 0.90 is considered
very good.

10.3. PERFORMANCE UNDER NOISE 169

(a) True-Positive. Count 19,500, depth
0.61, recursions 1.87, refinements 70.11.

(b) True-Negative. Count 4,500, depth
0.51, recursions 1.18, refinements 27.83.

(c) False-Positive. Count 3,900, depth 0.60,
recursions 1.51, refinements 42.71.

(d) False-Negative. Count 2,100, depth
0.56, recursions 1.48, refinements 46.52.

Figure 10.24: Match with 10% roll and pose noise.

10% roll and pose noise

Accuracy Error Precision Recall F1
0.80 0.20 0.83 0.90 0.87

All controlling parameters are given at the start of this chapter.

Similar to what we have seen earlier, roll noise has quite an impact on Recall.
The results are still good, but Recall is down by 0.10. The time required to solve
the perfect matches are down to half of those under no noise.

170 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 19,200, depth
0.61, recursions 1.91, refinements 73.82.

(b) True-Negative. Count 3,600, depth
0.50, recursions 1.22, refinements 25.74.

(c) False-Positive. Count 5,700, depth 0.63,
recursions 1.75, refinements 51.17.

(d) False-Negative. Count 1,500, depth
0.55, recursions 1.50, refinements 51.75.

Figure 10.25: Match with 10% roll and scale noise.

10% roll and scale noise

Accuracy Error Precision Recall F1
0.76 0.24 0.77 0.93 0.84

All controlling parameters are given at the start of this chapter.

This combination of roll and scale noise achieve results that are just below those
under roll and pose noise. This is contrary to what we expected, since we have
seen earlier how little scale noise impacts the results. Runtimes are about the
same.

10.3. PERFORMANCE UNDER NOISE 171

(a) True-Positive. Count 19,500, depth
0.61, recursions 1.90, refinements 72.24.

(b) True-Negative. Count 5,400, depth
0.52, recursions 1.20, refinements 25.48.

(c) False-Positive. Count 3,000, depth 0.59,
recursions 1.52, refinements 46.99.

(d) False-Negative. Count 2,100, depth
0.51, recursions 1.18, refinements 36.06.

Figure 10.26: Match with 10% roll, pose and scale noise.

10% roll, pose and scale noise

Accuracy Error Precision Recall F1
0.83 0.17 0.87 0.90 0.88

All controlling parameters are given at the start of this chapter.

The results are close to those without noise, an F1 of 0.88. Although Recall is
down to 0.90, Precision is at an impressive 0.87. Runtimes are about the same
as we have seen earlier, with perfect matches requiring on average only half the
time compared to that without noise.

In a vision system that processes real images, this is the amount of noise that
it should be able to handle. Beyond this point there should either be more
recorded poses for each object, or there should be better pre-processing applied
before object extraction.

172 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 18,900, depth
0.71, recursions 2.34, refinements 97.49.

(b) True-Negative. Count 3,300, depth
0.55, recursions 1.40, refinements 29.72.

(c) False-Positive. Count 4,800, depth 0.70,
recursions 2.08, refinements 54.37.

(d) False-Negative. Count 3,000, depth
0.57, recursions 1.46, refinements 33.65.

Figure 10.27: Match with 25% pose and scale noise.

25% pose and scale noise

Accuracy Error Precision Recall F1
0.74 0.26 0.80 0.86 0.83

All controlling parameters are given at the start of this chapter.

By comparison to the 25% pose noise instances, the scale noise has moved F1
down by 0.03.

10.3. PERFORMANCE UNDER NOISE 173

(a) True-Positive. Count 11,400, depth
0.54, recursions 1.68, refinements 59.37.

(b) True-Negative. Count 6,000, depth
0.33, recursions 0.79, refinements 22.75.

(c) False-Positive. Count 2,700, depth 0.62,
recursions 1.80, refinements 67.12.

(d) False-Negative. Count 9,900, depth
0.34, recursions 0.98, refinements 38.38.

Figure 10.28: Match with 25% roll and scale noise.

25% roll and scale noise

Accuracy Error Precision Recall F1
0.58 0.42 0.81 0.54 0.64

All controlling parameters are given at the start of this chapter.

The 25% roll noise instances only achieve an F1 that is 0.02 higher, so again the
scale noise seems negligible. This is exactly what we expected, and in accordance
with the results under scale noise alone.

174 CHAPTER 10. OBJECT MATCHER RESULTS

(a) True-Positive. Count 8,100, depth 0.54,
recursions 1.63, refinements 59.44.

(b) True-Negative. Count 6,000, depth
0.35, recursions 0.86, refinements 25.78.

(c) False-Positive. Count 3,000, depth 0.59,
recursions 1.63, refinements 60.67.

(d) False-Negative. Count 12,900, depth
0.37, recursions 1.02, refinements 38.83.

Figure 10.29: Match with 25% roll and pose noise.

25% roll and pose noise

Accuracy Error Precision Recall F1
0.47 0.53 0.73 0.39 0.50

All controlling parameters are given at the start of this chapter.

By the combination of this much roll and pose noise, the results suffer severely.
At 0.50 F1 it is not applicable to any vision system that suffers under this much
noise and requires reliable results.

10.3. PERFORMANCE UNDER NOISE 175

(a) True-Positive. Count 8,100, depth 0.52,
recursions 1.53, refinements 56.78.

(b) True-Negative. Count 6,300, depth
0.36, recursions 0.92, refinements 26.37.

(c) False-Positive. Count 3,000, depth 0.64,
recursions 1.91, refinements 67.44.

(d) False-Negative. Count 12,600, depth
0.36, recursions 0.98, refinements 37.40.

Figure 10.30: Match with 25% roll, pose and scale noise.

25% roll, pose and scale noise

Accuracy Error Precision Recall F1
0.48 0.52 0.73 0.39 0.51

All controlling parameters are given at the start of this chapter.

These results are equally poor to those without the applied scale noise. As we
have already argued, this much noise requires different means to be overcome.
Roll noise can be reduced through objects’ primary axes of elongation in the
source images, and pose noise can be solved by storing multiple poses for each
object.

176 CHAPTER 10. OBJECT MATCHER RESULTS

Chapter 11

Conclusion, part 2

This concludes our third contribution. This part illustrates in detail our proposi-
tion of object matching by combination of matching results from multiple graph
domains.

In part 1 we introduce the attributed relation graph (ARG) and an efficient
solution to solve the problem MINIMUM COST SUBGRAPH ISOMORPHISM
when applied to ARG’s in computer vision. In this part we use the inexact graph
matcher to solve object recognition tasks on synthetic data.

Chapter 6 suggests that data contained in ARG’s should remain of low complex-
ity, and instead an “object” should be a set of such graphs that all describe the
same image in separate domains. In chapter 7 we present an extractor that is
able to find such objects in any 2-dimensional image, and in chapter 8 we de-
scribe a method of matching these by repeated application of the graph matcher
algorithm.

Chapter 9 contains 3 separate illustrations of how the object matcher works, and
finally chapter 10 contains results from a set of 172,500 object matches under a
wide range of noise. The results achieved under the type of noise that is likely to
appear in real vision systems (10% combinations of noise) are close to perfect.

The difficulty of solving instances of repeated patterns in a graph is somewhat
overcome by the spatial information of the graph’s edges, but where there is
simultaneous similarity between both pattern primitive and spatial layout, the
problem remains. Unlike other methods, our solution performs best when the
graphs are large – the larger instances produce significantly more refinements to
the cost matrix C because we are able to treat all graphs as fully connected.

Experiments show that the most difficult noise to overcome is what we refer
to as rotation noise; rotation around the camera’s z-axis. We suggest that any

177

178 CHAPTER 11. CONCLUSION, PART 2

application of our method should first rotate the unknown image by the object’s
primary axes of elongation after object-cropping to minimize this type of noise.
One would also be able to improve performance by storing each prototype object
using a set of poses, as opposed to our single pose, since this would minimize
pose noise.

Because there is no interaction between matches being performed within a graph
domain, there is nothing to prevent an implementation from doing this in com-
plete parallel. The same is also true for the graph domains, since the results are
only aggregated when all the domains have completed.

Any future work should investigate improvements to the graph matcher itself,
as noted in chapter 5, but also the possibility of adding more graph domains
when available. The most significant improvement, however, is expected to be
contained in what currently allows parallelization – interaction between graph
matches and graph domains to limit the choice of prototypes. Of course, this
improvement is void if there is enough parallel processors to attempt all matches
simultaneously.

Appendix A

Source code

A.1 Graph matcher

// Inititates the control structures needed in the recursion based graph matcher.
private CMorphism I n i t i a t e (CGraph oGraphG , CGraph oGraphH)
{

// Allocate a cost matrix C of size —VR— x —VU—, where —VA— denotes the number of vertices in graph A.
double [,] adCost = new double [oGraphG . Ver t i c e s . Length ,

oGraphH . Ver t i c e s . Length] ;

// Allocate an exhaustion matrix.
m oExhausted = new Hashtable () ;

// For each vertex VGi in VG do
for (int i = 0 ; i < oGraphG . Ver t i c e s . Length ; i++)
{

CVertex oVertexGi = oGraphG . Ver t i c e s [i] ;

// For each vertex VHj in VH do
for (int j = 0 ; j < oGraphH . Ver t i c e s . Length ; j++)
{

CVertex oVertexHj = oGraphH . Ver t i c e s [j] ;

// Request Domain Expert for cost C[i,j] of assigning VGi to VHj.
adCost [i , j] = m oExpert . Ev(oVertexGi , oVertexHj) ;

}
}

// Reset iteration marker to control overall cut-off.
m nMatchNum = 0;

// Allocate a morphism M for graph G, graph H, an empty A, and c = 0.
CMorphism oMorphism = new CMorphism(oGraphG , oGraphH , 0) ;

// Call Recursion for morphism M and the cost matrix C, storing the returned morphism in M.
oMorphism = Recurse (oMorphism , adCost) ;

// Return M to calling process.
return oMorphism ;

}

// Perform a recursion step for the graph matcher.
private CMorphism Recurse (CMorphism oMorphism , double [,] adCost)
{

// Mark recursion as exhausted.
i f (oMorphism . As soc i a t i on s . Count > 0)

m oExhausted .Add(GetExhaustKey (oMorphism . As soc i a t i on s) , true) ;

// Reference graphs.
CGraph oGraphG = oMorphism .GraphG ;
CGraph oGraphH = oMorphism .GraphH ;

// Branch as implementation detail.

179

180 APPENDIX A. SOURCE CODE

i f (oMorphism . As soc i a t i on s . Count > 0)
{

// For the last vertex-tuple (VGk, VHl) in A, do
CAssociat ion oAssoc ia t i on =

(CAssociat ion) oMorphism . As soc i a t i on s [oMorphism . As soc i a t i on s . Count
− 1] ;

// For each vertex VGi in VG, do
for (int i = 0 ; i < oGraphG . Ver t i c e s . Length ; i++)
{

CVertex oVertexGi = oGraphG . Ver t i c e s [i] ;
i f (i == oAssoc ia t i on . VertexG)

continue ; // Ignore reflection.

// For each vertex VHj in VH, do
for (int j = 0 ; j < oGraphH . Ver t i c e s . Length ; j++)
{

CVertex oVertexHj = oGraphH . Ver t i c e s [j] ;
i f (j == oAssoc ia t i on . VertexH)

continue ; // Ignore reflection.

// Request Domain Expert for cost adjustment to C[i,j] using the relation between
the edges (VGi, VGk) and (VHj, VHl).

adCost [i , j] += m oExpert . Ee(oGraphG . FindEdge (i ,
oAssoc ia t i on . VertexG) , oGraphH . FindEdge (j ,
oAssoc ia t i on . VertexH)) ;

}
}

}

// Solve the assignment problem.
double [] adAvgG = new double [oGraphG . Ver t i c e s . Length] ;
double [] adAvgH = new double [oGraphH . Ve r t i c e s . Length] ;
for (int i = 0 ; i < oGraphG . Ver t i c e s . Length ; i++)
{

for (int j = 0 ; j < oGraphH . Ver t i c e s . Length ; j++)
{

adAvgG [i] += adCost [i , j] / oGraphG . Ver t i c e s . Length ;
adAvgH [j] += adCost [i , j] / oGraphH . Ver t i c e s . Length ;

}
}

ArrayList oCost = new ArrayList () ;
for (int i = 0 ; i < oGraphG . Ver t i c e s . Length ; i++)
{

for (int j = 0 ; j < oGraphH . Ver t i c e s . Length ; j++)
{

oCost .Add(new CAssociat ion (i , j , adCost [i , j] − (adAvgG [i] +
adAvgH [j]) / 2)) ;

}
}
oCost . Sort () ;

// Recurse to required depth.
i f ((m oExpert . RecursionDepth > 0 && oMorphism . As soc i a t i on s . Count >=

m oExpert . RecursionDepth) | |
oMorphism . As soc i a t i on s . Count == oMorphism .GraphG . Ver t i c e s . Length) //

Graph G is always the smaller.
{

// Duplicate M and store as MP.
CMorphism oMorphismP = new CMorphism(oMorphism) ;

// In order of increasing value, for C[i,j] do
f o r each (CAssociat ion oAssoc ia t i on in oCost)
{

// If (VGi, *) not in AMP and (*, VHj) not in AMP, do
i f (oMorphismP .FromG(oAssoc ia t i on . VertexG) != nu l l | |

oMorphismP .ToH(oAssoc ia t i on . VertexH) != nu l l)
continue ;

// Add tuple (VGi, VHj) to AMP.
oMorphismP . As soc i a t i on s .Add(oAssoc ia t i on) ;

}

// Assign to cMP the sum of C[i,j] by all tuples in AMP.
f o r each (CAssociat ion oAssoc ia t i on in oMorphismP . As soc i a t i on s)
{

oMorphismP . Cost += adCost [oAssoc ia t i on . VertexG ,
oAssoc ia t i on . VertexH] ;

}

// Request Domain Expert for cost adjustment to cMP.
oMorphismP . Cost += m oExpert .Em(oMorphismP) ;

// If average assiciation cost exceeds match threshold, reject MP.
i f (oMorphismP . Cost / oMorphismP . As soc i a t i on s . Count >

m oExpert . MatchThreshold)

A.1. GRAPH MATCHER 181

return nu l l ;

// Return MP to calling process.
return oMorphismP ;

}
else
{

// Allocate an empty morphism set M.
ArrayList oMorphisms = new ArrayList () ;

// Allocate a variable to count low-level recursions.
int nRecursionNum = 0;

// In order of increasing value for C[i,j], do
f o r each (CAssociat ion oAssoc ia t i on in oCost)
{

// If (VGi, *) not in A and (*, VHj) not in A, do
i f (oMorphism .FromG(oAssoc ia t i on . VertexG) != nu l l | |

oMorphism .ToH(oAssoc ia t i on . VertexH) != nu l l)
continue ;

// If C[i,j] does not exceed association threshold, do
i f (adCost [oAssoc ia t i on . VertexG , oAssoc ia t i on . VertexH] >

m oExpert . RecursionThresholdA ∗
oMorphism . As soc i a t i on s . Count +
m oExpert . RecursionThresholdB)

break ; // Keep in mind that traversal is ordered.

// If A + (VGi, VHj) is not exhausted, do
i f (m oExhausted . ContainsKey (GetExhaustKey (oMorphism . Assoc ia t ions ,

oAssoc ia t i on)))
continue ; // Solves thrashing behaviour (see Mackworth77 and Shapiro81).

// If active Domain Expert does not oppose, do
i f (! m oExpert .R(oMorphism , oAssoc ia t i on))

continue ;

// If recursion is not cut off, do
i f (m oExpert . RecursionCutOff > 0 && ++nRecursionNum >

m oExpert . RecursionCutOff)
break ; // Again; traversal is ordered.

// If match is not cut off, do
i f (m oExpert . MatchCutOff > 0 && ++m nMatchNum >

m oExpert . MatchCutOff)
break ; // Again; traversal is ordered.

// Duplicate M and store as MR.
CMorphism oMorphismR = new CMorphism(oMorphism) ;

// Add tuple (VGi, VHj) to AMR.
oMorphismR . As soc i a t i on s .Add(oAssoc ia t i on) ;

// Duplicate C and store as CR.
double [,] adCostR = new double [adCost . GetLength (0) ,

adCost . GetLength (1)] ;
for (int i = 0 ; i < oGraphG . Ver t i c e s . Length ; i++)
{

for (int j = 0 ; j < oGraphH . Ver t i c e s . Length ; j++)
{

adCostR [i , j] = adCost [i , j] ;
}

}

// Recurse for morphism MR and cost matrix CR, storing the returned morphism in MR.
oMorphismR = Recurse (oMorphismR , adCostR) ;

// Add morphism MR to set M, if any.
i f (oMorphismR != nu l l)

oMorphisms .Add(oMorphismR) ;
}

// If morphism set M is not empty, do
i f (oMorphisms . Count == 0)

return nu l l ;

// Sort morphism set.
oMorphisms . Sort () ;

// Return min(M) to calling process.
return (CMorphism) oMorphisms [0] ;

}
}

Listing A.1: Graph matcher in C#

182 APPENDIX A. SOURCE CODE

Bibliography

[1] Royal Military Academy Signal & Image Centre. Contribution of rma/sic
to hispars project - euclid rtp6.2. http://www.sic.rma.ac.be/Projects/
Hispars/, 1993.

[2] H. Shao, T. Svoboda, T. Tuytelaars, and L. Van Gool. Hpat indexing
for fast object/scene recognition based on local appearance. In Michael
Lew, Thomas Huang, Nicu Sebe, and Xiang (Sean) Zhou, editors, computer
lecture notes on Image and video retrieval, pages 71–80. Springers, July
2003.

[3] M. A. Eshera and K. S. Fu. An image understanding system using attributed
symbolic representation and inexact graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(5):604–617, 1986.

[4] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(5):530–535,
May 1997.

[5] R. E. Blake. The use of scott’s lattice theory as a basis for combining items
of evidence. Pattern Recognition Letters, 7:151–155, 1988.

[6] R. E. Blake and P. Boros. The extraction of structural features for use
in computer vision. In Proceedings of the Second Asian Conference on
Computer Vision, Singapore, December 1995.

[7] D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the Seventh International Conference on Computer Vision
(ICCV’99), pages 1150–1157, Washington, DC, USA, 1999. IEEE Computer
Society.

[8] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(4):377–388, 1996.

[9] H. T. Hajiaghayi and N. Nishimura. Subgraph isomorphism, log-bounded
fragmentation, and graphs of (locally) bounded treewidth, 2002.

183

184 BIBLIOGRAPHY

[10] L. G. Shapiro and M. Haralick. Structural descriptions and inexact match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
3(5):504–519, September 1981.

[11] T. Pavlidis. Structural Pattern Recognition. Springer, New York, NY, USA,
1977.

[12] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall,
Englewood Cliffs, NJ, 1982.

[13] K. S. Fu. A step towards unification of syntactic and statistical pattern recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):200–205, March 1983.

[14] C. Soanes and S. Hawker. Compact Oxford English Dictionary of Current
English. Oxford University Press, 2005.

[15] P. Foggia, R. Genna, and M. Vento. Introducing generalized attributed re-
lational graphs (gargs) as prototypes of args. In Proceedings of the 2nd
IAPR Workshop on Graph-based Representations (GbR99), Haindorf, Aus-
tria, 1999.

[16] J. Rocha and T. Pavlidis. A shape analysis model with applications to a
character recognition system. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(4):393–404, 1994.

[17] H. Nishida. Shape recognition by integrating structural descriptions and geo-
metrical/statistical transforms. Computer Vision and Image Understanding,
64:248–262, 1996.

[18] J. Hsu and S. Wang. A machine learning approach for acquiring descriptive
classification rules of shape contours. Pattern Recognition, 30(2):245–252,
1997.

[19] R. S. Michalski. Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2(4):349–361,
1980.

[20] W. H. Tsai and K. S. Fu. Error-correcting isomorphisms of attributed re-
lational graphs for pattern analysis. IEEE Transactions on Systems, Man,
and Cybernetics, 9(22):757–768, 1979.

[21] W. H. Tsai and K. S. Fu. Subgraph error-correcting isomorphisms for
syntactic pattern recognition. IEEE Transactions on Systems, Man, and
Cybernetics, 13(1):48–62, 1983.

[22] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An efficient algorithm
for the inexact matching of arg graphs using a contextual transformational

BIBLIOGRAPHY 185

model. In Proceedings of the 13th International Conference on Pattern
Recognition, pages 180–184, Washington, DC, USA, 1996. IEEE Computer
Society.

[23] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd
Ann. ACM Symp. on Theory of Computing, pages 151–158, New York, NY,
USA, 1971. Association for Computing Machinery.

[24] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–103, 1972.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[26] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential time. In Proc. 13th Ann.
Symp. on Switching and Automata Theory, pages 125–129, Long Beach,
CA, USA, 1972. IEEE Computer Society.

[27] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1–22, October 1977.

[28] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, April 1979.

[29] S. Z. Li. Matching: invariant to translations, rotations and scale changes.
Pattern Recognition, 25:583–594, 1992.

[30] W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer
vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17:749–764, August 1995.

[31] A. Rosenfeld and A. Kak. Digital Picture Processing, volume 2. Academic
Press, Inc., Orlando, FL, USA, 1982.

[32] L. S. Davis. Shape matching using relaxation techniques. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1(1):60–72, January 1979.

[33] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation
operations. IEEE Transactions on Systems, Man, and Cybernetics, 6(6):420–
433, June 1976.

[34] R. E. Blake. A partial ordering for relational graphs applicable to varying
levels of detail. Pattern Recognition Letters, 11:305–312, 1990.

[35] R. E. Blake. Partitioning graph matching with constraints. Pattern
Recognition, 27(3):439–446, 1994.

186 BIBLIOGRAPHY

[36] R. E. Blake and A. Juozapavicius. Convergent matching for model-based
computer vision. Pattern Recognition, 36:527–534, 2003.

[37] M. A. Eshera and K. S. Fu. A graph distance measure for image analy-
sis. IEEE Transactions on Systems, Man, and Cybernetics, 14(3):398–408,
May/June 1984.

[38] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Graph matching: A
fast algorithm and its evaluation. In Proceedings of the 14th International
Conference on Pattern Recognition, pages 1582–1584, Washington, DC,
USA, 1998. IEEE Computer Society.

[39] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In Conference on Computer
Vision and Pattern Recognition, pages 1000–1006, Puerto Rico, 1997.

[40] Y. Lamdan and H. J. Wolfson. Geometric hashing: A general and efficient
model-based recognition scheme. In Proceedings of the 2nd International
Conference on Computer Vision, pages 238–249, Washington, DC, USA,
1988. IEEE Computer Society.

[41] D. Forsyth, J. L. Mundy, A. Zisserman, and C. M. Brown. Invariance - a new
framework for vision. In Proceedings of the 3rd International Conference
on Computer Vision, pages 598–605, Washington, DC, USA, 1990. IEEE
Computer Society.

[42] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Affine invariant model-
based object recognition. IEEE Transactions on Robotics and Automation,
6(5):578–589, 1990.

[43] D. Clemens and D. Jocobs. Space and time bounds on indexing 3-d mod-
els from 2-d images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(10):1007–1017, 1991.

[44] C.A. Rothwell, A. Zisserman, J.L. Mundy, and D.A. Forsyth. Efficient model
library access by projectively invariant indexing functions. In Proceedings of
Computer Vision and Pattern Recognition ’92, pages 109–114, Long Beach,
CA, USA, 1992. IEEE Computer Society.

[45] F. Stein and G. Medioni. Structural indexing: efficient 3d object recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):125–
145, December 1992.

[46] F. Stein and G. Medioni. Structural indexing: efficient 2d object recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(12):1198–1204, December 1992.

BIBLIOGRAPHY 187

[47] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–
226, 1977.

[48] L. Van Gool, P. Kempenaers, and A. Oosterlinck. Recognition and semid-
ifferential invariants. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 454–460, Washington, DC, USA,
1991. IEEE Computer Society.

[49] Z. Zhang, R. Deriche, O. Faugeras, and Q. T. Luong. A robust technique
for matching two uncalibrated images through the recovery of the unknown
epipolar geometry. Artificial Intelligence Journal, 78:87–119, 1995.

[50] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. Annals of Mathematical Statistics, 35:876–879, 1964.

[51] J. S. Bridle. Training stochastic model recognition algorithms as net-
works can lead to maximum mutual information estimation of parameters.
Advances in neural information processing systems 2, pages 211–217, 1990.

[52] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[53] C. Peterson and B. Soderberg. A new method for mapping optimization
problems onto neural networks. International Journal of Neural Systems,
1:3–22, 1989.

[54] Microsoft Corporation. Microsoft visual c# developer center. http://msdn.
microsoft.com/csharp/.

[55] Microsoft Corporation. Microsoft .net. http://www.microsoft.com/net/.

[56] Microsoft Corporation. Microsoft directx. http://www.microsoft.com/
windows/directx/.

[57] Microsoft Corporation. The common language runtime (clr). http://msdn.
microsoft.com/netframework/programming/clr/.

[58] Inc. Silicon Graphics. Opengl. http://www.sgi.com/products/software/
opengl/.

[59] Microsoft Corporation. X file reference. http://msdn.microsoft.com/
library/default.asp?HOWPUBLISHED=/library/en-%us/directx9_c/
dx9_graphics_reference_d3dx_x_file.asp.

[60] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill, New
York, NY, USA, 1995.

188 BIBLIOGRAPHY

[61] James Bruce. Realtime machine vision perception and prediction. http:
//www.cs.cmu.edu/~jbruce/cmvision/, 2000.

[62] A. Rosenfeld and J. Pfaltz. Sequential operations in digital picture process-
ing. Journal of the Association for Computing Machinery, 13(4):471–494,
October 1966.

[63] M-K. Hu. Visual pattern recognition by moment invariants. IRE
Transactions on Information Theory, 8(2):179–187, 1962.

[64] J. Wood. Invariant pattern recognition : A review. Pattern Recognition,
29(2):1–17, January 1996.

