
OntoLog: Flexible
Management of Semantic
Video Content Annotations

Doctoral thesis
for the degree of doktor ingeniør

Trondheim, 2005

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Jon Heggland

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology
Doctoral thesis
for the degree doktor ingeniør
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information Science

©Jon Heggland

ISBN 82-471-7210-0 (printed vers.)
ISBN 82-471-7209-7 (electronic vers.)
ISSN 1503-8181

Doctoral theses at NTNU, 2005:161

Printed by NTNU-trykk

i

Abstract
To encode, query and present the semantic content of digital video precisely and
flexibly is very useful for many kinds of knowledge work: system analysis and
evaluation, documentation and education, to name a few. However, that kind of
video management is not a trivial matter. The traditional stratified annotation
model has quite poor facilities for specifying the meaning – the structure and
relationships – of the strata. Because of this, it may also be troublesome to present
the annotations to the users in a clear and flexible manner.
This thesis presents OntoLog, a system for managing the semantic content of
video. It extends the stratified annotation model by defining the strata as objects
and classes in ontologies, thereby making their semantic meaning more explicit
and relating them to each other in a semantic network. The same ontologies are
also used to define properties and objects for describing both the strata, individual
video intervals and entire videos. This constitutes a very customisable, expressive
and precise description model, without sacrificing simplicity and conceptual
integrity.
Arranging the annotation strata in a near-hierarchical network with specified
semantics (classes, subclasses and instances) also enables reasoning about the
annotations during query and browsing. In particular, it enables visual
aggregation of traditional timeline-based strata graphics. Using this to create
compact content visualisations, the OntoLog system is able to present tens of
videos on screen at the same time, thus providing inter-video browsing. By
judiciously disaggregating selected parts of the strata hierarchy, users can focus
on relevant strata at their preferred level of detail – overview-and-zoom
functionality for semantic annotations, in other words.
The OntoLog system has been implemented in the form of six Java applications
and web services – together covering annotation editing, browsing, analysis,
search, query and presentation with various approaches – built on top of an RDF
database founded on SQL. The system has been tested under realistic conditions
in several real-world projects, with good results. A novel information gathering
interface for OntoLog data, Savanta, has been created. This is based on an
iterative interaction paradigm featuring inter-video browsing, filtering, navigation
and context-sensitive temporal analysis of the annotations. In a comparative
usability evaluation, Savanta is shown to outperform more traditional user
interfaces for video search/browsing with regard to expressive power, straight-
forwardness and user satisfaction.

ii

iii

Preface
This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fulfilment of the requirements for the doctoral degree doktor
ingeniør. The work has been performed at the Data Base Systems Group of the
Department of Computer and Information Science (IDI) in Trondheim, Norway.
The study was funded by Faculty of Information Technology, Mathematics and
Electrical Engineering (IME), NTNU.

Acknowledgements
First of all, I would like to thank my advisor, associate professor Roger
Midtstraum, for his tireless efforts through the long years; and for interesting
discussions, relevant as well as irrelevant.
Second, I would like to thank my long-time friend, colleague and office-mate Jon
Olav Hauglid – without whom this thesis would not even have been started – for
feedback, discussions and technical assistance, and essential cooperation on the
Savanta project.
Third, dr. med. Hallvard Lærum must be profoundly thanked for his influence on
the fundamental design ideas of the OntoLog system, and for his constant
feedback on the system during its development.
Thanks to graduate students Jørgen Austvik and Per Håkon Meland, Rune Rystad,
Cristoph Stengel, Sigve Litsheim, Erlend Agøy Engum, Pål Jødahl and Eivind
Staff for their contributions.
Several people have been involved in the testing and evaluation of the OntoLog
system. In addition to Hallvard Lærum, I would especially thank Steinar Line for
letting me record his lectures to use as test data, and for his help in the Savanta
evaluation. Thanks also to Michael Cyrus, Anne Marit Myrstad, Marianne Holand
and Kjetil Nørvåg.
Finally, I would like to thank Christian Mönch and Olav Sandstå for their
feedback on the thesis; and my friends and family and the chamber choir
A Cappellissimo for helping me keep up the spirits during this work.

iv

v

Table of contents
1 INTRODUCTION ...1

1.1 MOTIVATION .. 1
1.1.1 Semantic content annotations...2
1.1.2 Application areas ...2
1.1.3 Discussion ..3

1.2 RESEARCH QUESTIONS AND APPROACH .. 4
1.3 CONTRIBUTIONS ... 6
1.4 THESIS OUTLINE.. 7

2 THE VIDEO MEDIUM ..9
2.1 VIDEO AS A DIGITAL DATA TYPE... 9
2.2 VIDEO SEMANTICS .. 10

2.2.1 “Reading” an image ..10
2.2.2 Signs and connotation ..11
2.2.3 Mise en scène ...12
2.2.4 Montage ...13

2.3 THE SEMANTIC GAP... 14
2.3.1 Representing and understanding information ..14
2.3.2 Shot detection and segmentation..15

2.4 SUMMARY .. 16
3 A SURVEY OF SEMANTIC VIDEO MANAGEMENT.......................................17

3.1 PROPERTIES OF VIDEO CONTENT MODELS ... 17
3.1.1 Temporal expressiveness..18
3.1.2 Spatial expressiveness ..21
3.1.3 Semantic expressiveness...23
3.1.4 Flexibility ...25
3.1.5 Summary...26

3.2 EXISTING VIDEO CONTENT MODELS .. 26
3.2.1 OVID ..26
3.2.2 Algebraic Video System..28
3.2.3 VideoSTAR ...30
3.2.4 AVIS ...32
3.2.5 Vane ...35
3.2.6 Qualitative Media Analyzer ...37
3.2.7 Noldus Observer...39
3.2.8 Veggie...42
3.2.9 CARAT ...44
3.2.10 BilVideo..45
3.2.11 Smart VideoText ...49
3.2.12 Discussion ..51

3.3 EXISTING TOOLS AND USER INTERFACES... 53
3.3.1 Marquee ...53
3.3.2 Audio Notebook..54
3.3.3 Logjam ...55
3.3.4 Video-based retrieval ...56

vi

3.3.5 Rframes ..57
3.3.6 MSR Video Skimmer...58
3.3.7 Hierarchical Video Magnifier ..58
3.3.8 Jabber...60
3.3.9 VoiceGraph ..61
3.3.10 SCAN..62
3.3.11 Media Streams..63
3.3.12 DIVA...64
3.3.13 MMVIS / TVQL ..65
3.3.14 LifeLines...68
3.3.15 Discussion ..69

3.4 SUMMARY .. 70
4 HANDLING THE SEMANTICS OF VIDEO...71

4.1 EXAMPLES OF SEMANTIC ANNOTATION NEEDS ... 71
4.1.1 Support for movie watching ...72
4.1.2 Managing interview recordings ...73
4.1.3 Support for system analysis..73
4.1.4 Video-based system evaluation ..74
4.1.5 Lecture database ..74
4.1.6 Police investigation..75

4.2 REQUIREMENTS FOR A MULTI-PURPOSE, FLEXIBLE VIDEO CONTENT MODEL ... 76
4.2.1 Temporal expressiveness..76
4.2.2 Spatial expressiveness ..77
4.2.3 Semantic expressiveness and flexibility..77
4.2.4 Tools, interfaces and visualisation...79
4.2.5 Simplicity and usability ..80
4.2.6 Summary...80

4.3 THE ROAD AHEAD ... 81
4.3.1 Ontology-based annotation ..81
4.3.2 Video browsing using aggregated visualisations ...82
4.3.3 Research questions revisited ..84

5 ONTOLOG: A FLEXIBLE VIDEO CONTENT MODEL....................................87
5.1 THE ONTOLOG MODEL ... 87

5.1.1 MediaResources and Intervals ...87
5.1.2 Ontology-based stratification...88
5.1.3 Properties and model extensions..91
5.1.4 Ontologies and Projects ...93

5.2 SCENARIOS REVISITED .. 94
5.2.1 Support for movie watching ...94
5.2.2 Managing interview recordings ...94
5.2.3 Support for system analysis..94
5.2.4 Video-based system evaluation ..95
5.2.5 Lecture database ..95
5.2.6 Police investigation..96
5.2.7 Discussion ..96

5.3 RELEVANT TECHNOLOGIES ... 97
5.3.1 Description schemes and metadata standards ...97

vii

5.3.2 Ontology standards and tools ..103
5.3.3 Temporal database management systems ..106

5.4 TECHNOLOGY CHOICES... 108
5.4.1 RDF..108
5.4.2 RDF Schema...109
5.4.3 MPEG-7 ...110
5.4.4 Temporal DBMSs ...110

5.5 SUMMARY .. 111
6 UTILISING THE ONTOLOG MODEL ...113

6.1 THE IMPACT OF ONTOLOGIES .. 114
6.2 ONTOLOG – ANNOTATION EDITOR .. 114

6.2.1 Objectives and requirements ..115
6.2.2 Design and implementation..115
6.2.3 Discussion ..118

6.3 IMPROVING ANNOTATION PRODUCTION .. 118
6.3.1 Visualisation for prediction, browsing and navigation119
6.3.2 Taking advantage of automatic segmentation..120
6.3.3 Advanced analysis for classification and recognition................................121
6.3.4 Summary...122

6.4 SPATIAL EXTENSION ... 123
6.4.1 Objectives and requirements ..123
6.4.2 Design and implementation..124
6.4.3 Discussion ..127

6.5 ONTOLOG CRAWLER – WEB-BASED BROWSING AND SEARCHING 127
6.5.1 Objectives and requirements ..127
6.5.2 Design and implementation..128
6.5.3 Discussion ..130

6.6 ANA – TEMPORAL ALGEBRA AND ANNOTATION ANALYSIS 131
6.6.1 Objectives and requirements ..131
6.6.2 Design and implementation..132
6.6.3 Discussion ..133

6.7 SAVANTA – SEARCH, ANALYSIS, VISUALISATION AND NAVIGATION 134
6.7.1 Methods for Information Gathering ...135
6.7.2 Stored metadata ...137
6.7.3 Derived metadata ...138
6.7.4 Visualisation...141
6.7.5 Navigation..143
6.7.6 Filtering ...144
6.7.7 Searching ...146
6.7.8 Discussion ..146

6.8 SAVANTOOGLE – GOOGLE-LIKE SEARCH .. 146
6.8.1 Objectives and requirements ..146
6.8.2 Design and implementation..146
6.8.3 Discussion ..148

6.9 FORMS – FORMS-BASED SEARCH... 148
6.9.1 Objectives and requirements ..148
6.9.2 Design and implementation..149
6.9.3 Discussion ..150

viii

6.10 SUMMARY .. 150
7 THE ONTOLOG SYSTEM IN THE REAL WORLD...151

7.1 PRACTICAL USE OF THE ONTOLOG SYSTEM .. 151
7.1.1 Evaluation of electronic medical records...152
7.1.2 Indexing lectures in information technology..156
7.1.3 Analysis of television advertisements ...161
7.1.4 Other cases...166
7.1.5 Summary...167

7.2 EVALUATION OF SAVANTA ... 168
7.2.1 Setting...169
7.2.2 Results ..172
7.2.3 Discussion ..175

8 DISCUSSION...177
8.1 RESEARCH QUESTIONS.. 177

8.1.1 Video information modelling..177
8.1.2 Tools and interfaces ...178
8.1.3 Usability and performance...178

8.2 OTHER ISSUES... 180
8.2.1 Research approach...181
8.2.2 Scenarios revisited ...182
8.2.3 Using RDF for video metadata ..184

9 CONCLUSION AND FURTHER WORK ..187
9.1 CONTRIBUTIONS ... 187
9.2 FURTHER WORK.. 188

A ONTOLOGIES ..191

B ONTOLOG RDF SCHEMA...195

C ONTOLOG ECDL PAPER ..197

D ONTOLOG CRAWLER ACM SIGIR PAPER..211

E ABOUT SAVANTA...223

F SAVANTA EVALUATION..225

REFERENCES...233

ix

List of figures
Figure 2.1: The Necker cube..11
Figure 2.2: Metz's syntagmas (slightly simplified) ..14
Figure 3.1: Temporal expressiveness...18
Figure 3.2: Rectangular static region..22
Figure 3.3: Linearly interpolated dynamic region...23
Figure 3.4: OVID's conceptual model ...27
Figure 3.5: Algebraic video model ..29
Figure 3.6: Algebraic video example (from [Weiss et al. 1995])...29
Figure 3.7: VideoSTAR's conceptual model...31
Figure 3.8: AVIS's conceptual model...32
Figure 3.9: An AVIS association map (from [Adali et al. 1996]) ..33
Figure 3.10: An AVIS frame segment tree (adapted from [Adali et al. 1996])....................34
Figure 3.11: Vane's conceptual model (simplified) ...35
Figure 3.12: Vane's temporal annotations...36
Figure 3.13: Vane's annotation window ..37
Figure 3.14: QMA's conceptual model ..37
Figure 3.15: QMA's user interface, analysis view ...39
Figure 3.16: Observer's conceptual model ..40
Figure 3.17: Observer's user interface ..41
Figure 3.18: Veggie's conceptual model..42
Figure 3.19: Veggie's video-level metadata form ..43
Figure 3.20: Veggie's scene-level metadata form ..43
Figure 3.21: An overview of CARAT's conceptual model ..44
Figure 3.22: BilVideo minimum bounding rectangles (adapted from [Dönderler 2002])...46
Figure 3.23: BilVideo's semantic annotation model (adapted from [Arslan et al. 2002])...47
Figure 3.24: VideoText's conceptual model...49
Figure 3.25: Smart VideoText's conceptual model ..50
Figure 3.26: Video content model features..52
Figure 3.27: Marquee’s user interface (from [Weber and Poon 1994])54
Figure 3.28: The Audio Notebook (from [Stifelman et al. 2001])..55
Figure 3.29: LogJam on-screen user interface (from [Cohen et al. 1999]).........................56
Figure 3.30: LogJam logging board (from [Cohen et al. 1999])...56
Figure 3.31: Gordon’s video annotation interface (from [Gordon 2000])..........................57
Figure 3.32: Rframe composition; example Rframe to the right (adapted from [Arman et
al. 1994a])..58
Figure 3.33: MSR Video Skimmer (from [Li et al. 2000]) ...59
Figure 3.34: Hierarchical Video Magnifier, one level (adapted from [Mills et al. 1992])..59
Figure 3.35: Hierarchical Video Magnifier, four levels (from [Mills et al. 1992]).............59
Figure 3.36: Jabber ...60
Figure 3.37: VoiceGraph...61
Figure 3.38: SCAN...63
Figure 3.39: Media Streams timeline...64
Figure 3.40: DIVA ...65
Figure 3.41: TVQL...66
Figure 3.42: MMVIS ..67
Figure 3.43: LifeLines..68
Figure 4.1: Simple mock-up of visualisation and browsing interface..................................83

x

Figure 5.1: An UML view of OntoLog’s core conceptual model ...87
Figure 5.2: Classes and individuals...90
Figure 5.3: Different kinds of "relatesTo" relationships..91
Figure 5.4: User-defined properties ..92
Figure 5.5: Extended OntoLog conceptual model ...93
Figure 5.6: Fragment of MPEG-7 description (from [Staff and Jødahl 2001])100
Figure 5.7: Event-aware metadata ..100
Figure 5.8: RDF example ..102
Figure 6.1: OntoLog’s logging interface ...116
Figure 6.2: OntoLog's ontology editor ..117
Figure 6.3: OntoLog Logger panel with waveform and thumbnail display119
Figure 6.4: Video slice bitmap (adapted from [Liou et al. 1999a])...................................120
Figure 6.5: Automatic segmentation in OntoLog...121
Figure 6.6: Automatic classification in OntoLog...122
Figure 6.7: Keyshapes and interpolation of linear movement and transformation125
Figure 6.8: OntoLog model with spatial extensions ..125
Figure 6.9: Prototype user interface for spatial annotations in OntoLog126
Figure 6.10: OntoLog Crawler describing an RDF resource..128
Figure 6.11: OntoLog Crawler describing a concept ..129
Figure 6.12: OntoLog Crawler's media search ...130
Figure 6.13: Temporal set operations..132
Figure 6.14: Temporal relationships ...132
Figure 6.15: Ana..133
Figure 6.16: Ana's operator selection window ..134
Figure 6.17: Conceptual model of temporal annotation databases.135
Figure 6.18: Overview of a system for accessing data in a temporal media database.136
Figure 6.19: Simplified annotation model ...138
Figure 6.20: Stored metadata in Savanta ..138
Figure 6.21: The War in Iraq described by The Middle East; related to George W. Bush;
differs from Afghanistan...140
Figure 6.22: Savanta..142
Figure 6.23: Media navigation controls ..143
Figure 6.24: Hypertext navigation panel ...144
Figure 6.25: Filters..145
Figure 6.26: Savantoogle...147
Figure 6.27: Savantapplet, Savantoogle’s interface for presenting a single media
“document”..148
Figure 6.28: Forms..149
Figure 7.1: Activities ontology...153
Figure 7.2: OntoLog annotations for medical consultation...155
Figure 7.3: Partially expanded ontology for the course "Information Technology,
Introduction"..158
Figure 7.4: Camera positions (adapted from [Thibault 2000])...162
Figure 7.5: Ontology for film analysis...163
Figure 7.6: OntoLog annotations of Norwegian milk shake commercial from 1987,
showing statistics ...165
Figure 7.7: Results from questionnaires. ...174

1

1 Introduction
The last decade has seen the cost of digital video drop from the realm of
professionals to the levels where it is within reach of almost any interested
amateur. Video cameras, both analogue and digital, are steadily getting better and
better, and cheaper and cheaper. Stock computers are now powerful enough to
easily digitize, edit and compress video. Video editing software is included in the
latest operating systems, and more advanced systems can be bought relatively
cheaply; some are even available as free- or shareware. Storage costs have
dropped to the point where you need hours, not minutes, of high-quality video to
fill a standard hard disk, and advances in network capacity are finally making the
video-on-demand dream come true.
This development leads naturally to a huge mound of digital video that needs to
be managed. There are issues of production, compression, storage, indexing,
transfer, protection, dissemination, access and description to be studied. This
thesis focuses on one aspect of digital video (and similar media): the management
and use of advanced metadata – specifically temporal, semantic annotation
describing the content of the video according to the needs and requirements of
different users, domains and purposes. This chapter describes the motivation for
this work, the research questions the thesis will answer, and the methods with
which the answers will be obtained. It also includes an overview of the
organization of the thesis.

1.1 Motivation
Video (or moving images in general) is a very powerful medium. It has the
highest verisimilitude (“likeness to the truth”) of all the media, and so is
eminently suited for documentation and data gathering. It is also very rich – if a
single picture says a thousand words, how many words does a video sequence
say? However, the information contained in a video is not easily managed. It
requires human interpretation in most cases, and is prone to ambiguity. A
computer has a hard time figuring out the semantic content of the video – that is,
what it is about, not just what it shows (which is difficult enough), so content-
based retrieval of video is for many purposes reliant on metadata. If you ask a
video database “Show me the scene in this film where the villain explains his evil
plan to the captured hero”, the computer will probably have to turn to metadata to
accomplish it – it is at present very difficult indeed for a computer to extract such
high-level content information automatically from the video data.
Video has another distinguishing feature: its time extent. Much of the meaning of
video is imparted through the juxtaposition of elements in the temporal
dimension. It takes a certain amount of time to watch a video, and you cannot
“skim” it in the same way as an article or a book. This calls for a different way of
describing video – an approach that considers the time dimension, and that may
be used (among other things) as a substitute for the headings and tables of content
found in textual media.

2

1.1.1 Semantic content annotations
Semantic content annotations (within the context of digital video management)
are units of information that describe the contents of various parts of the video in
machine-understandable terms, so that they can be managed by a computer
system. These annotations are useful for many purposes.
Access. Searching in raw video (and audio) data is a hard problem, and one that
hasn’t been successfully solved yet. Feature descriptors like colour distribution
for images, dominant frequency for audio and shot boundaries for video are easy
to produce; however, semantic annotations describing the meaning of the data
cannot (yet) be produced by computers alone, since much of this meaning may be
a matter of interpretation, or change depending on the context or point of view of
the viewer. Thus, in order to improve content-based access to the data, additional
annotations are needed.
Augmentation. Most media productions are obviously meant to be self-
sufficient; nobody needs detailed annotations to enjoy a music video or a feature
film. However, media researchers or film historians, who view the material from a
different perspective, would benefit from the ability to augment the data with their
personal observations and comments – or from reading the observations and
comments of others.
Context. It is inherently impossible to experience the entire extent of a temporal
data item at once. Large spatial data structures have a similar problem – to discern
detail, you have to focus on a small part of the whole. In doing so, it is easy to
lose track of the big picture, especially if you are referred to a subpart of a large
data structure by a hyperlink or a search result, in which case you have little idea
what to expect. Judicious use of annotations to visualise an abstract of the
surrounding data helps establishing the context of what you’re seeing, and may
save time compared to actually watching the surrounding video.
Overview. Temporal data types like video are by their very nature time-
consuming to view. Browsing a video by fast-forwarding is impractical, since it
reduces intelligibility considerably, and still takes significant amounts of time.
Visualising temporal annotations by mapping them into the space domain
alleviates this problem, making it possible to get an overview of the data without
spending so much time.

1.1.2 Application areas
The biggest arenas for moving images are of course the TV and the cinema,
where content annotations may not be in very high demand. However, the
verisimilitude and immediacy of video, along with the low and decreasing cost of
digital video systems, has led to it being used in many other contexts, where the
goal is not simply passive consumption:
System analysis and evaluation. Video is often used by system analysts to
record the various procedures of a system, in order to analyse it and discover
weaknesses and best practises. Likewise, user interface designers have long been
using video to record user evaluations (and anthropologists and behavioural

3

scientists to record human or animal behaviour), since the richness and
verisimilitude of video captures the reactions of the test subjects far better and
more objectively than a written account of the test. These applications benefit
from the ability to augment the video material with comments, explanations and
conclusions, and some mechanism for accessing significant segments of the video
directly, instead of having to view it from the start. Structured descriptions lend
themselves more readily to computerised analysis than a written transcript or
prose summary of an event.
Documentation, history. Video is eminently suited for documenting stuff. For
instance, the Norwegian Museum of Cultural History uses video to document and
preserve old craft techniques. However, the videos are not self-explanatory, so
additional commentary is needed to explain what is going on at various stages.
Likewise, old films are excellent source material for historians, but they need
detailed metadata describing what goes on, where, and when.
Education. Video recordings of lectures distributed over the Internet is an
interesting application of digital video. Students don’t need to be present at
campus to follow a course, and can view and review lectures at their convenience.
Semantic annotations can be used to augment the material by providing
explanations, references, examples and discussions, and they can be used for
access, allowing students to efficiently find and review the bits of the syllabus
they find most difficult. They can provide context, e.g. which lecture parts and
topics build on others, or what topics precede or follow the one the student is
watching, and for overview, letting a student see at a glance what topics a
particular lecture covers.
Media research. Last but not least, researchers studying the moving image as a
medium might use semantic annotations to analyse the modes, codes and
composition of a film. The “rhythm” of a film (how long its shots or other
structural elements typically are), its use of camera movements (pan, tilt, zoom
etc.), its use of narration or modes of communication (exposition, observation,
interviews and so on) are examples of information that it would be useful to
annotate a film with.

1.1.3 Discussion
The domains above are both similar and dissimilar in several ways. They deal
with quite different aspects of video utilisation, but the purpose of semantic
content annotation in all of them is the same: To represent (some aspect of) the
knowledge contained in or related to the video. It is also important, of course, to
represent it in a manageable format, so that it can be stored, transferred,
presented, analysed and understood in an efficient manner, preferably by both
humans and computers. Another common characteristic is the need for
relationships between the elements of such a representation, both temporal (this
comes before that, this happens at the same time as that) and semantic (this is the
opposite of that; this is a subtopic of that).
But the actual information that is to be stored is quite disparate in the different
domains. The terms used in the education domain – examples, exercises,

4

paradigms, terminology according to the subject area – are markedly different
from (say) the actors, activities and events of behavioural research. Hence, a great
deal of flexibility in the description vocabularies is needed. Genericness – use of
broad, non-specific description terms – might be an alternative, but that would
lead to a lack of preciseness in the annotations that might not be acceptable. If
you want an educational domain annotation system able to reliably procure the
video clips pertaining to the explanation of Java “if” conditions in a programming
course, you need specific, precise descriptions.
To summarise: Semantic content annotations are useful, but not at all trivial to
handle, especially if you want expressiveness, preciseness and flexibility in the
same package. Consequently, it is a subject worthy of study.

1.2 Research questions and approach
The goal of this thesis is to investigate the issues related to supporting detailed
semantic content annotations for the purposes and applications described in the
previous section. The main questions it intends to answer are:

1. Video information modelling: How should a model for semantic,
temporal annotations be constructed, given that it should be usable for
quite different domains, purposes and levels of detail?

• What are the requirements concerning such a model? What kinds of
semantics, what level of expressiveness should be supported?

• How can the model be made flexible or extensible enough to support
different kinds of applications, while not sacrificing simplicity and
usability?

2. Tools and interfaces: How can one create an infrastructure to handle the
various tasks related to the usage of semantic content annotations?

• What kinds of architectures and technologies can or should be used?
How should the metadata be stored, accessed and transferred to the
user?

• How should tools for entering, browsing, presenting and querying
annotations be constructed?

3. Usability and performance: How does such a system fare in practice, in
the real world?

• Does it provide real benefits compared to prior approaches found in
literature? Under what circumstances is it appropriate and successful,
and when is it not? Is there an actual need for this kind of system?

• Are the model and the tools user-friendly enough? Expressive
enough? Extensible enough? Simple enough?

• Is the model possible to index and search efficiently? Is it scalable?
How does the choice of architecture/technology affect this?

5

[Denning et al. 1989] defines three paradigms for computer science research:
Theory, Abstraction and Design; rooted in mathematics, the experimental
scientific method, and engineering, respectively. Theory is, as its name suggests,
concerned with developing a coherent, valid theory; Abstraction with
investigating a phenomenon, and Design with constructing a system or device to
solve a problem. The steps associated with each are presented in the table below.

 Theory Abstraction Design

Step 1 Characterise object
of study (definition)

Form a hypothesis State requirements

Step 2 Hypothesise possible
relationships among
them (theorem)

Construct a model
and make a pre-
diction

State specifications

Step 3 Determine whether
the relationships are
true (proof)

Design an
experiment and
collect data

Design and
implement the
system

Step 4 Interpret results Analyse results Test the system

I consider the Design paradigm to be the best approach in this case, due to the
nature of the problem and the results I wish to obtain. There is a practical problem
to be solved – the management of complex semantic video content annotations –
and a natural way of solving it is to construct a computer system, based on the
requirements of users, and to evaluate and test it with end-user satisfaction as the
primary goal.
Thus, the first step in addressing the questions posed earlier is to understand the
problem. This entails examining the characteristics of video and the requirements
of different applications that benefit from semantic content annotations. It also
involves studying different standards, technologies and techniques that may be of
use in constructing an annotation system, and identifying, examining and
evaluating the already existing models and systems.
Building on this foundation, the next step is to suggest an abstract model that
fulfils the requirements I have identified as much as possible, and implement this
model using a set of carefully chosen technologies. This naturally leads to the
construction of tools for the most important tasks – entering, browsing, querying
and analysing annotations – and the identification and discussion of the issues
related to the design of each of them. The making of such tools and user
interfaces is a challenging and interesting research topic in its own right, and it is
also a prerequisite for evaluating the model under realistic circumstances.
Finally, the designs I have come up with should be evaluated, according to several
criteria – expressiveness, flexibility, user-friendliness, performance and
scalability, to mention a few. I will thus reach a conclusion as to whether my
designs solve some or all of the problems and challenges related to semantic
video annotations, and identify which areas and issues should be studied more.

6

The design steps are not performed in isolation, nor necessarily in a strict order; it
is expected that iterations will occur, as knowledge produced by later steps leads
to a re-examination of earlier steps. In this case, it is likely that the development
of tools and interfaces will influence the design of the model, and vice versa; that
early evaluations of the system will lead to redesign and further evaluations; and
that realistic tests with actual users will lead to a greater understanding of their
requirements.
My approach also contains elements of the Abstraction paradigm, in the design of
the model as well as in the user interface design and evaluation. This is to be
expected; Denning et al. [ibid.] points out that in computer science, the three
paradigms are often intricately intertwined.
The plan for the design is to start with a set of high-level scenarios, to explore the
problem space and establish preliminary requirements. These scenarios will be
revisited later, to validate the design, but the bulk of the process will be user-
centred [Gould and Lewis 1985]: iterative design of conceptual models and
prototypes, with input from actual users adjusting the development. In any case,
this thesis will focus on the results rather than the process.

1.3 Contributions
The major contributions of this thesis are:
A flexible, expressive, structured and simple model for semantic annotation of
temporal media. I consider existing approaches lacking in one or more of these
aspects, so I propose a new model based on augmenting traditional stratified
annotations with ontologies. The model is geared towards the purposes and
domains outlined in section 1.1, and has several interesting properties: It allows
users to precisely define their universe of discourse, and alleviates the problem of
topical granularity (at what level of detail should a video be described?).
Demonstrations of this model’s viability in several domains. An implementation
of this model, the OntoLog system, has proved its worth in several real-world
projects from quite different disciplines: medical informatics, education and
media research.
A powerful visualisation scheme for stratified temporal annotations in video
databases, enabling better overviews and inter-video browsing. The annotation
strata are organised hierarchically in an ontology, with subset (subclass) or
member (instance) semantics. This makes it possible to aggregate the
visualisation of related strata, making the representation more compact and hiding
unnecessary details. The compact representation gives room for visualising and
browsing several videos at once (inter-video browsing), and the users may easily
disaggregate or “zoom in on” the strata they are particularly interested in.
A novel and powerful information gathering interface, based on integrated
browsing, navigation, visualisation, searching and filtering, with demonstrated
benefits. The application named Savanta provides a rich environment for video
browsing and analysis, utilising the richness of the model, the powerful
visualisation scheme and context-sensitive temporal analysis of the annotations.

7

Its flexible and iterative interaction model provides a user-friendly approach to
complex information gathering needs.
A demonstration that RDF is a viable alternative for temporal video annotation.
The Resource Description Framework [World Wide Web Consortium 2004a] and
related technologies were used for the implementation of the OntoLog model.
Though primarily aimed at describing web pages and other kinds of documents,
RDF’s flexibility, expressiveness and simplicity has been shown to be well suited
for video metadata as well.

1.4 Thesis outline
This thesis is organised into three main parts. The first part deals with the
background of this work. Chapter 2 discusses the characteristics of video, its
properties as a digital data type and the complexity of its semantics. Chapter 3
examines the state of the art in video content models, tools and user interfaces,
evaluates their weak and strong points and discusses where to go next.
The second part deals with the design and implementation of the OntoLog system.
Chapter 4 introduces a set of scenarios as examples of the various uses for
semantic annotations, presents a set of requirements for an ideal multi-purpose
model, discusses the main ideas behind the OntoLog approach, and gives an
overview of technologies and standard relevant to this. Chapter 5 presents the
OntoLog model for temporal semantic content annotation, and chapter 6 describes
how the novel features of this model can be harnessed by tools and user interfaces
that give the model life – tools for constructing, presenting, browsing, analysing
and querying annotations.
The final part consists of evaluations of various aspects of OntoLog, and
discusses what conclusions and reusable knowledge may be gleaned from this
work. Chapter 7 discusses various cases where the OntoLog system has been put
to the test in real environments, and examines how it fares in each case; it also
presents a quantitative, comparative evaluation of the information gathering
interface Savanta. Chapter 8 summarises and discusses the successes and
limitations of this project, and chapter 9 concludes the thesis.

8

9

2 The video medium
Video or film is quite different from text, with regard to both how it is stored and
managed digitally, and how it is “read” or understood by the viewer. For this
reason, a system for describing, indexing, querying and presenting video must
necessarily be different from a corresponding system for textual information. In
this chapter, I explore the characteristics of video in this regard. In section 2.1, I
briefly mention its properties as a digital data type. Section 2.2 discusses the
semantics of video: the factors that determine how it is perceived, interpreted and
understood as a means of communication. Section 0 discusses the discrepancy
between the digital representation of video and its semantics, and section 2.4
summarises the chapter.

2.1 Video as a digital data type
Video/film is in essence a series of equal-sized images (called frames), displayed
sequentially at a fixed rate (typically 25 or 30 frames per second) to create the
illusion of movement, together with zero or more synchronised audio tracks. The
frames are encoded digitally as bitmap images, and compressed with various
techniques. A common compression technique is based on the idea of storing only
the differences from one frame to the next, since two consecutive frames are often
very similar. The audio tracks are usually also compressed; however, it is not very
important for this thesis exactly how video digitalisation and compression is
performed.
Despite compression, video data is still very voluminous. A VHS quality motion
picture of standard length, compressed using standard techniques and algorithms,
typically range from 650 MB to 1.3 GB, since it is desirable to fit a films on one
or two standard CD-ROMs. A DVD movie with its noticeably higher image and
sound quality may be more than five times that size [Chambers 2002]. This is a
challenge for digital video management and handling. One thing is the amount of
storage needed for archives and caches. Another is the infrastructure needed for
transport; network bandwidth is a bottleneck compared to storage capacity and
processing power. This is a big issue for video archives where the video files are
not stored locally on the user’s computer.
There are a few options available when delivering video data to the end user
across a network. One is to download the entire video file, but this is most likely
very time consuming. This can be alleviated by starting playback of the video
before it has been entirely downloaded, but the user is then constrained to watch it
from the start, and may have to wait for more data if playback catches up with
download. A final option is streaming, where the video data is delivered to the
user as and when it is needed. This reduces the storage requirement of the client,
since less data has to be cached, and may offer the end user random access to the
video material: If s/he skips to a different part of the video, streaming stops and is
restarted from the desired time point. However, this technique places very high
demands on the quality of service (QoS) of the network link; it has to guarantee
extremely timely and reliable data transport, which is difficult to do over the
Internet. I will not go into details about storage and network technologies either,

10

but the challenges introduced in this section will of course be relevant for the
goals presented in chapter 1.
Another video management challenge related to the common digital
representation of video is the semantic gap, which will be discussed later in the
following section.

2.2 Video semantics
Video has an immediacy of expression that is quite unique. Written and spoken
language needs to be read, interpreted – the sequence of letters or sounds
comprising the word “bird” is very different indeed from an actual bird. In
contrast, a video image of a bird is considerably more similar to the real thing.
Very little background knowledge or learning is required to make the connection
between the representation and the actual bird (the signifier and the signified in
the terminology of semiology, the study of signs); an infant, or even a cat, can do
it.
This might lead one to believe that “reading” a video is very simple: What you
see is what you get. This is a misleading impression, as will be explained in this
section. For one thing, video can incorporate other modes of expression, since it
can record them: spoken language and music can be included in the soundtrack,
written language as titles; dance, painting and other visual arts can be shown.
Other issues include the physiology and psychology of seeing an image; different
kinds of signs (in addition to the simple sign exemplified by the bird example
above); and above all the decisions of the filmmaker on what to show, how to
show it, and how to present it. These are all important factors in the semantics of
video; an “illiterate” video viewer may not notice them consciously, but is
nevertheless affected by them. As film semiologist Christian Metz says, “A film
is difficult to analyze because it is easy to understand.” [Metz 1974]

2.2.1 “Reading” an image
Two people watching the same image may experience the same optical pattern,
but that does not mean they see the same thing. Physiological and cultural
phenomena affect the mental image each viewer constructs to a significant
degree.
We read a page of text in a fairly strict and predictable pattern – sequentially,
from top to bottom and left to right, in the case of this book. We do not read an
image in the same way, but neither do we view the whole image at once: The
physical construction of our eyes allows us only to see a remarkably tiny area
clearly, so we must continuously move the eye to perceive a bigger object in
detail [Findlay and Gilchrist 2003]. These half-conscious movements (called
saccades) tend to follow certain patterns in the image, but can be more or less
extensive and efficient, determining attention to detail and speed of apprehension.
Cultural differences also affect image understanding. Westerners, trained in left-
to-right reading, tend to think of objects to the left in a picture as coming “before”
objects to the right, and consider diagonals from bottom left to top right as

11

“ascending”. People with right-to-left or top-to-bottom reading patterns interpret
such relations and patterns differently. It is a question of background and
learning; what you get is not determined solely by what you see.
Another example is perspective drawing, often used in optical illusions of various
kinds. Consider the drawing in Figure 2.1: That this represents a cube is obvious
only to a reader trained in western conventions for perspective. It has been shown
[Deregowski 1972] that different cultures interpret such images very differently.
For that matter, simply rotating the drawing by 45° makes it far less likely to be
interpreted as a cube, since by convention the depth dimension is indicated by
oblique lines.

Figure 2.1: The Necker cube

Figure 2.1 also illustrates another psychological phenomenon: the multistable
image, an image that can be interpreted by the brain in several equally valid ways.
Is the cube seen from the top or the bottom? Both, but not at the same time, and
switching between interpretations may be conscious or unconscious, effortless or
difficult, depending on the viewer.

2.2.2 Signs and connotation
As Monaco [Monaco 1981] is fond of saying, film is not a language, but it is like
a language. It has no grammar, and cannot be scientifically and objectively
analysed. Nevertheless, it has many characteristics of language, and can be
studied successfully using some of the same tools. One of these tools is
semiology, the study of systems of signs.
Wollen [Wollen 1972], drawing on the philosophy of C.S. Peirce, identifies three
kinds of signs in video: Icon, Symbol and Index.
Icons are signs where the signifier more or less equals the signified: an image of a
bird indicates the bird itself. This is the characteristic sign of video mentioned in
the beginning of this section, and one of its great strengths: it is extremely
efficient at representing physical reality, and the viewer needs no training for this
kind of sign. However, representing more abstract notions is another matter.
Symbols are signs where the signifier is connected to the signified solely by
convention. Written and spoken language consists of symbols; the word “bird” is
not a bird except by mutual agreement. In video, an eagle might signify the
United States of America, even though there is no natural relationship between

12

them (other than that an eagle is a powerful raptor with a rather small brain
[Galtung 2002]). Symbols, unlike Icons, require shared knowledge between the
filmmaker and the viewer, as well as active interpretation on the part of the
viewer.
Indexes are something between the Icon and the Symbol. The signifier is not
identical or equal to the signified, but neither is it wholly different: It has an
inherent, natural relationship to the signified. For instance, clocks are Indexes of
time; skulls and tombstones of death; marching feet indicate war. Indexes are
excellent means for videos to represent abstract ideas, which otherwise would be
very difficult.
The categories are not mutually exclusive. All cinematic signs are Icons, though
they may be Symbols or Indexes as well. A Symbol may be more or less
ambiguous; the eagle might represent czarist Russia, or be an Index of flight or
hunting, while the letters “USA” leave no doubt as to what they stand for. Icons
are mainly denotative – they are what they are – while Symbols and especially
Indexes have a significant connotative aspect: they can mean different things,
separate from what they themselves are, and their interpretation is affected by
several things – the mindset, cultural background and knowledge of the viewer,
as well as how they are presented by the filmmaker: the context and presentation,
which is the topic of the next two subsections.

2.2.3 Mise en scène
According to Monaco [Monaco 1981], three questions confront the filmmaker:
what to shoot, how to shoot it, and how to present the shot1. Mise en scène is
concerned with the two first questions, montage (cutting or editing in American
terminology) with the third.
Mise en scène is often referred to as the spatial composition of a shot, but this is a
little imprecise. It concerns not only the placement of entities on the screen, but a
host of other cinematic codes the filmmaker has at his disposal: lighting (amount,
colour, direction, contrast); camera distance (close-ups, long shots), angle (low or
high, oblique or straight), focus (deep or shallow, soft or sharp) and movement;
colours (warm, cold, dull, vibrant, strong, washed-out); point of view (first-
person, omniscient); framing (open or closed), location/situation and so on.
All these choices affect the “reading” of the shot, how a viewer experiences it –
the paradigmatic connotations, as Metz [Metz 1974] calls it. The viewer
compares the shot, consciously or unconsciously, to other potential shots of the
same subject. Camera angle can make a subject seem looming and overpowering,
or small and insignificant; lighting can make it seem lugubrious, furtive or radiant
– all the choices have the potential to change or affect the meaning, mood and
importance of (the various elements of) a shot considerably.

1 A shot is “a single piece of film, however long or short, without cuts, exposed
continuously.” [Monaco 1981]

13

Mise en scène is sometimes presented as static – like the arrangement of still
photographs – but this is not strictly true. Many of the codes mentioned above
have dynamic elements. Camera movement (pan, zoom, tilt, dolly, track) and
movement of actors and objects are obvious examples, but also elements such as
focus and lighting can be changed during a shot with significant effect.
Nevertheless, mise en scène may be thought of as spatial and static compared to
its temporal and dynamic companion, montage.

2.2.4 Montage
Montage is the seemingly simple process of splicing together shots to create a
bigger narrative. This is also a powerful tool for the filmmaker to affect the
interpretation of his shots; indeed, it is possible (and common) to use the
juxtaposition of two shots to create a third meaning out of the “original” two
meanings of the shots. An experiment performed by Russian filmmaker Lev
Kuleshov illustrates this: he intercut three identical shots of an actor with shots of
a dead woman, a plate of soup and a little girl; and viewers marvelled at the
actor’s subtle ability to convey such varied emotions as grief, hunger and
affection [Monaco 1981].
Clearly, the connotation of a shot depends greatly on the comparison with the
shots surrounding it. This is the syntagmatic connotation, in Metz’s terminology
[Metz 1974]. Montage might be called the grammar of video – it is in some ways
comparable to constructing statements, sentences and paragraphs in written
language – but the analogy is not perfect. A shot is not a word (or a sentence); it is
more complex, diverse and ambiguous. There are no grammar rules in
filmmaking; thus, a filmmaker has far more power, options and influence when
constructing his “sentences” than a writer has. Hence, the syntagmatic aspect is
often considered more “cinematic” than the paradigmatic aspect of video, which
is more comparable to other arts.
While there are not any rules, there certainly are conventions and common
patterns of montage. Metz has suggested a classification of different types of
montage, or syntagmas, organised in a hierarchy shown (slightly simplified) in
Figure 2.2.
At the top level is the autonomous segment, whose meaning is not dependent on
the segments preceding or following it. This can either be a single shot, or a
syntagma composed of several shots. Syntagmas can be achronological – using
flashbacks or flash-forward, alternating between chronologically unrelated stories
– or chronological. A chronological syntagma can be descriptive – e.g.
establishing a location or situation – or narrative, telling a story. A narrative
syntagma can be alternate, showing elements that are parallel but related, like the
pursuer and pursued in a chase scene; or linear. A linear narrative syntagma can
either have a continuous succession of events, in which case it is a scene; or it can
be broken up (while still being chronological, linear and narrative) which defines
it as a sequence.
Montage is used for a myriad of purposes: to create continuity between events in
the video; to bend the timeline, provide digressions and forecasts; to set or alter

14

the tempo and rhythm of the narrative; to compare or contrast elements and
stories; to simply avoid “dead time” by removing uninteresting footage, to
mention a few. Additionally, the boundaries between shots may also be used to
special effect: Different kinds of transitions, wipes and fades affect the
interpretation of a cut; drawing attention to the change, contrasting the connected
shots or linking them unobtrusively.

Sequence

Scene

Linear
narrative
syntagma

Alternate
narrative
syntagma

Chronological
syntagma

Achronological
syntagma

Descriptive
syntagma

Narrative
syntagma

Autonomous
segment

Syntagma

Autonomous shot

Figure 2.2: Metz's syntagmas (slightly simplified)

2.3 The semantic gap
As is evident by the discussion above, there is a huge discrepancy between the
way video data is coded digitally, and the way it is experienced by a human user.
As far as a computer is concerned, video data are sequences of bitmap images –
grids of coloured dots – along with a time-dependent air pressure function, i.e. the
audio track. The user, however, doesn't see a bunch of dots constantly changing
colour – s/he perceives people, buildings, vehicles, landscapes, places, actions,
events, discussions, stories, ideas. Most likely, s/he wants to interact with a digital
video library using such high-level concepts, not using the vocabulary of coloured
dots. The audio data present the same problem: The user has a high-level
perception of the voices of different people speaking, their roles and moods and
what they are discussing; speeches, cries, fights, music, noise – while the
computer considers everything a homogenous sequence of air pressure
measurements, taken several thousand times per second. This difference of
perspective between the computer and the user is called the semantic gap.

2.3.1 Representing and understanding information
This semantic gap is an issue with all kinds of information representation, but
video has it worse than most other mediums. For instance, a diagram of boxes of
various shapes connected by lines and arrows is actually stored by the computer

15

as shapes and connectors. The computer understands the diagram to a certain
degree, and can determine which shapes are connected directly or indirectly, and
what happens if a particular shape is moved. Likewise, a textual document is
represented using letters, words, sentences, paragraphs, sections and headings,
and the computer can answer simple queries about the actual meaning of the
content.
Not so for video. No matter what the message is, it is encoded using the coloured
dots. This is of course powerful and versatile – video can represent anything that
can be visualised; it is not limited by its vocabulary the way a diagram
representation scheme or textual document format is. The downside is that the
computer can offer little help in interpreting and understanding the contents. It
cannot answer even simple questions like whether a particular person is shown
somewhere in the video without having this information explicitly added to the
system by an image analysing tool or a human.
Additionally, the users are left alone with the task of constructing information
from the video data they are shown, and this process is not trivial. The correct
interpretation of Indexes and Symbols requires knowledge and familiarity. Many
cinematic codes are culturally dependent. The viewers might need background
information on (or just plain identification of) the people, places or events they
are watching, and this is simply not present in the video unless explicitly put there
by the video author – which it sometimes is, but not if the video is used outside its
originally intended context (like when a tourist video accidentally documenting a
crime is used as evidence in a criminal case) or audience. By its very nature,
video is rich and ambiguous; it records more than just the intention of the video
maker. For instance, footage of a soccer match could be used to study crowd
behaviour or supporter fashion by watching the spectators instead of the game.
The video would probably contain explicit information about who the different
players are, and what is happening (goals, penalties, substitutions and such), but
probably nothing about the spectators – except the coloured dots.

2.3.2 Shot detection and segmentation
There is one cinematic code that is reasonably computer readable, though: the
shot boundary. Shot boundaries (or cuts) can be detected by looking for abrupt
changes in the video image from one frame to the next, a process called shot
detection. However, this handles only one tiny aspect of the semantics of video.
As shown in the previous section, a shot is seldom autonomous; its meaning is
affected by the other shots in its syntagma. Shot detection tells us nothing more
than the length of the shot, and thus the rhythm of the video at that point; while
this may be useful (the rapid cutting of the famous shower scene in Hitchcock’s
Psycho may indicate that something dramatic, perhaps violent, is happening), it is
not sufficient for a proper understanding of its content.
Analogous to shot detection, audio analysis can be used to partition the video into
segments. In newscasts, a jingle may signify the transition from foreign news to
sports. A speaker uses pauses and changes in emphasis and inflection to announce
the beginning of new topics or sections of his lecture; in an interview, the changes

16

of speaker corresponds to the exchange of questions and responses. This can be
recognised by a computer. But again, this tells little about the meaning of the
video. It is more akin to parsing a body of text into words or phrases (though this
analogy should not be carried too far); it is a useful aid and starting point for
reading a film – a causeway for bridging the semantic gap – but in most cases,
human effort is required to complete the crossing.

2.4 Summary
Video is a complex medium. It has an unsurpassed ability to concisely describe
physical reality, but its semantics can be relatively obscure: It is extensively based
on signs whose meaning are given by relationships – natural and intrinsic or
arbitrary and conventional – that must be known or intuitively understood by the
viewer. It is affected by complex cultural, psychological and physiological
phenomena. We read and understand video by comparing what we see with what
we do not see, or have just seen (or even will see later).
Digital video is unwieldy due to its size, and its representation bears little
resemblance to the ways humans understand it. Because of the importance of
syntagmatic connotations, it is time-consuming to watch; fast-forwarding,
skimming and skipping harms or destroys the temporal integrity of the video, and
thus makes it harder or even impossible to understand properly. This is true for
the paradigmatic connotations as well, since they also can have dynamic,
temporal aspects. In contrast to the letters and words of written language, the
signs and codes of video are not easily alphabetised and indexed; and their
meaning is also significantly more context-dependant and mutable. These are all
issues that a computer system for handling the semantic content of video must
take into account.

17

3 A survey of semantic video management
This chapter describes the state of the art in semantic video management systems
– systems that focus on describing, indexing and augmenting the content of video
with machine-readable semantic annotations. The primary aim of this survey is to
evaluate and compare the expressiveness and flexibility of different semantic
video content models found in literature, but also to present paradigms of
interaction with actual systems based on such models – tools and user interfaces,
in other words.
Section 3.1 introduces four dimensions to describe such models along, while
section 3.2 presents a representative selection of the state of the art. User
interfaces and tools are mentioned in some of these cases, but such information is
incomplete, sporadic and hard to come by, compared to information about the
conceptual models themselves. For this reason, user interfaces and tools for video
database systems are presented separately in section 3.3. Section 3.4 summarises
the chapter.

3.1 Properties of video content models
To be able to discuss video content models and their properties, we need a set of
dimensions to place them along – some metrics of their capabilities, their
expressiveness and complexity.
The most significant property of a video content model is perhaps what features it
provides for subdividing the video. Structurally, digital video can be considered a
three-dimensional data type: the video image has two dimensions, and the
temporal extent provides a third. The video can thus be subdivided both
temporally and spatially, and this can be done with varying expressiveness and
complexity. These properties I call the temporal and spatial expressiveness,
presented in subsections 3.1.1 and 3.1.2 respectively. The audio track is also in a
sense a subpart of video, and the ability to describe it independently and
separately from the image part may be desirable. However, I consider this a
property of temporal expressiveness, and discuss it further in the relevant
subsection.
Given a set of video (and/or audio) fragments created by temporal and spatial
subdivision, the next question is how to annotate them. Description schemes can
be more or less complex, depending on how much structure, expressiveness and
formality is required or desired. This I call the semantic expressiveness of the
model, discussed in subsection 3.1.3.
Another important measure of a model’s worth is how adaptable and extensible it
is. Users benefit from the capability to tailor the model to their specific domain
and purpose, to customise it to represent particular aspects of the video content at
a particular level of detail. Of course, this must be done with care, so that the
adapted model still is compatible with the tools and systems supporting it. This is
the flexibility of the model, presented in subsection 3.1.4.

18

3.1.1 Temporal expressiveness
If one of the defining properties of video is its temporal extent, then the treatment
of time may be the most important part of a video content model. Videos may
deal with many different topics at different times, and it is important for a content
model to be able to reflect this. This is done by marking descriptions as valid only
in certain temporal intervals – or, from the other point of view, divide the video
into temporal fragments (logically, not necessarily physically) and attach
descriptions to the fragments. A content model may put restrictions on these
fragments – where their start- and endpoints may be, their size, whether
overlapping is allowed, whether adjacency is required, and so on. This dimension
I call the temporal expressiveness of the model. The most significant points along
this dimension, from most to least restrictive, are illustrated in Figure 3.1 and
discussed below.

Segmentation

None

Hierarchical
segmentation

Free overlapping
intervals

Figure 3.1: Temporal expressiveness

None
Some models have no representation of time at all; the video is treated as an
atomic object. The Internet Movie Database, IMDB1, is an example of this
(though it doesn’t actually store the movies, just descriptions of them). Movies
are described as a whole, with actors, directors, producers and so on – data that
are valid for the entire film.
The advantage is simplicity: The conceptual model ignores the temporal
dimension, and treats videos just like books or documents in a conventional
library. The obvious disadvantage is that time-dependent descriptions either
cannot be entered, or must be “faked”. The videos can for instance be physically
divided into smaller pieces, and each piece described individually. However, the
pieces will in that case all have mostly identical non-temporal descriptions,
leading to duplication of data and redundancy problems. Additionally, it is non-

1 http://www.imdb.com/

19

trivial to determine the optimal division points, and extremely cumbersome to
change them at a later time. Another option is to use time codes entered into
unconstrained description fields, but due to their lack of enforced structure, such
descriptions are relatively useless for the data management system, and therefore
impractical for humans as well.

Segmentation
With the term “segmentation”, I mean logically dividing the video into adjacent,
non-overlapping parts – a partition, in other words. Non-temporal (or content-
independent) information is connected to the video as a whole, while temporal
descriptions are connected to the relevant segment(s).
There are several paradigms for determining segment boundaries. Fixed
segmentation entails that each segment has a fixed, content-independent size. The
advantage of this approach is that it is simple – only the small, simple segment
number needs to be stored to be able to compute the corresponding time interval,
and the creation of segments requires no human interaction. The downside is that
what happens in the video will probably not correspond very well to the arbitrary
segmentation. Descriptions will be only partially valid if a segment contains
changes in subject, and may need to be duplicated across segments if an
interesting sequence straddles a segment boundary. As a simple example,
consider annotating a video by marking the presence of different people in the
picture: If a certain person is present in several consecutive segments, this has to
be recorded separately for each segment; and if a person leaves the picture in the
middle of a segment, the annotation is only partially correct.
Structure-based segmentation is a more common segmentation scheme: Using
physical, structural properties of the video to determine segmentation boundaries.
Shot detection (as mentioned in section 2.3.2) is an excellent candidate for this;
audio analysis is another possibility. This scheme is only marginally more
complex than fixed segmentation, and has the advantage that the shots are often
correlated to the semantic structure of the video. However, if the video (or
significant parts of it) has no shots, or very many shots, this scheme has the same
problems with redundant or partially invalid descriptions.
With user-defined segmentation, the user is free to choose the segmentation
boundaries that are most useful to her, based on how s/he wishes to describe the
video – s/he can tune the segmentation to correspond exactly to the semantic
content s/he wants to model. The structure-based segmentation may be provided
as a starting point, but segment boundaries can be set arbitrarily (as long as the
subdivision still is a partition).
This scheme alleviates the problem of redundant and partially invalid
descriptions, since the user has the freedom to add, move or remove segment
boundaries, but it does not remove it completely. Some kind of content
annotations, e.g. the presence of people, overlap naturally, while segments do not.
To model a video sequence where person A enters a room, person B enters later,
and then leaves again, one has to use three segments: first a segment where A is
alone, then a segment where both A and B are present, and finally another

20

segment with just A. Conceptually, this is just two pieces of information, not
three: A is present in a certain interval, and B is present in another interval.
A general problem with segmentation is that it is necessarily keyed to a specific
description approach, and unsuited for describing more than one independent
aspect of video content. For instance, music is often used for transitions between
scenes in movies, so shot-based and audio-based segmentation would conflict. An
existing segmentation may not be easily reused if someone wants to describe the
video further from a different point of view – it may be too coarse, too fine-
grained, or have boundaries at inappropriate places.

Hierarchical segmentation
A common method for increasing the expressiveness of the segmented approach
is to have several layers of segments, arranged in a hierarchy. Typically, the
lowest level is the shot segmentation mentioned above, while the layer above
group consecutive shots into scenes (loosely defined in this context as a group of
shots depicting some common time, place and/or event); and perhaps a top layer
grouping scenes into acts or sequences (again a more loose definition of the word,
compared to Metz’s syntagmas in section 2.2.4).
This is a significantly more complex way of doing things than the simple
segmentation schemes, since this additional layer dimension has to be handled. To
find the descriptions that are valid in a given instant, the system has to consult all
the layers in the model, not just one. It is also difficult to automate the
construction of the higher levels, due to the semantic gap, and some videos (e.g.
unedited surveillance tapes) may not even have any inherent hierarchical
structure, rendering this scheme rather inappropriate and impractical. The two- or
three-level hierarchy is a quite coarse simplification of the syntagmatic structure
of film discussed in section 2.2.4, and may in many cases be too restrictive.
On the other hand, with strictly and regularly structured video material, for
instance television news, the hierarchical scheme lets the user select the most
appropriate level in which to enter a description, thus avoiding problems due to
the segmentation being to coarse or fine-grained. The scene level is by definition
homogeneous with respect to many modelling aspects (time and place, usually),
which makes annotation easier and more efficient.

Free overlapping intervals
The fullest expressiveness and flexibility is obtained by removing the constraint
that intervals must be adjacent and non-overlapping, thus allowing them to be
independent of each other. This makes it possible to annotate independent aspects
of the video accurately and precisely – the problems of redundancy and partially
invalid descriptions are removed. The video can be described from several
different viewpoints and with varying level of detail without interference, as there
are no “global” decisions on the placement and size of the intervals. The audio
may be described independently of the image content.
This power comes at the price of complexity, however. To find all the
descriptions valid at a given point in the video, potentially all the intervals have to

21

be considered – unlike the segmented schemes where at any time just one single
interval (or a fixed number of intervals, in the hierarchical scheme) is known to be
valid. The start- and endpoint of each interval have to be stored, compared to just
the positions of boundaries between segments. Last but not least, it is more
difficult to build good user interfaces for creating and viewing such collections of
intervals. Segments are inherently ordered and well-structured; they may easily be
represented and visualised using a simple list, a timeline or something similar.
Free overlapping intervals have no natural organisation.
A common technique for alleviating this organisational problem is to create an
organisation of the intervals by arranging them in layers called strata [Chua et al.
2002], each stratum corresponding to some entity or concept – a person, a topic or
a place, for instance – in the universe of discourse. This requires some a priori
notion of what is to be described in the video, but that is not necessarily a bad
thing. It increases the complexity of the model somewhat, as these entities or
concepts have to be managed as well as the intervals, but that may be a small
price to pay for the quite intuitive structure they impose on the otherwise
disorganised intervals.
However, though the free overlapping intervals scheme has a very fine temporal
granularity, this stratified approach imposes another kind of granularity: How
does one choose what level of detail to use when creating strata? How does one
organise them, and determine their boundaries, how they partition the universe of
discourse? That, though, is not a temporal problem, and thus not discussed further
here.

3.1.2 Spatial expressiveness
In image databases, it is not uncommon to be able to subdivide the images
spatially, or define regions that can be annotated. The same can be done for video,
since video can be thought of as a series of still images; it is also potentially
useful, since a lot of information is conveyed through the spatial juxtaposition of
elements in the video image, as described in section 2.2. This kind of subdivision
is in many ways analogous to creating temporal video fragments – the point is to
designate a continuous part of the video for the purposes of annotation. The
precision with which spatial, possibly time-dependent regions may be specified is
the spatial expressiveness of the model. The most significant points along the
dimension of spatial expressiveness are:

None
It is quite possible to ignore the spatial dimension altogether. In that case, the
video fragments are wholly temporal, and descriptions are regarded as concerning
the whole video image, or some self-evident part of it. Humans are quite adept at
identifying objects in images, and the visual content of a video at any given time
is often relatively simple, compared to for instance satellite imagery, maps and
aerial photographs.
The advantage of ignoring the spatial dimension is that the video fragments
become one-dimensional objects instead of three-dimensional, which saves a lot

22

of complexity with regard to both computation, storage and user interfaces. The
disadvantage is equally obvious: it may be ambiguous what a description refers
to. For instance, if the model describes (among other things) the people shown in
the video, and two fragments overlap (temporally), the model cannot explicitly
express which person in the image each of the fragment descriptions refers to.

Static regions
Static regions are spatio-temporal regions that do not change with time (except
that they begin at some time, and end at some time, of course) – their cross-
section along the time axis is always the same 2D shape at the same location.
These are relatively easy to handle, as they are not full-fledged three-dimensional
objects; their third dimension, time, is severely constrained. The two-dimensional,
spatial component may have different levels of complexity or expressiveness – it
may be as simple as a circle, ellipse or rectangle, or a polygon or curved outline,
or a spatial decomposition scheme such as a quad-tree. A rectangular static region
is illustrated in Figure 3.2. The treatment of such data structures is a part of the
science of computer graphics, and I will not go into detail about them here. The
interested reader is referred to e.g. [Foley et al. 1990].

Time

Figure 3.2: Rectangular static region

Static regions are relatively simple to handle – each temporal region has an
associated 2D geometric shape – but they have the disadvantage that they cannot
adequately model moving objects. One would either have to make the spatial
region so big that the objects do not move outside it, or use several temporally
consecutive regions with slightly different spatial regions. In the first case, the
region is imprecise, and may cause ambiguity; in the second case, a conceptually
cohesive region is split up, leading to repetitive, redundant descriptions –
analogous to the segmentation problems discussed in section 3.1.1.

Dynamic regions
Dynamic regions are spatio-temporal regions that change with time. Within this
class of regions, there are different levels of expressiveness and complexity as

23

well. A simple kind of dynamic region could be created by specifying a 2D shape
and its position at the beginning and the end of the temporal interval, and perform
a linear interpolation for the shape’s position in the frames in between. This
scheme can be extended by allowing more “waypoints” along the temporal
dimension, or allowing scaling or other transformations to take place. Figure 3.3
shows an example of such a region.

Time

Figure 3.3: Linearly interpolated dynamic region

At the far end of the scale, temporal regions are just like any other three-
dimensional objects, except that their cross section along the time axis always
should be a connected region – that is, it should not split up as the user it
watching the video. Again, the science of computer graphics deals with the issues
of representing 3D objects, and I will not go into detail here. Suffice to say that
the more expressive, precise and general a dynamic region scheme is, the more
complex it is to handle.

3.1.3 Semantic expressiveness
Given a set of video fragments, the next natural question is how to describe them.
What is the structure of the descriptions? What kinds of properties and data values
are supported? A content model may support only a single, unstructured
description field, or it may provide an advanced type system. This may be called
the semantic expressiveness of the content model. This dimension has less well-
defined and discrete steps than the two previous ones, but the most significant
points may be defined as follows:

Single, free-text descriptor
The simplest conceivable mechanism for describing a temporal interval is the
single, free-text description field. It puts no constraints on the user, so is very
flexible – it can be used for anything, in any domain. On the other hand, searching
and analysis – trying to find similar descriptions, for instance – becomes
imprecise, as computers cannot interpret and index such data very accurately.
Large, unstructured descriptions are cumbersome to work with, if one is primarily

24

interested in only one aspect of them – imagine having to browse through several
pages of descriptions just to find (say) the name of the building in the picture, not
even knowing if it is mentioned at all.

Named descriptors
A more powerful scheme is the use of named descriptors: properties like title,
location and time that have some more or less well-defined semantics associated
with them. Using these, the user can describe the interval more precisely, and it is
easier for the computer system to assist – the conceptual model is more complex,
but the descriptions are more coherent and divided into smaller units. It is far
more efficient and accurate to search for a particular location, whether manually
or computer-supported, when it can be assumed can assume that it is either found
as the value of the “location” descriptor, or not at all.

Structured data values (objects)
To further increase the integrity and computability of the descriptions, it is
possible to put constraints on the values of the descriptors. This may be as simple
as demanding a specific date and time format for time descriptors, to prevent
invalid values and make comparison and searching easier. Another possibility is
to keep a list of possible values for a given descriptor – this avoids spelling
problems, prevents invalid values, and may help create a faster and friendlier user
interface for entering data.
Another improvement is to allow the data values themselves to be described. A
location value may be a structured object, with its own descriptors specifying its
name, its coordinates and its relation to other locations (contained in, adjacent to,
north of etc.). This permits the creation of detailed, precise descriptions without
redundancy – though the location may be referred to in many interval
descriptions, its own properties are stored only once – but the model and the user
interfaces supporting it necessarily becomes more complex.

Type system / ontology
At the far end of the scale, we find models providing full-fledged type systems or
ontologies. These provide formal methods of defining different types of data
values, what properties they may have, and how they relate to each other. They
may use mechanisms to define object types in terms of other object types, through
the use of subclassing and composition, like in object-oriented programming
languages. The same mechanisms may even be used for defining types of
descriptors, and subtype/supertype relations between them.
This kind of model is very complicated to handle and understand for a user not
educated in type systems and knowledge representation. Its main advantage is that
it is possible to infer knowledge not explicitly present in the data corpus, by
exploiting the semantics of the model. If the computer system knows the
properties of the different kind of relations – whether they are transitive,
reflexive, or symmetric, and what real-world phenomenon they represent, for
instance – it can actually reason about the knowledge represented in the model

25

and come up with derived information. For this reason, such models are popular
in artificial intelligence systems [Russel and Norvig 1995].

3.1.4 Flexibility
Flexibility is the ability to tune the content model to better conform to the user’s
wishes; to extend, change and adapt it according to the needs of the domain and
the application. Again, this is a dimension of gradual improvements rather than
discrete, easily identifiable steps, but a coarse classification may be defined as
follows:

None
The conceptual model isn’t flexible at all, beyond such possibilities as leaving
parts of it unused, or using descriptors for other purposes than originally intended.
However, this is detrimental to the quality of the data stored in the model. It can
lead to inaccurate or misleading search and analysis of the data, if the user and/or
the tools are unaware that expected elements of data are missing or stored in
unexpected and counterintuitive slots.
Alternatively, a model may function well without any explicit flexibility, if it has
been designed to be general. It may for instance contain only a few, very general
descriptors that are applicable for nearly every purpose imaginable. However, the
knowledge stored in such a model will necessarily be a bit bland and imprecise –
the problems associated with weak structure.
Alternatively, a richer model may imitate flexibility by providing a host of
optional descriptors, designed to cater for every need. This, though, leads to only
a fraction of the possibilities actually being utilised, and the actual data drowns in
the sea of unused structure, unless this flexibility is explicitly managed.

Managing descriptors
A simple way to introduce flexibility is to allow the user to manage – add and/or
remove – descriptors. This does not necessarily affect the conceptual model as
such, but it does affect the tools supporting it: They must provide a user interface
for this customisation, and the tools for searching, browsing and analysis must be
aware that the set of descriptors may change.

Managing object and descriptor types
A more complex and powerful flexibility stems from being able to manage object
and descriptor types, not just the objects and descriptors themselves. Being able to
create new object types, either from scratch or by extending or compositing
existing types, enables the management almost any kind of knowledge about the
video to be annotated. Creating new descriptor types by subclassing makes it
possible to use very precise and specific descriptions, while still maintaining a
degree of backward compatibility with tools that are designed to handle the less
specific base descriptors.

26

3.1.5 Summary
In this section, I have presented four properties or dimensions for describing
video content models: temporal expressiveness, spatial expressiveness, semantic
expressiveness and flexibility. They may not be completely orthogonal – for
instance, high flexibility, as I have defined it, is correlated to high semantic
expressiveness. However, they are independent enough to not be redundant. I
have not tried to establish exhaustive and uniform distance measures along them,
but hopefully presented enough examples to make it meaningful to discuss
models in terms of “high”, “medium” or “low” flexibility or similar qualitative
expressions. Some aspects of these properties may be as much or more tied to the
tools and user interfaces supporting the model as to the model itself, but in my
mind it is not fruitful to separate them too strictly. A model in itself is only an
academic exercise; it needs a surrounding system if it is to be useful.

3.2 Existing video content models
This section presents a selection of video content models presented in literature,
in chronological order of their publication. They are generally the most well-
known and referenced examples of their kind, though a few more unknown
designs have been included to show the width of the field.

3.2.1 OVID
OVID (Object-oriented Video Information Database [Oomoto and Tanaka 1993])
is a prototype system developed by Eitetsu Oomoto and Katsumi Tanaka. Part of
their motivation was that meaningful scenes (temporal intervals) in a video
document are identified incrementally and dynamically, according to various and
changing user needs and domain requirements. It is not possible or desirable to a
priori define an attribute schema that is suited for all kinds of scenes; each scene
should be able to have an arbitrary attribute structure suitable for describing its
contents. Also, descriptions should be reusable – if two scenes overlap, parts of
their descriptions probably can, and should, be shared.
Figure 3.4 shows a UML rendition of OVID’s conceptual model. The central
concept is the Video-Object, which represents a “meaningful scene”. What
exactly constitutes a meaningful scene is left to the user to decide. The temporal
extent of the Video-Object is denoted by a set of Interval objects – an OVID
scene may consist of several disjoint video intervals. OVID doesn’t consider
multiple videos explicitly.
Video-Objects are described with arbitrary Attributes. Each attribute may take a
value, and Values come in different flavours. The simplest is the Atomic Value,
which is a string or a number. Video-Objects and Intervals may also act as
Values, as may an arbitrary set of values.
Attributes and Atomic Values merit extra attention, as they provide the basic
mechanisms that enable OVID’s description reuse (or inheritance). Atomic
Values may be defined as generalisations and specialisations of each other
through an is-a relation, which is specified by users in advance. For instance,

27

“Japanese statesman” is-a “Statesman”, and “Eisaku Sato” is-a “Japanese
statesman”. The relation is transitive, reflexive and anti-symmetric, and is used to
infer the same semantics for other types of Values. For example, a Set Value is-
another Set Value if each member of the first set is-a member of the other set.
Based on this, OVID is able to reason about what is the correct set of Attributes
and Attribute Values for unions and intersections of Video-Objects.
Attributes can be marked as Inheritable. This entails that if a Video-Object o1
contains another Video-Object o2 (meaning that o1 has no intervals outside of
o2’s intervals), o2 inherits o1’s inheritable Attributes (with Values), unless the
Attributes are already specified for o2. Together, these two mechanisms makes it
easy to create new Video-Objects to increase or decrease level of detail, as they
automatically are filled with correct descriptions, based on the Video-Objects they
overlap. This can for instance be used for browsing.

Video-Object
From
To

Interval

*
Name
Inheritable

Attribute

Attribute Value

**

Value

Value
Atomic Value

Set Value

**
1

*

*

*

is-a

Figure 3.4: OVID's conceptual model

Temporal expressiveness
OVID provides free overlapping intervals, as described in section 3.1.1. However,
the paradigm of describing scenes (with aggregation and disaggregation) means
that it is geared towards organising the annotations in a hierarchical segmentation.
The prototype implementation provides a stratification-like graphical user
interface for browsing (the VideoChart), with the Video-Objects as strata. It is
questionable how useful this is, as the Video-Objects represent scenes, and thus
will occur only once in each video (though they may contain multiple intervals, it
is likely that these will not be very far apart). Recurring persons, locations and so
on are stored as Attribute Values, and will not show up clearly in the VideoChart.

Spatial expressiveness
OVID has no support for spatial annotations.

28

Semantic expressiveness
When it comes to semantic expressiveness, OVID’s capabilities must be classified
as “named descriptors”, though “structured data values” could also be argued. The
actual information in the system is in the end located in the Atomic Values, which
cannot be described with anything but the is-a relationship. It is possible to
indicate the presence of Eisaku Sato in different intervals, but the person Eisaku
Sato cannot be described beyond the fact that he “is-a” “Japanese statesman”. If a
more detailed description (in the form of Attributes) is needed, he must be
represented as a Video-Object, which may not make sense – he exists
independently of any particular video intervals. However, the is-a relations form a
taxonomy that is useful for querying, as well as for forming new Video-Objects
based on others, as described above.

Flexibility
Likewise, “managing descriptors” is the most suitable class for OVID’s
flexibility. It is possible to create arbitrary Attributes, but not indicate what kinds
of objects they should describe, nor what kind of values they can take.

3.2.2 Algebraic Video System
In [Weiss et al. 1995], Weiss et al. present a video conceptual model designed to
cater for all aspects of digital video management: semantic and structural
annotation; browsing and searching; editing, composing and reuse.
To accomplish this, they represent video as a tree structure with raw video
segments as leaves, and algebraic operators as internal nodes. The algebraic
operators include concatenation (one video segment is played followed by
another), union (like concatenation, but common footage is not repeated),
intersection (only common footage is played) and many others. The model
permits arbitrary descriptions to be associated with the nodes; in the prototype,
this is implemented as property-value pairs with textual values. Such descriptions
are inherited by child nodes from their parent nodes.
Figure 3.5 shows the Algebraic Video Model, to the degree that it is representable
in UML. There are almost 20 different operators; the most important –
concatenation, union and intersection – have already been mentioned. The Create
operator represents the leaf nodes in the tree model; it specifies a temporal
interval from a particular video, and can have no children. Other notable operators
include the Window operator, which displays the video represented by another
node, in a particular region in on the screen; the Transition operator, which
creates a timed transition like a wipe or a fade between two other nodes; and the
Conditional operator, which plays one of several nodes, based on some condition.
Thus, the model has the expressive power to define complex, interactive video
presentations.
Figure 3.6 shows an example of the algebraic video model, compared to a
stratified model. The empty nodes in the algebra tree represent Create operations,
the ∪ node a union, and the ○ nodes concatenation operators. One advantage of

29

the algebraic model is that it explicitly stores the relations between annotations –
“Smith” is a child node of “Smith on economic reform” – which can be exploited
in browsing and querying. In contrast, this information must be inferred from the
temporal containment in the stratified model. However, it takes extra effort to
build the tree (though it is unclear exactly how this is done), and it does not lend
itself so readily to visualisation. In the prototype, browsing seems to be model-
centric and not video-centric: The algebra tree can be traversed, and the
corresponding video for each node played, but playing the video and thus finding
relevant nodes and descriptions is harder to accomplish.

Operator
Operator

Video
Begin
End

Create

parent 0..1

child

*
Property
Value

Description

*

Figure 3.5: Algebraic video model

Figure 3.6: Algebraic video example (from [Weiss et al. 1995])

Temporal expressiveness
With so many different operators for creating and describing video presentations,
the algebraic model enjoys supreme temporal expressiveness. However, like
OVID, the tree model will tend to favour annotations organised not unlike the
hierarchical segmentation scheme.

Spatial expressiveness
The algebraic video model has no support for spatial annotations.

30

Semantic expressiveness
The semantic expressiveness of the algebraic video model is limited to named
descriptors. The video operators are very diverse and expressive, but they are
concerned more with the structure of the video than its semantics. Moreover,
unless the model is used for advanced video authoring, it is likely that only the
most basic operators (Create, Concatenate and the set operators) will be used.

Flexibility
Likewise, the flexibility of the system is limited to managing descriptors.

3.2.3 VideoSTAR
VideoSTAR (Video Storage And Retrieval, [Hjelsvold and Midtstraum 1994],
[Hjelsvold et al. 1995a], [Hjelsvold 1995]) is a database system developed at the
Norwegian Institute of Technology (NTH, now subsumed into the Norwegian
University of Science and Technology, NTNU). It proposes a comprehensive
conceptual model designed to handle media files, virtual video documents, video
structure and content-based annotations; and parts of it have been implemented.
Figure 3.7 shows VideoSTAR’s conceptual model, adapted from [Hjelsvold and
Midtstraum 1995]. The diagram has been somewhat simplified for clarity.
The upper left corner of the diagram concerns the video (and audio) files and the
composition of video documents. The exact purposes of all the classes in the
inheritance hierarchy are a bit unclear, but they enable VideoSTAR to handle both
simple video files and complex, “virtual” video documents composited by
fragments of several physical files. The CMObject (Continuous Media Object) is
the abstract concept of a temporal media fragment, while a Stored Media Segment
represents an actual media file.
VideoSTAR’s temporal annotations are divided into two independent parts:
structural annotations, and content annotations. The Structural Component and its
subclasses enable a hierarchical segmentation of the video, with arbitrary depth.
Each segment may have a textual description.
The content annotations are based around the Annotation class. This has several
subclasses, corresponding to different kinds of concepts used to describe the
video at hand. VideoSTAR provides four such classes – Person, Location,
Keyword and Object – though it is noted that other classes should be constructed
to fit the needs of particular domains and purposes. Annotations have
descriptions; presumably, so do the concept classes.
Through the Stream Interval class, Annotations may be related to physical media
files, or logical, virtual Video Streams. This enables reuse of annotations, since
the same physical clip may be used in several video documents – annotations used
to describe a Stored Media Segment are probably valid in most Video Streams
containing the Segment.
VideoSTAR provides several tools for creating, browsing and searching the
temporal annotations. It has a very fine-grained and expressive query language,

31

capable of formulating very complex queries on the temporal relationships of
different intervals. However, the user interfaces never got past the prototype
stage; they are complex, and not very good at visualising the temporal aspect of
the annotations.

Desc
Structural Component

Stream Interval

Desc
Annotation

Compound Unit

Sequence

Scene

Shot

Person Ann. Location Ann. Keyword Ann. Object Ann.

Person Location Keyword Object

Video Document

Startttime
Endtime

CMObject

Media StreamVideo Stream

AVClip Stored Media Seg.

*

0..1

*

0..1

*

0..1

1

0..1

Defines

*

1..*
Annotates

*1 Structured By

1

0..1

Represented By

0..1

1..*

Composed By

Starttime
Endtime

Clip From

0..1*

*

1..*

*

1..*

*

1..*

*

1..*

1 *

Part Of

Figure 3.7: VideoSTAR's conceptual model

Temporal expressiveness
VideoSTAR provides both hierarchical segmentation (with an arbitrary number of
levels, no less) and free overlapping intervals with its Structural Components and
Annotations, respectively. So in temporal expressiveness, it is second to none.

Spatial expressiveness
VideoSTAR has no support for spatial annotations.

32

Semantic expressiveness
On the semantic expressiveness scale, VideoSTAR ends up on the weak side of
structured data values (objects). Much of the information in the temporal
annotations is kept in the free-text description fields, but VideoSTAR provides
four classes of objects, enabling the user to describe (say) a person once, and
connect him/her to all relevant intervals.

Flexibility
VideoSTAR isn’t really flexible at all. Though the various VideoSTAR papers
mention adapting the model by adding more annotation object classes, this must
be done a priori, and affects the tools to the extent that they must be
reprogrammed.

3.2.4 AVIS
AVIS (Advanced Video Information System) is a video database approach
focusing on query processing. [Adali et al. 1996] presents a formal model for a
video database, as well as index structures and algorithms for queries and updates.
Figure 3.8 shows AVIS’s conceptual model. In AVIS’s universe, two kinds of
Entities occur in videos: Objects and Events. Objects are physical entities
appearing in the video – people, for instance, or important items like the murder
weapon in a crime movie. Events are more abstract entities, describing what is
happening in the video – a murder, for instance. Both kinds of entities are
described with a name field.

Name
Entity

EventObject

From
To

Frame-sequence

Name
Activity type

*

1

Name
Role

* *

Player

1

*

1 *

*

1**

Figure 3.8: AVIS's conceptual model

Events are classified into Activity Types. For instance, “Murder” may be an
Activity Type, and “The murder of John F. Kennedy” an Event classified as
“Murder”. In other words, Activity Types are abstractions of Events, and Events
are instances of Activity Types.

33

An Activity Type has a set of Roles, described by name. A “Murder” Activity
Type could for instance have the Roles “Murderer”, “Victim” and “Murder
weapon”. Correspondingly, each Event has a list of Entities participating in the
Event, and which Role each plays in the Event. Plain text strings can also play
Roles in Events (e.g. for the Role “Murder motive”, where neither an Object nor
an Event may be appropriate), but this is omitted from the diagram for clarity.
To define the temporal properties of the Entities, each Entity is associated with a
set of non-overlapping Frame-sequences. This creates a stratified annotation
scheme, with the Entities as strata, as illustrated in Figure 3.9; AVIS calls this an
association map. This seems to cause some redundancy. For instance, say that in
the example above, the Event e1 has the Objects o1 and o2 as Players (in the Role
“Murderer”). Thus, the presence of each Object in frames 2 to 3 is stored twice:
once directly, and once implicitly through the Event annotation. It is unclear how
this redundancy is handled in AVIS, but examples indicate that Events are
ignored when searching for appearances of an Object. This could lead to
incomplete query results, unless the system somehow forces consistency between
the two ways to indicate the temporal properties of the Objects. Alternatively,
there may be a semantic difference between being directly and indirectly related
to a Frame-sequence; the fact that Events may have other Events as Players may
indicate this.

Figure 3.9: An AVIS association map (from [Adali et al. 1996])

One of AVIS’s main contributions is the adaptation of a well-known spatial data
structure, the segment tree [Samet 1990], to the temporal domain. The frame
segment tree is a binary tree where the nodes are frame intervals, and the children
are constitutes partitions of their parents. Figure 3.10 shows an example of such a
tree, corresponding to the first ten frames of Figure 3.9. In addition to the frame
intervals, each node also maintains a list of the Entities that are active in the frame

34

interval the node represents. Using this data structure, it is simple and efficient to
determine which Entities are present in a given frame or frame interval. The
abstract model presented in Figure 3.8 is for efficiency reasons implemented with
the Entities referencing a linked list of segment tree nodes, instead of a set of
frame intervals.

Figure 3.10: An AVIS frame segment tree (adapted from [Adali et al. 1996])

The model is designed to handle a single video, but the authors claim that it can
easily be extended to handle multiple videos, by maintaining global indexes
relating each Entity, Activity and Role to the video(s) they are used in.

Temporal expressiveness
AVIS’s association maps constitute free, overlapping intervals. As the number of
leaf nodes in the frame segment tree (and thus the size of the tree, and the time
spent traversing it during queries) is proportional to the number of distinct frame
numbers where some Frame-sequence begins or ends, it is beneficial to restrict
these endpoints to a limited number of “significant frames”, thus creating a kind
of segmented approach. But this is not a requirement.

Spatial expressiveness
AVIS has no support for spatial annotations.

Semantic expressiveness
AVIS is very minimalist when it comes to actual descriptions – the various
elements of the conceptual model don’t even have description fields, just names.
Of course, AVIS is mainly an abstract model; if it were to be used in the real
world, it is reasonable to assume that adding more descriptors would be a simple
matter. Regardless, AVIS ends up in the “Structured data values (objects)”
category, due to the composite nature of the Event Entity. AVIS provides a
rudimentary classification functionality system through the use of Activity Types,
but it is not powerful enough to be called a type system.

35

Flexibility
AVIS fits comfortably in the “Managing descriptors” category. A real-world
implementation of AVIS would find it a simple matter to let users create new
Roles and Activity Types, thus defining how their Events should be described.
The flexibility is rather lop-sided, though; there is no flexibility at all in how
Objects, Roles and Activity Types are described.

3.2.5 Vane
Vane [Carrer et al. 1997] is a video annotation engine developed at Boston
University. It is a tool for semi-automatic production of metadata in the form of
SGML [International Organization for Standardization 2001] documents, and is
designed to be as open as possible for multiple domain-specific applications.
Figure 3.11 shows an overview of Vane’s conceptual model; some attributes have
been elided for clarity. Two kinds of temporal metadata are supported: structural
metadata, and content metadata. The structural metadata includes segmentation of
the video into shots, scenes and sequences – the common hierarchy mentioned in
section 3.1.1. Shots are detected by image processing software; this is the
automatic part of Vane’s semi-automatic metadata production. Content metadata
is modelled as generic objects with start- and stop-frames denoting the temporal
interval in which they appear. The “Medium” attribute is used to indicate the
mode of the object’s presence: if it is shown in the picture, the Medium is “video”
while it is “audio” if the object is only mentioned in the audio track. Objects may
consist of a hierarchy of sub-objects, but the semantics of this is unclear. It is
claimed that all the annotations belonging to a particular object can be grouped
together to form a stratum, but it is also unclear how this is achieved, since the
object and its description (including the temporal interval) is lumped together.

Fulldoc
Abstract
Category
Keyword
...

Sequence
Name
Keyword
Startf
Stopf

Scene
Name
Keyword
Transcript
Startf
Stopf

Shot
Name
Keyword
Transcript
Startf
Stopf

Object
Name
Type
Medium
Startf
Stopf

1

*

1 * 1 *

1 *

1

*

Figure 3.11: Vane's conceptual model (simplified)

In addition to the conceptual model described above, each element may refer to
any other using generic SGML IDs and references, though apparently without any
explicit semantics.

36

The model is SGML-based, and the model is specified using a Data Type
Definition (DTD). This DTD may be extended to cater for different application
domains. New attributes can be defined, and the order of attributes changed.
Attributes such as Fulldoc’s Category is designed to take a value from an a priori
defined list; this list can be extended by modifying the DTD. These changes are
reflected in the user interface without recompilation.

Temporal expressiveness
Vane provides both free overlapping intervals (for content annotations) and
hierarchical segmentation (for structural annotations). Figure 3.12 shows Vane’s
visualisation of its temporal annotations. The elements may be edited – segments
can be joined, and endpoints moved by direct manipulation.

Figure 3.12: Vane's temporal annotations

Spatial expressiveness
Vane has no support for spatial annotations.

Semantic expressiveness
For semantic expressiveness, I put Vane somewhere between named descriptors
and structured data values. Most descriptions are textual attributes, though a few
(Fulldoc’s Category, for instance) have their domains constrained to a list of
values. Most elements can be annotated with references to other elements, but
there are no semantics associated with these references, and no way to constrain
what kinds of elements may be referenced. Figure 3.13 shows Vane’s annotation
window: The values are edited with either text fields or drop-down boxes.

37

Figure 3.13: Vane's annotation window

Flexibility
Vane provides facilities for managing descriptors. Attributes may be added to any
element by extending the DTD. DTDs also provide mechanisms for defining new
element types, but it seems that Vane does not take advantage of this.

3.2.6 Qualitative Media Analyzer
Qualitative Media Analyzer (QMA) [Skou 2003] is a commercial product,
developed by Carl Verner Skou. As its name suggests, it is designed for
qualitative analysis of interviews and observations, for research purposes. It is
marketed as an alternative to making and annotating transcripts, with the
advantages of saving time, keeping closer to the original material, and the
possibility of computer-supported analysis of the annotations.
Figure 3.14 shows QMA’s conceptual model. The Media Documents are media
files; supported formats include Wave, Windows Media Audio, AIFF, MP3,
MPEG-1, MPEG-2, Windows Media Video, AVI and QuickTime.

Media Document Code
Name

Score
From
To
Value
Note

User
Name

Independent Variable
Name
Type

Value
Value*

*

1**1

*

0..1

0..1
*

0..1

0..1

Figure 3.14: QMA's conceptual model

Media Documents are annotated by creating Scores. A Score is a temporal
interval in a Media Document, related to a predefined Code. Scores have a start-
and end-time with millisecond precision, as well as an integer value (the use of

38

which is unclear) and a textual note. A Score may also be linked to another Score,
possibly in a different Media Document. Scores may, if desired, be associated
with different Users, to facilitate the separation of different viewpoints on the
same media.
Codes are in essence plain keywords. They may be organised in a hierarchy, but
this is purely for visual organisation. The hierarchy has no semantic meaning – it
is not used for aggregation during analysis, nor when selecting Codes for hiding
uninteresting Scores, for instance.
A second annotation mechanism is the Independent Variables. These are named
properties with a simple domain constraint – their value may be either text or an
integer – associated with a Media Document as a whole. For instance, a recording
of an interview may have the Independent Variables “interviewer” and
“interviewee”, with textual values (the names of the parties in the interview).
Independent Variables, like Codes, are defined a priori, and are typically used for
a collection of similar Media Documents.
QMA includes tools for organising Media Documents, for creating Codes and
Independent Variables, for scoring (creating Scores), and for simple analysis of
the Scores (number of Scores and total and average length per Code, for instance).
The analysis view provides some simple searching and browsing functionality as
well, and given a set of Codes, Scores not related to them may be hidden in order
to de-clutter the Score table. However, this functionality doesn’t take advantage
of the hierarchical organisation of the Codes, as mentioned earlier.

Temporal expressiveness
QMA provides free overlapping intervals, as described in section 3.1.1. It suffers
from the user interface challenge this scheme entails, though – Scores are
presented in a flat table, optionally sorted on start-time, as shown in Figure 3.15.
This is not very user-friendly, especially if the number of Scores is large. There is
a function for hiding the scores that are not active (that is, whose temporal
interval doesn’t contain the current playback time), but this mechanism is not
dynamic; it only considers the playback time in the instant the function is
selected.

Spatial expressiveness
QMA has no support for spatial annotations.

Semantic expressiveness
When it comes to semantic expressiveness, QMA falls in the “Named
descriptors” category, as defined in section 3.1.3. The Codes act as a canonical
vocabulary of terms for a project, and the user may define his or her own
Independent Variables, with their simple domain constraints.

39

Figure 3.15: QMA's user interface, analysis view

Flexibility
QMA provides facilities for managing descriptors, as discussed in section 3.1.4 –
Codes and Independent Variables may be added, changed and removed by the
user.

3.2.7 Noldus Observer
Observer [Noldus Information Technology 2003] is a commercial product
developed by Noldus Information Technology. It is a competitor to Qualitative
Media Analyzer, having the same purpose and target audience, and even a similar
conceptual model and user interface.
Figure 3.16 shows Observer’s conceptual model. It provides three methods for
annotating video:

• Similarly to QMA, independent variables can be defined and used to
describe a video as a whole (without any temporality). Variables can be
numeric or textual, and constrained by minimum and maximum values
(for numeric variables) or keyword lists (for textual).

• Time-stamped textual annotations. Note that these are connected to an
instant, not a temporal interval.

• Scores, as described below.

40

Time
Comment

Score

Name
Description

Subject Name
Description
State/Event
isReciprocal

Behavior

Name
Description

Modifier

Name
Behavioral Class

Video

Time
Comment

Annotation

0..21

*

1

*

0..1

0..1*

*11

*

Type
Constraints

Independent variable

Value
Value

*

*

* *Channel

Name
Modifier Class

0..1*

Figure 3.16: Observer's conceptual model

A Score has a timestamp, an optional textual comment, and a Behavior. Observer
is geared towards behavioural analysis, so Behaviors are the main element in the
model. A Behavior has a name and a textual description. Behaviors come in two
flavours, States and Events:

• An Event is a Behavior where the duration is irrelevant or instantaneous;
therefore, it has no more temporal properties than a single timestamp.

• A State is a Behavior where duration is relevant. It also has but a single
timestamp, but it is considered to last until the next Score with a State in
the same Behavioral Class. Behavioral Classes are used for grouping
semantically related Behaviors. States within the same Behavioral Class
are mutually exclusive (at least for the same Subject, though this is not
completely clear from the documentation), and constitutes a partition of
the video.

A Behavior may be labelled as reciprocal. A reciprocal behavior is symmetric;
that is, it always works both ways. When an interaction in one direction is scored,
e.g. Alpha plays with Beta, Observer will automatically create the reciprocal
event, Beta plays with Alpha, if “plays with” is defined as a reciprocal Behavior.
A Score may also have a Subject (also known as “Actor”), denoting who is doing
the Behavior – “Alpha” and “Beta” in the examples above. A subject and a
Behavioral Class may be connected to form a Channel, a context where two
States in the same Behavioral Class are not allowed to overlap. For instance,
Alpha may be playing, eating or sleeping, but not at the same time; and Beta may
be doing the same, but independently of Alpha. It is unclear how the mutual
exclusiveness is handled when subjects are not involved.
Finally, a Score may have up to two Modifiers. These can be used to indicate the
targets or objects of an incident (“Alpha throws rock at Beta”), the direction of
something (“Beta runs away from Alpha”) or similar. Like Behaviors, Modifiers
can be grouped in Classes, but this does not entail any mutual exclusiveness.
Figure 3.17 shows a screenshot of Observer. Scores are shown in the “Event Log”
with Actor (Subject), Behavior and comment; presumably the Modifiers are
hidden because the user has chosen not to use them. The “Codes” window below
shows the defined Behaviors (with their keyboard shortcuts).

41

Figure 3.17: Observer's user interface

Temporal expressiveness
Observer’s temporal expressiveness is a bit odd. Its simplest temporal annotation
functionality is free-text annotations, but these are connected to timestamps, not
intervals. Thus, it makes no sense to talk about overlapping, and this scheme is
perhaps closest to user-defined segmentation.
Events (or, to use Observer’s terminology accurately, Scores connected to an
Event) are also connected to timestamps, so the same goes for them. States,
however, are interval-based, in that they are counted as valid from their
timestamp to the timestamp of the next State in the same Class (or Channel). This
constitutes a hybrid between user-defined segmentation and free overlapping
intervals, since intervals in different Classes may overlap freely, but they form a
partition of the video within each class.

Spatial expressiveness
Observer has no support for spatial annotations.

Semantic expressiveness
Observer fits best in the “structured data values” category. Its independent
variables have type- and value-constraints, simple as they may be. Its temporal
annotations, the Scores, have descriptors with reasonably well-defined semantics,
and take values that are structured (albeit with nothing more than name,
description and possibly a single-level classification). Behavior and Modifier
Classes can be used for aggregation during analysis and presentation

42

Flexibility
Observer lets the user define independent variables, Subjects, Behaviors (with
Classes) and Modifiers (with Classes). This makes it easy to adapt Observer to a
specific domain (playground interaction among children, or mating habits of
baboons), but the basic semantics – behaviours of subjects – is unchangeable. It is
for instance not possible to use the Score system to indicate the location or topic
of a news video, without associating it with some Behavior. Thus, Observer ends
up on the weak side of “managing descriptors”.

3.2.8 Veggie
Veggie [Hunter and Newmarch 1999] is an application for describing video with
Dublin Core-based metadata, developed at the state library and university of
Queensland, Australia. Its purpose is mainly to enable quick, easy, cost-effective
generation of standardised metadata that can be used to create online detailed
visual summaries of videos.
Figure 3.18 shows Veggie’s conceptual model. It is very simple: A video is
segmented into scenes, and the video as a whole as well as each scene is
described with appropriate properties. The properties are specified in an RDF
schema (Resource Description Framework, [Brickley et al. 2004]), and Veggie’s
user interface for registering metadata is constructed according to this schema.

Video Document

Title
Starttime
Endtime
Duration
Keyframe
Clip
Transcription

Scene

1

*

Contains

Name
Property

Value
Property Value

* *

Figure 3.18: Veggie's conceptual model

Figure 3.19 shows a Veggie metadata form for the video level, using the Dublin
Core properties. Figure 3.20 shows the corresponding form for the scenes.
Veggie stores the metadata in files, either in RDF [World Wide Web Consortium
2004a] or HTML format.

Temporal expressiveness
Veggie’s temporal expressiveness is limited to user-defined segmentation.

Spatial expressiveness
Veggie has no support for spatial annotations.

43

Semantic expressiveness
The semantic expressiveness of Veggie fits best in the “named descriptors”
category. An RDF schema is used to define arbitrary properties; while it is
possible to create data types, classes, objects and property constraints in RDF,
Veggie doesn’t seem to take significant advantage of this: The forms uses plain
text fields for all properties.

Flexibility
Similarly, the flexibility is best described as “managing descriptors”. RDF
provides support for objects and types, but it is apparently not used in Veggie.

Figure 3.19: Veggie's video-level metadata form

Figure 3.20: Veggie's scene-level metadata form

44

3.2.9 CARAT
CARAT [Hjelsvold et al. 1999] is a commercially available multimedia archiving
system, developed by Siemens Corporate Research. It is designed to handle not
only video, but also other media such as text and images, both as items to be
described and as description values.
CARAT’s conceptual model is not specified in detail, but a high-level overview is
shown in Figure 3.21. It uses a two-level class system: Each object (or item or
media item) belongs to an Object Type (e.g. baseball video), which again belongs
to a Media Type (e.g. video). Objects have attributes, whose values are other
objects. Attributes are defined by Log Structures, each of which is associated with
an Object Type and a User Domain. In this way, objects of the same type are
described homogeneously within the same domain, while allowing other domains
to describe them differently.
An Object Type may be designated as a controlled vocabulary or thesaurus, with
the effect that attribute values having that Object Type as their range must use one
of the predefined Objects of that Type as their value. It is implied that such
vocabularies may have an internal hierarchical structure as well (as the word
“thesaurus” suggests; see appendix A), though this is not explained in detail.

Figure 3.21: An overview of CARAT's conceptual model

The model also supports objects with a hierarchical structure (for video
corresponding to hierarchical segmentation as described in section 3.1.1), though
it is a little unclear how exactly this is done. In any case, the segmentation
approach considers the shot as the smallest semantic unit of video. The system is
quite clearly geared towards the commercial broadcasting domain.

45

Temporal expressiveness
CARAT provides hierarchical segmentation, apparently with no fixed number of
levels, but with shots as the lowest level.

Spatial expressiveness
There exist plans to make it possible to define hierarchical image regions within
images, but no further details are given. It is uncertain whether this also includes
spatial regions within video.

Semantic expressiveness
CARAT provides a simple type system, allowing users (or at least DBAs) to
define their own types and description schemes. This places CARAT at the high
end of the “Structured data values (objects)” category.

Flexibility
Likewise, the type capabilities place CARAT in the low end of the “Managing
object and descriptor types” category. Object types can be defined, though only in
a quite simple manner. CARAT does not seem to support descriptor types.

3.2.10 BilVideo
BilVideo [Dönderler 2002], [Dönderler et al. 2003] is a video database system
developed at Bilkent University in Ankara, Turkey. Its main contribution is
perhaps the advanced, rule-based spatio-temporal modelling and querying
functionality it provides, but it also includes more conventional temporal semantic
annotations.
The spatiotemporal annotations is based on specifying minimum bounding
rectangles (MBRs) for “salient objects” (objects the user is interested in) in each
video frame. Based on these MBRs, the video is partitioned into segments. Within
a segment, there is no significant change in the spatial relations between the
MBRs, and each segment is represented by a keyframe.
Also based on the MBRs, spatial relations for each segment are extracted and
stored as Prolog facts. For instance, if two objects A and B have MBRs as shown
in Figure 3.22 for a segment in the video, several facts would be extracted and
stored.
The fact west(A, B, n) would be stored (where n is the frame number of the
keyframe representing the segment), since the centre of B’s MBR is closest to the
eastern line segment originating from the centre of A’s MBR. BilVideo’s Prolog
knowledge base includes rules for inferring facts from other facts, so the inverse
relation – east(B, A, n) – needs not be stored explicitly: there is a rule that says
that if west(X, Y, n) holds, then east(Y, X, n) holds; similarly for the other
directional relations. Thus, the number of stored facts is minimised.
BilVideo also supports topological facts like cover, equal, inside, overlap and so
on. In the example above, overlap(A, B, n) is stored; overlap is defined as a

46

symmetric relation, so the reverse can be inferred without storing it explicitly.
Likewise, 3D (z-axis) relations like infrontof and samelevel can be specified. This
must be done manually, though, as the system cannot extract that information
from the 2D MBRs. Finally, BilVideo stores the trajectory for each object, by
creating lists of position (of the MBR’ centre) and direction for each keyframe.

nen

e

se

w

sw s

nw
A

B

Figure 3.22: BilVideo minimum bounding rectangles (adapted from [Dönderler

2002])

Furthermore, supplementary high-level, domain-dependent rules may be added to
the knowledge base, to describe objects or to infer events from the interplay of
objects. For instance, for a football video, a goal could be defined as happening if
the ball object is contained in a net object. Likewise, a pass could be defined as
the ball being touched by a player object, followed by the ball being touched by a
player object belonging to the same team, without any other player objects
touching it in the mean time.
The semantic annotations functionality is designed quite differently. This is based
on conventional relational database technology, with a conceptual model (slightly
simplified) shown in Figure 3.23. Note the similarity to AVIS’s model from
section 3.2.4.
According to BilVideo, video consists of Events placed in time. Activities are
abstractions of Events (or Events are instances of Activities); e.g. “wedding” is an
Activity, but the wedding of Richard Gere and Julia Roberts in a movie is an
Event. An Activity may have a number of Roles, e.g. bride, groom, best man and
bridesmaid for the wedding Activity. Objects (for instance people) that appear
during an Event may be assigned Roles for the Event through the Player class.
Presumably, these objects are identical to those described in the spatio-temporal
scheme discussed earlier.
Events may have subevents. For example, a “party” Event may have the
Subevents drinking, dancing and talking. Objects may be assigned to Subevents
as well as to Events, but Roles are only relevant for Events and Activities, not for
Subevents and Subactivities. Subevents relate to Subactivities like Events relate to
Activities; strangely though, there is no relationship between Subactivity and
Activity.
Different Events may overlap temporally or leave gaps between them, as may the
Subevents below each event. BilVideo calls the video intervals defined by Events
and Subevents “sequences” and “scenes”, respectively, though they do not imply

47

the strict hierarchical partitioning of the video normally associated with those
terms.

Name
Length
...

Video

Begintime
Endtime

Event*1

Name
Activity

1*

Name
Role

*

1

Begintime
Endtime

Subevent*

1
*

1

Name
Subactivity

1

*

Name
Object

1

*
Name

Attribute

Value
ObjectAttribute

**

*

*

Player

*

1

1

*

* 1

*

*

Subplayer

Figure 3.23: BilVideo's semantic annotation model (adapted from [Arslan et al.

2002])

Temporal expressiveness
The spatio-temporal part of BilVideo uses user-defined segmentation. The video
is partitioned based on the movement of the user-specified minimum bounding
rectangles, so the user has at least implicit control over the segmentation. This
leads to some redundancy – if the relationships between objects A and B are
static, while their relationships to object C changes, the A-B-relationships must be
duplicated across the segments caused by the movement of object C. [Dönderler
2002] notes that coupling relationships with frame intervals instead of keyframes
would remove this problem, but make query processing significantly more
complex.
The problem of partially invalid descriptions normally associated with
segmentations does not occur in BilVideo, as the segment boundaries are
determined by when the relationships between the MBRs occur. However, this
leads to a large number of very small segments when there is much movement in
the video.
It is unclear how well BilVideo handles a posteriori addition of new objects. This
would in general necessitate resegmentation, as well as access to the MBRs for
the existing objects, but it seems that MBR information (other than the MBR’s
centre’s position at each keyframe) is discarded once segmentation and fact
extraction has been performed.

48

The semantic annotations use free overlapping intervals. The hierarchies of
Events and Subevents and Activities and Subactivities, as well as the
classification of (Sub)Events as instances of (Sub)Activities seems eminently
suited for a stratified visualisation, but BilVideo does not seem to take advantage
of this opportunity. It should be noted, though, that BilVideo is geared toward
querying, not browsing, as the access method of choice.
The semantic annotations alone have a rather poor expressiveness. A video of a
wedding would contain a single Event – an instance of the “wedding” Activity –
covering the entire video. During this time, one would expect to see a sizeable
number of people appearing and disappearing from the screen, but in the semantic
model, people (Objects) are related to an Event as a whole, not to their own little
temporal intervals. The Subevents alleviate this, but that level may also be too
coarse. However, presumably the objects in the semantic model are identical to
those in the spatiotemporal, and so are related to fine-grained segments. Thus the
semantic model becomes merely a way to specify more abstract, “non-tangible”
annotations; aspects of the video that cannot be delineated with a bounding
rectangle. A question remains, though: How is consistency between the
spatiotemporal and the semantic model maintained?

Spatial expressiveness
BilVideo’s spatial expressiveness ends up in the “dynamic regions” category. It
is, however, quite limited in the kinds of areas it can represent; it uses bounding
rectangles during registration, but stores only the centre points (in addition to the
topological relationships). Also, BilVideo’s segmentation scheme leads to some
redundancy normally associated with consecutive static regions, as described in
section 3.1.2.

Semantic expressiveness
The semantic expressiveness of BilVideo is a bit hard to classify. The semantic
annotations fits best in the “named descriptors” category; though there is little
other than name fields here, the Objects may at least be described with attributes
and assigned roles.
However, as the spatio-temporal objects are defined in a Prolog environment, it is
possible to define all kinds of predicates and rules to describe them, and so it is in
theory possible to create a type system / ontology environment. This demands
knowledge of logic programming and knowledge representation normally only
found among specialised computer scientists, though.

Flexibility
The Semantic model includes the Attribute and ObjectAttribute classes, which
gives the user (or the database administrator, at the very least) the power to define
arbitrary attributes. This puts BilVideo in the “managing descriptors” class of
flexibility.
Due to Prolog, though, BilVideo may be adapted with extreme flexibility.
[Dönderler 2002] provides an example of rules and facts describing the football

49

domain, which enables a very detailed description of a football match, where
passes, shots, ball control etc. is inferred by the spatial relationships using
complex rules. But as mentioned above, such modification is beyond the reach of
all but the most dedicated users.

3.2.11 Smart VideoText
The VideoText model [Jiang et al. 1997] is “a video data model based on the
concepts of logical video segment and free text video annotations with arbitrary
mapping between them”. Its minimalist model is shown in Figure 3.24; it consists
of unconstrained video intervals connected to free-text annotations through a
many-to-many-relationship. A query language is also defined, supporting boolean
operators as well as temporal ones (adjacent, during, overlaps etc.).

Startf
Stopf

Logical Video SegmentVideo Stream
Annotation
Video annotation

* *1 *
Figure 3.24: VideoText's conceptual model

Smart VideoText [Kokkoras et al. 2002] is an extension of this model; an attempt
to utilise knowledge-based information retrieval techniques for video annotation.
It uses essentially the same model, but introduces an additional element: a
knowledge base, in the form of a conceptual graph [Sowa 1984a] [Sowa 1984b].
The purpose of this knowledge base is to enable reasoning about annotations and
search queries – for instance, to have a query for “Greece” and “currency” match
an annotation mentioning “European Union” and “euro”, since Greece is a
country in the EU, and the euro is a currency.
The knowledge base contains three kinds of knowledge:

• System knowledge, which includes rules about how to handle conceptual
graphs – formation rules, inference rules etc.

• Domain knowledge, which includes knowledge not directly related to the
video database – type hierarchies and such.

• Application knowledge, which is the knowledge directly related to the
content of the video database. This is derived semi-automatically from the
video annotations.

The video annotations are connected to concepts in the application knowledge
with a many-to-many-relationship. Figure 3.25 shows this model.
This knowledge base is used during querying to improve precision and recall by
substituting and disambiguating terms (concepts) according to the knowledge
contained in the conceptual graph. A similarity measure between concepts is
defined, based on the semantic distance (number of relation edges between
concept nodes in the graph), and is used to rank search results.
The conceptual graph is also useful for browsing. This is achieved by using the
semantic associations among the concepts video annotations and dynamically
representing them as hyperlinks between the corresponding video segments. It is

50

debatable how user-friendly this is, however, since the conceptual graphs are not
very easy to interpret.

Startf
Stopf

Logical Video SegmentVideo Stream
Annotation
Video annotation

* *1 *

Name
Context
ReferentFields

Concept

Name
Conceptual Relation

* *

*

*

Conceptual Graph

1 *

Figure 3.25: Smart VideoText's conceptual model

Temporal expressiveness
Smart VideoText provides free overlapping intervals. It’s possible that the
Concept-relation may be used for stratification, but it seems that this model is not
actually implemented, so it is hard to say.

Spatial expressiveness
Smart VideoText has no support for spatial annotations.

Semantic expressiveness
Smart VideoText provides a single, free-text description field (the Annotation
field in the Video Annotation class in the diagrams above). Additionally, a
conceptual graph is constructed semi-automatically from the Annotation, and its
concepts related to the Video annotation. The conceptual graphs also contain pre-
generated domain knowledge; supposedly this is constructed by hand in
cooperation with domain experts.
The conceptual graph provides a type system/ontology framework, as described in
section 3.1.3. However, it is unclear how this is used in practice, as Smart
VideoText hasn’t actually been implemented. Conceptual subgraphs are
constructed from the free-text annotations, but how much control does the user
have over this process? Is it possible to browse the graphs and connect concepts
to the video intervals manually? What if a textual description is changed – are the
concept connections revised automatically?

Flexibility
The conceptual graphs give the user the power to define objects, object types,
relations and relation types. This gives Smart VideoText the highest level of
flexibility that I have defined. Of course, the user interface is important for
determining if this power actually can be harnessed.

51

3.2.12 Discussion
This is hardly an exhaustive survey of all proposed video models and systems;
they are far too numerous for that. However, the selection above represents the
most common and influential designs in this field.
Many of these system focus a great deal on query systems, creating query
languages with very detailed semantics. AVIS is a good example; it explains how
it handles queries like “find all the people present in the scene when Brandon and
Rupert discuss whether murder is a privilege reserved for a small group of
people” (in the context of the Hitchcock movie “The Rope”) [Adali et al. 1996].
To even consider posing a query like this, an intimate knowledge of the film in
question would be needed. Also, to get satisfactory results from such exacting
queries, the video would need to be described correspondingly accurately, and
with the same point of view as the querier. Due to the inexactness of video
semantics, and the unavoidable ambiguity in how it is represented in a structured
model, this may not be likely. Furthermore, the level of detail with which
different videos are annotated, may vary, leading to poor recall if the query is too
specific. For these reasons, I believe such query systems and languages are a bit
of a side track.
On the other hand, annotation-supported video browsing is in my opinion sadly
neglected. There is less need for a complicated query language if individual video
documents are easily browsed. Given a well-designed user interface, it would
probably be quicker to locate the desired scene mentioned above by browsing,
than it would be to formulate the query correctly; even more so if the user has
some former knowledge of the video in question. Browsing systems are more
robust to idiosyncratic annotation styles and variations in level of detail – the
annotations are out in the open, not accessed indirectly through a wall of logic and
syntax. Of course, some query functionality is required, but a simple keyword
search in the vein of Google should suffice. OVID and the tree-based models
provide some browsing support – traversing the tree structure, typically – but this
is based on starting with a single node as a result of a very precise query, and
wanting to view the context of its corresponding video segment.
On the third hand, video retrieval is but one possible application of video
annotation systems. Another is video analysis, where the annotations act not
merely as an index to the video, but as a knowledge base from which statistics
may be generated, trends may be identified and new knowledge inferred. This
calls for expressiveness, precision and formality – the model must be able to
express knowledge about the video content concisely, unambiguously and in such
a way that it is possible to reason about it. For such applications of video
annotation, query languages may have their place1 – at least in the theory about
how the model can be manipulated; the actual user interfaces and tools is yet
another matter. The point is that a proper video content model should be

1 The already existing relational model and its algebra and calculus should suffice, though,
with some suitable user interface built around it.

52

amenable to both kinds of interaction – browsing and analysis/querying – since
they are both common, useful and complement each other. Searching for trends or
patterns in video annotations might very well be done by visual browsing of some
representation. Correspondingly, it might be useful to perform retrieval of
relevant or interesting video sequences by formal and detailed specification of
their properties, especially when these properties are “out in the open” – when the
user can clearly see what kind of descriptions are used, and how they are used. A
good video annotation system (and its model) should support both paradigms, and
not separate them needlessly.
Figure 3.26 shows a graphical representation of the characteristics of the
described video content models, according to the dimensions of temporal
expressiveness, flexibility, semantic expressiveness and spatial expressiveness.
The horizontal lines signify levels of “full” expressiveness or flexibility; a system
that had full score in all the categories would have a column four lines high. The
most obvious feature of this diagram is that full temporal expressiveness is very
common, and that spatial expressiveness is very rare. Smart VideoText and
BilVideo are the most powerful models (it could also be argued that the semantic
expressiveness of Smart VideoText is at least as high as that of BilVideo), but
they are probably also the ones that are hardest to use and understand, due to their
dependence on logic programming. CARAT is more conventional in that regard,
and scores highly, but has a somewhat limited temporal expressiveness.

OVID

Alge
bra

Vide
oS

TAR
AVIS

Van
e

QMA

Obs
erv

er

Veg
gie

CARAT

Smart
 Vide

oTex
t

BilV
ide

o

Spatial
Semantic
Flexibility
Temporal

Figure 3.26: Video content model features

It is interesting to note that almost none of the models have more than half score
in flexibility and semantic expressiveness. As noted in [Oomoto and Tanaka
1993], video is so diverse that it is almost futile trying to create a single, fixed
model and description scheme to cater for all applications. However, the common
practice of using generic “objects” and “events” for everything makes for bland
semantics. A system focusing on these two aspects might help bring the state of

53

the art a little further. Usability should be taken into account, though: Requiring
changes in the database schemas to adapt the model for specific purposes (or
perhaps worse, requiring a working knowledge of logic programming) is not user-
friendly enough. A different approach is needed.

3.3 Existing tools and user interfaces
One might perhaps expect well thought-out annotations models to be
accompanied by similarly well-constructed user interfaces and tools, and vice
versa, but that is seldom the case. Many of the systems and models presented in
the previous chapter provide little or no user interface at all. Those that do – the
commercial applications, for instance – rarely have the most interesting
properties. The reason, of course, is that conceptual modelling and user interface
design are two separate disciplines, so scientific papers (and the work behind
them) focus on one or the other.
Hence, this chapter presents an overview of tools and user interfaces for video
annotation – systems for producing, visualising, searching and/or browsing
annotations – with correspondingly little focus on the underlying models. This
topic is more diverse than that of the previous chapter, so it is not practical to try
to classify these efforts according to a fixed set of dimensions or properties.
This is not an exhaustive survey of video database applications, since quite a few
of them aren’t particularly interesting within the context of this work:

• Some have very simple conceptual models, typically a simple
segmentation scheme, where the segments are treated like documents in a
conventional digital library. Since the focus in this thesis is on more
expressive semantics, these are mostly ignored.

• Some focus not on metadata, but on presenting and searching in low-level
features of the video (images, colour distribution, or, in the more high-
level cases, closed-caption text), or on creating abstracts of video using
keyframes, pause removal and similar techniques. Again, the focus of this
thesis is on high-level, semantic metadata.

Instead, I have tried to find examples of the most typical, interesting and/or
original tools and interfaces for production and retrieval of video content
annotations.

3.3.1 Marquee
Marquee [Weber and Poon 1994] is a tool for real-time video logging. Through a
pen-based interface, users can segment the video, annotate the segments with
handwritten text and illustrations, and apply user-defined keywords to the
segments.
Figure 3.27 shows Marquee’s main interface. In the main note taking area to the
right, new segments (called “time zones”) are created by drawing a horizontal line
with the pen, linking the segment to the current playback time. Handwritten notes

54

are linked to the time zones they are written in. Thus, a mapping between the
temporal and the spatial domain is established.

Figure 3.27: Marquee’s user interface (from [Weber and Poon 1994])

Circling a word or phrase defines it as a keyword, assigns it a unique ID number,
and copies it to the keyword palette to the left. Then, by clicking on a keyword
and drawing a vertical line in the keyword striping area, one or more keywords
may be assigned to one or more time zones. The area in the lower left corner is
used to control video playback.
One of the main foci of the study was to determine if useful logging could be
done in real time, which was confirmed; though not to the degree that it was
practical to participate actively in a meeting and log it at the same time.
Additionally, several questions concerning issues such as retrieval and the impact
of individual note-taking styles were left unanswered. As the notes themselves are
very unstructured (idiosyncratic and in some cases even illegible), retrieval has to
be based on the keywords, which can fairly easily be made machine-readable;
however, the time zones present a useful, non-temporal overview suitable for
intra-video browsing.

3.3.2 Audio Notebook
The Audio Notebook [Stifelman et al. 2001] is a somewhat similar system. It is a
cross between a digital audio recorder and a paper notepad, shown in Figure 3.28.
Like Marquee, free-form annotations are made in real-time using a pen, but here
they are written on real paper. However, the Notebook timestamps each pen
stroke, linking it to the corresponding instant in the audio being recorded. Sensors
in the Notebook keep it aware of which page is being written on, and it even
handles multiple notepads.
After recording/logging, the user may access any part of the recording by pressing
the pen on a note; this will start playback from the time the annotation was
entered. As an aid to navigation, a LED strip to the left of the notepad acts as a

55

scrollbar, showing the playback position within the current page, and can also be
used for random access within the page.
Qualitative user studies show that the Audio Notebook not unexpectedly has
several advantages over both regular notebooks and plain audio recorders for
browsing and review. Its retrieval capabilities are rather limited, though, as the
annotations are not machine-readable.

Figure 3.28: The Audio Notebook (from [Stifelman et al. 2001])

3.3.3 Logjam
Logjam [Cohen et al. 1999] is another tool for real-time annotations, but with a
bit more structured annotations. It produces free overlapping intervals, each
assigned to a category (stratum) and described with a text string, as shown in
Figure 3.29. In this interface, the user can create new intervals and categories, edit
their descriptions, and control video playback. However, the main contribution of
LogJam is its tangible logging interface, shown in Figure 3.30.
This consists of a board capable of detecting hardwood blocks containing small
digital chips. Users indicate the presence of locations, events, people and
behaviours by placing and removing the blocks representing these categories on
the board, which is connected to the logging computer. Several people may log
concurrently, using the same board.
The system proved successful in making video logging a group process, though
technical problems with the tangible interface detracted from the accuracy of the
system. However, the logging speed was not increased. Though the loggers
worked in parallel, whatever time this saved was spent in discussions, or waiting
on the slowest logger. Also, for single-person logging, the keyboard-and-mouse

56

interface was preferred, because the board was cumbersome and inaccurate, and
the user disliked to switch between it and the keyboard, which was needed
anyway for descriptions, category definitions and editing. But the logging process
itself was deemed more social and fun when using the board in a group.

Figure 3.29: LogJam on-screen user interface (from [Cohen et al. 1999])

Figure 3.30: LogJam logging board (from [Cohen et al. 1999])

3.3.4 Video-based retrieval
[Gordon 2000] describes a system for semi-automatically retrieving information
relevant to video segments, primarily for educational purposes. A video is
manually annotated with codes indicating relevant topics for different intervals in
the video. Based on the interval borders, the video is segmented into homogenous
clips. For each clips, the topic codes are used to gather information from one or
more online digital libraries, using the Z39.50 protocol. The resulting information
is used to construct web pages that are displayed alongside the video,
synchronized with the video according to the segment boundaries, as shown in
Figure 3.31. The letters refer to various functions of the interface; A: the video; B:
segment description; C: categories of related material (overview); D: descriptions
of related material; E: hyperlinks to the actual related material.

57

The system is quite useful for enhancing the educational experience of watching
video, though the semi-automatic approach produces a relatively high amount of
irrelevant information. However, the learning experience is inherently very linear,
since playing the video is the only way to access the extra information.
Additionally, the information retrieval is one-way, from video to annotations, and
the system offers no search or browse capabilities beyond jumping around in the
video with the playback controls.

Figure 3.31: Gordon’s video annotation interface (from [Gordon 2000])

3.3.5 Rframes
Rframes [Arman et al. 1994a] is one of many browsing systems based on
representative frames (or keyframes, as they are often called). In this case, the
video is segmented into shots, and from each shot a single frame is selected. This
frame is then augmented with visual elements suggesting the length of the shot,
and motion indicators based on the movement of the border pixels for each frame
of the shot. This is illustrated in Figure 3.32.
By displaying these Rframes in chronological order, a visual index is constructed,
allowing the user to quickly get an overview of the content, as well as the
facilities to jump directly to shots of interest. The motion indicators are in
addition helpful in identifying scene changes overlooked by the segmentation
algorithm. An Rframe can also be used to search for other, similar Rframes (and
thus similar shots, hopefully), based on colour distribution and moment invariants
– but the Rframes cannot really be called semantic annotations, since they deal
only with the visual properties of the video. Another weak point is that the
Rframes are rather big in terms of screen space, so they are not particularly
suitable for browsing more than one video at a time.

58

Figure 3.32: Rframe composition; example Rframe to the right (adapted from

[Arman et al. 1994a])

3.3.6 MSR Video Skimmer
The MSR Video Skimmer [Li et al. 2000] is an extension of Microsoft’s Media
Player, with several interesting features:

• It can remove pauses (i.e. segments without sound) from the video.

• It can play the video at different speeds, using signal processing to
preserve the pitch of the audio.

• It segments the video into shots, presents shot boundary frames, and
provides controls for jumping to shot boundaries.

• It supports a simple textual table of contents for the video, as well as
personal notes entered by the user.

The Video Skimmer is shown in Figure 3.33. This is an interesting tool, though
the annotation model is very simple (after all, it is not the main point of this
work). It is only suitable for intra-video browsing, but the techniques it utilises are
interesting candidates for inclusion in a more complete video management
system.

3.3.7 Hierarchical Video Magnifier
The Hierarchical Video Magnifier [Mills et al. 1992] is another keyframe-based
video browser. In this approach, a video is represented as a timeline with tiny
thumbnail pictures at regular intervals, on which is placed a resizable, movable
magnifier. The section of the video covered by the magnifier is shown below the
timeline as a sequence of frames taken from regular intervals, as shown in Figure
3.34.
In this way, the user can easily zoom in on interesting sections of the video,
without losing awareness of the surrounding context, and jump around in the
video just like with a traditional timeline slider. Clicking on the second-level
timeline creates another magnifier, so the user can zoom in even further, while
preserving the first-level magnification. This creates a hierarchy of timelines and
magnifiers, as illustrated in Figure 3.35, where three additional levels of
magnification have been created.

59

Figure 3.33: MSR Video Skimmer (from [Li et al. 2000])

Figure 3.34: Hierarchical Video Magnifier, one level (adapted from [Mills et al.

1992])

Figure 3.35: Hierarchical Video Magnifier, four levels (from [Mills et al. 1992])

60

The magnifier excels at providing details (keyframes, at least) while preserving
overview, but it has no search capabilities or annotation functionality. Also, like
most video browsing systems, it is not practical for browsing more than one video
at a time.

3.3.8 Jabber
Jabber [Kazman et al. 1996], [Kominek and Kazman 1997] is a system for
indexing and retrieval of video conferences. It performs an analysis of the audio
recording, extracting nouns to use for index terms. Using a thesaurus, it groups
the nouns into clusters of related meaning, thus creating a smaller set of topics or
concept, each represented by the lowest common hyponym. It also performs an
analysis of the pattern of interchange between the speakers, to determine the type
of the discourse (or the “temporal idiom”, as the authors call it): Presentation,
Question and Answer, Discussion, Argument or Agreement.
Figure 3.36 shows Jabber’s user interface. Each participant in the conference has
a time line, where the recognized nouns are displayed. At the bottom of the
window, a table displays the concepts and the nouns that comprise them.
Selecting a concept causes the corresponding words to be highlighted in the time
lines. Selecting another highlights its words in a different colour.

Figure 3.36: Jabber

Jabber seems like a very useful and practical tool, especially since it can perform
its indexing unassisted (except for setting it up, deciding thresholds and
parameters and such). Its method for conceptual clustering makes it quite robust,
since it can successfully disambiguate words by noting in which context they

61

appear. It doesn’t depend on individual words, so perfect speech recognition is
not crucial. However, the usefulness of the generated index concepts may be
questioned – it is not obvious what the conference in Figure 3.36 was all about
(“priority handling of work requests”, as it happens), or what exactly was
discussed at various points. The user interface (and the time line display in
particular) may be another weak point – the figure shows just twenty seconds; an
overview of the entire conference would most likely render the word indicators
even more illegible than they already are.

3.3.9 VoiceGraph
VoiceGraph [Oard 1997], [Slaughter et al. 1998] is a retrieval interface for speech
data, shown in Figure 3.37. It is based on automatic transcription of the speech,
and search is initially performed using standard text information retrieval
techniques, with ranked results. However, the speech is also analysed to
determine “alternation patterns” (who speaks when, like the “temporal idioms” of
Jabber above), whether the speaker is male or female, and (if possible) speaker
identification. Automatic language identification and music detection is also
mentioned, though it is unclear if this is actually implemented. In any case, this
information is represented graphically for each speech document matching the
search criteria. In the figure below, male voices are rendered as blue line
segments, while female speakers are red. The idea is that this display can be used
to determine the relevance of the search result, as the user can quickly see the
pattern of the discourse in the speech document; how many speakers there are,
how they take turns and so on. Users can also select individual segments, and get
the transcription displayed in the bottom of the window, and play the selected
segment.

Figure 3.37: VoiceGraph

62

User studies showed that the alternation patterns were not an easy concept for
novice users to grasp, but that they had a definite potential as an aid to browsing.
The system is tailored to a rather specific domain, but it is a significant strength
that no manual annotation is needed.

3.3.10 SCAN
SCAN, Spoken Content-based Audio Navigation [Whittaker et al. 1999] is also a
speech retrieval interface, with a goal similar to VoiceGraph’s. The systems
segments speech documents into “paratones” (speech paragraphs), and performs
automatic speech recognition to create a transcript for each paratone. Textual
information retrieval techniques are then used to create a ranked list of speech
documents, based on a user’s query.
The main contribution of SCAN is its visualisation and navigation interface,
shown in the centre of Figure 3.38. This shows a timeline view of the selected
speech document, with paratones indicated by the short, vertical black markers,
and each paratone’s relevance to the query is indicated by a vertical column in a
kind of histogram. The height of the column indicates the relevance of the
paratone, and it is also colour-coded in order to show which of the query terms
that match. Selecting a column highlights the corresponding transcript paragraph
in the text area below, and clicking on a paragraph plays the corresponding
paratone.
Like its name suggests, SCAN’s primary purpose is to help users scan audio
documents, and quickly determine their relevance to a query. It succeeds at this; a
user study shows (not surprisingly) that it made fact finding and relevance
judgment significantly easier, compared to a simple audio player without any
visualisation or transcripts. However, it did not help matters much when users
were asked to create summaries of the speech documents. The authors offer
several possible explanations for this result: that search terms often were evenly
distributed throughout each document, so no paratone distinguished itself as a
candidate for summarisation; that highly relevant paratones used synonyms for
the search terms, thus not showing up in the histogram; and that the quality of the
transcription was too poor.
SCAN is obviously a useful tool, though it has some limitations. The visualisation
only shows the search terms, so it is not very suitable as an overview of the
content of a speech document as a whole. For this, the transcript must be used, but
this quickly becomes very large, and has no structure apart from the division into
paragraphs/paratones. It shows only one speech document at a time, making it
difficult to compare them with each other. It also has trouble with synonyms, but
this could of course be remedied with a thesaurus and more intelligent
information retrieval techniques. The quality of the automatic speech recognition
is also a major factor in the usefulness of SCAN, but it is of course a great
advantage that no manual annotation is needed.

63

Figure 3.38: SCAN

3.3.11 Media Streams
Media Streams [Davis 1993] is, according to the author, “an iconic visual
language for video annotation”. The idea is to manually create semantic
annotations using icons, in order to end up with a language- and culture-
independent description of the content of a video. The system includes over 6000
icons, arranged in a hierarchical structure – the icons dealing with “space” include
among others icons for land, North America, USA, south-western USA and
California. This makes it easier to browse for appropriate icons during annotation,
and is presumably useful for retrieval as well.
Annotation is performed by dropping icons on a timeline, as shown in Figure
3.39. The timeline is organised into 44 streams (strata), each dealing with a
certain aspect of the video: settings, characters, objects, actions, camera motions
and so on. Each iconic description is considered valid from its insertion point to
the next scene break, thus providing a temporal expressiveness somewhere
between free overlapping intervals and structure-based segmentation. Icons may
be combined to construct compound icons, expressing relatively complex
semantics like “Janet is positioned to the right of a shrub”.

64

Figure 3.39: Media Streams timeline

Media Streams is an interesting idea, especially its language independence.
However, the semantics of the icons is not always obvious to an untrained user.
They also need quite a lot of space in order to be legible, so there is reason to
think that an overview of an entire hour-long video will be very cluttered. The
fixed number and semantics of the 44 strata/streams seem a little restrictive,
though one would assume that they probably cover most aspects of video one
might want to annotate. Finally, it seems extraordinarily labour-intensive to
annotate video in this way.

3.3.12 DIVA
DIVA [Mackay and Beaudouin-Lafon 1998] is a system for “exploratory data
analysis of multimedia streams”, with the purpose of enabling users to visualise,
explore and evaluate patterns in data that change over time. Several streams are
defined, each dealing with one aspect of the video to be analysed. For instance, a
video documenting the behaviour and work processes of air traffic controllers
might be annotated with streams indicating when a controller is speaking to
another, when one is using the radar, when two controllers are writing on flight
strips simultaneously, and so on. This is in essence a stratified annotation scheme
with free, overlapping intervals.
Figure 3.40 shows DIVA’s “streamer display”. This plays the video in the middle,
while the streams are displayed as coloured ribbons moving from the lower right
corner to the upper left corner as the video plays. Thus, both the “past” and the
“future” states of the streams are displayed with time mapped to the spatial
domain. The semantics of each stream is indicated by the letters above and to the
left of the central video display. In the illustration, The “T”, “D”, “S” and “Notes”
streams are active at this particular moment, while the “PW” stream is just

65

coming up. The “Notes” streams are text streams – they can have textual
descriptions associated with each interval they contain.

Figure 3.40: DIVA

DIVA also provides a stream algebra to perform editing, change the visualisation
and search the streams; and a direct manipulation user interface for editing
streams.
Informal evaluations show that this representation gives a better perspective on
the data, compared to a spreadsheet display. However, for general-purpose
browsing and retrieval, it seems to have a few drawbacks. It is very space-
intensive, and shows only one video at a time (or two synchronised, but not with
independent annotation streams). Also, the use of only one or two letters to
identify streams may be a little too terse. To display streams both on the
“floor”/”roof” and the “walls” of the streams display makes it somewhat difficult
to see the temporal relation between them.

3.3.13 MMVIS / TVQL
MMVIS (MultiMedia Visual Information Seeking) and TVQL (Temporal Visual
Query Language) [Hibino and Rundensteiner 1995], [Hibino and Rundensteiner
1996], [Hibino and Rundensteiner 1997], [Hibino and Rundensteiner 1998] are

66

an analysis tool and a query interface for temporal data. The TVQL interface
consists of four sliders specifying the relationships between the start- and end-
points of two temporal intervals, shown in Figure 3.41. The particular
configuration shown, specifies that interval A and B must start at the same time;
that A must end when B ends, or up to 4.8 seconds before; that A must end after
B starts, but no more than five seconds after; and that A must start between five
seconds before and 4.8 seconds after B ends. These four relationships aren’t
independent – if for instance A and B start at the same time, B cannot possibly
end before A starts. TVQL handles this by ensuring that while one slider is
manipulated, the other three are changed accordingly (though strangely, this
seems not to be the case in the figure below).

Figure 3.41: TVQL

In any case, this interface is capable of representing each of the thirteen temporal
relations specified by Allen [Allen 1983], and it can also specify subsets of them,
due to the use of ranges instead of just saying that one interval boundary must be
“before”, “equals” and “after” another. User studies have shown that while TVQL
is somewhat difficult to learn, it is significantly faster and more accurate in use
than a forms-based interface.
MMVIS is an analysis tool “where users can browse video data in search of
temporal trends by specifying temporal queries via direct manipulation”. The
main paradigm is to select two subsets of the annotation intervals, query for
temporal relationships between the subsets, and view a visualisation of the result,

67

in a dynamic and iterative manner. In MMVIS, each annotation interval is
described with four properties: name, action, receiver and category. Subsets of
intervals are created by specifying sets of values for these properties. Then, a
temporal query is made using TVQL, and the result is visualised as in Figure
3.42. This shows an analysis of a beach volleyball game, where the annotations
intervals are described with name (the names of the four players – Kiraly, Dodd,
Steffes and Whit), action (serve, dig, pass, set, hit, kill and block) and category
(team red, team black, point play to red, side-out rally to black and so on). In this
example, the two annotation subsets are A: those where name is “Dodd” or
“Whit”, and action is “serve”; and B: those where name is “Kiraly” or “Steffes”
and action is “dig” or “pass”. The subsets are visualised using yellow circles for
A, and blue squares for B, and the area of the symbol corresponds to frequency of
the intervals. Thus, it is easily seen that Kiraly passes more often than Steffes, but
digs and serves are equally distributed among the players.

Figure 3.42: MMVIS

The figure also shows a temporal query – we are looking for instances where
intervals in A are immediately followed by an interval belonging to B – in other
words, where a serve from team red (Dodd and Whit) is followed by a dig or pass
from team black (Kiraly and Steffes). The visualisation shows this as bars of
varying thickness between the icons representing the players and their actions.
The line from Whit to Kiraly is much thicker than the line to Steffes – this
indicates that Kiraly receives far more of Whit’s serves than Steffes does. On the
other hand, Dodd’s serves are equally distributed between Kiraly and Steffes.

68

An evaluation comparing this interface to a timeline-based analysis tool shows
that it is less error-prone than the timeline tool, but that each had different
strengths as to what kind of trends they were wont to discover. MMVIS has a
rather specific mission, though; it is not very useful as a video retrieval tool, since
it doesn’t provide access to the video, or try to show what goes on when – it is
only useful for analysing temporal trends (which it does admirably, however).
Another nitpick may be that creating icons for the different actions and categories
may be difficult and time-consuming, but nice icons is of course not a prerequisite
for the tool being useful.

3.3.14 LifeLines
LifeLines [Plaisant et al. 1996] [Plaisant et al. 1998] has nothing to do with video,
but it is nevertheless interesting in the present discourse. It is a visualisation
environment for “personal histories”, e.g. medical or court records. Facets of such
a history are displayed on a common timeline; instantaneous events as icons and
ongoing processes (medical conditions, for example) as lines. Line thickness and
colour illustrate relationships or the significance of events. Figure 3.43 shows a
LifeLines medical record.

Figure 3.43: LifeLines

In this case, colour coding is used to connect related events – all the consultations,
prescriptions and letters pertaining to a particular doctor or condition. Line
thickness is used for severity of condition or amount of medication. Clicking on
events brings up additional information about them in a separate window.

69

To fit more information on screen, labels can be removed and icons and lines
packed more tightly. If the facets are organised hierarchically, LifeLines supports
a summarisation feature, where a set of events are replaced by summary events
when a facet is collapsed, as exemplified by the “Surgery” and “Physical
Therapy” facets in Figure 3.43.
LifeLines is excellent at creating effective overviews of complex temporal data.
Timeline displays are common among video annotation systems, but LifeLines
presents some new ideas: using line thickness and colour to code additional
aspects of the temporal data, and using hierarchical facets and summarisation to
fit more information on screen. These techniques might be useful to look into in
the context of video databases as well.

3.3.15 Discussion
The systems reviewed in this section have one thing in common: They are all very
different. Their purposes and approaches include augmentation of paper notes,
relevance ranking of free-text retrieval, interfaces for cooperative logging,
metadata for language- and culture-independent retrieval, analysis of temporal
trends and techniques for intra-video browsing. It seems hard to draw any
conclusions about the state of the art in tools and interfaces for temporal
annotations.
However, some things are worth mentioning. Most of these systems have a very
narrow focus: They view the annotation data in one particular way, or they can
only be used in one particular domain, for one particular purpose, or on one
particular kind of video or audio data. Media Streams is the only one with a more
ambitious outlook, but it may be argued that it perhaps goes too far in its
complexity and richness – 44 strata and over 6000 icons can be overwhelming.
Video databases with a more holistic approach do of course exist – Informedia
[Christel et al. 1995] [Wactlar et al. 1996], for instance – but as mentioned in the
introduction to this chapter, they do not have very interesting conceptual models.
Thus, it seems that a need similar to the one presented in section 3.2.12 can be
identified: Creating an open and flexible, yet simple and user-friendly framework
for producing, retrieving, browsing and analysing temporal annotations is a
challenge worth looking into. There may possibly be great benefit in trying to
integrate various information gathering techniques – browsing, searching,
selecting analysing, zooming – instead of focusing on one or a few techniques in
isolation.
One thing many of the mentioned systems do have in common is timelines. This
is a relatively old and well-studied technique, with documented benefits.
However, it is no panacea. It is a natural method for visualising temporal
annotations, but user interface “laws” such as Shneiderman’s mantra “Overview
first, zoom and filter, then details on demand” [Shneiderman 1996] should be
considered. Many of the systems have trouble with overviews – when an entire
hour-long video is viewed at once, the displayed information along the timelines
in LogJam, Jabber and Media Streams is in danger of being compressed beyond
legibility. Rframes, the MSR Video Skimmer and the Hierarchical Video

70

Magnifier do not have that problem, but the information they present along the
timeline is more syntactic than semantic, as is the speaker information in
VoiceGraph.
Therefore, another question worth looking into is how better overviews may be
created. Both temporal and “topical” overviews should be considered – topical
overviews in the sense that a useful summary or aggregation of different kinds of
annotations or strata should be available for the user. Of course, techniques for
filtering and zooming should be considered in this context, according to
Shneiderman’s advice.
A third important observation is that though most systems offer video or audio
browsing based on some non-temporal visualisation of the video, almost none
presents more than one video at a time (with VoiceGraph as the sole exception).
The other systems assume that the user first identifies the desired video document,
probably through some query interface. This may be a false assumption. Query
systems are difficult to use, especially in the case of semantic video content
annotations, where the stored information is wont to be idiosyncratic and varying
in completeness, level of detail and degree of structure.
An alternative is to investigate the possibility of browsing several video
documents at the same time – to create an overview of an entire (portion of a)
video database. This would enable the user to more easily get a feeling of “what is
in there”, and could also be useful for comparing similar videos, and analysing
them for similarities and differences. This ties into the previous point made, about
better overviews, and may have a significant impact on how a video database is
accessed.

3.4 Summary
Video content models are plentiful, but lacking in flexibility and semantic
expressiveness. The same goes for tools and user interfaces; many have
interesting ideas, but are limited to particular purposes and access patterns.
In other words: A flexible, adaptive, and integrated framework for managing
most, if not all, aspects of semantic content annotations, with powerful overview
and inter-video browsing capabilities has not yet been created, and trying to do so
has obvious merit.

71

4 Handling the semantics of video
This chapter presents more concrete rationales and requirements for handling the
semantics of video in a computer system. Chapter 1 has touched upon this, but
briefly and abstractly; chapter 2 has discussed the signs and semantics of video,
but without putting it into the context of real-world problems to be solved; chapter
3 has presented the properties and shortcomings of existing systems, but not gone
into detail on what could be done to improve them. In contrast, here I present
actual problems I want to solve, discuss the specific issues they raise, and outline
my concrete solutions to them.
Section 4.1 introduces six scenarios where semantic video annotations are useful
or required, abstracted from real-world cases. Based on these, and on what I
consider the shortcomings of the existing systems presented in chapter 3, a set of
high-level requirements are identified in section 4.2. Section 4.3 introduces the
main ideas I will build my approach on.

4.1 Examples of semantic annotation needs
The following scenarios are abstractions of real cases where computer support for
video semantics is required. In this context, they serve several purposes. First of
all, they may help a reader unfamiliar with such issues to understand better the
need for semantic content annotations; to associate concrete problems and tasks to
the more abstract purposes presented in section 1.1
Secondly, they also serve as a starting point for establishing requirements for
annotation support, highlighting the shortcomings of expressiveness and tool
support in existing systems. They are also useful for validating my designs later
on; and will therefore be revisited in later chapters, some of them functioning as
running examples and grounds for evaluation.
Thirdly, the selection of scenarios is intended to delimit the scope of the problem;
to focus on the kind of video applications I consider to have the most need of and
benefit from semantic annotation. Thus, they do not cover the entire breadth of
video archive applications. For instance, I do not explicitly explore the
requirements for managing the massive amounts of material that TV companies
and film studios produce. Considering all possible application areas would be too
big a task, so I concentrate on scenarios where the size of the material and the
number of users are small to medium-sized, and where fairly detailed and
purpose-specific annotation is desired.
Nevertheless, the scenarios are chosen so as to present a fairly manifold and
extensive problem space. Most are from the knowledge work domain –
documentation, research, analysis and education – as the need for content
modelling is great here. However, it is not my intention that the system I propose
should be restricted to this domain, or to the scenarios I present: I will strive to
create a system flexible enough to tackle use cases I haven’t thought of as well.

72

4.1.1 Support for movie watching
Film buff Jon enjoys Hong Kong gongfu1 movies in general and martial arts actor
Jackie Chan in particular. His problem is twofold: To find all the films that Chan
has starred in, and to find the fight scenes within each film (since the films are
typically rather inane plot-wise).
The first problem seems straightforward enough; one would think that any film
database would be able to handle this. However, unbeknownst to Jon, Jackie Chan
is sometimes credited as Yuen-Lung Chan, Long Cheng or Sing Lung, and has
been the producer of several movies without starring in them. For the most
complete and accurate results, Jon therefore needs a well-structured database, one
where Jackie Chan is stored (along with his aliases) as an entity, not merely as a
text string in the movie descriptions, and that distinguishes between different kind
of person-movie relations (actor vs. producer).
Jon’s second problem is partially solved by DVD menu systems. DVDs typically
divide a movie into about twenty “chapters”, and can on demand present a menu
containing a keyframe from each chapter along with a chapter title. This may be
sufficient for Jon to determine whether any fighting occurs, but each chapter is
often long enough to contain several different scenes, and the keyframe and title
may refer to one of the quieter scenes. It might be better if each chapter was
described with keywords or a summary, or even better: a more or less formal
classification of the type of action that occurs. But still, a chapter may have
several minutes of non-action before the fighting begins, which may be a waste of
Jon’s time. This is a segmentation granularity problem. Using shorter chapters
does not completely remove it, and introduces user interface problems regarding
the presentation of and interaction with the larger number of chapters.
A better alternative is to identify the different types of action that occur in the film
– fighting, car chases, romance, for instance – and associate them with temporal
movie fragments independently of one another. The user interface could let the
user pick an action type, and skip to the next relevant fragment. This avoids the
granularity problem, and also enables people with interests different from Jon’s to
focus on other aspects of the movie – which is a good idea if the movie
description is shared. If it is not, a user-defined segmentation will work just fine
in Jon’s case.
In summary, Jon’s movie-finding requires a description model with fairly high
semantic expressiveness. However, this is a non-temporal issue essentially similar
to the problem of finding books in a library, so this thesis will focus more on his
intra-movie browsing needs. As for them, Jon needs either a simple (but user-
specified!) segmenting approach, or – if descriptions are to be shared – an
annotation model based on free overlapping intervals. However, the need for
semantic expressiveness is undemanding: simple keywords will suffice.

1 Also spelled “kung fu”.

73

4.1.2 Managing interview recordings
Cathrine works for the Norwegian Museum of Cultural History, and is creating an
exhibition on clothing habits, fashion and self image among today’s youth. As
part of her research, she has recorded audio interviews with a selection of
teenagers. Usually, such interviews are transcribed, but that is a horribly time-
consuming and boring task. Instead, Cathrine digitises the recordings, and puts
them in an audio database. Her main motivation is to be able to jump directly to a
certain topic in an interview, and to quickly move to the same topic in different
interviews, to review and compare them.
The interviews are fairly well-structured and similar, so Cathrine makes a simple
list of topics (based on her interview design) and assigns them to non-overlapping
segments of the different interviews. The segments corresponding to one
particular topic become impractically long in some interviews, so she subdivides
the topic into subtopics to keep the segments down to a manageable length.
Analysing the interviews, Cathrine adds notes and comments to the various
topics, and transcribes a few particularly illustrative quotes from the interviews.
This material is later incorporated into the posters and presentations of the
exhibition.
The main function of the annotation in this scenario is as a keyword index, but an
additional requirement is that topics (keywords) and intervals can be described.
User-defined segmentation is sufficient for temporal expressiveness, but it is
interesting to note that a hierarchical organisation of topics is requested.

4.1.3 Support for system analysis
Ian is a project leader at the Norwegian Defence Research Establishment, in
charge of developing a new command and control information (CCI) system for
the Norwegian military. To analyse the current system and help establish
requirements for the new, he has recorded tens of hours of video from military
staff meetings, exercises and manoeuvres. These videos are to be used by his team
for two related, but different purposes: to analyse the practises and problem areas
of the existing system, and to establish requirements for the new.
First, Ian decides to coarsely index the video with some simple information; what
is going on, who is doing something (rank, role and responsibility being more
important than person identity), where it is taking place (the role of the place, e.g.
staff headquarters, is likewise more important than the actual, physical location)
and when it is happening. Using this index, the team members can quickly find
the parts of the videos that they want to analyse more closely.
During this analysis, an ontology of people, activities, roles, places and
procedures is gradually established. Activities are classified and divided into
subactivities; places are related along communication lines; roles are abstracted
away from people, classified and organised, and related to the activities they
perform. These entities are connected to intervals in the videos, acting as
examples, illustrations and a link to the real world. Entities and intervals are also
connected to Ian’s web-based requirements database through URLs.

74

This scenario illustrates the use of ontologies of high semantic expressiveness for
video annotation: A complex model of the real world is constructed and linked to
relevant video material. The ontology captures the knowledge produced by the
system analysis, and grounds it in the real world through the association with
video intervals. Thus, the annotation develops into more than just a video index,
and the video connection may even become less important as the project
proceeds. Another important observation in this case is that the ontology (and its
video association) is constructed incrementally, as the understanding of the
systems and processes depicted in the video develops.

4.1.4 Video-based system evaluation
Hallvard is a researcher evaluating the effectiveness of electronic medical records
(EMR). He videotapes patient-doctor consultations, and analyses the video to
determine how time is spent, and how the physician uses the various electronic
tools and databases at his disposal.
Hallvard needs to describe intervals in the video with two main schemes. Firstly,
he wants to partition the consultation into segments or phases – preliminary work,
introduction, anamnesis, examination and so on. These phases should not overlap.
Secondly, the various activities performed by the physician should be indicated.
These activities are hierarchically organised; the high-level activity “Acquiring
information” may be subdivided into “Accessing catalogue”, “Reading papers”
and “Using PC”. Activities may also overlap – the doctor may very well take
notes while questioning the patient.
After annotating the video with these phase and activity indicators, Hallvard
wishes to compute statistics based on them. He wants to compute the total time
used by every activity, relative to the length of the consultation, both on the
lowest level and on the higher levels of the activity hierarchy. He also wants to
create time expenditure statistics within each phase of the consultations – e.g. to
establish in which phases of the consultation the “Documenting” activity is used
the most. Finally, he also wants a spatial, configurable visualisation of the
intervals and the ontology, as he believes this may help him discover trends and
patterns in how the activities of a medical consultation is influenced by the use of
EMR.

4.1.5 Lecture database
Steinar is the lecturer of an elementary computer science and programming course
at the Norwegian University of Science and Technology. As a service to his
students, he records his lectures – that is, the screen activity on his PC (mainly
PowerPoint presentations and demonstrations of programming) along with his
aural exposition – and publishes them on the university intranet.
For the whole course, this amounts to over forty hours of video, so Steinar wants
to provide a topic-based searching and browsing interface. He wants to assign
topics to intervals of the video, and organise the topics in a hierarchy. For
instance, he would like to be able to assign a fifteen-minute segment of a lecture
to the topic “while loops”, which is a subtopic of “loops”, which is a subtopic of

75

“flow control”, which is a subtopic of “programming with Java Server Pages”.
Students searching for or browsing “flow control” should come up with the while
loops segment, though it’s only indirectly connected through the subtopic
relation.
Steinar also wants to classify segments as exposition/explanation or
demonstration/example. This classification will overlap with the topic
classification – the treatment of the while loop will probably start with exposition,
followed by one or more examples. Topics may also overlap; the topic
“conditions” (a subtopic of “expressions”, subtopic of “programming with Java
Server Pages”) will probably be revisited during the while loop explanation.
Last but not least, Steinar would like to attach additional information to the
segments and topics. This may be references to the course literature (when it isn’t
present in the video), corrections of errors, better explanations of difficult bits, or
links to files containing example code. He also toys with the idea of letting the
students enter their own comments and notes into the system.

4.1.6 Police investigation
Jostein is a police officer investigating a homicide. The crime was committed in
Geiranger, one of Norway’s most popular areas of natural beauty, so Jostein has
several hundred hours of tourist videos taken around the time and place of the
crime. Jostein hopes that these videos may help to establish the movements of
people and vehicles in the period, and thus help solve the case.
To do this, Jostein needs to record the presence of different people and vehicles at
different times and locations in the video. Positive identification of men and cars
is difficult and uncertain, but Jostein and his co-workers enter detailed
descriptions of them – height, build, hair, clothes and so on for people; make,
model, colour, license plates etc. for cars – and records which intervals in which
video they occur in. Subsequently, they use a search system to look for similar
objects, and use manual inspection of the video to ascertain if they are the same or
not. In this way, patterns of movements may be established, and suspicious
vehicles or persons brought to attention. A detailed ontology of the geography of
the Geiranger area is also developed, to better describe the location of different
entities.
A related important task is to establish the timelines of each video. This is
essential to determine and extrapolate the movements and whereabouts of entities
filmed in different videos. Jostein and his colleagues segment the video material
into continuous shots, and record the real time at which the recording was made
for each shot, where it is known. Depending on camera capabilities and setup, the
time information may not be readily available, but guesses can be made, and
comparison with videos with more reliable timelines may reduce the uncertainty.
Like Ian’s system analysis scenario, this one also builds a detailed model of
reality based on the video material. What makes this one more demanding is the
stronger importance, but also uncertainty, of time, place and identity. Semantic

76

expressiveness powerful enough to express belief, possibility and probability is
needed.

4.2 Requirements for a multi-purpose, flexible video
content model

In a sense, the entire thesis up to this point has been concerned with establishing
requirements for a sensible video annotation system/framework. From the abstract
visions of chapter 1 and the study of film semantics in chapter 2, through the
survey of the accomplishments and shortcomings of existing systems in chapter 3
to the scenarios in the previous section, the aim has been to explore

• what is needed for useful semantic video annotation, and

• what needs to be done to reach that goal.
This section crystallises my position in this regard: It presents the requirements I
will choose to focus on, to what degree they are supported by existing systems,
and what needs to be done to “fill in the holes” in the state of the art, so to speak.

4.2.1 Temporal expressiveness
The scenarios show (unsurprisingly) that some temporal subdivision of the video
material is needed, but the exact requirements vary. Jon, for instance, needs to
divide each film into scenes (using the term loosely), in order to classify them
coarsely according to the type of action in each scene – fighting, chases, romance,
confrontations etc. Some scenes may overlap; e.g. is it quite possible that a
confrontation scene includes a fighting scene. Cathrine has a similar requirement,
but she is content with a simple partitioning of her material. Hallvard and Steinar
need to describe the video with activities, topics and processes that are relatively
independent of one another, thus needing a fairly complex and expressive
temporal subdivision. Ian and Jostein may also need this, but it is also possible
that a simpler segmentation scheme is sufficient for their purposes. All in all, the
scenarios cover the spectrum of temporal expressiveness, from lowest to highest.
Hence, it is my position that the model should aim for full temporal
expressiveness. Segmented approaches are simply too restrictive, as they do not
easily support the modelling of different, independent aspects of the video
material.
There are certainly advantages to segmentation. It is a simpler principle for the
end users to grasp, and structural features of video, e.g. its subdivision into shots,
correspond well to segmentation. A fully temporally expressive model can handle
it equally well, as a special case, but tools and user interfaces geared towards
handling stratified, independently overlapping intervals will probably be awkward
if used to work with segments.
It is possible to provide support for both segmented and full temporal
expressiveness, as VideoSTAR [Hjelsvold 1995] does. However, it is my position
that this increases the complexity of the model too much for too little gain,
violating my requirements on simplicity and usability as described later in

77

subsection 4.2.5. I believe stratified annotations should be prioritized over
segmented, due to their greater expressiveness. This work is focused on semantic
annotations; representing structural features, which is the segmented approach’s
forte, is demoted in importance.
The existing systems in section 3.1 cover the breadth of temporal expressiveness,
so this requirement does not entail much in the way of novel research. The
organisation of the intervals (and/or the semantic annotations tied to them) is
another matter, but this will be covered in subsection 4.2.3.

4.2.2 Spatial expressiveness
The scenarios do not mention spatial annotation explicitly; indeed, it is quite clear
that neither Jon, Cathrine, Hallvard nor Steinar require it. A case might be made
for Ian and Jostein, though: Jostein in particular might need to be able to indicate
which is which when two persons or vehicles appear simultaneously in a video
interval. (Please note that the ability to describe places seen in the video does not
constitute spatial annotation in my usage of the term.)
Nevertheless, I choose for the time being to ignore spatial expressiveness. The
need is in my opinion not great enough to justify the unavoidable complexity a
spatial annotation scheme would entail. Jostein will most likely manage by using
properties to distinguish entities – if the annotations record that a red car and a
blue car is present in some video interval, visual inspection should be sufficient to
tell which is which. It is interesting to note that of all the annotation models
described in chapter 3, only BilVideo [Dönderler et al. 2003] provides any spatial
expressiveness.

4.2.3 Semantic expressiveness and flexibility
Given a temporal annotation scheme (and the lack of a spatial one), the next issue
is to decide how each time-delimited piece of video should be described. Jon, for
instance, needs a simple classification. This might very well be specific to each
film, as he needs intra-film navigation only. Additionally, the ability to assign a
title or description to each scene would be useful. Cathrine, on the other hand,
requires a common topic list for all her interviews; what is more, she wants to
organise the topics in a hierarchy. She also needs to describe the topics as well as
the media intervals. Hallvard and Steinar have similar requirements. Steinar in
particular needs a hierarchy with arbitrary depth, and also subsumption semantics
for the hierarchy – in other words, the organisation of the topics must be more
than just cosmetic. Ian and Jostein have the most complex requirements in this
regard: They need complex representations of real-world objects, places and
activities, described by properties and connected to each other with different
kinds of relationships.
This places demands on both the semantic expressiveness and the flexibility of
the model. To handle the most advanced scenarios, the highest levels of semantic
expressiveness and flexibility, as defined in section 3.1, is needed. This entails
complexity, but I consider this to be an important requirement. To be concrete,
the model must support annotation approaches as diverse as

78

• a simple list of topics

• a hierarchy of topics, with descriptions

• as above, but including defined semantics for the hierarchy relation

• an arbitrarily complex semantic network of concepts with properties
The challenge is to combine this power with simplicity and usability. The model
should be basically simple, but able to represent complex knowledge precisely, if
needed. A simple basic structure is good for usability; it makes learning the
system an easier and less daunting task for the user, and it is sufficient for simple
applications. The model should be usable for multiple purposes, including
complex ones, so it must be easily extensible, and capable of handling arbitrary
objects, properties and relationships between them, including
generalisation/specialisation and class/instance relationships. Moreover, it should
be changeable on the fly by the end user – a computer scientist or engineer should
not be needed. The user should be able to gradually change, extend and improve
his model as his needs change and his understanding of the domain evolves.
The model should employ concept-based annotation – that is, relate each
temporal interval to a concept, an identifiable object of interest in the universe of
discourse, as mentioned in section 3.1.1. This way of organising descriptions (in
contrast to just describing intervals with simple properties) may be a slight
obstacle for the novice user, but it has very many advantages, as noted by
[Weinstein 1998]:

• It factors out the content-independent bits of information (like a person’s
name), avoiding redundancy.

• Concepts can be reused wherever they are applicable, saving time,
increasing preciseness and avoiding ambiguity and spelling problems.

• It allows for easy and exact analysis of the usages of each concept.

• It facilitates browsing and searching, as the set of concepts can be used as
an index or catalogue.

Section 3.1.1 mentioned a potential problem with this approach, though: At what
level of detail should the concepts be constructed? With full temporal
expressiveness, the problems of temporal granularity associated with segmented
schemes are avoided, but a similar problem of topical granularity crops up here.
When annotating (say) anchorpersons in a news broadcast, several degrees of
topical granularity are conceivable. Some might find it sufficient to record when
an anchorperson (any of them) is speaking or not, and thus use a single
“anchorperson” concept. Other might be interested in whether a male or female
anchorperson is speaking – in that case two more specific concepts, “anchorman”
and “anchorwoman” is needed. Others again might need to know the identity of
the person in each instance, and require a concept for each occurring person. The
model should take this into consideration. For instance, it would be useful if it
were possible to hide unnecessary details from users who do not need it – to
automatically e.g. aggregate the most specific anchorperson annotation described

79

above into the simplest simple “anchorperson speaking or not” scheme. Likewise,
the model should facilitate the addition (or removal) of details and more specific
concepts incrementally, as the user’s requirements change. This is dependent on
the tools and user interfaces as well as the model itself.
This is perhaps the most demanding aspect of my requirements. The powerful
expressiveness and flexibility is one thing; combined with the simplicity and
usability required for it to be a feasible solution for the simple scenarios, it is a
real challenge.
The state of the art in this regard is in my opinion lacking. Granted, Jon and
Cathrine have their requirements fulfilled by almost all of the models in section
3.1. Some are less than perfect – Veggie does not support the overlapping
temporal intervals that Jon might need, and Cathrine’s hierarchical topics may be
cumbersome to represent in some models – but none are useless. For Hallvard and
Steinar, some models are found wanting. The need for free, overlapping temporal
intervals and user-specified, hierarchical topics or strata precludes the use of half
of them, and the rest are not perfectly suited, either. For the most advanced
scenarios, Ian and Jostein, none of the models are suitable. Smart VideoText and
BilVideo have flexibility and semantic expressiveness, but the one is geared
towards formal understanding of prose descriptions and the other towards
spatiotemporal objects, neither of which is a perfect fit. VideoSTAR might not be
so bad for Ian, since its world view (like his) consists of people, locations and
events, but Ian needs to classify, describe and relate these in greater detail than
VideoSTAR supports.
It is also my goal that a single model or framework should cater for all the needs
of all the scenarios. Although the most powerful of the existing systems fulfil a
significant part of these requirements, the complexity of their models and their
reliance on the (in my opinion) relatively esoteric technologies of conceptual
graphs and logic programming make them unsuitable for the less demanding
scenarios.

4.2.4 Tools, interfaces and visualisation
In the scenarios, different kinds of tools and user interfaces are required for using,
manipulating and displaying the annotations. Most, if not all of the scenarios
require browsing and navigation capabilities based on the temporal subdivision of
the material and the topic structure. Some require no more, but others are more
demanding: Hallvard wants statistical analysis on the length and frequency of his
topics, as well as a configurable, spatial visualisation of the annotations in order
to look for patterns; Steinar wants a search system that is aware of the semantics
of his topic hierarchy; and Jostein wants software support for finding similarities
between object descriptions.
These tool support requirements are rather varied, and section 3.3 also illustrates
how many wildly different kinds of tools may be built for semantic annotation
support. There are too many possibilities for me to cover them all, so I will focus
on one purpose in particular: visualisation and browsing.

80

Simple visualisations, typically based on time lines, are used for media navigation
and other interaction in many systems. However, in chapter 3 I argue that the state
of the art is limited in this respect: Visualisation and browsing almost invariably
handles just one video at the time; query languages are used to select a video for
browsing. I argue that query languages have limited user-friendliness, and that
they are poorly suited to the idiosyncrasies of semantic video annotation. Existing
visualisation techniques are limited; many are unable to present a usable overview
of even a single video. Time-line-based visualisation and browsing at all levels of
detail is a better, but untried, idea.
Hence, I require inter-video visualisation and browsing. The model and the tools
and user interfaces should support visual overviews of the entire video database
content, let the user zoom in on selected parts and filter out irrelevant information,
and provide details on demand, according to Shneiderman’s mantra [Shneiderman
1996]. This dovetails neatly with the discussion on hierarchical topic structures
and topical granularity in the previous subsection.

4.2.5 Simplicity and usability
The perhaps biggest challenge in the design of such a system is to support the
requirements of the most complex scenarios without being too complex for the
less demanding users. Hence (among other reasons), I choose to ignore spatial
annotations, and decide against supporting both free intervals and a segmented
scheme for temporal expressiveness. However, the semantic expressiveness and
flexibility I require still makes this a challenge.
Simplicity and usability are non-functional requirements, hard to quantify.
However, I will require that the basic conceptual model for my system should not
be overly complex – to be concrete, it should be possible to depict it with less
than ten boxes in a diagram. As for usability, users such as Jon and Cathrine
should be able to construct simple topic lists and annotate intervals and topics
with text descriptions without having to struggle with type systems and property
definition. Tools and interfaces for retrieval/browsing (i.e. where the annotations
are not edited) should be usable without more instructions than might fit on a
single web page.

4.2.6 Summary
In short, these are the requirements and goals for my proposed semantic video
annotation system:

• Full temporal expressiveness

• No spatial expressiveness

• Concept-based annotation, with the ability to classify concepts, arrange
them hierarchically with defined semantics, and define properties and
property values, while keeping complexity to a minimum

• Intra-video, semantics-aware visualisation and browsing, including
overviews, zooming (both temporal and topical) and filtering (ditto).

81

• A model and tools simple enough for an undemanding user to grasp the
model structure and annotate a video with a simple topic list and textual
descriptions without hassle.

4.3 The road ahead
The ideas I wish to explore further as a contribution to the field of video databases
have been lurking in the background in the previous chapters; they also pervade
the scenarios and requirements presented in the sections above. It is time to
crystallise exactly what I mean. This section presents, in a concise manner, my
two main points: ontology-based stratified annotation, and exploitation of
ontology structure and semantics in the visualisation of annotations. It also
reviews the research questions from section 1.2, relating them to the current
discussion and the organisation of the rest of the thesis.

4.3.1 Ontology-based annotation
Full temporal expressiveness and concept-based annotation is in my opinion a
necessary requirement. The most significant question remaining is how to define,
organise and manage the concepts. This has implications for almost all aspects of
the model – its flexibility, semantic expressiveness and usability. It also has great
impact on the problem of topical granularity, which I wish to present a solution
to.
Considering the scenarios, both Cathrine and Steinar require a hierarchy of topics.
This suggests that a hierarchical organisation of concepts would be a good idea.
Indeed, film semiologist Christian Metz [Metz 1974] presents the codes (signs
and syntax) of the film “language” as a hierarchy. Steinar additionally wants
subsumption semantics – a set of video intervals relevant to a given concept
(topic) is implicitly also considered relevant to the concept’s ancestors.
Thus, organising the concepts in a hierarchy with subsumption semantics is a
good starting point. This also covers the simpler cases where just a list of
concepts is required – a list may be considered a degenerate hierarchy. However,
it is useful to consider this hierarchical organisation closer, to see if further
advantages can be gained without too much complication or effort.
Ian and Jostein need the model to handle user-defined objects and properties. For
this to be done formally, a type system – a mechanism for defining what kinds of
things we may talk about – is required. A system in the object-oriented style, with
classes, subclasses and instances [Budd 1998] seems an ideal fit: It is powerful
and convenient, and specifies a hierarchy of entities (or a directed graph in the
general case) with subsumption semantics. Hence, it can be used also in the
simpler cases.
Jostein and Ian might also want to specify user-defined relationships between
their concepts; to specify kinds of relationships, and make inferences about them.
Relationships are important in the analysis of video; as discussed in section 2.2.2,
two of the three kinds of signs in the video “language” (Indexes and Symbols) are
based on relationships that must be learned in order for the signs to be understood

82

correctly. If such understanding, interpretation and inference is to be supported by
a computer system, it is necessary to use formal ontologies (see appendix A).
Ontology frameworks typically include an object-oriented style type system; thus,
organising the concepts of a concept-based annotation scheme in an ontology
facilitates both the most complex and the simplest requirements for semantic
content annotation of video.
This constitutes an ontology-based stratified annotation scheme. A stratum is the
set of video intervals connected to a given concept, and the concepts (classes and
objects) are formally defined and described in an ontology. This gives several
advantages:

• It allows the user to define the “universe of discourse” using formal,
powerful constructs, i.e. ontology languages, to an arbitrary level of
detail. It allows a heterogeneous yet well-defined and well-structured
description of the various “things” or topics relevant to the video(s) in
question.

• It imposes a structure on the annotation strata, through their connection to
the corresponding concepts. Instead of a flat list of strata, we now have a
hierarchy or partial order with defined semantics.

• It defines relationships between the concepts, that can be used in
interaction with the system, e.g. for query expansion/contraction,
relevance ranking, query disambiguation, browsing and visualisation.

In short, such an organisation provides the means for very detailed and precise
semantic annotations, while still being simple enough not to overwhelm users
with less complicated demands. The “universe of discourse” may be as simple as
a plain list of topics, or as complex as desired, all within the same framework.
The power of ontologies in organising concepts (and annotation strata) can be
used for many different purposes, as mentioned above. Some of these will be
explored further in the remainder of this thesis; others will be deferred to future
research (see section 9.2). One application I have chosen to focus particularly on
is visualisation and browsing.

4.3.2 Video browsing using aggregated visualisations
As discussed in the previous chapter, it is my position that existing work on video
content management has been too focused on query languages, neglecting the
possible advantages of visualisation and browsing systems. In particular, visual
overviews and facilities for inter-video browsing are areas I wish to improve.
Stratified timelines, as used by e.g. [Davis 1993], [Kazman et al. 1996], [Carrer et
al. 1997] and [Cohen et al. 1999] is a tried and true paradigm. Lines, rectangles or
arrows represent temporal intervals where a particular concept or stratum is
relevant; and the strata are stacked on top of each other (see e.g. Figure 3.12,
Figure 3.36 and Figure 3.40). However, the number of strata that can be fitted on
screen is limited, typically in the order of 20-30. This may not be sufficient to
view all the strata of a single video, let alone a collection of videos. Additionally,

83

all the strata may not be of interest to the user, or they may be at an inappropriate
level of detail.
My suggested solution to these problems is closely related to the idea of ontology-
based stratification: The concepts/strata are presented as a collapsible tree list
(like the folders in Microsoft Windows Explorer), a common and easy-to-use user
interface widget. Using this, the user can control which strata are displayed by
collapsing and expanding nodes, hiding uninteresting strata and fitting more
relevant information on the screen. Figure 4.1 shows an example of an annotated
news broadcast. The Anchorperson concept has two subconcepts – Anchorman
and Anchorwoman – that again have subconcepts representing individual anchors,
but the user is not interested in that level of detail, and so leaves the
Anchorperson node unexpanded. The other concepts are treated similarly.
Utilising the subsumption semantics of the hierarchy of concepts, it is possible to
construct aggregated visualisations for the collapsed concepts; that is, incorporate
the timeline representation of its descendants into its own representation in some
manner. Instead of (or in addition to) the plain lines, rectangles or arrows
normally used in timeline displays, graphical hints such as line thickness, colour
or patterns can be used to indicate information aggregated by the collapsed
concept/stratum. This is also shown in Figure 4.1. The annotations shown are
intervals related to hidden subconcepts, e.g. individual anchorpersons. Since each
individual anchor is an Anchorperson, their intervals are deemed relevant to the
Anchorperson concept, and shown even though the node is collapsed.

Figure 4.1: Simple mock-up of visualisation and browsing interface

The thicker interval lines are examples of how such aggregation may be
visualised when the intervals of several subconcepts overlap, as the Asia and
Europe concepts do. For instance, the thicker line segment for the “Domestic
news” concept indicates that two concepts, e.g. “Election” and “Political
demonstration”, overlap in the corresponding time interval. While it is not
possible to identify which concepts it is without expanding the node (or using
mouseover text, tool tips or a similar technique), this is useful to indicate the
amount of annotation and to create a visual overview or signature of the video
content.

84

With this kind of visualisation and interaction, the user may adjust the level of
detail of the timeline display merely by manipulating an ordinary tree list,
alleviating the topical granularity problem. In fact, as the expanding and
collapsing of concept nodes functions as a “topical zoom”, and makes it feasible
to present several videos on the same timeline, allowing the users to “drill down /
zoom in” on the strata they finds most interesting.

4.3.3 Research questions revisited
In chapter 1, three questions were posed as the overarching problem statement of
this research. At this stage – the logical as well as physical midpoint of the thesis
– it is natural to review these questions, in light of the background material
presented up to this point, and the new contributions to follow.

Video information modelling
How should a model for semantic, temporal annotations be constructed, given
that it should be usable for quite different domains, purposes and levels of detail?

• What are the requirements concerning such a model? What kinds of
semantics, what level of expressiveness should be supported?

• How can the model be made flexible or extensible enough to support
different kinds of applications, while not sacrificing simplicity and
usability?

The first part of this question has been addressed. Based on deficiencies and
shortcomings (as I see them) in existing systems, my opinions on what kind of
applications have the greatest need for semantic video annotation, and a set of
scenarios based on real-life cases, I have presented my requirements concerning a
model for semantic, temporal annotations.
The second topic has been broached: I have submitted that using ontologies for
stratified annotation may be a solution to the problem. I have not yet gone into
detail, but I will do so in chapter 5, which begins with a concrete conceptual
model for ontology-based video annotation.

Tools and interfaces
How can one create an infrastructure to handle the various tasks related to the
usage of semantic content annotations?

• What kinds of architectures and technologies can or should be used? How
should the metadata be stored, accessed and transferred to the user?

• How should tools for entering, browsing, presenting and querying
annotations be constructed?

The infrastructure has not been touched upon so much yet. Architectures and
technologies will also be discussed in chapter 5, after the presentation of the
model and a preliminary discussion on its properties.

85

However, I have given presentation, browsing and querying some thought: Based
on the same background as the model requirements, I have hypothesised that
inter-video, semantics-aware visualisation and browsing is an interesting and
fairly novel approach to building tools and user interfaces, which also meshes
well with ontology-based stratification. Hence, I will prioritise exploring these
possibilities; if necessary at the expense of the storage issues also mentioned in
the question.
The concrete objectives, design and implementation of tools and user interfaces
are presented in chapter 6.

Usability and performance
How does such a system fare in practice, in the real world?

• Does it provide real benefits compared to prior approaches found in
literature? Under what circumstances is it appropriate and successful, and
when is it not? Is there an actual need for this kind of system?

• Are the model and the tools user-friendly enough? Expressive enough?
Extensible enough? Simple enough?

• Is the model possible to index and search efficiently? Is it scalable? How
does the choice of architecture/technology affect this?

The last question has obviously not been discussed yet; the design and
implementation of a system must come before the evaluation. It may nevertheless
be useful to give it some consideration at this time.
Part of the answer to the first bullet point is in a sense already given. My designs
will focus on issues not satisfactorily solved in existing system; that was one of
my criteria for determining the requirements presented in this chapter. Likewise,
the scenarios in section 4.1 indicate circumstances where I believe my designs
may be successful and needed. Whether these assumptions and decisions are
correct remains to be seen, though.
To ascertain this, and to evaluate the system under realistic circumstances, I will
seek to try out several of the scenarios in practise. Another important task is to
evaluate the efficacy of my projected inter-video, semantics-aware visualisation
and browsing interface, compared to more traditional approaches.
The evaluation of the OntoLog system is described in chapter 7. The results are
discussed in chapter 8, and chapter 9 concludes the thesis.

86

87

5 OntoLog: a flexible video content model
The objective of this chapter is to present and explain the OntoLog annotation
model. In section 5.1 I describe the basic conceptual structure of the model; its
elements and semantics. This is followed in section 0 by a preliminary discussion
on the power of the model: How its features can be utilised in practice, and some
of its potential issues, based on the scenarios from section 4.1. Section 5.3
presents technologies relevant to the implementation of an OntoLog system, and
the subsequent section discusses my technology choices. Section 5.5 summarises
the chapter.

5.1 The OntoLog model
This section presents the OntoLog video content model in several steps. Its most
important feature is how video intervals are organised into concept-based
description strata, and how the concepts are organised. Thus, the first two parts of
this section present the “core” model: how videos, temporal intervals and
concepts are defined and interact. Subsection 5.1.3 explains the mechanisms for
customisation and extension that this model affords, while the fourth and last
subsection presents additional “convenience” entities and relationships that are
not crucial for the OntoLog modelling approach, but are useful in an actual
implementation nonetheless.
A conceptual UML diagram [Fowler 2003] of the core of the OntoLog video
content model is shown in Figure 5.1. This is deliberately a very simple diagram,
designed to present the “bare bones” of the OntoLog approach, its most crucial
parts. The expressiveness of the model is greater than a cursory reading of this
diagram might suggest, as will hopefully become clear in the following
discussion.

*

*

Figure 5.1: An UML view of OntoLog’s core conceptual model

5.1.1 MediaResources and Intervals
The MediaResource element represents the digital media objects, e.g. MPEG
files. Each MediaResource contains an unbounded number of Intervals, with start
time and end time. By default, no restrictions are put upon the temporal ordering
of the intervals, so they may freely overlap. Both MediaResources and Intervals

88

may be described further – each MediaResource ought to have a name or title, for
instance – but the mechanism for this is described later, in subsection 5.1.3.

5.1.2 Ontology-based stratification
There are two principal annotation methods in the OntoLog model. The main
mechanism is based on each Interval being connected (related) to one or more
Concepts. There are two kinds of Concepts1, classes and individuals, related to
each other with specific semantics. Concepts may represent terms, topics,
persons, places, events – anything that it is desirable to mark the presence of in
the media object.

Classes and individuals
Discussions about individuals (or objects or instances, as they are often called)
and classes abound in literature about object-orientation and ontologies, but there
is no consensus on what precisely the terms mean [Date 1996]. Hence, it may be
useful to present the definitions that OntoLog uses.
A class is a set (possibly unbounded) of values; as such, it is not much different
from what is normally called a data type. However, unlike data types, the
OntoLog classes do not place any restrictions on the nature or representation of its
values; a value is a member of a class simply by virtue of explicitly stating that it
is. It follows that a value in general may be a member of multiple classes.
“Value” is a very general term. I therefore use the term individual for the user-
defined values belonging to the user-defined classes used to annotate video in the
OntoLog model. The “type” association between class and individual in Figure
5.1 is the mechanism for individuals to state what class(es) they belong to. The
UML diagram is thus slightly imprecise; there is no “Individual” class. The box
represents all possible user-defined individuals, belonging to user-defined classes.
Likewise, there is no “Concept” class either; it is merely an abstraction to signify
that there are two kinds of concepts, and that Intervals may be related to either (or
both) kinds.
Classes being sets, the “subClassOf” association is a subset relationship. It
follows that members of a class are also members of its superclasses, and that a
class may be a subclass of more than one class.
Note that despite this looking very much like an object-oriented type system,
operators (or methods) do not come into the picture at all.

Ontologies and strata
A set of related classes and individuals (and properties describing them)
constitutes an ontology. Admittedly, this is a very simplistic ontology framework,
but classes and individuals constitute the common denominator of all ontology

1 Note that some definitions of ontologies uses “concept” as a synonym for “class”; other
uses it as a synonym for “instance”. I use it as a hypernym for both classes and members
(instances) of classes.

89

system, as described in appendix A. Thus, this represents the bare minimum for
an ontology-based annotation model. Facilities for more complex ontologies can
be provided by existing ontology languages (presented later in this chapter); there
is little need for me to create a custom scheme for the OntoLog model, or to
clutter this introductory presentation of the model with a more complex scheme.
Concepts may be thought of as organised into hierarchies. Classes are subclasses
of other classes, and individuals are instances of classes. In the general case, this
is a directed graph (due to the multiple subclassing and multiple typing discussed
above), but in practise I assume most class graphs will be quite hierarchical.
Intervals and Concepts together create a stratified annotations scheme, where the
concepts act as strata. It also creates a hierarchical organisation of the strata,
which is an important point. Using concepts or categories for logging video
typically produces a lot of categories – the experimental project described in
[Cohen et al. 1999] used about 80. A flat list of this size is quite unwieldy, but
arranged in a hierarchy, it is far easier to use. It also allows for easy aggregation
of annotations and customisable level of detail during both logging and browsing,
due to the subset semantics of the hierarchical relationships: The intervals
relevant to a concept are not only the ones directly connected to it, but also the
intervals connected to its descendants, i.e. to the transitive closure of the subclass-
of and individual-of relationships.
Consider the annotation of a news video: One would create a Person class, with
subclasses Anchor and Reporter, and enter actual anchorpersons and reporters as
individuals of these subclasses. Figure 5.2 illustrates this example. The video
would then be annotated by recording the presence of the different people in
different Intervals. Now, if another user is interested in the presence or absence of
anchors, but doesn’t care about the actual identity of them, it is a simple matter
for a computer system to use the hierarchical relations to aggregate the intervals
related to the anchors, and present them as though directly related to the Anchor
class. Thus, unnecessary information is hidden, and a customisable level of detail
may easily be achieved. The user may be presented with concise, aggregated
information as the default, and may delve into the parts of the ontology she is
most interested in. Similarly, an annotator not concerned with the identity of
people may relate Intervals directly to the Anchor and Reporter (or even Person)
classes. This makes the annotations less useful for a user in need of more details,
but is useful if e.g. the identity of the person is unknown, his or her appearance
rare enough not to warrant the specification of an individual, or if the ontology is
developed incrementally during annotation.
Figure 5.2 also illustrates another point: that classes are values belonging to a
class (through the “type” relationship) as well. This makes for a homogeneous
and simple model; there is no semantic or logical difference between system-
defined and user-defined classes. It does however blur the distinction between
class and individual, but I will remedy this by defining a class as a set-value
belonging to the (system-defined) Class metaclass, and an individual as a value
belonging to a class, but not to the (system-defined) Class metaclass. Thus, Tom,
Dick and Harry are individuals; and Person, Anchor and Reporter are classes.

90

Figure 5.2: Classes and individuals

Intervals with multiple Concepts
Intervals may be related to more than one Concept. Consider a scientist studying
the social habits of chimpanzees, by recording them on video and analysing the
footage using the OntoLog model. She would probably want to record different
activities – chest thumping, grooming, playing – but would also be interested in
recording which chimp is performing the activity. This could be done in different
ways: she could use activities as Concepts, and record the active chimp as a
property to each Interval. This, however, might make it somewhat difficult to
follow the activities of a particular chimp, compared to if she used the individual
apes as Concepts. But if she did that, and used activities as Interval properties, the
opposite problem would occur. She could use both individual chimpanzees and
activities as Concepts, but that would in some cases lead to ambiguity: When
several chimps are doing several activities at once, which is doing what?
For that reason, an Interval may be related to more than one Concept. Thus, the
scientist could record the performance of an activity by an ape as a single Interval,
related to a chimp Concept as well as an activity Concept, avoiding ambiguity and
enabling strata-based visualisation for both ape-oriented and activity-oriented
views of the situation.

The semantics of “relatesTo”
The discussion above is actually a simplification: Consider the case where an
activity involves more than one chimpanzee, e.g. grooming, which often involves
both a groomer and a groomee. You can connect the interval in question to both
the “Grooming” concept and to the two chimpanzee concepts, but the
groomer/groomee information is lost.
There are several possible solutions to this problem. One is to consider
“Grooming” a class, define a Grooming individual for each Interval, and describe
this individual with “groomer” and “groomee” properties, the values of which are
chimpanzee individuals. This captures the information adequately, but has the
same problem as earlier: It is impractical to follow the activities of one particular
ape; the stratification is no longer both activity- and ape-based. It also leads to a
lot of Grooming individuals that are “used” only once.

91

Another solution is based on the observation that the “relatesTo” association is a
very coarse – perhaps too coarse? – indicator of the relationship between an
Interval and a Concept. It may signify fairly different things:

• that an individual is seen in the picture during the Interval

• that some (unidentified) member of a class is seen during the Interval

• that a more or less abstract Concept is mentioned, heard or alluded to
during the Interval

and so on. Hence, for preciseness it may be useful to have different kinds of
“relatesTo”s – a user-defined classification, or a relationship-type property for
each Interval-Concept pair. Figure 5.3 illustrates this, for the chimpanzee
grooming example. (The grey boxes and arrows are system-defined classes and
relationships; the rest are user-defined.) However, this is a rather complicated
feature for a relatively minor increase in expressiveness, so I will defer the
implementation of such a scheme to further research.

typ
e

type

type

type

type

ty
pe

Figure 5.3: Different kinds of "relatesTo" relationships

5.1.3 Properties and model extensions
Another complementing annotation mechanism is that the MediaResources,
Intervals and Concepts (and indeed any data element in OntoLog) may be
described with arbitrary properties, selected or defined by the user. This is a rather
common idea, used by several of the systems described in section 3.2, but the
OntoLog model (heavily influenced by RDF [World Wide Web Consortium
2004a] in this regard) takes it a step further than most.
Firstly, any element in the OntoLog model may be described in this way, not just
one or a select few, as is more common. All the elements are treated equally.
Some may be more suited to this kind of description than others (it may be that
Intervals are simply too numerous for the user to bother describing them much),
but in the interest of flexibility, power and simplicity, the OntoLog model treats
them all the same. A few common properties (title and description, among others)

92

should probably be provided as default, but this is an implementation (or user
interface) issue.
Secondly, the class structure of the OntoLog model’s ontologies provides a
mechanism for differentiating elements, in order to describe them differently. Let
us say a user creates an ontology of people and places to describe his/her video.
Using the OntoLog model, this entails creating “Person” and “Place” classes (and
instances of them); the OntoLog model then provides the means to say that Person
individuals are described with these properties and Place individuals with those.
This is not limited to ontology elements either – individual MediaResources are
members (instances) of the MediaResource class, and the user may define
properties for this class, and create subclasses of it. Intervals are treated
correspondingly.
Thirdly, property values may themselves be ontology elements; they need not be
string values or other kinds of literals. The model is capable of defining new
objects, object types and relationship types, as discussed in section 3.1.3, through
the very same ontology mechanism that is used for the stratified concept-based
annotation scheme. This may be more power and complexity than most users
need, but a simple default is to assume unconstrained text strings as property
values, unless the user specifies otherwise.
Figure 5.4 shows an example of user-defined properties and property values.
There are three user-defined properties, “favourite groomer”, “age” and “main
actor”. The “favourite groomer” property is used to describe an individual of a
user-defined class, with another such individual as its value. The “age” property is
used similarly, except that its value is an integer. The “main actor” property is
used to describe an individual of a system-defined class, namely MediaResource.
Note also that properties are individuals of the System-defined “Property” class.
This means that they are defined using the same mechanisms as other individuals
in the user-defined ontologies, and that the associations in Figure 5.1 and the
arrows in Figure 5.2, Figure 5.3 and Figure 5.4 are really triplets of subject,
property and property value. The “type” relationship is indeed also an individual
of the Property class; this is omitted in Figure 5.4 for clarity.

ty
pe favourite

groomer

ag
e

mainactor

type

type

type

typ
e

typ
e

ty
pe

Figure 5.4: User-defined properties

93

Thus, hierarchical strata design, domain knowledge modelling and model
extension (which in many ways are aspects of the same thing) are all performed
using a single, uniform and reasonably simple technique. There is little difference
between user-defined classes and individuals and the ones provided by default by
the OntoLog model; the model extensions and domain knowledge is integrated
seamlessly into the whole.

5.1.4 Ontologies and Projects
To facilitate reuse and sharing of ontologies – both as domain knowledge models
and as model extensions – the classes of Project and Ontology are introduced into
the model. This is shown in Figure 5.5.
Projects act as containers for MediaResources that are described using the same
set of ontologies. For instance, for a lecture database like the one described in
section 4.1.5, it would make sense to create a project for each different course.
Videos from the same course would probably be described with the same
ontology, while other courses might need different ontologies.
Ontologies are primarily containers for Concepts. A Project may use several
different Ontologies, and an Ontology may be used by several different Projects.
Ontologies also define properties that the users may describe their classes and
individuals with. The properties can take text strings as values, but they can also
take other individuals. Thus, yet another task for the Ontologies is to define such
individuals to use as property values. This is done in exactly the same way as
defining concepts; this also means that the “property values” can be used as
Concepts, and vice versa. In Figure 5.4, for instance, the Concept Charles (an
individual of the Chimpanzee class) is used as a property value, while in Figure
5.3 he is used as an annotation stratum, related to a temporal interval.

*

*

* definedBy *

Figure 5.5: Extended OntoLog conceptual model

94

5.2 Scenarios revisited
In this section, the scenarios from section 4.1 are reviewed, with a discussion on
how they can be implemented using the OntoLog model defined in the previous
section. Two of the more demanding scenarios, the lecture database and the police
investigation, are described in quite high detail; the rest are given a more cursory
treatment, to avoid too much repetition.

5.2.1 Support for movie watching
Jon’s Jackie Chan problem is easily solved with the OntoLog model. Chan is an
individual belonging to several classes (Actor and Producer, at least), has several
“name” or “alias” properties with different values, and is related to his films with
“starring” and “producer” properties. Other classes and properties can be defined,
if required.
The temporal information is also handled easily. Classes are created for each
aspect of the movie in question – fighting, car chases and so on – and each class is
related to a set of intervals. The intervals may form a partition, but not
necessarily, and each can be described with a label or short comment, if desired.
Thus, during playback it is a simple matter to select a class and jump to its next
interval.

5.2.2 Managing interview recordings
Cathrine’s requirements are also fulfilled. She wants the same topic structure for
all her interviews, so she creates a project with a topic ontology. Her ontology
consists mainly of a plain list of classes (topics), though a few have subclasses
(subtopics). She adds her interview recordings to the project as media resources,
creates intervals (segments) and assigns them to topics in her ontology. Topics
and segments can be labelled and commented, and Cathrine can create a
“transcription” property, if she wants to.

5.2.3 Support for system analysis
Ian has a more complex project, but the basic principle is the same. During the
first viewing of his material, he creates a coarse ontology of people, locations and
events, linking relevant intervals to them. To be more specific, he creates a Person
class, a Location class and an Event class, and creates individuals of them as they
are needed. Each time a significant individual person, location or event occurs in
the video, Ian creates a corresponding interval, linking it to the individual.
During the subsequent viewings and analyses, the ontology is refined. Subclasses
are introduced (e.g. different ranks, roles and responsibilities for persons), and
individuals reassigned to them as appropriate. New individuals or base classes
may emerge as the understanding of the video material improves. Properties are
defined to denote the relationships between the various kinds of individuals.
URLs pointing to Ian’s web-based requirements database are entered as property
values of relevant intervals or concepts.

95

5.2.4 Video-based system evaluation
Hallvard has two relatively independent viewpoints on his video – phases and
activities – so he creates two ontologies. His phase ontology is a flat list of classes
(each representing a phase), while the activities ontology is a class hierarchy three
or four levels deep. He segments the video into phases by relating non-
overlapping intervals to his phase classes, and also logs the various activities that
occur at any time.
Having performed the annotation, Hallvard uses a simple analysis application to
compute statistics on the length, number and overlap of the intervals. He also uses
the annotations as a browsing index to access particularly interesting pieces of
video for review. A stratification-based visualisation tool allows him to arrange
the layers of intervals (a layer or strata being defined as the intervals related to a
particular concept) in various orders, hide uninteresting layers and visually
aggregate the layers belonging to subclasses of a given class.
This scenario has been performed in practice; the actual ontologies are described
in section 7.1.1.

5.2.5 Lecture database
To describe his lecture videos, Steinar creates a class hierarchy of topics and
activities. The top level of the ontology consists of three classes corresponding to
the main topics in the course – HTML, JSP (Java Server Pages) and Databases –
and three classes of “activities”: Examples (when Steinar is demonstrating
something), Questions (when students are asking questions) and Practical
Information (when Steinar is talking about non-curricular things). He could have
separated these classes into two ontologies, but he wants to keep things simple.
Steinar creates a subclass hierarchy to specify subtopics in great detail. Under
JSP, he defines JSP Tags, Variables, Types, Objects, Conditions and Program
Flow, to name a few. If, Loops and Method Calls are subclasses of Program Flow,
and For Loops and While Loops subclasses of Loops. Steinar doesn’t worry
overmuch about the semantics of the ontology structure; he is happy to create
Boolean Operators as a subclass of Conditions, though a Boolean operator is not a
kind of condition – Steinar just reasons that everything said about Boolean
Operators is also relevant to Conditions.
Likewise, Steinar doesn’t care much about the distinction between individuals and
classes either. His concepts don’t represent actual objects or different kinds of
things, just topics, and he has no plans to describe them with different properties.
He wishes to add references to the course literature for each topic (at least the
more specific ones), but a simple description property suffices for that.
Steinar constructs the ontology (or topic hierarchy) while logging his lectures. It
is difficult to specify everything in advance, but the annotation tool allows him to
add more topics as needed, and move them around in the hierarchy. The lectures
are relatively quick to log, since the intervals are fairly long, and he is seldom
talking about something relevant to more than four topics at the same time. He
describes a few intervals with comments, but mostly he doesn’t bother – there are

96

too many of them. Links to files containing example code is entered in a
“comment” property for the media resources; it’s too much work to link code
snippets to individual intervals.
Searching and browsing the database, Steinar’s students can review the topics
they find most difficult, or see an entire lecture they missed. Analysing the
annotations, they can also see what topics and subtopics Steinar spends most time
on – presumably, those will be important in the final exam.
This scenario has also been performed in practice; part of the rather sizeable
ontology is shown on page 158 in section 7.1.2.

5.2.6 Police investigation
Jostein needs to keep track of people and vehicles in his video material, so he
creates an ontology with two top-level classes: Person and Vehicle. As subclasses
of Vehicle, he creates classes representing different kinds of vehicles – Car,
Motorcycle, Motorhome and Truck. Further subclassing is conceivable – Car
could have subclasses like station wagon, sedan, coupe; or Volvo, Saab,
Mercedes; or green car, red car, white car – but Jostein prefers to keep the
ontology small, and instead use properties to describe the model, make and colour
of the cars.
Consequently, he defines several properties and property values in the ontology as
well. For the Vehicle class, he creates properties for license number, make and
colour. For the Car class, he makes a car type property, and a Car Type class to
use as the property’s range – that is, the class the car type property can get its
values from. Jostein creates a few instances of Car Type: Sedan, Coupe, Station
Wagon, SUV and Convertible for starters. More can be added later, if necessary.
By using the Car Type class as the property’s range instead of just using a text
field, Jostein avoids problems related to spelling or to using different words to
represent the same concept. This is an issue especially if several different persons
are describing cars: some might type “coupe” and others “coupé”; some might use
“SUV” and others “sport-utility vehicle”.
Annotating the video, Jostein creates individuals of Car as he sees cars in the
video. He describes them as completely as possible, and connects them to
temporal intervals in the videos. After some time, a sizable number of cars have
been created and Jostein looks through them (possibly using some analysis tool),
noting similarities. If two cars are described very similarly, Jostein reviews the
video material in order to establish whether they are identical. If that is indeed the
case, he merges the two cars (removes one of them and adds its properties and
relationships to the other), thus establishing the car’s movement in more detail.
Person types, person properties and appearances of people in the video are treated
similarly.

5.2.7 Discussion
The OntoLog model handles all the scenarios very well, avoiding most of the
problems existing systems have (described briefly in section 4.2). However, there

97

are some potential issues and shortcomings. One such issue concerns the
semantics of the classes and individuals, the relationships between them, and how
they are used in the scenarios. The most complex scenarios, Ian and Jostein, use
the class structure in the “proper” way – to represent classes of things that occur
in the video, and there is seldom any question about whether a given concept
should be a class, subclass or individual. However, the other scenarios have a
more haphazard and lenient approach to this modelling problem. Steinar is a good
example; he does not really care about the distinction between classes and
individuals, and uses the subclass relationship as a loosely defined subtopic link.
The question is: Does this cause any problems? It would seem that the answer is
no; as long as custom and resource-valued properties are not used extensively, the
main difference between classes and individuals is the individuals’ lack of
children, and the semantic difference between subclass-of and instance-of is
negligible in the scenarios we are discussing.
This, however, leads to a related problem: The atomicity or finality of the
individuals. Though it is not mentioned in any of the scenarios, a mechanism for
specifying a hierarchical relationship – a part-of relationship – between
individuals may be desirable. This might be useful in Ian’s scenario to specify
locations at various levels of detail, e.g. that the Field Hospital is part of the Main
Camp, which is part of the West Front. This could be done with custom
properties, but the semantics should preferably be known by the model, so that
(say) a query asking for footage of the West Front also retrieves intervals related
to Main Camp and Field Hospital. This should be studied further; it might not be
more complicated than including some canonical part-of property in the OntoLog
model, handled analogously with the “subClassOf” and “type” properties.

5.3 Relevant technologies
There are many technologies that are potentially relevant for implementing the
model presented above. This section presents the ones that are most important for
this thesis. In subsection 5.3.1, a handful of metadata frameworks are presented;
Dublin Core, MPEG-7, RDF and the ABC model, to be specific. Subsection 5.3.2
presents ontology languages and standards. (Ontologies in general are discussed
in appendix A.) Subsection 5.3.3 concludes by outlining temporal databases –
what they are, what they do, and how (or if) they can help with the task at hand.

5.3.1 Description schemes and metadata standards
There are many different standards for describing and indexing data. There is the
minimalist Dublin Core, the all-encompassing MPEG-7, as well as numerous
library systems, for instance the Dewey Decimal classification system and the
MARC metadata format. Computer systems used in medicine often utilise
ontologies developed to standardise the complex terminology, and museums
catalogue artefacts according to commonly agreed-upon classification schemes.
These standards are built with certain application types and domains in mind, and
may not be totally appropriate for other uses, though their wide acceptance makes
them desirable to use. This section describes two of the most well-known logical

98

models for metadata, Dublin Core and MPEG-7, as well as two metamodels, or
frameworks for metadata: the ABC model and the Resource Description
Framework (RDF).

Dublin Core
The Dublin Core (DC) Metadata Element Set (DCMES) [Dublin Core Metadata
Initiative 2003] is a set of fifteen descriptive elements with a specific semantic
meaning, used to describe resources of any kind. The Dublin Core Metadata
Initiative (DCMI [Dublin Core Metadata Initiative 2004]) is promoting and
refining this concept through a series of workshops and meetings.
The fifteen elements are Title, Creator, Subject, Description, Publisher,
Contributor, Date, Type, Format, Identifier, Source, Language, Relation,
Coverage and Rights. All the elements are optional, and may be repeated. The
data type is character string for all the elements.
Additionally, each element may be "qualified" to refine its meaning – either to
indicate that its value is formatted according to some specification, or drawn from
a controlled vocabulary, or to constrain the semantics of the term. For instance,
the "Subject" element may be qualified to indicate that its value is a Dewey
Decimal Classification code. "Relation" may be qualified as for instance
"Relation.isVersionOf", "Relation.hasPart", and "Relation.isReferencedBy" to
refine the semantics of the relationship. DCMI maintains a list of "approved"
qualifiers – it is permitted to create others, but interoperability will of course
suffer unless only the approved ones are used. See [DCMI Usage Board 2003] for
the list of approved qualifiers. The qualifiers are required to be "optional" in the
sense that they may be ignored without invalidating the information, though some
specificity is lost. This is referred to as the "Dumb-Down Principle", and is
important for the interoperability of DC tools and search engines.
DC descriptions are most often embedded in HTML pages, but may be written on
index cards, put into relational databases, or encoded with any kind of scheme.

MPEG-7
Dublin Core may be described as the least common denominator for describing
(media) data. The MPEG-7 standard [International Organization for
Standardization 2002] has in contrast placed itself on the other end of the
spectrum: It is an all-out attempt to model absolutely every conceivable kind of
metadata in a very detailed manner.
The MPEG-7 standard consists mainly of a logical model for media metadata,
specified in terms of XML. The model is far too big and complex to describe fully
here, but an outline of its main points follows.
The MPEG-7 model is basically hierarchical. At the bottom level, we find
descriptors, which are “atomic” properties of something, e.g. the name of a
person. Descriptors can be primitive (text strings, integers and such) or composite
(e.g. histograms or lists); the “atomic” notion just means that they do not contain
other descriptors; they form the leaves of the MPEG-7 description tree.

99

The nodes of the tree are called description schemes, or DSs. DSs can contain
descriptors and/or other DSs, and specify relationships between them. For
instance, Person could be a DS, containing a Name descriptor, as well as an
Organisation DS through an Affiliation relationship. The standard specifies a
horde of DSs and descriptors, and allows users to create their own DSs as well.
MPEG-7 defines its own description definition language (DDL), which is XML
Schema [World Wide Web Consortium 2001a] with a few extensions. MPEG-7
descriptions are realised as XML documents, though the standard also specifies a
binary encoding, if that is needed. The use of XML makes the descriptions
human-readable in theory, though they tend to be so verbose and complex that
this has little practical meaning.
MPEG-7 descriptions are meant to be able to cover all aspects of the media they
describe. The standard defines five viewpoints, each with their own DSs and
descriptors. These viewpoints are:

• Creation and production – covers for instance title, author,
classification (genre, rating) and background information.

• Usage – access rights, owners, copyright holders, financial information.

• Media – the format of the described media, including encoding, bit rate,
file format, amount of data and so on.

• Structural aspects – temporal segments (overlapping or not; possibly
hierarchical) and spatial regions in audiovisual media.

• Semantic aspects – descriptions of “semantic objects” – events, people
or concepts that are related to the described media.

The structural and semantic aspects are collectively called content description,
while the three others are called content management. This division is reflected in
the XML of an MPEG-7 description; these two groups (that is, their
corresponding XML tags, <ContentDescription> and <ContentManagement>) are
found at the top level of the MPEG-7 description tree. The tree can easily become
quite deep; it is not unusual to have over ten levels, even for fairly simple
descriptions. Figure 5.6 shows a fragment of an MPEG-7 description detailing the
author and creation time of an image. In a complete description, the <Creation>
tag would be on the fifth level of the tree, below <Mpeg7>, <ContentDescription>,
<MultimediaContent> and <Image> tags, or even deeper.
The content description part of MPEG-7 seems to fulfil many of the requirements
listed in section 4.2. It certainly has temporal and spatial expressiveness due to the
many very complex DSs that are defined for structural aspects. It is also possible
to create custom DSs, which makes for good semantic expressiveness, though it is
unclear if the power of the DSs are equivalent to a proper ontology system.
However, it suffers somewhat in flexibility – the model is more complex than is
needed for many purposes, and it seems difficult to simplify it – and the usability
may also be lacking.

100

<Creation>
 <Title xml:lang="en">Crushed Dreams</Title>
 <Creator>
 <Role href="">
 <Name xml:lang="en">Author</Name>
 </Role>
 <Agent xsi:type="PersonType">
 <Name>
 <GivenName xml:lang="en">Scott</GivenName>
 <FamilyName xml:lang="en">Adams</FamilyName>
 </Name>
 </Agent>
 </Creator>
 <CreationCoordinates>
 <CreationDate>
 <TimePoint>2001-10-09</TimePoint>
 </CreationDate>
 </CreationCoordinates>
</Creation>

Figure 5.6: Fragment of MPEG-7 description (from [Staff and Jødahl 2001])

The ABC model
The ABC model [Lagoze et al. 2000], [Lagoze and Hunter 2001] is yet another
approach for metadata modelling. It is presented as “an event-aware model for
metadata interoperability”, and has several interesting properties and goals.
A first point is its event-awareness – it realises that intellectual content evolves
over time. For instance, if a book is translated, it is still in some sense the same
book, though of course its language (and probably title) is changed. The author
(and many other properties) remains the same, while several new properties like
“translator” and “translation date” are added. This is represented in the ABC
model as two resources connected by a translation event, illustrated in Figure 5.7.
Events are treated like “first-class objects”, and can thus have properties – the
translator and translation date are connected to the translation event, not to the
translated book.

R2R1 E1

author
title

J.R.R. Tolkien

The Silmarillion

languagetitle

Silmarillion

type
date tra

nsla
tor

Nils Ivar Agøy

1997

Translation

Norwegian

language

English

Figure 5.7: Event-aware metadata

This scheme enables very precise descriptions of the history of a resource, and
how resources relate to each other. Each event can have several “inputs” and

101

“outputs”, and the events and resources are in fact described slightly more
detailed than in Figure 5.7; see [Lagoze and Hunter 2001] for the full details.
This is a fairly complex model (though its basic building blocks are simple). But
that is some of the point: It is supposed to be able to express both simple metadata
such as Dublin Core descriptions, and quite complex and detailed schemes such
as the INDECS E-Commerce Metadata Model [Rust and Bide 2000] and the
International Federation of Library Associations and Institutions’ FRBR
(Functional Requirements for Bibliographic Records) model [IFLA 1998]. In fact,
the “metadata interoperability” concept mentioned earlier is exactly this: The
ABC model can be used to translate between metadata standards. For instance, a
community can describe books and their translations according to the pattern
illustrated in Figure 5.6, and then use a process of flattening and term substitution
to translate this description to (say) Dublin Core. In the case of Figure 5.6, this
would entail treating the two books and the event as a single resource, figuring
out what properties are relevant according to the semantics of the event and the
purpose of the flattening, and mapping these properties to their Dublin Core
counterparts – thus ending up with a description along the lines of this:

Creator J.R.R. Tolkien

Title Silmarillion

Contributor Nils Ivar Agøy

Date 1997

Language Norwegian

A third point of the ABC model is that it is meant to be a starting point or
conceptual basis for communities wishing to develop their own metadata
schemes. It defines a great deal of concepts that are applicable for most domains –
events, resources, situations, agents, actions, roles and so on – and specifies how
they should be connected. It is then up to each community to decide how they
want to extend, realise and specialise the model – what kind of resources should
be described, what events should be explicitly recorded and what should be
ignored. For instance, a community of film historians may consider the insertion
of a scene into a movie a significant event, while a casual film collector would
probably not want to bother with that level of detail.
This is an interesting model, but it is perhaps most apt for heterogeneous digital
libraries and museums, which need to deal with the history of their items; with
versions, translations and editions; with different manifestations of the same work
(e.g. “Romeo and Juliet” as play, ballet, graphic novel or film) and so on. While
the model deals with temporal data, it does it in the same vein as the temporal
database systems described in section 5.4.3, and not in the sense that is the topic
of this thesis. It has been used for temporal annotation [Hunter 1998], but in a
rather simple manner (with respect to temporal annotation) – the media material
was just segmented and described with transcripts and properties. However, it was
demonstrated that ABC descriptions could be mapped to both ID3 tags, HTML

102

pages with metatags, Dublin Core, MPEG-7 and a relational database without
lossiness, ambiguity or misinterpretation.

RDF
The Resource Description Framework (RDF, [World Wide Web Consortium
2004a]) is a recommendation1 by the World Wide Web Consortium designed to
make the web machine-understandable through the application of metadata
standards. It is a foundation for processing metadata, and consists mainly of a
property-based conceptual model and XML serialisation syntax.
The basic concepts of RDF are resources and properties. A resource is something
that is described by an RDF expression, and is identified by an URI. A resource is
described by any number of named properties, each of which has a literal or
another resource as its value. Thus, the RDF descriptions form triplets called
statements, the parts of which are the subject (the resource that is being
described), the predicate (the named property) and the object (the value of the
property for the given subject. Another way to view the model is as a labelled,
directed graph2, with resources and literals as nodes, and properties as edges.
Figure 5.8 shows an example of an extremely simple RDF description, encoded in
XML. This encodes one single RDF statement: that
"http://www.idi.ntnu.no/~heggland" (a resource) has "owner" (a property) "Jon
Heggland" (a literal). The <rdf:RDF> element signifies that this is an RDF
document. The <rdf:Description> designates which resource is described with its
"about"-attribute. The element may contain any number of sub-elements, each
specifying a property-value-pair. In this case, the resource has a single property,
owner, which is specified as belonging to the namespace
http://www.idi.ntnu.no/~heggland/rdf/schema/jon, which (presumably) defines
the semantics of the term (and whatever restrictions may be placed on its value).

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:jon="http://www.idi.ntnu.no/~heggland/rdf/schema/jon">
 <rdf:Description about="http://www.idi.ntnu.no/~heggland">
 <jon:owner>Jon Heggland</jon:owner>
 </rdf:Description>
</rdf:RDF>

Figure 5.8: RDF example

RDF Schema (RDFS, [Brickley et al. 2004]) is an accompanying candidate
recommendation designed to help create RDF vocabularies. It provides a standard
mechanism for declaring properties and resource types, as well as their semantics,
using the RDF model. The schema description language is simply a set of
resources (including classes and properties) and constraints on their relationships.

1 A W3C “recommendation” is what most people would call a “standard”.
2 Actually a multigraph, since two nodes may be connected by more than one edge in the
same direction.

103

RDF resources may be denoted as belonging to a particular class, through the use
of the rdf:type property. Classes are resources, and may be subclasses of other
classes, using the rdfs:isSubclassOf property. This enables a hierarchical type
system similar to the type systems used in object-oriented languages such as Java.
The root class of the RDFS type system is rdfs:Resource. rdfs:Class and
rdfs:Property are two important subclasses of rdfs:Resource. Core properties
(that is, instances of the rdfs:Property class) include:

• rdf:type, which indicates that a resource is an instance of some class. A
resource may be an instance of more than one class.

• rdf:subClassOf, which indicates that a class is a subclass of another class
(its instances form a subset of the superclass's instances). As is usual in
such type systems, this is a transitive property. A class may be a subclass
of more than one class.

• rdf:subPropertyOf, which indicates that a property is a specialisation of
another. For example, the property father is a subproperty of the property
parent (being a father implies being a parent). A property may be a
subproperty of more than one property.

The type system is atypical in that it doesn't define classes in terms of what
properties they may have, but defines properties in terms of what classes they
may apply to1. This is done with the rdfs:domain and rdfs:range properties. For
instance, an author property can be defined as having domain Book and range
Person, meaning that books have persons as their authors (or, equivalently, that
authorship is a relation between books and persons). rdfs:range and rdfs:domain
are instances of rdfs:ConstraintProperty, a subclass of rdfs:Property that is used
to specify constraints. The domain of rdfs:range and rdfs:domain is
rdfs:Property, and their range is rdfs:Class.

5.3.2 Ontology standards and tools
It is assumed that the reader is familiar with the term ontology as used in
computer science; if not, a brief introduction can be found in appendix A. There
exist quite a few languages, standards and tools for defining and managing
ontologies; this subsection presents a few of the most common.

Open Knowledge Base Connectivity
Open Knowledge Base Connectivity (OKBC) [Chaudri et al. 1998] is an API
attempting to standardise access to knowledge representation systems. It is
developed jointly by the Artificial Intelligence Center of SRI International and the

1 This is a little imprecise. According to the RDF Schema recommendation [Brickley et al.
2004], rdfs:range and rdfs:domain do not specify constraints, but rather constitute a
type inference mechanism: If “Stephen Donaldson” is the object of a statement, and
author the predicate, and author has rdfs:range Person, you can infer that “Stephen
Donaldson” is an instance of Person. However, I consider its use as a constraint
mechanism more intuitive and useful for my purposes.

104

Knowledge Systems Laboratory of Stanford University. OKBC is designed to be
an abstraction layer isolating applications from the disparities of different
knowledge bases, and as such is very general, but it specifies a concrete, frame-
based knowledge model:

• A frame represents an entity in the domain of discourse.

• A frame has slots, which are attributes. Attribute values can be other
frames, or primitive types like strings and numbers.

• Each frame-slot-combination may have facets, which are constraints on
the slot values. A facet may for instance assert that the value of the
“parent” slot for a “cat” frame must also be a “cat” frame.

• A class is a set of entities. An entity in a class is an instance of the class.
Instances that are not classes are individuals.

• Class frames can have template slots (and corresponding facets) that
specify attributes and constraints for subclasses and instances of the class.
For instance, the class “woman” may have a “gender” template slot with
the value “female”; this ensures that all instances of “woman” have a slot
“gender” with the value “female”.

OKBC is complementary to the Knowledge Interchange Format (KIF)
[Genesereth and Fikes 1992], a declarative language developed to support
knowledge sharing. KIF is very expressive – more so than most actual knowledge
representation systems – but does not provide operations for knowledge-base
manipulation or query; hence, OKBC offers a manipulation and query API using
KIF as its syntax.

RDF Schema
RDF Schema (RDFS), described earlier, may be considered an ontology
language, albeit a simple one. It provides mechanisms for defining classes and
arranging them in a taxonomy, and it defines a few general classes:
rdfs:Resource, the most general class; rdfs:Class, the class of resources that are
classes; rdf:Property, the class of resources that are properties, among others.
Unlike frame-based systems, slots and facets (properties and property restrictions)
are first-class objects, and do not depend upon any particular class for their
existence. RDFS also specifies the mechanisms for defining properties, arranging
them in a hierarchy, and putting constraints on which classes they may be applied
to. Thus, RDFS has expressive power enough for simple ontologies, but lacks
some possibilities: for instance, to say that two classes are disjoint, or that a class
is defined as the set of resources with a particular value for a particular property,
or that a certain property is transitive, reflexive or symmetric.

Ontology Inference Layer
Ontology Inference Layer (OIL) [Bechhofer et al. 2000] is a standard proposal for
an ontology language based on OKBC and RDF. It tries to combine the power of
frame-based systems with description logics, where a class may be defined as a

105

restriction on the roles it may participate in a relation as. For instance, a
“carnivore” class may be defined as animals that eat other animals. If it is then
specified that (members of the class) “lion” eat (members of the class) “gazelle”
(a subclass of animals), it can be concluded that “lion” is a subclass of
“carnivore”. In contrast to OKBC/KIF, which aspires towards complete
expressive power, OIL tries to establish a relatively small, common and well-
defined set of constructs, to enable decidable and efficient reasoning support. OIL
extends RDFS, utilising its mechanisms for class definition and constraint
specification, and adding such things as cardinality, classes defined as the
intersection, union or complement of other classes, classes defined as restrictions
on property values (facet functionality, in other words) and transitive, symmetric
and inversely-related properties. OIL has evolved into DAML+OIL (DAML:
DARPA Agent Markup Language), which is the basis for the World Wide Web
Consortium standard OWL, which is under development.

Web Ontology Language
Web Ontology Language (OWL) [World Wide Web Consortium 2004b] comes in
three flavours: OWL Lite, OWL DL and OWL Full. OWL Lite is a subset of
OWL DL, which is again a subset of OWL Full.
OWL Lite is relatively restrictive, and is targeted at users who need “a
classification hierarchy and simple constraints. […] OWL Lite provides a quick
migration path for thesauri and other taxonomies”. In addition to RDFS
mechanisms, OWL Lite provides the ability to state that pairs of resources are
equivalent, identical or different; to state that properties have characteristics such
as transitive, symmetric and functional; to state restrictions on the values of a
property when applied to a class; to define a class as an intersection of other
classes; and some simple cardinality restrictions. Additionally, OWL Lite and
OWL DL require type separation – that is, a class may not also be an individual
and/or a property, and a property may take either an individual or a primitive
datatype as value, but not both.
OWL DL1 adds some functionality to OWL Lite: more constructs for defining
classes (as enumerations, or unions or complements of other classes, and arbitrary
combinations of these), and more powerful cardinality. It is more complex to
implement and reason about than OWL Lite, but has been designed with a firm
basis in description logics, so that it is guaranteed to be computationally complete
– all entailments are guaranteed to be computed, and all computations will finish
in finite time.
OWL Full removes the type separation restriction in DL and Lite, and thus makes
it possible to treat (say) a class as an individual, providing meta-modelling
functionality. This gives maximum expressivity, but loses the computational
guarantee. OWL Full is a true superset of RDFS – it defines and assigns meaning
to certain classes and properties, but does not introduce any restrictions or change

1 DL stands for Description Logics.

106

the semantics on RDFS mechanisms. In contrast, only a subset of RDFS
ontologies are OWL DL and OWL Lite ontologies.

Jena
Jena1 is a Java API for manipulating RDF models, developed by HP Labs. It
provides statement-centric methods for manipulating RDF models as sets of RDF
triples as well as resource-centric methods for manipulating RDF models as sets
of resources with properties. It offers import and export of RDF models in XML,
N3 and N-triple formats, and supports persistent storage in SQL databases. It also
supports RDQL, a SQL-like query language for RDF data, and includes a
DAML+OIL layer that facilitates construction and manipulation of DAML+OIL
ontologies. This only works on in-memory models, though; not on models backed
by a database.
The upcoming release, Jena 2, removes this limitation, and has by and large
greatly improved ontology support. It provides a unified API for the RDF-based
ontology languages (RDFS, DAML+OIL and OWL) with configurable (and
pluggable) inference support. Application programmers will be able to use Jena as
a deductive database, asserting ground truths and axioms and letting Jena figure
out the entailments in a transparent manner.

Sesame
Sesame2, developed by Aidministrator Nederland, is a RDF storage facility and
query engine. Like Jena, it can import and export RDF models in XML, N-triples
and N3 (export only), and manipulate them through a Java API. It supports RDQL
and RQL (another SQL-like RDF query language) queries, and offers a web-
based RDF browsing interface. Unlike Jena, it doesn’t provide any ontology or
inference support (beyond the capabilities of RQL, which knows about the
semantics of RDFS classes and properties), but this may supposedly be added
easily as separate plug-ins due to Sesame’s modular architecture.

5.3.3 Temporal database management systems
A common (though loose) definition of a temporal database is “a database that
contains historical data” [Date 2004], in contrast to databases that contain only
current data. Conventional databases3 represent currently true propositions about
the real world as tuples in relations, while temporal databases also represent
propositions that have been true (or even will be true), together with the time
intervals in which they are (or were, or will be) valid. One common way of
looking at it (or even implementing it) is as a regular database relation variable

1 http://jena.sourceforge.net/
2 http://sesame.aidministrator.nl/
3 I will limit this discussion to relational databases, as the relational model is by far the
most formal, well-defined and well-understood data model.

107

(table) augmented with extra attributes for time information. Consider an
employee database storing employee names, positions and salaries:

Name Position Salary From To

Jon Research Fellow 23 000 Jul 2002 Jun 2003

Jon Research Fellow 24 000 Jul 2003 Dec 2003

Jon Lecturer 30 000 Jan 2004 NOW

A conventional relation would just contain the “currently valid” tuple (i.e. the one
at the bottom, in this example), while the temporal relation contains the entire
employee history, with from and to dates for each tuple. Thus, it is possible to ask
what an employee earned two years ago, or to list the position history for
someone.
This is of course achievable within the relational model; the task of temporal
database management systems is mainly to make it convenient to do so. Temporal
relation variables need a lot of rather complicated constraints in order to
guarantee their correctness, and temporal queries are correspondingly fiddly to
formulate correctly. For instance, the temporal DBMS needs to make sure that the
temporal information represented by the From and To attributes do not cause the
relation to contain redundant or contradictory information, and a query to find the
position history of employee Jon (that is, ignoring the salary) would need to
“coalesce” or “pack” (the terminology is not firmly established) the two
“Research Fellow” tuples into a single tuple, with a time interval of Jul 2002 –
Dec 2003. However, as Date shows [Date 2004], it can be done with a relatively
simple generalisation of the relational operators and a set of shorthands for
temporal constraints and queries.
The TSQL2 temporal query language [Snodgrass 1995] is essentially an
extension of the SQL data definition and data manipulation languages, where
tables are defined with additional features:

• Temporal tables can be “valid time” tables or “transaction time” tables, or
both. Transaction time tables record the times when a row was inserted
(“updates” creates new rows, and rows are never deleted), while valid
time tables uses user-supplied time information.

• Valid time tables can be “event” tables, meaning that each row has an
associated timestamp (or “time point”); alternatively, they can be “state”
tables, meaning that each row has a time interval (which of course can be
thought of as consisting of two timestamps), as in the example above.

“Conventional” non-temporal tables are still supported.
Temporal databases are evidently not directly applicable in the context of
temporal annotations. We are not really interested in historical data, but rather
information related to temporal intervals on a timeline that is private to each
video, and has no clear relationship to “real-world” time. However, temporal

108

DBMSs may still do some good: TSQL2, for instance, defines a PERIOD data type1
that represents a temporal interval with start and end times, and provides
operators for working with it. There is no reason why non-temporal DBMSs could
not provide such a data type, however.
In any case, temporal DBMSs have not matured beyond the prototype stage. The
few implementations that exist (e.g. Tiger [Bukauskas 2003]) are usually
implemented as a layer on top of a SQL DBMS.

5.4 Technology choices
This section presents my technology choices for the OntoLog model. While this
may seem an implementation issue better suited to a later chapter, deciding which
(if any) of the metamodels presented in section 5.3.1 is actually more of a
conceptual design choice than a physical implementation decision. Hence, it is
presented here. First, I discuss the choice of RDF and RDFS as the basic
technologies to build an OntoLog system on, and the consequences of this choice.
This is followed by a discussion on MPEG-7 and temporal databases, two
technologies found inappropriate for this endeavour.

5.4.1 RDF
The Resource Description Framework (RDF) [World Wide Web Consortium
2004a] is a good candidate for the implementation of an OntoLog system. Indeed,
the OntoLog model was inspired by RDF, though the techniques of describing
things with user-defined properties, creating ontologies of resources and
organising all this in a semantic network [Tsichritzis and Lochovsky 1982] are
not ideas exclusive to RDF.
RDF provides a lot of advantages for implementing an OntoLog system:

• Its fundamental model makes it very extendable. Not only is it simple to
add new properties, classes and objects; it is easy to build upon existing
data structures and schemas in a backwards-compatible way, without
needing to edit that which is built upon.

• It is simple enough that users without backgrounds in computer science
may be able to understand it. Though complexity can be hidden by well-
designed user interfaces, it is advantageous that the user has a clear model
of what goes on “behind the scenes”.

• It provides default mechanisms for handling type systems and ontologies.
Additionally, the structures used for these purposes are the same as what
is used for any other kind of information stored in RDF. This makes the
handling of RDF models very uniform and orthogonal.

1 Note that the INTERVAL datatype provided by SQL does not in fact represent an interval
in the normal sense of the word, but rather a duration, e.g. 3 days.

109

• Since it is a popular standard, ontologies and ontology tools are publicly
available on the web for use and reuse.

Several of the elements of the OntoLog model in Figure 5.1 have direct
counterparts in RDF, namely class, type and individual. The other classes and
associations are readily implemented as RDF classes and properties. The from and
to attributes will also have to be properties, with literal values. RDF (or to be
precise, RDFS) provides standard functionality for labelling and describing
resources (the properties label and comment). In addition to these, I intend to
provide the Dublin Core properties as default properties for the users to describe
their resources with, if they do not wish to create their own.
RDF resources are identified by URI; this provides a simple mechanism for
linking the actual media data to the MediaResource instances: The URI of each
MediaResource resource is an URL pointing to the media data.
RDF is not without its drawbacks. Due to the way absolutely everything is stored
as subject-predicate-object triplets, even simple queries will produce a lot of joins
if the data is stored in a relational database in the “natural way” used by e.g. Jena.
A query to find all the video intervals a certain concept is related to, will involve
joining the statement relation to itself four times. This may be the price to pay for
flexibility.
A more efficient implementation could perhaps be achieved through the use of an
object-oriented database system (OODBMS). The core classes like Interval and
MediaResource could be modelled with explicit attributes, instead of relying on
the more general but less efficient RDF statement mechanism. However, this
would sacrifice some flexibility, usability and interoperability. For technical
reasons, it is in general harder to modify the schemas in OODBMSs on the fly
than it is in RDF. OODB schema design is also a task normally given to DB
experts, and the typical tools and user interfaces designed for it reflect this.

5.4.2 RDF Schema
RDF Schema (RDFS, [Brickley et al. 2004]) is chosen as the ontology language
for my implementation of an OntoLog system. An RDF-based language is a
natural choice; however, the semantics provided by RDFS are rather crude and
simple compared to other ontology languages. Luckily, most of these others are
extensions of RDFS. DAML, OIL, DAML+OIL [Bechhofer et al. 2000] and the
emerging OWL standard [World Wide Web Consortium 2004b] are all either
based on RDFS, or easily translated to RDFS, and all are easily represented in
RDF.
RDFS provides the most fundamental elements of ontology languages – the
notions of class, subclass and instance – and this is sufficient for many annotation
purposes. Languages built on RDFS are easily handled in the OntoLog model,
just like any other model extension. Tools and user interfaces take advantage of
being aware of significant semantics, though. For instance, alternative methods
for defining classes as (say) complements or intersections of other classes may be
very useful in some applications. However, I will stay with RDFS for simplicity

110

reasons (and for tool support during coding) and leave the study of OntoLog
models with more powerful ontology languages to future research.

5.4.3 MPEG-7
MPEG-7 may seem to have covered everything concerning the description of
multimedia data, so creating yet another annotation model could be considered a
reinvention of the wheel. However, MPEG-7 has several properties that in my
opinion make it less than perfectly suitable for the purpose at hand.
First of all, it is a very big standard, and only a relatively small part of it deals
with semantic annotation, which is the focus of this thesis. Most of the standard is
concerned with low-level features of the media, with rights and ownership, and
with bibliographic data focused towards the TV broadcasting domain.
Secondly, it is a very complex standard. Weeks (or perhaps months) of study are
needed to get a proper overview of it, and even simple descriptions need a great
deal of syntax and structure. Tools and user interfaces can hide this complexity
from the end users, but only to a certain degree.
Thirdly, the XML notation specified by the standard is cumbersome to manage. It
is very verbose, and arranges the data in a hierarchy that is in my opinion
unsuitable for the kind of temporal annotation I wish to support. For instance, to
describe an interval semantically, the interval must be defined in the “structural”
branch of the MPEG-7 tree, and the semantic descriptions in the “semantic”
branch – conceptually close, but syntactically extremely disjoint! In fact, it is very
likely that an MPEG-7 application would benefit from managing the data in
internal structures that correspond better to the purpose of the application, and just
use the MPEG-7 XML format for interchange. After all, XML is for data
interchange, not data management – hierarchical databases were rightfully
abandoned decades ago.
But in that case, I find it not really worthwhile to consider MPEG-7 much within
the context of this thesis. When (or if) MPEG-7 gains popularity and tool support,
it should be a relatively simple matter to create an adapter that transforms the
OntoLog model into MPEG-7, thus gaining the benefits of standards
compatibility.

5.4.4 Temporal DBMSs
A temporal database management system (DBMS) is one with explicit support for
time (beyond simple DATE and TIME datatypes). Since we are dealing with temporal
data here, it might make sense to consider this while designing and implementing
the model. However (as is discussed in section 5.3.3), what is usually understood
by the term “temporal data” is historical data – e.g. in what department did
employee X work in February 2002? – and that does not match very well with
what video annotation systems want to do.
It might be possible to force a fit: One could possibly say that a tuple consisting
of a MediaResource and a Concept has a “valid interval” corresponding to the
Interval attributes in the OntoLog model. However, that seems a little construed

111

and awkward. For one thing, “valid intervals” in temporal DBMSs are implicitly
assumed to refer to “real time” – the single, universal timeline ranging from the
Big Bang to the end of the universe – while in the temporal annotation domain,
we would need the intervals to refer to playback time, which is separate and
different for each video, and has no simple mapping to real time. We have little
use for dates, for instance; few videos are longer than a day, and even if they
were, it would make no sense to connect a Concept to (say) the interval 2004-04-
16T16:33:00–2004-04-16T16:35:00 – the intervals must be relative to the
beginning of the video, which of course corresponds to no single instant in real
time. TSQL2 [Snodgrass 1995] provides a mechanism for defining custom
calendars, but it is not clear if this facility can be used to implement proper
playback time intervals, or whether it just provides an alternative view of real
time.
Temporal DBMSs typically also provide a proper interval data type1 (in TSQL2
called PERIOD), with operators for temporal algebra and comparison. But again, it
seems that such intervals (at least in TSQL2) are assumed to refer to real time,
and include a date – thus making them awkward to use for our purposes. For these
reasons, I choose not to consider temporal DBMSs further as an implementation
strategy for an OntoLog system.

5.5 Summary
In this chapter, I have presented the OntoLog model for semantic video content:

• Its requirements and design goals – flexibility, extensibility and
simplicity.

• How it can be used in practice – examples of its application in realistic
scenarios.

• Its construction and properties – based around RDF, with RDFS
ontologies as annotation strata.

However, that is but a part of the design of a usable system for video annotation;
equally important is the design of tools and user interfaces for manipulation of the
model. That is the topic for the next chapter.

1 Recall that SQL’s INTERVAL might more properly be called DURATION.

112

113

6 Utilising the OntoLog model
As mentioned in chapter 2, an annotation model in isolation is little more than an
academic exercise. It is hard to fully envision (not to mention evaluate) the power
and capabilities of the OntoLog model without some tools and user interfaces to
present a concrete implementation of it. More importantly, there may be great
merit in exploring the possibilities for novel and interesting ways of interacting
with video annotations, enabled by the use of ontology-based stratification and
RDF. Hence, this chapter investigates how the OntoLog model may be exploited
fully; how the OntoLog model’s novel concepts impact the design of tools and
user interfaces. The chapter is organised according to the various tools that have
been designed and implemented, culminating in the novel information gathering
application Savanta.
A general discussion on the impact of ontologies on tools for temporal annotation
is given in section 6.1. Section 6.2 presents OntoLog, the application the whole
system is named after, which provides functionality for creating the metadata in
the first place, as well as intra-video browsing and presentation, and simple
analysis. This is followed by a discussion about automatic and semi-automatic
generation of annotations, and how this can be integrated into the OntoLog
system and the OntoLog application, in section 6.3. Section 6.4 presents a
possible extension to the OntoLog model and application, enabling spatial
annotations.
Section 6.5 presents OntoLog Crawler, a web-based searching and browsing tool
for both OntoLog data and other kinds of RDF data. Ana, a tool for more
advanced temporal analysis of OntoLog annotations is described in section 6.6.
These two tools are presented rather briefly, because they are early explorations
of ideas more thoroughly treated in the most interesting application in this
chapter: Savanta.
Section 6.7 presents Savanta, an application embodying a novel paradigm for
information gathering in temporal annotation databases. It integrates search,
analysis, visualisation and navigation seamlessly, building on the browsing ideas
of the OntoLog application and OntoLog Crawler, the analysis and algebra
capabilities of Ana, and modern interactivity paradigms. The two subsequent
sections present alternative search tools, Savantoogle in 6.8 and Forms in 6.9,
created in order to perform a comparative evaluation of Savanta. Section 6.10
summarises the chapter.
A note on naming: I use the term “the OntoLog system” to refer to the entire
system I describe in this thesis, consisting of “the OntoLog model” – the
conceptual model underlying the system – and the various tools built around it:
“the OntoLog application” (sometimes called just OntoLog for brevity, though
this term is most often used as a synonym for “the OntoLog system”), Savanta,
OntoLog Crawler and others described in this chapter. Finding good names is
difficult; it has been said that data modelling is mainly a matter of finding
agreeable names for things [Carlis and Maguire 2001]. I hope the prolific use of

114

the OntoLog name for several different (though related) things does not cause
confusion.

6.1 The impact of ontologies
The decision to use ontologies has clear implications for the design of the tools
supporting the OntoLog model. For one thing, an interface for constructing and
editing ontologies is needed. However, I choose to focus more on another point:
the possibilities and complexity introduced by the explicit semantic relations
between the concepts of an ontology. Take for instance the lecture scenario from
sections 4.1.5 and 5.2.5: Say that a particular interval A is related to the
programming language concept “for loops”. In the ontology, “for loops” is a
subclass of “loops”, which in its turn is a subclass of “flow control” (and so on).
If this is to be of any use, the tools and user interfaces must be able to reason
about this: to infer that when the interval is related to “for loops”, it is also
implicitly related to “loops”, and thus also to “flow control” and so on, up though
the class hierarchy. The same goes for when the interval is related to an
individual: it is implicitly also related to the class(es) the individual belongs to.
This reasoning or inference mechanism, simple as it may seem, is the main reason
for using ontologies. It makes it possible to annotate video with very detailed
concepts, without having to worry about being too specific: you get the more
coarse-grained annotations “for free” once you have organised the concepts in
generalisation-specialisation hierarchies. Users performing a search after “flow
control” will get interval A as a result, even though the annotator did not
explicitly connect the interval directly to the “flow control” concept. In other
words, the annotations can be created at one level of detail, and used at other (less
specific) levels of detail.
Another reason for using ontologies is that it enables the users to describe the
objects and concepts relevant to their video material with arbitrary level of detail,
from simple topic lists to complex networks of classes and individuals, described
according to their type.
Of course, the tools and user interfaces must be designed to take advantage of
this. Search and query tools must be programmed to take advantage of the
ontology structure. Presentation tools (for editing, browsing and/or analysis) must
provide the user with controls for moving between different levels of detail, and
for navigating through the ontology. Displaying the structure of an ontology in
conjunction with using its concepts as annotation strata is both a challenge and an
opportunity.
In the remainder of this chapter, several tools and user interfaces are presented,
elaborating the impact of ontologies and RDF on the production and use of
semantic temporal content annotations.

6.2 OntoLog – annotation editor
OntoLog is the “main application” of the OntoLog system, in that it is the
producer and editor of the annotations and ontologies. It provides an ontology

115

editor, an interface for describing media resources with non-temporal metadata,
and an interface for manual annotation/logging and simple analysis of video
content. An early version of OntoLog is also described in [Heggland 2002], which
is included as appendix C.

6.2.1 Objectives and requirements
The fundamental objective of the OntoLog application is to enable the creation of
ontologies, descriptions and annotations. Hence, it needs an ontology editor, as
well as interfaces for creating and organising projects and describing media
resources.
That is rather trivial; what is more interesting is the need for a logging interface, a
mechanism for defining intervals on the media resources, and relating them to
concepts in the ontologies. As discussed in chapter 3.3, quite a few approaches to
this kind of task have been tried, but not with ontology-based stratification, which
may provide some novel possibilities.
An interface for creating temporal annotations must of course also provide the
means for editing them. This requires a mechanism for viewing and selecting
them; a “configurable visualisation of the intervals and the ontology” as specified
by the Hallvard scenario in sections 4.1.4 and 5.2.4 is my starting point for
designing this. This visualisation should take advantage of the ontology
semantics, to alleviate the topical granularity problem discussed in section 4.2.3.
In other words, it should provide a configurable level of detail, as suggested in
section 5.1.2, which also will facilitate better overviews for skimming, browsing
and navigation.
Other more trivial objectives include a tight integration between the logging
interface and the ontology editor, so that the ontology can be constructed and
changed during logging, as required by most of the scenarios. It is also an obvious
requirement that the logger interface should be convenient for navigating the
media material, based on the annotations or just the timeline.

6.2.2 Design and implementation
OntoLog’s logging interface is shown in Figure 6.1. The left panel contains the
ontologies the user is working with. The classes and individuals are organised in
directed acyclic graphs (DAGs), since the RDF Schema standard supports
multiple inheritance and typing1. However, the ontologies are presented as trees,
for compactness and usability reasons. The right panel displays a horizontal
timeline with the annotation strata corresponding to each concept in the ontology,
as described in section 5.1.2. The timeline – two minutes and thirteen seconds
long in this example – goes from left to right in this panel, with a vertical red line

1 Cycles are allowed in the RDF Schema recommendation – the semantics are that if two
classes are subclasses of each other, they are the same and equivalent – but OntoLog does
not support this, for simplicity.

116

indicating the current media position. (The actual video is shown in a separate
window.)
Each stratum consists of a series of interval lines along the time axis, indicating
where in the media resource the concept is relevant or present. The strata
corresponding to collapsed concepts (concepts with subconcepts that are not
currently displayed in the tree) are shown as of lines of varying thickness. This is
because they represent an aggregation of the strata beneath them in the hierarchy.
This is somewhat akin to the merging and disaggregating functionality of OVID
[Oomoto and Tanaka 1993], but OntoLog does it with concepts instead of scenes,
and utilises the defined semantics of concept relationships. Thicker line segments
indicate that several subconcepts have intervals that overlap temporally. For
instance, the Female class in the “Chorus parts” ontology shown to the left in
Figure 6.1 have two subclasses, Soprano and Alto (visible in Figure 6.2). The
media in this case is a concert recording of Antonio Vivaldi’s “Domine Fili
Unigenite”1 and we can see from the annotations that the two female voices are
singing for about two thirds of this song – approximately one third together, and
one third separately. The line thickness is directly proportional to the number of
concepts it represents. Figure 6.1 only shows interval lines of thickness 1 and 2; a
greater variation can be found in the screenshots in the section about Savanta
(section 6.7).

Figure 6.1: OntoLog’s logging interface

This visualisation also has a superficial resemblance to LifeLines [Plaisant et al.
1996], which also uses lines of varying thickness, but LifeLines uses the thickness
to indicate a time-varying aspect of some interval (e.g. amount of medication

1 From his work “Gloria” for choir and orchestra.

117

administered to a patient in a medical record), while OntoLog uses it for
aggregation; OntoLog also has a more general aggregation functionality that is
usable for quite deep hierarchies, while LifeLines corresponding summarisation
technique seems to need more customisation and effort to be effective.
The Logger panel has two modes, browsing and logging. In logging mode, each
concept in the ontologies can be clicked on and off (using the mouse, or with
keyboard shortcuts) during playback or media navigation, thus creating intervals
linked to the concepts. Several concepts can be “active” at once – that is, there is
no limit on the number of intervals that may be under creation at any given time.
Thus, a skilled logger can log overlapping occurrences of concepts or different
aspects of the video material simultaneously.
The ontology can be reorganised, edited and extended during logging. OntoLog
provides VCR-like controls for directing media playback, and annotation intervals
can be edited by direct manipulation, and described with properties.
The logger panel also provides a SMIL export function. This produces a SMIL
file [Rutledge 2001], [World Wide Web Consortium 2001b] specifying a “virtual
edit” of the selected media resource, namely a concatenation of the intervals
related to the currently selected concept. Thus, you could very easily create a
SMIL version of the “Domine Fili Unigenite” song with just the parts where the
female voices are singing.
The ontology editor is shown in Figure 6.2. It provides mechanisms for definition
and description of concepts, and import/export of RDF files in XML format. The
interfaces for describing media resources, projects and properties look quite
similar; the interested reader is referred to the OntoLog home page (contact the
author).

Figure 6.2: OntoLog's ontology editor

118

6.2.3 Discussion
The logging interface has been iteratively developed in close cooperation with
actual users. It is well-liked and efficient; informal studies based on the Hallvard
scenario (sections 4.1.4 and 5.2.4) have shown that with a reasonably small
number of relevant concepts, only one or a few passes through the clip is
necessary for an adequate set of annotations.
It also constitutes a powerful browsing interface. The hierarchical aggregation of
the strata intervals provides a visual index and summary of the annotations – with
most or all of the concepts collapsed, the display shows how “thickly” the video is
annotated, and which concept subtrees are most important. By expanding and
collapsing subtrees, users can concentrate on the concepts that are most relevant
to the task at hand, and hide non-relevant information.
The main drawback of the logging interface as a browsing tool is that it only
shows one video at a time. It is very useful for intra-video browsing, but not for
inter-video browsing. It also offers no search, query or filtering functions.
However, these shortcomings are addressed later in this chapter.

6.3 Improving annotation production
The OntoLog application provides a user interface for creating annotations
manually. This is time-consuming work, and systems relying on it may be
criticised as being only of academic interest because of this – who can afford to
spend so much time describing video? There are several answers to this critique:

• Automatic annotation based on techniques such as digital image
processing and speech recognition [Chua et al. 2002] , [Oard 1997], [Le
Saux et al. 2003] works to a certain degree, but are often a bit limited,
domain dependent, and have a hard time capturing high-level semantics.

• Research focusing on conceptual modelling, presentation and retrieval
does not need to care too much about how the data are produced to begin
with – that is just a single (and fairly independent) part of the system as a
whole, and a completely different research area to boot.

• Some people are in fact willing to spend a lot of time annotating and
indexing video; many are doing it by hand on paper, so any kind of
computer assistance is probably helpful.

• It is a moot point: User interfaces for manual annotations are in any case
useful for augmenting, reviewing and polishing automatically created
annotations.

However, it is obvious that techniques for automatic or semi-automatic
annotation, or for easing and speeding up the manual annotation process, would
be very useful for OntoLog.

119

6.3.1 Visualisation for prediction, browsing and navigation
A study of possible techniques for improving annotation production in OntoLog is
described in [Stengel 2003]. This project resulted among other things in a
prototype implementation of waveform visualisation and video thumbnails in the
logger interface, as shown in Figure 6.3, as well as other user interface
improvements. This helps a logger anticipate changes in the video material, and
thus log more efficiently and accurately. It also provides structure-based overview
and browsing facilities.

Figure 6.3: OntoLog Logger panel with waveform and thumbnail display

A possible improvement of the thumbnail scheme would be to include a
“graphical scrollbar” or video slice bitmap, like the one presented in [Liou et al.
1999a]. This technique, illustrated in Figure 6.4, consists of copying a row and/or
column of pixels from each frame of video, and concatenating them to create a
long bitmap representing the video as a pattern of colours. This kind of
visualisation has several nice properties: it is compact, has a high temporal
resolution (each frame is represented), it shows colour distribution and aspects of
the frame content (if you know how to look), and shot boundaries are easily
identifiable as discontinuities in the bitmap. This would alleviate the resolution
problem of the thumbnails somewhat, and would make it easier to anticipate
scene changes.

120

Figure 6.4: Video slice bitmap (adapted from [Liou et al. 1999a])

6.3.2 Taking advantage of automatic segmentation
Algorithms for automatic segmentation of video into shots and audio into phrases
are relatively common and well understood ([Zhang et al. 1993], [Arman et al.
1994b], [Boreczky and Rowe 1996], [Arons 1997], [Kimber et al. 1995]).
This can be taken advantage of in OntoLog. Granted, such techniques as
referenced above are based on the structure or syntax of the media material rather
than on its semantics, which is OntoLog’s focus. However, the physical structure
of video is often directly related to its semantics: scene changes often signify
changes of topic, and shots may correspond to changes of speakers in a
discussion. In any case, some user interaction is needed, since it is not likely that
a straight segmentation of the media material is sufficient annotation.
One problem with such segmentation is that the video and audio segmentation do
not necessarily match. For instance, a news anchor may keep talking
uninterrupted while the scene changes from studio to location, or he/she may
pause and change the topic without any corresponding shot boundary. This
complicates the segmentation – should we put segment boundaries only at instants
where the video and audio “are in agreement”? Or at any time when there is a
boundary in either the audio or the video? Fortunately, the OntoLog model
permits such different viewpoints to coexist and enrich each other.
Figure 6.5 shows how automatic segmentation could be integrated into OntoLog.
(This was not actually implemented, due to time constraints, and this thesis’s
focus on modelling and user interface issues as opposed to automatic video/audio
classification.) The user could select “Perform Segmentation” from the Tools
menu, whereupon OntoLog would add the “Automatic segmentation” ontology to
the project, and perform the segmentation by adding intervals to the leaf concepts
in the ontology. Since OntoLog is interval-oriented, it could use alternating
intervals of “Video segment A” and “Video segment B” to represent the shots in
the video; audio segments are treated similarly.
With this segmentation as a starting point, the video could be annotated by
dragging and copying intervals from the segmentation ontology to a semantic
ontology. It is likely that many of the intervals related the semantic ontology will
have endpoints that correspond to those of the segmentation intervals – audio
segments will probably be strongly correlated to speakers in a talk show, for
instance. The segmentation might be too fine-grained, but OntoLog provides
quick and simple mechanisms for joining intervals. In this way, the manual
annotation process is reduced from watching the video continuously, turning
concepts on and off, to skipping from segment to segment, determining what

121

semantic concept(s) it belongs to, and moving it there. This should greatly
diminish the amount of time and effort needed, as well as make the annotations
more accurate.

Figure 6.5: Automatic segmentation in OntoLog

6.3.3 Advanced analysis for classification and recognition
A natural extension of the functionality described in the previous section would
be to have the system assign the segments to semantic concepts. This is
significantly harder, since it requires the computer to understand, at some level,
what it is “seeing” or “hearing”. However, reasonably successful systems for
video and audio classification have been made [Kazman et al. 1996], [Slaughter et
al. 1998], [Foote et al. 1998], [Lu 2001], [Chua et al. 2002], [Le Saux et al. 2003].
It is for instance possible for a computer, if the signal quality is good, to
determine whether an audio signal is music or speech, whether the speaker is a
male, female or child, and (with sufficient training) to determine the identity of
the speaker. Likewise, video classification algorithms can distinguish between
outdoor and indoor scenes, between cityscapes and nature; they can recognise
talking-head news, or different kinds of sports based on movement patterns,
colours and line patterns on the ground; and they can recognise the faces of
individual people.
This could be utilised by OntoLog: Depending on the algorithm, an ontology like
the “Automatic classification” ontology in Figure 6.6 could be introduced in
OntoLog, and intervals created and assigned to its concepts automatically. The
hierarchical organisation and semantics of OntoLog’s ontologies is eminently
suited for this: Classification algorithms may have varying degrees of success and
confidence, for if (for instance) a voice recogniser fails to identify a particular
voice segment, it may at least be able to determine if it is a female or male voice,

122

and relate the corresponding interval to (say) the “Male speech” class instead of
an individual of that class. Thus, a simple and natural fallback mechanism is
provided.
The classification produced by such a system might not exactly match the needs
of the annotator, but it would be very simple and fast to move the intervals to the
desired ontology, or perhaps just edit and extend the generated classification
ontology.
For specialised domains, e.g. news video, even more specific automatic
annotation is conceivable. Text appearing on screen – headlines and names –
could be recognised and interpreted, making it possible to create concepts for
individual news items and people. It might be possible to recognise jingles and
logos, and separate a news broadcast into domestic, foreign and economic news,
commercial breaks, sports and weather forecasts [Chua et al. 2002]. However,
such algorithms would have to be tailored and tuned to the desired domain, and
would probably not be very useful outside their speciality.

Figure 6.6: Automatic classification in OntoLog

6.3.4 Summary
Manual annotation with OntoLog (as with other tools, for that matter) is time-
consuming, but can be made easier and faster by relatively simple means. Well-
tried techniques for video and audio segmentation and classification can be
integrated into OntoLog’s Logger in a non-intrusive and natural way, without
changing the model or affecting other parts of the system. The ontology-based
annotation model provides a flexible, adaptable and forgiving framework for
integrating the results of multiple analysis techniques.

123

6.4 Spatial extension
Spatial annotations in video databases are not very widespread. As mentioned
earlier, they are not as necessary as temporal annotations, since spatial/visual
information is much easier and faster to assimilate than temporal information.
Nevertheless, we have performed a study into spatial extensions for the OntoLog
model as a Master thesis. A full account of the project is given in [Litsheim
2003]; it is summarised in this section. A comprehensive treatment of spatial
annotation is beyond the scope of this thesis, but the following discussion gives a
rough introduction, and a suggestion as to how a fairly simple yet expressive
spatial expressiveness may be incorporated into the OntoLog model.

6.4.1 Objectives and requirements
A study into the state of the art in spatial annotation showed that this is a
relatively immature research subject. As indicated in chapter 3, very few video
database systems address the subject at all. In addition to BilVideo ([Dönderler et
al. 2003], section 3.2.10), VideoQ [Chang et al. 1997] is such a system; however,
it focuses on visual, low-level features – colours, textures, shapes, motion – and
uses just a simple keyword scheme for high-level annotations. RAVEN
[Schoepflin et al. 2001] and VideoTalk [Liou et al. 1999b] are little more than test
rigs for automatic object tracking techniques, and have no query functionality.
VideoAnnEx [IBM Research 2002], IBM’s MPEG-7-based video annotator, has
spatial capabilities, but uses a fixed, shot-based segmented annotation scheme and
static regions. Its conceptual model is very plain and simple, and it offers neither
querying nor playback capabilities geared towards spatial annotations.
The state of the art indicates that spatial annotations are useful for two purposes:
For query/retrieval, and for “enhanced playback” – visual indication of salient
objects during the actual playback of the video. All the systems mentioned above
support one or the other (more or less), but none support both. Another finding is
that spatial annotation is a time-consuming and tedious process, even when (semi-
) automatic techniques are employed. The segmentation and tracking algorithms
of RAVEN need about two seconds per video frame. Additionally, a significant
amount of user input is needed to adjust the bounding shapes and help the system
in ambiguous cases, and this requires some familiarity with how segmentation
and tracking algorithms work.
We established the following loose requirements for a spatial extension to the
OntoLog model:

• The model should support dynamic bounding shapes connected to
concepts in an ontology, analogous to the non-spatial annotations in
OntoLog. In this way, a definite connection between objects seen in the
video and high-level information is established.

• The model should be geared towards manual annotation, since this thesis
is concerned with modelling and user interfaces, rather than with image
processing algorithms. User input should not be required for every frame

124

of video; if motion characteristics are simple (for instance linear), it
should be possible to record it with a minimum of effort.

• The model should enable visualisation of object bounding shapes on the
video during playback. This may seem obvious, but the BilVideo model,
for instance, does not support it, as it only records the centres of the
bounding rectangles, not their extents.

• The model should be able to record enough information that useful
queries on object trajectories, distances, speed and spatial relationships
can be performed.

• The model should be easy to integrate with the rest of the OntoLog
system. This entails the use of RDF. Spatial indexing schemes like R-
trees might be useful for the queries mentioned in the previous paragraph,
but we chose to defer questions of query efficiency to a later time, and
focus rather on the “enhanced playback” function of spatial annotations.

6.4.2 Design and implementation
The simplest method for recording the size and position of an object in a video
interval is to store its bounding shape for each frame of the video. However, this
creates a lot of unnecessary information when the object is static, in which case a
single shape with duration would be sufficient. If the object moves, things
become more complicated, but not necessarily much: If the object moves with
constant speed in a straight line, a shape with duration and a motion vector will be
sufficient. To determine where the object is at a given time, the system just has to
translate the shape along the motion vector. If the object moves non-linearly, or
changes its movement characteristics, its motion can be approximated by
segmenting the motion into intervals where the motion is fairly linear. A similar
technique can be used for changes in the size and shape of the object, at least for
simple bounding shapes like ovals and rectangles.
Based on this observation, we decided to build the model on this concept of linear
interpolation. However, instead of using motion vectors, we decided to use
keyshapes – shapes indicating the shape and position of an object at the start and
end of a segment of linear movement/transformation. This contains enough
information to perform an interpolation for the intervening frames, and is easier to
understand and manipulate for the end user than a vector-based model. Figure 6.7
illustrates this scheme. At 100 ms, the position and shape of Duke (Java’s mascot)
is represented by a bounding rectangle with coordinates and size. At 400 ms,
Duke has moved and become slightly smaller, and the other keyshape rectangle
represents this. At the intervening times, Duke’s position and size are
approximated by rectangles computed by linear interpolation of the two recorded
rectangles. This enables the user to represent simple movement in a simple way.
If Duke started moving in another direction, a third keyshape could be added; for
best results, keyshapes should be added when movement characteristics change.
This scheme doesn’t work as well when objects move in curves, but their motion
can be approximated as finely as needed – in the most extreme case, a keyshape
for every frame could be used.

125

Figure 6.7: Keyshapes and interpolation of linear movement and transformation

Figure 6.8 shows the OntoLog model extended with keyshapes for spatial
annotation. Two new entities have been introduced: Keyshapes and Keyshape. A
Keyshape is a timestamped shape that is specified by four numbers: x, y, width
and height. This is sufficient for rectangles and ovals; we chose to ignore more
complex shapes like arbitrary polygons in order to keep it simple. The instances
of Keyshape belonging to one particular appearance of an object are collected in a
Keyshapes entity, which also specifies the type of the shapes: rectangle or oval.
Each Keyshapes is again related to an Interval, and thus to one or more ontology
concepts. The relationship between Interval and Keyshapes is one-to-one, so they
could be combined to simplify the implementation of the model.

from
to

Interval

URL
MediaResource

1 *

hasInterval

«metaclass»
rdfs:Class

rdf:type

**

* 1..*

relatesTo

Individual
type

Keyshapes
timestamp
x
y
width
height

Keyshape

«interface»
Concept

Project Ontology
1..** usesOntology

hasMediaResource1

*

hasKeyshapes1

0..1

(rdfs:isDefinedBy)

1..* 1

hasKeyshape

*

* rdfs:subClassOf

Figure 6.8: OntoLog model with spatial extensions

As an example of spatial annotation using this model, consider a shot where
person A is standing in the middle of the screen, and person B comes walking in
from the left, stops for a minute to greet person A before continuing out of the
screen to the right. This would be represented as follows:

• Two individuals, A and B, both instances of a Person class.

126

• Two Intervals covering the entire shot – one related to A and the other to
B.

• For person A: The Interval has a rectangular Keyshapes, containing a
single Keyshape with appropriate coordinates. Just a single shape is
needed, since A does not move.

• For person B: The Interval has a rectangular Keyshapes, containing four
instances of Keyshape. All of them have roughly the same size and Y
coordinate, since B moves pretty much straight across the screen, without
changing size or shape. The first Keyshape has a timestamp
corresponding to the beginning of the Interval, and a position to the far
left of the screen. The second and third Keyshape are positioned at the
same location – in the middle of the screen – but have different
timestamps: The second is stamped at the time B reaches A, and the third
when B leaves A again. The fourth has the end of the Interval as its
timestamp, and is positioned at the far right of the screen.

Figure 6.9 shows the user interface of the proof-of-concept prototype
implemented and integrated into the OntoLog application. The tree list on the left
shows the ontologies, as usual. The example project in this case is the study of
lobster larvae – larva mortality and cannibalism is a problem in lobster breeding,
and marine biologists hope to understand the causes better by studying larva
behaviour under various circumstances. “Aggressive larva B” is selected, and the
video window in the middle shows the larva’s rectangular bounding box. The list
to the right of the video contains the keyshapes belonging to the selected interval,
and the keyshape is edited by dragging it (or its corners) around on the video area.

Figure 6.9: Prototype user interface for spatial annotations in OntoLog

127

6.4.3 Discussion
The model described above is reasonably simple yet expressive. It meshes
agreeably with the concept-based annotation scheme, and lends itself well to
visualisation and manual annotation. It is expressive enough to be classified as
“dynamic regions” according to the categories defined in section 3.1.2, but it also
has the simplicity of the “static regions” scheme, if that is all that is required. Like
the rest of the OntoLog model, it is able to manage annotation at various levels of
detail – for more details, just add more keyshapes; for less detail, use fewer (and
perhaps make them bigger to compensate).
As for the user interface, a small usability evaluation was performed, with two
parts:

• A qualitative, formative part, designed to identify possibilities for
improvement. This identified minor niggles with button design and use of
colour, but the keyshape approach was well received.

• A quantitative, summative part, timing the production of spatial
annotations. It was found that recording the movement of a single object
took from 12 to 34 times as much time as the length of the interval(s)
where it appears, depending on movement complexity and the user’s
experience level.

6.5 OntoLog Crawler – web-based browsing and
searching

OntoLog Crawler is a web-based searching and browsing system for OntoLog
data. An article describing it has been published [Austvik et al. 2003], included as
appendix D. A fuller account of the work is available as a technical report
[Austvik and Meland 2002]; it is summarised below.

6.5.1 Objectives and requirements
The main objective of OntoLog Crawler is to provide a search system, and a
browsing system that is less limited than the intra-video browsing of the OntoLog
application. The system should take advantage of users’ familiarity with web
browsers, hypertext documents and web-based search systems to design a
consistent and user-friendly system. The network structure of the RDF model
appears to be a good match for this approach.
The search system should take advantage of the semantics of the OntoLog model.
When finding matches to a user’s search terms, for instance, it should examine the
types of the matching resources and use this information to present the result in
the appropriate manner, and to expand the search according to the subclass and
instance semantics of OntoLog’s ontologies, if applicable.
When presenting media clips as the result of a query, the system should be able to
handle overlapping intervals and concatenate disjoint segments, so as to present
the entire result as a virtual edit of the underlying media material.

128

6.5.2 Design and implementation
The most basic functionality of OntoLog Crawler is its RDF browser, shown in
Figure 6.10. This shows the characteristics of a given RDF resource1, its URI and
the statements it participates in, both as subject, predicate and object. The
resources in each statement are hyperlinks to pages describing them in the same
way; there are also links to the models and namespaces the resources belong to.
OntoLog Crawler also provides an RDF search interface, where the user can find
statements and resources matching some search term.

Figure 6.10: OntoLog Crawler describing an RDF resource

This is a quite low-level perspective on the data. It is excellent for exploring the
inner workings of OntoLog (or other RDF-based systems), but you have to be
very familiar with the RDF model and the way OntoLog uses it to make much
sense of the data.
Another perspective is based on the semantics of OntoLog’s conceptual model –
projects containing media resources and ontologies, media resources containing
intervals related to concepts in ontologies, and so on. OntoLog Crawler creates
web pages describing these entities, with the relations between them as

1 This particular screenshot describes the MediaResource resource, one of the classes in
OntoLog's conceptual model (cf. section 5.1.1).

129

hyperlinks. For instance, Figure 6.11 shows the description of a concept: the
soloist Guro Evensen, who is part of the Participants ontology. The page shows
the properties describing her, the intervals she is connected to in various media
resources, and her place in the ontology. The links in the Intervals table provide
playback functionality, and the “Play merged resultset” lets you experience a
virtual media document created by concatenating all the intervals. A similar
function is available for subtrees in the ontology; you can for instance play a
merging of all the intervals that are related to the concept Soloist or any of its
descendants.

Figure 6.11: OntoLog Crawler describing a concept

Similar pages describe the other elements of OntoLog’s conceptual model:
projects, with lists of media resources, schemas and ontologies; ontologies, with
their concepts organised hierarchically; and media resources, with lists of
intervals.
A corresponding search system is also provided, shown in Figure 6.12. This
example shows the result of a search after the term “solo”. The system has
performed an automatic query expansion: It has found only one resource
matching “solo”, namely the class “Soloist”. This class is not directly related to
any intervals, but it has two individuals that are: Jon Fredrik Hjemli and Guro

130

Evensen. Thus, these intervals are presented as the result. The media resources
matching the search term (either through their own properties or through
containing intervals that match) are also shown in their own table; last, but not
least, the matching concepts are shown, in the context of the ontology they belong
to.

Figure 6.12: OntoLog Crawler's media search

6.5.3 Discussion
The hypertext paradigm is an obvious match for OntoLog’s RDF-based
annotation model. The graph structure of the data facilitates simple, uniform and
powerful browsing capabilities, using an interaction technique familiar to most

131

users. The use of ontology semantics in processing search results is a great help
for generating more meaningful results and presenting them in a structured
manner.
A quantitative usability test showed that users are reasonably satisfied with
OntoLog Crawler, though they find it somewhat complex to use. The hyperlink-
based interface is consistent and simple, but the presentation of data and search
results is at times confusing, and not very visually oriented – more often than not,
the interface consists of tables of links.
OntoLog Crawler was excellent for advanced users with a thorough
understanding of the RDF model and how it is used by OntoLog. However,
another approach may be more appropriate for more casual or inexperienced
users. This is explored further in sections 6.7, 6.8 and 6.9.

6.6 Ana – temporal algebra and annotation analysis
Concept-based temporal stratified semantic annotations create rich metadata sets,
where much potentially interesting knowledge is implicit in the relations between
different intervals and their related concepts. Ana is an analysis tool designed to
unearth this information, to make it explicit. The design, implementation and
evaluation of the tool are described in [Rystad 2002] as well as in this section.

6.6.1 Objectives and requirements
In many branches of knowledge work, e.g. anthropology, media and athletic
science, video recordings are analysed to establish patterns of movement or
behaviour by noting frequency, duration and sequences of activity. As an
example, in the lecture database from sections 4.1.5 and 5.2.5, someone might
want to know how often Examples (a concept) of Program Flow (another concept,
with subconcepts) are interrupted by questions (a third concept). The objective of
Ana is to facilitate this kind of analysis, exploiting the ontology-based stratified
annotation scheme of OntoLog.
Given a set of intervals from a collection of media resources, it is possible to
derive several statistics from them: number of intervals, average interval length,
standard deviation, total length and so on. However, the perhaps most interesting
analysis comes from looking at how intervals related to two or more concepts
interact – how they overlap, which typically follows the other, and so on. This can
be done by constructing expressions using temporal operators and relations
between sets of intervals.
Temporal set operators create new intervals based on two sets of intervals, as
illustrated in Figure 6.13. Based on these three operators – union, intersection and
minus (subtraction), arbitrarily complex expressions can be formed.
The thirteen temporal relationships identified in [Allen 1983] are also useful for
analysis. Seven of these are illustrated in Figure 6.14; the remaining six are
reciprocals of those shown (except the “equals” relationship, which is
symmetrical). These can be used to specify a subset of a set of intervals; for
instance the intervals of set A that meet some interval in set B.

132

These operators are closed over the set of intervals – they take interval sets as
input, and produce interval sets as output – and can therefore easily be
concatenated into complex and precise expressions. Thus, the user can specify a
particular set of intervals s/he is interested in, and perform a statistical analysis of
it. Ana should provide the functionality for doing so, utilising the semantics of
OntoLog’s ontology-based stratification model.

A

B

A union B

A intersect B

A minus B
Figure 6.13: Temporal set operations

BAA before B

A meets B

A overlaps B

A ends with B

A equals B

A starts with B

A contains B

Figure 6.14: Temporal relationships

6.6.2 Design and implementation
The main idea of Ana is to construct temporal algebra trees based on the
ontologies of a particular project. Figure 6.15 shows Ana’s main window
(Norwegian user interface). The tree list on the left shows the ontologies used by
the selected projects, the concepts of which are used to construct the algebra tree
on the right using the various controls. For this construction, Ana provides
temporal relationship operators and set operators, as shown in Figure 6.16.
Algebra trees of arbitrary complexity can be created.
The properties (the computed statistics) of the selected algebra node are shown in
the table at the bottom of the main window. Any node can be selected, not just the
top level one. In Figure 6.15, the lecture database example from sections 4.1.5
and 5.2.5 is being analysed, and the selected node represents the intervals where
the lecturer is showing examples of program flow while being interrupted by

133

questions from the students – “(Program Flow intersect Example) contains
Question”.
Also here, the semantics of the ontology structure is utilised. The interval set
represented by “Program Flow” includes all the intervals related to the subclasses
of “Program Flow” – “Loops” and “if statements”, for example. Thus, analysis
can be performed at different levels of detail and specificness, through judicious
selection of concepts.

Figure 6.15: Ana

The properties computed from this interval set include among other things total
amount of time, average length of the intervals and standard deviation of this
average. Other measures are conceivable, and simple to implement. One could
also easily imagine a visual display of the resulting interval set, and using this to
access and control media playback – which would turn Ana into a query system
as well as an analysis tool.

6.6.3 Discussion
Ana is a prototype made under time constraints, and suffers from several weak
points in the graphical user interface, such as the multiple “OK” buttons in the
temporal operator selection window in Figure 6.16. Nevertheless, it achieved

134

good results in a usability test, with regard to both ease of use, power,
responsiveness and flexibility. Questions may be asked about the reliability of this
test, though, as the test subject had nothing to compare Ana with.

Figure 6.16: Ana's operator selection window

Performance was also tested, though not the performance of the temporal
operators or the analysis algorithms. Ana reads all the concepts and intervals into
memory when the media resources are selected, so the bottleneck was this loading
process – the temporal algebra operations were as good as instantaneous. Testing
the loading process with a large number of media resources, each with an average
of 40 intervals, revealed that the system managed to load only one media resource
per second, which is unreasonably slow. However, these disappointing results
may be in part caused by the use of a beta release of the MySQL DBMS, as well
as an early version of the Jena RDF library.

6.7 Savanta – Search, analysis, visualisation and
navigation

Each of the tools described above have their strong points, as well as weaknesses.
The ontology-based hierarchical interval visualisation of OntoLog is a good idea,
but shows only one video at a time. OntoLog Crawler’s web-based browsing and
navigation is a popular interaction method, and its concatenation and presentation
of media search results is interesting – but it is easy to get lost among the links,
and hard to get a proper overview of the database contents. Ana has powerful
mechanisms for selecting just the parts of the media that you are interested in, but
has few ambitions when it comes to what to actually do with it.
It seems possible that a system could be designed and built that draws on the good
ideas from all these systems – one that integrates visualisation, browsing, search,
filtering and analysis, maximising the advantages and minimising the problems

135

described above. This section presents Savanta – Search, Analysis, Visualisation
And Navigation in Temporal Annotations – an attempt at such a system.
Note: The “we” in the text relating to Savanta (and Savantoogle and Forms) refers
to Jon Olav Hauglid as well as the present author; see appendix E.

6.7.1 Methods for Information Gathering
The content in a video database containing temporal annotations can be seen as a
collection of media resources, each with a collection of temporal intervals
described with metadata. This conceptual model is illustrated in Figure 6.17.

time

Media Resource 1

Metadata

Media Resource 2

Figure 6.17: Conceptual model of temporal annotation databases.

In order for the user to see this information, some sort of visual presentation must
be available. The process of creating such a presentation is called information
visualisation – more formally defined as “the process of transforming data,
information, and knowledge into visual form making use of humans’ natural
visual capabilities” [Gershon et al. 1998].
Depending on the size and complexity of the database in question, a large number
of different presentations can be imagined – from the detailed display of a single
piece of metadata to an overview of the whole database. Limiting a system to a
single type of presentation would clearly be too restrictive. Some form of
navigation between the different presentations is therefore required.
As the media database grows, it becomes necessary to be able to limit the
presentation to a subset of the stored data. This is both because displaying
everything would make the presentation too cluttered and because not every piece
of information is equally relevant to a given user in a given setting. Generating a
subset of the database can be done in a number of ways. The most common
method is to use some sort of query language or forms interface. Based on one or
more expressions entered by the user, a new ad-hoc collection of matching objects
(or query result) is constructed.
Filtering is an alternative solution where the user removes uninteresting objects
from the information collection by creating filters that eliminate objects that do
not (or do) match certain criteria. A typical example is Dynamic Queries [Ahlberg
et al. 1992], [Shneiderman 1996] where the filters are constructed by direct
manipulation of interface widgets such as sliders or buttons.

136

A system for accessing temporal media databases needs not be limited to the data
that is explicitly stored in the database. Due to the complex nature of temporal
metadata, it may be useful to employ data mining techniques to derive new, high-
level information that otherwise might be difficult and time-consuming to extract
manually. This can include finding statistics such as the average length of
registered intervals or identifying properties such as the most prevalent metadata
in a given result. In addition to being valuable information in their own right,
results of what can be dubbed a temporal analysis might also lend themselves to
navigation and filtering actions, thereby providing a positive synergy. The rich
nature of temporal media could very well make such derived information more
important here than in traditional database settings.
An overview of a proposed system which integrates visualisation, navigation,
search, filtering and analysis, and how they relate to each other, is shown in
Figure 6.18.

Result

Start Visualization

Navigation

Filtering

Search

Analysis PresentationDatabase

Interval
collection

Stored
metadata

Derived
metadata

Figure 6.18: Overview of a system for accessing data in a temporal media database.

The terms used in the figure can be defined as follows:

• Result
A collection of information objects (stored or derived) – could contain the
whole database or just a subset.

• Visualisation
The process of constructing a visual presentation of the result or a subset
of the result. The presentation is displayed to the user in the user
interface.

• Navigation
Switching from one presentation to another.

• Search
Producing a new result based on query expression entered by the user.

• Filtering
Using the visual presentation of an information object as basis for the
construction of a filter which removes uninteresting objects from the
result.

137

• Analysis
Using data mining techniques to dynamically derive new metadata based
on information contained in the result.

We suggest that constructing a system which integrates many different methods
for accessing information has a number of advantages. Simply because they
represent different ways of making use of information, more power is available to
the user. Information that might otherwise be difficult or even impossible to
extract, can hopefully be made more accessible. A number of positive synergies
can also be imagined. For example, the output of the analysis can be used for
filtering – e.g. to remove intervals with the most recurrent male actor from the
result. The analysis can also be made context sensitive with respect to the
navigation choices of the user.
However, the integration of several methods will result in a more comprehensive
interface which could become too complex and therefore difficult to use. In other
words, the gain in power could be overridden by a loss of usability. This should
be taken into consideration during design, and evaluated later.

6.7.2 Stored metadata
The “stored metadata” in Figure 6.18 is of course data structured according to the
OntoLog model. However, this model is fairly complex; the ontologies in
particular, with their classes, instances and properties, are potentially confusing
for novice users. It is reasonable to target this kind of system at users who don’t
necessarily have a thorough understanding of conceptual modelling – it ought to
be possible to use it as a retrieval interface for a digital video library without
requiring a lot of training on the users’ part. Therefore, we choose to present a
simplified view of the model in Savanta:

• We don’t consider the differences between classes and instances very
significant, so we present them as the same thing, and call them terms.
Thus, both the subclass-of relationship and the instance-of relationship
are considered a narrower-term relationship.

• Likewise, we consider ontologies top-level terms. That they also define
properties is not mentioned, though we of course still use the properties
for describing things.

• We look at one project at a time. The media resources within a project are
most likely closely related and homogeneously annotated – they are
described using the same ontologies and terms. This will both simplify
the model and better the chances of relevant analyses of the metadata.

This leads to the simplified view of the OntoLog model shown in Figure 6.19.
Note that we do not actually change the model as such; we only change how it is
presented to the user.

138

Media Resource
from
to

Interval Term

Broader *

Narrower

*

1 *

hasInterval

* 1

relatesTo

Figure 6.19: Simplified annotation model

This data is presented in Savanta as shown in Figure 6.20. Terms are presented in
a tree list, with their associated intervals in a timeline display to the right. The
terms, their “relatives” and their properties are also shown in a navigable
hypertext panel at the right edge of the window. The user interface is further
described in the subsequent sections.

Figure 6.20: Stored metadata in Savanta

6.7.3 Derived metadata
A temporal annotation database contains much more information than what is
explicitly registered. Consider a film clip where the intervals in which each actor
appears, have been accurately registered. Implicitly, this database also contains
information about the frequency of each actor and the temporal relationships
between each of them. Examples of the latter might include actors that always
appear together, actors that are always alone, etc. In order to extract such
information, some sort of temporal analysis is necessary.
While intervals are the fundamental units in the model, semantic information is
nearly always attached to sets of intervals – simply because annotating each
separate interval is too time-consuming. As a result, a meaningful simplification
is to derive information about sets of intervals rather than individual intervals.
Four different, meaningful types of interval sets can be imagined in our system.
The set of intervals, Tterm, attached to a specific term, is perhaps the most
important. Other sets include the whole database D, the currently displayed result
R and the set of intervals, S, selected by the user.

139

First of all, meaningful information can be derived about a single set of intervals.
For the system described here, we have selected to display the total length of the
intervals in D, R and S, both in seconds and relative to the total length of intervals
in the database. As Tterm is a function of term, displaying such information about
every (non-selected) term would simply be too overwhelming and confusing.
Temporal analysis gets much more interesting when we start to examine two sets
of intervals and how they relate to each other. If we see an interval, and thus a set
of intervals, as a set of points in time, we can use standard set operators as
temporal operators to manipulate the intervals. This includes operators such as
union (∪), intersection (∩) and subtraction (–).
Further, we can examine how two intervals, A and B, relate to each other on a
common temporal axis. For example, A might have ended before B starts, they
might be equal, or A might start exactly when B ends. Such temporal
relationships were discussed in section 6.6.1. While temporal operators return one
or two intervals, temporal relationships simply say whether a given relation exists
or not between two intervals.
With a multitude of temporal operators and possible sets of intervals to look at, a
large number of possible computations exist. It is therefore necessary to focus on
what gives results that are meaningful to the user. Our novel idea is to use
temporal analysis to identify interesting terms by examining Tterm in relation to D,
R or S using temporal operators. The possibilities offered by this method, can be
illustrated by a few examples:

• Identify terms that have most in common with the result – i.e. that have
intervals overlapping as much as possible with the intervals in the result.

• Identify terms that have little or nothing in common with the result.

• Identify terms that have a lot in common with the selected intervals, but
little in common with the result.

• Identify the media resources that topically are most similar to the
intervals selected by the user.

These terms can represent interesting information in their own right as well as
serve as input for filtering operations (example: remove all intervals attached to
an identified term). For this implementation, we have chosen to group terms into
three semantic categories. These three categories are:

• Described by

• Related to

• Differs from
An illustration of these three categories used in the following discussion is shown
in Figure 6.21.
Please note that all interval sets can contain intervals from different media
resources even if the figure above (for clarity) shows only one. For example, in a
database containing media resources M1, M2, …, Mn, R will equal RM1 ∪ RM2 ∪ …

140

∪ RMn. At any time when an operator is applied to two sets of intervals, intervals
from a given media resource are handled separately. This means that A ∪ B is a
shorthand for {AM1 ∪ BM1; AM2 ∪ BM2; … ; AMn ∪ BMn}.

timeMedia Resource

The War in Iraq

The Middle East

George W. Bush

Afghanistan

Figure 6.21: The War in Iraq described by The Middle East; related to George W.
Bush; differs from Afghanistan.

Described by
This category includes terms that should give a good description of the result or
the currently selected intervals. To locate such terms, we identify terms where
Tterm overlaps R (or R ∩ S) to as large extent as possible. In Figure 6.21, “The
Middle East” intervals overlap all “The War in Iraq” intervals: “The Middle East”
is therefore a good candidate for this category. The reasoning is that the degree in
which two sets of intervals are equal, closely matches their semantic relation and
thus one can be used to describe the other.

Related to
“Related to” encompasses terms that are somewhat related to the result or the
currently selected intervals. In practice, this means terms which have intervals
that overlaps R (or R ∩ S) as close to 50 % as possible. For example, the “George
W. Bush” intervals in Figure 6.21 have an approximately 50 % overlap with the
“The War in Iraq” intervals, and they are therefore considered “related”. The
main purpose of this category is to serve as source for filtering operations. For
this use, it makes sense to find ways of reducing the result by 50 % [Hauglid and
Midtstraum 2002].

Differs from
To describe an object fully, you not only need to include its properties, but also
the properties it does not exhibit. This is covered by this category. In our case, it
contains terms that have little or nothing in common with R (or R ∩ S) – that is,
as little overlap as possible. In the example shown in Figure 6.21, the
“Afghanistan” interval does not overlap any of the “The War in Iraq” intervals
and thus is completely different. This category is also helpful for filtering, as
described in section 0.

141

Utility functions
To find how well a given term is suited to each of the three categories mentioned
above, we employ a set of utility functions. They take Tterm as argument and give a
result from 0 (no utility) to 1 (high utility) which should indicate the usefulness of
term with respect to a given category. The utility functions for each of the
categories are given below.
Described by (term):

∑
∑

∀

∀

∩

M
M

M
Mterm

R

RT
M

This is the length of the overlap between Tterm and R totalled for all media
resources, divided by the total length of R.
Related to (term):

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ∩
−×

∩
×

∑
∑

∑
∑

∀

∀

∀

∀

M
M

M
Mterm

M
M

M
Mterm

R

RT

R

RT
MM

14

This is 4 × z × (1 - z) where z is the “described by” utility function. This gives a
parabola function where the utility is maximised for 50 % overlap between Tterm
and R and minimised for 0 % and 100 % overlap. The scaling factor 4 ensures that
the maximum value is 1.
Differs from (term):

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ∩
−×

−

−

∑
∑

∑
∑

∀

∀

∀

∀

M
M

M
Mterm

M
M

M
Mterm

R

RT

RM

RT
MM

1

This function consists of two parts. The first is the total length of the intervals in
Tterm which are not in R, divided by the length of the intervals not in R. This
promotes terms with Tterm containing as much of what is not in R as possible. The
second part is 1 minus the “described by” utility function. This promotes terms
with Tterm containing as little of R as possible.

6.7.4 Visualisation
The Shneiderman mantra of “overview, zoom and filter, then details on demand”
[Shneiderman 1997] is a good rule of thumb when designing interaction systems,
and the process of visualisation ties into this in several ways. The system must
construct the overview, produce the details on demand, and provide an
environment in which the processes of zooming and filtering can be performed
efficiently and intuitively.

142

The main challenge of creating an overview is the amount of data that must be
presented. During the development and testing of this system, we created a
sample database containing ten weeks of lectures in an entry-level computer
science course; this amounts to 20 media resources, over 150 terms and over 500
intervals. While not much in terms of bytes, this is much information for a human
to assimilate quickly, especially since much of the useful information is given by
(possibly implicit) relationships – which terms are “active” at the same time as
others, and how they are connected in the broader/narrower term hierarchy.
We use an extension of the technique presented in section 6.2.2 – timelines with
interval lines aggregated according to the state of a term tree list. We use the
media resources as top level nodes in the tree list, and present the term tree under
each media resource node. Initially, all the nodes are collapsed, and this creates a
representation compact enough to present a fairly big database on a single screen,
as shown in Figure 6.22 (except that there, a single media resource node is
expanded).

Figure 6.22: Savanta

Terse as this representation is, it is still possible to extract useful information from
it. You get a list of the media resources in the database, and their relative lengths
are readily apparent. It is also easy to see which media resources are heavily
annotated and which are not, by noting the number and thicknesses of the interval
lines, and where apparently nothing interesting happens, judging by the gaps in
parts of the timeline.
“Details on demand” is handled in several ways in this visualisation. Selecting an
item (a media resource or a term) displays information about it in the hypertext

143

panel to the right. This includes both stored and derived metadata. The stored
metadata consists of the term’s (or media resource’s) properties, comment, and
broader and narrower terms (if applicable). The derived metadata includes the
length of the current selection, as well as the terms, properties and media
resources related to the current result/selection, as discussed in the previous
section. The hypertext panel also provides controls for navigation and filtering;
more on this in the next sections.
Selecting a term also highlights the intervals it is related to in the interval display.
Figure 6.22 also illustrates this, with the term “HTML” selected. Thus, it is easy
for a user to at a glance find out when and how much a term is used.
Another mechanism for providing details (or “zooming”), is to expand and “drill
down” in the tree list. Due to the semantics of the term hierarchy and the
aggregation of related intervals, the visualisation at each level of the tree is useful:
Even if no intervals are related directly to a given term, the intervals related to all
of its narrower terms are displayed. If you want more details – exactly what
aspects of JSP (Java Server Pages) are discussed in different parts of the expanded
media resource in Figure 6.22, for instance – you simply expand the node. To
avoid unnecessary clutter, only terms that are actually used in a media resource
(or whose narrower terms are used) are displayed in the tree; but if desired, all the
defined terms can be shown for completeness.

6.7.5 Navigation
Navigation is defined in [Baeza-Yates and Ribeiro-Neto 1999] as “following a
chain of links, switching from one view to another, toward some goal, in a
sequence of scan and select operations”. Savanta’s navigation capabilities are
designed to offer the user relevant, context-sensitive paths through the
information jungle. The selection, filtering and data mining mechanisms of
Savanta directly affect and interplay with the navigation system.
For navigation through a media file, Savanta offers the traditional play/pause
button and time slider, illustrated in Figure 6.23. In addition, two skip buttons are
keyed to the currently selected part of the current result (S ∩ R or R, depending
on whether anything is selected), so that navigating to an interesting media
interval is a one-click operation. As default, only the current result (R) can be
played; in this way is data irrelevant to the user simply and unobtrusively hidden.

Figure 6.23: Media navigation controls

Navigating the collection of terms and media resources can be done by
manipulating the tree list on the left. This is a common and intuitive method for
displaying hierarchical data, familiar from e.g. Windows Explorer. This also

144

affects the configuration of the interval display – expanding nodes shows more
detail, while collapsing them gives a greater overview.
An alternative method is to use the hypertext panel on the right, shown in Figure
6.24. This displays the selected term (or media resource) within its immediate
context – narrower and broader terms – and among other things also shows the
terms and media resources related to the selection, according to context-sensitive
temporal analysis. All the items are clickable, so the user can easily browse both
the term hierarchy as well as items related to the current result – thus creating
dynamic paths through the material relevant to him/her. The goal the user is
navigating toward can be different things – it could be simply to see the
description and context of a particular term; or to visualise where various terms
are used in the video corpus, and play selected intervals; or it could be to create
filters, as discussed below.

Figure 6.24: Hypertext navigation panel

6.7.6 Filtering
As the default presentation in Savanta includes all the registered intervals in the
database, it often contains items of little interest to the user. In order to make it
possible to focus on relevant pieces of information, some means of eliminating
unwanted items are required. In Savanta this can be done either by filtering or
searching. These techniques differ in that filters are constructed by direct
manipulation using interface gadgets, similar to the dynamic query approach
[Ahlberg et al. 1992] [Shneiderman 1996], while searching require the user to
input a textual query.
A filter, once constructed, is a set of intervals that change the subset of the
database displayed to the user (i.e. updates the result). In theory, a filter could

145

contain a set of arbitrary intervals. In practice, we have limited the filters to
contain intervals connected to a term or a media resource. This makes sense as
terms and media resources are the basic semantic units. In addition, these units are
also the output of the temporal analysis. A positive synergy between data mining
and filtering can therefore be achieved. In this way, a user can construct a filter
simply by selecting a term or media resource.
As both results (R) and filters (F) are sets of intervals, we can also here use set
operations. Traditionally, a filter eliminates items from a result, that is R ← R – F.
This requires the users to select what they wish to remove. However, previous
experiences [Hauglid and Midtstraum 2002] indicate that users, given the choice,
are more likely to construct filters based on what they wish to keep rather than
remove. This suggests that it also should be possible to make filters that retain
only what is common to both the result and the filter, or R ← R ∩ F. Finally, to
alleviate the problem of getting stuck in “local maximums”, that is, removing
relevant objects from the result, we have also made it possible to make filters that
add the contents of the filter to the result, or R ← R ∪ F. (Note that this breaks
with the normal semantics of what a filter is.)
These three filter operations are respectively called remove (-), retain (=) and
add (+) in the user interface. Filters are constructed by selecting the appropriate
button on the right side of the interface as illustrated in Figure 6.25. For example,
clicking the red + button beside “Comments”, will add everything about
comments to the current result.
The filter buttons are disabled if the corresponding filter will not change the
contents of the result. Interestingly, this in itself provides yet another way of
gaining information about the result. For example, if an add-button for a given
term is disabled, this means that the intervals connected to this term are already
present in the result – that is, Tterm ⊆ R.
Filters are visualised as “greyed-out” areas in the interval display1, as illustrated
in Figure 6.25. The skip buttons discussed in the Navigation section are aware of
the filters, making it easy to navigate to unfiltered, selected intervals. By default,
playback of the selected media clip automatically skips filtered intervals. Thus,
playing the intervals related to a term (or boolean combination of terms) is a one-
click operation.

Figure 6.25: Filters

1 Of course, ”add” filters will decrease the ”greyed-out” area, not increase it.

146

6.7.7 Searching
The searching part of Savanta allows the user to enter a textual query. This query
is then matched against all textual attributes of terms and media resources. The
intervals connected to these items are collected and used to modify the result. To
retain the standard semantic of queries, the revised result is constructed as an
intersection between the current result and the set of matched intervals. The
interface components related to searching are visible at the top of Figure 6.22.

6.7.8 Discussion
Savanta is in many ways the most significant and original of the many tools
presented in this chapter. Therefore, we though it appropriate to perform a proper
formal usability evaluation of it; this is presented in the next chapter. For reasons
explained there, we performed a comparative evaluation, comparing Savanta to
two other searching and browsing interfaces based on more conventional
paradigms. These are described in the two final subsections of this chapter.

6.8 Savantoogle – Google-like search
As discussed in the previous section, we built two systems comparable to Savanta
in order to perform a formal evaluation of them. Savantoogle is one of these
systems.

6.8.1 Objectives and requirements
The objective of Savantoogle was to provide a user interface for searching and
browsing a video data base that is more conventional than Savanta. One such
paradigm is information retrieval as used by web search engines, where search
terms entered into a single text field produce a ranked list of documents. This has
been used in video databases by e.g. SCAN [Whittaker et al. 1999], InforMedia
[Christel and Martin 1998] and VoiceGraph [Oard 1997].

6.8.2 Design and implementation
Savantoogle, like its name suggests, is supposed to resemble Google1 and similar
search engines in looks and functionality. These search engines (Google,
AltaVista2 and AllTheWeb3 being among the most popular) are familiar to most
Internet users today, and are very easy to use. They consist of a single text field
where the user can enter one or more words or phrases; executing the query then
produces a list of documents, ranked according to how well each document
matched the word(s) entered by the user. In a multi-word query, words can be
prefixed with a ‘+’, denoting that the word must be present in the resulting

1 http://www.google.com/
2 http://www.altavista.com/
3 http://www.alltheweb.com/

147

documents, or a ‘-’, meaning that the word must not be found. Figure 6.26 shows
Savantoogle.
In the web search engines, the documents comprising the result are web pages,
and the search is based on the occurrence of words in each document. In
Savantoogle, this is slightly different, with media resources taking the place of
HTML documents. The query words are matched against the terms, the terms’
properties and the media resource titles and comments for each media resource.
The ranking is mainly based on how much time is spent on each matching term –
analogous to how web search engines rank documents according to the number of
occurrences of the search terms. Media resources matching several or all the
words in a multi-word query are ranked higher than those matching only a few.
Matches in media resources titles or comments also increase the rank; this
corresponds to how web search engines consider matches found in headings more
important.

Figure 6.26: Savantoogle

Clicking a search result link (which in the web search engines brings you to the
corresponding web page) brings you to an applet visualising the annotations
belonging to the media resource in question, shown in Figure 6.27. This
resembles the term tree and interval display of Savanta, but has noticeably less
functionality. It is meant to correspond to the plain display of a web page in the
web search engines, and to the relatively simple video browsing functionality of
systems like Vane [Carrer et al. 1997] and Jabber [Kominek and Kazman 1997].
Most notably, the hierarchical aggregation of interval lines is not employed;
instead, the term tree is initially completely expanded. Another limitation is the

148

fact that it shows only one media resource at a time. Video playback and skipping
work like in Savanta, but there is no filtering or analysis functionality.

Figure 6.27: Savantapplet, Savantoogle’s interface for presenting a single media

“document”

Savantoogle’s search engine is implemented as a Java servlet, while the media
resource browser is (as mentioned) a Java applet. Both can be run from a web
browser supporting Java 1.4, and both utilise the same basic data structures as
Savanta.

6.8.3 Discussion
Savantoogle is evaluated formally, along with Savanta and Forms (see the next
subsection) in the next chapter.

6.9 Forms – forms-based search
As mentioned earlier, we built two systems comparable to Savanta in order to
perform a formal evaluation of them. Forms is the other of these two.

6.9.1 Objectives and requirements
The objective of Forms, like Savantoogle, was to provide a user interface for
searching and browsing a video data base that is more conventional than Savanta.
Many video database systems, such as OVID [Oomoto and Tanaka 1993],
VideoSTAR [Hjelsvold and Midtstraum 1994], AVIS [Adali et al. 1996] and
Algebraic Video [Weiss et al. 1995] define query languages for access to their

149

data structures. These are not very user-friendly, so graphical user interfaces are
created that use forms to construct query expressions. The complexities of these
interfaces vary, according to the complexity of the underlying models, but they
use the same basic interaction model: select or enter query terms, use Boolean
and/or temporal operators to combine them, and view the result in an unranked,
textual list. Forms does this for the OntoLog/Savanta conceptual model.

6.9.2 Design and implementation
The Forms interface is shown in Figure 6.28. The terms are displayed in a tree list
in the upper left of the window. By selecting term, and then pressing the “Select”
button, they are copied across to the “Selected terms” list. Below this list, two
radio buttons are used to switch between temporal ‘and’ (intersection) and
temporal ‘or’ (union) of the query terms, when more than one term is selected.
When the “Search” button is pressed, the query is performed, and the result is
presented in the two-level tree list at the bottom of the window. The top-level
nodes are the media resources (sorted lexicographically), and the leaf nodes are
matching intervals within each media resource. No visualisation of the intervals is
provided (other than the textual indications of start time, end time and length),
since this is not common among the existing user interfaces based on this
paradigm. The interface includes a simple video player in a separate window,
with the same time slider and skip buttons as Savantoogle.

Figure 6.28: Forms

150

6.9.3 Discussion
Like Savantoogle, Forms is evaluated formally in the next chapter.

6.10 Summary
This chapter has presented various tools for managing and utilising OntoLog data:
tools for manual and computer-assisted production of annotations and ontologies,
for web-based browsing, searching and presentation, and for analysis using
powerful and expressive temporal operators. The OntoLog model constitutes a
strong foundation for such tools, and the next chapter investigates how these tools
perform in practice.

151

7 The OntoLog system in the real world
This chapter consists of two parts. Section 7.1 presents the experiences gained
from using the OntoLog system (and the OntoLog application in particular) for
real-world purposes. By the nature of the system, it is quite difficult to perform a
formal, quantitative evaluation of it; hence, I have used observation and informal
interviews instead.
Section 7.2, on the other hand, presents a quantitative evaluation of Savanta. The
searching, browsing and analysis tools are simpler to evaluate than the OntoLog
application: They do not require much training (some are meant to be usable
without training), and it is reasonably simple to find a group of fairly realistic
users. Performing such evaluations is time-consuming, though. Because of this,
and since most of the ideas explored in OntoLog, OntoLog Crawler and Ana are
reused and refined in Savanta anyway, I have chosen to perform a full evaluation
of Savanta only. However, since it is a comparative study, Savantoogle and Forms
are also evaluated.

7.1 Practical use of the OntoLog system
Performing a quantitative evaluation of the OntoLog system as a whole, and of
the OntoLog application in particular, would be very difficult. It is a fairly big
system, and the OntoLog application requires quite a bit of training to use
effectively. Thus, training users and performing formal tests would be
prohibitively time-consuming.
It would also be hard to find enough appropriate test subjects. Creating temporal
annotations with OntoLog is probably not something the casual computer-user
would do; for realism, one would need to find a group of people that “are in the
market” for such a system, so to speak. For reasons of validity, this group should
be as homogeneous as possible, as well. Needless to say, this would be hard to
pull off.
Thirdly, such a test would necessarily have to deal with a single scenario or
annotation purpose (or at most a very small set), and would therefore not really
evaluate one of the prime goals of the OntoLog system: the flexibility. It would
also be a contrived situation – an annotation purpose that might not in fact reflect
a real-world need.
For these reasons, I decided to do an evaluation in a different manner: To have
OntoLog used for real-world tasks – that is, tasks that have a purpose beyond
simply being a test case for OntoLog – by several different users, over a period of
months or even years. During this period, I observed these users, got their input
on problems and bugs, and improved the system according to their needs. At the
end, I performed an informal interview with the users, to find out how well the
OntoLog system performed in practice. Subsections 7.1.1 to 7.1.3 describe the
three most important test cases – their context and purpose, the media material
used, the ontologies that were developed, the production and use of the
annotations, and a discussion of the lessons learnt. Subsection 7.1.4 collects the

152

experiences from a handful of less thorough (or successful) test cases, and
subsection 7.1.5 summarises the section.

7.1.1 Evaluation of electronic medical records
Throughout the development of the OntoLog system, the doctoral studies of
recent dr. med. Hallvard Lærum [Lærum 2004] have provided a crucial scenario
and test case. Lærum has been the principal “expert reviewer” of OntoLog at the
various stages of its design and implementation, and has provided a lot of useful
suggestions, requirements and criticism.

Context and purpose
Lærum’s task was to evaluate the use of electronic medical record (EMR) systems
– to determine how and how much they were used, how well they worked in
practice, and how they impacted on the routines of physicians, nurses and other
medical personnel. To this end, he videotaped medical consultations, and
annotated them in OntoLog. The original idea was to use these videos for
“stimulated recall” interviews [Bloom 1953] with the physicians involved, but
this stranded on account of the difficulty in recruiting a sufficient number of
volunteers. However, OntoLog still contributed nicely to the task analysis
necessary to design the questionnaires that in the end became the principal EMR
evaluation method.

Media material
The media material used by Lærum was recordings of nine medical consultations,
with a length ranging from 14 to 52 minutes. The total length of the material was
four hours and 39 minutes. Other than the lengths (and the actual maladies
afflicting the various patients), the videos were quite homogeneous; each was
recorded as a single shot without any camera movement, showed a doctor
interviewing a patient, and was not edited except for simple trimming of
extraneous footage at the beginning and end.

Ontologies
Lærum constructed three ontologies, with different purposes and viewpoints. One
was a single-level ontology of Phases – consisting of nine stages a typical
consultation may go through: Preliminary work, Introduction, Anamnesis,
Examination, Discussion and assessment, Direct remedial actions, Requisition of
remedial actions, Summary and conclusion, and Complementary work.
Additionally, three concepts were defined to classify intervals that were not
related to a particular phase: Pause, Logistics and Unclassified.
The second was a more complex ontology of Activities, containing 36 more or
less specific activities or tasks. This is shown in Figure 7.1.
The third, Comments, was a very small and simple ontology of two concepts:
Doctor’s comments and Observer’s comments. These were used as a means for
attaching comments and explanations to intervals of the video.

153

All the concepts are classes; these ontologies do not use individuals at all. This is
primarily because they were originally designed at a time when the OntoLog
model only supported one kind of hierarchical relation between concepts, but it is
not likely that it would have been different even if individuals had been available.
The concepts represent abstract tasks, activities and phases, and semantic
difference between classes and individuals was not really applicable or needed by
Lærum.

Figure 7.1: Activities ontology (constructed by Lærum; my translation)

154

Production
The intervals and their related concepts comprise almost all the information in
this project. About half of the concepts are described with a textual comment; the
rest have nothing but a name. The media resources are not described at all, though
this can be attributed to their small number – a larger collection would (according
to Lærum) have to be described better.
The number of intervals per interview ranges from 42 to 135, with an average of
72, or around two intervals per minute. In the Phases ontology, the intervals do
not overlap – they constitute a partition of the video – while in the Activities
ontology, two intervals overlap about one third of the time. There is seldom more
overlap than that. Most of the intervals are not described with anything, but in the
Comments ontology, all the intervals have a comment property describing what
goes on, e.g. “The e-mail system makes an annoying sound” or “Looking for the
reflex hammer”. These comments are the products of the stimulated recall
methodology, where the subject and the observer review the recorded material,
and the subject’s actions and thought processes are explained and elaborated.
The logging was done manually, but the logger did not think of this as a hassle.
The videos had to be watched carefully several times in any case, so using
OntoLog to annotate them demanded little extra effort – indeed, using the
annotations as an index made it significantly faster and simpler to navigate around
in the video material while studying it. The logger commented that very detailed
or accurate annotations would be more demanding to create, but given the
material and the purpose of the annotation, he did not bother with better precision
than plus/minus one second.

Use
The annotations were used for various purposes. The segmentation provided by
the Phases annotations functioned mainly as an index, to help the user navigate to
particular parts in the video. There was an attempt to study the length of the
different phases, with the purpose of determining if there was any correlation
between phase length and the use of EMR systems, but this was abandoned:
There is no universally accepted definition of such phases, so the results would
have been too qualitative and dependent on personal judgment on where to say
that one phase ends and another begins.
The Activities annotations were used for (and constructed as a part of) task
analysis. An important part of the EMR project was to establish a suitable set of
tasks that could be studied and evaluated relatively independently of the others,
and OntoLog was used in the construction and validation of this set. Activity
concepts were created, deleted, moved around, and intervals were subdivided and
joined and moved from concept to concept as the most apt activity ontology
emerged.
Last and least, the Comments annotations were used as comments. Events in the
video needing special explanation, analysis or clarification were recorded as
intervals related to one of the concepts in the ontology, and described with a short

155

text. Thus, OntoLog was used for three rather disparate purposes: as a
segmentation-based video index / table of contents; for stratified, overlapping
classification of the action in the films; and as a video notebook. An example is
shown in Figure 7.2.

Figure 7.2: OntoLog annotations for medical consultation

Discussion
OntoLog would have been a crucial part of the EMR project had it not been for
the difficulty in finding volunteers for video observation. As it turned out,
OntoLog was only moderately useful, but it was praised nevertheless.
The logger interface was especially commended. It was described as “the fastest
method possible for manual annotation” due to its polished integration of timeline
visualisation, ontologies, video navigation and interval editing. In fact, Lærum
felt that the user interface “disappeared” – that he no longer interacted with
buttons, lists and lines, but with video, concepts and intervals – which is the
hallmark of a well-functioning tool. The keyboard-enabled video control and the
direct-manipulation-style interval editing was particularly liked, and compared
very favourably with QMA (see section 3.2.6), whose interval visualisation and
interaction style was deemed quite inferior.
There were few shortcomings identified in the EMR project that were not
remedied in subsequent iterations of the OntoLog implementation. The most
important missing feature was the ability to create new video files based on the
intervals related to a given concept (and its subconcepts): To “cut” all the relevant
intervals from their respective films, and “paste” them together to create a new
video. Aspects of this feature were implemented, though:

156

• The OntoLog application has a function for exporting the intervals related
to a concept as a SMIL presentation, a textual file specifying to a SMIL-
compatible media player which parts of a video (or collection of videos)
it should play. Unfortunately, no SMIL player could handle the video
format used in the EMR project.

• The search function in OntoLog Crawler lets you play the concatenation
of the search result as a single virtual video. But again, this uses SMIL,
and thus did not help the EMR project.

• Savanta allows you to filter away everything but a given concept (or
arbitrary combination of concept, using temporal algebra), and can play
only the unfiltered parts. Unfortunately, Savanta was not finished before
the EMR project was.

Additionally, a need for analysis functions (like the ones QMA provide) was
mentioned, but due to the way the video use in the project turned out, the
requirements for this was never specified explicitly. Possibly the functionality of
Ana or Savanta would have been sufficient.

7.1.2 Indexing lectures in information technology
In order to test OntoLog on a larger corpus of data, as well as provide a test case
for the evaluation of Savanta in section 7.2, and provide a service to students, the
lectures in the course “Information Technology, Introduction” at NTNU in the
autumn semester of 2003 were recorded and annotated in OntoLog.

Context and purpose
The course “Information Technology, Introduction”1 is taken in the first year by
most (if not all) engineering students at the Norwegian University of Science and
Technology (NTNU). Its syllabus is mainly programming with Java Server Pages
(JSP), HTML and database technology (Entity-Relationship modelling and SQL),
as well as some more theoretical informatics. The course consists of thirteen
weeks of three 45-minute lectures per week. The course is lectured in a practical
manner, with lots of examples of actual programming, so it is very suited for
relatively detailed indexing – it is simple to ascertain exactly when while loops
are being discussed and demonstrated, for instance, and it is useful to be able to
review this demonstration at a later time.
The lectures were recorded and logged for several purposes:

• To create a relatively sizeable corpus of annotations, in order to test the
OntoLog tools under reasonably realistic circumstances. 30-40 video files
with a total length of 20-30 hours would hopefully expose some
scalability problems in the user interfaces, and be a realistic application of
the OntoLog system.

1 http://itgk.idi.ntnu.no/

157

• To provide a service to the students taking the course. Many of them are
already quite proficient in information technology, and skip the lectures.
Recordings would make it possible for them to make sure they did not
miss anything important. And of course, most students could benefit from
reviewing the material while doing exercises or studying for the final
examination.

• To provide a test case for the evaluation of Savanta (see section 7.2).

Media material
The media material is video lecture recordings, but it is not live video in the
ordinary sense of the word. Rather, the screen image of the lecturer’s PC has been
recorded, which includes both his PowerPoint slides and his demonstrations of
programming, HTML and database use. Consequently, the lecturer is never seen
in the picture, but the audio track consists of his voice. This kind of recording was
beneficial for several reasons:

• It was non-intrusive – no cameras or other obvious recording equipment
was visible, which made it easier for the lecturer to relax and behave
normally.

• No recording crew was needed – no cameraman needed to track the
movement of the lecturer, for instance. All that was needed was to start
recording at the beginning of the lecture, and stop it at the end.

• The video files could be compressed a great deal, even with lossless
compression. A typical lecture is 43 minutes long and recorded with a
resolution of 800x600, but is typically less than seven megabytes in size
(with a rate of five frames per second).

27 lectures were recorded; some were missed due to technical problems. The total
length of the material is a little over nineteen hours. The length of each lecture
ranges from 32 to 48 minutes, but almost all are between 39 and 44. They are
pretty uniform in structure – PowerPoint slides interspersed with practical
examples and demonstrations – though a few consist only of slides.

Ontologies
The lectures are annotated with a single ontology, which consequently is rather
large. It is shown partially expanded in Figure 7.3. It is quite detailed; it contains
concepts for individual HTML tags and JSP types, for instance. 132 concepts are
defined, but the ontology appears even larger, since a handful of the classes have
multiple parents. For example, “Forms Tags” is a subclass of both “Forms” and
“Tags”.
Three of the six top-level classes are the main topics of the course: HTML, JSP
and databases. The other three represent common events or activities in a lecture:
Examples, Questions (from the students) and Practical Information (information
that is does not pertain to the course syllabus, but is nevertheless relevant –
information about exercises, support, computer labs, software and so on). This

158

subdivision suggests perhaps that using two distinct ontologies would have been
more appropriate, but a single ontology was used for reasons of simplicity.

Figure 7.3: Partially expanded ontology for the course "Information Technology,

Introduction" (constructed by the present author)

159

The ontology has a maximum depth of five, and a maximum fan-out (number of
direct subclasses or individuals to any class) of twelve. Most of the classes have
fewer than eight children. The concepts represent abstract topics or activities, not
real-world objects (or classes of objects); however, the semantics of the
class/individual distinction and the relationships between them are in some cases
used “correctly”: For instance, “<form>” is an individual of the “Forms Tags”
class, which again is a subclass of the “Tags” class. This did not matter much in
practice, though.
The ontology is tailored to the IT Introduction course, and as such quite
specialised. Different courses would need different ontologies, though parts of the
ontology might be reused. Courses dealing with HTML would probably find the
“HTML” subtree useful; database courses might want to reuse the “Database”
subtree and so on – and the three “lecture activity concepts” (Examples, Practical
Information and Questions) are probably relevant for all courses. This is another
point in favour of dividing this somewhat monolithic ontology into smaller, more
cohesive parts, except that some classes are subclasses of classes in different
subtrees – “Database Connection” is placed in both the “Database” and the “JSP”
subtree. In any case, the ontology is general enough to be used by all the lectures
in the course (though none of them uses more than about thirty of the concepts),
and probably for subsequent runs of the course as well.

Production
About a third of the concepts were described with a comment property – usually
elaborating its definition, or referring to the pages in the course textbooks dealing
with the concept. Each lecture was described with a one-sentence description of
its contents as the comment property; additionally, the Dublin Core date and
format properties were used to record the date of the lecture and the screen
dimension of the video, respectively. Most of the lectures were recorded in
800x600, as previously mentioned, but some were 1024x768. No custom
properties were used; one was defined – a lecturer property, with Media Resource
as domain – but became rather irrelevant when it became clear that all the lectures
would be given by the same lecturer. The project itself is annotated with a
descriptive comment, as well as the Dublin Core creator, contributor, and
language properties.
23 of the 27 lecture recordings are annotated with intervals. The remaining four
dealt with theoretical topics that were not mentioned in any other lectures, and
had a very simple structure (often just 4-5 PowerPoint slides) so it was not
considered sufficiently useful to annotate them. The 23 temporally annotated
lectures were described with 648 intervals in total; an average of almost 30, and a
range of 8 to 46. There is temporal overlap between concepts more than half the
time, and at the most “busy” times, seven concepts overlap. The longest intervals
are about fifteen minutes, and the shortest just over ten seconds. Figure 6.22 in the
previous chapter shows this project in Savanta.
The manual logging process was estimated to take about 50 % longer than the
length of the lectures. A lot of this time was spent building and rearranging the

160

ontology; due to the relatively low number of intervals per lecture, the logger
rarely had to “rewind” the video much or make more than one pass through it.
Given a pre-existing, well-designed ontology, the logging time could most likely
be reduced to just a few percent longer than the playback time. Note, however,
that I did the logging myself, so I had of course intimate knowledge of and
unmatched experience with the logging interface.
Automatic analysis for segmentation or classification should be relatively simple
to perform for this kind of video. While there are no “shots” as such, there are
very clean transitions between slides and applications such as text editors and (to
a slightly lesser degree) between different applications, and the video images are
crisp and practically noise-free. Optical character recognition should for the same
reasons be relatively simple to perform.

Use
As previously mentioned, the annotations were produced for several reasons. As a
test case for the evaluation of Savanta, they functioned very well: They provided
a realistic body of data with enough richness to test and evaluate both simple
queries, complex queries and exploration of OntoLog data, as described in section
7.2.
The project (or to be more precise, a version of Savanta configured to load the
project) was also published on the World Wide Web, and demonstrated to the
students taking the course. This proved a success; the web page of the project
received over 600 unique visitors during the first two months after the
presentation, and students characterised the system as “impressive”, “extremely
useful” and “should be used in more courses”. However, interviews with students
indicate that they mostly used Savanta and the annotations as a fairly simple
index; the query, filtering and analysis functionality was for the most part
ignored.
Finally, the project functioned as test data for some user interface issues
(concerning scalability and performance, among other things), as discussed in the
next section.

Discussion
The size of the project – the 23 videos, or 27 if you count the un-annotated ones –
clearly exposed the browsing capabilities (not to mention the searching
capabilities) of the OntoLog application as inadequate. This deficiency was
remedied by Savanta, which presented an interactive overview of the entire
project, with integrated querying, filtering and navigation capabilities. The
usefulness of visualisation, overview and browsing was demonstrated in that most
of the users preferred to simply select concepts in the tree list (or in fewer cases,
the hypertext panel) and play the highlighted intervals, despite the simplicity and
accessibility of the search field.
However, the graphic visualisation is resource-intensive. Care had to be taken
during programming to make the painting of the interval display quick and
responsive, particularly when filters were employed. For projects an order of

161

magnitude larger, this is expected to become a significant problem. The same
goes for the computation of derived metadata; it may not be practical to do it in
such an automatic and “careless” manner if the project is much larger.
The organisation of media resources could perhaps also be improved; a flat list
greater than 20-30 begins to be unmanageable. One solution might be to arrange
media resources as individuals of user-specified subclasses of “Media Resource”;
this would be a transparent, optional and backwards-compatible change to the
current scheme. Another option is to present media resources in a table instead of
a list, with their properties as columns, and allow the table to be sorted on the
various columns. The problem with this scheme is that it would require more
screen space, and that the media resources might not be homogeneously described
with properties.
One somewhat surprising comment from the student users was that the ontology
used in this project was too big and overwhelming – despite the fact that the
hierarchical visualisation of OntoLog/Savanta was designed to allow you to
ignore detail you deem irrelevant. There could be many reasons for this – that the
ontology is in fact too big; that humans have an irrepressible desire to explore
beyond what is useful or relevant; that the users do not trust Savanta to aggregate
the hidden details correctly; or that this aggregation/hiding is not properly
presented and explained in the user interface – so it ought to be studied further.

7.1.3 Analysis of television advertisements
In autumn 2003, we tested OntoLog as a tool for analysis of television
advertisements in cooperation with the Department of Art and Media Studies at
the Norwegian University of Science and Technology. A full account of the
project is given in [Engum 2003].

Context and purpose
A branch of media studies is to describe and explain film phenomena based on
features of the film’s production and presentation – lighting, camerawork, editing,
composition, mise-en-scene – various aspects of the “art and science of motion
picture photography”, i.e. cinematography [Merriam-Webster Incorporated 2004].
This entails creating painstakingly precise and detailed descriptions of what goes
on in the film at every moment – often with second or even frame precision. The
aspects that are described are in many cases orthogonal; lighting is independent of
camera movement, which is again independent of aural effects such as speech and
music.
This description, or logging, is typically done manually, with textual annotations
– professor Skretting at the Department of Art and Media Sciences even uses the
phrase “stopwatch, pencil and paper” to describe the logging process. In [Thibault
2000], a method is presented where film descriptions are organised in a table,
with one row per second, and five columns describing different aspects of each
second of film with a semi-structured combination of codes, keywords, symbols
and textual descriptions. This comprises an annotation scheme with fixed
segmentation, no flexibility, and named descriptors for semantic expressiveness

162

(see section 3.1), which is not very impressive. Most of the descriptions will last
for several seconds, and will in many cases start and end independently of each
other. Furthermore, the semi-structured description paradigm is not very suitable
for computer-assisted analysis or visualisation. Finally, many of the possible
descriptor values are organised in hierarchies, e.g. the camera positions (or
movements) shown in Figure 7.4.

forwards

backwards

panning

dolly

Camera Position

stationary

moving

sideways

sagittal tilting

perpendicular

Figure 7.4: Camera positions (adapted from [Thibault 2000])

All things considered, we deemed it likely that this form of video content
description could benefit from the OntoLog approach. OntoLog’s stratified model
facilitates the description of several independent features of the film, and its
organisation of strata into ontologies meshes well with the way such features are
used in film analysis, which will become more evident in the Ontologies
subsection.

Media material
The media material used in this project was four Norwegian TV commercials, one
from each of the last four decades. Part of the purpose was to determine if and
how the cinematography of such commercials have changed through the years.
Apart from their age, the films were intentionally quite homogeneous: they were
all around half a minute long, promoted an actual commodity (as opposed to a
service, institution, message or similar), and were “photographic” in the sense that
they all depicted real people in realistic environments (as opposed to animation,
puppets etc.).

Ontologies
An ontology consisting of 69 concepts was created, most of which is shown in
Figure 7.5. It is based on the common terminology for describing film, so it is
quite generic – it doesn’t contain concepts that are specific to the domain of TV
commercials, or to the four films that were analysed. Thus, it is suitable for reuse
in other, similar projects.
The four top-level classes are Joins, Sounds, Cinematography (here defined as
camera use) and Mise en Scene.

• Joins has a set of individuals representing different kinds of editing
techniques for joining shots: cut, fade, wipe and others. “Fade in” and

163

“fade out” could have been placed in their own subclass, “Fade”, but the
analysers chose not to, for reasons of simplicity.

• Sounds have subclasses for background sound, music and speech. Further
specification is of course conceivable, but the analysers chose to focus on
camera work and editing in this project. Adding subclasses or individuals
at a later date will of course not render the annotations in this project
invalid or useless, just less specific than they might be.

Figure 7.5: Ontology for film analysis [Engum 2003]

164

• Cinematography is the largest class, encompassing 40 of the 69
concepts. It describes the properties of the camera in great detail: its
movement, distance from the action, angle, height and level.

• Mise en Scene (the stage setting – lighting, actors and so on) has 17
subconcepts, but they were not used in this project, so they are not
discussed further.

The difference between classes and individuals is not very significant; in most
cases, the analysers simply chose to use individuals as leaf nodes in the ontology
tree. It could be argued that the resulting semantics are somewhat dubious – is
“forward tracking shot” really an instance of “Tracking shot”? Or is it a subclass?
What is (an instance of) a tracking shot? It is perhaps most correct to say that it is
an actual shot in a particular film, but in that case, it is not very useful to include
it in the ontology. Perhaps some or most of the individuals in this ontology should
be classes (and an Interval the instance of a tracking shot), but OntoLog does
support changing the “type” of a concept – and this did in any case not affect the
work in this project.

Production
Almost all of the information in this project is temporal, i.e. intervals and their
relationship to the concepts in the ontology. The concepts as such are not
described in detail; many of the high-level concepts have comments, but no other
properties. Consequently, no properties are defined in the ontology either.
Likewise, the media resources are not described with more than a label. A date
property (e.g. the Dublin Core date, included by default in OntoLog projects)
would have been appropriate, since part of the purpose of this project was to
compare commercials from four different decades, but presumably the analysts
decided to just keep that knowledge in their heads.
The number of intervals described for each film ranges from 21 to 87. The
number of intervals overlapping at any given time is usually around three, but
sometimes as high as seven. The intervals are typically not described with
anything (apart from the obligatory concept), but one interval in each film is
labelled with the word “Product”, signifying the first appearance of the product
being advertised.
The films were logged completely manually, and this was a slow process. The
films are short, but must be described in great detail – the “busiest” film has 87
intervals in 42 seconds, an average of over four interval endpoints per second.
This led to a lot of pausing and fiddling with the video to place the endpoints
accurately, perhaps especially for the “cut” concept – cuts are instantaneous, and
were logged as intervals that were as short as possible. On average, more than one
minute of logging time was spent for each second of video, which is somewhat
disheartening. This might improve with familiarity with the user interface,
though.

165

Use
The films (or rather, their annotations) were analysed and compared in the
OntoLog tool. Savanta might have been a better alternative, but it was not yet
functional at the time. The analysis was performed through visual inspection of
the annotation patterns, as well as study of the simple statistics generated by
OntoLog, as shown in Figure 7.6. A few of the somewhat interesting findings
were:

• The number of joins (and therefore shots) per second is almost the same
in three of the four films. This may be a bit surprising, given that short
shots and “busy editing” is often considered a fairly modern style. The
odd film out is actually the most recent, and consists of a just single shot.

• Two of the films are very different in character – one is staccato, abrupt
and energetic, while the other is soft, smooth and flowing. However, the
number of shots, the camera movements and even the pattern of the
cinematography are strikingly similar.

• The oldest film is made with no camera movement at all, only with
differences in distance. So is the most recent, while the two from the
eighties and nineties have very intricate camerawork.

• A common pattern for the films is that they start with a long shot to
establish the environment, and identify the product with a close-up near
the middle of the film.

Figure 7.6: OntoLog annotations of Norwegian milk shake commercial from 1987,

showing statistics

166

The validity of these observations is of course questionable, given the meagre size
of the source material. But that is not the point; the point is that OntoLog
facilitates such observations.

Discussion
OntoLog was well received by the film analysts; it was described as an “exciting
possibility for mapping and displaying overviews of formal aspects of film … [in
order to] compare the visual language of different directors, different epochs or
different national film cultures” [Engum 2003] (my translation). Unfortunately,
the benefits of the OntoLog model and presentation system were somewhat
overshadowed by two things: The lack of automatic annotation, and the awkward
handling of cuts.
As previously mentioned, creating the annotations was very time-consuming.
While not more so than a pen-and-pencil manual annotation, this was problematic
in that OntoLog thus was seen as a technologically-intensive solution which did
not solve the apparently biggest problem with film analysis: The drudgery of
manual logging at this level of detail. Mechanisms for shot detection and/or
camera-movement classification would presumably improve the value of
OntoLog a great deal for this purpose. See section 6.3 for more on this.
Speaking of shot detection, the other problem was the handling of cuts, or abrupt,
instantaneous joins between shots. These were recorded in OntoLog as very short
intervals, with the result that they hardly were visible in the Logger interface. In
Figure 7.6, for instance, only three of the ten cuts are (barely) visible, due to their
tiny temporal extent. A simple “fix” could be to ensure that an interval is never
displayed as less than one pixel long, but that is hardly good enough. A cut is a
very powerful effect, and is important to establish the “visual rhythm” of a film,
so it should have a strong visual presence in OntoLog as well. A suggestion was
to extend the OntoLog model to include an “Instant” class – like an Interval, but
with just a single time value – and to display Instants as vertical lines in the
Logger interface, constituting a grid-like partitioning of the film.

7.1.4 Other cases
A few other cases were tried, with less conclusive and complete results.

Ethnographic analysis of airplane pilot interaction
OntoLog was used somewhat in a project to study the interaction between
airplane pilots – patterns of communication, physical actions, delegation of
piloting tasks and such things. There were plans to use it extensively, but the user
decided to use the “grounded theory” [Stern 1995] ethnography methodology, and
felt that OntoLog did not match this technique very well. Specifically, he was
reluctant to define categories (concepts) ahead of time, since this might in some
sense “pollute” the analysis of the data by projecting the analyst’s expectations
and predilections onto the material. Instead, he apparently favoured a less
structured approach, letting the categories emerge while repeatedly viewing the
films. It is unclear why the possibilities for incremental ontology design were

167

found wanting, but unfortunately the communication with this particular test user
was unreliable and sporadic.
In any case, the user annotated three videos once he had analysed them manually
and designed the categories. He remarked that this was a smooth process, and that
OntoLog would be very useful in projects where the categories were defined
beforehand, but did not use these annotations for anything worth mentioning.

Study of mid-century infomercials
In Norway in the fifties and sixties, a number of hour-long infomercials called
“housewife films” (“Husmorfilm”) were made. These were a mix of
advertisements, tutorials and dramatised short stories around the themes of
cooking, cleaning and so on. They were shown at cinemas, featured well-known
actors, and were very popular. Scientists at Department of Art and Media Studies
at the Norwegian University of Science and Technology are studying these films
– their use of cinematography, modes of exposition and use of voice-over versus
on-screen actors, among other things.
OntoLog is at the time of writing being used for this analysis, but unfortunately
the project has not yet matured enough to provide firm feedback on the
performance of the OntoLog system for this purpose. Two ontologies of about 40
concepts have been created, and two films have been annotated with respectively
70 and 100 intervals, but the annotations have not been used for much yet.
However, some preliminary impressions have been noted:

• The system is perhaps a bit complex. The OntoLog application is
somewhat difficult to use; it is not entirely clear how the four main panels
interact, and what information goes where. There are some user interface
nits to pick.

• The technique of using the same ontology to describe several films can
feel strange at first – what if the films use different actors, techniques and
themes? – but enables very useful comparisons, once you get used to the
notion.

• The user interface is very flexible and robust; being able to edit the
ontology while logging is useful, since you thus can create it
incrementally and easily change it as your requirements emerge and
solidify.

7.1.5 Summary
The reason for using temporal annotations was the same in almost all these cases:
to perform an analysis of the media material. Only the lecture case had indexing
and retrieval as its primary goal. More cases of this kind would increase the
validity of the evaluation, but the preponderance of analysis cases might indicate
that that is in fact a more common purpose for detailed temporal annotations. That
said, it should be noted that all the test cases used the annotations as an index for
navigating through the video, and performed the analysis mainly in a visual
manner (i.e. not using the analysis functions of Ana, Savanta and OntoLog very

168

much), which justifies the effort spent on designing and implementing
visualisation, browsing and navigation functionality.
The media used in the various cases were very diverse; from TV advertisements
of around thirty seconds, through user-produced unedited video recordings with a
length of a few minutes to half an hour, to hour-long cinema productions.
OntoLog handles them all well, though the short videos expose a few problems
with the logging interface, discussed later.
The size and complexity of the ontologies were all about the same order of
magnitude – around fifty concepts. The “IT Introduction” ontology was bigger,
but should arguably have been split up into several smaller and more coherent
ontologies, or even simplified – users indicated that it was a bit too complex. The
cinematography ontology was also quite big, but a significant part of this was not
used. This might give an indication on how many concepts users find it
comfortable to work with, but whether this is given by the design of the user
interface, or by human psychology (or both) is an open question.
The time spent on manual annotation of the media varied greatly, from one and a
half to sixty times the playback time. The excessive amount of time used in the
TV advertisement case was due to the need for very short and very accurate
annotation intervals. The video controls in the OntoLog application do not
support variable playback rate and frame-by-frame stepping; if they did, the time
and effort would most likely have been reduced significantly. Support for instants
(see section 0) would also have facilitated production, editing and analysis of the
annotations.
As mentioned earlier, in most cases the annotations were used for browsing,
navigation and visual analysis; for the most part in the OntoLog application but
also (in the “IT Introduction” case) using Savanta. Despite the focus on analysis,
and the presence of fairly powerful tools such as Ana, the test users felt that
OntoLog alone was sufficient for their purposes. One expressed interest in the
possibility for exporting data for use in a statistical package, but was not
concerned enough to follow this up with more specific requirements.
In general, the test users were quite happy with OntoLog (except for the lack of
fine-grained video control). The interval visualisation, logging interface and
ontology editing interface were all lauded, though they all underwent some
modifications as a response to feedback from the users. In contrast, the conceptual
model was not really changed since its first inception; the users found its
expressiveness, preciseness and flexibility good enough to not really have
anything to say about it.

7.2 Evaluation of Savanta
The design of applications, and user interfaces in particular, is not an exact
science where quality can be objectively defined. The subjective evaluation by a
group of prospective users is therefore one of the best ways to evaluate the
usability of an interface.

169

This section presents a usability evaluation carried out using Savanta and two
other comparable interfaces, Savantoogle and Forms. The first part presents the
setting – the overall purposes of the evaluation, the interfaces to be tested and the
evaluation design. The results from the evaluation are presented in the second
part, while the third and final part discusses the results and draws conclusions
about the usability of Savanta and thus the validity of our approach.
Note: The “we” in this section refers to Jon Olav Hauglid as well as the present
author; see appendix E.

7.2.1 Setting
The purpose of this evaluation is to seek answers to the following questions:

• Is integration of several information gathering methods a good idea?
Does it provide significant benefits compared to interfaces that specialise
in a single method?

• What is the relative importance of simplicity versus power? Can a
powerful but complex system outperform a simpler one with regard to
user satisfaction, without significant amounts of user training?

• How does the nature of information gathering tasks affect the suitability
and efficacy of such interfaces? What, if anything, changes depending on
whether the tasks are simple or complex, specific or open-ended?

As the purpose of the evaluation is to find the strengths and weaknesses of
Savanta, a comparative evaluation with other interfaces for accessing temporal
annotation databases was a natural choice. By comparing Savanta with other
interfaces, one can gain a clearer view of the merits and the weaknesses of the
design. Such evaluations also help to improve the reliability of the study by
limiting the impact of the Hawthorne effect [Mayo 1933]. This effect states that
simply showing concern for users' situation improves their performance.
Comparative evaluations cancel out this effect as they measure the relative merits
of the interfaces rather than the satisfaction level with a single interface.
We chose to compare Savanta with applications based on two common paradigms
for database search:

• Information retrieval as used by web search engines, where search terms
entered into a single text field produce a ranked list of documents. This
paradigm is represented by Savantoogle, described in section 6.8.

• Construction of boolean query expressions using forms, with an unranked
list of matching intervals as the result. This paradigm is represented by
Forms, described in section 6.9.

We chose to create our own implementations instead of using existing systems.
That way, we would be able to query the same database with all three interfaces,
and they would be quite similar in look, feel and polish. This would help the test
subjects focus solely on the paradigm differences, not on database differences or
implementation details.

170

Evaluation methods
In general, the purpose of usability evaluations is to examine the usability of one
or more user interfaces. As a wide variety of different evaluation methods exists,
a fundamental task in evaluation design is to decide which methods to use.
Broadly speaking, existing methods can be divided into two groups based on
which kind of information the method provides. Qualitative methods such as
interview and observation are concerned with understanding how an interface
works – how users perceive the presented information, why users sometimes get
stuck, etc. Quantitative methods, on the other hand, are used to measure quality –
how many users prefer a given interface over other interfaces, how fast a given
task can be solved, etc. Examples of quantitative evaluation methods include
performance measurement and questionnaires. For an in-depth description of
available evaluation methods, see e.g. [Preece et al. 1994].
Based on the purpose of this evaluation, as defined in section 7.2.1, this
evaluation was divided into two parts: a pilot study and a main study – each using
different evaluation methods.

Pilot study
Before the actual evaluation phase started, a pilot study was performed. This
included presenting the three implemented interfaces to three fellow researchers
and having them comment on any potential usability problems they could spot.
This also included an evaluation of the main study design. In this way, the pilot
study can very well be viewed as a part of the implementation phase rather than
the evaluation phase.
As none of the interfaces had been used by anyone but the designers, the pilot
study was a critical phase in assuring a consistent level of quality among the
implementations. Several iterations of implementation and inspection were
necessary before the implemented interfaces were ready for the main study. In
particular, several problems regarding consistent wording of labels and buttons as
well as confusing general interface layout, were fixed.

Main study
As is already evident, the main study is a comparative evaluation of three
different interfaces for information access in temporal annotation databases. For
comparative evaluations, one has the choice of having each test subject evaluating
a single interface (between-subjects) or have all testers evaluate all interfaces
(within-subjects) [Mitchell and Jolley 2001]. For this evaluation, the latter
alternative was chosen – primarily to reduce the number of test subjects needed
and to assure that individual differences are cancelled out (e.g. some test subject
being more positive in general than others).
Further, to remove ordering effects, a counterbalanced design was used by which
the test subjects were randomly divided into three groups. All members of each
group tested the interfaces in the same order, and this order was altered between
groups such that all interfaces were equally often tested first, second or third.
Each of the three test groups consisted of three test subjects – nine in total. This

171

number was kept fairly low as the evaluation was primarily qualitative and thus
required less testers and more time per tester. As the database used for all
interfaces contained video and annotations from a computer science class, all test
subjects were students that had recently taken this class. They were thus familiar
with the subject at hand and would be legitimate end-users of the implemented
interfaces.
The main study itself consisted of three steps. First, the test subject was given a
brief introduction and tutorial for one of the interfaces. Second, the subject carried
out several predetermined tasks using the interface while being observed. These
two steps were then repeated for the two remaining interfaces. The training of the
test subjects was done to equalise the playing field and to lessen the impact of
individual differences with regards to previous experiences with similar
interfaces. Finally, a questionnaire concerning all three interfaces was handed out.
Thus, the main study made use of two evaluation methods: Observation and
questionnaires.
The objective of the observation was to gather qualitative data about the
interfaces. This was done by recording observational data on paper while the
evaluation tasks were performed by the test subjects. These notes were often
supplemented by a short informal interview afterwards to clarify some of the
observations made.
The questionnaire was used to get quantitative data concerning the relative
performance of the three interfaces. For this reason, all questions were repeated
for the three interfaces and the test subjects were instructed to focus on
comparative evaluation (i.e. which interface was best in a given category). All but
one of the questions were taken from the comprehensive Questionnaire for User
Interaction Satisfaction (QUIS) [Chin et al. 1988].

Evaluation tasks
One of the stated purposes of this evaluation was to study the performance of the
interface with respect to different types of information gathering tasks. Three
different categories of tasks were defined: Simple retrieval, complex retrieval and
exploration. These are based on and correspond roughly to the task types defined
in [Shneiderman 1997]: Specific fact finding, extended fact finding, and open-
ended browsing / exploration of availability.
We defined simple retrieval as tasks where the user is looking for a simple answer
– yes or no, or a single interval of video containing something of interest – and
where there is no need to combine search terms or consider relations between
things. Examples include finding the sole place where a certain term is used, or
determining if a given term is mentioned in a particular set of videos. Tasks of
this kind are conceptually simple, and a good query interface should be able to
handle them simply and efficiently. If an interface is geared towards more
complex queries, it may inhibit the formulation of simple ones – it may be too
powerful for its own good. Therefore, we expect the simplest interfaces –
Savantoogle, and to a lesser extent Forms – to score well for simple retrieval.

172

Complex retrieval is here defined as tasks where the result is more intricate – a set
of video intervals, for instance, or an aggregation of them (say, total length) – or
where the user needs to combine search terms, or establish how different terms
relate to each other. Determining how much time is spent on a given term, or
finding intervals where two particular terms are active at the same time, are
examples of complex retrieval. This calls for interfaces able to construct
composite query expressions and to perform aggregate functions. We expect
Savantoogle to perform worse than the other two interfaces at this, since it has
little support for aggregation and temporal operations – it considers video
documents the unit of retrieval. It is more difficult to predict how Forms and
Savanta will perform.
Exploration is tasks where neither the goal nor the path towards it is entirely
clear. It may be the user trying to find out what exists in the database, what trends
can be established, what characterises a subset of the database. Examples include
finding out what the most important term is in a given set of videos, or
determining which narrower term of a particular term is most used. For this kind
of fuzzy fact-finding, we expect the visualisation and multiple access methods of
Savanta to give it the upper hand.

7.2.2 Results
This section presents the observations made during the evaluation as well as the
questionnaire results. Finally, a discussion of the outcome of the evaluation and a
look at reliability and validity concerns.

Observation
By observing the test subjects, listening to their comments and interviewing them
afterwards, we discovered a few interesting tendencies and patterns. Many
comments were related to details of each interface, such as button placement and
double-click behaviour. This is not in itself very interesting outside the context of
our implementations, but in many cases, more general guidelines and tendencies
may be distilled from them. Other observations are inherently more general, and
thus more directly useful. In the following discussion, we have tried to abstract
the observations away from implementation details, and to focus on the more
high-level lessons to be learned from them.
Applying conventions makes sense – the users were pleased with finding elements
of software systems they had used before. The Home, Back and Forward buttons
of Savanta, familiar from web browsers, were used extensively and without any
problems. This was expected, but it is nice to see such expectations confirmed,
especially since these controls in this case were used outside their normal
environment, web browsers. Savantoogle was praised for its resemblance to
Google, which everybody was familiar with and enjoyed using. Likewise, most of
the test subjects expected something useful to happen (video playback, mostly)
when they double-clicked on search results and other things; it was a source of
annoyance and confusion when it didn’t.

173

The model and/or domain have clear affordances – given the organisation of the
information in our database, our test subjects expected the user interfaces to be
organised correspondingly. The temporal aspect and the list of videos were not
directly accessible in Forms and Savantoogle, and this was frowned upon. For
instance, to find a particular video in Forms, the users had to perform a query
using a disjunction of all the top-level terms, and scan the result manually to find
the desired video. This was often referred to as “cheating” and a roundabout,
unintuitive process, though it was not particularly difficult or labour-intensive to
do. The lack of a visual, temporal overview of the media resources in Forms was
also lamented.
Feedback is important – perhaps not a stunning discovery, but the users clearly
had a strong need to be certain that their queries produced correct results; to know
why the interfaces came up with the results they did. When using the search field
in Savanta, some test subjects spent considerable time expanding the term tree to
ascertain that it actually was a matching term that had been found. When querying
in Forms, a few test subjects wanted to see which terms overlapped the search
result, for instance with an interval visualisation like in the other two interfaces.
In Savantoogle, many repeated essentially the same query several times, varying
the use of quote marks and pluses, to be sure that the desired result had been
produced. This could perhaps be improved by presenting a better summary of the
media resource for each match – our implementation just presented its title and
comment, and the list of matching terms.
Multiple access methods is good – many felt straight-jacketed by Forms and
Savantoogle, since those systems only had one method each for finding
information. Several users commented that it was easy to “get stuck”, whereas in
Savanta, the users had multiple angles from which to approach the problem.
While this meant extra complexity – some commented that it was difficult to
remember all the possibilities – it was clearly preferred, and “felt faster” (even
when it was not). This confirmed our hopes that a richer, more powerful and
flexible environment could still be at least as pleasant to use as a simple,
minimalist one, even for simple tasks.
Complex tasks and simple interfaces don’t match – when faced with a complex or
exploratory task, many of the test subjects wanted to solve it in a correspondingly
clever manner. They did not like to use a sequence of simple operations,
especially when they had to assemble the result manually in their heads (or on
paper). Even though it might be easy and obvious, it felt like drudgery. In many
cases it was, of course – finding the most used term in a subset of the database is
very time-consuming when the interface only supports elementary functions like
searching for a word. It seems that users expect and require the system to provide
functions at the same level of complexity as the tasks the users want to perform,
even though they have to spend time finding them and learning to use them.

Questionnaire
The questionnaire consisted of 10 questions drawn from QUIS [Chin et al. 1988]
for each of the interfaces, 30 in total. The following questions were used:

174

1. Reactions to the system with respect to simple retrieval (terrible –
wonderful).

2. Reactions to the system with respect to complex retrieval (terrible –
wonderful).

3. Reactions to the system with respect to exploration (terrible – wonderful).
4. Overall reactions to the system (terrible – wonderful).
5. Learning to operate the system (difficult – easy).
6. The expressiveness of the system (inadequate – adequate).1
7. Amount of information that can be displayed on screen (inadequate –

adequate).
8. Messages which appear on screen (confusing – clear).
9. Tasks can be performed in a straight-forward manner (never – always).
10. Amount of help given (inadequate – adequate).

The results of the questionnaires are displayed in Figure 7.7.

Simple

Complex

Exploration

Overall

Learn to operate

Power

Amount of info

Messages on screen

Straight-forward

Amount of help

Savantoogle Forms Savanta

Terrible Average Wonderful

Figure 7.7: Results from questionnaires.

Reviewing these results, we have found the following three characteristics to be
most evident:

1 This question was not drawn from QUIS

175

• Ranking with respect to task types
Overall the picture is reasonable clear: Savanta was best liked regardless
of type of task. The other two interfaces were found to perform almost
equally.

• Savanta best for more complex tasks
The largest differences were evident for complex retrieval and
exploration tasks, while Savanta and Savantoogle performed almost
equally well for simple retrieval. Not surprisingly, there is a clear
correlation between the results from the “Complex” and “Power”
questions.

• Learn to operate vs. Straight-forward
On first glance, there seems to be an inconsistency between Savanta’s
results for these two categories. How can both be the most difficult
interface to learn and the most straight-forward to use? We believe the
answer lies in the results from the “Power” question. While a simple and
less powerful interface might be easy to learn, it can require a huge
number of actions in order to complete complex tasks. With Savanta,
once the user had grasped the interface, complex tasks could often be
completed in just a few steps.

• High power wins over high complexity
As is evident from the “Learn to operate” and “Messages on screen”
questions, the test subjects found Savanta more complex and difficult to
use. The power of the interface and the straight-forward way even
complex tasks could be performed did however make Savanta the
preferred interface regardless.

7.2.3 Discussion
Integration of several access methods is the cornerstone of the Savanta design.
The results of the usability evaluation strongly suggest that this was a good idea.
Offering multiple ways to reach one’s goal made it less likely for users to “get
stuck” using Savanta compared with the other two interfaces. Further, the results
indicate that graphical visualisation of temporal metadata greatly helps the users
in quickly gaining an overview of complex data.
While these findings were expected, it was interesting to examine the usability
consequences of having multiple methods for accessing data. Savanta’s interface
was found to be a bit more complex, but the users found the increase in
expressive power more than made up for this.
Even as Savanta in general was the best liked interface among those tested, there
were variations depending on information gathering task. For complex tasks as
well as exploration, the multitude of possibilities of Savanta ensured that it was
the clear winner. But for more simple tasks, more simple interfaces performed
equally well.

176

Reliability and validity
The results of a usability study are not worth much if the evaluation design is
flawed. In general, possible methodology pitfalls can be classified as either
reliability or validity concerns [Nielsen 1993]. An outcome is reliable if a new
evaluation gives the same result, while validity is defined as whether the result
actually reflects what one really wants to test.
The most obvious way to improve the reliability of our evaluation would have
been to use more test subjects. People are different, and the impact of these
differences is reduced when more testers are involved. Still, the use of a
comparative evaluation design reduces the impact of individual differences.
As for validity, the type of test subjects used is a possible source for concern. All
test subjects were quite experienced with computers and thus not the best to judge
usability with respect to other types of users. However, with the test data we used,
the test subject very much represented the intended target audience.
Another possible concern with respect to validity is the choice of the other two
interfaces used for comparison. While their design and capabilities were tailored
to match existing classes of interfaces for information access in temporal
metadata databases, they were still designed and implemented by us. Thus
(unintentional) bias on our part is a clear possibility. Still, we felt it was critical
for comparison purposes that all interfaces used the same data (and conceptual
model) and making our own implementations was pretty much the only way to
achieve this.

177

8 Discussion
In this chapter, the various findings of this work are discussed. The first section is
structured according to the research questions put forward at the beginning of this
thesis, while the second part discusses the research approach itself, as well as
experiences concerning the use of RDF for video annotation.

8.1 Research questions
The research questions posed in section 1.2 are here reviewed, along with
discussion on how (or if) and how well they have been fulfilled.

8.1.1 Video information modelling
The questions put forward were: How should a model for semantic, temporal
annotations be constructed, given that it should be usable for quite different
domains, purposes and levels of detail? What are the requirements concerning
such a model? What kinds of semantics, what level of expressiveness should be
supported? How can the model be made flexible or extensible enough to support
different kinds of applications, while not sacrificing simplicity and usability?
The answer suggested by this thesis is in short: Use ontologies – relatively small,
custom-built, user-specified ontologies. This enables the users to construct their
own universe of discourse, with exactly the desired perspective, level of detail
and expressiveness. The coupling of this with unconstrained temporal intervals,
in a stratification based on the structure of the ontologies, gives rise to a very
flexible model. By using the subclass-of and instance-of relations of ontology,
annotations with appropriate specificity can be created, and the same structure can
be used with significant benefit for visualisation (including zooming and
overviews) as well as reasoning during retrieval and analysis.
The model can be thought of as a framework or meta-model, capable of
implementing most, if not all, aspects of the existing models described in chapter
3. Its suggested handling of spatial annotations (described in section 6.4) is
perhaps not as elegant and powerful as that of BilVideo, but that may be the price
to pay for flexibility and user-friendliness in other areas (or possibly a reflection
of the relatively little importance assigned to the study of spatial annotations in
this thesis). The model has no particular mechanism for hierarchical
segmentation, which is a common feature in several older models, but that can be
implemented using appropriate classes representing the hierarchy levels of shot,
scene and sequence, if desired.
Simplicity and usability was also a goal. This, I think, has been reasonably
successful; the model does not have very many fundamental entities and
relationships, and most of them are easy to grasp. The difficulty lies in the use of
ontologies, which may be unfamiliar ground for many video annotators, and the
meta-model aspect of it: That before you can start describing the video you have
to create something to describe it with. In practice, however, this has not been a
problem; users are only too happy to be able to organise their knowledge in their
own way. The possible confusion caused by the distinction between subclass-of

178

and instance-of relations can if necessary be glossed over; indeed the whole
concept of ontology can be “dumbed down” to a simple “hierarchy of keywords”,
as is done in Savanta. The process of defining (and, to some extent, using) custom
properties is a bit difficult, perhaps because of too little effort in designing the
user interface for it, but in practice, few properties beyond “label”, “comment”
and the Dublin Core properties are used or desired.

8.1.2 Tools and interfaces
The questions put forward were: How can one create an infrastructure to handle
the various tasks related to the usage of semantic content annotations? What
kinds of architectures and technologies can or should be used? How should the
metadata be stored, accessed and transferred to the user? How should tools for
entering, browsing, presenting and querying annotations be constructed?
The answer suggested by this thesis is not as easy to state succinctly as the answer
to the previous set of questions. Some of the infrastructure is dictated by the
model – tools for defining projects and constructing ontologies must be provided
– and this thesis cannot claim to contribute very many original thoughts in that
area. However, the technique for visualising annotations based on using the
hierarchical ontology terms as strata, is novel and very useful. It enables a highly
needed overview and zooming functionality for temporal annotations, and is
intuitive and natural to use, both for annotation production, browsing and
analysis.
Information gathering tools have also been studied to a respectable extent.
Various techniques for search, browsing and analysis has been investigated,
culminating in Savanta, where modern user interface paradigms and interaction
mechanisms are integrated to form a novel, rich environment for information
gathering in temporal annotations. Savanta may be criticised for its complexity,
but simpler tools are available, if they are more appropriate: The thesis has shown
that the proposed model supports quite diverse retrieval tools, with different
strengths and weaknesses.
As for architecture, storage and transfer issues, the thesis suggests and proves the
viability of one option: RDF(S) stored in relational databases, and managed by
Jena. RDF is an excellent match for the OntoLog video annotation approach,
since it provides both a simple, unified information representation scheme, rich
possibilities for incremental, iterative model customisation and refining, and a
well-defined language for formal specification of conceptual models and
ontologies. Despite the immatureness of RDFS and the tools supporting it, this
has been a success. Further development of RDF, RDFS and related standards,
and of tools supporting them, will likely improve this even more.

8.1.3 Usability and performance
The questions put forward were: How does such a system fare in practice, in the
real world? Does it provide real benefits compared to prior approaches found in
literature? Under what circumstances is it appropriate and successful, and when is
it not? Is there an actual need for this kind of system? Are the model and the tools

179

user-friendly enough? Expressive enough? Extensible enough? Simple enough? Is
the model possible to index and search efficiently? Is it scalable? How does the
choice of architecture/technology affect this?
The answers to this set of questions are perhaps not as universally interesting as
the previous two, but they may be useful to consider nonetheless.
What are the benefits? – The benefits the model provides are mainly flexibility
and expressiveness. The users may create their own descriptors, rather than use
predefined, broad categories such as “event” or “object”. Compared to other
models that also allow such customisation, the OntoLog model scores points for
being based on a formal theory for describing (aspects of) the world – ontology –
which in theory makes it possible to reason about the descriptors and, thus, the
media they describe. It is also very open, in the sense that there are no limits on
how complex or specific the ontologies may be, apart from the constraints
dictated by the ontology language used. On the other hand, for some kinds of data
and purposes, the model is not very suitable, as mentioned in section 8.1.1 and
discussed further below. The basic model is reasonably simple, but that may not
be very important; the tools and user interfaces wrapping a model is at least as
important to the usability of the system as a whole, as the intrinsic complexity of
the model.
As for the tools and interfaces, it is harder to say what benefits they offer
compared to other approaches, due to the heterogeneity of this field, and the
constraints put upon the tools by their underlying models. Interviews with actual
users suggest that OntoLog is more powerful and user-friendly than commercial
products with similar goals and functionality (see 7.1.1). It is difficult to make
such comparisons fair, especially given OntoLog’s goal of being appropriate for
very different purposes; however, the technique of hierarchical aggregation of
annotations in a timeline view is a valuable contribution, since it enables rich,
interactive and zoomable overviews of video annotations, and thus also inter-
video browsing. The information gathering interface Savanta has also proven
itself superior to more traditional approaches, as discussed in section 7.2.
Under what circumstances does it work? Is it adequate? – Despite OntoLog’s
goal of generality and adaptability, there are some circumstances it does not
handle perfectly. Due to its interval-based model and timeline-base visualisation,
the intervals should be no shorter than 1/50 to 1/100 of the total length of the
media file; otherwise, the intervals become too short to be noticed and
manipulated in the timeline view. For the same reason, it is ill suited to annotate
instantaneous events in videos, such as cuts and transitions, as discussed in
section 7.1.3, but this critique is applicable to most interval-based annotation
systems. OntoLog also has no direct support for hierarchical segmentation, which
is a common feature in older annotation systems.
OntoLog is designed for overlapping annotation intervals. The use of ontologies
as hierarchical strata makes it simple and natural to describe the various (and
often independent) aspects of the content of the video, and the visualisation
technique displays the result in a helpful manner. However, there should not be
too much overlap – more than 6 or 7 “active” intervals at any time will cause

180

problems with the visualisation in its current implementation, because of space
constraints. This could however be remedied by assigning more space to each
strata (or perhaps just the “busy” ones), or using some other indication of overlap
in addition to line thickness – colour, for instance. In practice, this has not been a
problem. On the other hand, too little overlap is not ideal, either – the analysis
functions of Savanta are based on computing relative overlap between sets of
intervals. If no overlapping annotations are ever needed, it might be simpler and
more appropriate to use a model based on user-defined segmentation.
The effort of constructing ontologies is another point to consider. One would not
want to construct a separate ontology for each video to be described; this would
be too much effort, and severely undermine the usefulness of tools like Savanta.
OntoLog is designed to annotate a set of related media resources using the same
ontology/ontologies for them all. It lends itself well to projects where the purpose
involves some kind of generalisation of the content of a homogeneous corpus of
video, perhaps where comparison or analysis of the videos is part of the process.
It is not particularly suited for indexing an arbitrary collection of videos with very
different contents and properties, though a very big or very general ontology
could be used.
Among media researcher, video transcription is a common task. Transcription
creates a textual, non-temporal representation of the video content, which is then
used for further study. OntoLog provides no direct support for this; however, it
should be investigated whether this use of transcription is merely to avoid tedious
winding and rewinding of analogue video tapes, possibly rendered obsolete by
digital video and indices based on temporal annotation.
Is it efficient and scalable? – This has not been studied very well. The OntoLog
system works well in practice, at least for projects the size of the lecture recording
project discussed in section 7.1.2. The nature of the RDF model, and the
techniques used by Jena to store it in a relational database leads to a lot of joins
even for the simplest query, but the potential performance hit caused by this is
sidestepped by keeping all the data of a project in memory. The algorithms and
data structures used in the visualisation have linear complexity and storage
requirements, but some of the analysis algorithms in Savanta have quadratic
complexity. This could be a problem for bigger databases, but it is hard to avoid if
you want that kind of functionality. Savanta, being very visually oriented, is in
any case not particularly suited for huge databases.

8.2 Other issues
Apart from the answers to the research questions, some other issues are also
worth discussing. The research approach had of course great impact on the results
presented in this thesis, so an examination of what could have been done
differently is presented in 8.2.1. Subsection 8.2.2 reviews how well the scenarios
from section 4.1 have been fulfilled. The use of RDF for video annotation is
(though not an explicit research goal) an interesting and novel topic; it is
discussed in subsection 8.2.3

181

8.2.1 Research approach
The questions asked in section 1.2 are rather general, perhaps even a bit vague.
Consequently, the answers I have given in the previous section may seem
correspondingly general and vague. Could I have asked different questions,
perhaps more specific ones? Or could I have produced more specific results with
greater validity by pursuing some other research approach?
I could perhaps have focused on one particular domain/purpose for temporal
content annotation – say media research on Norwegian TV commercials and
infomercial films. This would have enabled me to study this domain in detail,
establish clear requirements, and determine my success and my contributions
according to this – more clearly, and perhaps more quantitatively. However, my
vision of adaptability and flexibility would most likely have fallen by the wayside
with this approach, and I believe that that idea is a worthier goal than creating a
better single-purpose tool.
But could I have produced more reliable and valid results? Two studies suggest
themselves as possible improvements:

• I could have performed a quantitative evaluation of the main OntoLog
application, in order to get a more certain indicator of its quality,
preferably compared to other systems.

• I could have investigated the scalability and performance of the OntoLog
system more thoroughly, by generating large databases, by computing the
complexity of algorithms and access paths, or by simulation.

However, creating a valid and reliable usability test of OntoLog is not an easy
matter. Systems for semantic content annotations (and users of them) are rare, so
it would be difficult to find an adequate number of appropriate users. The test
would probably have to be constrained to one kind of domain and purpose, since
the creating of content annotations is a task for domain experts, making it even
harder to find enough suitable test subjects. It is hard to perform a comparative
evaluation, since few (if any) existing systems have capabilities sufficiently
similar to OntoLog. All in all, I felt that a more informal approach toward
evaluation, based on observation, expert review and interviews would be more
fruitful, despite the lack of hard numbers.
In contrast, scalability and performance would have been easier to measure. That
this was omitted is partially a result of priority and time constraints. It is also due
to the fact that OntoLog ended up as a system for small to medium-sized video
databases, as discussed in section 8.1.3. Its model and tools is best suited to a
manageable set (in order of tens or hundreds, not thousands or millions) of fairly
homogeneous videos, as are most of the tasks for which detailed semantic
annotations are needed. For gigantic, heterogeneous video archives like those of
broadcasting companies, OntoLog is not suited. Therefore, I did not consider it
essential to analyse how OntoLog would handle huge amounts of data.
The iterative, design-based research approach has functioned well. The system
has gone through several iterations (the main OntoLog application went through

182

six major versions, and countless minor ones) based on informal expert reviews
and pilot studies, leading to both a better system as well as a better understanding
of its requirements and success criteria. It is hard to imagine how the alternative
research approaches defined by [Denning et al. 1989], theory and abstraction,
could have been more successful than the hands-on, practical approach in this
particular case. The success of OntoLog is determined by the acceptance of actual
users of semantic video annotation; to obtain that, an actual system is more
effective than a theory or an abstract model.
[National Research Council 1994] defines three primary purposes for building
systems such as OntoLog:

• Proof of performance – that an implementation is quantitatively better
than other implementations in terms of performance or improvements and
enhancements.

• Proof of concept – that a certain (preferably original) idea or approach is
viable.

• Proof of existence – to demonstrate a novel computing phenomenon.
The OntoLog system falls in the second category, proof of concept, with perhaps
some aspects of proof of performance. This thesis shows that ontology-based
stratified annotation and visualisation is a good idea, and that the information
gathering approach of Savanta outperforms a few other common approaches
under certain circumstances. However, as NRC [ibid.] points out, it is harder to
prove the value of proof-of-concept artefacts than proof-of-performance artefacts,
since their contribution is often qualitative and based on subjective human
opinion. The evaluation of Savanta produces hard numbers, and could be viewed
as a proof of performance, but the numbers are based on the judgment of the test
subjects, not on objective measurements.
In summary, the research approach used in this thesis has been appropriate and
successful, but its results may be considered somewhat “soft”, qualitative and
vague. One possible improvement might be an abstraction- or theory-based
formal analysis of the properties of the OntoLog model, with respect to (say)
expressiveness or performance.

8.2.2 Scenarios revisited
The development of the OntoLog system has been user-driven and iterative rather
than scenario-based. However, as the scenarios from section 4.1 were used to
explore the problem space and justify requirements, it may be interesting to
review how well each has been fulfilled by the OntoLog model and the current set
of tools.

Support for movie watching
As described in section 5.2.1, the OntoLog model is clearly expressive enough for
Jon’s demands. Actors and producers, their names and relationships to films are

183

easily handled by OntoLog’s user-defined classes, individuals and properties.
Defining action types as classes and connecting them to intervals is also simple.
However, the current set of tools is somewhat inadequate: Jon requires better
query functionality for non-temporal information. The focus in this thesis has
been on the temporal information; however, constructing such a non-temporal
query interface should pose no big challenge. For intra-video navigation (finding
the next fight scene) both the OntoLog application and Savanta are sufficient. A
simpler, more specialised interface might be more appropriate, though.

Managing interview recordings
Cathrine’s indexing and commenting needs are met nicely by the OntoLog
system. Her topic hierarchies are easily expressed using OntoLog’s ontologies,
and plain-text comments can be added to both intervals and concepts without
hassle. The OntoLog application provides a suitable environment for the indexing
and annotation of her audio files; Savanta may additionally be used for browsing
and reviewing if the OntoLog application is found wanting in this regard.

Support for system analysis
Ian’s requirements are also fulfilled reasonably well; the OntoLog application
provides ample means for detailed and incremental creation of an ontology used
for indexing video. It is easy to add more classes, reassign intervals to new
concepts and restructure the ontology, even during interval creation. Using
Savanta, Ian’s team can quickly locate all video intervals related to arbitrary
combinations of concepts in the entire project, in order to study them.
However, the usability of the OntoLog application with regard to creating and
using custom properties and relationships should be studied further. It may also be
a problem that OntoLog is a single-user application; it does not support multiple
annotators.

Video-based system evaluation
The fulfilment of this scenario is described in section 7.1.1. To sum up, it was a
success.

Lecture database
Likewise, the success of the lecture database scenario is described in section
7.1.2. It should be noted, though, that not all aspects of it were performed in
practice: Little extra information were added to the intervals and topics, and the
possibility of collaborative annotation (students entering their own notes and
comments) was left unexplored.

Police investigation
Like Ian, Jostein is served well by the ontology capabilities of the OntoLog
system. Section 5.2.6 details how the ontology creation and annotation is
performed; the OntoLog application supports this perfectly.

184

However, the tool support for analysis is found somewhat wanting. Ana and
Savanta provide mechanisms for temporal analysis, and Savanta is particularly apt
for finding correlations between the appearances of different concepts, but they
are worse at comparing concepts based on their properties, as Jostein needs.
“Merging” concepts – replacing two concepts with their union with respect to
properties and intervals – is a function that is useful for Jostein, but must be
performed manually in the OntoLog application.

Summary
The needs of the scenarios have in general been successfully fulfilled, but more so
for the medium-complexity scenarios than the simplest and the most complex. For
the movie watching scenario, the tools provided are too complicated, and a more
specialised design should be considered. For Ian and Jostein, there is greater
uncertainty regarding if the tools are powerful enough as well as sufficiently
usable. However, the OntoLog annotation model is suitable in all the scenarios,
and the Cathrine, Hallvard and Steinar scenarios are very well served by the
current set of OntoLog tools.

8.2.3 Using RDF for video metadata
Using RDF for video metadata has both advantages and disadvantages. It is very
flexible and expressive, due to the mechanism RDF has for defining its own
classes, instances and properties. Both the OntoLog model itself, the ontologies
and the actual annotations are defined in the same language and stored in the
same database; a very homogeneous and elegant solution. However, RDF data is
somewhat verbose and intricate. To define an interval (and its relation to a
concept) in OntoLog, five statements are needed1:

video.mpg o:hasInterval int1

int1 rdf:type o:Interval

int1 o:from 15700

int1 o:to 21800

int1 o:relatesTo conceptX

In Jena, this information is stored as five rows in a Statement table, where both
the subject, predicate and object reference rows in a Resource table (or a Literal
table, in the case of the objects of the o:from and o:to predicates). Reading a
single interval from the database thus entails joining the Statement table to itself
and the Resource table several times. A more efficient storage scheme would of
course be to have a dedicated Interval table, with ”from” and ”to” as attributes,
and foreign keys relating it to the MediaResource and Concept tables. This would
preclude the model from being used by third-party APIs and reasoning
frameworks such as Jena, but it would make the model less costly to query.

1 Strictly, just four are needed, since the rdf:type property may be inferred from the
domain of the predicates describing the interval, and/or the range of o:hasInterval, cf. the
footnote on page 103.

185

A less destructive simplification is to treat the intervals not as distinct entities in
their own right, but rather as fragments of the media resource, putting the
boundary points of the intervals in the fragment part of a URI based on the media
resource:

video.mpg#15700-21800 rdf:type o:Interval

video.mpg#15700-21800 o:relatesTo conceptX

This would more than halve the number of statements needed to represent an
interval (especially if you consider the rdf:type statement superfluous), as both the
interval’s endpoints and the reference to its media resource would be implicit in
its URI. The fragment identifier would need to be parsed, but this is little effort
compared to a table join. A bigger problem is that the interval’s URI would have
to be changed if the user edited its endpoints. URIs aren’t supposed to change;
Jena, for instance, has no support for this in its API. If the URI is used as a join
attribute in the database tables, any changes would have to be cascaded
throughout the database. It is also worth mentioning that this way of encoding a
temporal interval as a fragment identifier is non-standard; other programs would
not know how to interpret it.
Using Jena has been a mixed blessing. It has an adequate Java API, which isolates
OntoLog from storage specifics – switching from MySQL to Oracle is a matter of
changing the parameters of two method invocations. However, it is still under
development, and has exhibited plenty of bugs during the construction of
OntoLog. The new version, Jena 2, promises better reasoning, OWL support and
a database model with increased performance, which all would benefit OntoLog.
The use of standards such as RDF enables integration and interoperability with
other information systems based on the same standards. However, this has not
been a big issue with OntoLog. Users familiar with RDF have commented that
OntoLog is a nice tool for creating and editing RDFS ontologies, but as the use of
RDF for temporal content annotation is a fairly novel approach, other significant
synergies have not been forthcoming. Ready-made ontologies are available on the
Internet, and can be imported into OntoLog. Users prefer to construct their own,
though – custom-made ontologies are smaller and more focused, and using
standard ontologies has had no particular benefit in the real-world cases OntoLog
has been used. The use of Dublin Core as a default ontology for resource
description is nice, but a small thing. However, the possibilities afforded by
exporting projects and ontologies as XML and using XSLT to transform them
into e.g. web pages are interesting, and might be studied further.
All in all, using RDF for annotating video has been a success. The biggest
problem is its performance for huge databases, but this is a problem for RDF
databases in general, not just for OntoLog. It is also worth mentioning that the
basic idea of OntoLog – using ontologies as hierarchical strata in a stratified
annotation scheme – is not dependent on RDF; another ontology definition
language might work just as well.

186

187

9 Conclusion and further work
This chapter sums up the contributions of this work, and suggests possible
directions further work might take. The overarching goal of this project, if one
looks one level up from the research questions, is to facilitate the use of video in
knowledge work, through the use of computer-supported semantic content
annotations. It is too early to tell if this goal has been reached, but quite a few
more concrete wishes have been fulfilled.

9.1 Contributions
The main contributions of this work can be summarised as follows:
A flexible, expressive, structured and simple model for semantic annotation of
temporal media. Augmenting traditional stratified annotations with ontologies,
the model is strictly more expressive and flexible than existing models (ignoring
spatial annotations), since new objects, object classes and descriptors can be
defined by the users, with formal semantics, on the fly – while not being
significantly more complex. Annotation strata represent concepts, classes and
objects at potentially many different levels of detail, allowing the video to be
described as coarsely or finely as desired – topically as well as temporally.
Demonstrations of this model’s viability in several domains. The model has
proved its worth in several real-world projects from quite different disciplines:
medical informatics, education and media research. The ability to let the users
define their own classes, objects and properties of interest allows the model to be
easily tailored to any domain and purpose.
A powerful visualisation scheme for stratified temporal annotations in video
databases, enabling better overviews and inter-video browsing. The annotation
strata are organised hierarchically in an ontology, with subset (subclass) or
member (instance) semantics. This makes it possible to aggregate the
visualisation of related strata, making the representation more compact and hiding
unnecessary details. The compact representation gives room for visualising and
browsing several videos at once, and the users may easily disaggregate or “zoom
in on” the strata they are particularly interested in.
A novel and powerful information gathering interface, based on integrated
browsing, navigation, visualisation, searching and filtering, with demonstrated
benefits. Savanta provides a rich environment for video browsing and analysis,
utilising the richness of the model, the powerful visualisation scheme and context-
sensitive temporal analysis of the annotations. Its flexible and iterative interaction
model provides a user-friendly approach to complex information gathering needs.
A demonstration that RDF is a viable alternative for temporal video annotation.
The Resource Description Framework [World Wide Web Consortium 2004a], its
companion ontology language, RDF Schema [Brickley et al. 2004], and the Jena1
toolkit was used for the implementation of the OntoLog model. Though primarily

1 http://jena.sourceforge.net/

188

aimed at describing web pages and other kinds of documents, RDF’s flexibility,
expressiveness and simplicity has been shown to be well suited for video
metadata as well.

9.2 Further work
There are a lot of things in this thesis that could be investigated further. More
tests could be run, and more functionality and expressive power could be added to
the model and the tools. However, one should be careful not to lose sight of the
vision of the OntoLog project: to create a system that, though powerful and
flexible, is sufficiently simple and user-friendly for actual users to actually use it.
Possibilities for further work include:

• OWL, Web Ontology Language [World Wide Web Consortium 2004b],
is an extension of RDFS, with increased expressiveness and power. OWL
Lite is an OWL variant with nice properties regarding reasoning and
decidability, and Jena 2 supports this specification. It would be interesting
to see how a more powerful ontology language and reasoning system
would affect OntoLog.

• One of the most common arguments against systems like OntoLog is that
creating accurate semantic annotations manually is too time-consuming.
Support for this task, ranging from relatively simple tools such as those
described in section 6.3.1, through segmentation algorithms based on
visual or aural features of the media, to automatic classification of
intervals based on face, voice or language recognition, should be
investigated. Automatic classification, such as is used in VoiceGraph
[Oard 1997], seems particularly appropriate for the ontology-based
stratification of OntoLog.

• Further testing of OntoLog in realistic circumstances, in different
domains and for different purposes, should be performed. It would be
interesting to investigate how OntoLog could handle

o very large amounts of data,
o very big ontologies,
o very long videos, or
o videos of very different length,

and how this would affect the user interfaces and tools.

• Changes and/or additions to the conceptual model could be considered.
For instance, instants (like intervals without duration) could be added, to
accommodate users who need to log instantaneous events such as cuts.
This would of course also affect the user interfaces and tools. Supporting
different kinds of relationships between intervals and concepts (analogous
to the basic and primary contexts of VideoSTAR [Hjelsvold et al.
1995b]), might also be worth looking into.

189

• More advanced use of ontologies could be imagined, e.g. to interpret
natural language queries, or to perform automatic interpretation of
Symbols and Indexes. It is imaginable that a query “show me some
footage about peace” could be answered by a shot of white doves
(regardless of the original intention of the dove shot) with the help of an
ontology containing the knowledge that doves are a Symbol of peace.

• Versioning, reuse and long-term development of ontologies should be
studied.

• Collaborative annotation could be considered. This includes model
support for authorship, trust, rights and uncertainty, as well as tool
support for collaboration, import of annotations and author-aware
visualisation.

191

A Ontologies
Ontology is one of the buzzwords in many fields of computer science these days.
It is considered a key element of the next generation of computer systems, where
intelligent agents roam the hyperspace, gathering and analysing information for
their masters; where search engines can actually answer questions, instead of just
digging up a set of likely documents that may or may not answer the question;
where information systems and databases actually understand the data they
manage, and are able to reason about it. However, there is some confusion about
what the term “ontology” really means, and how it differs from related terms like
taxonomy and thesaurus.
The oldest usage of “ontology” is as an abstract noun denoting a branch of
metaphysics or philosophy concerned about the nature and relations of being
[Merriam-Webster Incorporated 2004] – what different kinds of things there are
in the world and how they are associated. [Merriam-Webster Incorporated 2004]
further defines the corresponding concrete noun – an ontology – somewhat tersely
as a “particular theory of about the nature of being or the kinds of existents”. This
is a bit intangible for practical purposes, though.
The most quoted definition of an ontology is given by Gruber [Gruber 1993]: “An
ontology is a specification of a conceptualization”. This of course begs the
question, what exactly is a conceptualization, and how is it specified? Borst
[Borst 1997] has elaborated on Gruber’s definition by saying that an ontology is a
formal specification of a shared conceptualization, and Studer et al. [Studer et al.
1998] explains this in more detail: A conceptualization is an abstract model of
some phenomenon in the world, obtained by identifying the relevant concepts of
that phenomenon. This is similar to a conceptual model or database schema,
except that an ontology provides “a domain theory, and not the structure of a data
container”1 [Horrocks et al. 2003]. The ontology should be explicit and formal –
that is, machine-readable and with explicit definitions of the types of concepts and
their use. For it to be of any use, it should be shared – that is, it should capture
consensual knowledge, knowledge that is not private to some individual, but
accepted by a group.
Though some will argue that an ontology need not be formally specified, this is a
necessity for it to be of much use in computer science, since a computer cannot
reason efficiently about it otherwise. Hence, ontologies in computer science are
often specified in logic-based languages, with clearly defined semantics. That an
ontology should represent shared knowledge is primarily convention and common
sense – ontologies are typically used for information exchange, to make certain
that two or more parties (be they humans or computers) are using a common,

1 It should be noted, however, that conceptual and logical models in theory also have
nothing to do with (physical) data container structure; they are merely logical data
organisations.

192

well-defined vocabulary. However, an ontology may be useful for an isolated
individual as well, as a framework for organising and constructing knowledge
about a domain.
But what exactly does such a conceptualization look like? And how is it related to
the perhaps more common terms “thesaurus” and “taxonomy”? Pidcock [Pidcock
2003] defines these concepts as follows, more or less corresponding with the
discussion on semantic depth in [Dörr et al. 2001]:

• A controlled vocabulary (or dictionary) is an explicitly enumerated list of
terms, controlled by some definition authority. It may be specified
formally, but often the semantics are implicitly understood by the
vocabulary’s users.

• A taxonomy is a hierarchy of vocabulary terms. There may be different
kinds of parent-child relationships, e.g. whole-part, genus-species, type-
instance or class-subclass, but many taxonomies are limited to one kind
of relationship.

• A thesaurus is a network of vocabulary terms. In addition to hierarchical
relations, thesauri also use associative lexical relations like synonym and
antonym.

• An ontology is (or may be) all of the above, but typically with the ability
to capture more complex relationships between concepts. A formal
ontology is a controlled vocabulary specified in a formal ontology
language that provides a grammar for using vocabulary terms to express
something meaningful within a specified domain of interest. The
grammar provides formal constraints on how the vocabulary terms can be
used together.

The distinctions are blurry; some say that thesauri are extensions of taxonomies,
while others considers them more or less equivalent; some consider taxonomies
and thesauri special cases of ontologies [Swartout et al. 1996], while others
consider such usage of ontology a perversion of the term.
According to [Corcho et al. 2001], an ontology consists of five kinds of things:

• Classes (or concepts) are abstractions of anything about which something
is said. They can represent classes of concrete thing, e.g. the class of
elephants, but also classes of abstract things like tasks and actions. They
are organised in a taxonomy with a subclass relation.

• Instances are specific members of classes. For example, Dumbo the
elephant is an instance of the class of elephants.

• Relations represent a type of interactions between entities of the domain.
The hierarchical subclass relation of the class taxonomy is an example of
a binary relation, as is the “is-a” (or “instance-of”) relationship between
Dumbo and the elephant class.

193

• Functions are a special case of relations, where the last element of the
relation is unique, given the preceding elements. A mother may have
many children, but a child has only one mother (though some definitions
of “mother” may relax this constraint); thus, the “has-mother” relation is
a function, while “has-child” is not.

• Axioms are statements that can used to define the meaning of ontology
components, to put constraints on how terms may be related, to deduce
new information from or to verify the consistency of the ontology.

This list is not universally agreed upon, though. Some do not bother to separate
functions from other relations, while others introduce attributes as meaning
properties or relations with values from the primitive type domain (strings,
numbers etc.). Some use the word constraints instead of axioms, or as a
generalisation of it.
In the end, it is difficult to find a common, terse and concrete definition of what
an ontology is. But it is possible to establish a few characteristics of ontologies,
that hold for all definitions and are sufficient for the treatment of ontologies in
this thesis:

• An ontology can define a set of classes of objects, relate the classes in a
partial ordering of subclasses, and define individual objects as instances
of one or more classes.

• An ontology can define properties for describing elements of the ontology
and relating elements to each other with formally specified semantics, and
put constraints on how these properties can be used.

194

195

B OntoLog RDF Schema

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description

rdf:about="http://www.idi.ntnu.no/~heggland/ontolog/ontolog-
schema#">

 <dc:title>The OntoLog schema</dc:title>
 <dc:description>The schema for Jon Heggland's Ontolog

system</dc:description>
 <dc:creator>Jon Heggland</dc:creator>
 <dc:date>2003-05-12</dc:date>
 </rdf:Description>

 <!-- Classes -->

 <rdfs:Class rdf:ID="Ontology">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="MediaResource">
 <rdfs:label>Media Resource</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Interval">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Project">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>
 </rdfs:Class>

 <!-- Properties -->

 <rdf:Property rdf:ID="hasMnemonic">
 <rdfs:comment>Stores the mnemonic character for concept-based

logging</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Literal"/>
 </rdf:Property>

 <rdf:Property rdf:ID="hasInterval">
 <rdfs:label>has interval</rdfs:label>
 <rdfs:domain rdf:resource="#MediaResource"/>
 <rdfs:range rdf:resource="#Interval"/>
 <rdfs:subPropertyOf rdf:resource="http://purl.org/dc/terms/hasPart"/>
 </rdf:Property>

 <rdf:Property rdf:ID="from">
 <rdfs:label>From</rdfs:label>
 <rdfs:domain rdf:resource="#Interval"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Literal"/>
 </rdf:Property>

 <rdf:Property rdf:ID="to">
 <rdfs:label>To</rdfs:label>
 <rdfs:domain rdf:resource="#Interval"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Literal"/>
 </rdf:Property>

196

 <rdf:Property rdf:ID="relatesTo">
 <rdfs:comment>Signifies that an interval relates to a

concept.</rdfs:comment>
 <rdfs:domain rdf:resource="#Interval"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>
 <rdfs:subPropertyOf

rdf:resource="http://purl.org/dc/terms/references"/>
 </rdf:Property>

 <rdf:Property rdf:ID="orderOfChildren">
 <rdfs:comment>Specifies the order of the children of Ontologies and

Concepts</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-

ns#Seq"/>
 </rdf:Property>

 <rdf:Property rdf:ID="usesOntology">
 <rdfs:domain rdf:resource="#Project"/>
 <rdfs:range rdf:resource="#Ontology"/>
 <rdfs:subPropertyOf rdf:resource="http://purl.org/dc/terms/requires"/>
 </rdf:Property>

 <rdf:Property rdf:ID="hasMediaResource">
 <rdfs:domain rdf:resource="#Project"/>
 <rdfs:range rdf:resource="#MediaResource"/>
 <rdfs:subPropertyOf rdf:resource="http://purl.org/dc/terms/hasPart"/>
 </rdf:Property>

 <rdf:Property rdf:ID="projectVersion">
 <rdfs:domain rdf:resource="#Project"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Literal"/>
 </rdf:Property>

</rdf:RDF>

197

C OntoLog ECDL paper
Heggland, J., "OntoLog: Temporal Annotation Using Ad Hoc Ontologies and
Application Profiles," in M. Agosti and C. Thanos (Ed.), Research and Advanced
Technology for Digital Libraries (ECDL), 2002, p.118–128.

198

M. Agosti and C. Thanos (Eds.): ECDL 2002, LNCS 2458, pp. 118-128, 2002.
© Springer-Verlag Berlin Heidelberg 2002

OntoLog: Temporal Annotation Using Ad Hoc
Ontologies and Application Profiles

Jon Heggland

Department of Computer and Information Science, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway

jon.heggland@idi.ntnu.no

Abstract. This paper describes OntoLog, a prototype annotation system for
temporal media. It is a Java application built to explore the issues and benefits
of using ontologies, application profiles and RDF for temporal annotation. It
uses an annotation scheme based on hierarchical ontologies, and an RDF-based
data model that may be adapted and extended through the use of RDF Schema.
Dublin Core is used as a default description scheme. The paper also describes
an ontology-based logging interface and annotation visualisation, and a web-
based searching and browsing system.

1 Introduction
The use of temporal, rich media such as video and audio in research, documentation
and education benefits significantly from systems providing temporal annotations.
High-level, semantic temporal annotations augment the information in the media,
adding comments, explanations, references and links. They also act as indices and
tables of content, providing access points and summaries.

Though research in the multimedia database field is focussed primarily on
efficient storage and delivery of video and audio data, and less on the description
mechanisms needed to handle the enormous amounts of information the data
provides, several annotation systems have been proposed and implemented e.g. [1],
[2], [3]. Likewise, the digital library community and HCI researchers have produced
some fine examples of annotation tools ([4], [5], [6], [7], [8]). However, many such
systems are tailored to a specific domain and purpose, which means they excel in their
area of expertise, but are cumbersome to adapt for different uses. Others are so
generic or minimalist that they may be found lacking in preciseness in complex,
specialised domains.

I believe there is merit in exploring the issues of creating a lightweight, extensible
and adaptable annotation framework. It should be usable without modification for
non-demanding applications, but also permit modification and extension of its data
model – by the users, for the users. For interoperability and user-friendliness, it
should use widely-accepted technologies and metadata standards to achieve this.
Since the creation of semantic annotations is potentially very time-consuming, it
should also aim to simplify this process.

In this paper, I describe OntoLog, my attempt at creating such a system. It utilises
the Resource Description Framework (RDF, [9]) to provide a basic annotation data
model that may be extended using RDF Schemas [10]. It provides a fast and simple

OntoLog: Temporal Annotation Using Ad Hoc Ontologies and Application Profiles 119

interface for logging video, based on the use of ontologies, which is also RDF-based
and extensible.

In the next section, I summarise the most important background technologies
OntoLog builds upon. Section 3 describes the OntoLog system – its basic data model,
its extensibility and adaptability mechanisms, and its user interface. Section 0
discusses preliminary experiences with the system, and section 5 concludes the paper.

2 Background
In this section, I describe the most fundamental issues concerning the annotation of
temporal media. This is followed by a brief overview of the metadata standards
OntoLog uses, and a short discussion of application profiles.

2.1 Annotating Temporal Media
Temporal media are media with a time extent – for instance video, animation, speech
and music. Annotations are, according to [11], “notes added by way of comment or
explanation”. Due to the length of temporal media objects (e.g. motion pictures are
typically around two hours), and the fact that they may cover many different topics in
this time, annotations need to be temporal as well. They must be connected to specific
time intervals in the annotated medium.

There are two main temporal annotation schemes: segmented and stratified. The
segmented scheme is the oldest and simplest. The idea is to partition the media object
into temporal segments, and describe each segment. A common extension of this
scheme is to group related, consecutive segments together, creating a multilevel,
hierarchical segmentation. This corresponds to the structure of shots, scenes and
sequences in television and film production [12]. A problem with this scheme is that it
may be hard to determine the most suitable granularity of the segmentation. If a
segment is too large, its description will not be completely valid throughout its whole
extent. If the segments are too small, descriptions will need to be repeated across
consecutive segments, causing duplication of effort. Another problem is that the
concepts described in the media object may partially overlap in various ways, again
leading to either partially invalid descriptions, or duplication of effort due to fine
granularity. All in all, segmented annotations are better suited to describe the structure
of a temporal media object than its semantics.

The stratified approach [3] creates layers of descriptions called strata, where each
strata describes the temporal occurrences of some concept like a person, place or
topic. The intervals in different strata may overlap, so the description of the media
object at any given time can be modelled as the union or projection of the strata
present at that time. This is a more flexible scheme, but also more complex to
implement and create user interfaces for.

Temporal annotations can be created in several ways. Doing it manually is very
time-consuming, so much research has been done on algorithms and techniques for
producing them automatically. Systems for segmenting video based on editing points
or scene analysis are common (e.g. [13], [14], [3]); likewise, audio may be segmented
by silence detection or speaker recognition ([15], [16], [17]). Face and speech
recognition has been successfully implemented, as has recognition and interpretation
of on-screen text. However, this is still rather low-level information, and is to some

120 J. Heggland

degree dependent on domain information (notice the ubiquity of the well-structured
news broadcast domain). The extraction of high-level semantics still requires human
intervention, as does the augmenting process of adding comments, explanations and
references.

2.2 RDF and Dublin Core
The Resource Description Framework (RDF, [9]) is a World Wide Web Consortium
recommendation; a domain-neutral standard for machine-readable metadata. Its basic
data model consists of three object types: resources, properties and statements. A
resource is anything addressable by a URI [18]. All things described by RDF are
resources. A property is an attribute or characteristic used to describe a resource. A
specific resource together with a property and the value of that property for that
resource is a statement. These three parts of a statement are called the subject, the
predicate and the object, respectively. The object may be a resource or a literal (a
simple string or some other primitive datatype).

The RDF Schema recommendation [10] provides a type system for RDF. Among
other things, it specifies a mechanism for defining classes of resources and properties,
including subclass relationships, and for creating restrictions on what classes of
resources each property may be applied to. The typing system is specified in terms of
the basic RDF data model, using resources for concepts such as Class and properties
for relationships like subClassOf.

The Dublin Core (DC) Element Set ([19], [20]) is a set of fifteen properties
designed to cover the most common needs for describing document-like objects. The
standard includes attributes such as title, author and date, and specifies their semantics
and how they should be used for maximum interoperability. Though Dublin Core it is
not related to RDF, the DC schema can be specified in RDF Schema, and metadata
using DC may be encoded using RDF syntax.

2.3 Application Profiles
Application profiles as a type of metadata schema was first introduced by Heery and
Patel in [21]. The background is that when you design a digital library, database or
metadata system, there are many different metadata standards to choose from.
Typically, however, none fits your need perfectly – they might be too big, too small,
to restrictive or too general. Therefore, usual practise is to adapt the standards – select
the most relevant elements and ignore the rest, to impose additional restrictions on
cardinality and data types and to combine complementing standards.

Application profiles is the formalisation of this adaptation practise. An
application profile is defined as a schema that reuse elements from other schemas
without introducing new data elements. They may specify permitted values and
schemes, and can refine the standard definitions. An application profile might for
instance say that the Dublin Core Identifier property must have an ISBN as its value,
or that the Coverage property shall only be used to denote a geographical location.
Thus, you end up with a schema designed specifically for the task at hand, while still
maintaining a fair degree of interoperability. How to specify, use and disseminate
such application profiles is an interesting research topic – see e.g. [22] and [23].

OntoLog: Temporal Annotation Using Ad Hoc Ontologies and Application Profiles 121

3 The OntoLog System
OntoLog is a media annotation tool that uses ontologies or classification schemes to
create and access stratified temporal annotations, and provides application profile
functionality through integration of different metadata schemas. The main objectives
during the development of OntoLog were:

• To explore the issues of enabling flexible, user-defined description schemes
and application profiles.

• To simplify production, access and understanding of semantic, temporal
annotations by using user-defined ontologies and vocabularies.

• To experiment with a novel visualisation of temporal annotations.

In this section, I first discuss OntoLog’s ontology-based annotation scheme,
followed by a description of its basic data model. Then, I discuss how OntoLog takes
advantage of various metadata standards, before I conclude describing the user
interface – the logging interface, the annotation visualisation, and the ontology-
enabled, web-based search and browsing system.

3.1 Ontology-Based Annotation
Many video indexing systems, e.g. [4], [6], [24], segment the video according to
topics, scenes or editing points, and annotate the segments with free-text transcripts,
descriptions or keywords. OntoLog uses a different approach. It creates intervals that
are unconstrained in that they may overlap freely with each other, like the stratified
model presented in section 2.1. Each interval is connected to a concept or term in an
ontology, vocabulary or classification scheme. Additionally, the intervals (and the
concepts) may be described with properties according to various user-specified
description schemas. This approach is arguably more powerful, since it may be used
to implement the more restricted schemes – the intervals may be created so as to
segment the media object, and annotated using various properties. Even a hierarchical
segmentation scheme may be implemented by relating each layer of intervals to a
shot, scene or sequence concept, and connecting the intervals between layers using a
“part of” property.

Basing the indexing around a structured set of terms has many advantages, as
noted by Weinstein [25]. It allows for easy and exact analysis and statistics on the
length, occurrences and frequency of each term, within and among media clips. This
is useful for domains such as ethnography, anthropology or other application where
analysis of behaviour documented on video or audio is common. It also facilitates
browsing and searching, since the ontology may be used as an index or catalogue.
Compared to using free text descriptions and keywords, it is less prone to uncertainty
due to misspellings and use of slightly different words to express the same concept.
With support for equivalence relations and "similar term"-relations, ontologies
become even more powerful. Additionally, having a standard set of terms to use
makes it easier for a group of indexers to produce consistent and interoperable
descriptions, and speeds up the annotating process.

OntoLog organises the concepts in hierarchical ontologies, which is also an
important point. Using categories for logging video typically produces a lot of
categories – the experimental project described in [7] used about 80. A flat list of this

122 J. Heggland

size is quite unwieldy, but arranged in a hierarchy, it is far easier to use. It also allows
for easy aggregation of annotations and customisable level of detail during both
logging and browsing.

3.2 Basic Data Model
Fig. 1 is an UML diagram showing the basic skeleton of OntoLog’s data model. The
Media Resource element represents the digital media objects, e.g. MPEG files. Each
Media Resource contains an unbounded number of Intervals, with start time and end
time. By default, no restrictions are put upon the temporal ordering of the intervals, so
they may freely overlap.

Fig. 1. OntoLog’s Basic Data Model

There are two principal annotation methods in OntoLog. The main intended
annotation mechanism is based on that each of the intervals is connected to a Concept.
Concepts may represent terms, topics, persons, places, events – anything that it is
desirable to mark the presence of in the media object. Concepts are organised into
hierarchical Ontologies, using a relation with subclass or subset semantics. This
creates a stratified annotation scheme, augmented by the hierarchical organisation of
the strata.

Another complementing annotation mechanism – suggested by the "DC.title…"
attributes in the diagram – is that the intervals and concepts (and indeed any data
element in OntoLog) may be described with arbitrary properties, selected or defined
by the user. The RDF Schema objects determine what properties are available, what
classes of resources they may be applied to, and what types of values each property
may have.

The Project class has several roles in the data model. It groups a set of media
resources, and also manages the set of ontologies used to describe them. Ontologies
are shared between projects, to enable reuse, consistency and interoperability. The
perhaps most interesting use of the Project class, is its role as application profile. It
manages a set of RDF Schemas, which determine how the rest of the data in the
project may be described. The project may also adapt the schemas for the purpose at
hand, by adding titles and descriptions, and possibly restricting the domains and
ranges of the properties. Naturally, RDF Schemas may also be shared between
projects.

OntoLog: Temporal Annotation Using Ad Hoc Ontologies and Application Profiles 123

3.3 Application of Metadata Standards
The data model described above is built on the RDF data model, where information is
represented as statements consisting of subject, predicate and object. In the diagram,
the classes act as subjects and objects, while the associations and attributes are
predicates. OntoLog uses the Jena framework [26] to manipulate RDF data, storing
the data in a generic relational database. Indeed, all the data in OntoLog, including the
schema defining its basic data model, is expressed in RDF. This makes it easy to
incorporate other standards and mechanisms that are RDF compatible, and it enables
OntoLog to be indexed by RDF search engines and augmented with other RDF tools.

OntoLog is able to import and interpret RDF Schemas. The resources and
properties specified in the schemas are integrated into OntoLog’s user interface for
adding and editing properties, thus creating a simple yet fairly powerful mechanism
for extending and adapting OntoLog’s capabilities. The needs of different domains
and purposes are accommodated through use of different schemas. As OntoLog
supports an unlimited number of schemas per project, there is no need for a single
schema to encompass all possible metadata requirements.

As a default, OntoLog uses the Dublin Core Element Set 1.1 [20] as its
description schema. Dublin Core was chosen because it is a widely accepted standard,
and its set of attributes is by design applicable in most domains and suitable for
various purposes. As Dublin Core by default puts no constraints on what kinds of
resources its elements may be applied to, all kinds of entities in OntoLog – projects,
media resources, ontologies, concepts – may be described with DC properties. The
DC title property is used (if available) to represent the resources visually in the user
interface. For RDF Schema classes and instances of the RDF Property class, the RDF
Schema label property (taken from the schemas in which the classes and properties
are defined) is used instead.

Fig. 2. Media Resources with Properties

Fig. 2 shows an example of how a media resource may be annotated with
properties drawn from different schemas. This is taken from a project evaluating the
use of electronic journals in hospitals through analysing video recordings of medical
consultations. The properties of the selected video (titled "2001-11-23") is shown; the

124 J. Heggland

Date and Title properties are from Dublin Core, while the rest of the properties are
from a schema designed for the project. The "Add Properties" dialog shows how
applicable properties are presented: as a two-level tree structure, the roots being the
names of the schema the properties are defined in.

3.4 The User Interface
OntoLog’s user interface is designed to be simple and fast to use. Due to its use of the
RDF data model, describing and managing projects, media resources and ontologies is
consistent and straightforward. Importing and using other RDF Schemas is
transparent and seamless, since OntoLog already uses RDF Schema for its basic data
model and its default description schema, Dublin Core.

Real-Time Logging Interface. In logging mode, each concept in the ontologies can
be clicked on and off during playback, thus creating intervals linked to the concepts.
A keyboard shortcut can be defined for each concept, further simplifying the process.
Informal studies of users logging video with OntoLog have shown that with a
reasonably small number of relevant concepts, only one or a few passes through the
clip is necessary for an adequate set of annotations.

Fig. 3 shows the logger interface logging a video from the video analysis project
mentioned in section 3.3. The tree on the left shows the ontology used to annotate the
video; the underlined characters in the concept titles indicate the keyboard shortcuts.
The timeline display on the right shows the annotations connected to each concept.

Fig. 3. OntoLog’s Logger Interface

Once created, the annotations may be edited by direct manipulation. The start and
end times of the intervals can be modified by click-and-drag, and intervals can be
reclassified to other concepts by dragging them. Properties can be added, edited and
removed through a pop-up dialog box.

OntoLog: Temporal Annotation Using Ad Hoc Ontologies and Application Profiles 125

Visualisation of Stratified, Hierarchical Annotations. OntoLog exploits the
hierarchical organisation of the ontologies in its visualisation of the annotation
intervals. The ontologies are displayed in a collapsible tree structure, while the
corresponding annotations are shown as horizontal lines next to each concept in a
timeline display. If a concept is collapsed – that is, hiding its descendants – the
corresponding set of lines representing annotations is similarly collapsed, displaying
the union of all the annotations linked to the concept and its descendants, thickening
the line according to how many intervals overlap at any given time. This provides a
nice visual summary of the annotations – with most or all of the concepts collapsed,
the display shows how thickly the media is annotated, and which concept subtrees are
most important. By expanding and collapsing subtrees, users can concentrate on the
concepts that are most relevant to the task at hand, and hide non-relevant information.

Fig. 3 illustrates this hierarchical aggregation in some of the collapsed concepts,
but in Fig. 4 the visualisation of all the intervals connected to the Activities concept
and its subconcepts shows it better. Here, it is plain to see that some activity is
"active" throughout the video (as there are no gaps in the line), and that a lot of
different activities take place near the start of the video, where the line is very thick.

Fig. 4. Collapsed Concept with Lots of Annotations

Web-Based Searching and Browsing Interface. As part of a project on streaming
digital media, a web-based searching and browsing system called OntoLog Crawler
has been developed. It takes advantage of the simplicity and uniformity of the RDF
subject-predicate-object data model to provide a simple and consistent browsing
interface to the data in OntoLog. It dynamically creates web pages describing RDF
resources by listing the RDF statements they are used in, both as subject, predicate
and object. Each of the terms in each statement are hyperlinks leading to pages
describing them and their statements in the same way. Fig. 5 shows the page
describing the MediaResource resource, one of the classes in OntoLog's basic data
model (cf. Fig. 1).

OntoLog Crawler also takes advantage of the semantics provided by OntoLog's
fundamental RDF Schema. The pages describing media resources and intervals
contain a media player configured to play the relevant media clip, and the ontology
and concept pages shows the structural organisation of the concepts.

The browsing system requires some familiarity with the RDF data model. The
search system does not have this drawback. Given a search term, it searches the
properties describing media resources, concepts and intervals, and presents the results
as lists of hyperlinks leading to media clips. It can also join the set of clips produced
by a search, combining them into a seamless presentation using SMIL [27]. The
search system also utilises the semantics of the data model: If a concept is considered
a “hit”, the concepts in the subtree below it are also considered “hits”, and all the
intervals related to them are included in the search result.

126 J. Heggland

Fig. 5. Browsing OntoLog RDF Data

4 Experiences
OntoLog has during development been informally evaluated as a possible
replacement for Qualitative Media Analyzer (QMA [28]) in a project analysing video
recordings of medical consultations. This evaluation has mainly been concerned with
the user interface, which was found to be better than QMA’s in several ways.
Particularly the editing and rearrangement of annotation intervals is easy and intuitive
in OntoLog. The logging interface was also considered good, especially the
complementary methods of keyboard shortcuts and mouseclicks for turning concepts
on and off during logging. On the other hand, the use of Java for media playback
makes rapid navigation through video somewhat sluggish.

The extensibility and adaptability functions in OntoLog were evaluated to a lesser
degree, due to the small scale of the project. A small RDF Schema for describing the
videos was constructed (cf. Fig. 2). The integration of this into OntoLog was very
smooth, but it is a drawback that OntoLog as yet does not provide a graphical user
interface for creating such schemas – they have to be written by hand in RDF/XML.
This is not a problem if standard schemas are used, as they already exist in RDF/XML
form, but OntoLog should cater to the needs of projects needing or wanting to create
their own schemas without much RDF knowledge as well.

OntoLog: Temporal Annotation Using Ad Hoc Ontologies and Application Profiles 127

5 Conclusion and Further Work
OntoLog is a system for logging and annotating video and audio swiftly and
accurately, using user-modifiable combinations of ontologies, RDF schemas and
metadata standards. Its purpose is to function as a testbed for exploring the issues
concerning the use of application profiles, ontologies and RDF for temporal
annotations. In its current incarnation, OntoLog’s extensibility and adaptability
mechanisms are simple yet powerful, its use of RDF enables it to interoperate with the
semantic web, search engines and other RDF-enabled tools with ease, and its user
interface is clean, fast and friendly.

However, OntoLog is by no means a finished tool; the version of OntoLog
described in this paper is merely a first increment. For instance, its support for RDF
Schemas is a bit rudimentary, and its ability to adapt them for a specific application
leaves something to be desired. Similarly, the ontology handling can be extended to
handle more advanced models, e.g. DAML+OIL [29]. There is also work in progress
to apply the SESAM searching approach [30] to OntoLog.

Acknowledgements. I would like to thank Hallvard Lærum for ideas and input on the
capabilities of OntoLog, particularly the ontology-based logging interface and the
visualisation of the intervals, and for evaluating the system. Also, thanks to my
advisor Roger Midtstraum and my colleague Jon Olav Hauglid, for feedback on
OntoLog and critical reviews of this paper; and to Per Håkon Meland and Jørgen
Austvik for their work on OntoLog Crawler. This work is supported by Accenture.

References
1. Correia, N. and T. Chambel. Active Video Watching using Annotation. in The seventh ACN

international conference on Multimedia. 1999. Orlando, FL USA.
2. Mele, F. and G. Minei, Digital Video Management for Heterogeneous and Distributed

Resources. IEEE Multimedia, 2001. 8(3): p. 30-38.
3. Chua, T.-S., L. Chen, and J. Wang, Stratification Approach to Modeling Video.

Multimedia Tools and Applications, 2002. 16(1/2): p. 79-97.
4. Weher, K. and A. Poon. Marquee: A Tool For Real-Time Video Logging. in Human

factors in computing systems: "celebrating interdependence". 1994. Boston, MA USA.
5. Carrer, M., et al., An Annotation Engine for Supporting Video Database Population, .

1996, Multimedia Communications Laboratory, Boston University: Boston.
6. Hunter, J. and R. Iannella. The Application of Metadata Standards to Video Indexing. in

European Conference on Digital Libraries. 1998. Crete.
7. Cohen, J., M. Withgott, and P. Piernot. Logjam: a tangible multi-person interface for

video logging. in CHI 99 conference on human factors in computing systems. 1999.
Pittsburgh, Pennsylvania: ACM Press.

8. Hunter, J. and D. James. The Application of an Event-Aware Metadata Model to an Oral
History Project. in European Conference on Digital Libraries. 2000. Lisbon, Portugal.

9. Lassila, O. and R.R. Swick, Resource Description Framework (RDF) Model and Syntax
Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. The World Wide
Web Consortium 1999.

10. Brickley, D. and R.V. Guha, Resource Description Framework (RDF) Schema
Specification 1.0, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/. The World
Wide Web Consortium 2000.

128 J. Heggland

11. Merriam-Webster, Merriam-Webster’s Online Collegiate Dictionary, http://www.m-
w.com/dictionary.htm. 1998.

12. Monaco, J., How to Read a Film. 1981: Oxford University Press.
13. Arman, F., et al. Content-based Browsing of Video Sequences. in ACM Multimedia. 1994.

San Francisco, USA: ACM Press.
14. Foote, J., et al. An intelligent media browser using automatic multimodal analysis. in

ACM Multimedia. 1998. Bristol, UK: ACM Press.
15. Hindus, D., C. Schmandt, and C. Horner, Capturing, Structuring and Representing

Ubiquitous Audio. ACM Transactions on Information Systems, 1993. 11(4): p. 376-400.
16. Arons, B., SpeechSkimmer: A System for Interactively Skimming Recorded Speech. ACM

Transactions on Computer-Human Interaction, 1997. 4(1): p. 3-38.
17. Whittaker, S., et al., Jotmail: a voicemail interface that enables you to see what was said,

in CHI Letters. 2000. p. 89-96.
18. Berners-Lee, T., et al., Uniform Resource Identifiers (URI): Generic Syntax,

http://www.ietf.org/rfc/rfc2396.txt. 1998.
19. Weibel, S., Metadata: The Foundations of Resource Description, in D-Lib Magazine.

1995.
20. DCMI, Dublin Core Element Set, Version 1.1 - Reference Description,

http://www.dublincore.org/documents/dces/. 1999.
21. Heery, R. and M. Patel, Application profiles: mixing and matching metadata schemas, in

Ariadne. 2000.
22. Baker, T., et al., What terms does your metadata use? Application profiles as machine-

understandable narratives. Journal of Digital Information, 2001. 2(2).
23. Hunter, J. and C. Lagoze. Combining RDF and XML Schemas to Enhance Interoperability

Between Metadata Application Profiles. in WWW10. 2001. Hong Kong.
24. Hunter, J. and J. Newmarch. An Indexing, Browsing, Search and Retrieval System for

Audiovisual Libraries. in European Conference on Digital Libraries. 1999. Paris, France.
25. Weinstein, P.C. Ontology-Based Metadata: Transforming the MARC Legacy. in ACM

Digital Libraries. 1998. Pittsburgh, USA.
26. McBride, B., Jena: Implementing the RDF Model and Syntax Specification, http://www-

uk.hpl.hp.com/people/bwm/papers/20001221-paper/. 2000.
27. Ayars, J., et al., Synchronized Multimedia Integration Language (SMIL 2.0),

http://www.w3.org/TR/smil20/. The World Wide Web Consortium 2001.
28. Skou, C.V., Qualitative Media Analyzer, http://www.cvs.dk/qma.htm. 2002.
29. Harmelen, F.v., P.F. Patel-Schneider, and I. Horrocks, Reference Description of the

DAML+OIL (March 2001) Ontology Markup Language, 2001.
30. Hauglid, J.O. and R. Midtstraum. SESAM - Searching Supported by Analysis of Metadata.

in ACM Symposium on Applied Computing. 2002. Madrid, Spain.

210

211

D OntoLog Crawler ACM SIGIR paper
Austvik, J., Meland, P. H. and Heggland, J., "Using Ontologies and Semantic
Networks with Temporal Media," Semantic Web Workshop, ACM SIGIR,
Toronto, July 28 – August 1 2003.

212

Using Ontologies and Semantic Networks with Temporal
Media

Per Håkon Meland
Department of Computer and

Information Science
Norwegian University of
Science and Technology

Trondheim, Norway

per.h.meland@sintef.no

Jørgen Austvik
Department of Computer and

Information Science
Norwegian University of
Science and Technology

Trondheim, Norway

jorgen.austvik@extend.no

Jon Heggland
Department of Computer and

Information Science
Norwegian University of
Science and Technology

Trondheim, Norway

jon.heggland@idi.ntnu.no

ABSTRACT
Use of digital video and audio in computer systems and on
the Web is increasing more and more. It is imperative to
organise such media with informative metadata, otherwise
it quickly becomes an overwhelming task for the users to
find the information they are looking for.

Utilising an existing data model based on semantic net-
works, ontologies and the Resource Description Framework
(RDF), we have developed a practical application for search-
ing and navigating in metadata for temporal media. The
user interface has two layers of abstraction. This gives the
novice user easy access both to the basic metadata and play-
back functionality for the temporal media. To locate de-
tailed information and relations, the advanced user can per-
form more in-depth explorations of the semantic network by
taking advantage of the lower layer.

Categories and Subject Descriptors
H.5.0 [Information Interfaces and Presentation]: Gen-
eral; H.3.0 [Information Storage and Retrieval]: Gen-
eral; E.2.m [Data Storage Representations]: Miscella-
neous

General Terms
Management, Experimentation

Keywords
Ontology-based Information Retrieval, Metadata Represen-
tation for Temporal Media, Semantic Networks, Resource
Description Framework

1. INTRODUCTION
The use of temporal, rich media such as video and audio
in computer systems is becoming more and more prevalent.

The technologies for producing, processing and storing digi-
tal video and audio are maturing and becoming more afford-
able day by day. The possible uses of digital video are nu-
merous; surveillance, broadcasting, entertainment, health-
care, education, documentation and research, to mention
a few. Thus, the amount of digital video available on the
web and in other computer systems is rapidly increasing.
Describing and organising these huge amounts of data for
retrieval is a necessity, and a challenge.

Digital video is represented in a computer system as a time-
dependent series of bitmap images, along with a synchro-
nised audio track. It is extremely hard to accurately and
swiftly extract useful knowledge from this representation -
who and what is shown in the video, what it is about and
what is happening - so it is necessary to use more high-
level, structured metadata to describe the semantic content
of videos. Traditionally, video archive systems have used
fixed, proprietary metadata schemas; either designed for a
particular purpose and thus unsuited for reuse, or with very
general and bland semantics - jacks of all trades, but masters
of none.

In the recent years, the related technologies of semistruc-
tured data [1], the Semantic Web [32], semantic networks
[27] and the Resource Description Framework (RDF) [31]
have arisen as an exciting new paradigm for using metadata.
RDF provides a metadata framework that is easily extensi-
ble and self-describing, yet with well-defined semantics and
a very simple basic data model. Using this kind of technol-
ogy, metadata systems can be tailored to specific domains
and purposes, yet still remain interoperable and capable of
being accessed by standard tools and search systems.

User-friendly and powerful search interfaces are perhaps the
most important part of a metadata system, and it is not
obvious how such a system should be designed to take max-
imum advantage of this way of organising metadata. In this
paper, we present one possible solution: The browsing and
searching interface OntoLog Crawler, based on the OntoLog
video annotation system [12].

In the next section, we briefly discuss the various technolo-
gies OntoLog Crawler builds upon. Section 3 focuses on
the OntoLog system, the context of OntoLog Crawler. The

Crawler itself, its design and construction, is described in
section 4, while section 5 presents our experiences with it.
Section 6 discusses further work, and section 7 concludes the
paper.

2. BACKGROUND
In this section, we briefly present the ideas and technologies
that are the foundations of OntoLog Crawler. We describe
the issues of annotating temporal media, and how ontologies
and semantic networks can be used in this regard. Then we
present some of the technology OntoLog Crawler is based
on and some related work.

2.1 Annotating Temporal Media
When putting a data object in an archive, it is prudent to
annotate it with different kinds of descriptions; title, date,
authors, topics etc. This makes it easier to perform searches
and retrieve the content later. This is especially important
for non-textual data objects like images and sound, as their
semantics are not readily understandable by a computer.
The differences in how for instance sound is experienced by a
human being (as music, noise, conversation; different speak-
ers, topics and moods) and a computer (as a time-dependent
sequence of numbers representing varying air pressure) cre-
ate a semantic gap that must be bridged by annotations
that can be understood by both man and machine.

Temporal media (media with a time dimension, like video
and audio) place particular demands on annotation systems.
A video segment typically deals with several different topics,
places, events or people at different times, so the annotations
must be temporal as well - connected to specific intervals in
the annotated medium. The alternative - connecting the
annotations to the video as a whole - is unsatisfactory for
several reasons. As each annotation, e.g. a topic indicator,
will not necessarily be valid for the entire video, the user
has to manually browse through it to find what he or she is
interested in. This is very time-consuming; far more so, in
fact, than doing the same in a non-temporal medium, since
you have to spend a significant amount of time watching
the medium at its predetermined playback speed to grasp
its content. It also requires the entire media object to be
transferred to the user, instead of just the relevant parts.
Since digitization of video and audio create huge amounts
of data, this is of course undesirable. Last but not least, tem-
poral annotations are useful for explaining and augmenting
the media with comments and explanations. They can be
used to create a non-temporal visual index to the medium,
providing context information and enabling swift browsing
and navigation.

2.2 Ontologies and Temporal Annotations
A fairly common scheme for annotating temporal video, is
to establish a list of people, places, events, topics or objects
that occur in the video, and indicate the temporal intervals
in which each is present. This is called stratified annota-
tions [26], as this list of concepts and their intervals form
independent strata or layers of meaning. The complete de-
scription of the video at any instant is found by taking the
cross-section of the strata at that point in time.

This scheme can be improved by organising the concepts
and their strata in ontologies, instead of in flat lists. Here,

we use ”ontology” to mean a formal specification of a set
of terms, concepts or classes; their attributes and relations
to each other, often in the form of a hierarchy of classes,
subclasses and instances (like in object-oriented systems) or
wider/narrower-term relationships (like in thesauri). Such
ontologies have long been used in artificial intelligence and
knowledge systems; they are an emerging technology in many
other different fields of computer science, and will play a
crucial role in realising the dream of the Semantic Web.

Organising the concepts in a hierarchical ontology has many
benefits. Since relationships between the concepts are ex-
plicit and specific, inference, analysis and aggregation is
straightforward to perform. For instance, the OntoLog ap-
plication [12] utilises the hierarchical organization to create
a visual representation of the annotations where the strata
belonging to the subtree of a concept can be aggregated vi-
sually, hiding the subtree without losing much information.
This makes it easier to handle large sets of concepts, and
gives the user control over the level of annotation details.
Similarly, OntoLog Crawler takes advantage of the ontology
semantics when performing queries, as described in section
4.

Ontologies are very useful for information exchange, so this
is one of their primary uses in computer systems. They can
be independent of language and application, which makes
them ideal for standardising terms and definitions. Prede-
fined ontologies for many different domains can already be
found publicly available on the Internet; using them saves
time, and increases the possibilities of annotation reuse.
An ontology created for a specific domain can therefore be
portable between applications in the same domain.

2.3 Semantic Networks and RDF
Semantic networks [27] are irregular data structures that
express relations between terms. They are directed graphs
of nodes connected by arcs. The arcs denote the relations
between the nodes, and the nodes are informative objects.
This is a very expressive and flexible data structure, but this
very flexibility makes them hard to handle by non-experts,
and difficult to make user interfaces for.

Using ontologies to structure semantic networks alleviates
this problem. An ontology makes for a reasonably stable, in-
tuitive and well-defined tree structure of domain knowledge,
to which all sorts of information may be added through the
openness of the semantic network model.

The Resource Description Framework (RDF) [31] is a
standard for machine-readable metadata, built on the se-
mantic network model. Its basic data model consists of the
statement: a triplet of subject, predicate and object, cor-
responding to source node, arc, and target node in a seman-
tic network. Figure 1 shows a simple RDF model (adapted
from [17]); the web resource http://www.stud.ntnu.no/
˜heggland/ontolog-crawler has two creators, Meland and
Austvik. RDF is designed to be domain independent, and
its sister standard, RDF Schema [5], defines mechanisms for
defining types of nodes and arcs, and putting constraints on
how they may be connected. Like ontologies, RDF is playing
a big part in realising the Semantic Web.

http://www.stud.ntnu.no/~heggland/ontolog-crawler
Per Håkon Meland

Jørgen Austvik

http://purl.org/dc/elements/1.1/creator

http://purl.org/dc/elements/1.1/creator

Figure 1: A simple RDF model.

2.4 Related Work
Semantic annotations for video databases is not a new idea.
A number of data models have been proposed, e.g. [20], [2],
[13], [30], [6], [15], [7], [9]; some have even been implemented.
Tools for creating MPEG-7 annotations are maturing ([21],
[28], [14]), though some find MPEG-7 too restrictive and
complex ([19], [18]). However, less effort have been put
into designing powerful and user-friendly systems and inter-
faces for accessing this information. The systems mentioned
above typically provide a complex query language and/or a
list or visualisation of the annotations of a single video, with
dubious usability. Information access in databases storing
the semantics of multimedia is significantly different from
information access in traditional databases, as noted by [18]
and [24], and it is this challenge that this work aims to ex-
plore.

3. THE ONTOLOG SYSTEM
OntoLog Crawler is part of a modular system, where each
module has its dedicated tasks. Standardised interfaces be-
tween the modules enables a module to be easily replaced,
or other modules added as a supplement. Currently, the
OntoLog System consists of five main modules, as shown in
figure 2: the Annotation Tool, the RDF Storage, the Tem-
poral Media Source, and the Search and Browse Server and
its Client. In this section, we will give a brief description
of these modules, and section 4 will take a closer look at
OntoLog Crawler, our Search and Browse Server.

3.1 Annotation Tool
The role of the Annotation Tool is to produce and edit an-
notations - RDF-based metadata describing the contents of
the material stored in the Temporal Media Source. This role
is filled by the OntoLog application, which is described in
detail in [12].

The annotations are created according to the OntoLog data
model framework, shown in figure 3. It consists of ontolo-
gies, composed of a directed acyclic graph of RDF classes
and their instances; temporal intervals, each belonging to
a media resource and related to a member of an ontology,
thus establishing a stratified annotation scheme; schemas,
defining the properties and relations used to describe the
data; and projects, which group a set of ontologies, me-
dia resources and schemas for convenience. Dublin Core
[8] is used as a default schema for new projects, and other
schemas can be created or imported. In addition to these
framework classes and relations, other can be defined by the
user, according to his or her needs, through the construction
of schemas and ontologies. These extensions are seamlessly
integrated in the OntoLog system, as everything is defined
homogeneously using the RDF model.

The OntoLog application depends on manual annotations,
but it can be replaced or supplemented by other automatic
or semi-automatic tools that uses the same data model.

3.2 RDF Storage
For the RDF Storage module, we are currently using a MySQL
relational database. Possible alternatives include other SQL
databases such as Oracle, plain text files on a file system,
or a database specifically built for XML/RDF. However,
MySQL have the advantages that there are RDF program-
ming libraries available for it (OntoLog uses Jena [16]), and
it is easy to interface with a web server (as OntoLog Crawler
does).

3.3 Temporal Media Source
The Temporal Media Source can be realised with numer-
ous sub-modules and with different combinations of these.
A video server is the best alternative because it has the
ability to stream and initiate playback at any time in the
media stream by using the Real Time Streaming Protocol
(RTSP) [25] and the Session Description Protocol (SDP)
[10]. You can also use regular HTTP-streaming (progres-
sive download) with most video servers. Other alternatives
are web servers, a local file system or a video database. Of
course, you can combine many such sources, e.g. by using
an Oracle 9i video database as data source for a Helix video
server.

We have used the Helix Server (formerly known as the Real-
System Server) from RealNetworks, and the Darwin Stream-
ing Server (DSS) version 4 from Apple to stream video and
audio. The latest version of DSS supports MPEG-4, which
is rapidly becoming the new de facto digital video standard.
DSS is OpenSource and runs on most Microsoft Windows
platforms and various UNIX clones.

3.4 Search and Browse Client
The Search and Browse Client is simply a standard web
browser, e.g. Microsoft Internet Explorer, Netscape Navi-
gator or Opera. Most users are already familiar with web
browsers, and they are usually preinstalled on most comput-
ers. To be able to playback the temporal media, a SMIL-
capable multimedia plugin such as RealPlayer or QuickTime
player must be installed as well. SMIL (Synchronized Multi-
media Integration Language [4]) is an open markup standard
defined by the W3C, very similar to HTML. By using SMIL
it is simple for the Server to instruct the Client to merge
together segmented media clips from various sources. Tran-
sitions between the clips are automatically generated on the
fly, and a subtitle beneath the video indicates which interval
is currently being played.

Temporal
Media Source

RDF
Storage

Search and
Browse
Server

Annotation
Tool

Search and
Browse Client

OntoLog

OntoLog
Crawler

Video Server/DB,
Web Server,
File System

SQL DB,
File System

Web Browser
on PC or PDA

Figure 2: An overview of the OntoLog system.

from
to

Interval

URL

MediaResource

1 *

hasInterval

«metaclass»
rdfs:Class

*
*

rdf:type

* *

relatesTo

*

*
rdfs:SubClassOf

*
*

relatesTo

Member

Project

Schema

Ontology

*
*

usesSchema

** usesOntology

*

*

hasMediaResource

(rdfs:isDefinedBy)

Figure 3: The OntoLog data model.

The demands on the client are so simple that it can easily
run on a PDA (e.g. an iPAQ) with a wireless network con-
nection. The Client sends queries and navigation requests to
the Search and Browse Server, and receives web pages and
references to media objects in the Temporal Media Source.

4. ONTOLOG CRAWLER
For the Search and Browse Server we have built OntoLog
Crawler [3], which is a powerful and user-friendly module
for searching and browsing metadata stored in a semantic
network. This tool is to be used after the temporal me-
dia have been annotated, and makes the stored information
available to various types of users. They may be interested
in the metadata and the temporal media for research, enter-
tainment or educational purposes, to mention a few. Today,
there are not many availible applications that have the abil-
ity to access a semantic net for practical usage, and even
fewer that that takes advantage of domain knowledge. The
next section describes an example scenario that OntoLog
Crawler is well suited for, while the subsequent sections de-
scribe different aspects of OntoLog Crawler’s design, func-
tionality and user interface.

4.1 Scenario: Patient Consultations
In a pilot project at St.Olavs Hospital in Trondheim, a video
camera records the patient-doctor conversation, the exami-
nation, the doctor’s computer screen and more. The record-
ings are then annotated with OntoLog according to a specific
ontology, where notes and various types of information can
be added to the intervals of the video. This data can be
used as a basis for different kinds of research, for example
examining the work process during the consultation. Figure
4 shows the playback of sample patient consultation video
intervals in OntoLog Crawler.

Related to the introduction of Electronic Patient Record
(EPR) in hospitals, it can be interesting to study how much
time the doctor uses to locate data with the traditional pa-
per based patient record compared to new EPR systems.
The example ontology in figure 8 shows some conceps that
can be used to annotate videos of patient consultations re-
lated to EPR usage. It is based on the ontology used in
the project at St. Olavs Hospital, but simplified for this
scenario. Concepts such as Pictures and Test results cor-
responds to activities related to examining and analysing
electronic pictures and test results.

With OntoLog Crawler, you can quickly get an overview of
the intervals where either an EPR or a paper based record is
being used. Then, you can select one of them and compare
which method is most efficient, either by looking through
the intervals (as shown in figure 4) or the time lengths of
the intervals.

It is recommended to use more general and standardised
ontologies if the annotations are going to be used for more
than one purpose. These can be supplemented or extended
by specially designed ontologies tailored for specific needs.

4.2 Abstraction Layers
The OntoLog Crawler uses a layered model to represent the
semantic network, offering two different perspectives on the

data. The bottom layer consist of a generic and low level rep-
resentation of the RDF-data. The top layer has knowledge of
the OntoLog specific data model, and therefore has knowl-
edge about the multimedia domain. You can go directly
from the domain-specific representation of the data into the
low-level RDF-data, but not the other way around. Just as
one can not construct a sentence from single words without
knowing the grammatical constraints of the language, one
can not go from the RDF layer to the multimedia layer.

It is possible to search and browse both independent and
dependent of the multimedia domain. This gives the novice
users easy access to both the basic metadata and playback of
the temporal media. Advanced users get the ability to really
dig into the semantic network and acquire all the details.

4.3 Browsing
The browsing feature in OntoLog Crawler is useful for ex-
ploring relatively small datasets, or when you know approx-
imately where to look. However, as the amount of data
increases, it is easy to get lost in the semantic network.

Figure 5 shows a low-level RDF-perspective of the Elec-
tronic Patient Record concept resource, and all the state-
ments where it occurs. The statements consist of subjects,
predicates and objects, which in turn are resources of their
own (except that objects may be string literals instead). Ev-
ery part of the statements is a hyperlink that can be followed
for more detailed information, making it easy to go to re-
lated terms. If you follow the links under Model, you will
get a list of all the statements in the RDF model.

Figure 6 shows a high-level RDF-perspective of the same
concept as in figure 5. Here the properties, related media
intervals and the concept’s position in the ontology is dis-
played. If the user follows the Play merged resultset
link, a virtual media document is created by merging all the
intervals (concatenating them while keeping in mind that
they may overlap). Figure 4 shows an example of such a
document.

4.4 Searching
As for browsing, the search facility in OntoLog Crawler can
be used from two perspectives. The low-level search returns
the statements that matches the query, which is useful when
looking for specific resources. The high-level search utilises
the semantics of the OntoLog data model, and presents the
results in a more user-friendly way. Instead of statements, it
returns a list of intervals, mediaresources and concepts that
matches the query.

The searching and browsing features compliment each other
in an advantageous way: First you can search to locate
some interesting data, and then you can browse through the
related information. For example, if you search for Elec-
tronic Patient Record, you get all the intervals where the
doctor uses EPR. You may then browse the related meta-
data and find information such as the date/time of the con-
sultation.

In OntoLog Crawler, rollup and drilldown in the search re-
sult is realised with a combobox that show all the gener-
alizations (super concepts) and all first-level specializations

Figure 4: Embedded playback of merged video intervals.

Figure 5: Low abstraction layer view of a concept.

Figure 6: High abstraction layer view of a concept.

(sub concepts) of the concept that matches a search query.
Figure 7 shows the result of a search for patient record.
By selecting another concept in the combobox, a page with
information about that concept and all related media inter-
vals is displayed.

Figure 8 shows another result from a search for patient
record. Here the whole ontology is displayed, and both the
concepts and sub-concepts that match the search query are
highlighted. This gives the user a better and more visual
overview over the result and the related concepts. The user
can click on the concept to get more information and dis-
play its intervals. If the ontologies are large, this view may
occupy a great deal of screen space.

4.5 Visualisation
OntoLog Crawler generates SMIL code that the Client uses
as a playback-control with the Temporal Media Source. The
use of SMIL makes OntoLog Crawler independent of the
Temporal Media Source, and enables a lot of possibilities
for the presentation.

OntoLog Crawler has the ability to export the RDF-data
into the Visualization of Compiler Graph (VCG) lan-
guage [23]. VCG was constructed to detect errors in compil-
ers, but works nicely for visualising semantic networks. By
using viewer software such as aiSee, you can zoom, pan and
get a good overview of the nodes and the relations between
them.

5. EXPERIENCES
In this section we will share some of the experiences from
our work. This includes general remarks about OntoLog
Crawler and the other modules, and also findings from some

Figure 8: Sample ontology for annotating medical
consultations.

Figure 7: With a combobox it is easy to perform rollup and drilldown in the ontology.

experiments and a user evaluation.

5.1 The User Interface and Abstraction Lay-
ers

The structure of a semantic network can be very difficult to
understand for inexperienced users. On the other hand, it
contains a lot of useful information which experienced users
are able to dig into. By making the user interface layered,
with two abstraction layers of the semantic data, both user
groups may utilise the information stored in the web. We
should mention that the bottom layer is well suited for de-
bugging other applications that use Jena for RDF storage.

A usability test of OntoLog Crawler showed that even though
experienced computer users understood the principles of se-
mantic networks well enough, it was a bit difficult to per-
form practical tasks. For example, some users got lost in
the semantic network when trying to find detailed metadata
about intervals. This shows that it is important to build a
user interface that hides the underlying data structure for
the average user. Another conclusion from the user test was
that inaccurate or incorrect annotations of metadata may
mislead or confuse the user to a great extent. In practice,
the data may easily be lost if the metadata is wrong - just
like a book that is placed on the wrong shelf in a library.

One can add an additional abstraction layer on top of the
multimedia layer to create a specially suited user interface
for a particular domain. This would result in a more user-
oriented interface, such as a video archive for patient con-
sultations integrated with the EPR-system.

Weinstein [29] points out numerous advantages when using
ontologies with predefined concepts instead of keywords or
text. It is possible to perform analysis and inference on the
data, as in Searching Supported by Analysis of Meta-
data (SESAM) [11], where the application uses statistics
computed on the search result to produce filters to narrow
down the results (reduce the noise in the result set). It is
also possible to generalise and specialise the queries, and to
integrate different ontologies by creating mappings between
them.

5.2 SMIL Usability
The various media players/plugins support the core SMIL
elements very well, and this shows that this type of technol-
ogy is mature enough to be used in various web applications.
The text-based and open nature of SMIL makes it ideal for
server-side scripting where the content is dynamic.

5.3 Practical Experiments
The OntoLog system is module-based, so to achieve higher
performance for each module (and thus the whole system), it
was advantageous to deploy the modules over more than one
physical server. This way we had a dedicated video server,
database server and web server. The network connection
between these were 100 Mbps Ethernet, and represented no
noticeable delay. The system is able to serve a great number
of clients, spread all over the world.

Searching in a semantic network can be very time consum-
ing. In our solution, the data structure itself is stored in
an ordinary SQL-database with tables generated by Jena.
These tables are generic for RDF-data, so it is almost im-
possible to look directly into the tables and find useful in-
formation. For example, when searching for metadata con-
cepts described in the OntoLog data model, you have to
create a SQL query consisting of fourteen table joins. Our
studies have shown that the search time more than doubles
if the number of statements in the database doubles. This
non-linear behaviour is caused by the increased number of
connections in the semantic network.

Search performance can be optimised by constructing do-
main specific indices over the RDF-structure, but this de-
mands knowledge of both the domain and the application.
This is of course not consistent with having a general storage
structure.

6. FURTHER WORK
Even though OntoLog Crawler represents a firm basis for
applications like multimedia servers, it should be customised
for specific domains. The user interface can be enhanced
for the domain, and domain-specific functionality can be
added. Examples of this are stored queries and integration
with other systems.

The Ana application [22] uses the OntoLog data model for
advanced data analysis, using temporal and logical operators
on the media. This makes it possible to search for intervals
related to Norway and Curling, which are followed by
Olympic Gold. This functionality should be included in
the search functionality of OntoLog Crawler.

OntoLog annotates along the time dimension, and does not
accept spatial data. If this is incorporated, OntoLog Crawler
may also be expanded to take spatial queries. This will make
the tool much more useful for services that require object
descriptions, for example video surveillance and analysis.

7. CONCLUSIONS
We have developed a practical application for searching and
browsing in metadata for temporal media. This has enabled
us to test out some relevant techniques and technologies.
Just like RDF has made exchange and interoperability with
the metadata possible, SMIL has bridged the gap between
different multimedia servers and players.

Structuring the metadata with domain-specific ontologies
reduces the complexity of the semantic network, which ame-
liorates the performance issues typical for irregular data
structures. This is a flexible and applicable data model,
where both man and machine are able to interpret and ex-
tract useful information. A semantic network may not give
much meaning without a suitable ontology.

In OntoLog Crawler the user interface has a layered infor-
mation representation. This makes browsing in metadata
easy for novices and powerful for experienced users. To find
relevant information, you can first do a rough search, and
then browse your way into the details.

8. ACKNOWLEDGMENTS
We would like to thank Rune Rystad for the cooperation on
the research related to and development of OntoLog Crawler,
Hallvard Lærum for the patient consultations scenario, and
Hilde Susanne Hansen and Bjørnar Solev̊ag at St.Olavs Hos-
pital for their assistance.

9. ADDITIONAL AUTHORS
Roger Midtstraum, Department of Computer and Informa-
tion Science, Norwegian University of Science and Technol-
ogy, Trondheim, Norway (roger.midtstraum@idi.ntnu.no).

10. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. From

Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers, San Francicso, California, 2000.
1-55860-622-X.

[2] S. Adali, K. S. Candan, S.-S. Chen, K. Erol, and V. S.
Subrahmanian. The Advanced Video Information
System: Data Structures and Query Processing.
Multimedia Systems, 4(4):172–186, 1996.

[3] J. Austvik and P. H. Meland. Lagring, søk og levering
av temporale data. Master’s thesis, NTNU, June 2002.

[4] J. Ayars, D. Bulterman, A. Cohen, K. Day, E. Hodge,
P. Hoschka, E. Hyche, M. Jourdan, M. Kim,
K. Kubota, R. Lanphier, N. Layada, T. Michel,
D. Newman, J. van Ossenbruggen, L. Rutledge,
B. Saccocio, P. Schmitz, and W. ten Kate.
Synchronized Multimedia Integration Language (SMIL
2.0), August 2001. http://www.w3.org/TR/smil20/.

[5] D. Brickley and R. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema, January
2003. http://www.w3.org/TR/rdf-schema/.

[6] M. Carrer, L. Ligresti, G. Ahanger, and T. D. C.
Little. An Annotation Engine for Supporting Video
Database Population. Multimedia Tools and
Applications, 5(3):233–258, 1997.

[7] M. E. Dönderler, E. Saykol, Özgür Ulusoy, and
U. Güdükbay. BilVideo: A Video Database
Management System. IEEE MultiMedia, 10(1):66–70,
2003.

[8] Dublin Core Metadata Initative. Dublin Core
Metadata Initative, January 2003.
http://dublincore.org/.

[9] N. Fatemi and P. Mulhem. A Conceptual Graph
Approach for Video Data Representation and
Retrieval. In D. J. Hand, J. N. Kok, and M. R.
Berthold, editors, Advances in Intelligent Data
Analysis, Third International Symposium, IDA-99,
Amsterdam, The Netherlands, August 1999,
Proceedings, pages 525–. Springer, 1999.

[10] M. Handley and V. Jacobson. SDP: Session
Description Protocol (RFC 2327). Technical report,
IETF, April 1998.

[11] J. O. Hauglid and R. Midtstraum. SESAM - Searching
Support by Analysis of Metadata. In ACM
Symposium on Applied Computing, March 2002.

[12] J. Heggland. OntoLog: Temporal Annotation Using
Ad Hoc Ontologies and Application profiles. In
European Conference on Digital Libraries, pages
118–128. Springer, September 2002.

[13] R. Hjelsvold and R. Midtstraum. Modelling and
querying video data. In J. B. Bocca, M. Jarke, and
C. Zaniolo, editors, VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile,
pages 686–694. Morgan Kaufmann, 1994.

[14] IBM. IBM MPEG-7 Annotation Tool.
http://alphaworks.ibm.com /tech/videoannex.

[15] F. A. Kokkoras, H. Jiang, I. P. Vlahavas, A. K.
Elmagarmid, E. N. Houstis, and W. G. Aref. Smart
VideoText: a video data model based on conceptual
graphs. Multimedia Systems, 8(4):328–338, 2002.

[16] H. Labs Semantic Web activity. The jena semantic
web toolkit, January 2003.
http://www.hpl.hp.com/semweb/jena-top.html.

[17] F. Manola and E. Miller. RDF Primer, January 2003.
http://www.w3.org/TR/rdf-primer/.

[18] F. Nack and L. Hardman. Towards a syntax for
multimedia semantics. Technical report, CWI, 2002.
http://www.cwi.nl/ftp/CWIreports/INS/INS-
R0204.pdf.

[19] F. Nack and W. Putz. Designing annotation before it’s
needed. In ACM Multimedia, pages 251–260, 2001.

[20] E. Oomoto and K. Tanaka. Ovid: Design and
implementation of a video-object database system.
TKDE, 5(4):629–643, 1993.

[21] Ricoh. Ricoh MovieTool.
http://www.ricoh.co.jp/src/multimedia/MovieTool/.

[22] R. Rystad. Analyse av Temporale Aspekter i
Multimediadatabaser. Master’s thesis, NTNU, June
2002.

[23] G. Sander. VCG – Visualization of Compiler Graphs.
Technical report, Universitt des Saarlandes, 1995.

[24] S. Santini and R. Jain. Interfaces for Emergent
Semantics in Multimedia Databases. In SPIE Storage
and Retrieval for Image and Video Databases VII,
pages 167–175, 1999.

[25] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP) (RFC 2326). Technical
report, IETF, April 1998.

[26] T. Smith and N. Pincever. Parsing Movies in Context.
In The 1991 Summer USENIX Conference, Nashville,
USA, 1991.

[27] J. Sowa. Principles of Semantic Networks:
Explorations in the Representation of Knowledge.
Morgan Kaufmann Publishers, January 1991.

[28] Videoto. VIDETO - Video Description Tool.
http://www.rostock.zgdv.de /ZGDV/Abteilungen/zr2
/Produkte/videto/index html en.

[29] P. C. Weinstein. Ontology-Based Metadata:
Transforming the MARC Legacy, June 1998.

[30] R. Weiss, A. Duda, and D. K. Gifford. Composition
and Search with a Video Algebra. IEEE MultiMedia,
2(1):12–25, 1995.

[31] World Wide Web Consortium. Resource Description
Framework (RDF). http://www.w3.org/RDF/.

[32] World Wide Web Consortium. Semantic Web.
http://www.w3.org/2001/sw/, May 2001.

223

E About Savanta
The research behind Savanta – its conception, design, implementation and
evaluation – is a joint effort between Jon Olav Hauglid and Jon Heggland. The
purpose was to bring together our two different but related fields of research –
Heggland’s modelling and visualisation of temporal metadata and Hauglid’s
iterative, analysis-supported database search – and see what synergy effects could
be achieved in the interface between them.
The entire process leading up to the results presented in sections 6.7–6.9 and 7.2
was highly iterative. While we assigned one to be overall responsible for each of
the identified parts of the project, the other provided frequent feedback. Thus, by
the nature of our close cooperation, it is impossible to completely separate one’s
contribution from the other’s. However, the table below indicates roughly who
was the primary contributor to the design (D) and implementation (I) of the
various ideas, tools and research described in the Savanta sections:

 Hauglid Heggland

Stored metadata / conceptual model DI

Derived metadata / analysis DI

Visualisation DI

Filtering DI

Savantoogle DI

Forms I D

Interaction model / iterative search refinement DI

Evaluation D I

Navigation / web metaphor DI DI

The writing was also done jointly; hence, a substantial part of the material on
Savanta is identical in our two theses. The table above is fairly indicative on who
did the writing of the various sections as well.
We both agree that we were equal partners and contributors in all major phases of
the Savanta project.

Trondheim, June 7. 2004

Jon Olav Hauglid

Jon Heggland

224

225

F Savanta evaluation
This appendix presents details from the Savanta evaluation: the evaluation tasks,
the handout given to the test subjects, and the questionnaire results in tabular
form.

Evaluation tasks
Three sets of evaluation tasks were made. Each test subject performed one set of
tasks using one interface and all test subjects performed the three sets in the same
order. The only think that varied was the order of the interfaces. This was
determined randomly.
Each set of evaluation tasks was divided into three parts. The parts were:
(A) simple retrieval, (B) complex retrieval and (C) exploration. The tasks were
given in Norwegian; an English translation is provided here in parenthesis.

Set 1:
A1: Omtales HTML i uke 41?

(Is HTML mentioned in week 41?)
A2: Hva sier foreleser om egenrelasjoner?

(What does the lecturer say about recursive relationships?)
B1: Finn eksempler som handler om løkker.
 (Find examples about loops.)
B2: Hvor stor andel av forelesningene brukes på praktiske opplysninger?
 (How big a part of the lectures is spent on practical information?)
B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 36?
 (What happens in the first quarter of double lecture 1 in week 36?)
C1: Hva er det viktigste hovedtemaet i første tredjedel av semesteret?
 (What is the most important main topic in the first third of the semester?)
C2: Hvilket databasetema brukes det mest tid på?
 (Which database topic is spent most time on?)

Set 2:
A1: Omtales JSP i uke 43?

(Is JSP mentioned in week 41?)
A2: Hva sier foreleser om lokale variabler?

(What does the lecturer say about local variables?)

226

B1: Finn eksempler som handler om objekter.
 (Find examples about objects.)
B2: Hvor stor andel av forelesningene brukes på databaser?
 (How big a part of the lectures is spent on databases?)
B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 40?
 (What happens in the first quarter of double lecture 1 in week 40?)
C1: Hva er det viktigste hovedtemaet i midterste tredjedel av semesteret?
 (What is the most important main topic in the 2nd third of the semester?)
C2: Hvilket HTML-tema brukes det mest tid på?
 (Which HTML topic is spent most time on?)

Set 3:
A1: Omtales databaser i uke 40?

(Is databases mentioned in week 41?)
A2: Hva sier foreleser om evige løkker?

(What does the lecturer say about endless loops?)
B1: Finn eksempler som handler om merkelapper.
 (Find examples about tags.)
B2: Hvor stor andel av forelesningene brukes på HTML?
 (How big a part of the lectures is spent on HTML?)
B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 43?
 (What happens in the first quarter of double lecture 1 in week 43?)
C1: Hva er det viktigste hovedtemaet i siste tredjedel av semesteret?
 (What is the most important main topic in the last third of the semester?)
C2: Hvilket JSP-tema brukes det mest tid på?
 (Which JSP topic is spent most time on?)

227

Handout
The following Norwegian text was handed out to the test subjects at the beginning
of the evaluation. An English translation is given afterwards.

Evaluering av verktøy for informasjonsgjenfinning

Introduksjon
Formålet med denne brukerevalueringen er å sammenligne brukbarheten til tre
forskjellige verktøy for informasjonsgjenfinning i videodatabaser. Som
testdeltaker skal du utføre en del oppgaver i hvert verktøy slik at du kan danne
deg en oppfatning av hva du liker og ikke liker. Etterpå får du en del
evalueringsspørsmål om hvert av verktøyene. Totalt vil dette ta ca. 1 time. Alle
testverktøyene lar deg søke i en videodatabase som inneholder forelesningene til
Steinar Line fra faget Informasjonsteknologi grunnkurs høsten 2003.

Om oppgavene
Noen ganger vet man nøyaktig hva man er ute etter, mens andre ganger er
letingen mer tilfeldig. I tillegg kan målet med letingen endre seg underveis. For å
se hvordan testverktøyene egner seg til forskjellige måter å søke på, er oppgavene
delt opp i tre:

• Enkel informasjonsgjenfinning

• Kompleks informasjonsgjenfinning

• Utforsking
Tre oppgavetyper og tre testverktøy gir ni muligheter. For hver av disse får du 2-3
oppgaver. Rekkefølgen verktøyene evalueres i er tilfeldig, mens rekkefølgen på
oppgavetypene alltid er a), b), c).

Om evalueringen
Evalueringen består av to deler:

Utføring av oppgaver
Alle oppgaver vil bli oppgitt på et eget ark. Husk at det er verktøyene som skal
evalueres – ikke du. Denne delen tar ca. 45 minutter.

Evalueringsspørsmål
Spørsmålene er avkrysningsoppgaver der man gir karakterer fra 1 til 9. Alle
spørsmålene er gjengitt under (det vil bli utdelt avkrysningsskjema – dette er bare
til orientering):

228

1 Bedømmelse – Enkel forferdelig fantastisk

 informasjonsgjenfinning 1 2 3 4 5 6 7 8 9 NA

2 Bedømmelse – Kompleks forferdelig fantastisk

 informasjonsgjenfinning 1 2 3 4 5 6 7 8 9 NA

3 Bedømmelse – Utforskning forferdelig fantastisk

 1 2 3 4 5 6 7 8 9 NA

4 Totalbedømmelse av forferdelig fantastisk

 Programmet 1 2 3 4 5 6 7 8 9 NA

5 Programmet var ? å bruke vanskelig Enkelt

 1 2 3 4 5 6 7 8 9 NA

6 Uttrykkskraften var utilstrekkelig Akkurat passe

 1 2 3 4 5 6 7 8 9 NA

7 Mengden informasjon for lite eller for mye Akkurat passe

 presentert på skjermen 1 2 3 4 5 6 7 8 9 NA

8 Teksten som vises på forvirrende begripelig

 Skjermen 1 2 3 4 5 6 7 8 9 NA

9 Oppgaver kan løses på en aldri Alltid

 rettfram mate 1 2 3 4 5 6 7 8 9 NA

10 Tilgjengelig hjelp utilstrekkelig Akkurat passe

 1 2 3 4 5 6 7 8 9 NA

Evaluation of tools for information retrieval

Introduction
The purpose of this evaluation is to compare the usability of three different tools
for information retrieval in video databases. As test subject, you are to perform a
few tasks in each tool in order to form an opinion of what you like and dislike.
Afterwards, you will be given some evaluation questions about each tool.
Together, this will take about an hour. All the tools let you search in a video

229

database containing the lectures of Steinar Line from the course “Information
technology, introduction” from the autumn of 2003.

About the tasks
Sometimes you know exactly what you’re looking for, while sometimes the
search is more random. Additionally, the goal of the search may change during
the process. To see how the tools are suited to different ways of searching, the
tasks are divided into three groups:

• Simple retrieval

• Complex retrieval

• Exploration
Three task groups and three tools results in nine combinations. For each of these,
you will perform 2–3 tasks. The order in which the tools are to be evaluated is
random, but the order of task groups is always a), b), c).

About the evaluation
The evaluation consists of two parts:

Task performance
All tasks will be given on a separate sheet of paper. Remember, it is the tools that
are to be evaluated – not you. This part will take about 45 minutes.

Evaluation questions
The questions are multiple choice; each asking for a grade from 1 to 9. The
questions are given below (you will receive a questionnaire sheet – this is just for
reference):
[The English versions of the questions (taken from QUIS [Chin et al. 1988]) are
given on page 174.]

230

Questionnaire results
There were nine test subjects; all randomly chosen computer science students
with several years of experience using computers. However, none had any
experience with video databases. Each subject was asked ten questions about each
tested interface. They could answer using a nine-point scale (1-9). Results are
shown in the tables below. Empty cells indicate that the user did not answer the
question.

Savantoogle

1 2 3 4 5 6 7 8 9 Average
Simple 8 7 5 9 4 9 7 7 5 6,8
Complex 6 4 2 1 5 3 4 4 4 3,7
Exploration 5 2 2 1 3 3 3 2 3 2,7
Overall 7 6 4 3 4 3 5 3 5 4,4
Learn to operate 8 8 9 7 5 4 7 8 9 7,2
Power 6 6 2 4 5 4 8 3 3 4,6
Amount of info 6 8 7 4 4 4 6 2 3 4,9
Messages on screen 8 7 9 9 7 5 6 8 8 7,4
Straight-forward 5 5 3 3 4 3 5 3 3 3,8
Amount of help 4 5 9 7 3 9 6,2

User

Forms

1 2 3 4 5 6 7 8 9 Average
Simple 6 7 7 7 4 6 4 5 3 5,4
Complex 5 6 6 3 5 4 2 5 3 4,3
Exploration 4 3 5 4 4 5 1 5 2 3,7
Overall 6 6 6 5 4 6 4 5 3 5,0
Learn to operate 9 7 7 9 6 8 5 8 8 7,4
Power 5 5 5 2 4 6 2 6 2 4,1
Amount of info 3 7 7 4 3 6 3 7 2 4,7
Messages on screen 8 8 8 9 7 7 9 8 7 7,9
Straight-forward 5 5 4 6 4 5 3 5 3 4,4
Amount of help 3 5 9 8 5 4 5,7

User

231

Savanta

1 2 3 4 5 6 7 8 9 Average
Simple 9 7 8 8 7 8 6 8 8 7,7
Complex 8 7 7 8 7 7 7 8 8 7,4
Exploration 8 5 7 7 7 6 6 7 5 6,4
Overall 8 7 8 7 7 8 8 7 7 7,4
Learn to operate 7 7 4 5 6 7 8 6 7 6,3
Power 8 7 8 7 7 8 6 8 7 7,3
Amount of info 8 6 3 4 8 7 7 4 6 5,9
Messages on screen 8 6 5 7 7 6 7 7 5 6,4
Straight-forward 8 6 6 5 7 8 6 8 7 6,8
Amount of help 8 7 9 8 8 6 7,7

User

232

233

References
[Adali et al. 1996] Adali, S., Candan, K. S., Chen, S., Erol, K. and

Subrahmanian, V. S., "The Advanced Video Information System: Data
Structures and Query Processing," Multimedia Systems, 4 (4) August
1996, p.172-186.

[Ahlberg et al. 1992] Ahlberg, C., Williamson, C. and Shneiderman, B.,
"Dynamic Queries for Information Exploration: An Implementation and
Evaluation," Proceedings of ACM CHI'92 Conference on Human Factors
in Computer Systems, 1992, p.619-626.

[Allen 1983] Allen, J. F., "Maintaining Knowledge about Temporal Intervals,"
Communications of the ACM, 26 (11) 1983, p.832-843.

[Arman et al. 1994a] Arman, F., Depommier, R., Hsu, A. and Chiu, M.,
"Content-Based Browsing of Video Sequences," ACM Multimedia, 1994,
p.97-103. (a)

[Arman et al. 1994b] Arman, F., Hsu, A. and Chiu, M., "Image Processing on
Encoded Video Sequences," Multimedia Systems, 1 (5) 1994, p.211-219.
(b)

[Arons 1997] Arons, B., "SpeechSkimmer: A System for Interactively Skimming
Recorded Speech," ACM Transactions on Computer-Human Interactions,
4 (1) 1997, p.3-38.

[Arslan et al. 2002] Arslan, U., Dönderler, M. E., Saykol, E., Ulusoy, Ö. and
Güdükbay, U., "A Semi-Automatic Semantic Annotation Tool for Video
Databases," SOFSEM Workshop on Multimedia Semantics, 2002.

[Austvik and Meland 2002] Austvik, J. and Meland, P. H., "Lagring, søk og
levering av temporale data", Department of Computer and Information
Science, Norwegian University of Science and Technology, June 2002.

[Austvik et al. 2003] Austvik, J., Meland, P. H. and Heggland, J., "Using
Ontologies and Semantic Networks with Temporal Media," Semantic
Web Workshop, ACM SIGIR, Toronto, July 28 - August 1 2003.

[Baeza-Yates and Ribeiro-Neto 1999] Baeza-Yates, R. A. and Ribeiro-Neto, B.
A., Modern Information Retrieval, ACM Press / Addison-Wesley, 1999.

[Bechhofer et al. 2000] Bechhofer, S., Broekstra, J., Decker, S., Erdmann, M.,
Fensel, D., Goble, C., van Harmelen, F., Horrocks, I., Klein, M.,
McGuinness, D., Motta, E., Patel-Schneider, P., Staab, S. and Studer,
R., An informal description of Standard OIL and Instance OIL, 2000.

[Bloom 1953] Bloom, B. S., "The Thought Process of Students in Discussion," in
S. J. French (Ed.), Accent on Teaching: experiments in general education,
1953.

234

[Boreczky and Rowe 1996] Boreczky, J. S. and Rowe, L. A., "Comparison of
Video Shot Boundary Detection Techniques," Storage and Retrieval for
Image and Video Databases (SPIE), 1996, p.170-179.

[Borst 1997] Borst, W. N., "Construction of Engineering Ontologies for
Knowledge Sharing and Reuse", Centre for Telematics and Information
Technology, University of Twente, 1997.

[Brickley et al. 2004] Brickley, D., Guha, R. V. and McBride, B., "RDF
Vocabulary Description Language 1.0: RDF Schema",
http://www.w3.org/TR/rdf-schema/, February 10 2004.

[Budd 1998] Budd, T., Understanding Object-Oriented Programming with Java,
Addison-Wesley, 1998.

[Bukauskas 2003] Bukauskas, L., "The Tiger Temporal Database System",
http://www.cs.auc.dk/tiger/, 2003.

[Carlis and Maguire 2001] Carlis, J. and Maguire, J., Mastering Data
Modeling: A User-Driven Approach, Addison-Wesley, 2001.

[Carrer et al. 1997] Carrer, M., Ligresti, L., Ahanger, G. and Little, T. D. C.,
"An Annotation Engine for Supporting Video Database Population,"
Multimedia Tools and Applications, 5 (3) 1997, p.233-258.

[Chambers 2002] Chambers, M. L., CD and DVD Recording for Dummies,
2002.

[Chang et al. 1997] Chang, S., Chen, W., Meng, H. J., Sundaram, H. and
Zhong, D., "VideoQ: An Automated Content Based Video Search
System Using Visual Cues," ACM Multimedia, 1997, p.313-324.

[Chaudri et al. 1998] Chaudri, V. K., Farquhar, A., Fikes, R., Karp, P. D. and
Rice, J. P., Open Knowledge Base Connectivity 2.0.3, 1998.

[Chin et al. 1988] Chin, J. P., Diehl, V. A. and Norman, K. L., "Development
of an Instrument Measuring User Satisfaction of the Human-Computer
Interface," Proceedings of ACM CHI'88 Conference on Human Factors
in Computing Systems, 1988, p.213-218.

[Christel and Martin 1998] Christel, M. G. and Martin, D., "Information
Visualization Within a Digital Video Library," Journal of Intelligent
Information Systems, 11 (3) 1998, p.235-257.

[Christel et al. 1995] Christel, M. G., Kanade, T., Mauldin, M., Reddy, R.,
Sirbu, M., Stevens, S. M. and Wactlar, H. D., "Informedia Digital
Video Library," Communications of the ACM, 38 (4) 1995, p.57-58.

[Chua et al. 2002] Chua, T., Chen, L. and Wang, J., "Stratification Approach to
Modeling Video," Multimedia Tools and Applications, 16 (1) 2002, p.79-
97.

235

[Cohen et al. 1999] Cohen, J., Withgott, M. and Piernot, P., "Logjam: A
Tangible Multi-Person Interface for Video Logging," CHI, 1999, p.128-
135.

[Corcho et al. 2001] Corcho, O., Fernández-López, M. and Pérez, A. G.,
Technical Roadmap v1.0, OntoWeb, 2001.

[DCMI Usage Board 2003] DCMI Usage Board, "Overview of Documentation
for DCMI Metadata Terms",
http://www.dublincore.org/documents/dcmes-qualifiers/, March 4 2003.

[Date 1996] Date, C. J., "Why "The Object Model" Is Not a Data Model,"
InfoDB, 10 (4) 1996.

[Date 2004] Date, C. J., "Temporal Databases," An Introduction to Database
Systems, 2004, p.727-773.

[Davis 1993] Davis, M., "Media Streams: An Iconic Visual Language for Video
Annotation," Proceedings of the 1993 IEEE Workshop on Visual
Languages, August 24-27, 1993, Bergen, Norway, 1993, p.196-202.

[Denning et al. 1989] Denning, P. J., Comer, D., Gries, D., Mulder, M. C.,
Tucker, A. B., Turner, A. J. and Young, P. R., "Computing as a
Discipline," Communications of the ACM, 32 (1) 1989, p.9-23.

[Deregowski 1972] Deregowski, J. B., "Pictorial Perception and Culture,"
Scientific American, 227 (5) 1972, p.82-88.

[Dublin Core Metadata Initiative 2003] Dublin Core Metadata Initiative,
"Dublin Core Metadata Element Set, Version 1.1: Reference
Description", http://www.dublincore.org/documents/dces/, June 2 2003.

[Dublin Core Metadata Initiative 2004] Dublin Core Metadata Initiative,
"Dublin Core Metadata Initiative Overview",
http://www.dublincore.org/about/, 2004.

[Dönderler 2002] Dönderler, M. E., "Data Modeling and Querying for Video
Databases", Department of Computer Engineering, Bilkent University,
July 2002.

[Dönderler et al. 2003] Dönderler, M. E., Saykol, E., Ulusoy, Ö. and
Güdükbay, U., "BilVideo: A Video Database Management System,"
IEEE MultiMedia, 10 (1) 2003, p.66-70.

[Dörr et al. 2001] Dörr, M., Guarino, N., Fernández-López, M., Schulten, E.,
Stefanova, M. and Tate, A., State of the Art in Content Standards,
OntoWeb, 2001.

[Engum 2003] Engum, E. A., "Dataverktøy for filmanalyse", Department of
Computer and Information Science, Norwegian University of Science and
Technology, 2003.

236

[Findlay and Gilchrist 2003] Findlay, J. M. and Gilchrist, I. D., Active Vision:
The Psychology of Looking and Seeing, Oxford University Press, 2003.

[Foley et al. 1990] Foley, J. D., van Dam, A., Feiner, S. K. and Hughes, J. F.,
Computer Graphics, Addison-Wesley, 1990.

[Foote et al. 1998] Foote, J., Boreczky, J. S., Girgensohn, A. and Wilcox, L.,
"An Intelligent Media Browser Using Automatic Multimodal Analysis,"
ACM Multimedia, 1998, p.375-380.

[Fowler 2003] Fowler, M., UML Distilled, Addison-Wesley, 2003.
[Galtung 2002] Galtung, J., Dok1: Galtungs reise, Norwegian Broadcasting

Corporation (NRK), 2002.
[Genesereth and Fikes 1992] Genesereth, M. R. and Fikes, R. E., Knowledge

Interchange Format, Version 3.0 Reference Manual, 1992.
[Gershon et al. 1998] Gershon, N., Eick, S. G. and Card, S., "Design:

Information Visualization," Interactions, 5 (2) 1998, p.9-15.
[Gordon 2000] Gordon, A. S., "Using annotated video as an information

retrieval interface," Proceedings of the 2000 international conference on
Intelligent user interfaces, January 9 - 12, New Orleans, LA USA, 2000,
p.133-140.

[Gould and Lewis 1985] Gould, J. D. and Lewis, C., "Design for Usability: Key
Principles and What Designers Think," Communications of the ACM, 28
(3) 1985, p.300-311.

[Gruber 1993] Gruber, T. R., "A Translation Approach to Portable Ontologies,"
Knowledge Aquisition, 5 (2) 1993, p.199-200.

[Hauglid and Midtstraum 2002] Hauglid, J. O. and Midtstraum, R., "SESAM:
searching supported by analysis of metadata," Proceedings of the 2002
ACM Symposium on Applied Computing (SAC), 2002, p.418-425.

[Heggland 2002] Heggland, J., "OntoLog: Temporal Annotation Using Ad Hoc
Ontologies and Application Profiles," in M. Agosti and C. Thanos (Ed.),
Research and Advanced Technology for Digital Libraries (ECDL), 2002,
p.118-128.

[Hibino and Rundensteiner 1995] Hibino, S. and Rundensteiner, E. A., "A
Visual Query Language for Identifying Temporal Trends in Video Data,"
International Workshop on Multimedia Database Management Systems,
Blue Mountain Lake, New York, 1995, p.74-81.

[Hibino and Rundensteiner 1996] Hibino, S. and Rundensteiner, E. A.,
"MMVIS: Design and Implementation of a Multimedia Visual
Information Seeking Environment," ACM Multimedia, 1996, p.75-86.

237

[Hibino and Rundensteiner 1997] Hibino, S. and Rundensteiner, E. A., "User
Interface Evaluation of a Direct Manipulation Temporal Visual Query
Language," ACM Multimedia, 1997, p.99-107.

[Hibino and Rundensteiner 1998] Hibino, S. and Rundensteiner, E. A.,
"Comparing MMVIS to a Timeline for Temporal Trend Analysis of
Video Data," Proceedings of Advanced Visual Interfaces (AVI '98), 1998.

[Hjelsvold 1995] Hjelsvold, R., "VideoSTAR - A Database for Video
Information Sharing", Department of Computer Science and Telematics,
Norwegian Institute of Technology, 1995.

[Hjelsvold and Midtstraum 1994] Hjelsvold, R. and Midtstraum, R.,
"Modelling and Querying Video Data," in J. B. Bocca, M. Jarke and C.
Zaniolo (Ed.), VLDB'94, Proceedings of 20th International Conference
on Very Large Data Bases, 1994, p.686-694.

[Hjelsvold and Midtstraum 1995] Hjelsvold, R. and Midtstraum, R.,
"Databases for Video Information Sharing," Storage and Retrieval for
Image and Video Databases (SPIE), 1995, p.268-279.

[Hjelsvold et al. 1995a] Hjelsvold, R., Langørgen, S., Midtstraum, R. and
Sandstå, O., "Integrated Video Archive Tools," ACM Multimedia, 1995,
p.283-293. (a)

[Hjelsvold et al. 1995b] Hjelsvold, R., Midtstraum, R. and Sandstå, O., "A
Temporal Foundation of Video Databases," in J. Clifford and A. Tuzhilin
(Ed.), Recent Advances in Temporal Databases: Proceedings of the
International Workshop on Temporal Databases, 1995, p.295-314. (b)

[Hjelsvold et al. 1999] Hjelsvold, R., Liou, S. and Depommier, R.,
"Multimedia Archiving, Logging and Retrieval," in B. Fuhrt (Ed.),
Handbook of Multimedia Computing, 1999, p.379-402.

[Horrocks et al. 2003] Horrocks, I., Fensel, D., Broekstra, J., Decker, S.,
Erdmann, M., Goble, C., van Harmelen, F., Klein, M. S. S., Studer,
R. and Motta, E., "The Ontology Inference Layer OIL",
http://www.ontoknowledge.org/oil/TR/oil.long.html, 2003.

[Hunter 1998] Hunter, J., "The Application of Metadata Standards to Video
Indexing," in C. Nikolaou and C. Stephanidis (Ed.), Research and
Advanced Technology for Digital Libraries (ECDL), 1998, p.135-156.

[Hunter and Newmarch 1999] Hunter, J. and Newmarch, J., "An Indexing,
Browsing, Search and Retrieval System for Audiovisual Libraries," in S.
Abiteboul and A. Vercoustre (Ed.), Research and Advanced Technology
for Digital Libraries (ECDL), 1999, p.76-91.

[IBM Research 2002] IBM Research, "VideoAnnEx Annotation Tool",
http://www.research.ibm.com/VideoAnnEx/, 2002.

238

[IFLA 1998] IFLA, "Functional Requirements for Bibliographic Records",
http://www.ifla.org/VII/s13/frbr/frbr.htm, 1998.

[International Organization for Standardization 2001] International
Organization for Standardization, ISO 8879:1986 Standard
Generalized Markup Language (SGML), 2001.

[International Organization for Standardization 2002] International
Organization for Standardization, ISO/IEC 15938 Information
Technology -- Multimedia Content Description Interface, 2002.

[Jiang et al. 1997] Jiang, H., Montesi, D. and Elmagarmid, A. K., "VideoText
Database Systems," Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, 1997, p.344-351.

[Kazman et al. 1996] Kazman, R., Al-Halimi, R., Hunt, W. and Mantei, M.,
"Four Paradigms for Indexing Video Conferences," IEEE MultiMedia, 3
(1) Spiring 1996, p.63-73.

[Kimber et al. 1995] Kimber, D., Wilcox, L., Chen, F. and Moran, T. P.,
"Speaker segmentation for browsing recorded audio," CHI 95 Conference
Companion, 1995, p.212-213.

[Kokkoras et al. 2002] Kokkoras, F. A., Jiang, H., Vlahavas, I. P.,
Elmagarmid, A. K., Houstis, E. N. and Aref, W. G., "Smart VideoText:
a video data model based on conceptual graphs," Multimedia Systems, 8
(4) 2002, p.328-338.

[Kominek and Kazman 1997] Kominek, J. and Kazman, R., "Accessing
Multimedia through Concept Clustering," CHI, 1997, p.19-26.

[Lagoze and Hunter 2001] Lagoze, C. and Hunter, J., "The ABC Ontology and
Model," in K. Oyama and H. Gotoda (Ed.), Proceedings of the
International Conference on Dublin Core and Metadata Applications,
2001, p.160-176.

[Lagoze et al. 2000] Lagoze, C., Hunter, J. and Brickley, D., "An Event-Aware
Model for Metadata Interoperability," in J. L. Borbinha and T. Baker
(Ed.), Research and Advanced Technology for Digital Libraries (ECDL),
2000, p.103-116.

[Le Saux et al. 2003] Le Saux, B., Grira, N. and Boujemaa, N., "Adaptive
Robust Clustering with Proximity-Based Merging for Video-Summary,"
IEEE International Conference on Fuzzy Systems, Saint-Louis, May
2003.

[Li et al. 2000] Li, F. C., Gupta, A., Sanocki, E., He, L. and Rui, Y.,
"Browsing digital video," CHI, 2000, p.169-176.

[Liou et al. 1999a] Liou, S., Hjelsvold, R., Depommier, R. and Hsu, A.,
"Efficient and Reliable Digital Media Archive for Content-based
Retrieval," Multimedia Systems, 7 (4) 1999, p.256-268. (a)

239

[Liou et al. 1999b] Liou, S., Toklu, C. and Heckrodt, K., "VideoTalk: A
Collaborative Environment for Video Content Discussion," Proceedings
of the IEEE Internation Conference on Multimedia Computing and
Systens, 1999, p.454-459. (b)

[Litsheim 2003] Litsheim, S., "Romlige beskrivelser i video", Department of
Computer and Information Science, Norwegian University of Science and
Technology, July 2003.

[Lu 2001] Lu, G., "Indexing and Retrieval of Audio: A Survey," Multimedia
Tools and Applications, 15 (3) 2001, p.269-290.

[Lærum 2004] Lærum, H., "Evaluation of electronic medical record: A clinical
task perspective", Faculty of Medicine, Norwegian University of Science
and Technology, March 2004.

[Mackay and Beaudouin-Lafon 1998] Mackay, W. E. and Beaudouin-Lafon,
M., "DIVA: Exploratory Data Analysis with Multimedia Streams," CHI,
1998, p.416-423.

[Mayo 1933] Mayo, E., The Human Problems of an Industrial Civilization,
Macmillan, 1933.

[Merriam-Webster Incorporated 2004] Merriam-Webster Incorporated,
"Merriam-Webster Online Dictionary", http://www.m-w.com/, 2004.

[Metz 1974] Metz, C., Film Language: A Semiotics of the Cinema, New York:
Oxford University Press, 1974.

[Mills et al. 1992] Mills, M., Cohen, J. and Wong, Y. Y., "A Magnifier Tool for
Video Data," CHI, 1992, p.93-98.

[Mitchell and Jolley 2001] Mitchell, M. and Jolley, J., Research Design
Explained, Fourth Edition, Thomson Learning, 2001.

[Monaco 1981] Monaco, J., How to Read a Film, New York: Oxford University
Press, 1981.

[National Research Council 1994] National Research Council, Academic
Careers for Experimental Computer Scientists and Engineers,
Washington, D.C.: National Academic Press, 1994.

[Nielsen 1993] Nielsen, J., Usability Engineering, Academic Press, 1993.
[Noldus Information Technology 2003] Noldus Information Technology, "The

Observer 5.0", http://www.noldus.com/products/observer/index.html,
November 2003.

[Oard 1997] Oard, D. W., "Speech-based Information Retrieval for Digital
Libraries," Notes from AAAI Spring Symposium on Cross-Language Text
and Speech Retrieval, Stanford University, California, 1997.

240

[Oomoto and Tanaka 1993] Oomoto, E. and Tanaka, K., "OVID: Design and
Implementation of a Video-Object Database System," IEEE Transactions
on Knowledge and Data Engineering, 5 (4) 1993, p.629-643.

[Pidcock 2003] Pidcock, W., "What are the differences between a vocabulary, a
taxonomy, a thesaurus, an ontology, and a meta-model?",
http://www.metamodel.com/article.php?story=20030115211223271,
January 15 2003.

[Plaisant et al. 1996] Plaisant, C., Milash, B., Rose, A., Widoff, S. and
Shneiderman, B., "LifeLines: Visualizing Personal Histories," CHI,
1996, p.221-227.

[Plaisant et al. 1998] Plaisant, C., Muslin, R., Snyder, A., Li, J., Heller, D. and
Shneiderman, B., "LifeLines: Using Visualization to Enhance
Navigation and Analysis of Patient Records," Proceedings of the 1998
American Medical Informatic Association Annual Fall Symposium, 1998,
p.76-80.

[Preece et al. 1994] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S.
and Carey, T., Human-Computer Interaction, Addison-Wesley
Publishing, 1994.

[Russel and Norvig 1995] Russel, S. and Norvig, P., Artificial Intelligence - A
Modern Approach, Prentice Hall, 1995.

[Rust and Bide 2000] Rust, G. and Bide, M., The <indecs> metadata
framework: Principles, model and data dictionary, 2000.

[Rutledge 2001] Rutledge, L., "SMIL 2.0: XML for Web Multimedia," IEEE
Internet Computing, 5 (5) September-October 2001, p.78-84.

[Rystad 2002] Rystad, R., "Analyse av kategoriserte metadata i temporale
medier", Department of Computer and Information Science, Norwegian
University of Science and Tehcnology, June 2002.

[Samet 1990] Samet, H., The Design and Analysis of Spatial Data Structures,
Addison-Wesley, 1990.

[Schoepflin et al. 2001] Schoepflin, T., Lau, C., Garg, R., Kin, D. and Kim,
Y., "A Research Environment for Developing and Testing Object
Tracking Algorithms," Proceedings of SPIE Electronic Imaging, 2001,
p.667-675.

[Shneiderman 1996] Shneiderman, B., "The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations," Proceedings of the IEEE
Symposium on Visual Languages, 1996, p.336-343.

[Shneiderman 1997] Shneiderman, B., Designing the User Interface: Strategies
for Effective Human-Computer Interaction, Addison-Wesley Publishing,
1997.

241

[Skou 2003] Skou, C. V., "Qualitative Media Analyzer",
http://www.cvs.dk/qma.htm, August 2003.

[Slaughter et al. 1998] Slaughter, L. A., Oard, D. W., Warnick, V. L.,
Harding, J. L. and Wilkerson, G. J., "A Graphical Interface for Speech-
Based Retrieval," Proceedings of the 3rd ACM International Conference
on Digital Libraries, 1998, p.305-306.

[Snodgrass 1995] Snodgrass, R. T., The TSQL2 Temporal Query Language,
Kluwer Academic Publishers, 1995.

[Sowa 1984a] Sowa, J. F., "Conceptual graphs for a database interface," IBM
Journal of Research and Development, 20 (4) 1984, p.336-357. (a)

[Sowa 1984b] Sowa, J. F., Conceptual Structures: Information Processing in
Mind and Machine, Reading, MA: Addison-Wesley, 1984. (b)

[Staff and Jødahl 2001] Staff, E. and Jødahl, P., MPEG-7 - bits about the bits,
2001.

[Stengel 2003] Stengel, C., "Analysis and Representation of Multimedia Data for
Issues of Annotation of Temporal Media", Department of Computer and
Information Science, Norwegian University of Science and Technology,
December 2003.

[Stern 1995] Stern, P. N., "Grounded Theory Methodology: Its Uses and
Processes," in B. G. Glaser (Ed.), Grounded Theory 1984-1994, 1995,
p.29-39.

[Stifelman et al. 2001] Stifelman, L., Arons, B. and Schmandt, C., "The audio
notebook: paper and pen interaction with structured speech," CHI, 2001,
p.182-189.

[Studer et al. 1998] Studer, R., Benjamins, V. R. and Fensel, D., "Knowledge
Engineering: Principles and Methods," Data & Knowledge Engineering,
25 (1-2) 1998, p.161-197.

[Swartout et al. 1996] Swartout, B., Patil, R., Knight, K. and Russ, T.,
"Toward Distributed Use of Large-Scale Ontologies," Proceedings of the
10th Knowledge Acquisition, Modeling and Management Workshop
(KAW'96), Banff, Canada, 1996.

[Thibault 2000] Thibault, P. J., "The multimodal transcription of a television
advertisement: theory and practice," in A. Baldry (Ed.), Multimodality
and Multimediality in the Distance Learning Age, 2000, p.311-85.

[Tsichritzis and Lochovsky 1982] Tsichritzis, D. C. and Lochovsky, F. H.,
"Semantic Network Data Models," Data Models, 1982, p.210-224.

[Wactlar et al. 1996] Wactlar, H. D., Kanade, T., Smith, M. A. and Stevens, S.
M., "Intelligent Access to Digital Video: Informedia Project," IEEE
Computer, 29 (5) 1996, p.46-52.

242

[Weber and Poon 1994] Weber, K. and Poon, A., "Marquee: A Tool For Real-
Time Video Logging," Human factors in computing systems: "celebrating
interdependence", 1994, p.58-64.

[Weinstein 1998] Weinstein, P., "Ontology-Based Metadata: Transforming the
MARC Legacy," Proceedings of the 3rd ACM International Conference
on Digital Libraries, 1998, p.254-263.

[Weiss et al. 1995] Weiss, R., Duda, A. and Gifford, D. K., "Composition and
Search with a Video Algebra," IEEE MultiMedia, 2 (1) 1995, p.12-25.

[Whittaker et al. 1999] Whittaker, S., Hirschberg, J., Choi, J., Hindle, D.,
Pereira, F. C. N. and Singhal, A., "SCAN: Designing and Evaluating
User Interfaces to Support Retrieval From Speech Archives,"
Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1999, p.26-33.

[Wollen 1972] Wollen, P., Signs and Meaning in the Cinema, Bloomington:
Indiana University Press, 1972.

[World Wide Web Consortium 2001a] World Wide Web Consortium, "W3C
XML Schema", http://www.w3.org/XML/Schema, 2001. (a)

[World Wide Web Consortium 2001b] World Wide Web Consortium,
"Synchronized Multimedia Integration Language (SMIL 2.0)",
http://www.w3.org/TR/smil20/, August 07 2001. (b)

[World Wide Web Consortium 2004a] World Wide Web Consortium,
"Resource Description Framework (RDF)", http://www.w3.org/RDF/,
March 2004. (a)

[World Wide Web Consortium 2004b] World Wide Web Consortium, "OWL
Web Ontology Language Overview", http://www.w3.org/TR/2004/REC-
owl-features-20040210/, February 10 2004. (b)

[Zhang et al. 1993] Zhang, H., Kankanhalli, A. and Smoliar, S. W.,
"Automatic Partitioning of Full-Motion Video," Multimedia Systems, 1
(1) 1993, p.10-28.

