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PrefaeFor the fourth time Gjøvik University College and The Norwegian Color Researh Laboratoryorganises an international symposium on olour imaging. Gjøvik Color Imaging Symposium 2007takes plae June 14&15, 2007, at Gjøvik University College in Gjøvik, Norway.In these proeedings you will �nd short abstrats of the invited and keynote presentations,as well as extended abstrat for the submitted ontributions. For more information about theonferene, please refer to http://www.olorlab.no/.Gjøvik, June 2007Prof. Jon Y. Hardeberg, Conferene Chair
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Spatial Color VisionA. RizziDip. di Tenologie dell'Informazione, Università degli Studi di Milano, rizzi�dti.unimi.itJ. J. MCannMCann Imaging, manns�tia.netHuman vision has remarkable image proessing power. It aptures information over a very widedynami range of light intensities and spetral distributions. Unlike �lms and eletroni sensors,visual appearanes are nearly onstant, despite widely variable input stimuli. Computer algo-rithms mimi vision by responding to the image ontent, as well as to the radiometri propertiesof individual pixels. The spatial analysis of images is the basis of appearane onstany, withboth hanges in spetral ontent and the level of light.Today, there is a growing family of algorithms that treat/modify/enhane olor informationin its visual ontext, also known as Spatial Color methods (e.g. Retinex [1℄, ACE [2℄, or RSR [3℄).These models are responsive to image ontent as well as to pixel statistis. They produe resultsthat, due to a hanging spatial on�guration, an have a non-unique relationship with thephysial input. For this reason, they annot be desribed using onvolution �lters and sinetheir behavior hanges aording to the image ontent, their impulsive response is not �xed.They all share the idea of reomputing olor of eah pixel through the spatial distributionof values in the image, but a lot of di�erenes arise aording to their purpose. From this pointof view, Spatial Color Algorithms (SCA) an be led by mainly three di�erent goals:
• Aurately model the human vision system (HVS) prediting olor appearane, [SCA-HVSModel℄
• Aim to enhane images in the diretion of human visual appearane, [SCA-Rendering℄
• Attempt to alulate the atual re�etane of an objet from the radiane (re�etane ×illumination). [SCA-Re�etane℄Sine SCAs an have three distint goals, three di�erent kind of outomes are expeted, andthree di�erent measures of performane are required.Judging these models' performane is a hallenging task and is still an open problem. Twomain variables a�et the �nal result of these algorithms: their parameters and the visual har-ateristis of the image they proess. The term visual harateristis refers not only to theimage's digital pixel values, (e.g. alibration of pixel value, the measured dynami range of thesene, the measured dynami range of the digital image), but also to the spatial distribution ofthese digital pixel values in the image. This paper disusses the visual on�gurations in whiha Spatial Color methods show interesting, or ritial behavior. We survey the more signi�antSpatial Color on�gurations inluding olor onstany and ontrast. The disussion presents thestrengths and weaknesses of di�erent algorithms, hopefully allowing a deeper understanding oftheir behavior and stimulating disussions about the searh for a ommon judging ground.Referenes[1℄ J. J. MCann, �Blak Capturing a blak at in shade: past and present of Retinex olorappearane models�, Journal of Eletroni Imaging, 13, 36-47, 2004.[2℄ A. Rizzi, C. Gatta, D. Marini, �A New Algorithm for Unsupervised Global and Loal ColorCorretion�, Pattern Reognition Letters, 24 (11), pp. 1663-1677, July 2003.9



[3℄ E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, D. Marini, �Random Spray Retinex:a new Retinex implementation to investigate the loal properties of the model� IEEE Trans-ations on Image Proessing, Vol. 16, Issue 1, pp. 162-171, January 2007.BiographyAlessandro Rizzi took the degree in Computer Siene at University of Milano and reeived aPhD in Information Engineering at University of Bresia (Italy). He taught Information Systemsand Computer Graphis at University of Bresia and at Politenio di Milano. Now he is assistantprofessor, teahing Multimedia and Human-Computer Interation, and senior researh fellow atthe Department of Information Tehnologies at University of Milano. Sine 1990 he is researhingin the �eld of digital imaging and vision. His main researh topi is the use of olor informationin digital images with partiular attention to olor pereption mehanisms. He is the oordinatorof the Italian Color Group.
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Studies on Image Control for Better Reprodution in O�setEmmi EnokssonThe Royal Institute of Tehnology, KTH, SwedenThis researh work has foused on studies of image ontrol for better reprodution in o�set andhas been applied pratially. This researh work has resulted in a survey of olor managementknowledge, a ommuniation list onerning ICC pro�les, an eduational kit, a proposal for anew terminology and a patent onerning image adaptation. The work is divided into followingthree areas:1) image lassi�ation A better understanding of image proessing an avoid misunderstand-ings in the print and leading to more satis�ed ustomers. To ahieve optimal print qualityfor di�erent images, it is important to adapt the prepress settings to the image ategory.Images an be divided into di�erent ategories depending on their image ontent, key in-formation and tone distribution. Trials have been arried out in whih the IT.8 test harthas been adapted to di�erent image ategories. The results of the image adaptation suggestthat an adjustment only to low-key images (dark images) is su�ient, as even normal-keyimages then show a better similarity to the original image. The low-key image showedmore details in dark areas.2) olor separation Two studies have been arried out. The purpose has been to investigatethe knowledge level in olor separation, the use of ICC-pro�les and the understanding ofolor management in various printing houses in Sweden. This was done to identify andsuggest new appliations and suggested ations. These studies indiate that there is a seri-ous problem in the graphi arts industry. The problem is that there is both an insu�ientknowledge of olor management and a lak of ommuniation. There is a lak of ompe-tene and a lak of literature and instrutions whih an help printers to better understandthe tehnology, and ommuniation su�ers through a lak of a ommon language.3) suggested ations and the development of tools Terminology simpli�ation is ruialfor the users. A new term for separation �Compensation by Blak�, CB, has been suggested.A single term should make it easier for the users to understand and use the di�erent settingswhih impat the image reprodution. A new tool/kit for the evaluation of ICC-pro�les hasbeen reated. The goal of this eduational kit is to failitate and exemplify the pratialunderstanding of pro�les and their use for the users.BiographyEmmi Enoksson works at the University of Dalarna in Sweden as the Head of the Graphi ArtsDepartment, whih is part of the Faulty of Engineering, with 100 students. The researh sheis urrently onduting is part of her dotorate in image lassi�ation and optimized image re-prodution at the Media Tehnology and Graphi Arts, Royal Institute of Tehnology (KTH),Stokholm, Sweden. Projets Emmi is involved in: redesigning and improving the image las-si�ation and optimized image reprodution proess, examining the proess from sanner toprinter, and also development of pedagogi tools for evaluation of ICC-pro�les. Emmi Enokssonhas worked both as a leturer in image, printing, layout and graphi software at various edua-tional institutions, and also as an image printing onsultant for printing ompanies and papermills.
11



Appearane reprodution for 3D soft proo�ng, skin olourreprodution and e-ommereNorimihi TsumuraGraduate Shool of Integration Siene & Department of Information and Image Sienes,Chiba University, Japan1. IntrodutionIn the proess of produt development, an appearane of the produt is usually evaluated bydiretly observing the trial piees. The shape of produts an be evaluated by making the mokup or showing the omputer graphis image. However, it is di�ult to evaluate the appearanewithout making a trial piee, sine they are dependent on the viewing devies, environmentalilluminant. It is said that the evaluation of appearane beome bottle nek in the yle of thedevelopment. Therefore, it is required to predit the appearanes for produt in various indus-tries. In this review, we will introdue our pratial approahes for appearane reprodution [1℄in 3D soft proo�ng, skin olour reprodution and e-ommere.2. Appearane reprodution for 3D olour proof system [2℄There are many kinds of 3D prints suh as beverage ans, PET bottles, snak pakages, and soon in our life. In the �eld of B to B e-ommere system on designing and marketing of produts,it is required to display the measured or simulated images of the 3D prints. Figure 1 show thesoftware to evaluate appearane of the beverage ans. This system made by DIC Corporation inthe ollaboration with our laboratory. However, these images tend to be higher dynami rangethan the luminane range of usual monitor, beause the 3D prints are made of smooth materialssuh as papers, plastis, and metals that have sharp and strong speular re�etion. Therefore,the images of 3D prints annot be displayed without ertain image proessing for dynami rangeompression.Aurate reprodution of ontrast gloss and that of olor and shading are trade-o� in tonemapping. For the aurate reprodution of ontrast gloss, it is required to derease luminanein non-highlight area. The resultant tone mapped images tend to be unsatisfatorily dark ex-ept highlight area. On the ontrary, it is required to lip luminane in highlight area into the

Figure 1: Software to evaluate appearane of the produts (with DIC Corporation).12



Figure 2: Rendering high dynami range image and proposed tone mapping.

Figure 3: Resultant image by onventional and proposed range ompression methods.maximum monitor luminane for the aurate reprodution of olor and shading. The resultanttone mapped images tend to have less ontrast gloss than real objets.As is shown in Figure 2, we proposed to map luminane of di�use re�etion and speularre�etion in di�erent ways. In Figure 2, the luminane on the virtual CCD on the amera isalulated in the omputer by using the omputer graphis tehniques. The rendered luminaneimage is shown by pseudoolor sale in the luminane range of usual monitor. In the proposedtone mapping [2℄, the luminane images for di�use and speular re�etion are separately al-ulated. It is easy to separate di�use and speular re�etions in rendered Figure 6, sine therendered image an not be displayed in the onventional imaging system. This is beause thatthe rendered image is expeted to be high dynami range, and the luminane image has higherdynami range than luminane images, sine the BRDF used in the rendering proess is formu-lated as a sum of both re�etions. Rendering using BRDF formula of di�use (speular) re�etiongives images of di�use (speular) re�etion. In the proposed tone mapping, only the speularre�etion is mapped to the target dynami range by ontrolling the slope of speular re�etionomponent as is shown in Figure 2.Figure 3 shows the e�etiveness of the proposed method. The onventional results for (1)non-linear ompression (3) linear ompression show that olor of di�use omponents an not bereprodued in these method. The onventional results for (2) lipping show the aurate olorreprodution of di�use omponents, however, the relative magnitude of glossiness is not pre-served ompared to the real objet. The result of proposed method shows the aurate olorreprodution of di�use omponents and preservation of the relative magnitude of glossiness.13



Figure 4: Image based skin olor analysis and synthesis (with Kao Corporation).

Figure 5: Skin olor synthesis with the hange of pigmentation.3. Appearane reprodution for skin olour reprodution [3℄The reprodution of human skin olor may be onsidered as the most important funtion of vari-ous imaging systems. With the reent progress of various imaging systems, suh as mobile phoneswith CCD ameras, osmeti advisory systems, and telemediine systems, the reprodution ofskin olor has beome inreasingly important for image ommuniation, osmeti reommen-dations, medial diagnosis, and so on. We proposed an E-osmeti funtion for digital images,based on physis and physiologially-based image proessing. In this method, the sattering inthe skin is modelled in a simple linear form in the optial density domain, and inverse optialsattering is performed by a simple inverse matrix operation. Figure 4 shows the shemati of�ow in the proposed image-based skin olor and texture analysis/synthesis. The original image isseparated into the images of surfae and body re�etion based on polarized illumination, and thebody re�etion image is analyzed by independent omponent analysis with the shading removalto obtain the melanin, hemoglobin, and shading omponents.Physiologially based image proessing ould be applied to the omponents to ontrol thephysiologially meaningful hange of skin. The proessed omponents are synthesized to obtainthe image using E-osmeti. Figure 5 shows the inrease or derease of the omponent homo-geneously. Realisti hange an be ahieved by this method. Computer graphis tehnique annot be arhived to this realisti hange. This result shows the e�etiveness of the image-basedapproah using omputer vision tehnique.4. Appearane reprodution for e-ommere [3℄It is important to reprodue equally pereptible images aross di�erent displays in the Internetshopping system. To solve the di�erene of olor appearane between two displays, many studieshave been done on the devie independent olor reprodution. However, a little has been studiedon a devie independent reprodution of glossiness of the objet.14



Figure 6: Images used to make the gloss model.In the e-ommere system, the gloss reprodution is also important for ustomer. We de-veloped the gloss reprodution system based on a pereption of the human vision by using thevarious images of glossiness and luminane of display. Figure 6 show the images used to model theglossiness whih is the funtion of luminane of display and parameters of BRDF on the objetsurfae. The approah is based on the tehnique proposed by Ferwerda et. al [4℄ where glossinessis modelled under various di�use re�etane of the objet. Psyhophysial saling tehnique wasintrodued to larify the relationship between the attribute of human gloss pereption and thephysial properties of the glossiness of the objet in their paper.Our developed model for glossiness is as follows.
G = 54.7

√

As + 4.1 × 102
√

n + 5.4
√

I − 76.3 (R2 = 0.803)where G is the glossiness value obtained by the subjetive evaluation to the images shown inFigure 10, I is the simulated luminane of display in those images. As the parameters for BRDF,
As is the power of speular omponents, n is an index that simulate the degree of imperfetion ofa surfae in the Phong re�etion model. It is noted that the simulated luminane I is introduedinto our glossiness model.The developed glossiness model is used for mathing the gloss on di�erent devies. As iswritten above, the model is written by parameter for BRDF on the surfae and the luminane ofthe display. The luminane of the display may be pre-de�ned in olor management system suhas sRGB or ICC pro�le, or estimated by simple subjetive evaluation on the display. Figure 7shows an example of the isogloss urve, whih is obtained based on the gloss model. By usingthis isogloss urve, glossiness of the objet an be preserved in hanging the luminane of thedisplay.Figure 8(a), (b) shows the images on high luminane display and low luminane display,respetively. The same data is displayed on eah devie, although the appearane of gloss looksdi�erent. Figure 8() shows the image ompensated along the isogloss ontour by keeping theluminane in Figure 8(b). By using images along the ontour, we an produe images with sameglossiness on di�erent displays. 15



Figure 7: Iso-gloss ontours.

Figure 8: Devie independent gloss reprodution based on the iso-gloss ontours.
16



4. ConlusionThe ase studies for appearane reprodution were introdued based on the our previous researhfor 3D olor proof system, image-based skin analysis and synthesis system, devie independentgloss reprodution system. These ase studies showed the e�etiveness of appearane reprodu-tion in the produt development. It is noted that this paper is written based a part of my reviewin Color Researh and Appliation [1℄.Referenes[1℄ Norimihi Tsumura, Appearane reprodution and multi-spetral imaging, Color Researhand Appliation Vol. 31, No. 4pp. 270-277(2006)[2℄ Ishii T, Tsumura N, Shishikura M., Miyake Y., Reproduing 3D Prints on Monitor byRelative-Glossiness Mathing Tehnique, IS&T/SID's 11th Color Imaging Conferene, ColorSiene, Systems and Appl. , 23-29(2003).[3℄ Tsumura N, Ojima N, et al, Image-based skin olor and texture analysis/synthesis by ex-trating hemoglobin and melanin information in the skin, am Transations on Graphis,22:770-779(2003).[4℄ Ikeda T, Tsumura N, and Miyake Y. Devie Independent Gloss Reprodution Modelfor E-Commere: Estimation of Radiane on Display, Pro. IS&T PICS Conferene,:425-428(2003).[5℄ James A. Ferwerda et al. : �A psyhophysially based model of surfae gloss pereption.�,Pro. SPIE Human Vision and Eletroni Imaging IV, 291-301 (2001).BiographyNorimihi Tsumura was born in Wakayama, Japan, on 3 April 1967. He reeived the B.E., M.E.and Dr. Eng degrees in applied physis from Osaka University in 1990, 1992 and 1995, respe-tively. He moved to the Department of Information and Computer Sienes, Chiba University inApril 1995, as an assistant professor. He was a visiting sientist in University of Rohester fromMarh 1999 to January 2000. He is urrently assoiate professor in Department of Informationand Image Sienes, Chiba University sine February 2002, also a researher in PRESTO, JapanSiene and Tehnology Corporation (JST) sine Deember 2001. He got the Optis Prize forYoung Sientists (The Optial Soiety of Japan) in 1995, Applied Optis Prize for the exellentresearh and presentation (The Japan Soiety of Applied Optis) in 2000, Charles E. Ives Award(Journal Award: IS&T ) in 2002. He is interested in the olor image proessing, omputer vision,omputer graphis and biomedial optis.
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The response of primate one-opponent ells to light stimulationThorstein Seim and Arne ValbergNorwegian University of Siene and Tehnology, Setion of Biophysis and MedialTehnology, N-7491 Trondheim, NorwayCone-opponent ells are found at several levels of the primate visual system. Of the six mainopponent ell types in the retina and lateral geniulate nuleus (LGN), two parvoellular elltypes (the Inrement and Derement ells; also alled ON and OFF ells) are devoted to theL-M dimension of one spae while two other I- and D-ells deal with the M-L dimension.Two other ell types ombine S-ones with a sum of L and M-ones (the bistrati�ed �Blue ONells� and the muh rarer �Yellow ON ells�). These six ell types show a harateristi responsewhen the retina is exposed to stimuli of di�erent wavelengths and intensity (luminane), andthis behaviour has, for a �xed stimulus size, been modelled by an opponent ombination ofone signals to retinal ganglion ells. These signals were omputed by a linear ombination offamiliar hyperboli funtions desribing the dependene of one potentials on light intensity.These hyperboli funtions represented the only non-linear stage of the model. We have earlierdemonstrated how subtrating the response to ahromati stimuli separates out a hromatiomponent that allows for the saling of hromati olour di�erenes (Valberg et al., JOSA, A3,1726-1734, 1985). Here we present additional data on how suh ells respond to stimuli varyingin wavelength, luminane, and size. It is shown how a ombined ativity of `L-M' and `M-L'types of Inrement parvoellular ells largely anels the hromati omponent in the responseand ampli�es the response to bright ahromati stimuli. The same applies to `L-M' and `M-L'Derement ells and dark ahromati stimuli. We also use the experimental data to determinespatial sensitivities of the reeptive �elds of the opponent ells. Combined with area responses,the model is used to predit the spatial struture of exitation and inhibition within the reeptive�eld. The result is related to the spatial distribution of one types within the exitatory andinhibitory areas and a possible overlap of exitation and inhibition, like in the �Mexian hat�model.
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Reent developments in ICC olour managementPhil GreenLondon College of Communiation, pj.green�l.arts.a.ukInitially oneived as a stati �le format to enapsulate olour transforms in a form that isinteroperable and produes onsistent output, the ICC spei�ation has reently undergoneamendment that signi�antly extends its apabilities.Version 4 of the spei�ation was published some years ago, and resolves some of the earlierambiguities in the spei�ation. Most olour management produts now have the ability to makeor use V4 pro�les. However, the most important feature of V4 is only reently beginning to berealised. In the V2 arhiteture, input pro�les map to the Pro�le Connetion Spae (a more orless unbounded CIELAB enoding with D50 illuminant), and output pro�les map from this PCSinto the devie spae. Where the input and output media have di�erent olour gamuts, someform of gamut ompression must be applied in this work�ow, but neither pro�le knows the gamutof the other. This results in ompromises being made whih an severely restrit the gamut ofthe �nal reprodution. While this is not an issue for reprodutions using the olorimetri intent,it leads to a loss of potential quality when using the Pereptual rendering intent. The PereptualReferene Medium Gamut was adopted to address this problem by having a well-de�ned olourgamut for data in the PCS. We onsider here how the PRMG is used in a olour reprodutionwork�ow, and we report the development of a pro�le whih maps between the PRMG and thesRGB olour spaefor the purpose of display viewing.The various �avours of PDF/X have beome a major element of graphi arts work�ows. Inthe most reently adopted version, the trend towards the inlusion of referenes to well-de�nedexternal resoures is ontinued by providing a mehanism for referring to resoures by theirURL. One impliation of this is that an ICC pro�le spei�ed as the OutputIntent of a doumentmay be given as a URL for the pro�le rather than inluding the pro�le in the doument. Thisis expeted to be partiularly important for variable data printing where it is less pratial toinlude pro�les for eah element of a variable data stream. The ICC has developed a Pro�leRegistry where pro�le providers an register pro�les based on standard haraterization datasets, and whih an then be referened by a permanent URL based on either the pro�le nameor its pro�leID value. The pratial appliation of this in graphi arts work�ows is onsidered,together with some re�etion on the requirements of standard haraterization data.The ICC spei�ation has previously de�ned an enoding range for CIELAB whih limits L*to 100. This is highly approriate to graphi arts work�ows where the referene white is taken asa di�use white re�etor. However, there is inreasing interest in olour management in digitalphotography and the digital motion piture industry, where the sene adopted white may havea luminane well beyond that of a di�use re�etor. In suh high dynami range imaging, therequirement to ompress or lip to the PCS enoding range an ause severe limitations onthe proessing possibilities, inluding re- purposing of data aross di�erent media. The reentlyadopted �oating point proposal provides a signi�ant extension to ICC apabilities by allowingheadroom in the the enoding. This proposal also inorporates other important extensions,inluding the ability to use a �oating point enoding for look-up tables, and the ability to addadditional proessing elements (beyond those already de�ned in the spei�ation) in the pro�le.The use of suh proessing elements by a pro�le and a CMM makes it possible to generatedynami, programmable transforms whih an handle a muh greater range of olour proessingtasks than envisaged in the original ICC arhiteture.Mirosoft have reently released the Vista operating system whih inorporates WindowsColor System. Tis represents a signi�ant extension to the apabilities of ICM 2, and like reentICC developments, points in the diretion of dynami and programmable olour management.WCS is fully ompatible with ICC V4, and is likely to inreasingly be used by onsumers onWindows PCs. We onsider the impliations for professional work�ows, suh as the possibility22



of interoperability issues arising with ustomers supplying work with WCS pro�les.
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Inkjet in question: adapting urrent olour and ink tehnologyfor the requirements of the userCarinna ParramanCentre for Fine Print Researh, University of the West of England, Bristol, BS3 2JTCarinna.Parraman�uwe.a.uk�It is of interest that, regardless of the number of impressions, the inks may be seletedsolely on the basis of their olor gamut. Their olors need not be yan, magenta, andyellow; nor is it required that they be transparent. The way is therefore opened forentirely new printing proesses.� [Hardy and Wurzburg 1948℄AbstratThis paper is an overview on the urrent appliation of inkjet and it's, as to yet onsideredunful�lled potential, whih as a tehnology, is as revolutionary as Caxton's printing press;and a presentation of an approah to develop inkjet from the perspetive of the user. Thepaper onsiders the impat of tehnology on the user, and vie versa, responses to howinkjet tehnology is being adapted. It highlights reent developments in pigmented inks andthe introdution of new olours by the three major inkjet ompanies: Canon, Epson andHP. However the introdution of new olours might ful�l objetives to expand the printedolour gamut that is based on a photographi olour reprodution requirement, but doesnot address how the tehnology an be thoroughly developed as an entirely novel olourprinting system. Inkjet is in a transitional phase from lassi image reprodution towards`reativity'. The presentation disusses the impliations of the need to hange methods inmixing inks that moves away from existing olour spaes, non intuitive olour mixing tobespoke inks sets, olour mixing approahes and olour management methods that are notreliant on RGB or CMYK.BakgroundThe urrent situation is how olour management systems, sine the early 90s, have transformedthe print industry in providing olour �delity and olour onsisteny, whih has brought togetherthe wide range of print industries: newspaper, poster, �ne art, photography, interior design, tex-tiles; into working with a ubiquitous olour language. For industry, this management of olourhas provided the ommerial printer with a streamlined method of printing from workspae toprinter to paper. Furthermore, print hardware and software has also beome rationalised. How-ever, industry has now begun to question what has been misplaed in exhange for ommerialexpedieny? The industry has ome to realise that although work�ow methods are vital for om-merial growth, there is a very large and signi�ant other market, whih belongs to the artists,designers and users. This researh is undertaken from the perspetive of the artist/designer/user.Over reent years inkjet tehnology has developed at a pae, and has evolved as a sophis-tiated software and hardware tool for the reprodution of digital photographi images. Asimprovements ontinue in inkjet head tehnology, inks and olour gamut, thus the gap betweenthe traditional photographi print and the inkjet print has narrowed. However, there is a growingrequirement for the user to gain aess to an inkjet tehnology that is not neessarily dependenton photographi printing, whih might ontain, for example �elds of olour, �ne lines, blendsand text. These requirements ould be gained through alternative print and olour managementmethods, suh as the development of novel olour sets and modi�ations to print software andhardware.The UserFrustrated by the hardware, organisations have been driven to desperate measures. As R. MaHolbert desribed how, at Nash Editions, they invalidated their warranty on their 126,000 dollar24



Iris (3047) printer by sawing o� and raising the print heads to print on thiker paper (History ofNash Editions p.29). Or at the Centre for Fine Print Researh University of the West of England(UWE) Bristol, we rewired the swithes to isolate the paper path mehanism so that (thiker)papers ould be aurately registered and reregistered for overprinting to inrease the density ofblak; and as a matter of ourse, the need to lift or remove the lid from the printer in order togain a better understanding of the inner mehanisms.From the perspetive as a printer and printmaker, and working ollaboratively with artists, aommon response to how a �nal printed image is obtained is through `trial and error'1. Aurategamut mapping from monitor to print is undermined by many unknowns: by non white paper,textured paper, large �elds of printed olour that might pereptibly hange aording to sale,simultaneous ontrast and metamerism. The proesses and methods to ahieve a high qualityimage, is more often hard won through progressive steps: the need to aquire tools and skillsto make a ompetent image is one that evolves as the user beomes more familiar with thetehnology.Furthermore, as a pratitioner of �ne printmaking, traditional printmaking is also used asbenhmark for the digital printed image, and therefore the �ne art and design setor mighthave di�erent parameters for onsidering the quality of the �nished image. An analysis of thework is based on an artist's oneption of the work and a subjetive assessment of print surfae,olour and image quality, whih although may appear to be based on the same riteria as areprodution, the impat on the viewer is quite di�erent.User requirements for improving inksWith the emergene of digital imaging tehnologies in the 1980s so too was there a desire to printhigh quality olour images. Whilst Nash Editions reognised that the Iris tehnology produedbeautiful rih and dense olour, they also quikly realised the dye based inks were inrediblyfugitive. They found that the early inks, if left in daylight for a few hours would notieably fade(Holbert, 2007, p.20). Similarly, in 1999, when we began working with an Enad Novajet, theseinks were so fugitive that when printed on ommerial oated papers, they ould fade in a darkroom overnight. As a way of addressing this problem, Lyson Inks responded to requirementsby making �ne art inks that would enable the user to obtain a ompromise between olourpermanene and brightness of olours, not as yet ahievable in pigment inks.The onern for permanene however motivated users, onservationists and representativesfrom the paper and pakaging group to address these problems, whih have resulted in a seriesof ongoing onferenes hosted by the Institute of Physis in London, to assess and debate thepreservation and Conservation Issues Related to Digital Printing and Digital Photography (2001onwards).Sine 2000, developments in inkjet ink tehnology has signi�antly hanged from when inkjetsused dye-based olour inks and pigment-based blak, these are still used in the smaller deskjets,small moleule dyes are used to apitalise on the wider olour gamut. However the trend is tomove towards pigment based inks whih are resistant to UV and gas fading, and beause theyare more omplex, break down slower than dyes. As advanes are made in inkjet ink tehnologytheir brightness has improved, resulting in the majority of wideformat printer manufaturersusing pigment inks. This is evolved as a user demand for arhiving and olour longevity, interms of intended appliation of large print works: exhibition, display and �ne art and postermarket.For the medium and wideformat market, eight-ink sets and twelve-ink sets are beomingubiquitous. Canon's LUCIA Pigment Ink Tehnology ontains twelve-olour pigments using red,blue, green, grey, photo grey, yan, photo yan, magenta, photo magenta, yellow, (regular) blak,1In response to a questionnaire given to 20 artists as part of a bakground to an exhibition entitled 20:20 Adoumentation of Artists making prints. http://amd.uwe.a.uk/fpr/index.asp?pageid=137825



and matte blak. The VIVERA range of olours introdued by HP through the new Design Jet Zseries inludes light grey, grey, matte blak and photo blak, magenta, yellow, yan, orange/red,blue, green, light magenta, gloss. With the inlusion of green has resulted in the light yan beingredundant.For the blak and white reprodution, Epson's UltraChrome K3 eight-olour set inludes twodi�erent blak ink modes - photo blak and matte blak; Canon di�erentiates between matteblak, regular blak, grey and photo grey, whih aording to Canon, the ombination of grey andphoto grey enables smoother transitions from light to dark. HP have inluded four grey/blaks,with the addition of a gloss, whih as part of their media pro�ling management system an beswithed on or o� to enhane density or is an automati omponent of gloss papers. It an notbe used for matte papers.Epson UltraChrome K3TM ink inorporates a High-gloss Miro-rystal Enapsulation, whihaording to Epson literature, eah pigment is oated in a resin, whih redues the grouping ofpigment partiles. This is similar to Hewlett Pakard's Vivera Eletrosteri Enaplsulation Teh-nology or EET; negative eletrostati harges within the resin layer, whih oats the pigmentsand prevents pigments from grouping together or repels eah pigment partile.Mixing olourFor traditional artists working in olour, their ability to layer olour onto anvas or paper withthe objetive to `imitate nature' through olour, light and dark, and texture is demonstratedthrough traditional easel painting and printmaking. For the photographer, the proess of reatinga oloured photograph, is a very di�erent ativity and requires the mixing of light wavelengthsto reate an image. Furthermore for the digital printer, software appliations are based on lessintuitive olour methods of mixing: red, blue and green (RGB), mixing olours additively oryan, magenta, yellow and blak (CMYK) whih are based on printer's proess olours. However,explanations on how olours are onverted, for example, in the digital imaging pipeline are oftenonfused.There has seen a shift in the reent printer manufaturers from CMYK printer drivers toRGB, this losely mirrors the pereived drive towards the photographi market in maintaininga lear relationship between traditional photographi red, green and blue �lters, monitor olour.However anyone attempting to mix a olour will quikly realise that, at least working in a CMYKspae a better idea an be obtained by, for example, mixing 100% Magenta, with 60% yan, with30% blak will reate a purple. However how might the same olour be ahieved using RGB?(Red:72 Green:30 Blue: 86). Both olour-mixing methods do not enable a meaningful methodof mixing olour.How might inkjet be developed?As a way of illustrating how inkjet might be modi�ed, one an draw upon the tehnologialparallels of Sreenprint or Serigraphy and how this proess an be used as a benhmark forinkjet. Sine the advent of sreenprint, at its most utilised in the 60s and 70s when photosensitiveoatings were introdued, the artist was able to ombine text, photomehanial image and handmade marks in a highly innovative way. This enabled the artist to over-layer olours, employlight over dark, opaque inks and transluent inks, gloss and matt varnishes and build up layers.Although the mesh size of the sreen redued the possibility of high quality or ontinuous toneimages, the artist however was able to ompensate by employing a variety of means to reatehighly saturated olour images through stohasti halftoning, multi oloured, blended or �atoloured, multilayered image making and printing.In both instanes, sreenprint and inkjet have good and problemati aspets to the tehnol-ogy. The following list highlights these pros and ons:26



Inkjet and sreenprint - pros and onsSreenprint: Pros:
• Hands on: paint mixing by hand, ontrol over olours
• Wide range of olours, inluding basi CMYK
• Can ontrol hronology of olours and layers
• Surfae topology and texture, optial qualities � an see `through' layers.
• Using transluent inks inrease density.
• Mixing inks from a transparent base and/or mixing olour from an opaque baseCons:
• Limited resolution, for photomehanial reprodution, an see the dots, not wholly photo-graphi or ontinuous tone.
• Requires an understanding of the proess ie. visosity of ink, squeegie pressure and angle.
• One sreen for every olour
• Messy, requires leaningInkjet: Pros :
• Inreasingly, a losed loop system (Photosmart), non expert an print and obtain qualityimages
• Colours are entirely transluent, an print in any order, olours are designed to mix together
• Colours are highly saturated, provide a olour gamut suitable for photographi reprodu-tion
• Small and medium sized dots, drop on demand tehnology, that an provide almost on-tinuous tone resolution
• Inredibly detailed � produe a high detail and �ne ontinuous lines � not possible by anyother proessCons:
• Limited ontrol over printer and work�ow
• Colours limited to photographi reprodution � RGB, CMYK, LAB
• One pass, surfae uniform, no surfae topology
• Cannot (easily) modify olours,
• No opaque olours, no gloss or matt.
• Cannot separate hannels
• Exat registration problemati � hit and miss27



Developing inkjet for the `Creative'To generate an image, the artist ould ombine both photographi images and �at olours, orhoose just �at or blended rendering. In any situation the user would have a range of hoies,and that would extend the potential of the inkjet hardware beyond photographi reprodution.Basi omponents of the inkjet printer might omprise:Re registration with �ne tuning (sideways, bakwards and forwards) Paper thikness sensor �heads might be raised or lowered to aommodate thiker papers Built in devie for pro�lingPhotosmart apability employing existing pigment inks `Out of the Can' printer olours andsoftware for mixing, printing �at olours and blends, shapes and �ne lines.Developing the idea of a novel RIP:The following method of image prodution would apply to the printing of �at, blended areas ofolour, with the intention to over-layer olour.Working from software suh as Illustrator or Photoshop, a series of layers would be generated� eah layer representing a olour - similar to the way one would work as a printmaker. Theseould be soft-previewed with all the oloured layers as a omposite, so as to give an indiationof how the �nal printed image would appear. This would be done by ICC pro�ling. Experimentshave already been undertaken using alternative olour ink system.The development of a olour mixing system:Using a olour system similar to an `out of the an' approah � a range of 9 basi olours, ie.blue shade red; yellow shade red; red shade blue; green shade blue; green shade yellow; red shadeyellow; blak; opaque white; transluent white/gloss extender; that an be used at any perent(1-100%) to produe a range of hues, shades and tints.ConlusionOver the last ten years the impat, the evolution and the relationship with emerging digitalprint tehnologies has been one of grappling with a hardware and software that, as yet, has notahieved its true potential: the inkjet print is still evolving.
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A Generalized Approah of Color Morphology by Means ofPareto-set TheoryMario KöppenFaulty of Arti�ial Intelligene Kyushu Institute of Tehnology, Fukuoka, Japanmkoeppen�ieee.orgKatrin FrankeNorwegian Information Seurity Laboratory (NISlab), Gjøvik, Norway kyfranke�ieee.orgThere is no unique way to extend the onepts of gray-sale morphology to olor images. Di�erentviewpoints have led so far to the proposal of a number of useful operations for the proessingof olor images. Among these viewpoints we an �nd the linear weighted, or salar, approahes,where v is mapped onto P by a salar funtion that is monotone in eah argument. Then,standard gray-sale morphology an be applied to suh transformed images IP. A typial hoiein the RGB olor spae is the sum of the R, G and B intensities. Then, the olor dilation justreads as seleting riteria the olor value with the largest sum from eah pixel's neighborhood.More re�ned onepts have been based on the use of fuzzy-fusion measures, inluding theproposal of a olor morphology that annot e�etively be redued to a linear weighting approah.However, most of these approahes are onsidering the extension to olor morphology as anextension of the seletion riteria, instead of an extension to the handling of multiple intensities.Thus, we were studying an intensity-based olor morphology, with its main di�erene toother olor morphologies being the generation of a gray-sale image that annot be the result ofa morphologial operation on a graysaled version of the olor image itself.The formal tehniques for ahieving this goal ame from the �eld of multi-objetive opti-mization and its related onept of Pareto dominane. A onsideration of the various Pareto-set-based means and tehniques that have been developed in the past for the study of (ontinuous)multi-objetive optimization problems lead to the formulation of a number of image-proessingoperators. A simple example is the generation of a gray-sale image from a olor image, whereeah pixel's gray-value represents the number of Pareto-dominating points in the neighborhoodof this pixel. Pratially this omes out to be an edge operator.In this talk the usage of Pareto sets for image-proessing operators will be disussed indetail, and some potential appliations of this approah to olor morphology will be shown.amulti-variate hannel-intensitiy vetor
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Digital Camera RAW pro�lingJak Bingham and Derrik BrownIntegrated Color Corporation � Billeria, MassahusettsJo S. KirkenærJSK Consulting � Carlsbad, CaliforniaIntrodutionRaw amera �les are onsidered by many to be the digital equivalent of the unproessed photo-graphi negative. It does not o�er the kind of exposure latitude we expet from negative �lm,but in many other aspets it holds true.1 To yield a good visual image, the RAW �le has tobe proessed and rendered to an RGB olor spae, generally sRGB or Adobe RGB (1998), andif you've ever experiened olor mismath between the printer and your monitor, or have beenonfused by RAW �le formats and ICC pro�ling and not getting the best results from your dig-ital amera and printer, this paper will detail solutions to deal with Raw amera �les and howto properly pro�le the digital amera. With an understanding of how to manage photographiolor, you an solve these problems. When the amera produes images using the standard olorenodings it is performing a olor rendering and when you then try to generate a pro�le forthis ondition by photographing a target, you are atually pro�ling the rendering and the re-sults will generally be sub-optimal, beause the pro�le now will try to undo the olor renderingin the amera. This paper addresses the use of ICC pro�les in work�ows that start with Rawamera images, inluding oordination of amera settings, RAW proessing, and ICC olor man-agement. The new apabilities of ICC version 4 pro�les will be disussed, inluding the use ofthe re-de�ned pereptual rendering intent with output-referred, sene-referred, and raw amera�les. Rather than using default ustom pro�les to render the RAW data to math the seneor reate a pleasing reprodution of the sene on the printed paper, we will develop a proessand generate a single pro�le for the spei� amera, putting an end to the myth that you needmultiple pro�les for di�erent imaging onditions suh as daylight, shade, tungsten & �uoresentadopted white.Photographers know that the world we view is di�ult to reord on �lm, and just as di�ultwith a digital amera. What if we ould apture all the olor and tone that we an see with oureyes with our digital amera? No need for �ll-�ash or additional lighting. This is, of ourse, notpossible. A sene generally will have a huge dynami range the tones from dark shadow to brighthighlight may be as muh as 10,000:1. A orresponding print will only over a dynami range ofabout 200:12, while a good display may give us as muh as 1,000:1. So the digital amera will�see� and reord the world quite di�erently from how we see the world. The initial RAW data hasto be rendered in an attempt to math the sene as best as it an, or it an be rendered to reatea pleasing reprodution of the sene. There is big di�erene between the two, and the methodsand tehnology desribed in the paper will try to shed some light on these di�erenes and theuse of ICC pro�les to aomplish the desired results. Sine we have to view the digital image onsomething, we have to selet a rendering for display or print. Films have always inluded built-inontrast and olorfulness boosts with highlight ompression, to make pitures look better.If we refer to the measured sene olor as the amera aptured it, we deal with the Sene-Referred image. But we need to view it either on a display or on a print, hene we need to makethe image look pleasing and produe the desired olor appearane the photographer wishes toexpress and reprodue and now we have rendered the image as Output-Referred. Most ameras,partiularly onsumer type point-andshoot ameras perform this rendering automatially to animage enoding of sRGB or Adobe RGB (1998). Advaned onsumer ameras and professionalameras usually have a seletable rendering, but in RAW mode this rendering beomes the job33



of the image reator, usually the photographer, and this is where we an get some help from austom ICC pro�le.It should also be noted here that two sRGB enodings of the same sene from di�erentamera brands should math, but that is rarely the ase. The math is no loser than two shotsof the same sene on two di�erent types of �lm. However, using ICC pro�les di�erent amerasan be made to reprodue the same sene in almost the same way.Using RAW format gives us the opportunity to reate ustom pro�les and working with atleast 12 bits per hannel. Using a default RAW translator will still render and enode a defaultpro�le suh as sRGB or Adobe RGB (1998), or other pre-set pro�le used as the Working Spaein Photoshop, suh as ProPhoto (ROMM) RGB. It should be noted that sRGB represents asa referene medium a standard CRT display, while with ProPhoto the referene medium is theICC pereptual intent referene medium re�etion print3. The Adobe RGB referene mediumis urrently not learly de�ned, but will most likely referene a viewing ondition of about 160to 200 lux at Daylight D65 white point, viewed in a dim surround. However, setting a ustompro�le will give a muh better rendering and keep all the olors and olor di�erenes that theamera atually reorded.Di�erent pro�ling pakages uses di�erent targets, from the most photographed target of alltimes, the MaBeth ColorCheker to the IT8/7-1 and IT8/7-2, mostly for use with sanners, toustom targets tailored to the desired sene. It is also important that the target inludes heksfor luminane uniformity as in the Digital ColorCheker and ColorEyes 20/20 targets. Thedrawbak with most targets is that they only represent a small portion of all the olors availablein the original sene, and in some ases would be restrited to spei� olors in photographipaper, hene possibly restriting the overall resulting gamut.It has been general pratie and demonstrated multiple times 4 5 that in a �xed environmentsuh as a photo studio or a opy stand for �ne art reprodution the amera and imaging onditionlend itself perfetly to proper haraterization and ICC pro�ling. It is when the amera is takenout into the �Real World� where urrent thought is that multiple ustom pro�les are needed, orjust using standard olor spae pro�les.The pereptual intent of these true amera pro�les should inlude olor rendering to the ICCpereptual intent referene medium and should be used for general photography, while ustomamera pro�les will typially be spei� to partiular shooting onditions. The olorimetrirendering intent is generally �xed to give the most aurate, though not neessarily most pleasing,rendering of the sene, while the pereptual rendering intent an be manipulated and tweakedto give the most pleasing, yet not neessarily aurate rendering of the sene. But with a pro�leand the images aptured under the same ondition, the results will be onsistent and good, andvery little further proessing will be required, at least as olor is onerned.In this paper we will show examples and omparisons of various standard pro�les omparedto both display and print pro�les, as well as ustom pro�le omparison to standard RGB pro�lesand olor spaes. This paper will not disuss the virtues of the di�erent pro�ling pakages andtargets, though this ould be a worthy student projet.ProessBefore we start with the pro�ling proess it is ritial to understand the sensitivity inherentin the digital amera. A olor variation from one light soure to another of 50 points Kelvin isvery apparent. That means the following: Any in�uene re�eted on the target other than onemain light is more than likely to alter the data. Two softboxes of slightly di�erent ages will havedi�erent olor nylon di�users. Two �ashtubes of di�erent ages will disolor di�erently, not tomention any �ltration dome over the tubes. On loation any of the surroundings ould re�et onthe target, degrading the data. Setting the target on a olored seamless bakground in studio willre�et olor up into the bottom of the target more than the top. This disussion about having34



Figure 1: Target setupto pro�le senes is a diret result of trying to pro�le senes. By doing this you automatiallyintrodue variables in the data that only exist in that sene, thereby being trapped into pro�lingevery unique sene.The proess that works to reate a universal pro�le requires a di�erent approah. In order toget the most aurate data from the target we need to eliminate as many variables as possible.Lighting is the most ritial. Sine there are too many variables with two lights, softboxes, strobetubes, power paks all of whih an not be aurately tuned into a mathed pair we should rulethat approah out from the start. Now it is possible using tungsten lights, dimmers and a olormeter that one ould tune a pair of lights to be extremely lose in olor temperature. Howeverthe likelihood of the average user not only having the tools to do this, but going to the troubleis highly unlikely. So the only real alternative is one light. It then no longer matters what theonditions of the di�user, the tube or the over are. This is shown in Figure 1.Now of ourse we introdue a problem that two lights in a opy setup is designed to handlewith ease. The target now has more light on one side than the other. By arefully following thediagram shown here one an gradually �ut� the light on the bright side of the target until theleft and right sides math. Note that the photographer austomed to shooting opywork willpull out the inident meter and use it to balane the light aross the target. Sine the digitalamera is sensitive well beyond the 1/10 stop range of a light meter this approah an not work.However we have a muh more aurate tool in our hands; measurements taken in Photoshopan provide the neessary auray.One the target is even, and using the Coloreyes 20/20 target as an example, shown inFigure 2, it provides four white orner pathes from whih to take measurements, as shown inthe �gure. It is important to math the exposure of the target to the atual luminane valueswithin the target to avoid adding any exposure ompensation into the pro�le. The white patheson the ColorEyes target are between an L or 92 and 93, so by using Photoshop to measure theorners and adjust exposure aordingly the data is loser to the original.Finally, gray balane is ritial. Like linearizing a printer before pro�ling, the amera mustbe linearized to the lighting ondition. Auto will not work here. One the target parameters areahieved, the proess to build a pro�le is simple. Coloreyes introdues one extra variable herethat is ritial. When building the �nal pro�le the user an hoose between a pro�le that adjustslightness, hroma and hue or just hroma and hue. On the surfae it would seem that we wantthe most aurate pro�le we an build. In reality by allowing the pro�le to adjust lightness weintrodue another problem. Cameras do not produe data that represents a sene aurately.They are atually tuned to adjust the ontrast range to something we have ome to like ratherthan what would be an aurate rendering of the tonal range of the sene. So by allowing thepro�ler to adjust tonal values we end up with two problems. First the pro�le adjusts tones that35



Figure 2: ColorEyes 20/20 target

Figure 3: Custom Camera pro�le omparison.it is inherently not designed to do. And the worst part is that the bulk of the adjustments takeplae in darker values where noise is present. Raw onverters are designed to handle shadowdetail and noise very well. Pro�les are not. The seond problem is that we generate a pro�lethat every user will omplain about being too �at. The tonal values will indeed be more auratebut that is not what the photographer really wants. The photographer wants a rendering of thesene loser to what the amera is tuned to produe.So why does this reate a universal pro�le? Pro�ling senes introdues variables in the targetthat exist only in a partiular sene. A pro�le made under these onditions will indeed be senespei�. By eliminating as many variables as possible we have muh more aurate data aboutexatly what the amera an see. Now the �nal piee of the puzzle is making this pro�le workunder di�erent lighting onditions. The big on�it about this seems to be the suggestion thata amera behaves di�erently under di�erent lighting onditions. While tehnially this might betrue, from a pratial standpoint it is learly not enough of an issue to prevent a amera pro�lefrom working extremely well under varied onditions, and working better than Camera RAWproessing or default pro�les.Bak to the point about printer linearization; when we hange ink we an run a linearizationto update the pro�le. Gray balane is the same approah. By linearizing a amera to a givenlighting ondition the pro�le beomes valid for that ondition.Figure 3 shows the ustom amera pro�le gamut ompared with an sRGB default amerapro�le. The ustom pro�le is shown as a wireframe. Note the signi�antly larger olor gamutthe amera is able to produe, that would just be lipped if using sRGB.Example olor pitures showing the di�erenes between the best Camera RAW proessing36



Figure 4: RAW proessing, outdoor sene.

Figure 5: Custom pro�le, outdoor sene.and a ustom pro�le are shown in the following �gures. In Figure 4 the yellow �owers aresaturated and blown out, while in Figure 5, eah �ower is learly visible. Similar di�erenesan be seen in Figures 6 and 7, where the ustom pro�le gives better �eshtone and a bettermodulation of the overall lighting.ConlusionsWe have demonstrated that by treating the digital amera similarly to a sanner or printer byperforming a white balane linearization, a single amera pro�le will render the RAW informationto the most aurate as well as pleasing RGB data for presentation on a alibrated and pro�ledomputer display or a printer in an ICC work�ow.Referenes[1℄ Brue Fraser: �Real World Camera Raw with Adobe Photoshop CS2�, Peahpit Press 2005.[2℄ ICC White Paper 20: �Digital Photography olor management basis�.[3℄ ICC White Paper 17: �Using ICC pro�les with digital amera images�.[4℄ U. Lenz et al.: �Digital Camera Color Calibration and Charaterisation�, The FourthIS&T/SID Color Imaging Conferene: Color Siene, Systems and Appliations, pp 23�24.37



Figure 6: RAW proessing, person.

Figure 7: Custom pro�le, person.38



[5℄ Lindsay MaDonald et al.: �Colour Charaterization of a High-Resolution Digital Camera�,CGIV 2002: The First European Conferene on Colour Graphis, Imaging and Vision.
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Measurement of olour on transluent material viewed byre�etionA. Sole and P. J. GreenLondon College of Communiation, adityasole�gmail.omKeywords: white sample baking, transmissive media1. IntrodutionIn graphis and arts industry, olour is printed on transmissive materials like polyethylene, el-lophane, et whih are usually viewed by re�etion. It is therefore, more pratial to measurere�etane against a baking material rather than transmittane. Aording to ISO 5 � 4 andISO 13655, when measuring a olour stimulus using re�etion geometry the sample should bebaked by either a white or blak baking material. For a highly transmissive (virtually trans-parent) material when measured with a blak baking material, it is di�ult to obtain usefulmeasurement beause of the show-through of the blak baking. In this ase it is onvenient touse a white baking with a re�etion density whih onform to ISO 13655 and ISO 5 � 4 spei�-ations for a white baking material. However, at present there is a lak of materials whih areknown to onform to these spei�ations and whih are widely available.The objetives of this projet were as follows:1. To make a reommendation of baking material to be used when measuring olour stimuliprinted on transmissive media with re�etion mode geometry.2. To develop a olour measurement proedure to make measurements relative to perfetdi�user.3. To de�ne a proedure that supports sharing of measurement data between organisations.4. To test the olour measurement proedure olorimetrially and psyhophysially5. To develop a model to predit CIE XYZ tri-stimulus values of a olour path to be printedon paper to math with the same olour path printed on transluent substrate viewed byre�etion with a baking material.2 Methods and results2.1 Reommendation of white baking materialThree types of widely available paper materials were onsidered, along with PTFE referene tilesof 10mm and 6mm thikness. All were heked for the onformane with the spei�ations fora white baking material given in ISO/CD 13655:2006.and CGATS/STF N 045. Table 1 showsthe result.It an be seen from Table 1 that none of the materials evaluated onform to all the require-ments of ISO/CD 13655:2006. By using a double thikness the proo�ng papers meet the CGATSopaity requirement, but none of the papers tested met the ISO/CD 13655:2006 requirementregarding �uoresene. Hene there remains a need to either identify suitable materials for whitesample baking, or to develop proedures that will allow a wider range of materials to be used.40



Table 1: Comparison of the baking materials for the onformation to CGATS and ISO 13655spei�ations2.2 Proedure that supports sharing of data between di�erent organisationsFor data to be exhanged between di�erent organisations, measurements made using di�erentpaper baking materials were made relative to referene baking material. The measurementproedure is based on the onept that the measurement made on the andidate baking materialan be normalised to the referene baking material. Figure 1 shows the re�etane of twoolour pathes measured with PTFE as referene baking material and with andidate bakingmaterials made relative to PTFE, and it an be seen that there is good agreement between thePTFE-baked and normalised re�etane2.3 Proedure to make measurements relative to perfet di�userMeasurements made relative to a referene baking material were also normalised to a perfetre�eting di�user. The performane of this proedure was evaluated by omparing the re�etaneurves of the measurement of olour pathes made on referene baking material made relativeto perfet di�user and that measured on the andidate baking material made relative to perfetdi�user. Figure 2 shows the omparison of the re�etane urves of two olour pathes.2.4 Testing the proedure olorimetrially and development of the model topredit CIE XYZ tri-stimulus valuesHalftone olour pathes from two gravure prints on polyester of di�erent opaities were seletedand measured using the referene and andidate baking material. The re�etane measurementsare made relative to a perfet di�user by applying the proedure. Figure 3 shows the re�etaneurves of the measurement of the olour pathes made with andidate baking material maderelative to a perfet di�user and those made with referene baking material made relative to aperfet di�user.The re�etane urves for the olour pathes oinide reasonably well.A model was developed to predit the CIE XYZ tristimulus values of a olour path to beprinted on paper to math with the same olour path printed on transluent substrates viewedby re�etion with the double-thikness Proo�ng Paper 2. A mathing experiment was performedto determine this relationship.A greysale printed on two polyester substrates and a paper substrate was measured usingthe double-thikness Proo�ng Paper 2. The re�etane measurements made on the polyester41



Figure 1: Comparison of re�etane urves measured on PTFE baking and measured on otherpaper baking made relative to PTFE baking.

Figure 2: Comparison of re�etane urves measured on PTFE baking made relative to perfetdi�user and measured on other paper baking made relative to PTFE baking made relative toperfet di�user.
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Figure 3: Comparison of re�etane urves measured on PTFE baking made relative to perfetdi�user and measured on other paper baking made relative to PTFE baking made relative toperfet di�usersubstrates were made relative to perfet di�user as desribed above, and CIE XYZ values werealulated from these measurements. In the psyhophysial experiment observers were asked tomath the greysale pathes printed on the two white-baked polyester substrates to greysalepathes printed on the paper substrate, and the geometri mean of the visual mathes wasalulated.The data measured on both the transluent substrates was ombined and a single modelequation was derived for both the substrates. Figure 4 shows the ombined CIE Y tristimulusdata with a trend line and the model equation.This model was evaluated psyhophysially using a halftone print of 10 olour pathes and33 olour pathes imaged on Ekatahrome transpareny. A ategory judgment tehnique wasused for the experiment. Both the test prints were measured and orreted using the proeduredesribed above to make them relative to perfet di�user. The mathing CIE XYZ values werepredited and printed on Kodak photo print 190 gsm glossy paper.The reprodutions were evaluated psyhophysially by presenting these printed reprodutionstogether with the transmissive samples on a white baking in a ategory judgement experiment.The results indiated that this model performed well for the halftone print and reasonably wellfor the Kodak transpareny print.3. Conlusions1. None of the paper materials evaluated met all the requirements of ISO/CD 13655:2006,2. A measurement proedure was developed to make white-baked re�etane measurementsof transmissive media relative to a perfet di�user. Proo�ng Paper 2 (used double thik-ness) performed best when using this proedure. Many similar materials would be aept-able for industrial use using this proedure.3. A model was developed to math olours between prints made on white-baked transmis-sive materials and opaque materials. This model gave a good performane.43



Figure 4: CIE Y tri-stimulus data with the �tting urve and the model equation.
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Certifying Monitor Proo�ng SystemsJo S. KirkenærJSK Consulting � Carlsbad, CaliforniaIntrodutionIn the US, the main printing standard to be met by printers is SWOP (Standard for Web O�setPublishing). Over the last deade ink-jet proo�ng systems have proliferated laiming to maththe presses at this printing standard through the use of ICC pro�les, and over the last oupleof years olor aurate soft proo�ng, also referred to as monitor proo�ng has made inroads intothe proo�ng market.Printers always looked to the SWOP ertifying body to help sort out all the proo�ng systems,and through a proess of visually judging prints, and measuring target pathes, these proo�ngsystems beame erti�ed for SWOP printing. With the ability to embed ICC pro�les for otherprinting standards, or referene printing onditions, these ink-jet proo�ng systems ould also beused to simulate and math these onditions.The proof is onsidered the prototype of the printed image and as suh, is a preditor of themany millions of opies that subsequently may be produed [1℄ it is ritial that the proo�ngsystem is a reliable and onsistent preditor of the atual proess. Initially this was very sub-jetive; a panel of observers ompared referene press sheets to the proof sheet under ontrolledlighting onditions, and when monitor proo�ng entered the market, the same onditions andparameters applied here, though now the display itself was the anvas by the adoption of olormanagement system software and by the adoption of devie independent olor variables [2℄.Integrated Color Solutions (ICS), In was the �rst ompany to take their Remote Diretorsoftware and an Apple Cinema display to SWOP and get it erti�ed as a valid math betweenthe rendered image on the display and the orresponding SWOP referene press sheet. Otherompanies followed suit as well. But the proess was still very subjetive, and two systems, botherti�ed and plaed side by side, ould show more variability and mis-math than what mosthard-opy proo�ng systems would.At the 3rd Annual IPA Color Proo�ng RoundUP for 2005 [3℄ hardopy systems proved veryonsistent both visually and numerially and monitor proo�ng systems proved that they ouldarry their own weight. Visual sores for monitor proo�ng were right in with the orrespondingvisual sores for the hard opy systems, under the same evaluation proedures.In 2006 at the Annual IPA Color Proo�ng RoundUP hard opy and soft opy proo�ng systemswere treated the same way, all partiipants were handed a printed haraterization target, andtold to make a pro�le and math the press sheet numerially. Only the judges had aess to thevisual part of the press sheet for �nal evaluation.Though possible on some systems, the monitor proo�ng systems were not subjeted to theDelta-E test [4℄, for reasons I will disuss later.However, sine the monitor proo�ng systems are able to aurately display olors on sreen,this triggered a disussion to automate the proess of ertifying these systems for SWOP, orother referene print ondition by removing the subjetive fator and using metrologial data.In theory at least, rendering a olor on the display through a olor managed work�ow andmeasuring that rendered olor on a alibrated display should yield the same olor within a verysmall DeltaE. This paper will show that this holds true and how this proess an be used toertify displays to math a given printing ondition.In the initial phase of implementation, there will be a visual inspetion prior to the metro-logial evaluation, primarily to save time by weeding out systems that learly don't meet thestandards. 45



ProessSine the spetral power distribution of the display is usually quite di�erent from that of theviewing booth it may be neessary to apply a olor appearane model when displaying theimage on the omputer. Even the white points, though both measured out to a orrelated olortemperature of D50 may appear visually di�erent without it. This is the reason why numerialdelta-E measurements were not applied at the 2006 IPA shootout. Di�erent metris and CAMsto di�erent viewing environments yielded di�erent measurements o� the display, and absolutedelta-E omparisons to the referene data were large.In the monitor proo�ng environment, the CMYK data is onverted to display RGB as follows:CMYK → PCS → RGBthrough the A2B1 tag in the CMYK pro�le. PCS is the Pro�le Connetion Spae, generallyL*a*b*. With the proper display alibration and pro�ling, this data an then be diretly on-verted through the B2A0 tag of the display pro�le to display RGB, and if measured with areferene instrument the atual olor L*a*b* an be reorded. This reorded L*a*b* value anthen be diretly ompared to the referene �le that reated the printing CMYK pro�le in the�rst plae and any errors are then alulated and reported.This is really no di�erent from an ink-jet proo�ng system displaying a simulation of the pressondition through the same A2B1 tag, but this time onneting with a CMYK output pro�le. TheSWOP organization has already started a numeri erti�ation program for hardopy proo�ngsystems, printing the simulated haraterization target, and measuring the pathes on this hardopy.It should be noted that for the display measurements all the values of L*a*b* are to bealulated using the measured RGB white point of the display that is set by the monitor proo�ngsystem, the orrelated D50 rather than an absolute D50. Hene the white point of the displayshould always measure L*a*b* = (100, 0, 0).Even under these irumstanes the most aurate reprodution of olors an only be ahievedwith the best and most aurate olor alibration and pro�ling. Rather than using the standardgamma of 2.2 or 1.8 as alibration target, ICS Remote Diretor uses a linear L* alibrationgamma, mapping the display to a better math with the human visual system. F. Herbert,J. Kirkenaer and J. Ladson pointed out through psyhophysial experiments performed to de-termine settings for aurate olor reprodution on omputer displays that by alibrating thedisplay to linear L* rather than a gamma of 2.2, a signi�antly higher orrelation was foundomparing olor pathes in a viewing booth to the same olors presented on the omputer dis-play [5℄. This experiment also demonstrated how important the viewing environment is, havinga neutral bakground both on the display and for the hardopy [6℄ with the proper amount ofreferene white shown in both ases.Five (5) numeri riteria must be met in order for a system to be deemed to have passederti�ation and to be labeled as �SWOP Certi�ed.� [7℄:1. The di�erene between the haraterization data set and the IT8/7.4 target is an averagedelta E94 ≤ 2.0 for all pathes2. The di�erene between the haraterization data set and the IT8/7.4 target has a maximumdelta E94 ≤ 6.0 for at least 95% of all pathes.3. Solid pathes yan, magenta, yellow, red green and blue on the IT/7.4 are delta E94 ≤ 6.0from the haraterization data set.4. Di�erenes between the haraterization data set and pathes on the IT8/7.4 target haswhite point of a delta L ± 2.0, a delta a ± 2.0 and a delta b ± 2.0 (exluding �oresene).46



Figure 1: Certi�ation Results.

Figure 2: SWOP Validation Results.5. Di�erene between the 50/40/40 gray balane target and the haraterization data set hasa delta E94 ≤ 2.0These riteria were seleted on the basis of measurements of monitor proo�ng systems ur-rently erti�ed. These riteria also draw parallels to hard opy spei�ations. It should be notedhere that Cyan and sometimes green are problem olors for many displays and may in manyases be outside the gamut of the display. However, gamut mapping tehnology orretly ap-plied brings the out of gamut olor to the gamut boundary of the display in suh a manner asto minimize any visual olor di�erene.In ICS Remote Diretor, for example, the results of alibrating the display and runningthrough the erti�ation proess will yield the message shown in Figure 1.Cliking on �Show Details� will give the display shown in Figure 2, showing eah individualolor of the IT8/7.4 target, and the atual delta-E for eah olor. Note that in this ase, Cyanstill passed with an error of 5.56. The other �problem olors� an be seen to be other solid olors,suh as yellow and green, though well within spei�ation limits.If we were to ompare the CMYK pro�le to the display pro�le, and map them in the samethree-dimensional olor spae, you might get the result shown in Figure 3. Here the gamut forSWOP Coated Paper no. 3 is shown in the gamut of an older Apple Cinema Display, and in thisase erti�ation did not pass, as shown in Figure 4, though it failed on white point alibration,not solid olors as would be indiated in Figure 3, where the SWOP gamut exeeds the displaygamut in the Cyans and Greens.The tehnology developed for SWOP erti�ation an easily be extrapolated to work forother printing standards or referene media, suh as FOGRA or others. FOGRA has proposedthree standard printing onditions, FOGRA30L, FOGRA39L and FOGRA40L. Charaterizationdata for these onditions have been published and these an easily be used to generate refereneCMYK pro�les and inluded in the ICS Remote Diretor appliation as shown in the Figure 5,for seletion and display erti�ation.Comparing the FOGRA30L pro�le to the Coated SWOP no. 3, the FOGRA pro�le gamutis signi�antly smaller and �ts well within the SWOP gamut, as shown in Figure 6. Hene,erti�ation using this FOGRA pro�le would pass if the system is already SWOP erti�ed.47



Figure 3: SWOP and Apple Cinema Display (Old).
Figure 4: SWOP Certi�ation on Apple Cinema Display (Old).

Figure 5: RD Pull-Down menu for Display Certi�ation.

Figure 6: Comparison of SWOP and FOGRA Pro�les48



The pro�le itself is not perfet, and CMYK data transformed through the A2B1 table will notalways yield the perfet response that atually generated the pro�le, that is omparing the sameL*a*b* values as in the haraterization data. We an run target CMYK values through the A2B1tag, and ompare the alulated L*a*b* value to the measured L*a*b* in the haraterizationset. For the FOGRA30L dataset we get errors ofavg dE = 0.36, max dE = 0.71, stdev dE = 0.09whih are atually very good results, hene display measurements should be very reliable.It should also be noted that for SWOP or for FOGRA there are multiple printing onditionssuh as di�erent paper types that all have to pass the erti�ation proess for the monitorproo�ng system to pass the omplete erti�ation proess.ConlusionsWe have shown that through proper alibration and haraterization of the display, and with agood soure pro�le for soft proo�ng, aurate olors for the printing ondition an be presented onthe display. Measurements of these olors an be used to ertify the display, and this erti�ationproess an be expanded to other standard or referene printing onditions.Referenes[1℄ Gary G. Field: �Color Approval in the Graphi Arts�, The Fifth Color Imaging Conferene:Color Siene, 1997.[2℄ Riardo J. Motta: �Computer Color Reprodution�, SPIE, Vol 2414 p.2 (1996).[3℄ IPA Color Proo�ng RoundUP Results � 2005, Dr. Abhay Sharma, Ed. (2005).[4℄ IPA Color Proo�ng RoundUP Results � 2006, Dr. Abhay Sharma, Ed (2006).[5℄ F. Herbert, J. Kirkenaer & J. Ladson: �Absolute and relative olorimetri evaluation forpreise olor on sreen�, Color Imaging VIII: Proessing, Hardopy, and Appliations, pp294-305.[6℄ ISO/DIS 12646 �Graphi tehnology � Displays for olour proo�ng � Charateristis andviewing onditions.� Setion 4.7, p4.[7℄ Dr. Chris Edge, Kodak, ommuniation to the SWOP Committee, November 2006.
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Additivity Based LC Display Color CharaterizationJean-Baptiste Thomas and Jon Yngve HardebergColorLab, Gjøvik University College (Norway)Irène Fouherot and Pierre GoutonLe2i, University of Burgundy (Frane)AbstratWe introdue an additivity based method to perform olor haraterization of LC displaydevies. We fous here on the forward transform from the devie RGB olor spae to XYZtristimulus values. Chromatiity onstany is an assumption in all hromatiity matrix basedharaterization models, but in pratie this assumption does not hold perfetly. The mainontribution of this work is to de�ne a model where the hromatiity non-onstany is nota soure of error. Our method outperforms traditional approahes suh as the PLCC andGOG models without needed more measurements than those. The proposed approah ouldbe partiularly useful for multi-display systems haraterization as it is not time onsumingand gives preise enough results.Keywords: LCD, Color haraterization, Projetion displays.IntrodutionCharaterization of olor display devies is an important part of a olor management system.The haraterization of suh a devie de�nes the relationship between the devie-dependentolor spae, typially RGB, and a devie-independent olor spae desribing the pereived olor,typially XYZ whih desribes the olor pereption of the CIE standard observer. The forwardtransform make us able to predit the olor whih will be displayed (XYZ) for a given set ofdigital values input to the devie (RGB) and the inverse (bakward) transform will give us thedigital values to input in order to display the desired olor. Our work fouses on �nding a forwardmodel whih is not subjet to hromatiity non-onstany.There exist a lot of methods to haraterize olor in a display devie. Most part of theman be found in the following artiles [1, 2, 3℄. We ould make the distintion between two maingroups. The one whih are performing 3D interpolation needs a lot of measurement and areomputationally omplex. However, they don't suppose any speial devie properties, i.e. thedevie an be onsider as a blak box, and no physial rules are assumed. It ould be useful forexample when you don't have any/enough information about the tehnology used. The modelsin the other group are trying to establish a mathematial model of the response of the devie.For example, linearizing the intensity response urve of the display, by a global funtion orby interpolation, before applying a 3x3 hromatiity matrix to get the XYZ oordinates. Thisgroup of models do not need a lot of measurements but are making the assumption that thehannels are independent and that the hromatiity of the primaries are onstant. For instane,the response urve ould either be a gamma shaped urve (de�ned by an o�set and a gain) ora S shaped urve whih ould be de�ned by 4 parameters as in the S-Curve model [2℄.In the ase of a multi-display system or in the ase of a projetion devie, we need an aurateharaterization model whih doesn't need a lot of measurement, as we ould have to perform iton several displays or at several positions of the same display to orret for spatial non-uniformity[4℄. Therefore the 3D LUT methods would be too heavy to be used in suh a ase, in spite ofa good preision [1℄. As desktop projetors are seldom belonging to CRT tehnology, the GOGmodel would not give good enough results. We would expet the lassi PLCC [3℄ to give a goodompromise between number of measurements, elerity and preision. A soure of error in suha model is the non-hromatiity onstany of primaries (see �g.1.b and 2.b). One ause of this50



Figure 1: Projetor 1. a : response urve for eah hannel and gray. b : hromatiity shift in xy diagram withoutblak orretion.  : Blak orreted hromatiities.is the in�uene of the 'hromatiity' of the blak o�set whih is mixed with the olor, and havemore and more in�uene as the intensity derease, i.e. the smaller the input value is, the morethe hromatiity is attrated by the blak. One way to overome this problem is to remove thisblak o�set before to perform the linearization and apply the matrix. It's working well in the aseillustrated in �g.2.b and 2. where the hromatiity shift keep almost on a line in the diretionof the blak, i.e. the blak level is almost the only ause of hromatiity shift. The PLCC modelthen give orret results (see table 1). In other ases we an observe that this hromatiity shiftis taking the shape of a oma, i.e. the main part of the hromatiity non-onstany is not onlydue to the blak level, the tehnology itself play an important role (see �g.3.b and 3.). Anexplanation is given by Maru in [5℄, the LC omponent properties hange with the intensity,so the spetra is modi�ed with the intensity. Typially, in Maru's experiment, for the (0, 0, 0)RGB input, the blak is bluish beause of the poor �ltering power in the low wavelength. In suha situation, the blak orretion is not at all e�ient and the model give poor results (table 1).The main idea of our work is to make this shift not a problem, supposing a perfet additivityand hannel independany. Doing that, the error of the model will ome only from the hannel'snon-independany, and from the time and spatial non-uniformities. Obviously the interpolationmethod used will have some in�uene as long as we want to limit the number of measurements.In the following setions we present our approah and some results. Our onlusion gives a wayto perform the inverse model.ModelThe method itself is quiet simple as long as the additive mixture of olor is the base of so-alledadditive displays (as LC panels and projetion devies). From the measurement of the XYZoordinates of a sampling of the digital ramp of eah hannel (i.e. N values regularly spaed onthe 256 possibilities for an 8 bits devie), we will suppose the perfet additivity of the devie.Moreover, we keep on onsidering hannels as independants. Note also that we perform the blakorretion in the manner of PLCC. 51



Figure 2: Projetor 2. a : response urve for eah hannel and gray. b : hromatiity shift in xy diagram withoutblak orretion.  : Blak orreted hromatiities.Then a olor XY Zo output from a RGBi input to the devie would be expressed as
Xo = Xri + Xgi + Xbi

Yo = Y ri + Y gi + Y bi

Zo = Zri + Zgi + ZbiWhere Nni is the value of the olor from the hannel n along the dimension of N for an input i.To generalize from the measurements to all the olor spae, we perform a 1D interpolationalong eah hannel R, G, B for eah olor omponent X, Y, Z (i.e. 3 × 3 1D interpolations).Linear interpolation gives good results (see next setion), and is already well implemented on alassial olor management system. Therefore it would be easy to use this model with existingsystem and shift from a hromatiities matrix based model as PLCC to our approah withoutloosing any time as the matrix omputation is replaed by linear interpolation.ResultsWe have tested this forward model on 2 LCD projetors, the Panasoni PT-AX100E referedas projetor 1, the 3M-X50, refered as projetor 2. And on one LCD desktop panel, refered asmonitor. We have ompared the results with lassi PLCC, and GOG haraterization models.The interpolation method used were linear, ubi or spline performed with matLab. These resultsare based on a 18 pathes by ramp measurements, for eah devie (see �g.1-3.a). We havealulated the ∆E∗

ab for the forward model from a set of 100 random RGB pathes, the mean,the max and the standard deviation of these errors for eah method are given in table 1.We an obviously see that the PLCC without orretion for blak level gives so bad results.Correting for blak level, results are better. As we have said in the introdution, if the blakorretion is the main part of hannel non-onstany, results are good. It is the ase for projetor2 with a mean error of 1.78. In the other ase, result are not e�ient at all with 3.93. It's quietstrange to note that the PLCC with or without blak orretion give almost the same aurayfor the monitor. 52



Figure 3: Monitor. a : response urve for eah hannel and gray. b : hromatiity shift in xy diagram withoutblak orretion.  : Blak orreted hromatiities.

Table 1: Results
53



Table 2: Additive properties of tested displays.As expeted, the GOG model doesn't give so good results for these devies with a meanerror of 3.96 and 2.86 respetively for projetor 1 and 2, and with a mean error of 6.89 for thepanel. Note that the settings of the monitor ould be better adjusted to avoid the fat that thegreen hannel saturate, doing that the GOG would give quiet better results. But seeing that ourmethod give good result in suh a ase prove the robustness of the model.With a linear interpolation, our additive model gives respetively 1.41, 0.54 and 2.04. Wehave redued the mean error of the PLCC almost by 3 in the worst ase. With other interpolationtehniques results are quiet similar. The best results were obtained with Spline interpolation forprojetion devie whih gives mean error of 1.32 and 1.53, and with linear interpolation formonitor.Maximum errors are quiet small too, around 1.6 for the projetor 2, 3.2 for projetor 1 and5 for monitor.Seeing at these results, we an see that our model overome the lassi PLCC and the GOGmodel for the forward transform. We an notie as well that the in�uene of the interpolationmethod is limited by the number of measurements on the ramp. With a smaller number ofmeasurements, the interpolation would have more in�uene on the results.We an notie as well that the additivity properties of tested displays is, as expeted, stilla soure of errors. In Table 2 you an see the di�erene of additive quality of both projetiondisplays. We have presented these results as in [2℄. We an see, oupling information from table1 and 2 that our results are poor as the devie's quality for additivity derease. However, theadditivity quality of the monitor (table 2) is shown really good, but results are not as good aswith projetion devies. That mean that the hannel interation is big in this devie.ConlusionWe have de�ned a forward model for display haraterization whih is easy to implement as thePLCC, with notieable better results. This model would be usefull to haraterize multi-displaysystems and projetors, as it is easy to perform and doesn't need a lot of measurements.The inverse model would be a bit more omplex as there is no analytial solution. It ouldbe performed by an optimization method to design a regular grid in XYZ, using the forwardmodel. Then it's pretty easy to �nd an e�ient algorithm to interpolate from this 3D LUT. Notethat no more measurements would be needed to develop the inverse model, so it's possible tooverome one drawbak of 3D LUT model.Moreover, this model would be of great interest for multi-primaries displays or spetralapproahes. This ould be a part of our future works.Referenes[1℄ Behnam Bastani, Bill Cressman, Brian Funt. "Calibrated olor mapping between LCD andCRT displays: A ase study". Color Researh & Appliation, Volume 30, Issue 6, Pages:438-447, 2005. 54



[2℄ Kwak Y, MaDonald L. "Charaterization of a desktop LCD projetor". Displays, Volume21, Pages: 179-194, 2000.[3℄ Post DL, Calhoun CS. "An evaluation of methods for produing desired olors on CRTmonitors". Color researh & Appliation, 14:172-186, 1989.[4℄ Jon Y. Hardeberg, Lars Seime, and Trond Skogstad. "Colorimetri haraterization of pro-jetion displays using a digital olorimetri amera", Pro. SPIE Int. So. Opt. Eng. 5002,51, 2003.[5℄ Maru, G. et al., "Color haraterization issues for TFTLCD displays", Pro. SPIE, ColorImaging : Devie-Independent Color, Color Hardopy, and Appliations VII, Eshbah, R.and Maru, G., Eds., Vol. 4663, 2002, 187-198.BiographyJean-Baptiste Thomas has reeived his bahelor's degree in Physis and appliations in 2004and his master's degree in Image, Vision and Signal in 2006 from the University Jean Monnet,Frane. He is urrently pursuing the PhD degree at the University of Burgundy, Frane. Hisresearh fouses on olors in projetion and tiled projetion displays.
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Color Mixing and Color Separation of Pigmentswith Conentration PreditionPesal Koirala, Markku Hauta-Kasari, Birgitta Martinkauppi, and Jouni HiltunenDepartment of Computer Siene and Statistis, University of Joensuu, Finland.{pkoirala,mhk,jbm,jouni.hiltunen}�s.joensuu.�AbstratIn this study, we propose a olor mixing and olor separation method for the pigmentspainted on plasti surfae based on Kubelka-Munk (KM) model. Eleven di�erent pigmentswith seven di�erent onentrations have been used as training set.The amount of onen-tration of eah pigment in the mixture is estimated from the training set by using theleast-square pseudo-inverse alulation. The result depends on the number and type of pig-ments seleted for alulation. At most we an selet all pigments. The ombinations resultedwith negative onentrations or unusual high onentrations are disarded from the list ofandidate ombination. The optimal pigment's set and its onentrations are estimated byminimizing the re�etane di�erene of given re�etane and predited re�etane.Keywords: Color predition, Kubelka-Munk method, Saunderson orretion, Re�etane,Least-square pseudo-inverse alulation.1. IntrodutionOriginally KM theory is a model of the light travelling in two diretions in the materials [9℄.The basi KM theory is admissible to the di�use illumination of partiular oating. The KMtheory is of great importane in many areas of applied researh and has been used for theoptial properties of deorative and protetive oatings, paints, paper, pigmented polymers,�bers and wool, thermal insulation, biologial systems, and in medial physis [12℄. KM methodassumes a linear relationship between sattering oe�ient S and the absorption oe�ientK, and this makes the omputation proess faster. Further improvement in this method wasahieved by Saunderson orretion [7℄. Saunderson orretion onverts the total re�etion to thebody re�etion on whih the KM theory works. The revised KM theory [8℄ has been used forink, paper and dyed paper. Monte Carlo simulations, Expert systems or Neural networks andMie theory have been immerged as the alternative as well as ollaborative method of KM model.Independent omponent analysis (ICA) [2℄ may be used as the re�etane separation but furtherresearh is required.In this study, we have implemented single onstant KM theory for the pigments loated onthe plasti. Our method predits the re�etane of mixture from the given set of pigmentswith di�erent onentration. In additions our method is apable of prediting the aurateonentrations and re�etane of mixed pigments from the given re�etane of mixture. Thisolor separation method also uses the olor mixing method as a sub-problem sine the givenmixture is ompared with predited re�etane of mixture to minimize the re�etane di�erene.There are di�erent methods for evaluating these di�erenes. CIE olor di�erene equations (CIELab, CIE LUV CIE94 et), Spetral urve di�erene metris (Root mean square error (RMS),Goodness of Fit Coe�ient (GFC)), Metamerism indies and Weighted rms metris [5℄ an beused to alulate olor di�erenes during minimizing re�etane proess. In proposed methodCIE LAB error, Goodness of Fit Coe�ient (GFC) and Mean square error (MSE) were omputedto alulate quantitative value of re�etane mathing.The re�etane of training sets and test sets were measured by spetrometer alled AvaMouse[1℄ with 45o/0o geometry under irular illumination. In total eleven di�erent samples were usedas training sets. Seven di�erent onentrations of eah sample were prepared.56



Figure 1: Re�etane and K/S ratio of a sample pigment at di�erent onentrations [0.2 0.5 1 24 6 10℄ gram in one litre of �lling material.2. Kubelka-Munk TheoryThe key assumption in applying the KM theory is that the light within the pigment layer is om-pletely di�use and there an not be hanged in refrative index in the samples boundaries [11℄.The speular omponent is exluded by geometry measurement. Many modern spetrometersare apable to measure re�etane fator without hanging the refrative index in the samplesboundaries [4℄. However if the available spetrometer an measure only total re�etane, themeasured re�etane should be orreted before applying to KM model by Saunderson orre-tion [7℄ as shown in Eq.(1).
Rλ =

rλ − K1

1 − K1 − K2(1 − rλ)
(1)Where, rλ is the total re�etane whih should be normalized between [0, 1℄ in eah wavelength

λ, K1 is the Fresnel re�etion oe�ient for the ollimated light and K2 is the Fresenel re�etionoe�ient for di�use light striking the surfae from inside. The value of K1 is 0.04 for plastimaterial sine plasti has the refrative index of 1.5 [11℄. The value of K2 usually lies between0.4 and 0.6 [7℄. The optimized value of K2 should be alulated pratially.One the internal re�etane is alulated by the KM mixing law, the total re�etane is om-puted by reversing Eq.(1) as:
rλ = K1 +

(1 − K1)(1 − K2)Rλ

1 − K2Rλ
(2)For omplete hiding [3℄, opaque materials [11℄; the internal re�etane was estimated by KMmodel using the ratio of absorption oe�ient Kλ and sattering oe�ient Sλ.
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(4)Figure 1 illustrates the measured internal re�etane fator and its onversion to K over S valuefrom Eq.(4) for the known onentration of [0.2 0.5 1 2 4 6 10℄ gram in one liter �lling material.The sattering and absorption oe�ients of mixture are desribed as the linear ombinationof sattering and absorption oe�ients of mixed pigment saled by the onentration of the57



pigments as shown in Eq.(5). This method is well known as two onstant KM model.
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(5)The individual absorption and sattering oe�ients required for Eq.(5) are alulated by usingthe white set (setting sattering 1 in every wavelengths), masstone (100 % relative perentagepigment) and tint (pigment mixed with white) [6℄. In the ase, the substrate has more satteringproperties than the oated pigment the Eq.(5) is redued to more simple form alled the singleonstant KM model see Eq.(6). The ratio of K/S is used instead of alulating individual K andS. In this paper we have used single onstant KM model.
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n number of pigments in mixture.
Ci onentration of ith pigment in mixture by weight of dry pigment.
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λ,i
ratio of absorption and sattering of ith pigment for unit onentration.3. Color MixingGiven a set of pigments with re�etane urve, we an get the re�etane urve for any spei�edmixture of pigments by using Eqs.(3), (4) and (6). If the available spetrometer an measure onlythe total re�etane, then Saunderson orretion is also onsidered (see Eqs.(1) and (2)). In ourexperiment we have measured the re�etane by AvaMouse handheld re�etion spetrometerwith annular measuring geometry with in range of 380 to 750 nm. The AvaMouse measurestouhing oated surfae and distane between amera and surfae are shorter in omparison tospetrophotometer measurement. So the measured re�etane is equal to body re�etane, as aresult Saunderson orretion is not applied to the measurement by AvaMouse.The unit k/s of eah pigment is required to predit the spei�ed mixture of pigments from theset of pigments in training set with spei�ed onentration. The Eq.(7) gives the method toalulate unit k/s value of single olorant sine the olorant is mixed with white pigments.
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(7)Where,
C1 onentration of pigments.
CW onentration of white pigments used as substrate.Eah olorant in the training set has seven di�erent onentrations (see Figure 1). From theseseven di�erent onentrations one representative unit k/s is alulated by using least-squarepseudo-inverse alulation. Figure 2 illustrates the unit k/s ratio and its normalized spetrum inwavelength 650 nm. The normalized spetrums of unit k/s ratio of same pigment from di�erentonentrations should be almost the same for proper seletion of a sample set. Figure 3 illustratesthe re�etane urves obtained by mixing three samples with the onentration of [0.5 0.7 3.0℄gram. The olor of re�etane of samples and mixture is visualized in monitors by alulatingthe tristimulus values X, Y and Z from re�etane and then onverting them to devie RGBoordinate system by using linear transformation [11℄ [10℄.58



Figure 2: The unit k/s and normalized unit k/s at 650 nm wavelength alulated from thesamples at di�erent onentrations.

Figure 3: Three di�erent olorants reonstruted with 0.5, 0.7 and 3.0 gram pigment onentra-tion. The right image is the resultant re�etane omputed mixing these three pigments.4. Color Separation and Conentration PreditionThe onentration of the pigments an be estimated from Eq.(10) if the K/S value of mixtureand the unit k/s value of mixed pigments are known. The number of onentrations in mixtureis equal to number of pigments (n) mixed and that should be less than the number of wave-lengths sampled to present the re�etane urve. So only the n number of wavelengths an beseleted to solve the n number of onentrations [11℄. However hoosing n number of di�erentwavelengths results the di�erent onentrations, so for more stable result least-square pseudo-inverse alulation is used to alulate onentration onsidering all visible range wavelengths(see Eqs.(8)-(10)). Similarly the unit k/s value of eah pigments used in the mixture an be alu-lated by least-square pseudo-inverse methods if K/S value of the mixture and the onentrationof pigments used in mixture are known (see Eq.(12)). After knowing the onentration and unitk/s value, the re�etane of the pigments is predited by using Eqs.(6) and (3) onseutively.The Eq.(6) is represented in matrix form in Eq.(8) extending for all wavelengths.
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Eq.(8) is represented as:
Y = XC (9)The least-square pseudo-inverse alulation (see Eq.(10)) is used to �nd the onentration ofpigment. The number of pigments mixed (n ) should be less than number of wavelengths. Soalternatively by hoosing the n number of di�erent wavelengths, the problem an be solved.Nevertheless the entire wavelength alulation gives more robust result.

C =
(

X̄X
)

−1
X̄Y (10)Deriving X̄ from Eq.(9)

X̄ =
(

CC̄
)1

CȲ (11)Considering a more omplex ase where we have only been given the re�etane of mixtureand our task is to estimate the onentration and the re�etane of the pigments used in themixture. The problem is solved by using the unit k/s values of eah pigment of the training set.The predited onentrations and used unit k/s of eah iteration are employed to estimate there�etane (see Eq.(6) and (3)). This proess is repeated for all possible ombinations. Eq.(12)shows the total number of ombinations to be omputed.
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(12)Where,

N number of pigments in training sets.
n number of pigments used in mixture.The unit k/s and predited onentrations are hosen so that estimated re�etane using thisonentration and unit k/s has minimum di�erenes with given re�etane of mixture. Thedi�erenes of the re�etane are alulated by using olor di�erene of Lab olor spaes [11℄ [10℄,Goodness of �t oe�ients and Mean square error [5℄. The Computation step prediting optimalonentrations used in the mixture is shown below.������������������������������1. Compute unit k/s ratio of eah training set.2. Convert re�etane of test set Rmix to K/S ratio using Eq.(4).3. Choose n number of pigments in mixture.Repeat step 4 to 8 for all ombination (

N
n

).4. Predit onentrations using Eq.(10) and store row wise in matrix onentration.5. The negative onentrations and unexpeted high onentrations are negleted.60



Figure 4: Real onentration verses predited onentration. Conentration is represented ingram. The dotted line shows for the pigments and solid line is the average of all dotted lines.6. Predit (K/S)P ratio of mixture using predited onentrations and unit k/s ratio fromtraining set, see Eq.(6) or Eq.(8).7. Determine re�etane RP using (K/S)P , see Eq.(3).8. Calulate di�erene ∆E between Rmix , and RP and store ∆E in array error.9. Order the matrix onentration aording to array error sorted in asending order for Labdi�erene and MSE, and desending order for GFC.������������������������������The real onentration of pigments used in mixture and orresponding predited onentrationsby our method is illustrated in Figure 4. The predited onentrations of olorants an beorreted by �tting the predited onentration with real onentration by using interpolationmethods. However, in advane we should have the relation between real onentration andpredited onentrations of eah pigments of the training set.5. ConlusionThe basi theory of KM method was disussed. The method to predit the re�etane of mixturemade from the pigments with arbitrary onentration was desribed. Computation proess forthe onentration predition and separated olor predition was desribed. Our future work willonsider more aurate olor separation and onentration predition from the given transparentand transluent objet by KM methods and revised KM methods [8℄ and independent omponentanalysis [2℄.Referenes[1℄ http://www.avantes.om/news/avamouse.pdf 3-3-2007.[2℄ Hyvärinen A., Karhunen J., and Oja E. Independent Component Analysis. John Wiley andSons, 2001.[3℄ Haase C.S. and Meyer G.W. Modelling pigmented materials for realisti image synthesis.ACM Transations on Graphis, 11(4):305�335, Otober 1992.[4℄ Bondioli F., Manfredini T., and Romagnoli M. Color mathing algorithms in erami tileprodution. Journal of the European Cerami Soiety, 26:311�316, 2006.61
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Video-based analysis for faial skin appearanewith automati fae trakingTakao Makino, Koihi Takase, Norimihi Tsumura, Toshiya Nakaguhi, and Yoihi MiyakeGraduate Shool of Siene and TehnologyChiba University, Yayoi-ho, Inage-ku, Chiba,263-8522, JapanIntrodutionThe analysis and synthesis for faial skin appearane play an important role in the �led ofosmetology and entertainment. Figure 1 shows a skin analysis and synthesis system used in the�led of osmetology. The urrent ondition of skin texture is measured as a high resolution imagein the lighting box. The measured image is analyzed by our skin olor separation tehnique [1℄into melanin, hemoglobin and shading omponents. The skin melanin texture is ontrolled toshow the hange of texture by aging. This system is used for the ustomer to show the neessityof applying the osmetis. However, the appearane of skin also hanges drastially by hangingthe distribution of illumination. The information from single image is not enough in analyzingthe hange of skin appearane under various illuminations.In this paper, we propose a video-based analysis for the faial skin appearane under var-ious illuminations with an automati fae traking tehnique. To analyze the hange of skinappearane under various illuminations, the fae is illuminated from various positions of thelight soures, and the hanges of faial appearane are reorded as video stream during thismeasurement. The reorded video stream is analyzed to obtain BRDF at the point on the faialskin. However, sine the subjet is not still during the measurement, measurement errors areaused by the faial movement. The automati faial traking is neessary to ompensate thefaial movement to perform the aurate BRDF measurement on the arbitrary faial point. Sinethe onventional fae traking tehniques [2, 3℄ an not be used for the fae illuminated fromvarious positions of the light soures, we build a new fae traking tehnique whih is robust tothe various shading on the fae. The proposed traking is the tehnique to trak the faial move-ment and arbitrary points on the faial skin by using two faial features that are less in�uenedby the shading. Arbitrary points on the faial skin are traked with their 3D oordinates andthe estimated faial movement. By using this tehnique, BRDF of the arbitrary faial point anbe measured from the video stream.Video-based analysis for faial skin appearaneFigure 2 shows an overview of our video-based analysis for faial skin. The system onsists of avideo amera and a movable light soure. The subjet sits in front of the video amera withoutkeeping his or her head still. Sine the head of the subjet is not kept still, the subjet an feelrelaxed during the measurement. The fae is illuminated from various positions by rotating thelight soure around the subjet. The hanges of faial appearane are reorded as video stream. Inthe reoded video stream, the in�uene of the faial movement is ompensated with the trakingfor the faial movement and target faial points. The traking result of the faial movement isused to estimate the diretions of inident light and the video amera after the faial movement.The traking results of target faial points are used to estimate the position of target faialpoints after the faial movement. The ompensated video stream is analyzed to obtain disretepixel values on measurement points under various illuminations. Continuous BRDF is alulatedby �tting the BRDF model[4℄ to disrete pixel values, the diretion of inident light and thediretion to the video amera. The alulated BRDFs are used to reprodue the appearane ofthe skin under various illuminations. 63



Figure 1: The onventional skin melanin texture ontrol system.

Figure 2: The overview of the proposed video-based analysis.
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Figure 3: The �ow of the proposed traking tehnique.Robust fae traking tehnique under various illuminationsWe propose a robust tehnique for the shading to trak the faial movement and arbitrary targetpoints on the faial skin. This tehnique an trak the parallel shift to x and y diretions andthe rotation around the x axis and y axis. Figure 3 shows the �ow of the proposed trakingtehnique. In this �ow, arbitrary target points are set at heeks for the example in explanation.The tehnique onsists of four omponents: 1) lip and head traking, 2) the estimation of thefaial movement, 3) the manually assignment of 3D oordinates, and 4) the traking of targetfaial points.1) Lip and head trakingCoordinates of the lip (xl, yl) and the head enter (xh, yh) are traked on every frame of the videostream. Figure 4 shows the example of the traking of the lip and the head enter. A ombiningmean shift and Kalman �lter [5℄ is used to trak (xl, yl) and (xh, yh). This is the tehnique totrak the arbitrary olored objet in real-time. The oordinate of the lip (xl, yl) is traked bythe red olor objet. The head is traked by the skin olor and the hair olor objet, and itsenter (xh, yh) is used to the faial movement estimation. This head traking is not a�eted bythe shading. Therefore, this estimation an be used under any illuminations if the lip is apturedin the image.2) Estimation of the faial movementIn this proessing, the parallel shift vetor t and the rotation angles θ� and φ are estimated byusing (xl, yl), (xh, yh), and the radius of the faial rotation. Figure 5 shows the overview of faerotation angles estimation. θ is the angle of the rotation around the y axis(azimuthal rotation),65



Figure 4: The example of the traking of the lip and the head enter.

Figure 5: The overview of fae rotation angles estimation.and φ is the angle of the rotation around the x axis(elevation rotation). The radius of the faialrotation angle θ and φ is rθ and rφ respetively. We will desribe how rθ and rφ are obtainedlater. In the proposed tehnique, the head enter is assumed as an origin of the faial rotation.Therefore, θ and φ are estimated as
θ = sin−1

(

xl − xh

rθ

)

φ = sin−1

(

yl − yh

rφ

) (1)The parallel shift vetor t is estimated as
t = [xh − xy,1, yh,1]

T (2)where (xh,1, yh,1) is the oordinate of the head enter in the �rst frame of the video stream3) Manually assignment of 3D oordinatesThe 3D oordinates of arbitrary target points and the radius of the faial rotation are obtainedmanually by using 66



Figure 6: The assignment of 3D oordinate and the radius of the faial rotation.front and side view faial images. Figure 6 shows the overview of obtaining the 3D oordinate
(X,Y,Z) and the radius of the faial rotation rθ and rφ . (X,Y,Z) is obtained to assign thetarget position by the mouse lik. It is obtained as

(X,Y,Z) = (xa,f − xh,f , ya,f − yh,f , xa,s − xh,s), (3)where (xh,f , yh,f ), (xh,s, yh,s) is the oordinate of the traked head enter in the front and sideview faial image respetively, and (xa,f , ya,f ) , (xa,s, ya,s) is the oordinate of the assigned pointin the front and side view faial image respetively. Z is obtained to assign the target positionin the side view faial image sine x oordinate an be onsidered as z oordinate in the sideview faial image. The matrix of 3D oordinates F is obtained by iterating this assignment forarbitrary times. It is shown as
F =











X1 Y1 Z1

X2 Y2 Z2...
Xn Yn Zn











T

, (4)where (Xk, Yk, Zk), (k = 1, 2, . . . , n) is the k-th assigned 3D oordinate and n is the number ofiteration. rθ and rphi are obtained as
rθ = xl,s − xa,s, rφ =

√

r2

θ + (yl,s − ya,s)2, (5)where (xl,s, yl,s) is the oordinate of the traked lip in the side view faial image. These are usedin Eq. (1).4) Traking of target faial pointsTarget points assigned in pre-proessing are traked by using F , θ, and φ. Figure 7 shows theoverview of the traking of target faial points. Eah oordinate of F is represented as a 3D67



Figure 7: The model of the faial movement and target points traking.
Figure 8: The result of eyes and eyebrows traking.point in the fae oordinate system. The head enter is the origin of this oordinate system.This oordinate system an rotate around the x axis and y axis. The target point traking isperformed to rotate 3D points by using θ and φ, and projet to the image plane. The rotationmatrix R whih is used for the rotation is

R =





cos θ 0 sinφ
0 cos φ − sin θ
0 0 1



 . (6)The matrix of traked 3D oordinates F ′ is obtained as
F ′ =
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R h
0T
3

1
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F (7)
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xh
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0



 .The x and y oordinates of F ′ are the oordinates of the traked point in the image plane.Figure 8 shows the result of eyes and eyebrows traking. The green and blue retangles showthe lip and the head position respetively. Cyan irles show the results of eyes and eyebrowstraking. These points an be traked in spite of various fae movements.68



Figure 9: Geometry of the experiment.Experimental evaluation for the proposed traking tehniqueIn this setion, the e�et of the proposed traking tehnique is evaluated by the experiment.The geometry of this experiment is shown in Figure 9. A model of human fae is used as thesubjet of this experiment sine it is easy and aurate to obtain the atual movement. The faeis illuminated by the light soure with an azimuthal angle of 20◦�80◦ and an elevation angle of
−15◦�15◦. In eah illumination angle, the fae is moved ±5m to horizontally(along the x axis)and vertially(along the y axis) and rotated with an azimuthal angle of −80◦�80◦ around theenter of the fae model. These movements of the fae under various illuminations are trakedand estimated with the proposed traking tehnique.Table 1 shows the estimation error of the parallel shift by the proposed traking tehniqueat three angles of the light soure, and the average and maximum of the estimation error at allangles of the light soure. These results show that the estimation error of the parallel shift iswithin 1m under various illuminations.Table 2 shows the estimation error of the rotation by the proposed traking tehnique at fourangles of the light soure, and the average and maximum of the estimation error at all angles ofthe light soure. The ell with dash indiates that the traking failed in Table 2. The average ofthe estimation error is within 6◦. The proposed tehnique fails to trak the rotation of the faeunder illuminations that the lip is overed with the shading. However, the proposed tehniquean trak the rotation angle of 0◦�20◦ under the light soure with an azimuthal angle of 80◦. Itis thought that the proposed tehnique has enough auray for the subjet traking in BRDFmeasurement system.Experiment: Video-based BRDF measurementIn this setion, we performed the experiment of the proposed video-based analysis tehnique.This experiment measures BRDF of four faial points on the moving subjet.Figure 10 shows the geometry of this experiment. The subjet of this experiment is themodel of human fae. The fae is illuminated by the light with an azimuthal angle of 0◦�65◦and an elevation angle of 15◦. BRDF is measured at four faial points, forehead, heek, lip andnose. In this experiment, BRDF is measured in three di�erent onditions of the fae movement.One is the ondition that the fae is kept still. Measured BRDF in this ondition is the ground69



Table 1: The estimation error of the parallel shift [m℄.

Table 2: The estimation error of the rotating [degree℄.

70



Figure 10: Geometry of BRDF measurement experiment.truth of this experiment. Another one is the ondition that the fae is not kept still and itsmovement is not traked. The last one is the ondition that the fae is not kept still and itsmovement is traked by the proposed faial traking. The fae is moved randomly from sideto side when the fae is not kept still. The distane of the movement is up to 3m. Figure 11shows measured BRDFs. In the results of forehead, heek and lip, BRDF with the fae trakingis highly onsistent with the ground truth. However, in the result of nose, BRDF with the faetraking is very di�erent from the ground truth. It is thought that this di�erene is aused bythe shading on the nose.Appliation: moles and anes removal simulationAs the appliation of our video-based analysis system, we performed moles and anes removalsimulation. The removal simulation an be performed by ontrolling skin olor of moles andanes. Positions of moles and anes on the faial skin are traked by the proposed trakingmethod. The skin olor ontrol[1℄ is performed to pixels in the small region around the targetpoint. Figure 12(a) shows the removal simulation of moles, and (b) shows the removal simulationof anes. Moles and anes look like skin-like olor parts.Conlusion and DisussionThis paper proposed a video-based analysis for the appearane on the faial skin with an auto-mati fae traking tehnique. The faial movement an be traked robustly against the shadingby using the lip and the head enter that are less in�uened by the shading. The videobasedanalysis system ould measure the BRDF of the moving fae. In addition to the BRDF measure-ment, we performed moles and anes removal simulation as the appliation of our video-basedanalysis system.For further study, we must improve the traking tehnique to trak parallel shift along the zaxis and roll rotation. It is thought that every movements of the fae an be traked auratelyby using aurate 3D fae model. Therefore, we are planning to reonstrut 3D fae model anduse to trak. 71



Figure 11: Results of BRDF measurement, (a)forehead, (b)heek, ()lip, (d)nose BRDFs.
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Figure 12: Removal simulation of moles and anes.
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New deomposition basis for re�etane reoveryfrom multispetral imaging systemsAlamin Mansouri, Tadeusz SliwaLe2i, UMR-CNRS 5158, University of Burgundy, FraneJon Yngve HardebergGjøvik University College, Gjøvik, NorwayYvon VoisinLe2i, UMR-CNRS 5158, University of Burgundy, FraneAbstratIn this paper, we deal with the problem of spetral re�etane funtions estimation inthe ontext of multispetral imaging systems. We work out in the linear model and wepropose a novel method based on the use of spline wavelets as basis funtions. We omparethis method to Fourier and PCA basis. The results are evaluated with the ommonly usedgoodness-of-�t oe�ient (GFC) and prove the reliability of the use of wavelets.IntrodutionConventional olor imaging de�nes eah pixel with 3 variables suh as red, green and blue, whihare neessary and su�ient to haraterize any olor. This priniple has several limitations. First,in a olor image aquisition proess, the sene is aquired using a given illuminant. Thus, it isimpossible to estimate the sene olor aurately under another illuminant. Moreover, two olorsamples an math under one illuminant and appear ompletely di�erent under another one.This phenomenon is alled metamerism. Multispetral imaging systems remedy these problemsby inreasing the number of aquisition hannels. In doing so, multispetral imaging providesthe advantage of high spetral resolution over lassial olor imaging systems and the advantageof high spatial resolution over spetrophotometers. Furthermore, with suh systems, sene sur-fae re�etane reovery from the amera output beomes easier but not trivial. Thus, �ndingappropriate mathematial methods to estimate the spetral re�etane from the amera outputis a ruial task and of great importane.Problem formulationThe generally used spetral model of the aquisition hain in a multispetral system is illustratedin Figure 1, where I(λ) is the spetral radiane of the illuminant, r(λ) is the spetral re�etaneof the surfae, o(λ) is the spetral transmittane of the optial system, tk(λ) is the spetraltransmittane related to the kth �lter, c(λ) is the spetral sensitivity of the amera, and ηkrepresents the spetral noise for the k-th hannel, k = 1 . . . K.The amera output dk, related to the hannel k for a single pixel of the image, is given by
Figure 1: Synopsis of the spetral model of the aquisition proess in a multispetral system.75



dk =

∫ λmax
λmin I(λ)r(λ)o(λ)c(λ)tk(λ) dλ + ηk. (1)If the noise is assumed removed by preproessing [1℄, and assuming a linear opto-eletronitransfer funtion, we an replae I(λ), c(λ), o(λ) and tk(λ) by the spetral sensitivity Sk(λ) ofthe kth hannel. Then, the Equation (1) beomes:
dk =

∫ λmax
λmin Sk(λ)r(λ) dλ + ηk. (2)By regularly sampling the spetral range to N wavelengths, Equation (2) an be written inmatrix notations as follows:
dk = ST

k (λ)r(λ), (3)where Sk(λ) = [sk(λ1)sk(λ2) . . . sk(λN )]T is the vetor ontaining the spetral sensitivity of theaquisition system related to the k-th hannel, r(λ) = [r(λ1)r(λ2) . . . r(λN )]T is the vetor ofthe sampled spetral re�etanes of the sene, and T is the transpose operator. Considering thesystem with all hannels, Equation (3 an be written as:
d = ST r (4)where d is the vetor ontaining all dk amera outputs and S = [s1s2 . . . sK ]T is the matrixontaining the hannels spetral sensitivities Sk. The �nal goal is to reover r(λ) from theamera output aording to Equation (4). This is obtained by �nding an operator Q that solvesfor the following equation:
r = Qd. (5)Depending on how the operator S is determined, two paradigms of spetral re�etane esti-mation exist [2℄.

• If S is obtained by a diret physial system haraterization, Q is the pseudo-inverse of S.
• If S is obtained indiretly by mathing a set of M olor pathes (for whih we know thetheoretial re�etanes) and we apture an image of these pathes with the multispetralamera, we have then a set of orresponding pairs (dm, rm), for m = 1, . . . ,M , where dm isa vetor of dimension K ontaining the amera responses and rm is a vetor of dimension

N representing the spetral re�etane of the m-th path. The re�etanes rm are gatheredin the matrix R and the amera outputs for the M pathes are gathered in the matrix
D. The operator Q is straightforwardly obtained by alulation of this mathing. Anyoptimization method an ful�ll this aim (neural networks, Least squares. . . ). Thus, theoperator Q is obtained like:

R = QD (6)involving then the inversion
Q = RD−1. (7)A third paradigm for spetral re�etane estimation onsists of diret interpolation of the ameraoutputs dk. Then, no knowledge about operator S is required. Nevertheless, rigorous onditionsabout �lters' shape, as well as well alibrated and normalized data is required for this kind ofreonstrution. The reonstrution is performed by any interpolation operator (spline, et.)The �nal goal is to estimate spetral re�etane funtions r from amera outputs d. Todo so, several methods belonging to the two �rst paradigms exist in literature. Some lassialapproahes use the pseudo-inverse alulus and the least squares. The main drawbak of thesemethods is instability of solutions due to the noise ampli�ation. That is why some other methodsadd some onstraints on the re�etane funtions to be in the range [01] or seek to maximizethe smoothness of the estimated result. 76



Re�etane estimation in the linear modelUtilization of a linear model to estimate re�etane from amera response seems to be trivialsine we supposed a linear opto-eletroni transfer funtion enabling us the matrix notation inEquations (4, 5). Moreover, the linear model o�ers an alternative to imposing smoothness onre�etane funtions [3℄. This is expressed by assuming that r(λ) an be approximated by alinear ombination of a small number of basis funtions [4℄. Thus, a set of basis funtions Bj

(j = 1 . . . M)) are de�ned suh that eah re�etane ri ould be written as:
ri = Bjai,j, (8)where ai,j is the weight of the jth basis funtion related to the ith sample. The basis funtions arethemselves funtions of wavelength but free of onstraints suh as being positive or onstrainedto be limited to the range [01]. Their number M is hosen to onserve maximum of energy.Equation (4) an be written as:
d = ST Ba, (9)where the olumns of the N × M matrix B ontain the M basis funtions of a linear model ofre�etane spetra and the M ×1 matrix a holds the weights that de�ne the partiular spetrumthat we are trying to reonstrut. When gathering ST and B in a unique operator, the latter isa square matrix that ould be easily inverted. We an rewrite Equation (9 as:

a = (ST B)−1d, (10)whih allows us to ompute a. Afterwards we an easily estimate r by simple multipliation:
r = Ba. (11)In this ontext, methods belonging to the seond paradigm use tehniques of deomposition,although impliitly. We an ite the method proposed [5℄ whih takes advantage of the a pri-ori knowledge about the spetral re�etanes that are to be imaged (pigments re�etane forpaintings re�etane reonstrution). Methods based on linear neural networks are also methodstaking bene�ts from basis deomposition [6℄. In our paper we will ahieve the deompositiontask by experimenting with three basis funtions: PCA, Fourier and Wavelets analysis.Experiments and resultsIn this setion, we desribe three experiments to evaluate the spetral re�etane estimationperformane for the three methods: PCA, Fourier and wavelets analysis. The data we used aresampled at 10 nm intervals in the range [400, 700] yielding for eah spetrum r(λ) to a vetor of31 values.The aim of this experiment is to derive a small number of basis funtions from a set ofspetra using the three methods. Then, we try to reonstrut all the set using only the basis weomputed. To do this we used a set of 404 natural spetra. We performed deomposition usingthe three methods. We found that 95% of energy is hold by the six greatest vetors. Furthermore,for pratial reasons that involve the number of Fourier and wavelets basis to be multiple of two,we hose to keep the eight �rst basis funtions. The wavelets we used in this paper are based onthe spline family.Reonstrution of training setAfter deriving the basis funtions for the �training� set, we try to reonstrut all the spetra inthis set using these basis funtions and the oe�ients matrix a (Equation (10). The Figure 2shows the results for the three methods in terms of visual omparison of reonstruted urves:77



a b Figure 2: Samples of reonstruted spetra from the training set using: a. PCA eight basisfuntions, b. Fourier eight basis funtions, . Wavelets eight basis funtions.Table 1: Results, in terms of GFC, of the reonstrution of the training set for the three methods.Method GFCMean median STD MinPCA 0.9997 0.9999 5.1903·104 0.9953Fourier 0.9841 0.9905 0.0170 0.8799Wavelets 0.9952 0.9978 0.0053 0.9655We also evaluate the re�etane estimation in terms of an objetive metri. For this purpose,we used the non entered orrelation oe�ient, largely used and known in the ommunity asGoodness of Fit Coe�ient (GFC) expressed by the formula:
GFC =
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)1/2where Rm(λj) is the value measured by the spetrophotometer in the wavelength λj , and Rr(λj)represents the reonstruted value related to the same wavelength. Table 1 gives the full resultsfor the 404 spetra in terms of mean, median, standard deviation and the minimal value of GFC.Generalization performaneFrom the previous results, we retain PCA and Wavelets to test them in the task of generalization.That means we extrat a PCA and wavelets basis funtions from a set that we all training setand try to estimate re�etane from another set. In our ase, we used Mabeth DC as a trainingset and Mabeth Color heker as reonstrution target. Figure 3 depits some samples of theperformed reonstrution allowing for visual omparison of the reonstruted urves. We alsoevaluate the generalization apabilities of these two methods in terms of GFC. Table 2 gives theresults. 78



Table 2: Results, in terms of GFC, of the generalization apabilities for the methods using PCAand wavelets basis funtionsMethod GFCMean median STD MinPCA 0.9971 0.9990 0.0048 0.9820Wavelets 0.9980 0.9986 0.0021 0.9922

a bFigure 3: Results of generalization test for: a. PCA basis funtions and b. Wavelets basis funtion.Estimation from multispetral imageThe main objetive in multispetral imaging is to be able to reonstrut full spetral re�etaneurves r(λ) from a small number of hannels K ontained in the vetor dk. That is why weperform this third experiment. We used two multispetral images of the Mabeth DC omposedof eight hannels representing aptured eah 40 nm in the range [400, 700]. The di�erene betweenthe two images is the shape of the �lters. The �rst image is issued from narrow-band �lters,while the seond image is issued from large-band �lters (FWHM of 40 nm). Then, in order toreover the full spetrum for eah path, we used the previously omputed basis in the ase ofthe wavelets but we omputed a new basis for the PCA method. Figure 4 shows results for thisexperiment in terms of visual omparison of urves.Table 3 gives the results for this experiment in terms of GFC when using a multispetralimage issued from narrow band �lters.The Table 4 gives the results for this experiment in terms of GFC when using a multispetralimage issued from large band �lters.Table 3: Results, in terms of GFC, for the re�etane estimation from amera outputs in thease of multispetral image from narrow-band �lters.Method GFCMean median STD MinPCA 0.8841 0.9605 0.1898 0.2847Wavelets 0.9948 0.9972 0.0064 0.971079



a
b

dFigure 4: Results of re�etane estimation from: a. narrow-band multispetral image using PCA,b. narrow-band multispetral image using wavelets, . large-band multispetral image using PCA,and d. large-band multispetral image using wavelets

Table 4: Results for the re�etane estimation from amera outputs in the ase of multispetralimage from large-band �lters.Method GFCMean median STD MinPCA 0.9970 0.9993 0.0081 0.9604Wavelets 0.9948 0.9971 0.0071 0.9665
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DisussionLooking to the results of the �rst experiment, one an remark that Fourier basis presents theworst performanes and presents some artifats on the boundaries as depited in Figure 2b (en-irled area); this even we repliate periodially the re�etane samples. The wavelets remedyto this problem thanks to multiresolution analysis and presents therefore good results in termsof GFC and visual omparison. But, the PCA presents the greatest sores for the task of reon-struting samples from the training set. It is natural sine PCA derive Smooth basis for smoothdata set. For the generalization task, the wavelets basis funtions performs better and get thebest sores in term of GFC and urves visual omparison even the training set and test set arestatistially similar (Mabeth DC and Mabeth CC). We notie that we ould use the basisfuntions derived from the �rst experiments in the ase of wavelets. Wavelets basis are indepen-dent from training. The only hypothesis is that the urves are smooth. The third experimentshows again the best performane of the wavelets in the task of estimating re�etanes frommultispetral output system. In the ase of multispetral image issued from narrow-band �lters,sores for the wavelets are largely superior. That means that PCA is not adapted to reonstru-tion for this kind of images. In the ase of multispetral image issued from large-band �lters,the two methods presents quite similar results. The mean and median are superior for PCA butthe standard deviation and the min are superior for Wavelets. That expresses the stability inthe results of wavelets.ConlusionIn this paper, we introdued a new method for spetral re�etane reonstrution using waveletsbasis funtions. We tested this method in three ases: reonstrution of the training set, gener-alization and the reonstrution of re�etane from multispetral imaging system. We omparethis method to two other methods belonging to the same paradigm: Fourier and PCA. We eval-uate the results in terms of GFC and re�etane urves omparison. The proposed method showgood and stable performane in all experiments. The future work will onern designing andtesting other types of wavelength more adapted to smooth re�etanes.Referenes[1℄ Mansouri, F. S. Marzani, P. Gouton, Development of a protool for CCD alibration: appli-ation to a multispetral imaging system, Intl. Journal of Robotis and Automation, AtaPress, 20 (2), 94-100 (2005).[2℄ A. Ribes-Cortes, Analyse multispetrale et reonstrution de la re�etane spetrale detableaux de maître, PhD thesis, ENST Paris, deember (2003).[3℄ D. Connah, , J. Y. Hardeberg and S. Westland, Comparison of linear spetral reonstrutionmethods for multispetral imaging, IEEE-International Conferene on Image Proessing(ICIP04), 1497-1500 (2004).[4℄ L. T. Maloney, Evaluation of linear models of surfae spetral re�etane with a smallnumber of parameters, Journal of the Optial Soiety of Ameria - A, 3 (10), 1673.1683(1986).[5℄ J. Y. Hardeberg, F. Shmitt and H. Brettel, Multispetral olor image apture using liquidrystal tunable �lter, Optial Engineering, 41(10), 2532-2548 (2002).81
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Spetral Color Reprodution versus Color ReprodutionJérémie Gerhardt and Jon Y. HardebergThe Norwegian Color Researh LaboratoryDepartment of Computer Siene and Media TehnologyGjøvik University College, Gjøvik, NorwayAbstratIn this paper we are omparing spetral olor reprodution versus olor reprodution.We perform three olorant separations based on the inversion of the spetral Neugebauermodel: one minimizing a spetral di�erene for the spetral print, a seond minimizing aolorimetri di�erene for the olorimetri print and a third one minimizing a weightedsummation of both olorimetri and spetral di�erene. A multi-olorant printer is used forour experiments and the prints simulated with the spetral Neugebauer model.Keywords: spetral olor reprodution, spetral printer model, multi-olorant printing,spetral olorant separation.1. IntrodutionWith a olor reprodution system it is possible to make a olor aquisition of a sene or objetunder a given illuminant and to print a olor reprodution of it. With proper alibration andharaterization of the devies involved, and disregarding the problems related to olor gamutlimitations, it is theoretially possible to produe a olor reprodution whih will appear iden-tially to the original. For example a painting and its olor reprodution put side by side willappear idential under the illuminant used for its olor aquisition even if the spetral prop-erties of the painting pigments are di�erent from the print inks. This phenomenon is alledmetamerism. On the other hand, if the illumination hanges, the reprodution will generallyno longer be pereived as equal to the original. This problem an be solved in a spetral olorreprodution system.Multispetral olor imaging o�ers the great advantage to provide the full spetral olorinformation of a surfae. While a olor aquisition system reords the olor of a surfae undera given illuminant, a multispetral aquisition system an reord the spetral re�etane of asurfae and allows us to simulate the olor of under any illuminant. In an ideal ase, after saving aspetral image we would like to display or to print it, from that point we have two options: eitherto alulate the olor rendering of our spetral image for a given illuminant and to display/printit, or to reprodue the spetral image. This is a hallenging task when for example we have madethe spetral aquisition of a 2 entury old painting and the olorants used at that time are notavailable anymore or we have lost the tehnial knowledge to produe them.The introdution of multi-olorant printer in olor printing, for a primary goal of inreas-ing printer olor gamut has o�ered new possibilities in spetral olor reprodution. The �rstworks with a spetral use of multi-olorant printer were foused on olorant seletion [1, 2, 3℄and spetral printer modeling [4, 5℄. Then spetral olor reprodution of spetral image wasintrodued [6, 7, 8℄. A omplete work�ow for spetral olor reprodution is existing and researhworks are onverging toward linking aquisition and reprodution of spetral image [9, 10℄ basedon the model of a olor reprodution work�ow.Multi-olorant printer o�ers the possibility to print the same olor by various olorant om-binations, i.e. metameri print is possible. This is an advantage for olorant separation [11, 12℄,it allows for example to selet olorant ombination minimizing olorant overage or to optimizethe separation for a given illuminant. In spetral olorant separation we are aiming to reduethe spetral di�erene between a spetral target and its reprodution, i.e. we want to redue themetamerism. This task is performed by inverting the spetral printer model.83



The spetral Neugebauer model and the Yules-Nilsen spetral modi�ed Neugebauer model(YNSN) are ommonly use for spetral printer haraterization [13℄. As in olor reprodutionsuh system needs to be haraterized and spetral printer haraterization has been used alreadyfor olor reprodution sine it provided more aurate information [5℄.2. Spetral versus olorimetri printingIn this paper we want to asses the di�erene between a multi-spetral print and a olorimetriprint. The hoie of olorimetri versus spetral printing is made during the olorant separationproess. Colorant separation (i.e. inversion of the spetral printer model) is performed by opti-mization tehnique ending by minimizing a ost funtion. When a spetral print is desired theolorant separation is performed suh that the di�erene between the spetral target and theestimated print is minimized for the spetral root mean square (sRMS) di�erene. For a olori-metri print we will alulate a ∆E∗

ab di�erene between the spetral target and the estimatedprint.Gamut mapping plays an important role in olor reprodution: printer gamut and imagegamut may be partially di�erent. Gamut mapping transformation will map image data to theprinter gamut in order to keep most of the information [14℄. Gamut mapping beomes moreompliated for spetral data [15℄, due to the dimension of the problem it is likely impossibleto apply diretly olor gamut mapping tehniques to spetral data. But with the use of aninverse printer model and optimization it is possible to map spetral re�etane to the spetralprinter gamut. The spetral printer gamut is de�ned by the spetral re�etane of the availableolorants and all the ombination between them, i.e. the Neugebauer primaries (NP) of theprinter. Aording to the Neugebauer printer model the spetral re�etane of a printed olorantombination is the weighted summation of the NP where the weights are the area overed by theNP. It is a onvex optimization problem to solve sine the summation of the weights is equal to1. So by inverting the spetral Neugebauer model for the weights we obtain an estimation of thelosest printable spetral re�etane aording to the desired spetral target and olorants [16℄.3. Experiment and resultsWe use in our experiment the Esser testhart made of 283 spetral pathes. Colorimetri andspetral prints are simulated for the original testhart and its gamut mapped version withthe tehnique desribed above, see in Fig. 1 (a) the gamut mapped Esser testhart spetral re-�etanes. The olorant separations are run for a simulated seven olorants printer, see Fig. 1 (b)for the NP spetral re�etanes of the printer.Performane of the olorant separation proesses are shown in Table 1 for the originaltesthart and Table 2 for the gamut mapped testhart. In both experiment the olorimetriprint is performed for ∆E∗

ab under illuminant D50. Di�erenes between target and print arealulated in CIEL∗a∗b∗ spae for illuminant A, D50, D65, F11 and sRMS.A third method is experimented to perform the olorant separation involving both sRMSand ∆E∗

ab in the ost funtion. Our metri is then a weighted summation of these two metrisand the di�erene to be minimized is de�ned by:
d = (1 − α) × ∆E∗

ab + α × sRMS (1)where α = 0 is equivalent to olorimetri print and α = 1 equivalent to spetral print. sRMS hasbeen saled for this method suh that both metri vary in the same range of value. In Fig. 2 (a)are displayed olorimetri di�erenes and in Fig. 2 (b) spetral di�erenes versus α. Extremevalues in the graphs are orresponding to those displayed in Tab. 2.We observe an interesting result, from α = 0 to α = 0.25 the sRMS metri is dereasingfaster than the inreasement of the olorimetri metri ∆E∗

ab. Small α values orresponds to84



bigger weigth put on the olorimetri di�erene in the olorant separation. This method seemsto reah an area where the ∆E∗

ab is stable and sRMS is dereasing. It desribes olorant valueswhih both minimizes olorimetri and spetral di�erene.4. ConlusionBoth method end up with large error when olorant separation is performed on the originaldata. But the spetral print produe smaller error in term of spetral di�erene than for theolorimetri print and olorimetri print produe smaller olorimetri di�erene with a minimumpeak for the illuminant D50 hosen during the olorant separation, see Tab. 1 and Tab. 2.After spetral gamut mapping both method provide loser prints with the new gamut mappedtesthart. We an see that the spetral print is still better than the olorimetri print in termof spetral di�erene. But all olorimetri di�erenes are redued for the olorimetri print andare minimum again for the illuminant used in the olorant separation. The olorant separationinluding a minimization of a metri based on both olorimetri and spetral on�rms that moreweight put on the olorimetri di�erene or on the spetral di�erene improves one or the otherdi�erene respetively and still a better spetral di�erene does not provide better olorimetridi�erenes. But it also reveals an area orresponding to small α value where both olorimetriand spetral metris are dereased.A spetral print tends to redue metamerism (smaller variations between the olorimetridi�erenes omparing to those obtain for olorimetri print) but other targets and set of olorantshould be tested for the olorant separation proess. Also the use of the inverse YNSN shouldprovide better results sine it improves the spetral Neugebauer model.Referenes[1℄ Timothy Kohler and Roy S. Berns. Reduing metamerism and inreasing gamut using�ve or more olored inks. IS&T's Third Tehnial Symposium On Prepress, Proo�ng, andPrinting, pages 24�29, 1993.[2℄ Di-Yuan Tzeng and Roy S. Berns. Spetral based ink seletion for multiple-ink printing II.optimal ink seletion. The Seventh Color Imaging Conferene: Color Siene, Systems, andAppliations, pages 182�187, November 1999.[3℄ Di-Yuan Tzeng and Roy S. Berns. Spetral-based six-olor separation minimizingmetamerism. In IS&T/SID Eight Color Imaging COnferene, pages 342�347, November2000.[4℄ David R. Wyble and Roy S. Berns. A ritial review of spetral models applied to binaryolor printing. Color Researh Appliation, 25(1):4�19, 2000.[5℄ Raja Balasubramanian. Optimization of the spetral neugebauer model for printer hara-terization. Journal of Eletroni Imaging, 8(2):156�166, April 1999.[6℄ Lawrene A. Taplin and Roy S. Berns. Spetral olor reprodution based on a six-olorinkjet output system. The Ninth Color Imaging Conferene, pages 209�212, November2001.[7℄ Roy S. Berns, Lawrene A. Taplin, and Tony Z. Liang. Spetral olor reprodution withsix olor output. US patent 0098896A1, May 2003.[8℄ Andreas Kraushaar and Philipp Urban. How to linearise a multispetral printing system forgraphi arts uses? In IARIGAI Proeedings 33rd International Researh Conferene, 2006.85



Table 1: Di�erenes between the olorimetri and spetral print for the original Esser testhart.
∆E∗

abmethod A D65 D50 F11 sRMSAv. 13.32 15.57 14.99 15.73 0.047spetral Std 11.92 13.34 12.74 12.44 0.035Max 65.37 70.16 68.86 69.90 0.180Av. 9.43 9.03 8.72 10.09 0.073D50 Std 9.89 9.75 9.96 9.35 0.048Max 52.39 45.85 44.45 42.39 0.255

Table 2: Di�erenes between the olorimetri and spetral print for the gamut mapped Essertesthart. The �rst three line show the di�erenes between the original testhart and the gamutmapped testhart.
∆E∗

abmethod A D65 D50 F11 sRMSspetral Av. 12.01 13.87 13.40 14.13 0.044gamut Std 11.33 12.36 11.87 11.86 0.035mapping Max 59.98 63.98 60.33 61.23 0.180Av. 1.66 1.83 1.78 1.90 0.005spetral Std 2.73 2.62 2.65 2.95 0.005Max 14.38 13.40 13.77 16.42 0.026Av. 1.48 1.12 0.99 1.40 0.013D50 Std 2.36 1.91 2.12 2.30 0.012Max 14.84 11.87 12.81 13.01 0.089
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(b)Figure 1: Spetral re�etane of the Esser teshart after spetral gamut mapping in (a). The 128Neugebauer primaries spetral re�etanes used for gamut mapping and simulating the spetraland olorimetri prints in (b).
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(b)Figure 2: Evolution of the di�erene between the original target (here the gamut mapped Essertesthart) and the its estimation after olorant separation funtion of α fator. ∆E∗

ab in (a) andsRMS in (b).
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