
Domain Model-Centric
Distributed Development
An approach to semantics-based
change impact management

Doctoral thesis
for the degree of doktor ingeniør

Trondheim, 2006

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Computer and Information Science

Darijus Strašunskas

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology
Doctoral thesis
for the degree of doktor ingeniør
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Computer and Information Science

© Darijus Strašunskas

ISBN 82-471-7762-5 (printed ver.)
ISBN 82-471-7761-7 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2006:12

Printed by NTNU-trykk

To my family
for their love and patience

 i

Abstract

Today’s information systems engineering involves large number of stakeholders,
wide geographical distribution and wide range of tools. Success in system
engineering depends on effective human communication. Early understanding
and modelling of the problem domain is a key to manage large scale systems and
projects. This requires stakeholders to reach a certain level of shared
interpretation of the domain referred throughout the development

We propose a method for semantics driven change impact assessment. In
our method, first a collaborative problem analysis is conducted. The problem
analysis results in an agreed and committed common understanding of the
problem domain, expressed in a conceptual domain model. The constructed
conceptual domain-specific model is then actively used as a communication
medium, e.g., to abstract development objects from representation format in
order to explicate their semantics. Stakeholders browse the domain model and
interactively associate to product fragments by selecting concept clusters that
best describe the contents (intended meaning) of the product fragments.

Associations of the development objects with concepts from domain model,
as well as the domain model itself constitute the basis for change impact
assessment throughout the development. Every revision of a development object
invokes change impact notifications that are either confirmed or rejected.
Accumulated statistics are used to refine associations via the domain model to
the direct dependency links among development objects.

The method has been implemented in a prototype system CO2SY and has
been evaluated in an experiment, where a set of test users has been provided with
a problem domain description including a domain model and a set of
development objects. The experiment was based on two real world cases. Users
were asked to perform tasks using the prototype and two comparative tools. The
method and prototype have been evaluated with respect to actual performance
and users perceptions. The result shows actual effectiveness, perceived ease of
use and usefulness comparing to other tools used in the experiment, as well as
intention of the subjects to use the method in future.

A discussion of future research directions and possible revisions of the
method concludes the thesis.

ii Contents

 iii

Table of Contents

PREFACE... XI

ACKNOWLEDGMENT .. XI

1 INTRODUCTION... 1

1.1 BACKGROUND... 1
1.2 PROBLEM .. 2
1.3 OBJECTIVE .. 4
1.4 APPROACH .. 5
1.5 MAIN CONTRIBUTIONS.. 7
1.6 WAY OF WORKING AND RESULTS... 8
1.7 THE STRUCTURE OF THE THESIS ... 9

2 COOPERATIVE AND DISTRIBUTED INFORMATION SYSTEMS
ENGINEERING ... 11

2.1 INFORMATION SYSTEM ENGINEERING... 11
2.2 TEAM AND PRODUCT IN DISTRIBUTED PRODUCT DEVELOPMENT 13
2.3 ROLE OF CONCEPTUAL MODELLING IN IS ENGINEERING 23
2.4 SUPPORTING TECHNIQUES FOR COOPERATIVE DEVELOPMENT 32
2.5 REQUIREMENTS... 37
2.6 SUMMARY... 38

3 STATE-OF-THE-ART SURVEYS... 41

3.1 CASE TOOLS AND MODELLING FRAMEWORKS .. 41
3.2 COLLABORATIVE CASE TOOLS .. 43
3.3 COMPUTER SUPPORTED COOPERATIVE WORK.. 49
3.4 REPOSITORIES IN IS ENGINEERING.. 51
3.5 INFORMATION INTEGRATION AND MANAGEMENT.. 55
3.6 SUMMARY... 68

4 REPOSITORY OBJECTS... 71

4.1 OVERALL METHOD ... 71
4.2 REPOSITORY SUPPORT .. 74
4.3 NAMESPACE AND OBJECT IDENTITY ... 80
4.4 VERSIONING FRAMEWORK.. 82

iv Contents

4.5 SUMMARY... 86

5 MODEL FRAGMENT MANAGEMENT .. 87

5.1 FRAMEWORK FOR COLLABORATIVE DISTRIBUTED MODELLING 88
5.2 EXTERNALISATION.. 90
5.3 INTERNALISATION... 93
5.4 REFINEMENT OF CONCEPTS ... 96
5.5 MODEL COMPOSITION MANAGEMENT .. 98
5.6 REQUIREMENTS FOR MODEL FRAGMENT MANAGEMENT.................................... 101
5.7 SUMMARY... 103

6 PRODUCT FRAGMENT MANAGEMENT.. 105

6.1 DOMAIN MODEL-BASED CONTENT MANAGEMENT ... 106
6.2 SEMANTIC RELATEDNESS .. 108
6.3 RELATEDNESS AND IMPACT ASSESSMENT... 113
6.4 IMPACT NOTIFICATION AND DIRECT DEPENDENCY ASSOCIATION 115
6.5 EVOLUTION OF DOMAIN AND CHANGE OF DOMAIN MODEL 116
6.6 APPLICATION SCENARIOS ... 116
6.7 SUMMARY... 118

7 REALISATION OF THE METHOD.. 119

7.1 COMPONENTS.. 119
7.2 ARCHITECTURE... 122
7.3 DESIGN ... 124
7.4 FUNCTIONALITY AND USER INTERFACE .. 127
7.5 SUMMARY... 129

8 EVALUATION OF THE METHOD .. 131

8.1 EVALUATION ASPECTS.. 131
8.2 EVALUATION ALTERNATIVES ... 133
8.3 EVALUATION FRAMEWORK... 135
8.4 ORGANISATION OF THE EXPERIMENT .. 136
8.5 RESULTS ... 144
8.6 SATISFYING THE REQUIREMENTS .. 154
8.7 SUMMARY... 155

9 CONCLUSIONS AND OUTLOOK ... 157

9.1 SUMMARY OF CONTRIBUTIONS ... 157
9.2 OPEN CHALLENGES... 159

BIBLIOGRAPHY .. 163

APPENDICES

A THE REFERENT MODEL LANGUAGE... 175

A.1 RML FOUNDATION .. 175
A.2 BASIC CONCEPTS ... 175
A.3 RML META-MODEL .. 176

Contents v

A.4 RELAXNG RML SCHEMA .. 178

B PROTOTYPE VISUALISATION... 181

C QUESTIONNAIRE ... 187

D EXPERIMENTAL MATERIALS... 195

D.1 DESCRIPTION OF CASE 1 .. 195
D.2 DESCRIPTION OF CASE 2 .. 213

E DATA COLLECTED .. 219

F COLLECTION OF PAPERS... 229

F.1 TRACEABILITY IN COLLABORATIVE SYSTEMS DEVELOPMENT FROM LIFECYCLE
PERSPECTIVE - A POSITION PAPER ... 229
F.2 A VISION FOR PRODUCT TRACEABILITY BASED ON SEMANTICS OF ARTIFACTS.. 239
F.3 PROCESS OF PRODUCT FRAGMENTS MANAGEMENT IN DISTRIBUTED DEVELOPMENT
... 247
F.4 DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 267
F.5 MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT:
AGREEMENT BASED APPROACH.. 281
F.6 DOMAIN KNOWLEDGE-BASED RECONCILIATION OF MODEL FRAGMENTS 295

INDEX.. 309

vi Contents

 vii

List of Figures

Figure 1.1 Product development dimensions ... 3
Figure 1.2 Conceptual view of the approach.. 7
Figure 1.3 Overview of goals and corresponding means ... 8
Figure 2.1 Product development... 12
Figure 2.2 Organizational reality construction in an organization 14
Figure 2.3 Ontology spectrum.. 21
Figure 2.4 Simplified two-phase organisation of system life-cycle 24
Figure 2.5 “V” lifecycle model .. 28
Figure 2.6 Twin Peaks – a model of concurrent development 28
Figure 2.7 Zachman framework ... 29
Figure 3.1 Dimensions of CASE tools integration... 43
Figure 3.2 The Eclipse Platform architecture... 47
Figure 3.3 Screenshot of Composent Eclipse plugin.. 48
Figure 3.4 Basic interaction with Microsoft Repository .. 53
Figure 3.5 Traceability meta-model ... 57
Figure 3.6 Metamodel for requirements traceability .. 59
Figure 3.7 The traceability layer of Ophelia... 61
Figure 3.8 Propagation of notification in Ophelia approach .. 62
Figure 3.9 The process to establish traceability: rule-based approach 64
Figure 3.10 Footprints of model elements.. 66
Figure 3.11 Set Theory on trace overlaps... 66
Figure 4.1 Distributed development ... 72
Figure 4.2 Main functional steps of the method... 73
Figure 4.3 Main concepts of ISE.. 76
Figure 4.4 Different types of product fragments .. 77
Figure 4.5 Granularity and structure of product fragment storage 78
Figure 4.6 Rich information about development object in repository............................ 79
Figure 4.7 Management of “sameness”.. 81
Figure 4.8 Object identity... 83
Figure 4.9 Object family and merge of objects .. 83
Figure 4.10 Family id and relationship connecting objects.. 84
Figure 4.11 Object composition ... 84
Figure 5.1 Framework for collaborative modelling.. 89
Figure 5.2 Compositional definition of concept “Bike”... 91
Figure 5.3 Taxonomical definition of concept “Bicycle”... 91
Figure 5.4 Model element lexicon.. 92

viii Contents

Figure 5.5 Definition of model fragment ... 92
Figure 5.6 Amount of alignment needed.. 93
Figure 5.7 Model fragment management: functional steps .. 94
Figure 5.8 Connecting two families ... 96
Figure 5.9 Different types of overlap of views... 99
Figure 5.10 Three different inclusions (compositions) .. 99
Figure 5.11 Model fragment defining bicyclist concept... 101
Figure 5.12 Model fragments describing owner relationship....................................... 101
Figure 5.13 Model fragment describing both concepts: bicyclist and owner............... 101
Figure 5.14 Concept refinements.. 102
Figure 6.1 Adapted semiotic tetrahedron ... 106
Figure 6.2 Conceptual view of the method .. 107
Figure 6.3 Product fragment dependency management ... 108
Figure 6.4 Generalisation relationships .. 110
Figure 6.5 Importance of aggregation .. 111
Figure 6.6 Notification sequence of possible change propagation scenario................. 115
Figure 6.7 Sketch of domain segmentation .. 117
Figure 7.1 Components of method realisation ... 120
Figure 7.2 CO2SY architecture... 123
Figure 7.3 Tables for concept similarity and sameness.. 125
Figure 7.4 Tables to store development objects ... 125
Figure 7.5 Change impact notifications, the log and direct dependency...................... 126
Figure 7.6 Overview of main components of interface .. 127
Figure 7.7 Change impact management ... 128
Figure 8.1 Classification of users ... 133
Figure 8.2 The Method Evaluation Model ... 136
Figure 8.3 Design of the experiment .. 137
Figure 8.4 Example of computed dependency for the fragment “deliver” from case 2142
Figure 8.5 Modified window for association with concepts .. 143
Figure 8.6 Perceived quality... 152
Figure 9.1 Overview of the proposed method: goals, means and process.................... 158
Figure A.1 Graphical notation of RML.. 176
Figure A.2 RML meta-model ... 177
Figure A.3 RML schema in RelaxNG.. 180
Figure B.1 Association with a concept (classification) interface 181
Figure B.2 Content browsing. “Rich” information about a development object 183
Figure B.3 New object / revision upload interface... 184
Figure B.4 Direct dependency linking.. 185
Figure B.5 Query interface ... 185
Figure D.1 Domain model for Case 1 .. 196
Figure D.2 Domain model for Case 2 .. 214

 ix

List of Tables

Table 2.1 Three properties of product important for supporting cooperation 15
Table 2.2 Conceptual modelling in development life-cycle... 30
Table 3.1 Traceability links types used in reference models.. 58
Table 3.2 Summarizing overview of related technology.. 68
Table 8.1 List of the product fragments in case 2 .. 141
Table 8.2 Analysis of dependency discovery performance.. 145
Table 8.3 One-Sample Kolmogorov-Smirnov Test for responses measuring PEU 147
Table 8.4 Mean scores assigned by test subject for each construct of the MEM......... 147
Table 8.5 Descriptive statistics for PEU... 147
Table 8.6 One Sample t-test for difference in mean... 147
Table 8.7 Total item statistics... 148
Table 8.8 Comparison of responses to Q6 and Q18... 148
Table 8.9 Responses to Q10 and Q11 with an average of ranks 149
Table 8.10 Mean of concepts cluster size associated per fragment.............................. 150
Table 8.11 Perceived quality of cases .. 151
Table 8.12 Percentage of different confidence levels used for associations 152
Table 8.13 Meeting requirements by the method and prototype.................................. 154

x Contents

 xi

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fulfilment of the requirements for the doctoral degree doktor
ingeniør. The work has been carried out at the Information Systems Group,
within the Department of Computer and Information Science (IDI), under
supervision of Professor Arne Sølvberg.

Acknowledgment
I would like to acknowledge the effort of my principal advisor Prof. Arne
Sølvberg. Arne has given me good guidance when exploring different research
directions, has assigned interesting technical and scientific tasks, not necessarily
leading to a degree, but still important for my professional development.

I would like to express special thanks to Sari Hakkarainen for constructive
discussions when writing my first conference papers, and continuous support
through the later phases of the PhD studies, especially, for the proof-reading
parts of this thesis. It is a pleasure to record my gratitude for all these discussions
on and off the topic we have had in the recent years.

Many people have influenced my work conducted during the studies. In
particular I am thankful to 林云 (Yun Lin) for the sincere personal communica-
tion and the productive and valuable collaboration that resulted in several co-
authored articles. I also would like to thank Assoc. Prof. Rimantas Butleris for
introducing me to the field of information systems, for inspiration to begin PhD
studies, personal and scientific discussions.

Graduate students Kjell O. Erichsen and Stig Lau, whom I have supervised,
have helped a lot in refinement of ideas through interesting discussions – I am
thankful for that. I thank Arne Dag Fidjestøl for interesting and memorable
cooperation and discussions on a modelling environment, as well as technical
support.

I thank my colleagues and friends for a dynamic and encouraging
environment. Special thanks go to Christian Mönch for exciting discussions
about technological issues and life in general. 苏晓萌 (Xiaomeng Su) and Stein
Løkke Tomassen have been sharing office with me during different periods of

xii Preface

this work. I thank them for being friendly, positive and helpful. I have enjoyed
collaboration with Lillian Hella and Raimundas Matulevičius, thanks for
enthusiasm and pragmatism you shared. I express my gratitude to 饶京海
(Jinghai Rao), Csaba Veres, and Jennifer Sampson for being more than
colleagues and for providing a mental support. I also thank all former and current
members of IS-Group for a good working environment.

Thanks to everybody at IDI for a scientific atmosphere. Special thanks go to
administrative and technical staff for providing a necessary infrastructure and
helping to smoothly perform all indispensable routines.

I am grateful to my friends both, here in Norway and abroad for helping me
to have more cheerful moments and a social life. I have appreciated those few
joyful moments that we have shared during short summer holidays in Lithuania,
their attitude of looking always to a bright side of life. In particular, I would like
to acknowledge Giedrius Romeika for his contribution in proof-reading the
thesis.

I am immensely grateful to my family. I thank my mother for always
believing in me, for her support, tolerance, readiness to help. I also thank my
father and brother for support and encouragements, intensive communication by
sms and e-mail. I would like to express my immeasurable gratitude to my wife
Kristina and my son Simonas. I am grateful for their love, patience, kindness and
for fulfilling my private life with a joy and energy, when I most needed.

Darijus Strašunskas

Trondheim,
February 1st, 2006

 1

1
Introduction

The research reported in this thesis is conducted in the Information Systems (IS)
group at the Department of Computer and Information Science at the Norwegian
University of Science and Technology (NTNU). IS group has a strong tradition
in developing formalisms and tools for information systems modelling. Within
this tradition, cooperation has always been considered as an important part of
information systems development (Farshchian, 2001; Solvberg, 2000; Andersen,
1994). The need to support geographically distributed groups of developers has
emerged with the wide-spread use of Internet in the last decade. Furthermore,
many companies nowadays are spread all over the world, with specialized
divisions or subsidiary companies producing software components (product
fragments) assembled elsewhere. That has further increased the need to manage
and facilitate cooperation by facilitating development coordination and
management of product compositions. This thesis is developed in the research
tradition of the IS group, and contributes to the IS engineering (ISE) research by
suggesting and developing methods supported by tools to facilitate cooperation
in distributed project teams in general, and management of product fragments in
particular.

1.1 Background
Traditional systems development was centred on small projects and collocated
teams using a limited toolset. While today’s development organisations meet
large number of stakeholders, wide geographical distribution and wide range of
tools are used (VA Software, 2004). Furthermore, information systems
engineering usually includes enterprise, systems and business process modelling.
As output, it provides information analysis, architecture and design. Typically,
all these parts should be integral. Thus, the end product of IS engineering is not a
homogeneous specification, but rather a collection of correlated product

2 Chapter 1 Introduction

fragments (i.e., requirements specification, design, code, test scenarios, and
documentation). The fragments have various perspectives, focusing on different
aspects, and expressed in different representation languages.

Management of such product fragments is essential for any logically or
geographically distributed large scale project. Distributed development projects
have special settings and needs, where attention has to be given to product
fragments management because developers are likely to use different
representation formats and a variety of tools for the product development.

Furthermore, one key issue in software projects is the two-way
communication, where the developers understand their clients and the clients
understand the issues the developers present. In order to achieve a sufficiently
accurate level of communication, each party has to ensure that the meaning of
their utterances – the semantics – is successfully understood by their counterpart
(Finkelstein et al., 1991). Hence, many distributed development projects need to
interchange, possibly heterogeneous, information by explicitly communicating its
semantics.

Models are usually built to share knowledge or definitions with other
people, and are especially directed to people that want to share knowledge or
define knowledge in cooperation with others. Modelling is seen as “the activity
of formally describing some aspects of the physical and social world around us
for purposes of understanding and communication” (Mylopoulos, 1992), and is
applied in the early phases of information system analysis and design. However,
many problems are encountered when building models. It is conceivable that a
variety of different versions of models will be used in different stages of the
development process; in general, it is difficult to develop a model that can be
acceptable for all participants in a development project. Furthermore, different
people usually present different models given the same domain and the same
problem. The same information about a system may be modelled at various
levels of abstraction and from different viewpoints considering different aspects.
Variations among models generally appear due to the creative nature of the
modelling activity, as well as other factors such as the richness of the modelling
language (Moriarty, 2000), the ambiguities of modelling grammars, and others.

1.2 Problem
System development is a complex and difficult task. It is usually a creative and
collaborative process, during which different stakeholders are focusing on
various aspects, expressing them at different levels of abstraction, and producing
several variants of each (Figure 1.1). Different levels of abstraction of the same
system enable dealing with complexity by removing details from the model. The
model must be designated as an efficient and effective communications medium
between the different parties involved in a development project. Usually, an
intermediate model is augmented by details in each development step, until it
contains sufficient details for execution. Different aspects concern multiple

1.2 Problem 3

views, one no more detailed than the other, e.g., different subject areas. A system
can be described from many viewpoints. Each viewpoint defines what
characteristics should be included in its views and what issues should be ignored
or treated as transparent. A viewpoint is, therefore, a piece of the model that is
small enough to comprehend but that also contains all relevant information about
a particular concern. Different variants concern multiple versions and
configurations of the pieces of models.

A
bs

tra
ct

io
n

/ r
ef

in
em

en
t

Aspects / views
Variants

Figure 1.1 Product development dimensions

However, there is big diversity of representation formats and modelling
languages that are used throughout the development process. System specifica-
tions consist of a wide variety of product fragments (development objects)1, i.e.
different pieces of information about a particular system that together comprise a
full (or partial) system specification at various levels of abstraction. Some of
these product fragments are well structured, like textual or graphical documents,
while others are more loosely structured; therefore, traversing the growing
specification between different product fragments is not trivial.

Tasks in the distributed projects are assigned based on the competence of
the involved parties. Therefore, developers may use different tools to create and
modify product fragments. Furthermore, the fragments can be refined iteratively
and be further interchanged among members of a project. It is important for
colleagues to interpret a piece of specification correctly. More precisely,
Farshchian (2001) emphasized a list of requirements for product development
environments to enable collaboration in geographically distributed developments.
There we adopt the requirements as follows.
Flexible access to the product. A product development environment should

provide flexible mechanisms for accessing and updating the product.

1 The notion of product fragment and development object is used interchangeably in this thesis, depending
on the context.

4 Chapter 1 Introduction

Unrestricted product object types. A product development environment should
allow the developers to share any type of object that they might find useful
for supporting their cooperation.

Unrestricted relation types. A product development environment should allow
the developers to create any type of relation between any two objects of
product.

Incremental product refinement. A product development environment should
provide the developers with flexible mechanisms for incrementally refining
the product. The developers should be allowed to start with vague products,
and to refine them into more complete and formal ones.

Support for boundary objects. A product development environment should
allow the developers to view the product from different perspectives. The
environment should in addition support a global view of the product.

Active delivery of information. A product development environment should
take an active part in delivering necessary information to the developers. In
particular information about changes to the shared product should be
delivered continuously to the interested developers.

These are the main challenges - to interrelate and trace all fragments of system
specification in different representation formats that are produced in a distributed
manner using different tools throughout the whole product lifecycle, i.e., “having
divided to conquer, we must now reunite to rule” (Jackson, 1990).

Thus, there is a need to support information systems and service
development, which could be achieved by providing means for semantic
interoperability and management of specification fragments independently of
development phase, model perspective, view or representation language. The
need for such approach stems from the fact that in a distributed project
development process different tools and, most likely, different notations will be
used during the project. The main problem is exchanging heterogeneous
information with explicitly communicated meaning. How to relate all pieces of
information produced in such a project is the research question we are pursuing.

1.3 Objective
The overall objective of this work is to introduce a method for distributed
collaborative work environment supporting management and change impact
prediction of the diverse product fragments based on the semantics of the product
fragments. This objective is decomposed into four core intermediate research
goals determining the development of this work. They are as follows.

 To investigate what means can support cooperative distributed development
by providing a common reference space to represent the semantics of
development objects;

1.4 Approach 5

 To explore how developers can commit to and use that common reference
point throughout the whole development lifecycle;

 To elaborate how semantics of the development objects can benefit
distributed system development by facilitating change impact assessment;

and then:
 To investigate whether observed change impact notifications can be useful to
establish direct dependency links between development objects.

1.4 Approach
The main intention is to investigate how heterogeneous information can be
explicated in distributed project. Here we propose to tackle the challenge of
describing heterogeneous information by semantically enriching the product
fragments, i.e. providing means to explicate their meaning. An important aspect
here is that the developers most likely are going to use different object formats,
e.g., different modelling languages to specify their own views. Even when using
a language with explicitly defined semantics, the meaning of a constituent piece
of product can be difficult to interpret to one who is not familiar with that
particular language. Semantic enrichment facilitates product management by
explicating different kinds of ’hidden’ information concerning semantics of the
created objects.

 “Data semantics is the relationship between data and what the data
stand for. In order to obtain mutual understanding of interchanged
data, the actors have to share a model of what the data represent.
Semantic interoperability is about how to achieve such mutual
understanding.” Solvberg et al. (2002)

The approach is twofold: First, provide means for distributed collaborative
modelling in order to produce a shared conceptual domain model. Second,
manage the IS engineering process as well as the product under development by
means of a common conceptualisation of the domain.
1.4.1 Common conceptualisation of domain
The approach relies on adoption of a conceptual domain model by all
stakeholders, which implicates that IS developers should agree and share
conceptualisation of problem. That is important for feasibility of the product
fragments management part of the approach.

The meaningfulness of the shared conceptualisation is dependent on how
their representation became a common one. Although, the initial goal is usually
to develop a single model of the UoD (Universe of Discourse), it often turns out
to be important to preserve and model the various “views” of the information as
seen by different stakeholders and participants during the system analysis phase.
Usually, different developers might have different vocabulary to express their
perception of the world. It is important to preserve the knowledge as possessed

6 Chapter 1 Introduction

by the developer and expressed in the model fragment she has developed. We
need to ensure that a developer’s work will not be disturbed. For instance, if a
developer uses term ‘aircraft’ referring to ‘airplane’, this term should be
preserved in her local view, otherwise after several changes it will be difficult to
continue.

In order to sustain meaningfulness of shared conceptualisation, we
endeavour to provide an enhanced modelling environment, where stakeholders
can model, share, discuss and agree about their conceptualized views (i.e., model
fragments), gradually composing them into a complete model. The collaborative
modelling phase results in a pragmatic agreement on conceptualisation.
1.4.2 Product fragment management
The underlying rationale here is the belief that the richer semantic information
the product fragment could reveal, the more precise accounts of them could be
made and in turn the dependency between the fragments could be discovered.

The enrichment is conducted by associating each development object with
the corresponding concepts from both a specific domain model (project-
dependent). The facts that concepts are interrelated with each other in the domain
model and all fragments are linked to domain concepts enable us to derive
semantic relationships between different fragments. The enriched semantic
information is added into metadata (information/data about data) to abstract away
from heterogeneous representation details and capture information content. The
conceptual model is used to interoperate across different representation formats
used in system development. In particular, product fragments association with
the concepts from a domain model adds on to the semantics of the fragment
providing a view of what part of a problem domain the fragment describes, for
instance, a purchase order.

In the domain model, all concepts are interrelated with generic hierarchical
relationships or specific, weighted relations. Those weights are assigned
according to how strongly concepts are related. Meanwhile, the development
objects are linked to concepts of the domain model. Relations between fragments
and concepts are based on the semantics of the fragments. The hierarchical
position of the concept, semantics of the generic relationships between concepts
and the specific-weighted relations are used to relate heterogeneous fragments,
after having constructed such a model and the links. The model with the links is
further used to estimate likelihood of impact from altering one fragment to
another. Fragments linking through the domain model (marked by ‘-!-’ in Figure
1.2) are gradually refined to direct (more precise) dependency links between
fragments (marked by ‘-?-’ in Figure 1.2). In other words, two kinds of
relationships are used for product fragments inter-linking: semantic associations
between fragment and concept; and direct relationships between fragments based
on dependency between them.

1.5 Main Contributions 7

C4

C3

C5

C1

C2

F1.7

F1.2
F2.4

F2.5

Phase 1 Phase 2

- ! -

- ? -

Semantics,
i.e. domain
knowledge

Figure 1.2 Conceptual view of the approach

To sum up, two major techniques constitute the product fragments management
approach. First, a modelling framework defining means for externalising
stakeholders’ knowledge about problem domain, sharing it, internalising and,
finally, committing to a shared model. Second, a product fragment management
framework providing means to associate development objects with the shared
model, in order to enrich their semantics and to enable content change
management.

1.5 Main Contributions
The main contributions of this thesis are the development and the specification of
the method for product constituent fragments management, impact prediction in
geographically distributed systems development. Namely:

 A framework for distributed product fragments management to facilitate the
coordination and management of the development process, and
methodological approach for integration and manipulation of all information
produced during the project;

 A generic implementation of the framework. The specified method resulted in
implementation of a repository system.

As a necessary and integral part of the method is development of environment for
collaborative modelling as an instrument to achieve common conceptualisation
of problem on-hands; and there the contributions are:

 An enhanced method to support collaborative distributed modelling;
 An extended model composition management framework.

Figure 1.3 summarizes goals of this thesis and proposed means to achieve them.
Namely, the modelling environment is used for the model fragment management
and to reach common conceptualisation of domain. The resulting conceptual

8 Chapter 1 Introduction

domain model is used as a means for the product fragment management, change
impact assessment. A resulting log of confirmed change impacts serves as a
means to refine and establish direct dependency links between product
fragments, in order to enable product traceability.

Goals

Means

Common
reference point

(space)
Common

conceptualization
Product fragment

management Product traceability

Modelling
framework

Conceptual
domain
model

Log of
confirmed

change impact

Externalised
knowledge as

conceptual model
Figure 1.3 Overview of goals and corresponding means

1.6 Way of Working and Results
The research method applied in this research is a design research. Considering
the research methodology in that context, the way of working consists of a
descriptive analysis phase, a normative development, implementation phase and
an empirical evaluation phase. All together the phases include the following six
steps.

 The survey of the state-of-the-art step includes an investigation of information
systems engineering life-cycle methods, existing methods for product
traceability, model management, conceptual modelling and an analysis of the
process of semantic enrichment.

 The analysis of the requirements step includes an inventory of problems with
regard to distributed collaborative work.

 The development of the approach step includes a specification of components
of the approach and stepwise instructions for its use.

 The development of the algorithm step includes definition of algorithms for a
semantic similarity calculation and change impact assessment.

 The prototype application step includes development and implementation of a
prototypical environment for collaborative modelling and product fragments
management based on the results of the previous steps.

 The empirical evaluation step includes experimental evaluation of the
approach and proposed algorithms based on observations from the case
studies.

The descriptive analysis phase resulted in a framework for product fragment
management and a set of requirements for both model fragment and product
fragment management in a distributed development. The problem statement and
current issues were described in (Strasunskas, 2002). The requirements were
documented in (Strasunskas et al., 2003) and the initial framework in
(Strasunskas, 2003). The normative development resulted in a novel method for

1.7 The Structure of the Thesis 9

product fragment interrelation, change impact prediction and direct dependency
links establishment. The initial design was documented in (Strasunskas et al.,
2004). The implementation phase resulted in a prototype implemented in Python,
wxPython programming languages and PostgreSQL ORDBMS. Earlier version
of prototype repository system implementation is reported and documented in
(Fidjestol, 2005). Calculation of similarity between two product fragments were
investigated using Bayesian Belief Networks, computing probability of change
impact based on the relationships in (Strasunskas & Hakkarainen, 2004), and
weighted graphs, calculating the semantic distance between fragments in
(Strasunskas & Hakkarainen, 2003). A part of the approach for distributed
collaborative modelling has been described in Strasunskas & Lin (2005) and
Strasunskas et al. (2006). In addition, two master students contributed to the
refinement of ideas presented in this thesis. Erichsen (2003) has analysed
traceability focusing on applicability of reference model and direct links for that
purpose. Lau (2004) has investigated project content management and browsing
using RDF.

1.7 The Structure of the Thesis
The thesis is divided into nine chapters, where this introduction has outlined the
objectives, problem definition, approach and contributions. In the next part of the
thesis, chapters 2 and 3 provide the background and context for the work. The
third part of the thesis, chapters 4 to 6, elucidates the contributions of the thesis,
while chapter 7 outlines a realisation of our method and chapter 8 evaluates the
method and the implementation. Finally, chapter 9 concludes the thesis and
discusses future research directions.

Chapter 2 – Cooperative and distributed information systems engineering
provides detailed theoretical background and context for this thesis. This chapter
provides an overview of distributed development and main features of
cooperative product development, analyses the role and place of conceptual
model in development life-cycle. Main requirements underlying our approach are
listed here.

Chapter 3 – State-of-the-art surveys is a technological overview of the
state-of-the-art tool support in the area of modelling (CASE), computer
supported collaborative work (CSCW), repositories including content
management systems and supportive techniques.

Chapter 4 – Repository objects presents an overall method first, then the
basic concepts and essential techniques supporting the proposed method are
discussed. Namely, storage of repository objects, namespace and versioning
framework.

Chapter 5 – Model fragment management presents a part of the method for
collaborative modelling, elucidates a method for model fragment, model
configuration management, provides detailed descriptions of modelling activities
achieving common conceptualisation of a domain.

10 Chapter 1 Introduction

Chapter 6 – Product fragment management specifies a part of the method
for product fragment management in more detail, discusses change impact
assessment, establishment of direct dependency links based on confirmed and
observed change impacts.

Chapter 7 – Realisation of the method outlines an architecture and
realisation of the method. The prototype has been implemented to verify whether
the earlier described method is applicable solution. Discussion in this chapter is
focused in functionality specification rather than technical details.

Chapter 8 – Evaluation of the method discusses different possible
evaluation alternatives and methods, argues for the chosen evaluation method.
Two cases were used for an experiment, the performance of the prototype and
proposed method was compared and evaluated against one commercial tool and a
traditional technique. Data from the experiment were gathered from used tools as
result of the performed tasks and in a form of a post-evaluation questionnaire.

Chapter 9 – Conclusions concludes the thesis and reflects on the process as
well points out future directions.

Appendix A – Referent Model Language presents RML – a concept
modelling language used as experimental and illustrational modelling language
in this thesis.

Appendix B – Prototype visualisation includes an overview of graphical
user interface and functionality implemented. It supplies additional material for
chapter 7.

Appendix C – Questionnaire includes the questionnaire used for an
experiment described in chapter 8.

Appendix D – Experimental materials presents description of the cases used
in the experiment, in a form they were given to the test subjects; lists the product
fragments used in both cases and illustrates typical product fragments.

Appendix E – Data collected, provides the raw data collected in the
experiment.

Appendix F – Collection of Papers provides the papers written by the
author of this thesis and referenced in section 1.6.

 11

2
Cooperative and Distributed

Information Systems Engineering

“It is through cooperation, rather than conflict, that
your greatest successes will be derived…”

 – Ralph Charell

This chapter defines and overviews main features of cooperative IS (product)
engineering, discusses collaboration and cooperation activities, provides an
analysis of the product role in distributed development; overviews the main ways
of exchanging product fragments and explicating their meaning. An analysis of
the role of domain and conceptual modelling in the product development
methodologies (life-cycle) is in focus here. The analysis is based on a review of
the literature on the aspects of IS engineering and it is proven that the conceptual
domain model plays an important role as a medium for cooperation, product and
project management in distributed product development projects.

Finally, an importance of supporting techniques as configuration
management, version control is shortly discussed. A set of requirements for
supporting collaboration in conceptual domain model centric product
development environments is derived from the discussion and presented before
summarizing the chapter. But first, some basic concepts used in this chapter and
the rest of the thesis are defined in the following section.

2.1 Information System Engineering
The product (software system) and its developers are in focus in this chapter. We
use the term product when we refer to the product being developed by the
development project, see Figure 2.1. The product contains all requirements and
design documents, test scenarios, models, sketches, minutes, notes, source code,

12 Chapter 2 Cooperative and Distributed Information Systems Engineering

etc. that are created and often updated throughout the development project. The
product itself plays a “dual role” in the development process (Seltveit, 1994).
The product is used for supporting communication and understanding among the
developers in the development project. The same product and its different
configurations are later used for (automatically or semi-automatically)
manufacturing the end-product in form of executable software system. The
product is also regarded as an “anchor” for supporting cooperation among the
developers (Farshchian, 2001).

Product
fragment

Product Syst.Dev.
ToolsLifecycle

Lifecycle type

Phase Type Phase Product

have_a_
particular

{}

Req.Eng.

Design

Analysis

Testing

Deployment

Documenting

Coding

have_a_
particular

consists_of
is irreflexive

Stakeholder

alter

use

Project

result_in

Model

Diagram
layout

Code

Documentation

+
⊆

Configuration

⊃

developed_by

Figure 2.1 Product development2

We use the term stakeholder to denote all the people who are interested in,
affected by the product, or play a significant role in the product development.
Stakeholders can be analysts, domain experts, project managers, coordinating
authorities, programmers, testers, end-users, etc. A product development project,
or project for short, is a team that is actually performing the product
development. A project consists of stakeholders with different view of the world,
because of different educational, cultural background, various experiences, as
classified by Agerfalk et al. (2005) into dimensions of distribution: geographical
distance; temporal distance; socio-cultural distance. A system development tool,

2 In Referent Model Language (RML) notation, for detail description see Appendix A.

2.2 Team and Product in Distributed Product Development 13

or development environment, is a technical infrastructure, tool, or technology
that is used to support the developers in a project.

The product is seen as constituted by a set of interconnected artefacts called
phase product. Examples of phase products are requirements specifications used
for documenting stakeholders’ requirements, user interface for demonstrating,
test-scenarios, formal and semi-formal models describing the problem domain,
design documents describing the technical design of the computer system, source
code files written in a programming language, etc. Phase products do not exist in
isolation, but their meaning is normally defined in relation to other product
objects. There exist different relations among product fragments. Examples of
relations are dependency relations (e.g., composed_of, based_on, derived_from),
import relations, “part_of” relations, etc. A product is a specific configuration of
product fragments. A configuration will normally include a subset of all the
available product objects. Product development is the process of creating and
updating these product fragments and relations (configurations), requiring an
intensive cooperation among the stakeholders.

2.2 Team and Product in Distributed Product Development
In this thesis we endeavour to support work of a geographically dispersed team,
therefore, in this section we discuss a coordination aspect of teamwork and
investigate whether ISD is a cooperative or collaborative activity. Next, we
discuss the role of the product itself in the development process and the way it
supports teamwork.
2.2.1 Coordination of teamwork
There are many authors whom simply consider both terms as synonyms and use
them interchangeably, e.g., in WordNet (2005) cooperation is a kind of
collaboration, and vice versa, i.e., both terms are hyponyms of each other. Some
authors do distinguish them as two different terms, but without drawing a clear
line in between. For instance, definitions provided by a collaborative community
in Wikipedia3 (2005), where “cooperation refers to the practice of people or
greater entities working in common with commonly agreed-upon goals and
possibly methods, instead of working separately in competition”
(Wikipedia/Cooperation, 2005). While “collaboration is simply defined as
working together with one or more others” (Wikipedia/Collaboration, 2005).
Eventually, others (e.g., Dillenbourg et al. (1996)) draw an explicit distinction
between them:

“Cooperation and collaboration do not differ in terms of whether or
not the task is distributed, but by virtue of the way in which it is
divided: in cooperation, the task is split (hierarchically) into

3 Wikipedia is a Web-based, multi-language, free-content encyclopedia written collaboratively by
volunteers and sponsored by the non-profit Wikimedia Foundation.

14 Chapter 2 Cooperative and Distributed Information Systems Engineering

independent subtasks; in collaboration, cognitive processes may be
(heterarchically) divided into intertwined layers. In cooperation,
coordination in only required when assembling partial results, while
collaboration is “... a coordinated, synchronous activity that is the
result of a continued attempt to construct and maintain a shared
conception of a problem” (Roschelle & Teasley, 1995).”

Thereinafter, we treat ISE in this thesis as a cooperative activity, where different
parties work on different parts of a product in question. However, we distinguish
the problem and domain analysis phase of systems development, where all
stakeholders need to participate and construct together a shared conceptualization
of a problem. Therefore, conceptual domain modelling is treated as a
collaborative activity.

2.2.2 Role of product in distributed development
The product being developed is a central part of any product development project
(Farshchian, 2001). As the success of the whole project will usually be assessed
by the quality of the product. Most product development environments, such as
CASE (Computer Aided Software Engineering) and ISEE (Integrated Software
Engineering Environment) tools, are built around a product (which is often stored
in a central repository). Interacting with the product takes a considerable part of
the activities of the developers.

A project consists of stakeholders who usually view the world in their own
specific way. This specific view is referred to as the local reality. The local
reality is the way the world is for the particular stakeholder. In the project
stakeholders externalize their local reality, by communicating their view and
understanding. In this way they participate in a construction of an organizational
(common) reality. Then stakeholders reflect on constructed organizational reality
and adjust their own local reality. This process is iterative and simultaneous (see
Figure 2.2).

Local reality

Organizational
reality

Internalisation Externalisation

Figure 2.2 Organizational reality construction in an organization

(Gjersvik, 1993)

Product knowledge does not exist in the beginning of a project. Therefore, in
geographically distributed projects it is very important (taking into account

2.2 Team and Product in Distributed Product Development 15

different background, culture, etc. of the participants) to develop common
understanding of the problem in question. Thus, we see it important for the
involved stakeholders to externalize their knowledge of problem domain first.
Every stakeholder should have a means to express and communicate own
understanding of the problem on-hands. Means should be provided to perform
explicit conceptualisation to efficiently and effectively negotiate and specify
concepts they use (Proper & Hoppenbrouwers, 2004).

Farshchian (2001) distinguishes three essential properties of a product
developed in distributed environment, namely, externalized knowledge, boundary
object, and coordination mechanism. They are summarized in Table 2.1.
Table 2.1 Three properties of product important for supporting cooperation

(Farshchian, 2001)
Property Support for cooperation The role of physical proximity
Product as
externalized
knowledge

Supports cooperative
learning, criticism,
creativity.

Shared physical space:
- embodies the developers and the
product;
- supports continuous exchange of
information related to the product;
- supports flexible and customized
interaction between the developers
and the product.

Product as
boundary
object

- Supports understanding
across different
communities of practice;
- facilitates negotiation of
local understandings;
- supports information
sharing.

Shared physical space:
- allows the developers to customize
the product to theirs local needs;
- offers low-cost and dynamic
communication channels for resolving
misunderstandings.

Product as
coordination
mechanism

Supports coordination of
daily activities of
developers.

Shared physical space:
- allows continuous access to
information about modifications to the
product;
- supports access to information about
the process through which these
modifications are made.

First, a product is an externalized knowledge. Stakeholders cooperate in order to
externalize their knowledge, later resulting in the product. Second, a product is a
boundary object. A development project usually consists of stakeholders with
varying domain knowledge, background and experience. The same product is
often used by all these people in order to support the different local
understandings of accumulated knowledge. Third, a product is a coordination

16 Chapter 2 Cooperative and Distributed Information Systems Engineering

mechanism, where information about the status of the product is used by the
stakeholders in order to coordinate their work (Farshchian, 2001).

2.2.3 Exchange of product fragments
Multiple tools usually are required to specify all aspects of a system. Exchanging
data among tools is difficult due to the absence of accepted tool independent data
formats. There are plentiful of data interchange formats such as CDIF (Gray &
Ryan, 1997), XIF (Microsoft/XIF, 1999), XMI (OMG/XMI, 1998), SPOOL (St-
Denis et al., 2000), UXF (Suzuki & Yamamoto, 1998). Most of them are based
on eXtensible Mark-up Language (XML). Furthermore, in collaborative projects
it is often the case that partner organizations use different tools for accomplishing
the same task. Automated information exchange is also in this case obstructed by
the lack of tool support for data exchange. Information sent for further
refinement or analysis in tools within or outside the originating organization
often have to be re-entered manually into the receiving organization’s tool-set, –
a tedious and error-prone process.

The cost-efficient sharing of data between heterogeneous tools and
repositories requires the adoption of a standard for an industry-wide data
interchange format. Product fragments are stored and interchanged through a
repository.

Currently undergoing research in semantic Web (Berners-Lee et al., 2001)
area will contribute with a new data (knowledge) interchange format. As it is
now, the most of data interchange formats are based on XML or XML dialect. In
this thesis we are not trying to contribute with any improvement or suggestion
regarding data interchange format. We relay on the tools ability to produce XML
file of a development object, and then only adaptable XML parser matters.
Communicating the meaning
Sharing of information among project members is normally done by collecting
and organizing the information needed with respect to the task on-hand. In the
Computer Supported Cooperative Work (CSCW) literature, this is usually
referred to as a “common information space”:

“Here, focus is on how people in a distributed setting can work
cooperatively in a common information space – i.e. by maintaining a
central archive of organizational information with some level of
‘shared’ agreement as to the meaning of this information (locally
constructed), despite the marked differences concerning the origins
and context of these information items.” (Schmidt & Bannon, 1992)

Based on the above cited definition, system should provide storage facilities for
project information (product fragments), and project members need to have
means for reaching “some level of ‘shared’ agreement as to the meaning of this
information”. Usually different members will have their own interpretation of the

2.2 Team and Product in Distributed Product Development 17

meaning of information. This information must be explicit and communicated to
other members of the project. Individual or domain interpretations are negotiated
and related to each other until the desired level of shared agreement is reached
(Bannon & Bodker, 1997), i.e., “harmony” between local and organisational
realities is achieved.

Tasks in the geographically distributed projects are usually assigned based
on competence of the involved parties, i.e., taking an advantage from distributing
product development based on skills of the participants. Each stakeholder
involved in ISE develops own product (fragment) using his/ her preferred
representation. At a certain time, the products developed in parallel must be
integrated; discrepancies and similarities must be detected through the
communication and conversation among the people involved. Changes to the
products have to be made according to unresolved discrepancies. How do they
communicate product fragments meaning with colleagues, if some of them are
not familiar with a specific notation, the product fragment is represented in?

Since direct communication is not a trivial way to do in geographically
distributed projects (because of time difference, language barriers, etc.), the
stakeholders need to find a way to enhance semantics of the product fragments.
Metadata
One of “traditional” ways to clarify semantics is specifying additional data about
data, i.e., metadata. Metadata is information on the organization of the data, the
various data domains, and the relationships between them (Baeza-Yates &
Ribeiro-Neto, 1999). Metadata allows systems to collocate related information,
and helps users find relevant information. Usually metadata is differentiated
between descriptive metadata, i.e., metadata which is external to data meaning,
and pertains how the data was created; and semantic metadata, i.e., characterizes
the subject matter of the data content.

Traditionally, metadata is created by professionals or authors.
Professionally created metadata are often considered being high quality, but
costly to produce. While author created metadata is more scalable but still has a
problem as being disconnected from intended and unintended users (Mathes,
2004).

Content creation applications (word processors, Webpage creation tools,
etc) often have facilities for author-supplied attributes or automated capturing of
attributes that simplify the creation of metadata. As these facilities grow more
sophisticated, it will be easier and more natural to combine application-supplied
metadata (e.g., creation dates, tagged structural elements, file formats) with
creator-supplied metadata (e.g., keywords, authors, affiliations). Combination of
those attributes increases the quality and reduces the cost of metadata
descriptions.

Meanwhile, specifying metadata is perceived as additional burden for
developers, and is not extensively used. The only available metadata is

18 Chapter 2 Cooperative and Distributed Information Systems Engineering

application-supplied metadata: creation, modification dates, file formats, user
name, etc. which reflects only descriptive metadata and do not facilitate
communication of the meaning contented in the development object.

Furthermore, there are plentiful of metadata standards and formats for
various reasons and a certain usage domain. Below we survey some of them.

Dublin Core is the most common standardisation initiative proposal
(Weibel et. al, 1998) for a “core set of elements” (Borgman, 2000) proposing 15
basic elements of a description. The fifteen elements of the Dublin Core
Metadata Element Set (Title, Creator, Subject, Description, Publisher,
Contributor, Date, Type, Format, Identifier, Source, Language, Relation,
Coverage, and Rights) are the defining feature of Dublin Core.

CWM (Common Warehouse Metamodel) is a specification that describes
metadata interchange among data warehouses, knowledge management and
portal technologies. It provides a framework for “representing metadata about
data sources, data targets, transformations and analysis, and the processes and
operations that create and manage warehouse data and provide lineage
information about its use” (CWM, 2005).

UDDI (Universal Description, Discovery, and Integration) is a standard for
locating web services by enabling robust queries against rich metadata. Metadata
about web-services are stored in repositories. The information provided in a
listing consists of three conceptual components: “white pages” of company
contact information; “yellow pages” that categorize businesses by standard
taxonomies; and “green pages” that document the technical information about
services that are exposed (UDDI, 2005).

ebXML (Electronic Business using eXtensible Markup Language), is a
modular suite of specifications that is designated to enable enterprises despite of
a geographical location to conduct business over the Internet. The ebXML
specification provides a standard infrastructure for sending business messages
across the internet (ebXML, 2005).

RDF (Resource Description Framework) is a specification developed by the
World Wide Web Consortium (W3C). RDF defines a uniform mechanism for
describing resources, and makes no assumptions about a particular application
domain. It is based on simple data model for representing named properties and
property values (Miller et al., 2005):

• Resources. All things that are described by RDF expressions are called
resources. A resource is anything that can be identified by the use of an URI.
Examples are a web page, a person.

• Properties. A property is a specific aspect or characteristic used to
describe a resource. The definition of a property is not a part of the core RDF
model but can be defined by the use of the RDF Vocabulary Description
Language (RDF Schema), which is a specification for the formal declaration of
the resource classes and properties.

2.2 Team and Product in Distributed Product Development 19

• Statements. A specific resource together with a named property plus the
value of that property is an RDF statement. These three individual parts of a
statement are called the subject, the predicate, and the object respectively. The
object of a statement (the property value) can be another resource identified by a
URI or it can be a literal like a simple string or number.

The structure of any expression in RDF can be viewed as a directed graph
that consists of nodes and labelled, directed arcs that link pairs of nodes. The
statements of RDF are directed, and a property only captures one side of the
relationship semantics – as it is seen from the subject.

RDF statements are the fundamental mechanism for expressing metadata
(Miller et al., 2005). Statements provide a very generic and flexible way of
expressing metadata. Initially there is no RDF model. However, it is possible to
express statements without a schema. Schema-conformance only becomes
important in application-specific settings, for instance, for query languages that
exploit schema information in order to provide structural queries. A statement is
simply a triple – subject – object –predicate – that assigns a property to a
resource, as follows.

 The subject is always an rdfs:Resource. The resource is identified by the URI
pointing to it, or rather to the metadata document describing it.

 The predicate denotes the property being assigned to the resource. A property
in RDF is both considered an attribute of the resource and possibly a relation
between two resources. The rdf:Property class is a subclass of the
rdfs:Resource class.

 The object of a statement is the value of the property. Objects are either other
resources or literal values. In the latter case, the statement is often called a
lexical statement.

Ontology
A different way of explicating the meaning of the content is by use of ontology,
though could be seen as metadata specification as well. Recently, ontologies have
been advocated as a means for gathering and formalising application domain
knowledge in order to make it available for human analysts as well as for
automated knowledge processors. According to Gruber’s definition (1993), an
ontology is “an explicit specification of a shared conceptualisation”.

According to Guarino (1998) there are different kinds of ontologies: top-
level ontologies, that describe very general concepts like space, time, matter,
event, etc.; domain ontologies, that describe the vocabulary related to a generic
domain (like medicine, or automobiles); task ontologies, that describe generic
tasks or activities (like diagnosis or selling); and finally, application ontologies,
that describe concepts depending on a particular domain and task. Application
ontologies are specializations of both the domain and task ontologies.

20 Chapter 2 Cooperative and Distributed Information Systems Engineering

Main benefit of ontologies is an identification of specific classes of objects
and relations that exist in some domain. The main purpose of developing
ontologies is to clarify the domain’s structure of knowledge and to enable
knowledge sharing and reuse (Chandrasekaran et al., 1999). In addition
ontologies in distributed development would facilitate:

 Consensus knowledge of a community of people;
 High expressiveness, enabling the ontology users to say what they wish to
say;

 Coherence and interoperability of resulting knowledge bases;
 Stability and scalability of ontologies.

In the simplest case an ontology describes a hierarchy of concepts related by
subsumption relationships, while in more sophisticated cases, suitable axioms are
added in order to express other relationships between concepts and to constrain
their intended interpretation (see Figure 2.3). Ontologies are consensual and
formal specifications of a vocabulary used to describe a specific domain (Decker
et al., 1999). Ontologies are usually used as an “explicit specification of a
conceptualization” (Gruber, 1993). Therefore, an application of ontologies is in
an integration task to describe the semantics of the information resources, i.e.
explicitly describe content. With respect to the integration of data sources,
ontologies can be used for the identification and association of semantically
corresponding information concepts (Wache et al., 2001). Other application areas
use the ontology as the global query schema.

Obviously, ontologies have been applied for diverse purposes. Gruninger
and Lee (2002) summarise main usage of ontologies:

 For communication:
 between implemented computational systems;
 between humans;
 between humans and implemented computational systems.

 For computational inference:
 for internally representing and manipulating plans and planning
information;

 for analyzing the internal structures, algorithms, inputs and outputs of
implemented systems in theoretical and conceptual terms;

 For reuse (and organization) of knowledge:
 for structuring or organizing libraries or repositories of plans and planning
and domain information.

Ontologies are said to be useful for developing methods and tools in the context
of requirements elicitation and engineering for information systems, natural
language processing and, especially, semantic Web services by contributing to
the quality of interoperating systems, and by reducing costs (Mayr, 2002).

2.2 Team and Product in Distributed Product Development 21

Use of ontologies to provide semantic interoperability in information
sharing has been long realized (Gruber, 1991; Kashyap & Sheth, 1994; Wache et
al., 2001). By mapping concepts, terms and various information resources to
ontological concepts, it is possible to explicitly define the semantics of that
resource in particular domain.

A lot of work is done on the study of formal ontology in general
(Wiederhold, 1994; Guarino & Poli, 1995) as well as their application to ensure
interoperability in heterogeneous information systems (Wiederhold, 1994;
Kashyap & Sheth, 1994; Mena et al., 1996).

2.2.4 Conceptual model vs. ontology
Ontology as philosophical discipline deals with studying the nature of being,
reality, and substance. Here we justify our view “conceptual model = ontology”,
in a sense of their applications in computer science. That is done in order to
clarify terminology used and justify the state-of-the-art review in next chapter.

Definition of ontology is really broad. A good illustration of whole
spectrum of ontology is Figure 2.3, adopted by Krogstie et al. (2006) from
(Daconta et al., 2003). Krogstie et al. (2006) points out that calling all of the
terms on the left hand side an “ontology” brings confusion about the word
“ontology”, though some authors does. The difference here between knowledge
models is in power of semantics expressiveness.

Weak semantics

Strong semantics

Taxonomy
Is subclassification of

Thesaurus
Has narrower meaning than

Conceptual Model

Is subclass of

Is disjoint subclass
of with transitive
property

Local Domain
Theory

Schema

ER

RDF/S

Extended ER

UML
OWL

Description logic

First order logic

Figure 2.3 Ontology spectrum

(adopted from Krogstie et al. (2006))

22 Chapter 2 Cooperative and Distributed Information Systems Engineering

Ontologies, or explicit representations of domain concepts, provide the basic
structure of the domain. Ontology defines the vocabulary of a problem domain
and a set of constraints on how terms can be combined to model the domain. In a
distributed environment, agents (human and computer) use ontologies to
establish communication at the knowledge level using specific languages and
protocols. Fensel (2001) defines ontology as “a shared and common
understanding of a domain that can be communicated between people and
application systems”. Ontologies are explicit representations of agents’
commitments to a model of the relevant UoD; hence they enable knowledge
sharing and reuse (Devedzic, 2002).

Jasper and Uschold (1999) identify four main categories of ontology
application scenarios, as follows.

Neutral Authoring: An information artefact is authored in a single
language, and is converted into a different form for use in multiple target
systems.

Ontology as Specification: An ontology of a given domain is created and
used as a basis for specification and development of some software.

Common Access to Information: Information is required by one or more
persons or computer applications, but is expressed using unfamiliar vocabulary,
or in an inaccessible format. The ontology helps render the information
intelligible by providing a shared understanding of the terms, or by mapping
between sets of terms.

Ontology-Based Search: An ontology is used for searching an information
repository for desired resources (e.g., documents, web pages, names of experts).

A similar purpose convey a conceptual model in IS engineering. A conceptual
model is used both for communication and representation. More specifically the
use of conceptual model in IS development is identified and summarized in
(Krogstie & Solvberg, 2000) as follows.

Representation of systems and requirements: The conceptual model
represents properties of the problem area in addition to perceived requirements
for the information system. The conceptual model can give insight into the
problems motivating the development project, and can help the systems
developers and users understand the problem domain.

Vehicle for communication: The conceptual model can serve as a means
for sense-making and communication among stakeholders. It facilitates a more
reliable and constructive exchange of opinions between users and the developers
of the IS, as well as between different users.

Basis for design and implementation: The conceptual model can act as a
prescriptive model, to be approved by the stakeholders who specify the desired
properties of a system in question. The model can establish the content and
boundary of the UoD.

2.3 Role of Conceptual Modelling in IS Engineering 23

Documentation and sense-making: The conceptual model is a
documentation of the systems that are in use in the organization. Due to its
independence of the implementation, it is less detailed than other representations,
while still representing the basic functionality of the system. Compared to
manually produced textual documentation, the conceptual model is easier to
maintain since it is constructed as part of the process of developing and
maintaining the application system.

Consequently, we will treat the conceptual model and ontology in this
thesis as equal, but use a term conceptual model, with exception where cited
authors use term ontology explicitly. Though, we are aware of different
philosophical meaning and purpose of ontology, where philosophical ontology
seeks a classification that is exhaustive in the sense that all types of entities are
included in the classification.

2.3 Role of Conceptual Modelling in IS Engineering
“Conceptual modelling is the first step and one of the most important
steps for application engineering” Chen et al. (1997, p. 297)

Here we survey the main existing IS engineering methodologies in order to
investigate when in a life-cycle of ISE a conceptual domain model is constructed
and how it is used.

An important stage in the construction of Information Systems is a
modelling. Where the relevant, meaningful information structures in a domain
are determined and documented in an accurate and unambiguous way.
Traditionally information system engineering has made the assumption that IS
captures some excerpt of world history and hence has concentrated on modelling
information about the Universe of Discourse (Olle et al., 1988).

The traditional way of engineering information systems is through
conceptual modelling which produces a specification of the system to be
developed (Rolland & Prakash, 2000), see Figure 2.4. Such specification acts as
a prescription for system construction. A conceptual domain model is an abstract
representation of the real world phenomena that are of relevant to a project. The
conceptual model is usually constructed during the system analysis phase
(Solvberg & Kung, 1993).

24 Chapter 2 Cooperative and Distributed Information Systems Engineering

Figure 2.4 Simplified two-phase organisation of system life-cycle

(Rolland & Prakash, 2000)

The use of conceptual model (ontology) to provide underpinning for information
sharing, heterogeneous database integration, and semantic interoperability has
been long realized (Gruber, 1991), (Kashyap & Sheth, 1994), (Wache et al.,
2001).

Olive (2005) defines a “conceptual schema-centric development” (CSCD)
as central issue in order to revive the goal of automated information systems
building. Olive argues that conceptual schema is necessary to develop an
information system, and, therefore, the CSCD approach does not place any extra
burden on developers. Olive (2005) defines the Principle of Necessity: “To
develop an information system it is necessary to define its conceptual schema”.

2.3.1 Perspectives of IS Engineering
Though, conceptual modelling (“mind alignment”) is an important step in ISE,
there is no common view how this should be done and this results in a various
perspectives towards IS engineering. A development method (development life-
cycle) is a set of rules, approaches and tools to support development of a product.
(Krogstie, 1995) describes a methodology classification framework consisting of
seven categories, namely weltanschauung, coverage in process, coverage in
product, reuse of product and process, stakeholder participation, representation
of product and process, and maturity.

Weltanschauung describes the underlying philosophy or view to the world.
It is examined why the product construction is addressed in a particular way in a
specific methodology. In the FRISCO report (Falkenberg et al., 1997), three
different views are described, namely the objectvistic, the constructivistic and the
mentalistic view. Objectivistic view claims that reality exists independently of
any observer. The relation between reality and the model is trivial or obvious.
Constructivistic view claims that reality exists independently of any observer, but
what each person possesses is a restricted mental model only. The relationship
between reality and models of this reality are subject to negotiations among the

2.3 Role of Conceptual Modelling in IS Engineering 25

community of observers and may be adapted from time to time. Mentalistic view
claims that reality and the relationship to any model is totally dependent on the
observer. We can only form mental constructions of our perceptions. In many
cases, when categorizing a method, the Weltanschauung will not be stated
directly, but exist indirectly.

Coverage in process concerns the method’s ability to address planning for
changes, single and co-operative development of product, which includes
analysis, requirements specification, design, implementation and testing, use and
operations of product, maintaining and evolution of product, and management of
planning, development, operations and maintenance of products.

Coverage in product is described as the method concerns planning,
development, usage and maintenance of and operates on one single product, a
family of related product, a whole portfolio of products in an organization, and a
totality of the goals, business process, people and technology used within the
organization.

Reuse of product and process is important to avoid re-learning and
recreation. A method may support reuse of product or reuse of method as
processes. There are the following six dimensions of reuse. Reuse by motivation
answers the question - why is reuse done? Different rationale may be for example
productivity, timeliness, flexibility, quality, and risk management goals. Reuse by
substance answers the question – what is the essence of the items to be reused? A
product is a reuse of all the deliverables that are produced during a project, such
as models, documentation and test cases. Reusing a development or maintenance
method is process reuse. Reuse by development scope answers the question –
what is the coverage of the form and extent of reuse? The scope may be either
external or internal to a project or organization. Reuse by management mode
answers the questions - how is reuse conducted? The reuse may be planned in
advance with existing guidelines and procedures defined, or it can be ad-hoc.
Reuse by technique answers the question - how is reuse implemented? The reuse
may be compositional or generative. Reuse by intentions answers the question -
what is the purpose of reused elements? There are different intentions of reuse.
The elements may be used as they are, slightly modified, used as a template or
just used as an idea.

Stakeholder participation reflects the interests of different actors in the
ontology building activity. The stakeholders may be categorized into those
responsible for developing the method, those with financial interest and those
who have interest in its use. Further, there are different forms of participation.
Direct participation means every stakeholder has an opportunity to participate.
Indirect participation uses representatives, thus every stakeholder is represented
through other representatives that are supposed to look after their interests.

Representation of product and process can be based on linguistic and non-
linguistic data such audio and video. Representation languages can be informal,
semi-formal or formal, having a logical or executional semantics.

26 Chapter 2 Cooperative and Distributed Information Systems Engineering

Maturity is characterized on different levels of completion. Some
methodologies have been used for a long time; others are only described in
theory and never tried out in practice. Several conditions influence maturity of a
method, namely if the method is fully described, if the method lends itself for
adaptation, navigation and development, if the method is used and updated
through practical applications, if it is used by many organizations, and if the
method is altered based on experience and scientific study of its use.

There are even more IS engineering methods. Next section discusses the
main development methodologies in the light of conceptual model usage.
2.3.2 System development methodologies
ISE methods usually “differ greatly, often addressing different objectives”
(Avison & Fitzgerald, 2002). ISE is perceived as not only technical development,
but includes social aspects of development, which usually are not supported by
traditional methods (Kiely & Fitzgerald, 2003). Methods are typically developed
to make Information System engineering process more controllable.

There are basic phases that constitutes IS engineering. In fact, the major
phases of a system development project are usually system analysis, system
design and system implementation (Solvberg & Kung, 1993). Generic software
development activities are also identified by Loucopoulos and Karakostas
(1995), Sommerville (1992). These activities include software specification,
software development, software validation, and software evolution. Various
compositions, decompositions and iterations of these activities (major phases)
and sub-activities focusing on different needs resulted in many development life-
cycles.

More specifically, Solvberg and Kung (1993) describes the lifecycle of a
project as comprising the following 8 phases: Pre-project study; Requirements
specification; System modelling and evaluation; Functional specification; Data
processing system architecture; Programming; System installation; Project
evaluation.

The ISO 12207 Software Engineering Standard (SEPT, 2005) describes a
meta-model for software engineering life-cycle processes that consists of thirteen
activities that can be mapped onto a chosen life-cycle model. The first activity,
“process implementation”, is related to starting the methodology itself, while
another four of the activities are system related: system requirements analysis;
system architectural design; system integration and system qualification. The
remaining eight are related to the software itself and the standard notes that
“these activities and tasks may overlap or interact and may be performed
iteratively or recursively”. Short descriptions of these eight remaining activities
obtained from the IEEE Standard Glossary of Software Engineering Terminology
(IEEE, 1990) are:

– requirements analysis, the process of studying user needs to arrive at a
definition of system, hardware, or software requirements.

2.3 Role of Conceptual Modelling in IS Engineering 27

– architectural design, the process of defining a collection of hardware
and software components and their interfaces to establish the framework for the
development of a computer system.

– detailed design, the process of refining and expanding the preliminary
design of a system or component to the extent that the design is sufficiently
complete to be implemented.

– coding and testing, where coding is defined as “… the process of
expressing a computer program in a programming language” and testing is “the
process of analyzing a software item to detect the differences between existing
and required conditions (e.g., bugs) and to evaluate the features of the software
items”.

– integration, the process of combining software components, hardware
components, or both into an overall system.

– qualification testing, testing conducted to determine whether a system or
component is suitable for operational use.

– installation, the period of time in the software cycle during which a
software product is integrated into its operational environment and tested in this
environment to ensure that it performs as required.

– acceptance support, formal testing conducted to determine whether or
not a system satisfies its acceptance criteria and to enable the customer to
determine whether or not to accept the system.

Though, classical life-cycle method is the “waterfall” model proposed by
Royce (1987), which consists of seven steps or phases that proceed in a linear
way: System Requirements; Software Requirements; Analysis; Program Design;
Coding; Testing; and Operations. The waterfall model focuses heavily on the
documentation produced during each implementation phase and there may be
some iteration between successive steps.

The “V” model is a variant of the waterfall model where each step down the
left hand side of the “V” has a corresponding validation or verification step on
the right hand side (see Figure 2.5). This model presents the opportunity for more
“formal” development where documents from the left hand-side feed into the
validation activities on the right. Where the left tail of the “V” represents the
specification stream where the system specifications are defined. The right tail of
the “V” represents the testing stream where the systems is being tested (against
the specifications defined on the left-tail). The bottom of the “V” where the tails
meet, represents the development stream. While the spiral model (Boehm, 1987)
is another alternative life-cycle that includes: risk analysis, planning, engineering
and customer evaluation. Starting in the centre of a spiral the developers work
through a planning phase, followed by risk analysis, the engineering of a
prototype system and then customer evaluation. The cycle then repeats and each
move around the spiral progresses outwards towards the final system in an
evolutionary way.

28 Chapter 2 Cooperative and Distributed Information Systems Engineering

User Requirement
Specification

Functional
Specification

Design
Specification

Development

Installation
Qualification

Operation
Qualification

Performance
Qualification

Figure 2.5 “V” lifecycle model

Twin Peaks model (Nuseibeh, 2001) is a concurrent, spiral development process
suggests a partial development model that highlights the concurrent, iterative
process of producing progressively more detailed requirements and design
specifications. This model emphasizes the equal status of the specification of
requirements and architectures (Figure 2.6).

Figure 2.6 Twin Peaks – a model of concurrent development

Model allows early exploration of the solution space, thereby allowing
incremental development and the consequent management of risk; rapid and
incremental requirements identification and architectural matching; and focuses
on finer-grain development and is therefore more receptive to changes as they
occur.

Widely adopted Rational Unified Process (RUP) is a software development
process, which, as claimed, comprises all parts of a complete software
development process, both from a technical and managerial point of view. RUP
defines a technical and managerial lifecycle of a software system as iterations of
the phases. The managerial phases are: inception, elaboration, construction,

2.3 Role of Conceptual Modelling in IS Engineering 29

transition and evolution, whereas the software development process itself is
defined as; planning, analysis, architecture, design, implementation, integration
and testing (IBM, 2005b). The phases may be iterated as needed in order to
satisfy the requirements. RUP also defines the artefacts which are to be produced
in each phase, and what they should include.

Zachman (1987) defines a framework that lays down the main views that
are necessary to specify during ISE. Figure 2.7 illustrating Zachman’s framework
should be read from top-left to bottom-right corner.

Structure
(What)

Activities
(How)

Locations
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Objectives/ Scope
(Planner's view)

Most significatn
business
concepts

Mission

International view
of where

organization
operates

Human resource
philosophies and

strategies
Annual planning Enterprise

vision

Enterprise Model
(Business Owner's

view)

Business
language used

Strategies and
hig-level
business
porcesses

Offices and
relationships
between them

Positions and
relationships

between
positions

Business events
Goals,

objectives,
business policies

Model of Fundamental
Concepts

(Architect's view)

Specific entities
and

relationships
between them

Business
functions and

tactics

Roles played in
each location and

relationships
between roles

Actual and
potential

interactions
between people

System events Detail business
rules

Technology Model
(Designer's view))

System
representation of

entities and
relationships

Program
functions/
operations

Hardware,
network,

middleware

User interface
design System triggers Business rule

design

Detail Representation
(Builder's view)

Implementation
strategy for
entities and

relationships

Implementation
design of
functions/
operations

Protocols,
hardware

components,
deployed software

items

Implementation
of user interface

Implementation
of system
triggers

Implementation
of business rules

Functioning System
Classes,

components,
tables, …

Deployed
functions/
operations

Deployed
hardware,

middleware, and
software

Deployed user
interface

(including
documentation)

Deployed
systems

Deployed
software

Figure 2.7 Zachman framework

Model Driven Architecture (MDA, 2003) is one of the recent OMG’s initiatives
that proposes an approach to system development, i.e. the use of formal models
at different abstraction levels, such as, Computation Independent Model (CIM),
Platform Independent Model (PIM) and Platform Specific Model (PSM).
Transition between abstraction levels is based on transformations between
models.

The demand for continuous preservation of software and their quality
during long periods leads to a view on software as long-living infrastructure.
Evolution of such infrastructures consists of gradual modification steps over all
levels of the software development process. In general, every modification step
in analysis, design or implementation will require further consistency preserving
modification steps within each level of the development process.

30 Chapter 2 Cooperative and Distributed Information Systems Engineering

In addition to these examples, a number of other life-cycle models exist and
the most appropriate model to use for a given project may depend on a number of
factors including the type of project, the development style and the organisational
maturity of both the developers and the customers. An alternative to the classic
life-cycle approaches is to use a meta-model that defines common software
engineering activities independently of a particular life-cycle model. Developers
can then choose the most appropriate life-cycle for their project and the activities
can be mapped onto the chosen model.

Recent focus on agile development brings more methods, which usually are
less document-centric and more code-oriented. Therefore, problem modelling is
not as important as in other methods, maybe with exception of Agile Modeling
(Amber, 2002). Basic of Agile Modeling is to provide a guideline of how to build
models and help to resolve possible design problems, but still keeping models
simple, i.e., not over-building them.

An extensive classification of different system development methodologies
based on earlier discussed classification framework is done by Krogstie (1995).
Here we summarize methodologies in respect of whether conceptual modelling is
a part of ISE life-cycle and stating when (which phase of life-cycle) it is used
(see Table 2.2).
Table 2.2 Conceptual modelling in development life-cycle

(extended from Krogstie, (1995))
Methodology Role of conceptual modelling
The waterfall
model

Conceptual modelling is applied shallowly if at all.

The structured
life-cycle

Conceptual modelling languages are used.

Prototyping Conceptual modelling is not mandatory, but can be used as a
starting point for functional prototyping if the conceptual
modelling languages used have a defined operational semantics.

Transformational
and operational
development

Formal conceptual modelling languages are usually the
cornerstone.

METHOD/1 Conceptual modelling is not mandatory, but use of semi-formal
conceptual modelling languages is supported in early systems
design.

The spiral model Not specifically supported, but the framework is open for its
use.

The hierarchical
spiral model

It is based in a large degree on active use of conceptual models,
even if no set of concrete modelling languages are mentioned in
descriptions.

The fountain
model

It is based on object-oriented conceptual modelling.

2.3 Role of Conceptual Modelling in IS Engineering 31

Methodology Role of conceptual modelling
REBOOT Conceptual model can be used, especially object-oriented

modelling, but the project primarily focused on reuse of detailed
design and code.

Multiview Conceptual modelling is used actively, mainly semi-formal and
informal languages.

STEPS Not mentioned explicitly, object-oriented conceptual modelling
is possible.

Zachman
framework

Begins with defining main business concepts, then different
models describing different enterprise areas are used.

MDA Model centric. Start from conceptual model (computation
independent model) which by the use of transformations is
refined to platform specific model.

RUP Conceptual model is used.
“V” It is not explicitly stated whether conceptual model is used.
Twin Peaks Conceptual model is used and aligned with architecture of a

system in question.
Agile Modeling Lightweight conceptual model is used. Model usage here is

different then in conventional development. Models here are
used to communicate understanding of small part of the system
being developed, and models has no later value, i.e., they are
“thrown away”.

There are many methods for IS development, and different companies are using
different life-cycle. However, recent surveys report that many companies claim
that they either do not use any methods, or they use own “in-house” developed /
adapted methods (Huisman & Iivari, 2002; Kiely & Fitzgerald, 2003). Either
way, understanding and documenting the scope of endeavour is seen as an
important task for the most companies.

“The purpose of domain engineering is to identify, model, construct,
catalog, and disseminate a set of software artifacts that can be applied
to existing and future software in a particular application domain. As
such, it can support the effective and efficient management and
development of software assets.” (Reinhartz-Berger et al., 2005)

Benefits from using conceptual domain models are documented in
(Hoppenbrouwers et al., 2005a). It is noted that for involved stakeholders domain
model provides a terminology and an overview of the scope of the problem to be
solved, for developers it provides guidance to make right design decisions. While
project managers benefit in planning and controlling the project.

32 Chapter 2 Cooperative and Distributed Information Systems Engineering

2.4 Supporting Techniques for Cooperative Development
Concurrent engineering changes old practice, when all the required objects were
locked during the whole change/ modification activity. Each developer should
have direct access to all needed objects. But changed version should be kept with
access forbidden for other developers during modification, because the state of
fragment is inconsistent in a modification phase. If n developers change the same
object concurrently, this object should have n+1 different copies (Estublier,
2001). It means that each developer needs the private copies of fragments. On the
other hand, the colleagues know that other changes possibly are done on the
same fragments/ objects and want to be incorporated when relevant. In summary,
collaborative distributed development needs tools that allow the creation and
access to a central composite product, and at the same time support development
in local workspaces.

During the life-cycle of ISE, there will be thousands of development
objects, with hundreds persons at different sites maintaining and changing them.
Development process becomes a continuous history of changes and
improvements. To keep all these multi-version, multi-people activities under
control, configuration management is needed.

This section discusses issues related with management of product
development and modelling. Here we elaborate on change management,
modelling aspect and versioning, as well view reconciliation.
2.4.1 Change Management
Configuration management (CM) is the discipline for organizing and controlling
evolving systems. Configuration management is an old discipline, born out of
systems manufacturing. CM mandates procedures for identification of
components and their assemblies, for controlling releases and changes, for
recording the product status, and for validating the completeness and consistency
of a product (IEEE, 1988). Later CM definitions (Dart, 1991) also include areas
like construction management, process management, and team work control.
Carnegie Mellon University's Software Engineering Institute (SEI, 1994) defines
the purpose of software configuration (change) management as establishing and
maintaining the integrity of the products of the software project throughout the
project's software life cycle.

A standard definition taken from IEEE standard 729-1983 (IEEE, 1987)
highlights the following operational aspects of CM:
Identification. An identification scheme reflects the structure of the product,

identifies components and their types, making them unique and accessible
in some form.

Control. Controlling the release of a product and changes to it throughout the
lifecycle by having controls in place that ensure consistent software via the
creation of a baseline product.

2.4 Supporting Techniques for Cooperative Development 33

Status Accounting. Recording and reporting the status of components and
change requests, and gathering vital statistics about components in the
product.

Audit and review. Validating the completeness of a product and maintaining
consistency among the components by ensuring that the product is a well
defined collection of components.

Depending on the intentions of the creator, software CM literature (cf., Conradi
& Westfechtel, 1998) divides versions into three versioning dimensions
(Estublier & Casallas, 1995). These dimensions should be fully orthogonal to
each other.
Historical versioning. Versions that are created to supersede a specific version,

e.g. for maintenance purposes, are called revisions. In practice, a revision of
a component is usually created by modifying a copy of the most recent
revision. The old revisions are permanently stored for maintenance and
documenting purposes; they form the version history of the component.

Logical versioning. A variant is created as an alternative to a specific version.
They are created in branches, that is, parallel development threads that may
eventually be merged with the main development thread. Permanent
variants are created when the product is adapted to different environments.
Variance can again arise in several dimensions, including varying user
requirements and varying system platforms, but also variants for testing and
debugging.

Cooperative versioning. A temporary variant is a variant that will later be
integrated (or merged) with another variant. Temporary variants are
required, for instance, to change an old revision while the new revision is
already under development.

2.4.2 Modelling aspect and versioning
A conceptual domain model is not developed all at once, but rather through a
process of consecutive iterations (Solvberg & Kung, 1993). As model
development becomes a more ubiquitous and collaborative process, support for
model versioning becomes necessary and essential. This support must enable
users to compare versions of model and analyze differences between them.
Furthermore, as models become larger, collaborative development of models
becomes more and more common. Model developers working in parallel on the
same model need to maintain and compare different versions, to examine the
changes that others have performed, and to accept or reject the changes. In fact,
this process is exactly how developers collaborate on editing software code and
text documents.

34 Chapter 2 Cooperative and Distributed Information Systems Engineering

Different levels of abstraction of the same system enable to deal with
complexity by removing details from model. The model must be able to act as an
efficient and effective communications medium between the different parties
involved in development project. Usually, models are augmented by details on
each development step.

The success of distributed project depends on how well “laissez-faire” rule
is obeyed, meaning that developers should be allowed to express what they want
in whatever form. In a collaborative environment where different users work on
models, it is important that there is a way of sharing own views, and step-by-step
achieving agreement and common conceptualization.

Although, the initial goal is usually to develop a single model of the UoD, it
turns out to be very important to preserve and model the various “views” of the
information seen by different stakeholders and participants during the system
analysis phase. Usually, different developers might have different vocabulary to
express their perception of the world. It is important to preserve knowledge of
developer that is expressed in the model fragment she has developed. We need to
ensure that developer’s work will not be disturbed, for instance, if a developer
uses term ‘aircraft’ referring to ‘airplane’, this term should be preserved in her
local view, otherwise after several changes it will be difficult to continue.

In a model-versioning environment, given two versions of a model, users
must be able to: (1) examine the changes between versions visually; (2)
understand the potential effects of changes on applications; and (3) accept or
reject changes done by colleagues.

The fields of software evolution and collaborative document processing
have faced these challenges for many years. There is one crucial difference,
however: in a case of software code and documents, what is usually compared -
with only a few exceptions - are text files. For models, it is necessary to compare
the structure and semantics of the models and not their textual serialization. Two
models can be exactly the same conceptually, but have very different textual
representations. For instance, their XML syntax may be different. The order in
which definitions appear in the text file may be different. A representation
language may have several mechanisms for expressing the same semantic
structure. Thus, text-file comparison is largely useless for models.

Automatic comparison of versions. Given two versions of the same model,
we must identify what has changed from one version to the next. This
identification should be performed at conceptual level, that is, it should be
expressed in terms of changes to model concepts, such as class concepts, and
individual concepts, attributes and their values, relations and operations between
concepts.

Contextual presentation of changes. If the user needs to understand or
assess a change in model (e.g., deleted class), she should be able to see the
change itself, but also to see its context. For instance, if a class was deleted, the

2.4 Supporting Techniques for Cooperative Development 35

user may want to know where in the class tree was the class located, whether it
had any subclasses, what were its properties, and so far.

Navigation among changes. Changes often occur in different and unrelated
places in model. Having examined one of the changes, the user must be able to
navigate easily to the next change.

Access to old and new values. Understanding and assessing changes is
impossible without ready access to both old and new values. Just knowing that
the class name has changed and knowing its new name is not enough: when
examining the change, we would like to know what the old value was.
2.4.3 View reconciliation
A system can be described from many viewpoints. Each viewpoint defines what
characteristics should be included in its views and what issues should be ignored
or treated as transparent. A view is, therefore, a piece of the model that is small
enough to comprehend but that also contains all relevant information about a
particular concern. Variants dimension is more concerned with different versions
and configurations.

View reconciliation is an important for successful systems development in
order to reach consensus in a social reality as discussed earlier. Since
construction of a conceptual model of “reality” as it is perceived by someone is
partly a process of externalisation of parts of this person's internal reality, and
will in the first place act as organizational reality for the audience of the model.
This model can then be used in the sense-making process by the other
stakeholders, internalizing the views of the others if they are found appropriate.
Despite any effort spent on externalising the thoughts of the stakeholders,
misunderstanding will most likely happen.

Nevertheless, there is a need to reconcile these different perceptions in
order to achieve a common conceptualisation and shared “social reality” in
geographically distributed project. A conceptualisation mismatch is a difference
in the way a domain is interpreted, whereas an explication mismatch is a
difference in the way the conceptualisation is specified (Visser et al., 1998).

Conceptualisation mismatches are further divided into model coverage and
concept scope (granularity).

 Scope. Two classes seem to represent the same concept, but do not have the
same instances, although they may intersect. The classical example is the
class “employee”, where several administrations use slightly different
concepts of employee, as mentioned by Wiederhold (1994).

 Model coverage and granularity. This is a mismatch in the part of the domain
that is covered by the ontology, or the level of detail to which that domain is
modelled. Chalupsky (2000) gives the example of an ontology about cars: one
ontology might model cars but not trucks. Another one might represent trucks
but only classify them into a few categories, while a third ontology might

36 Chapter 2 Cooperative and Distributed Information Systems Engineering

make very fine grained distinctions between types of trucks based on their
physical structure, weight, purpose, etc.

Further, explication mismatches are divided into terminological, modelling style
and encoding.

 Two types of differences can be classified as terminological mismatches. A
main problem is a human factor, i.e., use of different terms with the same
intension (synonyms), or that we use the same term but with different
intension (homonyms).

 Modelling style is related to the paradigm and conventions taken by the
developers.

 Paradigm. Different paradigms can be used to represent concepts such as
time, action, plans, causality, propositional attitudes, etc. For example, one
model might use temporal representations based on interval logic while
another might use a representation based on point (Chalupsky, 2000).

 Concept description. This type of differences are called modelling
conventions in (Chalupsky, 2000). Several choices can be made for the
modelling of concepts in the ontologies. For example, a distinction
between two classes can be modelled using a qualifying attribute or by
introducing separate class.

 One last mismatch in the explication category is encoding. Encoding
mismatches are differences in value formats, like measuring distance in miles
or in kilometres.

Noy and Musen (2000) define mapping as establishing correspondences among
the models, and determining the set of overlapping concepts, concepts that are
similar in meaning but have different names or structure, and concepts that are
unique to each of the sources. Further, two relevant concepts: merging and
alignment are also defined. Merging is to create a single coherent model that
includes the information from all the sources. Alignment is to make the models
consistent and coherent with one another but kept separately.

To avoid further confusion, thereinafter, we will use the following
terminology when talking about view (model fragment) reconciliation:

 Merging, integrating. Creating a new model from two or more existing
models with overlapping parts.

 Aligning. Bring two or more models into mutual agreement, making them
consistent and coherent with each other.

 Mapping. Relating similar (according to some metric) concepts or relations
from different models to each other by specifying the semantic similarity
between them.

2.5 Requirements 37

2.4.4 Notification
Change is permanent in a big scale development, in order to control consistency
of the product fragments, the corresponding developers need to be informed
about the actions of colleagues. Shen and Sun (2002) discuss selective
notification as mechanism to be informed in big scale projects, usually triggered
by users with explicit selection criteria. Selection criteria can be predefined,
notification could also be automatically triggered by the system. These criteria
are application dependent. Some usage examples are:

 Time criterion: a user can selectively propagate/accept updates made within a
certain period of time.

 Object criterion: a user can selectively propagate/accept updates made to
certain objects.

 Type criterion: a user can selectively propagate/accept certain types of
updates.

 Version criterion: a user can selectively propagate/accept updates made in
certain versions of a shared artefact.

 User criterion: a user can selectively notify certain users of her/his updates or
selectively accept updates made by certain users.

In distributed environment it is difficult to keep overview on who is doing what.
Therefore active and targeted information delivery is very important in this kind
of development projects.

2.5 Requirements
Here we summarise the discussion in this chapter to a list of requirements that
are important for distributed development. Farshchian (2001) has emphasized a
list of requirements for product development environments to enable
collaboration in geographically distributed developments. There we adopt certain
requirements as listed below.
Req1. Flexible access to the product. A product development environment

should provide flexible mechanisms for accessing and updating the product,
i.e. no object locking.

Req2. Unrestricted product fragment types. A product development environment
should allow the developers to share any type of development object that
they might find useful for supporting their cooperation.

Req3. Unrestricted relation types. A product development environment should
allow the developers to create any type of relation between any two
fragments of product.

Req4. Incremental product fragment refinement. A product development
environment should provide the developers with flexible mechanisms for
incrementally refining the product. The developers should be allowed to

38 Chapter 2 Cooperative and Distributed Information Systems Engineering

start with vague products, and to refine them into more complete and formal
ones.

Req5. Support for boundary objects. A product development environment should
allow the developers to view the product from different perspectives. The
environment should in addition support a global view of the product.

Req6. Active delivery of information. A product development environment
should take an active part in delivering necessary information to the
developers. In particular information about changes to the related product
fragments should be delivered continuously to the interested stakeholders.

In addition to the above described requirements, as it was discussed earlier in this
chapter, it is important that the following requirements are covered in distributed
cooperative IS engineering centred on domain model:
Req7. Knowledge externalisation in a means of conceptual domain model. The

means should be provided for stakeholders to externalise their perceptions
of the problem domain in a form of a conceptual domain model.

Req8. Domain concepts explanation (extension). Provide the means to explicate
the concepts, i.e. definition in natural language should be provided. That
will facilitate understanding the colleagues’ views.

Req9. Support for knowledge internalisation. Provide the means to compare and
align different views.

Req10. Conceptual domain model should be available through whole
development life-cycle. The conceptual model should be easily accessible
for all stakeholders as it represents common conceptualisation, e.g.,
describing the problem to be solved, and serves as common reference point
for geographically dispersed project members.

Req11. Flexible metadata specification about development objects. It is
important in a geographically dispersed development explicate the content
of the product fragment in order to communicate the meaning. That should
be done in the least labour-consuming way.

Req12. Efficient dependency management. The process of dependency
relationships specification should be efficient, taking into consideration
variety of object types, tools used.

2.6 Summary
The value of conceptual domain modelling is recognised in a multitude of
settings, for different application areas. The key to achieving meaningful
communication among stakeholders is getting them to share the relevant
conceptual knowledge (Solvberg & Kung, 1993). This is usually achieved by
developing conceptual models. Here we adopt a conceptual domain model as a
means to facilitate communication among all stakeholders of the distributed
system development project.

2.6 Summary 39

Therefore, in this chapter we have analysed the role of product in
distributed IS engineering. We have shown the importance for stakeholders to
share conceptual vision of product by externalising their perceptions, aligning
them and finally committing to a common conceptual model (constructed “social
reality”). We have shown that conceptual modelling is considered in most of
existing development life-cycle methods as the important phase. Nevertheless,
not so many developments methods are using the conceptual model throughout
all phases. Finally, we have proposed a set of twelve requirements to facilitate
management of distributed development, specifically, developed product
fragments.

40 Chapter 2 Cooperative and Distributed Information Systems Engineering

 41

3
State-of-the-Art Surveys

“Although there is a bunch of appropriate techniques
and powerful tools, none of them is sufficient for

solving all involved problems.”
— Axel Mahler, Variants

The goal of this chapter is to provide a background survey of the technological
environments underlying the realisation of the method of this thesis, stating the
relation to this work. To begin with, section 3.1 will give an overview of
Computer Aided System Engineering (CASE) tools. Then we go through CASE
tools ability to support cooperative IS engineering in distributed teams.
Afterwards, in section 3.3 we take a look at Computer Supported Collaborative
Work (CSCW) tools. Next section overviews state-of-the-art in the realm of
repository systems including content management systems and their support for
IS engineering. Then we take a closer look at different techniques used to
manage diversity of the development objects in distributed IS engineering. The
following techniques are considered relevant: integrated modelling languages,
traceability, view alignment.

Tools are reviewed considering the list of twelve requirements stated in
Chapter 2. Summary of the chapter concludes the state-of-the-art survey by
showing how well these techniques support distributed IS engineering.

3.1 CASE Tools and Modelling Frameworks
The terms Software Engineering Environments (SEEs) and Computer Aided
Software/Systems Engineering (CASE) denote tools and groups of related tools
that are used to support the work needed to develop a software product. Tools are
the building blocks in CASE and SEE, and range from assemblers and compilers,

42 Chapter 3 State-of-the-Art Surveys

to graphical editors for creating visual diagrams, to project and workflow
management tools. Tools are often grouped according to various criteria, such as
the project phase they are used in, the type of activities they support, the
information in form of development objects they exchange, the target user group,
etc. Different types of CASE and SEE may support different aspects of work, e.g.
creation and sharing of development objects, definition of work processes and
methods, etc.

There exist different definitions of these terms in the literature. In terms of
Sommerville (1992) SEEs are regarded as consisting of CASE building blocks,
where these building blocks are integrated in different forms of environments.
Sommerville also distinguishes between the types of environments that can be
created, based on the type of activities they support: Programming environments
(for coding activities), CASE workbenches (for analysis and design activities),
and Software-engineering environments (for whole life cycle).

A more comprehensive classification is provided by Fuggetta (1993). This
classification distinguishes between a production process and a metaprocess. The
production process includes “all the activities, rules, methodologies,
organizational structures, and tools used to conceive, design, develop, deliver and
maintain a software product” (Fuggetta,1993). A production process is “defined,
assessed, and evolved through a systematic and continuing metaprocess”
(Fuggetta, 1993). These two processes are supported by an infrastructure (a
combination of operating systems, advanced databases, process technology, etc.),
which is implemented using the enabling technology (standards that allow tools
to be physically distributed and still cooperate with each other, e.g. integration
platforms such as network file systems). The infrastructure, production process
support, and metaprocess support together constitute the software process
support.

Fuggetta’s definition of CASE is more generic than that of Sommerville’s
(1992). In Fuggetta’s terms, CASE is considered to be any combination of
enabling technologies and software process support technologies. This means
that CASE may support both the production process and the metaprocess.
Fuggetta further classifies CASE used in the production process as: CASE tools
(used to support single tasks), CASE workbenches (used to support activities
consisting of tasks) and CASE environments (used to support a possibly large
part of the process).

CASE technology is seen as “an interoperable, computerised tool set
designed to support stakeholder tasks and processes over the full information
systems development lifecycle” (Lundell & Lings, 2004).

So, a CASE tool is a computer-based product aimed at supporting one or
more techniques within a software development method (such as a structured or
object-oriented method). CASE tools have normally been closely associated with
the notations and procedural practices of specific design methods. Such tools are
therefore to likely have user interfaces that are either influenced strongly by the

3.2 Collaborative CASE tools 43

method and its preferred strategy or, much worse, by the internal structures used
to store the design model (Budgen et al., 1993). There are CASE products that
address multiple methods and Meta-CASE products that generate CASE tools
from method specifications (Jarzabek & Huang, 1998). Upper-CASE tools focus
on the system analysis and logical design phases, while Lower-CASE tools focus
on the construction of software systems. CASE tools can be integrated together
to form a more sophisticated CASE environment. This can be done in several
dimensions, such as presentation integration, control integration, process
integration, and data integration (Chen & Norman, 1992), as shown in Figure 3.1.

Figure 3.1 Dimensions of CASE tools integration

(Chen & Norman, 1992)

A SEE is a computerised system that provides support for the construction,
management and maintenance of a software product (Brown et al., 1992). A SEE
consists in a repository that stores all the information related to the software
project throughout its life cycle, and tools that support the involved technical and
managerial activities. SEEs differ from one another depending on their database
nature, scope of provided tools or adopted technology.

3.2 Collaborative CASE tools
CASE is a mature technology and has existed since the middle of 70’s, though
cooperation support is still quite limited in existing CASE tools. More and more
product development projects are being conducted by geographically dispersed
groups. Stepwise advancements in cooperative technologies, in particular those
originating from the CSCW research field, are influencing CASE research and
development to a degree that one would expect. If CASE tools cannot support the
cooperation among these groups, the use of CASE will be marginalized.
Especially, as many CASE tools are developed as “time sharing” systems

44 Chapter 3 State-of-the-Art Surveys

(Farshchian, 2001): each developer is given the feeling of being the “only user”
of the system.

In addition, the format of the product objects are often controlled by strict
consistency checks, making the evolution of product objects from informal ideas
to formal constructs difficult. As a consequence, CASE tools might be reduced to
tools for documenting products that are developed outside the CASE tools. That
is not what CASE tools are built for. CASE tools in the best case confine
themselves to offering a central repository where information about the product
can be accessed regardless of geographical location.

Weaknesses in CASE tool support could be divided into the following
aspects (Kelly et al., 1996) as follows.

 Lack of mechanism for integrating sets of methods while maintaining
consistency between various models,

 Lack of support of multiple users to create, modify and delete sets of partly
overlapping model instances,

 Inadequate catering for multiple representational requirements raging from
fully diagrammatic to fully textual or matrix representation.

 Failure to provide consistent mapping mechanism between different
representational paradigms.

 Lack of flexibility and evolvability in method support ranging from syntactic
variation in methods to crafting totally new method components.

 Insufficient catering for different information-related needs of a diverse set of
stakeholders.

CASE tools are supposed to increase productivity, improve the software product
quality and facilitate Information Systems development (Jarzabek & Huang,
1998). However, they have been failing to deliver the benefits they promise
(Iivari, 1996). Previous research (Kemerer, 1992) reports that one year after
introduction, 70% of the CASE tools are never used, 25% are used only by a
limited number of people in the organization, and 5% are widely used but not to
capacity.

According to a study by the Standish Group (1994), only 12% of software
development projects are completed on-time and within budget. The average cost
overrun is 189% over their initial budget estimate, is completed 222% over
original time estimate, and incorporates only 61% of originally specified features
and functions.

The collaborative CASE tools should keep track of changes in different
working modes (Lee et al., 2001) as follows.

 Multiple developers are working on a single common version simultaneously;
 Developers are working individually on their local versions;
 Both cases: some developers collaborating synchronously, others working
individually.

3.2 Collaborative CASE tools 45

In first case the system should track and resolve multiple edits by different
developers in the same fragment. Changes could occur simultaneously or
sequentially in collaborative session. Considering second case – there will be a
number of current versions – the system should provide and manage awareness
of their existence and dependencies among them. Third case incorporates
previous both – asynchronous and synchronous developing.
3.2.1 Rational Rose
IBM Rational Rose® (IBM, 2005a) is one of the most advanced CASE tools. One
of its strengths is open architecture and possibility to integrate other tools, or
“home-made” various plug-ins. For instance, included Eclipse IDE allows
connecting multi-functional Eclipse open-source development platform (see
section 3.2.4). Enterprise Edition has integration with Microsoft® Visual Studio™
and other Java™ platform IDEs.

Rational Rose supports UML modelling language and model-driven
development is supported. A useful feature in distributed development is a free-
form diagramming, which may help explaining own ideas to remote colleagues
in an informal way. That feature satisfies Req2, Req3 and partially Req4, but all
these requirements are satisfied only for the modelling phase of development. As
a modelling tool, Rational Rose satisfies Req7 and Req9, though it might be
questionable to what extent UML is useful for conceptual problem modelling.
3.2.2 Medius Visual Ontology Modeler
Visual Ontology Modeler™ (Sandpiper Software, 2005) is one of the third party’s
add-in to Rational Rose. It is a UML-based ontology modelling tool that enables
component-based ontology development and management for use in
interoperability solutions. Main features of the tool are as follows.

 A multi-user, network-based environment for ontology development in a
graphical notation;

 A set of ontology authoring wizards that create and maintain the required
UML model elements for the user, reducing construction errors and
inconsistencies;

 Export facilities in XML schema, RDF, and other formats.

The Visual Ontology Modeler implements Sandpiper's UML Profile for
Knowledge Representation (Sandpiper Software, 2005), which extends UML to
enable modelling of knowledge representation concepts such as class, relation,
function. It also includes a library of ontologies that represent the IEEE Standard
Upper Ontology (SUO), concepts relevant to XML schema, and RDF generation,
as well as other basic concepts required to develop ontologies, i.e. for the
commerce and bioinformatics. Therefore, the tool does satisfy Req7 and Req9.

46 Chapter 3 State-of-the-Art Surveys

3.2.3 LibreSource
LibreSource (Libresource, 2005) is an open free software platform that aims at
hosting virtual teams and distributed communities for different activities,
including co-authoring, co-development and co-engineering activities, for
software and non-software applications. It is similar to SourceForge4, well known
open source community service. LibreSource is accessible through a web portal
and its main aim is to provide an alternative to cooperative development
platforms such as SourceForge/CVS, and community management.

The search engine indexes all the data hosted in the platform, as well as
uploaded files (Word, PDF, Open Office). LibreSource has a naming scheme that
allows to access documents and resources through tree-like hierarchy.
LibreSource enables to easily and quickly define public and private areas in
respect with different users involved. This database supports the automatic
archiving of online data. Main features of the platform are as follows.

 Coordination is based on a cooperative workflow system, compliant to WfMC
specifications.

 Awareness is supported by an event manager that is coupled with all the
components of LibreSource.

 Communication is supported by common groupware tools as forums, bug
trackers, etc.

The aim of LibreSource is to facilitate the cooperative software development and
the management of geographically spread teams having to work together on a
common project shared on the Internet. Mainly, requirements Req1, Req2, and
Req6 are satisfied.

3.2.4 Eclipse platform
Eclipse platform (Eclipse, 2005) is a famous open-source package of commercial
tool quality. Open architecture is the best feature, allowing to create various plug-
ins and extend Eclipse by the desired functions. In the following, we overview
couple plug-ins supporting collaboration. The major Eclipse Platform
Components are shown in Figure 3.2 and consists from the following
components:

 Platform Runtime;
 Workbench which implements the graphical interface to Eclipse;
 Workspace that “holds” the development environment;
 Version and Configuration Management (VCM) system.

Eclipse platform has become widely used because of its open architecture.
Consequently, there are plenty of various plugins implemented for Eclipse.
Below two plugins concerning collaborative work are shortly overviewed.

4 http://sourceforge.net

3.2 Collaborative CASE tools 47

Figure 3.2 The Eclipse Platform architecture

Composent Eclipse Plugin
This plug-in (see screenshot in Figure 3.3) provides secure, real-time
collaboration associated with Eclipse projects (Composent, 2005). The main user
collaboration features, most relevant to the settings described in chapter 2 of this
thesis, are as follows.

 Version control is integrated with CVS source code management;
 Awareness for project teams. Members receive presence information, and also
information from other Eclipse users about their current activities (tasks, open
editors, current UI selection). The system is extensible to allow other sorts of
team-specific presence information to be automatically communicated among
team members;

 File Sharing enables team members to transfer files to one another;
 Messaging and Chatting provides direct communication tools for team
members. They can send IM's (Instant Messages) and alerts to one/all other
group members.

Sobalipse - an Eclipse plugin
Sobalipse is another Eclipse plugin, which implements real-time collaboration.
Sobalipse enables to work remote users, such as, tele-pair programming, real-
time code reviewing, etc. Sobalipse (2005) is a framework – it is possible to
develop Eclipse plugins for real-time collaboration with Sobalipse plugin’s
development API.

In general, Eclipse platform is an extensible application that might be
turned to really powerful CASE tool. Though, it is mainly programming
environment with a help of plugins the tool can span whole life-cycle of systems
development. As reviewed above, there are already implemented plugins to
facilitate collaboration. There are written plugins for modelling as well. By now
we would characterise it as satisfying requirement Req6, and partially, Req1.

48 Chapter 3 State-of-the-Art Surveys

Figure 3.3 Screenshot of Composent Eclipse plugin

3.2.5 Other CASE solutions
Here we shortly discuss some recent research initiatives resulted in implemented
prototypes.
VRCASE
VRCASE (Bu et al., 2001) is a virtual environment based CASE tool. It provides
a 3D multi-user collaborative software modelling environment with automatic
object-class abstraction, class diagram generation, and C++ skeleton generation
facilities for assisting Object-Oriented software development. It allows multiple
concurrent users to model software system collaboratively. To achieve efficient
collaborative software development, VRCASE has implemented a fine-grained
locking and notification mechanism together with visual indicators to maintain
system consistency among multiple concurrent users. Therefore, the tool satisfies
Req5 and partially both, Req1 and Req4.
DOSDE
Oliveira et al. (2004) define the concept of “Domain-Oriented Software
Development Environment” (DOSDE). This kind of environment readies
knowledge about a specific domain in a symbolic representation (a domain
ontology). It also considers a library of potential tasks from the domain to
support problem understanding. This approach targets Req7, Req8, and Req9.

3.3 Computer Supported Cooperative Work 49

Software Design Board
Wu and Graham (2005) propose a tool called the Software Design Board, a
collaborative design tool that supports a variety of styles of collaboration and
facilitates transitions between asynchronous and synchronous styles of
collaboration, and between co-located and distributed styles of collaboration. The
whiteboard space can be divided into any number of segments, which allow data
to be shared in different ways. As software engineers work together in a variety
of styles and move frequently between these styles throughout the course of their
work. Consequently, requirements Req2, Req3, Req4, Req5 and Req6 seem to be
satisfied, in addition to partially satisfied Req1.

3.3 Computer Supported Cooperative Work
How do stakeholders manage to overcome the barriers to coordination that are
imposed by distance? How do distributed developers maintain group awareness?
All these questions were posed and analysed by Farshchian (2001).

Group awareness information includes knowledge about who is in a project,
where in a code they are working, what they are doing, and what their plans are.
This knowledge seems vital if distributed developers are to coordinate their
efforts, smoothly add code, make changes that affect other modules, and avoid
rework.

Collaborative software, also known as groupware, is application software
that integrates work on a single project by several concurrent users at separated
workstations.

According to Carstensen and Schmidt (2002), CSCW addresses “how
collaborative activities and their coordination can be supported by means of
computer systems”. On the one hand, many authors consider that CSCW and
groupware are synonyms. Ellis et al. (1991) define groupware as “computer-
based systems that support groups of people engaged in a common task (or goal)
and that provide an interface to a shared environment”. On the other hand,
different authors claim that while groupware refers to real computer-based
systems, CSCW focuses on the study of tools and techniques of groupware as
well as their psychological, social, and organizational effects. The definition of
Wilson (1991) expresses the difference between these two concepts:

“CSCW [is] a generic term, which combines the understanding of the
way people work in groups with the enabling technologies of
computer networking, and associated hardware, software, services
and techniques.”

There are many different CSCW tools targeting to support collaboration and
cooperation in different areas, though there is no CSCW tool that would be
particularly created to support systems development activity. Of course, there are
attempts to incorporate CSCW technology into CASE tools, but these attempts

50 Chapter 3 State-of-the-Art Surveys

are restricted to support multi-user access, for instance some of the earlier
discussed tools.
Collaborative Editing
Very interesting trend is to adopting existing tools for collaboration purposes
without changing them. The biggest advantage of such approach is that users are
used to the tools, they do not need to learn or adjust to new tools.

CoWord (Xia et al., 2004) is one of the first tools that allow multiple users
to edit the same Microsoft® Word™ document at the same time over the Internet.
CoWord retains the “look-and-feel” and functionalities of MS Word. CoWord
supports unconstrained editing style, giving users complete freedom in their way
of using CoWord to support individual and group work.

For collaborative system designers, CoWord demonstrates an innovative
technology that integrates state-of-the-art collaborative editing techniques such as
REDUCE (REal-time Distributed Unconstrained Collaborative Environment)
and GRACE (GRAphics Collaborative Editing) with off-the-shelf single-user
editors in a collaboration-transparent way (Reduce, 2005), i.e., without changing
the source code of the existing single-user application. The GRACE project aims
to research develop, and apply innovative technologies for supporting
collaborative graphics editing. The scope of the GRACE project includes both
object-based and bitmap-based collaborative editing systems. Object-based
GRACE systems can be used as multi-user CAD/CASE applications. Bitmap-
based GRACE systems can be used as multi-user drawing tools or as electronic
whiteboard systems. Major collaborative word processing features of CoWord
Demo are as follows.

 Real-time concurrent editing of objects of any type (i.e., MS Word objects,
for instance, formatted texts, graphic objects, clip-art objects, tables, bulleting
and numbering, paragraph alignment, etc.) at any granularity (down to
individual text characters, graphic lines, etc.) in any part of the same
document;

 Undo operations on objects of any type at any times in multi-user
environments;

 Concurrent editing and commenting on the same document;
 Concurrent tracking and automatic merging of modifications in multi-user
environments;

 Detailed workspace awareness support.

In general, CSCW tools provide good support for functionality covered by
requirements Req6, and can be used to satisfy demand for Req7, Req8, Req9.
Furthermore, these tools focus on collaboration around some objects; therefore
Req1 is typically well satisfied.

3.4 Repositories in IS Engineering 51

3.4 Repositories in IS Engineering
CASE repositories try to provide mechanisms for viewing a product object or a
group of product objects from different perspectives, depending on the context
and the background knowledge of the particular developer group. Mechanisms
such as transaction control, version control, and concurrency control try to
prevent one developer from destroying the result of the work done by another.
Process integration efforts acknowledge the fact that a software process is a
complex artefact that involves many activities and affects many developers. An
integrated software process tries to bring together developers and their data in a
way that the coordinated efforts of single developers can result in the large
product.

Bernstein and Dayal (1994) review the meaning of the most important
services offered by repository system and list most important features as follows.

 Check-out/Check-in allows users to copy the object of interest into their
private workspace, i.e., check-out. After editing the object is checked in. This
kind of development transactions is particularly useful for long activities, i.e.,
days, weeks.

 Version Management is responsible for keeping a version history of objects.
Versions are meaningful and consistent snapshots of an object during its
lifecycle. These versions are represented as objects in the repository and can
be identified, retrieved, and compared to each other.

 Configuration Management allows managing collections of related objects.
Versioned objects are sometimes associated with versions of other objects.
This binding between versions of different objects defines a configuration.
CM should have appropriate mechanisms to identify and represent these
configurations. Moreover, methods for linking and de-linking objects as well
as consistent change-propagation methods are mandatory.

 Context Management limits the view of developers to specific objects which
are necessary for a particular task, the context. Contexts define a semantical
view on the content of a repository, in contrast to configurations which give a
view on the physical interrelations. Like them context management should
offer mechanisms to define, identify and represent contexts.

 Notification is the ability to inform developers of certain events. For instance,
changes of objects can cause notifications to developers working on the same
or related objects.

 Workflow Control considers the phases through which objects progress during
their lifecycle. In system development, for instance, an object goes through
requirements, design, implementation, testing, and documentation phases.
Objects should be assigned to any of these phases according to their lifecycle.
When they evolve, promote and demote operations advance the state or go
back to a previous one. This can be initiated manually by the developer or
automatically by notification rules.

52 Chapter 3 State-of-the-Art Surveys

3.4.1 Metis Team Server
Metis enterprise modelling environment (Metis, 2005) is supported by server-
based model repository, which allows models to be stored and shared in a central
model repository. Repository items are organised in, and navigated through, a
standard, hierarchical folder structure.

All models are versioned. A model's full version history is stored in the
repository. Versions may be retrieved using version policies such as newest
version in production. Models in the repository can only be changed after
checking them out, and can only be made available to other users by checking
them back in. Each check-out/check-in creates a new version. Checking-out a
model gives a write-exclusive (“pessimistic”) lock, so that only one user may
change a model at a time. This locking mechanism does not satisfy requirement
for flexible access to product fragments.

Each sub-model (model fragment) is stored in the repository as a separate
item with its own version history/check-outs/check-ins. This feature allows
model dependency tracking, i.e., after splitting a model into separate files (sub-
models), the Team Server tracks file dependencies. It allows to set up version
policies specifying which version of each dependent file to include.

The Metis Team Server repository can store any digital content, not just
Metis models. Versioning, check-out/check-in, export and import are available
for any file. Using Metis Model Annotator (a modelling environment) it is
possible to annotate models in the repository. Annotation models can be stored in
the repository as well.

Tool allows defining various types of relation and creating new type of
objects, i.e., satisfies requirements Req2 and Req3. As well requirements Req4
and Req5 are partially satisfied. Obviously Req1 is not satisfied because of
locking enforced in storage. Though, after merging with Troux Technology,
Metis repository was replaced by Troux Object Repository with much finer-
grained control of stored objects.
3.4.2 Unicorn Workbench
The Unicorn Universal Repository (Unicorn, 2005) provides enterprise-scale
storage and management for technical metadata and for enterprise architecture
objects, including the Ontology Model and Semantic Mappings. It uses an OMG
MOF-based flexible metamodel to ensure that all types of technical metadata and
enterprise architecture objects are stored and cross-referenced. Dublin Core
standard is used to document metadata. The Unicorn Universal Repository
provides an environment with permissions management, multi-user
collaboration, and versioning. Features are as follows.

 Capture common business language in an ontology model;
 Provide business semantics (metadata) to multiple data assets;
 Re-use and extend existing ERD & UML models;

3.4 Repositories in IS Engineering 53

 Automatically import off-the-shelf industry models;
 Test instances to demonstrate and validate the ontology model and
business rules.

The workbench satisfies requirements Req7, Req9, Req11, partially Req8.
Unfortunately, it is not so clear how well requirements Req1 and Req12 are
satisfied by the tools workbench.

3.4.3 Microsoft Meta Data Services
Microsoft has launched Meta Data Services (previously known as Microsoft
Repository) as part of Microsoft® SQL Server™ (Microsoft, 2005). The
repository supports modelling activity, i.e. by providing model storage. Actually
any modelling language can be supported as schema for model storage is created
based on XMI definition of a particular modelling language, called the Open
Information Model (OIM). OIM is a formal specification of metadata that
provides common ground for defining standard metadata. To achieve maximum
integration across its product lines, Microsoft uses the OIM standard when
defining metadata constructs. Figure 3.4 illustrates basic interaction with
Microsoft Repository.

Consequently, requirements Req2, Req3 are satisfied (for modelling stage),
as well as Req6, and Req9. However requirement Req1 is not, because of partial
access of the object while being edited.

Figure 3.4 Basic interaction with Microsoft Repository

54 Chapter 3 State-of-the-Art Surveys

3.4.4 Content Management Tools
A content management system (CMS) is a system used to organize and facilitate
collaborative creation of documents and other content. A CMS is frequently a
web application used for managing websites and web content, though in many
cases, content management systems require special client software for editing
and constructing documents.

CMSs allow users to provide new content in the form of documents. The
documents are typically entered as plain text, perhaps with markup to indicate
where other objects (e.g., pictures) should be placed. The system then uses rules
to style a document, separating the display from the content, which has a number
of advantages when trying to get many documents to conform to a consistent
“look and feel”. The system then adds the documents to a larger collection for
publishing. The systems also often include some sort of concept of the workflow
for the target users, which defines how the new content is to be routed around the
system.

Enterprise CMS (ECMS) vary in their functionality. Some support both the
Web and publications content life cycle, while others support the web content life
cycle and either transactional content or customer relationship management
content. ECMS usually contains components like document management,
collaboration, business process management, records management, email
management, workflow and web content management.

Next we overview openShore - an open source content management system,
being one of the most advanced in its class.
OpenShore
The core system of OpenSHORE (2005) is not an application that can be used
directly by an end user. It is a tool that processes XML documents, extracts
information (objects and their relations) from these documents, stores them in the
repository and makes them accessible through a web browser interface. A user
can access the files directly using a Web browser, and open the project files of
choice. Browsing between files can be done through hyperlinks and the native
interface for that Web Browser. OpenSHORE has in addition a command line
client implemented in Java that can be used to add documents to the repository or
update them. The command line client can be used for integration with other
tools like source code repositories and search for information.

As well as the documents, the repository stores a metamodel which
describes the documents. The repository of OpenSHORE can be configured to
store any kind of objects (e.g., system requirements, packages, interfaces,
classes) with their relations (e.g., class implements interface). However, it
requires that these documents are stored in an XML document, preferably
XHTML. Documents that are not of this type need to be parsed and translated.
Relations can then either be constructed automatically depending on the parser or
done manually.

3.5 Information integration and management 55

CMS obviously are not substitution for CASE tools, but can be used as
supportive technology, i.e. mainly for storing and managing the development
objects. CMS satisfies the following requirements: Req2, Req3, Req11, and
Req12.

3.5 Information integration and management
In this subsection we discuss methods and tools dealing with information
integration and management. Focus here is traceability methods (see section
3.5.3), i.e. means to discover and maintain the dependency links between the
development objects. But first, we revisit use of ontologies in systems
development, and then briefly discuss “unification approaches” in section 3.5.2.
3.5.1 Use of ontologies
An on-going research project (Saeki, 2004) is looking at supporting software-
requirements elicitation and composing software from re-usable architectures,
frameworks, components and software packages. They are developing relevant
techniques through the use of ontology and its reasoning mechanism, to maintain
semantic consistency. Ontology system (Saeki, 2004) has two layers; one for
requirements elicitation and the other for re-usable parts. By establishing
relationships between the two layers, the ontology system can play a role in
bridging gaps between a requirements specification and an architectural design at
a semantic level (Saeki, 2004).

(CEEBI, 2004) addresses the issue of collaborative multi-site distributed
software development environments by dividing it into research issues as
follows.

 Define the concepts, requirements, and representation of an ontology for
multi-site distributed software development;

 Define an ontology-based software development architecture which addresses
the needs of the collaborative, multi-site and distributed environment. This
will address issues such as awareness, access control, security,
communication and group decision support.

Ontology is the term used to refer to a conceptualisation of some domain of
interest, which may be used as unifying framework to solve the problems. A key
feature of an ontology is agreement about shared conceptualisations. The use of
an ontology reduces conceptual and terminological confusion by providing a
unifying framework within an organisation or community of users. In this way,
an ontology enables shared understanding and communication between the front-
end groups, backend groups and the application groups. In other words, different
groups producing their own databases and residing at different sites can share a
conceptual model.

56 Chapter 3 State-of-the-Art Surveys

Though these two approaches are undergoing research programs at their
early stage, they focus on use of ontologies to capture semantics of development
objects. Therefore, they target to support requirements Req7, Req9, Req10,
Req11, and Req12.
3.5.2 Language families
One way to solve the problem of managing heterogeneous development objects
is to adopt a language family for specifying all necessary development aspect.
This would allow using similar notation, stepwise increasing level of details, for
instance, UML notation, but preferably with more seamless transition between
different diagrams.
RM-ODP
RM-ODP (2005) considers lifecycle of distributed systems from enterprise,
information, computational, engineering and technology viewpoints. A viewpoint
defines a set of related concerns that are important in the design of a system. A
model defined from a particular viewpoint focuses on the particular concerns
defined by the viewpoint. Viewpoints should be chosen with respect to
requirements that are of concern to some particular group involved in the design
process.

The use of different viewpoints in order to describe a system raises the issue
of consistency, despite of being in the same language family. Descriptions of the
same or related entities appear in different viewpoints. Therefore, it is necessary
to assure that these multiple models are not in conflict with each other.
Enterprise modelling
Gustas and Gustiene (2003) propose three levels of information system models
are necessary for maintenance of a systematic change, e.g., in order to understand
why a technical system component is useful and how it fits into the overall
organisational system. These levels are as follows.

 The pragmatic level;
 The semantic level;
 The syntactic level.

The most abstract is the strategy-oriented business process analysis level, which
is referred to as pragmatic level. Strategic models are useful for illustration of the
actual architectural solutions and general communication infra structure. They
are necessary to provide motivation behind new business solutions that can be
expressed in qualitative and quantitative terms. The semantic level must have a
capacity to describe clearly the static and dynamic structures of business
processes across organisation and technical system boundaries. The syntactic
level should define implementation-oriented details, which explain the data

3.5 Information integration and management 57

processing needs of a specific application. Each level increases level of details,
introducing additional new notational symbols, still keeping levels tied.

Language families are useful technique to provide a solution for
requirements Req7, Req9, Req10, and Req12. However, it is not likely that all
stakeholders in a geographically distributed project will be acquainted with a
particular (software specification) language. While educating and training all
members to use one particular language takes time, though future projects may
benefit of it.

3.5.3 Traceability and product fragment management
The research area of requirements traceability has attracted a lot of attention from
both practitioners and academic researches in the last two decades. Researchers
tackle the problems of applied traceability by proposing various ways how to
make requirements and other artefacts traceable. In this subsection we take a
closer look at the management of product fragments dependency. Main focus
here is on product traceability, but not on process traceability. Meaning that we
survey approaches that deal with relating different product fragments, but not
recording who and when produced a new revision of the product fragment, i.e.
tracing the evolution of a particular product fragment.
Reference model for traceability
Ramesh and Jarke (2001) have conducted empirical studies in a range of software
development companies and proposed reference model for the objects and
traceability links to be recorded. A simple meta-model (see Figure 3.5) has been
derived as part of their studies.

Stakeholder

Object Source

HAS ROLE IN MANAGES
TRACES TO

DOCUMENTS

Figure 3.5 Traceability meta-model

Four general types of requirements traceability links were identified as an
integral part of reference models (see Table 3.1).

58 Chapter 3 State-of-the-Art Surveys

Table 3.1 Traceability links types used in reference models
Link type Purpose Uses
Satisfaction links To ensure that the

requirements are
satisfied by the system

- To ensure consistency between
outputs of different phases of the
lifecycle;
- Trace the designs created to satisfy
requirements;
- Trace system/subsystem components
to which requirements are allocated.

Evolution links Document the input-
output relationship of
actions leading from
existing objects to new
or modified objects

Identify where the various objects
come from. Identify the origins of
various objects to facilitate:
- Better understanding of requirements
(or other objects);
- Establishment of accountability of
creation and modification of objects;
- Tracking the modification,
refinement history of various objects.

Rationale links Represent the rationale
behind the objects or
document the reason for
changes

Identify the reasons behind the
creation of various objects and their
modification, including:
- Justifications for creation or
modification;
- Decisions and assumptions made;
- Context in which the object were
changed;
- Transparency into the decision
process including discarded
alternatives.

Dependency
links

Help manage
dependency among
objects (typically at the
same stage of
development), often
imposed by a constraint.

Track the composition and hierarchies
of objects and manage notification of
changes in interdependent objects.

A Comprehensive Traceability Model
Toranzo and Castro (1999) broaden out a definition of requirements traceability:
“Requirements traceability is the ability to describe and follow the life of a
requirement, in both forward and backward direction, within the context of three
composite, interrelated and parallels layers: organization/environment rules,
management and development”. The layers are specified as follows.

3.5 Information integration and management 59

 Organizations/Environment rules layer. This layer holds all the elements
(goals, strategy, rationale, constraints, quality assurance, and change
management policies) that exist prior to the creation of the project. These
elements constrain partially or totally the development tasks.

 Management layer. This layer is subordinate to Organizations/Environment
rules layer as project managers are responsible for ensuring that the software
development complies with the organizations policies, goals and
requirements. This layer holds elements (task, resource, milestone and risk)
that should be taken into account.

 Development layer. This layer includes the definitions of pre and post-
traceability. Pre-traceability is concerned with those aspects of a requirements
life prior to inclusion in the requirements specification. Post-traceability deals
with those aspects of a requirements life after its inclusion in a requirements
specification.

Toranzo and Castro (1999) identify and differentiate elements used by different
stakeholders, by that they establish relationships between view points of different
users, particularly project manager, requirement engineer and software engineer.
A framework for requirements traceability based on UML
Letelier (2002) presents a framework for configuring requirements traceability by
integrating textual specifications and UML model elements. Proposed approach
is restricted to UML language and can be applied to software process based on
UML. In Figure 3.6 meta-model of approach for requirements traceability is
presented by means of class diagram.

Figure 3.6 Metamodel for requirements traceability

(Letelier, 2002)

60 Chapter 3 State-of-the-Art Surveys

Two types of entities are concerned in meta-model: TraceableSpecification and
Stakeholders. Stakeholders are responsible of creating and modifying
specifications. A TraceableSpecification is a software specification with a certain
granularity level (e.g., a document, a model, a diagram, a section in a document,
a text specifying a non-functional requirement, a use case, a class, an attribute,
etc.). The granularity for a TraceableSpecification is defined by means of the
aggregation with the role name partOf.

The type of entity TraceableSpecification is a generalization of
RationaleSpecification, RequirementSpecification, TestSpecification, and
OtherUML_Specification. A RequirementSpecification is a requirement or group
of requirements and, according to how they are expressed, can be classified as
TextualRequirements or UML_UseCase. A RationaleSpecification establishes
fundaments, alternatives or assumptions associated to a TraceableSpecification.

Letelier proposes several types of traceability links. The most generic type
of traceability link is represented as traceTo which allows establishing
traceability links between any TraceableSpecification. The rest of types of
traceability links (modifies, responsibleOf, rationaleOf, validatedBy, verifiedBy
and assignedTo) are more specific. The link named modifies establishes a
relationship between Stakeholders and TraceableSpecifications that they modify.
In a similar way, responsibleOf determines the Stakeholder who is responsible of
the definition and maintenance of a TraceableSpecification. The type of link
named validatedBy relates RequimementsSpecifications with the corresponding
TestSpecifications that validate them. The type of link verifiedBy determines the
TestSpecifications that verify a UML specification. Finally, the type of link
assignedTo determines the UML model elements that realize certain
requirements.

This approach is based on integrating of textual specifications with standard
UML diagrams and integrated to Rational Rose™ using Rational Unified
Process™ as a development process. Recall discussion about extensibility of
Rational Rose earlier in this chapter.
Ophelia project – Environment for traceability support
The Ophelia project is similar in scope to the settings of this thesis, i.e. both
targets to support distributed development and various tools being used. Though
they it differs in the method for dependency management.

The aim of Ophelia project (Ophelia, 2003) is about tracing relations among
all elements, so that associations can be tracked among any given two objects at
any time. This approach is slightly different from other as most approaches deals
with tracing associations within requirements and their impact on other project
elements.

The goal of Ophelia is to propose a definition of a set of CORBA interfaces
for various types of tools used during project’s development, starting at
requirements elicitation, ending at documentation and test repositories. These

3.5 Information integration and management 61

interfaces specify abstract functionality of a certain type of tool, but they are not
bundled with any particular implementation. Ophelia must have extensive
support from tools vendors - they must include an implementation of Ophelia
interfaces in their products to allow their coexistence in the integrated platform.

The Ophelia consortium is going to develop a fully functional instance of
Ophelia called Orpheus, integrating mostly open-source tools, but also some
commercial ones, for which Ophelia plug-ins could be written. Ophelia was
designed with distributed environment in mind, Modules (e.g., requirements
module interface, design tool interface) composing the platform work in client-
server mode. It is not possible to connect an instance of, e.g., ArgoUML, directly
to Ophelia. This tool should be connected to a Design Module, which provides
all diagrams available in the project, locking of resources (users can not work on
the same file at the same time).

All Ophelia interfaces share common definition of an object. Components
of a particular instance of Ophelia may obtain information about objects stored
anywhere within that instance, regardless of what type of object it is, or which
module stores it. Traceability Module (depicted in Figure 3.7) makes use of this
feature to store relations among objects in the system.

Meeting
minutesDesign

Diagrams
Technical

docs

BugsFeature reqs. Resources Tests Code

Requirements

Requirements
& Vision

Analysis &
Documentation

Design

Implementation

Project elements layer

Unified objects layer
(Ophelia)

Relationship layer (Traceability)

Actual project
elements

Abstract unified objects

Figure 3.7 The traceability layer of Ophelia
(adapted from (Ophelia, 2003))

62 Chapter 3 State-of-the-Art Surveys

By now developer should set up relations between new element added to the
project and other object already present in the system. Ophelia’s integrated
traceability approach allows to project members easily understand and measure
the size of a particular element’s dependency graph and its relation to other parts
of the project. Change management is facilitated by combining traceability and
messaging - users can be notified about object changes (see Figure 3.8).

Figure 3.8 Propagation of notification in Ophelia approach

Ophelia project intends to contribute by providing open-source repository and
environment for distributed software development. Nevertheless with no support
from vendors of software development tools the entire idea could fail (all tools
used in the project should be integrated in order to enable traceability).
Especially as tool vendors would like to have their market advantage over other
products - the need of interfaces unification is a contradictory and some trade-off
certainly needs to be found.
Scenario driven traceability between requirements and architecture
For the change integration and product evolution by relating architectural
descriptions and requirements specifications, (Pohl et al., 2001) proposes:

 To structure trace information by defining orthogonal meta-models which
define the concepts and relations about information to be recorded during
system development. The meta-models provide the basis for implementing a
trace repository;

 To use scenarios as central means for achieving a semantically rich
interrelation of requirements and architectural artefacts.

Pohl et al. (2001) define a scenario-centred trace structure which facilitates
consistent and effective change integration. This structure consists of six meta-
models. Those meta-models are enriched by defining typed dependency links

3.5 Information integration and management 63

which express the relationships between meta-model components. The resulting
traceability structure empowers to capture requirements and architecture
information in much more detail and thus support consistent and effective change
integration.

This structure is suggested to extend by taking domain and product specific
constraints and information into account. Adding domain and product specific
concepts and relationships to the generic structure empowers to distinguish
domain/product typical features and significantly improve the support for
consistent and cost-effective change integration.
Rule-based approach to traceability
Approach by Spanoudakis et al. (2004) is similar to the method proposed in this
thesis as both rely on conceptual model (analysis object model as it is called by
Spanoudakis et al.) to discover related fragments. However, Spanoudakis et al.
use model only for requirements traceability.

Spanoudakis et al. (2004) present a rule-based approach to support the
automatic generation of traceability relations between requirement statements
and use cases (expressed in structured forms of natural language), and analysis
object models for software systems. The generation of such relations is based on
traceability rules of two different types – requirement-to-object-model rules to
trace the requirements and use case specification documents to an analysis object
model; and inter-requirements traceability rules to trace requirement and use
case specification documents to each other.

This approach can generate four types of relations between these artefacts,
including the Overlap, Requires_Execution_Of, Requires_Feature_In, and
Can_Partially_Realise relations. These relations are generated by analysing the
contents of the involved artefacts using traceability rules of two different types,
namely RTOM and IREQ rules.

An Overlap relation hold between:
 sequence of terms in a requirement statement or part of a use case, and a class,
attribute, association or association end in the analysis object model, or

 sequence of terms in a requirement statement and a sequence of terms in a
part of a use case.

A Requires_Execution_Of relation may hold between:

 sequence of terms in a requirement statement, or a part of a use case, and
 operation in an analysis object model.

A Requires_Feature_In relation may hold:

 between a part of a use case specification and a requirement statement, or
 between two requirement statements.

64 Chapter 3 State-of-the-Art Surveys

A Can_Partially_Realise relation may hold between the description, an
event (normal, exceptional or triggering) or a post-condition of a use case and the
description of a requirement statement. The meaning of the relation is that the
execution of the use case can realise part of the requirement statement.

RTOM rules are used to generate traceability relations between textual
requirement statement and use case documents and analysis object models. These
rules specify ways of matching syntactically related terms in these documents
with semantically related elements in the analysis object model. The syntactic
relations required by these rules are defined in terms of the grammatical roles of
the words in the textual documents which are identified using probabilistic
grammatical tagging technique. IREQ rules are used to generate traceability
relations between different requirement statement and use case documents or
between different parts of the same requirement statement or use case document.
Figure 3.9 sketches the approach.

RSD.txt UCD.txt AOM

Grammatical Tagging

RSD.tagged UCD.tagged

XML Conversion

RSD.xml UCD.xml AOM.xml

SynonymsLexicon.xml RTOM_rules.xml

Generation of Requirements-To-Object-Model Relations

UCD_AOM_relations.xml RSD_AOM_relations.xml

Generation of Requirements-To-Requirements
Relations

IREQ_rules.xml

RSD_RSD_relations.xml UCD_UCD_relations.xml

RSD_UCD_relations.xml

Figure 3.9 The process to establish traceability: rule-based approach
(adopted from (Spanoudakis et al., 2004))

3.5 Information integration and management 65

Their approach supports the automatic generation of traceability relations using
analysis object models (AOM) that specify the main entities in the application
domain of a system as well as the parts of it that support the interactions with the
users and deliver the expected functionality. Traceability relations are established
between:

 requirement statement documents (RSD) which are expressed in structured
forms of natural language and define the required functional and non-
functional features of a system in broad terms;

 use case documents (UCD) which are expressed in structured forms of
natural language and provide a complete and detailed description of the
different ways in which a user may deploy the system and specify detailed
functional requirements for it.

The traceability relations in the rule-based approach are generated through the
process consisting from four stages:

 grammatical tagging of the textual requirement statement and use case
documents;

 conversion of the tagged requirement statement and use case documents, and
the analysis object model into XML representations;

 generation of traceability relations between the requirement statement and use
case documents and the analysis object model; and

 generation of traceability relations between different parts of the requirement
statement and use case documents.

The main difference between the IREQ and RTOM rules is as follows. RTOM
rules which generate traceability relations based on a direct grammatical analysis
of the contents of the involved requirement statement and use case documents.
IREQ rules generate relations between these documents only if they are
connected with particular combinations of other traceability relations with the
same elements of an analysis object model.
Other approaches to traceability
Other approaches can be classified to analytical and post-analytical. The
analytical approaches, such as the work by Egyed (2001) and Frezza et al.
(1996), use analytical methods after the artefacts are completed to verify that the
artefacts fulfil all their requirements. (Egyed, 2001) suggests using a scenario
driven approach to acquire runtime information about a system and relate the
information – footprints - to the requirements and model of the running system.
The footprints are then analyzed in a tool Trace Analyzer, which shows how the
components of the system interact when performing specified scenarios. Thus, it
is possible to obtain added trace information on how the running system actually
fulfils its requirements and which parts of the design are affected. Egyed (2001)
proposes to derive traces through (see Figure 3.10):

66 Chapter 3 State-of-the-Art Surveys

 Commonality - the property of “commonality” allows us to identify trace
dependencies among A1 and A2, B1 and B2 by investigating whether or not
their footprints overlap. In Figure 3.10 an overlap between A1 and B1 in the
footprint {2,3} is present. The tool thus infers the following trace
dependencies between A1 and B1;

 Grouping - the trace analyzer technique increase the strength of a trace
dependency by combining model elements. For instance, model elements A1
and A2 individually only trace to a part of B1 (strength less than 100%), but
A1 and A2 together trace to the whole of B1 (see complete overlap of ellipse
B1 with the combined ellipses for A1 and A2 in Figure 3.10; strength =
100%). In reverse, B1 still only traces to a subset of A1 and A2 together;

 Set Theory – it is possible that not only footprints but also their model
elements overlap. If two sets of model elements trace to similar lines of code
as in the case above then overlaps in the sets of model elements may also be
used to derive more precise trace dependencies (see figure 3.9). For instance,
if model element A1 is known to only trace to {1} and model elements A1
and A2 together are known to trace to {1,2} then using set theory it is possible
to derive a more refined understanding - it is certain that {2} only traces to A2
and not A1 (set minus) or that {1} must trace to A1 and potentially also to A2
(set intersection). Figure 3.11 shows this relationship graphically.

Figure 3.10 Footprints of model elements

Figure 3.11 Set Theory on trace overlaps

Frezza et al. (1996) on the other hand, propose a system of simulation where both
the requirements and implemented system are simulated in order to obtain a set
of result data. The data from the requirements and implementation are then

3.5 Information integration and management 67

compared, which result in a quantitative measure of how accurate the running
system implements the requirements.

Those approaches could be characterized as post-analytical, i.e. traces are
established after all artefacts are developed and, per se, contribute mainly for
product maintenance.

However, there are more framework based approaches (as above described
approach by Letelier (2002)) which have been more dominant in the research
community. Frameworks, such as the work by Grunbacher et al. (2001) (CBSP
(Component, Bus, System, Property) approach) supply the developers with
terminology, methods and CASE-tools, which impose a particular structure to
both the requirements and the element of other phases, such as design elements,
in order to achieve traceability from requirements to artefacts developed.

Grunbacher et al. (2001) propose a framework for refining draft
requirements into draft architecture, through a process of selection and
assessment. The framework incorporates the notion of differentiating views and
supports the recording of rationale. Their proposal deals with refinement of
requirements to initial architecture, as requirements may explicitly or implicitly
contain information relevant to the system’s architecture. The approach is
however limited to the transformation from requirements to architecture. Knethen
(2002) on the other hand suggests a conceptual trace model and a set of
guidelines for using this model. The model separates logical and documentation
aspects of requirements structure, in order to obtain a structured composition of
requirements and their relations to design elements. The method is primarily
aimed at maintenance, where change impact analysis and understanding of
existing system is essential.

Furthermore, (Cerbah & Euzenat, 2001) adopt a linguistic view of the
requirements tracing, and propose a methodology to allow the tracing of informal
text based requirements into formal models through the use of linguistic analysis.
They adopt the hyper linkage of documents from different phases of
development. If these documents are suitably annotated, they can provide a
meaningful design history throughout the development lifecycle and increase the
browsing capabilities. This could be done mainly manually or semi-automatically
using linguistics technique. Cerbah and Euzenat (2001) have implemented
system that generates class hierarchies out of textual requirements specifications
and establishes traceability between models and texts through terminology. The
authors have not explicitly stated, but the same technique could be use to relate
the documentation.

Cleland-Huang et al. (2003) have also developed a system for maintaining
dependency relations between requirements and other software artefacts. Their
system is based on an event-notification mechanism that implements the observer
pattern (Gamma et al., 1995). More specifically, the requirement documents can
register their dependencies to other artefacts using the registry of the system.
Following the registration of dependencies their system monitors the artefacts

68 Chapter 3 State-of-the-Art Surveys

and when any of them is modified it notifies all the requirements documents
which are dependent on it of the change. The requirement documents have then
responsibility for updating their contents if necessary. This system can be used
for maintaining dependency relations once they are identified but provides no
support for identifying them.

In general, traceability attempts to establish the dependency links and uses
them for change management. When it comes to the efficiency, then different
authors approach that differently, unfortunately not many of them have evaluated
that aspect of their approaches. Overall, requirements Req6 and Req12 are
satisfied.

3.6 Summary
In this chapter we have conducted the state-of-the-art survey on technological
and methodological support for distributed collaborative development. We have
taken a look at CASE tools, supporting repository systems including content
management systems, briefly discussed CSCW tendencies and relevance. Finally
methodological support for managing the variety of development objects has
been analysed. Below, Table 3.2 summarises how different technologies do
satisfy the requirements identified in chapter 2 as important for cooperative
distributed development.
Table 3.2 Summarizing overview of related technology

Main technology Supportive
technology

Requirements
CASE CSCW CMS

Other
techni-
ques5

Req1-Flexible access to the product Medium High Medium Medium
Req2-Unrestricted product fragment
types Medium High High Low

Req3-Unrestricted relation types High High High Low
Req4-Incremental product fragment
refinement Medium Medium Medium Medium

Req5-Support for boundary objects High Medium Medium Medium
Req6-Active delivery of information High High High Medium
Req7-Knowledge externalisation in a
means of conceptual domain model High Low Medium High

Req8-Domain concepts explanation
(extension) High Medium Medium Medium

Req9-Support for knowledge
internalization High Medium Medium High

5 See discussion in section 3.5.

3.6 Summary 69

Main technology Supportive
technology

Requirements
CASE CSCW CMS

Other
techni-
ques5

Req10-Conceptual domain model
should be available through whole
development life-cycle

Low N/R Low High

Req11-Flexible metadata specification
about development objects Low Low High High

Req12-Efficient dependency
management Medium Low High High

Scale used:
High – requirement is fully satisfied; Medium – requirement is partially satisfied;
Low – requirements is not satisfied; N/R – requirement is not relevant.

To sum up, conceptual domain model usually is developed at the beginning in
order to sketch down the problem, but is not used in later development phases
(with the exception of requirements engineering phase). Only the methods that
deal with content annotation use domain model (ontology) throughout the life-
cycle of a particular activity. However, this activity is nothing like systems
development. There are ongoing research projects (e.g., earlier mentioned (Saeki,
2004)) trying to relate software components to domain specific model/
ontologies.

Overall, there is an interesting tendency of augmenting various open source
applications with different advanced functionality. Obviously, the community is
realising that it is better to join and add new features to the existing tools
(especially supported by big companies), than creating everything from scratch,
for instance, Eclipse framework with plenty of different functionality plug-ins,
Protégé tool, etc.

A promising research directions is the one started by Sun et al. (1998),
augmenting current state-of-the-technology tools by adding collaboration support
without a need to change source code of the augmented tool, i.e. CoWord,
CoPowerPoint (Sun, 2002). That’s promising strategy as users are used to those
tools and their functionality. This direction of research (implementation of
research results) has advantage against creation of new tools fully supporting
collaboration, but otherwise having a limited set of functionality.

70 Chapter 3 State-of-the-Art Surveys

 71

4
Repository Objects

“There is nothing permanent but change.”
— Heraclitus

This chapter revisits the scope and settings of the thesis, presents an overall
method first, then the basic concepts and essential techniques supporting the
proposed method are discussed. Finally, the chapter enlightens on underlying
repository support. A repository is seen as a mechanism for storing any
information about the system specification at any point of a life-cycle.
Repository services are meant for extensibility, recovery, integrity, naming
standards, and a wide variety of other management functions (Glossary, 2005).
Therefore, in distributed development settings repository is a main instrument to
store and disseminate information to involved parties.

4.1 Overall Method
Distributed development project consists of several teams (project groups)
developing one or more product fragments (Figure 4.1). Each of the product
fragments may depend on one or more related product fragments. Some product
fragments may be composed from smaller product fragments developed by team
members.

The proposed method is illustrated by elaborating each step (step_O1 to
step_O4). The overall account of the method is given in Figure 4.2:
Step_O1. Developing conceptual domain specific model. During this step

developers produce a model fragments describing their view and
understanding of the problem on-hands. Model fragments are stored in a
repository. Then concepts mapping is performed and developers are
provided with a list of similar concepts, i.e. some initial support is provided

72 Chapter 4 Repository Objects

to facilitate identification of a common conceptualisation, i.e. view
alignment. The developers identify the same concepts and agree about their
proper names (alignment of terminology). The proper concept names are
stored in a concept space with a list of alias names (synonyms, specified by
each of developers). Developers can still maintain the personal view with a
preferred terminology. This part of our method is elaborated in chapter 5.

Development project Product structure

Project group 1

Project group 2

Project group N

Product fragment

Product fragment

Product fragment

Product
fragment

work_on

work_on

work_on

work_on

work_on

work_on

work_on

dependent_on

dependent_on

dependent_on
dep._on

dep._ondep._on

dependent_on

dependent_on

dependent_on

dep._ondep._on

dep.
_ondep.

_on

dep.
_on

dep.
_on

Figure 4.1 Distributed development

Step_O2. Fragments association with concepts. Every developer uploads a

product fragment developed by him/her. While uploading it to the
repository they relate the produced development objects to the structure of

4.1 Overall Method 73

problem they are trying to solve, i.e., by associating produced product
fragment with one or more concepts from an earlier defined domain model.
An association process here can be treated as a classification of
deliverables. Developers can choose confidence level when associating with
concepts, e.g., that allows to specify the strength of association. Chapter 6
elaborates on this and the following two steps.

Step_O3. Change impact prediction & fragments management using
associations. Thus, dependency relations (relatedness) are based on the
semantics of the product fragments. Fragments are associated with the
concepts from the domain model. Therefore, all developed fragments are
linked through the conceptual domain model as follows. There exists a set
of domain concepts {C1, C2, …, Cn} and a set of product fragments {F1, F2,
…, Fm}, then consequently:

• If product fragment Fi is associated to domain concept Ci and product
fragment Fj is associated to Ci, then transitively Fi also relates to Fj:

() () jiijii FFCFCF →⇒→∧→ . Eq. (4.1)

• Given, the related domain concepts Ci and Cj, and product fragment Fi
associated to concept Ci and product fragment Fj associated to Cj, then
dependency to a certain degree exists between Fi and Fj.

() () () jijjiiji FFCFCFCC →⇒→∧→∧→ . Eq. (4.2)

Computation of relatedness degree between product fragments is based on the
relationship types within conceptual domain model and association strength
(provided confidence level), i.e. “if two classes have an association between
them, then instances of these classes are, or might be, linked.” (IBM, 1996)

Developing
conceptual domain

specific model

Association of
fragments with

concepts
Conceptual

Domain
Model

Fragments
are stored in
a repository

Repository

Change impact
prediction &

fragments
management using

associations

1 2

3

Refinement of
associations

4

Change
impact

confirmed

Figure 4.2 Main functional steps of the method

74 Chapter 4 Repository Objects

Step_O4. Refinement of associations. More precise dependency relationship is
captured by direct links between related fragments. Since that is not a trivial
task even in a small scope projects, we see it important to have them at
some certain stage of the project. Therefore, the last step of our method is
designated to facilitate direct linking.
Establishment of the direct linking is done in a few steps. The initial one is,

of course, the fragment association with a domain concept. Next, exploitation of
those relationships is a means for the change impact prediction and assessment
(as discussed in step_O3). Every change of an associated product fragment
produces a list of possibly impacted fragment. Then a responsible developer
(typically, a creator of possibly impacted fragment) investigates the change and
impact caused. If change impact prediction was proven, i.e., verified, then the
developer confirms change impact (dependency) between the two product
fragments. The statistics about confirmed and rejected change impact is stored in
the repository. After a certain threshold, an establishment of the direct linking
between those two fragments is suggested automatically. In this way, we are able
incrementally refine and establish direct dependency links between product
fragments.

4.2 Repository Support
The repository system simplifies the construction of information systems
engineering environments by providing a set of commonly needed facilities, like
integration components and support for higher level constructs that are not
commonly found in operating systems. Another purpose is to support the porting
of environments among different hardware configurations and operating systems.

The repository system provides facilities for incorporation of tools and thus
provide generic utilities that improve integration. Incorporation in this context
has three aspects: interoperability within life-cycle phases, interoperability across
life-cycle phases, and interoperability across a distributed development
environment.
Interoperability within life-cycle phases focus on the various models used
during one specific life-cycle phase in order to enforce consistency within each
phase. For instance, integrating DFD and ER models during the analysis phase
will ensure consistency between flows and datastores in the DFD and entities in
the ER model. This aspect of integration will increase productivity and quality of
the product developed in the particular phase (see Phase product in Figure 4.3)
of development life-cycle.
Interoperability across life-cycle phases focus on the specifications created by
the different tools that used in different phases of the development life-cycle. It is
desirable that output from one tool can be automatically supplied to another tool.
This may be realised provided that the concepts manipulated by the tools can be
related to each other. This may decrease the need for manual intervention and

4.2 Repository Support 75

eliminate a possible source of errors, to increase productivity and quality in the
development life cycle. Though it is important, it is difficult to do, as random
tools might be used in such type of projects.
Interoperability across a distributed development project improves
communication and coordination among stakeholders of the project. Different
developers are working on related sets of specifications. They need to
synchronise their work. When the specification sets overlap, the need for
communication and coordination increases.

Those three aspects defines the special need for accommodating huge
variety of different development objects and interrelating them at least at data
storage level, if not providing seamless transition from one to another tool.
4.2.1 Repository functions
During the development, many development objects of many different types are
defined, created, manipulated, and managed by a variety of tools that need to be
shared. In that context, main repository functions are as follows.

Version and configuration management. Product fragments are
constantly updated and the repository needs to store snapshots of that product
fragments at different times. Configurations allow the developer to group related
versions into sets that have a common purpose. Together, version and
configuration management support team development by helping developers to
manage cooperative activity.

Relationship management. By establishing different types of relationships
between development objects, developers can locate related sets of objects, and
can track dependencies in the deployed components.

Schema management. By providing facilities to create and modify object
types.

Query. By querying the contents users can browse the repository.

Special DBMS requirements for CASE. In addition to the features usually
supported by a DBMS as non-redundancy of data, data independence, queries,
real-time updating, locking, concurrency, integrity, etc., the CASE application
require special attention to the following areas: (1) handling multiple versions of
specifications, (2) maintaining dependencies among development objects created
by different tools, (3) enforcing integrity constraints to ensure that the database
remains consistent and meaningful, (4) providing flexible access of the
development objects.

4.2.2 Repository object types
Model in Figure 4.3 defines a repository and objects types to be stored in it.
Product is developed using system development tools (Syst.Dev.Tool), where a

76 Chapter 4 Repository Objects

system development tool can also be seen as product, when it is under
development. Every product development has a specific lifecycle consisting of
different phase type (e.g., business analysis, requirements engineering, design,
implementation, testing, etc). Each phase type has a distinct phase product (e.g.
requirements specification, design, code, user manual, and software itself), which
is result of particular lifecycle phase. A product is final result of the development
project, and it consists of the interrelated phase product.

Product fragment is a semantic piece of phase product. An information
system is viewed as a product composed of product fragments, which are of the
following types:

 Model fragments – sub-models of a conceptual model of the information
system being under development. Only the semantic content of the model is
stored, not diagram layout information;

 Diagrams – stores layout information of the conceptual model view.
Diagrams may exist in several different layout versions without affecting the
conceptual content;

 Code fragments – code modules (files);
 Document fragments – pieces of the documentation of the models and code
fragments.

RepositoryModule

use

access

Product
fragment

Product Syst.Dev.
ToolsLifecycle

Lifecycle type

Phase Type Phase Product

Versionable
objectdeveloped_by

have_a_
particular

{}

Req.Eng.

Design

Analysis

Testing

Deployment

Documenting

Coding

have_a_
particular

consists_of
is irreflexive

User

alter

use

stored
in

Project

result_in

Repository
object

Model

Diagram
layout

Code

Documentation

+

+

Non-versionable
object

Transaction
data

Initial object

Versioned
object

File type

Structured
Un-

structured
Semi-

structured

+ version of

+

have

Domain
model

+

describe

⊆

⊃

Figure 4.3 Main concepts of ISE

All these product fragments are stored in files either as structured (e.g., model
fragments and diagrams), semi-structured (e.g., code and document fragments)
and unstructured (binary, e.g., figures) information. Figure 4.4 illustrates
different types of product fragments. A model structure depends on a modelling

4.2 Repository Support 77

languages used, diagram structure reflects the basics of visual languages, code
structure is expressed in programming language and document structure reflects
common document architectures.

APM

A2

Register new a
patient

MD EPJ

A1

Find a
patient’s
record

MD EPJ

+

A2

Register
appointment

MD EPJ

Requirement
There may be zero or more visiting
records per patient and a visiting
record belong to one patient.

Pseudo code
Def patient_record(self, name):
 patient = null
 visiting_recod = null
 patient = find_name(name)
 if patient == null:
 patient = new_patient(name)
 if visiting_record=patient.get_record()==null

RML
Treatment

Patient Visiting
record

Figure 4.4 Different types of product fragments

Repository objects are either versionable or non-versionable. Non-versionable
repository objects are transactions data (the data is generated automatically
during the manipulation of the repository content). Versionable objects have file
structure type being structured (graph, e.g. model in XML), semi-structured (has
no clearly defined structure, but it is possible to reason about part of the
structure, e.g. text files and paragraphs) or unstructured (binary). Versionable
object in the repository is an initial object (i.e. an initial version of the
versionable object), and a version of the initial object or previous version.
Product fragment can be composed of smaller product fragments. Product
fragment is a versionable object.

Domain model is specific product fragment as it describes the domain of
the project and is used to inter-relate all product fragments by associating
versionable object with concept(s) from domain model to specify semantics of
the fragment.

The development tool accesses the repository through module to manipulate
the repository objects stored in the repository. Module acts as middleware
between the development tools and repository.

78 Chapter 4 Repository Objects

Product

Configuration

Product
fragment

Model
element

Document
fragment

Model
fragment

Code
fragment

Document
structural
element

Code
structural
element

Binary
fragment

⊆

Figure 4.5 Granularity and structure of product fragment storage

Figure 4.5 illustrates product fragments composition and storage structure in the
repository. Smallest unit in the repository is a model element, whereas the
biggest “container” is project, i.e. modelling is done within the scope of the
project. Meaning, that the project must have configuration and configuration
should be composed for the project. Configuration must contain a product
fragment, which could be empty. Product fragment itself is composed of
corresponding elements, e.g., document is composed of chapters, sections,
paragraphs; code fragment is composed from classes, functions.

Development objects are identified to be of a certain datatype. The
repository uses this information to store objects in an appropriate structure and
format. The repository maintains datatype information about stored objects, and
uses this information in order to convert between storage representation and
application-level data formats. For instance, only conceptual part of model
fragment is stored in tables, while layout changes are versioned, but stored in
complete file on file system.
4.2.3 Information about object
Figure 4.6 defines “enriching” versionable objects (development objects) stored
in the repository. Versionable object:

 has associated metadata, describing its properties, i.e. subset of Dublin Core;
 is associated to the concept(s) from domain model describing semantics of the
versionable object. Where concept is a constituent part of domain model, it is
used to relate all versionable objects and in this way organize and manage
them;

4.2 Repository Support 79

 is related to other versionable objects based on dependency between them
(through Direct_relationship);

 is described by attributes such as ObjectID, Description, Type, CreateTime;
 has associated trace info such as ID, Rationale, Change description, for
process traceability;

 might be discussed in a forum item attached to it;
 is related to earlier and following revisions.

Figure 4.6 Rich information about development object in repository

Both categorisation according to life-cycle phase development object belongs to
and domain model are treated as metadata, explicating the meaning of the
development object. User is a creator of an initial object and owner of versioned
object.

All these information is modelled as follows. Let I be a set of the internal
identifiers, N be a set of the names, and V be a set of the values, e.g. numbers,
strings, blobs, etc. Objects are modelled as triples defined below, where i∈I,
n∈N, and v∈V:

 Atomic objects as <i, n, v>, e.g. <i5, referent, “Versioned object”>.
 Link objects as <i1, n, i2> that model relationships between development
objects.

 Complex development objects (composition of development objects) as <i, n,
S>, where S denotes a set of development objects, e.g., <i9, modelFragment,
{<i3, referent, “A”>,<i4, referent, “B”>,<i3, justAlink, i4>}>

80 Chapter 4 Repository Objects

4.3 Namespace and Object Identity
Object identification is a crucial issue in computer science. Inappropriate use of
naming schemes can cause serious flaws in a repository design. To manage such
a diversity of development objects, descriptive information about the
development objects, and composition of the objects a robust naming schema is
necessary. A namespace is a set of names complying with a given naming
convention. The operations allowed on development object names are performed
in the context of a naming mechanism. Development object names are used to
refer to objects; to provide information about those objects; to locate
development objects given only their names; and to access those objects.

Bunge’s principle of nominal invariance (Bunge, 1977) states: “A thing, if
named, shall keep its name throughout its history as long as latter does not
include changes in natural kind – changes which call for changes of name.”
4.3.1 Requirements for object identification
In other words, Wieringa and de Jonge (1995) identify the requirements which
should be satisfied by an object identification system:

 Singular reference. A naming scheme N satisfies the singular reference
requirement if in each possible state t of the world, each proper name in
dom(Nt) refers to exactly one object in O (a set of all possible objects);

 Singular naming. A naming scheme N satisfies the singular naming
requirement if in each possible state t of the world, each object in range(Nt) is
named by exactly one proper name from V (value space).

Where domain and range of a naming relation OVNt ×⊆ are defined as follows.

{ },,:|)(tt NovOovNdom ∈∈∃=

{ }.,:|)(tt NovVvoNrange ∈∈∃=
In order to represent historical information adequately, additional two
requirements are imposed (Wieringa & de Jonge, 1995) as follows.

 Rigid reference. After each state transition of the world, each proper name
remains referring to at least the same object(s) as before.

 Rigid naming. After each state transition of the world, each object remains
named by at least the same proper name(s) as before.

Additional requirements for object naming in the context of objects composition
are brought up by (Ramazani et al., 1998). They are as follows.

 Should be possible to check whether two objects belong to the same
composition;

 Naming should reflect sharing of objects between compositions;
 Should be possible to reference from one composition to another.

Mainly there are two alternative ways to obtain global name uniqueness:

4.3 Namespace and Object Identity 81

 a flat namespace where the name uniquely identifies the development object
no matter where it is being used.

 a hierarchical namespace where names of development object are qualified
with the names of hierarchical superior development objects.

The simplest solution is a flat namespace. Though, hierarchical namespace would
allow bigger number of names for development objects and makes it easier to
manage names. For instance, development object identification used by Andersen
(1994) is encoded as follows.

)(.}{#.# Lλατ ><Α
Where A is abbreviated id for object, #.# denotes revision, τ identifies the
transaction, α identifies different abstraction, λ identifies revision number local
to the transaction, and L identifies change of layout.

Section 4.4.1 introduces our naming scheme to unique identification of
development object.

4.3.2 Co-reference and management of sameness
Here we will focus on the problem of co-reference. Co-reference is the problem
that arises when two or more names refer to the same thing/person: IJHCS and
Int.J.Hum.Comp.Studs; N.A.M.Maiden, N. Maiden and Neil Maiden.

Given a set of object, some of them might be the same. For instance, having
several photos we can find out that a person on them is the same. We can say that
person in photo A1 is the same as person in photo A2, then somebody else may
notice that person in photo A3 is the same as person in A2. It is easy to establish
the “sameness” links between them (e.g., see left part of Figure 4.7). But if later
we discover that A3 is not the same as A2, what should we do with the link
between A1 and A3. To facilitate management of co-reference, a new object is
created and equality relations are established between real objects and the
reference object. A common (proper) name (e.g., ‘A’) can be used, though that is
not mandatory. The reason for having alias names is discussed within the context
of model fragment management in chapter 5.

 A1 A2

‘A1’ ‘A2’
same A3

‘A3’
same

same

A1 A3

A

‘A’equal equal

A2

Figure 4.7 Management of “sameness”

82 Chapter 4 Repository Objects

4.4 Versioning Framework
Version and configuration management keeps track of product fragments’
versions developed by several developers working in a geographically distributed
development environment. A version of a product is an immutable, identifiable
edition of a product. A product is composed of a number of product fragments. A
product fragment may either be a hierarchical composition of other (sub-)
fragments or a flat structure with no hierarchical relationships among the (sub-)
fragments. A version of a product is a composition of versions of product
fragments. We distinguish between 4 versioning dimensions:

 historical versioning, i.e. revisions;
 logical versioning, i.e. variants/branches (alternate, substitute, option);
 view versioning, e.g., informal, semi-formal, formal representations of the
same model fragment; as well abstracted or filtered views;

 layout versioning - re-location of model elements, in model fragment case. A
new layout version does not change the meaning of the model fragment, just
redraws it in a different (more comprehensible) way.

4.4.1 Version identification
Each developer should have direct access to all needed objects. But changed
version should be kept with access forbidden for other developers during
modification, because the state of fragment is inconsistent in a modification
phase. Recall situation discussed in chapter 2 where n developers change the
same object concurrently, this object should have n+1 different copies (Estublier,
2001). It means that each developer needs the private copies of fragments.

Versions are usually identified by identifier consisting of the object name
and a revision id. Applying this system to development objects yields dev_obj.0,
followed by dev_obj.1, dev_obj.2, etc. This way of identification functions well
until variants are introduced. The system degenerates quite quickly when variants
are common (Fidjestol, 2005). Usual way of handling variants is to modify the
revision id to include more information, for instance, inclusion of branch
identifier and a new generation count yields dev_obj.2.3.6. This revision id
identifies sixth revision of the third variant of revision two of a particular
development object. Revision id will be extended by two new numbers if a new
variant of this development object will be needed. It has been argued by Fidjestol
(2005) that this kind of identification system is not practical in a “variant-
friendly” environment and in a system where a finite length of the revision id is
preferable, for instance, a system implemented in a RDBMS.

Using a direct “version of” relationship instead of a generation count will
help to solve the above described problem. From project management
perspective the product is treated as consisting of families of development object
(product fragments) versions. The content of the object is not interested from the
project management point of view. It is important to manage versions. Usually

4.4 Versioning Framework 83

project consists of its members, its development objects and its configuration that
is understood as a grouping of object versions for various development
processes.

Figure 4.8 Object identity

Each development object may exist in several versions. All versions of an object
present different attempts from different developers at different times to design a
specific development object or fragment. As all versions represent evolutionary
snapshots of the same basic development object, all versions are related. The
relationship between two versions is either a revision or a variant. A revision
reflects a development history where the most recent version replaces older one.
A variant reflects development history where two versions co-exist one replacing
other. A collection of all related versions of the object is called family (Carlsen,
1997). In order to place a development object in a version graph, we describe
every development object using a triple <object, family, parent>, see Figure 4.8
and Figure 4.9.

Family A

Family C

Family B

<a, a, ->

<b, b, ->

<foo_b, b, b>

<bar_2b, b, bar_b>

<bar_b, b, b>

<c, c, (<a,a,->/<bar_b,b,b>)>

<bar_c, c, c>

<foo_c, c, bar_c><foo_2c, c, bar_c>
Figure 4.9 Object family and merge of objects

84 Chapter 4 Repository Objects

Since new revisions are constantly introduced, to manage variety of information
denoted in Figure 4.6, a flexible linking mechanism is necessary, in order to
connect new versions. Identifying objects (model elements) by unique family id,
i.e. revising an object A (v0.0) to next version (v0.1) does not change it’s family
belonging, i.e. family id is kept the same. Consequently, describing relation
between objects A and B, i.e. BARAB ×⊆ , using object family id will preserve the
relation between particular versions of objects A v0.1 and B v0.0

A

A

B

V0.0

V0.1

RAB AxB⊆

RAB AxB⊆

V0.0

Figure 4.10 Family id and relationship connecting objects

4.4.2 Composition identification
We extend naming scheme by a composition id, actually family id of complex
object. For instance, Figure 4.11 illustrates possible three-level composition,
where object A is composed from object B, B from C and C has atomic object
(element) D.

Figure 4.11 Object composition

By extending earlier mentioned object identity triple to quadruple: <object,
family, parent, Composition>. Composition here is a set of family ids of complex
objects (compositions) where a particular object is included. The composition in
Figure 4.11 is described as follows.

There is an initial version of object A <a, a, -, {}>. Object B is included in
the object A <b, b, -, {a}>. Object B is composed from object C <c, c, -, {b}>
that is composed from object D <d, d, -, {c}>.

In this way we are able to propagate change to compositional object, after a
component has been changed, i.e. new version of object D will automatically

4.4 Versioning Framework 85

create new versions of C, B, and A. This is discussed in chapter 5 in context of
model fragment reuse in (import to) other model fragments.

Every product fragment (development object) is under control in our
versioning framework, in addition, structured product fragments have fine-
grained versioning control, i.e. all leaf-nodes in Figure 4.5 are under control of
the versioning framework.
4.4.3 Configuration identification
Authorised and temporary versions are distinguished. Authorized versions are
agreed baseline versions for further work. Temporary versions are created as
needed by the developers. When new authorised version appears, all temporal
versions could be discarded, or remain saved for the record.

During system development the project is reflected as a set of family trees.
Some development object versions of a family may be authorized, others not.
Some object versions may be consistent with others. Some object versions
represent the latest changes made. A developer must have the possibility to select
desired object versions from a family. Organization of development objects in
configurations make possible a consistency check with newly created object
relative to an existing set of consistent objects and provides the latest set of
authorized versions available.

In (Henriksen et al., 1997) it is stated five different properties of
configurations must be maintained during systems development:
Authorised. A configuration is authorised if and only if all of its objects are

defined as being authorized. An authorized configuration is also called a
baseline.

Consistent. The objects of a consistent configuration have to be consistent, both
relative to each other and as individual components. A configuration
remains invalid if it is not checked or if the consistency checker detects
inconsistencies.

Latest. Each object of a latest configuration must be the latest version of its own
family.

Owner. The property owner constrains the configuration to contain only object
versions owned by a given user. Authorized versions are considered as
owned by all project group members.

Project-wide. A project-wide configuration must include one object version
from every family within project.

Three configurations are important: 1) the latest project-wide; 2) latest
consistent; 3) latest authorised. The latest project-wide baseline reflects all new
developments in the project. Latest baselines are not supposed to be consistent,
but all new ideas since last logon are detected by inspecting this configuration.
Latest consistent baselines represent the most recent stable work. These
configurations are the candidates for authorisation. There may exist several latest,

86 Chapter 4 Repository Objects

authorised configurations, but usually exists one. This is the last configuration,
which the group agrees on, and it forms the official basis of all subsequent work.
Traceability technique between different versions of the product fragments with
incorporated configuration management facilitates extraction of relevant
configuration.

4.5 Summary
First we have presented an overall method and main concepts. Then we have
discussed variety of object types produced during the development life-cycle and
different additional information needed to better communicate the content of
various development objects. As a change is constant in such scale projects, have
introduced naming scheme for more flexible naming of versions, as well as
referencing object composition.

To summarise, the repository is vital in order to support systems
engineering in the areas as follows. Team development to facilitate developers to
manage concurrent activity on different versions and configurations of IS
development. Reuse to facilitate sorting, storing and locating relevant product
fragments. Dependency tracking to facilitate establishing and querying
relationships between product fragments. Tool interoperability to facilitate
developers to move easily between tools across the development life-cycle and to
manage related product fragments. Product fragments management to provide
metadata for a project and a library of product fragments.

 87

5
Model Fragment Management

“Many different views of the world may co-exist, each
view serving different purpose and/or different

people. No view is more correct than another because
each view serves a worthy purpose”

— Arne Solvberg, 1999.

As discussed in the previous chapter, our method is centred on the collaborative
effort on defining the domain model. The true collaborative aspect of modelling
is to enable discussions and awareness of issues and mismatches in the model
fragment among the modellers working on it. It is important to have a common
vocabulary as well as common understanding of a problem domain.

This chapter elucidates on a part of the method for model fragment
management in collaborative settings. Where teams of modellers work in parallel
on different parts of a common product model. The work is typically logically
and/or geographically distributed. The modellers contribute to the shared domain
model, either by posting revisions to previous models, or by creating new model
fragments. Either way, others’ work is impacted, as externalised knowledge
changes social reality.

The chapter is further structured as follows. First, we take a closer look at
the modelling process and define a framework for collaborative modelling. Then
we go through basic steps of conceptual modelling, i.e. externalisation,
internalisation, and commitment. Later, we present model configuration
management since the collaborative modelling support is centred on composition
of the work, instead of coordination as in the cooperative work. Before
summarising the chapter we list a set of requirements for model fragment
management.

88 Chapter 5 Model Fragment Management

5.1 Framework for Collaborative Distributed Modelling
In a distributed process, the variability of the model versions increases due to the
highly interactive and iterative nature of the development process and to the
different, sometimes conflicting, angles to a problem and solution taken by the
different stakeholders. Therefore, modelling process can be viewed as three
dimensions of requirements engineering (Pohl, 1993): agreement, representation
and specification dimension. The agreement dimension concerns reaching a
common view by beginning from a personal view; domain description moves
along the representation dimension typically from informal natural language
descriptions to more formal representations; the specification dimension is
traversed from opaque and partial views towards comprehensible and complete
view (model) of a problem.

Because of diversity of stakeholders involved, especially socio-cultural
distance between them (Agerfalk et al., 2005), the representation dimension is
very important in distributed collaborative modelling. Providing a support for
seamless transition from informal natural language descriptions of domain to
semi-formal graphical models and then, even further, to formal models would
facilitate an engagement to modelling process. Stakeholders without previous
modelling experience would most benefit from such support. Though it is an
important feature for modelling framework, we will not investigate its support in
this thesis. Here we focus on externalisation of knowledge and commitment to
the explicitly expressed knowledge (in a form of conceptual model). After a
model fragment has been created, it is eventually shared among the stakeholders,
and then the shared model fragment transits through three major states of
knowledge sharing identified by Hoppenbrouwers et al. (2005b). They are as
follows (Hoppenbrouwers et al., 2005b).
Aware – a stakeholder is aware of knowledge (model) shared by other

stakeholders. Then the shared knowledge (model) is internalised;
Agreed – a stakeholder decides whether agree or not to the shared knowledge;
Committed – a stakeholder decides to adopt her future behaviour according to a

particular knowledge (model).
The ultimate goal in distributed modelling is to arrive at a coherent, complete and
consistent description of the problem domain. Furthermore, all stakeholders
should commit to the common definition. Figure 5.1 illustrates a framework for
collaborative distributed modelling (inspired by (Pohl, 1993) and
(Hoppenbrouwers et al., 2005b)), and its three axes6 which are further elaborated
in this chapter.

The collaborative modelling framework is fulfilled with a modelling
activity that is further elaborated into more detailed iterative steps, as follows.

6 As discussed in this section, a representation dimension (axis) is important, but out of the scope of this
thesis. Therefore, the representation axis is excluded from the proposed framework.

5.1 Framework for Collaborative Distributed Modelling 89

Specification

Commitment

Agreement
Complete

Opaque

Personal view

Common view

Aware Committed
Figure 5.1 Framework for collaborative modelling

Step_M1. Externalisation. After a problem has been identified, it needs to be

described and modelled. This step concerns creation of the model
fragments, representing stakeholder’s view and interpretation of the
problem space, i.e., externalisation of own knowledge.

Step_M2. Internalisation. Here different views are compared, aligned and
validated against knowledge of other stakeholders. Discrepancies between
different views (model fragments) are negotiated and clarified.

Step_M3. Commitment. After agreement has been reached among the
stakeholders involved (i.e., amount of discrepancies between individual and
organisational realities has been minimized), then stakeholders explicitly
commit to the domain model.

The three dimensions of the framework are interwoven with the modelling steps
described above. Whole modelling cycle might be iterated several times for the
stakeholders to be satisfied. When knowledge of the modeller is first externalised
(specified in a model fragment) it usually presents an opaque and personal
viewpoint. The model fragment may be internalised only if other project
members are aware of its existence, i.e. the model fragment should be made
available for others in a common information space (a repository, in our case).
Then the model fragment is internalised, i.e. investigated and compared to own
perception by other stakeholders. Internalisation results in either agreement or
disagreement, both may be partial, i.e. stakeholders may find relevant only a part
of the model fragment. Either way, other stakeholders externalise their new
knowledge body by developing a new model fragment or refining the previous
model fragment.

That continues till complete, common understanding of the problem is
achieved. Naturally, stakeholders should commit to the collaboratively developed
model. This assumption is restrictive, as a common understanding (absolute
agreement) is hardly achievable in distributed settings, especially among socio-
culturally different stakeholders. Nevertheless, agreement can be achieved, if not
in a form of absolute, then pragmatic commitment.

90 Chapter 5 Model Fragment Management

For instance, in managerial (business and organization management)
science the importance of explaining and communicating the overall objectives
of organization to its members is vastly discussed (cf., Daft (1995) and Hatch
(1997)). Despite of that issue being addressed by top management, there are still
employees whom do not commit to the organisational objectives. Anyway, they
are able to work for the good of organisation (Poole & Warner, 2000), i.e.
pragmatically driven. Similarly, in a development project pragmatic agreement
and commitment are feasible and easily enforceable at a certain time point.

5.2 Externalisation
Externalisation as part of the specification dimension deals with the degree of
problem understanding. The dimension has the goal to improve an opaque
problem comprehension into a complete specification in a form of a conceptual
domain model. Every stakeholder externalises own comprehension in a model
fragment describing a particular concern within a problem space, i.e.
fragmentation of the domain in question. Main activities in this dimension are as
follows.
5.2.1 Concept specification
Concepts (among other things) are in general language independent (words
“bicycle” and “dviratis”7 denote the same concept). Concepts are mental or
logical representations of reality; they are related to other concepts. Usually,
concepts hold symbols but hold them for means of communication. Concepts
have intensions and extensions, for instance, “Evening star” and “Morning star”
that have different meanings (intensions) yet both refer to planet Venus
(extension).

Relevant domain concepts are specified during this stage. They are defined
in terms of their (cf., Bleeker et al. (2004)):

 Meaning, e.g., bicycle is a wheeled vehicle that has two wheels and is moved
by foot pedals;

 Relationships to other concepts:
 Compositional definition (Figure 5.2);
 Taxonomical (hierarchical relational) definition (Figure 5.3);
 Other relationships with varying semantics;

 Possible names used to refer to them, e.g., {bicycle, bike, dviratis}.

Concepts should have specified a domain specific human readable definition.
The purpose of such a definition is to provide explanation of the concept in a
natural language to other stakeholders. Goal is to utter as possible clear meaning
of concepts, achieve shared understanding of the concepts meaning, and have a

7 Lithuanian word for “bicycle”.

5.2 Externalisation 91

set of possible terms. A concept can have a number of textual expressions, which
may differ in their grammatical construction, terminology, and language.
Definition of synonyms here is an option, not obligation. We see it important to
allow users to use their own vocabulary and not be bound to some “standard”
vocabulary. Maintenance of proper concepts names and their synset as common
and private views on the model fragment are discussed later.

Figure 5.2 Compositional definition of concept “Bike”

Bicycle

Wheeled
vehicle

Motorcycle

Motor vehicle

Vehicle

Car

Transport

⊆

+

Vessel

⊆

+

Figure 5.3 Taxonomical definition of concept “Bicycle”

The purpose of concept specification here is to define a scope of domain using
terms which are acceptable for stakeholders, a kind of unified vocabulary for
stakeholders involved in a particular project. We target to create a lexicon for
both relational and non-relational concept, as in Figure 5.4.

92 Chapter 5 Model Fragment Management

Figure 5.4 Model element lexicon

5.2.2 Model fragment scoping
Purpose of a model fragment is to define a particular phenomena or a limited set
of phenomena in UoD. Similarly, a database view provides exactly that: users
specify a query that extracts a portion of database instances satisfying the query,
creating a specific view on the data in the database. Therefore, we call a part of a
model a model view or model fragment.

Figure 5.5 defines model being a set of the model fragments which is
composed from one or more model fragments. Model fragment is a statement
about a part of UoD and is composed of model elements which are modelling
constructs from particular modelling language defined by metamodel. Model
complies with its language. Model fragment may be composed from other model
fragments. Filtered views are generated from model fragments to enhance
comprehensibility.

⊆

⊆

Figure 5.5 Definition of model fragment

5.3 Internalisation 93

Further, Figure 5.5 defines model fragment having layout information, denoted
as diagram layout – a graphical presentation of a model fragment, composed
from graphical symbols, their position. All diagram layout have a model
fragment which graphical layout their represent. Graphical symbol and symbol
name are used to represent model element. Modelling constructs may have
graphical symbol to represent them.

A model is a sign system M=(L, C, R), where L is a lexicon. The lexicon
contains a set of lexical entries for concepts, Lc, and a set of lexical entries for
relations, Lr. Their union is the lexicon L=Lc∪ Lr. C - a set of concepts, where for
each c∈C, there exists at least one statement concerning c in the model. Finally,
R - a set of relations: a relation r (r ∈ R) specifies a pair (Domain, Range),
where Domain, Range ∈ C.

A model fragment (MF) is a subset of the statements in the model M: MF⊆M.
While a model element (ME) is one of the following: a concept, a relation.
Concepts are called atomic elements, while relations are complex elements.

5.3 Internalisation
IS engineering is often viewed as a kind of negotiation process. Different people
will use (slightly) different words for the same entities/relations in the same
situations (or domains). There are many ways in which the same domain may be
described. This issue is recognized, but the answer typically is simple, e.g.,
“make sure that people involved agree on it”. Usually, this is done by finding a
domain expert and giving her a power to decide what a domain looks like and
how to describe it. Additionally, discussion or negotiation between a small
number of stakeholders is often included. Anyway, a uniform domain description
is strived for at the end.

It is important to make feasible collaborative real-time modelling. An
extensive process of conceptual negotiation and gradual construction of a shared
conceptual model is often required to achieve agreement about a domain model.
In total, n (n-1) / 2 ways of integration are required for “n” views to be aligned
(i.e. Figure 5.6).

Figure 5.6 Amount of alignment needed

Underlying hypothesis of our approach is that given the same problem domain to
reason about, the model developed by different stakeholders will not only differ,
but as well will have some overlapping parts, i.e. some parts (views) in different

94 Chapter 5 Model Fragment Management

models are commonly shared. In order to integrate the distributed models, these
commonalities should be captured.
5.3.1 A method for model fragment management
The method for model fragment management consists of 3 basic steps (see
Figure 5.7):

Step_MF1 - Model matching and similarity identification. Model
integration typically involves identifying the correspondences between two
models, determining differences in definitions, and creating a new model that
resolves these differences (see section 5.3.2)

Model matching,
similarity

identification

Automatic

“Sameness”
identification

Manual
Correspondence

assertions Concept-
space

Composition of
model

Semi-automatic

1 2 3

Final model

Figure 5.7 Model fragment management: functional steps

Step_MF2 - “Sameness” identification. Model fragment owners (authors)

are responsible for verifying the mapping results point out the same concepts (see
section 5.3.3).

Step_MF3 - Composition of models. In this step model fragments are
composed based on “connection points” identified in previous step (see section
5.5).

5.3.2 Similarity Management
A main problem with words is that they may mean more than one thing; or
several words may mean the same thing. Since we adopt constructivistic view of
the world, we see that concepts equality identification is hardly possible (if at all
possible) without actual participation of their creators (modellers).

Here we see similarity identification as a means to relate different model
fragments, though we seek for the equivalence (sameness) of the concepts
denoted by different developers. Identification of sameness (identical concepts) is
not possible without a creator explicitly identifying whether a particular concept
specified by her/him does possess an anticipated meaning. Mainly two authors
(creators) need to approve or reject identified concept similarity. Approval would
mean an establishment of sameness relationship between concepts. Later
specifying the proper concept name, still allowing to keep personally preferred
term as an alias name for that concept. This is kept in a local version (personal)
model fragment.

Concepts descriptions (extensions) are provided by the involved
stakeholders. That supports a negotiation process about aligning stakeholders'

5.3 Internalisation 95

views and aim to reach a pragmatic agreement about domain conceptualisation. It
is noted by Hoppenbrouwers et al. (2005b) that “even if people are willing to and
capable of reading models thoroughly, text needs to be added. Models alone
never suffice.”

Here we adopt an iMapper system (Su, 2004) for concept mapping (e.g.,
computing concept similarity). The system is based on computing cosine
similarity based on concept feature vectors, constructed from extension of the
concepts, i.e. natural language documents. The iMapper system is extended by
adopting WordNet electronic lexicon (Miller et al., 1991).
5.3.3 Sameness management
Results of similarity calculation are available to the developers (creators) of
model fragments. Then they start negotiation, i.e. clarification of their intentions
when specifying the model fragment. The goal is to verify proposed mappings by
pointing out the same concepts and achieving agreement about the concept name,
if they used different terminology.

These two steps are iterated as many times as new fragments are signed-in
to the repository. Identification of “sameness” results in the common knowledge
layer or so called “concept-space”, where the commonly agreed concepts and
relations between them are placed. This layer is used to differentiate from the
local namespace, which is kept unique for each developer allowing to use own
vocabulary. This allows maintaining a local scope for the names in order to avoid
collisions with the names used by others. I.e. after having identified the concepts
being the same, despite of different term used to name them, the “equality”
relationship is established between local concepts named ‘bike’ and ‘bicycle’ and
the agreed concept named ‘bicycle’.

In a case when authors of different model fragments identify own concepts
being the same as colleague’s, the families should not be merged, as each of
developer might prefer to use different terminology. I.e., generic object ids
(family id) are preserved. The relations to agreed concept are established. For
instance, Figure 5.8 depicts above described situation, where two developers
have developed alternative models, one used name A, while another one
preferred to use A1. In Figure 5.8 is assumed that they agreed about the concept
name being A.

Halpin (2001) mentions the occurrence of homonyms in stakeholder
interaction, and proposes to approach this problem: “you should get
[stakeholders] to agree upon a standard term, and also note any synonyms that
they might still want to use” (Halpin, 2001). Actually, it is recommended that
lists of homonyms and synonyms from the domain are kept.

96 Chapter 5 Model Fragment Management

A A1

A A1A A1

A

V0.0

V0.1 V0.2

V0.3

V0.0

V0.1 V0.2

A

Family A
(generic obj id)

Family A1
(generic obj id)

same

Figure 5.8 Connecting two families

5.4 Refinement of concepts
An analysis of problem starts by forming a mental model of the problem at an
abstract level. This model later is refined to a concrete model as more
information is obtained (Loucopoulos & Champion, 1988). A domain model
should ideally be a product of a shared understanding of domain’s stakeholders
(Hoppenbrouwers et al., 2005a).

Here, we mainly focus on static (class) diagram which presents concepts
and their relationships. Hence, the integration refining issues include abstracting
concepts and refining concepts, adding and deleting properties of concepts,
adjusting types of properties, abstracting transitive relationships into high level
relationships and refining relationships into low level relationships. We define a
set of generic actions for the above mentioned refinement transformations.
Before formulizing those refining issues, we make some definitions. Let UoDI be
Universe of Discourse for integrated model, and UoDD – Universe of Discourse
for particular local model fragments. Then, CD is a concept used from a local
model fragment and CI is the concept in the integrated model. P(c) is the set of
properties of concept C and p is a property, p∈P. While, R(Ci, Cj) is the
relationship between concepts Ci and Cj.

Action 1. Abstraction of concepts. Concepts used in local models are
usually more concrete. Often, during the integration, super concepts are needed
to generalise those sub concepts, or even replace sub concepts if the sub concepts
are not important in an integrated model.

Let, CDi and CDj be two concepts from a model i and model j. Both
concepts are elements from the same domain (UoD). Then a concept CI from the
domain of integrated model will be a super-concept of CDi and CDj in the
integrated model.

5.4 Refinement of concepts 97

)C,Abstract(CC

)C C C C UoD(C C U C UC

DiDiI

IDjIDiIIIIDjIDi

=⇒

⊆∧⊆∧∈∃∧∈∧∈ oDoD
 Eq. (5.1)

Action 2. Refinement of concepts. There is a need to create new concepts,

when UoDI of an integrated model is broader than the one considered in the local
model fragments. Some of such concepts are created based on a relationship
between existing concepts.

))C,R(C ,Create(C

)UoDCUoDC UoD(CC UoD)C,R(C

DjDiI

DjIDiIIIIIDjDi

⇒

∉∧∉∧∈∃∧∈
 Eq. (5.2)

Action 3. Addition and/or deletion of properties of concepts. Certain

properties of concepts are ignored in the distributed model fragments as being
not important in a limited scope or in a certain viewpoint, but they might be
critical for an integrated model. On the other hand, certain concepts contain too
many details which are necessary in some isolated models, but inessential for the
integrated system.

)C AddProp(p,))P(CpUp(p IDI ⇒∉∧∈∃ oD Eq. (5.3)

)C DelProp(p,)Up)P(Cp(p DID ⇒∉∧∈∃ oD Eq. (5.4)

Action 4. Adjustment of types of properties. Types of properties usually

concern implementation oriented aspects, and have little effects on the semantics
of models. Meaning that possibly the same property has different types in
different models. In order to keep the consistency of integrated model, types of
the same property should be unified obeying implementation requirements of
system. Let Sem(p) be the semantics of property p and T(p) be the type of
property p.

))T(p),Adjust(T(p)T(p)T(p)Sem(p =)Sem(p DjDiDjDiDjDi ⇒≠∧ Eq. (5.5)

Action 5. Abstraction of transitive relationships into higher level

relationships and refinement of relationships into lower level relationships. A
transitive relationship is the semantic equivalent of a collection of normal
relationships (Egyed, 2003). The transitive abstraction relationship is the high
level relationship and a direct relationship which can not be refined is low level
relationship. With different requirements, perhaps only high level relationship is
enough while on other cases low level relationship is necessary. There are three
generic relationships – generalisation, aggregation and association, which are
supported by most modelling languages. The transitive abstraction rules for
different combination of three generic relationships are different. In (Egyed &
Kruchten, 1999), they developed a set of transitive abstraction rules for inference

98 Chapter 5 Model Fragment Management

of transitive relationships (e.g., classA-association-> classB<- aggregation-
classC ⇒ classA-weakAssociation->classC, meaning that, if classA has
association relation with classB, and classB is aggregated into classC, then the
resulting abstraction would be weak association between classA and classC),
which we do adopt for our purposes. Given the combination of R(CDi, CDj) and
R(CDj, CDk) satisfies one of transitive rules, the result would be R(CDi, CDk),
while R here is specified as either generalisation (RGe), aggregation (RAg) or
association (RAs) and parameters are non-transitive.

)C,R(C RuleSet)C,R(C)C,R(C DkDiDkDjDjDi ⇒∈∪ Eq. (5.6)

5.5 Model Composition Management
While the cooperative work support is centred on coordination of the work, the
collaborative modelling support is centred on composition of the work. Models
change just as the software code does. These changes are caused by changes in
the domain itself or in the conceptualisation of the domain (e.g., modeller’s
knowledge about the domain changes or the domain itself changes). Conceptual,
terminological and layout changes should be distinguished in model version
control.

Furthermore, model development in large projects is a dynamic process in
which multiple developers participate, releasing subsequent versions of a model.
Naturally, collaborative development of model requires tools that are similar to
code-versioning tools, and different at the same time. A new version of a model
is created in one of following ways: a) the stakeholders are adding information to
an existing model to make it complete and precise; b) earlier constructed model
fragments are included as part of larger model (fragment).

We define configuration being a set of revisions, where each revision
comes from a different object family, and the revisions are selected according to
a certain criterion.
5.5.1 Composition and manipulation of composition
Views may be overlapping (see Figure 5.9) and language constructs representing
the same object may appear in different model fragments. When user changes a
term in one view, the change should be propagated to other views as well.
Change itself and propagation of the change should result in a new version of the
fragments.

5.5 Model Composition Management 99

⊆

Figure 5.9 Different types of overlap of views

A A A

B
B B

C

C

Figure 5.10 Three different inclusions (compositions)

Figure 5.10 illustrates three different compositions of model fragments. They are
as follows.

 Inclusion. Two different ways are possible: copy or import operations. Copy
creates a duplicate a product fragment, i.e. creates a local copy that is a part of
new product fragment, i.e. similar to merge. New identity is created, just a
origin is preserved for future reference, otherwise it is a new object family.
While import uses the object in a composition, whenever imported object is
updated, new version of composed object is created automatically, i.e. change
of B implies change of A.

 Connected by the link. Model fragments B and C have nothing in common,
but they are composed into model fragment A by establishing the relation
between concepts, e.g., fragment B defining a kid being a person, fragment C
defines transport means, including bicycle. Then relation kid.rides (or
bicyclist) is established between concepts bicycle and kid.

c)R(b,A][CA][BC]c[cB]b[b ⇒⊂∧⊂∧∈∃∧∈∃ Eq. (5.8)

 Connected using “connection point”. This is done semi-automatically, after
authors have agreed about the sameness of concepts. In this case model
fragments have overlapping parts.

5.5.2 Semi automatic configuration
Filters. User can apply filters to model fragments to hide and show the concepts
of interest. The application of a filter can either modify the model fragment

100 Chapter 5 Model Fragment Management

which it is applied to, or create a new model fragment. System offers two kinds
of filters: inheritance and derived. The two inheritance filters make it possible to
show the sub-concepts and super-concepts of a particular concept respectively.
There are three derived filters: simple, composite.

Simple. This filter is applied to a concept to show all relations which the
concept is involved in, with the exception of the hierarchical decomposition. This
filter makes it possible to illustrate the concepts that are in some way related to a
specific concept at the same level of a particular abstraction.

Composite. When applied to a concept, this filter shows all the concepts
that are components of a particular concept through the aggregation. Moreover, it
applies the simple filter to each of these concepts.

Following is a brief description of three filter aspects, as given by (Seltveit,
1994).

Level. A filter is applied to either language- or model-level. A language-
level filter operates on the model constructs, while a model-level filter operates
on the statements of a model.

Inclusive/Exclusive. A filter may specify constructs to be either included
in the filtered view from the full view or excluded from the filtered view. Since
we only apply visual filters operating on the current user view of the model, we
may denote these aspects as hide/show respectively. None of the filters we apply
actually transform the underlying model. They can only create a configuration or
new model fragment.

Determinism and scope of effects. A filter is deterministic if it produces
the same filtered view each time it is applied to the same view. The scope of
effects of a filter is either local (only affecting constructs within the original
view) or global (effects propagating outside the view it operates on). We only
apply quite simple filters as a complexity reduction mechanism on a presented
view, thus all filters we apply are local to the presented view.

Extend view. When viewing a model fragment, user has the option of retrieving
and interactively composing a new model fragment. For instance, given a
particular concept (referent) appears in several fragments, user asks to return
composition of those fragments based on these concepts.

Figures below illustrate the view extension, where Figure 5.11 and Figure
5.12 are the input and Figure 5.13 is a resulting model fragment, i.e., extended
view. Here concepts ‘bicycle’ and ‘person’ are “connection point”, i.e. they are
identified as being similar.

5.6 Requirements for Model Fragment Management 101

Figure 5.11 Model fragment defining bicyclist concept

⊆

⊆

Figure 5.12 Model fragments describing owner relationship

⊆

⊆

Figure 5.13 Model fragment describing both concepts: bicyclist and owner

This new fragment exists as a configuration of model fragments or may be
checked in and stored as a new model fragment.

5.6 Requirements for Model Fragment Management
Based on the above discussion we envision the model fragment management to
support a set of requirements as follows.

 Maintain libraries of model fragments. Allow uniform access to models in a
library, provide pertinent information about each model, such as its authors,
domain, etc, provide search capabilities across all the models in a library,
allow browsing of the model fragment.

102 Chapter 5 Model Fragment Management

 Import and reuse model fragment. Enable users to extend and customize
model fragments developed by others.

 Provide support for model versioning. Provide mechanisms for storage and
identification of different versions of the same model fragment and for
highlighting differences between versions.

 Align and map between models. Define correspondences between concepts
and relations in different models.

 Merge models. Given model fragments, create a new composition (model)
that incorporates information from all the model fragments.

 Support automatic update across multiple models. Based on different ways of
composition discussed above.

Figure 5.14 summarises discussion in section 5.2 and denotes six different ways
of concept refinement (definition) that should be supported by a modelling
environment.

Bicycle

Bicycle

VelocipedeMountain
bicycle

Tandem
bicycle

+

Wheeled
vehicle

⊆
Bicycle

Handlebar

Seat

Wheel

Frame

2

Synset={bicycle, bike}

Definition:
a wheeled vehicle that has two
wheels and is moved by foot

pedals

CarMotorcycle

+

Bicycle 1
2

6

3

4

5

Figure 5.14 Concept refinements

1. Natural language description (definition) of the concept;
2. Synset, i.e. synonyms;
Surrounding concepts:
3. Parent concept and siblings;
4. Just parent concept (hypernym);
5. Sub-concepts (hyponym);
6. Aggregation (if available), i.e. meronyms (part-of).

5.7 Summary 103

5.7 Summary
Here we have presented a framework for collaborative distributed modelling. The
framework consists of four dimensions, though focus has been put only on three
of them. Namely, specification, agreement and commitment dimensions. The
fourth is the representation dimension, that is important for distributed
modelling, but out of the scope of this thesis.

We argued for the necessity to explicate and define a concept in various
ways. That is prerequisite for successful collaborative modelling and further
model fragment manipulation. Namely, computation of concepts similarity as a
prerequisite for sameness identification and model fragment connection points
establishment. Similarity calculation is not a targeted contribution area in this
thesis, just adoption of some techniques earlier developed in IS-Group at NTNU.
We do not envision any exact matching (i.e., sameness identification) without
intervention of authors. It is just a basic mechanism to facilitate an agreement
among stakeholders by identifying preliminary similarity.

We have discussed different types of model composition and necessity to
automatically update the corresponding composition based on changed
component. Before summarising the chapter we have listed main requirements
for the modelling environment. The objective of this chapter is to lay down a
fundament for implementation of holistic modelling environment for distributed
development of IS.

104 Chapter 5 Model Fragment Management

 105

6
Product Fragment Management

“I can’t work without a model.”
— Vincent van Gogh

This chapter elucidates on basic concepts and ideas behind the framework for
product constituent fragments management. It focuses on elaboration of the
step_O2, step_O3, and step_O4 described in chapter 4.

As we have discussed in chapter 2, one of the main purposes of conceptual
model is to serve as a communication tool among participants of the IS
development process (Kung & Solvberg, 1986) to help to arrive at a common
understanding or agreement on what constitutes the problem domain (Schutte &
Rotthowe, 1998). Basic mechanism described in chapter 5 facilitates stakeholders
to reach a common understanding on the problem. In successive development
phases stakeholders need to exchange the development objects, i.e. communicate
their work. Hence, communication is successful if the receiver of communicated
information gains the same domain understanding as the sender of the
communicated information.

Every communication occurs by some medium. In our case the conceptual
model serves as that medium. The sender encodes the message by the medium.
Here a product fragment is described by a concept form domain model. The
receiver must then decode and interpret the product fragment based on the model.

Conceptual model and ontologies have been named as a tool for bridging
the gap between heterogeneous systems. Similarly, the information in databases
is only understandable in the context in which it has been created and used, i.e.
within a schema. In this chapter we describe the use of a conceptual domain
model for encoding the semantics of development objects.

106 Chapter 6 Product Fragment Management

6.1 Domain Model-based Content Management
“Data semantics is the relationship between data and what the data
stand for. In order to obtain mutual understanding of interchanged
data, the actors have to share a model of what the data represent.
Semantic interoperability is about how to achieve such mutual
understanding.” Solvberg et al. (2002), p. 41

Development of the approach is inspired by a linguistics’ method for describing
the meaning of objects – the semiotic triangle8 (Ogden & Richards, 1923). As our
approach being user-centric, we base it on the extended semiotic triangle
(tetrahedron) by FRSICO (Falkenberg et al., 1997). The extended triangle
reflects the constructivistic view. There are real-life objects (referents) observed
by a user. The user forms a conception of those observed phenomena. The
conception later is represented by a sign (term). This overall subjective
construction process is then socialised (see as well discussion in section 2.2.2 and
chapter 5) by a subsequent human communication process.

A concept here is referred to as the intention of what one wishes to describe
the meaning of. In our method, a concept gives connection between a fragment
and a referent, see Figure 6.1. The concept is used to annotate the fragment. The
referent is the real world or software world object one wishes to specify or
describe the meaning of.

ReferentFragment

Concept

annotates refers to

describes

User

Figure 6.1 Adapted semiotic tetrahedron

The underlying assumption here is that the richer semantic information the
product fragment could reveal, the more precise accounts of them could be made
and in turn the higher probability that high quality dependency between the frag-
ments will be discovered. The enrichment is conducted by associating each
product fragment with the corresponding concepts from a conceptual domain
model as in Figure 6.2. Concepts interrelated with each other in the domain
model and all the product fragments associated with domain concepts enable us
to derive semantic relationships between different fragments. The enriched
semantic information is added into metadata to abstract away from heterogeneous
representation details and capture information content. A conceptual model is

8 known as triangle of meaning or Ogden’s triangle, as well.

6.1 Domain Model-based Content Management 107

used to interoperate across different representation formats used in the process of
systems development. Product fragments association with the concepts from a
domain model adds on semantics of the fragment providing a view what part of a
problem domain the fragment describes, for instance, a purchase order.

In the domain model, all its concepts are related by generalisation
operation, aggregation or other relationships with varying semantics. We assign
weights to all those relations according to how strongly concepts are related,
based on semantic distance between the concepts. An algorithm for weight
computation is discussed in sections 6.2 and 6.3. Meanwhile, the product
fragments are linked to concept in the domain model. Relations between
fragments and concepts are based on the semantics of the fragments. After
having constructed such model and links, the hierarchical position of the concept,
semantics of generic relationships between concepts and specific-weighted
relations are used to relate heterogeneous fragments and to estimate likelihood of
impact from altering one fragment to another. Gradually, fragments linking
through domain model (marked by ‘-!-’ in Figure 6.2) are refined to direct (more
precise) dependency links between fragments (marked by ‘-?-’ in Figure 6.2).
Basically, two kinds of relationships are used in our approach: semantic
associations between fragment and concept; and direct relationships between
fragments based on dependency between them.

C4

C3

C5

C1

C2

F1.7
F1.2 F2.4

F2.5

Phase 1 Phase 2

- ! -

- ? -

Semantics,
i.e. domain

model

- ! -

Figure 6.2 Conceptual view of the method

To sum up, two major parts constitutes this part of the method. First is the
semantic enrichment process where the product fragments are associated with
concepts. Developers browse the domain model and interactively associate
(classify) product fragments by selecting model fragments (in terms of selecting
domain model concepts and named relations) that describe the contents
(semantics) of the product fragment. Second is the exploitation of enriched
semantics (the model itself and association links) to enable impact prediction,
and stepwise refinement of those associations to direct dependency links between
product fragments, see Figure 6.3. Namely, product fragments are direct linked,
i.e. direct dependency is explicitly denoted among fragments, or connected
through semantic association to domain concept(s).

108 Chapter 6 Product Fragment Management

Product
fragment

Direct
dependency

Semantic
association

Domain
concept

Domain
model

Relation

Confidence levelType
Figure 6.3 Product fragment dependency management

Associations can be seen as paths connecting two fragments. The paths can
involve any number of concepts in a domain model. In order to relate product
fragments we compute semantic relatedness based on relations between concepts
in a conceptual domain model (i.e. concepts similarity) and strength of
association between a product fragment and a concept (cluster). Next two
sections elaborate on a computational algorithm.

6.2 Semantic relatedness
Here we describe the way we compute semantic relatedness between concepts.
These values lay down a fundament to compute relatedness among the product
fragments and to estimate change impact. In our method we distinguish three
types of relationship in a conceptual domain model: generalisation
(specification) relationships; aggregation (part_of) relationships and other
relationships with varying semantics. However, these relationships have different
semantics and imply distinct semantic distances between domain and range
concepts. Weight of the relationship is represented as semantic distance between
the concepts. Therefore, the weights for different type of the relationship are
computed differently. The following subsections discuss the weight computation
for every type of the relationships.
6.2.1 Generalisation relationships
Generalisation relationship between concepts in a conceptual domain model
denotes hypernymy relationship between the words, i.e. one concept being more
generic than another. For instance, “a vehicle” is hypernym of “train”, “airplane”,
and “car”. Concepts placed lower in this type of hierarchy are specialisations of
those higher ones in the hierarchy. Figure 6.4 depicts a concept “wheeled
vehicle” which is the highest concept in this particular hierarchy, thus, most
general. Contrary, concept “velocipede” possesses more precise meaning than
“wheeled vehicle” or “bicycle”. It is obvious that a sub-concept (hyponym) is a
specialisation of a super-concept (hypernym) and has more precise meaning.
Since properties of a super-concept are inherited by a sub-concept, alteration of a

6.2 Semantic relatedness 109

product fragment associated with a generic concept will more likely have an
impact on fragments associated with specific concepts (sub-concepts) than other
way around.

In order to adjust concept weight in a generalisation hierarchy, we define ci
being a concept i at hierarchical position HPi in a path P. A concept weight cw
is defined as follows.

H
HP cw i

i = . Eq. (6.1)

Where |H| is total height of the hierarchy within path P, where the highest
concept hierarchical position is equal to 1. For instance, the concept “car” weight
in Figure 6.4 is 0.75, as its HP=3 and |H|=4, whereas, the concept “vehicle”
weight in the same hierarchy is 0.25.

A path length is defined as a function of various intermediate weights. We
define the path length pl in the hierarchy H as follows.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−−= ∏

=

||

1

)1|(|1
c

i
iH cwcpl . Eq. (6.2)

Where |c|-1 is the total number of edges between nodes in the hierarchy H. To
illustrate this, consider the path from “bicycle” to “vehicle”9 in Figure 6.4:

56.044.01
3
3

3
2

3
121 =−=⎟

⎠
⎞

⎜
⎝
⎛ ×××−=−vehiclebicyclepl .

While a path length from “scooter” to “bicycle” is equal to 0.72, showing that
concepts “bicycle” and “vehicle” are closer semantically than “scooter” and
“vehicle”.

There are two restrictions for the above introduced calculation of path
length. First, a type of specialisation - overlapping and disjoint specialisations.
For instance, semantic gap (distance) between disjoint concepts “car” and
“bicycle” are bigger than between “scooter” and “motorbike”, which are defined
as overlapping concepts. Second, a direction of inheritance. A concept inherits
properties of its super-concept, not contrariwise. This restriction is important
when computing change impact probability. For instance, if a product fragment
specifying requirements for a speed of car (i.e. associated with a concept “car”)
has been altered, there is less probability that product fragments associated with a
concept “wheeled vehicle” will be impacted by this change. Conversely, change
of requirement restricting speed of wheeled vehicle most likely will have an
impact to the product fragments associated with a concept “car”.

9 Note, that |H| in this case is equal 3.

110 Chapter 6 Product Fragment Management

In order to resolve these two restrictions, we introduce two coefficients with
intention to discriminate semantics in the above discussed cases as follows.

abb) is_a(a,
ba b) is_a(a,

,0.1
,5.0

k

disjoint if
goverlappin if

 1.0,
 0.8,

k

D

S

→∧
→∧

⎩
⎨
⎧

=

⎩
⎨
⎧

=
. Eq. (6.3)

Where kS is a coefficient used to adjust weight for a specification type. Namely,
it is used to discriminate between overlapping and disjoint generalisation. A
coefficient kD is used to adjust weight based on a direction when traversing
generalisation hierarchy, i.e. given is_a relationship between concepts a and b
where a is a sub-concept of b, then weight for the path a -> b will be adjusted by
a coefficient 0.5.

Finally, total length of a path (semantic distance between concepts related
by generalisation/ specification hierarchy) is computed as follows.

HSDH plkkTPL ××= . Eq. (6.4)

Figure 6.4 Generalisation relationships

6.2.2 Aggregation relationship
Aggregation relates object to the components that make it up via the “part_of”
relationships. We treat concepts (components) involved in an aggregation as very
close semantically, since they compose a whole. Some components in
aggregation are necessary for object to exist. For instance see Figure 6.5 a) part,
a bike cannot be totally functional without a frame, handlebar and wheels, while
a seat is not compulsory though preferable component. Consequently, we assign
smallest value equal to 0.1 (closest semantic distance) for the strongest “part_of”
relation in the aggregation (see coverage based ranking of “part_of” relations in

6.2 Semantic relatedness 111

Figure 6.5 b) part), i.e. full coverage on both ends of the edge. The distance for
other relations are increased by a step of 0.05.

Figure 6.5 Importance of aggregation

However, aggregation alone does not capture any functional dependency among
components. For instance, there is no information in Figure 6.5 that would
indicate that wheels are connected to the frame. This information would even
further decrease semantic distance between these two components. Therefore,
every direct relationship between elements of aggregation contributes to
decreasing the distance by 0.1. Formally, this is defined as follows.

Given concepts a, b, c belonging to a model fragment MF and concepts a
and b being components in aggregation of a concept c, there is a path between a
and c and a path between b and c, consequently, there is one path between a and
b.

[] () ()[] b)path(a,!cb,pathca,pathb]a[cMFcMFbMFacbacba ∃⇒∃∧∃⇒×=∧∈∧∈∧∈∃∃∃∀∀∀

Consequently, an aggregation path weight AW is computed as follows.

∑
=

=
]2,1[i

ipath kAW . Eq. (6.5)

Where ki value depends on importance of a component in an aggregation, i.e.
coverage specified on edge as follows, see ranking of coverage in Figure 6.5.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

×
×

×
×

=

veragepartial_coveragepartial_co
veragepartial_coagefull_cover

agefull_coververagepartial_co
agefull_coveragefull_cover

ki

if
if
if
if

,25.0
,20.0
,15.0
,10.0

Given concepts a, b, c belonging to a model fragment MF and concepts a and b
being components in aggregation of a concept c, and a direct relation between a
and b, then there is a path between a and b.

[] ()[]bapathR(a,b)bacMFcMFbMFacbacba ,][∃⇒∃∧×=∧∈∧∈∧∈∃∃∃∀∀∀

112 Chapter 6 Product Fragment Management

This path between a and b identifies concepts a and b being semantically closer,
and a total weight for an aggregation path TAW between them is refined as
follows.

relationdirpath kAWTAW _−= . Eq. (6.6)

Where kdir_relation=0.1 as discussed above.

6.2.3 Other relationships
Above defined computation of a semantic relatedness is based on semantics of
relationships in a model. Result of the equations is dependent on correctness of
model. For instance, having defined a concept “transport” and having skipped
concepts “wheeled vehicle” and “vehicle” would return semantically incorrect
value. Though a numerical value is rather relative and is subject for
interpretation. For our method, this would not be a major drawback, as all
weights might be adjusted manually during ISE process and might be negotiated
among stakeholders while modelling.

However, in order to strengthen precision and reliability of computed
weights, as well to be able to calculate semantic distance between concepts
related by other relationships we have adapted an iMapper approach (Su, 2004)
originally created for concept mapping (e.g., computing concept similarity). The
system is based on computing cosine similarity based on concept feature vectors,
constructed from extension of the concepts, i.e. natural language documents, or
textual descriptions provided by modellers or access from the WordNet database.

In order to compute a semantic distance (SD) between concepts having
associated textual descriptions (extensions) or linked by other type of
relationships we use an equation as follows.

()

() ()∑∑

∑

==

=

×

×
−=

×
×

−=−=
n

i

b
i

n

i

a
i

n

i

b
i

a
i

ba

ba
ba

ba

CC

CC

CC
CCCCsimSD

1

2

1

2

1
),(11),(1 . Eq. (6.6)

Where, Ca and Cb are feature vectors for concepts a and b, n is the dimension of
the feature vectors, |Ca| and |Cb| are lengths of the two vectors. Result of
sim(Ca, Cb) is deducted from 1 in order to convert semantic similarity value
to represent semantic distance. Recall that our method is based on semantic
distance between concepts and product fragments, where smaller value shows
concepts (product fragments) being semantically closer, i.e. contrarily to
semantic similarity value, where higher values show concepts being more
similar.

6.3 Relatedness and Impact Assessment 113

6.3 Relatedness and Impact Assessment
In this section we discuss an overall algorithm used for computation of the
semantic relatedness of the product fragments, i.e. Dijkstra algorithm for shortest
path using Weighted Graphs. The above defined formulas for semantic
relatedness computation result in weighted graphs. Before introducing the
algorithm and illustrating the overall technique for change impact assessment, we
revisit an activity of product fragments association with concepts from a domain
model, i.e. step_O2 briefly described in chapter 4.

6.3.1 Association of product fragments
Product fragments are uploaded to the repository and related to the structure of
problem, i.e., they are associated with one or more concepts from a domain
model. Developers can specify a confidence level for every association, e.g.,
specifying the strength of association. For usability sake we use categorical
ranges for confidence levels instead of numerical. Three confidence levels are
defined. They are as follows. High confidence level of association corresponds to
numerical value of 0.2; medium is represented by 0.5 when computing overall
semantic relatedness and low confidence level is equal to 0.8.
6.3.2 Weighted Graphs
Having above defined and computed weights, conceptual domain model is
processed as weighted graphs. The shortest path algorithm is used to compute
which fragments are most likely to be impacted.

G is a weighted graph. The length (or the weight) of a path P is the sum of
the weights of the edges of P. That is, if P consists of edges e0, e1, …, ek-1 then
the length of P, denoted L(P), is defined as

∑
−

=

=
1

0
)()(

k

i
iewPL

.
Eq. (6.7)

The distance from a node v (an altered product fragment) to a node u (a
possibly impacted product fragment) in G, denoted d(v, u), is the length of
minimum length path from v to u, if such path exists. We calculate a shortest
path using Dijkstra algorithm for single-source shortest path (Dijkstra, 1959)
from v to each other node in G, treating the weights on the edges as distances.

Once all values are computed, they are normalised to fall into range of
[0,1]. Normalised length NL of the path P between two particular product
fragments is calculated as follows.

))(max(
)(

)(
PL

PL
PNL j

j =
.

Eq. (6.8)

114 Chapter 6 Product Fragment Management

Eq. 6.8 returns a semantic distance between two product fragments in a range
[0,1]. Smaller value indicates particular product fragments being semantically
closer than those with a bigger semantic distance, i.e. value returned by Eq. 6.8.

Algorithm 6.1 presents an overall computation of weights between concepts
and product fragments. First, a semantic distance is calculated between every pair
of concepts based on Eq. 6.6, i.e. using provided textual descriptions for or
associated documents with every concept. If textual resources are not available,
then a semantic distance is calculated based on relationship type connecting
concepts, i.e. either generalisation hierarchy or aggregation. Manual intervention
and specification of weight by hand is necessary when the algorithm is not able
to return value for the semantic distance. Later, a path length is computed
between an altered product fragment and other associated product fragments (Eq.
6.7), finally values are normalised according to Eq. 6.8.
Algorithm 6.1 Semantic distance computation between concepts.
Variables MF – model fragment;

C – a set of concepts in a model fragment MF;
TRc – textual resource for concept c (concept extension), where c∈C;
H – hierarchy of concepts, i.e. concepts related by generalisation/

specialisation, where H⊆MF;
A – aggregation relationship;
PF – a set of product fragments associated with model fragment.
PFC – a set of changed product fragments, such as PFC⊆PF.

Function ∀ a (a ∈C):
 ∀ b (b ∈C):
 If ∃R(a, b):
 If TRa≠0∧TRb≠0:
 W(a,b)=sim(a,b) //i.e. Eq.6.6
 Else if R=H:
 W(a,b)=TPL(a,b) //i.e. Eq.6.4
 Else if R=A:
 W(a,b)=AW(a,b) //i.e. Eq.6.5
 Else W(a,b)=n/a∧ error_message(“weight for R(a,b) not defined”)
 //manual resolution is needed

∀ pfc (pfc∈PFC):
 ∀ pf (pf∈PF):
 Return L(pfc,pf) //i.e. Eq.6.7

Find max(L)
∀ l (l∈L):
 Return nl=l/max(L) //i.e. Eq.6.8

6.4 Impact Notification and Direct Dependency Association 115

6.4 Impact Notification and Direct Dependency Association
Impact notification is based on the normalised values of the path length between
product fragments as described in the previous section. In order to control
amount of notifications sent to stakeholders, we introduce a procedure of
sequential impact notification based on dependencies between phase products.
The procedure is discussed in next sub-section. Direct dependency association
based on statistics of impact notifications is discussed after.
6.4.1 Impact notification
Though all the related product fragments are associated with the same domain
model concept, we still need an order of notification. Too avoid too many
notifications we define interdependencies among the phase products (as
discussed in chapter 4). For instance, if there is a change in the implemented
code, which changes something in the design, this does not necessitate a change
in the requirements. Thus, as explained in Figure 6.6, the requirement fragments
that are related to the changed code fragments do not necessarily have to be
investigated for possible impact, since the requirement fragments directly
influence the fragments of design and test scenario.

Figure 6.6 illustrates configured impact notification sequences and
directions (denoted by a solid line). Whereas, dotted lines illustrate a scenario as
follows. Consider an altered requirements statement (a fragment of requirements
specification). First round of notification will include only test scenarios and
design fragments. Second, if impact on design fragment will be confirmed, then
algorithm will proceed further, i.e. providing notification about possible impacts
on code fragments, and so far.

X

Test scenario

Requirements

Design

Code

User manual

1

1
2

3

3

Figure 6.6 Notification sequence of possible change propagation scenario

Note, that alteration of user manual according the notification scheme in Figure
6.6 will have impact only on related user manuals (self-dependency relationship
is excluded for the figure). In this way the amount of generated change impact
notifications is reduced.

116 Chapter 6 Product Fragment Management

6.4.2 Direct dependency association
As discussed in chapter 4, every change impact needs to be investigated. Every
change notification is verified and either confirmed or rejected. This decision is
logged. Algorithm 6.2 is used to compute candidates for direct dependency
linking. For each pair consisting of one altered product fragment and one
possibly impacted product fragments an amount of confirmations and rejections
is counted. If impact notifications for a particular pair of product fragments has
been confirmed at least 3, then a ration between confirmed and rejected
notifications is controlled. I.e., the amount of confirmations should be at least
twice bigger than the amount of rejected impact notifications for a particular pair
of product fragments.
Algorithm 6.2 Statistical analysis of the log of change impact notifications
Variables PFC – set of changed product fragments;

PFI – set of impacted product fragments.

Function ∀ pfc (pfc∈PFC) in impact_history:
 ∀ pfi (pfi∈PFI) in impact_history:
 Cpfi = Count how many pfi are confirmed
 Rpfi = Count how many pfi are rejected
 If Cpfi > 3 and Vpfi/Rpfi > 2:
 ∃ direct_dependency(pfc, pfi)

6.5 Evolution of Domain and Change of Domain Model
It is acknowledged that product development is a wicked problem, where the
problem itself is never completely defined before its solution is developed
(Solvberg & Kung, 1993). Here we define straightforward scenarios to control
changes in domain model. These strategies deal with re-associating the product
fragments because of changed concepts.

When having associated product fragments, deletion of the concept in
domain model will cause a need to re-associate product fragments. This is done
either by automatically associating product fragments to more general concept
and lowering the confidence level of a particular association. This scenario is
applied only to concepts related by generalisation or aggregation relations. Other
scenario is to keep a structure of the domain model untouched, just freezing the
deleted concept, not allowing to associate new product fragments.

6.6 Application Scenarios
Here we discuss additional application scenarios for the method. The intention
here is to indicate areas where the method is useful.

Maintenance. Given associated product fragments to a conceptual domain
model, we able to more efficiently estimate an impact of any new requirement.
Since it is easier to associate a new item with a domain concept and get an

6.6 Application Scenarios 117

overview of possible impacts, then investigate a huge set of product fragments
for possible dependencies. Amount of concepts always will be smaller than
amount of product fragments, even if a domain model is huge and contains
thousands of concepts.

Control of the project. Amount of product fragments (recently) associated
with particular concepts identifies where most of work is undergoing, i.e. what
part of problem has a focus (currently). This allows project manager to distribute
resources more equally or prioritise other parts. Project manager uses domain
model as a “map” for planning and controlling a project. We define a metric to
calculate a focus of a concept Ci. The focus is defined as the number of product
fragments (PF) associated with a concept Ci in a domain model compared to the
total number of product fragments associated with a domain model.

()
PF
PFCF i

i
||

=

Eq. (6.9)

Control of solution boundaries. Consider a case with a broad domain and a

correspondingly big domain model. In such a situation it might be decided to
computerise only a part of problem domain. Then if product fragments are
associated with domain model concepts outside the designated solution area (see
Figure 6.7) – it is a sign that solution might be outside the problem area.

[].m_modelComp_systepfm_modelComp_systecc)n(pf,associatiopf
PF,pf

el,Domain_modc
el,Domain_modm_modelComp_syste

∉⇒∉∧∃∀
∈
∈

⊂

Figure 6.7 Sketch of domain segmentation

Though, this scenario is only applicable having a robust mechanism for
automatic association of product fragments to concepts. This issue is further
elaborated in chapter 9 under discussion about future improvements.

118 Chapter 6 Product Fragment Management

6.7 Summary
In this chapter we have discussed use of conceptual domain model for
explicating semantics of product fragments by associating the product fragment
to corresponding concept (cluster). Then based on these associations and intra
model relation (model structure) we calculate semantic relatedness of associated
product fragments. The relatedness is calculated using Dijksta’s shortest path
algorithm.

We are dealing with two generic relationship types, i.e., direct (explicit) and
associations (implicit) dependency relations. The latter (implicit) are stepwise
refined to the former (explicit) by the use of accumulated impact history.

Here we propose to use conceptual models not only to guide the design of a
system, but also to actually access and manage information produced during IS
engineering. Semantic associations of development objects with a concept from a
domain model are intended to communicate the meaning of development objects
between stakeholders.

All weights and the way to compute them need to be validated empirically.
Most likely, they will need to be tuned for specific settings. That is one of the
future works.

 119

7
Realisation of the Method

“There comes a time when one must stop suggesting
and evaluating new solutions, and get on with the job

of analyzing and finally implementing one pretty good
solution.”

- Robert Machol

The method, described in the previous chapters, has been applied in a prototype.
The prototype has been implemented to verify whether the earlier described
method is applicable solution. In this chapter we will outline architecture and
design of the implemented prototype. The discussion is focused on functionality
specification rather than technical details.

The chapter is organised as follows. First the brief account is given to the
environment in which our work has been situated, namely describing the relevant
earlier built components. Second, the architecture of our implementation is
outlined and discussed. Third, design and main functionality are overviewed.

7.1 Components
An implementation of our method builds on the components earlier created in IS-
group. Here we discuss how they are related to realisation of our method and
implemented prototype CO2SY10 (COOperative SYstem).

The main constituent parts for our implementation environment are
illustrated in Figure 7.1 and are discussed in details below the figure. Briefly, the
modelling environment is used to model domain, in particular RML editor has

10 pronounced as ‘cosy’.

120 Chapter 7 Realisation of the Method

been used for the domain modelling part of the method. Models are used by
iMapper and CnS client for their own purposes, see respectively Su (2004) and
Brasethvik (2004). In our method iMapper is used to calculate initial mappings
between different views (model fragments) as described in chapter 5. CO2SY
repository system is made to store necessary information for internal purposes of
both, iMapper and CnS systems, i.e. model fragments, concepts extension
(classified documents), mapping results and lexicon. Output of these systems are
stored and interchanged in XML format. Next, the components are elaborated in
detail.

Figure 7.1 Components of method realisation

7.1.1 The IGLOO Framework
The IGLOO framework for cooperative product development (Farshchian, 2001)
is defined as an “operating system” for cooperative support. IGLOO can be used
for integrating already existing tools into a coherent cooperative environment.
IGLOO offers shared workspaces, both synchronous and asynchronous
awareness mechanisms as well as annotation mechanisms. IGLOO framework
for cooperative work has three basic service layers. A short description of each
layer and the types of their services follows below.

Product Layer is in charge of maintaining a shared product space. Shared
product space is a virtual space where a group of cooperating users can make
available and share their product fragments. Product Layer provides services for
inserting new product fragments into the shared product space, for modifying the
fragments in different ways, and for creating arbitrary relations among the
development objects. Actually, product layer is not meant for storing and
processing product fragments, but merely for sharing them. This means that the
users decide how much and what aspects of a product fragment they want to
share (normally those aspects that are necessary for the cooperation). The
relations among the product fragments are generic relations that can be
specialized into product-specific relations (such as part-of or dependency

7.1 Components 121

relations) or subscription for notification of certain events. Product layer supports
opportunistic communication among awareness producers and consumers.

Cluster Layer is the intermediate level between a large shared product
space and small groups interacting with this space. Clusters supply centers of
interaction with shared product information. Clusters are user-defined collections
of development objects from the shared product space (product layer) that are
considered by a group of users to be important for performing a task. Cluster
Layer allows its users to create clusters, and to customize the clusters’ contents
(i.e., which objects that are part of the cluster) and form (i.e., how the objects
should be represented).

In addition, cluster layer allows a group of users to share a cluster and its
content, and to have access to product awareness that is generated by product
layer. Clusters are created in a way to provide both, focus (by selecting only a
subset of existing product fragments from the shared product space and hiding
the other fragments) and overview (by allowing the users to monitor product
fragments external to a cluster).

Workspace Layer provides a medium for informal cooperation in small
groups of users working on a focused task. A shared workspace provides the
medium for a centre of interaction. Each shared workspace in IGLOO may
consist of any number of clusters. A shared workspace has in addition access to
the shared product space through the clusters within the workspace. In this way
the underlying shared product space is used as a unifying component among all
the shared workspaces. Each shared workspace can decide to visualize the
clusters and the development objects from the shared product space in different
forms.

Unfortunately, implementation of the IGLOO framework did not persist.
Therefore, we had to adopt and build CO2SY based on the underlying ideas of
theoretical IGLOO framework (Farshchian, 2001) in order to support cooperation
among developers using CO2SY in a distributed development.
7.1.2 The Modelling Environment
During this work, it has been natural to incorporate into our implementation and
reflect on previous modelling methodologies and tools accumulated in the IS
group at IDI, NTNU. The main tool in this work is the RML editor. The RML
language is a modelling language that initially springed out from the PPP
integrated modelling environment (Gulla et al., 1991). PPP initially contained
support for several modelling languages; a Process Model Language PrM, an
extended ER modelling language (ONE-R) and a rule modelling language (PLD),
and also comprised specifications and partial implementations of extensive
methodology support; versioning mechanisms (Andersen, 1994), view generation
(Seltveit, 1994), concepts and notation for hierarchical modelling (Sindre, 1990),
prototyping and execution (Willumsen, 1993) as well as explanation generation
and translation of models (Gulla, 1993). Later work have refined the initial

122 Chapter 7 Realisation of the Method

modelling languages and also added new languages. The most recent are the
RML concept modelling language (Solvberg, 1999), the APM workflow
modelling language (Carlsen, 1997), and the task and dialogue modelling
languages for user interface design (Traetteberg, 2002).

For model creation we have used the older version of RML editor,
RefEdit11. Though, a new editor has been implemented by Fidjestol (2005)
incorporating some of the ideas discussed in chapter 6 with a purpose to create a
platform independent tool (in wxPython). Unfortunately, because of limited time
resources it has not reached maturity and remained in pre-prototype quality.
7.1.3 The iMapper System
The iMapper System (Su, 2004) has been developed to compute similarity of
concepts from different model fragments based on concepts extensions and
instances, e.g., natural language documents describing a particular concept. The
similarity computation is based on constructing feature vectors and computing
the mappings. The prototype of iMapper was developed as a stand alone java
application that communicates with the other components through XML file
exchange (Su, 2004). We use iMapper as a component for our model fragment
management method to compute initial similarity of model fragments, as
discussed in chapter 5. In addition, CO2SY repository system supplements
iMapper by providing storage and maintenance of model fragments, concept
extensions and results of mapping process.
7.1.4 The CnS Client
The CnS Client (Brasethvik, 2004) has been created for the purpose of
classification and search of documents using domain model. Additional features
include personalisation of model fragments (as a query expression). CO2SY
repository provides storage and manipulation mechanism for model fragments,
documents and their classification information. Furthermore, maintenance of
lexicon (synonyms) is important for the CnS system for querying purposes as
well as for the our method for terminology alignment as discussed in chapter 5.

7.2 Architecture
In order to support the wide range of tools used in a distributed development (VA
Software, 2004) we have chosen to develop a repository system communicating
with clients by XML-RPC protocol. An overview of CO2SY architecture is
shown in Figure 7.2.

We have implemented a graphical user interface (GUI) for repository
access and content manipulation at the client side. CO2SY GUI should have
integrated modelling environment, as denoted by dotted line between Modelling
Tool and GUI in Figure 7.2. A tight integration of modelling environment and

11 http://www.idi.ntnu.no/~ppp.

7.2 Architecture 123

repository has been investigated and implemented by Fidjestol (2005). However,
because of limited time resources the implementation by Fidjestol (2005) has not
reached a maturity level required for integration with CO2SY. Section 7.4 is
dedicated for more detail overview of implemented functionality from the
perspective of user interface.

Above described iMapper and CnS systems may be configured to connect
to the repository through Model Manager. Meanwhile, the outputs from all other
tools used in a development are checked-in to the repository through CO2SY
GUI.

The server side consists of an object-relational database management
system that provides a physical, persistent datastore for the product fragments.
The repository is implemented using PostgreSQL ORDBMS (Postgresql, 2005).
The files can be stored on the file system and can only be accessed through the
repository. The data sets could either be stored in a flat file system or in a
database. For a large number of data sets, however, storage in databases is
preferable because querying and retrieving is more efficient when compared to
using a flat file system. Other server side components depicted in Figure 7.2 are
as follows.

Figure 7.2 CO2SY architecture

124 Chapter 7 Realisation of the Method

As modelling is an important part of our method and ISE, in general, Model
Manager has a central role in CO2SY. Though the role of Model Manager is
somehow duplicated with Object Broker. That is done to better support
modelling task and is intended for an integrated modelling environment. The
dotted line between Model Manager and Modelling Tool depicts the intended
situation. While current implementation of CO2SY is based on XML file
interchange between earlier version of RML editor (i.e. RefEdit) and GUI. If a
product fragment is a RML model, it is passed to Model Manager to extract
conceptual information and store it in database. Otherwise, there is an Object
Broker that transforms structured and semi-structured files into repository format
based on an object type.

Python Interface to Wordnet. PyWordNet12 (Steele, 2004) has been used to
access the WordNet database to find related terms through lexical relationships in
WordNet (i.e., synonyms, hypernyms, hyponyms, and meronyms) in order to
support modeling activity and reconcile the model fragments.

Observer module used for a change notification mechanism, which reacts
spontaneously to the change of a development object. It can be configured to
notify only about the actually performed changes based on uploaded revisions of
development objects or include as well future changes, i.e., based on the
development objects checked-out from repository.

Observer provides a mechanism to monitor repository modifications.
Listeners are activated on a certain events:

 when development objects are created in repository;
 when new development object type is defined in repository;
 when development objects are updated;
 when development objects are suspected to be impacted;
 when links (both, direct dependency and associations with domain model)
are established;

 when user logs in/out.
Relationship Manager deals with associations and links among development
objects (version graph, inclusion (part_of), and direct dependency links), recall
discussion in earlier chapters. ACL manager authorizes access to the system and
maintains session.

7.3 Design
The prototype is implemented in Python v2.3 (wxPython v2.6 used for graphical
user interface) and uses an object-relational database managements system to
support repository activities. For this reason, the object relational database,
PostgreSQL (2005) is chosen from a group of possible products such as Oracle™

12 http://sourceforge.net/projects/pywordnet

7.3 Design 125

(2005), MS Access™ (2003), MySQL (2005), to name just a few but prominent
DBMSs. The reason to decide on PostgreSQL is that it is a public domain code,
i.e. free of charge, that it provides sufficient features that is needed. For instance,
PostgreSQL has triggers, stored procedures, and a rich set of built-in functions.
In addition, PostgreSQL's procedures and triggers can be written in other
languages as well, such as PL/TCL, PL/perl, and PL/python. These additional
languages come in two basic flavours, safe and unsafe. Safe allows only for use
of things in the programming language that don't affect the host system
negatively, such as direct access to the file system.

Next we will present and discuss design decisions regarding earlier stated
problems. Figure 7.3 shows a fragment of repository schema used to store results
of concept similarity computation. Furthermore, a lexicon for particular concept
(both, relational and class concept) is stored with a reference to agreed proper
concept name, see left side of Figure 7.3.

Sameness

ProperConcept (int8)
Concept (int8)

Proper_concept

ProperConcept (int8)
ConceptName (varchar)

Concept_similarity

concept1 (int8)
concept2 (int8)
similarity (numeric)

Figure 7.3 Tables for concept similarity and sameness

⊆⊆

Figure 7.4 Tables to store development objects

126 Chapter 7 Realisation of the Method

As it was discussed in chapter 4, the major design objective for the repository is
to make the schema resilient to accommodate different new development object
types. Figure 7.4 illustrate tables used as a framework to satisfy that requirement.
Table Dev_Object_type is used as a register for types of development objects
used in a particular project. Where field Binary identifies whether a particular
object is stored as a binary or as structured development object, i.e. object is
structurally parsed before storing in the repository. While entry in field
TypeName is used to instantiate new tables for a particular object type called
TypeName. Note, TypeName in italics in Figure 7.4, this is “replaced” by an
actual object type name. For instance, having Python_code as an object type
tables specified with TypeName in italics in Figure 7.4 will be called as follows.
Python_code; Python_code_association (if it is defined as non-binary object
type); Python_code_element; Python_code_version; Python_code_metadata.

Table TypeName_version stores object version identification as a triple
discussed in Chapter 4. In table TypeName_element it is defined what
structural elements we are interested to store for a particular object type, e.g. for
python code it would be classes and function, while for RML model we have
listed class_concept, individual_concept, attribute,
generalization-subset, generalization-element,
relation_concept, see Figure A.2 in Appendix A). All specific object type
tables inherit from table Development_object. The same procedure is done
with table Association, used to store product fragments associations with
domain concepts. Inheritance of the tables is used to optimize querying,
especially during a procedure of change impact assessment.

Impact

caused_id (int8)
caused_object_type (varchar)
impacted_id (int8)
impacted_object_type (varchar)
derived (varchar)
value (numeric)
checked (bool)
verified (bool)
derived_id (varchar)

Impact_history

caused_id (int8)
caused_object_type (varchar)
impacted_id (int8)
impacted_object_type (varchar)
derived (varchar)
value (numeric)
checked (bool)
verified (bool)
derived_id (varchar)
linked (bool)

Direct_dependency

object1 (int8)
TypeName1 (varchar)
dependency_id (varchar)
object2 (int8)
TypeName2 (varchar)

Figure 7.5 Change impact notifications, the log and direct dependency

Figure 7.5 illustrates tables used to store change impact notifications and to
specify direct dependency links between objects. Table Impact_history is
used as a log of decisions taken regarding every change impact notification. The
log is further used for computation of statistics to be used for direct dependency

7.4 Functionality and User Interface 127

links specification, as described in Chapter 6. A screenshot of graphical user
interface implemented for this part of the method is shown in Figure 7.7.

7.4 Functionality and User Interface
As it has mentioned earlier the main interface to repository content and
management of the product fragments has been implemented in wxPython13.
Figure 7.6 shows main four interface components. Namely, functionality tabs,
information display and manipulation, user identification (login form) and
discussion area (chat). It is possible to attach multiple chats to a development
objects (or fine-grained elements of development object, if objects are structured)
stored in the system. This later is used as textual resource describing a particular
development object or concept.

The content of information and manipulation panel depends on a particular
functionality tab. Appendix B discusses and visualizes the main functionality of
the implemented prototype, illustrating “B area” (see Figure 7.6) of particular
functionality. While below we briefly overview a fragment of graphical user
interface implemented for to manage change impact notifications.

Figure 7.6 Overview of main components of interface

13 http://www.wxpython.org

128 Chapter 7 Realisation of the Method

Figure 7.7 illustrates the main result window of our method, i.e. impact
assessment. The main components of this window are as follows.
A area lists all impact assessments. Here are results from both direct dependency
links, if any, and based on associations with concepts from domain model. The
following information is provided here: Altered object, altered object type,
impacted object, impacted object type, dependency (i.e. whether direct
dependency link or domain model based impact assessment), dependency type
(i.e. either domain model name, since it is possible to associate product
fragments with more than one domain model, or direct dependency type), value
(i.e. semantic distance between two particular fragments).
B area lists candidates for direct dependency links, recall algorithm 6.2 described
in chapter 6. First six columns are as for the list in A area. Last column shows
how many times change impact for a particular pair of product fragments has
been confirmed. Recall, that here are listed only those pairs which has “passed”
algorithm 6.2 computation.

Figure 7.7 Change impact management

A

B

C

7.5 Summary 129

C area is a form for establishment of direct dependency links. Here end-user can
specify the type of direct dependency link between a particular pair of
development objects.

7.5 Summary
In the chapter, we have elaborated realisation of the prototype system CO2SY.
First, we have discussed the environment in which our prototype system CO2SY
is developed. Namely, IGLOO framework for collaborative work support, the
modelling environment, iMapper and CnS systems. Second, we have elaborated
on architecture and design of the prototype. Before summarising the chapter a
short overview of main functionality of the implemented prototype is presented.

The implementation is of prototype quality and we have tried to integrate
available tools into the system. Unfortunately, because of limited resources it was
not possible to integrate with the new version of RML editor. This has an
implication to the evaluation of the prototype and method. The evaluation is
discussed in the next chapter.

130 Chapter 7 Realisation of the Method

 131

8
Evaluation of the Method

“Qui nimium probat, nihil probat”
Latin proverb14

This chapter presents the evaluation of our method. As described earlier, we have
specified a method for change impact assessment using a conceptual domain
model. Here, the aim is to test the effect and usability of the domain model
driven change impact assessment method. An experimental case study is
conducted using two real cases.

An overview of the usability evaluation and its methodological foundation
used to evaluate the prototype implementation and the method behind it are
provided. Since the proposed method is user-centred, the method and the
prototype are evaluated on a range of perception-based variables, namely,
perceived ease of use, perceived usefulness and intention to use.

The chapter is structured as follows. In section 8.1, the aspects of evaluation
are discussed, proceeding with a discussion of evaluation alternatives and
restrictions in section 8.2. In section 8.3, the scope of evaluation is defined and
the choice of evaluation method is described. In section 8.4, the design of the
evaluation is described, followed by a presentation of the results and an analysis
of the results in section 8.5. Finally, we revisit the requirements identified in
chapter 2 and discuss how well they are satisfied by the method and implemented
prototype in section 8.6. Section 8.7 summarises the chapter.

8.1 Evaluation Aspects
“Evaluation is concerned with gathering data about the usability of a
design or product by a specified group of users for a particular

14 who proves too much, proves nothing.

132 Chapter 8 Evaluation of the Method

activity within a specified environment or work context.” (Preece et
al., 1994, p. 602)

8.1.1 Qualitative and quantitative data
Usability evaluation is to gather data about the usability of a product. The results
of an evaluation are used to improve a product or to compare it with existing
products. In order for the evaluation to serve its purpose, the data should be
appropriate. The collected data can be of quantitative or qualitative kind.
Quantitative data (typically numbers) is used for statistical analysis describing
how well a method performs. Qualitative data (typically text) is used to collect
suggestions for improvements and document perceptions of test subjects.

Quantitative data are usually objective measurements, for instance, number
of errors made, time spent on a given task and degree of required efforts.
Alternatively, they can be subjective opinion about a specific feature of a product
quantified into numbers. For instance, asking a subject to rate a feature using the
Likert scale (Likert, 1931) from 1 (very difficult) to 5 (very easy).

Qualitative data is about understanding how and why. For instance,
understanding what the user thinks, understanding why something is
incomprehensible. This understanding usually is obtained either by observing the
actual use of a product or allowing test subjects to specify themselves. Further,
qualitative evaluations being concerned about how and why something works (or
not), they can be useful during software development, for instance, a qualitative
evaluation of design saves many hours of work.

Using quantitative data gives an advantage to process large amounts of
results. Mean and standard deviation provides at-a-glance information regardless
of the size of the collected data amount. However, using the quantitative data
solely has a drawback. By quantifying a test subject’s opinion into numerical
values, it is possible to lose quite a bit of detail. After all, knowing that a test
group on average evaluates a specific feature (product) by a grade three out of
five, provides no hint as to what works and what does not, and especially, why it
does not work.

Because of the need to conduct an observation session or an interview,
gathering qualitative data is more labour intensive than gathering quantitative
data. As a result, fewer test subjects are involved.
8.1.2 Importance of test subjects
In order to get creditable and reliable results of an experiment right test subjects
should be chosen. Scientists have long been aware that the answer to any given
question depends on how many and who have been asked. In order to get a valid
result, selection of right test subjects is important. For instance, it makes no sense
to ask novices to evaluate a product intended for professionals – they are simply
not a group representative for the intended audience.

8.2 Evaluation Alternatives 133

For the creditability of the results, the amount of test subjects is important
as well. Studies conducted by Nielsen (1993) have shown that as few as five
users suffice in order discover a majority of usability problems. Increasing the
number of testers beyond five was shown to generate marginal improvements.
While a study conducted by Faulkner (2003), where random sets of 5 or more
were sampled from 60 users, demonstrate the risks of using only 5 participants.
As some randomly selected groups of 5 participants found 99% of the problems;
other groups found only 55%. With 10 users, the lowest percentage of problems
revealed by any of the sets was increased to 80%, and with 20 users, to 95%.
Obviously, there is a risk when performing an evaluation with a limited amount
of subjects. A lot depends on the subjects’ qualification and motivation.

Ig
no

ra
nt

 K

no
w

le
dg

ab
le

ab

ou
t d

om
ai

n

Minimal Extensive
computer experience

Novice
 E

xpert

user of sy
stem

Figure 8.1 Classification of users

(adapted from Nielsen (1993))

Therefore, Nielsen (1993) suggests classifying users according to three different
axes regarding their computer experience, knowledge about the domain in
question and experience with the system being evaluated. The three axes are
illustrated in Figure 8.1. Locating a test subject in this three-dimensional space is
usually done by means of background knowledge questionnaires.

8.2 Evaluation Alternatives
Recall, that in the previous chapters we have specified a method for product
fragments management and change impact assessment using a conceptual
domain model. The method is to be used in systems development, in particular,
in distributed development. A part of the method concerns collaborative
modelling as a means to achieve complete, shared understanding of a problem
domain. This leads to various possible evaluation scenarios, each of them having
restrictions and drawbacks when it comes to available resources allocated for this
purpose.

134 Chapter 8 Evaluation of the Method

Early design has been evaluated in a review group meetings consisting of 3-
5 stakeholders and documented in (Strasunskas et al., 2004). Here we discuss
alternatives to evaluate the implemented prototype.

As the proposed method targets distributed development, it is important to
test it in similar settings, e.g., plenty of stakeholders, distributed environment,
etc. One of the options is an industrial case study, either having the method
adopted by a company, or replicating a real project. Adoption by a company is
not feasible because of the immaturity of the methods itself and limited
resources, e.g., financial – literally paying the company for using the method, and
time – waiting for the results.

Enrolling students for similar size and scope project is more reasonable and
also attainable within one semester. Getting them to participate in the experiment
of such kind requires either running the experiment as a part of a particular
course and giving them credit as for an assignment or paying for time spent for
the experiment. The former way demands a prototype of good quality, especially
when the experiment is part of the course assignment. The financial costs,
required to pay students are lower if compared to an evaluation run by a
company, are still too big.

Therefore, delimitation of the experiment scope is the only option in our
case. That allows testing only a part of the method and a subset of the prototype
functionality. Having the delimited scope, feasible directions for evaluation are
as follows.

 Testing collaboration and cooperation support. Though, robust collaboration
support is vital for distributed development, it is neither a primary concern,
nor a contributing area for this thesis. There are specific application targeting
a CSCW domain, and functionality supporting cooperative work of the most
is much better, though different from ours. For that purpose a functioning
CSCW environment would be needed. Since the scope of this study is only a
small fraction of CSCW process, the results may be affected by the chosen
“full scale” environment.

 Testing support for externalisation and internalisation of knowledge (i.e., in
the modelling environment). Agreement on conceptualisation and full
scalecase study does not lend itself to be measured because of time and
financial limitations, as well as restricted implementation. Overall, in any
smaller scope case – it is difficult to test to what degree agreement is possible.
In a small group present at the same time and place it is possible to achieve
common agreement. Though it would be interesting how the technology help
to agree in distributed settings. Evaluation of this aspect is of high concern,
even though because of limitations of the implementation (see chapter 7) the
results could not be reliable.

 Testing efficiency, effectiveness and usefulness of domain model based change
management. Evaluation of effectiveness may be conducted involving a

8.3 Evaluation Framework 135

limited amount of test subjects. In our case, their task would be associating
product fragments with domain model. The results from a log can be
compared to an expert opinion about the dependency among product
fragments or to the actual traceability links (if conducting a post-mortem
analysis of a real project). Similarly, other de facto standard tools can be used
instead of an expert. There subjects’ efforts and results are analysed after
performing the given task using both, the prototype and comparative tools.

 Comparing prototype and state-of-the-art tools against a predefined set of
requirements. This evaluation scenario is simplest and cheapest to perform,
though a bit biased, as the set of requirements for “must-be” functionality is
difficult to prove being exhaustive. Moreover, requirements interpretation and
especially interpretation of how well a particular functionality satisfies the
requirements, is to high degree subjective. Furthermore, the implemented
method enables different level of evaluation than rather comparing only how
well the method satisfies the requirements listed in section 2.5.

Recall, that common conceptualisation of the domain and commitment to the
domain model representing the conceptualisation is a cornerstone of our method.
Though being important, it is not essential for the method to be accepted and
adopted by the users. Most crucial for the method adoption is its efficiency and
effectiveness of classification (association) of product fragments using a domain
model when compared to the direct linking of related (dependent) product
fragments. Therefore, we choose to validate this part of the method, i.e. domain
model based change management. In addition, this part of the proposed method
has the most robust implementation.

An experiment should seek evidence of efficacy of the proposed method as
well as should gather and analyse users’ opinion about the method and assess
likelihood of its acceptance in practice. We devote section 8.4 to further elaborate
the evaluation settings and design of the experiment. Next, an evaluation
framework is discussed.

8.3 Evaluation Framework
In order to provide useful results an experiment should be systematically
performed. Empirical study provides a means to evaluate the efficacy (efficiency
and effectiveness), while feasibility and acceptance of the method are determined
by measuring users’ perceptions (Riemenschneider et al., 2002). Since we wish
to measure performance of our method and user perceptions, we adopt the
Method Evaluation Model (MEM) by Moody (2001), a model for evaluating IS
design methods. The MEM incorporates both aspects as illustrated in Figure 8.2.
Core of the MEM consists of the same perception based constructs as the
Technology Acceptance Model (TAM) by Davis (1989), a model for explaining
and predicting user acceptance of information technology. The constructs of the
MEM are defined as follows.

136 Chapter 8 Evaluation of the Method

 Actual Efficiency: the degree to which the method reduces the effort required
to apply it;

 Actual Effectiveness: the degree to which the method improves the quality of
the result;

 Actual Usage: the degree to which the method is used in practice;
 Perceived Ease of Use: the degree to which a person believes that using the
method would be effortless;

 Perceived Usefulness: the degree to which a person believes that the method
would be useful;

 Intention to Use: the degree to which a person intends to use the method.

Figure 8.2 The Method Evaluation Model

(adopted from Moody (2001))

Actual Efficacy measures whether the method actually improves task, while
Perceived Efficacy represents perceptions of the method’s efficiency and
effectiveness. Adoption in practice is determined by perceptions, which are in
turn determined by performance (Moody, 2001). Psychological variables are
central constructs and are called the Method Adoption Model (MAM).

8.4 Organisation of the Experiment
User centred measurements are subjective and hence difficult to measure. For
instance, one user may consider development objects being related (dependent),
while another may find them totally independent. Our method to manage
relatedness of the product fragments is user centric in the sense that semantics of

8.4 Organisation of the Experiment 137

the product fragments are best known to the creator of a particular fragment. The
creator is the one who can best describe its internal semantics using the
conceptual domain model in construction if which she has participated herself.
Consequently, we organise the experiment in a way that best records users’
perceptions.

Participants

Cases

Experimental
treatment

Experimental
tasks

Materials

Dependent variables:
- Performance based:

- Amount of Correct
 Dependencies
- Psychological:
- Perceived Ease of Use
- Perceived Usefulness
- Intention to Use

Training of participants:
Introduction to the approach;
Introduction to the tools to
be used.

Direct dependency linking;
Association through
domain model;
Interpretation of results;
Post-task questionnaire

Data

Figure 8.3 Design of the experiment

The experiment is designed to evaluate the effectiveness and usability of the
proposed method for change impact assessment in a distributed development.
The experiment design is summarised in Figure 8.3, where experimental
treatment, experimental tasks, materials and collected data are shown.

This section further is organised according to according Figure 8.3 as
follows. First subsection elaborates on rationale, states the goal of the experiment
and evaluation questions. Second subsection decomposes the broad evaluation
questions to hypotheses. Third subsection discusses the participant of the
experiment and experimental treatment. Fourth subsection elucidates in detail the
experimental materials, tasks given to the participants, etc. Fifth subsection
discusses the dependent variables.
8.4.1 Rationale and goal of evaluation
In section 8.2 we have argued about the possible evaluation scenarios and
restrictions concerning them. We have chosen to measure an actual effectiveness
and users’ perceptions about a domain model based change impact assessment.

Recall that the basis in our method is association of product fragments with
a concept from a domain model, i.e. explicating semantics of product fragments.
This association we interpret as a just another way of specifying metadata about
objects, i.e. by relating the development objects to the structure of the problem,

138 Chapter 8 Evaluation of the Method

or in other words, classifying objects according the domain structure15. Metadata
specification is known as labour intensive work and is not often used in practice,
For instance, how many of us do describe metadata of documents we create, even
if means are provided, for instance, using MS Word™16 document properties.
Therefore, we have chosen to test users’ perceptions regarding ease of use and
intention to use. Usefulness of the proposed method is tested analysing actual
effectiveness and perceived usefulness. In addition, we want to collect the
responses for further possible improvement of the method and prototype.

The goal of evaluation is to analyse and validate the proposed method
implemented prototype regarding its effectiveness and likelihood of adoption in
practice from the point of view of possible users. The broad evaluation questions
(EQs) addressed by this evaluation are as follows.

 EQ1: Is the method effective?
 EQ2: Is the method apt to be adopted in practice?

8.4.2 Hypotheses
A priori, the assumed effects of using the domain model to manage relatedness of
product fragments and theirs change impact are hypothesised as follows.

 H1: The method is effective, i.e. domain model facilitates dependency
establishment among product fragments and helps to explore relatedness of
product fragments and discover “hidden” dependencies,

 H2: The method is perceived as easy to use,
 H3: The method is perceived as useful,

and consequently,
 H4: There is an intention to use the method.

8.4.3 Participants selection and experimental treatment
Since the proposed method is meant to be used by a variety of stakeholders,
we’ve selected test subjects with different background, though all of them from
computer science area (information management, databases, information
systems, knowledge management). All six test subjects are from Dept. of
Computer and Information Science at NTNU.

The subjects received 45 minutes long training session. First, the method to
be tested and overall idea was presented. Then, an evaluation task and procedure
was presented, demonstrated and discussed at a common meeting. Finally, short
tutorials on each of the tools to be used in the experiment were given.

15 Similarly to saving a file into the designated folder on file system.
16 Microsoft® Word™ is a registered trademark of Microsoft Inc.

8.4 Organisation of the Experiment 139

Couple of subjects were familiar with the concepts of the method and have
seen the prototype, but had not been using. Other subjects had not seen the tool
before. Using user classification axes provided by Nielsen (1993) and discussed
in section 8.1, the test subjects have extensive computer experience (5 have 11-
25 years experience, and only one 5-10 years experience). Furthermore, 5
subjects have an industrial experience. None of the test subjects is an expert user
of the tested tools (see next subsection), in fact only one had experience of using
traceability matrix before. None of the users had addressed the problem of
dependency management prior to the experiment, with the exception of one,
whom had been working earlier with dependencies and traceability links.

Subjects were volunteers. Since no resources were available for rewarding
or paying users for this evaluation, the only reward given for participation was a
free private dinner17. Furthermore, four out of six experiment participants were
PhD students, for them additional motivation was to learn from evaluation
process itself as they will need to perform evaluation in a short future
themselves, as well as they will need to get volunteers for testing their
tools/methods, i.e. their motivation was driven by quid pro quo18 principle.
8.4.4 Experimental materials
The instrumentation used in the experiment included experimental materials,
tools (the studied prototype, Telelogic® Doors™ (Telelogic, 2005), and
traceability matrix implemented in MS Excel™), a log for performance
measurement and survey techniques (questionnaire and observation with “think
aloud” protocol).

The experimental materials consisted of two cases and their descriptions in
natural language, domain models in RML (Appendix A), and diverse product
fragments (Appendix D). Case 1 was taken from MSc project (Erichsen, 2003).
The MSc project was similar in to the method proposed here, i.e. dealing with
dependency and traceability. Case 1 consisted of 4 different product fragment
types, i.e., requirement statements (natural language), design fragments (UML™
sequence diagrams), code fragments (C#) and user manual in a form of
screenshots. Case 2 was based on the development materials of MEIS (Model
Evaluation Information System) system, used for the introductory course on
information systems TDT4175 (Matulevicius et al., 2004). MEIS system is used
for exercise delivery, peer-to-peer review and evaluation of both. Case 2 had two
types of product fragments, i.e. requirements statements (natural language) and
code (php).

Description and a domain model for Case 2 are exemplified in Example 8.1
below. For more details see appendix D, there is provided the list of product
fragments for each of the cases and typical product fragments of each type are

17 Food in Norway is regarded as a quite good means to increase motivation.
18 In Latin, mutual consideration; service in return.

140 Chapter 8 Evaluation of the Method

illustrated. A list of the product fragments for Case 2 is provided in Table 8.1,
this table is replicated here from Appendix D in order to exemplify the scope.

Conceptual domain models that the researcher designed had 18 concepts 21
relationships in case 1 and 18 concepts 26 relations in case 2. Case 1 had 83
product fragments, and case 2 had 23 fragments. For both cases, the task
assigned to the subjects was to study the materials and afterwards, specify
dependency relationships for a set of selected development objects. The tasks are
specified below.

Example 8.1 Case 2 description and domain model
This case describes a project developing a system at NTNU to be used to support exercise
delivery, review and evaluation during for a particular courses. A simplified model for Case 2 is
depicted in figure 1 for the purpose of defining the scope.
User is involved (takes part) in the course. There are three types of users, namely, student,
lecturer, and sensor. Every user of the system has a user profile. There are two types of delivery
in the course, i.e., exercise and review. Each delivery has a deadline.
Students are organized in student groups to deliver an exercise. Solution to an exercise usually
consists of a description and a model. After delivering the exercise students are arranged into
review groups, in order to peer-review delivered exercises.
Lecturer and sensor perform evaluation of both exercise and review of exercise, by assigning a
grade and providing some feedback (comment).

Conceptual domain model for case

8.4 Organisation of the Experiment 141

There are two different types of development objects in this case. Namely, requirement
statements, and code (php) fragments.
Your task now is to:

 Study the materials
 Specify relationships for selected (marked) development objects

Table 8.1 List of the product fragments in case 2
Product fragment
Type Name Description

Deliver control of delivery form
Deliveries overview of deliveries
doEvaluate control of evaluation form
Evaluate control of reviewing form
Feedback control of feedback form
index start form (login)
updateReview form for changing the review
updateUserinfo form for user profile update
upload exercise upload form and control
userinfo form for browinsg user profile

viewDeliveryComments form for browsing delivery evaluation (from
student view)

viewEvaluation form for browsing evaluation of delivery

viewFeedback form for viewing received feedback (from
lecturer view)

viewReviewComments form for browsing received review comments
(from student view)

editDeadline form for setting and changing the deadlines

C
od

e

 viewGroups set and browse students arranged into groups
req3 Student should be able to log in to the system

req5 Student should be able upload delivery
(exercise)

req6 Lecturer should be able to see the status of the
deliveries from the assigned students.

req8 Student should be able see the comments for
solution

req9 Lecturer should form a reviewer groups for
delivery

R
eq

ui
re

m
en

ts

req11 Reviewer should be able evaluate the deliveries

142 Chapter 8 Evaluation of the Method

Experimental task
First, the test subjects needed to study the experimental materials. Second, the
subjects were asked to do both, establish the direct dependency links among
fragments (see Table 8.1 above) and associate the fragments with concepts from
the provided domain model (see Example 8.1 and Table 8.1 above). Third, after
running adjusted algorithm (see discussion below) for change impact assessment
based on the provided domain model, they needed to choose three random
product fragments (see again tables D.1 and D.2 in Appendix D for the list of
product fragments) and investigate three top ranked relatedness values (not items,
meaning that amount investigated items may differ for each of the subjects)
provided by the studied prototype. Figure 8.4 presents a screenshot to exemplify
the results set provided by our prototype. In the figure are listed product
fragments related to the product fragment “deliver” (for details see specification
of Case 2 in Appendix D). The last column in Figure 8.4 shows relatedness
value. Recall discussion in chapter 6 that the relatedness value here is calculated
based on shortest path between two particular fragments, i.e. the smaller value
shows that the fragments are more likely dependent. The subjects were asked to
treat this list as indication that a pair of product fragments is related and might be
dependent. Fourth, they needed to investigate the list and classify the fragments
returned by the prototype as totally wrong (having nothing to do with each
other), partially correct (for those that seems to be dependent, but dependency
need more detail investigation), or totally correct (the fragments are dependent).

Figure 8.4 Example of computed dependency for the fragment “deliver” from case 2

Later, the pairs identified as totally correct were compared to the set of directly
linked product fragments for each user. Consequently, the set of totally correct
dependency links identified by the prototype was divided into two subsets,
namely, mutual (i.e. identified by the user when performing the task of direct
linking) and additional (i.e. proposed by the prototype, but did not noticed by the
user). These results are discussed in section 8.5 and presented in Table 8.2.
Comparative tools
In addition to the prototype, two tools were used, namely, Telelogic® Doors™ and
a traceability matrix implemented in MS Excel™. Both consider direct linking of
related product fragments, but by the means of different interfaces. Thus, the
experiment would not be biased by interface. The test subjects were in two
groups. Group A first established direct links using Doors (case 1) and

8.4 Organisation of the Experiment 143

traceability matrix (case 2), then associated product fragments using the
prototype. While group B first assigned associations using the prototype (with
materials of both cases), and then direct linking using the comparative tools.
Prototype set-up and modification
Prototype needed to be modification according to the settings of the experiment.
Recall the intentional use of the method discussed in chapter 6. After domain has
been successfully conceptualised, it is used to classify the product fragments, i.e.
by associating product fragments with concepts. Every time new product
fragment is produced, it is associated with one or more concepts. In this way the
process of association is not labour intensive. Then, whenever new revision is
checked-in to the repository, the algorithm for change impact assessment is
triggered, i.e. notifications are fired. While in the experiment, test subjects were
asked to associate a set of product fragments with corresponding concepts, after
having done that, the impact assessment algorithm is triggered. For that reason
additional button needed to be created (see Figure 8.5) to start algorithm.

Figure 8.5 Modified window for association with concepts

Survey
At the end of the evaluation, the test subjects answered a questionnaire (see
Appendix C) in order to obtain general feedback of the system as well as to
discuss the drawbacks. To gain deeper insight into subjects’ views, “think aloud”

144 Chapter 8 Evaluation of the Method

protocol was used, where subjects were asked to think aloud while performing
the tasks. All subjects have been surveyed by means of the questionnaire. Most
of the questions were closed, but open questions were also included to allow for
unanticipated reactions. The questionnaire included 21 closed questions, 3 closed
questions with unordered responses, and 3 open questions. A five-point Likert
scale (Likert, 1931) is used to measure 13 out of 21 closed questions, i.e. subjects
are asked to express agreement or disagreement of a five-point scale. Each
degree of agreement is given a numerical value from one to five. Thus a total
numerical value can be calculated from all these responses.
8.4.5 Dependent variables
We distinguish two types of dependent variables (recall Figure 8.3): performance
based and psychological variables. Evaluation of the actual efficacy requires
measuring the efforts needed to use method and the resulting quality. To evaluate
the actual effectiveness we have chosen to measure one performance based
variable.

 Amount of correct dependencies is measured as comparison of results for
subject from direct dependency linking and associating through domain
model. This construct was analysed using a log and one question (i.e. earlier
mentioned practical task, question 6) from the post-task questionnaire.

To evaluate the perceived efficacy and intention to use we adopt the three
psychological variables of the MAM. They are as follows.

 Perceived Ease of Use (PEU) measured using four questions19, i.e. 13, 14, 15,
and 16;

 Perceived Usefulness (PU) measured using two questions, i.e. 7 and 18;
 Intention to Use (IU) measured using three questions, i.e. 10, 11, and 24.

The order of the questions in the questionnaire was randomized to avoid
monotonous responses. To avoid a possible ceiling effect, there was no time limit
for the experiment to restrict subjects.

8.5 Results
This section presents the results from the performed evaluation. First, we present
overall results, analyse the results using the above described method, namely,
actual effectiveness, perceived ease of use and usefulness, intention to use.
Second, we analyse subjects’ behaviour and performance, and investigate what
impact it possible has to the results. Third, we summarise responses to open-
ended questions. Finally, we discuss threats to validity.

19 See Appendix C for particular questions in the questionnaire.

8.5 Results 145

8.5.1 Overall results
Time
In average, the subjects used 3,5 hours to perform the task. Approximately 3/5 of
the time was used to study the experimental materials. There are three reasons
why measurement of time is not used to calculate efficiency. Namely, 1) the
subjects were not studying the material equally before and during the actual
linking; 2) some subjects found “short cuts” in some interfaces than the others,
for instance in Doors package it is possible to make the link using formal link
module, then the process goes through several dialog boxes, or more efficiently
is a simple “drag and drop”; and 3) some encountered the lack of “undo”
command in the studied prototype more than others. An interaction with the tools
is otherwise assumed to take similar time if disregarding the routines forced by
the interface. Analysis of the log, showed that in average a fragment had 3,8 (in
case 1) and 2,5 (in case 2) directly linked fragments. Similarly, a fragment had
been associated with 3,3 (in case 1) and 3,1 (in case 2) concepts in average (see
Table 8.10). These parameters are similar, i.e. the time used is comparable. In
retrospect, overuse of the time (i.e. for first and third reasons listed above) could
have been recorded and then deducted from the time spent using a particular tool.
Actual efficacy, i.e. amount of correct dependencies
Recall, that the subjects were asked to classify the correctness of the output. The
results for our method are displayed in Table 8.2. Where all partially correct are
new dependency pairs for the users, i.e. additional links discovered by the
prototype. Correctly identified dependency pairs are grouped exclusively as
mutual (identified by the test subject as dependent already by direct links) or
additional knowledge (new dependency links, proposed by the prototype and
identified being correct by the test subject), see the columns 4 and 5 in the table.
Table 8.2 Analysis of dependency discovery performance

Partial

additional mutual additional %

(1) (2) (3) (4) (5) (6)
=(5)/((4)+(5))

(7)
=(2)+(3)+(4)+(5)

(8)
=(3)+(5)

(9)
=((5)+(4))/(7)

(10)
=((8)+(4))/(7)

(11)
=(2)/(7)

1 0 3 5 1 17 % 9 4 67 % 100 % 0 %
2 4 3 4 0 0 % 11 3 36 % 64 % 36 %
3 5 8 12 3 20 % 28 11 54 % 82 % 18 %
4 2 0 13 2 13 % 17 2 88 % 88 % 12 %
5 6 1 4 3 43 % 14 4 50 % 57 % 43 %
6 6 1 5 0 0 % 12 1 42 % 50 % 50 %

Total 23 16 43 9 17 % 91 25 57 % 75 % 25 %

1 2 3 4 0 0 % 9 3 44 % 78 % 22 %
2 3 2 3 0 0 % 8 2 38 % 63 % 38 %
3 1 3 7 0 0 % 11 3 64 % 91 % 9 %
4 5 3 4 1 20 % 13 4 38 % 62 % 38 %
5 1 2 6 2 25 % 11 4 73 % 91 % 9 %
6 9 1 5 0 0 % 15 1 33 % 40 % 60 %

Total 21 14 29 3 9 % 67 17 48 % 69 % 31 %

C
ase 1

C
ase 2

% of
wrong

Subject
ID

Totally
wrong

Total
additional

% of possbily
correct (incl.

Partial)

Totally correct % of
correct

Total
inspected

146 Chapter 8 Evaluation of the Method

In case 1 the prototype has discovered 9 additional correct links (column 5), and
16 possibly correct (column 3). Overall, 17% (column 6) of correct dependency
links identified by the prototype was a new knowledge for the test subjects, i.e.
the dependencies overlooked when making direct dependency links. While the
amount of total additional (both, totally correct and partially correct) equals to 25
(column 8). In case 2, the results are slightly worse, i.e. only 3 dependency pairs
were considered being correct additions to the set already identified by the users.
That makes 9% being new knowledge to the test subjects. Total additional
dependency links identified by the prototype sum up to 17 (column 8).
Effectiveness of the method is proved by increased recall compared to manually
linked product fragments. Therefore, hypothesis H1 is confirmed. However,
section 5 presents more detailed analysis of the difference between the results
with case 1 and case 2.

Perceived Ease of Use
Cramer (1994) argues that ordinal scales are often treated as interval because
researches pay less attention to the levels of measurement than is paid to the
statistical test of choice. Cramer (1994) notes that parametric statistics rely on the
estimated population ‘parameter’ from a sample, and this usually makes three
assumptions about the data. First, the level of measurement is non-categorical (or
interval/ratio quality). Second, the variances of any comparison between different
groups of such data are equal. Third, the data is distributed normally. Cramer
(1994) notes that research shows that violation of either of the latter two
assumptions do not impact on results, but violation of both is problematic.
Therefore, for this construct, we first analyse the normality of answers
distribution, and then we proceed to parametric test of data.

Hypothesis H2 can be statistically testes by verifying whether the scores that
subjects have given to the questions related to the constructs of MEM are
significantly better than the middle score, i.e. the score 3 on the Likert scale for
the question. The score 3 means, that a subject’s perception is neutral, i.e. the
method was not perceived neither easy nor difficult to use. If subject’s rating is
higher than the middle score, then he/she perceives an advantage of the method.
Therefore, the null hypothesis for the hypothesis H2 is formulated as follows.

 H2N: The perception of the method being ease of use is neutral.

Figure 8.4 shows an average score for each of the subjects, calculated from the
responses to the PEU relevant questions. The One-Sample Kolmogorov-Smirnov
test (with Normal theoretical distribution) is applied to the answers related to the
constructs of the PEU (see Table 8.3). The distributions is normal, i.e. p values
are high (lowest was 0,33 for Q13 Ease of Using the prototype) i.e. distribution is
quite normal. Therefore, one-tailed t-test was used to check for the difference in
mean of PEU construct and the middle score value 3. To evaluate the

8.5 Results 147

significance of the observed difference, we applied a statistical test with a
significance level of 5%.
Table 8.3 One-Sample Kolmogorov-Smirnov Test for responses measuring PEU

Q13_EoU Q13_EoL Q14 Q15 Q16
6 6 6 6 6

Poisson Parameter Mean 3,17 3,83 4,17 3,67 3,83
Absolute 0,387 0,339 0,241 0,291 0,339
Positive 0,223 0,339 0,241 0,165 0,339
Negative -0,387 -0,300 -0,235 -0,291 -0,300

0,948 0,829 0,591 0,713 0,829
0,330 0,497 0,875 0,689 0,497

Kolmogorov-Smirnov Z
Asymp. Sig. (2-tailed)

N

Most Extreme
Differences

Remark: EoU – Ease of Using; EoL – Ease of Learning.

Table 8.4 Mean scores assigned by test subject for each construct of the MEM
Subject ID 1 2 3 4 5 6
Perceived Ease of Use 4,00 3,20 3,40 4,20 3,60 4,40

Table 8.5 provides descriptive statistics for the PEU construct.
Table 8.5 Descriptive statistics for PEU.

Number of observations Minimum Maximum Mean Std.
Deviation

Std. Error
Mean

6 3,200 4,400 3,800 0,473 0,193

The results in Table 8.6 allow for the rejection of the null hypothesis H2N,
meaning that we empirically corroborated that participants perceived the tool and
method to be easy to use.
Table 8.6 One Sample t-test for difference in mean
t 1-tailed p Mean difference 95% Confidence Interval of the difference
4,140 0,005 0,800 0,303 (lower) 1,297 (upper)

Next we measure the reliability of PEU construct. The reliability measure
describes consistency the construct gives in measuring the same phenomenon
over time or by different people. Cronbach’s alpha for the construct PEU is 0,86
(usually values over 0,7 are expected in order for construct to be reliable).

148 Chapter 8 Evaluation of the Method

Table 8.7 Total item statistics
Questionnaire item
related to the PEU
construct

Scale Mean if
Item Deleted

Scale
Variance if
Item Deleted

Corrected
Item-Total
Correlation

Cronbach's
Alpha if Item
Deleted

Q13_EoU_prototype 32,67 35,867 -,382 ,889
Q13_EoL_prototype 32,00 31,600 ,523 ,857
Q16_prototype 32,00 33,600 ,085 ,873
Q15_prototype 32,17 32,167 ,144 ,879
Q14_prototype 31,67 26,267 ,950 ,819
Q13_EoU_doors 32,17 23,367 ,797 ,825
Q13_EoL_doors 32,67 27,467 ,777 ,833
Q16_doors 32,17 22,167 ,924 ,809
Q15_doors 32,67 27,467 ,777 ,833
Q14_doors 32,33 21,067 ,885 ,815

Table 8.7 shows that all items are consistent, i.e. Cronbach’s alpha is still above
0,8 if any of the items deleted. So, we conclude that the items used to measure
perceived ease of use are reliable and valid measures for this perception based
construct.
Perceived Usefulness
Recall, that the perceived usefulness we have measure using two items from the
questionnaire, namely, question 7 and question 18. As answers to question 7
were identical, i.e. all test subjects answered that the prototype helped to discover
some new correct dependency links. While answering to the question 18, two test
subjects have identified results of the prototype being accurate as neutral, i.e.
middle value in a scale from 1=Total disaster to 5=Very accurate. Others have
chosen value 4. Because of small number of questions covering this metric, we
are not able to apply the same calculation as for PEU construct. Cronbach’s alpha
is not computable using SPSS, as one variable is constant, i.e. all subjects have
given the same answer to question 7 (see Appendix E).
Table 8.8 Comparison of responses to Q6 and Q18
Subject ID 1 2 3 4 5 6
of total inspected 18 19 39 30 25 27
of total additional 7 5 14 6 8 2
% of additional 38,9% 26,3% 35,9% 20,0% 32,0% 7,4%
Q18 4 4 4 3 4 3

In order to validate users’ consistency in answering, we have compared answers
to question 18 with actual effectiveness, i.e. answers to the question 6. Data in
Table 8.8 are taken from Table 8.2. From Table 8.8 it is obvious that both users

8.5 Results 149

selected value 3 in question 18 had least percentage of additional correct
dependency links discovered by the prototype. So, we can treat their answers
being honest and consistent.

To summarise, PU construct shows that the prototype usefulness has
positive perceptions among users. In section 8.5.2 we return to the analysis why
1/3 of users have ranked accuracy of prototype results as “neutral” (average).
Intention to Use
Intention to use was measured by three items in questionnaire, i.e. questions 10,
11 and 24. Users were asked to rank the tools they have used in preferable to use
order, i.e. assigning 1st, 2nd or 3rd place. Because of specificity of the response
format, we certainly cannot use any of parametric tests. Therefore, we have
chosen to use Kendall coefficient of concordance W (Siegel & Castellan, 1988)
to measure agreement among users’ ranking.

Kendall coefficient of concordance W is computed according Eq. 8.1.

12/)1(

)(

2
1

2

−

−
=
∑
=

NN

RR
W

N

i
i

 Eq. (8.1)

Where,
N = number of object being ranked;
R = the average of the ranks assigned across all objects;

iR = average of the ranks assigned to the ith object.

Table 8.9 displays the ranks given by users and average of the ranks, the average
of the ranks assigned across all objects is equal to 2,00. Kendall coefficient of
concordance WQ10 = 0,58 for question 10 and WQ11 = 0,86 for question 11.
Table 8.9 Responses to Q10 and Q11 with an average of ranks
Question Q10 Q11
Subject ID 1 2 3 4 5 6

iR 1 2 3 4 5 6
iR

Prototype 1 1 1 2 1 1 1,17 1 1 1 1 1 1 1,00
Doors 3 2 2 1 2 3 2,17 3 2 2 2 2 2 2,17
Traceability matrix 2 3 3 3 3 2 2,67 2 3 3 3 3 3 2,83

When answering to question 24 to select what tool they would like to use it in
future, all test subjects selected the prototype, though subject #2 in addition
selected traceability matrix, and subject #4 – Doors tool. Subject #4 has provided
justification that “Doors is more suitable for moderate-sized project”, “prototype
would be great for large scale / distributed development”.

Based on the above presented data analysis, we can claim that there is an
intention to use the tool (method), i.e. H4 is confirmed.

150 Chapter 8 Evaluation of the Method

8.5.2 Discussion
Here we analyse the results and especially the difference in results in more detail.
First, we analyse a possible cause; second, we discuss and relate the results to
metrics used in dependency (traceability) links establishment, i.e. related
approaches. We conclude the discussion by analysis of possible threats to
validity and summary of observations with a feedback received from the test
subjects.
Cause analysis
In order to investigate the difference between the results with case 1 and case 2
respectively, we have analysed an average amount of concepts associated with a
product fragment (see Table 8.10). Generally, it can be observed that the bigger
concept cluster the bigger result set is produced, i.e. the result set will contain
more false positive. There are no significant correlations between an average
concept cluster size (Table 8.10) and the result set (Table 8.2). Namely,
correlation coefficient between the mean of cluster size and amount of wrong
identification is 0,14 in case 1 and -0,52 in case 2. While correlation coefficients
between the mean of cluster size and amount of total inspected identifications are
-0,16 in case 1 and -0,04 in case 2.

However there is a notable difference in a cluster size between group A and
group B. The difference exists in the both cases. This difference in an average
amount of concepts used to describe semantics of a product fragment is a
outcome of different usage sequence of experimental tools. Group B has started
performing task with a CO2SY prototype, and after proceeding to direct linking
using the comparative tools. While group A did it other way around. Group A
needed more thoroughly investigate the product fragments when performing
direct dependency linking task, i.e. they have had more clear perception of
semantics (content) of the product fragments when associating them with the
concepts.
Table 8.10 Mean of concepts cluster size associated per fragment

code require-
ments

user
manual design code require-

ments
(1) (2) (3) (4) (5) (7) (8)

1 2,3 3,0 2,0 2,3 2,4 (±0,8) 1,2 2,5 1,9 (±1,0)
2 3,0 4,5 1,5 4,0 3,3 (±1,4) 3,2 2,8 3,0 (±2,4)
3 2,1 2,2 1,9 3,0 2,3 (±1,2) 3,4 4,8 4,1 (±2,1)
4 4,5 5,5 4,5 4,0 4,6 (±0,7) 4,2 1,3 2,7 (±2,5)
5 4,5 4,5 4,0 5,0 4,5 (±1,1) 4,4 4,3 4,3 (±1,0)
6 4,0 4,5 1,5 2,0 3,0 (±1,5) 2,0 3,0 2,5 (±1,4)

Overall 3,3 (±1,4) 3,1 (±2,0)
group A 2,3 (±1,2) 2,7 (±1,0)
group B 4,1 (±1,2) 3,4 (±2,1)

Overall
mean (± st.dev.)

(6) (9)

Case 2Case 1
Mean

Overall
mean (± st.dev.)

Subject
ID

Mean

8.5 Results 151

Next, we have analysed the responses about the quality of case 1 and case 2. We
assume that better quality of domain model and case description should facilitate
association of product fragments with concepts, while worse quality of the
product fragments makes direct linking more difficult. The results are
summarised in Table 8.11 and graphically displayed in Figure 8.6. Values in
Table 8.11 are displayed as count of answers, i.e. three users meant that quality
of fragments in case 1 was fair. Weighted total quality is calculated using
equation 8.2. Median is calculated based on responses using a five-point Likert
scale, i.e. “very bad” = 1, “very good” = 5.

∑
=

×=
5

1

)(
i

ii VwWT Eq. (8.2)

Where, VC is a set of values categories, i.e. VC = {very bad; bad; fair;
good; very good}, Vi is a set of all occurrences of the response type from VC,
v∈VC and v ∈ V; W is a set of weights, w∈W = {-2; -1; 0; 1; 2}.

The quality of case 2 description and domain model was perceived much
better than of case 1 (in addition 50% of test subjects identified lack of domain
knowledge in case 1, see answers to question 12 in Appendix E), while the
variation of fragments’ quality is not so big. Obviously, that does not explain the
differences of results in Table 8.2. Small variation in perceived quality of product
fragments suggests, that direct linking should have been easier in case 1,
meaning less additional correct links identified by the prototype. However, one
test subject noted that fragments were more related to the structure of the
problem in case 1, whereas in case 2 fragments seemed to be related to the
structure of program (software). That sounds reasonable and explains the results
in Table 8.2, as case 1 was based on the implementation materials from MSc
project, while case 2 was based on implementation materials from the system
actually used.
Table 8.11 Perceived quality of cases

Very bad Bad Fair Good Very good Weighted total Median

(1) (2) (3) (4) (5) (6) (7) (8) (9)
description - 1 4 1 - 0 3,0
domain model - - 4 2 - 2 3,0
fragments - 1 3 1 1 2 3,0
description - - 2 4 - 4 4,0
domain model - - 1 5 - 5 4,0
fragments - 2 2 2 - 0 3,0

Quality of

Case 1

Case 2

152 Chapter 8 Evaluation of the Method

1

2

3

4

5

Case 1 Case 2
Domain model Product fragment Description Domain model Product fragment Description

Figure 8.6 Perceived quality

Mean is denoted by line, dots represent chosen value by test subjects

Further, in order to analyse the variance of the subjects’ perceptions regarding
PU construct (recall the variance between the users 4 and 6 in the mean of
concepts associated with product fragment (see Table 8.10)), we decided to take
a look at users’ pattern using confidence level when associating with concepts20.
It is reasonable, since high confidence level of association gives a numerical
value of 0,2 (0,5 is for medium and 0,8 is for low confidence level), i.e. as
discussed in chapter 6. Table 8.12 shows that, actually user #4 used only high
confidence level (100%) and user #6 used over 90% of high confidence level for
associations. This was the reason to compute a lot of false positive impact
notifications and obviously had influenced the reason for different answers for
the construct of Perceived Usefulness.
Table 8.12 Percentage of different confidence levels used for associations
Subject ID 1 2 3 4 5 6
High 68% 80% 67% 100% 64% 91%
Medium 29% 15% 28% 0% 33% 9%
Low 3% 5% 5% 0% 3% 0%

Comparison to related approaches
Precision and recall (Baeza-Yates & Ribeiro-Neto, 1999) are two commonly
used metrics to evaluate the utility of traceability techniques (e.g., Spanoudakis
et al., 2004). Recall is the percentage of all true links retrieved, and precision
equals the percentage of true links in the answer set. Typically, both recall and
precision are equally important. However, when it comes to dependency links,
the recall is more important, as all dependency pairs must be found, in order to

20 The users are able to specify the confidence level when associating a product fragment with a concept,
i.e. high, medium or low, recall chapter 6.

8.5 Results 153

avoid errors in the system under implementation. While precision is used as a
filter, i.e. shows how many false positives need to be examined. Consequently,
low precision rate will make automated linking useless.

Recall Table 8.2, the precision level for case 1 is 75% (see column 10),
when taking into consideration partially correct. While precision of totally
correct (column 9) is 57%21. The corresponding values for case 2 are 69% and
48%. The experiment does not lend itself to calculate recall, however. Firstly, the
complete set of correct (true positive) dependency links was not known and we
had no expert available. Secondly, as our method is user-centric, it was more
important to observe users’ perception of effectiveness. However, the earlier
discussed amount of additional dependency links (correct and partial correct,
column 8 in Table 8.2), identifies that recall using the prototype is higher than
processing the fragments “manually”. Actually, our method provides 100% recall
since associating all product fragments together with domain concepts results in a
network of indirectly linked product fragments.

There are many approaches tackling the problem of dependency links
discovery with adoption of Information Retrieval (IR) techniques (e.g., Cerbah &
Euzenat (2001); Spanoudakis et al. (2004)). Unfortunately, they support only
natural language based fragments.

In addition, the special settings (i.e. distributed development) for which our
method is developed and span of the whole development life-cycle by the
method, makes it difficult to compare with other methods. Since other
approaches mainly deal with a limited set of development life-cycle phase (i.e.
limited set of product fragments types), e.g., requirements to architecture (Pohl et
al., 2001). Some approaches are based on a particular tool (e.g., IBM® Rational
Rose™ (Letelier, 2002) or specific notation family (e.g., UML (Knethen, 2002)).
8.5.3 Threats to validity
The following possible threats to the validity of this experiment have been
identified.

 The case study is executed at the university. However, the experiment
examined the real cases, 80% of the test subjects had an industrial experience.

 Different than intended usage settings. In intended settings, the user first
participates in problem definition and later, he or she associates own product
fragments (he or she has developed) with the concepts from domain model.
Here the users were given the product fragments developed by others.
Furthermore, domain models for both cases were not made by them.

 Fair answers vs. colleagues answers. The above analysis of the perceived
usefulness construct shows that answers are consistent and very likely fair.

21 Precision ratio of 50% means that developer has to examine about one false positive per true link.

154 Chapter 8 Evaluation of the Method

 Subjects provided subjective evaluations. The individuals interpret the
experimental materials and tasks according to their experience. Experience
seemed to be similar for most of individuals.

 Subjective choice of comparative tools. Telelogic Doors is one of the leading
tools in the area. Traceability matrix was chosen to use as one of the
traditional techniques. Availability of IR techniques-based tools (e.g.,
(Spanoudakis et al., 2004)) is limited, since most of them are academic
prototypes. Even if we would have such a tool, its applicability would be
limited because of variety of product fragments types (i.e. binary files, see
Appendix D).

 Fatigue effect. On average 3,5 hours were spent to complete the tasks and fill
the questionnaire. Therefore, this effect is not relevant.

8.6 Satisfying the requirements
Here we revisit the requirements specified in chapter 2 (see section 2.6) and
discuss how well they are satisfied by the proposed method and implemented
prototype. For comparison with the state-of-the-art, recall Table 3.2.
Table 8.13 Meeting requirements by the method and prototype
Requirements Prototype/

Method
Comments

Req1-Flexible access to
the product High We do not use locking, developers are

allowed to sign-out objects for revision.
Req2-Unrestricted product
fragment types High Implementation of the method allows easy

incorporation of new object types.
Req3-Unrestricted relation
types High Possible to define own relations, kind of

personal dependency relations.
Req4-Incremental product
fragment refinement High

We allow to post into repository
fragments at any stage of development,
temporary versions can also be loaded to
repository.

Req5-Support for
boundary objects High

Different views on project and product
fragments are possible, based on
metadata, domain model, used categories,
etc.

Req6-Active delivery of
information High It is possible to subscribe for the

notifications about different event.
Req7-Knowledge
externalisation in a means
of conceptual domain
model

Medium
Only theoretical method is proposed, as
modelling environment is not yet fully
implemented.

Req8-Domain concepts
explanation (extension) High Associations with product fragments are

one example, as well description in

8.7 Summary 155

Requirements Prototype/
Method

Comments

natural language.
Req9-Support for
knowledge internalization Medium

Again, because of limitations of the
prototype implementation, in particular
absence of integrated modelling
environment.

Req10-Conceptual domain
model should be available
through whole
development life-cycle

High

It is available for association and for
analysis. Conceptual model is used
throughout development life-cycle and all
product fragments can be associated.

Req11-Flexible metadata
specification about
development objects

High
Association with domain model was
perceived ease to use, that one kind of
metadata.

Req12-Efficient
dependency management High

Fuzzy association, and stepwise
refinement to more explicit dependency
links.

8.7 Summary
The feasibility of the proposed method and its implementation has been
evaluated in this chapter. In the analysis we have focused on effectiveness and
acceptance of the method (recall the evaluation questions of the experiment
described in section 8.4.1). The results of the experiment clearly indicate the
method being effective and helpful in dependency links discovery. The subjects’
perceptions seem to confirm the performance-based results. The subjects
perceived our method as ease to use and useful, and they expressed intention to
use.

We have corroborated that the test subjects produced consistent answers.
Though the scope was limited, results of the experiment give some credible
indications on the method applicability and feasibility. Yet, the results should be
interpreted only as preliminary, due to limited scope and amount of data, as well
as artificial, different than intended, use of the method and tool. In intended
settings, the user first participates in problem definition and later, he or she
associates own product fragments (he or she has developed) with the concepts
from domain model. Therefore, a larger scale experiment that would imitate the
intended use of the method is necessary in order to reconfirm the results
obtained. In addition, an experiment on known set of correct dependency links
needs to be conducted.

Furthermore, the experiment has shown the necessity to improve the user
interface of the current prototype. Telelogic Doors outperformed the studied
prototype in visualisation of dependency links. Therefore, we need to consider
enhancing manipulation of results by a means of providing different views and
filters.

156 Chapter 8 Evaluation of the Method

 157

9
Conclusions and Outlook

“While we are free to choose our actions, we are not
free to choose the consequences of our actions.”

— Stephen R. Covey

This chapter concludes the thesis. The main contributions are outlined;
advantages and limitation of the proposed method are discussed. Open challenges
and possible further improvement are discussed at the end.

9.1 Summary of Contributions
Recall the overall objective defined for this thesis in chapter 1, i.e. introduce a
method for distributed collaborative work environment supporting management
and change impact prediction of the diverse product fragments based on the
semantics of the product fragments.

In order to achieve the objective, we have proposed a method for change
impact assessment and management in distributed development, based on
conceptual domain model. The need for such method stems from the fact that in
such projects system specification is produced in different formats and various
tools might be used. Manual establishment of dependency links between product
fragments is cumbersome in a distributed project. It is even difficult to keep an
overview who is working on what in such settings. For instance, Egyed and
Grunbacher (2005) report that requirements traceability in practice often suffers
from the enormous effort and complexity of creating and maintaining traces.
Meanwhile, fully automatic traceability linking is hardy achievable. That stems
from NLP techniques being yet not so advanced and will require tailoring
towards particular object types, as well different working style, i.e. socio-cultural
distance between involved stakeholders. Consequently, we have proposed more
fuzzy user-centric method to deal with complexity.

158 Chapter 9 Conclusions and Outlook

As prerequisites for the method a framework for model fragment
management has been elucidated, repository support and implemented prototype
have been discussed. In addition to being important part of our method,
implementation of repository was supposed to be a kernel for the research
activity in the IS-group at NTNU. In particular, the implementation targeted to
provide a means for storing and manipulating the model fragments as supporting
technology for the approaches developed earlier in the IS-group. First, an
approach elucidated by Su (2004) – providing a storage for models (ontologies),
extensions of concepts that are prerequisite for model mapping, and results of the
produced mappings. Second, an approach to semantic document modelling and
retrieval presented by Brasethvik (2004) – storing and reusing model fragments
for document (information) retrieval.

Finally, the method and implementation have been evaluated in an
experimental case study. The experience gained from the experiment, also
supported by the results of the experiment, indicates that the proposed method is
a promising line of research in the area of conceptual model (ontology) centric
development. Meanwhile, Figure 9.1 summarises the proposed method by
relating the goals, means to achieve them and abstract functional steps of the
proposed method.

Figure 9.1 Overview of the proposed method: goals, means and process

To sum up, the main advantages of the proposal are as follows.

 Helps to reconcile terminology. Stakeholders can agree to use a
common vocabulary for the domain, or use own terminology, which is
aligned to the common vocabulary. The chances of mutual
understanding are greatly enhanced.

 Facilitates an interpretation of development object. Conceptual model
used for (semantically) structuring development objects allows
abstracting from the medium on which data is represented.

9.2 Open Challenges 159

 Facilitates change impact management in distributed heterogeneous
environment. As reported in chapter 8, test subjects agreed on the
method being easier to use and helpful in discovery of dependency
between product fragments.

 Facilitates control of a project. Amount of product fragments
(recently) associated with particular concepts identifies where most of
work is undergoing, i.e. what part of problem has a focus (currently).
This allows project manager to distribute resources more equally or
prioritise other parts.

 Facilitates maintenance. Especially when a new requirement appears,
it is easier to associate with a domain concept and get an overview of
possible impacts, then investigate a huge set of product fragments for
possible dependencies.

9.2 Open Challenges
In this section we discuss the limitations of our method and give an account to
possible extensions. Of course there are two high priority things to do. First,
implement more reliable prototype, e.g., fix bugs, fully integrate modelling
environment. Second, conduct real case study by either adopting the tool and
method in an industrial project, or running several students projects. These two
are important, but there are more open possibilities to improve the
methodological and technological sides of the proposal. They are discussed in the
following subsections.
9.2.1 Collaborative domain modelling
Here we propose to use conceptual models not only to guide the design of a
system, but also to actually access and manage the information produced during
IS engineering. Semantic associations of development objects with a concept
from a domain model are intended to communicate the meaning of development
objects between stakeholders. Since success in system development depends on
effective human communication (Solvberg & Kung, 1993), early understanding
and modelling of problem domain is a key to managing large scale systems and
projects. This requires stakeholders to reach certain level of shared interpretation
of the domain referred throughout the development. Within a limited domain, it
is possible to engage stakeholders in a collaborative activity to explicitly define
the semantics of the domain.

However, the limited domains usually are not targeted by the huge
distributed projects. That is one of the most significant issues, i.e. the need to
establish a common underlying structure that provides communication,
interaction and management between the different parties engaged in the systems
development, as well as overcoming differences in terminology, opinion,
expertise and understanding of the domain. Hoppenbrouwers et al. (2005b) states

160 Chapter 9 Conclusions and Outlook

that “most actual modelling is done by individuals, two people at most. Genuine
group modelling sessions are very rare”. Though, they do not provide any details
on what scale projects they have investigated. Therefore, there is an obvious need
to conduct more empirical studies on how modelling is actually performed. It is
dangerous for method applicability, if only experts are allowed to contribute to
the models.

Fortunately, there are some evidences of collaborative problem
conceptualisation being possible. Zhdanova et al. (2005) proposes community-
driven ontology management, i.e., providing means to the community members
to develop and maintain domain ontologies and to crosslink between different
domains. They hypothesis is similar to our, i.e., “the ontologies which are
constructed, aligned and further operated by the communities represent the
domain and connection with other domains more comprehensibly than the
ontologies designed and maintained by an external knowledge engineer”.
Zhdanova et al. (2005) prove that in a case study of creating a portal ontology,
i.e. results indicate that experts are not capable to specify the community
knowledge comprehensively, as a community would do it itself.

Furthermore, a common model is important for developers’ motivation,
they do not feel “boxed”, but have an overall view how do they fit into the
whole, e.g., Hoppenbrouwers et al. (2005b) observe that “models are particularly
important in giving stakeholders a feeling that they are “part of the larger whole”.
Often, just knowing where in the model “they can be found” is important to
stakeholders, even if they do not understand the fine points of the model.”
Therefore, it would be interesting to investigate whether the method is applicable
in open source software development communities, as these projects are widely
distributed. Though, it might be difficult to get developers into the modelling
phase, as they usually are programmers, not modellers. In addition, developers
typically work on multiple projects at different levels of involvement in open
source projects (Barnett, 2004).

9.2.2 Towards automation
Natural language processing (NLP) is an active and steady improving research
area. Researchers have used NLP techniques to generate structured or formal
models from requirements documents expressed in natural language, or to
identify terms denoting significant entities that deserve further consideration and
analysis within such documents.

Adoption of NLP techniques should be considered for both, domain model
construction and product fragment analysis for the purpose of associating with
the domain model. In these both areas there are already some contributions. For
instance, model generation from requirement documents has been based on
semantic or grammatical analysis of natural language. Examples of systems
advocating the semantic analysis approach include CICO (Ambriolla & Gervazi,

9.2 Open Challenges 161

1997), OICSI (Rolland & Proix, 1992), COLOR-X (Burg & van de Riet, 1995),
Moreno (1998), LIDA system (Overmyer et al., 2001), and Text2onto (Cimiano
& Volker, 2005).

Actually, earlier mentioned CnS system and approach by Brasethvik (2004)
consider both, domain model construction based on document collection and
later, linguistic analysis of new documents in order to propose relevant model
fragments in terms of selected domain model concepts and named relations.

However, automation of domain model construction most likely will make
it even harder to comprehend the model, commit to and use it. Therefore,
adoption of NLP techniques for semi-automatic association of product fragments
to domain concepts is more promising. Unfortunately, it is still troublesome to
automate analysis code fragments, where results mostly depend on ones
programming habits (coding and naming classes, functions, etc). Though there
are some attempts, e.g., Antoniol et al. (2002) have proposed the use of
information retrieval techniques to support the generation of traceability relations
between requirement documents and source code. Stepwise refinement of
conceptual model and inclusion of design/ implementation specific concepts
would facilitate association of technical product fragments, i.e. code fragments,
design diagrams.

Having a robust automatic association of product fragments, would provide
a good means for controlling whether the system (solution) is within boundaries
of problem space (UoD). For instance, having bigger domain model and deciding
to computerise only a part of it, then all product fragments associated with
concept outside of to-be-computerised area of the problem domain, can be treated
as declination from the target. Therefore, a solution is going to be not feasible.

As we have already mentioned importance of the fourth dimension in
collaborative modelling (see chapter 5). The representation dimension would
traverse a conceptualisation of problem starting informal, natural language
descriptions and reaching more formal definition. The strength of including this
dimension lies in providing the means for stakeholders without a modelling
experience to be part of the process. Seamless transition from informal natural
language descriptions of UoD to formal (semi-formal) models would make
modelling easier for them. Furthermore, adoption of model explanation
generation (Gulla, 1993) techniques may help to comprehend the model
fragments. Relating documents (kind of governing documents, describing the
domain) to concepts (as it is proposed by Brasethvik (2004)) helps to explain the
model as well as validate the model, facilitating agreement and commitment.
Inclusion of representation dimension will be beneficial, though it preferably
requires adoption of NLP techniques, discussed earlier in this section. However,
supporting modelling by various notations is a separate interesting research area
along the representation axis and needs to be investigated further.

162 Chapter 9 Conclusions and Outlook

9.2.3 Other improvements
Conceptual domain model in our method is used to relate all product fragments.
Given such relational network of interconnected product fragments; it is natural
to think about reuse of product fragments based on similarity (equality) of
problem domain. For instance, Feature-Oriented Domain Analysis (FODA)
focuses on the systematic discovery and exploitation of commonality and
variability in related software systems (Kang et al., 1990) or reuse by domain
analogy as proposed by Sutcliffe and Maiden (1998). FODA is primarily used to
identify distinct features in the domain. Then it is possible to extract suitable
product fragments based on matched (overlapping) part of conceptual domain
model. In order to make it efficient, domain model should be represented in a
reasoning enabled language, e.g., OWL (Web Ontology Language) (W3C, 2005).
Then reasoning process will rely more on model properties, not only computed
weights between concepts.

Finally, for successful adoption in practice, the system’s functionality needs
to be radically increased, for instance, workflow engine should be included, and
system should be portable for a Web-browser.

 163

Bibliography

(Agerfalk et al., 2005) Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., and Ó
Conchúir, E. A Framework for Considering Opportunities and Threats in Distributed Software
Development, In Proc. of the Intl. Workshop on Distributed Software Development (DiSD 2005),
Paris, 2005.

(Andersen, 1994) Andersen, R. A Configuration Management Approach for Supporting Cooperative
Information System Development, PhD thesis, NTH, Trondheim, Norway, 1994.

(Amber, 2002) Amber, S.W. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process, John Wiley & Sons., 2002, 384 p.

(Ambriolla & Gervazi, 1997) Ambriolla, V., and Gervazi, V. Processing natural language requirements.
In Proc. of Intl. Conf. in Automated Software Engineering (ASE ’97), pages 36–45.

(Antoniol et al., 2002) Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. Recovering
traceability links between code and documentation. IEEE Transactions on Software Engineering
28(10), 2002, pages 970–983.

(Avison & Fitzgerald, 2002) Avison, D.E., and Fitzgerald, G. Information Systems Development.
Methodologies, Techniques and Tools. 3rd edition. McGraw-Hill, 2002, 608 p.

(Baeza-Yates & Ribeiro-Neto, 1999) Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information
Retrieval. Addison Wesley, ACM Press, 1999, 513 p.

(Bannon & Bodker, 1997) Bannon, L., and Bødker, S. Constructing Common Information Spaces. In
Proc. of 5th European Conf. on CSCW. Lancaster, UK. Kluwer Academic Publishers, 1997.

(Barnett, 2004) Barnett, L. Applying Open Source Processes in Corporate Development Organizations.
Forrester Research, Inc. 2004.

(Berners-Lee et al., 2001) Berners-Lee, T., Handler, J., and Lassila, O. The Semantic Web. Scientific
American, May 2001, pages 34–43.

(Bernstein & Dayal, 1994) Bernstein, P.A., and Dayal, U. An Overview of Repository Technology. In
Proc. of 20th VLDB conference, 1994, pages 705–713.

(Bleeker et al., 2004) Bleeker, A.I., Proper, H.A., and Hoppenbrouwers, S.J.B.A. The Role of Concept
Management in System Development - A practical and a theoretical perspective. In Grabis, J.,
Persson, A., and Stirna, J. (Eds.), Forum proc. of the 16th Conf. on Advanced Information Systems
2004 (CAiSE 2004), Riga Technical University, Riga, Latvia, 2004, ISBN 998497670X, pages 73-
82.

(Boehm, 1987) Boehm, B.W. A spiral model of software development and enhancement. In R.H. Thayer
(Ed.) Tutorial: Software Engineering Project Management, IEEE Computer Society, Washington,
1987, pages 128–142.

(Borgman, 2000) Borgman, C.L. From Gutenberg to the Global Information Infrastructure: Access to
Information in the Networked World. MIT Press, 2000, 324 p.

164 Bibliography

(Brasethvik, 2004) Brasethvik, T. Conceptual modelling for domain specific document description and
retrieval- An approach to semantic document modelling. PhD thesis, IDI, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway, 2004.

(Brown et al., 1992) Brown, A.W., Earl, A.N., and McDermid, J.A. Software Engineering Environments
– Automated Support for Software Engineering, McGraw-Hill, London, 1992, 326 p.

(Bu et al., 2001) Bu J., Lin Q., Ng J., and Low C.P. VRCASE: A Virtual Reality Based Collaborative
CASE Tool. In Proc. of IASTED Intl. Conf., Applied Informatics (AI 2001), February 19-22, 2001,
Innsbruck, Austria.

(Budgen et al., 1993) Budgen, D., Marashi, M., and Reeves, M. CASE tools: Masters or servants? In
Proc. of the 1993 Software Engineering Environments Conference. IEEE Computer Society Press,
pages 156–165.

(Bunge, 1998) Bunge, M.A. The philosophy of science. Transaction publishers, USA, 1998.
(Bunge, 1977) Bunge, M.A. Ontology I: The Furniture of the World, vol.3 of Treatise on Basic

Philosophy. Reidel, Boston, 1997.
(Burg & van de Riet, 1995) Burg, J.F.M., and van de Riet, R.P. COLOR-X: Linguistically-based Event

Modeling: A General Approach to Dynamic Modeling. In Iivari, J, Lyytinen, K., Rossi, M. (Eds.)
Proc. of 7th Intl. Conf. on Advanced Information Systems Engineering, (CAiSE'95), LNCS 932,
Springer-Verlag, 1995, pages 26-39.

(Carlsen, 1997) Carlsen, S. Conceptual Modelling and Composition of flexible workflow models. PhD
thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 1997.

(Carstensen & Schmidt, 2002) Carstensen, P.H., and Schmidt, K. Self-Governing Production
Groups: Towards Requirements for IT Support. In Proc. of the IFIP TC5/WG5.3 5th IFIP/IEEE
Intl. Conf. on Information Technology for Balanced Automation Systems in Manufacturing and
Services: Knowledge and Technology Integration in Production and Services: Balancing
Knowledge in Product and Service Life Cycle, Kluwer, 2002, pages 49-60 .

(CEEBI, 2004) Centre for Extended Enterprise and Business Intelligence. Multisite Software Engineering
– Research Programme, Curtin University of Technology, Australia.
URL: http://www.ceebi.research.cbs.curtin.edu.au/docs/RES_multiSE.php (Last checked: 2005 09
13).

(Cerbah & Euzenat, 2001) Cerbah, F., and Euzenat, J. Traceability between models and texts through
terminology. Data and Knowledge Engineering 38 (1), Elsevier Science Publishers, 2001, pages
31-43.

(Chalupsky, 2000) Chalupsky, H. Ontomorph: A translation system for symbolic logic. In Cohn, A.G.,
Giunchiglia, F., and Selman, B. (Eds.), KR2000: Principles of Knowledge Representation and
Reasoning, San Francisco, California, USA, 2000. Morgan Kaufmann, pages 471–482

(Chandrasekaran et al., 1999) Chandrasekaran, B., Josephson, J.R., and Benjamins, V.R. What are
ontologies, and why do we need them? IEEE Intelligent Systems 14(1), Jan./Feb. 1999, pages 20–
26.

(Chen & Norman, 1992) Chen, M., and Norman, R. A Framework for Integrated CASE. IEEE Software
3, 1992, pages 18–22.

(Chen et al., 1999) Chen, P.P., Thalheim, B., and Wong, L.Y. Future Directions of Conceptual Modeling.
In Chen, P.P., Akoka, J., Kangassalo, H., Thalheim, B. (Eds.) Conceptual Modeling, Current
Issues and Future Directions, Selected Papers from the Symposium on Conceptual Modeling, Los
Angeles, California, USA, held before ER'97. LNCS 1565, Springer-Verlag, 1999, pages 287-301.

(Cimiano & Volker, 2005) Cimiano, Ph., and Völker, J. Text2Onto - A Framework for Ontology
Learning and Data-Driven Change Discovery. In Montoyo, A., Muñoz, R., and Métais, E. (Eds.)
Proc. of 10th Intl. Conf. on Applications of Natural Language to Information Systems (NLDB’05).
LNCS 3513, Springer-Verlag, 2005, pages 227-238.

(Cleland-Huang et al., 2003) Cleland-Huang, J., Chang, C.K., and Wise, J. Automating Performance
Related Impact Analysis through Event Based Traceability. Requirements Engineering Journal
8(3), Springer-Verlag, Aug. 2003, pages 171-182.

Bibliography 165

(Composent, 2005) Composent Collaboration Plugin. URL: http://www.eclipseplugincentral.com/
displayarticle172.html. (Last checked: 2005 12 28).

(Conradi & Westfechtel, 1998) Conradi, R., and Westfechtel, B. Version Models for Software
Configuration Management. ACM Computing Surveys 30(2), 1998, pages 232-282.

(Cormen et al., 2001) Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. Introduction to
Algorithms, 2nd Edition. The MIT Press and McGraw-Hill, 2001.

(Cramer, 1994) Cramer, D. Introducing Statistics for Social Research: Step-by-step calculations and
computer techniques using SPSS. London: Routledge, 1994.

(CWM, 2005) Data Warehousing, CWM, and MOF Resource Page. URL:
http://www.omg.org/technology/cwm/ (Last checked: 2005 12 12)

(Daconta et al., 2003) Daconta, M.C., Orbst, L.J., and Smith, K.T. The Semantic Web, John Wiley &
Sons, 2003, 312 p.

(Daft, 1995) Daft, R.L. Organization theory & design. St. Paul: West publishing Company, 1995, 511 p.
ISBN 0-314-04452.

(Dart, 1991) Dart, S. Concepts in configuration management systems. In Feiler, P.H. (Ed.), Proc. of 3rd
Intl. Workshop on Software Configuration Management, Trondheim, Norway, June 1991, ACM
Press, pages 1–18.

(Davis, 1989) Davis, F.D. Perceived usefulness, perceived ease of use and user acceptance of information
technology. MIS Quaterly 13(3), 1989, pages 319-340.

(Decker et al., 1999) Decker, S., Erdmann, M., Fensel, D. and Studer, R. Ontobroker: Ontology based
Access to Distributed and Semi-Structured Information. In Semantic Issues in Multimedia Systems.
Kluwer Academic Publisher. 1999.

(Devedzic, 2002) Devedžić, V. Understanding Ontological Engineering. Communications of the ACM
45(4), pages 136-144, April 2002.

(Dijkstra, 1959) Dijkstra, E.W. A note on two problems in connextion with graphs. Numerische
Mathematik 1, 1959, pages 269–271.

(Dillenbourg et al., 1996) Dillenbourg, P., Baker, M., Blaye, A., and O'malley, C. The evolution of
research on collaborative learning. In Spada, E., and Reiman, P. (Eds.) Learning in Humans and
Machine: Towards an interdisciplinary learning science. Oxford: Elsevier, 1996, pages 189-211.

(ebXML, 2005) ebXML – Enabling a global electronic market. URL: http://www.ebxml.org/ (Last
checked: 2005 12 12)

(Eclipse, 2005) Eclipse platform. http://www.eclipse.org/. (Last checked: 2005 08 22).
(Egyed, 2003) Egyed, A. Compositional and relational reasoning during class abstraction. In Proc. of the

6th Intl. Conf. on the Unified Modeling Language (UML), San Francisco, USA, 2003, pages 121-
137.

(Egyed, 2001) Egyed, A. A Scenario-Driven Approach to Traceability. In Proc. of the 23rd Intl. Conf. on
Software Engineering (ICSE), Toronto, Canada, 2001.

(Egyed & Grunbacher, 2005) Egyed, A., and Grünbacher, P. Supporting Software Understanding with
Automated Requirements Traceability. Journal of Software Engineering and Knowledge
Engineering (JSEKE), 2005, in press.

(Egyed & Kruchten, 1999) Egyed, A., and Kruchten, P. Rose/Architect: a tool to visualize architecture. In
Proc. of the 32nd Hawaii Intl. Conf. on System Sciences (HICSS), 1999.

(Ellis et al., 1991) Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware some issues and experiences.
Communications of the ACM 34(1), 1991, pages 38-59.

(Erichsen, 2003) Erichsen, K.O. Enabled Traceability in Distributed System Development. Master thesis,
IDI, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2003.

(Estublier, 2001) Estublier, J. Objects control for software configuration management. In Dittrich, K.R.,
Geppert, A., and Norrie, M.C. (Eds.) Advanced Information Systems Engineering, proceedings of
13th Intl. Conf. on Advanced Information Systems Engineering (CAiSE’2001), Interlaken,
Switzerland, LNCS 2068, Springer-Verlag, 2001, pages 359-373.

166 Bibliography

(Estublier & Casallas, 1995) Estublier, J., and Casallas, R. Three dimensional versioning. In Estublier, J.
(Ed.), Software Configuration Management: selected papers / ICSE SCM-4 and SCM-5
workshops, Springer-Verlag, LNCS 1005, Seattle, Washington, October 1995, pages 118–135.

(Falkenberg et al., 1997) Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Han Oei, J.L.,
Rolland, C., Stamper, R.K., van Asche, F.J.M., Verrjin-Stuart, A., Voss, K. FRISCO - A
Framework of Information Systems Concepts. IFIP WG 8.1 Technical Report – IFIP WG 8.1 Task
Group FRISCO, 1997.

(Farshchian, 2001) Farshchian, B.A. A Framework for Supporting Shared Interaction in Distributed
Product Development Projects. PhD thesis, IDI, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, 2001.

(Faulkner, 2003) Faulkner, L. Beyond the five-user assumption: Benefits of increased sample sizes in
usability testing. Behavior Research Methods, Instruments, & Computers 35(3), 2003, pages 379-
383.

(Fellbaum, 1998) Fellbaum, C. WordNet: An Electronic Lexical Database. MIT Press, 1998.
(Fensel, 2001) Fensel, D. Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag, 2001, 147 p.
(Fidjestol, 2005) Fidjestøl, A.D. An Editor with Repository Support for Conceptual Modeling in

Information System Design. Master thesis, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, 2005.

(Finkelstein et al., 1991) Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M.
Viewpoints: a framework for integrating multiple perspectives in system development. Intl.
Journal of Software Engineering and Knowledge Engineering 2(1), 1991, pages 31–58.

(Frezza et al., 1996) Frezza, S.T., Levitan, S.P., and Chrysanthis, P.K. Linking requirements and design
data for automated functional evaluation. Computers in Industry, 30(1), September 1996, pages
13–25.

(Fuggetta, 1993) Fuggetta, A. A classification of CASE technology. Computer 26(12), December 1993,
pages 25-38.

(Gamma et al., 1995) Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995, 395 p.

(Gjersvik, 1993) Gjersvik, R. The Construction of Information Systems in Organization: An Action
Research Project on Technology, Organizational Closure, Reflection, and Change. PhD thesis,
NTH, Trondheim, Norway, 1993.

(Glossary, 2005) URL: http://uis.georgetown.edu/departments/eets/dw/GLOSSARY0816.html#R (Last
checked: 2005 10 03)

(Gray & Ryan, 1997) Gray, J.P., and Ryan, B. Applying the CDIF standard in the construction of CASE
design tools. In Bailes, P. (Ed.), Proc. of the Australian Software Engineering Conf., IEEE, 1997,
pages 88–97.

(Gruber, 1991) Gruber, T.R. The Role of Common Ontology in Achieving Sharable, Reusable
Knowledge Bases. In Allen, J., Fikes, R., and Sandewall, E. (Eds.), Principles of Knowledge
Representation and Reasoning, Morgan Kaufman, San Mateo, CA, 1991.

(Gruber, 1993) Gruber, T.R. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2). June 1993, pages 199-220.

(Grunbacher et al., 2001) Grünbacher, P., Egyed, A., and Medvidovic, N. Reconciling software
requirements and architectures - the CBSP approach. In Proc. of the 5th IEEE Intl. Symposium on
Requirements Engineering (RE’01), 2001, pages 202–211.

(Gruninger & Lee, 2002) Gruninger, M., and Lee, J. Ontology applications and design: Introduction.
Communications of the ACM 45(2), 2002: Special Issue: Ontology applications and design, pages
39-41.

(Guarino, 1998) Guarino, N. Formal Ontology and Information Systems. In Guarino, N., (Ed.) Proc. of
the 1st Intl. Conf. on Formal Ontologies in Information Systems (FOIS'98), IOS Press, June 1998,
pages 3-15.

Bibliography 167

(Guarino & Poli, 1995) Guarino, N., and Poli, R. Editorial: The role of formal ontology in the information
technology. Intl. Journal of Human-Computer Studies 43(5-6), 1995, pages 623-624.

(Gulla, 1993) Gulla, J.A. Explanation Generation in Information Systems Engineering. PhD thesis, NTH,
Trondheim, Norway, 1993.

(Gulla et al., 1991) Gulla, J.A., Lindland, O.I., and Willumsen, G. PPP - an integrated case environment.
In Proc. of the 3rd Intl. Conf. on Advanced Information Systems Engineering (CAiSE’91),
Trondheim, Norway, Springer-Verlag, LNCS 498, 1991, pages 194-221.

(Gustas & Gustiene, 2003) Gustas, R., and Gustiene, P. Towards the Enterprise engineering approach for
Information system modelling across organisational and technical boundaries. In Proc. of the 5th
Intl. Conf. on Enterprise Information Systems, vol. 3, Angers, France, 2003, pages 77-88.

(Halpin, 2001) Halpin, T. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001, 792 p.

(Hatch, 1997) Hatch, M.J. Organization theory. Modern, symbolic, and postmodern perspectives. New
York: Oxford university press, 1997. 379 p. ISBN 0-19-877491-5.

(Henriksen et al., 1997) Henriksen, T.R., Fidjestøl, A.D., and Aubert, A.B. PPP Repository Management,
Technical report (ver. 15th of October 1997), IDI, NTNU, Trondheim, Norway, 1997.

(Hoppenbrouwers et al., 2005a) Hoppenbrouwers, S.J.B.A., Bleeker, A.I., and Proper, H.A. Facing the
Conceptual Complexities in Business Domain Modeling. Computing Letters 2 (1), 2005, pages 59-
68.

(Hoppenbrouwers et al., 2005b) Hoppenbrouwers, S.J.B.A., Proper, H.A., and van der Weide, Th.P.
Understanding the Requirements on Modelling Techniques. In Pastor, O., and Falcão e Cunha, J.
(Eds.), Proc. of 17th Intl. Conf. on Advanced Information Systems Engineering (CAiSE’2005).
LNCS 3520, Springer-Verlag, 2005, pages 262-276.

(Huisman & Iivari, 2002) Huisman, M., and Iivari, J. The individual deployment of systems development
methodologies. In A. Banks Pidduck et al. (Eds.) Proc. of 14th Intl. Conf. on Advanced Information
Systems Engineering (CAiSE’2002), LNCS 2348, Springer-Verlag, 2002, pages 134-150.

(IBM, 2005a) IBM. IBM Rational Software. URL: http://www-306.ibm.com/software/rational/. Last
checked: (2005 10 05)

(IBM, 2005b) IBM. Rational Unified Process. URL: http://www-306.ibm.com/software/awdtools/rup/.
Last checked: (2005 10 05)

(IBM, 1996) IBM. Developing object-oriented software: an experience-based approach. Prentice Hall,
Inc., Upper Saddle River, NJ, 1996, 636 p. ISBN: 0137372485

(IEEE, 1990) IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE, New York,
September 1990.

(IEEE, 1988) The Institute of Electrical and Electronics Engineers, Inc., New York. IEEE Guide to
Software Configuration Management, 1988. ANSI/IEEE Standard 1042-1987.

(Iivari, 1996) Iivari, J. Why are CASE Tools Not Used? Communications of the ACM 39, 1996, pages 94-
103.

(Jackson, 1990) Jackson, M. Some complexities in computer-based systems and their implications for
system development. In Proc. of Intl. Conf. on Computer Systems and Software Engineering
(CompEuro’90), Tel-Aviv, Israel, May 1990, pages 344–351.

(Jarzabek & Huang, 1998) Jarzabek, S., and Huang, R. The Case for User-Centered CASE Tools.
Communications of the ACM 41(8), 1998, pages 93-99.

(Jasper & Uschold, 1999) Jasper, R., and Uschold, M. A Framework for Understanding and Classifying
Ontology Applications. In Proc. of 12th Workshop on Knowledge Acquisition Modeling and
Management (KAW’99), 1999.

(Kang et al., 1990) Kang, K.C., Cohon, S.G., Hess, J.A., Novak, W.E., and Peterson, A.S. Feature-
Oriented Domain Analysis (FODA): Feasibility Study. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, CMU/SEI-90-TR-21, November 1990.

(Kashyap & Sheth, 1994) Kashyap, V. and Sheth, A. Semantics-based Information Brokering. In Proc. of
the 3rd Intl. Conf. on Information and Knowledge Management (CIKM), 1994, pages 363-370.

168 Bibliography

(Kelly et al., 1996) Kelly, S., Lyytinen, K., Rossi, M. MetaEdit+ A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In Proc. of 8th Intl. Conf. on Advanced Information
Systems Engineering (CAiSE’96), Heraklion, Greece, May 1996, Springer-Verlag, LNCS 1080,
pages 1-21.

(Kemerer, 1992) Kemerer, C. F. How the Learning Curve Affects CASE Tool Adoption. IEEE Software,
9, 1992, pages 23-28.

(Kiely & Fitzgerald, 2003) Kiely, G., and Fitzgerald, B. An investigation of the use of methods within
information systems development projects. In Proc. of IFIP WG 8.2 Conference, Athens, Greece,
June 2003, pages 187-198.

(Knethen, 2002) von Knethen, A. Change-Oriented Requirements Traceability: Support for Evolution of
Embedded Systems. In Proc. of 18th Intl. Conf. on Software Maintenance (ICSM 2002), Montréal,
Canada, IEEE Computer Society 2002, pages 482-485.

(Krogstie, 1995) Krogstie, J. Conceptual Modelling for Computerized Information Systems Support in
Organizations. PhD thesis, IDT, NTH, Trondheim, Norway, 1995

(Krogstie & Solvberg, 2000) Krogstie, J., and Sølvberg, A. Information Systems Engineering: Conceptual
Modeling in a Quality Perspective, 2000. Norwegian University of Science and Technology,
Trondheim (NTNU), Norway. Unpublished book.

(Krogstie et al., 2006) Krogstie, J., Veres, C., and Sindre, G. Interoperability through integrating
Semantic Web Technology, Web Services, and Workflow Modeling. In Konstantas, D.,
Bourrières, J.-P., Léonard, M., and Boudjlida, N. (Eds.) Interoperability of Enterprise Software
and Applications. Springer, 2006, pages 147-159.

(Kung & Solvberg, 1986) Kung, D.C., and Sølvberg, A. Activity modelling and behaviour modelling. In
Olle, T., Sol, H., and Verrijn-Stuart, A. (Eds.), Information System Design Methodologies:
Improving the Practice. Amsterdam, 1986.

(Lau, 2004) Lau, S. Semantics based project content management. Master thesis, IDI, Norwegian
University of Science and Technology (NTNU), Trondheim, Norway, 2004.

(Lee et al., 2001) Lee, B.G., Narayanan, N.H., and Chang, K.H. An integrated approach to distributed
version management and role-based access control in computer supported collaborative writing.
The Journal of System and Software 59(2), 2001, Elsevier Science Publishers, pages 119-134.

(Letelier, 2002) Letelier, P. A framework for requirements traceability in UML based projects. In Proc. of
the 1st Intl. Workshop on Traceability, Edinburgh, Scotland, UK, September 2002, pages 32–41.

(Libresource, 2005) LibreSource community. URL: http://dev.libresource.org/home. (Last checked: 2005
09 29)

(Likert, 1931) Likert, R. A technique for the measurement of attitudes. Archives of Psychology. New
York, Columbia University Press, 1931.

(Loucoploulos & Karakostas, 1995) Loucopoulos, P., and Karakostas, V. System Requirements
Engineering. McGraw Hill, 1995, 160 p.

(Loucopoulos & Champion, 1988) Loucopoulos, P., and Champion, R. Knowledge-based approach to
requirements engineering using method and domain knowledge. Knowledge-Based Systems 1(3),
June 1988, pages 179-187.

(Lundell & Lings, 2004) Lundell, B., and Lings, B. Changing perceptions of CASE technology. Journal
of Systems and Software 72, 2004, Elsevier, pages 271-280.

(Mahler, 1994) Mahler, A. Variants: Keeping things together and telling them apart. In chapter 3 of
Tichy, W.F. (Ed.) Configuration Management, volume 2 of Trends in Software. John Wiley &
Sons, Chichester, UK, 1994, pages 39–69.

(Mathes, 2004) Mathes, A. Folksonomies – Cooperative Classification and Communication Through
Shared Metadata. URL: http://www.adammathes.com/academic/computer-mediated-
communication/folksonomies.pdf. (Last cheked: 2005 10 02)

(Matulevicius et al., 2004) Matulevičius R., et al. MEIS system requirements specification. Technical
report, Norwegian University of Science and Technology (NTNU), 2004.

Bibliography 169

(Mayr, 2002) Mayr, H.C. Do We Need an Ontology of Ontologies? In Spaccapietra, C., March, S.T.,
Kambayashi, Y. (Eds.), Proc. of 21st Intl. Conf. on Conceptual Modeling, Tampere, Finland,
October 7-11, 2002, LNCS 2503, Springer-Verlag, 2002, page 15.

(MDA, 2003) MDA guide version 1.0.1. Technical Report omg/2003-06-01, OMG, June 2003.
(Mena et al., 1996) Mena, E., Kashyap, V., Illarramendi, A., and Sheth, A. Managing multiple

information sources through ontologies: Relationship between vocabulary heterogeneity and loss
of information. In Proc. of Knowledge Representation Meets Databases (KRDB'96), ECAI'96
conference, August 1996, pages 50-52.

(Metis, 2005) Metis by Troux. URL: http://www.troux.com/products/metis/ (Last checked: 2006 01 15)
(Microsoft, 2005) Microsoft. Meta Data Services Overview. URL: http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/reposad/raoverview_3t87.asp. (Last checked: 2005 08 22)
(Microsoft/XIF, 1999) Microsoft Corp. Repository SDK 2.1b Documentation: XML Interchange Format

(XIF). Microsoft Corp., Redmond, USA, May 1999.
(Miller et al., 2005) Miller, E., Swick, R., and Brickley, D. Resource Description Framework (RDF).

URL: http://www.w3.org/RDF/ (Last checked: 2005 12 12)
(Miller, 2002) Miller, G.A. Wizard of the new wordsmiths: His idea to link words rewrote the dictionary.

The star ledger, January 2002.
(Moody, 2001) Moody, D.L. Dealing with Complexity: A Practical Method for Representing Large Entity

Relationship Models. PhD thesis, Department of Information Systems, University of Melbourne,
Melbourne, Australia, 2001, 354p.

(Moreno, 1998) Moreno, A.M. Results of the Application of a Linguistic Approach to Object-Oriented
Analysis. Journal of Software Engineering and Knowledge Engineering 8(4), 1998. pages 449-
459.

(Moriarty, 2000) Moriarty, T. The importance of names, The Data Administration Newsletter 15, (2000).
(MS Access, 2003) Microsoft Office Online: Access 2003 Home Page. URL: http://office.microsoft.com/

en-us/FX010857911033.aspx (Last checked: 2005 09 29)
(Mylopoulos, 1992) Mylopoulos, J. Conceptual modeling and Telos. Chapter 2 In Loucopoulos, P. and

Zicari, R. (Eds.) Conceptual Modeling, Databases, and CASE, John Wiley & Sons, 1992, pages
49-68.

(MySQL, 2005) MySQL: The world’s most popular open source database. http://dev.mysql.com/. (Last
checked: 2005 09 29)

(Nielsen, 1993) Nielsen, J. Usability Engineering. Academic Press, Boston, 1993.
(Noy & Musen, 2000) Noy, N.F., and Musen, M.A. PROMPT: Algorithm and Tool for Ontology

Merging and Alignment. In Proc. of the National Conf. on Artificial Intelligence (AAAI), 2000,
pages 450-455.

(Nuseibeh, 2001) Nuseibeh, B. Weaving Together Requirements and Architectures. IEEE Computer
34(2), 2001, pages 115-117.

(Ogden & Richards, 1923) Ogden, C.K., and Richards, I.A. The Meaning of Meaning. 8th Edition, New
York, Harcourt, Brace & World, Inc., 1923.

(Olive, 2005) Olive, A. Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In Pastor, O., and Falcão e Cunha, J. (Eds.) Proc. of 17th Intl. Conf. Advanced
Information Systems Engineering (CAiSE’2005). LNCS 3520, Springer-Verlag, 2005, pages 1-15.

(Oliveira et al., 2004) de Oliveira, K.M., Zlot, F., Rocha, A.R., Travassos, G.H., Galotta, C., de Menezes,
C.S. Domain-oriented software development environment. Journal of Systems and Software 72(2),
2004, pages 145-161.

(Olle et al., 1988) Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., van Assche,
F.J.M., Verrijn-Stuart, A.A. Information Systems Methodologies: A Framework for
Understanding, Addison-Wesley, 1988.

(OMG/XMI, 1998) OMG. XML Metadata Interchange (XMI), Document ad/98-10-05, October 1998.
(Ophelia, 2003) The Ophelia project. URL: http://www.opheliadev.org. (Last checked: 2005 08 22)
(OpenShore, 2005) OpenSHORE. http://www.openshore.org/. (Last checked: 2005 12 28).

170 Bibliography

(Oracle, 2005) Oracle database. URL: http://www.oracle.com/database/. (Last checked: 2005 09 29)
(Overmyer et al., 2001) Overmyer, S., Lavoie, B., and Rambow, O. Conceptual Modeling through

Linguistic Analysis Using LIDA. In Proceedings of 23rd Intl. Conf. on Software Engineering
(ICSE 2001), Toronto, Canada

(Pohl et al., 2001) Pohl, K., Brandenburg, M., and Gülich, A. Integrating requirement and architecture
information: A scenario and meta-model based approach. In Proc. of the 7th Intl. Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ’01). Interlaken,
Switzerland, 2001.

(Pohl, 1993) Pohl, K. The three dimensions of requirements engineering. In Rolland, C., Bodart, F., and
Cauvet, C. (Eds.) Proc. of 5th Intl. Conf. on Advanced Information Systems Engineering
(CAiSE’93), Springer-Verlag, LNCS 685, Paris, France, 1993, pages 275-292.

(Poole & Warner, 2000) Poole, M., and Warner, M. The IEBM Handbook of Human Resource
Management. London: Thomson learning, 2000. 945 p.

(PorstgreSQL, 2005) PostgreSQL: The world’s most advanced open source database.
http://www.postgresql.org/. (Last checked: 2005 10 03)

(Preece et al., 1994) Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T. Human-
Computer Interaction. Addison-Wesley Publishing, 1994.

(Proper & Hoppenbrouwers, 2004) Proper, H.A., and Hoppenbrouwers, S.J.B.A. Concept evolution in
information system evolution. In Gravis, J., Persson, A., and Stirna, J. (Eds.), Forum proc. of the
16th Conf. on Advanced Information Systems 2004 (CAiSE 2004), Riga Technical University,
Riga, Latvia, 2004, ISBN 998497670X, pages 63-72.

(Ramazani et al., 1998) Ramazani, D., Bochmann, G.V., and Flocchini, P. Object Naming and Object
Composition. Publication #1135, Université de Montréal, Canada, 1998.

(Ramesh & Jarke, 2001) Ramesh, B., and Jarke, M. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering 27(1), January 2001, pages 58–93.

(Reduce, 2005) REDUCE Home Page. http://www.cit.gu.edu.au/~scz/projects/reduce/. (Last checked:
2005 12 28).

(Reinhartz-Berger et al., 2005) Reinhartz-Berger, I., Sturm, A., and Wand, Y. Tutorial 3: Domain
Engineering - Using Domain Concepts to Guide Software Design. In Akoka, J. et al. (Eds.)
Perspectives in Conceptual Modeling: ER 2005 Workshops, LNCS 3770, Springer-Verlag, 2005,
pages 461-463.

(Riemenschneider et al., 2002) Riemenschneider, C.K., Hardgrave, B.C., and Davis, F.D. Explaining
Software Developer Acceptance of Methodologies: A Comparison of Five Theoretical Models.
IEEE Transactions on Software Engineering 28(12), 2002, pages 1135-1145.

(RM-ODP, 2005) RM-ODP: The Reference Model for Open Distributed Processing. URL:
http://www.rm-odp.net/. Last checked: (2005 12 28).

(Rolland & Prakash, 2000) Rolland, C., and Prakash, N. From conceptual modelling to requirements
engineering. Annals of Software Engineering 10, 2000, pages 151-176.

(Rolland & Proix, 1992) Rolland, C., and Proix, C. A Natural Language Approach for Requirements
Engineering. In Loucopoulos, P. (Ed.) Proc. of 4th Intl. Conf. on Advanced Information Systems
Engineering (CAiSE'92), LNCS 593, Springer-Verlag, 1992, pages 257-277.

(Roschelle & Teasley, 1995) Roschelle, J., and Teasley, S. The construction of shared knowledge in
collaborative problem solving. In O'Malley, C.E. (Ed.), Computer Supported Collaborative
Learning, 1996, Springer-Verlag, pages 69-97.

(Royce, 1987) Royce, W. Managing the development of large software systems. In Thayer, R.H. (Ed.)
Tutorial: Software Engineering Project Management. IEEE Computer Society, Washington, 1987,
pages 118–127.

(Saeki, 2004) Saeki, M. Ontology-Based Software Development Techniques. ERCIM News, No. 58, July
2004, p. 14. URL: http://www.ercim.org/publication/ Ercim_News/enw58/saeki.html. (Last
checked: 2005 09 28)

(Sandpiper Software, 2005) Sandpiper Software. Medius Visual Ontolgoy Modeler. URL:
http://www.sandsoft.com/products.html. (Last checked: 2005 10 03)

Bibliography 171

(Schmidt & Bannon, 1992) Schmidt, K. and Bannon, L. Taking CSCW seriously. CSCW, 1992 Vol. 1
(No.1-2), pages 7-40.

(Schutte & Rotthowe, 1998) Schütte, R., Rotthowe, T.: The guidelines of modeling - an approach to
enhance the quality in information models. In Ling, T.W., Ram, S., Lee, M.L. (Eds.) Proc. of 17th
Intl. Conf. on Conceptual Modeling (ER'98). LNCS 1507, Springer-Verlag, 1998, pages 240-254.

(SEI, 1994) Software Engineering Institute. Software Configuration Management. CMU, 1988-1994.
URL: http://www.sei.cmu.edu/legacy/scm/ (Last checked: 2005 09 29)

(Seltveit, 1994) Seltveit, A. Complexity Reduction in Information Systems Modelling. PhD thesis, NTH,
Trondheim, Norway, 1994.

(SEPT, 2005) Software Engineering Process Technology. Information on ISO/IEC 12207 and other
software engineering standards. URL: http://www.12207.com/. (Last checked: 2005 11 20)

(Shen & Sun, 2002) Shen, H., and Sun, C. Flexible Notification for Collaborative Systems. In Proc. of
CSCW’02, 2002, New Orleans, Louisiana, USA. 2002, pages 77-86.

(Siegel & Castellan, 1988) Siegel, S., and Castellan, N.J. Nonparametric statistics for the behavioural
sciences. 2nd edition, McGraw-Hill, 1988.

(Sindre, 1990) Sindre, G. HICONS: A General Diagrammatic Framework for Hierarchical Modelling.
PhD thesis, NTH, Trondheim, Norway, 1990.

(Sobalipse, 2005) Sobalipse plugin. http://sobalipse.sourceforge.net/. (Last checked: 2005 12 28)/
(Solvberg, 2000) Sølvberg, A. Co-operative Concept Modeling. In Brinkkemper, S., Lindencrona, E. and

Sølvberg, A. (Eds.), Information Systems Engineering – State of the Art and Research Themes,
Springer-Verlag, Berlin, 2000, pages 305–317.

(Solvberg, 1999) Sølvberg, A. Data and what they refer to. In Chen, P., Akoka, J., Kangassalo, H.,
Thalheim, B. (Eds.), Conceptual Modeling: Current Issues and Future Trends. LNCS 1565.
Springer-Verlag, 1999, pages 211-226.

(Solvberg et al., 2002) Sølvberg, A., Hakkarainen, S., Brasethvik, T., Su, X., Matskin, M., and
Strasunskas, D. Concepts of Enriching, Understanding and Retrieving the Semantics on the Web.
ERCIM News, No. 51, October 2002, pages 41-42. URL: http://www.ercim.org/publication/
Ercim_News/enw51/solvberg.html (Last checked: 2005 09 12)

(Solvberg & Brasethvik, 2000) Sølvberg, A., and Brasethvik, T. The referent model language. Technical
report, NTNU, Trondheim, Norway URL: http://www.idi.ntnu.no/~ppp/referent/. (Last checked:
2005 09 28)

(Solvberg & Kung, 1993) Sølvberg, A., and Kung, D.C. Information Systems Engineering – An
Introduction, Springer-Verlag, 1993.

(Sommerville, 1992) Sommerville, I. Software engineering. 4th edition, Addison-Wesley: Wokingham,
England, 1992, 649 p.

(Spanoudakis et al., 2004) Spanoudakis, G., Zisman, A., Pérez-Miñana, E., and Krause, P. Rule-based
Generation of Requirements Traceability Relations. Journal of Systems and Software 72(2), 2004,
pages 105-127.

(StandishGroup, 1994) The Standish Group, Inc. The CHAOS Report, 1994. URL:
http://www.standishgroup.com/sample_research/chaos_1994_2.php. (Last checked: 2005 09 29)

(St-Denis et al., 2000) St-Denis, G., Schauer, R., and Keller, R.K. Selecting a Model Interchange Format
The SPOOL Case Study. In IEEE Proc. of the 33rd Annual Hawaii Intl. Conf. on System Sciences,
Maui, Hawaii, 2000.

(Steele, 2004) Steele, O. An OO interface to the WordNet database. URL:
http://sourceforge.net/projects/pywordnet. (Last checked: 2005 08 20)

(Strasunskas, 2003) Strašunskas, D. A Vision for Product Traceability based on Semantics of Artifacts. In
Al-Ani, B., Arabnia, H.R., and Mun, Y. (Eds.) Proc. of the 2003 Intl. Conf. on Software
Engineering Research and Practice (SERP'2003), part of Intl. MultiConference in Computer
Science & Engineering, CSREA Press, Vol.II, ISBN:1-932415-20-3, Las Vegas, Nevada, USA,
June 2003, pages 890-895.

172 Bibliography

(Strasunskas, 2002) Strašunskas D. Traceability in Collaborative Systems Development from Lifecycle
Perspective - a position paper. In Proc. of the 1st Intl. Workshop on Traceability, co-located with
ASE 2002, Edinburgh, Scotland, UK, September 2002, pages 54-60.

(Strasunskas et al., 2006) Strašunskas, D., Lin, Y., and Hakkarainen, S. Domain knowledge-based
reconciliation of model fragments. In A.G. Nilsson et al. (Eds.), Advances in Information Systems
Development: Bridging the Gap between Academia and Industry, Springer, 2006, in press.

(Strasunskas et al., 2004) Strašunskas, D., Fidjestøl, A.D., Hakkarainen, S., Lin, Y., and Sølvberg, A.
Repository design. Technical Report, IDI, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, 2004.

(Strasunskas et al., 2003) Strašunskas, D., Fidjestøl, A.D., and Hakkarainen, S. Product fragment
repository – Requirements specification. Technical Report, IDI, Norwegian University of Science
and Technology (NTNU), Trondheim, Norway, 2003.

(Strasunskas & Hakkarainen, 2004) Strašunskas, D., and Hakkarainen, S. Domain Model Driven
Approach to Change Impact Assessment. In Linger, H. et al. (Eds.), Constructing the
Infrastructure for the Knowledge Economy: Methods and Tools, Theory and Practice, Kluwer
Academic / Plenum Publishers, 2004, pages 305-316.

(Strasunskas & Hakkarainen, 2003) Strašunskas, D., and Hakkarainen, S. Process of Product Fragments
Management in Distributed Development. In Meersman, R., Tari, Z., Schmidt, D. et al. (Eds.)
Proc. of the 11th Intl. Conf. on Cooperative Information Systems (CoopIS'2003), Springer-Verlag,
LNCS 2888, Catania, Sicily, Italy, November 2003, pages 218-234.

(Strasunskas & Lin, 2005) Strašunskas, D., and Lin, Y. Model and knowledge management in distributed
development: agreement based approach. In Vasilecas, O. et al. (Eds.), Information Systems
Development: Advances in Theory, Practice, and Education, Springer, 2005, pages 389-402.

(Su, 2004) Su, X. Semantic Enrichment for Ontology Mapping. PhD thesis, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway, 2004.

(Sun, 2002) Sun, C. Undo as concurrent inverse in group editors. ACM Transactions on Computer-
Human Interaction 9(4), December 2002, pages 309-361.

(Sun et al., 1998) Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. Achieving convergence, causality-
preservation, and intention-preservation in real-time cooperative editing systems.
ACM Transactions on Computer-Human Interaction 5(1), March, 1998, pages 63-108.

(Sutcliffe & Maiden, 1998) Sutcliffe, A., and Maiden, N.A.M. The domain theory for requirements
engineering. IEEE Transactions On Software Engineering 24(3), 1998, pages 174-196.

(Suzuki & Yamamoto, 1998) Suzuki, J., and Yamamoto, Y. Managing the Software Design Documents
with XML. In Proceedings of the Sixteenth Annual International Conference of Computer
Documentation (ACM SIGDOC '98), Quebec City, Canada, 1998, pages 127-136.

(Telelogic, 2005) Telelogic Doors. URL: http://www.telelogic.com/corp/products/doors/doors/index.cfm.
Last checked: (2005 12 28).

(Toranzo & Castro, 1999) Toranzo, M.A., and Castro, J.F.B. A Comprehensive Traceability Model to
Support the Design of Interactive Systems. In Proc. of Intl. Workshop on Interactive system
Development and Object Models (WISDOM99), Lisboa, Springer-Verlag, LNCS 1743, 1999,
pages 283-284.

(Traetteberg, 2002) Trætteberg, H. Model-based User Interface Design. PhD thesis, Norwegian
University of Science and Technology (NTNU), Trondheim, Norway, 2002.

(UDDI, 2005) Universal Description, Discovery and Integration. URL: http://www.uddi.org/ (Last
checked: 2005 12 12)

(Unicorn, 2005) Unicorn. Unicorn Workbench. http://unicorn.com/products/unicornsystem/
workbench.htm. (Last checked: 2005 12 28).

(VA Software, 2004) VA Software. Leveraging Open Source Processes and Techniques in the Enterprise.
White Paper. VA Software, November, 2004.

(Vlist, 2003) van der Vlist, E. RELAX NG. O'Reilly, December 2003. URL:
http://books.xmlschemata.org/relaxng/. (Last checked: 2005 11 20)

Bibliography 173

(Visser et al., 1998) Visser, P., Jones, D.M., Bench-Capon, T., and Shave, M. Assessing heterogeneity by
classifying ontology mismatches. In Proc. of the Intl. Conf. on Formal Ontology in Information
Systems (FOIS’98), Trento, Italy, 1998, pages 148-162.

(W3C, 2005) W3C. OWL- Web Ontology Language Overview. http://www.w3.org/TR/owl-features/.
(Last checked: 2005 12 20)

(Wache et al., 2001) Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
and Hübner, S. Ontology-Based Integration of Information A Survey of Existing Approaches. In
H. Stuckenschmidt (Ed.) Proc. of IJCAI-01 Workshop: Ontologies and Information Sharing, 2001,
pages 108-117.

(Weibel et al., 1998) Weibel, S., Kunze, J., Lagoze, C. and Wolf, M. Dublin core metadata for resource
discovery, Technical Report RFC2413, Internet Engineering Task Force (IETF), 1998. URL:
http://ww.ietf.org/rfc/rfc2413.txt. (Last checked: 2005 08 29)

(Wiederhold, 1994) Wiederhold, G. An Algebra for Ontology Composition. In Proc. of 1994 Monterey
Workshop on Formal Methods, U.S. Naval Postgraduate School, 1994, pages 56-61.

(Wieringa & de Jonge, 1995) Wieringa, R., and de Jonge, W. Object identifiers, keys, and surrogates –
object identifiers revisited. Theory and Practice of Object Systems 1(2), 1995, pages 101-114.

(Wikipedia/Cooperation, 2005) Wikipedia/Co-operation. URL: http://en.wikipedia.org/wiki/Co-operation.
(Last checked: 2005 08 22)

(Wikipedia/Collaboration, 2005) Wikipedia/Collaboration. URL: http://en.wikipedia.org/wiki/Collabora-
tion. (Last checked: 2005 08 22)

(Willumsen, 1993) Willumsen, G. Executable Conceptual Models in Information Systems Engineering.
PhD thesis, NTH, Trondheim, Norway, 1993.

(Wilson, 1991) Wilson, P. Computer Supported Cooperative Work: An introduction. Intellect Books,
Oxford, UK, 1991.

(Wu & Graham, 2004) Wu, J., and Graham, T.C.N. The Software Design Board: a Tool Supporting
Workstyle Transitions in Collaborative Software Design. In Bastide, R., Palanque, P., and Roth, J.
(Eds.), Proc. of EHCI-DSVIS 2004, Springer-Verlag, LNCS 3425, 2005, pages 363-382.

(Wu & Palmer, 1994) Wu, Z., and Palmer, N. Verbs Semantics and Lexical Selection. In Proc. of the 32nd
Conf. on Association for Computational Linguistics, New Mexico, Association of Computational
Linguistics, 1994, pages 133-138.

(Xia et al., 2004) Xia, S., Sun, D., Sun, C., Chen, D., and Shen, H. Leveraging single-user applications for
multi-user collaboration: the CoWord approach. In Proc. of ACM 2004 Conf. on Computer
Supported Cooperative Work, Chicago, IL USA, pages 162-171.

(Zachman, 1987) Zachman, J.A. A framework for information systems architecture. IBM Systems Journal
26(3), 1987, pages 276-292.

(Zhdanova et al., 2005) Zhdanova, A.V., Krummenacher, R., Henke, J., and Fensel, D. Community-
Driven Ontology Management: DERI Case Study. In Skowron, A. et al. (Eds.) Proc. of 2005
IEEE/WIC/ACM Intl. Conf. on Web Intelligence. IEEE Computer Society Press, September 2005,
pages 73-79.

174 Bibliography

 175

Appendix A
The Referent Model Language

The referent model language has been developed in the Information Systems
group at IDI, NTNU. The RML language is a modelling language that initially
springs out from the PPP integrated modelling environment (Gulla et al., 1991).
PPP initially contained support for several modelling languages; a process model
language PrM, an extended ER modelling language (ONE-R) and a rule
modelling language (PLD).

Later work have refined the initial modelling languages and also added new
languages. The most recent are the RML concept modelling language (Solvberg,
1999), the APM workflow modelling language (Carlsen, 1997), and the task
modelling and dialogue modelling languages for user interface design
(Traetteberg, 2002).

A.1 RML Foundation
The Referent Model Language (RML) is a concept modelling language targeted
towards applications in areas of information management and heterogeneous
organisation of data (Solvberg, 1999). It has a formal basis from set theory and
provides a simple and compact graphical modelling notation (see Figure A.1) for
set theoretic definitions of concepts and their relations.

A.2 Basic Concepts
In RML, semantics of concepts are defined through set theoretic constructs such
as intension, extension and reference. RML defines constructs for modelling of
concepts, the selection of constructs is based on the concept types given by
(Bunge, 1998):
Individual concepts - individual concepts apply to individuals. Individuals can be

either specific or generic;
Class concepts - concepts that apply to collections of individuals;

176 Appendix A The Referent Model Language

Relation concepts - concepts that refer to relations among objects (individual or
class concepts). Distinction between class concepts and relation concepts is
vague, as a relation may be considered a class concept in its own right.

Quantitative concepts - quantitative concepts do not represent distinct objects,
but refer to magnitudes often associated with individual or class concepts.

Figure A.1 Graphical notation of RML

A.3 RML Meta-Model
RML meta-model is denoted in Figure A.2 using RML graphical notation
introduced in above. The intension of a concept is the set of all characteristic
properties of the concept. A characteristic property of a concept is a property that
is shared by all the referents of a concept. The attributes of a concept are defined
as a list of properties and are drawn in a rectangle with a small black triangle in
its lower right corner.

The referent is what the concept refers to. The referent set of a concept
contains all members; past, present and future, imaginary or real. The extension
of a concept is all individuals that belong to the concept.

Two kinds of constraints may be applied to a relation: cardinality and
coverage. The cardinality of a relationship is defined as the number of members
from each of the corresponding sets that participates in the relation. The
cardinality of a relation is shown with the use of an arrow or by specifically
numbering the maximum number of participating members from the set.

A.3 RML Meta-Model 177

Relations may be given names. Names are written on top of the relation, the
arrow above indicates the direction of reading the relation name.

Concept

Operation

Mathematical
operation

Generalization
operation

SubsetElement

OverlappingDisjointElement_ofMember_of

Non-relation
concept

Relation
concept

Binary
relation N-ary relation

Relation end

Class concept Individual
concept

Specific Generic

Attribute

Cardinality
interval

Composite
relation

+

+ +

+

+

+ ⊆

upper
lower

resultoperate_on

Min
Max

2

attached_to

Name

Name

⊆

n

Figure A.2 RML meta-model

RML supports several abstraction constructs of semantic modelling. All of them
have set theoretical counterparts:

 Classification: specific instances are considered as a higher level object type
via the is instance of relationship.

 Aggregation: an object is related to the components that make it up via the is
part of relationship.

 Generalisation: similar object types are abstracted into a higher level object
type via the is-a relationship.

 Association: several object types are considered a higher level set object type
via the is a member of relationship.

178 Appendix A The Referent Model Language

N-ary relations are modelled as composite class concepts. Composing a concept
of other concepts is performed by using regular relations as part-of relations from
the part class concepts to the composite class concept.

As relations can be considered concepts in their own right, hence also
relations can be composed. In RML a composition of relations is defined as a
derived relation. From a set theoretical perspective, derived relations correspond
to composition of functions. However, from a pure modelling perspective, they
can also be viewed as a simple naming of a path in the model, i.e. a kind of short-
cut or shorthand notation.

A.4 RelaxNG RML Schema
RML model is saved as an XML file. Semantic information of the model is
stored separately in the file. Figure A.3 shows Relax NG22 (REgular LAnguage
for XML Next Generation) schema (Vlist, 2003) for RML model.
<grammar>
 <start>
 <element name="referent-diagram" xmlns="http://relaxng.org/ns/structure/1.0">
 <zeroOrMore>
 <element name="referent">
 <attribute name="id"/>
 <zeroOrMore>
 <ref name="name"/>
 <element name="aggregation">
 <attribute name="id"/>
 <text/>
 </element>
 <element name="attribute">
 <attribute name="attribute"/>
 <text/>
 </element>
 </zeroOrMore>
 <element name="operation">
 <attribute name="id"/>
 <attribute name="operation type">
 <choice>
 <value>isa</value>
 <value>subset</value>
 <value>member-of</value>
 <value>element-of</value>
 <value>disjoint</value>
 </choice>
 </attribute>
 <attribute name="operation direction">
 <choice>
 <value>up</value>
 <value>down</value>

22 Relax NG is a schema language for XML. A Relax NG schema specifies a pattern for the structure and
content of an XML document. A Relax NG schema is itself an XML document. Furthermore, Relax NG
also offers a popular compact, non-XML syntax. Compared to other popular schema languages, Relax
NG is relatively simple.

A.4 RelaxNG RML Schema 179

 <value>right</value>
 <value>left</value>
 </choice>
 </attribute>
 <text/>
 </element>
 <element name="dataset">
 <ref name="name"/>
 <attribute name="id"/>
 <text/>
 </element>
 <element name="element">
 <ref name="name"/>
 <attribute name="id"/>
 <text/>
 </element>
 <element name="relation">
 <twoOrMore>
 <element name="relation-end">
 <attribute name="idref"/>
 <attribute name="cardinality">
 <choice>
 <value>one</value>
 <value>many</value>
 </choice>
 </attribute>
 <attribute name="coverage">
 <choice>
 <value>partial</value>
 <value>full</value>
 </choice>
 </attribute>
 </element>
 <ref name="name"/>
 </twoOrMore>
 <text/>
 </element>
 <element name="operation-link">
 <element name="link-from">
 <attribute name="idref"/>
 </element>
 <element name="link-to">
 <attribute name="idref"/>
 </element>
 <text/>
 </element>
 <element name="canvas-text">
 <ref name="name"/>
 <text/>
 </element>
 </zeroOrMore>
 </element>
 </start>
 <define name="name">
 <element name="text">
 <text/>
 </element>

180 Appendix A The Referent Model Language

 </define>
</grammar>

Figure A.3 RML schema in RelaxNG

 181

Appendix B
Prototype visualisation

Here we provide an overview of graphical user interface and functionality
implemented in a prototype system CO2SY. This is an additional material for
chapter 7.

The main functionality of the implemented prototype is visualized by
illustrating “B area” (recall Figure 7.6) of particular functionality. Figure B.1
shows the screenshot of window for product fragment association with concepts
from domain model. The main components of this window are as follows.

Figure B.1 Association with a concept (classification) interface

D

A B

C
E

F G

182 Appendix B Prototype visualisation

A – selection of an object type;
B – selection of a domain model or category (e.g., classifying the code fragments

according model – view – controller paradigm).
C – a list of selected type of development objects;
D – selection of confidence level, only when associating with domain model;
E – a list of selected domain model elements (or category). In current version

only a simple list of model elements is shown. Future improvements (after
tight integration with modelling environment) will have normal graphical
model view;

F – a list of all associations for a particular selected development object;
G – a list of all development objects of a certain type associated with a selected

concept.

Figure B.2 visualizes the main window for the repository content browsing. The
main components of this window are as follows.
A – selection of an object type;
B – a list of selected type of development objects;
C – meta data. Here description can be provided in natural language or by URL.

Language of the development object is specified, depending on a particular
type of development object;

D – a version graph;
E – a version list, including parent and change description;
F – a list of direct dependencies for the selected product fragment;
G – a list of associations with concepts;
H – a list of possible impacts for the selected development object.

Appendix B Prototype visualisation 183

Figure B.2 Content browsing. “Rich” information about a development object

Figure B.3 illustrates the form used to upload a new development object or a new
revision of a development object. The main components of this form are as
follows.
A – a radio box field, allowing to select whether a new development object or a

new revision of development object will be uploaded.
B – selection of development object type
C – a list of development objects checked-out for revision for a particular user.
D – file selection, change description window. When uploading the new

development object only D window is displayed.

184 Appendix B Prototype visualisation

Figure B.3 New object / revision upload interface

Figure B.4 similar as Figure B.1, just right part of the window is for development
object type selection instead of domain model.

Figure B.5 illustrates the screenshot of repository querying form. The form
is made using XRC (XML Resources) forms, i.e. XML based form definition.
This flexibility is necessary to maintain and adopt the query form for new object
types. The form is made based on the searched object type, i.e. whether the
selected object is binary or not. For binary objects only simple search using the
name of development object and metadata is available. For non-binary
development objects the query form structure is generated from the entries in
table development object_elements see Figure 7.4.

A B

C

D

Appendix B Prototype visualisation 185

Figure B.4 Direct dependency linking

Figure B.5 Query interface

A B

C D E

F G

186 Appendix B Prototype visualisation

 187

Appendix C
Questionnaire

This appendix presents a questionnaire used in the experiment described in
chapter 8.

Dear participant,

I invite you to take part in an experiment to evaluate tools/ techniques for management
of relatedness and dependency of development objects (e.g., product fragments) in a
context of software systems development. The goal of the research is to validate a
method for managing product fragments relatedness, change impact, and traceability in
systems development. Therefore, I would like to test usability of the implemented
prototype system (named, CO2SY), mainly focusing on an applicability of the approach,
not a tool, and to compare with other de facto standards in the area. The experiment is
focused on various aspects of dependency (relatedness) links establishment and
management.

This questionnaire is designed to discover what features (functionality) are most
essential in dependency management, compare and evaluate proposed method and its
implementation. The results of the questionnaire will be used to improve the method
and prototype tool. All the collected data will be highly confidential and will be used
only for study and research purposes. Your input is valuable and is of great importance
in helping me to create successful and useful method. In particular I have no intention of
judging you – I am merely interested in collecting data about above defined tools usage
and usability.

Thanks in advance for the cooperation!

188 Appendix C Questionnaire

QUESTIONNAIRE
Background Data

Q1. Gender Male Female

Q2. Age
 21-30 years;
 31-40 years;
 41-50 years;
 above 50.

Q3. Have you ever been involved
in an industrial software
development project? Check all
that apply.

 No, I've never done anything like that;
 I’ve been observing (auditing, consulting,

researching) a software development project;
 I've participated in a small software development

project
 I've participated in a big software development

project
 I've participated in a big geographically

distributed software development project.
Q4. Have you ever been involved
in usability evaluations? Check
all that apply.

 No, I've never done anything like that before
 I've answered questionnaires or surveys pertaining

to usability
 I've contributed to user testing as a participant
 I've conducted evaluations
 I've conducted user testing

Q5. How long you are (working)
in the field of computer and
information science

 less than 1 year
 1-5 years
 6-10 years
 11-25 years
 over 25 years

Evaluation Tasks and Questions

Q6. Please select random 3 (from marked ones) development object of any type in CO2SY,
select 3 top ranked values (lowest value) and check how many of them are correctly
estimated as being related/dependent. Please do that for each of the cases. How many of
these would you rate as correct?

Case 1:
Totally wrong Partial Totally

correct
 Total #

inspected

 Case 2:

Totally wrong Partial Totally
correct

 Total #
inspected

Please provide justification or comment, if you wish:

Appendix C Questionnaire 189

Q7. Browse the results of association and linking (all tools), compare them. Please identify,
whether CO2SY help to discover any new correct relatedness/dependency relationship
between development object.

Yes, but all
were wrong

None Neither, nor… just different way of
achieving the same result

Some Many

Approach Evolution
Q8. What is your experience with:

Doors tool:
Never used Seen but not used Used a few times Used extensively

CO2SY tool:
Never used Seen but not used Used a few times Used extensively

Traceability matrix:
Never used Seen but not used Used a few times Used extensively

Q9. Please provide your opinion about the quality of case description:

Case 1
Very bad Bad Fair Good Very good

Case 2
Very bad Bad Fair Good Very good

quality of provided conceptual domain models:

Case 1
Very bad Bad Fair Good Very good

Case 2
Very bad Bad Fair Good Very good

and quality of the product fragment:

Case 1
Very bad Bad Fair Good Very good

190 Appendix C Questionnaire

Case 2
Very bad Bad Fair Good Very good

Q10. Please rank used tools / techniques based on perceived easiness and efficiency using it
for this particular settings:

1 CO2SY
1 Doors
1 Traceability matrix

Q11. Imagine a geographically distributed software development project bigger 10 times
or more than the specified in the case 1. Please rank used tools / techniques based on
perceived easiness and efficiency, but in the settings of big software development:

1 CO2SY
1 Doors
1 Traceability matrix

Q12. When associating design
and code fragments, did you
experienced difficulty while
choosing concept from
domain model? If so, do you
think it was because of
(choose that apply):

 No, I have not experienced any difficulty
 Lack of design/code oriented concepts
 Too abstract concepts in a domain model
 Lack of domain knowledge. If so, please specify:
case 1,

 case 2

 I do not know the reason, e.g., the scale of an
experiment was too limited, to say something
trustworthy

 Other:

Q13. In general how would you rate the user interface of:

Doors:
 Needs major

improvements
Needs minor
improvement

Fair Good Works
well

Visual design /
layout

General ease of use
Ease of learning

CO2SY:
 Needs major

improvements
Needs minor
improvement

Fair Good Works
well

Visual design /
layout

General ease of use
Ease of learning

Appendix C Questionnaire 191

Q14. Are you satisfied with a linking functionality (for the purpose of identifying
related/dependent items) of the tested tools/ techniques? Please use a scale from 1 to 5.

Doors:
Not at all Very satisfied

1 2 3 4 5

CO2SY:
Not at all Very satisfied

1 2 3 4 5

Traceability matrix:
Not at all Very satisfied

1 2 3 4 5

Q15. Please evaluate the usability of the tools (usability considers how easy it is to learn
and use a tool):

Doors tool:
Very difficult Difficult Moderate Easy Very easy

CO2SY tool:
Very difficult Difficult Moderate Easy Very easy

Traceability matrix
Very difficult Difficult Moderate Easy Very easy

Q16. Please evaluate easiness of dependency establishment using the tools (consider how
labour intensive was the establishment of links/associations):

Doors tool:
Very difficult Difficult Moderate Easy Very easy

CO2SY tool:
Very difficult Difficult Moderate Easy Very easy

Traceability matrix
Very difficult Difficult Moderate Easy Very easy

192 Appendix C Questionnaire

Q17. Imagine a project relying on a well structured folder hierarchy in file system. The
option would be to save file in corresponding folder, e.g., Project_name/User/Phase/…
Please compare association with domain concept to saving file into file system.

Association with domain concept is
Very difficult Difficult Similar/the

same as
Easy Very easy

when compared to saving product fragment to file system.

Q18. How would you describe the result using the CO2SY tool?

Total disaster Very accurate
1 2 3 4 5

Q19. Imagine organizing your own information in a folder structure created by you.
Would a tool such as the tested prototype (with conceptual model/ontology created by you)
be a reasonable alternative for classifying your files?

Very unlikely Unlikely I do not
know

Likely Very likely

Sometimes, when associating you will have a fragment where you will not find the exact
names of concepts that are used in the model.
Q20. How easy was it to find a dependent product fragment?

Very difficult Difficult Moderate Easy Very easy

Q21. How would you rate CO2SY system, was it difficult to locate the concept?

Very difficult Difficult Moderate Easy Very easy

Q22. If concept was not present in a model – was it difficult to decide which concept to use
for association with a fragment?

Very difficult Difficult Moderate Easy Very easy

Q23. Please specify what feature of the tested tools you liked most, and which tool:

Q24. Which of the tools/ techniques would you prefer to use in the future, and why:

 Doors,
 CO2SY,
 Traceability matrix

Please provide the reason:

Appendix C Questionnaire 193

Q25. What you would like to add to the tested prototype (CO2SY) and to the each of the
other systems?

Doors
CO2SY
Traceability matrix

Q26. In Case 2 you have been presented with a conceptual domain model, i.e. not only the
list of concepts on the screen of CO2SY. Please identify whether it was:

More difficult A bit difficult Moderate Easier Much easier

to locate right concept than dealing only with list of concepts in case 1.

Q27. Other comments, remarks regarding the experiment itself, used tools and cases,
procedure of the experiment, questionnaire (please specify)

Thank you

for the time used for the experiment and questionnaire!
Your help is very appreciated!

194 Appendix C Questionnaire

 195

Appendix D
Experimental materials

This appendix presents the experimental material used for the experiment
described in chapter 8. Next, the cases used in the experiment are presented,
including both the descriptions and domain models. Then, the product fragments
used in the experiment are listed and exemplified by inclusion of two typical
product fragments for each product fragment type and the case.

D.1 Description of Case 1

This case describes a project implementing a system to support software development.
A simplified model defining the main concepts in the given domain is presented for
Case 1 in figure 1 below. A software development project has a development
methodology defined as a phase structure, composed of different phases (e.g.,
requirements engineering, design, programming, etc.), every development object
belongs to one of the phases and is stored in a repository. There are stakeholders (users)
participating in a project. Users’ interaction on development object creates an event of a
certain event type. User can subscribe (has subscription) to certain event types in order
to get notification about an event of his/her interest. Creation, alteration and discussion
of development object are the main interactions. Development objects have dependency
on each other; as well they are classified (have an association) with a concept from
domain model.

In summary, the system has functionality as follows. User creates a new or alters
an existing development object. After creation of new object a dependency to other
objects is established. Further, development object is classified according to the domain
model. User gets informed about creation or alteration of the object if he/she is
subscribed to a particular type of event.

196 Appendix D Experimental materials

Figure D.1 Domain model for Case 1

D.1.1 Product fragments in case 1

There are four different types of development objects in this case. Namely, requirement
statements, design fragments (UML sequence diagrams), code (C3) fragments and user
manual in a form of screenshots with an explanation. Table D.1 lists all product
fragments.
Table D.1 Product fragments in case 1

Product fragment
Type Name Description

SQD_Login sequence diagram for logging to the system
SQD_client_config sequence diagram for client configuration
SQD_message_handling sequence diagram for message handling
SQD_event_management sequence diagram for event management
SQD_Logout sequence diagram for logging out from the system
SQD_project_activity sequence diagram defining general project activities
SQD_fragment_creation sequence diagram for fragment creation
SQD_fragment_manipulation sequence diagram for dev.object alteration
SQD_model_alteration sequence diagram defining domain model alteration
SQD_event_notification sequence diagram for event notification

SQD_server_administration sequence diagram defining server administraiton
task

D
es

ig
n

SQD_server_operation sequence diagram defining server operations

Appendix D Experimental materials 197

Product fragment
Type Name Description

UM_login screenshot of login window
UM_MAin_window screenshot of the main window
UM_configure1 screenshot for system configuration (part 1)
UM_configure2 screenshot illustrating system configuration (part2)
UM_user_management screenshot of the user management

UM_fragment_manipulation screenshot illustrating manipulation of development
object

UM_concept_manipulation screenshot for concept definition

UM_impact_analysis screenshot of window with graphical information
about impact

UM_event_message screenshot illustrating event message pop-up
UM_message_handling screenshot of the window for message handling
UM_event_handling_history screenshot illustrating event history handling
UM_event_subscription screenshot illustrating a subscription for event type

U
se

r m
an

ua
l

UM_phase_definition screenshot of the window for project phase
definition

ctlConcept domain model concept presentation

ctlConceptView A view controller for containing and managing
concepts and relations

ctlFragment Fragment representation in GUI

ctlFragmentView A view controller for containing and managing
fragments, linkgroups and links.

ctlImpact Impact miniature sized representation of working
board

ctlLink Link representation in GUI
frmConcept Manage concept information
frmConfig Server configuration
frmEventPopup Event popup notification window
frmEvents Manage events and subscription to events

frmFragment Manage fragment (dev.obj) information: view or
revision

frmImpactAnalysis Management of impact analysis

frmMain main window and system tray application window.
Starting point for any action.

frmMessages Manage messages

frmProjects Organizes the fragment (dev.obj) and domain model
controls

frmRelation manage concept relation information

C
od

e

frmUsers User and group management. Alter users, groups and
user's group membership.

198 Appendix D Experimental materials

Product fragment
Type Name Description

req1.1 General user should be able to browse, trace and find
fragments effectively

req1.1.1
General user should be able to ADD, VIEW, EDIT
and DELETE fragments of which he/she has
sufficient access to.

req1.1.2
Interactor should be able to post a request for ADD
to, VIEW,EDIT and DELETE from the reference-
model.

req1.1.3
Interactor should get satisfactory feedback from the
system when changes occur (impact analysis
management)

req1.1.4
Interactor should be able to ADD, EDIT and
DELETE mapping/links from fragments to the
reference-model or other fragments.

req1.1.6

Interactor should be able to work effectively in
within the assigned projects, with a sufficient and
reasonable amount of relevant information provided
at all times.

req1.2

General user should be able to communicate with
other users when needed, through customized or
standard message templates. Messages may be
categorized as private or project related.

req1.2.1 Interactor should be able to ADD, EDIT and
DELETE projects

req1.2.10 Manager should be able to retain an overview of the
project progress at all times.

req1.2.2 Manager should be able to ADD, EDIT and
DELETE general users and their sub-types.

req1.2.3 Manager should be able to define the phase structure
and artefacts used in the project

req1.2.4 Manager should be able to assign default CASE-
tools for required project artifacts.

req1.2.5 Manager should be able to set up locking scheme.

req1.2.6 Manager should be able to set up version
management scheme

req1.2.7 Manager should be able to import, export or generate
parts or the complete conceptual domain model

req1.2.8 Manager should be able to ADD, EDIT and
DELETE concepts

req1.2.9 Manager should be able to view reference-model
update requests from other users.

req1.3 General user should be able request notification of
chosen events

R
eq

ui
re

m
en

ts

req1.3.1
Observer should be able to browse project
information and reports at different levels of detail,
within level of access.

Appendix D Experimental materials 199

Product fragment
Type Name Description

req1.4 General user should be able to view log of events
that have and are to occur

req1.5
General user should be able to view history of
messages sent and received, with context of
message.

req1.6 General user should be able to post and read
messages on a PUBLIC message board.

req1.7

General user should be able to acquire summarized
project information within the access of the user.
Project related messages among users are considered
as a part of the change logging.

req1.8 General user should be able to log on to personal
tracker from any location

req1.9
General user should be able launch CASE-tools
required to view the fragments, if available to the
user at the current location.

req2.1
System should be able to browse project information
and reports at different levels of detail, within level
of access.

req2.1.1 System should process and manage the traceability
related information to and from users, at all times

req2.1.2
System should facilitate the transmission of the
necessary data from the repository to the clients
requesting the information

req2.1.3 System should authenticate users of connecting
clients.

req2.2 System should provide the users with relevant
information at all times

req2.2.1 System should relate relevant information to the user

req2.2.2

System should present the relevant information in a
form appropriate for the contents and urgency of the
information, while being customizable for individual
adaptation.

req2.2.3

System should provide any information clearly and
expressively through the user of expressive textual
and graphical representation, i.e. the use of colour
coding and images..

req2.2.4
System should facilitate the transmission of relevant
traceability information from the user to the other
users.

req2.2.5 System should provide the user with communication
assistance when requested

req2.2.6 System should provide the user with the possibility
of requesting events when desired by the user

req2.2.7

System should enable fragmentation of non-
translatable fragment. Through a fragment-border
scheme, where the borders on the object signifies
different fragments.

200 Appendix D Experimental materials

Product fragment
Type Name Description

req2.2.8
Colour coding should be used whenever appropriate
to achieve maximum expressive power within
limited screen space.

req2.3.1
Repository should be able to STORE trace
information and project information sent to the
repository as fragments in XML.

req2.3.2
Repository should be able to RETRIEVE trace
information and project information requested from
the repository

req2.3.3 Repository should reliably and consistently store all
information sent to it

Next, two typical examples of each product fragment type illustrates the

above listed product fragments. For design fragments see Example D.1 and D2;
user manual is illustrated in Example D.3 and D4; code fragments are illustrated
in Example D.5 and D.6. The requirement fragments were base on the separate
requirements statements, as listed in Table D.1.
D.1.2 Illustration of product fragments in case 1

Design fragments

Appendix D Experimental materials 201

Example D.1 Case 1 fragment of design “SQD_Event_notification”

202 Appendix D Experimental materials

Example D.2 Case 1 fragment of design “SQD_fragment_manipulation”

Appendix D Experimental materials 203

User Manual

Example D.3 Case 1 fragment of user manual “UM_event_message”

Example D.4 Case 1 fragment of user manual “UM_impact_analysis”

204 Appendix D Experimental materials

Code

Example D.5 Case 1 code (C#) fragment “ctlImpact”
using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Windows.Forms;

namespace PT
{
 /// <summary>
 /// Summary description for ctlImpact.
 /// </summary>
 public class ctlImpact : System.Windows.Forms.UserControl
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;
 private ImpactAnalysis situation;

 public ctlImpact()
 {
 // This call is required by the Windows.Forms Form Designer.
 InitializeComponent();

 // TODO: Add any initialization after the InitForm call

 }

 public ctlImpact(ImpactAnalysis impact)
 {
 // This call is required by the Windows.Forms Form Designer.
 InitializeComponent();

 // TODO: Add any initialization after the InitForm call
 situation = impact;
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

Appendix D Experimental materials 205

 #region Component Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 //
 // ctlImpact
 //
 this.Name = "ctlImpact";
 this.Size = new System.Drawing.Size(80, 72);
 this.Load += new System.EventHandler(this.ctlImpact_Load);
 this.Paint += new
System.Windows.Forms.PaintEventHandler(this.ctlImpact_Paint);

 }
 #endregion

 public void setImpactAnalysis(ImpactAnalysis impact)
 {
 this.situation = impact;
 this.Invalidate();
 }

 private void ctlImpact_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
 {
 Graphics g = this.CreateGraphics();

 //Drawing outline of control
 g.DrawRectangle(new
Pen(Color.Black,2),0,0,this.Width,this.Height);

 //If there is any analysis to draw
 if(situation!=null)
 {

 situation.getProject().drawMiniView(this.Width,this.Height,g,situat
ion);
 }

 }

 private void ctlImpact_Load(object sender, System.EventArgs e)
 {

 }

 }
}

206 Appendix D Experimental materials

Example D.6 Case 1 code (C#) fragment “frmRelation”
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

namespace PT
{
 /// <summary>
 /// Summary description for frmRelation.
 /// </summary>
 public class frmRelation : PT.PTForm
 {
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Label lblFrom;
 private System.Windows.Forms.Label lblTo;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.Label label4;
 private System.Windows.Forms.TextBox txtRationale;
 private System.Windows.Forms.NumericUpDown numWeight;
 private System.Windows.Forms.Button btnSave;
 private System.Windows.Forms.Button btnDelete;
 private System.Windows.Forms.TextBox txtID;
 private ctlRelation relation;
 private frmProjects frmprojects;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 public frmRelation(ctlRelation rel, frmProjects project)
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent
call
 //
 this.relation = rel;
 this.frmprojects = project;
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(components != null)
 {

Appendix D Experimental materials 207

 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof(frmRelation));
 this.label1 = new System.Windows.Forms.Label();
 this.label2 = new System.Windows.Forms.Label();
 this.lblFrom = new System.Windows.Forms.Label();
 this.lblTo = new System.Windows.Forms.Label();
 this.label3 = new System.Windows.Forms.Label();
 this.label4 = new System.Windows.Forms.Label();
 this.txtRationale = new System.Windows.Forms.TextBox();
 this.numWeight = new System.Windows.Forms.NumericUpDown();
 this.btnSave = new System.Windows.Forms.Button();
 this.btnDelete = new System.Windows.Forms.Button();
 this.txtID = new System.Windows.Forms.TextBox();

 ((System.ComponentModel.ISupportInitialize)(this.numWeight)).BeginI
nit();
 this.SuspendLayout();
 //
 // label1
 //
 this.label1.Location = new System.Drawing.Point(0, 8);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(40, 16);
 this.label1.TabIndex = 0;
 this.label1.Text = "From:";
 //
 // label2
 //
 this.label2.Location = new System.Drawing.Point(0, 32);
 this.label2.Name = "label2";
 this.label2.Size = new System.Drawing.Size(32, 16);
 this.label2.TabIndex = 1;
 this.label2.Text = "To:";
 //
 // lblFrom
 //
 this.lblFrom.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D;
 this.lblFrom.Location = new System.Drawing.Point(56, 8);
 this.lblFrom.Name = "lblFrom";
 this.lblFrom.Size = new System.Drawing.Size(216, 16);
 this.lblFrom.TabIndex = 2;
 //
 // lblTo

208 Appendix D Experimental materials

 //
 this.lblTo.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D;
 this.lblTo.Location = new System.Drawing.Point(56, 32);
 this.lblTo.Name = "lblTo";
 this.lblTo.Size = new System.Drawing.Size(216, 16);
 this.lblTo.TabIndex = 3;
 //
 // label3
 //
 this.label3.Location = new System.Drawing.Point(0, 80);
 this.label3.Name = "label3";
 this.label3.Size = new System.Drawing.Size(56, 16);
 this.label3.TabIndex = 4;
 this.label3.Text = "Rationale:";
 //
 // label4
 //
 this.label4.Location = new System.Drawing.Point(0, 56);
 this.label4.Name = "label4";
 this.label4.Size = new System.Drawing.Size(48, 16);
 this.label4.TabIndex = 5;
 this.label4.Text = "Weight:";
 //
 // txtRationale
 //
 this.txtRationale.Location = new System.Drawing.Point(56,
80);
 this.txtRationale.Multiline = true;
 this.txtRationale.Name = "txtRationale";
 this.txtRationale.ReadOnly = true;
 this.txtRationale.Size = new System.Drawing.Size(208, 56);
 this.txtRationale.TabIndex = 6;
 this.txtRationale.Text = "";
 //
 // numWeight
 //
 this.numWeight.DecimalPlaces = 2;
 this.numWeight.Increment = new System.Decimal(new int[] {

 1,

 0,

 0,

 131072});
 this.numWeight.Location = new System.Drawing.Point(56, 56);
 this.numWeight.Maximum = new System.Decimal(new int[] {

 1,

 0,

 0,

 0});

Appendix D Experimental materials 209

 this.numWeight.Name = "numWeight";
 this.numWeight.ReadOnly = true;
 this.numWeight.Size = new System.Drawing.Size(48, 20);
 this.numWeight.TabIndex = 7;
 this.numWeight.Value = new System.Decimal(new int[] {

 1,

 0,

 0,

 0});
 //
 // btnSave
 //
 this.btnSave.Location = new System.Drawing.Point(72, 144);
 this.btnSave.Name = "btnSave";
 this.btnSave.Size = new System.Drawing.Size(64, 24);
 this.btnSave.TabIndex = 8;
 this.btnSave.Text = "Save";
 this.btnSave.Click += new
System.EventHandler(this.btnSave_Click);
 //
 // btnDelete
 //
 this.btnDelete.Enabled = false;
 this.btnDelete.Location = new System.Drawing.Point(152, 144);
 this.btnDelete.Name = "btnDelete";
 this.btnDelete.Size = new System.Drawing.Size(64, 24);
 this.btnDelete.TabIndex = 9;
 this.btnDelete.Text = "Delete";
 this.btnDelete.Click += new
System.EventHandler(this.btnDelete_Click);
 //
 // txtID
 //
 this.txtID.Location = new System.Drawing.Point(200, 56);
 this.txtID.Name = "txtID";
 this.txtID.Size = new System.Drawing.Size(64, 20);
 this.txtID.TabIndex = 10;
 this.txtID.Text = "";
 this.txtID.Visible = false;
 //
 // frmRelation
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(280, 173);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {

 this.txtID,

 this.btnDelete,

 this.btnSave,

 this.numWeight,

210 Appendix D Experimental materials

 this.txtRationale,

 this.label4,

 this.label3,

 this.lblTo,

 this.lblFrom,

 this.label2,

 this.label1});
 this.Icon =
((System.Drawing.Icon)(resources.GetObject("$this.Icon")));
 this.MaximizeBox = false;
 this.MinimizeBox = false;
 this.Name = "frmRelation";
 this.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide;
 this.Text = "Relation";
 this.Load += new System.EventHandler(this.frmRelation_Load);

 ((System.ComponentModel.ISupportInitialize)(this.numWeight)).EndIni
t();
 this.ResumeLayout(false);

 }
 #endregion

 private void stop()
 {
 frmprojects.Activate(); //Returning focus
 this.Dispose();

 }

 private void frmRelation_Load(object sender, System.EventArgs e)
 {

 XmlHolder holder = this.relation.getHolder();

 //Setting holding controllers
 this.lblFrom.Text = relation.getControlFrom().getID();
 this.lblTo.Text = relation.getControlTo().getID();

 //If this is a NEW relation, enable some more boxes
 //AND if the user has the metamodel checked out
 if(holder==null)
 {

 if(FrmMain.medi.getPTUser().getID().CompareTo(this.frmprojects.getP
roject().getTag("checkoutbyid"))==0)
 { //Enabling save button
 this.btnSave.Visible = true;
 this.btnSave.Enabled = true;
 this.btnDelete.Enabled = false;

Appendix D Experimental materials 211

 //Enable writing of name
 this.numWeight.ReadOnly = false;
 this.txtRationale.ReadOnly = false;
 }
 }
 else //if this is an already existing concept, show
information
 {

 //Disable save button

 //TODO: update link somehow, selection boxes for FROM and
TO?
 this.btnSave.Visible = false;
 this.btnSave.Enabled = true;
 this.btnSave.Text = "Save changes";

 //If user has metamodel checked out, enable delete

 if(FrmMain.medi.getPTUser().getID().CompareTo(this.frmprojects.getP
roject().getTag("checkoutbyid"))==0)
 this.btnDelete.Enabled = true;

 //Disable writing of name
 this.numWeight.ReadOnly = true;
 this.txtRationale.ReadOnly = true;

 //Setting relation information
 this.txtID.Text = holder.getTag("id");
 this.txtRationale.Text = holder.getTag("rationale");
 this.numWeight.Value =
Convert.ToDecimal(holder.getTag("weight"));
 }

 }

 //Saving or updating the fragment
 private void btnSave_Click(object sender, System.EventArgs e)
 {

 Cursor.Current = Cursors.WaitCursor; //Setting wait cursor

 //Save relation info
 string cmdword_begin = "";
 string cmdword_end = "";
 string cmdmsg = "";

 //If the button says SAVE it's a NEW relation
 if(this.btnSave.Text.CompareTo("Save")==0)
 {
 cmdword_begin = "<NEW respond=\"true\">";

 cmdword_end = "</NEW>";
 cmdmsg = "added";

212 Appendix D Experimental materials

 }
 else //Otherwise, it's an UPDATE
 {
 cmdword_begin = "<UPDATE respond=\"true\">";
 cmdword_end = "</UPDATE>";
 cmdmsg = "updated";
 }

 string msg = "<PTSERVER><DATA>"+ cmdword_begin +
"<RELATION>";
 msg += "<ID>" + this.txtID.Text + "</ID><WEIGHT>" +
this.numWeight.Value.ToString() + "</WEIGHT><RATIONALE>"+
this.txtRationale.Text + "</RATIONALE>";
 msg += "<FROMCONCEPTID>"+this.lblFrom.Text
+"</FROMCONCEPTID><TOCONCEPTID>"+this.lblTo.Text
+"</TOCONCEPTID><CREATEDBYID>" + PT.PTForm.medi.getPTUser().getID()+ "
</CREATEDBYID>";
 msg += "</RELATION>"+ cmdword_end + "</DATA></PTSERVER>";
 //Send update wait for ID and set it in holder
 XmlHolder[] answer = this.netGetArrayOfItems(msg,"relation");
 //If we got a valid response
 if(answer.Length>0)
 {

 //Remove old

 frmprojects.getConceptView().removeRelation(relation.getID());

 //Setting new relation information
 relation.setHolder(answer[0]);

 //Registering new relation with view
 frmprojects.getConceptView().registerRelation(relation);

 //Display ok message
 PT.PTForm.medi.displayOK("Relation was
"+cmdmsg+".",cmdmsg);

 this.stop(); //Closing
 }
 else //Display error message
 PT.PTForm.medi.displayError("Relation was NOT
"+cmdmsg+".");

 Cursor.Current = Cursors.Default; //Setting default
 }

 //When the user wants to delete relation
 private void btnDelete_Click(object sender, System.EventArgs e)
 {
 //Set relation as obsolete
 string msg = "<PTSERVER><DATA><UPDATE
respond=\"true\"><relation>";

Appendix D Experimental materials 213

 msg += "<ID>" + this.txtID.Text +
"</ID><OBSOLETE>1</OBSOLETE>";
 msg += "</relation></UPDATE></DATA></PTSERVER>";

 //Send update wait for ID and set it in holder
 XmlHolder[] answer = this.netGetArrayOfItems(msg,"relation");
 //If we got a valid response
 if(answer.Length>0)
 {
 //Setting new relation information
 relation.setHolder(answer[0]);

 frmprojects.getConceptView().removeRelation(relation.getID());
 relation.Dispose();

 //Display ok message
 PT.PTForm.medi.displayOK("Relation was
obsoleted.","Obsolete");

 frmprojects.getConceptView().Invalidate(); //Update
display
 this.stop(); //Closing

 }
 else //Display error message
 PT.PTForm.medi.displayError("Relation was NOT
obsoleted.");

 }

 }
}

D.2 Description of Case 2
This case describes a project developing a system at NTNU to be used to support
exercise delivery, review and evaluation during for a particular courses. A simplified
model for Case 2 is depicted in figure 1 for the purpose of defining the scope.

User is involved (takes part) in the course. There are three types of users, namely,
student, lecturer, and sensor. Every user of the system has a user profile. There are two
types of delivery in the course, i.e., exercise and review. Each delivery has a deadline.

Students are organized in student groups to deliver an exercise. Solution to an
exercise usually consists of a description and a model. After delivering the exercise
students are arranged into review groups, in order to peer-review delivered exercises.

Lecturer and sensor perform evaluation of both exercise and review of exercise,
by assigning a grade and providing some feedback (comment).

214 Appendix D Experimental materials

Figure D.2 Domain model for Case 2

D.2.1 Product fragments in case 2
There are two different types of development objects in this case. Namely, requirement
statements, and code (php) fragments. Table D.2 lists the product fragments used in case
2.

Table D.2 Product fragments in case 2

Product fragment
Type Name Description

deliver control of delivery form
deliveries overview of deliveries
doEvaluate control of evaluation form
evaluate control of reviewing form
feedback control of feedback form
index start form (login)
updateReview form for changing the review
updateUserinfo form for user profile update

C
od

e

upload exercise upload form and control

Appendix D Experimental materials 215

Product fragment
Type Name Description

userinfo form for browinsg user profile

viewDeliveryComments form for browsing delivery evaluation (from student
view)

viewEvaluation form for browsing evaluation of delivery

viewFeedback form for viewing received feedback (from lecturer
view)

viewReviewComments form for browsing received review comments (from
student view)

editDeadline form for setting and changing the deadlines
 viewGroups set and browse students arranged into groups
req3 Student should be able to log in to the system
req5 Student should be able upload delivery (exercise)

req6 Lecturer should be able to see the status of the
deliveries from the assigned students.

req8 Student should be able see the comments for
solution

req9 Lecturer should form a reviewer groups for delivery

R
eq

ui
re

m
en

ts

req11 Reviewer should be able evaluate the deliveries

Next, two typical code fragment in case 2 are illustrated.

Code
Example D.7 Case 2 code(php) fragment “deliver”
<?php $heading="Levere øving";
 $page = "deliver";
 require("header.php"); ?>
<!-- meny venstre -->
<?php require("../datoer.php");
echo "

<table align=center><tr><td align=left>";
//Get urls to help documents for the model types
$models = mysql_query("select Name, DescriptionURL from
ModelType",$DB);
while ($row = mysql_fetch_array($models))
 echo "<a href=\"$row[DescriptionURL]\" style=\"font-
size:11px\">Om $row[Name]-diagrammer

";
?></td></tr></table>
</td>

<!-- hovedvindu -->
<td width="720" class="hoved" valign="top">
<div class="hovedvindu">

<?php
$op = $HTTP_POST_VARS[op];
if ($op == "redeliver") {
 //Get name of exercise to be delivered

216 Appendix D Experimental materials

 $result = mysql_query("select E.Name, GD.Deadline from Exercise as
E, GroupDeadline as GD where E.ExerciseID =
$HTTP_POST_VARS[redeliverID] and E.ExerciseID = GD.ExerciseID",$DB);
 if ($info = mysql_fetch_array($result))
 $exercisename = $info[Name];
 else {

 header("Location:$rot/student/deliveries.php?message=Finner+ikke+øv
ing!");
 exit;
 }?>
 <h1>Levér <? echo $exercisename ?> på nytt</h1>

 NB! Innleveringsfristen er endelig, og
muligheten for å levere stenger
 automatisk kl 23:59 den <?php
echo fromMysql($info[Deadline]); ?>.

 Det er kun mulig å levere én fil per oppgave. Vennligst levér
rapporten
i <i>pdf</i> eller <i>doc</i> format. Filen kan ikke
være større enn 10 MB.

 <form action="upload.php" enctype="multipart/form-data"
method="post">
 <input type="hidden" name="MAX_FILE_SIZE" value="12000000">
 <input type="hidden" name="oving" value="<? echo
$HTTP_POST_VARS[redeliverID]; ?>">
 <input type="hidden" name="op" value="redeliver">
 Fil: <input name="userfile" type="file">

 <input type="submit" name="submit" value="Lever fil">
 </form>
 <?php

} else {
 //Normal delivery
 $today = date("Y-m-d");
 //Get active exercise
 $findcurrent = mysql_query("select E.ExerciseID, E.Name,
GD.Deadline from GroupDeadline as GD, Exercise as E where
GD.StudGroupID = $HTTP_SESSION_VARS[StudGroupID] and E.Deadline >=
'$today' and E.ExerciseID = GD.ExerciseID order by GD.ExerciseID
asc",$DB);
 if ($denne = mysql_fetch_array($findcurrent)) {
 //Still exercises to deliver
 $delivered = mysql_query("select * from Delivery where
StudGroupID = $HTTP_SESSION_VARS[StudGroupID] and ExerciseID =
$denne[ExerciseID]",$DB);
 if (mysql_num_rows($delivered) != 0) {
 //Has delivered this exercise
 echo "<h1>Levere øving</h1>
Du har levert $denne[Name].
<form action=deliver.php method=post style=\"margin:0\"><input
type=hidden name=op value=redeliver><input type=hidden
name=redeliverID value=$denne[ExerciseID]>
Du kan levere den på
nytt her: <input type=submit value=\"Lever ny fil\"></form>
";
 $nextexerciseid = $denne[ExerciseID] + 1;
 $findnext = mysql_query("select ExerciseID, Name from
Exercise as E where ExerciseID = $nextexerciseid",$DB);
 if ($neste = mysql_fetch_array($findnext))
 //There are more exercises to be delivered
 echo "Levering av $neste[Name] åpner etter
".fromMysql($denne[Deadline]).".";

Appendix D Experimental materials 217

 else
 //Last exercise delivered
 echo "Du har levert alle øvingene.";
 } else {
 //Shall deliver this exercise next
 ?>
 <h1>Levér <? echo $denne[Name]; ?></h1>

 NB! Innleveringsfristen er endelig,
og muligheten for å levere stenger
 automatisk kl 23:59 den <?php
echo fromMysql($denne[Deadline]); ?>.

 Det er kun mulig å levere én fil per oppgave. Vennligst levér
rapporten
i <i>pdf</i> eller <i>doc</i> format. Filen kan ikke
være større enn 10 MB.

 <form action="upload.php" enctype="multipart/form-data"
method="post">
 <input type="hidden" name="MAX_FILE_SIZE"
value="12000000">
 <input type="hidden" name="oving" value="<?php echo
$denne[ExerciseID]?>">
 <input type="hidden" name="op" value="deliver">
 Fil: <input name="userfile" type="file">

 <input type="submit" value="Lever fil">
 </form><?php
 }
 } else
 //Last deadline is passed
 echo "<h1>Levere øving</h1>
Levering av siste øving er
avsluttet";
}
?>

Se tidligere innleveringer
</div>
</td>
<!-- hovedvindu slutt -->
<?php require("../footer.php"); ?>

Example D.8 Case 2 code (php) fragment “updateUserInfo”
<?php $rolle = "student";
include ("../dbconnect.php");

if ($op == "changeemail") {
 //User wants to update his email address. Test if he has actually
given a new address
 if ($newemail == '')
 $message = "Ingen epostadresse angitt!";
 else {
 //Update user info.
 mysql_query("update StudOnGroupset Email = '$newemail' where
StudGroupID = $HTTP_SESSION_VARS[StudGroupID]",$DB);
 $Email = $newemail;
 session_register("Email");
 $message = "Ny epostadresse lagret!";
 }

218 Appendix D Experimental materials

 session_register(message);
 header("Location:$rot/student/userinfo.php");
 exit;
} elseif ($op == "changepw") {
 //User wants to change password.
 if ($newpw == '')
 $message = "Du må angi et nytt passord!";
 else {
 //Get old password
 $result = mysql_query("select Password from StudGroup where
StudGroupID = $HTTP_SESSION_VARS[StudGroupID]",$DB);
 $row = mysql_fetch_row($result);
 //Test if given old password is correct before updating
password.
 if ($row[0] == $oldpw) {
 $result = mysql_query("update StudOnGroupset Password =
'$newpw' where StudGroupID = $HTTP_SESSION_VARS[StudGroupID]",$DB);
 $message = "Nytt passord lagret!";
 } else
 $message = "Feil med angitt passord!";
 }
 session_register(message);
 header("Location:$rot/student/userinfo.php");
 exit;
}?>

 219

Appendix E
Data Collected

This appendix presents the raw material (i.e. responses to the questionnaire
presented Appendix C) of the experiment described in chapter 8.

Background Data

Participants Summary

Cases
Valid Missing Total

 N Percent N Percent N Percent
For all questions* 6 100,0% 0 ,0% 6 100,0%

* - except Q20 and Q26, only five participants answered.

Q1. Gender

 Observed N
Male 3
Female 3
Total 6

Q2. Age

Responses
N Percent

Percent
of Cases

21-30 years 2 33,3% 33,3% $age(a)
31-40 years 4 66,7% 66,7%

Total 6 100,0% 100,0%

220 Appendix E Data Collected

Q3. Have you ever been involved in an industrial software development project? Check
all that apply.

Responses
 N Percent

Percent of
Cases

I've been observing a software development
project 3 27,3% 50,0%

I've participated in small software
development project 4 36,4% 66,7%

I've participated in big software development
project 3 27,3% 50,0%

I've participated in big geographically
distributed software development project 1 9,1% 16,7%

Total 11 100,0% 183,3%

Q4. Have you ever been involved in usability evaluations? Check all that apply.
Responses

 N Percent
Percent of

Cases

No, I've never done anything like that 2 18,2% 33,3%

I've been observing a software development
project 3 27,3% 50,0%

I've participated in small software
development project 1 9,1% 16,7%

I've participated in big software development
project 2 18,2% 33,3%

I've participated in big geographically
distributed software development project 3 27,3% 50,0%

Total 11 100,0% 183,3%

Q5. How long you are (working) in the field of computer and information science
Responses

 N Percent
Percent of

Cases

6-10 years 1 16,7% 16,7%

11-25 years 5 83,3% 83,3%

Total 6 100,0% 100,0%

Evaluation Tasks and Questions

Q6. Please select random 3 (from marked ones) development object of any type in
CO2SY, select 3 top ranked values (lowest value) and check how many of them are
correctly estimated as being related/dependent. Please do that for each of the cases.

Appendix E Data Collected 221

How many of these would you rate as correct?
Case 1 Case 2
Subject
ID Wrong Partial Correct Total Wrong Partial Correct Total

1 0 3 6 9 2 3 4 9
2 4 3 4 11 3 2 3 8
3 5 8 15 28 1 3 7 11
4 2 0 15 17 5 3 5 13
5 6 1 7 14 1 2 8 11
6 6 1 5 12 9 1 5 15

Total 23 16 52 91 21 14 32 67

Q7. Browse the results of association and linking (all tools), compare them. Please
identify, whether CO2SY help to discover any new correct relatedness/ dependency
relationship between development objects.

Yes, but all
were wrong None Neither,

nor… Some Many

Observed N - - - 6 -

Approach Evolution

Q8. What is your experience with:
Responses about Doors. Frequencies

Responses Doors
N Percent

Percent of
Cases

Never used 6 100% 100%

Seen but not used 0 0% 0%

Used a few times 0 0% 0%

Used extensively 0 0% 0%
Total 6 100,0% 100,0%

Responses about CO2SY.

Responses CO2SY
N Percent

Percent of
Cases

Never used 4 66,7% 66,7%

Seen but not used 2 33,3% 33,3%

Used a few times 0 0% 0%

Used extensively 0 0% 0%
Total 6 100,0% 100,0%

222 Appendix E Data Collected

Responses about traceability matrix.
Responses Traceability matrix

N Percent
Percent of

Cases
Never used 4 66,7% 66,7%

Seen but not used 1 16,7% 16,7%

Used a few times 1 16,7% 16,7%

Used extensively 0 0% 0%
Total 6 100,0% 100,0%

Q9. Please provide your opinion about the quality of case description:

very bad bad fair good very good
Case 1 description 0 1 4 1 0
Case 1 domain model 0 0 4 2 0
Case 1 product fragments 0 1 3 1 1
Case 2 description 0 0 2 4 0
Case 2 domain model 0 0 1 5 0
Case 2 product fragments 0 2 2 2 0

Q10. Please rank used tools / techniques based on perceived easiness and efficiency
using it for this particular settings:
Subject ID 1 2 3 4 5 6 Average

Prototype 1 1 1 2 1 1 1,17
Doors 3 2 2 1 2 3 2,17
Traceability matrix 2 3 3 3 3 2 2,67

Q11. Imagine a geographically distributed software development project bigger 10
times or more than the specified in the case 1. Please rank used tools / techniques based
on perceived easiness and efficiency, but in the settings of big software development:
Subject ID 1 2 3 4 5 6 Average

Prototype 1 1 1 1 1 1 1,00
Doors 3 2 2 2 2 2 2,17
Traceability matrix 2 3 3 3 3 3 2,83

Q12. When associating design and code fragments, did you experienced difficulty while
choosing concept from domain model? If so, do you think it was because of (choose that
apply):

Responses
 N Percent

Percent of
Cases

No, I have not experienced any difficulty 1 11,1% 16,7%

Lack of design/code oriented concepts 1 11,1% 16,7%

Lack of domain knowledge 3 33,3% 50,0%

Appendix E Data Collected 223

Responses
 N Percent

Percent of
Cases

Other 4 44,4% 66,7%
Total 9 100,0% 150,1%

Results whether lack of knowledge was for case 1, case 2 or both:

Responses
 N Percent

Percent of
Cases

Case 1 3 75,0% 100,0%
Case 2 1 25,0% 33,3%
Total 4 100,0% 133,3%

Comments provided by the subjects who selected Other reason for having difficulty
while choosing concept from domain model:

Subject id Comment
1 Poorly commented code and design.
2 Insufficient study of fragments.
4 Mixed up by concepts and functions/ workflow.
5 The concepts should have been more defined.

Q13. In general how would you rate the user interface of:

General ease
of use

Visual Design
/ Layout

Ease of
Learning Doors

Observed N Observed N Observed N
Needs major improvements 2 1 0
Needs minor improvement 1 3 2
Fair 2 1 3
Good 1 0 1
Works well 0 1 0
Total 6 6 6

General ease

of use
Visual Design

/ Layout
Ease of

Learning CO2SY
Observed N Observed N Observed N

Needs major improvements 0 0 0
Needs minor improvement 0 5 0
Fair 5 1 1
Good 1 0 5
Works well 0 0 0
Total 6 6 6

224 Appendix E Data Collected

Q14. Are you satisfied with a linking functionality (for the purpose of identifying
related/dependent items) of the tested tools/ techniques? Please use a scale from 1 to 5.

Q14_Doors
Observed N

Q14_CO2SY
Observed N

Q14_trace matrix
Observed N

Not at all 2 0 0
. 1 0 3
. 1 1 1
. 2 3 0
Very satisfied 0 2 2
Total 6 6 6

Q15. Please evaluate the usability of the tools (usability considers how easy it is to
learn and use a tool):

Q15_Doors
Observed N

Q15_ CO2SY
Observed N

Q15_ trace matrix
Observed N

Very difficult 0 0 1
Difficult 2 0 0
Moderate 3 3 1
Easy 1 2 1
Very easy 0 1 3
Total 6 6 6

Q16. Please evaluate easiness of dependency establishment using the tools (consider
how labour intensive was the establishment of links/associations):

Q16_Doors
Observed N

Q16_ CO2SY
Observed N

Q16_trace matrix
Observed N

Very difficult 2 0 0
Difficult 1 0 2
Moderate 2 1 0
Easy 1 5 2
Very easy 0 0 2
Total 6 6 6

Q17. Imagine a project relying on a well structured folder hierarchy in file system. The
option would be to save file in corresponding folder, e.g., Project_name/User/Phase/…
Please compare association with domain concept to saving file into file system.

Association with domain concept is
Responses

 N Percent
Percent of

Cases
Very difficult 0 0% 0%
Difficult 0 0% 0%
Similar/ the same as 1 16,7% 16,7%

Appendix E Data Collected 225

Responses
 N Percent

Percent of
Cases

Easy 5 83,3% 83,3%
Very easy 0 0% 0%
Total 6 100,0% 100,0%

 when compared to saving product fragment to file system.

Q18. How would you describe the result using the CO2SY tool?

Responses
 N Percent

Percent of
Cases

1. Total disaster 0 0% 0%
2. 0 0% 0%
3. 2 33,3% 33,3%
4. 4 66,7% 66,7%
5. Very accurate 0 0% 0%
Total 6 100,0% 100,0%

Q19. Imagine organizing your own information in a folder structure created by you.
Would a tool such as the tested prototype (with conceptual model/ontology created by
you) be a reasonable alternative for classifying your files?

Responses
 N Percent

Percent of
Cases

Very unlikely 0 0% 0%
Unlikely 0 0% 0%
I do not know 1 16,7% 16,7%
Likely 3 50,0% 50,0%
Very likely 2 33,3% 33,3%
Total 6 100,0% 100,0%

Sometimes, when associating you will have a fragment where you will not find the exact
names of concepts that are used in the model.
Q20. How easy was it to find a dependent product fragment?
Q21. How would you rate CO2SY system, was it difficult to locate the concept?
Q22. If concept was not present in a model – was it difficult to decide which concept to
use for association with a fragment?

Q20 Q21 Q22
 N Percent N Percent N Percent
Very difficult 0 0% 0 0% 0 0%
Difficult 2 40,0% 0 0% 2 33,3%

226 Appendix E Data Collected

Q20 Q21 Q22
 N Percent N Percent N Percent
Moderate 0 0% 3 50,0% 1 16,7%
Easy 3 60,0% 3 50,0% 3 50,0%
Very easy 0 0% 0 0% 0 0%
Total 5 100,0% 6 100,0% 6 100,0%

Q23. Please specify what feature of the tested tools you liked most, and which tool:

Subject id Comment
1 CO2SY: To have the linked items and link specification dialogue box in the

same window, would have been nice to have had graphic representation of the
domain model, though. With a possibilty to display NL definition when
needed.

2 CO2SY: Discovery of mismatch between associations and direct linking.
3 Doors: the visualization of the link results.

CO2SY: the automatic estimation of the link results.
Traceability matrix: easy to learn.

4 Doors: Trace interface.
CO2SY: The function of mapping code fragments, etc to concept model is
appreciated.

5 CO2SY: seeing dependencies found by the system. But could have been
graphical.

6 CO2SY: Relating artifacts to domain model concepts using the tool ->
evaluating the correctness of the decisions.

Q24. Which of the tools/ techniques would you prefer to use in the future, and why:

Subject id Comment
1 CO2SY: Traceability matrix is easy to use, but do not allow to grade the

strength of the association, nor does it do the hard work (finding the specific
domain objects) for me. relating the fragments to model concepts was more
intuitive and fuzzy enough. The prototype would even have corrected my
mistake! Thus, based on this limited experience, I find it trustworthy, even
though I’m not in control of the detailed links. Apparently saves a lot of time!

2 CO2SY and Traceability matrix.
3 CO2SY: I need only link the fragments to the domain concepts in which the

amount of concepts is smaller than the number of all fragments. It seems I used
less efforts and the dependencies between fragments can be estimated
automatically.

4 Doors and CO2SY. Doors is more suitable for moderate size and structured
projects. CO2SY will be great for large scale, distributed development which
may contain plentiful of fragments.

5 CO2SY: Found it easier to use and more intelligent.
6 CO2SY: because novel approach and ease of use.

Q25. What you would like to add to the tested prototype (CO2SY) and to the each of the
other systems?

Appendix E Data Collected 227

Subject id Comment
1 Doors: Much less fragmented user interface and many less steps required when

specifying a link!
CO2SY: Visualization of the model and also of the closesness analysis.
Sometimes I would felt more secure to be able to mark “absolutely not linked
to” for some concepts.
Traceability matrix: Grading of confidentiality in links.

2 CO2SY: Better GUI (more intuitive with undo).
3 Doors: quick navigation function; I don’t like layered windows when I link

different fragments in different windows.
CO2SY: Need more comprehensive link result specification. Need to provide
different views and filters to see the results.
Traceability matrix: It will be too big if a case is big. Need a function of filter.

4 Doors: Concept mapping support.
CO2SY: functions in Doors (code to code, code to requirements, etc).
Traceability matrix: get rid of it if having the other two.

5 See Q23.
6 I can’t comment about functionality at this stage – but all of them need to

convince me why you would need to use this idea. What about scalability?

Q26. In Case 2 you have been presented with a conceptual domain model, i.e. not only
the list of concepts on the screen of CO2SY. Please identify whether it was:

Responses
 N Percent

Percent of
Cases

More difficult 0 0% 0%
A bit difficult 0 0% 0%
Moderate 0 0% 0%
Easy 4 80,0% 66,7%
Much easier 1 20,0% 16,7%
Total 5 100,0% 83,3%

to locate right concept than dealing only with list of concepts in case 1.

Q27. Other comments, remarks regarding the experiment itself, used tools and cases,
procedure of the experiment, questionnaire (please specify)

Subject id Comment
1 In Q9, quality of models, my rating would be higher, if the used modeling

notation had been more intuitive. In Q26 I mean I never looked at the list
expect when assigning the association.

2 Too generic requirements in case 1. Unrealistic estimation of duration.
3 The experiment itself and used tool are sound and enough. The procedure is

also fine just a little long. The case 1 is not easy to understand for some testers.
I think case 2 is more comprehensive and understandable for normal testers.
For questionnaire. Some questions are not specified explicitly, e.g. Q17. Some

228 Appendix E Data Collected

Subject id Comment
questions can not be answered for sure because it relates to the all functions or
performance of the tool (e.g. Q15).

4 -
5 -
6 Maybe a little more explanation for why need to use such a tool would be good

aspect of training.

` 229

Appendix F
Collection of Papers

This appendix includes the papers publish as a part of this thesis and described in
chapter 1.6 of the thesis. They are as follows.

F.1 Traceability in Collaborative Systems Development from
Lifecycle Perspective - a position paper
Strasunskas D. Traceability in Collaborative Systems Development from
Lifecycle Perspective - a position paper. In Proc. of the 1st Intl. Workshop on
Traceability (TEFSE), co-located with ASE 2002, Edinburgh, Scotland, UK,
September 2002, pages 54-60.

230 Appendix F Collection of Papers

Traceability in Collaborative Systems Development from Lifecycle Perspective
– A Position Paper

Darijus Strašunskas
Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology

Sem Sælands vei 7-9, NO-7491 Trondheim, Norway
dstrasun@idi.ntnu.no

Abstract

The aim of this position paper is to discuss the features
of state-of-the-art and outstanding issues of the
traceability between product fragments in collaborative
system development.

A lot of research has been done in the pre-traceability
area. Recently, researchers’ attitudes towards inter-
relation of requirements and architecture elements have
increased. Several approaches to tackle this problem
have been proposed. Nevertheless, to the author’s
knowledge, the solution for traceability between various
product fragments through the lifetime of the system does
not exist.

Central repository for the traceability relationship and
distributed repositories for the model fragments storage
and interchange between developers are proposed. Usage
of ontology is proposed to interrelate different product
fragments and establish the traceability relations between
them.

1. Introduction

Traceability and its relevance to the software
development process are well described in the literature
(e.g., [8], [28]). Especially much research is done in pre-
requirements traceability to capture rationale (e.g., [9],
[22], [24]), but there is the lack of traceability through the
entire system development process.

An information system is viewed as a product
composed of product fragments, which are again
compositions of sub-fragments:

– Model fragments – are sub-models of a conceptual
model of the information system being under develop-
ment. Only the semantic content of the model is stored,
not diagram layout information.

– Diagrams – stores layout information of the
conceptual model view. Diagrams may exist in several
different layout versions without affecting the conceptual
content.

– Code fragments – are code modules (files).

– Document fragments – are pieces of the
documentation of the models and code fragments.

These four fragments types are described differently.
Model structure depends on the conceptual model
languages used, diagram structure reflects the basics of
visual languages, code structure is expressed in
programming language and document structure reflects
common document architectures.

Every decision and rationale behind it should be
captured and traced during system development. The
traceability of the history of a product is a prerequisite for
managing evolution of product. Capturing and
maintaining traces from requirements to implementation
and vice versa have long ago been acknowledged as one
of essential systems development activities [19].

There are several aspects that make the traceability
between requirements and later fragments of software
development (design, architecture, code fragments)
problematic. First, conceptual distance between two
worlds: human (requirements are captured in natural
language) and technical (entities are specified in formal
method). Second, it is difficult to maintain the consistency
and traceability between different fragments since single
requirement could map multiple architectural and design
concerns derived from it. Contrarily, architectural
component could have few relations to various
requirements. And third, large systems should satisfy
hundreds, even thousands of requirements, and this makes
second issue even more complicated.

This paper is the statement about research in progress
within the area of traceability between various fragments
(documents, models, model elements, code) in a
collaborative software development throughout entire
system lifecycle. The research has so far mainly been built
on an extensive literature study and survey of the
requirements management tools.

The paper is organized as follows: first, the traceability
issues and existing approaches are discussed in light of
system development lifecycle. Next section discusses the
aspects of traceability in a collaborative work and lists
deficiencies of CASE tools. The research issues and a
vision of approach to tackle them are enlightened in
section 4. Finally, conclusions are presented.

2. Traceability from a Life Cycle Perspective

Gotel and Finkelstein [8] define requirements
traceability as “the ability to describe and follow the life
of a requirement in both forwards and backwards direction
(i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in
any of these phases)”.

Software systems always evolve as the environment
and stakeholders’ requirements change. Therefore,
managing change is a fundamental activity not only in
requirements engineering (RE), but also in overall system
development.

Neglecting traceability or capturing insufficient traces
could decrease system quality, and extend development
time. It is important to trace which model element is
affected by change of requirement. And, vice versa, how
change of model element corresponds to defined
requirements, and consequently how will the system
functionality be affected.

The systems specification is developed in an iterating
manner. Concurrent Engineering requires the cooperation
of people coming from different phases of the engineering
process. Traceability between the different views
(diagrams), which exist in such cross-functional teams, is
essential for enabling mutual understanding. Moreover,
the different views must be related to each other and must
be presented in a suitable way to support finding and
resolving of inconsistencies, conflicts, and different
opportunities.

One of the solutions to the problem of traceability is
the hyper linkage of documents from different phases of
development. If these documents are suitably annotated,
they can provide a meaningful design history throughout
the development lifecycle [3] and increase the browsing
capabilities. This could be done mainly manually or semi-
automatically using linguistics technique. Cerbah and
Euzenat [2] have implemented system that generates class
hierarchies out of textual requirements specifications and
establishes traceability between models and texts through
terminology. The authors have not explicitly stated, but
the same technique could be use to relate the
documentation.

The CBSP (Component, Bus, System, Property)
approach [11] deals with refinement of requirements to
initial architecture, as requirements may explicitly or
implicitly contain information relevant to the system’s
architecture. A Scenario and Meta-Model Based
Approach [23] integrates requirements and architecture
information by defining orthogonal meta-models, which
define the concepts and relations about information to be
recorded during system development. It is based on six
meta-models. Meta-models are used to structure

requirements information and interrelate structured
information.

Murphy et al. presents formal technique for abstraction
of source code information to match higher-level model
elements [17]. The abstractions for consistency checking
between model and code, but not interrelation between
different model elements, are used.

Approach by Hall et al. [12] uses extended problem
frames [14], which allow architectural structures, services
and artefacts to be considered as part of the problem
domain.

Jviews by Grundy et al. [10] uses class-like diagrams
and other design-level constructs. They focus on lower-
level design and address a series of view integration
problems in that level.

ViewPoints [6] framework by Finkelstein et al.
presents some views and corresponding rules to identify
inconsistencies within and between them. Framework
provides mechanisms for detecting, classifying and
resolving inconsistencies. ViewPoint resorts to a more
formal specification of requirements. ViewPoint support
for design and architecture type diagrams is not explicitly
stated, although they state that some exists.

Comparison of those approaches ([2], [6], [10], [11],
[12], [17], [23]) for relating different views in system
development is summarized in table 1. Approaches are
compared in context of their coverage of lifecycle phases.
Lifecycle phases are split into requirements, architecture,
design, coding and system documentation. System
development lifecycle is assumed to be an iterative
process, not waterfall-like.

Table 1. Comparison of approaches from
lifecycle perspective

The following ratings were assigned: high, average,
none. The average and high ratings are given when some
support or extensive support is available. A none rating is

Phases
of lifecycle

Aproaches R
eq

ui
re

m
en

ts

A
rc

hi
te

ct
ur

e

D
es

ig
n

C
od

in
g

D
oc

um
en

ta
ti

on

Linguistics approach
[2]

CBSP [11]

Scenario & Meta-
Model Based [23]

Murphy et al. [17]

Approach using
Problem Frames [12]

Jviews [10]

ViewPoints [6]

- high - average - none

assigned when the criteria are not satisfied by the
approach or are insignificant.

In general, research is done in the area of traceability
between two different phases of software development
(either between requirements and rationale behind them,
or requirements and architecture, or source code and
model elements (see table 1)). Most of the investigated
approaches do not take into consideration documentation
phase of system lifecycle (user manuals, blueprints and
etc.). Consistent update of the system documentation is
one of the prerequisites for its maintainability. Of course,
documentation could be considered to be similar to
requirements specification documents (as content is
mainly in natural language). Nevertheless, most of
approaches at requirements level deals with semi-formal
specification (scenarios, use case) and they hardly
consider plain language documents. This raises the first
question: is it possible to maintain backward and forward
traceability between various fragments through the
lifetime of the system?

Desirable types of traceability relationships in an
iterative system development are depicted in fig. 1.
Interrelationships between related fragments of different
abstraction levels inside of every stage should be
maintained as well as relationships between fragments of
different lifecycle stages. It is important to control more
detail representation level conformity to the problem
domain, as abstraction mechanisms are used to simplify
picture of the system and problem domain, which is
further used for communication with the non-technical
users.

Figure 1. Desirable traceability links throughout
system lifecycle.

The necessity of the link between requirements and
code is not so obvious, but could be useful in an
evolutionary prototyping, when a prototype is used to
extract the requirements from IKIWISI (I’ll know it when
I see it) users.

3. Traceability in Environment for Collabo-
rative System Development

3.1. Deficiencies of the CASE tools

Large, net-wide collaborative system engineering
projects become a reality by the recent growing
communication and data exchange possibilities brought
about by the fast-growing Internet-related developments.
These projects share system models among users, tools
and repositories beyond geographical boundaries, which
could result in significant savings in time and effort.
Models that have been created or processed by one tool
could serve as the initial step for the next tool. Shared
models could also enable the composition and integration
of the most appropriate tools for a given activity.
Especially, as many CASE (Computer Aided System
Engineering) tools are developed as “time sharing”
systems [5]: each developer is given the feeling of being
the “only user” of the system.

In addition, the format of the product objects are often
controlled by strict consistency checks, making the
evolution of product objects from informal ideas to formal
constructs difficult. As a consequence, CASE tools might
be reduced to tools for documenting products that are
developed outside the CASE tools. That is not what
CASE tools are built for. CASE tools in the best case
confine themselves to offering a central repository where
information about the product can be accessed regardless
of geographical location.

Weaknesses in CASE tool support could be divided
into the following aspects [20]:

- Lack of mechanism for integrating sets of methods
while maintaining consistency between various models,

- Lack of support of multiple users to create, modify
and delete sets of partly overlapping model instances,

- Inadequate catering for multiple representational
requirements raging from fully diagrammatic to fully
textual or matrix representation.

- Failure to provide consistent mapping mechanism
between different representational paradigms.

- Lack of flexibility and evolvability in method
support ranging from syntactic variation in methods to
crafting totally new method components.

- Insufficient catering for different information-related
needs of a diverse set of stakeholders.

The cost-efficient sharing of modelling information
between heterogeneous tools and repositories requires the
adoption of a standard for an industry-wide model
interchange format. However, no such standard yet exists.
There are several model interchange formats: XIF [16],
XMI [21], SPOOL [26], UXF [27]. Product fragments are
stored and interchanged through a repository. The
repository may be useful during various phases in the
lifecycle of an information system (for instance, as a basis
for various decisions or reuse).

Design
elements

Reqiurements

Architecture/
Implementation

elements
Code

Documentation

3.2. Specific Aspects of Collaborative Environ-
ment

Each engineer develops its own product (fragment)
using his/ her preferred representation. At a certain time,
the products developed in parallel must be integrated;
discrepancies and similarities must be detected through
the communication and conversation among the people
involved. Changes to the products have to be made
according to unresolved discrepancies. Fundamentally,
concurrent engineering relies on the capability to merge
pieces of work done in a concurrent way on the same
object. Merging objects is thus a central issue. Trace
information should be captured and traceability between
related fragments should be re-established.

Farshchian in [5] emphasizes the list of requirements
for product development environments; some of them
(relevant to this research) are listed below:

- Flexible access to the product – a product
development environment should provide flexible
mechanisms for accessing and updating the product.

- Unrestricted product object types – a product
development environment should allow the developers to
share any type of object that they might find useful for
supporting their cooperation.

- Unrestricted relation types – a product development
environment should allow the developers to create any
type of relation between any two objects of product.

- Incremental product refinement – a product
development environment should provide the developers
with flexible mechanisms for incrementally refining the
product. The developers should be allowed to start with
vague products, and to refine them into more complete
and formal ones.

- Support for boundary objects – a product
development environment should allow the developers to
view the product from different perspectives. The
environment should in addition support a global view of
the product.

- Active delivery of information – a product
development environment should take an active part in
delivering necessary information to the developers. In
particular information about changes to the shared product
should be delivered continuously to the interested
developers.

Traceability technique integrated with the version
control and configuration management could facilitate
management of the composition of product fragments
consisting of interrelated various model fragments, code
fragments and documents:

Merging. Merging allows multiple versions to be
joined together, producing a new version representing the
union of the actions taken from previous version. Fully
automatic mergers are difficult to implement due to

semantic considerations during the resolution of
conflicting changes. In case the change has been applied
in only one version, this change can be incorporated
automatically; otherwise, a conflict that can be resolved
automatically or manually is detected. Merging should
handle various levels of granularity.

Access control should be applied at different level of
granularity, for instance, model, object, and attributes.

Version management. The collaborative CASE tools
should keep track of changes in different working modes
[15]:

- Multiple developers are working on a single
common version simultaneously;

- Developers are working individually on their local
versions;

- Both cases: some developers collaborating
synchronously, others working individually.

In first case the system should track and resolve
multiple edits by different developers in the same
fragment. Changes could occur simultaneously or
sequentially in collaborative session. Considering second
case – there will be a number of current versions – the
system should provide and manage awareness of their
existence and dependencies among them. Third case
incorporates previous both – asynchronous and
synchronous developing.

In [13] it is stated five different properties of
configurations must be maintained during systems
development:

Authorized. A configuration is authorized if and only
if all of its objects are defined as being authorized. An
authorized configuration is also called a baseline.

Consistent. The objects of a consistent configuration
have to be consistent, both relative to each other and as
individual components. A configuration remains invalid if
it is not checked or if the consistency checker detects
inconsistencies.

Latest. Each object of a latest configuration must be
the latest version of its own family.

Owner. The property owner constrains the
configuration to contain only object versions owned by a
given user. Authorized versions are considered as owned
by all project group members.

Project-wide. A project-wide configuration must
include one object version from every family within
project.

Three configurations are important: 1) the latest
project-wide; 2) latest consistent; 3) latest authorized.
The latest project-wide baseline reflects all new
developments in the project. Latest baselines are not
supposed to be consistent, but all new ideas since last
logon are detected by inspecting this configuration. Latest
consistent baselines represent the most recent stable work.
These configurations are the candidates for authorization.
There may exist several latest, authorized configurations,

but usually exists one. This is the last configuration, which
the group agree on, and it forms the official basis of all
subsequent work. Traceability technique between different
versions of the product fragments with incorporated
configuration management facilitates extraction of
relevant configuration.

4. Research Issues and Future Work

From a development perspective four particularly
important areas have been identified: traceability from
requirements to implementation elements through design,
interchange of product fragments, configuration
management and concurrent work.

Internet technologies (XML, RDF) contribute the
model interchange formats for trace information by
capturing and exchanging through repositories, and
enabling semantic interoperability. Model interchange
formats should support any inter-model consistency
check, and semantic validation. They should not be used
only for static model transfer between environments.

4.1. Research areas

Considering perspectives mentioned in the chapters
above, two main types of traceability should be
maintained in an ideal cooperative software development:

- Traceability from requirements to implementation –
most difficult to implement as various diagrams could be
used in the development project;

- Traceability between versions and configuration.
The information about the essence of new version
development and the rationale behind it should be
captured. This is similar to the pre-traceability task – to
capture the rationale behind requirements.

The question is: What kind of trace information is
possible to capture? It could be answered over the time
when understanding of the domain and solution increases,
as currently there is impossible to capture all trace
information.

While work in software architectures has concentrated
on how to express software architectures and reason about
their behavioural properties, there is still an open question
about how to analyse what impact a particular
architectural choice has on the ability to satisfy current
and future requirements, and variations in requirements
across a product family [7].

The main research question is:
How can we effectively and consistently integrate

changes of development objects in different levels of
granularity throughout lifecycle of geographically
distributed cooperative product development?

4.2. Future Work

Concurrent engineering changes old practice, when all
the required objects were locked during the whole change/
modification activity. Each software engineer should have
direct access to all needed objects. But changed version
should be kept with access forbidden for other developers
during modification, because the state of fragment is
inconsistent in a modification phase. If n engineers change
the same object concurrently, this object should have n+1
different copies [4]. It means that each developer needs
the private copies of fragments. On the other hand, the
colleagues know that other changes possibly are done on
the same fragments/ objects and want to be incorporated
when relevant. During the development all relevant
information should be captured, traced and available for
all project participants, depending on access rights.

The requirement for consistent evolving product
structures introduces high complexity in the software
configuration management systems. Furthermore, this
requirement restricts cooperative work on the same
structure since cooperative work necessarily means that
the product structure is in a state of inconsistency most of
the time [1]. “Lazy” consistency [18] could be introduced
to avoid disturbance of the developers’ creativity and to
satisfy the requirements for the incremental product
refinement. This approach favours software development
architectures where impending or proposed changes, as
well as changes that have already occurred, are
announced. This allows the consistency requirements of a
system to be “lazily” maintained as it evolves. Lazy
consistency maintenance supports activities such as
negotiation and other organizational protocols that support
the resolution of conflicts and collisions of changes made
by different developers.

In figure 2 an architectural proposal for traceability
management in distributed cooperative system
development is depicted. The central repository is used
for storage of traceability links; the model fragments are
stored on local workstations in shared repositories. Group
awareness and access control techniques are to be used to
manage collaborative work of developers. Version control
and configuration management techniques are to be used
on the common repository side for the traceability
relations’ version control and update. These techniques
are also to be used on the workstations side for the
configuration management of product fragments.

Traceability relations should be based on semantic
interoperability of related fragments. Every fragment has
knowledge of the developer that s/he represented in.
Semantic is the relationship between the fragment and the
meaning (knowledge) it possesses. In order to establish
the relation between the fragments, an ontology of what
the fragments are about should be defined. So, the
repository for traceability relations (depicted in fig. 2)

should have meta-model as pre-defined ontology.
Ontology would facilitate the usage of unrestricted
product objects and relation types.

5. Conclusions

A transition between various product fragments is still
unsolved problem, despite of several methods for linking
requirements to architecture components (e.g., [11], [23]).

There are very few empirical studies focused on how
organizations actually manage the different types of
traceability. More research is required on how
organizations actually capture the trace information. The
real challenge is not only to investigate and propose
solutions for those problems, but it is rather to provide
solutions, which outweigh the cost of implementing and
using them. Because the manual mapping and hyper
linkage establishing are not the solutions that could be
enthusiastically accepted by industry, product fragments
(natural language, models and code) should be woven into
a coherent whole.

It is not trivial to generate and validate trace
information, but traceability could help the company:

- To ensure completeness: The user or a program can
easily identify the requirements which are not satisfied by
the system by following traceability links;

- To propagate the changes: At any time in the
development process, traceability information allows to
find out the elements impacted by changes. For instance, it
could be possible to evaluate the impact on the software
design and implementation of a late change in the initial
customer requirements.

Phases in system development and their output are so
different (one of the reasons – various modelling
techniques are used) that to develop multipurpose
traceability method is hardly possible. By now it is

possible to develop solutions for separate modelling
languages as UML [25], PPP [29] by defining the
common ontology for the semantic interrelation of
fragments.

6. References

[1] R. Andersen, A Configuration Management Approach for
Supporting Cooperative Information System Development, PhD
thesis, NTH, Trondheim, Norway, 1994

[2] F. Cerbah, J. Euzenat, “Traceability between models and
texts through terminology”, Data and Knowledge Engineering,
Elsevier Science Publishers, 2001 38 (1), pp. 31-43.

[3] J. Corriveau, C. Hayashi, “A Strategy for Realizing
Traceability in an Object-Oriented Design Environment”,
Proceedings of Computer Aided Systems Theory - CAST'94, 4th
International Workshop, Ottawa, Canada, May 1994.

[4] J. Estublier, “Objects Control for Software Configuration
Management”, In K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.):
Advanced Information Systems Engineering, Proceedings of
thirteenth conference CAiSE 2001, LNCS 2068, Springer-
Verlag, Interlaken, Switzerland, June 2001, pp. 359-373.

[5] B.A. Farshchian, A Framework for Supporting Shared
Interaction in Distributed Product Development Projects, PhD
thesis, NTNU, Trondheim, Norway, 2001.

[6] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M.
Goedicke, “Viewpoints: A Framework for Integrating Multiple
Perspectives in System Development”, International Journal on
Software Engineering and Knowledge Engineering, World
Scientific Publishing, march 1991, pp. 31-58.

[7] D. Garlan, “Software Architecture: A Roadmap”, In A.
Finkelstein (ed.), The Future of Software Engineering, Special
Issue 22nd International Conference on Software Engineering,
ACM Press (2000)

[8] O.C.Z. Gotel, A.C.W. Finkelstein, “An Analysis of the
Requirements Traceability Problem”, In Proceeding of the 1st
International Conference on Requirements Engineering
(ICRE’94), IEEE Computer Society Press, Colorado Springs,
Colorado, USA, April 1994, pp. 94–102.

[9] O.C.Z. Gotel, A.C.W. Finkelstein, “Contribution
Structures”, In Proceedings of the 2nd IEEE International
Symposium on Requirements Engineering (RE'95), IEEE
Computer Society Press, York, U.K., March 1995, pp. 100-107.

[10] J. Grundy, J. Hosking, W. Mugridge, “Supporting flexible
consistency management via discrete change description
propagation”, Software Practice and Experience, John Wiley &
Sons, 1996 26(9), pp. 1053-1083.

[11] P. Grünbacher, A. Egyed, and N. Medvidovic,
“Reconciling Software Requirements and Architectures - The
CBSP Approach”, In Proceedings of the 5th IEEE International

Repository for
Traceability

relation

WS1

WS2 WS3

WSn

Rep2

Rep1

Rep3

Repn

Group awareness
Version control
Access control

Figure 2. Deployment of traceability manage-
ment in collaborative development.

Symposium on Requirements Engineering (RE’01), Springer-
Verlag, Toronto, Canada, 2001, pp. 202-211.

[12] J.G. Hall, M. Jackson, R.C. Laney, B.A. Nuseibeh, L.
Rapanotti, “Relating Software Requirements and Architectures
using Problem Frames”, (to appear in) Proceedings of IEEE
International Requirements Engineering Conference
(RE'02), Essen, Germany, September 2002.

[13] T.R. Henriksen, A.D. Fidjestøl, A.B. Aubert, “PPP
Repository Management”, Unpublished NTNU report,
Trondheim, Norway, 15th October 1997

[14] M. Jackson, Problem Frames, ACM Press Book, Addison-
Wesley, 2001.

[15] B.G. Lee, N.H. Narayanan, K.H. Chang, “An integrated
approach to distributed version management and role-based
access control in computer supported collaborative writing”, The
Journal of System and Software, Elsevier Science Publishers,
2001 59 (2), pp.119-134.

[16] Microsoft Corp., “Repository SDK 2.1b Documentation:
XML Interchange Format (XIF)”, Microsoft Corp., Redmond,
USA, May 1999.

[17] G.C. Murphy, D. Notkin, K. Sullivan, “Software Reflexion
Models: Bridging the Gap Between Source and High-Level
Models”, In Proceedings of the 3rd ACM SIGSOFT Symposium
on the Foundations of Software Engineering, New York, NY,
1995, pp.18-28.

[18] K. Narayanaswamy, N. Goldman, ““Lazy” Consistency: A
Basis for Cooperative Software Development”, In Proceedings
of International Conference on Computer-Supported
Cooperative Work (CSCW’92), Toronto, Ontario, Canada,
November 1992, pp.257-264.

[19] B. Nuseibeh, S. Easterbrook, “Requirements Engineering:
A Roadmap” In A. Finkelstein (ed.), The Future of Software
Engineering, Special Issue 22nd International Conference on
Software Engineering, ACM Press, 2000.

[20] S. Kelly, K. Lyytinen, M. Rossi, “MetaEdit+ A Fully
Configurable Multi-User and Multi-Tool CASE and CAME
Environment”, In Proceedings of CAiSE’96, Heraklion, Greece,
May 1996.

[21] OMG, “XML Metadata Interchange (XMI)”, Document
ad/98-10-05, October 1998.

[22] F.A.C. Pinheiro, J.A. Goguen, “An Object-Oriented Tool
for Tracing Requirements”, IEEE Software, 1996 13(2), pp. 52-
64.

[23] K. Pohl, M. Brandenburg, A. Gülich, “Integrating
Requirement and Architecture Information: A Scenario and
Meta-Model Based Approach”, In Proceedings of the Seventh
International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'01), Interlaken,
Switzerland, 2001.

[24] K. Pohl, “PRO-ART: Enabling Requirements Pre-
Traceability”, In Proceedings of the Second International
Conference on Requirements Engineering (ICSE '96), Colorado,
USA, 1996, pp. 76-85.

[25] Rational Software Corp., “Complete UML 1.4
specification”, 2001.

[26] G. St-Denis, R. Schauer, R.K. Keller, “Selecting a Model
Interchange Format The SPOOL Case Study”, In IEEE
Proceedings of the 33rd Annual Hawaii International
Conference On System Sciences, Maui, Hawaii, 2000.

[27] J. Suzuki, Y. Yamamoto, “Managing the Software Design
Documents with XML”, In Proceedings of the Sixteenth Annual
International Conference of Computer Documentation (ACM
SIGDOC '98), Quebec City, Canada, 1998, pp. 127-136.

[28] R. Watkins, M. Neal, “Why and How of Requirements
Tracing”, IEEE Software, 1994 11(4), pp. 104-106.

[29] M. Yang, COMIS – A Conceptual Model for Information
Systems, PhD thesis, NTH, Trondheim, Norway, 1993.

238 Appendix F Collection of Papers

Appendix F Collection of Papers 239

F.2 A Vision for Product Traceability based on Semantics of
Artifacts
Strasunskas, D. A Vision for Product Traceability based on Semantics of
Artifacts. In Al-Ani, B., Arabnia, H.R., and Mun, Y. (Eds.) Proc. of the 2003
Intl. Conf. on Software Engineering Research and Practice (SERP'2003), part of
Intl. MultiConference in Computer Science & Engineering, CSREA Press,
Vol.II, ISBN:1-932415-20-3, Las Vegas, Nevada, USA, June 2003, pages 890-
895.

240 Appendix F Collection of Papers

A Vision for Product Traceability based on Semantics of Artifacts

Darijus Strašunskas
Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology

Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

Abstract

In the face of extensive attention form both the
research community and the industry, traceability there
still lacks of a supporting methodology that enables
traceability throughout the whole lifecycle of a system. In
particular, attention need to be given to geographically
distributed development efforts where developers are
likely to use different representation formats and a variety
of tools for the product development.

An approach to methodological support for artifact
management and traceability is presented in this paper.
Fragments from different development phases (i.e.,
requirements specification, design, code, test scenarios,
and documentation) are linked to concepts from a domain
model and further, interlinked through it. A conceptual
domain model is constructed from domain specific
concepts (nodes) and quantified relationships between
them. An initial domain model and the weights for
concept relations are based on the experts' experience
and knowledge from previous projects. The main
contribution of this work is two fold. First, the approach
covers the whole product traceability. Second, prediction
and assessment of impact are enabled by tracing related
fragments through relations of concepts in a domain
model.
Keywords: product traceability, distributed collaborative
development, semantic enrichment

1. Introduction

Information system development is a highly iterative
process, in which developers try to capture the needs and
desires of all stakeholders, and transform them into a
complete system, consisting of both manual and
computerized parts. The product of such development
projects undergoes changes because of their iterative
nature. Traceability is defined as a property of a system
description technique that allows changes in one of the
system descriptions – requirements specification, design,
code, documentation, or test scenarios – to be traced to
the corresponding fragments of the other descriptions [6].
Such correspondence relationships should be maintained
throughout the life time of a system in order to manage
the artifact.

Traceability and its relevance to systems development
have received much attention in the requirements
engineering literature (e.g. [5][18]). Especially, the pre-

requirements traceability has been studied severely (e.g.
[11][12]). However there is a lack of traceability tools to
support the full life-cycle, starting from artifact inception
to its use. Different representation formats that are used
throughout the development process make it complicated
to cover the whole life-cycle of an artifact. Given that a
single requirement map to multiple architectural and
design concerns which are derived from it, it is difficult to
maintain the consistency and traceability. Moreover, an
architectural component has a number of relations to
various requirements. The task becomes even more
difficult in the face of a large system that is build to
satisfy thousands of requirements.

In a geographically distributed project developers may
use different tools to create and modify product
fragments, which can be refined iteratively and further
processed by colleagues. Afterwards produced fragments
are interchanged among members of a project, so that is
important for colleagues to interpret an artifact correctly.
These are the main challenges for traceability - to
interrelate and trace all artifacts in different representation
formats that are produced in a distributed manner using
different tools and to cover the whole product lifecycle.

An approach to product fragments management and
traceability during the distributed collaborative
development process is presented in this paper. Artifacts
mapping to the corresponding concepts from a specific
problem domain increase the semantics of an artifact.
Having the interrelated concepts from the problem
domain and all fragments linked to them, it is possible to
predict and assess fragment change impact on other
fragments.

The overall structure of the paper is as follows. In
section two, related works are analyzed. In section three,
proposed approach for product traceability is presented.
In section four, possible implementations of proposed
methodological approach are listed. Finally, in section
five, the work is concluded and possible shortcomings
and insights how to solve them are discussed.

2. Related Work

Traceability issues have been tackled and a number of
techniques have been proposed for providing traceability,
such as [5]: cross referencing schemes, based on some
form of tagging, numbering, or indexing; requirements
traceability matrices. Studies done in the field of
traceability have mainly focused on specific parts of the

development process [16] – mostly in the areas of pre-
requirements traceability (e.g. [11][12]) and linking
requirements to architectural components (e.g. [7], [13]).

There are approaches based on specific modeling
language and /or tool. A much cited tool is TOOR
(Traceability of Object-Oriented Requirements),
presented by Pinheiro and Goguen in [11], it is based on
FOOPS, a formal object-oriented language. Letelier [9]
presents a framework for configuring requirements
traceability by integrating textual specifications and UML
(Unified Modeling Language) model elements. Proposed
approach is restricted to UML language and can be
applied to software process based on UML.

Some approaches deal with establishing traceability
links thereafter the most of a system is developed (e.g.
requirements specification, code) and, per se, contribute
mainly for product maintenance. Frezza et al [4] propose
a system of simulation where both the requirements and
implemented system are simulated in order to obtain a set
of result data. The data from the requirements and
implementation are then compared, which result in a
quantitative measure of how accurate the running system
implements the requirements. Egyed [2] suggests using a
scenario driven approach to acquire runtime information
about a system and relate the information – footprints - to
the requirements and model of the running system. The
footprints are then analyzed in a tool Trace Analyzer,
which shows how the components of the system interact
when performing specified scenarios. Thus, it is possible
to obtain added trace information on how the running
system actually fulfills its requirements and which parts
of the design are affected.

Ramesh and Jarke in [14] offer a wide vision about
the information needed in requirements traceability. Their
study is based on the analysis of industrial software
development projects. They identify two segments of
traceability users and suggest two corresponding
traceability meta-models (one is a simplification of the
other). In this work the only suggested mechanism to
configure the meta-model according to the project needs
is to cut or to add parts of the meta-model.

Hence, in general, there is a lack of support and
coverage of whole product lifecycle. There is also
noticeable disregard of support for distributed teams
using different tools and representation techniques and
notations. Of course, there are development environments
(e.g. Rationl Suite AnalystStudio [15]), which compound
together programs for requirements engineering, design,
change management and code repository. Though most of
integrated programs do not support collaborative work;
not all project phases are equally well supported and, by
choosing this kind of tool environment, customer is
bound to one vendor.

3. Proposed approach - Mapping to the
Domain Concept

The objective of this approach is to enable change
notification and impact prediction through all phases of
development in the distributed projects. That means that
different tools and, most likely, different notations will be
used during the project. In [3] the list of requirements for
product development environments to enable
collaboration in geographically distributed developments
is emphasized; some of them (relevant to this research)
are listed below:

Unrestricted product object types – a product
development environment should allow the
developers to share any type of object that they might
find useful for supporting their cooperation.
Unrestricted relation types – a product development
environment should allow the developers to create any
type of relation between any two objects of product.
Incremental product refinement – a product
development environment should provide the
developers with flexible mechanisms for
incrementally refining the product. The developers
should be allowed to start with vague products, and to
refine them into more complete and formal ones.
The traceability approach is based on the requirements

to support for collaboration in distributed projects as
listed above. There are two basic assumptions underlying
as follows:

CASE-tools (Computer Aided Software Engineering)
that are used during the product development support
XML (eXtensible Markup Language) or XML-dialect
format output of developed fragments. The
assumption is reasonable, since most CASE-tools
maintain model interchange formats derived from
XML.
There is a problem domain and it can be characterized
by well-defined, interrelated concepts. Furthermore
these concepts are represented as entities having
weighted relationships which show the strength of
relationship between the concepts. This assumption is
more restrictive since not all entities/relationships can
be assigned weights.
Domain model is constructed and all concepts are

connected with weighted links according how strongly
concepts relate. Those weights further are used to
evaluate interrelations between fragments mapped to the
domain concepts and to estimate likelihood of impact of
one fragment to another. Traceability relations are based
on the semantics of the artifacts. Fragments are linked to
the concepts from the domain model; all fragments are
mapped and linked through the conceptual domain model
as follows. There exists a domain model such that:

If fragment Fi is linked to a concept CA and fragment
Fj is linked to CA, then transitively Fi also relates to Fj:

jijiii FFFCCF
Having related concepts CA and CB, and if fragment Fi
is linked to a concept CA and a fragment Fj is linked to
CB, then trace dependency in some degree exists
between Fi and Fj.

jijjiiji FFFCCFCC
Meta-model for the proposed approach, based on

settings described above is depicted in figure 3 using
RML (Referent Model Language) [17]. A product is
final result of the development project, and it consists of
the interrelated products of phase. Product of
phase is used to relate specific phase of lifecycle
to artifacts developed within the phase (e.g., business
analysis, requirements engineering, design,
implementation, testing and etc.). Phase products
are related by has_change_impact_to relation in
order to restrict change notification and propagation only
to adjacent phase products. Consider that,
developers are notified only about possible impact on
fragments from the “surrounding phases”. For example, if
a piece of code has been changed, the developers first
need to check it whether there is some impact on design.
Further if design fragment is impacted, then trace back to
requirements. Finally, if no impact is present, - change
notification because of that change of code stops. It

should be noted that relations are not based on sequence
of phases in a lifecycle (product development
lifecycle is not assumed to be waterfall-like), because a
lifecycle usually is highly iterative where phases could be
repeated and concurrent where several phases could be
developed at the same time. Phase products are
related to each other according to the logical dependence
between the content of the phase products (e.g.,
requirements specification and test scenarios).

Stakeholders are responsible of creating and
modifying the fragments. A fragment is a semantic
piece of phase product in a certain granularity level,
e.g., it can be a document, a model, a diagram, a section
in a document, a text specifying a non-functional
requirement, an use case, a class, an attribute, etc. Links
from one fragment to another denote direct dependence
between fragments and should be established when
possible. Every fragment has semantics, which relate the
fragment to one or more domain concept
cluster. Weighted mapping relationships are
used to distinguish fragment coherency to a particular
concept. Domain model is composed from domain
concepts. Domain cluster can consist of one or
more concepts. Domain concepts are connected
by as direct acyclic graphs with weights (weighted
relationships). Weights of those relations are
calculated based on degree of the concept relatedness.

Figure 1. Product traceability meta-model

Figure 2. Main steps to enable product traceability

The basic steps in approach are (see fig.2):
1. Building a conceptual domain specific model. This

step consists of two main sub-steps: (a) extraction of
domain specific concept and (b) weighing of
relationships between concepts (see fig.3).

a) Syntactical analysis of textual documents has been
investigated severely in last few decades. Natural
language processing is a main technique used to
extract more structural information out of documents.
Efforts are directed to build models from requirements
specification in natural language. The naïve approach
is to use nouns as candidates for entities and verbs for
relations between entities. However, there is necessity
for more sophisticated techniques to handle linguistic
variation when proposing model elements when
constructing domain models from a large set of
documents. [1] proposes approach of natural language
analysis for semantic documents modeling, where
techniques for domain model construction are
discussed.

b) Quantification of the relationship between concepts
could be done using linguistics and natural language
processing techniques for analyzing the documents
from a domain. Collocation technique and text mining
are used to evaluate the strength of relationship
between concepts. The values should be refined by the
domain expert – this reflects domain expert’s belief in
how much concepts are related in a particular domain.
So, these numbers come from either objective data or
the experiences of the domain expert accumulated

from the development of similar projects. These
ranges can be used to represent the high (0.7 to1.0),
medium (0.4 to 0.6) and low (0.0 to 0.3) degree of
relation.

2. Fragmentation of artifacts into semantic fragments.
Produced artifact is translated to XML format and
logically fragmented according its semantics.
Fragmentation is done by a traceability module which
gets the XML file as input and developer defines
fragment boundaries. As an output, XML file with
added tags to identify start and end positions of
fragment is produced.

3. Fragments mapping to the concepts. Candidate
concepts form domain model are suggested
automatically by processing the fragments.
Techniques from first step are adapted to extract
concepts, if possible, from the fragments and propose
the closest related concept from domain model to map
to it. Fragments can be linked directly to other
fragments if developer finds them related or one
fragment is part of another (recall fig.1). Also
fragment can be manually linked to domain concept.
The weighing scheme is used the same as described in
step 1b). Relation information is encoded by XML
tags. Finally fragments are stored in a central
repository.

Figure 3. Process for construction of domain specific conceptual model

4. Application of the approach

Good candidates for implementing the approach for
product traceability are Bayesian Belief Network (BBN,
also called Bayesian Network or Probabilistic Networks)
or weighted graphs. BBN is a powerful technique for
reasoning under uncertainty [8][10] and representing
knowledge. It provides a graphical model that resembles
human reasoning. In last decades Bayesian Belief
Network has attracted much attention from both research
and industry communities. BBN provides a natural way to
structure information about a domain, resembling human
reasoning. One advantage of the BBN is that it can not
only capture the qualitative relationships among variables
(denoted by nodes) but also quantify the conceptual
relationships. This is done by assigning conditional
probability to each node in the BBN.

Weighted graphs could be used to represent a
conceptual domain model. Interrelation of the concepts
could be depicted as a distance between concepts. The
shortest path algorithm could be used to predict which
fragments could be impacted.

5. Discussion and Conclusions

Proposed approach (a) enables full lifecycle product
traceability. As nature of collaborative development is
usually very iterative, the approach (b) allows tracing and
interchanging product fragments at different stages of its
incremental refinement (e.g., from abstract sketches to
formal representation), (c) does not bind developers to a
specific tool and/or modeling language, as far as used tool
supports XML output. The use of XML makes it possible
to use this approach in settings where the involved
artifacts are created and managed by heterogeneous tools,
such as text processors and CASE-tools.

Proposal can be beneficial for companies working in
the specific domains – a domain model is stable and
commonly agreed, expert’s knowledge is available. In
case of entering new domain the company should work
out specific domain model, which needs to be
comprehensible and accepted by all developers. An
evolvable domain model is a challenge which should be
resolved in future works. Adding or removing some
concepts from a conceptual domain model in the middle
of project will raise the question what to do with the
fragments which are already mapped to that concept. If a
new concept is added the similarity between concept and
closest fragments could be automatically calculated and

the most related fragments re-mapped. Deletion should
not remove the concept from domain model, but lock it
not allowing mapping new fragments. This would
preserve existing links between the concepts and
fragments.

Change impact assessment is vital for the large
development projects and perhaps the most risky and
error-prone task. This approach enables to calculate the
probability – how likely some product fragments will be
impacted by the change of ‘related’ fragment. That value
is calculated based on the weighted relations between
domain concepts.

Huge domain model with thousands of concepts could
be real challenge for developers to find relevant concept
and to link a fragment in question. This issue can be
solved by concepts clustering which could ease the
finding the right concept. Development of currently hot
research area in ontology mapping could also provide
useful methods and techniques which could be used both
to find the most relevant concept for the fragment and to
develop stable and common agreed domain specific
model when a domain is new for the developers and
several interpretations of domain model exist.

6. Acknowledgment

Special thanks go to my colleague Sari Hakkarainen,
who read and corrected the paper and helped to refine the
ideas.

7. References

[1] T. Brasethvik and J. A. Gulla. "Natural Language Analysis
for Semantic Document Modeling." In Proceedings of the 5th
International Conference on the Application of Natural
Language for Information Systems (NLDB'2000) in Versailles,
France, June 2000
[2] A. Egyed, “Reasonings about Trace dependencies in a
Multi-Dimensional Space”, in Proceedings of the 1st
International Workshop on Traceability, co-located with ASE
2002, Edinburgh, Scotland, UK, September 2002, pp. 42-45
[3] B.A. Farshchian, A Framework for Supporting Shared
Interaction in Distributed Product Development Projects, PhD
thesis, NTNU, Trondheim, Norway, 2001.
[4] S. T. Frezza, S. P. Levitan, P. K. Chrysanthis, “Linking
requirements and design data for automated functional
evaluation”, Computers in Industry, Volume 30, Issue 1,
Elsevier Science Publishers B. V., September 1996, pp. 13-25.
[5] O.C.Z. Gotel, A.C.W. Finkelstein, “An Analysis of the
Requirements Traceability Problem”, In Proceeding of the 1st
International Conference on Requirements Engineering
(ICRE’94), IEEE Computer Society Press, Colorado Springs,
Colorado, USA, April 1994, pp. 94–102.
[6] S. Greenspan, C. McGowan, Structuring Software
Development for Reliability, In Microelectronics and
Reliability, 17, 1978 - p. 75–84.

[7] P. Grünbacher, A. Egyed, and N. Medvidovic,
“Reconciling Software Requirements and Architectures - The
CBSP Approach”, In Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (RE’01), Springer-
Verlag, Toronto, Canada, 2001, pp. 202-211.
[8] F.V. Jensen, An Introduction to Bayesian Networks. UCL
Press, London. 1996.
[9] P. Letelier, “A framework for Requirements Traceability in
UML based projects”, in Proceedings of the 1st International
Workshop on Traceability, co-located with ASE 2002,
Edinburgh, Scotland, UK, September 2002, pp. 32-41.
[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann. 1988.
[11] F. Pinheiro and J. Goguen. "An Object-Oriented Tool for
Tracing Requirements". IEEE Software, 1996 13(2), pp. 52-64.
[12] K. Pohl, “PRO-ART: Enabling Requirements Pre-
Traceability”, In Proceedings of the Second International
Conference on Requirements Engineering (ICSE '96), Colorado,
USA, 1996, pp. 76-85.
[13] K. Pohl, M. Brandenburg, A. Gülich, “Integrating
Requirement and Architecture Information: A Scenario and
Meta-Model Based Approach”, In Proceedings of the Seventh
International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'01), Interlaken,
Switzerland, 2001.

[14] B. Ramesh and M. Jarke. "Toward Reference Models for
Requirements Traceability". IEEE Transactions on Software
Engineering, Vol. 27, No. 1, pp.58-93, January 2001.
[15] Rational Suite AnalystStudio. URL:
http://www.rational.com/products/astudio/index.jsp
[16] D. Strašunskas, “Traceability in a Collaborative Systems
Development from Lifecycle Perspective”, in Proceedings of
the 1st International Workshop on Traceability, co-located with
ASE 2002, Edinburgh, Scotland, UK, September 2002, pp. 54-
60
[17] A. Sølvberg and T. Brasethvik, “The Referent Model
Language”, Technical Report. NTNU, Trondheim, Norway
URL: http://www.idi.ntnu.no/~ppp/referent/
[18] R. Watkins, M. Neal, “Why and How of Requirements
Tracing”, IEEE Software, 1994 11(4), pp. 104-106.

Appendix F Collection of Papers 247

F.3 Process of Product Fragments Management in Distributed
Development
Strasunskas, D., and Hakkarainen, S. Process of Product Fragments Management
in Distributed Development. In Meersman, R., Tari, Z., Schmidt, D. et al. (Eds.)
Proc. of the 11th Intl. Conf. on Cooperative Information Systems (CoopIS'2003),
Springer-Verlag, LNCS 2888, Catania, Sicily, Italy, November 2003, pages 218-
234.

248 Appendix F Collection of Papers

R. Meersman et al. (Eds.): CoopIS/DOA/ODBASE 2003, LNCS 2888, pp. 218–234, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Process of Product Fragments Management in
Distributed Development

Darijus Strašunskas and Sari Hakkarainen

Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology
Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

{dstrasun; sari}@idi.ntnu.no

Abstract. Management of product constituent fragments is essential for large
scale logically or physically distributed projects. Geographically distributed de-
velopment projects have special settings and needs – special attention has to be
given to artifacts management because developers are likely to use different
representation formats and a variety of tools for the artifact production. The
question is: how can artifacts in different representation formats be related and
managed?
Methodological support for artifacts management and traceability is presented
in this paper. Product fragments from different development phases (i.e., re-
quirements specification, design, code, test scenarios, and documentation) are
interrelated through a conceptual domain model. Domain model is proposed as
a means to capture information content despite heterogeneous representation.
Given, a domain model with intra-related concepts and artifacts associated to
the concepts we are able to interrelate heterogeneous artifacts and to predict and
assess how one altered artifact may impact other artifacts. The approach covers
the whole lifecycle of a system, enables artifacts’ management by associating
them according semantics contained inside.

1 Introduction

Information system development is a highly iterative process, in which developers
seek to capture the needs and desires of all stakeholders. The goal is to transform the
requirements into a complete system, consisting of both manual and computerized
parts. The product of a development project undergoes changes because of its iterative
nature. Management of the development process imposes requires fine-grained con-
trol over all fragments produced throughout whole lifecycle. Traceability facilitates
product and process management and control. Traceability is [9] a property of a sys-
tem description technique that allows changes in one of the system descriptions – re-
quirements specification, design, code, documentation, or test scenarios – to be traced
to the corresponding fragments of the other descriptions. Further, such correspon-
dence relationships should be maintained throughout the life time of a system in order
to manage the artifact.

Traceability has received attention in the requirements engineering literature [8]
[21], where change management requires special efforts because of the highly itera-
tive process and frequent re-conceptualizations. Especially, the pre-requirements
traceability has been studied thoroughly [13] [14]. However, there is a lack of trace-
ability tools to support the full life-cycle, starting from artifact inception through for-

Process of Product Fragments Management in Distributed Development 219

malization process to its use. Different representation formats that are used through-
out the development process make it complicated to cover the whole life-cycle of an
artifact. Given, a single requirement maps to multiple architectural and design con-
cerns which is used to derive, it is difficult to maintain the consistency and traceabil-
ity. Moreover, an architectural or design component has a number of other relations to
various requirements. The task becomes even more difficult in the face of a large
system that is build to satisfy thousands of requirements.

System specifications consist of a wide variety of fragments (artifacts), i.e. differ-
ent kinds of information about system that together comprise a full (or partial) system
specification at various levels of abstraction. Some of these artifacts are well struc-
tured, textual or graphical documents, while others are more loosely structured. In a
geographically distributed project developers may use different tools to create and
modify product fragments. The fragments can be refined iteratively and further proc-
essed by colleagues. Afterwards produced fragments are interchanged among mem-
bers of a project, so that is important for colleagues to interpret an artifact correctly.
The main challenges are to interrelate and manage all artifacts in different representa-
tion formats that are produced in a distributed manner using different tools, and to
cover the whole product lifecycle.

The objective of this work is to present an approach to product fragments man-
agement during the distributed collaborative development process. The assumptions
are that there are intra-related concepts in the problem domain and fragments are
mapped to them. Given those conditions, the semantics of an artifact are increased by
the artifact mapping to the corresponding concepts, and that enables predicting and
assessing fragment change impact on other fragments.

The paper is structured as follows. In section two, related work is analyzed. In sec-
tion three, the domain model based approach for product fragments management is
presented. In section four, a case study is applied and illustrated by using weighted
graphs. Finally, in section five, the work is concluded and its possible shortcomings
with some insight to how to solve them are discussed.

2 Related Works

Over the recent years, a number of techniques have been proposed to facilitate man-
agement of product development through traceability enabling techniques. Some ex-
amples are [8] cross referencing schemes, based on some form of tagging, numbering,
or indexing; and requirements traceability matrices. Studies in the field of traceability
have mainly focused on specific parts of the development process [18] – mostly in the
areas of pre-requirements traceability (e.g. [13] [14]) and linking requirements to ar-
chitectural components (e.g. [10], [15]).

Some of the approaches are based on a specific modeling language and /or a tool.
A much cited tool is TOOR (Traceability of Object-Oriented Requirements) [13],
which is based on FOOPS, a formal object-oriented language. Integrating textual
specifications and UML (Unified Modeling Language) model elements is used by
Letelier [11], as a framework for configuring requirements traceability. Both ap-
proaches are restricted to FOOPS and UML respectively and can sequentially only be
applied to software process based on the same language.

220 D. Strašunskas and S. Hakkarainen

Some approaches establish traceability links after the most of a system is devel-
oped (e.g. after producing requirements specification, code, etc.) and, per se, contrib-
ute mainly for product maintenance. Frezza et al [7] base their approach on simulation
where both the requirements and the implemented system are simulated in order to
obtain a set of result data. The data from the requirements and the implementation
phase are then compared, which results in a quantitative measure of how accurate the
running system implements the requirements. Egyed [5] uses a scenario driven ap-
proach to acquire runtime information about a system and relates the information –
the footprints - to the requirements and a model of the running system. The footprints
are analyzed in a tool, which shows how the components of the system interact when
performing specified scenarios. Thus, provides additional trace information on how
the running system actually fulfills its requirements and which parts of the design are
affected.

Ramesh and Jarke in [16] offer a wide vision about the information that is needed
for requirements traceability. Their study is based on an analysis of industrial soft-
ware development projects. Two segments of traceability users are identified and two
corresponding traceability meta-models are suggested. Proposed meta-models are ex-
tensive, but nevertheless do not show how different parts of system specification in
various representation formats and abstraction levels can be related and traced. For in-
stance, their rationale submodel includes decisions, issues or conflicts, assumptions,
alternatives and arguments. This enables very precise description of the change neces-
sity and situation at a particular time. However, recording of rationale has not been
widely accepted in the industry due to the disruptive nature of recording the actions as
they occur [1].

Hence, in overall, there is a lack of support to the whole product lifecycle. There is
also an apparent lack of support for distributed teams that use different tools, repre-
sentation techniques and notations. There exist development environments (e.g. Ra-
tional Suite AnalystStudio [17]), which compound together programs for require-
ments engineering, design, change management and code repository. Such
environments are integrated programs that a) do not support collaborative work, b) do
not support all project phases equally well, c) and a customer is bound to one vendor
and language (environment) by choosing this kind of tool environment. Below, an at-
tempt to fill in these gaps is presented.

3 Proposed Approach – Mapping to the Domain Concept

In this section we discuss our methodological approach for the artifacts management
and traceability. First, the settings of the proposed approach are discussed. Next,
functional perspective describes main steps required to enable and apply our ap-
proach. Finally, a meta-model describing the scope of the approach is presented and
discussed.

3.1 Settings for the Approach

Above, it was argued that it is essential to enable change management and impact
prediction through all phases of development in the distributed projects as mentioned

Process of Product Fragments Management in Distributed Development 221

above. To cover the whole lifecycle means that different tools and, most likely, dif-
ferent notations are used during the development project. A list of requirements for
product development environments in order to enable collaboration in geographically
distributed software products development is used in [6]. Here we adopt the require-
ments as follows.

Requirement 1. Unrestricted product object types – a product development envi-
ronment should allow the developers to share any type of object that they might find
useful for supporting their cooperation.

Requirement 2. Unrestricted relation types – a product development environment
should allow the developers to create any type of relation between any two objects of
product.

Requirement 3. Incremental product refinement – a product development environ-
ment should provide the developers with flexible mechanisms for incrementally re-
fining the product. Hence, the developers should be allowed to start with vague prod-
ucts, and to refine them into more complete and formal ones.

The above three requirements were selected as to cover support for collaboration in
distributed projects. Here, the product management and traceability method should
meet the requirements 1 – 3 to ensure the applicability of the approach. As this ap-
proach is based on the fragments mapping to domain concepts, we say that a frag-
ment is a well-defined piece of specification and has semantics, machine readable
representation and identity, and supplementary, a concept is a well-defined unit of
terms found in specific domain description. Further, there are two basic assumptions
underlying the approach as follows.

Assumption 1. CASE-tools (Computer Aided Software Engineering) that are used
during the product development support XML (eXtensible Markup Language) or
XML-dialect format output of developed fragments.

Assumption 2. There is a problem domain and it can be characterized by well-
defined, interrelated concepts. Furthermore these concepts are represented as nodes
having weighted relationships which show the strength of relationship between the
concepts (relatedness of concepts).

The former assumption is reasonable, since most CASE-tools maintain model in-
terchange formats derived from XML and the latter is more restrictive since not all
relationships can be easily expressed by weights.

3.2 Functional Perspective of the Approach

Based on above described assumptions, the overall process (see fig.1) consists of four
basic steps, where the last three steps are iterative.

Step 1 – Building of conceptual domain specific model. This step consists of two
main sub-steps: (a) extraction of domain specific concept and (b) weighing of rela-
tionships between concepts.

Step 1.a – Syntactical analysis of textual documents has been investigated thor-
oughly in last few decades. Natural language processing is a main technique used to
extract more structural information out of documents. Efforts are directed to build
models from requirements specification in natural language. The naïve approach is to
use nouns as candidates for entities and verbs for relations between entities. However,
there is necessity for more sophisticated techniques to handle linguistic variation

222 D. Strašunskas and S. Hakkarainen

when proposing model elements when constructing domain models from a large set of
documents. [2] proposes approach of natural language analysis for semantic docu-
ments modeling, where techniques for domain model construction are discussed. The
natural language based approach is adapted for concept extraction.

Building of
conceptual domain

specific model

Semi-automatic

Fragmentation of
artifacts into

fragments

Manual

Association of
fragments with

concepts

Semi-automatic

Conceptual Domain
Model w/ weighted
relationships

Phase Product
(XML format)

Fragments
identified by
added XML tags

Fragments are
stored in a
repository in XML

Repository

C
a
r

S
o
f
t
w
a
r
e

C
h
a
s
s
i
s

E
n
g
i
n
e

A
i
r
c
o
n
d
i
t
i
o
n
i
n
g

I
n
j
e
c
t
i
o
n
c
o
n
t
r
o
l

A
B
S

W
h
e
e
l
s

B
r
a
k
e
s

A
x
l
e

.

.

.

D
e
s
i
g
n

D
om

ai
n

M
o

d
el

(M
ap

)

D
ev

el
op

m
e

nt
L

if
ec

y
cl

e

C
o
o
l
i
n
g
s
y
s
t
e
m

S
h
o
c
k
A
b
s
o
r
b
e
r

Interrelation &
management of
fragments using

associations

Automatic

1 2

3 4

Fig. 1. Main steps to enable fragment management

 Step 1.b – Quantification of the relationship between concepts is supported by us-
ing linguistics and natural language processing techniques for analyzing the docu-
ments from a domain. Collocation technique and text mining are used to evaluate the
strength of relationship between concepts. The values should be refined by the do-
main expert – this reflects domain expert’s belief in how much concepts are related in
a particular domain. So, these numbers come from either objective data or the experi-
ences of the domain expert accumulated from the development of similar projects.
These ranges can be used to represent the high1 (0.0 to 0.3), medium (0.4 to 0.6) and
low (0.7 to 1.0) relatedness degree.

Step 2 – Fragmentation of artifacts into fragments. Produced artifact is translated
to XML format and logically fragmented according its semantics. Fragmentation is
done by a traceability module which gets the XML file as input and provides means
for developer to define boundaries of a fragment. An XML file with identifying tags
for start and end positions of fragment is produced as output.

Step 3 – Association of fragments with the concepts. Candidate concepts form do-
main model are suggested automatically by processing the fragments. Techniques

1 ‘High’ means that distance between concept and fragment is short. The values are application
sensitive, see a case study in chapter 4.

Process of Product Fragments Management in Distributed Development 223

from Step 1 are adapted to extract concepts, if possible, from the fragments and pro-
pose the closest related concept from domain model to map to it. Fragments can be
linked directly to other fragments if developer finds them related or one fragment is
part of another (more detailed explanation is provided in the meta-model description
below). The weighing scheme is used as described in Step 1.b. The mapping rate is
revised and confirmed by the developer, who created new or a version of the fragment
and checked-in to the repository. The relationship information is encoded using XML
tags. Finally, the fragments are stored in a central repository.

Fig. 2 presents a part of RML (Referent Model Language) [20] model in XML
format where boundaries of a semantic fragment are identified by the tags <frag-
ment id=”R0012”> and </fragment>, and the semantics of the fragments is en-
coded within the tags <semantic-association> and </semantic-
association> by the associated concepts <concept id=”c17”,
weight=”0.7”/> and <concept id=”c05”, weight=”0.9”/>.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<referent-diagram>
 <generator app="refedit" version="Version: 2.3c" ver

date="Sun 6 Feb 2000">
 <fragment id="R0012">

<semantic-association>
 <concept id="c017" weight="0.7"/>
 <concept id="c005" weight="0.9"/>

</semantic-association>
<content>

 <referent id="x1">
 <position x="626" y="83" />
 <dimension width="109" height="41" />
 <text>
 <position x="667" y="98" />
 <string>Product</string>
 </text>
 <aggregation id="x2" idref="x1">
 <position x="667" y="169" />
 </aggregation>
 </referent>

</content>
 </fragment>
...
</referent-diagram>

Fig. 2. Cutout of fragmented RML model in XML representation

Step 4 – Usage of the associations for fragments interrelation and management.
Domain model is constructed and concepts in the model are intra-related by weighted
links according how strongly concepts relate. Those weights are further used to evalu-
ate interrelations between fragments mapped to the domain concepts and to estimate
likelihood of impact of one fragment to another.

Thus, association relations are based on the semantics of the artifacts. Fragments
are linked to the concepts from the domain model; all selected fragments are mapped
and linked through the conceptual domain model as follows.

224 D. Strašunskas and S. Hakkarainen

There exists a set of concepts {C1, C2, …, Cn} and a set of fragments {F1, F2, …,
Fm}, then consequently:

− If fragment Fi is mapped to a concept Ci and fragment Fj is
mapped to Ci, then transitively Fi also relates to Fj:

() () jiijii FFCFCF →⇒→∧→ . (1)

− Given, the related concepts Ci and Cj, and if fragment Fi is
linked to a concept Ci and a fragment Fj is linked to Cj,
then trace dependency to certain degree exists between Fi and
Fj.

() () () jijjiiji FFCFCFCC →⇒→∧→∧→ . (2)

3.3 Meta-model of the Approach

The scope of the approach based on the above settings is specified in a meta-model
using RML [19, 20] (see fig. 3). We deal with product development, using system
development tools (Syst.Dev.Tool), where a system development tool can also be
seen as product, when it is under development. Every product development has a
specific lifecycle consisting of different phase type (e.g., business analysis, re-
quirements engineering, design, implementation, testing, etc.). Each phase type has
a distinct phase product (e.g. requirements specification, design, code, user man-
ual, and software itself), which is result of particular lifecycle phase. A product is
final result of the development project, and it consists of the interrelated phase
product.

A fragment is a semantic piece of phase product in a certain level of granu-
larity, e.g., it can be a document, a model, a diagram, a section in a document, a text
specifying a non-functional requirement, an use case, a class, an attribute, etc. Frag-
ment can be composed of fragments. Such a fragment is inreflexive, asymmetric,
and non-transitive. Fragment can have a direct dependence link to another frag-
ment. Every fragment has semantics, which relate the fragment to one or more
concept. A rated mapping relationship is used to distinguish fragment co-
herency to a particular concept. Semantics of certain fragments can be best de-
scribed by several concepts or a particular concept cluster, which groups re-
lated concepts and composes the domain model. Concepts are connected by an
undirected graph with weights (weighted relationship). Weights of those rela-
tions are calculated based on the degree of the concept relatedness.

Since recording of rationale is not widely accepted in the industry due to the dis-
ruptive nature of recording the actions as they occur [1], the attempt for extensive
trace information record can be crucial in huge distributed development projects.
Therefore, we expect only vital trace info to be captured. We keep track on the
evolution of fragment, the direct relationship between fragments and the rela-
tionship between fragment and concept cluster by recording the following
information – rationale, change operation (i.e., addition, deletion, altera-

Process of Product Fragments Management in Distributed Development 225

Fragment

Product
Syst.Dev.

Tools
Lifecycle

Lifecycle
type

Phase Type

Concept
Cluster

Phase
Product

Domain
Model

Concept

Weighted
Relationship

Rated
Relationship

Rate

Weight

+

developed_by

has_a_
particular

{ }

Req.Eng.

Design

Other

Testing

Deployment

Documenting

Coding

has_a_
particular ⊆

composes
_product

consists_of

related
_by

groups_concepts

composes_model

Stakeholder

Trace info

Change
Description

Change
Operation

Rationale

∈

has

has

+

related_by
associates

_with

alters

uses

version#
status

Set Attribute
list Atom

∈

{ }

⊆

+

RML graphical notations

Basic constructs:

Aggregation

Generalization (disjoint)

Generalization (overlapping)

Association

Classification

Hierarchical abstraction constructs:

Unspecified relation between A and B

Into function A B

Onto function A B

A relation, where each element of A can
relate to one element of B

A 1:1 partial correspondence between A and B

Functions (f: A B):

A B

A B

A B

A B

A B

Fig. 3. Meta-model of fragment interrelation and management

tion), and change description. Additionally fragment has version number and
status, this information is used for compositional fragment and phase product con-
figuration management. Three configurations are important [18], namely 1) the latest
project-wide; 2) latest consistent; 3) latest authorized configuration. The latest proj-
ect-wide baseline reflects all new developments in the project. Latest baselines are not
supposed to be consistent, but all new ideas since the last logon are detected by in-
specting this configuration. Latest consistent baselines represent the most recent sta-
ble work. These configurations are considered to be candidates for authorization. Lat-
est authorized is the last agreed configuration and it forms the official basis for all
subsequent work of the development group.

Fragments interrelationship and trace information are added as metadata (informa-
tion/data about data) to abstract away from the heterogeneous representation details
and capture information content. Association of each product fragment with the corre-
sponding concepts from a domain model enriches its semantic meaning. The intuition
is that the more explicit information a fragment conveys, the better the chance that it

226 D. Strašunskas and S. Hakkarainen

will be interpreted correctly by other stakeholders. More precise relationship is cap-
tured by direct linking between related fragments. Since that is not trivial task even in
a smaller scope projects, we see it important to have them at some certain stage of the
project. Establishment of direct linking is done in few steps. The initial one is, of
course, fragment association with domain concept. Next, by exploitation of those re-
lationships is means for change impact prediction and assessment (see a case study
section). When developer alters the fragment because of the change made in another
fragment, then establishment of the direct linking between those two fragments is
suggested automatically. In this way, we are able incrementally refine and establish
fine-grained traceability information between fragments.

4 Application of the Approach

In this section we present a case example to test practical applicability and illustrate
the proposed approach in empirical settings. This is done for better presentation and
communication of the idea. Description of application of the approach consists of the
case study and candidate technique – weighted graphs.

4.1 Weighted Graphs

Weighted graphs are used to represent a concept model. Interrelation of the concepts
is depicted as a semantic distance between concepts. The shortest path algorithm is
used to predict which fragments are most likely to be impacted.

Given, G is a weighted graph. The length (or weight) of a path P is the sum of the
weights of the edges of P. That is, if P consists of edges e0, e1, …, ek-1 then the
length of P, denoted w(P), is defined as

∑
−

=

=
1

0

)()(
k

i
iewPw . (3)

The distance from a node v to a node u in G, denoted d(v, u), is the length of a
minimum length path from v to u, if such path exists. We calculate a shortest path
(i.e., using algorithms for single-source shortest path, for instance, Dijkstra algorithm
[4] or Bellman-Ford [3]) from some node v (usually, that is the fragment, which has
been altered) to each other node in G, viewing the weights on the edges as distances.

4.2 A Case Study

Domain description. A case study is based on MEIS system, used for the basic
course of information systems SIF8035 [12]. MEIS system is used for exercise deliv-
ery and evaluation. There exist two groups of users: students (they are also reviewers
of others’ solutions) and student assistants, who check all deliveries (both solutions to
exercise and evaluation of those solutions) and either accept or reject them. Main do-
main concepts and relationships among them are depicted in the fig.4. Quantification
of relationships between concepts (semantic distance) has been performed manually
relying on the knowledge of domain. Weights used are from the range [0.0, 1.0],

Process of Product Fragments Management in Distributed Development 227

where 0.0 means that concepts have high semantic relatedness in the domain, and the
value 1.0 means, that the semantic distance between concepts is very long (concepts
are not related at all). For instance, the weight of relationship between ‘Student’ and
‘Reviewer’ is equal to 0.0 only in this domain, where students are also reviewers of
others’ solutions.

Course

Lecturer

Storage

System

User
User Profile

Interface

ReviewerStudent

SystAdmin

StudAssist

Assignment EvaluationSolution

0.2

0.3

0.3

0.2

0.4
0.4

0.1

0.1

0.1

0.2
0.1 0.1

0.0

0.1 0.1

0.0

0.1

0.10.2 0.3

0.0

0.10.0

Semester

0.3

Login

Upload

0.1

0.1

Fig. 4. Domain model for MEIS

Fragmentation. During the development of the MEIS system every requirement was
treated as a separate fragment. Some of them are listed below and other kinds of
product fragments (use case, code, design, user interface) are presented in figures 5-8.
Requirements for MEIS system:

Req.1. It should be possible to create users’ profiles from
textual file.

Req.2. Student should be able to upload solution:
Req.2.1. Solution should be stored in the student’s

folder.
Req.2.2. Reference (link) to solution1&2 should be kept in

the MEIS database.
Req.3. StudAssist should accept/reject a solution1&2.

Req.3.1. System should provide possibility to reject solu-
tion1&2.

Req.4. StudAssist should form a reviewer groups for solu-
tion1&2.

Req.4.1. System should provide to StudAssist a list of
students, whose solution was accepted.

Req.4.2. StudAssist should form a reviewer group.
Req.5. Reviewer should deliver evaluations of solution1 and

solution2.

228 D. Strašunskas and S. Hakkarainen

Req.5.1. Reviewer should evaluate DFD/APM model of solu-
tion1&2.

Req.5.2. Reviewer should upload Word documents with
evaluation for DFD/APM model of solution1&2.

Req.5.3. File with evaluation for DFD/APM model of solu-
tion1&2 should be stored in the database.

Fig. 5. Fragment – Use Case diagram – reviewer tasks (‘UC.1’ in fig.9)

Fig. 6. Fragment – part of code (‘Code.1’ in fig.9)

Association with a concept. As described in the previous section, developers use the
tool for semi-automatic fragments mapping to domain concepts. Additional XML tags
are added to keep information about the related concepts and weight of relationship,
as a fragment could have one or more related concepts (recall fig. 3). For example,
requirement ‘Req.5.2: Reviewer should upload Word documents with
evaluation for DFD/APM model of solution1/2’ provides hints about rela-
tion to the concepts ‘Reviewer’, ‘Upload’, ‘Evaluation’ and ‘Solution’. Never-

Process of Product Fragments Management in Distributed Development 229

Fig. 7. Interface screenshot (‘Doc.1’ in fig.9)

Fig. 8. Fragment – ER diagram of MEIS database (‘Dsgn.1’ in fig.9)

theless, it is mainly about ‘evaluation upload’, so this requirement is mapped to the
concepts ‘Upload’ and ‘Evaluation’ with the assigned weights2 0.1 and 0.3 re-

2 Fragment association to concept and weight assignment is more intuition based. Developer
knows best the semantics of the fragment. To facilitate the task for developer in assigning the
value, only three values are used to identify the relatedness of the concepts – high, medium
and low (recall Step 1.b)

Student

PK,FK1 UserID

Name
Email
Studnr
Password
Groupone
Grouptwo
Newman
Casenr

PaperLink

PK,FK1,FK2 PaperID

UserID
Format
Hlink
Submitted
Oving

PaperFormatList

PK,FK1 Format

Description
Extension
MimeType

Review

PK ReviewID

Syntax
Semantic
Pragmatic
Overall
General
Submitted
UserID
Reviewer
Oving
Godkjent

FK1 ErrorID
PaperID

PaperError

PK ErrorID

ErrorType
Description
Oving
UserID
Reviewer

CommitteeMember

PK MemberID

Name
Email
Type
Address1
Address2
Address3
Address4

FK1 UserID
Password
Phone
Fax
AdminUser
Fraogmed
Tilogmed

ReviewGroup

PK GrpID

PaperID
Reviewer1
Reviewer2
Reviewer3
Reviewer4
Reviewer5

230 D. Strašunskas and S. Hakkarainen

spectively. Partial3 graphical representation of the fragments mapped to domain
model is depicted in fig.9. The concepts and fragment from above described example
are gray shaded. It should be noted that fig. 9 does not imply the way for fragments
mapping, but is used here only for explanatory purposes.

Req.
5

Storage
System

User

Interface

ReviewerStudent StudAssist

Assign-
ment Evaluation

Solution

0.2
0.3

0.4

0.1

0.1
0.1

0.0

0.1 0.1

0.1

0.2

0.3
0.2

0.1
0.0

Req.
5.3

Req.
5.1

Req.
5.2

Dsgn.
1

UC.
1

Code.1

Doc.
1

Login

Upload

0.1

0.3
0.4

0.2

0.4

0.2

0.2

0.2

0.0

0.0

0.1

0.1

Concept
Frag-
ment

Graphical notation:

0.1

0.1

0.1

0.4

0.1

0.1

Association between
fragment and concept

Relations between
concepts

Fig. 9. Graphical representation of MEIS fragments mapping to domain concepts (partial)

For better explanation, table 1 shows mapping the fragments to domain concepts
and distance (weight) between fragment and particular concept.

Alteration. During the system development it was decided to make standard web
form for evaluation instead of delivering evaluation in Word file. As consequence re-
quirement (‘Req.5’) has been changed to:

Req.5. Reviewer should be provided 2 (two) web forms for
evaluation of each solution1/2.

3 Concepts, which are not associated to any fragment, are removed from fig.9 (in comparison
with fig.4) with a reason not to introduce cognitive overload on the reader. As well as partial
association of only few fragments is shown.

Process of Product Fragments Management in Distributed Development 231

Table 1. Association and relatedness of the fragments to the concepts

Storage Login Upload Reviewer Solution Evaluation
Req.5 0.4 0.2
Req.5.1 0.2 0.4
Req.5.2 0.1 0.3
Req.5.3 0.2 0.2
UC.1 0.1 0.1
Dsgn.1 0.1
Code.1 0.0
Doc.1 0.0 0.1

Relevant Concepts
Fragment

This alteration is recorded and saved into the repository. The vital information,
which needs to be captured, was discussed in the meta-model description. Fig.10 il-
lustrates this captured trace information, i.e. who altered ‘source’ fragment, what
change operation was performed, what was done and what was rationale behind that
change.

<fragment id=”R005” version=”v.1.2” status=”authorized”>
 <change operation=”alteration”>
 <user id=”dstrasun”>
 <rationale> It is necessary to change delivery way in or-

der to enable automatic comparison of different
evaluations</rationale>

<description> Requirement to upload the evaluations in a
word file was changed to provide web form for
the evaluation</description>

 </change>
</fragment>

Fig. 10. Trace information about the change in XML representation

Assessment of the impact probabilities on other fragments caused by this change is
shown in Table 2. Results are calculated applying Eq.3 and using weights between
fragments and concepts, and weights between concepts, as a distance between points
(nodes). For example, the distance between fragments ‘Req.5’ and ‘UC.1’ was cal-
culated in the following way: ‘Req.5’ is associated with concept ‘Evaluation’ with
a value of 0.2, and ‘UC.1’ is associated with the same concept with a value of 0.1,
so the path (semantic distance) from the altered fragment ‘Req.5’ to probably im-
pacted fragment ‘UC.1’ is equal to 0.3.4

Since altered fragment is associated with 2 concepts, namely ‘Evaluation’ and
‘Reviewer’. Shortest paths are computed going through both concepts. The purpose
for that is to reduce impact probability warnings by allowing developer to specify
what part of fragment’s semantics was changed. For example, it is obvious that re-
quirement change does not effect reviewer (as he/she still should deliver evaluation),

4 Fragments associated with the same concept, usually will have the shortest path, or semantic
distance, as this mapping to the same concept shows that semantics of those fragments are
almost the same.

232 D. Strašunskas and S. Hakkarainen

but only the form and way of evaluation. Allowing to developer specify that, we de-
crease the impact warnings – that means, that only inference through the concept
‘Evaluation’ should be taken into account and checked (see 2nd column of table 2).
It means that developers should go through and check for consistency the top-ranked
fragments in 2nd column. If impacted semantics are not specified, then the weighted
average can be used.

As all mapped fragments are being assessed, only the ones with the shortest path,
i.e. when fragments are very close semantically, should be checked for impact. Of
course, there should be defined threshold for notification posting in large develop-
ment project, threshold value depends on specific project settings and requires atten-
tive empirical study. Defining the threshold to 0.5, these 4 fragments need to be
checked for consistency with the change performed: ‘UC.1’, ‘Doc.1’, ‘Req.5.3’,
and ‘Req.5.2’.

Table 2. Impact assessment based on calculation of shortest path

Evaluation Reviewer Average
UC.1 0.3 0.5 0.4
Doc.1 0.3 0.9 0.7
Req.5.3 0.4 1.1 0.9
Req.5.2 0.5 1.0 0.8
Req.5.1 0.7 0.6 0.6
Dsgn.1 0.7 1.0 0.9
Code.1 0.8 0.9 0.9

Fragment
Concepts

5 Concluding Remarks and Future Work

In this paper we have described the methodological approach to enable product frag-
ment management in the distributed system development projects. Proposal is based
on semantics enrichment of the produced fragments by mapping them to related con-
cepts from specific domain model. These inter-relations are weighted as well as intra-
relations among the concepts in a domain model. Weights assigned to relationships
suit as basis for impact prediction and assessment.

The approach (a) enables whole lifecycle product management. As nature of col-
laborative development is usually very iterative, the approach (b) allows relating
product fragments at different stages of its incremental refinement (e.g., from abstract
sketches to formal representation), (c) does not bind developers to a specific tool
and/or modeling language, as far as used tool supports XML output. The use of XML
makes it possible to use this approach in settings where the involved artifacts are cre-
ated and managed by heterogeneous tools, such as text processors and CASE-tools.

Proposal can be beneficial for companies working in the specific domains – a do-
main model is stable and commonly agreed, expert’s knowledge is available. In case
of entering new domain the company should work out domain model, which needs to
be comprehensible and accepted by all developers. An evolvable domain model is a
challenge which should be resolved in future works. Adding or removing some con-

Process of Product Fragments Management in Distributed Development 233

cepts from a conceptual domain model in the middle of project will raise the question
what to do with the fragments which are already mapped to that concept. If a new
concept is added the relatedness between concept and closest fragments could be
automatically calculated and the most related fragments re-mapped. Deletion should
not remove the concept from domain model, but lock it not allowing to associate new
fragments. This would preserve existing links between the concepts and fragments.

Further, large domain model with thousands of concepts could be real challenge
for developers to find relevant concept and to link a fragment in question. This issue
can be solved by concepts clustering which could ease the finding the right concept.
Development in the area of ontology mapping could also provide useful methods and
techniques which could be used both to find the most relevant concept for the frag-
ment and to develop stable and common agreed domain specific model when a do-
main is new for the developers and several interpretations of domain model exist.

However, the most important contribution of this paper is management of hetero-
geneous product fragments by interrelating them according their semantics and usage
of those interrelations for change impact assessment. Change management and as-
sessment is vital for the large development projects and perhaps the most risky and er-
ror-prone task. This approach enables to calculate the probabilities as semantic dis-
tance between heterogeneous product fragments – how likely some product fragments
will be impacted by the change of ‘related’ fragment. That value is calculated based
on the weighted relations between domain concepts and those weights depends on ex-
perts’ knowledge of the domain. As the calculation based on those weights is a back-
bone of this approach, the process of weight assignment should be well reasoned and
methodologically described – big challenges for future works lie here.

Direct linking between related fragments would result in more precise relationship
and change impact assessment. That is not trivial task even in a smaller scope projects
and, certainly, more challenging in distributed development. Thus, we see it being
important to refine the mechanism of direct links establishment between related frag-
ments based on change impact history, i.e. when developer alters the fragment be-
cause of the change made in another fragment, then establishment of the direct linking
between those two fragments should be suggested automatically.

References

1. Arkley, P., Mason, P., Riddle, S.: “Enabling Traceability”, in Proceedings of the 1st Inter-
national Workshop on Traceability, co-located with ASE 2002, Edinburgh, Scotland, UK,
September (2002) pp. 61–65

2. Brasethvik, T. and Gulla, J.A.: "Natural Language Analysis for Semantic Document Mod-
eling." In Proceedings of the 5th International Conference on the Application of Natural
Language for Information Systems (NLDB'2000) in Versailles, France, June (2000)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.: Introduction to Algorithms, 2nd

Edition. The MIT Press and McGraw-Hill, (2001)
4. Dijkstra, E.W.: A note on two problems in connextion with graphs. Numer. Math. 1:269–

271, (1959)
5. Egyed, A.: “Reasonings about Trace dependencies in a Multi-Dimensional Space”, in Pro-

ceedings of the 1st International Workshop on Traceability, co-located with ASE 2002,
Edinburgh, Scotland, UK, September (2002) pp. 42–45

234 D. Strašunskas and S. Hakkarainen

6. Farshchian, B.A.: A Framework for Supporting Shared Interaction in Distributed Product
Development Projects, PhD thesis, NTNU, Trondheim, Norway, (2001)

7. Frezza, S.T., Levitan, S.P., Chrysanthis, P.K.: “Linking requirements and design data for
automated functional evaluation”, Computers in Industry, Volume 30, Issue 1, Elsevier
Science Publishers B. V., September (1996) pp. 13–25

8. Gotel, O.C.Z., Finkelstein, A.C.W.: “An Analysis of the Requirements Traceability Prob-
lem”, In Proceeding of the 1st International Conference on Requirements Engineering
(ICRE’94), IEEE Computer Society Press, Colorado Springs, Colorado, USA, April
(1994) pp. 94–102

9. Greenspan, S., McGowan, C.: Structuring Software Development for Reliability, In Mi-
croelectronics and Reliability, 17, (1978) pp. 75–84

10. Grünbacher, P., Egyed, A. and Medvidovic, N.: “Reconciling Software Requirements and
Architectures - The CBSP Approach”, In Proceedings of the 5th IEEE International Sym-
posium on Requirements Engineering (RE’01), Springer-Verlag, Toronto, Canada, (2001)
pp. 202–211

11. Letelier, P.: “A framework for Requirements Traceability in UML based projects”, in Pro-
ceedings of the 1st International Workshop on Traceability, co-located with ASE 2002,
Edinburgh, Scotland, UK, September (2002) pp. 32–41

12. Matulevicius, R.: MEIS requirements specification. Technical report, NTNU, (2003)
13. Pinheiro, F. and Goguen, J.: "An Object-Oriented Tool for Tracing Requirements". IEEE

Software, 13(2), (1996) pp. 52–64
14. Pohl, K.: “PRO-ART: Enabling Requirements Pre-Traceability”, In Proceedings of the

Second International Conference on Requirements Engineering (ICSE '96), Colorado,
USA, (1996) pp. 76–85

15. Pohl, K., Brandenburg, M., Gülich, A.: “Integrating Requirement and Architecture Infor-
mation: A Scenario and Meta-Model Based Approach”, In Proceedings of the Seventh In-
ternational Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ'01), Interlaken, Switzerland, (2001)

16. Ramesh, B. and Jarke, M.: "Toward Reference Models for Requirements Traceability".
IEEE Transactions on Software Engineering, Vol. 27, No. 1, pp.58–93, January (2001)

17. Rational Suite AnalystStudio. URL: http://www.rational.com/products/astudio/index.jsp
18. Strasunskas, D. “Traceability in a Collaborative Systems Development from Lifecycle

Perspective”. In Proceedings of the 1st International Workshop on Traceability, co-located
with ASE 2002, Edinburgh, Scotland, UK, September (2002) pp. 54–60

19. Solvberg A.: Data and what they refer to. In; Chen, P., Akoka, J., Kangassalo, H., Thal-
heim, B., (eds.): Conceptual Modeling: Current Issues and Future Trends. LNCS 1565.
Springer Verlag (1999)

20. Solvberg, A. and Brasethvik, T.: “The Referent Model Language”, Technical Report.
NTNU, Trondheim, Norway URL: http://www.idi.ntnu.no/~ppp/referent/

21. Watkins, R., Neal, M.: “Why and How of Requirements Tracing”, IEEE Software, 11(4),
(1994) pp. 104–106

266 Appendix F Collection of Papers

Appendix F Collection of Papers 267

F.4 Domain Model Driven Approach to Change Impact
Assessment
Strasunskas, D., and Hakkarainen, S. Domain Model Driven Approach to Change
Impact Assessment. In Linger, H. et al. (Eds.), Constructing the Infrastructure
for the Knowledge Economy: Methods and Tools, Theory and Practice23, Kluwer
Academic / Plenum Publishers, 2004, pages 305-316.

23 Proceedings of the 12th International Conference on Information Systems Development (ISD'2003),
Melbourne, Australia, August 2003.

268 Appendix F Collection of Papers

 1

DOMAIN MODEL DRIVEN APPROACH TO
CHANGE IMPACT ASSESSMENT

Darijus Strašunskas and Sari Hakkarainen*

1. INTRODUCTION

Information system development is a highly iterative process in which developers
seek to capture the needs and desires of all stakeholders. The goal is to transform the re-
quirements into a complete system consisting of both manual and computerized parts.
The product of such a development project undergoes changes because of its iterative na-
ture. Extensive attention is given to traceability as a means to relate different different
system descriptions and to allow changes in one of the system descriptions – require-
ments specification, design, code, documentation, or test scenarios – to be predicted and
traced to the corresponding fragments of the other descriptions1. Such correspondence
relationships should be maintained throughout the lifetime of a system in order to manage
the artifact.

Change impact management and change propagation have received much attention
in the requirements engineering literature2, 3, as changes during requirements elicitation
process are continual. However, there is a lack of tools to support the full lifecycle, start-
ing from artifact inception to its use. Different representation formats that are used
throughout the development process make it complicated to cover the whole lifecycle of
an artifact. Given, that a single requirement maps to multiple architectural and design
concerns, which are used to derive it, it is difficult to maintain the consistency and trace-
ability between the fragments. Moreover, an architectural or a design component has a
number of other relations to various requirements. The task becomes even more difficult
in the face of a large system that is being build to satisfy thousands of requirements.

In a geographically distributed project, developers may use different tools to create
and modify product fragments, which can be refined iteratively and processed further by
colleagues. After the system descriptions are produced, they are interchanged and shared
among members of the project, which places elaborate requirements on that colleagues
interpret artifact correctly. The main challenges are to relate all artifacts in different rep-
resentation formats that are produced in a distributed manner using different tools and to
cover the whole product lifecycle.

* Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology, NO-7491 Trond-

heim, Norway; dstrasun@idi.ntnu.no and sari@idi.ntnu.no

2 D. STRAŠUNKAS and S. HAKKARAINEN

The objective of this work is to present an approach to product fragments† manage-
ment and change impact assessment in distributed collaborative development process.
The assumptions are that there are related concepts in the problem domain and that the
fragments can be associated with them. Given that, the semantics of an artifact is in-
creased by the artifact mapping to the corresponding concepts, which enables predicting
and assessing fragment change impact on other fragments.

The overall structure of the reminder of this paper is as follows. In section two, re-
lated work is analyzed. In section three, the domain model driven approach to enable
change impact assessment by relating fragments in different representation formats is
presented. In section four, a case study is applied and illustrated by using Bayesian Belief
Networks as a candidate technique for quantitative analysis. Finally, in section five, the
work is concluded and its possible shortcomings with some insight on how to solve them
are discussed.

2. RELATED WORK

Over the recent years, a number of techniques have been proposed for providing
traceability and facilitating change management. Some examples2 are cross referencing
schemes, based on some form of tagging, numbering, or indexing and some are require-
ments traceability matrices. Studies in the field of traceability have mainly focused on
specific parts of the development process4 – mostly in the areas of pre-requirements
traceability5,6, and linking requirements to architectural components7, 8.

Some of the approaches are based on a specific modeling language and /or a tool. A
much cited tool is TOOR (Traceability of Object-Oriented Requirements)5, which is
based on FOOPS, a formal object-oriented language. Integrating textual specifications
and UML (Unified Modeling Language) model elements is used by Letelier9, as a
framework for configuring requirements traceability. Both approaches are restricted to
FOOPS and UML respectively and can subsequently only be applied to software proc-
esses based on the same language.

Some approaches establish links among dependent fragments after most of the sys-
tem is developed, i.e., after producing requirements specification, code, etc., and, per se,
contribute mainly for product maintenance. Frezza et al10 base their approach on simula-
tion where both the requirements and the implemented system are simulated in order to
obtain a set of result data. The data from the requirements and the implementation phase
are then compared, which results in a quantitative measure of how accurate the running
system implements the requirements. Egyed11 uses a scenario driven approach to acquire
runtime information about a system and relates the information – the footprints - to the
requirements and a model of the running system. The footprints are analyzed in a tool,
which shows how the components of the system interact when performing specified sce-
narios. Thus, it provides additional trace information on how the running system actually
fulfills its requirements and which parts of the design are affected.

In summary, existing approaches fall into two categories: (a) specific notation de-
pendent and (b) post-analytical. The usage of the former enforces developers to learn a
new language, which is expensive and error-prone. Usually, these approaches are created
with a special purpose and cover only part of system development lifecycle. The latter

† We will use notions of “fragment” and “artifact” interchangeably in this paper.

DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 3

group of the approaches contributes mainly to system maintenance. So, there is a lack of
support for the whole product lifecycle. There is also an apparent lack of support for dis-
tributed teams that use different tools, representation techniques and notations. Below, an
attempt to fill in these gaps is presented.

3. PROPOSED APPROACH - MAPPING TO THE DOMAIN CONCEPT

It is essential to enable change notification and impact prediction through all phases
of development in the distributed projects as mentioned above. To cover the whole life-
cycle means that different tools and, most likely, different notations are used during the
development project. A list of requirements for product development environments in or-
der to enable collaboration in geographically distributed software products development12

is described by Farshchian. Here we adopt the requirements (Reqn) as follows.
Req1 - Unrestricted product object types – a product development environment

should allow the developers to share any type of objects that they might find useful for
supporting their cooperation.

Req2 - Unrestricted relation types – a product development environment should al-
low the developers to create any type of relation between any two objects of product.

Req3 - Incremental product refinement – a product development environment should
provide the developers with flexible mechanisms for incrementally refining the product.
Hence, the developers should be allowed to start with vague products and to refine them
into more complete and formal ones.

The above three requirements were selected in order to cover support for collabora-
tion in distributed projects. Here, the method should meet the requirements Req1 to Req3.
As this approach is based on the fragments mapping to domain concepts, we say a frag-
ment is a well-defined piece of specification and has semantics, machine readable repre-
sentation and identity, and a concept is a well-defined unit of terms found in a specific
domain description. Further, there are two basic assumptions (Assmpn) underlying the
approach as follows.

Assmp1 - CASE-tools (Computer Aided Software Engineering) that are used during
the product development support an XML (eXtensible Markup Language) or an XML-
dialect format output for the developed fragments.

Assmp2 - There is a problem domain and it can be characterized by well-defined, in-
terrelated concepts. Furthermore, these concepts are represented as nodes having
weighted relationships, which show the strength of the relationship between the concepts,
i.e., a relatedness value between the concepts.

The former assumption is reasonable since most CASE-tools maintain model inter-
change formats derived from XML and the latter is more restrictive since not all the rela-
tionships can easily be expressed by weights and the domain model should be shared and
agreed by all participants. Based on these assumptions, the overall process (figure 1) ap-
plied in this approach consists of three basic steps (Stepn):

Step1 - Building a conceptual domain specific model. This step consists of two
main sub-steps: Step1a - extraction of domain specific concepts and Step1b - weighing of
relationships between concepts.

Step1a - Syntactical analysis of textual documents has been investigated severely in
the last few decades. Natural language processing is the main technique used to extract
more structural information out of documents. Efforts are directed to build models from

4 D. STRAŠUNKAS and S. HAKKARAINEN

requirements specification in natural language. The naïve approach is to use nouns as
candidates for entities and verbs for relations between entities. However, there is neces-
sity for more sophisticated techniques to handle linguistic variation when proposing
model elements and constructing domain models from a large set of documents. The ap-
proach13 of natural language analysis for semantic documents modeling is reused in our
approach.

Step1b - Quantification of the relationship between concepts is done using linguistics
and natural language processing techniques for analyzing the documents from a domain.
Correlation analysis, collocation techniques, similarity thesaurus14 are used to evaluate
the strength of relationships between concepts. Computation is expensive. However,
these weights have to be computed only once before starting the project. The values
should be refined by the domain expert – this reflects the domain expert’s belief in how
much the concepts are related in a particular domain. So, these numbers come from either
objective data or the experiences of the domain expert accumulated from the develop-
ment of similar projects. These ranges are used to represent the high (0.7 to1.0), medium
(0.4 to 0.6) and low (0.0 to 0.3) degree of relation.

Step2 - Fragmentation of artifacts into semantic fragments. The produced artifact
is translated to XML format and is logically fragmented according to its semantics.
Fragmentation is done by a traceability module, which gets the XML file as input and
where the fragment boundaries are defined by the developer. As an output, an XML file
with added tags to identify start and end positions of a fragment is produced.

Step3 - Fragments mapping to the concepts. Candidate concepts to build a domain
model are suggested automatically by the processing of the fragments. Techniques from
Step1 are adapted to extract the concepts, if possible, from the fragments and to propose
the closest related concept from the domain model to map to it. Fragments can be linked
directly to other fragments if developer finds them related or if one fragment is a part of
another. Further, a fragment can be linked to a domain concept, see the meta-model de-
scription below for more detailed explanation. The weighting scheme is similar to the one
described in Step1b. The mapping rate is revised and confirmed by the developer, who
created new or a version of the fragment and checked-in to the repository. The relation-
ship information is encoded using XML tags. Finally, the fragments are stored in a cen-
tral repository.

The domain model is constructed and the concepts are related with weighted links
according the strength of the concept relations. The weights are then used to evaluate re-
lations between fragments when mapped to the domain concepts and to estimate the like-
lihood of impact of one fragment on another.

Figure 1. Main steps to enable change impact assessment

DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 5

Thus, dependency relations are based on the semantics of the artifacts. Fragments are
linked to the concepts from the domain model; all selected fragments are mapped and
linked through the conceptual domain model as follows.

There exists a set of concepts {C1, C2, …, Cn} and a set of fragments {F1, F2,
…, Fm}, then consequently:

If fragment Fi is mapped to a concept Ci and fragment Fj is mapped
to Ci, then transitively Fi also relates to Fj (Eq.1).

jijiii FFFCCF (1)

Given, the related concepts Ci and Cj, and if fragment Fi is linked
to a concept Ci and a fragment Fj is linked to Cj, then dependency
to certain degree exists between Fi and Fj (Eq.2).

jijjiiji FFFCCFCC (2)

The meta-model for the proposed approach, based on the settings above, is depicted
in figure 2 using RML (Referent Model Language)15. RML is an EER-like (Extended En-
tity Relationship) language with strong abstraction mechanism and sound formal basis.

Figure 2. Meta-model to relate product fragments through the conceptual domain model

6 D. STRAŠUNKAS and S. HAKKARAINEN

Meta-model describes the scope of the approach. We deal with product develop-
ment, using system development tools (Syst.Dev.Tool), system development tool can be
also seen as product, when it is under development. Every product development has spe-
cific lifecycle consisting of different phase type (e.g., business analysis, requirements
engineering, design, implementation, testing, etc.). Each phase type has a distinct phase
product type (e.g. requirements specification, design, code, user manual, and software
itself), which is result of particular lifecycle phase. A product is final result of the devel-
opment project, and it consists of the interrelated phase product type.

A fragment is a semantic piece of phase product type in a certain granularity
level, e.g., it can be a document, a model, a diagram, a section in a document, a text
specifying a non-functional requirement, an use case, a class, an attribute, etc. Fragment
can consist of fragments. It should be noted that fragment is inreflexive, asymmetric, and
non-transitive. Fragment can have a direct dependence link to another fragment. Every
fragment has semantics, which relate the fragment to one or more concept cluster.
Rated mapping relationship is used to distinguish fragment coherency to a particular
concept. Concept cluster groups related concepts and composes domain model. Con-

cept is connected to other concept by direct acyclic graph with weights (weighted re-

lationship). Weights of those relations are calculated based on degree of the concept
relatedness.

4. APPLICATION OF THE APPROACH

In this section we present a case example to test practical applicability and illustrate
the proposed approach in empirical settings. Description of the application of the ap-
proach consists of a realistic case of and a candidate technique for quantitative analysis –
Bayesian Belief Network.

4.1. A Case Study

A case study is based on MEIS (Model Evaluation Information System) system, used
for the basic course of information systems SIF803516. MEIS system is used for exercise
delivery and evaluation. There are two groups of users: students that are also reviewers of
others’ solutions, and student assistants, who check all deliveries including both solutions
to an exercise and evaluation of those solutions and either accept or reject them. The do-
main concepts in exercise delivery and evaluation and the relationships among them are
depicted in figure 3. Here, the quantification of the relationships between concepts has
been performed manually based on our knowledge of the domain. For example, the
weight of relationship between ‘Student’ and ‘Reviewer’ is equal to 1.0 only in this do-
main, where students are also reviewers of others’ solutions.

Next, during the development of the MEIS system every requirement was treated as
a separate fragment. Some of them are listed below and additional examples of the prod-
uct fragments are presented in figure 4. Requirements for the MEIS system are16:

Req.1. It should be possible to create users’ profiles from a textual file.
Req.2. A student should be able to upload a solution:

Req.2.1. A solution should be stored in the student’s folder.
Req.2.2. A reference (link) to a solution1/2 should be kept in the MEIS database.

Req.3. StudAssist should accept/reject a solution1/2.

DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 7

Figure 3. Domain model for MEIS

Req.3.1. The system should provide the possibility to reject a solution1/2.
Req.4. StudAssist should form a reviewer groups for a solution1/2.

Req.4.1. The system should provide StudAssist a list of students, whose solution has been
accepted.

Req.4.2. StudAssist should form a reviewer group based on the student list in Req.4.1.
Req.5. Reviewer should deliver evaluations of both the solution1 and solution2.

Req.5.1. Reviewer should evaluate the DFD/APM model of the solution1/2.
Req.5.2. Reviewer should upload Word documents with evaluation for the DFD/APM model

of the solution1/2.
Req.5.3. File with evaluation for the DFD/APM model of the solution1/2 should be stored in

the database.

As described in the previous section, developers will be provided with the tool for
semi-automatic fragments mapping to domain concepts. Additional XML tags are entered
to keep information about the related concepts and the weight of their relationships, as a
fragment could have one or more related concepts. For example, requirement “Req.5.2: Re-
viewer should upload Word documents with evaluation for the DFD/APM model of the solution1/2” provides
hints about the relation to the concepts ‘Reviewer’, ‘Upload’, ‘Evaluation’ and ‘Solu-
tion’. Nevertheless, the requirement is mainly about ‘evaluation upload’. Therefore, it is
mapped to the concepts ‘Upload’ and ‘Evaluation’ with the assigned weights 0.9 and
0.7, respectively. A partial graphical representation of the fragments as mapped to the
domain model is depicted in figure 5. The concepts and fragments from the example
above are gray shaded. It should be noted that figure 5 is not intended normative for
fragments mapping, but is used here only for illustrational purposes.

4.2. Bayesian Belief Network

One candidate for implementing the approach for product traceability is Bayesian
Belief Network (BBN, also called Bayesian Network or Probabilistic Networks). BBN is
a powerful technique for reasoning under uncertainty17, 18 and representing knowledge. It
provides a graphical model that resembles human reasoning. In the recent decades,
Bayesian Belief Network has attracted attention from both the research and industrial

8 D. STRAŠUNKAS and S. HAKKARAINEN

(a) Use Case diagram – students tasks (‘UC.1’ in fig.5)

if ((dbproc = mysql_init(NULL)) == NULL) {
 printf("Unable to init.\n<hr>");
 } else {
 if (mysql_real_connect(dbproc, NULL,
"ADMIN_USER",
 "ADMIN_PASSWORD",
"DATABASE_NAME",
 0, "MYSQL_SOCK",
0) == NULL) {
 printf("Unable to connect.\n<hr>");
 } else {
 if (is_modify) {
 passwd = Find_Value(entries,
num_words, "Password1");
 if (passwd == NULL || strlen(passwd)
<= 0) {
 sprintf(passwd_buf, "'%s'",
 Find_Value(entries,
num_words, "Password"));
 } else {
 sprintf(passwd_buf,
"PASSWORD('%s')", passwd);
 }

(b) part of code (‘Code.1’ in fig.5)

(c) ER diagram of MEIS database (‘Dsgn.1’ in
fig.5)

(d) Interface screenshot (‘Doc.1’ in fig.5)

Figure 4. Examples of fragments16

communities. BBN provides a natural way to structure information about a domain. One
advantage of the BBN is that it not only captures the qualitative relationships among
variables (denoted by nodes) but also quantifies the conceptual relationships. This is
achieved by assigning a conditional probability to each node in the BBN‡.

In a BBN, for each variable x with parent Parent(x), there is a corresponding condi-
tional probability distribution P(x|Parent(x)). For example, in the MEIS domain, the
probability of having an impact on requirement ‘Req.5.1’ is directly conditioned by the
relation of the two concepts ‘Reviewer’ and ‘Solution’ - ‘Req.5.1’ is mapped directly to
them, with the concept which has mapped the changed fragment. Thus, the conditional
probability is given as P(Impact.Req.5.1 | Reviewer, Solution).

‡ This has also been the main disadvantage of the BBN – human labor intensity and domain expert dependency.

Student

PK,FK1 UserID

Name
Email
Studnr
Password
Groupone
Grouptwo
Newman
Casenr

PaperLink

PK,FK1,FK2 PaperID

UserID
Format
Hlink
Submitted
Oving

PaperFormatList

PK,FK1 Format

Description
Extension
MimeType

Review

PK ReviewID

Syntax
Semantic
Pragmatic
Overall
General
Submitted
UserID
Reviewer
Oving
Godkjent

FK1 ErrorID
PaperID

PaperError

PK ErrorID

ErrorType
Description
Oving
UserID
Reviewer

CommitteeMember

PK MemberID

Name
Email
Type
Address1
Address2
Address3
Address4

FK1 UserID
Password
Phone
Fax
AdminUser
Fraogmed
Tilogmed

ReviewGroup

PK GrpID

PaperID
Reviewer1
Reviewer2
Reviewer3
Reviewer4
Reviewer5

DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 9

Figure 5. Graphical representation of MEIS fragments mapping to domain concepts (partial)

The applicability of BBN is demonstrated by continuing the example in the sub-
section above and using tool MSBNx (Microsoft Bayesian Network Editor and Tool
Kit)19. MSBNx tool was chosen as it offers an extensive COM-based API for editing and
evaluating Bayesian Networks.

So, during the system development, the stakeholder decided to create a standard web
form for evaluation instead of delivering an evaluation in a Word file. As a consequence,
requirement (‘Req.5’) has been changed to:

Req.5. Reviewer should be provided 2 (two) web evaluation forms for each solution1/2.

Assessments of the impact probabilities on the other artifacts caused by this change
are shown in figure 6. As all mapped fragments are assessed, only the ones with the high-
est probability of impact should be checked. Of course, a probability threshold should be
defined for notification posting. Further, in large development projects, the threshold
value depends on specific project settings and requires attentive empirical study. The
definition of the impact relations between phase products facilitates the management of
the calculated change impact probability values. In this case, when altering the require-
ment, only possible changes in the requirements specification and the related phase (e.g.,
design) should be notified and checked first. Change notification should proceed only if
the related design fragment is found impacted, where the developer will need to check the
next phases in the impact chain.

The values in figure 6 show for example, that most likely the fragments ‘UC.1’,
‘Req.5.1’ and ‘Req.5.2’ are impacted. The changed requirement ‘Req.5’ is mapped to
the two concepts ‘Reviewer’ and ‘Evaluation’. As ‘UC.1’ is mapped to the concepts

10 D. STRAŠUNKAS and S. HAKKARAINEN

Figure 6. Impact probability evaluated by using MSBNx

‘Student’, which is strongly (1.0) related to ‘Reviewer’ in this domain, and ‘Evalua-
tion’, the probability to be impacted is relatively high.

5. DISCUSSION AND CONCLUDING REMARKS

In this paper, a methodological approach to facilitate product change management in
the distributed development projects has been described. The proposal is based on seman-
tic enrichment of produced fragments by mapping them to related concepts from a spe-
cific domain model. This information is used to abstract away from heterogeneous repre-
sentation details and to capture information content. In this way, domain specific concep-
tual model is used to interoperate across different representation formats used in the sys-
tem development. Further, the relations between the fragments and concept as well as the
relations among the concepts in the domain model are weighted. Weights assigned to re-
lationships are used as the basis for impact prediction and assessment.

The contribution of this work is threefold. First, unlike other approaches, the pro-
posed approach (a) covers whole lifecycle. Second, as the nature of collaborative devel-
opment is usually highly iterative, the approach (b) supports the relating and interchang-
ing fragments of a product at different stages of its incremental refinement (e.g., from ab-
stract sketches to a formal representation, see Req3). Third, it (c) does not bind the devel-
oper to some specific tool and/or modeling language (see Req1 and Req2) provided the
preferred tool supports XML format. The use of XML enables use of this approach in set-

DOMAIN MODEL DRIVEN APPROACH TO CHANGE IMPACT ASSESSMENT 11

tings where the involved artifacts are created and managed by heterogeneous tools, such
as text processors and CASE-tools.

The approach can be beneficial for companies working in specific domains where
typically the domain model is stable and commonly agreed, and an expert’s knowledge is
available. In the case of entering a new domain, the company should work out a specific
domain model, which needs to be comprehensible and agreed by all developers.

An evolving domain model is a challenge, which should be resolved in future work.
The adding or removal of some concepts from a conceptual domain model in the middle
of a project raises the question of what to do with the fragments which have been mapped
to the concepts. If a new concept is added, the relatedness between the concept and clos-
est fragments could be automatically calculated and the most related fragments could be
re-mapped. A concept deletion should not remove the concept from the domain model,
but should lock it order to prevent mapping to any new fragments. This would preserve
existing links between the concepts and fragments.

Further, large domain model with thousands of concepts could be a challenge for de-
velopers in finding the relevant concepts and to link the fragment in question. A candi-
date solution here is concepts clustering, which could facilitate the selection of the right
concept. Developments in the area of ontology mapping could also provide useful meth-
ods and techniques which could be used both to find the most relevant concept for the
fragment and to develop a stable and a commonly agreed domain specific model for new
domain, where several interpretations of the domain and the model exist.

However, where the main contribution of this paper is in change impact assessment
as being vital for large development projects, simultaneously, it is perhaps the most risky
and error-prone task. The proposed approach enables to calculate the probability objec-
tively from subjective materials – how likely some product fragments are to be impacted
by a change of a ‘semantically related’ fragment. The probability value is calculated
based on the weighted relations between domain concepts, where the weights depend on
experts’ knowledge of the domain. As the calculation operating on those weights is the
backbone of this approach, the process of weight assignment should be well reasoned and
methodologically described as well as empirically tested - big challenges for future work
lie here.

6. ACKNOWLEDGMENTS

Special thanks go to Sobah Abbas Petersen and the anonymous reviewers for proof
reading. This work has been partially supported by the Simula foundation in Norway.

7. REFERENCES

1. S. Greenspan, C. McGowan, Structuring Software Development for Reliability, In Microelectronics and Re-
liability, 17, 1978, pp. 75–84.

2. O.C.Z. Gotel, A.C.W. Finkelstein, “An Analysis of the Requirements Traceability Problem”, In Proceeding
of the 1st International Conference on Requirements Engineering (ICRE’94), IEEE Computer Society
Press, Colorado Springs, Colorado, USA, April 1994, pp. 94–102.

3. R. Watkins, M. Neal, “Why and How of Requirements Tracing”, IEEE Software, 1994 11(4), pp. 104-106.
4. D. Strašunskas, “Traceability in a Collaborative Systems Development from Lifecycle Perspective”, in Pro-

ceedings of the 1st International Workshop on Traceability, co-located with ASE 2002, Edinburgh, Scot-
land, UK, September 2002, pp. 54-60

12 D. STRAŠUNKAS and S. HAKKARAINEN

5. F. Pinheiro and J. Goguen. "An Object-Oriented Tool for Tracing Requirements". IEEE Software, 1996
13(2), pp. 52-64.

6. K. Pohl, “PRO-ART: Enabling Requirements Pre-Traceability”, In Proceedings of the Second International
Conference on Requirements Engineering (ICSE '96), Colorado, USA, 1996, pp. 76-85.

7. P. Grünbacher, A. Egyed, and N. Medvidovic, “Reconciling Software Requirements and Architectures - The
CBSP Approach”, In Proceedings of the 5th IEEE International Symposium on Requirements Engineering
(RE’01), Springer-Verlag, Toronto, Canada, 2001, pp. 202-211.

8. K. Pohl, M. Brandenburg, A. Gülich, “Integrating Requirement and Architecture Information: A Scenario
and Meta-Model Based Approach”, In Proceedings of the Seventh International Workshop on Require-
ments Engineering: Foundation for Software Quality (REFSQ'01), Interlaken, Switzerland, 2001.

9. P. Letelier, “A framework for Requirements Traceability in UML based projects”, in Proceedings of the 1st
International Workshop on Traceability, co-located with ASE 2002, Edinburgh, Scotland, UK, September
2002, pp. 32-41.

10. S.T. Frezza, S.P. Levitan, P.K. Chrysanthis, “Linking requirements and design data for automated functional
evaluation”, Computers in Industry, Volume 30, Issue 1, Elsevier Science Publishers B. V., September
1996, pp. 13-25.

11. A. Egyed, “Reasonings about Trace dependencies in a Multi-Dimensional Space”, in Proceedings of the 1st
International Workshop on Traceability, co-located with ASE 2002, Edinburgh, Scotland, UK, September
2002, pp. 42-45

12. B.A. Farshchian, A Framework for Supporting Shared Interaction in Distributed Product Development Pro-
jects, PhD thesis, NTNU, Trondheim, Norway, 2001.

13. T. Brasethvik and J.A. Gulla. "Natural Language Analysis for Semantic Document Modeling." In Proceed-
ings of the 5th International Conference on the Application of Natural Language for Information Systems
(NLDB'2000) in Versailles, France, June 2000

14. R. Baeza-Yates and B. Ribeiro, Modern Information Retrieval. Addison-Wesley, 1999
15. A. Sølvberg and T. Brasethvik, “The Referent Model Language”, Technical Report. NTNU, Trondheim,

Norway; http://www.idi.ntnu.no/~ppp/referent/
16. R. Matulevi ius, “MEIS requirements specification”, Technical report, NTNU, Trondheim, NTNU, June

2003
17. F.V. Jensen, An Introduction to Bayesian Networks. UCL Press, London. 1996.
18. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kauf-

mann. 1988.
19. Microsoft Bayesian Network Editor and Tool Kit; http://research.microsoft.com/adapt/MSBNx/

Appendix F Collection of Papers 281

F.5 Model and Knowledge Management in Distributed
Development: Agreement based Approach
Strasunskas, D., and Lin, Y. Model and knowledge management in distributed
development: agreement based approach. In Vasilecas, O. et al. (Eds.),
Information Systems Development: Advances in Theory, Practice, and
Education24, Springer, 2005, pages 389-402.

24 Proceedings of the 13th International Conference on Information Systems Development (ISD 2004),
Vilnius, Lithuania, September 2004.

282 Appendix F Collection of Papers

 1

MODEL AND KNOWLEDGE MANAGEMENT
IN DISTRIBUTED DEVELOPMENT:

AGREEMENT BASED APPROACH

Darijus Strašunskas and Yun Lin*

1. INTRODUCTION

Models are built to share knowledge or definitions with other people, and this appli-
cation is especially directed to people that want to share knowledge or define knowledge
in co-operation with others. Modeling is seen as “the activity of formally describing some
aspects of the physical and social world around us for purposes of understanding and
communication”1, and is applied in the early phases of information system analysis and
design. However, many problems are encountered when building models. It is conceiv-
able that a variety of different versions of models will be used in different stages of the
development process; in general, it is difficult to develop a model that can be acceptable
for all participants in a development project. Furthermore, it is known that different peo-
ple usually present different models given the same domain and the same problem. The
same information about system can be modeled at various levels of abstraction and from
different viewpoints considering different aspects. Variations among models generally
appear due to the creative nature of the modeling activity, as well as other factors such as
the richness of the modeling language2, the ambiguities of modeling grammars, and oth-
ers.

This problem becomes more evident when the process is distributed. Then the vari-
ability of the model versions increases due to the highly interactive and iterative nature of
the development process and to the different, sometimes conflicting, angles to the prob-
lem and solution taken by the different stakeholders. Therefore, modeling process can be
viewed as three dimensions of requirements engineering3: agreement, representation and
specification dimension. The agreement dimension should be based on common under-
standing about problem domain, organizational strategy; the representation dimension is
based on the essential semantic aspects of system analysis; the specification dimension
bases on the implementation oriented system development aspects. The most difficult in

* Darijus Strašunskas, Dept. of Computer and Information Science, Norwegian Univ. of Science and Technol-

ogy, NO-7491 Trondheim, Norway and Department of Informatics, dstrasun@idi.ntnu.no.
Yun Lin, Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology, NO-
7491 Trondheim, Norway; yunl@idi.ntnu.no.

2 D. STRAŠUNSKAS and Y. LIN

modelling is to arrive at a coherent, complete and consistent description of the problem
and domain. Description should be shared and agreed between all stakeholders. There-
fore, we focus on the agreement dimension that deals with the consolidation of logically
and geographically distributed views3.

In this paper, we discuss distributed modeling, focusing on support for individual
developers and allowing them expressing their view and perception of the Universe of
Discourse (UoD) in model fragments, which are integrated based on common agreement
among them. The paper is further structured as follows. Section 2 overviews related
work. In section 3, we further elaborate complexity of distributed modeling, discuss set-
tings for our approach and present the approach. In section, 4, we illustrate our approach
using example from a travel domain. Finally, section 5 concludes the paper and lays
down future work.

2. RELATED WORK

Many proposals on model composition are available in the literature. Model compo-
sition in a distributed heterogeneous environment has been the subject of a few recent re-
search activities. Namely, the merging of ontologies is one of the recent model merging
scenario. Collaboration during the modeling is one of the most important features of the
ontology building tools, as ontology is seen as an explicit representation of a shared con-
ceptualization4. However, less than half of ontology building tools surveyed in5 have a
multi-user support. Even the tools supporting collaborative ontology development still do
it in the old-fashioned way, i.e. do not allow multiple accesses to concept (object) by dif-
ferent developers at the same time. The work that has been done so far in the area of col-
laborative work with ontologies mainly has focused on one ontology which is edited by
the developer. I.e., the web-based Ontosaurus† supports collaboration and allow develop-
ers to edit ontology only when consistency is retained within the ontology as a whole.

Environments like Protégé‡ or Chimaera§ offer sophisticated support for ontology
engineering and merging of ontologies, but lack sophisticated support for collaborative
engineering. Chimaera is build on top of Ontolingua Server6 and, therefore, has the same
support for collaborative engineering, i.e. read and write access rights to ontologies are
controlled by the ontology owner; users are able to join a session and work simultane-
ously on the same ontology.

Some tools provide advanced support for communication between users contributing
to better collaboration during ontology engineering, e.g. Tadzebao7 supports both asyn-
chronous and synchronous discussions on ontologies; Apecks8 aims to support discussion
about ontologies and allows different conceptualizations of a domain to co-exist.

In9 we found the first attempt to use a totally distributed environment to work with
ontologies. They present their work with the peer-to-peer Semantic Web. It allows users
to create, maintain, and control sharing of ontologies in a P2P environment. Although it
allows users to add parts to ontologies, but it mainly seems to be built for maintaining,
sharing and retrieving other ontologies.

WebOnto** is a web-based tool for developing and maintaining ontologies. It in-

† http://www.isi.edu/isd/ontosaurus.html
‡ http://protege.stanford.edu/
§ http://www.ksl.stanford.edu/software/chimaera/
** http://webonto.open.ac.uk/

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 3

cludes functions such as visualization, browsing and editing ontologies. The tool includes
functionality for sharing changes between users. Mintra et al.10 present a toolkit called
Onion. It is a toolkit to help domain expert bridge the gap between smaller domain spe-
cific ontologies by creating links between ontologies based on their context. Before On-
ion was developed most research on ontology construction focused on tools for building a
single global ontology.

Hozo11 environment for distributed ontology development is focused on building a
single ontology by on splitting it into components and establishing dependency between
them. The target ontology is obtained by compiling the component ontologies. System
does not allow multiple accesses to a concept by different developers at the same time, as
developers have assigned a particular component ontology to develop. OntoEdit12 allows
multiple user access to the same ontology to build it collaboratively. It provides name-
space mechanism allowing splitting ontologies into modules.

In summary, most tools provide the collaborative facilities by supporting basic re-
quirements for distributed development, e.g. rights- and user management, locking
mechanism, communication and notification means. Even most sophisticated modeling
environments do not provide means for development of the shared conceptualization, i.e.
allowing users to develop overlapping fragments of models based on their own under-
standing and perception of the real world.

3. DISTRIBUTED MODELING

3.1. Complexity of distributed modeling

Model development is a complex and difficult task. It is usually a creative and col-
laborative process, during which different stakeholders are focusing on various aspects,
expressing them at different levels of abstraction, and producing several variants of each.

Different levels of abstraction of the same system enable to deal with complexity by
removing details from model. The model must be able to act as an efficient and effective
communications medium between the different parties involved in development project.
Usually, models are augmented by details on each development step.

A system can be described from many viewpoints. Each viewpoint defines what
characteristics should be included in its views and what issues should be ignored or
treated as transparent. A view is, therefore, a piece of the model that is small enough to
comprehend but that also contains all relevant information about a particular concern.
Variants dimension is more concerned with different versions and configurations.

The success of distributed project depends on how well “laissez-faire” rule is
obeyed, meaning that developers should be allowed to express what they want in what-
ever form. More precisely, Farshchian13 emphasized a list of requirements for develop-
ment environments to enable collaboration in geographically distributed developments.
Here we adopt the requirements (Req.n) as follows.

Req.1 - Unrestricted product object types – a development environment should allow
the developers to share any type of object that they might find useful for supporting their
cooperation.

Req.2 - Unrestricted relation types – a development environment should allow the
developers to create any type of relation between any two objects.

Req.3 - Incremental product refinement – a product development environment

4 D. STRAŠUNSKAS and Y. LIN

should provide the developers with flexible mechanisms for incrementally refining the
product. The developers should be allowed to start with vague products, and to refine
them into more complete and formal ones.

Concurrent engineering changes old practice, when all the required objects were
locked during the whole change/ modification activity. Each software engineer should
have direct access to all needed objects. But changed version should be kept with access
forbidden for other developers during modification, because the state of fragment is in-
consistent in a modification phase. If n engineers change the same object concurrently,
this object should have n+1 different copies14. It means that each developer needs the
private copies of fragments. On the other hand, the colleagues know that other changes
possibly are done on the same fragments/ objects and want to be incorporated when rele-
vant. In summary, collaborative distributed development needs tools that allow the crea-
tion and access to a central composite product, and at the same time support development
in local workspaces.

3.2. Knowledge preservation

In a collaborative environment where different users work on models, it is important
that there is a way of sharing own views, and step by step achieving agreement and
common conceptualization. This is usually called model integration and can be accom-
plished by merging or term alignment. It is important to keep term merging separated
from the term alignment. Merging means that one new model is created from n existing
models. Model alignment is when links are created between models, so that the models
can be used as one.

Although, the initial goal is usually to develop a single model of the UoD, it turns
out to be very important to preserve and model the various “views” of the information
seen by different stakeholders and participants during the system analysis phase. Usually,
different developers might have different vocabulary to express their perception of the
world. It is important to preserve knowledge of developer that is expressed in the model
fragment she has developed. We need to ensure that developer’s work will not be dis-
turbed, for instance, if a developer uses term ‘aircraft’ referring to ‘airplane’, this term
should be preserved in her local view, otherwise after several changes it will be difficult
to continue.

3.3. An approach

Underlying hypothesis of our approach is that given the same problem domain to
reason about, the model developed by different stakeholders will not only differ, but as
well will have some overlapping parts, i.e. some parts (views) in different models are
commonly shared. In order to integrate the distributed models, these commonalities
should be captured.

Our approach consists of 3 basic steps (see figure 1):
Step 1 - Model matching and similarity identification. Model integration typically

involves identifying the correspondences between two models, determining the differ-
ences in definitions, and creating a new model that resolves these differences. Four types
of view differences are described in15, which were paraphrased by Hefflin and Hendler16:

terminology: different names are used for the same concepts;
scope: similar categories may not match exactly; their extensions intersect, but

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 5

each may have instances that cannot be classified under the other;
encoding: the valid values for a property can be different, even different scales
could be used;
context: a term in one domain has a completely different meaning in another.

Some of the above listed problems might be found and resolved automatically, i.e.
scope, context. At present, there exists a number of automated schema and model match-
ing systems, for instance17-25, which produce correspondence suggestion between ele-
ments of different models. In general, match algorithms developed by different research-
ers are hard to compare since most of them are not generic but tailored to a specific ap-
plication domain and model types. Usually, use of only one approach will not produce
good enough matching; for better results we need to combine several schema matching
approaches. Currently, we are investigating which combination of techniques is most ap-
plicable for our approach.

Step 2 - “Sameness” identification. Given current techniques for correspondences as-
sertion between models, it is possible to calculate quite precise similarity of the concepts.
However, it is impossible to identify the “sameness” of concepts without knowing au-
thors’ intention. Therefore, manual intervention and agreement is necessary at this step.
The authors of all model fragments are notified about the results of the model matching
and are asked to verify them by pointing the same concepts and achieving agreement
about the concept name, if they use different terms.

These two steps (step 1 and step 2) are iterated as many times as new fragments are
signed-in to the repository. Step 2 results in the common knowledge layer or so called
“concept-space”, where the commonly agreed concepts and relations between them are
placed. This layer is used to differentiate from the local namespace, which is kept unique
for each developer allowing to use own vocabulary. Figure 2 exemplifies the idea behind
our approach. I.e. after having identified the concepts being the same, despite of different
term used to name them, the “equality” relationship is established between local concepts
named ‘A1’ and ‘A2’, and the agreed concept named ‘A’.

Step 3 - composition of models. In this step a final application dependent model is
produced based on agreed view and formed model in the common concept space.

Model matching,
similarity

identification

Automatic

“Sameness”
identification

Manual
Correspondence

assertions Concept-
space

Composition of
model

Semi-automatic

1 2 3

Final model

Figure 1. Functional view of our approach

A1 A2

A

‘A’

A1 A2

A

‘A1’ ‘A2’

equal equal equal equal

same

Figure 2. Management of “sameness”

6 D. STRAŠUNSKAS and Y. LIN

3.4. Further Elaboration

Since distributed models are built by different modelers having various modeling
purposes and viewpoints, the perspectives of different models may be far from each
other. Context similarity is considered during the agreement and identification of the
same concepts. Some constraints in different local models may conflict with each other,
even being agreed and integrated in common models. Furthermore, some concepts and
relationships in the integrated models may be redundant or may need to be further speci-
fied, i.e. what to do with derived relationships or model fragments at different abstraction
levels. Further, we introduce more rules for model refinement (step 3).

Here, we mainly focus on static (class) diagram which presents concepts and their re-
lationships. Hence, the integration refining issues include abstracting concepts and refin-
ing concepts, adding and deleting properties of concepts, adjusting types of properties,
abstracting transitive relationships into high level relationships and refining relationships
into low level relationships. We define a set of generic rules for the above mentioned re-
finement transformations. Before formulizing those refining issues, we make some defi-
nitions. Let UoDI be universe of discourse for integrated model, and UoDD – universe of
discourse for particular local model fragments. Then, CD is a concept used from a local
model fragment and CI is the concept in the integrated model. P(c) is the set of properties
of concept C and p is a property. While, R(Ci*Cj) is the relationship between concepts Ci
and Cj.

Rule 1. Abstraction of concepts. Concepts used in local models are usually more
concrete. Often, during the integration, super concepts are needed to generalize those sub
concepts, or even replace sub concepts if the sub concepts are not important in an inte-
grated model.

Let, CDi and CDj be two concepts from a model i and model j. Both concepts are ele-
ments from the same domain (UoD). Then a concept CI from the domain of integrated
model will be a super concept of CDi and CDj in the integrated model.

),(DiDiIIDjIDiIIIIDjIDi CCAbstractC)CCCCUoD(CCoDUCoDUC (1)

Rule 2. Refinement of concepts. There is a need to create new concepts, when UoDI
of an integrated system is broader than the one considered in the local model fragments.
Some of such concepts are created based on a relationship between existing concepts.

))C*R(C,Create(C)UoDCUoDCUoD(CCoDU)C*R(C DjDiIDjIDiIIIIIDjDi (2)

Rule 3. Addition and/or deletion of properties of concepts. Certain properties of
concepts are ignored in the distributed model fragments as being not important in a lim-
ited scope or in a certain viewpoint, but they might be critical for an integrated system.
On the other hand, certain concepts contain too many details which are necessary in some
isolated models, but inessential for the integrated system. Properties need to be further
edited according to requirements for new integrated system.

)CAddProp(p,))P(CpoDUp(p IDI (3)

)CDelProp(p,)oDUp)P(Cp(p DID (4)

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 7

Rule 4. Adjustment of types of properties. Types of properties usually concern im-
plementation oriented aspects, and have little effects on the semantics of models. Mean-
ing that possibly the same property has different types in different models. In order to
keep the consistency of integrated model, types of the same property should be unified
obeying implementation requirements of system.

Let Sem(p) be the semantics of property p and T(p) be the type of property p.

))T(p),Adjust(T(p)T(p)T(p) Sem(p=)Sem(p DjDiDjDiDjDi (5)

Rule 5. Abstraction of transitive relationships into higher level relationships and re-
finement of relationships into lower level relationships. A transitive relationship is the
semantic equivalent of a collection of normal relationships26. The transitive abstraction
relationship is the high level relationship and a direct relationship which can not be re-
fined is low level relationship. With different requirements, perhaps only high level rela-
tionship is enough while on other cases low level relationship is necessary. There are
three generic relationships – generalization, aggregation and association, which are sup-
ported by most modeling languages. The transitive abstraction rules for different combi-
nation of three generic relationships are different. In27, they developed a set of transitive
abstraction rules for inference of transitive relationships (e.g., classA-association->
classB<- aggregation-classC classA-weakAssociation->classC, meaning that, if
classA has association relation with classB, and classB is aggregated into classC, then the
resulting abstraction would be weak association between classA and classC), which we
do adopt for our purposes. Given the combination of R(CDi*CDj) and R(CDj*CDk) satisfies
one of transitive rules, the result would be R(CDi*CDk), while R here is specified as either
generalization (RGe), aggregation (RAg) or association (RAs) and parameters are non-
transitive.

)C*R(CRuleSet)C*R(C)C*R(C DkDiDkDjDjDi (6)

The refinement process based on rules is semi-automatic. Developers need to make
decision on what concepts and what properties are important, at what kind of granularity
concepts and relationships should kept as they depend on the requirements of integrated
system.

4. APPLICATION OF THE APPROACH

In this section, we exemplify our approach using a case from a travel domain. There
are requirements to build a travel agency system which provide airplane and train ticket,
and hotel booking services as well to provide other tourism information. Separate models
are made by different modelers and later they are integrated into one model. To illustrate
our approach, we focus on two model fragments: airplane and train transportation model
fragments. Then these two models will be integrated as a part of the whole travel agency
system model.

Airplane transportation model fragment describes basic concepts and their relation-
ships about flight. Figure 3 shows UML class diagram for airplane transportation. Train
transportation model fragment contains concepts and relationships about train transporta-
tion information and is depicted in figure 4, using UML class diagram as well.

8 D. STRAŠUNSKAS and Y. LIN

-name
Airplane

-route_name
-route_distance

Route

-company_name
-code
-head_office

AirlineCompany -departure_date
-departure_time
-arrival_date
-arrival_time

Schedule

-schedule is supplied by company*
-company provides schedule 1..*

-flight has schedule 1
-schedule is for flight

1

-airplane is operated by airline

1..*

-airline operates airplane 1..*

-airport_code : char
-airport_description

Airport

-route connects airport1..*

-airport is in route*

-city_name
-country_code : int
-continent_code

City

-airport is close to city 1..*

-city has airport0..*

-name
-time

Flight -route is involved in flight

1

-flight has route

1

-airline serves flight1..*

-flight is served by airline1..*

-number
-price

PlaneTicket

-flight needs ticket1

-ticket is for flight1

-name
-code

Alliance

-Airline is memeber of alliance 1

-alliance has airline

*

-name
TransportMeans

Figure 3. Airplane transportation model fragment

Step 1. Model matching and similarity identification. Because both two models are
built in UML and they are quite similar in structure and in context, the model similarity
can be identified by current available schema and model matching systems17-25. In this
particular case, we have adopted iMapper25, developed in our group. Most similar con-
cepts pairs from the two models are {Schedule, Timetable}, {Flight, Trip}, {City, City}
and {Route, Route}†† (see figure 5).

Step 2. “Sameness” identification. With the list of similar concept pairs, modelers
should reach agreements on whether two concepts are same or not (see figure 5). Con-
cepts ‘Schedule’ and ‘Timetable’ are regarded as being the same, only different terminol-
ogy used. ‘Timetable’ is decided as a common concept name for this concept, so ‘Time-
table’ is put in the common concept-space and is referred by ‘Schedule’ in airplane trans-
portation model fragment and by ‘Timetable’ in train transportation model fragment.
‘Trip’ is put in the common concept-space as the reference of ‘Flight’. Trip is chosen be-
cause the name of ‘Flight’ is more specified to airplane but the structure of it is same as
‘Trip’ concept. Two ‘Routes’ concepts are regarded as the same. Two ‘City’ concepts
look almost the same, but the type of property ‘country_code’ in two models are differ-
ent: one is ‘int’ and the other is ‘char’. Such difference is kept in common concept space
and will be resolved in step 3 as it depends on an application.

Step 3. Composition of model. As ‘AirlineCompany’ and ‘RailwayCompany’ refer to
different entities, the way to integrate them is by generalizing and relating them by more
abstract concept. Therefore, we apply Rule 1 (see Eq. 1):

ompany)TransportCmpany(RailwayCo
ompanyTransportCmpany(AirlineConravelDomaiTCompany(Transport

)nravelDomaiTmpany(RailwayConravelDomaiTmpany(AirlineCo
))

)
(7)

†† The first concept in parentheses is from airplane transportation ontology model fragment and the second one
is from train transportation ontology model fragment.

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 9

And as result we introduce an abstract concept ‘TransportCompany’ being the super
concept of ‘AirlineCompany’ and ‘RailwayCompany’.

The generation links between ‘AirlineCompany’, ‘RailwayCompany’ and ‘Trans-
portCompany’ should be added into integrated model. When the generation links are
added in the model, other relationships related to ‘AirlineCompany’ and ‘RailwayCom-
pany’ should be checked if they are consistent with ‘AirlineCompany’ and ‘RailwayCom-
pany’ or link them directly to their super concept ‘TransportCompany’.

Applying Rule 4 (Eq. 5): Concept ‘City’ in figure 3 is considered the same as in fig-
ure 4, but the type of property ‘country_code’ in figure 3 is ‘int’ while in figure 4 it is
‘char’. Type ‘int’ is adjusted into ‘char’ in the integrated model.

-name
Train

-route_name
-route_distance

Route

-company_name
-head_office
-

RailwayCompany -name
-day_of_week
-valid_period

Timetable

-timetable is supplied by company*

-company provides timetable 1..*

-route is involved in trip

0..*

-trip has route

1..*

-train is operated by railway

1..*

-railway company operates train 1..*

-name
Station

-route connects staion1..*

-station is in route*

-city_name
-country_code : char
-continent_code

City

-station is in city 1 -city has station0..*

-name
-time

Trip

-timetable is for trip

1
-trip has timetable1-railway serves trip1..*

-trip is served by railway1..*

-number
-price

TrainTicket

-trip needs ticket1

-ticket is for trip1

Figure 4. Train transportation model fragment

-route_name
-route_distance

Route

-trip has timetable 1-timetable is for trip 1

-name
-time

Trip -route is involved in trip

1 -trip has route

1

-name
Timetable

-route_name
-route_distance

Route

-trip has timetable 1

-timetable is for trip

1

-city_name
-country_code : char
-continent_code

City

-name
-time

Trip -route is involved in trip

1
-trip has route

1

-name
Schedule

-route_name
-route_distance

Route

-trip has timetable 1
-timetable is for trip 1

-name
-time

Flight -route is involved in trip

1

-trip has route

1

Common concept space

Airplane transportation
model fragment Train transportation

model fragment

-city_name
-country_code : int
-continent_code

City

-city_name
-country_code : char
-country_code : int
-continent_code

City

-name
Timetable

Figure 5. Explanatory visualization of mappings between models in local namespaces (bottom part) and con-
cept space (upper part).

10 D. STRAŠUNSKAS and Y. LIN

-transport_name
TransportMeans

-company_name
-head_office
-

TransportCompany
-name
Timetable

-timetable is supplied by transportcompany

1
-transportcompany provides timetable

1..*

-name
Train

-route_name
-route_distance

Route

-company_name
-head_office
-

RailwayCompany

-trip has timetable 1

-timetable is for trip

1

-train is operated by railway company1..*

-railway company operates train1..*

-name
Station

-route connects staion1..*
-station is in route*

-city_name
-country_code : char
-continent_code

City

-station is in city

1

-city has station0..*

-name
-time

Trip -route is involved in trip

1

-trip has route

1

-transportcompany serves trip1..*

-trip is served by transportcompany

1..*

-number
-price

TrainTicket

-trip needs ticket1

-ticket is for trip1

-name
Airplane

-company_name
-code
-head_office

AirlineCompany

-airplane is operated by airline company
1..*

-airline company operates airplane1..*

-airport_code : char
-airport_description

Airport

-route connects airport1..*

-airport is in route

*

-airport is close to city

1..*

-city has airport0..*

-number
-price

PlaneTicket

-name
-code

Alliance

-Airline is memeber of alliance

1-alliance has airline*

-name
-number
-price

TransportTicket

-transportmeans is operated by transport company

*

-transport company operates transportmeans

*

Figure 6. Integrated model for travel domain

Applying Rule 5 (Eq. 6): ‘TransportTicket’ is inserted as super concept (Rule 1) of
‘PlaneTicket’ (figure 3) and ‘TrainTicket’ (figure 4). ‘PlaneTicket’ has a relationship
with concept ‘Flight’, as well as ‘TrainTicket’ is related to concept ‘Trip’, and during
sameness check we have agreed on that ‘Flight’ is same as ‘Trip’. When integrating
models, we should remove all the relationships connected with ‘Flight’ to ‘Trip’. The
link between ‘PlaneTicket’ and ‘Flight’ is removed and changed into relationship be-
tween ‘PlaneTicket’ and ‘Trip’. Such relationship is semantically equivalent to the one
between ‘TrainTicket’ and ‘Trip’. The two relationships could be abstracted to the rela-
tionship between ‘Trip’ and ‘TransportTicket’ because of transitive relationship rule:

Trip)*Ticket(TransportRTrip)*et(PlaneTickRt)PlaneTicke*Ticket(TransportR AsAsGe (8)

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 11

Finally, the integrated model is shown in figure 6. It is based on the concepts identi-
fied being the same (i.e., figure 5) and the rules for model refinement. It should be noted
that the local distributed model fragments are still kept unchanged.

5. CONCLUSIONS AND FUTURE WORK

We have outlined a framework to support management of distributed modeling ac-
tivities by distinguishing 2 main layers: the local namespace; the shared and agreed con-
cept space. The local namespace allows the developers to model their views as they per-
ceive and use their preferable terminology, i.e. providing full “laissez-faire” for their
creativity. The concept space is used for sharing of conceptualization. The concept-space,
or common knowledge layer, results into the target model. The most important contribu-
tion of this paper is that separation between these two “conceptual” spaces provides
means for preserving knowledge of each developer, allowing them to use their own ter-
minology, agree about individual conceptualization and still refer to the common concept
space for agreement purposes.

Model fragments alignment in the concept space provides a good means for learning
while modeling. For instance, having identified parts of models being the same, the de-
velopers are notified about certain mismatches (i.e. class concepts are the same, but rela-
tionship type between them differs), and discuss the difference. Therefore, we consider it
being important to stepwise integrate model fragments during the development time, not
only the products (models) themselves. That is the main difference from current state-of-
the-art, where existing methodologies focus on models, as final product, integration.

The approach has limitation as it has not been yet tested in real distributed settings.
Having different people involved it may be difficult for them to agree about whether
some concepts are the same. But we believe that model integration during the develop-
ment activities having authors present will produce better results, than any other post-
development based integration, when authors of constituent model fragments are not
available.

The approach is first step towards implementing the environment for collaborative
modeling considering other aspects of collaboration, e.g. user awareness, support for op-
portunistic communication. Future work mainly concerns developing mechanism for re-
cording all operations performed, tracing the information and decisions based on which
concepts were added into the common knowledge layer. The challenge is creating an al-
gorithm for automatic update of the models in the concept-space based on observed
changes in the local model fragments.

6. REFERENCES

1. J. Mylopoulos, Conceptual modeling and Telos. Chapter 2 in: Conceptual Modeling, Databases, and CASE,
edited by P. Loucopoulos and R. Zicari, Wiley, (1992), pp. 49-68.

2. T. Moriarty, The importance of names, The Data Administration Newsletter 15, (2000).
3. K. Pohl, The three dimensions of requirements engineering, in: proceedings of 5th Intl. Conf. on Advanced

Information Systems Engineering (CAiSE’93), edited by C. Rolland, F. Bodart, and C. Cauvet, Springer-
Verlag, Paris, France, (1993), pp. 275-292.

4. T.R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition, 5(2), (1993).
5. M. Denny, Ontology Building: A Survey of Editing Tools (2002); http://www.xml.com/lpt/a/2002/11/06/

ontologies.html.

12 D. STRAŠUNSKAS and Y. LIN

6. A. Farquhar, R. Fikes, and J. Rice, The Ontolingua server: a tool for collaborative ontology construction,
KSL Stanford University, USA (1996).

7. J. Domingue, Tadzebao and WebOnto: discussing, browsing, and editing ontologies on the Web, in: proceed-
ings of the 11th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada (1998).

8. J. Tennison, and N.R. Shadbolt, APECKS: a tool to support living ontologies, in: proceedings of 11th Knowl-
edge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada (1998).

9. M. Arumugam, A. Sheth, and B. Arpinar, Peer-to-Peer Semantic Web: a distributed environment for sharing
semantic knowledge on the web (2002); http://lsdis.cs.uga.edu/lib/download/ASA02-WWW02Work-
shop.pdf.

10. P. Mitra, M. Kersten, and G. Wiederhold, Graph-oriented model for articulation of ontology interdependen-
cies, Stanford University Technical Note, CSL-TN-99-411, (1999) and in: proceedings of the 7th Intl.
Conf. on Extending Database Technology (EDBT 2000).

11. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi, An environment for distributed ontology devel-
opment based on dependency management, in: proceedings of 2nd Intl. Semantic Web Conf. (ISWC2003),
edited by D. Fensel et al., LNCS 2870, Springer-Verlag Berlin Heidelberg, (2003), pp. 453–468.

12. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke, OntoEdit: collaborative ontology de-
velopment for the Semantic Web, in: proceedings of the 1st Intl. Semantic Web Conf. (ISWC2002), Sar-
dinia, Italy, (2002).

13. B.A. Farshchian, A framework for supporting shared interaction in distributed product development pro-
jects, PhD thesis, IDI-NTNU, Trondheim, Norway, (2001).

14. J. Estublier, Objects control for software configuration management, in: Advanced Information Systems En-
gineering, proceedings of 13th Intl. Conf. CAiSE*2001, edited by K.R. Dittrich, A. Geppert, and M.C.
Norrie, Interlaken, Switzerland, (LNCS 2068, Springer-Verlag, 2001), pp. 359-373.

15. G. Wiederhold, An algebra for ontology composition, in: proceedings of 1994 Monterey Workshop on For-
mal Methods, (1994), pp. 56-62.

16. J. Hefflin, and J. Hendler, Dynamic ontologies on the Web, in: proceedings of 17th National Conf. on Artifi-
cial Intelligence (AAAI-2000).

17. H.H. Do, and E. Rahm, COMA - A system for flexible combination of schema matching approaches, in:
proceedings of 28th Intl. Conf. on Very Large Databases (VLDB), Hong Kong, (2002).

18. A. Doan, J. Madhavan, P. Domingos, and A. Halvey, Learning to map between ontologies on the semantic
web, in: proceedings of WWW-02, 11th Intl. WWW Conf., Hawaii (2002).

19. W. Li, and C. Clifton, SEMINT: A tool for identifying attribute correspondences in heterogeneous databases
using neural networks, Data & Knowledge Engineering, 33(1) (2000), pp. 49-84.

20. J. Madhavan, P.A. Bernstein, and E. Rahm, Generic schema matching with Cupid, in: proceedings of 27th

Intl. Conf. on Very Large Databases (VLDB), Roma, Italy, (2001), pp. 49-58.
21. S. Melnik, E. Rahm, and P.A. Bernstein, Rondo: a programming platform for generic model management,

SIGMOD, (2003), pp. 193-204.
22. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi, Observer: an approach for query processing in global

information systems based on interoperability between preexisting ontologies, in: proceedings 1st Intl.
Conf. on Cooperative Information Systems. Brussels, (1996).

23. R.A. Pottinger, and P.A. Bernstein, Merging models based on given correspondences, in: proceedings of the
29th VLDB Conference, Berlin, Germany, (2003).

24. E. Rahm, and P.A. Bernstein, A survey of approaches to automatic schema matching, The VLDB Journal
10(4), (2001), pp. 334-350.

25. X. Su, J.A. Gulla, Semantic enrichment for ontology mapping, in: proceedings of the 9th Intl. Conf. on Ap-
plications of Natural Language to Information Systems (NLDB’04), Manchester, UK, (Springer-Verlag,
2004).

26. A. Egyed, Compositional and relational reasoning during class abstraction, in: proceedings of the 6th Intl.
Conf. on the Unified Modeling Language (UML), San Francisco, USA, (2003), pp. 121-137.

27. A. Egyed, and P. Kruchten, Rose/Architect: a tool to visualize architecture, in: proceedings of the 32nd Ha-
waii Intl. Conf. on System Sciences (HICSS), (1999).

Appendix F Collection of Papers 295

F.6 Domain Knowledge-based Reconciliation of Model Fragments
Strasunskas, D., Lin, Y., and Hakkarainen, S. Domain knowledge-based
reconciliation of model fragments. In A.G. Nilsson et al. (Eds.), Advances in
Information Systems Development: Bridging the Gap between Academia and
Industry25, Springer, 2006, in press.

25 Proceedings of the 14th International Conference on Information Systems Development (ISD 2005),
Karlstad, Sweden, August 2005.

296 Appendix F Collection of Papers

Advances in Information Systems Development: Bridging the Gap between Aca-
demia and Industry. Edited by A.G. Nilsson et al., Springer, 2006

Domain Knowledge-Based Reconciliation of
Model Fragments

Darijus Strasunskas1, Yun Lin2 and Sari Hakkarainen3

1 Norwegian University of Science and Technology, Norway and Vilnius
University, Lithuania. Darijus.Strasunskas@idi.ntnu.no
2 3 Norwegian University of Science and Technology, Norway. (Yun.Lin,
Sari.Hakkarainen)@idi.ntnu.no

Introduction

Modelling is the activity of formally describing some aspects of the physi-
cal and social world around us for the purposes of understanding and
communication [5] that often is applied in the early phases of systems de-
velopment: analysis and design. However, different people usually present
different models even when given the same domain and the same problem.
Same information about a system can be modelled on various levels of ab-
straction, from different viewpoints, and consider different aspects. Model
heterogeneity generally arises due to the creative nature of the modelling
activity. Other factors such as the richness of the modelling language [4],
and the ambiguities of modelling grammars typically strengthen model
heterogeneity.

Modelling is usually cooperative activity among several developers/
analysts, where a final model must be composed from different intermedi-
ate model fragments. The challenge in modelling is to arrive at a coherent,
complete and consistent description of the problem in a particular domain.
In this paper, we seek to answer the questions: “How can we relate differ-
ent views and aspects in modelling?” and: “How can we manage the
changes in a distributed modelling environment?”

Ontologies have been used in various roles for different types of con-
solidation purposes, e.g. [2, 3, 12] for data integration, or schema and on-
tology integration through upper level ontology. Similarly to conceptual
models, ontologies are built with the aim of sharing knowledge, or defini-
tions, with other people. In addition, they are created to support automatic
reasoning. Here, we elaborate on how ontologies could be used as an in-
termediate medium for model consolidation. The focus is on end-user sup-
port for the individual developers. Their views and perceptions of the Uni-

2 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

verse of Discourse (UoD) are integrated based on some explicit basic
knowledge about the domain. Ontology is used as a reference point and
built with the sole intention to share knowledge with others. We use ontol-
ogy to define and formalize basic knowledge and the main objects in the
domain. Below settings and an illustration of the problem are discussed,
followed by a section presenting our approach in detail. Before concluding
the paper, our approach is compared to the current state of the art.

The Complex Activity of Distributed Modelling

In general, modelling is a complex and difficult task. It is usually a crea-
tive and collaborative process, during which different stakeholders are ex-
pressing them at different levels of abstraction, focusing on different as-
pects, and producing different variants of each model. Thus, the problem
here is how to support the management of logically and/or geographically
distributed modelling tasks. The problem can be illustrated by the follow-
ing scenario which will be used throughout the paper.

Consider a process of designing an offshore platform at an oil company.
Different (groups of) engineers are responsible for modelling different
parts and aspects of a new oil platform. One group is responsible for the
pipeline system design, i.e. the technological equipment; another is model-
ling the platform on which all equipment will stand; and yet another is
dealing with the capacity of oil extraction and production, i.e. the drilling
and pumping devices.

Developers (groups) work separately having only weekly meetings to
align and reconcile their models. During the meetings every developer
goes through the changes and decisions made after the last meeting. Other
developers know, based on previous experience and common knowledge,
what impact those changes have on their own models. For instance, if the
production engineer decides to increase the oil pumping production by a
certain amount, the engineer responsible for pipe lines knows that some of
the pipes should be changed to wider and thicker ones to support the in-
creased pressure. Meanwhile, the engineer designing a platform can see an
impact to her part of the work as the platform will need to carry heavier
constructions built on it. The problem here is how to support this kind of
collaboration activity by at least partially computerizing and automating
this troublesome task of model reconciliation.

Such rough impact assessments are based on ad-hoc expertise shared by
all developers engaged in this project. They are aware of the dependencies
that hold between model elements, even if the parts are not explicitly or di-

Domain Knowledge-Based Reconciliation of Model Fragments 3

rectly related. The dependency type considered here is the impact relation-
ship where, if one element is modified, then the other is impacted by this
modification, yet the elements are not otherwise physically or logically re-
lated. Other types of dependency are (but not restricted to) derived-from,
composed-of, and based-on relationships.

Universe of
Discourse

Model

Ontology

supports
modelling of formalizes

describes
view of

Fig. 1. Abstract view of our approach

Ontology as Intermediate Model

In order to relate the variety of model fragments we need to have common
reference point. Our basic assumptions consider ontology, model and UoD
as depicted in Fig.1. The approach is inspired by one of the linguistics’
methods for describing the meaning of objects – the so called semiotic tri-
angle [6].

UoD is basic knowledge about a particular domain. Ontology is used to
represent (a portion of) UoD and to transform it into a man/machine un-
derstandable format. Ontology captures main concepts from a domain and
represents relationships among the concepts in a machine readable and
reasoning-able way. The goal is to capture common knowledge about
which entities and what kind of dependency relationships they have in par-
ticular UoD. A model is instantiation of the ontology, where the basic the-
ory supports representation of a particular problem. Consequently, our
framework has two layers: an ontology layer for representing and formal-
izing a given UoD; and a model layer for modelling a problem (solution to
the problem) within that UoD.

The advantage of this framework is that it separates the basic knowledge
as the most reusable knowledge and places this in an ontology layer, keep-
ing the layer of models separately. Ontology layer is composed of a set of
concepts representing abstract entities in the real world, and relations
among them that are normally based on the external and functional proper-
ties of the concepts. Model layer is instantiated abstract entities. To return
to our scenario, each modelling of a variant of the oil platform is based on

4 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

knowledge already captured in the ontology. Thus, ontology layer is used
to reason about dependencies among modelled objects based on their
properties and model layer is used for reconciliation of the situated model
fragments. Relationships between the properties set a foundation for rea-
soning about the behaviour of objects in a domain.

Functional View

The model layer provides an environment where all model fragments are
stored and managed. In order to achieve this there is one prerequisite for
the distributed modelling activity and three iterative execution steps. Our
approach consists of the following steps.

step 0 – Ontology development. This step is run only the first time when
entering into new domain, when the knowledge about that domain is not
yet formally described. The abstract objects, their properties and relation-
ships are defined.

step 1 – Properties mapping. Mappings between function and external
properties based on particular domain are produced.

step 2 – Collaborative modelling. During this step, models to solve the
problem in question are developed, distributed and assessed. While model-
ling, the developers instantiate (decompose) the abstract concepts from the
ontology layer.

step 3 – Model reconciliation. This step deals with model integration,
change notification, i.e., the information captured in previous steps is used
to reason about the dependencies among model fragments.

Model fragments are at different abstraction levels within the same do-
main. Therefore, certain concepts in the model fragments may be referred
as being sub-class concepts of the concepts in ontology layer. These rela-
tionships, depicted as ‘kind_of’, and other formalized relationships among
the concepts in the ontology layer are used to reason about the dependency
between model fragments.

Functional and External Properties

In order to formalize the relationships, functional and external properties
need to be defined for any ontology, in our scenario the oil drilling do-
main. A functional property of a thing is significant only when the function
is used in a relationship with another thing. For example, the load limit of
a platform needs to be mentioned only when the platform is expected to
support things (constructions) put on it. Usually, external properties con-
strain the value of a thing’s functional property. An external property of a

Domain Knowledge-Based Reconciliation of Model Fragments 5

thing is present visibly even when the thing stands alone. The length,
width, height and weight are external properties of a platform. Thus, a
functional property is a property of an entity that denotes the main function
of object in a particular UoD. An external property is a property of entity
that denotes physically distinguishing features. Both properties are intrin-
sic properties in the sense of [13].

A contract holds between two things if they have a relationship, where
some functional property of one thing and some external property of the
other thing are mapped. Functional properties and external properties are
mapped under certain conditions, which define a rule in an ontology as fol-
lows.

Ext(y)Func(x) map→ :Rule (1)

Recall the oil platform scenario. We demonstrate implementation of our
approach in the next section. The external and functional1 properties and
the mappings are explained. We discuss a limited set of concepts, namely,
Platform, Oil, Pipe and PipeSystem. The ontology is built in
OWL using Protégé 3.0.

Ontology Building and Rules Definition

The ontology layer is used to capture the functional and external properties
of entities in a UoD, and to represent the relationship between them. In the
ontology fragment depicted in Fig. 2 in UML. Platform and PipeSys-
tem are both defined as subclass of Facility. PipeSystem is composed
of Pipe and Oil.

OWL distinguishes two types of properties, datatype property and object
property. The former is an attribute of an object. The latter is a relationship
between two objects. A datatype property can be regarded both as an ex-
ternal property and a functional property in our approach. For example, a
Platform has a support relationship with PipeSystem, a functional
load property with Platform and an external weight property of
Platform.

An ontology model does not explicitly distinguish between external and
functional properties. OWL is used to annotate them. A vocabulary se-
mAnn is used to distinguish between them. The following is an OWL rep-
resentation of the functional load property and the external weight
property.

1 Our definition of functional property is different from the OWL functional prop-

erty.

6 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

 <owl:DatatypeProperty rdf:ID="load">
 <rdfs:domain rdf:resource="#Platform"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <SemAnn:functional_property rdf:ID=”load”/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="weight">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pipe"/>
 <owl:Class rdf:about="#Facility"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <SemAnn:external_property rdf:ID=”weight”/>
 </owl:DatatypeProperty>

Facility

-load
-width
-height
-length
-weight
-material

Platform

-weight
-volumn
-

PipeSyste

-pressure load
-diameter
-length
-weight

Pipe

-has part1-is part of*

Oil

1

-is part of*

-support

*

-is supported by

*

-transport

*

-is transported by

*

Fig. 2. Ontology fragment

In this domain ontology, we define the relationship between Platform

and PipeSystem and assign them the related functional and external
properties, followed by an example. Let r be a relationship (r’ is a reverse
relationship of r), f be a function, EP be a set of external properties, and v
be value of a property. Then, fpf is a functional property of a thing related
to the function, epf is an external property of a thing constraining the func-
tion of another thing and epi is an external property. Finally, ct is a contract
between two things and cs is a constraint of properties. Example:

r(Platform, PipeSystem) = ‘support’
r’(PipeSystem, Platform) = ‘is_supported_by’

Domain Knowledge-Based Reconciliation of Model Fragments 7

f(Platform) = ‘supporting’
EP(Platform)={epi(Platform)|(i=1,2,…,v)}={Length, Width, Height,

Material, Weight, …}
fpsupporting(Platform)=Platform.load
epsupporting(PipeSystem)=PipeSystem.weight
fpsupporting(Platform) epsupporting(PipeSystem)=ct(Platform, PipeSystem)
v(Platform.load) <= v(PipeSystem.weight)
v(Platform.load) = cs(Platform.length, Platfrom.width, …)

Collaboration and Model Reconciliation

Model fragments in the model layer refer the knowledge that is stored in
the ontology layer in order to 1) consolidate concepts, 2) find connection
points, and 3) apply constraints when reconciling and integrating the dis-
tributed model fragments. Thus, a method for impact prediction and
change propagation is needed.

The vocabulary semAnn is used to link the model instances to the ab-
stract concepts that are defined on the ontology level. These concepts, in-
cluding the relations, external and functional properties annotate the corre-
sponding model fragments in local models as follows.

<semAnn:concept/relation/property
 rdf:resource=”REFERENCE_ONTO:CONCEPT/
 OBJECT PROPERTY/DATATYPE PROPERTY” >
 MODEL FRAGMENT
</semAnn:concept/relation/property>

As two distributed models are connected, the relationships between
models are built automatically. If one relationship in the model reflects a
relationship in the ontology and a functional property is related to that rela-
tion, then there must be a functional property in one model and an external
property in another. These two properties build an interface for the two
models and they are expressed in constraints. If the functional property al-
ready is defined in the model and annotated as a property, then it is de-
noted a functional property. If the functional property is not defined in the
model, it can be added referring to the functional property in the ontology.
The related function and value of the functional property are annotated us-
ing Rule:function and Rule:value. The square brackets indicate op-
tional statements in the annotation structure below.
 <semAnn:property rdf:resource=”REFERENCE_ONTO:DATATYPE

PROPERTY”>
 [MODEL FRAGMENT]
 <semAnn:functional_property/external_property>
 <Rule:function rdf:resource=”RULE#FUNCTION”/>
 [<Rule:value>VALUE</Rule:value>]
 </semAnn:functional_property/external_property>
 </semAnn:property>

8 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

Consider again the oil platform scenario in the OWL representation be-
low. The platformmodel is built by an expert on platform engineering,
and the pipesystemmodel is designed by another engineer. When two
models are integrated to a connectedmodel, local concepts are aligned
with common concepts.

 <semAnn:property rdf:resource=”uri://domonto#length”>
 <platformmodel:platform_length id=”id2”>
 …
 </platformmodel:platform_length>
 <semAnn:external_property>
 <Rule:value>580m</Rule:value>
 <Rule:cs rdf:resource=”uri://rule#cs”>
 </semAnn:external_property>
 </semAnn:property>

 <semAnn:property rdf:resource=”uri://domonto#load”>
 <platformmodel:carrying_capacity id=”id6”>
 …
 </platformmodel:carrying_capacity >
 <semAnn:functional_property>

<Rule:function
 rdf:resource=” uri://rule#supporting”/>

 <Rule:value>500ton</Rule:value>
<Rule:cs rdf:resource=”uri://rule#CS”>

 </semAnn:functional_property>
 </semAnn:property>

 <semAnn:property rdf:resource=”uri://domonto#weight”>
 <pipesystemmodel:weight id=”id9”>

…
 </pipesystemmodel:weight>
 <semAnn:external_property>

 <Rule:function rdf:resource=”uri://rule#supporting”/>
 <Rule:value>200ton</Rule:value>
 </semAnn:external_property>
 </semAnn:property>

 <semAnn:relation rdf:resource=”uri://domonto#support”>
 <connectedmodel:hold id=”cid5”/>
 <Rule:function rdf:resource=”uri://rule#supporting”/>
 <Rule:ct rdf:resource=”uri://rule#CT”>
 </semAnn:relation>

Platform can support PipeSystem; thus the properties of PipeSys-
tem in the model should satisfy the limits of load of platform represented
in another model. When an external property, e.g. length in the platform
model is changed, the functional property load will be impacted accord-
ing to the constraints defined in the rules. Since two models are connected,
the contract between two models should be checked. Because the weight
of PipeSystem is involved in the contract, the model fragments referring
to the PipeSystem concept have to make corresponding changes. The
changes can be traced using the annotation information in local models.

Domain Knowledge-Based Reconciliation of Model Fragments 9

Two-Layered Approach Revisited – Semantic Reconciliation

In distributed models concepts as they are used may vary in a way they are
denoted and represented. Those same-concepts-in-different-models need to
be reconciled according to the ontology when models are to be integrated.
Lets assume that context similarity has already been considered during the
agreement and identification of the same concepts, as described in [9].
Here, distributed local models adjust their semantics referring to the ontol-
ogy. The local models – platformmodel and pipesystemmodel – lo-
cate corresponding concepts in ontology. The relationships between the
objects in ontology provide a clue for integrating the models. In the ontol-
ogy of the scenario, OWL object support property is related to the func-
tional load property and connects two objects – Platform and Pipe-
System. That indicates how the platformmodel is to be integrated with
the pipesystemmodel.

The rules, which contain the two functional properties, should be ap-
plied during the integration. These rules constrain the changes of models
and are also used to check change impact on consolidated models. Three
possible impacts are: 1) changes on the functional property may impact
other models (e.g., changes on the range of load of Platform will impact
the maximum weight of PipeSystem), 2) changes on external property
of one object may impact its functional property (e.g., changes on length
of Platform will impact its load), and 3) changes on external properties
may impact other models (e.g., changes on length of Platform will
impact maximum weight of PipeSystem). The procedure of checking
for change of property is as follows.

if one property in a local model is changed
{ check the property in ontology level;
 if the property is functional property
 if the functional property is related with
 Object_Property
 { if the functional property is involved in con-

tract-rules
 check changes on the other object which is
 involved in the contract-rules;

 else
 check changes on the other object which is
 involved in this Object_property;}

 else
if the property is involved in constraint-rules
 { check changes impacting other properties involved

in the constraint-rules;}
 }

Our preliminary prototype is implemented in Python. The main interface
window consists of 5 panels: 1) a panel listing of model fragments stored

10 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

in a repository; 2) a modelling panel for editing instantiated (related or as-
sociated) abstract entities; 3) a panel for ontology browsing; 4) a notifica-
tion panel for listing changes and their impacts; and in addition 5) a chat
panel for discussion between team members.

Related Work

Ontology is commonly defined being an explicit (formal) specification of a
conceptualization [1] in the recent literature. Therefore, application of on-
tologies is in resolving semantic heterogeneity. With respect to the integra-
tion of data sources, ontologies can be used for the identification and asso-
ciation of semantically corresponding information concepts [12]. Ontolo-
gies are previously used to provide semantic interoperability in informa-
tion sharing e.g., [2, 3, 12]. The semantics of a resource in a particular
domain can be explicitly defined by associating concepts, terms and vari-
ous information resources with concepts in an ontology.

Further, ontologies can be used as means to abstract from different rep-
resentation formats and to relate various product fragments at different ab-
straction levels. Ontologies (domain models) are used in [8] to relate vari-
ous fragments of system specification to establish dependency relation-
ships for change impact prediction. The end product of system develop-
ment is seen as a collection of loosely coupled product (specification)
fragments from various perspectives that focus on different aspects. The
co-ordination of the development process and integration of different
product fragments utilizes a common reference layer, i.e. ontology.

An on-going research project [7] is looking at supporting requirements
elicitation and composing software from re-usable architectures, frame-
works, components and software packages. The use of ontology and its
reasoning mechanism helps to maintain semantic consistency. Ontology
system there has two layers; one for requirements elicitation and the other
for re-usable parts. The ontology system bridges gaps between a require-
ments specification and an architectural design at a semantic level by es-
tablishing relationships between the two layers [7].

An interesting approach is described in [14], where knowledge is organ-
ized in knowledge grid. They separate between epistemology and ontology
treating both as inseparable profiles of the unified human cognition proc-
ess. The epistemology mechanism used as a semantic description tool to
reflect human subjective cognition. The mechanism helps humans under-
stand and relate their knowledge to the one captured in ontology. Ontology
reflects people’s consensus on semantics [14].

Domain Knowledge-Based Reconciliation of Model Fragments 11

The work that has been done so far in the area of development and
maintenance of ontologies mainly has focused on one ontology, which is
edited by the developer. On another hand, there are some tools which al-
low collaborative ontology creation. For instance, Hozo [10] environment
for distributed ontology development is based on splitting ontology into
component ontology and establishing dependency between them. The tar-
get ontology is obtained by compiling the component ontologies, based on
predefined links between them.

In summary, there are different application areas for ontology usage. We
find our approach novel as ontologies are used as supervising guidelines
during modelling activity. The approach allows checking models under
development whether they are semantically correct within particular do-
main, i.e., how a model corresponds to basic domain knowledge captured
in ontology.

Concluding Remarks and Future Works

A vision of a methodological approach to facilitate management of col-
laborative logically or geographically distributed modelling activities is
presented. The approach is based on distinguishing two main layers: an on-
tology layer; and a model layer. Ontologies are used as a medium for
common knowledge representation and as a guide for models reconcilia-
tion. The ontology layer contains a set of predefined valid relationships for
the creation of situated models. Further, it provides reasoning about rela-
tionships between model fragments. We capture two types of object prop-
erties in ontology – functional and external property. Relationship between
those properties is the foundation for reasoning about the behaviour of ob-
jects in a particular domain, e.g., how change of one property influences
the change of another. We provide the motivation for our research, discuss
the settings and provide conceptual description of the approach followed
by scenario that illustrates the applicability of our approach.

There are some remaining challenges to our approach and to the current
version of our prototype, however. One is to create an algorithm for auto-
matic update of the models based on both observed changes in the model
fragments and on formalized relationships in the ontological layer. Further,
description of the rules in a related web-based syntax would be an advan-
tage for the approach as it will allow usage of the same reasoning mecha-
nism as in the ontology layer. The proposal for Semantic Web Rule Lan-
guage (SWRL) [11], whose syntax is based on a combination of OWL DL
and the Datalog sublanguage of RuleML, is a good candidate for the fur-
ther implementation.

12 Darijus Strasunskas, Yun Lin and Sari Hakkarainen

References

[1] Gruber TR (1993) A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, vol 5, no 2, pp 199-220

[2] Gruber TR (1991) The Role of Common Ontology in Achieving Sharable,
Reusable Knowledge Bases. In: Allen JA, Fikes R, Sandewall E (eds) Princi-
ples of Knowledge Representation and Reasoning. Morgan Kaufman

[3] Kashyap V, Sheth A (1994) Semantics-Based Information Brokering. Proc of
the 3rd Intl. Conf on Information and Knowledge Management

[4] Moriarty T (2000) The Importance of Names. The Data Administration
Newsletter 15

[5] Mylopoulos J (1992) Conceptual Modeling and Telos. In: Loucopoulos, Zi-
cari (eds) Conceptual Modeling, Databases, and CASE. Wiley

[6] Ogden CK, Richards IA (1923) The Meaning of Meaning. 8th ed. Harcourt,
Brace & World Inc. New York

[7] Saeki M (2004) Ontology-Based Software Development Techniques. ERCIM
News, no 58, p 14

[8] Strasunskas D, Hakkarainen S (2003) Process of Product Fragments Man-
agement in Distributed Development. Proc of the (CoopIS'2003), Springer,
LNCS2888

[9] Strasunskas D, Lin Y (2004) Model and Knowledge Management in Distrib-
uted Development: Agreement Based Approach. Proc of the 13th Intl. Conf.
on Information Systems Development (ISD'2004) Vilnius Lithuania

[10] Sunagawa E, Kozaki K, Kitamura Y, Mizoguchi R (2003) An Environment
for Distributed Ontology Development Based on Dependency Management.
In: Fensel D et al (eds) LNCS 2870. Springer

[11] Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004)
SWRL: A Semantic Web Rule Language Combining OWL and RuleML

[12] Wache H, Vogele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H,
Hubner S (2001) Ontology-Based Integration of Information – A Survey of
Existing Approaches. In: Stuckenschmidt H (ed) IJCAI-01 Workshop: On-
tologies and Information Sharing

[13] Wand Y, Weber R (1995) On the Deep Structure of Information Systems. In-
formation Systems Journal, vol 5, pp 203-223

[14] Zhuge H (2004) China's e-Science Knowledge Grid Environment. IEEE In-
telligent Systems, vol 19, no 1, pp 13-17

 309

Index

A
Actual effectiveness, 136
Actual efficiency, 136
Actual usage, 136
Agreement, 88

common, 88
pragmatic, 89

C
CASE

Computer Aided Software/Systems
Engineering, 41

Programming environment, 42
Software Engineering Environment, 41

Change impact notification, 73, 115
Change impact prediction, 73
Change Management, 32
CMS. See Content Management System
CO2SY, 119
Collaboration, 13

collaborative activity, 14
Commitment, 89

absolute, 89
pragmatic, 89

Common information space, 16
Computer Supported Cooperative Work, 49
Concept specification. See Externalisation
Conceptual model, 21
Conceptual modelling, 23
Conceptual schema, 24
Content management system, 54
Cooperation

cooperative activity, 14
CSCW. See Computer Supported

Cooperative Work

D
Data

Qualitative, 132
Quantitative, 132

Data interchange formats, 16
Data semantics, 5
Dependency management, 108
Dependency relations, 13
Development object. See Product fragment
Development phases

System analysis, 26
system design, 26
system implementation, 26

Development process, 12
Development project, 12
Dimensions

collaborative distributed modelling
dimensions, 88

development dimensions, 3
dimensions of distribution, 12
requirements engineering dimensions, 88

Direct dependency, 107
Direct dependency association, 74, 115
Distributed development, 71, 72

E
Evaluation, 131

alternatives, 133
cause analysis, 150
framework, 135
validity threats, 153

Externalisation, 35, 89, 90

F
Fragments association, 72
Framework for collaborative modelling, 89

310 Index

G
Groupware, 49

I
Impact assessment, 113
Information integration, 55
Information System Engineering, 11
Intention to Use, 136, 144, 149
Internalisation, 35, 89, 93
ISE. See Information System Engineering
IU. See Intention to use

K
Knowledge of problem domain, 15
Knowledge of product, 14

M
MAM. See MEM
Meaning of information, 17
Medium for cooperation, 11
MEM. See Method evaluation model
Metadata, 17
Method Evaluation Model, 135
Model composition, 98
Model fragment management, 87
Modelling aspect, 33
Modelling Environment, 121
Modelling levels

pragmatic, 56
semantic, 56
syntactic, 56

N
Namespace, 80

composition identification, 85
co-reference, 81
object identity, 83

family id, 84
version identification, 82

Object identity, 80
Non-versionable objects, 77
Notification, 37

O
Ontology, 19, 21, 55

P
Perceived Ease of Use, 136, 144, 146
Perceived Usefulness, 144, 148
Perspectives of IS Engineering, 24

Coverage in process, 25
Coverage in product, 25
Maturity, 26
Representation of product, 25
Reuse of product and process, 25
Stakeholder participation, 25
Weltanschauung, 24

PEU. See Perceived Ease of Use
Phase product, 13
Principle of Necessity, 24
Product. See Software system
Product as

boundary object, 15
coordination mechanism, 15
externalized knowledge, 15

Product development, 11
Product development project. See Product

development
Product fragment, 3, 13
Product fragment management, 105
Product fragment semantics, 107
Product fragment storage, 78
Product fragments exchange, 16
Product fragments management, 73
Product properties, 15
PU. See Perceived Usefulness

R
Reality

local, 14
organizational, 14

Refinement of associations, 74
Repository, 51
Repository functions, 75
Repository object, 75
Repository objects. See Versionable objects

and Non-versionable objects
Repository system. See Repository

S
Sameness management, 95
Semantic association, 107
Semantic interoperability, 5
Semantic relatedness, 108

aggregation, 110
generalisation, 108

Index 311

other relationships, 112
Semiotic tetrahedron, 106
Semiotic triangle, 106
Shared agreement, 17
Similarity management, 94
Software system, 11

executable, 12
Stakeholder, 12
System development tool, 12

T
TAM. See Technology acceptance model
Technology Acceptance Model, 135
Traceability, 57–68

Traceability information, 79
Traceability links

dependency, 58
evolution, 58
rationale, 58
satisfaction, 58

V
Versionable objects, 77, 78

semi-structured, 77
structured, 77
unstructured, 77

View reconciliation, 35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

